
Systems

File No. 5370-20

Order No GC28-2003-6

IBM Time Sharing System

Concepts and Facilities

This publication provides an introductIOn to the IBM Time
Sharing System (!SS), a general purpose ooeratlng

system used with IBM System/370 computers that have
dynamic address translation. TSS allows many users to
'lave simultaneous access to a computing system The
combination of machine and control program creates a
data processing environment for each user which can be

'Jtillzed Independently or shared with other users. Each

user operates In a separate virtual address space poten­
tially as big as the addressing capability of the machine

rhe design of TSS facilitates program development
because the functions prOVided support a convenient,
Interactive programming environment Programs devel­

oped In thiS environment may be used In production

mode Without change Integration of virtual storage with

data management pe"mlts an Innovative and productive
approach to data base applications. A feature of TSS IS
user ownersh,p of data With security and privacy.

This publication is wntten for managers of data process­

ing Installations, system programmers, application

programmers, end users of applications. and operators.
11 IS an introduction to the purpose, design, and use of

TSS. It contaH1S general descriptions of the control
program, task management, and data management; a
summary of publ1ca1l0ns relating to TSS; and Information

about use of the system to support indiVidual users and
subsystem development proJects.

There is no prerequisite reading for this publication
However, the reader should have a basic understanding
of IBM data processing techniques.

--------- - ---- ----- -- ---- - - -------------

Summary of Amendments

Changes since the last edition (GC28-2003-5) include:

• Division into three sections, (1) an introduction to TSS concepts, (2) a
description of external characteristics of jntere~t 10 application
programmers (users), and (3) a description of internal structure of
interest to system programmers

• More emphasis on how TSS provides ownership of data, control of
access to data, and data set integrity, and their relation [0 security and
privacy of data

• Description of new support for System/370

Discussion of hardware and software tools which increase programmer
productivity

• Explanation of how named, disconnectable segments of virtual storage
can be utilized [0 provide an address space larger than the addressing
capability of System/370 hardware

• Description of a facility which makes it possible to run most language
processors and a subset of programs written for OS/VS

Seventh Edition (April] 978)

This is a major revision of GC2R-2003-5 and makes that ediliull ohsoicte. rhis
edition applies to Release 3.6 of T55/370 and to all suhsc4uent releases unless olher­
\\ii,e indicated in new editions or Technical Newsletters.

Changes or additions to this ptthlication will he provided in Technical Newsletters nr.
if changes are extensive. in a new edition.

RC4UCSIS for -:opies of IBM puhlications should he made to the IBM representative or

hranch office serving the reader's locality.

A form for readers' comments is provided at the hack of this puhlicatioll. If the form
has heen removed. cOlllments may he addressed to IBM Corporation. Time Sharing
System - Depart Illent 80M. 1 133 \Vestchester Avenue. \Vhi Ie Plai ns. New York
10604. Comment;, hecome the property of IBM.

;, Copyright I nternalional Business Machi nl's Corporation 1967. 196~. 1'170. 1'171.
19n1.

Preface This publication is intended to give the reader an introduction to the
Time Sharing System (TSS), an appreciation of how applications can be
developed and used in the TSS environment, and information ahout the
potential benefits which may accrue because of the interfaces. functions,
program development aids. and services provided. It is written for people
in management who want to know more about how TSS supports the
development of complex software subsystems in the areas of interactive
computing, information management and retrieval, realtime processing,
and batch processing. System programmers, application programmers,
and operators may use this manual as an introduction to the system and
the related publications. End users of applications who have no concern
for the internal structure of TSS may use the information to gain an
appreciation of what the computing system does to support their applica­
tions.

When TSS was introduced, the concept of a programmer using a terminal
to communicate with a computer was of major interest. Accordingly,
previous editions of this pub:ication emphasized a conversational mode of
use. However, the use of TSS in nonconversational mode is no different
from conversational mode, except that instead of a terminal, communica­
tion is by means of a data set and there is no attention key. Therefore,
in the present edition, a distinction is made between conversational and
nonconversational modes only when necessary.

Section 1 introduces TSS add the concepts which are the ba'iis of its
design. Section 2 describes the external characteristics of TSS and is
intended for application programmers. Section 3 presents the internal
structure of TSS and is intended for system programmers. Appendixes A,
B, and C summarize TSS commands, macros, and publications.

Because this publication is intended for an audience with varied data
processing experience. some terms, particularly those related to TSS, may
be unfamiliar lo the reader. The first occurrence in each section of terms
in the glossary is printed as: term. Data set names, member names.
USERIDs, and source coding examples are printed as: NAME.

There is no prerequisite reading for this pUblication, but it is recommend­
ed that the reader have a basic understanding of IBM data processing
techniques and an understanding of what an operating system is called
upon to do.

Two publications in the TSS series which describe the system in more
detail are IBM Time Sharing System: System Logic Summar}', GY28-2009
and IBM Time Sharing System: Data Management Facilities, GC2~-2056.

Prdacc

Contents

4 TSS Cnm:eph and Facilities

Summary of Amendments.
Editipn Nntice
Prdace .
Contents
Figures

Introduction to TSS
Ceneral Descriplion
Design Ohjectivc, ..
Resource Sharing
Interactive Computing.
Noninleractive Computing.
Time Sharing.
Virtual Storage.
Virtual Access Method
Dynamic Loader ..
Data J'l'1anagement

TSS for the Application Programmer.
Access 10 the System.
User/System Communication

LOGON
User-SpecifiL:d Profile
Command Systelll
Editor ..
User-\Vritten Commands
L~cr-ModifiL:d System Messages.
COllver'iational Language Processors.
Symholic Lihrarie,.
Copying Data Sch
Defining Data Sets for Programs

DOEF Command.
RELEASE Command
Program Lihrary Lisl Control

Developing. Te'iting. and Running Prngrams ..
Writing Program., ..
Loading Programs
Program Control System.
Program Test.
Control of Execution.

Program/System Communication.
Data Management for Pro!,rams.

Data Set Name~ ..
Catalog ...
Generatioll Data Group"
Data Set Security and Sharing.
Puhlic and Private Volumes ..
Permanent and Temporary Puhli, Storage.
Unit-Record De\ices
Data Set Organization.
Virtual :\ecess Method.
Basic Sequential Access Method
Queued Sequential Acec,s Method.
IORLQ Access Method ..
Multiple Sequential Access Method.
Record Formals.
Specifying Data Set Characteristics.
Identification of TS5 FORTRAN Data Sets
Identification of TSS PL/I Data Sets.
Identification ()f TSS A,semhler Data S<:ts.

System Services for Programs ..
Communicating with Lsers.
Communicating with Terminals.
Getting and Freeing Virtual Storage
Mapping Data to Virtual S(nrage Using VAM.
Named. Disconnectahle Segments of Virtual Storage

2
2

4

7
7
7
X
X

'J
')

II
II
12
13

1:1
15
I ()

16
17
IX
19
21
21
21
22
22
22
22

23
24

25
26
27
n
29

29
30
31
3 I
32
35
35
35
36
36
3f-(

3X
3')
39
39
40
41

41
42
42
43
44
45
45
46

Figures

Loading and Linking Programs,
User Inkrrupt C<llltrol ,
Servici ng At tent inn I ntL'tTUPIS ff"()1tl S'r SI 'I
Timer MaintL'nClIKc
Interfacing User Program'i with the Command Svqcm
Communicating with th<: Operator and Ihe SYstem Log,
Systc tn-Oriented 'Vlaeen I I1sl rllet inn'i
OS/VS Supe)"visor Sen'iecs,

TSS for the System Programmer
SlIhs\,stcm'i,
System Program StruUun:,

Virtual Computc!"s,
Levels of Proteccion,

Systcm Prottction
Task Prnlection ,
Data Protection,

Partitioning of Function.
/>,ddress Space I\-tap

Real Storage.
\'irtual Storage

Shar~d Virtual StOJ".lgc
Where FunctiPIl Rc'>ides
System Gcncration ,
System Maintenance,

Dar<l Base/Data Communication,
TSS Data Saw . , .
TSS Data Comtnllnil'ation

System Support Facilities
Time Sharing Sup[1Prt System,
Sys1em Internal Perfurtnance Lvaluator.

Dynamic Measurement Sta\i~tic,
Design Features

Supervisor
Ta~k Schedulinc>.
Ta,k \-lonitor
Virtual Acee" v\ethud,

Appendix A: TSS Commands

Appendix B: TSS Macros

Appendix C: Summary of TSS Publications,

Glossary of Terms and Abbreviations,

Figurc 1- I
Figure 2-1
Fi~ure 3-1
Fi~lIrc C-I

TSS Virtllai Storagc
TSS Catalog Structure.
rss Program Structure

TSS Puhllcatio!)'i Guide,

72
74
75
7"
75
XO
xl
S2

10;

IU

II I

(0 TSS Concerts and Facilities

Introduction to TSS

General Description

Design Objectives

TSS is a general purpose operating system which was designed for use
with IBM computers that have dynamic address translation. The combina­
tion yields a computing system which can serve both conversational users.
who interact \vith the system and their programs using terminals, and
nonconversational users, who cause programs to be run by the system in a
mode which is similar to batch processing. TSS serves many simultaneous
users with varied training, experience, and objectives. This includes
scientific users, commercial uscrs, text processing users, programmers,
programming support personneL and users of realtimc applications.

The system comprises a supervisor and task monitor, service programs. user
programs, supporting programs, and a support subsystem. The supervisor and
task monitor control operation of the system and create the operating
environment for users. The service programs perform task management
and data management in response to user and :-ystem requests Some
programs supplied with the system run in the same mode as user pro­
grams, providing language processing, link-editing, and functions needed
by user programs. The supporting programs are concerned with mainte­
nance of the system. The support subsystem facilitates problem determi­
nation, remote maintenance. and system program development.

TSS supports single processor, attached processor, and multiprocessor
System/ 3 70s.

This section presents a number of concepts which are the basis of
TSS design. The TSS implementation of these concepts is intended to
make computers easier to use and to help people be more productive by:

• Reducing the complexity involved in preparing a program for execu­
tion. This allows an iterative approach to program development.
leaving more time available for concentration on the problem instead
of on detail related only to the computing system.

• Allowing users to interact with the computer during program prepara­
tion and execution.

Placing the problem solver in direct association with the computer.
Much clerical work associated with problem-solving, stich as routine
calculations, reducing and plotting data, editing, and information
retrievaL can be carried out more effectively using a computer,
especially if the problem solver can be close to the computer.

• Enhancing feedback throughout the design, development. and test
phases of a project. This can raise the quality of design and increase
the quantity of product (improve programmer productivity).

• Making it more convenient for a user with limited knowledge of
computing systems to use the computer.

Section 1: Introduction tn TSS 7

Resource Sharing

Interactive Computing

X TSS CO!lCerts and Facilities

The users of TSS can share resources and data without the
involvement of anyone else. The data that a user creates is owned by the
user, not the system. TSS is designed to prevent a user from gaining
access to the data owned by another user without the owner's explicit
permission, which is given by means of a command. The owner can
withdraw permission at any time. Privacy is not dependent upon
passwords associated with each data set requiring protection. Access to a
data set is controlled by specifications contained in a catalog belonging to

the owner. The owner can specify the type of access sharers may have.
If a sharer has read-only access to a data set or group of data sets. a data
set may be read but not changed; if read/write access. read and changed;
if unlimited access, read, changed. erased, and created. Owners can
permit each sharer different access, as needed.

Program sharing extends beyond sharing of the data sets in which the
programs are stored. If a program is parallel reenterable, it can be used
simultaneously by more than one user. There need be only one copy of
the program in main storage and more than one central processing unit
(CPU) can be executing instructions of the program. The supervisor,
task management. data management, command system. supporting
programs, and the language processors natiV"e to TSS arc all shared in this
manner.

Users can arrange to share portions of their address space with each other.
Using system services. they can synchronize usc of shared address space.
Because sharing is accomplished by connecting a shared area only to
those users requesting it, the sharing is not apparent to other users. and
does not infringe on the address space available to them.

Interactive computing is characterized by a high rate of unanticipated
human decision-making interspersed with relatively short computer
processing times. Noninteractive computing is characterized by preplanning
of a relatively long. logically uninterrupted process. Actually, these two
cases are ends of a spectrum representing computing activity. Data entry,
editing, and data set manipulation can be done interactively. but do not
involve much unanticipated decision-making.

TSS design helps to greatly reduce the need for preplanning, which tends
to impede progress during the problem-solving or trial phase. The design
provides for late binding of programs and data and dynamic allocation of
computer resources. Much attention is given to keeping a user from
getting into situations where the only recourse is to back up and repeat
previous work.

TSS design is strongly influenced by the needs of interactive users. Thi~

can result in benefits for noninteractive processing too. TSS creates an
environment which effectively supports interactive development of
programs and subsequent noninteractive execution of these programs in
production. The resources of the data processing system are easily
accessible. Terminals provide a direct means to monitor and control
programs and processing on an individual basis. TSS provides an
effective person/machine communication that facilitates step-by-step
interaction with programs that depend on immediate human judgement
for timely solutions to complex problems.

Interactive computing also strongly fosters the conccpt of uscr identity.
fn between sessions with the system. users surrender custody of thcir
data, but not ownership.

Relali\ely little training specific to TSS is required to w;e the systcm.
Productivc work can hegin after learning (I) the procedure ror terminal
operation. (2) a control language to communicate with the system, (3)
htHV to use the editor and. in some cases. a problem-orientcd language.
Because TSS has conversational capabilities, a user acquires operational
skills through hands-on experience. The system provides guidance in the
form of messages that indicate error ... and action taken. User<., can
interact directly with programs and the 'iystcm. It is possible to interrupt
execution. obtain intermediate results. introducc nc\'.: data. and change
tht' sequence of execution.

Noninteractive Computing

Time Sharing

The term noninleractive computing includes traditional batch processing
but leaves room for all types of proceso.;ing in which humans do not take
an active. decision-making role. As interactive computing grows, the
need for effective noninteractive processing still remains.

Some programs which users develop conversationally arc to be run
repeatedly in production. A feature of TSS i<., that programs and
command procedures developed interactively can be used in nonconversa­
tional mode without alteration. The same command language handles
both modes. Nonconversational tasks can he initiated by interactive lIsers
at terminals.

TSS can also process jobs in a conventional batch mode. TSS supports
batch processing initiated centrally and at remote locations. At the
central site, card decks are entered and output is obtained using local
unit-record equipment. Remote job entry stations, connected to the
central site by telephone lines. can be used at distant location~.

Another type or noninteractive processing supported by TSS is online
computing. for which response time is an essential element. An example is
control of experiments. where data originates at a test cdl and is
transmitted to a program for immediate analysis. Also, control signals
can be returned to the test cell to operate the experiment.

fn 1'SS. there is a unique task associated with each user. The system
allows many users to share the CPU(...) by dispatching an a\ailable CPU
for a scheduled amount of timc determined by task characteristics. An
installation can provide service to user" on both demand and scheduled
bases. Scheduling strategies are specified in a table which can be sct up
to provide different classes of service. The scheduler recognizes changing
characteristics of tasks. and provides service according to criteria
specified in the table for each class of work. Installations can design a
schedule table that concurrently defines different kinds of service for
various users.

Seclioll I: Inlrl)dllctiol1 (0 TSS 'I

initial virtual storage
(IVM) has the same
addresses in all tasks

virtual storage
protection classes:

user read-write

user read-only

system

dynamically allocated
shared virtual storage
provided through
mutual agreement
among many users
(addresses may be
different in each task)

private user
virtual storage
unique to
each task

IVM

I II
/ /1

IVM

I
I
I
I
I
I
I
I
I
I
I

! f I----!---I
! I
I /
! !
I f
I /
I I

I f I
I { I
I I {
If I

I

I
{
f

user
virtual
storage

TASK B

shared
data
set

(records on VAM data sets are
directly addressable by the CPU)

user
virtual
storage

TASK C

private
data
set

segments of
virtual storage
temporarily
disconnected
from TASK B

TASK n

intertask communication supported by supervisor

SUPERVISOR creates virtual storage address spaces for each task

Figure I-I. TSS Virtual Storage

10 TSS Concert'; and Facilitic<,

Virtual Storage

Virtual Access Method

Virtual storage is address space that can bc referenced directly by a
CPU equipped with a dynamic address translation feature. This address
space appears to the user as real storage. but it is actually a combination
of main storage and auxiliary storage. A virtual address space can be as
large as the addressing caJNlbility of the CPU; it is not limited by the size
of main storage.

In TSS, each user operates in a separate virtual address space with an
independent addressing struct ure. The sum of all address spaces in use is
limited to the amount of auxiliary storage available on direct-access
devices.

Virtual storage i~ implemented by a process called dynamic address
translation. instructions of a program in virtual storage must be brought
into real storage before execution. Virtual addresses of instruction
operands must be translated to the corresponding addresses in real
storage. In TSS. translation is accomplished by a combination of
hardware and software outside the user's virtual address space. Virtual
storage is managed in blocks or 4,096 bytes, called pages. Addresses arc
relocated by a value that is a multiple of the size of a page. When a page
is referenced. it is brought into real storage: when it is not actively used
and real storage is needed by another task. it is written to auxiliary
storage unless an exact copy already exists on auxiliary storage (that is.
the page was not modified during use).

This simplifies program design, because the available address space is
large. Variable-size data structures are easily handled by managing
virtual storage in a manner that leaves enough contiguous storage to
accommodate expansion. Complete disregard for locality of reference
may lead to heavy use of system resources to accomplish the' required
paging. but it may be worth the cost for problems in which prediction of
address reference is very difficult. Each TSS user can issue commands to
determine how much paging is being done during any period of execution,
which facilitates selection of appropriate strategies.

The size of a TSS user's virtual storage can exceed the addressing
capability of the machine. Segments of virtual storage may be named and
disconnected when not needed. The named segments may be reconnect­
ed as needed. Large amounts of virtual storage can be referred to as
quickly as the system can switch the translation table pointers to
reconnect the disconnected segments. For those applications which do
not need to address all their data simultaneously. this may be more
convenient than conventional input/output (I/O).

In TSS. the principal method used by system and user programs to gain
access to data is integrated with the method used to create virtual storage.
The virtual access method (V AM) maps data on external storage to virtual
storage. In the TSS context, the term external storage means permanent
data storage. VAM manages the association of logical I/O with physical
I/O. freeing programs from concern with the physical data base in the
same way that virtual storage frees programs from the constraints of main
storage. With the exception of a small part of the supervisor. programs
need not be complicated by the need to satisfy the requirements of
storage devices with varying characteristics. Thus, V AM is device-

Sect inn I: I ntrnduct ion tn TSS II

Dynamic Loader

12 TSS Concepts and Faciiitie'i

independent and easily adaptable to various direct-access devices. The
supervisor handles paging, data set requests. and error recovery with the
same software.

V AM supports sharing of data in a convenient and secure manner and
makes possible safe. concurrent update of a data set by multiple users (or
programs). Tables in dynamically obtained shared virtual storagc contain
control information needed to synchronize updates and maintain integrity
of the data sets.

For V AM. the supervisor can use the storage key reference and change
bits to eliminate unnecessary £/0 operations. Records adjacent to records
just processed may already be in virtual storage and even in real storage
or perhaps on a paging device capable of more rapid access than the
device on which the records reside permanently. Direct-access storage
volumes used for V AM arc formatted in fixed, page-size blocks. which
reduces the time for typical processing.

An important design point of TSS is that all storage is page-addressable.
V AM defines dynamically changing relationships between pages in virtual
storage and pages on external storage. Using V AM. data on external
storage can be directly addressed by the CPU.

Programs to be run under the control of TSS are loaded into virtual
storage by a dynamic loader. The dynamic loader enhances the interactive
programming process. because it makes possible late binding of programs.
It is integrated with V AM and the paging mechanism. obtaining programs
to be loaded from members of V AM partitioned data sets. Address constants
are not resolved by the dynamic loader unless the page in which they arc
located is referred to by a program during execution. This automatically
eliminates unnecessary processing. Reference is detected by the paging
supervisor, which treats storage unprocessed by the dynamic loader in a
special way.

Because programs are not bound to each other until actually needed.
large program bases can be utilized conveniently. Loading is dynamic,
which means that binding occurs at execution time. Linkage can be
data-directed and subsystems can be open-ended. This facilitates data
base applications in which the names of programs appropriate to the
processing of clements in the data base are stored with the elements. In
this arrangement. data is the driving force .. The data and the user direct
the problem-solving process. If a new technique (program) is added to
the subsystem it can be used to process the data without any impacl to
the old method and with only a small change required of the user.

Implicit loading is possible, and users can direct substitution of programs
by arranging lists of libraries containing various versions of the programs.
The dynamic loader also provides a dynamic call-by-name facility for
explicit loading. All entry names in programs are available for resolution
when loading subsequent programs.

Because link-editing is optional, subsystems containing numerous
subroutines can be used by many users and yet simultaneously undergo
maintenance. Benefit from the system sharing facilities is inherent,
because access to programs is under the same control as access to all
shared data.

Data Management

In summary, advantages or virtual storage, YAM, and a dynamic loader
are:

• Programs can he designed with little conccrn for main storage capacity.

• Only actively used portions of programs and data areas occupy main
storage; this is managed automatically hy the system.

• I/O programming is simplified for hoth system and user programs; the
dynamic address translation hardware and the system control program
are integrated in their support of I/O. Programs need not be con­
cerned about the extent of data sets: spacc allocation is managed
automatically. A.lso, operations arc based on logical records, not
physical charactcristics of storagc devices.

• Programs using YAM data sets are not dependcnt on particular devicc
types or system configurations.

• The dynamic loader eliminates the need to link-cdit programs (hut it
may be desirable to link-edit specific production programs for rcasons
of improved performance). It is possihle to load and unload programs,
while testing, without affccting the entire collection of programs.

• If a control section has the public attribute. it is loaded in ;) shared
segment of virtual storage. Shared segments have common address
translation tables. Requests for the same public control section are
satisfied by connecting to the shared segment in which the control
section is loaded. The dynamic loader uses thc namc of the data set
from which the object module was loaded to verify that the control
sections match. If a control section with the public attributc is being
actively used by more than one task, it is probable that it will be in
main storage. Thus, only onc copy is needed for several othcrwise
independent address spaces. This is handled automatically hy the
system, relieving programmers of the need to take specific action to
achieve the ecollomies which result.

Those system services which providc fOf storage and access to data
are called data management. They free programmers from details of
device programming and lead to efficient utilization of equipment. Data
is logically grouped in data sets. A data set is a named collection or
related records. The data set name is used whenever the data set is
processed. Examples of data sets are: files used hy programs, libraries of
programs, and, in a special sense, stream~ of records read from or writtcn
to devices such as card readers, printers, punches, and terminals. Pro­
grams process dara through a logical connection to the data set name
rather than to the name (description or address) of a device. TSS
provides a catalog which makes it possible to refer to data sets without
specifying physical locations or logical characteristics. A cataloged data
set may be referred to by name only: the descriptive information is
recorded in the catalog.

The term volume refers to a standard unit of auxiliary storage ,>uch as a
disk pack or a reel of tape. The volume serial number identifies the
specific disk pack or reel of tape on which the data set residcs. A public
volume can be used hy many users concurrently, and any user of TSS may

Sectio1l 1: Introdlli.:ti"!l to TSS 13

14 TSS Concert, and Faciliti~,

have data on it. Public volumes are owned and managed by the system.
Users need not refer to specific volumes or make specific allocation
requests related to space. All data sets on public volumes are cataloged;
the user need not remember locations of data sets. A private .'o/ume is
dedicated to one user at a time. The system operator, aided by thc
system, authorizes use of private volumes.

All direct-access volumes have standard volume labels and data set labels
which the system creates and maintains. There can also be user data set
labels on volumes formatted for the basic sequential access method
(BSAM). These labels can be processed by user-written routines. Tape
volumes may contain (I) standard volume and data set labels, or (2)
standard volume and data set labels plus user data set labels, or (3) no
labels. Labels on tape volumes with standard labels are created and
maintained by the system; user data set labels are processed by llser­
written exception routines.

TSS for the Application Programmer

Access to the System

This ~ection descrihes TSS for application programmers, The work
performed hy applicaTion programmers may range from ~1'rilil1g programs for
a single user 10 developing an application {hat supports many user.I', TS'S
defines a strict interrace hetween S},Slem and the applicatlOll protaammer.
1''''10 operates on rhe nonprivileged side of the interj'ace. This definition
establishes the integrity of the system. The ,Iystem is designed so lhar I/O

user can gain access to information belonging to any other user wirholil rhe
owner's permission, This interface has not changed significanllr since ir was
first defined. For example. although rhe capacity and functional character­
istics of the prinCipal data storage devices have undergone major change.
programs l'.·hich use the prinwrv access method conlinue to .timetion wilhoU/
need for reprogramming while faking full advantage or new device fUllction,

(System programmers lise the sysrem in rhe same manner as applicalion
programmers. except fhat their work usualll' produces alteratiolls and
extensions to the system. This section should he used hv system programmers
as an aId to understanding and preserving the s)lstem/user illter/ace.)

Prior to using the system, one must get an identification code. called a
USERID, The USERID defines a llser to the system. The management of
the computer cenler assigns an initial password, charge number, external
priority, privilege, authority, and resource usage limits for each usee One
who has access to the system is said to be joined to the system. When
TSS is delivered, it has joined to it a system manager (SYSMANGR), a
system operator (SYSOPERO), and an owner of system data .~et,~ (TSS).
Using the JOIN command, the system manager can join system adminis­
trators to the system. The system administrators, in turn, can join users
to the system. SYSMANGR can also join users to the system, This
two-level approach allows computer center management to divide
responsibility among departments

The following are JOIN command parameters:

USERID: All processing hy the system on behalf of a person is related
to a USERID, Ownership, sharing of data and programs, and communi­
cation between users is based on the USERI£),

PASSWORD: Access to TSS is based on knowing the password to a
USERID, Users can change the password with the CHGPASS command.

CHARGE: Specifics an account number against which charges are
accrued, TSS includes facilities for collection and presentation of raw
data covering use of most system resources, The installation is responsi­
ble for accounting and resource allocation according to individual needs,

PRIORITY: Specifics a set of scheduling parameters for tasks belonging
to the usee TSS is supplied with a general-purpose schedule table
containing several sets of parameters,

Seclion -,. TSS for the Applicatioll Progranlllla I ~

PRIV: (Privilege) Controls which commands a user may issue. A few
privilege classes are used by the system and the remainder are available
for use by the installation.

AUTH: (Authority) Indicates which supervisor calls (SVCs) may be
issued by user-written programs and whether the user may display and/ or
alter system programs. Authority also controls some special features of
data set sharing and affects program loading related to maintaining
system security.

RATION: Specifies which one of a set of installation-defined limits is to
be applied to instantaneous and .cumulative usage of resources, such as
CPU time and online storage. The system records usage of resources by
each USERID and rejects requests for resources that would cause the
limits to be exceeded.

BATCH: Spccifies that a user may submit balch work to the system at
the central computer installation.

RJE: Specifies that a user may submit batch work and receive printed
output using a remote job entry station.

The right of any user (except the system manager, the system operator,
and USERID TSS) to use the system can be revoked by the correspond­
ing administrator or the system manager. The QUIT command removes a
user from the system and provides for appropriate disposition of the
user's data sets. Users can be temporarily denied access to the system by
reducing certain allowable resource allocations, such as connect time, 10

zero.

User ISystem Communication

LOGON

16 TSS COllceflh and Faciiilic.,

TSS has different kinds of users. One kind of user is a person; another
user could be a subsystem. For example, a USERID could be set up to
compile and execute student jobs at a university computing center. The
person responsible for the USERID associated with the subsystem
accounts for and controls the work performed by the subsystem.

Equipped with a USERID, a user uses the LOGON command to create
a task. (This discussion applies equally to conversational and
nonconversational use of the system.) The LOGON command is not a
command in the normal sense. It has operands, ')uch as password,
addressing mode, and control section packing options, but its purpose is to
cause a task to be created. A task has a unique identification number,
called a T ASKTD. The T ASKID is used by the system to keep track of
resources utilized by the task. The T ASKID is used when communicating
between tasks. The task exists until the LOGOFF command is issued.

LOGON causes the system to connect the user to a number of entities.
For purposes of computing, the most important is the presence of an
address space for programs and data in which the task receives service
from a CPU.

Another important entity provided by the LOGON process is connection
to a catalog containing names and information about data sets to which
the user has access. The system associates users with their data sets and

User-Specified Profile

those to which they are allowed access hy means of the catalog. TIll:
catalog as it appears on external storage is IikL' any other TSS data set. but
only system service routines have access to the catalog. The catalog is
actually a combination of many data sets. There is a separate data set for
each user's catalog and for the master catalog into which a user's catalog
is copied for usc. This technique provides for redundancy and security,
with efficient access.

Each USERID normally owns a data set named USERL I B (user lihrary).
The user lihrary can he Llsed to 'itore object modules and contains a user
profile described helow. LOGON connects the user's task with a numher
of system data seh, whose names need not appear in the user's catalog.
One of these is a data set in a generation data group named SYSL I B
(system library). The system library, along with the user library, is
defined as a job library (JOBUB).

Another entity to which the t:.lsk is connected is the system operator.
Users and programs can communicate with the system operator. An
example of communication is a request to mount a private tape or disk.

An important fUllction 01 LOGON processing is to enablc cach lIser to

set up an environment according to individual needs. During LOGON, a
standard user profile (possihly modified hy the installation) is used to

construct a combined dictionary for the task. Users can change their copy
of this dictionary with DEFAULT, SET, and SYNONYM commands or
the SETDV macro, and save the chan/!ed copy with the PROFILE
command. For subsequent LOCi-ON commands, the !>ystem obtains the
combined dictionary from the saved lIser profile. As a final step in the
LOGON process, the system executes a ZLOGON command. The
system ZLOGON command is null and can he overridden by a user
command, with the same name, to calise user-specified initialization to he
performed.

User~ can clIstomize the system by changing the lIser profile. Facilities
exist for:

• Renaming command~ and operands

• Altering the default values for command operands

• Defining variables, called command sJ'mbor~. for use during command
execution

• Creating new commands

• Rewriting system messages

• Modifying terminal input and output translation tahles

Redefining the terminal function control characters used to edit input
and output

• Saving the changed user profile so that it can be reestahlished the next
time the user logs on.

SeX!I"!]")' TSS for tile Applicaliol1 PJ"()grarnrner 17

Command System

I R TSS Concepts and F aeili! ies

When LOGON is complete, the system reads a record from SYSIN to
gel the user's first command. The part of TSS that reads is called the
command system and SYSIN is the data definition name (DDNAME) for
the command system input data set. Output is directed to SYSOUT,
which is the DDNAME of the command system output data set. (Data
sets, DDNAMEs, and the means by which programs access data are
described under '"Program/System Communication" in this section.) The
command system is used to invoke programs, which can read from SYSIN
and wrile to SYSOUT, using a simple device-independent interface.

The fact that SYSIN and SYSOUT are DDNAMEs of data sets IS not
important to users. For conversational tasks, SYSIN normally is what the
user enters and SYSOUT normally is what the system writes back. For
nonconversational tasks, SYSIN is a prestored data set containing
commands and data; SYSOUT is a data set which is usually printed and
erased. Each lime a command from SYSIN completes, or a program
returns to the command system, another record is read from SYSIN.
Commands entered from the terminal are treated in the same way as
commands in nonconversational SYSIN data sets. (The task is terminated
with a LOGOFF command or by reaching the end of the SYSIN data
set.)

Users get work done by making requests to the system in the form of
commands. The term command, as used in connection with TSS. implies
more than a request entered at a terminal which the system must interpret
and execute. All processing performed on behalf of a user
(conversational or nonconversational) is the result of commands. A
program is caused to run by a command or a call from another program.
A command can be issued from within a program. Appendix A is a
summary of commands supplied with TSS, organized by functional area.
Commands belong to certain categories:

Task management commands initiate and terminate tasks and display
task-related statistical information.

• Command environment commands adjust the apparent characteristics
of the system to suit individual needs and specify action to be taken
upon interruption of programs and command sequences.

• Terminal control commands affect the operating mode of the terminal
related to the handling of records to/from SYSIN/SYSOUT.

• Program execution commands provide tbe means for testing and
running programs.

• Data management commands help users use data.

• Editor commands creale, modify, and delete records in data sets which
can be processed by the TSS editor.

• Data editing commands support entry, display, and alteration of data
sets.

• Language processing commands invoke assemblers and compilers,
which produce executable object modules from source programs.

Editor

• Bulk output commands print and punch data sets locally, print data sets
at remote stations, and write data sets on tape for offline printing.

• Operator, manager. and system programmer commands ',upport
operation, control, and maintenance of the system.

• Time sharing support system commands, for use hy system program­
mers, enable independent, interactive testing of the system or an
individual task.

There is a di ff erence bet ween conversational and nonconversational tasks
in one respect; with conversational tasks, a user at a terminal can signal
an attention interrupt, making it possible to examine intermediate results,
issue other commands, and cause execution of an interrupted program to
be resumed. The command system normally handles attention interrupts,
but a user program can specify an interrupt routine which take~; prece­
dence and receives control when there is an attention int(,ffupL

If a user program uses the SYSIN macro to read from SYSIN, there can
be escape to the command system and other programs during a read,
without the need to signal attention. The program may in fact he reading
from the expansion of a command procedure definition or from a string of
commands obtained from one record of SYSIN. A user-definable break
character indicates that the input which follows is intended for the
command system and not the user program. A TSS program can detect
such escape to the command system.

Interruption of user programs and execution of new ones is made possible
by a pushdown stack for the saved status of each program. Also, because
there is ample virtual storage. the command system and user programs do
not use transient routines (which typically are loaded into the same
storage locations), thereby avoiding problems which could result upon
resumption of execution. Furthermore, TSS data management is designed
to get each save area dynamically. This is practical, b('cause a user
program can call a routine such as GET. whose execution may be
interrupted. During the interruption, another user program in the same
address space can llse GET without aHecting the interrupted GET
operation. There are limits: obviously, the state of a data set being
processed by an interrupted program could be changed by ex('cution of
other programs aning on the same data seC

It is convenient to be ahle to leave one command environment temporari­
ly and enter another. Horizontal integration (all commands usable at all
times) and vertical integration (subsetting of environments) are both
realizable with the TSS command system. For example, an application
program, such as an editor, can read a subset of commands, uncon­
strained by the general command synlax. The user can escape from that
environment and use any command outside the subset, possibly entering
other subset environments.

The TSS editor IS invoked by the EDIT command. It is capable of
editing most of the data set formats used by the system. (For other
formats, there is another editor, which is invoked with the MODIFY
command.) The TSS editor also can be invoked from programs. An
example of this is the TSS PL/I F compiler which uses the editor to
create source data sets. Editinp. is ended with the END command which

Sec,tion 0. TSS fur the Application Pro~ramlm'r 19

20 TSS COllccrt'> and Faciiitie,

closes the data set being edited. An EDIT command, issued while
editing, closes the current data set and begins editing the data set named
in the command.

The TSS editor edits data sets having the format most frequently used hy
language processors native to TSS. These data sets have variable-length
records with a maximum length of 132 bytes. Each record contains, in
order. a 4-byte length field, a 7 -byte numeric key, called the line number.
a code byte that indicates the origin of the data (card reader or key­
board). and a data area. Such data sets are called line data sets. Origin of
the data, as indicated by the code byte, is important to programs which
accept different continuation conventions for data records. TSS language
processors allow free-form input for lines entered at a keyboard, thus
eliminating the need for users to space over columns exactly. Line data
sets can be made to appear as card-image data sets by the interface that
supports execution of OS/VS programs.

A region data set is an extension of the line data set format. This format
is used by the system for command procedures and messages. The keys
consist of an R-byte portion, which defines a region of the data set,
followed by the line number. As with line data sets, the first data byte in
the record is the code byte. Records may be up to 256 bytes long. The
REGION operand of the EDIT command identifies the portion of the
data set which is to be processed by editor commands as if that region
were a line data set. Although not presently utilized for system data sets,
keys (region name plus line number) can be larger than eight bytes, up to
a .limit determined by the record length.

The editor optionally maintains a transaction table in which changes are
recorded. Additions and deletions are recorded separately. The transac­
tion table facilitates nullification of changes to a data set being edited.

The STET command causes all changes that are recorded in the table at
the time the command is issued to be reversed. Additions recorded in the
table are deleted from the data set. Deletions recorded in the table are
added to the data set. Changes made by the STET command arc also
recorded in the table; in effect, the addition and deletion portions of the
table are switched.

The POST command clears the transaction table of the entries recorded
in it, thus making those changes permanent.

The ENABLE command causes each subsequent command that alters
data to clear any previous entries to the table, so that only changes made
by that command will be recorded. While the ENABLE command is in
effect, each command that alters data leaves only the changes it has made
in the transaction table.

The DISABLE command cancels the effect of a previous ENABLE
command. While ENABLE is in force, the editor is said to be enabled;
while DISABLE is in force, it is said to be disabled. When transactions
are to be recorded, the editor is initially disabled.

Editor commands are summarized in Appendix A.

User- Written Commands

Users can create their own commands to supplement the commands
supplied with the system. A llser-written command can issue system and
user commands contained within it. A command can also he a program,
invoked as if it were a command.

The PROCDEF command can be used to write a command procedure
definition (also called PROCDEF). 11 invokes the editor, which is llsed
to write the PROCDEF. When writing a PROCDEF, provision can be
made for parameters which are to be operands of the PROCDEF. When
the PROCDEF is issued, statements in it are expanded and filled with
these parameters. The parameters can abo be used to control execution
or they can be passed as operands to commands contained within the
PROCDEF.

The BUILTIN command and the BPKDS macro make it p()~sible to
invoke a program as if it were a command, obtaining the services of the
command system for delivery of parameters. The program is invoked by
a command (also called BUILTIN) defined hy the BUILTIN command.

User-Modified System Messages

During the course of execution, the system issues messages to SYSOUT.
The user can write messages to replan.' many of those issued by the
system. User-written messages arc in the user library: system messages
are in the system library. A user-written message has the same message
identification code as the system message it replaces. The system
searches the user message file before searching the system message file to
get a message; therefore, messages in the user message file take prece­
dence over messages in the system message file.

The user profile contains a filler value to indicate the level of messages
desired, Messages are classified by severity and length. There arc five
levels of severity: information. warning. normal error, serious error, and
termination error By default, all messages except informal ion-level
messagfs are written. but the filter value can be changed. There are five
levels of message length: message identification code only, standard
messages with message code, standard messages without message code,
extended messages \vilh message code, and extended message without
message code. By default, users receive standard messages without the
message identification code.

An explanation of messages and terms in the system message file can he
requested with the EXPLAIN command. This command can be used to
clarify a message. words in a message. responses the user may make to a
message. and the origin of a message.

Conversational Language Processors

The language processors native to TSS crss assembler, TSS FORTRAN,
and TSS link.age editor) can operate in a mode in which statements are
analyzed for syntactical correctness. line by line, with errors reponed
immediately. H an error in a source statement can he corrected during
language processing, the language' processor can be utilized to update the
source program within the context of the language processor, providing

5edi'''1 2: ["55 lor the Arrlical1()n PrngLlmrncr :::!

Symbolic Libraries

Copying Data Sets

immediate diagnostic aid. The processors arc invoked by the language
processor controller (LPC). LPC is a faciliiY which can also be utilized
hy an instaJlation to control locally developeu processors.

Symbolic libraries supplement the capabilities of partitioned data sets. An
example of a symbolic library is an assembler macro library. which can
contain macros. DSECTs. and source code. Symbolic libraries can be
used with applications other than the assembler.

A symbolic library has a symbolic component and an index component.
The symbolic component is either a line data set. containing records
grouped into parcels by a unique header plus name, or a region data set,
with regions as parcels. The index component is produced by the
SYSINDEX command and contains pointers from names and aliases to all
portions of the symbolic component that are to be used in library
references. The symbolic library search routine (SYSEARCH) may be
called by user programs to locate parcels of a symbolic library using the
index created hy SYSINDEX.

The CDS (copy data set) command can copy a data set or a member of
a partitioned data set. Also, it can be used to renumber the lines of a
line data set. The organization of the copied data is determined hy the
definition of the output data set. A sequential or indexed sequential data
set may be copied into a partitioned data set. and a member of a
partitioned data set may be copied out of the partitioned data set,
becoming a sequential or indexed sequential data set. Provided that it
has valid keys in ascending sequence, a sequential data set or member
may he copied into an indexed sequential data set or member. An
indexed sequential data set or member can always be copied into a
sequential data set or member. A user with unlimited access to a data set
that resides on direct-access storage can optionally specify that the data
set or member be erased after it is copied.

VT (VAM-to-tape), TV (tape-tn-VAM), and VV (VAM-to-VAM) copy
data sets on a page basis, which is more efficient than copying by logical
records, because the internal structure of the data set is ignored. The
data sets must reside initially on direct-access storage in V AM format.
VT writes a V AM data set on tape as a physical sequential data set in a
format meaningful only to the TV command. TV reads the data set
written by VT and recreates the V AM data set. VV copies VAM data
sets.

Defining Data Sets for Programs

DDEF Command

22 TSS C"nc~rh and Facilities

A convenient feature of TSS is the way that it provides logical connection
between programs and data sets, minimizing the numher and complexity
of steps that users must take. For example, a llser should not be
hurdened with space allocation on l'Olumes. It is sufficient that users know
the names of the programs they run and the names of the data sets to be
processed.

The DDEF command associates a DDNAME with a data set name by
creating a control block, called a job file control block (JFCB). The
JFCB can be accessed by user programs to obtain information about the
data set. The system uses the J FCB in conjunction with another control
block, called the data control block (DCB), to perform I/O operations on

RELEASE Command

Program Library List Control

the data set. The DCB is located in the user program, or a subroutine
that the user program eai1s, and contains the DDNAME. The JFCB
exists for the duration of the task or until a RELEASE command
specifying the DDNAME is issued. Languages. such as FORTRAN and
PL/I, treat 1/0 at a higher level than Lhal just described. In other words,
the programmer does not need Lo get involved with the system control
blocks. The programs produced by these compilers are used with I/O
subroutine libraries which interface with 'ISS.

Besides establishing a logical connection between programs and data, the
DDEF command can be used to define the requirements for system
resources needed by a data set. The DDEF command can also define a
V AM partitioned data set as a job library, from which programs can be
loaded by the d.vnamic loader. The JFCBs associated with data sets
defined with the JOBUB option arc chained together to form the program
library list. This li,;t is also known as t.he JOBUB chain. In the case of
basic sequential access method (BSAM) data sets, the concatenate option
of the DDEF command makes it possihle to read several different dat.a
sets as one data set. The DDEF command can be used to supply
information, via the JFCB, which is placed in the DCB by the system
when the data set is opened.

TSS analyzes the requirements for the data set at the time the DDEF
command is issued and, for private volumes, issues mount messages, if
nece~sary, to the "ystem operator. When a private device is allocated to a
task, a device reservation and a volume reservation are made. The
volume reservation can be released without losing the device reservation,
which allows successive volumes to be mounted. If the required space
cannot be allocated, Of the specified volumes cannot be mounted, the user
receives notification. Private devices not associated with volumes, such
as graphic display5, are handled within the same framework.

Nonconversational tasks wait until the systcm is able to satisfy the
requirement for private deviccs bcfore processing begins. The SECURE
command is used to communicate a list of thc kinds of devices and the
quantity of each that will be needed. For a full description of the DDEF
command, see the Command Systems User's Guide.

The RELEASE command reverses the action of the DDEF command and
disposes of the JFCB that was created, freeing the DDNAME for other
use. RELEASE is also used to free data sets from concatenation and to
close and rcmove data sets from the program library list. Any programs
loaded from a job library that is released are unloaded by the RELEASE
command. Release of a DDNAME associated with an open data set
results in that data set being closed. The volume reservation for private
volumes can be released without releasing the device reservation, or both
device reservation and volume reservation may be rcleased.

A program in TSS can consist of one or more related object modules. All
executable programs in TSS are stored in object module form in program
libraries that are in the form of partitioned data sets. A program can
consist of severa! object modules which reside in different libraries. The
linkage editor and the dynamic loader can retrieve all required object
modules if the libraries containing them have been appropriately defined.

Section"" T5S for the Application Programmer 2~

The program library list is created and initialized with entries for
USERL I Band SYSL I B (0) during LOGON. Job libraries can be added
by the DDEF command and removed by the RELEASE command. The
library at the top of the list always receives all object modulcs resulting
from language processing. The user library is at the top of the Jist unless
special action is taken. When a job library is defined with a DOFF
command which specifies the JOBUB option, that job library is placed at
the top of the list. The JOBUBS command can be used to rearrange the
program library list, as desired.

Although it is not necessary to link-edit programs in TSS, there arc
situations in which link-editing is desirable. It is possible to conserve
space in virtual storage and on external storage by combining relatcd
control sections, which can also reduce the working set of executing
programs. The program library list can bc used in conjunction with the
linkage editor to define:

• The library that is to receive the link-edited object module

• The sequence in which libraries are to be searched by automatic call if
the linkage editor must search for object modules to complete the
link-edited object module

For cxample, if no other library is specified, the output of the linkage
editor is stored in the library currently at the top of thc program library
list. If another library is specified at the time the linkage editor executes,
that library receives the link-edited object module. The library can be thc
user library, any of the current job libraries, or a special library defined
by a DDEF command without the JOBUB option.

During link-editing, the library or libraries containing the object modules
to be included in the link-edited object module are either specified in
INCLUDE statements in the link-editor source program, or in the
program library list. The object modules whose libraries are identified by
INCLUDE statements are placed in the output module at the time the
INCLUDE statement is processed. Those object modules required in the
output module. but whose libraries are not defined by INCLUDE
statements, are obtained after all statements in the linkage editor source
program have been processed. They are retrieved by automatic call,
using the program library list for the search.

Developing, Testing, and Running Programs

2~ 'ISS C01H:erh "nel Facililics

The main thrust of the TSS design and implementation is to make the
person/machine interface highly interactive. This can enhance program­
mer productivity and also make it easy to execute in production mode,
programs which wcre developed interactively. The program control
system (PCS), thc command system, and the dynamic loader are the
principal TSS user program development aids. They are available at any
time for investigation of production programs; it is not necessary to
reassemble or recompile programs to enter a test mode.

The program event recording (PER) feature of System/370 is available to
TSS users. This feature provides for automatic detection of various
events such as alteration of. or reference to, virtual storage or machine
registers. Thc PER hardware feature efficiently monitors execution of

Writing Programs

Loading Programs

user programs for these events. It is possible to specify a pes statement
that is to be executed on occurrence of a specified event such as an
unintended ~tore into a variable. An appropriate statement would be the
STOP command. whleh would C:lUSC execution to be suspended immedi­
ately after the improper .;;tore operation. By displaying the program
instruction counter it is possible to determine the operation which caused
the unwanted ovcnvrite. Each TSS user can utilize the PER feature
independenlly. The feature is activated only when the CPU is cxecutil11l
the code of a user for whom PER is active.

Facilities arc available in TSS which affect the preparation of source
programs to bc tested and run under control of TSS. These facilities
reduce the amount of work related to testing and running that i~ needed
during program preparation and thus improve programmer productivity.
The programmer can concentrate on the application, because tools for
testing and running are available. Late binding of objects and dynamic
allocation of resources help 10 free the programmer from concerns other
than the immediate needs of the application.

The program development aids available in TSS eliminate the neecl to
include debugging statements in the source program. This simplifies
program writing. because many functions, previously source-coded, are
available for use after language processing. For example, coding I/O
statements to display intermediate results for test purposes is not
necessary. Debugging statements can he implanted hy pes in the
executable code that is loaded into virtual storage and do not become a
permanent part of the object module in external storage. When execution
of the program has been verified. the program is immediately ready for
use in production, free from the potenrial risk associated with removing
debugging statements or the inerficiency of not removing them.

Native TSS language processors (and the OS ASM H Program Product)
can optionally produce an internal symbol dictionary (lSD) in the object
module. An ISD makes it possible to use the names of statements and
variahles that arc defined by the source program in pes statements. This
is especially significant to a FORTRAN programmer, who prefers to work
with names in the source program and not machine addresses. External
names are always retained in the ohject module for usc by pes com­
mands, unles~ specifically deleted. When PCS displays or dumps
variables, the type and length i~ often known, particularly when the
variable name is in an ISD.

An important aspect of language proces~ing in TSS is that the output of a
language processor (the object module) is in a form which, as far as the
programmer is concerned, is directly executable. This is also true of
OS/VS language proce5sors running in the TSS environment. This is
madc possible by service provided by the dynamic loader and, I n the case
of OS/VS ohject modules, the object data converter (ODC). The dynamic
loacler eliminates the need for specific programmer action (link-editing)
after language processing and before program execution. This increases
interactiveness, because it is possible to change an object module without
affecting other modules to which it is logically linked. ODe can operate
in a mode logically equivalent 10 the OS/YS linkage editor, if desired.
ODe is automatically invokecl after running an OS/YS langl.lage proc­
essor under control of 1'SS.

Section~' ISS for the Applicatioll ProgrClr1llller 2<

Program Control System

26 TSS CO!leeph and l-'acilitic,

"Two types of object module linkage arc possible: implicit and explicit.
Object module use of a V-type address constant which refers to an external
name constitutes a request for implicit linkage. When a previously
undefined external name is encountered during loading, the dynamic
loader attempts to resolve the reference. The dynamic loader determines
if the name is defined in a module already loaded. If not. the dynamic
loader searches the active job libraries for the name and. if the name can
be found. loads the module containing the definition of the name.
Succeeding modules may. in turn. reference new names. Loading
continues until all references that can be resolved arc found. Explicit
linkage can be used to avoid unnecessary loading. A program may
contain references to many subprograms, only a few of which are needed
for a particular execution. In this case, the name of each required object
is passed to the dynamic loader during execution.

A counterpart to the dynamic loader is the unloader, which reverses the
action of the dynamic loader. Both are usable by the command system as
well as user programs.

pes creates a handS-Oil environment, which fosters increased programmer
productivity in connection with the task of testing and running programs.
pes commands arc issued in the same environment as other TSS
commands. As such. they can also be issued from within PROCDEF
commands and user programs. conversationally or nonconversationally. as
can any TSS command.

pes commands can be combined into command statements. There are
three types of statements: immediate. dynamic. and conditional. The
commands in an immediate statement are executed at the time the
statement is issued. Dynamic statements are stored until control passes
through a specified location in a user program or until the PER event
being monitored occurs. Immediate and dynamic statements can be
conditional. A conditional statement includes at least one IF command
which is used to determine if the remainder of the statement is to be
executed.

PCS commands can be used to:

• Display and dump data areas and instructions within a program,
specifying these items by the names used in the source program. or by
indication of the displacement from a known location and a length, or
by indication of an absolute address and a length.

• Modify data areas and instructions within a program, specifying items
as described for display and dump.

Indicate locations within a program at which execution is to be started
or Slopped, specifying locations as described for display and dump.

• Indicate locations within a program at which pes commands are to be
automatically executed.

• Specify events to be monitored by the PER hardware feature such that
when the events occur. pes commands are automatically executed.

Program Test

• Establish logical (true/false) conditions that control the action of PCS
statements.

• Load and unload programs and subroutines.

• Perform arithmetic computations. using specified variables and the
contents of data areas in user programs.

PCS statements consist of directives. operators, variahles, and constants.
The PCS directives are AT, BRANCl:-I, CALL, DISPLAY, DUMP. GO,
IF, LOAD, QUALIFY. REMOVE. SF'C STOP, TRAP, and UNLOAD.
Each directive designates a PCS command. The action of each PCS
command is ~ummarized under "Program Execution Management
Commands" in Appendix A. Arithmetic, logical, or relational operators
are used to form expressions. Variables are designated by external
names, internal symbols, command symbols, absolute storage locations, or
machine register numbers. Constants are one of six types: integer,
character, hexadecimal, floating point, address, binary.

When referencing subscripted arrays (a<; with FORTRAN). individual
elements may be <;pecified. Subscripts can be arithmetic expressions.
Synonyms for PCS command names and operands may be used.
'Y<,CSECT and (i-i,COM are two special symbols that may be used to refer
to the unnamed assembler language control section and the FORTRAN
blank common block, respectively. FORTRAN statement numbers are
defined in ISO" and are usable in pes statements. FORTRAN state­
ments without numbers can be referenced by relation to the preceding
numbered statement. A counter. which may be rct'erred to with the
special symbol cy". is associated with each dynamic statement and is
incremented by I for each execution of the statement. The value of the
counter may be displayed or dumped and can be used in forming
expressions. A contiguous group of variables is specified by concatena­
tion of symbols defining the range of locations containing the ,"ariablcs.

The tools provided in TSS for program test utilize the computing system
to perform functions not realizable with conventional hands-on machine
time. To obtain maximum benefit from these tools, all programs should
be planned for interactive execution even though they may be intended to
be run exclusively in balch mode. (As mentioned previously, TSS
program execution in interactive mode is identical to that in batch mode.)

Programs in TSS remain loaded unless specifically unloaded. Therefore,
if it is desired to rerun portions of the program or the entire program. it
should be .seriallY' reusable.

During development, some subroutines of a TSS program may be left
incomplete. For example, coding to perform limit checking or to handle
unlikely error conditions can be deferred until exact needs are better
known. Such code can be temporarily simulated in TSS with dummy
statements. pes AT commands can be implanted in these statements,
allowing manual simulation of the missing function. Similarly, subrout­
ines outside of the program may not yet be written. Again, AT com­
mands can be used to cause control to be returned to the command
system so that the function of the subroutine can be manually performed.

Secli()Jl 2: TSS Inr the Application Programmer 27

Control of Execution

2X TSS Concepts and Facilities

A TSS user program executes in problem state, is normally interruptible,
and is loaded in an address space that is independent from the address
spaces of other users, except for any virtual storage segments shared by
mutual agreement. It is possible to signal attention during execution of
one program, execute another program, signal attention during its
execution, and so on. When a program runs to completion, a GO
command causes resumption of the previously interrupted program.

It is convenient to scatter dummy statements throughout a program at
points where it would be logical to stop and examine intermediate results.
The names or statement numbers become operands of AT commands.
Each use of an AT command causes the instruction at the location
specified to be overlaid with a supervisor call instruction (SVe). This is
one of the reasons why code should not modify itself or treat instructions
as data.

There is always the possibility that a program may go into a loop. If this
happens, the loop condition could be recognized by failure to reach an
AT statement within a reasonable period of time. An attention interrupt
from the terminal will cause execution to be suspended. If a loop is
suspected. the TRAP command can be used to trace the loop and display
pertinent variables. If a STOP command is part of the TRAP statement,
execution proceeds one instruction at a lime.

A principle of pes and the command system is that the user may signal
attention at any time, determine the point in the program where execution
was interrupted, and resume execution (with the GO command). Signal­
ling attention does not affect, other than to suspend, execution of the
program. In those cases where user programs handle attention interrupts,
it is possible to use AT statements in the attention routine.

In the event of program interrupt, pes prints the location of the inter­
rupt, indicates, if possible, the name of the control section in which the
interrupt occurred. and gives control to the command system. Batch jobs
terminate unless the user has taken specific action to handle the termina­
tion. It is possible to examine machine registers, the instruction counter,
and any data addresses involved, determine the cause of the interrupt,
make corrections, and resume execution.

Dumps are seldom needed during development of programs using TSS.
This saves paper and time. Nonetheless, a dump may be desired.
Because TSS commands (including pes commands) are easily imbedded
in programs written in any language, a programmer may choose to handle
abnormal conditions in production programs with pes. Such DUMP
commands lie dormant and are called into use only when needed.

Use of pes is not limited to testing and debugging programs. pes can
be the means by which a user controls execution. Programs in different
address spaces can be monitored and controlled using pes to display and
alter fields in shared virtual storage. An example of the type of program
that can be run effectively, using pes to control execution, is a mathe­
matical model of a real process. The user can interrupt the program
periodically, inspect intermediate results, alter constants (perhaps to
adjust the rate of convergence of a calculation), and cause execution to
resume. It is also possible that all of the input/ output can be handled by
pes.

Program/System Communication

The preceding information in this section presented bmv llsers communi­
cate "vith the system. The following explains how programs communicate
with the system. Programs use data; the system manages data. Programs
call for service: the system provides support. Getting and freeing virtual
storage, checkpointing portions of virtual storage. checking virtual '>torage
clas">. setting up for interrupt bandling. waiting for events. obtaining the
time of day, setting an interval of time for an event to occur. communi­
cating between tasks. providing connection between addre'>s spaces.
loading other programs to be called, and obtaining measurements of
system utilization related to tbe work being performed are examples of
the calls for service that can be issued by TSS programs.

Several libraries containing macros and DSECTs are supplied with TSS.
The macros provide programs witb linkage to the entire spectrum of
system function. There arc macros for non privileged user programs.
privileged virtual storage programs, supervisor programs. recovery manage­
ment system programs. and the independent utilities. The DSECTs
describe every system control block in detail. Appendix 8 is a summary
of the TSS macros. organized by functional area. The macros belong to
two categories:

• Data management macros provide the means by which programs obtain
input/output ~ervices.

• Program management macros provide the means by which programs are
loaded, get storage, link [() one another. service interrupt,>. interact
with the command system. communicate \vith SYSIN/SYSOUT (witb
the user), communicate with the operator and the system log. invoke
commands (wilich may be user programs). and utilize system-oriented
information.

Data Management for Programs

One part of program/system communication concerns the storage and
retrieval of data. Data management provides for the identification.
storage, retrieval, sharing. copying. and erasing of data sets. It controls
transfer of data between virtual storage and secondary storage devices.
Supplied with TSS are programs which:

• Read data

• Write data

• Overlap reading, writing. and processing operations

• Read and verify volume and data set labels

• Write data set labels

• Position volumes to the proper record

• Detect error conditions and correct them when possible

• Provide exits for user-written error and label routines

S"el ion ..,. TSS for 1 h" Arr\ical iUll Programmer 2')

Data Sct Names

30 TSS Conc<:ph and F,lCilities

TSS data management facilities:

Permit the user to store and retrieve data using storage facilities
managed by TSS

• Free the user from conccrn with specific hardware configurations

• Permit the user to defer many specifications. such as device type and
blocking factor, until the program is in execution

• Permit interchange of programs and data among installations

• Allow users to concentrate their programming efforts on the application
and not the specifics of device programming

• Provide standardized methods for handli ng input/output and related
operations

• Provide flexibility for including support for new or improved devices

• Provide for effective error recovery and recording

A fully qualified data set name is a series of one or more simple names.
called qualifiers. Each represents a level of qualification. For example,
the name RUNOFF. CF . FRONT consists of three qualifiers. Starting from
the left, each qualifier may be considered a category within which the
next qualifier is a unique subcategory. This structure for data set names
facilitates cataloging data sets and granting or obtaining access to groups
of data sets. Fully qualified names are used by the DDEF command to

set up a logical connection between programs and data.

A partially qualified data set name identifies a group of data sets, and
omits one or more of the rightmost components of a data set name. The
group of data sets referred to includes all that have qualifiers identical to
those present in the partially qualified name. Partially qualified names
are used in several commands when it is convenient to refer to the
specified data sets as a group; for example, erasing a group, deleting it
from the catalog, or specifying that others may share it.

These rules govern the choice of data set names:

• Each qualifier consists of from one to eight alphameric characters; the
first must be alphabetic.

• A period must be used to separate qualifiers.

• The maximum number of characters (including periods) in the data set
name is 35, whieh allows a maximum of 18 qualifiers, assuming each is
a single character.

The system prefixes each name with the 8-character USERIO followed by
a period. Use of the USE RID qualifier is restricted to the system, which
is a major factor in establishing data security. Because every data set
name is necessarily qualified by a unique USERIO, every data set in the
system is unique.

Catalog

Generation Data Groups

The catalog is used for filing data set descriptions within TSS. Once a
data set is created and cataloged, it can be located by name alone. Data
'>ets reside on direct-access storage or tape. The identification of these
volumes is available in the system catalog.

The system catalog is organized into a hierarchy of indexes:

• The highest level index, called the master index, contains USER IDs,
one for each user joined to the system. The master index is maintained
by the system and updated by JOIN and QUIT commands given by the
system administrators or the system manager.

• The collection of indexes subordinate to each USE RID in the master
index is called a user catalog. The first index in the user catalog
corresponds to the USER!D. Each of the remaining indexes corre­
sponds to a level of qualification in the data set name.

When a data set is cataloged, the required indexes are established in the
user catalog. in accordance with the fully qualified name of the data set.
An index is estahlished for each level of qualification. The master index
points to the highest index levei of the user's catalog. This index. and
each index thereafter. points to the location of the next lower index. The
lowest index level points to the data set control block, which points to the
pages of the datd set. In the case of tape volumes. the lowest index level
of the user's catalog also gives the order or sequence number of that data
set on the volume, relative to the beginning of the volume.

A generation data group (G DG) is a collection of successive, historically
related data sets such as similar payroll data sets that are created every
week. Cataloging such data sets with unique data sct names would cause
inconveniences that can be avoided. The system can assign numbers to
individual data sets in a chronological collection, thereby allowing the
user to catalog the entire collection under a single name. A GDG is
created by the CATALOG command. It is possible to distinguish among
succes-;ive data sets in the collection without the need for assignment of a
new name to each data set. Because each new data set is normally
created from the preceding one, it is called a generation, and the numher
associated with it is called a generation number. The user can refer to a
particular generation by specifying, with the common name of the group,
either the relative generation number or the absolute generation name of
the data set.

Relative Generation Numbers: At any time. the relative ,!!eneration
number of the most recently cataloged data set in any GOG is O. The
relative generation numbers of previously cataloged data sets in the G DG
are negative integers that indicate relationships to the latest cataloged
generation. New data sets for the GDG are created hy using positive
integers as relative generation numbers.

Example: If payroll data sets are organized in a ge neration data group
named PAYROLL, the most recent generation would be referred to as
PAYROLL(O), The preceding generation would be PAYROLL(-lL the
one before that would be PAYROLL(-2), etc. A new generation would

Section 2: TSS for lht" Arr1ication Programmer :; I

Data Set Security and Sharing

32 TSS Conccph and Facilities

be defined as PAYROLL(+l). When this new generation is cataloged, it
becomes PAYROLL(O), and the old PAYROLL(O) becomes
PAYROL L (- 1). Thus, adding a generation changes the relative generation
numbers of all data sets in the GOG.

Relative generation numbers depend upon the position of the data sets in
the GOG. If a name is removed from the GOG, the relative numbers of
the data sets shift accordingly.

Absolute Generation Names: To each data set in aGOG the system
assigns an absolute generation name of the form GxxxxVyy, where
xxxx, is an unsigned four-digit decimal generation number, and yy, an
unsigned two-digit decimal number, indicating the version of a particular
generation. Appending the absolute generation name to the name of the
GOG provides a unique name for the data set.

Example: If 0001 is the generation number initially specified for
generation data group DIVISION.PAYROLL, the first generation is
D I V I S I ON. PAYROLL. GOOO 1 VOO. and the next generation is
DIVISION.PAYROLL.G0002VOO.

The OOEF command is used to create a new generation in a generation
data group. The system develops the generation and version numbers as
follows: The generation number is obtained by adding the positive
relative generation number specified in the OOEF command to the
previous generation number; the version number is set to O. Thus, if the
present generation is G 1384v03 and the incrementing factor specified is
the relative generation number (+2), the new generation is G 1386VOO.
The system does not automatically create nonzero version numbers; if
replacement of an existing generation and change of version number is
desired, the CATALOG command is used. The system changes the
catalog entry for the named generation. Thus, if a new data set thal
replaces the generation named G 1386voo is to be cataloged, it may be
named G 1386VO 1, which replaces G 1386VOO in the GOG when the
system changes the catalog entry. The data set that is to be replaced will
be erased automatically if it resides on public storage, but not if it resides
on private storage.

Each data set in a GOG has a unique fully qualified name. This name
consists of the group name, a period, and the low-order qualifier
GxxxxVyy. This allows 26 characters (including periods) for high-level
qualification of the group name.

TSS is designed to prevent a user from accessing data sets belonging to
other users without specific permission. The catalog is the repository of
access control information about each data set. If users permit others to
access their data sets, such permission is recorded in the catalog.

Cataloged data sets may be shared or nonshared. This affects the way
the system processes the data set. Processing a shared data set incurs
more overhead because of the additional control structure imposcd. A
data set is nonshared unless the owner issues a PERMIT command which
allows it to he shared.

Access to a shared data set is in one of the following modes:

• Read-onlv: Thc sharer may read the data set. but cannot change it in
any way.

Read/write: The sharer may read and write the data seC but not erase
it.

• Unlimited: The sharer may read. write, crase, and create a data set or
generation.

The owner uses the PERMIT command to designate which users can
share a data set and to indicate the type or access. The PERMIT
command also allows the data set owner to change any access authoriza­
tion previously given. For each level of qualification in the data set
name, there can he a different list of sharers. Each sharer can be allowed
a different type (If access.

An owner may permit all of his data sds to be shared. To do this the
owner specifies * ALL in a PERMIT command. Sharer'; must pick a
qualifier for referring to data sets in the owner's catalog. The qualifier
chosen becomes a prefix to t he owner's data set name (or index) as
perceived by the ~harer. To have shared access to all of an owner's data
sets, the sharer ,-pecifies *ALL for the owner's name. Similarly, groups
of data sets with names having common high-order qualifiers can be
shared by specifying: partially (jualified names in the owner's catalog.

Each time a PERMIT command is issued. the owner's catalog: is updated
with information on who can share which data sets, and with what level
of access. The PERMIT command can indicate that all users or individu­
al users (by USERID) have access to groups of data sets. Access to

groups or data sets is given by referring, in the PERMIT command, to a
partially qualified name. If a sharer has unlimited access to the group, a
new data set can be created by the sharer but it will be owned by the
owner of the group.

To ,tltempt to gain access to a data set a sharer issues a SHARE com­
mand. For example, a data set owned by USERID MOHR, named
RUNOFF. CF . FRONT, is to be shared and called RUNOFF. START in the
catalog of USERfD REYNOLDS. REYNOLDS issues:

SHARE RUNOFF.START,MOHR,RUNOFF.CF.FRONT

The SHARE command creates a name in the sharer's catalog and links
that name to the owner's data set. If the owner's catalog does not allow
access, the link is incomplete and inoperative. The name is still put in the
sharer's catalog, but a diagnostic message appears on SYSOUT. The
system will prevent access until the owner issues a PERMIT command for
the data set. In this case the owner could have issued:

PERMIT RUNOFF.CF,FRONT,REYNOLDS,RO

The names that "harers choose to use for the shared data set have no
effect on the owner's use of tbe data set or any other sharer's name for
the data set. A sharer's catalog entry (the name chosen by the sharer) is

rss for the Applicatioll Progr'lI11lllCJ'
, , , ,

M

A

S

T

E

R

N

D

E

x

L

E

v
E

L

USER CATs are copied into
SYSCA T for use, and copied back
to USERCATs when inactive

TSS*****.USERCAT

SYSOPERO.USERCAT

SYSMANGR.USERCAT

----------,
MOHR****.USERCAT I
_________ J

REYNOLDS.US

one USERCAT
for each
JOINed user

The master index
level (list of
USERIDs that may
use the system) is
maintained with
JOIN and QUIT
commands.

Figure ::'-1. TSS Catalog Sl ruct life

34 TSS Concepts and Facilitie~

TSS***** ,SYSCAT
V AM partitioned data set

SYSCA T is the merged copy
of all active USERCATs and is
used for a II access to data sets

data sets owned
by TSS data set name structure

MOHR****.RUNOFF.CF. FRONT
data sets owned
by SYSOPERO

data sets owned
by SYSMANGR

da ta sets owned
by MOHR

data sets owned
by REYNOLDS

Each index may have a
sharing list associated
with it.

REYNOLDS

Pointer to
another

USERID
qualifier
(accessible
to system
but not to
users)

1 st
qualifier

(data set descriptor)

(data set descriptor)

REYNOLDS

2nd 3rd
Each qualifier
can have a
list of USERIDs
that can share
at that level

user's catalog --l_r----;;~:;;;::::-;;;-;;:~~~;-;;;~;;---I
index.

The term index is used in connection with the
structure of the catalog, and qualifier in connection
with data set names. Each qualifier corresponds
to an index in the catalog.

Public and Private Volumes

not removed if t.he owner erases or uncatalogs the data set. Sharers can
use the DELETE command to remove sharing names from their catalogs.

With VAM, it is possible to have safe, concurrent access to a data set hy
more than one task (user), To prevent several tasks from updating the
same record at the same time, interlocks are maintained for a ."hared data
set while it is heing used. The two types of interlocks are.: read and
write. Depending on the organization of the data set, interlocks operate
at a page level or a data set level.

A read interlock prevents other tasks from writing into the data sel.
Multiple read interlocks can be established, permitting several tasks to
read simultaneously. Tasks attempting [0 set a read interlock are made to
wait, if a write interlock is set.

A write interlock prevents any task, other than the task that set the
interlock, from using the data sel. Only one write interlock can be set on
a data set; neither read nor write interlocks can be set until the write
interlock is reset. The system suspends execution of a task wailing for an
interlock until the interlock is released.

TSS data sets can be on either public volumes or private volumes.
Generally. it is best to put data sets on public volumes. Public volumes
are always mounted and available. When a private volume is requested,
the system must determine if it can honor the request. based on current
requirements for devices of a suitable type. If the system cannot assign a
private device to a user's task, one of two actions occurs, depending upon
the operational mode:

A conversational task issues a message lO the user during the execution
of the DDEF command or macro if a suitable device cannot be
assigned or if the required volumes cannot be mounted immediately.
The user can wait, or cancel the request.

A nonconversational task waits until the required number of private
devices is available.

Permanent and Temporary Public Storage

Unit-Record Devices

In TSS, the user can specify whether a data set on public storage is
permanent or temporary. A data set on permanent storage is retained
until the user erases it. A data set on temporary storage is guaranteed to
be retained only for the duration of the task by which it was created.
Temporary data sets may be optionally erased when they are closed or
when the task in which they are defined executes LOGOFF. By releasing
the data definition prior to LOGOFF, the user may retain a temporary
data set, but it is subject to erasure through the action of a system
maintenance utility if it is not being used by any task.

Conventional unit-record I/O equipment (printers, card readers, and
punches) cannot be referred to during program execution, unless an
installation elects to make these devices available to user tasks. These
devices are normally handled by a system task, called BULKIO.

BULKIO reads cards and catalogs the data sets which result, for the
proper USERID. It also prints and punches data sets. Printing and

SectiUfl?' TSS for the Application Programmer):"

Data Set Organization

Virtual Access Method

3n T55 Concepts and Facilities

punching takes into account user requests for particular forms (types of
paper and cards) and various setup conditions for the printer. Data sets
which are printed and punched are accessed directly by the BULKIO
task, rather than being spooled, thus eliminating the need to copy a data
to process it. Such data sets need not be shared data sets, but if they are,
access to them is possible while they are being printed or punched,
sub ject to the read and write interlocks discussed above,

The data set organization defines the way that records of a data set can
be accessed, In TSS, the most advantageous way to process data on
direct-access storage is to use the virtual access method. The basic sequen­
tial access method (BSAM) is used for tape data sets. For various
reasons, including need for interchange with OS/VS, BSAM can be used
for data on direct-access storage. In situations where devices are to be
supported in a way that requires special channel programming, the I/O
request access method (IOREQ) is used. Unit-record and remote job
entry (RJ E) equipment is supported by a system task (BULKIO) which
uses the multiple sequential access method (MSAM). MSAM can also be
used by er tasks which have access to unit-record devices.

V AM data sets are specifically organized for efficient processing within
TSS. V AM is the primary access method in TSS. Data sets with V AM
organization reside on direct-access storage, except when they are written
on tape with the VT command, which provides for export-import. Users
create, read, and process V AM data sets on the basis of logical records.
The system organizes V AM data sets using page-size physical records.
The page is the unit of transfer bet ween direct-access storage and TSS
virtual storage. The system also ensures that only the required pages of a
data set are in virtual storage.

V AM data sets have these organizations:

• Virtual sequential

• Virtual indexed sequential

• Virtual partitioned

In a virtual sequential access method (VSAM) data set, the logical order of
the records is determined solely by the order in which the records were
created. The user presents records, one at a time, to the system. These
logical records are organized by the system into page-size physical
records, which are written to external storage. After each logical record
is presented, the system provides a retrieval address for the record. The
retrieval address may be saved for later use. After the data set has been
created, the records can be read back in the order of their creation by
requesting records one at a time. Using retrieval addresses, it is also
possible to read and update records of the data set in a random order,
thus obtaining direct access to any record. VSAM data sets can be
interlocked on a data set basis only.

In a I'irtual indexed sequential access method (VISAM) data set, the logical
records are organized in ascending collating sequence, based on a key
contained in each record. The key may be a control field in the data,
such as a part number. or it may be an arbitrary identifier in each record.

In addition to the logical records, VlSAM data sets contain a page
directory and locators that relate the keys to physical addresses of the
records in the data set. In this context, the term phvsical refers to an
address which is relative to the beginning of the data set without regard
to the internal structure of the data set. The page directory is set up
when the number of data pages in the data set exceeds onc. There is one
key entry in the directory for each data page in the data set, I:xcept for
the first page (physical page 0), Each key entry contains the lowest key
on the page plus the logical and phvsical (relative) location of the page in
the data set. The directory can consist or one or more pages, depending
on the size of the data set. In each page of the data set there is an
ordered set of locators, one locator per rccord, Each locator specifies the
physical location of thc record in the page, Locators are placed sequen­
tially (lowest key first) at the bottom of the data page, in ascending
order. Records mayor may not be logically sequential on a page, but
locators are in sequential order,

New data pages are added to the physical end of the data set, even
though they may logically represent insertions. By adding pages to the
end and maintaining a translation mechanism (the directory), the need for
overflow pages is eliminated. This greatly reduces the amount of
reorganization required to maintain adequate performance in spite of
numerous insertions, The user can optionally specify that a certain
percentage of space be left in each page for expansion of the data set.

Because records in VISAM data sets have logical and physical relation­
ships, the user can request the access method to:

Retrieve or creatt' records whose keys are in ascending collating
sequence.

Retrieve or create records whose keys are in any order. Processing is
slower than if it \vere being done in collating sequence, because a
search is required to locate the position of each record,

• Add records with new keys. The access method locates the proper
position for the' new record making possible subsequent retrieval in a
sequence determined by the keys.

• Delete records. Thl' access method updates the page locators (and the
page directory if necessary) and frees the space that was being used by
the deleted records,

• Update records in the data set (record length can be changed),

VISAM data sets are interlocked either on a data set basis or a page
basis, depending on how the data set is opened.

A virtual partitioned access method (VP AM) data set is lIsed [0 comoine
data objects into a single data set. Each object becomes a member. and
each member is identified by a unique name. The member name may
consist of from one to eight alphameric characters: the first character
must be alphabetic. The partitioned organization allows the user to refer
to either the entire data set or to any member, using a name consisting of
the fully qualified data set name suffixed by the member name in
paremheses.

S"ct;nn" TSS lor the Application PrograIllIlH'l' J7

Basic Sequential Access Method

Example: A VPAM data set named MATHL I B, whose members consist
of mathematical subroutines. such as SQRT, ATAN, and COS, could be
referred to in any of these ways:

Name

MATHLIB
MATHLIB(SQRT)
MATHLIB(ATAN)
MATHLIB(COS)

Description

library of subroutines
sq uare-root subroutine
arc-tangent subroutine
cosine subroutine

Reference to individual members is possible, because there is a directory
which keeps track of each member. As members are added, deleted, or
changed, the directory information (member location, size, attributes,
etc.) is updated by the access method. Space made available through
deletion or contraction of members is immediately available for reuse.
Also, members may expand, and if more space is needed outside the data
set. it is automatically acquired.

A VPAM data set can be composed of VSAM or VISAM members or a
mixture of both. Users can assign additional names, called aliases, to
each member, and sUb<;equently find a member on the basis of either the
member name or any of its aliases. The partitioned data set organization
is ideally suited for storage of libraries of programs or other groups of
data that are frequently referred to together. Interlocking of VP AM data
sets is done on a member basis. The rules of interlocking depend on the
organization of the member (VISAM or YSAM).

BSAM data sets are typically used for interchange with operating systems
other than TSS, but can be processed by TSS. The logical records in
these data sets are organized solely on the basis of their position relative
to the beginning of the data set. When these records are processed. a
block of one or more logical records is the unit of transfer to and from
the device involved. BSAM data sets can reside on disk or tape.

BSAM data sets can be concatenated, that is, automatically processed
successively as a single data set. Concatenation of extensions to a data
set already defined is accomplished with the DDEF command. The
system provides for exit to a user program during the transition from one
data set to another in the case where the characteristics of the data set
differ. Concatenation applies only to data sets opened for input. Up to
255 data sets may be concatenated. The system performs volume
switching without need for user program intervention. User label exit
routines are executed for each data set, as requested.

Queued Sequential Access Method

31\ TSS Concepts and Facilities

QSAM makes it possible to access records in blocked or unblocked
BSAM data sets without the need to write blocking and deblocking
routines. Also when QSAM is used, I/O operations are automatically
buffered by the system. Each time a program issues GET or PUT, a
logical record is read or written.

IOREQ Access Method

Statements used to invoke QSAM are coded at a higher level compared to
BSAM. A program using QSAM is more likely to be independent of the
type of device on which the data it accesses is stored. QSAM can be
used with BSAM data sets on disk or tape.

10REQ is an access method in \vhich user-written channel programs are
executed by the system. The programs consist of virtual channel
command words (VCCWs) for an I/O device. The access method and
the system translate virtual addresses known to the user to real addresses
needed by the channels. The system manages channel scheduling,
inboard errors, error recording (optional), presentation of channel and
device ending status, and sense operations in the event of unit check or
unit exception. User illlerrupt routines may be used to handle asynchro­
nous interrupts from the I/O devices.

Allowing users to write channel programs which refer to virtual storage
has important consequences related to maintaining data security. To
provide for security, the system checks the validity of all data areas
referred to by the channel programs. Also. allocation of devices for use
by programs that use 10REQ can be strictly controlled.

Multiple Sequential Access Method

Record Formats

MSAM is an extension of BSAM, applied to devices such as card readers.
card punches, line printers, and RJE stations. In order to use these
devices without placing unnecessary load on the CPU, channel commands
are chained together by the access method so that one I/O operation
processes many records.

TSS data management requires format specification for the logical records
in a data set. Four types of record format are used:

• Format F (fixed-length) is specified for data sets whose logical records
all have the same length.

Formal V (variable-length) is specified for data sets contall1IfJg logical
records that vary in length and contain the length as part of the record,
following system-defined conventions.

• Format U (undefined-format) is specified when the records are of
varying length but do not contain system-defined length information.

• Format D (variable-length ASCII I tape) is specified for ASCII tape
data sets containing variable-length logical records. Format D may be
specified only as a DCB subparameter of the DDEF command. (Other
pertinent DeB subparameters should be specified for ASCII tape data
sets with record format D.)

Details on the specification of record format and other record-oriented
information, such as physical attributes, for each type of data set
organization are described in the PL/l Programmer's Guide. FORTRAN
Programmer's Guide, and Data Management Facilities.

lAmerican National Standard Codc for Information Interchange. ANSI X~A-19Mi.

Section"" TSS lor the Application Programmer 39

Specifying Data Set Characteristics

40 'ISS Concept'; and Facilities

In order for a data set to be processed, a system program or a user
program needs a specification of the characteristics of the data set such as
record length and record format. This information can be made available
from a variety of sources.

For a new data set (one to be created), the information is obtained from
the DCB used when the data set is first opened. The information may
have been moved there from the control block (JFCB) created by the
DDEF command. The program can specify data set characteristics using
the DCB. Commands and programs can obtain information from the
JFCB or directly from the user.

For an old data set (one that exists), the catalog or the data set label can
be used to obtain the required information. After a data set has been
opened, the DCB associated with it contains a merge of the available
information.

The DCB contains various types of information:

• DDNAME operand of the DDEF command corresponding to the data
set to he processed

• Data set organization

• Record format information (type, length, etc.)

• Device-dependent options

• Exit addresses

SYN AD: synchronous error exit address, ror transferring control to

a user-supplied routine if an uncorrectable I/O error occurs

EODAD: end of data set address, for transferring control to an
end-of-data routine when end of an input data set is detected during
processing

EXLST: (BSAM) exit list address, for transferring control to a
user-supplied routine for creating or verifying user data set labels on
tape and direct-access volumes, or for modifying the DCB during
OPEN processing

• Working storage used by the access method routines

Besidcs being a command, DDEF is also a macro. Using the DDEF
macro, a program may define a data set and specify whatever characteris­
tics are appropriate. A program can define data sets during execution.
without any preplanning by the user. This is a feature of TSS which
significantly reduces the amount of programming needed to develop
applications.

An assembler language program can add to or modify the contents of a
DCB. Restrictions on modification of the DCB are stated in the publica­
tion Assemhler User Alaero Instructions. The DCB macro can he used to

generate a DCB, filled with specified information, in the assembled code.
Once a field in the DCB is filled in this way, it will not he overlaid at the
time the data set is opened.

Dunng OPEN processing, information from the JFCB is used to complete
the DCB. Any field that is empty during OPEN processing, and for
which the JFCB is a valid source, can be filled from information supplied
hy DDEF.

Modification of particular DCB information saves restatement of all
required information each time a program is run. To facilitate DCB
modification. only those fields needed for program execution should be
assembled into the DCB. Other fields should he left empty for subse­
quent fill-in. During execution of a program, fields will be filled in. The
system keeps track of the initial condition of the DCB. Once the data set
is closed, the DCB is restored to its pre-OPEN state. When the data set
is opened again, the system repeats the fill-in process.

Identification of TSS FORTRAN Data Sets

Data sets to be processed by programs written in FORTRAN are
identified hy a data set reference number that appears in an I/O state­
ment.. Data set reference numbers are in the range () to 99. FORTRAN
I/O uses the data set reference number from an I/O statement to
construct a DDNAME of the form FTxxFyyy, where xx is the data set
reference number. and yyy is a file sequence number used to differenti­
ate data sets on the same volume.

The task definition table (TOT, a list of current JFCBs) is searched for a
matching DDNAME and if one is found, FORTRAN f/O builds a DCB.
puts the DDNAME in it. and opens the data set. After the DCB is
opened. FORTRAN I/O examines it to see if enough information is
present to process the data set. If not. default information is filled in to
allow processing.

If an I/O statement does not contain a data set reference number. or if
the data set reference number refers to a logical unit for which there is no
JFCB, FORTRAN I/O assumes that SYSIN or SYSOUT is to be used.

Identification of TSS PL/I Data Sets

A data set to be processed hy a program wrirten in PL/I is identified by
association with a file specified in the program. The association is
between a DDNAME in the PL/I program and the JFCB created hy a
DDEF command. In the absence of definition of certain type~. of files.
SYSIN or SYSOUT will be used.

The I'L/I OPEN statement allows the user to specify characteristics or the
data set. PL/I J/O creates a skeleton DCB for the data set using the file
attributes explicitly declared in the program and merges them with those
implied hy the OPEN statement. completing the DCB as much as possible.
Next, TSS clata management is called to open the data set and provide
additional information which can be acquired from the catalog and the
JFCB. When the DCB fields have been filled by OPEN. PL/I I/O
provides defaults for any fields still unfilled. If a conflict exists, tbe PL'I
UNDEF I NED FILE condition is raised.

Section"" TSS I'll)" the Arpiicatioll Prll¥rarnfllt'r 41

A file could be opened with the statement: OPEN FILE (MASTER), where
MASTER is the file name defined in the DECLARE statement. The user may
optionally specify a DDNAME by using the TITLE option in the file
DECLARE statement. If the TITLE option is not used, MASTER is taken
to be the DDNAME of a currently defined data set.

Identification of TSS Assembler Data Sets

Data sets processed by assembler language programs are identified by the
DDNAME that appears in the DCB. The information assembled in the
DCB, plus the information supplied from other sources, is merged as
described above.

System Services for Programs

42 TSS Concep1s and Facili1ies

The other part of program/system communication is concerned with how
programs obtain service from the system. The following description is
written in terms familiar to assembler language programmers, but the
information should also be useful to persons who program in higher-level
languages, because it shows the services that can be obtained through the
use of subroutines.

Services available to programs written in higher-level languages are
described in the particular language definition. The compiled code calls a
subroutine package appropriate to the operating system environment
being used. When standard subroutine packages do not supply all
services needed, additional subroutines, callable from user programs and
usually written in assembler language, can be developed.

The OBEY facility of TSS makes it possible for programs to invoke any
command. Thus, functions available at the command level also can be
utilized by higher-level language programs. For each language, there is a
subroutine that can be called which causes the string of characters passed
as a parameter to be obeyed as a command. Because the TSS command
system can invoke programs as commands, OBEY provides a connection
between programs written in different languages for which a direct
linkage is not defined.

A TSS user program operates in an address space which is unique to each
lIser. The program status word (PSW) used for dispatching tasks in a
virtual address space specifies problem state, which prevents execution of
supervisor state instructions. The TSS supervisor supports two states of
program execution in virtual storage, analogous to the supervisor and
problem states of System/370. Each TSS task has associated with it a
virtual PSW (VPSW) which specifies either non privileged state or privileged
state. System programs can execute in privileged state and thus have
access to data unavailable to user programs. Programs executing in
privileged state can invoke functions which are not allowed to user
programs. TSS is designed to prevent a user from causing instructions to
be executed that would allow access to information belonging to any
other user without the owner's permission.

Linkage from user programs to the system is accomplished either by
branching directly or by issuing a supervisor call (SYC) instruction.
Branching does not change the state (privileged/nonprivileged) of a task.
In the case of the SYC, supervisory services are invoked and a change of

Communicating with Users

state is always mvolved. It is the responsibility of each supervisory
service to validate any parameters associated with the SVC and carry out
the requested action. The security of the system depends on supervisory
programs checking all requests to prevent user programs from accessing
privileged information or ohtaining unauthorized services.

In order to relieve the programmer of details associated with calling for
system services and in order to facilitate extension of services without
need for alteration of source programs, calls to the system should he
coded using macros. A macro is a group of statements written in a
procedural language which, when expanded, generates source statements
based on the parameters specified with the macro instruction. For
example, to get a I aO-page virtual storage work area, the statement

GETMAIN PAGE,LV=100

generates the coding needed to set up the proper parameter list and the
instructions for a call to the supervisor.

Programs may utilize most TSS command processors hy direct call, using
macros. When a command is invoked through a macro entry point, it
issues return codes instead of messages, The calling program can take
appropriate action based on the return codes, Thus, advantageous
aspects of interactive computing are also available to programs.

Emphasis in TSS on dynamic resource allocation, late binding, and a
minimal need for preplanning is important, because thorough support of
these concepts greatly reduces the amount of programming needed in the
development of applications. Often, conversion of a subsystem from
another operating system to TSS involves the removal of code, because
function needed by the subsystem is present in TSS. This is particularly
applicable to data sharing. TSS data management provides sharing
control which relieves the need to program data security measures at the
application level.

Many of the macros described in Appendix B have counterparts in other
operating systems. The short descriptions in the appendix are intended to
give a general idea of the facilities provided. fn some cases, the facilities
are unique to TSS or deserve special mention. The following topics are
examples of cases where TSS differs from other operating systems:

Communication between a system program or a user program and a TSS
user is through an interface which provides a standardized access (0

SYSIN and SYSOUT For example, the command system reads com­
mands from SYSIN and command processors use SYSOUT for output,
completion messages, and error messages. The interface, common to
conversational and nonconversational tasks, is called GATE and is a part
of the TSS telecommunications access method (TAM II). In the case of
an interactive user at a terminal, SYSIN is normally the keyboard and
SYSOUT is normally the printer or display screen. In a nonconversation­
al task, GATE uses V AM data sets for SYSIN/SYSOUT. A program, in
connection with its use of GATE, need not be concerned with the nature
of SYSIN and SYSOUT or whether the task is operating in a conversa­
tional or nonconversational mode. GATE processes input/output
statements related to SYSIN /SYSOUT in a manner appropriate to
terminal type and task mode,

Section" TSS t,)I· the Application Programmer 43

Communicating with Terminals

-l4 TSS Concepts and Facilitie,

Programs written in higher-level languages utilize GATE indirectly
through linkage to a subroutine library. Language definitions typically
include provision for input/output using a system facility in the absence
of data set specification. Even when programs intend to read or write
data to a data set. depending on the implementation of the language. it
may be possible to direct the operations to SYSIN/SYSOUT. Assembler
language programs use macros. such as GATRD, GATWR, and SYSIN.
for input/ output with SYSIN /SYSOUT.

Nonconversational jobs involve execution of a data set prepared in
advance or entered as a batch input deck. Cards entered at the central
site or a remote job entry' station are cataloged in the catalog of the
USERID specified in the job. This data set is erased automatically when
the job completes. The SYSOUT data set is usually printed and erased
but may be retained for further processing.

GATE, under control of the user. edits the data it processes. For
example, there can be conversion of characters entered in lower case to
upper case, use of characters, such as backspace, to correct previously
entered data, use of tab characters on input to save entering blanks, and
use of tab characters on output to improve the effective rate at which
output can be transmitted to the terminal.

Each user can modify system handling of the terminaL For example.
users can specify data and control characters according to individual
needs. avoiding any translation or editing, Users can specify input and
output translation tables which replace the standard translation tables,
Also. function codes for character deletion, line deletion, carriage return
suppression, line continuation, and the command system break character
can be assigned to particular characters, as desired.

Terminals and transmission lines are prone to data errors. TAM 11
performs error recovery, keeping the user in control. This technique
minimizes the amount of retyping that is needed. Users can vary details
of correction to suit individual needs, TAM II also performs input and
output buffering. Users can activate and deactivate input and output
buffering, as desired.

T AM II can also be used by TSS llser programs to communicate with
terminals other than SYSTN and SYSOUT. The same GATE interface
that applies to SYSlN and SYSOUT applies to terminals that are logically
connected to user application programs. Thus. application programs can
be as device-independent as system programs. The publication Mu/titer­
minal Task Programming and Operation explains how to use TAM II to
communicate with terminals. The same macros used for communication
with SYSIN/SYSOUT can be used in support of application programs.
These macros are summarized under "SYSIN/SYSOUT Communication
Macros" in Appendix B. Programs which control terminals other than
SYSIN/SYSOUT need a way to handle interrupts in order to dispatch
work. TAM II provides a means for dispatching user programs upon
receipt of specific interrupts in addition to the ordinary means described
below under the topic "User Interrupt Control."

Getting and Freeing Virtual Storage

Programs often need to get additional working storage during execution.
The GETMAIN macro is used to add virtual storage to an address space.
Virtual storage h freed using the FREE MAIN macro. In TSS. maximum
virtual address space for each task is not provided until it is needed; as a
result. the amount of real storage needed for the page tables is smaller and
supervisor overhead is reduced. More importantly. this leaves address
space free for use when cOllnec ting to the virtual storage of another user.

Users connect to shared virtual storage by loading control sections from
shared job libraries with the dynamic loader. The control sections have
the public attribute and can be read-only or read/write. The dynamic
loader loads from job libraries. which are data sets. The access protec­
tion mechanism is the same as for any data set. Users need not learn
another model of sharing.

User programs may test an address to determine if it is assigned. and
determine the me.st restrictive protection class of a specified number of
contiguous halfpages of virtual storage. This is done with the CKCLS
(check class) macro.

Mapping Data to Virtual Storage Using V AM

A practical feature of TSS is that data on seeondary storage can be
mapped directly to the address space in which a user program operates.
Less programming is required and often significant processing steps can
be hypassed when the conventional model of I/O is not used. With
conventional I/O. logical records are read from external storage. moved
to a user area for processing, and then written hack to the permanent
storage. TSS VAM makes a quite different mode of processing possihle.

For example, suppose an application involve!> access to a data structure
10 megabytes in size. and that the data structure is designed so that
elements can be located by computation. in addition to direct sequential
search. An implementation using V AM could be something like this: The
data set containing the data structure has record format U (Undefined).
The record length is I megabyte. The program gets a IO-megabyte work
area lIsing the GETMAIN macro and issues 10 GET macros which
logically moves the data into the work area.

If the work area starts on a page boundary. which can be easily arranged,
V AM will not physically move the data from external storage to the work
area. Instead. the entries for the page tahles related to the work area are
set up to point to the data on external storage. The process of reading in
10 megabytes of data is almost instantaneous. because all that needs to
be done is to update tables; no data need be read from external storage.
As execution of the program proceeds, only pages of data referenced by
the CPU will he brought in from external storage.

When the CPU rderences a page in the work area that has not been
previously referenced, the hardware signals a translation exception. This
interrupt, for a page in external storage. is no different than an interrupt

Seclion '1. TSS for the Application Programmer 4,

for a page that must be brought in from auxiliary storage. Access to a
page in virtual storage may be more rapid than access to the page in
external storage. depending on the frequency of use relative to other
demands on main storage and auxiliary storage.

If the contents of a page in the work area are changed. the CPU sets the
change bit in the .storage key. When the application elects to write the data
structure back to external storage. it positions access to the data set at
the beginning and issues 10 PUT macros. This requests the supervisor to
write the data. The supervisor can determine if a page in the work area
has been changed and avoid writing any page which is unchanged. Thus.
capturing changes to the lO-megabyte data structure can proceed quite
rapidly. depending on the number of pages which have been changed. It
is not necessary for the application to keep track of which pages have
been changed; this is done by the system.

Large portions of virtual storage can be captured for later use with the
CSTORE macro. CSTORE causes virtual storage to be written to
external storage in object module format. The storage can be restored
quickly and efficiently with the dynamic loader hecause, in TSS. loading
is a process of mapping data on external storage to virtual storage. The
areas of virtual storage which are copied into object modules by CSTORE
need not be executable code. The advantage of saving a data structure in
object module rormat is that it may be named in a way that is meaningful
to programs which address the data by name through the dynamic loader.

Named. Disconnectable Segments of Virtual Storage

Loading and Linking Programs

40 TSS Concepts and Facilities

In the case of a System/370 computer. the amount of virtual storage that
can be addressed at anyone time is 16 megabytes. For those applications
which require more than 16 megabytes to run. a facility is available in
TSS which allows users to disconnect segments of virtual address space
not being used. These disconnected segments are given names which can
be used to reconnect the segments when access to the data is needed.
Groups of segments are reserved (defined) with the RSVSEG macro.
Disconnection is accomplished with the DISCSEG macro and connection
with the CONSEG macro. RELSEG releases the segment reservation
(definition) and DELSEG allows for deletion of disconnected segments
which are no longer needed.

The example given above in "Mapping Data to Virtual Storage Using
V AM" can be extended: If the data structures are somewhat independent.
a number of them can be read in at once. As data from each structure is
needed. the application issues the disconnect/reconnect sequence and
each data structure becomes addressable as quickly as the pointers in the
segment tables can be switched. It is possible to checkpoint changes made
to the structures efficiently. because the process of disconnecting the
segments does not affect the page tables which record the effect of
changes. Thus. a task may have more than 16 megabytes of data in
virtual storage. but only 16 megabytes may be addressed by the CPU at
one time.

The dynamic loader is used to load programs into virtual storage. It is
also available for the purpose of loading data. This facilitates use of

User Interrupt Control

data-directed linkages. Data base applications can potentially reference
many programs and data clements, yet not be constrained by the need to
load unused items. Programs are thus freed from many details of
managing access to the data elements.

The LOAD macro causes a program to be mapped to (loaded into) virtual
storage. The CALL macro is used to load and transfer control to a
program. A call can be explicit (loading occurs only if tbe call is
executed) or implicit (loading always occurs). The ARM macro. togetber
with groups of address constants and flags generated hy the ADCON
macro and described by the ADCOND DSECT, can be used 10 achieve
additional control of loadin¥.

The DELETE macro is used 10 cause a module to be unloaded. When
loading is achieved by explicit calL unloading causes the module to he
totally disconnected from the rest of the loaded program. This allows
substitution of subroutines without unloading the rest of the application.

Standard linkage is supported by the SA YEo RETCRN, and BLlST
macros.

As Slated before, each TSS user operates in unique virtual storage address
space. Yirtual storage is initialized with a set of programs that provide
most of the services required by users. The programs in the address
space are managed by an interrupt-driven supervisor, called the task
monitor. The task monitor resides in the address space and is distinct
from the supervisor, which is not in the address space. The task monitor
receives interrupb as do other supervisors used with System/370: defined
storage areas contain old PSWs and new PSWs.

Interrupts are communicated to a task by the supervisor using a process
analogous to hardware status switching. The interrupts processed by the
task monitor are:

• Program

• SVC

• External

• Asynchronous 1/0

• Timer

• Synchronous I/O

• Data set paging error

Interrupts of each type are identified by codes. In the absence of an
interrupt processor for a code. a common diagnostic routine is called
which sends an appropriate message to SYSOUT. If the task is conversa­
tional. corrective action can be taken. If the task is nonconversalional, it
is abnormally terminated.

TSS provides macros that permit the user to control task interrupts by
specifying interrupt routines. The SIR macro is used to specify and

Section 2: TSS for tht: AppJic:alion Programmer .+7

activate an interrupt routine. The DIR macro is used to delete an
interrupt routine. User routines can service program interrupts, SVC
interrupts (codes unused by TSS), external interrupts, asynchronous 1/0
interrupts, timer interrupts, and synchronous I/O interrupts. The SPEC,
SSEC, SEEC, SAEC, STEC, and SIEC macros are used to initialize thc
control blocks needed for interrupt processing.

When a specified interrupt type occurs, execution of the running program
is suspended, the task status (registers and VPSW) is saved, and control
is passed to the user interrupt routine. The user program has access to a
control block which includes information about the interrupt. The user
program can also inspect and alter the saved status, including the VPSW.
For example, SVC routines typically alter the instruction counter in the
saved VPSW to branch around parameters. (To preserve security, the
privileged indicator can not be altered to cause redispatch in privileged
state.) Using the information in the control block, the interrupt routine
can respond properly to the interrupt.

When the interrupt routine has concluded its processing, it returns control
to the task monitor by using the standard system return linkage. The task
monitor evaluates pending interrupt status according to priority. Ultimate­
ly, control is returned to the interrupted program at the point indicated
by the VPSW saved at the time of interrupt. Using the INTINO macro,
interrupt routines can inquire if interrupts are pending for other user­
specified interrupt routines. It is also possible to determine whether
specified interrupts have occurred, before they are accepted.

An interrupt routine uses the SAl macro to indicate whether it may be
interrupted. The task monitor saves and inhibits interrupts if the routine
is not to be interrupted. Pending interrupts will be enqueued until they
can be processed. If interrupts are not disabled, interrupts of higher
priority will interrupt a lower priority routine. The RAE macro is used to
rcstore the previous inhibit state and enable interrupts.

A System/370 instruction, Monitor Call (MC), facilitates analysis of
program execution. The execution of an MC instruction depends on the
contents of a machine control register. Sixteen classes of monitor calls
are defined. [n TSS, eight of these classes are reserved for nonprivilcged
user programs. When a class is enabled. and a monitor call for that class
occurs, a program interrupt results. It is possible to specify a routine to
handle this interrupt. MC, together with a user-written data reduction
program, can be used to trace execution of a large subsystem.

A method for detecting and handling a subset of program interrupts
which is more efficient than using interrupt routines dispatched by the
task monitor is provided by use of the PIREC macro. PIREC is used to
test an address to determine if a program interrupt will occur upon
refercnce to the virtual storage pointed to by the address. When PIREC
is used, normal processing for program interrupts resulting from invalid
addresses is bypassed.

Servicing Attention Interrupts from SYSIN

4X TSS Concepts and Facililies

Normally, user interrupt routines do not replace a system interrupt
routine. However. to service attention interrupts from SYSIN, the user

must disable the system routine. This is done with the USATT macro.
The SIR and SAEC macros are used to set up linkage to the user routine.
The CLATT macro is used to enable the system routine. It is not
necessary to delete the user interrupt routine (DIR) jf control is to be
relinquished only temporarily. Also, when exit is to the command system
by such means as the CUC macro or by reaching a pes AT statement,
the command system regains control of attention interrupts until execu­
tion of the u~er program resumes.

A second way to establish a user SYSIN attention servicing routine is
provided by t.he AETD macro. AETD generates a table containing
addresses of routines that arc to be given control when the user signals
attention a specified numbcr of times. Typically, an attention routine
identifies itself by writing a unique message to SYSOUT and waits for
input. If attention is signalled again, the next routine gains control. A
user may cause one of five different attention interrupt servicing routines
to be given control, depcnding on the number of times atkntion is
signalled. User routines invoked through use of AETD hecome a part of
the system attention routine and remain a part of it until deactivated with
the AETD macro.

AETD may be specified by a program that has been invoked to service an
attention interrupt which occurred during execution of another program,
(as defined by an AETD issued by that program) without causing the first
AETD to be overridden. AETD macros can be issued at up to 10 such
levels However, if more (han one AETD is issued at one level. only the
last is recognized. When a program that has issued an AETO returns
control. the entry specified by that program is deleted.

It is possible to leave blank the name ror a certain altention routine
number. In that case, when attention is signalled, the command system
wiil be invoked to read from SYSlN. When the entry is not blank, the
specified routine is given control. When it returns control, execution of
the interrupted program resumes.

If the attention is signalled several times hel'ore the command system can
process the first interrupt. and if no routine is active, all but the last
attention is ignored. If a routine is active, each attention routine up to
the numher corresponding to the number of times attention was signalled
is given control and, except for lhe last such routine, is immediately
interrupted by the next queued interrupt. As each routine exits, the next
lower routine is given control until it in turn exits: finally, the user
program that was first interrupted reslImes execution.

If SIR, SAEC, and USATT are used to establish a SYSIN altention
routine, a user can specify different priorities for the servicing of
attention interrupts in relation to other types of interrupts. If AETD is
lIsed, the user has no control over this type of priority specification.

If the user attention routine loops, and if the routine was established via
SIR, SAEC and USATT, there is no way to get out of the loop except to
ask the system operator to force termination of the task. If the routine is
established with AETD, a lIser can signal attention lIntil control is given
to the command system.

Section 2: TSS tor the Application Programmer --1.9

Timer Maintenance In TSS, each task has eight interval timers unique to the task and
accessible to user programs. (An additional eight timers per task are
available to privileged programs.) The STIMER and TTIMER macro
instructions set and test these timers.

The correct way for a program to determine calendar time in TSS is to
use the REDTIM macro. REDTIM expands to an SVC allowing the
supervisor to provide the time as a 64-bit fixed-point binary number
which is the number of microseconds since the beginning of March 1.
1900. This date is the standard epoch for TSS.

The System/370 instruction Store Clock (STCK) is useful for tml1ng
brief intervals, but use of the REDTIM macro is recommended for
time-of -day, because not all installations and operating systems set the
time-of-day clock based on the same epoch. A program which uses a
system service to obtain the time is less dependent on the operating
environment.

The EBCDTIME macro can be used to convert time from the format of
the REDTIM macro into various EBCDIC formats. System time can be
translated into any combination of years, months, days, hours, minutes,
seconds. and tenths and hundredths of seconds. When time is not
specified with the EBCDTIME macro, local time is assumed. Usc of
EBCDTIME relieves programs from the need to take daylight savings
time and leap year into account.

Interfacing User Programs with the Command System

50 TSS Concept'> and Facilities

TSS users can write programs which have the properties of systcm­
supplied commands. The user commands which result. can be used in
PROCDEF commands along with system commands. from which they are
indistinguishable. The BPKDS macro is used to generate the necessary
linkage information and parameter storage areas in the user program.
The BUlL TIN command is used to put the command name in the user's
procedure library (a member of the user library) and to define a name
that the command system can use to find the entry point defined in the
expansion of the BPKDS macro in order to invoke the user program.

Services of the command system are available to user programs. The
GDV macro allows user programs to obtain the value of a default from
the combined dictionary of the task. The GETDV macro provides the
value of any entry (default, synonym, command symbol definition) in the
combined dictionary. The SETDV macro sets the value of any entry in
the combined dictionary.

The OBEY macro can be used to cause a command to be executed from
within a user program. Execution proceeds as if there were an attention
interrupt followed by command entry from SYSIN. After command
execution, user program execution resumes at the point of interruption,
namely the first instruction after the OBEY macro. The command can be
any valid command, including commands which cause execution of
another user program. Programs written in higher-level languages utilize
OBEY by calling system-supplied subroutines which issue the OBEY.

Using the PAUSE, COMMAND, CLIC, and CLIP macros, programs can
yield control to the command system temporarily, causing the next record

to be read from SYSIN as a command. Resumption of execution is
accomplished with the GO command. The EXIT macro terminates
execution of a program. returning control to the command system. The
ABEND macro can be used to indicate abnormal termination of a
program and. depending on the severity specified. to cause the old task to
be replaced with a new task.

Communicating with the Operator and the System Log

The TSS operator is very important to the success of an installation and
does much more than watch a terminal for messages about putting paper
in a printer or mounting disk and tape volumes. The operator monitors
the entire operation of the system and is expected to detect trends and
conditions that require attention. Users communicate with the operator,
either verbally or with commands.

The operator's terminal is the same as any user's terminal in that the
operator is logged on (USERrD SYSOPERO). The operator USERrD is
accorded certain command privileges concomitant with operating the
system. A user program communicates with SYSOPERO by using the
WTO, WTOA, and WTOR macros. Using these macros, the program can
cause messages to be written to the SYSOPERO terminal. The operator's
reply to a WTOR IS made available to the program.

The operator owns a generation data group named SYSLOG (system log).
The system operator task writes the WTx messages. along with other log
information, into the most current generation of the system log.

System-Oriented Macro Instructions

Some TSS macros perform system-related functions. These are most
frequently used in support of subsystems. AWAIT is used to place a task
in an inactive state. The task will be made active again upon receipt of
an interrupt. Upon receipt of the interrupt, the task can take whatever
actioll is appropri<:.te. VSEND is used to send a message to another task.
Receipt of a VSEND is associated with a task external interrupt. Applica­
tions can use AWAIT and VSEND to achieve multitasking where each
task is a different TSS task. (It is also possible to perform multitasking
within a single task, utilizing the services of the task monitor.)

USAGE makes available to a program the accumulated resource statIstIcs
for the current task as well as the total usage for the USERID since the
last time the installation reset the totals. XTRTM extracts and examines
the total accumulated CPU time.

HASH generates a hash value for a name according to the algorithm used
throughout the system. LPCEDJT and LPCINIT can be used to make
the services of the TSS editor available to user programs, for example,
language processor controllers. UBESRCH can be used to determine the
location of a particular object module in the job library chain.

CHDERMAC and CHDVAL are useful when writing macros. CHDER­
MAC is a convenient way to generate error messages for conditions
detected during macro expansion. CHDV AL is useful when determining
the lype code of a parameter during expansion. CHDPSECT is the
means by which macro writers and coders of source programs in assem-

Section 2: TSS for the Application Progl'ammer 51

OS/VS Supervisor Services

:\2 TSS Concept'> and Facilities

bier language cause generated code to be placed in the proper control
sections as an aid in making TSS programs parallel reenterable.

Programs running under control of TSS which use parameter lists and
calling conventions defined for OS/VS are supported by a subset of
OS/VS services. The subset has been defined based upon the require­
ments of those OS/VS licensed programs which TSS supports. For a list
of licensed programs supported for use in the TSS environment, see the
Command System User's Guide.

Licensed programs are not altered to make them run under control of
TSS. A utility program is used to obtain object modules from the
volumes on which the programs are distributed. The object data
converter converts the distributed OS/VS object modules into TSS object
modules.

To provide a suitable interface for execution of the licensed programs, a
certain degree of OS/VS simulation is implemented in TSS. OS!VS SVC
functions, such as GETMAIN/FREEMAIN, are simulated at the
functional level. The sequential, indexed sequentiaL direct, and parti­
tioned access methods are logically simulated. Data records are main­
tained in TSS data sets and processed internally in a manner which
simulates OS/VS data set characteristics.

TSS for the System Programmer

Subsystems

This section descrihes TSS for system programmers. The purpose or tlie
section is to explain where various llme[iolls reside. identi/)' the interraces.
and describe support lacililies and features ol TSS. The publication System
Programmer's Guide describes the inler/ace presented [0 system programs.
The publication System Logic Summary is intended for the reader inreresled
in more detail.

The intent of TSS design is to provide all the functions needed by
subsystem developers, but sometimes, modification of the system is
necessary. The structure, interfaces, and programming tools of TSS
facilitate safe, effective system modification. To the extent that modifi­
cations can be made by addition, they are not dependent on internal
characteristics of the TSS control program and are less likely to be
adversely affected by maintenance and functional enhancement of the
system.

Except for a discussion of the time sharing support system (TSSS),
this section emphasizes structure, interfaces, modularity, management of
change, methods of modification, and potential for extension. However
convenient the facilities that are supplied, the factor of greatest concern
to the system programmer is, "How can I make the system do what my
installation needs?"

TSS provides a matrix in which subsystems may be easily embedded.
Subsystem implementation is aided by a common, device-independent,
terminal input/output handler. a smooth interface with the command
system. sufficient virtual storage for generous workspaces, automatic
external storage allocation, flexible and efficient sequential and indexed
sequential access methods, and controlled program and data sharing.. TSS
supports subsystem programming at the same interface as end user
programming.

The terminal handler and the interface to the command system allow a
subsystem developer to take advantage of all facilities of TSS user profile
control. These facilities make it possible for subsystem users to tailor the
appearance of the subsystem according to individual needs. This
capability need not be programmed in each subsystem.

The large address space available in TSS simplifies programming, because it
is not often necessary to impact program design with overlay structures.
The dynamic paging environment facilitates implementation 01 efficient
subsystems. Unused work"pace need never occupy real storage. yet is
available instantaneously, without action by the program. Use of virtual
storage ensures that no penalty (in terms of dedicated real storage) need
be paid for the mere availability of a subsystem.

Automatic external storage allocation and flexible access methods allow
data objects to be referenced by namt~, without concern for physical
limitations of storage devices. This reduces the complexity of subsystem
logic which would otherwise be needed to treat the conditions that arise
as data objects expand and contract.

Scctioll "': TSS for the System Programlllcr 53

From a performance and usability standpoint. TSS facilities for dynamic
sharing of programs and data encourage thc subsystem developer to write
reenterable programs. In this way, multiple uscrs of a subsystem cause
only a single copy of the program to be loaded. This sharing is managed
by TSS automatically, relieving the subsystem of logic for control or
sharing.

System Program Structure

Virtual Computers

54 TSS Concepts and Facilitie~

The TSS operating environment consists of application programs and
service routines operating under the control of supervisory programs.
Supervisory programs are organized into components which function at
different levels. The levels are distinct and the interfaces between the
levels have been comparatively stable.

Distinct levels and stable interfaces facilitate management of change.
Evolution in dynamic address translation architecture, great increases in the
capacity of direct-access devices, and transition from terminals based on
typewriter technology to cathode-ray tube displays were changes external
to TSS which have been accommodated. Changes internal to TSS have
resulted from many years of experience supporting TSS users as their
capabilities and needs have grown. TSS has a clearly defined system
program structure which facilitates management of change.

TSS is concerned with allocation of resources among competing needs.
System designers and system programmers are involved with defining
algorithms to apportion the finite resources available (storage, devices,
control units, channels, and CPUs) among tasks (users) whose aggregate
demand may greatly exceed the amount of resources available. TSS
design enables users to work with a virtual computer, whose appearance
is much simpler than that of a real computer.

The virtual computer created by TSS for a user is realized by a
combination of hardware and software. A specific combination may be
thought of as a level of virtual computer. Within TSS there are five levels
of virtual computers. To each level, the levels below it appear to be
hardware.

Level 4 (numbering from 0) is the environment in which users interact
with TSS through the command system and language processors. Thus. to a
user. programming solely in FORTRAN, the system may appear to be a
FORTRAN computer.

Level 3 is the environment in which the language processors and user
programs operate. This environment is characterized by program
execution in problem state (defined by System/370 architecture) and
nonprivileged state (defined by TSS architecture). TSS is designed to
prevent level 3 programs from wresting control of the real computer or
obtaining unauthorized access to data belonging to the system or users of
other virtual computers. A level 3 program can address only that portion
of virtual storage assigned to the user of the program or having a user
storage key. Only problem state instructions can be executed, and the
program may obtain service for only a safe subset of SVCs.

USER LEVEL 4

/ ~
A conceptual level
created by the
command system

I commands I languages J and language

I I processors.

problem state instructions
non-privileged SVCs

- user virtual storage addresses LEVEL 3
I/O: calls to access met hods TSS user programs,

user-defined
non-privileged

user programs and i[1terrupt-handling
service routines,

language processors routines language processors,
and user-defined
interrupt-handl ing
routines.

non-pnvileged service routines

privileged service routines
problem state instructions

- privileged SVCs LEVEL 2

virtual storage addresses

I ~
TSS task monitor,

I/O: SVCs to supervisor and privileged
service routines.
This level and
levels above it

task monitor exist in the
address space
created by leve I
1 for each task
(user).

old and new VPSWs

VPSW control

supervisor state instructions ,
extended control mode
real storage addresses J LEVEL 1 I/O: instructions

queue processors and dispatcher TSS supervisor
supervisor service for control of
routines scheduler real resources, and

l ,
~

definition of
privileged and

queue scanner non-privileged , state execution
according to

interrupt stacker TSS architecture .

• old and new PSWs

PSW control

channels LEVEL 0 .. Model-dependent .. System/370 instructions CPU implementation

main of System/370
architecture.

storage

Figure 3-1. TSS Program Structure

Section 3: TSS for the System Programmer 55

Level,~ of Protection

System Protection

56 TSS Conccpb ami Facilities

Level 2 is characterized by program execution in hardware-defined
problem state and software-defined privileged state. Only problem state
instructions can be executed, but level 2 programs can obtain service for
any SVC defined in TSS. A level 2 program can address the entire
address space in which it executes, including level 3, but not that of
lower levels.

Level 1 is characterized by program execution in supervisor state (defined
by System/370 architecture). A level I program can address any part of
real storage and any I/O device and may use any instruction. Programs
and control blocks in level I are not addressable by programs in higher
levels. This prevents a buildup of dependencies within application
programs related to the specific level 1 implementation. The programs in
level 1 are collectively referred to as the supervisor and are not subject to
time-slicing.

Level 0 is the implementation of the hardware architecture. The address
space or control storage of this level is not normally addressable by
programs in higher levels. Level 0 controls the two states of the real
computer, problem and supervisor, by the setting of a bit in the PSW as
defined by System/370 architecture.

For purposes or discussion, the computer created by level n programs
is defined as a level n+ I computer. Level n programs run on level n
computers. TSS architecture defines three execution states: supervisor,
problem-privileged, and problem-nonprivileged. The terms privileged stale
and nonpril'ileged state are important concepts. These states are defined
by TSS architecture and are the two possible states of level 2 computers.
A level 2 program operates in the same address space as a level 3
program, but level 3 programs cannot access or damage level 2 programs
or data. Programs in level 3 are dispatched with a key which does not
match level 2 storage.

In the address space created by level I programs, fixed storage locations
are reserved for PSWs associated with each type of interrupt which can
be presented by level I. Because these PSWs are in a virtual computer,
they are called VPSWs. Level I controls the two states of the virtual
computers it creates by the setting of a bit in the VPSW. The virtual
computer created by level] operates in a manner that is analogous to the
real computer created by level O. When interruption of the level 2
computer occurs, the current VPSW is stored in the location reserved for
the old VPSWand the VPSW in the location reserved for the new VPSW
becomes the current VPSW. Level 2 computers always run in problem
state.

Basically, the system is protected from individual user tasks by the use of
separate address spaces for the tasks. The supervisor executes with
dynamic address translation turned off, whereas user tasks run with
translation on. TSS tasks operate in an address space that contains most
of what are normally considered supervisor functions such as access
methods, task interrupt control, and device allocation. Therefore. the
chance that a task malfunction can affect the system as a whole is
reduced.

Task Protection

Data Protection

Partitioning of Function

Within a task, there is a distinct separation between supervisory functions
and user functions, enforced by the storage keys and protection keys.
Nonprivileged programs (level 3 programs) have limited access to
privileged (level 2) virtual storage. The user is given both read/write and
read-only areas which provides protection from some kinds of damage
caused by improper program execution. Improper storage reference
causes program interrupts.

Each user is known to the system by a unique USERID. Data i5 owned hy

individual users, not TSS. This is a basic principle of protection in TSS.

Virtual computers created by level!. as far as problem state instructions
are concerned. follow the hardware architecture, with the exception of
the location and format of the old and new (V)PSWs. The functions of
supervisor state instructions arc replaced by a range of SVCs which
provides supervisor services to level 2 programs. This includes support of
VPSW loading, control of interrupts through masking. I/O, timer control.
and authorization of connection to the address spaces of other level 2
computers.

The interface between level I and level 2 has great practical conse­
quence. As a result. system programmers involved with modification of
TSS should understand and preserve the interfaces between levels.

Implementation of the program product language interface (PPLl) is the
creation, in level 3, of a virtual control program. When PPU is activat­
ed. programs intended for OS/VS operate as if they were executing on a
real control program. A significant portion of the user interface present­
ed by OS/VS is emulated in TSS.

Level 1 programs relieve programs in level 2 and above from much
detail. For example, the ~'irtual acces.s method (VAM). which is entirely in
level 2. has a single logical window through which data passes. frec of
the details of device. control unit, and channel programming. For some
other access methods, it is necessary for level 2 programs to specify
virtual I/O channel programs to be executed. but this is of secondary
importance. In this case. level 1 programs provide better support for I/O
operations than a real computer. I/O scheduling is performed by level I
programs, taking into account all tasks in the system.

Another example is the management of all address spaces by level I
programs. Level 2 programs have no concern with algorithms for
management of multiple address spaces or operation of paging devices.
Resources of the real computer are managed by level I programs.
Privacy of data in a level 2 computer is enforced by separation of the
address space from all others.

The system program structure of TSS is intended to confine hardware and
software errors to individual virtual computers. Requests for service that
potentially impact many tasks can be validated by level) programs,
significantly reducing the chance for global "ystem failure. Problem
determination, using TSS, is simplified because it is possible to operate a
level 2 computer incrementally, while other level 2 computers (users)
proceed at a normal rate. Also, in most cases, programs and data in a

S..,..,l;011 3' TSS for th.., Sy,IClll Pro1!ramlllcr <,7

Address Space Map

Real Storage

Sg TSS Concerts and Facilities

specific level 2 computer can be replaced by test versions without
affecting the entire system.

In TSS, there are two separate storage maps of interest. The first
represents storage occupied by the supervisor and its associated data
areas. This is level] storage. The second represents level 2 storage.
The supervisor initializes a separate level 2 computer for each TSS user.
The term level 2 computer corresponds exactly to the term task. Each TSS
task is initialized with a prototype copy of initial virtual storage.

The acronyms IYM (initial virtual memory) and YM (virtual memory)
will be used in this publication to refer to level 2 storage. Appearing
rarely in documentation and occasionally in code, RM (real memory) and
RC (real core) are used to refer to level I storage. RM and YM also
appear in the syntax of system programmer commands. Sometimes the
supervisor is calIed the resident monitor and is also called the resident
supervisor in older TSS publications. In discussions of where function
resides, programs are '"in real core," "part of IYM," or "loaded into
YM," etc. In the discussion of address space maps which folIows, all
addresses are hexadecimal and quantities are decimal.

Initially, real storage contains nothing and there is no virtual storage
anywhere. Programs and system tables needed to initialize the address
spaces reside in data sets on direct-access storage. The data sets have
specific names known to a program, called STARTUP, which is selected
by the system operator after the computer load key is pressed.

STARTUP uses the system data sets to get the data needed for real
storage (RM) and initial virtual storage (lYM). ST ARTUP loads the
supervisor (RESSUP) into real storage. STARTUP loads IVM into a
special virtual storage which is kept available as a prototype for each
task. This prototype is effectively read-only and is used by all newly
created tasks. When a page of non shared IYM is changed by the activity
of a task, it becomes unique to the task. Thus. the process of initializing
the virtual storage of a task does not involve copying the entire IYM.

There are tables within RESSUP and IYM which must be initialized with
a description of the system hardware configuration. ST ARTUP deter­
mines the number of CPUs, amount of real storage, and the operational
paths to I/O devices, and updates the tables in RESSUP and IYM
correspondingly.

After STARTUP has initialized the various address spaces, it creates the
operator task. At this point, STARTUP has completed its function.
Depending on the setting of an installation-selectable option, control is
first given to TSSS for the purpose of setting parameters needed during
system execution, or directly to TSS so that LOGON of the operator can
he completed. The operator's task uses the terminal from which START­
UP was selected, for SYSIN/SYSOUT and is like all other conversational
tasks, except that it has operator command privilege.

The first page (4,096 bytes) of real storage is called the prefixed
storage area (PSA). Each CPU in the system must have a separate first
page in order to present interrupt status uniquely. Therefore, one page
from somewhere in real storage must be reserved for each CPU. That
page is addressable by all CPUs in the system and therefore must be

Virtual Storage

avoided, except for its use as a PSA. In System/370, the PSA location is
defined for each CPU by the contents of a register which the operating
software can load. This register serves as a prefix for CPU and channel
storage references to locations O-F F F.

The supervisor is loaded near the PSA. Due to prOV1Slon for partitioning.
real storage is not necessarily contiguous. Therefore, it is possible that
RESSUP will not be adjacent to the PSA. Another reason for lack of
contiguity could be the detection of defective storage locations. Beforc
STARTUP is selected. an analysis of real storage is performed so that use
of defective storage can be avoided. The size of RESSUP is approxi­
mately 300 kilobytes. This includes the nontransient portion of the
resident support system (RSS). which is a part of TSSS. RSS normally is
inactive, and much of it is contained in a special virtual storage built by
ST ARTUP. When RSS is activated, real storage becomes part of this
virtual storage. RSS pages the nonresident portion of its virtual storage
independently from the supervisor.

The remainder of real storage is utilized according to need. The greatest
use is for pages of virtual storage for TSS tasks. A small amount is used
for control blocks and work areas needed by the supervisor. In order to
allow for dynamic partitioning of real storage, the supervisor and control
blocks that can be predicted to have a lifetime longer than a few seconds
are placed in adjacent storage areas. Thus, when it is desired to remove a
CPU and some storage from the system, contiguous real storage can be
obtained relatively quickly. A map of RESSUP control sections is
produced by STARTUP, providing addresses and version identification
for all control sections and entry names. This map includes entries for the
special RSS virtual storage.

The various types of real storage are protected with specific storage keys.
Programs in level 2 and higher cannot address any level 1 storage
because of the separation provided by the dynamic address translation
hardware. Level 1 I1rograms run in supervisor state with a PSW key that
grants access to any part of reat storage, but channel programs need not
run with a universal access key. Therefore, the supervisor performs I/O
using the key for the area involved with the operation. In this way, a
class of supervisor [/0 programming errors is detectable by the hardware.
Each of the following has a different key: supervisor code, supervisor
work areas, pages used for level 2 storage, pages used for level 3 storage,
pages being used for paging operations. and pages held in reserve. This
use of keys is possible in TSS, because storage keys are not required for
mu]titask management.

The first two pages (8,192 bytes) of virtual storage are the interrupt
storage area (ISA). functionally analogous to the PSA. The storage key
for the first halfpage (address 0·7 FF) allows nonprivileged (level 3)
programs read/write access to the {SA. This facilitates communication
between user programs and system programs without need for a base
register. The remainder of the ISA is used by privileged (level 2)
programs. It contains the new VPSWs and is store-protected from user
programs. The lSA is part of IVM.

IVM is allocated downward (addresses decreasing), beginning with the
highest address in VM. The highest page is not actually used. The page
tables are set to cause a protection interrupt for any reference to this

Section 3: TSS for the System Programmer 59

Shared Virtual Storage

60 TSS Concept<. and Facilities

page, providing a means for detection of a branch to an address in the
range FFFOOO to FFFFFF. Such a branch could occur, were a program to
use the value that the dynamic loader stores in address constants that can
not be resolved. The size of IVM is approximately three megabytes.
ST ARTUP allocates space in private segments for control sections which
are private to each task. Private IVM typically consists of control
sections which change during execution and therefore can not be shared
with other tasks. Read-only control sections can be public. Space for
public control sections is allocated in public segments. This means that
more than one task can use the same read-only code in main storage.
STARTUP also produces a map of IVM control sections, providing
address and version identification for all control sections and entry points.

Beginning with address 2000. VM is unassigned and available for
allocation in response to requests for storage. Requests for allocation are
satisfied, working upward (addresses increasing) for nonprivileged storage
and downward for privileged storage. The map of VM changes whenever
programs are loaded and unloaded dynamically. The command system
and dynamic loader provide users with the addresses of entry points.

Sharing of virtual storage between address spaces (tasks) is accomplished
in TSS on a segment basis. A virtual address consists of three parts:
segment number, page number, and displacement. This sharing basis
results from the two-level nature of the dynamic address translation
hardware. For each segment of virtual storage there is a different page
table. The page tables which make up a given address space are pointed
to by a segment table. Sharing of virtual storage occurs when the segment
tables for different address spaces have entries that point to one or more
common page tables. User programs (level 3) achieve virtual storage
sharing by use of the dynamic loader.

The address of each control section loaded by STARTUP is the same in
all tasks. This applies to both private (nonshared) and public (shared)
control sections. This can not be said for control sections loaded by the
dynamic loader. This is because each task has a different history of
loading. There can be no guarantee that the address of a specific shared
segment, available for loading in one task, will be available in another
task. Therefore. the address of a shared control section in one task can
be different from the address of the same control section in another task.
This difference is confined to the segment portion of the address. The
number of the page within the segment is identical in all tasks which
share the control section.

TSS users can share virtual storage without assistance from installation
support people. All of the protection provided by data set ownership
applies. The dynamic loader, which loads object modules. provides the
connection between address spaces.

Object modules in TSS, including those converted from OS/VS, are
structured to facilitate dynamic loading in a shared virtual storage
environment. Object modules are made up of one or more control
sections (CSECTs). CSECTs have entry points. Associated with each

entry point is a V-value which represents the address of the entry point.
The V -value is used by any process that binds the output of language
processors into an executable program.

Programs consist of fixed portions containing instructions and constants,
and variable portions containing external addresses, work areas, and
parameters. A CSECT consisting of fixed portions can have the attributes
read-only, and public. so that it can be shared among different address
spaces. (The TSS FORTRAN compiler can produce object modules with
these attributes.) A public attribute causes the dynamic loader to use
previously loaded copies of a CSECT to satisfy load requests, provided
that the object modules are in the same shared job library. (A CSECT can
be read/write and public, permitting an efficient exchange of information
between tasks.)

In TSS, a special value is associated with entry points, and an additional
attribute of CSECTs is defined. to facilitate use of dynamically loaded,
read-only, shared CSECTs.]n addition to a V-value, all entry points are
assigned an R-value by the dynamic loader. A control section may have
the PSECT attribute and in that case is called a PSECT (private
CSECT). A PSECT can be used to store task-specific, variable informa­
tion. (Programs written for operating systems which do not provide the
combination of a dynamic loader and shared virtual storage are usable in
TSS without regard to R-values and PSECTS.)

The purpose of R-values and PSECTs is to provide a convenient way to
share programs among tasks executing in different virtual address spaces.
For this kind of program sharing, control is passed to a location in a
read-only, public CSECT. The program must establish addressability to
its PSECT. The program can obtain address ability to itself, but there can
be no address constant for the PSECT within the (read-only) CSECT,
because the address of the PSECT may be different for each task.
Therefore, the called program must depend on information passed to it.
The information is supplied by the caller in the 19th word of a save area.
The caller need not know the name of the PSECT, only the name of the
program called. The dynamic loader stores the R-value of the called
entry point in an R-constant located in the 19th word of the save area.
Thus, a read-only, public (shared) CSECT can establish addressability to
its PSECT.

TSS uses a save area which is one word longer than that used in OS/VS.
This not a matter of great concern. Programs operating in the OS/VS
environment created by PPLT arc isolated from TSS calling conventions.
Only when OS/VS programs are modified to call TSS programs that
depend on the extra save area word, is it necessary to use a longer save
area.

Where Function Resides

The system programmer needs to know where system programs and
system data reside. Lists of names are scatte red throughout the system
and the documentation. There are lists of commands, modules, control
sections, macros, DSECTs, and default values. The names of these objects
usually can be found in some form of directory. For example. the names
of all members of S Y S LIB (0) may be obtained with the POD? (partitioned
organization directory) command. Command names can be related to

Se:ct ion 3: TSS for the: Svslcm Programmer (,I

1)2 TSS Concepts and Facilities

object modules by inspection of regions in the SYSPRO member of
S Y S LIB (0). The publications System Logic Sun-unary, Sysfem
Programmer's Guide, and the program logic manuals associate name or
function with program.

TSS is delivered with a complete set of source programs and macros,
which corresponds to the object code. Maintenance distributions are
accompanied by updates that correspond to the previous source programs.
The new source programs and any changed macros or DSECTS are also
supplied. It does not take long to get an accurate listing of any TSS
program.

The function of each system data set supplied on the system residence
volume (Volume ID: TSSRES) is as follows. Names are given as they
appear on TSSRES. The first qualifier is the USERID. As with all data
sets, this qualifier is not accessible to users.

The first group of names is presented in the order that the data sets are used
when making TSS operational.

TSS*****.SYSIAM.DSTSSRES
(system independent access method): data set which contains the utility
support system (USS). USS supports loading and execution of programs,
independent from time sharing operation. USS is loaded by a program,
called PRELUDE. PRELUDE is activated by hardware initial program
load (IPL). The system operator selects STARTUP when it is desired to
run TSS. As will be described later, STARTUP can build a quick-start
data sct on other direct-access volumes. If that is done, a copy of
SYS I AM. DSTSSRES is written on the same volume as the quick-start
data set and is called TSS,'''"',Hd,. SYS I AM. DSxxxxxx, where xxxxxx is
the volume ID of the receiving volume.

TSS,'d,,',,'d,. SYSUTL
(system utilities) is a generation data group (GDG) from which USS reads
the most current data set to load the independent utilities.

TSS*****.STARTUP
(system STARTUP utility): GDG containing the program used to
initialize the various address spaces needed for time sharing operation.
The version of STARTUP to be used is loaded from the most current
data set in the group.

TSS,'"'"o<>,,,,,. SYSCCB
(system configuration control block): GDG from which STARTUP reads
the most current data set to obtain the paths to printer(s), the number of
CPUs, and the number of pages of main storage.

TSSh~"d"',. SYS I VM
(system initial virtual memory): GDG from which STARTUP reads the
most current data set to obtain the modules for IVM.

TSS"'~"~;'''''. RES SUP
(resident supervisor): GDG from which STARTUP reads the most current
data set to obtain the modules for RESSUP.

TSS""""'-,'<>'<. RSSSUP
(resident support system, supplemental programs); GDG from which
ST ARTUP reads the most current data set to obtain the modules for RSS.
Modules in this data set are used in the special virtual storage paged
under control of RSS.

TSS,',h"""'-. SYSCAT
(system catalog): data set containing all user catalogs currently in use.

TSS*****.SYSSVCT
(system saved catalog table): data set used as a directory of user catalogs.
This data set contains the status of each user catalog, indicating whether
or not the USERCAT data set and the corresponding member of SYSCAT
are synchronized and which is current.

TSS,''''',',1"". USERCAT
(TSS user catalog): data set containing the catalog for USERIO TSS.

TSSh'''H''~. SYSUSE
(system user table): data set which contains the USERIOs of all users
authorized to use the system. SYSUSE contains attributes of the
USERIOs. their allowable rations, and accumulated resource usage
statistics.

SYSOPERO.USERCAT
(SYSOPERO user catalog): data set contammg the catalog for USERID
SYSOPERO. The first task to log on when TSS is made operational is the
main operator task, SYSOPERO.

TSS,H;'dd. SYSMAC
(system macro library): GOG containing definitions of all macros and
OSECTs necessary to support normal nonprivileged user assemblies. The
most current data set in this group is defined for each user automatically.

TS S:!, 1,,',,',* • MAC NO X
(macro library index); GOG in which each data set is an index to the
corresponding SYSMAC. The most current data set in this group is
defined for each user automatically.

TSS,':;Hn'd. SYSL I B
(system library): GOG containing the system library. The most current
data set in this group is defined automatically by the system for each user
as a lOBUB. S Y S LIB (0) contains object modules, the system proce­
dure library, the system procedure di..:tionary, the system prototype
profile. and other members needed for system operation. The dynamic
loader can load privileged modules for nonprivilcged users from
SYSlIB(O), but only authorized USERIOs may store members in the
SYSLIB. New generations of the SYSLlB can be created without
restarting the system.

SYSOPERO.USERLIB
(SYSOPERO user library): data set containing the user library for
USERID SYSOPERO.

Section 3: TSS for the System Progrill11mcr 63

(,4 TSS Concepts and Facilities

SYSOPERO.SYSLOG
(system log): GOG of data sets containing a log of communications with
the operator task. The data set with the highest generation number
contains the most recent log.

SYSOPERO.SYSBWQ
(system batch work queue): data set which contains the queue of work
for the batch monitor and BULKIO task.

The second group of names represents data sets supplied on TS S RES but not
needed to make the system operational.

TSS,"'~"d,,". SYSERP
(system error recording print) is a GOG containing programs used by the
EREP command to format and print the error recording log. The most
current data set contains the current versions. S Y S E R P also contains a
member, ERPMAC, a macro library needed to assemble the programs in
the library.

TSS,'d,'dd,. ASMMAC
(assembler macro library): GOG containing definitions of macros and
OSECTs used to support assembly of system programs. The most current
data set in this group, by convention, corresponds to the system object
code.

TS S,'"""",:;" . ASMND X
(assembler macro library index): GOG in which each data set is an index
to the corresponding ASMMAC.

TSS;'d,,·,,'d,. GENMAC
(generation macro library): GOG containing definitions of macros used to
support system generation. The most current data set in this group, by
convention, corresponds to the system object code,

TSS,':;'ddd,. GENNDX
(generation macro library index): GOG in which each data set is an index
to the corresponding GE NMAC.

TSS,':;'d"",',. UTLMAC
(utility macro library): GOG contammg definitions of macros used to
support assembly of STARTUP, PRELUDE. USS. and the independent
utilities. The most current data set in this group, by convention, corre­
sponds to the system object code.

TSS,''''';',,'d<. UTLNDX
(utility macro library index): GOG in which each data set is an index to
the corresponding UTLMAC.

TSS*****.USERLIB
(TSS user library): data set containing the user library for USERID TSS.

TSS*****.SOURCE.SYSGEN
(source for system generation): data set equivalent to the source used to
generate the starter system supplied on TSSRES.

S)'stem Generation

TSS*****.SYSGEN.MODULE
(system generation module): data set equivalent to the module used to
generate the starter system supplied on TSSRES.

TS s,', ,', ,', ,',,', . AP G E N
(apply generation): data set which, when executed, applies the contents
of SYSGEN. MODULE [0 the system.

SYSMANGR.USERCAT
(SYSMANGR user catalog): data sct containing the catalog for USERID
SYSMANGR.

SYSMANGR.USERLIB
(SYSMANGR user library): data set containing the user library for
USERID SYSMANGR.

TSS,'"",,Hd,. FORL I B
(FORTRAN library): data set containing object modules for the TSS
FORTRAN compiler and run time library.

TSS*****.SCRIPT.FORTRAN
(FORTRAN linkage editor script): data set which is used to link-edit the
modules in FORL I B and is supplied to facilitate maintenance.

TSS,""d,H,. VSSL I B
(YSS library). data set containing object module') for thc virtual support
system (YSS) component of TSSS.

TSS*****.SCRIPT.VSSLINK
(YSS linkage editor script): data set which is used to link··edit the
modules in VSSL I B and is supplied to facilitate maintenance.

TSS*****.SCRIPT.PPLI.xxxxxXXX
(program product language interface script): data sets used to install the
licensed programs supported by TSS. where XXXXXXXX identifies the
specific program.

There is not much that need he said about SYSGEN in the TSS
environment. The process of generating an operational system does not
involve selection and link-editing of programs. All programs in TSS are
available all the time Furthermore, hecau<;e external storage (data set)
allocation is automatic, no consideration need be given to prediction of
data set size. There are, however, some parameters which affect system
operation that can be specified in a SYSGEN. Most installations adjust
these parameters by other means slIch as TSSS.

All that remains is to specify the number of CPUs, size of real storage,
and the I/O configuration. Specification<; needed to do a TSS SYSGEN
are prepared as a source data set from which the assembler produces an
ohject module. The linkage editor is used to copy the resultant tables into
the appropriate system data sets. As an installation's configuration
changes, subsequent SYSGENs can be prepared concurrent with prod­
uction. It is possible to generate a system which will be rlln on a
different configuration than is used for the generation process. The
publication SFstem Generation and Ivfainfenance explains how to specify,
create, maintain, and modify an installation-adapted TSS.

S,-,.:tinrl _,: rss fur the Sy~tem PrograrnJll~r (»)

System Maintenance An important principle which guides TSS maintenance actIvIty is that
the system is created from source code. not object code. When the system
is delivered, the residence volume is in executable form, but maintenance
is hased on updates to source programs. This principle applies to the
specification of TSS control blocks. Control blocks are described hy
DSECTs. Every bit in every byte in every control block of TSS is
covered by specifications in the system DSECTs. A scan program can be
used to document use of control hlock items. Information from the scan
makes it easier to extend control blocks, because all affected programs
can be identified. IBM-supplied maintenance packages include updated
source programs and matching update control information.

Maintenance packages are called program temporary fixes (PTFs). In
TSS, PTFs are not really temporary. A prospective PTF is verified to be
consistent with system architecture. All PTFs that have been released
have been permanently incorporated in the system. From time to time,
PTFs are combined into releases. These releases are equivalent to
systems updated with all PTFs.

The command system and linkage editor are used to modify the system
according to scripts, supplied with the PTF. Scripts execute as batch jobs
and cover most maintenance. On rare occasions, manual action is
required for maintenance. Installations which have local changes in an
area affected by a PTF can modify the script accordingly. When the
system maintenance job is complete, .a system shutdown followed by a
startup completes application of the PTF.

The majority of the activity of STARTUP is link-loading control sections
from RESSUP, SYSTVM, and RSSSUP. STARTUP can be given a list of
data sets, called delta data sets, which contain object modules consisting of
control sections intended to replace control sections of same name in the
system data sets. Delta data sets are a means to dynamically modify the
contents of IVM, RESSUP, and RSS. Changes can thus be tested
without permanently updating the system. Contained in the system data
sets, and also replaceable using delta data sets, are loadlists which specify
control sections to be link-loaded. STARTUP uses the first occurrence of
a control section name to satisfy the requirements of the loadlists.

The output of the link-load process can be saved. It is not necessary to
link-load every time the system is started. One copy of STARTUP
output can be saved on each direct-access volume. in a data set, called
the quick-start data set. This allows the operator to load other copies.

Data Base/Data Communication

66 TSS Concepts and Facilities

Many characteristics of the TSS application are typical of a data base/data
communication (DB/DC) application. There are facilities for definition.
creation, retrieval, update, restart. recovery, and reorganization of the
data objects being managed. Support exists for recovery from damage to
the data base due to read/write errors, physical damage, inadvertent
erasing, and user error.

The TSS application (time sharing) is supported by facilities and system
services which are also available to subsystem developers. That which is
beneficial to the TSS application applies to subsystems. DB/DC facilities
are an integral part of TSS and need not be added on via application

TSS Data Base

coding. In TSS, management of the space on direct-access storage is
performed by the system. not support people, and all data set sharing is
controlled with a common, protective locking structure that allows update
by multiple processes/users. Also, when a terminal first connects to TSS,
the user can select the TSS application or any of the subsystem applica­
tions. Communication with the terminal is supported by the same access
method in both cases.

A TSS data base consists of all data sets in the catalogs of all users.
A TSS user perceives data sets as in public storage or on private volumes.
A private volume, by definition, is administered by individual users,
although the actual assignment of physical media may be administered
centrally. Installation management must administer public volumes and is
ultimately responsible for the integrity of public storage.

The characteristics of the TSS system data base are:

• Every user has a catalog which contains the names of data sets owned
by that user, information regarding who may share the data sets, and
sharing names by which a user accesses other users' data sets. Two
copies of the user catalog information exist when the catalog is bcing
used. One becomes a member of the system catalog and the other is
the backup copy (USERCAT), which is a separate data set. The
backup copy is brought up to date when the user logs off or when the
system is shut down. The system data set SYSSVCT indicates which
catalog is valid and whether the catalogs are synchronized.

• Every V AM data set on public storage is cataloged at creation time.

• Every data set has an owner, and the owner's USERIO is a part of the
data set name.

• In addition to the catalog entry, every data set has a data set control
block (DSCB). The DSCB contains the data set name, information
describing the data set, and a map of the data set. The OSCB is
pointed to by the catalog entry.

• Public storage volumes are identified by a relative volume number.
This number, together with the relative page number of a page on the
volume, forms a pointer which is used to specify the location of each
page of the data set. The catalog entry contains a pointer of this form,
with the addition of a slot number. which points to the initial DSCB
for the data set. This enables the OSCB to be accessed directly,
without a search.

All public storage volumes (and private V AM volumes) are formatted
in page-size blocks. Each V AM volume has a page availability table
(P AT) which is pointed to by the volume label. The P AT identifies the
use of each page on the volume: PAT page, data page, OSeB page,
paging page, available page, etc.

These characteristics reveal that there is redundancy of control informa­
tion. Furthermore, each data set has an owner. These facts are used in
the implementation of ser"ice programs and the execution of strategies
necessary to recover from catastrophic error. It is possible to:

Section 3: TSS for the System Programmer 67

TSS Data Communication

(,g TSS Concepts and Facilitie,

• Rebuild a PAT from unique check information in the OSCB pages.

• Rebuild and verify a user catalog: from information on public volumes
or the system catalog.

• Check the consistency of the catalogs. the DSCBs. and the PATs and
take corrective action where necessary.

In the environment TSS provides. users depend on the availability of their
data. When an installation is faced with damage to its data base, these
characteristics can be of much help in restoring operation as soon as
possible and with minimum Joss.

The characteristics of public storage have another important consequence.
installations can implement a facility to back up the data base, erase
temporary data sets from public storage. and migrate unused data sets to
offline storage. Because TSS keeps track of reference and change dates,
backup can be limited to those data sets which have been changed since
the last backup. Because all access to public storage data sets passes
through the catalog, such a facility can intercept requests for data sets in
offline (migrated) storage and automatically restore the data sets to
public storage or invite the user to issue commands to do so. The
necessary changes to privileged system programs to implement offline
storage are typically additive; this kind of system extension does not lead
to interdependencies with the TSS control program that are difficult to
control.

The TSS telecommunications access method (TAM II) provides a basis
for exchange of data between the central system and remote terminals.
T AM II is well-suited for this because of its modular design and conven­
ient functional interfaces.

For the same reason that TSS data management isolates programs from
storage device characteristics, the design of TAM II provides programs
with device-independent access to communications lines and terminals.

For both the TSS application and subsystems supported by TSS, GATE
creates a virtual terminal in the sense that programs can communicate
without concern for actual terminal features. GATE handles differences
such as output device line length, number of lines per frame, and
insertion of idle characters to allow for carriage return. A program may
specify functions such as page eject (appropriate to batch SYSOUTs).
GATE converts these into appropriate action based on the terminal type.
For example, a page eject control written to SYSOUT results in a skip to
a new page on a batch output. On a display device. page eject causes the
screen to be cleared in readiness for the next line of output. On a
typewriter terminal. page eject results in spacing up three lines.

GATE also allows programs to write to and read from terminals with a
minimum of "help." This is desirable, because some terminals emulate
other terminals or arc actually computers. GATE does not prevent
transmission of characters which ordinarily have no meaning to the
terminal but which may have meaning in special instances.

Because of its modular structure. convenient interfaces. and distribution
of function among the TSS program levels, TAM II simplifies addition of
support for communications devices. In fact. TAM II could be the basis
of development (If support for I/O devices not normally regarded as
communications devices. In some situations. use of TAM II instead of
IOREQ might be better because of its lower overhead. TAM II provides
basic communications services between TSS tasks (the TSS application)
and subsystems (user-written applications) and terminals.

The objectives of TAM n are to:

• Establish, control. and terminate access between tasks or subsystems
and communications lines.

• Move data between tasks or suhsystems and communications lines.

• Maintain a device-independent and data-independent interface between
tasks or suhsystems and communications lines.

• Establish and maintain a well-defined interface between device­
dependent TAM II modules and other routines of the TSS control
program.

Allow tasks and subsystems to share communications controllers, lines,
ana terminals.

• Handle device-dependent and device-independent requests interchange­
ably.

Provide input and output buffering, transparent to the user or system
program, but under direct control of the terminal user.

Provide reliability, availability, and serviceability aids to assist with
maintenance and extension of device and functional support.

• Place the terminal environment under user control.

Provide subsystems with support for a priority sequence of processing
interrupts.

TAM II consists of four components, two in the supervisor (level I) and
two in IYM (level 2). The supervisor components are the real terminal
access method (RTAM) and a set of device control modules (OCMs).
The lYM components are the virtual terminal support system (VTSS) and
a set of format control modules (FCMs).

RTAM controls all interaction between the OCMs and the supervisor.
One interface is between the supervisor and RT AM and the other
between RT AM and the DCMs. A OCM is a line controller. 11 is the
responsibility of the DCM to get the data to and from the terminal.
Ideally, a OCM need not contain any code related to the type of device
on the communications line. A OeM is typically table-driven from a
device control library (DCL).

Section '': TSS for the System Programmer 69

70 TSS Concepts and Facilities

The following are functions of aDeM:

• Do final validation of all I/O requests.

• Build the required channel programs and initiate their operation.

• Maintain line control during periods when no data is being transmitted.

• Perform initialization required when connecting a terminal to a task,
whether the connection is initiated from the terminal or from the task.

• Set up device-dependent information in system control blocks.

• Handle all device-dependent interrupt status that is presented, except
channel end/device end, and all program controlled interrupt (PCI)
chaining requests.

• Provide error recovery for abnormal end conditions.

• Handle device-dependent timer routines.

• Provide simple output editing capability for supervisor messages to the
terminal user.

• Determine length and type of input and check users' input for llser and
hardware function requests (cance!. attention, etc).

VTSS provides the interface between task or subsystem programs and
T AM II. Implementation of the virtual terminal concept is the responsi­
bility of VTSS and the associated FCMs. An FCM removes device
control information from the data on input operations. On output, an
FCM adds device control information to the data so that it is appropriate­
ly presented on the terminal. An FCM can be set up to handle a class of
devices or access methods. For example, nonconversational tasks use
VAM data sets for SYSIN/SYSOUT instead of terminals. For these
tasks, V AM is used instead of RT AM, but user programs need not take
this into account.

The following are functions of an FCM for output:

• Edit data according to a user function table.

• Do any block or record formatting required.

• Handle physical line length limits and required control character
sequences.

• Translate EBCDIC data to line code.

• Invoke the correct I/O routine.

• Check return codes from RT AM and set up correct return codes for
the program using TAM II.

The ji)l/owin,f/; are functions of an FCM jor input:

• Translate line code to EBCDIC data.

• Remove any block and record format headers.

• Delete any device control characters.

Edit input data according to a user function table and move it to the
specified input area.

• Check return codes from RTAM and set up correct return codes for
the program using TAM II.

The following are also Ihe responsibiliry of an FCM:

• Perform control functions by either continuing the calling sequence or
explicitly executing the request.

Maintain correct sequence and buffer links. for buffered requests 111

virtual storage.

• Handle commands that rclare to manipulation of the virtual terminal.

• Perform any special initialization required for connecting a device.

• Perform any special processing required for disconnecting a device.

Each TSS user can specify default values for settings of various parame­
ters used by FCMs to control the operation of the terminal. These
defaults can be saved using the PROFILE command. Separate character­
istics can be stored for each terminal type. Profile information is stored
in a member of the user library, called SYSFCL (from format control
library). An FCL entry contains all the information and work areas
needed by the TAM II to support the user terminal.

A terminal user initiates communication with TSS either by "dialing in"
(originating a telephone call on the switched network) or signalling
attention on a permanently connected terminal. The user enters LOGON
and a USERID to select TSS, or, BEGIN and an application name to
select an subsystem. A subsystem indicates to TSS the application name
by which it will be known, by using the MTT command or macro. The
other way for subsystems and terminals to be connected is for the
subsystem to initiate connection by specifying the terminal address or
telephone number.

System Support Facilities

TSS includes system programming tools that facilitate development and
test of system programs. One is a support system, integrated with TSS,
yet effectively independent of main system logic. Another is the means
to collect data needed for performance analysis.

Section 3: [,SS for the System Programmer 71

Time Sharing Support System

72 TSS Concerts and Facilities

TSSS is a subsystem that operates within TSS and is very nearly inde­
pendent of TSS. TSSS is essentially a development and maintenance tool
that is operated from a terminal. Its purpose is to provide a system
programmer with the capability to control the execution of system
programs. gather data for analysis of system program errors, and apply
corrections while TSS is running.

TSSS has access to all programs, tables, and control blocks of real,
virtual, and external storag~.]t is essential to provide strict controls as to
who can usc TSSS. and when. The TSSS user can access and modify all
data in the system. As delivered, use of TSSS is limited to persons with
access to the main computer console. and users with system programmer
authority. Individual installations can easily change the criteria.

TSSS has two components which operate in different modes. The
resident support system (RSS) can be used from the main computer
console only. RSS is invoked either by pressing the console interrupt key
or by execution of an RSS SVc. When RSS is in control, normal TSS
operation is quiesced. Time sharing operation resumes after an RSS RUN
command has been issued or after the service requested by the SVC has
been performed.

The virtual support system (VSS) can be used from any terminal support­
ed by TSS. VSS executes separately in each task. VSS can be connected
by use of the VSS command from the terminal or the RSS CONNECT
command from the operator console. Once VSS is connected, any
attention interrupt causes entry to the VSS command mode. When VSS is
in control. only the operation of the related TSS task is quiesced. A null
input in VSS command mode signals an attention interrupt to the TSS
task and returns control as if a VSS RUN command had been issued.

TSSS uses a self-contained, interpretive language processor, with separate
but basically identical versions in RSS and VSS, that reads commands and
performs requested operations. Use of the TSSS command language is
identical for RSS and VSS. The publication Time Sharing Support System
describes TSSS and its capabilities. It also describes the TSSS command
language, defining the functions of the language elements and the
language syntax. The publication presents requirements for correct usc of
TSSS. The methodology of using TSSS is the same as that for PCS. The
techniques applied to writing and testing programs in the TSSS environ­
ment. are similar to those used in the TSS environment, except that TSSS
is independent from the TSS command system and cannot be controlled
from within a PROCDEF or use the internal symbol dictionary (ISD) in a
TSS object module.

TSSS and PCS are similar. PCS is intended for use with user programs.
Its usefulness in connection with privileged system programs is limited to
displaying and setting areas. It cannot be used to control execution of
privileged programs. TSSS has greater functional capability than PCS.
because its operation can be applied to programs in levels 1, 2, and 3.

As with PCS, an AT command can be used to cause TSSS to be invoked
when control passes through a specified program instruction. There are
very few instructions of TSS in which an AT statement may not be

planted. It is possible to plant an RSS AT in all instructions of the
supervisor except for a few instructions in the interrupt stacker and thc
programs which comprise the system internal performance evaluator
(SIPE). A VSS AT may not be placed in VSS or some areas of thc task
monitor. but an RSS AT can be placed anywhere in VM code.

TSSS commands can be grouped into command statements. There are
three types of statements: immediate. dynamic. and conditional. The
commands in an immediate statement are executed at the lime thc
statement is issued. Dynamic statements are stored until control passes
through a specified location in the user program. Immediate and dynamic
statements can be conditionaL (A conditional statement includes at least
one IF command which is lIsed to determine if the remainder of the
statement is to be executed.)

TSSS commands can be used to:

Cause TSSS to be invoked (under strict control) in support of the
entire TSS or an individual TSS task.

Define symbols and allocate any ~torage needed in support of TSSS
operations.

Display and dump data areas and instructions. specifying these items
with reference to external names, by indication of the displacement from
a known location and a length. or by indication of an absolute address.

• Collect information by moving data into an automatically managed
collection area.

Modify data areas and instruct ions. specifying items as for display and
dump.

Indicate locations at which execution is to be started or stopped.
specifying locations as with display and dump.

• Indicate locations at which TSSS commands are to be automatically
executed.

• Establish logical (true/false) conditions that control the action of TSSS
statements.

Perform arithmetic computations, using specified variables and the
contents of data areas.

TSSS statements consist of directives. operators. variables. literals. system
symbols, and constants. The TSSS directives are AT. CALL. COLLECT.
CONNECT. DEFINE. DISCONNECT. DISPLAY, DUMP. END. IF.
PATCH, QUALIFY, REMOVE, RUN, SET, and STOP. Each directive
designates a TSSS command. The action of each TSSS command is
summarized under "Time Sharing Support System Commands" in
Appendix A. Arithmetic, logical. or relational operators are Llsed to form
expressions. Variables are designated by system symbols. external names.
or absolute storage locations. A literal in the TSSS command language is
an item of immediate data in the input stream. There are three kinds of
literals acceptable to TSSS: decimal integer. hexadecimal. and character.

Seetioll.1: T5S for th..: SV'it":!ll Pr(l!!rarnmer T"

Only one lype of data is classified as a constant in the TSSS command
language: the address constant.

TSSS creates a hands-on environment for system programmers. Typical­
ly, TSS installations provide round-the-clock service, without interruption.
If there were no TSSS and if hands-on time were the only way to test
system programs, management would probably restrict change, seeking to
increase availability and achieve stability. The presence of TSSS as a tool
cases this conflict. The partitioning of function into different levels in
TSS, and the fact that most programming takes place in a level where
errors are not of global consequence, are additional factors that make the
TSS system programmer's job easier.

System Internal Performance Evaluator

74 TSS Concepts and Facilitie,

SIPE is a performance and system test tool intended for use by installa­
tion management. SIPE consists of two components. One is a program
in the supervisor which collects and records data about system operation
and the other is a set of data reduction programs. The supervisor portion
is very nearly independent from TSS routines. During STARTUP
execution, the operator is given a chance to bypass SIPE initialization. If
initialization is bypassed or if SIPE is not active, SIPE places no load on
the system. If recording is active, approximately five percent of CPU
capacity is used for SIPE. SIPE records are written on unlabeled tape
volumes in a special format that is recognized by the reduction programs.
The amount of CPU time and tape channel activity needed for SIPE
depends on the amount of information being collected and recorded.

The type of information collected by SIPE is controlled by the contents
of a table. The table contains a switch for each type of SIPE event that
can be recorded. Judiciously placed throughout the TSS control program
are hooks, each of which is identified to SIPE by code number. A SIPE
hook in real storage consists of two instructions. The first instruction
executes an instruction in the PSA. The executed instruction in the PSA
is either a no-operation (NaP) or the SIPE SVC, depending on whether
SIPE is active. The second instruction is a Nap which specifies the hook
code number. A SIPE hook in virtual storage consists of a SIPE SVC
and a parameter list.

If SIPE is not active, two NOPs are executed when control passes
through the hook. Thus, the cost of permanently including SIPE hooks in
the supervisor is very small. The location of the hooks has been carefully
selected to yield the most beneficial information. Individual installations
are free to add hooks to the supervisor and virtual storage programs.
When control passes through a SIPE hook and SIPE is active, the SIPE
routine receives control and determines if the hook is armed. If so, SIPE
buffers the information specified in the hook. When the buffer is full, a
new buffer is used and the old one is written on tape.

The objective of SIPE is to collect data without seriously affecting system
operation. Depending on the amount of information desired, there can be
distortion of system operation due to the extra instructions needed to
move the collected data into the SIPE buffers. This is usually not serious
and the loss in system performance during SIPE recording is justified by
the benefits that result from analysis of the data. It is not unusual for a
TSS installation to run SIPE occasionally during normal production time.

Regular comparison of SIPE oat a can lead to identification of significant
trends.

Examples of some of the items that can be recorded by SIPE are I/O
II1ltJalion, interrupts, CPU dispatch. main storage allocation, auxiliary
storage allocation, task creation, task dispatch, task status change, time
slice end, task deletion, and page relocations. SIPE also periodically
records information from system control blocks.

Each data reduction program is designed to fill a specific requirement.
Examples are pictorial representations of main storage and drum storage
as a function of time, and statistical summaries showing processing time,
I/O activity, main storage usage. The data that is collected on tape is
time-stamped and many events can be related to the activity of specific
tasks. There is considerable potential for interesting research on resource
control algorithms using the large amount of data obtainable with SIPE.

Dynamic Measurement Statistics

Design Features

Supervisor

To provide the TSS application programmer with task-oriented resource
usage measurements, statistics are continuously gathered for each task in
the system. These statistics can be made available by the usc of three
pseudo-commands.:

& (used in pairs to bracket commands) Display statistics for the
bracketed commands.

O;{) (used as a prefix to any command) Display statistics for prefixed
command only.

@ Display statistics accumulated since LOGON.

The gathered statistics are also available to privileged programs on a
system-wide basis. This allows continuous monitoring of system load.

The TSS features which are described below are either unique to TSS,
or can serve as the basis for extensions related to an installation's specific
needs. The publication System Logic Summary describes many other
design features 01 TSS which are not described here.

In the TSS context, the term supervisor is used to describe the
programs which execute in supervisor state and are resident in main
storage. Using the terminology explained under "System Program
Structure" at the beginning of this section, these are level I programs.
The supervisor is responsible for allocating real system resources, for
performing services in response to requests from level 2 programs, and
for responding to real hardware interrupts. The supervisor also maintains
the status of control blocks which describe the resources allocated to each
task. The supervisor consists of an interrupt stacker, a queue scanner,
queue processors, a scheduler, a dispatcher, error handling and service
subroutines, and system control blocks (tables).

Although the majority of function utilized by TSS users comes from
programs outside the supervisor. the ability of TSS to provide many users
with access to a computer and its data base in a safe and effective
manner is due to the supervisor. Two aspects of the supervisor arc

Section 3: TSS for the System Programmer 75

76 TSS Concepts and Facilities

presented: management of the CPU resource and management of the
storage resource.

The design for CPU management is strongly influenced by the need to
effectively classify and process the various and frequent requests thClt
occur in a multiprocessing, time sharing environment. To support sharing
of real resources with many users, the supervisor classifies interrupts
according to priority. When an interrupt occurs, the interrupt stacker
receives control and enqueues a record of the interrupt on an appropriate
queue. In order that a high-priority interrupt be accepted and enqueued
quickly, most of the superviso'r executes enabled for interrupts. Only
very small portions execute with interrupts disabled. All entry points to
the supervisor are in the interrupt stacker. Because the intervals during
which TSS does not accept interrupts are very short, TSS is well-suited to
the support of realtime applications.

When a CPU is interrupted while executing instructions for a user's task.
it is necessary to save the status of the task (machine registers. PSW.
etc.) for use when the task is dispatched again. If a CPU is executing
supervisor instructions, the interrupt is enqueued and execution of the
interrupted supervisor process resumes. Some interrupts caused by tasks
require very little supervisor execution and can be handled immediately
by the interrupt stacker, thereby eliminating the need to perform a full
save of task status. Long, low-priority supervisor processes are typically
handled in several short queues, which means that no allowance need be
made for high-priority interrupts that must take over a CPU from
low-priority processes. There are other interrupts. such as machine
checks, that occur very rarely and require special processing and immedi­
ate handling.

Thc logical element built by the interrupt stacker and enqueued on an
appropriate queue is called a general queue entry (GQE). A GQE either
describes an interrupt or represents a request for supervisor work. Thc
following are the supervisor queues, highest priority listed first:

• timer interrupt queue,

• drum request queues,

• drum interrupt queue,

• channel interrupt queue (all nondrum I/O interrupts),

• auxiliary storage allocation request queue,

• main storage allocation request queue,

• supervisor page-in request queue,

• device request queues, (all nondrum I/O requests),

• SVC interrupt queue.

• program interrupt queue,

• private page migration request queue,

• shared page migration request queue,

• real timer interrupt queue,

• vary request queue.

These queues are in a list of queues. called the scan table. Each I/O
device is represented in the scan table in the order of the symbolic device
address that was specified during system generation. In its capacity as
the primary means of sequencing work. the queue scanner recognizes
priorities for queu\:' processor routines according to position of the queues
in the scan table. Work which can be expected to have the greatest
effect on total system performance is processed first.

Most supervisor work is performed by queue processors and their
associated subroutines. Each queue processor is responsible for perform­
ing the work scheduled for it. as specified by the GQEs chained to its
queue. A qucue processor may be used by more than one queue. For
example. all nondrum device queues use one processor. Typically, aftcr
the first GQE on a queue is processed, control is transferred to the queuc
scanner. This allows a higher priority queue to be serviced bcfore any
remaining GQEs are processcd. In some cases. a queue processor
searches its chain of GQEs and a GQE is selected for processing based
on a specially defined priority. In other cases, all GQEs are removed
from a queue, a chain of GQEs is maintained within the processor, and
all the GQEs are processed.

When a GQE is created, it is given a list of the queues to which it will be
sent. When one queue processor has completcd its work for a GQE, the
GQE is moved to the next queue until the list is null, at which point the
work is complete and the GQE is deleted.

The queue scanner searches the queues for work, beginning with the
highest priority queue. When work is found, it is given to the queue
processor for that queue. When there is no more work, the queue
scanner calls the internal scheduler. If the internal scheduler determines
that work must be initiated to bring a task into execution, it will enqueue
this work on the scan table and branch 10 the queue scanner. Finding no
neecl to enqueue work, it branches to the dispatcher. The dispatcher,
operating in conjunction with subroutines and a table that specifies
scheduling parameters, gives control to a lask (level 2 computer).

TSS was designed for a system with more than one CPU. More than one
supervisor process can be exccuted simultaneously and supervisor
processes can be in execution while tasks are in execution. Each CPU
can execute instructions of the interrupt stacker, queue scanner. queue
processors, dispatcher, supervisor subroutines. and tasks. The queue
processors are parallel reenterable. To prevent more than one CPU from
processing a GQE, the queue scanner marks a queue busy before control
is passed to the queue processor for the queue. As soon as the GQE is
removed from the queue, the queue is no longer busy and the queue can
be processed by an available CPU. If a queue processor can not tolerate
paraIlel execution or must prevent further processing of GQEs on the
queue before exiting, it suppresses the queuc. For example. when I/O is
initiated on a device, the queue for that device is suppressed which
prevents other GQEs reprcsenting requests for the same dcyice from

Section 3: TSS fur the System Programmer 77

7X TSS Concerts and Facilities

being processed until the I/O for the first GQE is complete. Also,
resource allocation queue processors suppress their queues when the
resource they control is in short supply. When the resource is available in
normal amounts, the queue is unsuppressed.

For some realtime applications, it may be necessary to add a queue to thc
scan table for a process which must be given a high priority. The design
of the TSS supervisor makes it reasonable to add such function without
seriously affecting supervisor interfaces.

The design for storage management is influenced by the needs character­
istic of a multiprocessing, time sharing environment. Two types of
storage are managed by the supervisor: main storage and auxiliary
storage. Auxiliary storage is used for pages no longer needed in main
storage and is divided into two classes: drum (high speed) and disk (low
speed). Storage management algorithms for both types are interrelated
and are discussed together.

The storage allocation parameters of a TSS task are specified by the
schedule table entry for the task. Scheduling is described below under
"Task Scheduling." Examples of the parameters are real storage limit,
auxiliary storage limit, and flags to identify the algorithms to be used by
the allocation routines.

When a task is regarded as a candidate for use of the CPU and storage its
real storage limit is used to reduce the count of estimated available
storage, even though the limit will not be reached immediately.

At time slice end, the estimated storage available counter is incremented
by the task's real storage limit, even though the pages will not be purged
immediately. This increase predicts that storage will become available,
and therefore, operations La bring in pages for another task can begin,
while the pages to be purged are being written. Prior to dispatching a
task, some of the pages are read in a blocked page set. but most arc
brought in later on a demand basis. Because tasks do not reach their
limit of pages immediately and because not all tasks reach their storage
limit before time slice end, a dynamically calculated factor is added to
the value taken from estimated storage available. The result is used to
determine whether another task can be brought in. This keeps a slight
pressure on the main storage resource to avoid underutilization.

When a task reaches its limit of storage and needs another page, one of
two actions can be taken. Either its time slice will be ended and its pages
removed from main storage and it will be rescheduled for another time
slice (typically with a larger storage limit) or, if a flag is on in its schedule
table entry, a page stealing algorithm will be invoked to steal pages from
the task while it runs.

This algorithm uses a percentage value specified in the schedule table
entry (typically around 80 percent), establishing a scan threshold. When
the calculated number of pages is reached, all storage key reference bits
for the task's pages are reset and the task is allowed to continue. When
the limit is reached, all the reference bits are scanned and reset again. [1'
enough pages were found unreferenced between the time of reaching the
scan threshold and the time of reaching the maximum, these unreferenced
pages are removed until the number of pages is below that determined by

the specified stealing percentage. The pages arc removed from the task,
the task is allowed to keep running, and the stealing process continues
each time the limit is reached. If enough pages can not be found, the
task is treated as if stealing were not allowed. The parameters governing
the algorithm are contained in the schedule table entry for the task and,
because the task transfers from one entry to another according to
immediate conditions, can be chosen automatically according to the type
of work the task is doing.

When a page is removed from a task, it is simply released, if unchanged,
or if changed, written to a high-speed drum if one is available. If a page
is unchanged and is determined to be a frequently used page and is
resident on disk, it will be moved to a drum so that it may be read into
storage more rapidly on subsequent use. Also, at time slice end, a set of
frequently used pages is identified. This set forms the hlocked page set
referred to above, thus avoiding a large number of translation exceptions
at the start of a time slice. The size of the blocked page set is typically
eight pages. When a page is released to the list of available pages,
information about its previous use is retained so that an I/O operation
can be avoided if that page is needed again before the contents of the
main storage page have been used for another purpose.

If satisfying a page allocation request would reduce the number of
available pages below a threshold value, storage has heen overcommitted
and action will be taken to obtain more pages. Shared pages in main
storage are scanned to find pages not recently used. If this does not yield
sufficient main storage, all of the tasks occupying storage are checked to
see if any are of a lower priority than the requesting task. if one is
found, it will be forced to end its time slice, making its pages available.
If none can be found, the page request will be discarded and the request­
ing task will be forced to end its time slice.

The following description of auxiliary storage management algorithms
applies when one or more drums are used. If there are no drums in the
configuration, the only thing of interest is the selection of the disks and
locations on the disks for auxiliary storage pages. Typically, active tasks
need more main storage and high-speed auxiliary storage than is available.

At time slice end, a task's changed pages are written to auxiliary storage.
Frequently referenced pages are identified and become part of the
blocked page set mentioned above. Requests to write pages may include
an indication of preference for use of drum or disk. The blocked page set
may be divided between drum and disk according to parameters specified
at each installation. All pages blocked to drum along with the page table
pages indicate drum preference. Pages blocked to disk indicate disk
preference. Preference is not indicated for the other pages. but if enough
drum space is available, they are written to drum.

When available drum space falls below a specified threshold, migration of
pages from drum to disk begins. This migration can take place while the
task is receiving service from a CPU. In order to choose tasks for
migration, a scan is made of all tasks, to find those which exceed their
fair share of drum pages. The fair share is a calculated value. but can be
overridden by a value in the schedule table entry for the task (see below).
Tasks that exceed a fair share of the drum are subject to having their
pages migrated to disk until the number of their pages on drum is reduced

Section 3: rss for the System Pro!!rarnmn 7<)

Task Scheduling

XO TSS Concerts and Facilities

to the fair-share value. Frequently referenced pages are not moved from
drum.

If the available drum space falls below another threshold. which is lower
than the migration threshold, only writes that indicate drum preference
actually go to drum. All unspecified requests go to disk until the
migration has freed up drum space.

Jf a task is inactive for a long time. all its drum pages are moved to disk.
This time may be specified by an installation and is usually in the range
of a few minutes.

Scheduling of the CPU resource in TSS is controlled by a table-driven
scheduler. This approach allows flexibility in controlling factors that are
always subject to change. By making the scheduler table-driven. many
classic algorithms may be simultaneously incorporated. Also. each
installation may design scheduling algorithms without the need to
reprogram. It is possible to modify the table during system execution. In
TSS, the scheduling function is contained in just a few programs. which
simplifies learning about the scheduler and modifying it. Task scheduling
and selection is performed by an internal scheduler. a dispatcher, the
entrance criteria subroutine. and the rescheduling subroutine.

The system maintains a list of active tasks and a list of inactive tasks.
The active list is divided into the eligible list and the dispatchable list.
Eligible tasks wait for entry into the dispatchable list. Tasks in the
dispatchable list occupy real storage and are either in execution or waiting
for the CPU. The inactive list contains those tasks waiting on long-delay
stimuli, such as an interrupt from a terminal. The internal scheduler
controls movement of tasks from the eligible list to the dispatchable list.

The entrance criteria subroutine is called by the internal scheduler to
verify or deny a task's eligibility to be moved from the eligible list to the
dispatchable list. The internal scheduler also determines the order of the
dispatchable list. The dispatcher selects the task to be executed. The
rescheduling subroutine is called when a task reaches time slice end
(normal or forced) and controls movement of the task from the dispatch­
able list to the eligible jist. ft also moves a task from the eligible list to
the inactive list or vice versa and is used to delete the task from all lists.
This subroutine determines the reason for the time slice end. Based on
the reason, it switches the task to the proper level.

The schedule tahle resides in main storage (level 1). The table consists
of a number of entries, each referred to as a level or schedule tahle entry.
Some terms are given below without explanation just to give an idea of
the type of parameters possible. The abbreviation TSE is used for time
slice end. For a fuller discussion of the schedule table see the Svsrem
Logic Summary. Each level has six classes of fields:

• Control of the order in which tasks move from the eligible list to the
dispatchable list (priority, delta-to-run. recompute scheduled start
time)

• Limits of task demands on a per time slice basis, used to determine
when TSE will be reached (CPU time per quantum. numher of quanta,

Task Monitor

real storage limit, maximum translation exception count. short-term
task wait time, preempt flag)

• Transitional fields to indicate which level will be used next upon
reaching each type of limit or event (Pulse SVC, TSE SVc. real
storage limit, terminal wait, short-term wait, TSE while holding lock,
low-core forced TSE holding lock. waiting on lock, terminal write-only
operation, low-core forced TSE, next steal level)

• Control of the order of the clispatchable list (maximum translation
exceptions per quanta)

• Control of the page stealing algorithm (steal request flag. steal
threshold percentage)

• Override of a task's fair share of drum pages

The transitional fields are like branches in a program. When a user is
joined to TSS, one of ten ('x/ernul priorities is specified. Each task that
logs on is initially started at a level which is determined by the external
priority. If the task is conversational, the number of the initial level is
equal to the external priority. If nonconversational. it is thc external
priority plus ten, As the task executes. it moves from one level to
another, within one set of levels. Some installations bave installed a
command which allows a user to change the level of tbe task in which the
command is issued.

The task monitor is to the leve I 2 computer as the supervisor is to a
level 1 computer. Interrupts are presented to the level 2 computer by
the supervisor in the same way that the hardware presents interrupts to
the supervisor. Within the supervisor, the dispatcher selects a task which
is to receive CPU service. Before actually dispatching the task, the task
interrupt control suoroutine is called tu see if there are any pending
interrupts to be processed by the task. If so. the current VPSW is stored
in the old VPSW location corresponding to the interrupt, and the
corresponding new VPSW becomes the current VPSW. This is analogous
to the way level 0 programs handle the real hardware.

The basic function of a control program is to control real resources and
to provide services to tasks. In TSS, control program functions are
separated into a resident portion which controls the real resources and a
nonresident portion which provides services to the tasks. The nonresident
portion resides in the level 2 address space, which, being virtual storage,
docs not permanently occupy main storage. The task monitor and its
associated service routines act as if they constitute a resident supervisor
for each task. The task monitor is very much like the OS/MVT supervi­
sor as regards its functional capability.

The analogy which compares the interface between the supervisor and the
real hardware, on the one hand, and the interface between the task
monitor and supervisor on the other, is quite extensive, but it is not exact.
A difference is that the interface has been extended to facilitate, among
other things, internal sharing of programs and data and intertask commu­
nication.

S.:ctiOll 3: TSS for the SYstem Programmer g I

Virtual Access Method

112 TSS Concepts and Facilities

The task monitor and most system service routines operate in the
privileged state. Programs belonging to the ordinary user execute in the
non privileged state. This protects privileged programs from damage due
to actions of nonprivileged programs. The separation is enforced with the
storage keys. (Protection between users is enforced by use of different
virtual storage address spaces.)

The dynamic loader can discriminate between authorized and unauthor­
ized requests to load privileged modules based on identity of the data set
from which the program is loaded and the authority of the user attempt­
ing the load.

Finally, protection is accomplished through validation of requests for
supervisor service. In response to a task-related SVc, the supervisor
creates an interruption of the task which is processed by the task monitor,
which, in turn, invokes privileged system service routines. These routines
determine if the request is valid. The reason for communicating between
problem and privileged state via the supervisor is that only the supervisor
can execute instructions which alter the PSW protection key field.

Many TSS users do not become involved consciously with the services of
the task monitor. When a task logs on, various system routines are
automatically specified to handle interrupts. For example, the command
system receives control and performs a read from SYSIN. H also handles
attention interrupts from conversational tasks.

The task monitor consists of privileged service programs that receive and
process task oriented (programmed) interruptions in a prescribed
sequence and on a priority basis via queueing, scanning, and dispatch
mechanisms. As in the supervisor. a queued interruption represents an
element of work. Such an element may be deferred for reasons of
priority. efficiency, or protection against recursion.

The topic "User Interrupt Control" in the section "TSS for the Applica­
tion Programmer" indicates the kinds of service provided by the task
monitor. Using these services, it is possible to write multitasking
applications within a TSS task. Other such applications use intertask
communication to synchronize and coordinate processes.

V AM involves several different aspects of direct-access storage usage
in TSS, including volume layout, physical transfer of data between main
storage and external storage. internal data set structure, and service
routines. The integration of virtual storage and data management, which
is a major feature of TSS design, offers many advantages and conven­
iences. In this context, the term access method has a broader meaning
than when used in connection with designs that make external storage
accessible only in an indirect fashion.

One of the most important design points of TSS is that main storage,
virtual storage, and external storage, should be addressable as sets of
pages, numbered from zero. This would be impossible for some classes of
I/O devices, such as card readers and printers. For other classes of I/O
devices, such as tapes, page-addressabifity would be possible only in a
restricted sense. Main storage can be addressed randomly, and therefore
may be regarded as page-addressable. Dynamic address translation has
page-addressability as the basis of its design. Direct-access storage can

be addressed by page and is well suited for external storage. Thus, the
three main types of storage used in TSS, main storage, virtual storage,
and external storage. are either inherently, or by convention, page­
addressable.

V AM, in the broadest sense, defines dynamically changing relationships
between pages in virtual storage and pages in external storage. This
enables data on external storage, including programs, to be directly
addressed by the CPU via dynamic address translation. Direct addressa­
bility of external storage, made possible by V AM, contributes to efficient
operation of the system and provides conveniences related to system
development.

The sets of pages represented by main storage, virtual storage, and
external storage devices need not be dense. Pages may be missing from
main storage, because individual storage units have been assigned for
other purposes such as maintenance. Virtual storage is organized into
segments, leaving gaps in the address space. Direct-access volumes may
have missing pages because of surfaces which have become defective. [n
all cases, a page that exists can be uniquely identified by specifying the
device on which it resides and the relative page number on that device.

Whether the "device" is a direct-access volume, a collection of one or
more consecutively numbered segments in virtual storage, or a collection
of main storage units, the form of a page address is the same. For
example, the only difference between one type of disk device and another
is the number of pages each type holds, not the way in which an individu­
al page is addressed. This homogeneity of external storage addressing
enables device independence for data on external storage.

Viewed externally, a V AM data set is a collection of logically contiguous
pages, numbered from zero. All structure within a V AM data set,
including indexes and partitioned organization directories, is specified in
terms of pages, numbered from zero, that are in the data set. V AM
defines and maintains the mapping of pages of a data set to one or more
direct-access volumes. Because the format of a page address is constant
across all direct-access volume types, data set pages may be allocated
arbitrarily from an arbitrary set of direct-access volumes which need not
all be the same type. VAM data sets may grow and contract freely,
because additional pages may be allocated from any volume with
available space. Because a data set need not be constrained to occupy
physically contiguous areas on a direct-access volume, a page in a data set
that is currently unused need not occupy a physical page. For example, a
deleted or replaced member of a VAM partitioned data set does not occupy
physical space. Thus, direct-access storage is conserved without the need
for ancillary operations such as data set compression. Similarly, when an
entire data set is erased, space it occupied is immediately available for
allocation to other data sets, because V AM imposes no contiguity
requirement.

When a direct-access volume is formatted for use with V AM, its entire
surface (with the exception of the track containing the volume label and
the IPL bootstrap) is formatted with page-size blocks. Space allocation
and data set control blocks are stored in page-size blocks and therefore
can be made directly addressable by virtue of their being mapped into

Sediofl 3: TSS for the System Programmer 83

~4 TSS Concepts and Facilities

virtual storage. The efficiency of V AM is thus extended to maintaining
allocation records.

All physical transfer of information to and from V AM volumes is
accomplished in page-size blocks. Therefore, the system nevcr needs to
execute a formatting write operation on a V AM volume. This increases
the availability of direct-access device control units, because they are
never busy erasing to the end of a track. Also, indexed and partitioned
directories are structures internal to the data set, not physical entities on
direct-access tracks. Therefore, these structures can be expanded and
contracted, as necessary, simply by allocating additional pages to the data
set. This independence of direct-access volume format from the internal
structure of the data sets stored on it is an important factor in the
effectiveness of V AM.

Direct-access storage devices are also used in TSS to store (page) virtual
storage that is not immediately needed by programs in execution. The
direct-access volumes used for this purpose are formatted as V AM
volumes. Also, public storage volumes may have areas reserved for
paging. This commonality of direct-access volume formats permits one
set of £/0 routines to perform all physical transfers of information
bctween main storage and external storage.

Another advantage of using common volume formats and I/O routines
for both auxiliary and external storage is the ease with which virtual
storage pages can be transferred between the two. For example, consider
a program stored in a data set on external storage. When it is to be
loaded, the appropriate pages of the data set containing the program are
mapped into a task's virtual storage. Later, if portions of the program are
t,) be paged out, it is possible that the pages may be written on an
auxiliary storage device which has a shorter access time than the device
used for external storage. Also, when a task needs to transfer a page of
its virtual storage to a data set, it can be done simply by transferring the
page from auxiliary storage to external storage. This is another example
of keeping system overhead low when transferring data between the three
main storage types: main storage, virtual storage, and external storage.

The preceding discussion related to those aspects of V AM which increase
system efficiency and flexibility. The following shows how the underlying
system design, particularly shared virtual storage, helps V AM. When a
V AM data set is being processed, a table is constructed which contains,
for each data set page, the external storage page (if any) associated with
that data set page. This table is called the relative external storage
correspondence table (RESTBL) and is in shared virtual storage provided
by the operating system. When a data set is shared by more than one
user, V AM must prevent multiple tasks from changing or adding the same
record, and individual tasks from changing a record that another task is
reading. This is accomplished by adding information concerning the use
of each page and the type of access to the RESTBL. By placing the
RESTBL in virtual storage that is shared by all current users of the data
set. one set of common status information is available to control concur­
rent access to the data set. An ordinary user program obtains the
advantages of protection without specifically taking any action.

Appendix A: TSS Commands

This appendix presents TSS commands of general interest. organized by
functional area. TSS commands are fully described in publications such
as Command System User's Guide. System Programmer's Guide. Manager's
and Administrator's: Guide. Operator's Guide. and Time Sharing SUPPOrT
System. In the descriptions that follow. the term job means a nonconver­
sational task or a hulk output request. Commands identified hy ;". issued
by the system operator. system manager, or system programmer, can
perform additional functions or are not limited to the USERID of the task
from which the command was issued.

Task Management Commands

&

@

ABEND

ABENDREG

BACK

BLOCK ,',

CANCEL ,',

CHGPASS

EXECUTE

EXHIBIT ,',

JOBS .;,

I PL?

LOGOFF

LOGON

STATUS ,\;

SUMMAR Y ,',

Save the current task-related performance data. Upon the next lIse of the
& command, subtract previously saved data and write the results on SYSOUT.
The & command is used in pairs to identify the measurement period.

Write the task-related performance data for the command prefixed by the
% command on SYSOUT.

Write the task-related performance data accumulated since LOGON. on
SYSOUT.

Terminate the current task, and replace it with a new task.

Display the contents of the general registers and the last instruction
location corresponding to the most recent ABEND.

Convert a conversational task to a nonconversational task, which will use
the specified data set as SYSIN.

Block dispatch of a job.

Cancel a job.

Change the LOGON password of the USERID issuing the command.

Initiate a nonconversational task, which will use the specified data set as
SYSIN.

Display the status of a joh or present a list of active tasks.

Display a list of the jobs in the system.

Display the time of the last system startup.

Terminate the current task.

Create a task and perform initialization based on the profile stored for
the specified USE RID.

Display the status of a specified job or lype of jobs.

Display a summary of job statistics.

Appenuix A: rss Cornmamb K~

TID?

TIME

TIMINGS

UNBLOCK

USAGE ;~

ZLOGON

-;":;

-;t;:

Display the T ASKID for a specified USERID or job.

Set a CPU time limit for the current task.

Present system performance as measured in jobs, CPU time, percent
elapsed time, and seconds per job.

Reverse the effect of a BLOCK command.

Display the resource utilization statistics.

A user-written procedure, ZLOGON is executed by the system for the
user during each LOGON.

Command Environment Commands

BUILTIN

DEFAULT

EJECT

EXIT

EXPLAIN

GAV

GDV

GOTO

GSV

INPUT

INPUT?

JUMP

KEYWORD

MCAST

MCASTAB

NEWMLF

~h TSS Concepts and Facilities

Define a command which can then be used to invoke a user-written
program as a command.

Add, replace, or delete entries to the default portion of the task's
combined dictionary.

Skip to a new page of SYSOUT for nonconversational tasks or space
three lines on the terminal for conversational tasks.

Bypass execution of the current program or command, and execute the
next command in the source list.

Provide additional information on messages, terms in messages, the origin
of messages, and expected responses for prompting messages.

Display all entries in the task's combined dictionary.

Display the value for a default in the task's combined dictionary.

Branch forward in a PROCDEF.

Display the synonym value associated with a specified term.

Add a data set to the stack of secondary SYSrN data sets. (Secondary
SYSIN data sets are used when the default for SYSIN is S.)

Present the DDNAMEs and DSNAMEs in the secondary SYSIN stack.

Take the next command in a secondary SYSIN data set from a specified
rccord.

Display the names of operands of a command.

Change the function control characters in the task's combined dictionary.

Alter the terminal input and output translation tables.

Flush the stack of saved messages obtained from USERLIB(SYSMLF) to
guarantee use of updated messages.

OUTPUT

OUTPUT?

PRMPT

PROCDEF

PROFILE

PUSH

RTRN

SPACE

STACK

STRING

SYNONYM

Add a data set to the stack of secondary SYSOUT data sets. (Secondary
SYSOUT data sets are used when the default for SYSOUT is S.)

Present the DDNAMEs and DSNAMEs in the secondary SYSOUT stack.

Write a specified message on SYSOUT. PRMPT is used when testing new
messages or when a repeat of a previous message is desired to obtain
more information by means of the EXPLAIN command.

Invoke the editor for writing or modifying a user command procedure.

Make permanent, any changes to the task's combined dictionary.

Save the status of an interrupted user program.

Cancel further execution of commands in the source list, flush the stack
of active programs, and read the next command from SYSIN.

Space the specified number of lines on SYSOUT.

Display the names in the stack of active user programs.

Display the commands in the source list that. are not yet executed.

Rename commands, keywords, or command symbols.

Terminal Control Commands

ATTEN

BLIP

Bli P?

DCMD

HRDCPY

HRDCPY?

KA

KB

LL

LL?

INTAB

INTAB?

OUT TAB

Control ignoring of attention interrupts.

Transmit a special nonprinting assurance message to the terminal in order
to notify the user that the computing system and the data path to the
terminal are working.

Display the current setting of BLIP parameters.

Execute a device control command from within a PROCDEF.

Produce a hard copy of terminal input and output.

Display the current HRDCPY status.

Do not fold the EBCDIC character set on input.

Fold the EBCDIC character set on input.

Define the maximum length of any line sent to SYSOUT and specify the
action to be taken when the line length is exceeded.

Display the current selting of the LL parameters.

Specify input tab locations.

Display the values of input tabbing controls.

Specify output tab locations.

Appendix A: TSS Commands 87

OUTTAB?

RESTART

TRANSLAT

Display the values of output tabbing controls.

Restart continuous reads from the terminal (input buffering mode).

Perform immediate alteration of the translate tables used for SYSIN and
SYSOUT.

Program Execution Commands

AT

BRANCH

CALL

DISPLAY

DUMP

GO

IF

LOAD

QUALIFY

REMOVE

SET

STOP

XR TSS Concepts and Facilitie,

Replace an instruction in a user program with a call to the program
control system (peS) and save the replaced instruction. If control
reaches the original location of the replaced instruction, perform the
action specified in the remainder of the pes statement. If execution
resumes at this point, execute the replaced instruction.

Change the control path of a program or resume execution at a different
location.

LOAD a program and cause it to be executed, passing any specified
parameters.

Present values of variables. contents of machine registers, and specified
areas of the address space.

As for DISPLAY, but write data in a VISAM data set, defined with a
DDNAME of PCSOUT.

Resume execution of an interrupted program.

Execute the command following the IF command if the condition
specified in the IF command is true.

Map a program (or data in object module format) that resides on external
storage, to virtual storage. Loading reserves space in virtual storage and
makes entries in the task dictionary. The first time a page of the virtual
storage is referenced, a translation exception occurs and the map is used
to find the location in external storage which contains the information
corresponding to the page. Thereafter, the page is a part of the address
space.

Indicate which internal symbol dictionary is to be used by pes for
reference to program variables and locations, in the absence of explicit
specification.

Reverse the replacement performed by a specified AT statement, that is,
remove the call to pes and restore the overlaid instruction.

Change the contents of machine registers, values of program variables.
locations in virtual storage, or establish and initialize command symbols.

If executed due to an AT statement, cause execution of a user program to

be interrupted and control passed to SYSIN; otherwise. display the
current user program instruction location counter.

TRAP

UNLOAD

Equivalent to an AT statement except that the condition causing transfer
of control to PCS is determined by the program event recording (PER)
hardware of System/170. Conditions monitored are fetches and/or
stores into virtual ~torage locations, alteration of the contents of machine
general registers. and successful branches. In the case of successful
branches. PCS examines all successful branches and selectively detects
branches into specific ranges of instruction locations.

Reverse the effect of a previous LOAD command.

Data Management Commands

CATALOG

COD

CDS

CLOSE

DDEF

DDNAME?

DELETE

DMPRST

DSS? ,',

ERASE

EVV ,',

FILEDEF

FILEREL

JOBLIBS

LTDS

OSDD?

PC?

PERMIT

POD?

Add a data set name to the catalog. change a data set name entry in the
catalog, or create a generation data group.

Retrieve and execute specified DDEF commands from a line data set.

Copy a data set or a member of a data set.

Close one or all open, nonsystem, data sets.

Specify a symbolic data definition name and establish the connection
between a program and a data set.

Present the data definition names of a task's currently defined data sets.

Remove data set names from the catalog.

Dump or restore a private V AM volume tn tape or disk.

Present the characteristics and status of a data set or partially qualified
data set name.

Uncatalog and free the space occupied by direct-access data sets.

Enter (catalog) data sets on a private VAM volume.

Perform the equivalent of DDEF for OS iVS programs.

RELEASE the definition established by FILEDEF.

Rearrange the job library list.

List the names of data sets stored on VT-format tape volumes.

Perform the equivalent of DDNAME? for data sets defined with the
FlLEDEF command.

Present the catalog information for a data set or partially qualified data
set name.

Allow and disallow other users to access one's data sets.

Present informat ion from the partitioned organization directory of a
VPA M data set.

Appendix A: T55 Commands XI)

RELEASE

RET

SECURE

SHARE

SYSINDEX

TV

VT

VV

Release the data definition established with a DDEF command.

Change the retention attribute of a data set.

Specify and wait for the set of private devices required for further
execution of a nonconversational task.

Gain access to data sets owned by another user, if the owner has allowed
access with the PERMIT command.

Build the index component for a symbolic library, using the symbolic
component.

Import a V AM data set which is on a tape volume.

Export a V AM data set by means of a tape volume.

Copy a V AM data set.

Editor Commands

CONTEXT

CORRECT

DISABLE

EDIT

ENABLE

END

EXCERPT

EXCISE

INSERT

LIST

LOCATE

NUMBER

POST

REGION

90 TSS Concepts and Facilities

Replace a string of characters or hexadecimal digits within a line or range
of lines with another character or hexadecimal string, replacing every
occurrence of the first string by the second string.

Change or insert characters or hexadecimal digits for a line or range of
lines, using correction control specifications read from SYSIN.

Cancel the effect of a previous ENABLE command and record all
subsequent changes in the transaction table for use by the STET com­
mand.

Invoke the editor.

Clear the transaction table of entries when the next command that alters
data is issued. Until the editor is disabled again, record in the transaction
table only those changes made by the most recent command.

Close the data set being edited and stop editing.

Insert a range of lines from a data set (including the one being edited)
into the data set being edited.

Remove a line or a range of line.

Insert line(s).

Display a line or a range of lines.

Search a range of lines for a specified character string.

Renumber a line or a range of lines.

Clear the transaction table of entries.

Change the region currently being processed.

REVISE

STET

UPDATE

Excise a range of lines and insert new lines.

Reverse the effect of chang.es recorded in the transaction table. If the
editor is enabled, cancel the effect of the last editor command that altered
data; if the editor is disabled. cancel the effect of all editing that was
done since the DISABLE command was issued.

Enter a mode to read from SYSIN and update the data set being edited.
When operating in this mode. the editor processes update requests which
are free from constraints imposed hy TSS command syntax.

Data Editing Commands

CONVMAC

DATA

EDIT

END

LINE? ,',

MODIFY

VDMP ,',

VDSP *
VPAT ,"

Convert a macro library from line data set format to region data set
format.

Create a line data set or a VSAM data set.

Invoke the TSS editor.

Close the data set being edited by the TSS editor and stop editing.

Display all or ponions of a line data set or a listing data set produced by
the TSS language processors.

Edit VISAM or VSAM data sets. This command is a predecessor of the
TSS editor and can be used for editing most data sets having a format
which the TSS editor cannot edit.

Dump all or portions of a data set.

Display all o[portions of a data set.

Patch (perform permanent alterations to) a data set.

Language Processing Commands

ASM

COBOL

FTN

FTNH

HASM

LNK

ODe

PL I

PLIOPT

Invoke the TSS Assembler.

Invoke the OS/VS COBOL program product.

Invoke the TSS FORTRAN Compiler.

Invoke the OS/VS FORTRAN program product.

Invoke the OS/VS Assembler H program product.

Invoke the TSS Linkage Editor.

Invoke the object data converter to convert OS/VS object modules to
TSS object modules.

Invoke the TSS PL/I F Compiler.

Invoke the OS/VS PL/I Optimizing Compiler program product.

Appendix A: TSS Commands 9l

Bulk Output Commands

PR I NT ,', Cause a data set to be printed.

PUNCH

WT

Cause a data set to be punched.

Cause a data set to be written on tape for offline printing.

Operator, Manager, and System Programmer Commands

ALTER

ASNBD

BCST

CC

CPS

CVV

DIRECT

DONEXT

DROP

EREP

FLOW

FORCE

HOLD

JOIN

JOINRJE

LPDS

MAPGEN

MC

MODE

MON IT

MSG

MTT

MTTDCN

92 TSS Concepts and Facilities

Update TSS source, generating standard sequence numbers.

Assign or delete unit-record equipment from BULKIO.

Broadcast a message to all users.

Check catalog validity.

Clean public storage of unwanted data sets.

Catalog uncataloged data sets on public V AM volumes.

Reroute RJE output.

Put a job at the head of a queue.

Restore a device from HOLD status.

Process RMS records.

Control external scheduling parameters.

Cause a conversational task to be abnormally terminated.

Prevent a device from being used except for servicing.

Define a new user to the system.

Define a new RJE station ID to the system.

List public data sets.

Generate real and virtual storage maps.

Perform catalog maintenance operations.

Set operational mode of RMS.

Activate the system activity display.

Send a message to a conversational user.

Initiate an MTT application.

Terminate an MTT application.

NEWMSG

PARTS?

PATCLEAR

PATFIX

PPREAD

QUIT

QUITRJE

REJOIN

REPLY

REPLY?

RPS

RT

SARD

SETMAX

SETPARTS

SHUTDOWN

SNAP

SYNCCAT

UPDTUSER

VARY

VMEREP

VSS

Flush the stack of saved messages obtained from SYSL I B (0) (S YSMLF)
to guarantee use of updated messages.

Display the number and status of batch partitions.

Logically initialize a V AM volume.

Perform diagnostic reporting and repair on V AM volumes.

Convert a licensed program distribution tape for use with TSS.

Remove a USERID and associated data sets from the system.

Remove an RJE station ID from the system.

Alter the JOIN parameters for a USERID.

Reply to a WTOR message.

Present outstanding WTOR messages.

Restore public storage.

Initiate a task to read a tape data set for a USERID.

Display the system activity and resource utilization.

Set limits for print jobs and number of private devices per batch job.

Define the set of batch partitions.

Terminate all active tasks including the operator's task.

Provide a hard copy of displays produced with the MONIT command.

Synchronize user and system catalogs with public storage.

Synchronize the count of public storage pages in the user accounting
record with actual storage usage and erase the temporary data sets not in
use.

Partition specified hardware components online or offline.

Execute the EREP command with recommended parameters.

Place one's task in virtual support system command mode.

Appendix A: TSS Commands Y3

Time Sharing Support System Commands

AT

CALL

COLLECT

CONNECT

DEFINE

DISCONNECT

DISPLAY

DUMP

END

IF

PATCH

QUALIFY

REMOVE

RUN

SET

STOP

94 TSS Concepts and Facilities

Replace an instruction in a program with a call to the time sharing
support system (TSSS) and save the replaced instruction. When control
reaches the original location of the replaced instruction, perform the
action specified in the remainder of the TSSS statement. If execution
resumes at this point, execute the replaced instruction.

Initiate execution of a prestored set of command statements.

Move data from a specified area into a specified collection area.

(RSS command) Connect VSS to the terminal of a specified task.

Define a temporary symbol and allocate any storage needed.

Reverse the effect of a VSS command or CONNECT command.

Present the data requested on the TSSS terminal.

As for DISPLAY, but present the data on the specified TSSS output
device.

Stop reading statements initiated with the CALL command.

Indicate the start of a conditional statement or portion of a statement.
Execute the remainder of the statement if the condition specified in the
IF command is true.

(See SET command below.) Perform the SET function and keep a record
of the alteration to be used in case restoration is desired.

Establish implicit real memory, virtual memory, or global qualification for
subsequent commands.

Reverse the replacement performed by a specified AT statement, that is,
remove the call to TSSS and restore the overlaid instruction. Also,
restore the contents of a data field altered by the PATCH command.

Cause control to revert to TSS at the point of interruption where TSSS
took control, or at a specified location.

Alter the contents of a specified data field.

In an RSS AT statement. cause TSS to halt. In a VSS AT statement,
cause the task to halt.

Appendix B: TSS Macros

This appendix presents TSS macros of general interest, organized hy
functional area. TSS macros are fully described in publications such as
Assembler User A1aero Instructions. Multi/ermina! Task Programming and
Operation, System Programmer's Guide. and System Generation and
Maintenance.

Data Set Specification Macros

DDEF

COD

FINDDS

FINDJFCB

CAT

REL

DEL

DCB

DCBD

invokes the DDEF command processor to provide the connection
between a program and a data set.

calls the DDEF command processor with one or more DDEF commands
obtained from a line data set.

locates the JFCB corresponding to a given data set name, and optionally
creates a JFCB (invokes DDEF) if the data set name is in the catalog.

locates the JFCB corresponding to a given DDNAME, and optionally
creates a JFCB (invokes DDEF).

invokes the CATALOG command processor to catalog data sets, rename
data sets, or create generation data groups.

invokes the RELEASE command processor to dispose of the specified
JFCB, freeing the symbolic name of the corresponding DDEF statement
for other use. Devices used for data sets on private volumes are optional­
ly released for general use. RELEASE is used to free data sets from
concatenation and to close and remove data sets from the job library
chain. A RELEASE of the symbolic name of the DDEF statement
associated with an open data set results in that data set being closed.
Any programs loaded from a job library are unloaded by releasing a job
library.

invokes the DELETE command processor to remove data set names from
the catalog.

defines storage for a data control block.

generates a dummy control section (DSECT) to describe the DCB with
names having the appropriate attributes for DCB fields.

Appendix B: TSS Macros 95

Data Control Block Processing Macros

OPEN

CLOSE

collects the attributes of specified data sets from various sources, by
priority, and merges the information in the respective DCBs. OPEN
prepares a DCB and the data set associated with it for processing.

reverses the action of OPEN. CLOSE waits until I/O requests are
complete before proceeding. When appropriate, output data set trailer
labels are processed and access to volumes is positioned as specified.
Control blocks, such as the DCB and JFCB, are restored to their original
condition. CLOSE disconnects a data set from further processing and
user access. For BSAM and V AM DCBs there is a CLOSE option that
causes the same processing as the standard CLOSE macro except that
fields of the DCB are not restored to their status before OPEN; the
DCBs are in effect open and additional processing may be performed.
With BSAM data sets, temporary close is useful for repositioning a
volume for subsequent processing and serves the purpose of completing
the data set (if it has just been written or extended). In the case of V AM
data sets, temporary close causes the DSCBs to be written which captures
the current status of the data set on external storage.

Virtual Sequential Access Method Macros

GET

PUT

PUTX

SETl

reads logical records in sequential order.

writes logical records in sequential order.

replaces a logical record, previously read by GET.

logically positions access to a data set at the beginning or end, at the
previous record, or at any logical record within a sequential data set.
Subsequent PUT or GET operations will proceed from this new position.

Virtual Index Sequential Access Method Macros

GET

PUT

READ

WR ITE

DELREC

SETL

ESETl

RELEX

96 TSS Concepts and Facilities

reads logical records in sequential order, by key.

writes logical records in sequential order, by key.

reads logical records in nonsequential or sequential order.

writes logical records in nonsequential or sequential order.

deletes a specified logical record from a data set.

logically positions access to a data set at its beginning or end, at the
previous record, or at any logical record. Subsequent PUT or GET
operations will proceed from this new position.

releases a read-lock set by other operations.

releases a write-lock set by other operations.

Virtual Partitioned Access Method Macros

FIND

STOW

opens an individual member within a VPAM data set for processing.
After FIND, appropriate VISAM or VSAM macros can be used to
process the records within the member.

causes a VISAM or VSAM member of a partitioned data set to be added
to or deleted from the data set. It also adds, changes, deletes, or replaces
member names or aliases, and provides for sloring additional information
in the partitioned organization directory (POD), as user data.

Basic Sequential Access Method Macros

READ

WRITE

CHECK

DQDECB

NOTE

POINT

BSP

CNTRL

FEOV

GETPOOL

GETBUF

FREEBUF

reads a physical record from an l/ a device and specifies or defines a data
event control block (DECB) to be lIsed [0 indicate completion status for
the operation. After READ, control is returned to the user program.
The user program is responsible for deblocking logical records from
physical records.

is the same as READ except that data transfer is in the opposite
direction.

tests the queue of DECBs associated with READ or WRITE operations
to determine if the operations are complete and if so, whether errors or
exceptional conditions occurred.

removes all unchecked DECBs associated with READ anel WRITE
operations for a specified device. DQDECB is used when restarting I/O
after user program action on error conditions.

makes available to the program, for use with POINT, the relative position
within a volume of the last block read or written.

repositions acces~ to a data set at a specified block within the data set.

backspaces one physical record or block on the current tape or
direct-access volume regardless of the direction in which data is being
stored or retrieved on that device.

controls tape positioning and writing of tape marks. CNTRL can be used
to obtain sense data from tape or direct-access devices.

positions access to the data set at the next volume of a multivolume set.

requests allocation of virtual storage for use as a buffer pool and assigns
that area to a DCB.

obtains a buffer work area from a buffer pool previously assigned to a
DCB either by a GETPOOL macro or as provided according to DCB
buffer options.

returns a buffer work area obtained bv GETBUF to lhe related buffer
pool.

Appendix Ii: TSS Macros 97

FREE POOL releases areas previously assigned· to specified DCBs as buffer pools
either by a GETPOOL macro or as a result of buffer options specified in
the DCB.

Queued Sequential Access Method Macros

GET

RELSE

PUT

PUTX

TRUNC

SETL

CNTRL

reads logical records in sequential order. The initial GET causes a
physical record from the input device to be transferred to a systcm­
maintained buffer area and makes the first logical record available to the
user program. Each subsequent GET delivers logical records until all
logical records within the physical record have been processed. Mean­
while, the next physical block is transferred.

causes the remaining records of the current input buffer to be ignored
and positions access to the data set at the first logical record of the next
physical record. The next GET macro will retrieve the first logical record
from the new input buffer.

is the same as GET except that data transfer is in the opposite direction.

replaces a logical record, previously read by GET, or writes an updated or
identical logical record directly from an input data set to an output data
set.

causes the current output buffer to be regarded as if it were filled. The
output buffer is written to the output device, leaving access to the data
set positioned at the next buffer area. The next PUT issued is for the
first record of the next block.

logically positions access to a data set at its beginning or end, at the
previous record, or at any logical record. Subsequent PUT or GET
operations will proceed from this new position.

controls tape positioning and writing of tape marks. CNTRL can be used
to obtain sense data from tape or direct-access devices.

Multiple Sequential Access Method Macros

GET

PUT

SETUR

FINISH

<)S TSS Concepts and Facilities

reads a card image from a card reader. The access method buffers I/O
operations, freeing the user program from such concerns. Many cards are
read with one chain of channel command words (CCWs). The supervisor
can chain successive requests from a task together so that reading
proceeds at the maximum rate of the device with a minimum of inter­
rupts.

writes records on a printer or punch. As with GET, the access method
buffers I/O operations.

specifies the configuration for printers and punches. SETUR communi­
cates with the operator regarding forms (paper and cards) to be placed in
the devices, and loads buffers associated with printers, if applicable.

is used to indicate to the access method that processing of a data group
(a subsection of an MSAM data set but a complete data set to the user of
a device supported with MSAM) is complete. FINISH causes input and
output buffers to be flushed.

Input/Output Request Access Method Macros

IOREQ

CHECK

DQDECB

VCCW

initiates a request for an I/O operation specified by a user-written
channel program and specifies or defines a data event control block
(DECB) to be used to indicate completion status for the operation. After
IOREQ, control is returned to the user program.

tests the queue of DECBs associated with 10REQ operations to
determine if the operations are complete and if so, whether errors or
exceptional conditions occurred.

removes all unchecked DECBs associated with IOREQ operations to a
specified device. DQDECB is used when restarting I/O after user
program action on error conditions.

defines storage for a virtual channel command word (VCCW). A VCCW
serves same function as the a CCW. Chains of one or more VCCWs
specify I/O operations to be performed.

Copy Data Set Macro

COPYDS invokes the CDS command processor to copy data sets or members of
partitioned data sets.

Bulk Output Macros

PR

PU

WT

invokes the PRINT command processor to cause a data set to be printed.

invokes the PUNCH command processor to cause a data set to be
punched.

invokes the WT command processor to cause a data set to be written on
tape for offline printing.

Erase Data Set Macro

ERASE invokes the ERASE command processor to uncatalog and free the space
occupied by direct-access data sets.

SYSIN/SYSOUT Communication Macros

GATRO

TGATRD

SOLICIT

GATWR

TGATWR

TGATWS

TWRTLST

reads a record from SYSIN and places it in a user-designated virtual
storage area.

extended function form of GATRD macro.

presents a continuously incremented number as a prompt to TG A TRD
operations.

writes a record on SYSOUT.

extended function form of GATWR macro.

writes a record on the primary SYSOUT.

writes records from a list of virtual storage areas to SYSOUT.

Appendix B: TSS Macros 99

GTWRC

GTWAR

TGTWAR

GTWSR

TGTWSR

SYSIN

TCNTRL

CHCKT

TRCBUF

TDCMD

TCLEAR

TFREE

TRANLCD

MCAST

ATTNSAV

ATTNRST

100 TSS Concept' and Facilities

writes a record on SYSOUT. The first byte of the record is used for
carriage control when printing nonconversational SYSOUTs. Carriage
control action is approximated for conversational tasks.

writes a record on SYSOUT and reads the next available record from
SYSIN and places it in a user-designated virtual storage area.

extended function form of GTWAR macro. If input buffering is in effect.
the write operation is suppressed.

writes a record on SYSOUT and reads the response to that record.
placing it in a user-designated virtual storage area. If issued in a
nonconversational task, unless the user has indicated otherwise, the task
will be terminated.

extended function form of GTWSR macro. If input buffering is in effect,
the write operation is performed immediately and the read operation in
response to that write is performed immediately.

optionally writes a record on SYSOUT and reads a record from SYSIN
into virtual storage. If the record is recognized as a command, it is
placed in the source list for subsequent processing by the command
analyzer. User programs can detect the incidence of commands and take
action accordingly. Otherwise, the user program is interrupted and the
command is processed.

specifies miscellaneous control operations.

checks the status of a DECB related to SYSIN/SYSOUT operations.

rcads a record from the conversational buffer for the terminal and places
it in a user-designated virtual storage area.

issues device control commands from user programs to control the
terminal environment.

purges any pending or active request buffers on SYSIN/SYSOUT.

disconnects a secondary SYSIN/SYSOUT from the task.

makes the address of a specified terminal translation table available to a
user program.

temporarily substitutes a user-specified character translation table and
function control table. The character translation table specifies substitu­
tion of character codes for transfer of data between user programs and
SYSIN and SYSOUT. The function control table identifies characters
which are to have special effects, for example backspace to mean
overstrike. not character correction.

saves current conditions (buffers and terminal environment) in a
pushdown stack.

restores previously saved conditions and buffers, disposing of the current
conditions.

ATTNDST

TERMPRO

EXLIST

PRMPT

disposes of saved conditions and buffers no longer needed.

saves or restores the terminal environment in a specified data set.

specifies the locations in the user program which are to receive control
when events occur such as completions or interrupts.

invokes a system facility which prompts the user with messages from the
system message file, if not from the user message file. The prompter
analyzes responses to messages whose coding indicates that a response is
required.

Virtual Storage Management Macros

GETMAIN

FREEMAIN

CKCLS

CSTORE

RSVSEG

DISCSEG

CONSEG

RELSEG

DELSEG

is used to acquire additional virtual storage.

releases virtual storage acquired with GETMAIN.

determines the most restrictive protection class assigned to a specified
number of contiguous halfpages of virtual storage.

saves contiguous virtual storage areas in object module format.

associates a name with a contiguous set of virtual storage segments.

disconnects a segment group from a virtual address space and assigns a
name (0 it.

connects a disconnected segment group to an unassigned portion of a
virtual address space.

releases a reserved segment group. deleting the name, but leaving
addressable the virtual address space of the group.

deletes a disconnected segment group. The name and any space on
auxiliary storage are deleted.

Program Linkage Macros

LOAD

CALL

ARM

explicitly loads a program, if it is not already loaded, into virtual storage.
The address at which the program has been loaded can be obtained from
address constants previously defined by an ADCON or ARM macro. The
program remains in virtual storage until it is unloaded by a DELETE
macro or an UNLOAD command.

explicitly or implicitly loads the called program into virtual storage and
establishes conventional linkage between the calling and called program.
The address at which the program has been loaded can be obtained from
address constants previously defined by an ADCON or ARM macro.
CALL causes control to be given to the called program.

initializes the address constant group defined by an ADCON macro with
the name of the program, entry point, or control section that is to be
loaded into virtual storage. The initialized address constant group can
subsequently be used by a CALL or LOAD macro to explicitly load the
program.

Appendix B: TSS Macros 101

ADCON

ADCOND

DELETE

SAVE

RETURN

BLI ST

generates a group of address constants for use by CALL, LOAD, or
DELETE macro instructions.

generates a OSECT to describe the address constant group with names
having the appropriate attributes. These names make it possible for an
assembler language program to reference symbolically the resolved
address constants and control flags placed in the group during execution
of a LOAD or explicit CALL macro.

unloads an explicitly loaded program that is no longer needed, fre'eing
virtual storage. Any associated programs are also deleted.

stores the contents of the general registers according to a standard
convention. The SAVE macro is normally the first instruction in a called
routine.

restores the contents of the general registers according to a standard
convention and returns control to the calling routine, optionally setting a
return code for the calling routine.

provides for one-line specification of multiple branch validation and for
analysis of the return code from a called program.

Interrupt Handling Macros

SIR

DIR

SPEC

SSEC

SEEC

SAEC

102 TSS Concepts and Facilities

specifies a user interrupt routine (named via a SPEC, SAEC, SIEC,
SEEC, STEC, or SSEC macro, according to the type of interrupt) to the
task monitor. SIR spccifies the processing priority for that routine. The
user's routine replaces any system-supplied interruption servicing routines
for this type of interruption, unless the user's routine is deactivated with
the OIR macro. System-supplied routines are reinstated after the user
routines are deleted.

deletes an interruption servicing routine. reversing the effect of the
corresponding SIR macro.

names a user-written program interruption servlcmg routine and defines
an interrupt control block (ICB) in which data pertaining to a program
interruption can be recorded. The named routine will be used when it is
defined to the task monitor as an interruption servicing routine by a SIR
macro.

names a user-written SVC interruption servlcmg routine and defines an
ICB in which data pertaining to an SVC interruption can be recorded.
The named routine will be used when it is defined to the task monitor as
an interruption servicing routine by a SIR macro.

names a user-written external interruption servicing routine and defines
an ICB in which data pertaining to an external interruption can be
recorded. The named routine will be used when it is defined to the task
monitor as an interruption servicing routine by a SIR macro.

names a user-written asynchronous interruption servicing routine and
defines an ICB in which data pertaining to an asynchronous interruption
can be recorded. The named routine will be used when it is defined to
the task monitor as an interruption servicing routine by a SIR macro.

STEC

SIEC

INTINQ

SAl

RAE

PI REC

USATT

CLATT

AETD

names a user-written timer interruption servicing routine and defines an
lCB in which data pertaining to a timer interruption can be recorded.
The named routine will be used when it is defined to the task monitor as
an interruption servicing routine by a SIR macro.

names a user-written I/O interruption servicing routine and defines an
lCB in which data pertaining to an I/O interruption can be recorded.
The named routine will be used when it is defined to the task monitor as
an interruption servicing routine by a SIR macro.

inquires about the interruption information recorded in a specified I CB.
Various options are available. Control can be relinquished until the ICB
indicates an interrupt. If the interrupt has been queued, the routine in
which the INTINQ is issued may regain control immediately. Also, the
task can be made to wait until a corresponding interrupt has occurred.
Interruptions queued on the ICB can be cleared by INTINQ. A specified
branch can be taken if the interrupt information is present.

saves the task's current interruption servicing status indicator and inhibits
further interrupts until a RAE macro is issued. Interruptions occurring
while the inhibit indicator is on are saved and queued for later servicing.

restores the interruption servicing status previously saved by an SAl
macro. Depending on the saved status (enabled or inhibited), processing
continues. If interrupts were previously enabled, any interruptions that
occurred while interruption servicing was inhibited are processed before
processing continues.

efficiently tests an address for validity. Program interrupt codes 4, 5, and
6 occurring when PIREC is being executed are not processed in the
normal manner. Detection of an invalid address results in a branch to a
specified location.

causes subsequent attention interruptions to be processed by a
user-written routine that was previously established as an interruption
servicing routine by the SIR and SAEC macros.

reverses the effect of a USATT macro. Control of attention interruptions
obtained with a USATT macro is relinquished.

causes attention interruptions to be processed by anyone of several
user-written routines, depending on the number of times the attention key
is pressed. The AETD macro is also used to relinquish control of
attention interruptions acquired by the AETD macro.

Timer Maintenance Macros

STIMER

TTl MER

sets a software interval timer, measuring either task execution time or real
time, and indicates what action should be taken when that specified time
interval has elapsed.

tests an interval timer previously set by the STIMER macro and indicates
the time remaining in that interval. It can also be used to cancel a
previously specified timer setting.

Appendix B: TSS Macros 103

REDTIM

EBCDTIME

provides time as a double precision, fixed-point number in microseconds.
In TSS the epoch is March 1, 1900.

converts system-maintained time into specified EBCDIC formats, The
time is expressed in some combination of years, months, days, hours.
minutes, seconds, tenths of seconds, and hundredths of seconds,

Command System Interface Macros

BPKDS

GDV

GETDV

SETDV

OBEY

PAUSE

COMMAND

CLI C

CLIP

EXIT

l04 TSS Concepts and facilities

generates all necessary linkage information and parameter storage areas
required for use during the execution of a command that was defined with
the BUlL TIN command, Also, information from the BPKDS expansion is
used by the KEYWORD command.

gets the value for a default from the task's combined dictionary.

gets the value for a specified name and type from the task's combined
dictionary,

sets the value for a specified name and type into the task's combined
dictionary.

temporarily passes control to the command system for execution of a
specified command, The command specified by OBEY will be issued just
as if the user had interrupted the program and issued the command,
When the command or a program invoked as a result of the command
returns control to the command system, execution of the program from
which the OBEY was issued will be resumed,

(for conversational tasks only) writes a user-specified message on
SYSOUT and causes the task to enter command mode. A GO command
causes execution of the program to resume, The interruption of a
program by PAUSE is very similar to that which results from an attention
interrupt. If the user has control of attention interruptions before issuing
a PAUSE, the system regains control of them until a GO command is
issued, PAUSE is ignored in a nonconversational task,

is the same as PAUSE except that it is not ignored in nonconversational
mode, The SYSIN data set is read for the next command. Execution of
the interrupted program can be resumed with a GO command,

is the same as the PAUSE macro except that no message is issued.

is the same as the COMMAND macro except that no message is issued,

is a simple way of terminating execution of a program and optionally
causing a predefined system message and a user-specified message to be
written on SYSOUT. Control is returned to the command system and the
next commands are taken from SYSIN.

ABEND indicates an abnormal end condition to the user and the operator. The
ABEND macro provides for various types of system action based on the
severity code specified. Codes are: (I) Terminate execution of the
program, returning control to SYSIN for conversational tasks; for
nonconversational tasks either delete the task from the system or switch
SYSIN to a data set defined with a DDNAME of TSKABEND. (2)

Terminate the task. creating a new task if the old task was conversational.
(3) Terminate the task, do not create a new task. (4) Terminate the task
without attempts to write to SYSOUT. (Used by privileged programs
only.) A message may be specified with the ABEND macro, either as the
actual message or as the identification code of a message in the system or
user message file.

Operator and System Log Communication Macros

WTO

WTOA

WTOR

WTL

writes a user-specified message on the operator's console.

writes a user-specified action message on the operator's console. Action
messages differ from those sent by WTO in that they are prefixed by
characters intended to catch the operator's eye. They should only be
used when action is required by the operator, otherwise the operator may
disregard the action message format.

writes a user-specified message on the operator's console. The user task
waits for the operator to respond to the message. The operator is
periodically reminded of unanswered messages. The reply from the
operator is made available to the program. If the operator fails to reply
within a reasonable time, the user can usc the attention key to regain
control and decide on some other course of action.

causes a user-specified message to be written in the system log data set.
H the operator wishes to have WTL messages appear on the console, a
default can be set in the combined dictionary of the operator USERID.

System Oriented Macros

AWAIT

VSEND

USAGE

XTRTM

HASH

LPCEDIT

LPCINIT

tests for completion of an event and returns control to the task if the
event is completed, or places the task in a delay state from which it will
be removed when any task interruption occurs.

sends a message from one task to another. The message is queued on the
recipient task status index (TSI) as an external interrupt.

causes resource statistics for a task to be made available for processing by
a user program.

extracts and examines the total accumulated CPU time of the issuing task
from the extended task status index (XTSf) of the task.

provides a hash value for a name.

invokes the editor, which can be used by a language processor controller
for input of source statements.

identifies the program which issues it as a language processor controller
and initializes the editor for later use.

Appendix B: TSS Macro, lOS

LIBESRCH

CHDERMAC

CHDVAL

CHDPSECT

106 TSS Concepts and FaciJitie,

determines if a specified object module is to be found in any of the job
libraries and if so, which library.

generates messages pertaining to errors encountered during macro
expansion.

determines the type code of a parameter during macro expansion.

changes the name of the current control section of an assembly to 'the
name of the first PSECT for that assembly. If no PSECT exists, a branch
to a specified location is generated.

Appendix C: Summary of TSS Publications

TSS publications summarized in this appendix are presented in groups
according to the readership for which they are intended:

• Operations Management
• System Programmers
• Application Programmers

TSS publications are listed in the IBM System /370 Bibliography.
GC20-000l.

Figure C-l is the TSS publications plan. The publications are presented
in a suggested order of reading, within each group.

This publication, Concepts and Facilities. introduces the concepts
implemented in TSS and describes the facilities of the system. It is
intended for managers of data processing installations, system program­
mers, application programmers and end users, and operators.

IBM Time Sharing System: Terminal User's Guide, GC2g-2017, is
intended for all users and gives instructions for operating the terminals
used with TSS. Procedures are given for setting up the terminal. entering
and canceling lines, correcting lines, and communicating with the system.
Error conditions and termination procedures are also given. Appendixes
list the character sets applicable to each terminaL and discuss terminal
servicing operations such as changing ribbons, inserting paper, and setting
tabs and margins.

The publication System Messages. is also intended for all users. It is a
collection of all messages issued by the system and provides guidance and
further explanation. In the interest of convenience and accuracy, it is
published in machine-readable form.

Publications for Operations Management

I BM Time Sharing System: Manager's and Administrators Guide. GC2g-
2024. describes the faciliLes that are available for managing and allocat­
ing resources of a computer installation.

I BM Time Sharing System: Operator's Guide, GC28-2033, contains an
overview of system operations. including functions of the operator.
Operating procedures, commands used, messages, and typical operator
responses to the messages are included.

IBM Time Sharing System: independent Utilities. GC28-2038. describes
utility programs that run under control of the utility support system
(USS). USS supports stand-alone execution of programs outside the TSS
environment. Included are descriptions of how to run utility programs
that initialize direct-access volumes. dump and restore direct-access
volumes, and maintain the data base. It also explains how to write
utilities that operate in the USS environment and includes descriptions of
USS macros. Also described is how to use a stand-alone storage dump
program (not part of USS).

Appendix C: Summary of TSS Publications 107

I BM Time Sharing System: Remote Job Entry, GC28-2057, explains how
to use RJE terminals and includes information about RJE control
statements. Also, commands used by the system manager and system
operator to control the RJE facility are described.

Publications for System Programmers

lOR TSS Concepts and Facilitic,>

IBM Time Sharing System: System Programmer's Guide, GC2H-200H,
describes the facilities available to system programmers for modification
and extension of TSS. It also includes programming guidelines and
examples of how to make TSS modifications, and a summary of the
conventions that are to be respected when writing TSS programs.

IBM Time Sharing System: System Generation and Maintenance, GC2H-
20 I 0, explains how to define and generate a system adapted to the
requirements of a specific installation. It also explains how to incorporate
IBM-supplied maintenance distributions and user modifications into
existing systems.

IBM Time Sharing System: Time Sharing Support System, GC2H-2006,
describes the time sharing support system (TSSS) and the commands used
to operate it. TSSS is an interactive facility for problem determination
and maintenance. The support system can be used only by properly
authorized system programmers; therefore, this publication contains no
information required by users other than such system programmers.

IBM Time Sharing System: System Logic Summary, GY28-2009, de­
scribes the logic of the system, emphasizing the interrelationship of
system components with respect to performance of system functions. It
is the starting point for gaining an understanding of TSS design and
enables the reader to relate an area of the system to a specific program
logic manual.

IBM Time Sharing System: System Control Blocks. is supplied as a
machine-readable source data set from which a listing of all system
control blocks can be produced. This data set may also be used as input
to programs which scan the entire source data base for the purpose of
producing indexes and cross-references,

Listings of TSS programs are available on microfiche. The microfiche is
produced using SOUTce programs from which the system is built and
therefore, matches system code.

The program logic manuals describe the implementation of TSS design.
They are organized to allow a reader to locate the coding within a
component that applies to an area of interest. They also serve as guides
to program listings.

IBM Time Sharing System: Quick Guide for System Programmers.
GX28-640 l, is a compact reference to TSSS, assembler language, and
system control blocks, along with an appendix of machine control
inf orma tion.

Publications for Application Programmers

IBM Time Sharing System: Command System User's Guide. GC28-2001,
describes the facilities of the TSS command system. It includes a brief
description of conversational and nonconversational modes of operation.
a detailed explanation of each command. typical terminal sessions. and
command procedures. The rules for forming command statements are
given.

I BM Time Sharing System: Data Management Facilities, GC2R-2056, is a
reference guide to TSS data management facilities. Topics covered
include: storage classes, unit-record devices, data set characteristics. label
formats. record formats, data set sharing, gaining access to data sets. and
use of data management facilities. It contains information of use to
assembler, FORTRAN, and PL/[users.

IBM Time Sharing System: Linkage Editor, GC2R-2005, explains the use
of the TSS linkage editor. Functions. data sources. destinations, and
system inputs (commands and operands) required to link-edit programs
are described.

IBM Time Sharing ,<"'ystem: Multiterminal
Operation, GC2R-2034, explains how to
multiterminal-per-task (MTT) program.

Task Programming and
create and operate a

IBM Time Sharing System: Quick Guide (or Users. GX2R-6400, is a
compact reference to TSS terminals, commands, and languages.

Publications for Assembler Language Programmers

IBM Time Sharing System: Assembler Programmer's Guide, GC28-2032,
provides tutorial and reference material ahout TSS as viewed by an
assembler language programmer. Conversational and nonconversational
operations are discussed: the rules and conventions are given that must be
observed at source coding time to use TSS efficiently. Assembler
examples and typical coding sequences are shown.

I BM Time Sharing System: Assembler Language, GC2R-2000, describes
the TSS assembler language coding conventions and basic statements.
The macro language and procedures for its use are described.

IBM Time Sharing SJ'sfem: Assembler User Macro Instructions. GC2R-
2004, describes the TSS macros available to the assembler problem
programmer. The types and forms of macros supplied with the system are
explained; each macro is described in detail.

Publications for FORTRAN Language Programmers

IBM Time Sharing ~)~ys[em: Fortran Programmer's Guide. GC28-2025,
provides tutorial and reference material about TSS from the standpoint of
a FORTRAN programmer. Both conversational and nonconversational
operations are discussed; rules and conventions are given that must be
observed at source coding time to use TSS efficiently. Compiler examples
and typical coding sequences are shown.

Appendix C: Summary 01 TSS Publications 109

I BM Time Sharing System: FORTRAN IV Language, GC28-2048,
describes the TSS FORTRAN language. It includes FORTRAN coding
conventions, a discussion of the elements of the language, and a detailed
explanation of each of the types of FORTRAN statements. Examples are
used to clarify programming rules and to illustrate the various ways in
which FORTRAN statements can be written.

IBM Time Sharing System: FORTRAN IV Library Subprograms, GC28-
2026, describes the subprograms in the IBM-supplied TSS FORTRAN
library and their use in either a FORTRAN or an assembler program.
The subprograms are divided into three groups: mathematical, I/O, and
service.

IBM Time Sharing System: Fortran IV Primer, GC28-2048, introduces
FORTRAN programmers to a 13-command subset of the TSS command
system enabling users to create and edit data sets and to compile and
execute FORTRAN programs.

Publications for PLII Language Programmers

110 TSS Concepts and Facilities

IBM Time Sharing System: PL/I Programmer's Guide, GC28-2049,
provides tutorial and reference material about TSS from the standpoint of
a PL/I programmer. Both conversational and nonconversational
operations are discussed; rules and conventions are given that must be
observed at source coding time to use TSS efficiently. Compiler examples
and typical coding sequences are shown.

I BM Time Sharing System: PL/I Language Reference Manual, GC28-
2045, describes the TSS PL/I language in two parts. The first part
contains discussion and examples that explain the concepts of PL/I, as
well as the different features of the language and their interrelationships.
The second part provides quick reference to specific information for
detailed rules and syntactic descriptions.

PL/ I Library Computational Subroutines, GC28-2046, gives details of the
computational subroutines available in the TSS PL/I library. It describes
the library support for the PL/I built-in functions and the operators used
in the evaluation of PL/I expressions in four major categories: bit and
character strings, arithmetic, mathematical, and arrays.

I
Command
System User's
Guide
GC28·2001

I

Data Management
Facilities

GC28·2056

I
i

Linkage
Editor

GC28·2oo5

I
Multiterminal
Task Programming
and Operation
GC28·2034

Programming

FORTRAN IV

FORTRAN IV
Programmer's
Guide
GC28-2025

FORTRAN IV
Language

GC28·2007

FORTRAN IV
Library
Subprograms
GC28-2026

Concepts and
Facilities

GC28·2003

I
Quick Guide
for Users

GX28·6400

FORTRAN IV
Primer

GC28-2048

Figure C-I. TSS Publications Guide

Terminal
User's Guide

GC28·2017

System
Programmer's
Guide
GC28·2008

I System

L ___ G_e_n_er~a_ti_o_n_a_nd __ ~ Mai ntenance
GC28·20l0

Time Sharing
Support System

GC2S·2006

[

System Logic
Summary

GY28-2009

.-----,---J

Microfiche
Listings

-
Assembler

Assembler
Programmer's
Guide
GC2B·2032

Assembler
Language

GC2S·2oo0

Assembler User
Macro Instructions

GC28·2004

System
Programming

Quick Guide
For System
Programmers
GX28·6401

PUt

PLII
Programmer's
Guide
GC28·2049

Pl/I Language
Reference Manual

GC28·2045

!
PL/I Library
Computational
Subroutines
GC28·2046

Appendix C:

System Messages
System Control Blocks

Operation

Manager's and
Administrator's
Guide
GC28-2024

I
Operator's
Guide

GC2B·2033

I
Independent
Utilities

GC2B-2038

i
Remote Job
Entry

GC28·2057

Summary of TSS Publications III

! 12 TSS Concepts and Facilities

Glossary of Terms and
Abbreviations

This glossary provides definition of terms in the
context of TSS, along with explanation and addi­
tional information, which appear in italics. For
terms not included in this glossary try the IBM
Data Processing Glossary, GC20-\699 or the puh­
lications it references. This glossary also includes
interpretation of all abbreviations used in this
publication.

Entries in the glossary are arranged in a collating
sequence hased on all characters, including blanks
(lower case letters raised to upper case hefore
sorting).

*ALL. A value that may he entered for some
parameters which are used for specification of
names, when all possihle names are meant. For
example, PERMIT * ALL, * ALL,RO (Permit all
one's data sets to all users.)

%,COM, The PCS symhol for the FORTRAN
hlank common block.

°/c,CSECT. The PCS symbol for the unnamed
control section. When rhe TSS assembler gener­
ales code in a confrol section for which flO name
has been specified. the control sectioll is unnamed.
The dynamic loader is able to load a module wilh
an unnamed control section. bur only one such sec­
lion can be loaded at a lime. The symbol
%CSECT makes it possible to refer to (his control
section in PC S statements.

-A-

ABEND. Abnormal end condition. ABEND is a
user command and also a macro instruction. A
task is not necessarily ended when an ABEND is
issued in a program. Depending un the severity
code specified. the program may be terminated. the
task may be terminated and a flew task created. or
the task may be terminated without creation of a
replacement task.

access method. A technique for moving data be­
tween main storage and input/output devices.
See virtual access method.

active list. The list of tasks which are contending
for service. The active list is divided into two
parts: the dispatchable list, and the eligihle list.
Contrast with inactire list.

address constant. ;\ word of object code that
changes as a result of relocating the program in
storage.

address space. The complete range of addresses
that is availahle to a program.

addressing capability. The size of storage address­
es that a CPU lIses to fetch and store data.

addressing mode. A parameter of the LOGON
command which specifies the addrcssing capabili­
ty to be utilized, when such specification is appro­
priate.

ANSI. American Nationa f Standards Insr itllie.

ASCII. Amcrican National Standard Code for
Information Interchange.

attention interrupt. (1) A signal from a terminal
which means that the program controlling the
terminal is to respond to an unsolicitcd request
from the user. In rhe case of SYSIN lermillals.
this usually indicate.> that control is {() be given 10

the command system. (2) In System/370. one of
the types of interrupts that input/output channels
can present. In this case also. the interrupT /I1di­
cates that a response is {() be made to handle rhe
condirion which caused the interrupt.

auxiliary storage. That portion of direct-access
storage which is llscd to support the paging of
virtual storage. Contrast with external storage.

-B-

batch processing. Execution of commands and
programs under the control of statements con­
tained in a data set, without any intervention by a
user. See also noninteracrive computing.

bind. To assign a value to a symbol. For exam­
ple. assignment of a value to a variable, assoCIatIOn
of a storage address with a symbolic address or la­
bel in a compuTer program. Sec also lale binding.

blocked page set. The set of pages which have
the greatest probability of being used by a task
when it is dispatched. The blocked page set is
brought in before a task is disparched. The set con­
sists of the PSW page, the ISA page, some of the
pages referenced in the last three time slices, and
the XTSI and page table pages supporting the refer­
enced pages.

BSAM. Basic sequential access method.

BULKIO. The name of the task which manages
bulk input and output.

-c-
CCW. Channel command word.

combined dictionary. The installation's command
system dictionary merged during LOGON with a
user-modified copy of the installation's dictionary,
llsed to customize the command system for each
user. The combined dictionary has entries for
defaults, synonyms. command symbols, PROC­
DEFs, and BUlL TINs.

command procedure. A sequence of commands,
defined by use of the PROCDEF command, to be
invoked and executed as a single command.

command symbol. A variable that can be defined
and given a value within the context of the com­
mand system.

command system. The set of programs that re­
ceives control when a user logs on. The com­
mand system is controlled with a command lan­
guage. The command system is used to star! all
processing of programs for a task. The command
system is responsible for establishing the character­
istics of the interaction between users and the sys­
tem.

connect time. The length of time that a user's
terminal is connected to the system.

control block. A storage area which holds infor­
mation vital to the control of interfaces within
and between programs. In TSS, all system control

114 'rss Concepts and Facilitic,

blocks are described by DSECTs, and all reference
to system control hlocks is achieved by use of svm­
boIs defined in the DSECE.

control section. The smallest relocatable unit in a
program; that portion of text specified hy lhe
programmer to be an entity, all elements of which
are to be allocated contiguous storage locations.
Abbreviated CSECT.

control section packing. A parameter of the LO­
GON command which specifies options for the
dynamic loader governing loading of control sec­
tions into adjoining storage.

control storage. (I) Storage used for basic or
elementary machine instructions. (2) In this pub­
lication, storage used for level 0 programs.

conversational. Pertaining to the interaction or
dialog between a user and a system which takes
place through a terminal. Contrast with noncol/­
l'ersational. This implies the abili~y to control, lf1-

terrogate, modify, and observe processing of pro­
grams enrered through a terminal.

CPU. Central processing unit.

CPU time. The amount of time devoted by a
CPU to the execution of instructions. The value
of CPU time thaI is accounted for, and made avail­
able to, each task (or user) is the time spent by the
CPU for execution of' programs in and above
level 2, to which is added an installation-specified
charge per SVc.

CSECT. Control section.

current PSW. In System/370, the PSW actively
controlling the state of a CPU.

current VPSW. In TSS,the VPSW actively con­
trolling the state of a task.

-D-

D. An ASCII record format in which records in
the data set are variable length.

data base. A collection of data fundamental to a
system or an enterprise.

data communication. (1) The transmission and
reception of data, often including operations such
as coding, decoding. and validation. (2) Ex­
change of information between and among com­
puting systems, terminals. and people.

data control block. The control block shared be­
tween access methods and user programs to con­
trol storage and retrieval of data.

data management. System programs that organize,
catalog. locate. store. retrieve. and maintain data.

data set. The major unit of data storage and re­
trieval. consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has ac­
cess.

data set label. A collection of information that
describes the attributes of a data set and is nor­
mally stored on the same volume as the data set.

DB/DC. Data base/data communication.

DCB. Data control block.

DCL. In TAM II. a device control library.

DCM. In TAM II, a device control module.

DDNAME (Data definition name). The name
used to link a data control block in a program to
a data definition statement (DDEF command),
thus providing the link between programs and
data sets.

DECB. Data event control block.

default value. The choice among exclusive alter­
natives made by the system when no explicit
choice is specified by the user.

delta data set. A data set containing modules that
are to replace system modules. STARTUP can be
given a list of delta data sets to be used when it
link-loads the system. Because delta data sets are
separate from the data sets in which the system re­
sides, management of change associated with re­
placement of system modules is simplified.

dispatchable list. A division of the active list con­
taining tasks in main storage which are receiving
CPU service. The supervisor performs multipro­
gramming when more than one task is on the dis­
patchable list. Contrast with eligible list.

DSCB (Data set control block). (I) For BSAM,
a data set label for a data set in direct-access
storage. (2) For YAM, a control block in exter­
nal storage which describes the attributes of a
data set and includes the necessary information to
locate all information in the data set.

DSECT (Dummy control section). A description
of a control block that the assembler can use to
generate code that refers to items in the control
block. By properly defining a DSECT and using
its srmbols 10 refer to the area thm the DSECT
describes, it is possible fo write a program thaI is
independent of the layout of the control block.
Thus. when it is necessary to expand or rearrange
the control block. any code that refers to fields in
The control block need not be changed.

dynamic address translation. A function of a suit­
ably equipped CPU whereby storage addresses,
generated during the execution of a program, are
converted from virtual to real. If there is no cor­
responding real (main storage) address, the CPU
is interrupted by a translation exception. The
control program responds by bringing the ad­
dressed virtual storage into main storage and up­
dating the tables which the CPU uses to perform
the translation.

dynamic allocation. Assignment of system re­
sources to a program during execution of the pro­
gram.

dynamic loader. A program which can bind exec­
utable programs together and load them into stor­
age, resolving references to other programs as it
proceeds. The dynamic loader is the means hy
which programs (including data in program format)
are mapped to virtual storage. The dynamic loader
eliminates the need 10 link-edit the output of lan­
guage processors.

-E-

EBCDIC (Extended binary coded decimal inter­
change code). A set of 256 characters, each rep­
resented by eight bits.

editing. The process of modification of the form
OT format of data. for example. alteration of
source programs. memos, graphic images, and
input data for programs. Typically, users of inter­
active systems spend the majority of the time ther
are at terminals performing tasks which can be
characterized as editing.

Glossary of Terms and Ahhreviat ions 115

eligible list. A division of the active list contain­
ing tasks which are waiting for main storage.
Contrast with dispatchable lis!.

entrv name. A name within a control section that
defi;les a location which can be referenced from
outside the control section.

entry point. A location in a program, defined so
as to make it an entry name, to which control can
be passed by another program.

EODAD (End of data set address). An address
in the DCB indicating where control is to be
transferred upon rcaching the end of an input
data set being processed.

EREP (Environmental recording, editing, and
printing). The program that makes the data con­
tained on the system recorder file available for
further analysis.

EXLST (Exit list address). An address in the
DCB providing for transfer to user-supplied rou­
tines during OPEN processing. (BSAM only.)

explicit loading. Loading of programs in which a
call to the dynamic loader is deferred until a spe­
cific request is made. Contrast with implicit load­
ing.

external name. A name that can be referred to by
any control section or separately assembled or
compiled module: that is, a control section name
or an entry name in another module.

external reference. (I) A reference to a symbol
that is defined as an external name in another
module. (2) An external symbol that is defined
in another module: that which is defined in the
assembler language by an EXTRN statement or
by a V -type address constant, and is resolved
during linkage editing. External symbols are also
resolved by the dynamic loader. Abbreviated
EXTRN.

external storage. The portion of secondary stor­
age that is available to users for permanent data
storage (that is. the part of secondary storage not
used for auxiliary storage). Contrast with auxilia­
rv storage.

116 TSS Conc<:rts and facilities

-F-

F (Fixed-length). A record format in which all
records of a data set or member are the same
length.

FCL. In TAM II. a format control library.

FCM. In TAM n, a format control module.

FORTRAN (FORmula TRANslating system). A
language primarily used to express computer pro­
grams by arithmetic formulas.

-G-

GOG. Generation data group.

generation data group. A collection of data sets
that are kept in positional order; each data set is
called a generation data set. Abbreviated GOG.
The data sets in a CDC are usuanv in chronologi­
cal order. When they are placed in the group, or
their position in the group is altered. the order is
established.

GQE (General queue entry). The unit of work
for the supervisor.

-H-

hook. An inclusion in code, which normally has
no effect on execution of the program other than
the time it takes to execute the few instructions
of the hook. The purpose of a hook is to provide
an optional exit to another program for some pur­
pose. A hook is activated by action external to
the program. Hooks are used for performance
analysis (SI PEl and for replacement of level 2
programs with lest versions. (Such replacement
does not affect the remaining users of the sySTem,
who continue to use normal versions of the pro­
grams.)

-1-

I/O. Input/output.

lAM (Independent access method). A supervisor
and loader for System/370 that provides services
for programs which run outside the TSS environ­
ment, usually for maintenance purposes. When
lAM is in control, only the programs it: loads and
executes can use the computing system.

leB. Interrupt control block.

implicit loading. Program loading that is per­
formed immediately as external references are
encountered. Contrast with explicit loading.

inactive list. The list of tasks which are not mak­
ing any demands on the CPU for service. Inac­
tive tasks are waiting for an external event to
occur. Contrast with active list.

indexed sequential. Pertaining to the organization
of a data set characterized by provision of the
ability to read, write, insert, delete, and update
records, using a key contained in the record. It is
possible to have direct access to records in a data
set with indexed sequential organization. A mem­
ber of a partitioned data set may have indexed se­
quential organization. but it is not necessary that all
members of the data set be indexed sequential.

interactive computing. Pertaining to an application
in which each entry elicits a response, as in an
inquiry system or an airline reservation system.
Interactive computing may also be conversational,
implying a continuous dialog between the user
and the system. Contrast with noninteractive com­
puting.

IPL (Initial program load). A function, normally
activated by pushing a key on the computer con­
sole, that causes a special record to be read from
an I/O device. This record contains a program
which begins a succession of initializaltion proce­
dures that ultimately establishes an operating en­
vironment.

IPL bootstrap. The content of the special record
which is read into main storage as the result of
pushing the IPL key on a computer console.

ISA (Interrupt storage area). In the terminology
of this publication, the functional analog in
level 2 of the prefixed storage area (PSA) in
level 1. The [SA contains the status switching

control information for a task (virtual computer),
for example. the old and new VPSWs.

ISD (Internal symbol dictionary). A dictionary of
locations and attributes of locations defined in
source programs. preserved in the object module
by the language processor for use at execution
time.

IVM (Initial virtual memory). Level 2 address
space as created by STARTUP and saved for use
each time a new task logs on.

-J-

JFCB (Job file control block). The control block
created as a result of the definition of a data set
(by the DDEF command). When a DCB is
opened, data management attempts to match the
DDNAME in the DCB with a name from the list
of JFCBs. This establishes the association be­
tween a program and a data set.

job library. A partitioned data set containing ob­
ject modules. which. by virtue of its definition as
such, is a potential source of object modules for
the dynamic loader. The output of all language
processors is placed in the job library which is at
the top of the list of defined job libraries. Abbrc­
viated JOBUB.

JOBLIB. Job library.

-L-

language processor. An assembler. compiler, or
other program that accepts statements in one lan­
guage and produces functionally equivalent statc­
ments in another language, for example. machine
language. In TSS, the linkage editor is classified
as a language processor. This is more a result of
the wa.v the linkage editor is invoked than any cha;­
acteristic of its execution and is also due to the fact
that the output of the linkage editor is an object
module.

late binding. The deferral until the last possible
moment of any association that cannot be dis­
solved readily. Almost every design feature of
TSS has the goal of keeping the use of objects
that users process free of constraints that might
interfere with the iterative nature of the program­
ming process.

Glossan of Terms and Abbrl'viat ions 1 17

leyel O. In System/370, the implementation of
the system architecture.

leyel 1. In TSS. the implementation of an ex­
tended machine architecture in which level 2 pro­
grams operate.

leyel 2. In TSS, the environment in which privi­
leged system programs operate. protected from
damage due to user program execution. The ma­
jority of operating system function. exclusive of
management of real resources, is contained in
level 2 programs.

leyel 3. In TSS. the environment in which lan­
guage processors and user programs operate.

level 4. In TSS. the environment in which users
interact with the system. Implementation in
level 4 is the responsibility of customers, except
for the language processors, editors, and com­
mand system.

line data set. A virtual indexed sequential data
set that is organized by line number. In TSS.
source programs are in line data set format.

line number. The key in records of a line data set.

link-loading. A process by which object modules
are bound and loaded into storage without prod­
ucing a new object module.

linkage editor. In TSS. a program that transforms
one or more object modules into a single object
module. The linkage editor resolves external ref­
erences within the input object modules, and, op­
tionally, combines separate control sections into a
single control section, and replaces, deletes, adds,
and renames control sections, as specified.

logical I/O. The process of performing I/O at
the record level, free from concern with actual
devices. Contrast with physical I/O.

logoff. The procedure by which a task is ended
normally. A user "logs off. ,.

logon. The procedure by which a task is initiated
and by which a USERID is associated with a task.
A user" logs on. ,.

LPC. Language processor controller.

IlR TSS Concepts and Facilities

-M-

map. To establish a correspondence between the
elements of one set and the elements of another
set. The principal TSS access method, VAM. ac­
complishes its function by using the dynamic ad­
dress translation feature of the CPU to map dala
sets in external storage to the address space in
which programs operate.

Me (Monitor Call). In System/370, an instruc­
tion which performs the function of a hook.

member. A partition of a partitioned data set.

MSAM, Multiple sequential access method.

MTT. Multiple terminals per task.

-N-

new PSW. In System/370. a location containing
the value that will be loaded into the current PSW
when the CPU is interrupted. There is a new
PSW for each interruption type.

new VPSW. in TSS. a location containing the
value that will be used for a task's current VPSW
when the task is interrupted. There is a new
VPSW for each interruption type.

nonconversational. Pertaining to a program or a
system that does not involve a dialog with a ter­
minal user. Contrast with conversational.

noninteractive computing. Data processing which
does not involve human interaction. Contrast
with interactive computing. In this publication. the
term noninteractive computing is used to expand
upon the opposite of conversational and include
processing which does not involve human interaction
but does involve rapid response to outside stimulus.

nonprivileged. Pertaining to the state in which
level 3 programs execute. Contrast with privi­
leged.

nonprivileged state. One of the three states of
execution defined by TSS architecture; the condi­
tions which govern the execution of level 3 pro­
grams. Contrast with privileged state.

NOP. No operation (no op).

-0-

object data converter. The name of a system
service program which converts the output of
OS/VS language processors into TSS object mo­
dule format. Abbreviated ODe.

object module. The output of a single execution
of a language processor (including the linkage
editor), or the object data converter, which con­
stitutes input to the dynamic loader or the linkage
editor; an object module consists of one or more
control sections in relocatable (but not executa­
ble) form, and an associated program module dic­
tionary.

one. Object data converter.

offline storage. Storage of data which has been
put into a hierarchical store one or more levels
removed from the user, possibly compacted, usu­
ally as a result of migration from public storage.

old PSW. In System/370, a location containing
the value of the current PSW as saved when the
CPU was interrupted. There is an old PSW for
each interruption type.

old VPSW. In TSS, a location containing the val­
ue of the task's current VPSW as saved when the
task was interrupted. There is an old VPSW for
each interruption type.

online computing. Unattended processing of data
from ongoing processes, for example, logging of
data from continuous experiments and use of such
data to control the experiments.

online storage. Public storage, and less frequent­
ly, private storage volumes that happen to be
mounted.

OS/MVT. Operating System/multiprogramming
with a variable number of tasks.

OS/VS. Operating System/Virtual Storage

-p-

page. (1) In the two-level virtual storage of
System/370. a contiguous portion of virtual stor­
age described by a single page table entry. (2) In
TSS, the basic unit of virtual storage, 4096 bytes.
(3) To read or write portions of virtual storage
into main storage or onto auxiliary storage.

page table. In the two-level virtual storage of
System/370, a table containing the real addresses
of virtual storage pages, for one segment of virtu­
al storage. The page table also indicates whether
a page is in real storage.

page-addressable. The ability to address data by
page number, without regard to the characteristics
of the facility in which the data is stored. This is
a TSS' design point. for example, data on external
storage in VAM data sets, and data in virtual stor­
age.

paging. The process of transferring pages of vir­
tual storage between main storage and auxiliary
storage.

paging supervisor. Not actually a separate pro­
gram or set of programs. but a function of the
supervisor responsible for managing virtual stor­
age.

paranel reenterable. Pertaining to a program, an
attribute indicating that it is structured so that
more than one CPU can execute a single copy of
the program simultaneously. This implies that
changeable portions of the program (work areas)
are separately obtained for each CPU executing
the code. In level I programs, this is accom­
plished by common techniques which all programs
use to get unique working storage. For level 2 and
level 3 programs, STA R TUP and the dynamic
loader treat properly defined object modul~s in a
manner that guarantees parallel reenterability.

parcel. The unit of data in a symbolic library, for
example, a macro.

partitioned data set. A V AM data set having par­
titions, called members. Each member can have
all of the characteristics of VAM data sets, except
that the member can not be partitioned. Partitioned
data sets are convenient for referring 10 many data
objects as a collection. Members of a partitioned
data set may expand and contract freeZy, unused
space being automatically returned to public storage
for general use.

partitioned organization directory. The informa­
tion by use of which the contents of a partitioned
data set are managed. The directory is part of
the data set.

PAT (Page availability table). The basic control
block used to control space on V AM volumes.

Glossary of Terms and Abbreviations 119

PCI. Program controlled interrupt.

PCS. Program control system.

PER. Program event recording.

physical I/O. The process of performing I/O at
the device leveL specifically. the use of channel
programs. Contrast with logical J / O.

PL/1. A high-level programming language, de­
signed for use in a wide range of commercial and
scientific computer applications.

PPLI. Program product language interface.

PRELUDE. The common name for the program
loaded by the IPL bootstrap which does some
configuration analysis and then gives control to
the lAM loader, which asks the system operator
for the name of a utility to be run, for example,
STARTUP. which initializes TSS.

private device. An I/O device which is dedicated
to a specific user and allocated under control of a
system service function, called device manage­
ment. Private devices are acquired by means of
the DDEF command. The amount of time that a
private device is dedicated to a user is recorded
by the system and made available to installation­
provided accounting routines.

private segment. A segment of virtual storage that
is not shared with any other address space (task).
Contrast with shared segment.

private volume. A volume. such as a reel of tape
or a disk pack. owned by. or assigned to, an indi­
vidual user.

privileged. Pertaining to the state in which level 2
programs execute. Contrast with nonprivileged.

privileged state. One of the three states of execu­
tion defined by TSS architecture; the conditions
which govern the execution of level 2 programs.
Contrast with nonprivi/eged state.

problem state. (1) In System/370, an execution
state defined for programs that can not be al­
lowed to take over control of the system. (2) In
TSS, the real hardware state in which level 2 and
level 3 programs execute. Contrast with supervi­
sor state.

120 TSS Concepts and Facilitic;;

program library list. The list of currently defined
job libraries.

program module dictionary. The collection of con­
trol and descriptive information. concerning an
object module. required by programs that must
process that module.

program status "wrd. 1n System/370. a double­
word maintained by the CPU, defining the execu­
tion state of the machine. In the event that the
CPU is interrupted, the contents of the current
pr?gram status word are stored in one of several
fixed locations in main storage, according to the
type of interrupt. These locations are called the
old PSWs. The CPU loads a corresponding PSW
from one of several fixed locations in main stor­
age, according to the type of interrupt. These
locations are called the new PSWs. See old PS W
and new PSW. Abbreviated PSW.

protection key. (1) In System/370, a portion of
the current PSW which must match the storage
keys of all locations in real storage that are to be
successfully used. (2) In TSS, a portion of the
current VPSW which must match the storage keys
of all locations in virtual storage that are to be
successfully used.

PSA (Prefixed storage area). The area of main
storage which contains fixed locations related to
machine status. for example, the old and new
PSWs.

PSECT (Private control section). A control sec­
tion with a special attribute having meaning to the
dynamic loader as regards dynamic sharing of
programs in shared virtllal storage. When the dy­
namic loader loads a module from a shared job
library, any control sections in that module having
the public attribute and alread.y loaded in another
task will be shared between address spaces.
PSECTs will not be shared; a private copy is ob­
tained for each address space (task). PSECTs usu­
ally contain informarion that is modl/ied by pro­
gram execution.

PSW. Program status word.

PTF. Program temporary fix.

public attribute. That attribute of a control sec­
tion which indicates to the dynamic loader that it
can be shared by other address spaces (tasks).

public segment. A segment of virtual storage that
can be shared with any other address space
(task). See shared segment.

public volume. A direct-access volume that is part
of a set of volumes which comprise the public
storage of the system. Public storage contains
V AM data sets and all of it is available for alloca­
tion to all users, subject to an installation­
specified upper limit for each user.

-Q-

QSAM. Queued sequential access method.

-R-

R-value. A value (address) associated with an
external name (which may be a module name),
giving the location of the PSECT corresponding
to the external name. If there is no correspond­
ing PSECT, the R-value is equal to the V-value of
the external name.

RC (Real core). Levell storage.

real storage. Addressable space in main storage,
from which instructions and data are fetched.
Contrast with virtual storage.

record. (1) A unit of data in a data set, read or
written with one request. (2) A unit of data in a
data storage device whose contents are, excepting
use of V AM, not addressable by the CPU.

region. In a region data set, those records which
have keys that are the same except for the right­
most seven characters.

region data set. An indexed sequential data set
divided into portions, each of which is in the for­
mat of a line data set, except that the keys in the
records consist of two parts: the region name and
the line number.

RESTBL. Relative external storage correspon­
dence table.

retrieval address. An address, returned to a pro­
gram using V AM, each time a record is written
into a VSAM or VISAM data set (or member of a
VPAM data set). The retrieval address may later
be used to gain direct access to the record, even
with VSAM data sets (or members), which are

strictly organized sequentially. Use of retrieval
addresses facilitates construction of data bases
with multiple keys and various means of access,
including computed retrieval addresses in the case
of fixed-length sequential data sets.

RJE. Remote job entry.

RM (Real memory). Level I storage.

RMS. Recovery management system.

RO. Read-only.

RSS. Resident support system.

RTAM. Real terminal access method.

RW. Read/write.

-s-
save area. An area used, when one program calls
another program, to store the status of the CPU,
such as register content, program mask, and con­
dition code, so that the called program may use
the CPU as it sees fit, and subsequently restore
the conditions that were in effect at the time of
the call.

script. A series of commands and data in the
form of a data set which can be invoked with the
EXECUTE command. Scripts execute as non­
conversational jobs in a task separate from the
task that requested execution.

secondary storage, (1) Storage to which the CPU
does not have direct access. (2) In TSS, second­
ary storage on direct-access devices is called aux­
iliary storage or external storage, depending on its
use. See auxiliary storage and enemaI storage.

segment. In the two-level virtual storage of
System/370, a contiguous portion of virtual stor­
age described by a single page table. TSS uses
64-kilobyte segments.

segment table. In the two-level virtual storage of
System/370, a table containing the addresses of
page tables, one address for each segment of vir­
tual storage. The segment table also indicates
whether a page table is in real storage.

Glossary of Terms and Ahhrcviations 121

sequential. Pertaining to the organization of a
data set characterized by access' to records one
after another or one before another, in the case
of reading the data set from back to front. Re­
cords of a VSAAf data set can be accessed in any
order using retrieval addresses.

seriall~' reusable. Pertaining to a program, an at­
tribute indicating that it is structured to allow
repetitive use without refreshing the code. In
other words. the program has only one state; ex­
ecution does not change that state. In TSS. use
of a program which modifies its code is not recom­
mended, because programs typical(y remain loaded
after use and are easily available for subsequent
use. Not infrequently, programs are interrupted
and reexecuted and should therefore be coded to be
seria!!y reusable.

service program. A system program that assists in
execution of user programs. without directly con­
trolling the system or producing results.

shared segment. In the two-level virtual storage
of System/370, a contiguous portion of virtual
storage described by a single page table and indi­
cated as being sharable by another address space.
Sharing is accomplished when entries in two or
more segment tables point to the same page table.
See public segment.

SIPE. System internal performance evaluator.

starter system. An operating system, supplied
with an assumption about the actual configuration
of the computing system on which it will be run.
The assumption includes numerous addresses for
various device types, enough of which can be ex­
pected to match the hardware configuration on
which the starter system is to run, so that an in­
stallation can use the starter system to generate a
system tailored to its own configuration.

STARTUP. The name of the utility that performs
configuration analysis and initializes TSS.

STCK (Store Clock). In System/370, an instruc­
tion that causes the time-of-day clock to be
stored.

storage key. In System/370, an indicator associ­
ated with one or more storage blocks, that con­
trols storing and fetching of data, requiring a
matching protection key in the PSW. In some
models, the storage key indicates all references
and changes to the storage block associated with

122 TSS Concepts and Facilities

the key. TSS uses the reference and change hits to
manage storage.

subsystem. (1) A program which provides service
to a set of users and utilizes the services of the
system but is not considered part of the system.
(2) A secondary or subordinate system, usually
capable of operating independently of, or asynch­
ronously with, a controlling system.

supervisor. (I) The part of a control program that
coordinates the use of resources and maintains
the flow of CPU operations. (2) In TSS, the pro­
grams that operate in level 1.

supervisor state. (1) In System/370, an execution
state defined for programs that have control of
the system. (2) In TSS, one of the three states of
execution defined by TSS architecture; the condi­
tions which govern the execution of level 1 pro­
grams. Contrast with problem state.

supporting program. A system program that per­
forms a maintenance function. but one that does
not directly control the system or produce results.

SVC (Supervisor Call). In System/370, an in­
struction that causes the SVC new PSW to be
loaded. By this means, requests for service can
be processed by programs operating in a state
different from that of the program that issued the
SVc.

symbolic library. A library containing portions of
source programs in the form of symbolic state­
ments in the language of the assembler, for exam­
ple, macros, and DSECTs.

SYNAD (Synchronous error exit address). An
address in the DCB indicating where control is to
be transferred upon occurrence of an unrecovera­
ble error condition.

SYSGEN (System generation). The process of
adjusting the content of tables in the system to a
specific hardware configuration.

SYSIN. A system input stream; also, the
DDNAME used for the task's system input data
set. The input stream is the keyboard of the termi­
nal being used or a data set.

SYSMANGR. One of three prejoined USERIDs
supplied with TSS. SYSMANGR joins other
users to the system and performs special functions
related to managing the installation.

SYSOPERO. One of three prejoined USERIDs
supplied with TSS. SYSOPERO is the system
operator.

SYSOUT. A system output stream; also, the
DDNAME used for the task's system output data
set. The output stream is either the printer or dis­
play screen of the terminal being used or a data set.

-T-

TAM II. TSS telecommunications access method.

task. (I) All work performed by TSS under the
direct"ion of a stream of commands from a system
input unit that is associated with a user, between
the LOGON and LOGOFF commands. Some
nonconversational tasks are initiated for a user by
the system, and are terminated at the completion
of the operation, for example. the task created to
carry out WT command function. (2) The ad­
dress space and the associated control blocks es­
tablished to support a TSS user.

task management. Those functions of the control
program that regulate the use of system resources
other than I/O devices.

T ASKID. Task identification number.

TDT (Task definition table). The list of JFCBs
related to a task.

text processing. Editing and formatting of infor­
mation intended for publication, for example, the
computer-assisted processing which produced the
images from which this publication was printed.

time slice. The amount of time that a task is al­
lowed on the dispatchable list, measured in CPU
time. Once the interval has expired, CPU time is
allocated to another task; thus a task cannot mono­
polize CPU time beyond a specified limit. Some
installations may wish to allow a task to monopolize
the CPU; this is possible, using the facilities of the
schedule table and scheduler.

TSE. Time slice end.

TSI (Task status index). The basic control block
for each task to which all other control blocks
related to the task are connected.

TSS. (I) IBM Time Sharing System. (2) One of
three prejoined USERIDs supplied with TSS. US­
ERID TSS owns the system data sets with the
exception of a few owned by SYSOPERO.

TSS application. In the context of TSS subsys­
tems, time sharing. The TSS application involves
supplying computer service to a TSS USERID.
Coexisting with the TSS application can be user­
developed subsystems which execute as a TSS
USERID but supply service to users who connect
to the system in order to gain access to the sub­
system.

TSS/370. IBM System/370 Time Sharing Sys­
tem, Program Number 370G-CL-627.

TSSRES. The volume identification of the TSS
starter system volume.

TSSS. Time sharing support system.

-u-
U (Undefined-format). A record format in which
the lengths of records in the data set or member
are not known before reading or writing.

user catalog. A catalog unique to each TSS user.
The user catalog contains the names of all data
sets owned by the user and the names used by the
user to refer to data sets owned by other users.
The user catalog contains specifications of per­
mission for other users to access the user's data
sets. It also contains many characteristics of the
data sets and points directly to V AM data sets.

user program. Programs written by users that
execute in level 3.

USERID (User identification). A three- to eight­
character name, used to identify users and their
data sets.

USS. Utility support system.

-v-
v (Variable-length). A record format in which
records in the data set or member can have differ­
ent lengths.

Glossary of Terms and Abbreviations 123

V -value. A value (address) associated with an
external name (which may be a module name),
where the text corresponding to the external
name is loaded.

V AM. Virtual access method.

VCCW. Virtual channel command word.

virtual access method. The virtual access method
is the principal means of data transfer between
virtual storage and external storage. V AM is
characterized by the use of the paging hardware
and software to perform data set I/O.

virtual program status word. In TSS, a doubleword
maintained by the supervisor in level 1 storage,
defining the execution state of the level 2 virtual
computer (task). In the event that the task is
interrupted, the contents of the current virtual
program status word are stored in one of several
fixed locations in virtual storage, according to the
type of interrupt. These locations are called the
old VPSWs. The supervisor causes a correspond­
ing VPSW to be loaded from one of several fixed
locations in virtual storage, according to the type
of interrupt. These locations are called the new
VPSWs. See old VPSW and new VPSw. Abbre­
viated VPSW.

virtual storage. Addressable space that appears to
the user as real storage, from which instructions
and data are mapped into real storage locations.
The size of virtual storage is limited by the ad­
dressing capability of the computing system rather
than by the actual number of real storage loca­
tions. The total size of all virtual storage created
by a computing system is limited by the amount
of auxiliary storage available.

VISAM. Virtual indexed sequential access me­
thod.

VM (Virtual memory). Level 2 storage.

volume. (1) That portion of a single unit of stor­
age which is accessible to a single read/write
mechanism, for example, a drum, a disk pack, or
part of a disk storage module. (2) A recording
medium that is mounted and demounted as a unit,
for example, a reel of magnetic tape, a disk pack,
a data cell.

volume label. A machine-readable record on a
volume, which the system can use to control ac­
cess to the volume.

124 TSS Concepts and Facilities

VPAM. Virtual partitioned access method.

VPSW. Virtual program status word.

VSAM. Virtual sequential access method.

VSS. Virtual support system.

VTSS. Virtual terminal support system.

-w-
working set. The set of virtual storage pages that
are used within some period of time. A program
with high locality of reference will have a small
working set and thus does not present as Kreat a
demand upon system resources. Working set has
nothing to do with how much virtual storage is po­
tentiallyaddressable.

-x-
XTSI. Extended task status index.

