
Systems Reference Library

Version 8.1

IBM System/360 TiJne Sharing System

Linkage Editor

~'ile No. S360-31
GC28-2005-4

Tells how to use the Time Sharing System's linkage
editor. This optional program can be used to join two
or more related object modules into one object module.
saving dynamic loader processing time. A linkage edi­
tor user can also, without having to reassemble or
recompile his program, combine control sections (pos­
sibly saving external s1torage and reducing program
execution time); rename entry points, control sections,
and external references; and change control section
attributes.

An introduction explains: how a TSS/360 object
module is created, its structure, how control sections
are named and attributes assigned, external definitions
and references, the difference between explicit and
implicit linkage, and the difference between static and
dynamic linking.

The reader is shown how to invoke the linkage editor
and how to use linkage editor control statements.
Examples are provided for both conversational and non­
conversational users.

Before using this publication, be familiar with the
contents of:

IBM System/360 Time Sharing System: Concepts and
Facilities, GC2S-2003

IBM System/360 Time Sharing System: Command System
User's Guide, Ge28-2001

TSS

Fifth Edition (September 1971)

This is a major revision of and makes: obsolete Form GC28-
2005-3 and Technical Newsletter GN28-3117. This revision
reflects recent changes in TSS/360 and corrects errors in the
previous edition. Addition of the DXD and CXD instructions
and the Q-type address constant to the TSS/360 assembler has
made linkage possible between object modules produced by the
assembler and those produced by the PLII compiler. Restric­
tions for linkage editing PLII compiler-produced modules have
been removed. Figure 15, Format of PHD Listing, now reflects
additions to this listing for DXD and CXD references. A
table has been added, summarizing bow to use the linkage edi­
tor. A glossary has been added. Significant changes will be
indicated by a vertical line beside the changed text.

This edition is current with Version 8, Modification 1, of
the IBM System/360 Time Sharing System, and remains in effect
for all subsequent versions or modifications unless otherwise
noted. Significant changes or additions to this publication
will be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edition of
IBM System/360 Time Sharing System: Addendum, GC28-20Q3,
which may contain information pertinent to the topiCS covered
in this edition. The Addendum also lists the editions of all
TSS/360 publications that are applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre­
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader'S caa­
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Time Sharing System/360 Programming Publications, Depart­
ment 6Q3, Neighborhood Road, Kingston. New York 12401.

Q Copyright International Business Machines corporation 1966, 1967,
1968, 1970, 1971

PURPOSE

This book tells how to use the linkage
editor, an optional TSS/360 program called
into a user's task when he issues 1:he LNK
command.

ADVANTAGES OF THE LINKAGE EDITOR

The linkage editor can be used to:

• Link two or more existing object
modules (the output of the TSS/360
assembler. :F'ORTRAN compiler. PIJI com­
piler, or a previous linkage editor
process) into one module that J~equires
less dynamic loader processing time.

• Combine control sections in one or more
existing modules, reducing external
storage requirements and paging activi­
ty during program execution.

• Rename control sections, entry points,
and external references, and change
control section attributes .,. without
having to reassemble or recompile.

TO USE THIS BOOK, YOU NEED .•.

A general w1derstanding of TSS/360 con­
cept_s and terminology. This information is
available in:

IBM SysteHv360 Time Sharing Sys-tero:
concepts and Facilities, GC2S-2003.

A familiarity with the TSS/360 command
system and, specifically, the DDEF command.
This information is available in:

IBM System/360 Time Sharing Sys-tero:
Command System User's Guide, Ge2S-2001.

PREFACE

The reader is presumed to be familiar
with at least one TSS/360 programming
language.

HOW THIS BOOK IS ORGANIZED

conceptual information is provided in
·Section 1: Introduction"; it explains
what an object module is, its structure,
how control section names and attributes
are assigned, how external definitions and
references are generated, and relates link­
age editor processing to dynamic loader
processing. Experienced users may wish to
skip Section 1.

Practical, how-to info~ation is pro­
vided in Sections 2, 3, and 4. ·Section 2:
Format of Linkage Editor Control State­
ments" gives rules for entering statements
at the terminal or on cards. Experienced
users may skip Section 2. ·Section 3:
Linkage Editor Control Statements· tells
what the statements do and how to specify
them. ·Section 4: How to Specify Linkage
Editor Processing" describes the LNK com­
mand parameters and has LOGON-to-LOGOFF
examples of using the linkage editor.

Reference information, including the PMD
listing format, how errors are handled, a
summary of the control statements, addi­
tional examples, and a glossary of terms,
is provided in the Appendixes.

A QUICK, HOW-TO SUMMARY ...

••. is provided in Table 2, "Controlling
the Linkage Editor", in Section 4.

iii

CONTENTS

SECTION 1: INTRODUCTION •• • • •. 1
Preparing A Program • • • • • • • • • • • •• 1

creating Object Modules. •••• • • •• 1
Structure of An Object Module ••••• • • • • 2

Program Module Dictionary • • • • • • 2
Text • • . • • • • • • • • • • • • •• 2
Internal Symbol Dictionary • • • • • 2

Control sections • . • • • • • • • • . • • • • • • •• 2
Control Section Names • • • • • • • • 3
Control Section Attributes • • • • 3

combining Object Modules • • • • • • • • 6
Standard Entry Point of a Linkage--Edited Module 6

Assembler and PL/I Programs • • • • • • • • • • • • • 6
FORTRAN Programs • • . .• •••.•••••••••• 6

Control Section Attributes of a Linkage-Edited Module • • • • • 6
Linking Symbols . • • . • • • • • • • • • 6

External Definitions • • • • 7
External Symbol Values • • • • • • • • • • • • •• 7
Ext<C'rnal References • • • • • • • • • • • 8
Explici t vs. Implicit Linkage • • •• • • • • • • • • 9

ObjEct Hodule combination • • • • • • • • • • •• 9
Progra~ Libraries • . • • • • • • 9
Managing Libraries • • • • • • • • • • • • • • • • 10

Static Linking: The Linkage Editor 11
Dynamic Linking: The Dynamic Loader. •••. • • • • • 12

Virtual Storage Allocation • • 13
Relocation • • . • • • • • . • • •• • • • • 14
Sequencing of Modules: Linkage Editor and Dynamic Loader • • • • 14

Summary of Linkage Editor Functions • • .• •••• . • •• 15

SECTION 2: FORMAT OF LINKAGE EDITOR CONTROL STATEMENTS
General Control Statement Format • • • • • • • • •

Operation Field . • • • •
Operand Field . • . • • . • • • • • • • •

Operand Name . • • • • •• • • • •

17
• • 17

• 17
• • 17

11
Coded Operand Values • • • • • • • • . • • 11
Commas, Parentheses, Minus Sign.
Blanks . • . • • • • • . • • • • .

Format Illustrations • . . • • • •

• • 11
• 17

.•••. 17
17 Upper and Lower Case Conventions

Metasymbols Conventions • • • • • • • 11
l\eyboard Format. • . •

Character Sets •..••.•
Control statement Boundaries
Continuation Lines

Card Format . • . •
Character Sets••.
Control statement Boundaries
Continuation Cards

SECTION 3: LINKAGE EDITOR CONTROL STATEMENTS
INCLUDE . • • • •

INCLUDE
INCLUDE
INCLUDE
Example

RENAME

(Form-l)
(Form-2)
(Form-3)
of INCLUDE Statements •

Examples of RENAME statements .
TRAITS ..•••...•.•.

. • •• ••• 18
• • • . • 18

18
18
18

• 18
• 18

· • 18

.. • J..9
19

· 19
19
21

• 21
· 2}

• • 24
• 24

• • • • • • 25
• • • • • • • • 25

Example of TRAITS Statement •
COMBINE • • • • . . •

Examples of COMBINE Statement • • • • • • • • • 25

iv

END •• • • • 25

SECTION 4: HOW TO SPECIFY LINKAGE EDITOR PROCESSING • • • • • 26
The LNK Command • • • • • • • . • • • •• • 26

• • • • 28 Using the Linkage Editor Conversationally •
Def ining Librari,es • • • • • • • • • • • 29
Example 1 . . • • • • • • • • . • • • •
Example 2 • . • • • • • • • • . • • • • • • • •

Using the Linkage Editor in Nonconversational Mode • • • •
Example 3 • . • • •
Example 4 .
Example 5 •

• 30
• • • 31

• 31
· 32

• • • 33
• 33

33 Example 6 •
Example 7 •• • • • • • • • • • • 34

APPENDIX A: THE PMD (PROGRAM MODULE DICTIONARY) LISTING •

APPENDIX B: ERROR DIAGNOSTICS AND MESSAGES
Levels Of Language Processor Diagnostics • • . •
Linkage Editor Err"or Detection • • • • • •
Linkage Editor Diagnostic Messages

APPENDIX C: SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

• 35

38
38

• 38
· 38

40

APPENDIX D: LINKAGE EDITOR STATEMENT EXAMPLES
INCLUDE Statement Examples

• • • • . • 41

RENAME Statement Examples •
TRAITS Statement Example
COMBINE statement Example •
Example Of Linking Modules

APPENDIX E: GLOSSARY

INDEX • • •

ILLUSTRATIONS

Figure
Figure
Figure
Figure
Figure
Editor
Figure
Section
Figure
Loader

1. Creation of an Object Module •.•.••••
2. Forma-t of an Object Module •••••
3. Objec"t Module Combination in TSS/360
4. Linkage Editor Processing of Object Modules.
5. Automatic Control Section Rejection by the Linkage

6. Conditions for Diagnostic Messages on Control
Rejection • • • • • . • . • . • • . • • .
7. Automatic Control Section Rejection by the Dynamic

Figure 8. Sample Module Group . • . . . • . . .
Figure 9. Linkage Editor Processing, Linking Modules, and
Combining Control Sections . . • . • . . • .
Figure 10. Contents of Libraries LIBA, LIBF, and MATH
Figure 11. Resultant output Object Module ...•..
Figure 12. Contents of Libraries LIBA and JOBLIB1 and
Resultant Output- Object Module••. •..•.
Figure 13. Methods for specifying Linkage Editor Processing
Figure 14. Data Flow During Conversational Linkage Editor
Processing . • • • • .•• •
Figure 15. Format of PMD Listing

Table 1. Assembler Statements Used to NaIue and Des cr ibe
Attributes of Control Sections ..•.
Table 2. Controlling the Linkage Editor . . • • ...•

41
• • • • 41

. • 41

1
2

• • 10
• • 11

12

· 12

13
· 14

16
• • 22

23

· . 24
27

• • 28
• • 36

4
20

• 41
41

43

· 48

v

The linkage editor is an optional TSS/
360 service program that can be used to
further develop and edit programs that have
been assembled or compiled. Execution of
the linkage editor is started by the LNK
command.

The primary linkage editor funct.ion is
to put together the output of separate as­
semblies or compilations into one object
program. Usually, this pre-execut;ion link­
age will reduce the time it takes to load
and run the program. The linkage editor
can be used to -edit- a program (that is,
combine, rename, delete, and assign new
attributes to control sections, rename and
delete entry points, and rename ext:ernal
references) without having to reassemble,
recompile, or execute the program. The
.Linkage editor can also be used simply to
move object modules from one library to
another. These functions are summarized
later in this section, under ·Summary of
Linkage Editor Functions.-

The following paragraphs review the TSS/
360 program preparation process and define
the terms needed to understand linkage edi­
tor processing.

PREPARING A PROGRAM

A program is the collection of instruc­
tions and data that the user specifies for
the solution of a problem. A program can
exist in the system in source or olbject
form. A source program exists in the sym­
bolic form in which it was written by a
user and consists of a series of s·tatements
coded in one of the programming languages
available in TSS/360 (PL/I, FORTRAN IV, or
assp.mbler language). An object program
exists in machine-language forro; it can be
loaded and executed by the system.

CREATING OBJECT MODULES

An object module (the terms ·program
module· and ·object program module- are
synonymous) can be created by language pro­
cessor programs or the linkage editor.

A language processor creates an object
module by converting source language state­
ments to machine language. The input to
the language processor, called the source
data set, includes both source langudge
statements to be included in an object
module and statements intended only for the
language processor (for example, t.he DC,

SECTION 1: INTRODUCTION

CSECT, and END statements in assembler
language) •

The linkage editor generates an objecb
module by -linking" object modules that
already exist in various user and system
libraries. The input to the linkage editor
consists of previously assembled or com­
piled programs and a source data set con­
taining only linkage editor control state­
ments. The output of the linkage editor is
a new object module (the input modules
still exist to be retained or erased as the
programmer desires>.

Any new object module, whether created
by a language processor or the linkage edi­
tor, is stored in the appropriate library.
Figure 1 shows the data flow during object
module creation for both language process­
ing and linkage editing.

/'

Figure

./

\Source Language Statements)

1

Language

Processor

Standard and
Optiono! listings

U nkage Ed; tor
Control Statements

"-

B
List Data Sei

I" Input Obiect
t Modules

/'
/'

/'
/'

./

Lirtkage

Editor

Optional

PMD
Listing

-~
Output
Obiect
Module

List Data Set

Library

1. Creation of an Object Module

Section 1: Introduction 1

STRUCTURE OF AN OBJECT MODULE

A TSS/360 object module has three com­
ponents (see Figure 2);

• Program module dictionary (PMD)

• Text

• Internal symbol dictionary (ISD)

The program module dictionary and text
are always produced; the internal symbol
dictionary is produced only if specified by
the assembler or FORTRAN language user in
defining the language processor or linkage
editor run. The PL/I user cannot obtain an
lSD.

Program Module Dictionary

The program module dictionary contains
information the system needs to process the
object module and consists of a header and
a serieo.s of control section dictionaries:

• The header contains the name of the
standard entry point to the module and
other information common to the entire
module.

• Each control section dictionary (CSO)
describes its associated control sec­
tion (described below). The control
section dictionary contains information
which describes the external defini­
tions and references and address con­
stants contained in the control
section.

Text

The text portion of the module contains
the instructions and constants generated by
the assembler or compiler; it is the exe­
cutable portion of the module. The text is
organized by control sections, the basic
unit of all TSS/360 programs.

Internal Symbol Dictionary

The internal symbol dictionary (ISO) is
a list of all symbols that name control
sections, instructions, and data areas
within a module. The ISO enables the user
to analyze the module using TSS/360 program
control system (pcs) commands. A module
must contain an ISO for the user to be able
to take full advantage of pes. The module
produced by the assembler, the FORTRAN com­
piler, and the linkage editor contains an
lSD, unless the user has specified other­
wise; the module produced by the PL/I com­
piler in TSS/360 does not contain an ISD.
The linkage editor produces a composite
ISO, consisting of ISOs retained from input
modules.

2

Program module

dictionary (PMD)

I
I

l[

r

10--
Ir--

Text: Instructions and/or 1
data (hexadecimal)

PMD Header

Control Section 1 Dictionary

Control Section 2 Dictionary

Control SecHor 3 Dictionary

...

Cvntrul SE-'cti0n n Dictionary

ContrGJ Section 1

C'I:-1trc:.! Section 2

Control Section 3

...

Contro I Section n

ISD Opt;onal internal {I
symbol dictionary L.. _______________ -'

Figure 2. Format of an Object Module

CONTROL SECTIONS

A control section is a block of coding
whose virtual storage location assignments
C2n be adjusted independently of other cod­
ing during linkage editor or dynamic loader
processing. At least one page (4096 bytes)
of external storage is assigned to each
control section; however, a control section
may require more than one page.

When an object module is loaded, virtual
storage is allocated for all its control
sections. The space allocated to each con­
trol section begins on a page boundary
unless the user, in his LOGON command, has
specified that the dynamic loader, where
possible, is to put more than one control
section on a page. The contents of each
control section occupy contiguous virtual
storage addresses; however, the ind~vidual
control sections may be scattered through­
out virtual storage. When object modules
are placed in main storage for execution,
they are brought in page-by-page. The con­
tents of each page occupy contiguous main

storage locations; however, individual
pages may be scattered throughout main
storage. Only the pages required for
execution during a user's time slilce are
brought into main storage for that period.

The object module code contains virtual
storage addresses. During execution, these
virtual addresses are translated into actu­
al main storage addresses, based on rela­
tionships established between each page's
virtual storage base address and its main
storage base address at the time it is
placed in main storage. If a page that is
executing had been previously paged out,
and then relocated in main storage, it may
have been assigned a new location in main
storage. However, because a new relation­
ship has been established between the
page's virtual storage base address and its
new main storage base address, the system
can execute the page in its new main
storage location.

FORTRAN and PL/I users do not need to
concern themselves directly with organizing
their source programs into control sections
because the FORTRAN and PLiI compilers
always generate text in a standard way.

Assembler users can control the organi­
zation of text into control sections: they
also control the naming and the assignment
of attributes to control sections. Names
and attributes are normally defin€!d in the
source code; however, by using thE! linkage
editor, control sections can be renamed and
their attributes can be changed without
changing and reassembling the sow"ce code.

Control section Names

The FORTRAN compiler assigns control
section names to each FORTRAN object module
in this way: The characters IC, for a
CSECT, and IP, for a PSECT (both described
below), are appended to the module name if
there are six or fewer characters in the
name; otherwise, to the first six charac­
ters of the module name. For example, a
FORTRAN object module named SORTFILE may
have a CSECT with the name SORTFH~C and a
PSECT with the name SORTFI#P.

The PL/I compiler assigns the PROCEDURE
name to the control section containing the
text (executable code). Any name longer
than seven characters is truncated, using
the first four characters and the last
three characters. It also creates addi­
tional control sections for special pur­
poses; the names these control sections are
assigned by the compiler is based on the
PROCEDURE name. The convention used to
name these control sections and additional
information on linkage editing PLiI modules
can be found in Section 6 of the PL/I Pro-
grammer's Guide, GC28-2049. "

Assembler users name control sections to
assist the assembler in assigning consecu­
tive storage addresses to them during
assembly. The consecutive assignment of
storage addresses within a control section,
once begun, is continued throughout an
assembly. A control section may be inters­
persed with other control sections in a
source program. Each group of language
statements that is part of a particular
control section must be preceded by a con­
trol section statement containing the con­
trol section name. The first such state­
ment in a program identifies the beginning
of the control section; other statements
with the same name indicate resumption of
the control section.

There can be only one unnamed control
section (other than common) in a source
program. As with named control sections,
the unnamed control section is provided
with a location counter and its contents
are assigned consecutive storage addresses
throughout assembly.

In addition too controlling assembler
address assignments, the identification of
control sections serves three other
purposes:

• It enables symbolic linkages based on
control section names to be made
between control sections.

• It allows the dynamic loader to allo­
cate noncontiguous storage for dif­
ferent control sect~ons of an Object
module during loading.

• It allows control sections to be
rejected dynamically during loading or
linkage editing.

The ways in which control sections can
be named and assigned attributes in source
code by assembler users are summarized in
Table 1.

Control Section Attributes

The attributes of control se~ions are
assigned by the assembler on the basis of
specified (or defaulted) operand values.
These attributes, which describe the con­
trol section to the dynamic loader and the
linkage editor, are inserted in the control
section dictionary for the control section.
The optional attributes. named in the
operand field of Table 1, may be changed by
the user during linkage editing; the PSECT
and COM attributes. assigned by the
assembler to those control sections. may
not be changed.

The attributes assigned to ,control sec­
tions produced by the FORTRAN and PLiI com­
pilers are determined by those processors

section 1.: Introduction 3

Table 1. Assembler statements Used to Name and Describe Attributes of Control Sections
r-------------------------------y---------------------------~--------------------------, I Assembler Statement , I I
~-----~--------T-----------~ Use I Remarks I
I Name I opera tion I operand I I I
, Field I Field I Field I I ,
~------t---------t-------------t---------------------------t---------------------------~ I Symbol I START ISelf-defining IIdentifies first (or only) IAssembler assigns standard I
lor I Ivalue or blank I control section of object Icontrol attributes: flxed-I
I blank I I jmodule; a self-defining I length, read/write. I
I I I ,value in operand field may I I
I I I Ispecify initial virtual I I
I I I I storage location counter I I
I I I I value for first control I I
, 'I ,section. I I
~-----f---------t--------------t---------------------------t---------------------------~
ISymbollcSECT IREADONLY IIdentifies control section IAssembler assigns attri- I
lor I I PUBLIC Icontainir19 executable Ibutes based on specifica- I
Iblank I IPRVLGD I instructions. lation in operand field; I
I I I VARIABLE I Istandard control attributesl
I I I SYSTEM' I if operand field is blank. I
I I I blank (none ofl I I
I I I above) I I I
t-------t---------f--------------t---------------------------f-------------------------~
ISymbol!PSECT IREADONLY IIdentifies control section 'Assembler assigns PSECT I
I I , PUBLIC I containing address con- I attribute to control sec- I
I I IPRVLGD Istants and save area, and/ Ition; also standard control I
I I I VARIABLE lor working area. lattributes unless other I
I I I SYSTEM I lattributes are specified I
I I Iblank (none ofl lin operand field. I
I I I above) I I ,
r------f---------+--------------+---------------------------+---------------------------~
I Symbol I COM IREADONLY IIdentifies control section IAssembler assigns COM I
lor I IPUBLIC,PRVLGD Iserving as common storage lattribute to control sec- I
Iblank I I VARIABLE I area. Ition; also standard control I
I I I SYSTEM I I attributes unless other I
I I Iblank (none ofl lattributes are specified I
I I I above) I I in operand field. I
~-----f---------+--------------+---------------------------+---------------------------~
I Symbol I DSECT I blank IIdentifies control section I I
I I I I describing layout of stor- I I
I I I lage area: does not actuallyl I
I I I Ireserve storage; storage I I
I I I I area reserved by another I I
I I I I statement. I I

I t~~~lt~~~------tbl~~---------tId~~i;i;;-;;~;;~~l-d~;--~ll~~;-~;;;~l;;-;~~le;-~~
I I I I section. I interface with PL/I modules~ l ______ ~ _________ ~ ______________ ~ ___________________________ ~ ___________________________ J

rather than by the programmer (with the
exception that FORTRAN programmers in the
FTN command may specify the PUBLIC attri­
bute be assigned to CSECTs produced by the
compiler and may create COMMON control sec­
tions as a result of the COMMON FORTRAN
language statement). The FORTRAN compiler
produces a module containing a prototype
control section and one or more standard
control sections with the fixed-length,
read/write attributes: if the programmer
specifies PUBLIC, the control sections will
have that attribute as well. The PL/I com­
piler produces standard control sections
with fixed-length, read/write attributes.
It does not generate a prototype control
section.

4

FIXED-LENGTH OR VARIABLE-LENGTH: A fixed­
length control section is allocated an
integral number of pages of virtual storage
by the dynamic loader. The number is the
minimum that will contain the bounds of the
control section. For example: If, during
an assembly of CSECT A, its location count­
er reached a maximum of 11,000, the dynamic
loader will allocate three pages of virtual
storage.

A variable-length control section is
allocated a number of pages in addition to
the minimum required. This additional
number is an installation parameter.
Fixed-length and variable-length are alter­
natives -- control sections not declared

Page of GC28-2005-4, Issued FebrURry 1, 1972 by TNL GN28-3206

variable-length are, by default.
fixed-length.

PUBLIC: The control section contains
instructions and/or data that can be shared
by ot her t.asks if (1) the owner of the
library containing the object module that
includes this control section issues an
appropriate PERMIT command authorizing its
sharing, (2l each sharer issues a SHARE
command updating the system catalog so that
t.he system can locate that 1 ibrary by leach
sharer's name, and (3) the owner and
sharers define the library by a DDEF com­
mand in their respective tasks prior to
attem~ting to use the object module
involved. The first task actually to
reference a module will cause the loader to
allocate each control section with the pub­
lic attribute in that module to public
storage; references from other tasks, then,
will be tied to the copy already allocated
to public storage. The use of public
storage techniques is the method by which
TSS/360 implements reenterable programming.
The dynamic loader attempts to pla~~ all
public control sections of a given module
within the same segment. Public control
sections must not contain any relocatable
address constants (adcons).

PRIVILEGED: Privileged control sections
are allocat.ed s·torage with a protection key
that allows reference to the control 8ec­
tion only by a privileged system service
routine. An attempt by a nonprivileqed
program to write or read a privileged con­
trol section will result in a storage pro­
tection error. Entry points in privileged
control sections must have names that begin
wi t~h C HB or CZ. The normal us er may not
declare privile<jed control sections; the
dynamic loader will remove such an att.ri­
bute from control sections in any loaded
1:](.)(lu1e except those that corne from SYSLIB.

li~D9NLY: A control section whose contents
canna+ be modified during access by other
modules or control sections possesses the
REJmGNLY attribute. The CSECTs to be asso­
ciated with shared object modules will
normally be designated REAOONLY as well as
PUBLIC. If RFAOONLY is not specified as an
operand, a control section will have the
standard read/write attribute and may be
both read and written (when writing occurs.
the new data overla.ys and thus destroys
previous data).

PROTOTYPE: Prototype control sections
(PSECTs) are normally used for the modifi­
able ~3torage associated with read-only pub­
lic c(mtrol sections. This modifiable
storage consists of save areas, working
storage, and variable progran· data. The
normal reenterable module consists of a
nonmodifiable public control section, which
cont.ains the executable instructions, and a

prototype control section, which contains
all the adcons and other modifiable data.

COMMON: In FORTRAN and assembler language,
the programmer can create control sections
that r,,~serve virtual storage areas and that
may be common to two or more separay"· pro­
grams. Referred to as common, the~::· "on'­
trol sect.ions are produced in t"~H~
modules by the language processvl:s. These
common areas are used either for communica­
tion - ... facilitating t:he sharing ortransf-'
erring of data -- among different parts of
a program, or for reserving virtual storage
areas for control sections that may be pro­
vided by other modules. These coromon areas
are either named or unnamed (blank).

During linkage edii:or processing. the
blank common areas are examined to deter­
mine the size of tae largest area encoun­
tered. If :Dore trlan one blank common area
is found in t.ne input, the linkage editor
will reserve, in its output, an area equiv­
alent to t.he largest of those blank common
areas, and will ignore the rest. All
references in t.he out;:mt module tc a blank
common area refer to the one area retained.

Generally. blank common control sections
do not contain data constants; in any case,
whether data constants are present or not,
the storage content of the first (not the
largest) blank common control .section
encountered is I.etained in the linkage edi­
tor output.

Named coromon sections are treated in the
same manner as noncommon sections, except
that. common control section names are not
placed in the ~.rtitioned organization
directory (POD) of a library, and hence may
not be loaded by external reference to
their na~e alone. Reference to the module
name or some oth",) external symbol in the
module containinq ,-he desired CO:1:mton con­
trol section is nE~cessary to ensure that an
external refErence to a non-locally­
declared common will be resolved.

SYSTEM: A system attribute can also be
specified by system programmers, if the
control section is to be part of a system
(rather than a user's) object module. This
attribute is never specified for applica­
tion programs. Control sections marked
SYSTEM are maintained by the dynamic loader
in a manner that prohibits user reference
to them, except through SYS symbols. The
loader will not allow the user to declare
system control sections: the system attri­
bute will be unconditionally erased from
control sections in any module except those
loaded from the system library (SYSLIB).
FUrthermore, only system control sections
may contain SYS symbols; therefore, the
user is prevented from defining symbols
beginning with SYS. This is the only

Section 1: Introduction 5

Page of GC22-2005-4, Issued February 1, 1972 by TNL GN2S-3206

symbol-naming restriction imposed upon the
user. SYS symbols are used to label entry
IJOints to nonprivileged system routines to
which the user may transfer control by a
standard CALL linkage. (Examples of such
routines are GETBUF' and FREEBUF of the
access methods.)

Sha.I~d_91:J~te~!_J"odtlles: In TSS/360, shared
objec-t mod,ll_es normally contain one or more
control sections with read-only and public
attributes and a prototype (PSECT) control
section for the modifiable storage required
by the :read-only portions. (Modules pro­
duced by the PI.!'I compiler, however, do not
contain ':l PSEC'f, and, since address con­
stants are present in control sections, may
flO~: effectively be shared by different
WHC'.rs.) I, simplified format of a shared­
progri';,p object module is illustrated below:

f·-----~---·----------l

\ I
IModifiable Storage I

I
----,--,·_,,--·-----------1

I
I
I

---------------~
t
I
I L __________________ J

C01>mJNP;C ORJECf MODULES ___ ~_.o.~_, ______ . ___ _________ _

PSECT attribute

R£ADONLY and PUBLIC
attributes

r_'.~O:1rce p.:.:ogram and its corresponding
c::::j,-;'::t mc(lule may represent all or part of
-the 2:-:::t.'Ju.l program required to solve a
Illi0~'3 problem. A user may design his pro­
qxar;: in !-ar·b; and separately assemble or
C0:11:)51", edch part.. As a result of each
':'is·;emJ-Jly or compilation, he will produce an
ob Fu)dule. If he has supplied the pro-
rect:; , he can then use the linkage
'2"1l U .. T t·:) 0ermanently combine the various
mod'11.,,'S F[i,:).(" to program execution.

S~'!~NDAfm ENTRY POINT OF A LINKAGE-EDITED
~OJ)UL,3

As fOE any object module, the module
that. rcsu:U~s from linkage editing will con­
-:>'>in a :3tandard entry point, the point at
which a program will begin execution if

(,

invoked ty its name. The standard entry
point names of a 11 input modules will J.:;e
saved if the original effect of calling
each such name can be preserved.

Assembler and PL/I Proqr·ams

The standard entry point of the new
linked module will be assigned to a lcca­
tion in the first module that is linkage
edited. In output produced from assembler
language input modules, this location will
be the o~erand of the assembler END state­
ment, if the operand is nonblank. If the
operand is blank, the standard entry point
will be assigned to the first byte in the
control section.

.FORTRAN Programs

The standard entry point is the existing
entry point of the main program, which is
its first executable instruction.

CONTROL SECTION ATTRIBUTES OF A
LINKAGE-EDITED MODULE

The TRAITS control statement, which is
used to assign attributes to a linkage
edited control section, is described in
section 3. If no TRAITS control statement
is specified for a control section. the
linkage-edited control sections retain the
same attributes as on entry to a linkage
editor run.

If control sections with different
attributes are specified to be combined by
use of the COMBINE control statement
(described in Section 3). the stat:ernent
will not be processed, and a diagnostic
message will be issued. Identical attri­
butes may be obtained by preceding the COM­
EINE control statement with a TRAITS con­
trol statement, which 'Nould assign new
attributes to one of t.he non-identical con­
trol statements.

LINKING SYMBOLS

A symbol may be referred to (used as an
operand in a st.atement) in one ccntIol sec­
tion and be defined (that is, used as the
name of a statement) in another section, to
estatlish linkages between parts of a
program.

External Definitions

An external definition (the term
-external symbol definition- is synonymous)
is a symbol wi thin a module that ma:lr be
referred to by name from other modules, or
from control sections in the same module.
Referability is effected when the language
processor creates external definition CDEF)
tables within the control section dic­
tionary (CSD) that name the symbols that
can be referred to from outside the control
section. DEFs are created by:

1. creating a module, which causes a DEF
entry to be created for the module
name. This DEF entry specifies the
standard entry point of the module.

2. Declaring a control section (including
common control sections), which causes
a DEF entry to be created with the
same name as the control section. (If
a blank common control section is
declared, the name consists of blanks.
If an unnamed control section is
declared, its name consists of zeros.)

3. Declaring an ENTRY statement for a
symbol, which causes a DEF entry to be
created for the name appearing in the
operand field of the ENTRY statement.

The three types of DEFs defined for the
PMD are absolute, relocatable, and complex.

An absolute DEF name is defined by an
EQU statement whose operand is an absolute
expression. For example:

A101
ENTRY
EQU

A101
100

will produce an absolute DEF entry for the
symbol A101 whose value will be 100. The
dynamic loader does not process thE:~ value
field of absolute DEFS; the definit~ion, as
produced by the assembler, becomes the
value of the symbol during program
execution.

A relocatable DEF is one whose value is
storage-location dependent. For each of
these DEFs, the language processors always
produce a value that is relative to the
base of the defining control section. For
example, if a statement at byte location
1000, relative to the origin of its control
section, is named CHXAAA, then

ENTRY CHXAAA

will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamiC loader processes relocatable
DEFs by adding, to the value assigned by
the language processor, the base virtual

address of the defining control section
allocated by the dynamic loader.

Type-l complex DEFs are simply relocat­
able DEFs whose 'ENTRY statements appear in
a control section other than the one in
which the symbol itself is defined. The
DEF entry for such a symbol always appears
in the CSD of the control section contain­
ing the ENTRY statement. Clearly, then, a
means must be provided to denote the con­
trol section whose base must be added to
the symbol value output by the language
processor. This is effected by an external
reference (REF), which names the control
section containing the definition.

Type-2 complex DEFs are defined by EQU
statements whose operand fields contain one
or more external symbols.

The standard entry point defines the
execution starting point associated with a
module'S name. For this entry point, the
language processor prepares a complex DEF
entry containing the module name. This
treatment allows external references to
modules by name (naming a module with a
V-con or an R-con is a valid coding prac­
tice). Tht linkage-editor-produced module
will retain V-cons and R-cons of original
modules, where possible. This is not poss­
ible for input modules whose names are
identical to the output (linkage-editor­
produced> module or for those containing
PSECTs or CSECTs previously deleted during
linkage editing.

External Symbol Values

TSS/360 employs a convention for linkage
to reenterable routines that requires any
external symbol to have two values asso­
ciated with it.

1. The V-value, which is the virtual
storage location that the external
symbol labels.

2. The R-value, which is the virtual
storage location of the origin of the
control section in which the ENTRY
statement for that symbol appeared in
the source code.

The V-value is used to identify the
first executable instruction of a public
(reenterable) CSECT; the R-value is used to
identify the base of the related private
PSECT. The user places, within the PSECT
code, an ENTRY statement denoting a label
within his public CSECT. By convention
then, reenterable linkage is effected in
the CALL macro instruction by branching to
the location that is the V-value of the
named symbol and, at the same time, making
available to the called routine the R-value

Section 1: Introduction 7

of that same symbol (which is normally the
address of the called routine's PSECT).

The followinq coding example demon­
strates how V- and R-values are assigned:

A

B

C

E
D

PSECT
ENTRY
ENTRY
ORG
EQU

CSECT
ENTRY
EQU
EQU

B
E
A+X'500'
*

D
*
2

Assume that the dynamic loader assigned
PSECT A to virtual storage location
X'SOOOO' and CSECT C to virtual storage
location X'205000'. The table shows the
V-value and R-value for all external
symbols.

Symbol V-Value R-Value DEF Type
r-------T---------T--------~-------------,
1 A 100080000 1000SOOOO IRelocatable* I
~-------+---------+---------+-------------~
1 B 100080500 100080000 IRelocatable I
~-------+---------+---------+-------------~
1 C 100205000 100205000 IRelocatable* 1
~-------+---------+---------+-------------~
I D 100000002 100205000 IAbsolute 1
~------+---------+---------+-------------~
1 E 100205000 100080000 Icomplex I
t-------~---------L---------L-------------~
I *CSECT name DEF I L __ -J

Note that E in this example is the only
entry point that is properly coded to per­
mit standard linkage; that is, the R-value
of E is the origin of PSECT A.

The DEF entry for a CSECT name is
generated by the CSECT statement, not by an
ENTRY statement. Therefore, the DEF entry
for a CSECT name always has an R-value
equal to the V-value (note A and C above).
From these definitions, a reentrant CALL by
public CSECT name alone is not possible.

The object module name, or standard
entry point DEF, is treated somewhat dif­
ferently. Its V-value is the value of the
expression contained on the END statement
of an assembly. As stated earlier, the
language processor prepares a complex DEF
entry for the standard entry point from the
END statement. For example, an assembly
might look like:

X CSECT
Y EQU X+4
Z PSECT

END Y

8

In this example, the assembler will con­
struct a complex DEF for the standard entry
point that references CSECT X. If X is
assigned virtual storage location 212000 by
the loader, then the V-value for the stan­
dard entry point will be 212004. The R­
value for the standard entry point-is com­
puted by the dynamic loader when the module
is loaded into virtual storage. This com­
putation results in an R-value equal to the
origin of the first declared PSECT in the
module Cor the first CSECT if no PSECT is
declared).

If, in this example. the module name is
H, then the net result of the standard
entry point computation would be as if the
code had been written

X CSECT
M EQU X+4
Z PSECT

ENTRY M
END

External References

An external reference (the term -extern­
al symbol reference- is synonymous). or
REF, is a symbol referred to within a
module and defined in the same or another
module. The user can create an external
reference by means of the assembly EXTRN
statement; symbols appearing in the operand
field of such a statement appear as REF
entries in the CSD of the CSECT containing
the statement. The symbols named in V-con
and R-con statements will also generate REF
entries.

REFs can also arise from complex DEFs.
For example, if CSECT AA has symbol X and
PSECT BB has the statement:

ENTRY X

then there will be a REF to AA within BB"s
CSD.

There may also be REFs for the module
name complex DEF. For example:

ENDZ

where Z is contained in CSECT CC, will
result in a REF that names CC.

External reference to other modules pro­
vides the means by which both the linkage
editor and dynamic loader can link modules.
The occurrence of a REF in some module that
names a symbol not defined in the module
will provoke a search to locate the module
that contains some DEF entry whose name
matches the REF name. External references
that are not satisfied by a DEF entry in
the output module created by the linkage

editor are called unresolved external
references.

Explicit vs. Implicit Linkage

Object modules can be linked implicitly
or explicitly.

• If two modules, A and B, are implicitly
linked, the loading of A implies the
loading of B. Also, such modules (if
they do not reside in SYSLIB, described
later in this section) can be combined
into a single object module by linkage
editing.

• If two modules, C and D, are e:lCplicitly
linked, the loading of C does not imply
the loading of D; D is not loaded until
it is actually (that is, explicitly)
referred to during the execution of C.
The explicit linkage between two
modules is not known to the linkage
editor; the user therefore cannot com­
bine such modules during linkage edit­
ing on the basis of their explicit
linkage.

All FORTRAN subprograms (user-written or
system-supplied) are implicitly linked
either to the main program or to e':!.ch
other. Loading the main modUle of a FOR­
TRAN program thus loads the entire program,
if the libraries have been defined for the
task. Only user-written subprograms can be
combined with each other and/or the main
program during linkage editing. System­
supplied subprograms reside in SYSLIB and
cannot be combined in the output module of
a linkage editor run. Unresolved
references to these modules are noted at
the conclusion of the run (for the user's
information), but they are not. satisfied
until the modules are loaded.

Assembler users have the option of writ­
ing programs that use a combination of
implicit and explicit linkages. (Refer to
the descriptions of the LOAD and CALL macro
instructions in Assembler User Macro
Instructions, GC28-2004.)

OBJECT .MODULE COMBINATION

If a program consists of one or more
object modules, the user has two options
(see Figure 3):

• He can statically combine two or more
object modules into one object module,
prior to program execution, by using
the linkage editor.

• He can let the dynamic loader automat­
ically link the separate object modules
as part of the loading process.

Static linking can be used for object
module build-up during program development,
and it can be used to improve program run­
ning time, if there are many implicitly
linked object modules in a program. (The
improved running time is achieved because
only a single module need be located and
loaded if the modules are previously combi­
ned into one module. If they are not so
combined, each module has to be individual­
ly located and loaded.) In most cases,
however, dynamic linking during execution
is satisfactory, and the user does not
noticeably improve running time by linkage
editor processing.

Program Libraries

Module linking and editing by the link­
age editor is a library-to-library process
(Figure 4). Program libraries in TSS/360
are partitioned data sets whose members
include object modules. Each entry point
and non-common control section name in the
module is an alias for the member (module)
name.

TSS/360 has four library categories:

System Library (SYSLIB): This is the
source of all standard, normally available,
system routines that are accessible to all
users.

User Library: Each user is automatically
assigned a private library each time he
issues a LOGON command. He is not required
to define his user library. The user
library is often used to contain checked­
out programs (object modules) that the user
frequently runs.

Job Libraries: The user may, by use of
DDEF or CDD commands and macro instructions
(with the JOBLIB operand), define a number
of additional libraries during a given
task. To facilitate orderly maintenance of
programs within various job libraries, the
POD? command is available. POD? enables
the user to obtain on SYSOUT a list of
member names (and optionally the alias
names and other member-oriented data) of
individual members of cataloged VPAM data
sets.

The three categories above form a pro­
gram library list that is searched automat­
ically (unless otherwise specified) in the
following order, to resolve external
ref erences :

1. Job libraries, in the reverse order of
definitions (that is, the last one
defined is searched first)

2. User library

3. System library

Section 1: Introduction 9

Linkage
Editing
(Optional)

1. DDfF

Object
Modules

1.

2.

3.

4.

Object Module

Object Modules

DDEF

lNK

Parameters

Control Statement,

List

2. Program
--I Data Set

(Containing
Control
Statements)

Program
Loading and
Execution

User
Virtual
Storage

I Explicit and
I Implicit Linkage
I Requirements
I During Execution

Input
Data
Sets

Output
Data
Sets

User
Catalog

Figure 3. Object Module Combination in TSS/360

other User-Defined Libraries: The user may
also define new or existing libraries that
are not job libraries (he simply omits the
JOBLIB operand when he issues the DDEF com­
mand or macro). Such libraries may be
designated as the source of input modules
for the linkage editor, or as the destina­
tion of the output. An advantage of using
this kind of library is that, unlike a job
library, it is not put on the user's pro­
gram library list and is not automatically
searched for modules that might resolve
external references; the linkage editor
user can be sure that only the modules he
explicitly specifies from a library will be
included in the output. Another charac­
teristic of this kind of library is that
its member modules cannot be loaded for
execution. When including a module from
this kind of library, the linkage editor
user must ensure that none of the input
module's aliases (entry point and control

10

section names) duplicate aliases in other
input modules.

Managing Libraries

The linkage editor INCLUDE statement
allows the user to specify the use of any
library, except SYSLIB, in the program
library list; or he may specify any other
library for which a DDEF command (with no
JOBLIB) or macro instruction has been
issued. If the second option is selected,
only the specified library is used as inpw
until either another INCLUDE statement or
an END statement is given. However, the
linkage editor END statement always causes
the entire program library list to be
searched to satisfy any remaining unre­
solved references (except those references
specifically excluded). References
resolved from the system library will not
cause inclusion of modules in the output

Object Module A

PMD

TXT

ISD

Object Module B Object Module D

PMD \ LINKAGE
PMD 1 No. E.", i. EDITOR

Old Library Entries TXT
TXT

Different library

ISD
Composite ISD

Object Module C

PMD J
TXT

ISD

Figure 4. Linkage Editor Processing of Object Modules

module, but will be left for resolution by
the dynamic loader.

The user has an option of placing the
output from the linkage editor (program
module D in Figure 4) in the library cur­
rently at the top of the program library
list, or in a library he specifies in the
LNK command (refer to Section 4, -How to
Specify Linkage Editor processing·). A
program library may not contain more than
one occurrence of any external symbcl;
hence the output module may not be placed
into any of the libraries from which its
parts (the input modules> were obtained,
unless during the linkage editing those
external names were renamed by a RENAME
linkage editor control statement. Similar­
ly, if the user specifies an alternate
library, he must ensure (possibly by renam­
ing) that none of the aliases in the output
module are identical to aliases in the
existing alternate library.

STATIC LINKING: THE LINKAGE EDITOR

The linkage editor INCLUDE statement,
described in Section 3, enables the user to
link one or more separately generated
object modules into one module. z;" linkage
edi tor run always produces one out.put
object module. The user therefore combines
modules by including them in the output
object module.

The INCLUDE statement has three forms,
allowing the user to either include a par­
ticular module (form-i), or include whatev­
er module satisfies unresolved external
references (forms-2 and -3).

Form-1: Include a specified module,
optionally from a specified library;
otherwise from a search of the libraries
on the program library list.

Form-2: Search a specified library and
include modules found in it that satisfy
any currently unresolved external
references in the output module.

For~3: Search a specified library and
include modules found in it that satisfy
any unresolved external references,
except for a specified list of unre­
solved external references that are not
to be resolved.

During execution of forrn-2 and -3
INCLUDE statements, any unresolved external
references in newly included modules will
cause the same library to be searched again
for modules containing exterpal definitions
that satisfy the unresolved references.
New modules included by this search may in
turn have unresolved external symbols,
causing another search. Searches continue
until no further unresolved external
references can be resolved.

Section 1: Introduction 11

1. During a search to satisfy unresolved
references, if a module contains a
name that matches a reference not to
be resolved, the entire module is
rejected. This rejection occurs
whether or not the module could satis­
fy other unresolved references.
However. such a rejection has no
effect on the actions of the dynamic
loader in resolving references.

2. The linkage editor will not link two
FORTRAN main programs. An attempt to
include more than one FORTRAN main
program in the output module will
result in a major-error condition,
even where such an attempt is merely
the by-product of an automatic search.

3. If a FORTRAN program requires a BLOCK
DATA SUbprogram, this subprogram must
be included prior to any module con­
taining a common block for the same
areas defined in the BLOCK DATA
subprograms.

Appearance of the END statement in link­
age editor processing triggers a final
search of the entire program library list.
to satisfy any unresolved external
references within the limitations of the
above notes. Those resolvable from SYSLIB
are not included, as they will be linked
dynamically by the loader. They are
listed, as are any still unresolved extern­
al references.

During module linking, those control
sections within modules to be linked whose
names duplicate entry point names already
in the output object module are rejected.
Unnamed CSECTs and unnamed common control
sections are not automatically rejected.
Figure 5 summarizes the linkage editor's
rejection actions for control sections.

Input control sections are not rejected
if they contain entry point names that
duplicate entry point names already in the
output module; however, the DEFs for the
dUplicate entry point names are removed.

The linkage editor checks certain attri­
butes in cases where automatic control sec­
tion rejection has occurred. Automatic
rejection of a control section that may
lead to trouble at execution time evokes a
diagnostic message, warning the user of a
possible problem. Figure 6 summarizes the
conditions that result in such a message.

12

r---------------~------------------------,
I ILinkage Editor I
Icontrol SectionlRejection Action I
.---------------+-------------------------~
INamed CSECTs. ISubject to automatic con-I
IPSECTs, or Itrol section rejection if I
I Common Iname duplicates a control I
I Isection name or any other I
I I entry point name that is I
I lalready present in the I
I loutput module. I
I I I
IUnnamed CSECTS IGiven a unique numeric I
I lidentification when pro- I
I Icessed by the linkage I
I I editor; not subject to I
I lautomatic rejection. I
I I I
IUnnamed (blank) I Telescoped into one blank I
I Common ICOMMON whose size is I
I lequal to the largest I
I Iblank COMMON input. and I
I Iwhose content (if any) isl
I lthat of the first blank I
I ICOMMON input; not subject I
I Ito automatic rejection. I L _______________ ~ ________________________ _J

Figure 5. l.utomatic Control Section
Hejection by the Linkage Editor

r-----------------T-----------------------,
IAttribute of IMessage Issued If I
IInput Control Ian Accepted Control I
ISection That ISection Had Attribute I
IWas Rejected lof I
.-----------------+-----------------------1
I Common I Non-common I
I Non-common I Common I
I Read-only I Non-read-only I
I Non-read-only I Read-only I
I Privileged I Nonprivileged I L _________________ ~ ______________________ _J

Figure 6. Conditions for Diagnostic Mes­
sages on Control Section
Rejection

DYNAMIC LINKING: THE DYNAMIC LOADER

The dynamic loader, a privileged system
program, loads and unloads object modules
and performs the related functions of link­
ing and unlinking the modules of a program.
The user controls the activities of the
dynamic loader with these commands and
macro instructions:

• LOAD command (implicit linking)

• LOAD macro instruction (implicit or
explicit linking)

• RUN command (implicit linking for load­
and-run form)

• CALL command (implicit linking)

• CALL macro instruction (implicit or
explicit linking)

• UNLOAD command (implicit or explicit
unlinking)

• DELETE macro instruction (explicit
unlinking)

Refer to Command System Users' Guide for
details on the LOAD, CALL, RUN and UNLOAD
commands. refer to Assembler User Macro
Instructions for explanations of the LOAD,
CALL and DELETE macro instructions.

The LOAD command, the CALL command, and
the load-and-run form of the RUN command
are normally used in connection with the
initial or main module of a program. These
commands request initiation of the loading
process. also, the CALL and RUN commands
initiate execution of the program. The
module named in these commands is explicit­
ly loaded, and hence can be explicitly
unloaded by the UNLOAD command or the
DELETE macro instruction. All modules
implicitly linked to the module being
explicitly unloaded are also unloaded, if
they are no longer needed in the user's
task.

The LOAD and CALL macro instructions can
be used for either implicit or explicit
linkage. Both request initiation of the
loading process. the CALL macro instruction
also initiates execution of the called
module. Modules explicitly linked by LOAD
and CALL can be explicitly unlinked by the
DELETE macro instruction or the UNLOAD com­
mand. The CALL macro instruction also may
be used for implicit linkage. Modules
implicitly linked are unloaded when higher­
order explicitly linked modules are
unloaded.

The loading process is divided into two
distinct phases: the virtual storage allo­
cation phase and the text page address con­
stant (adcon> relocation phase. '1~he allo­
cation phase is executed in response to a
request for loading; text page adeon relo­
cation is effected as the page to be relo­
cated is referenced by a page executing in
main storage.

Virtual Storage Allocation

The dynamic loader first checks to see
if the module identified by the symbol in
the LOAD, CALL, etc., command has already
been loaded. If it has, no allocation is
necessary, since the module defiruLng the
symbol must already be a part of the task.
In this case, the loader merely fills in
the V-value and R-value in the adc:::on group.
If the symbol is not found, a library
search is initiated. If the symbol is

still unresolved, it cannot be defined for
the task, and an error condition exists.

If the symbol is found in a library, the
defining module's PMD is obtained and each
control section name within the module is
checked. Those control sections whose
names either duplicate entry point names
already known in the current task, or whose
names are illegal, are rejected. Control
section rejection by the loader differs
from the linkage editor's rejection in the
treatment of common control sections. The
loader will accept the first unnamed common
control section it encounters and reject
all subsequent unnamed common control sec­
tions. Figure 7 summarizes the dynamic
loader's rejection action.

Page entries are set up for each of the
nonrejected control section's text pages.
The external library storage address is
recorded with each page table entry, and
each page is marked "unavailable." During
execution, a reference to any byte on the
page will cause an interrupt. This inter­
rupt causes the page to be transferred from
the external library into the user's virtu­
al storage at the allocated location.

At the time the page tables are set up,
the dynamic loader notes each page that
contains adcons. Referencing during execu­
tion of the noted pages causes the system
action described below, under "Relocation.-

r---------------T-------------------------l
IControl SectionlLoader Rejection Action I
t---------------+------------------------~
INamed CSECTs, ISubject to automatic con-i
IPSECTs, or Itrol section rejection if I
Inamed Common Iname duplicates a control I
I I section name or any other I
I lentry point name already I
I Ipresent in the task. I
I I I
IUnnamed CSECTs IGiven a unique internal I
I Inumeric identification I
I I when processed by the I
I Idynamic loader; it is not I
I Isubject to automatic I
I I rejection. I
I I I
IUnnamed (blank) IGiven a non-unique inter-I
I Common Inal identification when I
I I processed by the dynamic I
I Iloader. it is subject to I
I 'automatic rejection; I
I lafter one unnamed common I
I \control section has been I
I Iprocessed, any subse- I
I I quently loaded will be ,
I ,assigned the same name ,
I land therefore rejected. I L _______________ ~ _________________________ J

Figure 7. Automatic Control Section
Rejection by the Dynamic Loader

Section 1: Introduction 13

The values of all entry points in the
nonrejected control sections of the module
are computed. Relocatable DEFs are com­
puted by adding to the DEF value the base
address assigned to the containing control
section. Absolute DEFs require no computa­
tion. Complex DEFs are computed last.
REFs are processed by searching for a DEF
of the same name. If the DEF name to which
a REF refers is not found, the entire load­
ing process is initiated to load a module
that will define the REF. Such a module­
loading cascade will proceed until all REFs
in all modules have either been satisfied
or been marked undefinable.

Note that it is quite possible for the
dynamic loader to satisfy some REF by
locating an entry point in some external
library, only to have that entry point lost
in the allocation process because a control
section is rejected.

Relocation

Whenever a page-unavailable interruption
occurs, the page is moved into real
storage. If the page was marked as having
adcons, the dynamic loader computes the
value of each adcon on the page. The pro­
cessing of adcons will always involve the
application of an REF value to some portion
of the text on the page. There are three
possible applications:

1. Add the V-value of the REF to the text
value.

2. Subtract the V-value of the REF from
the text value.

3. Store the R-value of the REF into the
text.

At the time this relocation occurs, all
REF values will have been computed during
the allocation phase of the loader. When
all ad cons have been relocated, the dynamic
loader returns control to the task monitor
and eventually to the point in virtual
storage where the relocated page was ori­
ginally referenced.

Sequencing of Modules: Linkage Editor and
Dynamic Loader

The user should be aware that the
linkage editor and the dynamic loader use
different methods of sequencing the modules
to be included in an object program. with
the result that, where control sections or
entry points are duplicated (and, hence,
only the first is retained), the object
programs may be different.

This difference is best explained by
examining a sample module group and the
various module sequences that would result
from linkage editor processing and dynamic
loader processing. This group is illus­
trated in Figure 8.

Linkage Editor: The linkage editor, in
processing a module specified in an INCLUDE
statement, resolves all of the module's
primary references first, then its secon­
dary references, then its tertiary
references, and so on, until all possible
references (except, of course, those from
SYSLIB) are resolved. Thus, the order of
module inclusion produced by the linkage
editor in processing an INCLUDE A statement
for the module group shown in Figure 8
would be:

ABC D E F G

r---,
IMain Program Primary References Secondary References Tertiary References I
I I
I Modul e A Module B Module D Modul e G I
I r---------, r---------, r---------, r---------, I
I I REF B I I DEF B I I DEF D I I DEF G I I
I I REF C I I REF D I I REF G I l _________ J I
I l _________ J I REF E I I r-------l I I
I l _________ J I I CSECT X II
I I l _______ J I
I l _________ J

I
I
I
I
I
I
I
I
I

Module C
r---------,
IDEF C I
IREF F I
I r-------,I
IICSECT XII I l _______ J I
l _________ J

Module E
r---------,
IDEF E I l _________ J

Module F
r---------,
IDEF F I I l _________ J

l ___ J

Figure 8. Sample Module Group

14

Note that CSECT X in Module D would be
rejected because of the prior occurrence of
CSECT X in Module C.

Dynamic Loader: The dynamic loader, in
processing a module, will completely
resolve a reference before attempting to
resolve the next reference within the same
module. complete resolution consists of
resolving all references encountered as a
result of including a module to satisfy a
previous reference. Thus, in processing a
LOAD A s-catement for the module group shown
in Figure 8, the dynamic loader would first
encounter the REF to Module B. In proces­
Sing B, the REF to D would be encountered
and resolved by including D. The REF to G
in Module D in turn causes G to be,
included. Since G contains no REFs and D
contains no unresolved REFS, the loader
returns to processing B, where it encoun­
ters the REF for E, etc. Thus, the order
of the modules produced by the dynamic
loader would be: A B D G E C F

Note that CSECT X in Module C would be
rejected because of the prior OCCl;Lrrence of
CSECT X in Module D. '

SUMMARY OF LINKAGE EDITOR FUNCTIONS

The linkage editor will perform these
functions:

1. Two or more object modules, ",hich may
have been created by different lan­
guage processors, can be retrieved
from defined libraries and statically
linked together to form one object
module (see Figure 9). (See the
INCLUDE statement.) If desired, this
module may be retained and used
repeatedly. A statically linked pro­
gram requires less dynamic loader pro­
ceSSing time, at the cost of linkage
editor processing time.

2. A module can be moved from one library
to another, being retrieved from the
library indicated in an INCUJDE state­
ment and placed in the library indi­
cated in the LNK command parameters.

3. Control sections within a module may
be replaced, deleted, or renamed.

Automatic rejection of control sec­
tions occurs when more than one con­
trol section has the same name (the
INCLUDE, RENAME statements).

4. Entry point names and external
references within a module may be
renamed (the RENAME statement).

5. Entry point names may be deleted i'rom
a module (the RENAME statement).

6. The attributes of control sections may
be changed (the TRAITS statement).

7. Two or more control sections of a
object module may be combined into a
single control section, thus reducing
the number of external and virtual
storage pages required and reducing
paging activity during execution (the
COMBINE statement).

8. A composite ISD may be prepared for
the output module, as a user option,
to facilitate use of PCS.

9. Blank (unnamed) common control sec­
tions generated by other language pro­
cessors (FORTRAN, assembler, etc.)
are automatically collected, and a
virtual storage area equivalent to the
largest blank common area is provided
within the output module.

10. Unresolved external references, not
specifically excluded, are satisfied
by an automatic search of the job
libraries (the END statement).

11. An optional PHD listing is prepared
(parameters of the LNK command).

12. A list of all outstanding unresolved
external references is prepared, dis­
tinguishing those that will be
resolved from SYSLIB from those that
need resolution from the JOBLIBs and
USERLIB in use when the module is
loaded.

13. The standard entry point for each com­
ponent input module will be retained
in the linked output module as an
auxiliary entry point. (The user will
be warned when this is not possible.)

Section 1: Introduction 15

Library

Object Module D

Control Section 1
Control Section 2
Control Section 3

Object Module E

Control Section A
Control Section B
CIS C ontro ection

rLinkage Editor
Control

Statements

Output Object

~ Module DE
Linkage

Control Section (1+2+3) Editor
Processor Control Section A

Control Section B
Control Section C

Control Sections 1, 2, and 3 of Object Module D have been combined into a single Control Section (1 +Z+3}
and Object Modules D and E are linked together to form the Output Object Module DE.

Library

Figure 9. Linkage Editor Processing, Linking Modules, and Combining Control Sections

16

This section describes the gen,eral for­
mat for linkage editor control st':ltements,
explains the notation used in their
description, and summarizes the record for­
mat information applicable for bo'th termin­
al and batch initiation of linkage editor
processing.

GENERAL CONTROL STATEMENT FORMAT

All linkage editor control statements
have the format:

r------------T----------------------------,
\ Operation \ Operand I
~-----------+----------------------------~ I statement \ one or more operands; I
!name \field may be blank I L ____________ ~ ____________________________ J

OPERATION FIELD

The operation field contains one of the
following linkage editor'control statement
names: INCLUDE. RENAME, TRAITS, COMBINE,
or END.

OPERAND FIELD

The operand field names the elements to
be affected by the control statement and,
where appropriate, supplies values that
further specify the action to be taken.
All linkage editor control statement ope­
rands are positional; keywords al'e not
used.

Operand Name

The abbreviations used for the operand
names permissible in linkage edi t:or control
statements are:

csname

module

control section namE~

name by which module can be
retrieved

ddname -- symbolic name of a DDEF
command

extref external reference

epname entry point name

Coded Operand Values

Operand values are entered as a string
of from one to eight alphameric characters,

the first of which must be alphabetic. The
values to be entered are identified in the
format illustration provided in Section 3
for each control statement.

Commas, Parentheses, Minus Sign

Commas are used to separate operands.
Parentheses are used to enclose sublists
within operands. Commas and parentheses
(unlike the metasymbols described below>
must be written where shown on the format
illustrations. Similarly, the minus sign
(see INCLUDE statement, form-3) must be
written by the user.

Blanks

The operand field of the linkage editor
END statement is always blank. For other
control statements, if the operand field is
blank, the linkage editor will' not process
the control statement. Blanks may not
appear within the operand field except to
terminate the control statement. The key­
board tab is treated as one blank.

FORMAT ILLUSTRATIONS

Linkage editor control statement formats
are illustrated using the following
conventions:

Upper and Lower Case Conventions

Words appearing in upper case are values
to be entered exactly as shown. Words
appearing in lower case are names of values
that the user will supply.

Metasymbols Conventions

The symbols listed below are used in the
control statement format illustrations to
show how and when to enter a particular
operand.

[] Brackets are used to denote options;
anything enclosed within brackets may
be entered or defaulted. For example,

[epnamea]

means that the user may enter a second
entry point name or not.

{} Braces are used to group the alterna­
tive selections available in the
operand fields. The alternatives are
stacked (to show they are alterna­
tives) and the group is enclosed in

Section 2: Format of Linkage Editor Control Statements 17

braces to indicate that one selection
is to be made from the group. For
example,

{~}
means that the user can enter A or B
or C.

Three dots indicate that the preceding
may be entered one or more times in
succession. For example, in

COMBINE csname, •••

the three dots indicate that a series
of control sections that are to be
combined can be specified and that the
control section names are separated by
commas. No trailing comma is written
after the last control section name:

COMBINE READA,READB,READC

KEYBOARD FORMAT

CHARACTER SETS

KA and KB can be used to specify the
character set to be used during keyboard
input. With KA, the user indicates he
wishes to use the ful~ EBCDIC character
set. With KE, the user specifies that the
lowercase characters (a-z and $ # i) he
translated into their upper-case equiva­
lents (A-Z and! • ¢).

CONTROL STATEMENT BOUNDARIES

The operation field must start at the
first nonblank, nontab character of a line
entered on the keyboard. It must be
separated from the operand field by at
least one blank position (the tab may be
used. if desired). The operand field may
begin at any position following the opera­
tion field, as long as at least one blank
(or tab) separates the fields.

The total length of a control statement,
including the operation field, separating
blanks, and operand field, must not exceed
256 characters. The RETURN key denotes the
end of the statement.

CONTINUATION LINES

Each control statement entered from the
terminal keyboard must start on a new line.

18

A one-line control statement is terminated
by pressing the RETURN key. If a control
statement requires more than one line, the
hyphen (-) key must be pressed once at the
end of the line, just before the RETURN key
is pressed, to signal that the next line is
a continuation. The statement is then
assumed to continue at the first nonblank,
nontab character of the statement on the
next line.

CARD FORMAT

CHARACTER SETS

CA and CB can be used to specify the
character set used during 1056 card reader
input. With CA the user indicates he
wishes to convert card input from 1057 card
punch code to EBCDIC. with CB the user
specifies conversion from 029 keypunch code
to EBCDIC.

CONTROL STATEMENT BOUNDARIES

The operation field may begin in any
column. The operation field must be
separated from the operand field by at
least one blank position. The operand
field may begin anywhere following the
operation field, as long as at least one
blank separates the fields; it may extend
to column 71. The total length of a con­
trol statement, including the operation
field, separating blanks, and operand
fields, must not exceed 256 characters,
even if continued.

CONTINUATION CARDS

When it is necessary to use continuation
cards, these rules apply:

1. Enter a character (not blank, and not
part of the statement coding) in
column 72 of the statement line. All
characters through column 71 are con­
sidered part of the statement.

2. Continue the statement on the next
line, starting in any column.

3. When more than one additional line is
needed, each line to be continued must
have a character (not blank, and not
part of the statement coding) entered
in column 12. The number of continua­
tion lines is limited only by the 256-
character statement-length
restriction.

In this section. the purpose, format,
plal!'f!ment, and cautions are described for
each linkage editor control statement.
Examples of each control statement are also
given.

The LNK conunand and its operands. a sum­
mary table (Table 2, KControlling the Link­
age EditorK). as well as examples of link­
age editor use, are in the next section,
KHow to Specify Linxage Editor Processing.-

INCLUDE

The INCLUDE statement is fundamental to
linkage editor processing. Object modules,
each of which may contain several control
sections and be the products of different
language processors, can be linked by the
Il1CLUDE statement to form a single output
module.

Three forms of the INCLUDE statement are
available. These forms are discussed
below. Regarding INCLUDE statement usage.
see also ·Static Link:i.ng: The Linkage Edi­
tor,K in Section 1.

INCLUDE (FORM-i)

The form-l INCLUDE statement is used to
obtain object modules from a library and
place them in the output module. linking
them to any modules that have previously
been included.

,-------T-------------------·-------------,
I Operation I Operand I
~---------+-------------------------------1
IINCLUDE I [ddname] (module name[, •••]) I L __ . _______ .1. ________________________________ J

ddname
specifies the data definition name
(not the data set name) of the library
to be searched. The library must be
on the current program library list,
or be otherwise defined by a DDEF or
CDD command or macro instruction in
the current task. If no library
ddname is specified, the libraries on
the program library list a.re searched,
in order, for the named modules.

module name
specifies the object module to be
included. The module can be identi­
fied by its member name, by the name
of any non-common control section it

SECTION 3: LINKAGB EDITOR CONTROL STATEMENTS

contains, or by the name of a symbol
defined in an ENTRY statement in the
module. More than one module name may
be specified.

Placement: A form-1 INCLUDE statement can
be placed before. between, or after other
control statements, except END (it may not
be placed after END).

CAUTIONS: The input modules explicitly
named will be placed in the output module
in the order specified in the INCLUDE sta­
tement. As each control section of each
input module is processed. its name is
checked. A control section (other than
blank common) will be rejected if it has
the same name as a control section name or
any other entry point name previously
included. Internal references to a parti­
cular byte of the rejected section will
then refer to the same byte of the retained
section. This rejection process does not
apply to blank common sections.

INCLUDE (FORM-2)

The form-2 INCLUDE statement instructs
the linkage editor to scan a specified
library, except SYSLIB, and to include from
it other object modules whose external
definitions satisfy unresolved external
references in the (as yet incomplete) out­
put module. If one of the newly included
modules contains unresolved external
references, the specified library is again
scanned for modules that resolve these
names. The scanning continues until no new
modules can be included.

r-------~-------------------------------,
I Operation I operand I
~---------+----------------------------~
I INCLUDE I ddname I l-________ L--____________________________ -l

ddname
specifies the data definition name
(not the data set name) of the library
to be searched. The library must be
on the current program library list,
or be otherwise described by a DDEF or
CDD command or macro instruction in
the current task.

Placement: Since a module must already be
included in the output module, at least one i

form-l INCLUDE statement must have preceded
any form-2 INCLUDE statement.

Section 3: Linkage Editor Control Statements 19

Table 2. controlling the Linkage Editor

r-----------------~---------T----------~------------T--------r----------T------------r---------T---------,
I I Name of I Whether I Program I I I I ,. I
, TSS/360 user ,Output I Control I Library in I Version I Whether I Whether I Where to I L~ne I
, issues LNK command I object I Statements I Which to I 1D I to produce I to produce I P~t PMD I Number, I
I specifYlng: I Module I Prestored I Place OUtput. I I ISD I PMD L~st1ng I L~st~ng I Increment I

I ~---------+----------t-------------t--------+----------t------------+---------t---------i
I Default: I Must I Not I Latest library I System- I Produce I Don't produce I Conv: Storel I
I I specify I prestored I created I provided I ISD , PMD listing INone: prin~ 100,100 I
~-----------------~--T------~----------~-------T-----~--------L----------t------------L---------L---------~
I Then issues any I , , I
I of the control I I Placing the I I
I statements below: I Also specifying: I control statement:. lAs a result, the linkage editor: I
~--------------------t-------------------------t-------------------------t-------------------------------~
I COMBINE INames of control sectionslAhead of a form-I INCLUDEIAt the next form-I INCLUDE, cam-I
I Ito be combined. 'which will specify the Ibines all control sections named I
I I ,object module containinq linto the first control section I
I I Ithe control sections. Inamed in the COMBINE statement. I
~--------------------t-------------------------+-------------------------t-------------------------------~
I RENAME IOld and new external IAhead of a form-I INCLUDEIChanges or deletes specified I
I I references, entry point Iwhich will specify objectlnames in first object module I
I I names, control section. Imodule containing names. lnamed in next form-1 INCLUDE. I
~--------------------t-------------------------+-------------------------t--------------------------------i I TRAITS IName of control section IAhead of a form-I INCLUDElchanges attributes of specified I
I land new attributes. Iwhich will specify objectlcontrol section in first module I
I I Icontaining control sec- \named in next form+l INCLUDE. I
I I ltion. I I
~--------------------+-------------------------+-------------------------t--------------------------------i
I INCLUDE (form-l) IThe ddname of a program ,Before END. 'Causes the specified object mod-I
I ,library and object module I lule to be included in the output I
I I in it. .1 'obj ect module and any stacked I
I , I ,COMBINE, RENAME, and TRAITS I
I ! I Istatements to be processed. I
r--------------------t-------------------------t-------------------------t--------------------------------~
, INCLUDE (form-2) 'The ddname of a program IAfter at least one pre- ISearches library, includes in I
I ,library to be searched. ,vious form-l INCLUDE. loutput module all modules I
I I , Ireferenced by previously I
I I I lincluded modules. ,
~--------------------t-------------------------t-------------------------+--------------------------------~
, INCLUDE (form-3) IThe ddname of a program IAfter at least one pre- ISearches library, includes in I
I Ilibrary followed by a Ivious form-l INCLUDE. loutput module all modules refer-I
I Iminus sign; names of ex- I ,enced by previously included I
I Iternal references not to I I modules, except those containing I
I ,be resolved., Ithe external references ,
I I I I specified. I
~--------------------t-------------------------t-------------------------+--------------------------------~
I END I Blank. 'Last. ISearches all libraries on the ,
, I , ,current program library list fori
I I I ,modules satisfying unresolved ,
I , , treferences, includes modules in I
I I I loutput module. Furnishes mes- I
, I , ,sage listing unresolved I
, I , Ireferences and those resolvable,
, , I lin SYSLIB. I
~--------------------~-------------------------~-------------------------~--------------------------------~
I*Placement Rules: I
, 1. A COMBINE, TRAITS, or RENAME statement may precede any other COMBINE, TRAITS, or RENAME statement, I
I a form-l INCLUDE, or END (it will not be processed if it is stacked when the END statement occurs). I
I It cannot be immediately followed by a form-2 or -3 INCLUDE. I
, 2. A form-l INCLUDE can be placed before, between, or after any other statement except END (it may not I
I be placed after END). I
I 3. A form-2 or -3 INCLUDE must have been immediately preceded by a form-I, -2, or -3 INCLUDE, and at I
I least one previous form-l INCLUDE must have occurred. I
I 4. The END statement must be last. , l __ -1

20

CAUTIONS: If a control section is encoun­
tered that has the same name as a control
section name or any other entry point name
previously included in the output module,
it is rejected. Internal references to a
particular byte of the rejected sHction
will then refer to the same byte of the
retained section. This does not apply to
unnamed CSECTs.

The order in which external references
are resolved by the linkage editor is not
the same as that of the dynamic loader. It
is therefore possible that the modules
implicitly linked by the linkage editor
will differ from those that the loader
would link.

INCLUDE (FORM-3)

The forror3 INCLUDE statement is used to
direct the linkage editor to scan a speci­
fied library, other than SYSLIB, and
resolve certain external references, but
not others. The user specifies, in the
INr.LUDE statement, the external references
he does not want resolved: all others are
resolved if possible. If one of the newly
included modules contains unresolved
external references whose resolution is not
excluded by the user, the specified library
is again scanned for modules that resolve
those names. This process continues until
no new modules can be included.

The excluded names are presumably to be
resolved by subsequent INCLUDE statements.
If not. they will remain unresolved in the
output object module. and be resolved by
the dynamic loader when the output program
module is loaded.

Note: Although the automatic search at the
end of linkage editor processing will not
resolve an excluded name. the search caused
by a form-l INCLUDE with no librar:l' speci­
fied will resolve it, if the name is in the
program library list and the form-l INCLUDE
follows the form-3 INCLUDE.

r--------~---------------------·--------l

I Operation I Operand I
t---------+----------------------.--------~
I INCLUDE Iddname-(extrefl ••••]) I l _________ i-_____________________________ J

ddname
specifies the data definition name
(not the data set name) of the library
to be searched. The library must be
on the current program library list,
or be otherwise described by Cl DDEF or
CDD command or macro instruction in
the current task.

minus sign
specifies that this is a form-0 3

INCLUDE statement, not a form-l
INCLUDE.

extref
specifies the external reference that
is not to be resolved in the search.
More than one external reference may
be specified.

Placement: Since a module must already be
included in the output module, at least one
form-l INCLUDE statement must precede any
form-3 INCLUDE statement.

CAUTION: If a control section is encoun­
tered that has thH same name as a control
section name or any other entry point name
previously included. it is rejected.
Internal references to a particular byte of
the rejected section will then refer to the
same byte of the retained section. Simi­
larly, all but the largest blank common
section will be rejected. The internal
references will refer to the first blank
cornmon encountered (even if it was
rejected).

EXAMPLE OF INCLUDE STATEMENTS

This example describes the action of the
linkage editor in response to these control
statements:

INCLUDE LIBA{MA,MB)
INCLUDE LIBF
INCLUDE MATH-(COS,SQRT)
END

(form-l)
Cform-2)
(form-3)

Figure 10 illustrates the contents of
three libraries with ddnames LIBA (object
modules MA and MB), LIBF (object modules MF
and MG), and MATH (object modules TRIG and
ARITH) .

INCLUDE LIBA(MA,MB) causes modules MA
and ME to be placed in the output module.
These modules have five external references
that must be resolved by other modules:
ALPHA, BETA, GAMMA, SIN, and COS.

INCLUDE LIBF causes the linkage editor
to search library LIBF for modules contain­
ing the unresolved references. Although
the module MF has entry point names ALPHA
and BETA, only ALPHA can be resolved (by
adding control section N4 to the output
module). Control section N1 is rejected
because it has the same name as a control
section already in the output module.
(BETA is still unresolved, and SQRT has
been added to the list of unresolved
references.)

CAUTION: Any internal references in this
library to the rejected control section now
refer to the same byte in the retained con­
trol section -- the reference is not to a

Section 3: Linkage Editor Control Statements 21

LlBA MA

Control Entry I External

Section Point Reference
Nome Nome Nome

Nl El
N2 E2 ALPHA

BETA
GAMMA

N3 E3 SIN

LlBF MF

Control
I

Entry External
Section Point Reference

Nome ! Name Name

Nl i BETA
N4

j
E4 SQRT

I ALPHA

MATH TRIG
f----

i Entry I External Control
Section ~ Point , Reference
Name Name : Name

---~ -----~---~-------+----~.-------
SINE I SIN '

COS :

MB -.
Control Entry External
Section Point Reference
Nome Nome Name

N6 E6 COS

I
MG

Control Entry
----,--

External I
Section Point Reference
Name Name Nome

c----
N) E5

GAMMA
N8

------------~------

Control
Section
Nome

E8

ARITH

Point Reference
Name Name

~-:~-~xternal

~--------------+I------------ --------~ SQRT I SQRT
CUBE I CUBE I L-_____ ~ __ ___

Figure 10. Contents of Libraries LIBA, LIBF, and MATH

symbol but simply to an address relative to
the beginning of the control section. For
example, a reference in control section N4
to BYTE12 of Nl, where BYTE12 is the
internal name of the 12th byte of that con­
trol section, becomes a reference to the
12th byte of control section Nl from object
module MA.

Since object module MG has the entry
point name GAMMA, the module, consisting of
control sections N5 and NS, is added to the
output module, and GAMMA is removed from
the list of unresolved references.

INCLUDE MATH-(COS,SQRT) causes the link­
age editor to search the library MATH for
all unresolved references except cos and
SQRT. Only one other unresolved reference
is in the MATH library (SIN in the TRIG
program module>, but lontrol section SINE
is rejected because COS, an entry point
name within it, has been explicitly
excluded.

At this point, the output object module
contains these control sections:

From LIBA:
From LIBF:
From MATH:

N1, N2, N3, N6
Nil, N5, N8
none

The unresolved references are:

BETA, SIN, COS, SQRT

Following the END statement, the linkage
editor searches the program library list

22

for BETA and SIN, the remaining unresolved
references that have not been explicitly
excluded. (No search is made in the other
job libraries or the user library to
resolve COS and SQRT.) At the top of the
program library list are the job libraries
defined by the INCLUDE statements in the
example. If any other job libraries have
been defined within this task, they will
also be searched for the unresolved
references (the last-defined is searched
first). If a module containing BETA or SIN
as an entry point name is found in any job
library, that module is added to the output
module. Next, the user library is
searched. Assuming, in this example, that
BETA was found in the user library; that
the module containing it had only one con­
trol section; that the name of the control
section is J4; the output module will be as
described in Figure 11.

The linkage editor will determine which
of the still unresolved references can be
resolved from the standard system library
(SYSLIB) and will list all those external
names resolvable from SYSLIB in a diagnost­
ic message. These references will be
resolved before the program is executed;
the dynamic loader will load the modules
from SYSLIB during the loading of the
program.

The linkage editor will also print a
list of any unresolved references which are
not in the system library and which, there­
fore, will not be resolved by the loader.

r------------~-----------~------------,
I Control I Entry I Unresolved J
Isection Name I point Name I References I
.-------------+------------+------------~
I Nl I El I I
I N2 I E2 I I
I N3 I E3 I SIN I
I N6 I E6 I COS I
I N4 I E4 I SQRT I
I I ALPHA I I
I N5 I E5 I I
I I GAMMA I I
I N8 I E8 I I
I J4 I BETA I I L ____________ .L ___________ -.L _____ . _______ J

Figure 11. Resultant Output Object Module

RENAME

The RENAME statement provides a mealLS of
deleting or renaming control sections and
entry point names, and of renaminq- external
references that are to be included in the
output object module.

r---------~------------------------------,
I Operation I Operand I
• ---------+---------------------.---------~
i I extref:1. (extref2) I
I RENAME I epname:1. ((epname2)] (,] I
I I csname:1. (csname2)] I L _________ .L-_____________________________ J

extref:1.
specifies an external reference that
is to be renamed.

(·.xtref,a
specifies the new name for extref:1.'

epnarnl':-'J
speci 4es an entry point that is to be
renaJ«.ed or deleted.

epname2

specifies the new name for epname1'
If epname:1. is written, but epname,a is
not, the entry point name specified by
epname1 will not appear in the output
module.

csname:1.
specifies a control section that is to
be renamed or deleted.

csname 2

specifies the new name for csname:1.'
If csname:1. is written, but csname,a is
not, the control section specified by
csname:1. will not appear in the output
module.

Placement: RENAME statements must be
placed ahead of fo~1 INCLUDE statements.
RENAME acts only upon the first module in
the operand of the next form-1 INCLUDE sta­
tement. The operations specified by the
RENAME statement will be executed before

the next input module is considered for
inclusion in the output module. This
offers the user a means of overriding the
automatic replacement of control sections,
which occurs when more than one section has
the same name. A control section may be
explicitly deleted so that another control
section with the same name will not be
rejected, or it can be renamed, so that
both control sections will be retained.

RENAME statements that are to act upon
the same module as one or more COMBINE
statements must appear after all such COM­
BINE statements have been issued. There­
fore, a control section name mentioned in
the RENAME operand should refer to the name
that identifies a combined section.

CAUTION: Deletion of entry point names and
control sections causes any external
references to these names to be unresolved
until they are satisfied by new entry point
names or control sections of the same name.
In requesting RENAME operations, four con­
ventions should be followed, to ensure that
the specified change or deletion is pro­
cessed correctly •

1. External symbol references from other
object modules to a changed entry
point name or control section name
must be chanq-ed by separate RENAME
control statements. (External
references and address constants
within the same module automatically
refer to the new symbol.>

2. For assembler language programmers
only: When control sections that were
or are part of a separately assembled
module are to be replaced, A-type
address constants that refer to a
deleted symbol will be incorrectly
resolved unless the entry point name
is in the same position relative to
the origin of both the replaced con­
trol. section and the new control sec­
tion. If all control sections of a
separately assembled module are
replaced, no such restrictions apply.

3. For assembler language programmers
only: Literals normally should be
pooled by LTORG instructions if con­
trol sections are to be replaced,
since defaulted literal pools fall at
the end of the first control section.
If a control section containing pooled
literals is replaced or deleted, the
linkage editor will replace or delete
the entire control section, including
pooled literals. The linkage editor
does not pool literals.

4. For a given input module, any name
mentioned in a RENAME statement should
not be used again in the same or a
subsequent RENAME statement.

Section 3: Linkage Editor Control Statements 23

Note: The names of external dummy sections
become external references. They may be
renamed but not deleted.

EXAMPLES OF RENAME STATEMENTS

RENAME ALPBAl (BETA1)
RENAME ALPHA3(BETA3).Nl(N9)
:INCLUDE L:IBA(MA)
RENAME N1 (N9)
:INCLUDE L:IBA(MB)
RENAME Nl (N9)
:INCLUDE JOBL:IBl (MC)

Figure 12 shows a library with ddname
LIBA, which contains Object module MA with
two control sections. and object module MB
with two control sections. The library
with ddname JOBL:IBl contains object module
Me with one control section.

The first three control statements in
the example, above, include MA in the out­
put modale while making these changes:
Entry name ALPHA! is changed to BETAl. con­
trol section name Nl is changed to N9, and
the external reference ALPHA3 is changed to
BETA3. The next two control statements

LISA

MA

Control Entry
Section Point
Name Name

Nl El

~ ALPHA 1

N3 E3

MS

Control Entry
Section Point
Name Nome

N4 E4

N5 E5

+ BETA3

JOSUS1

11M:.

Control Entry
Section Point
Name Name

N6 E6

Figure 12.

24

Externol
Reference

Name

ALPHA 3

External
Reference

Name

Nl

External
Reference

Nome

Nl

BETA I

}

~
H

l
}

OUTPUT OBJECT MODULE

Control Entry External
Section Point Reference
Nome Name Name

N9 E 1 BETA3

1 BETAI

N3 E3
r- N4 -

E4 --N9 --

N5 E5

~ BETA3
N6

--- r- -N9--E6

BETA 1

Contents of Libraries LIBA and
JOBLIB1 and Resultant Output
Object Module

include MB in the output module and change
the external reference Nl of MB to N9.
This reference is satisifed by module MA.
The external reference BETAJ (old ALPHA3)
of module MA is also resolved at this point
by MB. The last two control statements add
MC to the output module ~d change the
external reference Nl of MC to N9. The two
external references N9 and BETA1 of Me are
resolved by MA.

TRA:ITS

Control sections within modules that are
produced by the language processors are
assigned certain implicit or explicit
traits or attributes. The TRAITS statement
provides the user with the facility to
redefine attributes of a control section,
causing all attributes previously assigned
to be removed.

r--------~-------------------------------,
I operation I Operand I
~---------+-------------------------------~
I TRAITS Icsname{«(.VARIABLE] (.READONLY] I
I I [,PUBLIC] [,PROTO] [,COMMON] I
I I I,PRVLGD][.SYSTEM])] I l _________ ~ ______________________________ _J

csname
the name of a control section in the
first module mentioned in the next
form-l INCLUDE statement.

The attributes are described in Section
1. ·control Section Attributes.-

If no attributes are present in the
operand. fixed-length is the only attribute
assigned to the specified control section.

The traits may be
They are enclosed in
separated by commas.
written.

written in any order.
parentheses and

No trailing comma is

Placement: The TRAITS statement must be
placed ahead of a form-l INCLUDE statement:
it acts only on the first module in the
operand of the next form-l INCLUDE
statement.

CAUTION: Note that only traits specifical­
ly included in the TRAITS statement are
assigned to the named control section; all
those assigned prior to the linkage editor
run are dropped by the TRAITS statement.

The linkage editor does not check on the
validity of attributes if the user assigns
them to a control section with a linkage
editor TRAITS statement. Such assignments
should be made with care, since conflicts
may arise during loading if improper attri­
butes have been assigned.

EXAMPLE OF TRAITS STATEMENT

The following statements assign the
VARIABLE attribute to control section KSECT
of module MODK of library LIBK and include
the module in the output module.

TRAITS
INCLUDE

COMBINE

KSECT (VARIABLE)
LIBK(MODK)

The COMBINE statement provides the abi­
Ii ty to combine two or more cont:r:ol sec­
tions of a module into a single control
section. Since each control sec"tion must
normally occupy at least one pag1e (4096
bytes) of virtual storage, an object module
containing a number of short con1trol sec­
tions is inefficient in its use of virtual
storage and may require unnecessary paging
activity when the module is executed. Thus
the COMBINE statement may be used to reduce
the number of pages of external and virtual
storage required for a module.

Control sections appearing in separate
modules may be combined by first link edit­
ing their modules, thus placing t:he control
sections in a single module, and then com­
bining the control sections in a subsequent
linkage editor run.

r---------T-------------------------------,
I Operation I Operand (
~--------+----------------------.---------~
I COMBINE I csname, • • • I l _________ .L ______________________ . ________ -l

csname
specifies a control section name in
the first module mentioned in the next
form-1 INCLUDE statement.

Unless changed by a subsequent RENAME
statement, the first control section name
in the operand field is used as the name
assigned to the new control section. The
names of the control sections that follow
the first become external definitions in
the combined control section. The RENAME
statement, as described previously, must be
issued after the control sections have been
combined.

Placement: The COMBINE statement must be
placed ahead of a form-l INCLUDE statement.

CAUTIONS:

1. The COMBINE statement acts only on the
first module mentioned in th'e next
form-l INCLUDE statement.

2. The control sections that are to be
combined must have identical attri­
butes. If they do not, a diagnostic
message will be issued. New attri­
butes may be assigned to one of the

nonidentical control sections in the
usual manner. employing a TRAITS sta­
tement ahead of the COMBINE statement.

3. For a given input module, any name
mentioned in a COMBINE statement
should not be used again in the same
or subsequent COMBINE statements.

EXAMPLES OF COMBINE STATEMENT

COMBINE
INCLUDE
COMBINE
RENAME
TRAITS
INCLUDE

Nl,N3
JOBLIBl (MA)
N4,N5
Nq (N40)
N40 (VARIABLE)
LIBA(MB)

The first two statements direct the
linkage editor to combine control sections
Nl and N3 of object module MA in library
JOBLIB1, and to include this module in the
output module. The name of the newly form­
ed control section is Nl.

The last four statements result in con­
trol sections N4 and N5 of module MB in
library LIBA being combined, and module MB
is included in the output module. The new
control se~tion bears the name N40 and is
assigned a VARIABLE attribute.

END

The END statement is used to indicate
the end of the linkage editor control
statements for the current run.

r--------T------------------------------,
(Operation I Operand I
~---------t-----------------------------~
I END (Always blank I l ________ .L ______________________________ J

The END statement directs the linkage
editor to search all the libraries on the
current program library list, to satisfy
any remaining unresolved references not
specifically excluded by form-3 INCLUDE
statements. References resolvable from the
system library modules do not cause those
modules to be included in the output
module, since they will be resolved by the
dynamic loader during execution. All other
references that are resolvable cause the
defining module to be linked to the output
module, assuming that the defining module
contains no excluded names, and that the
linkage will not violate FORTRAN standards.
(See RStatic Linking: The Linkage Editor,R
in Section 1.> Any remaining unresolved
references will be listed in a diagnostic
message. All references resolvable from
SYSLIB will be listed in a separate diag­
nostic message.

Placement: END must be the last linkage
editor control statement.

Section 3: Linkage Editor Control Statements 25

SECTION 4: HOW TO SPECU'Y LINKAGE EDITOR PROCESSING

The preceding section showed how to use
the linkage editor control statements; this
section shows how to initiate linkage edi­
tor processing (with the LNK command) and
illustrates various ways linkage editor
pr·ocessing may be approached.

Table 2, "Controlling the Linkage Edi­
tor," summarizes the linkage editor process
from the user's pOint of view.

Figure 13, "Methods for Specifying Link­
age Editor Processing,· summarizes various
ways the user may approach the system.

Whether the user is operating from a
terminal, or his job is entered nonconver­
sationally by an operator, the process of
linkage editing must begin with an LNK com­
mand. The parameters that can be entered
as operands of the LNK command are shown
below. Only one operand is required -- the
name of the new object module. Operands
may be either keyword or positional. Un­
derlines show default.s.

NAME
specifies the name of the object mod­
ule to be created. The name consists
of one t.o eight alphameric characters.
the first of which must be alphabetic.
Tbe source ,lata set, consisting of the
control statements that direct the
li nkage edi tor· , wi 11 be named SOURCE.
name. The list data set (the PMO
listing), if requested, will be named
LIS'!'. name. The module name must be
unique to the library that will
include it. (It must not be the same
name as any external definition in any
module already in the library.)

Notes: If t.he module name supplied by
the user matches that of an existing
list data set (that is, LIST.module),

the action taken depends on the task
mode. If nonconversational, the
existing list data set will be erased;
if conversational, the user will be
given an opportunity to save the old
list data set.

STORED

LIB

specifies whether the source data set
containing the linkage editor control
statements is prestored. If it is, it
must have been named SOURCE. name,
where name is the module name assigned
in the first parameter of this com­
mand. The allowable values are Y or
N. If the choice is N, the user may
also enter line and increment values.

Default: N

specifies the ddname of the library in
which the new object module is to be
stored. This library must be differ­
ent from any of the input libraries
ar.1 it must be defined by a DDEF or
COD command or macro instruction in
the current task.

Default: The library currently at the
top of the user's library list is
assumed.

VERID

ISD

specifies the version identification
to be assigned; it consists of one to
eight alphameric characters, the first
of which must be alphabetic.

Default: The listing and the created
modules are time-stamped by the
system.

specifies whether an ISD (internal

r---T---,
I I {Y} I I LNK I NAM.E=module name [. STORED=] [, LIB=data definition of library] I
I I N I
I I - {Y} {Y} I I I {,VERlo=version identification] [,ISO= -] [,PMDLIST=] I
I INN I
I i ~Yt - I
I I(.LISTDS=~ ,][,LINCR={first line number,increment)] I
I I ~NJ I l ___ J. ___________ . ____ . ___ J

26

,..--._-----------------,
I Initiating I
ILinkage Editor Processing I
L------------T-----------J

I
conversationally I Nonconversationally

(from the terminal) I (with operator assistance)
r------------·------..L------------------,
I 1 ,-___________________ ..L _____________ . ______ , r------------------..L-------------------,

1. processing is part of a conversational I 1 User prepares a card deck defining command I
task and the control statements are Iprocedure that specifies linkage editing. I
entered from the terminal (keyboard or IThis card deck is given to the operator I
card reader). (Example 1) Iwho then initiates the reading of the card I

2. Processing is
task. and the
obtained from
(Example 2)

part of a conversational
control statements are
a prestored data set.

Ideck and the nonconversational task by I
lissuing an RC command. User can I
Imake linkage editor control statements I
lavailable in various ways; for example: I
I I
11. In the command procedure (that is. the I

3. Processing is begun conversationally. I SYSIN data set of the nonconversation- I
and continued nonconversationally by I al task). either I

I using the BACK command. (Example 3) I I
I I a. Af ter the LNK command. by in- I
14. An EXECUTE command is issued from the I eluding linkage editor statements asl
1 terminal to initiate nonconversational I part of the command procedure. I
I execution of linkage editor. I (Example 5) I
1 ,Example 4) I I
lib. Prior to the LNK command, by I
I I prestoring linkage editor statements I
I I as a data set. (Example 6) t
t I I
I 12. In a prestored data set, where the 1
I I linkage editor control statements have I
I I been prestored as a data set prior to I
I I initiation of the nonconversational I
I I task. (Example 7) I L ______________________________ • ______ -J L __________________________________ J

Figure 13. Methods for Specifying Linkage Editor Processing

symbol dictionary) is to be retained.
The allowable values are Y or N.

Default: Y

PMDLIST
specifies whether a PMD (program mod­
ule dictionary) listing is to be pro­
duced. The allowable values are Y or
N.

Default: N

LISTDS
specifies whether the PMD listing, if
requested, is to be put into a list
data set for later access or is to be
immediately printed on SYSOUT.

Specified as:

Y listing goes into a list delta
set.

N listing goes to SYSOUT.

Default: Y (conversational)

LINCR
line

N (nonconversational)

specifies the line number to be
assigned to the first line of the
source data set created. The
line number may contain three to
seven digits. of which the last
two must be 00.

Default: The starting line num­
ber will be 100.

increment
specifies the increment to be
applied to develop successive
line numbers. The increment may
contain three to seven digits, of
which the last two must be 00.

Default: The increment will be
100.

Sect~ion 4: How to Specify Linkage Editor Processing 27

USING THE LINKAGE ED~OR CONVERSATIONALLY

In the conversational mode of operation,
the user communicates with the system
through a terminal (for example, an IBM
27ql Communications Terminal or an IBM 1052
Printer Keyboard). The conversational user
can communicate either through the terminal
keyboard or, on a 1052 equipped with an IBM
1056 Card Reader, by entering cards.

Assume that the user has already logged
on, and that he has previously stored all
the object modules he intends to use in
libraries (via previous compilations or
assemblies, or previous linkage editor pro­
cessing). The steps below are required to
execute the linkage editor; data flow is
illustrated in Figure 14.

1. The user must ensure that each library
to be referred to in a particular ses­
sion of linkage editor processing is
riefined within that session. These
l~braries can be defined by a DDEF
command or macro instruction, or by a
CDD command or macro instruction.
(See Command System User's Guide for
an explanation of the log-on process.
for details concerning commands in
this publication, and for means of
prestoring and cataloging data sets in
the system.)

2. The user issues an LNK command to
initiate execution of the linkage edi­
tor, followed by a series of linkage

DOH Commands
LNK Commands
Linkage Editor Parameters
Linkage Editor Contra! Statements

editor parameters (described earlier
in this section).

3. When the linkage editor is ready for a
line of input, the next sequence of
events depends on whether the linkage
editor control statements are entered
from the terminal or are prestored.

a. If the control statements are
entered from the terminal, the
system invites input by writing a
line number at the terminal. The
user then types the contents of
the line, which is stored in the
control statement data set the
system now creates.

b. If the control statements are pre­
stored. the system reads the con­
trol statements from the SOURCE.
name data set.

q. As each control statement is received
by the linkage editor, it is analyzed
for correctness, and processed accord­
ing to its particular function.

5. Errors that are discovered by the
linkage ed.:i_tor will result in a diag­
nostic message being typed at the ter­
minal to prompt the user to correct
the statement in error. There may be
one or several messages for each con­
trol statement. (These messages are
described in Appendix B.) The proce­
dure for correcting statements in
error is described below.

Output Object
Module

Program Libraries
(Partitioned Data Sets)

Input Object
Module

linkage Editor

Diagnostic Messages
to SYSOUT

Optional
PMD listing

Stored as Li st Data Set
or Printed on SYSOUT

Figure 14. Data Flow During Conversational Linkage Editor Processing

2B

The system asks the user if 1:here are
any modifications. If the user
response is a yes, the system invites
the user to enter modifications by
wri ting a pound sign (#) on t~he ter­
minal and unlocking the keyboard. The
user may then enter a correction
lin~, the first part of which is a
line number identifying the line
involved, followed by a comma and the
content of the line. For example,

#500, INCLUDE JOBLIB2(MB}

This line is stored in the data set,
either as an insertion line or as a
replacement line, and the next correc­
tion line is requested by issuance of
the #. To delete one or more lines,
the user types, following the #,

D,lineno

or

D,lineno,llineno

(where lineno is
a line number
and llineno is
the final line
number of a range
of lines to be
deleted.)

The indicated line or, in the second
case, all lines within the s~~cified
range of line numbers, are deleted.
Such corrections change the source
data set permanently. To end correc­
tions, the user merely presses the
RETURN key in response to the #. The
correction lines are then processed by
the linkage editor. If no corrections
were entered, or after correc1:ion line
processing, the next line is t~aken
from the source data set for
processing.

Note: Normally, during convel:sational
execution, modifications made to
statements previously entered cause
the linkage editor to start agrain at
the first control statement. An
exception to this occurs when the user
modifies one or more statements of a
statement group in response to a link­
age editor diagnostic message.
(Statement groups are described in
Appendix B.) In this case, the link­
age editor continues operation from
the beqinning of the affected state­
ment group.

~Or he may enter: i (This will inhibit
display of all messages and error prompts
until the final request for
modifications.>
Or he may enter: c (This will inhibit the
prompts for correction; the diagnostic
messages are issued. The user will not be
prompted until the final request for
modifications.)

6. When the entire control statement data
set is collected and processed, the
linkage editor ends its first phase
and produces a list of any unresolved
external references and a list of
external references resolvable from
SYSLIB. In conversational mode, the
linkage editor asks the user if he
wants to make modifications and
restart, continue processing as-is, or
terminate processing.

7. If the user indicates that he wishes
to continue, the linkage editor
retains control until it has finished,
and then informs the user of the level
of error found during processing.
Four severity levels are possible: 0
(no errors; ordinarily, the user will
not be informed of this level), 1
(minor errors), 2 (major errors, indi­
cating questionable validity of the
output module), and 3 (fatal errors,
meaning an output module could not be
produced). The fatal error condition
typically occurs if no form-l INCLUDE
statement appears in the set of con­
trol statements for a linkage editor
run.

8. Finally, the object module is stored
in the library specified by the user.
If the PMD listing response was Y,
either a list data set is produced as
a new generation of a generation data
group named LIST. name or the listing
is sent to SYSOUT (the printer if the
task is nonconversational; the termin­
al, if conversational). The LISTDS
operand specifies the disposition of
the PMD listing. If the user desires
a printed listing from his list data
set, he must issue the PRINT command.
(See Command System User's Guide for a
full explanation of the listing data
set maintenance process for the lan­
guage processors.) This concludes
linkage editor processing.

DEFINING LIBRARIES

To make the following examples simpler
the CDD (Copy DDEF) command is used. CDD
is a useful command which allows users to
prestore one or more DDEF commands in a
line data set and to invoke them by issuing
CDD with the name of the line data set as
an operand. Details on using this command
can be found in Command System User's
Guide, GC2S-200t.

In the CDD command used in the following
examples, LNKED.DD is a line data set
containing:

Section 4: How to Specify Linkage Editor Processing 29

DDEF LKLIB1,VP,LIB1DS
DDEF DDJLIB1,VP,JLIB1,OPTION=JOBLIB

DDEF DDJLIBN,VP,JLIBN,OPTION=JOBLIB

The first DDEF above defines a library
with the ddname LKLIB1, used in the
examples below as the library in which the
linkage editor output module is to be
placed. The remaining DDEPs define job
libraries to which the linkage editor will
have access in the examples. These job
libraries become part of the program
library hierarchy which may be searched to
locate modules to be included, to locate
modules which may satisfy unresolved
references, and which could be used to stow
the module produced by the linkage editor.

These DDEFs could also be submitted
separately by the user or may have been
placed in a PROCDEF. (Using PROCDEF,
however. the DDEFs encountered would not be
reproduce'i on the SYSOUT as are those taken
from the data set named on a CDD.)

EXAMPLE 1

Conversational Linkage Editing: Control
Statements Entered From Terminal Keyboard

The user first wishes to link three
modules (LEMOD1, LEMOD2 and LEMOD3) that
are in a library on the program library
list; he then wishes to combine two control
sections (CSECTl and CSECT2) and add a
fourth module (EYLE1>, also available from
the program library list.

Log on:

User:

System:

User:
System:

The user first logs on:

(Hits attention button or dials
up system)
(Releases keyboard)

logon mnjdoe.mnj733
BOOl LOGON TASKID=F207 11/19/71
(The system then provides an
underscore on the next line,
indicating readiness to accept
new command)

Define Libraries: The user then either
enters the DDEF commands that are required
to identify the libraries to be used during
this linkage editor run, or, as shown
below, he retrieves DDEF commands from a
previously cataloged line data set,
LNKED.DD.

User:
System:

30

cdd lnked.dd
(Retrieves the DDEF commands
cataloged under the dsname of
LNKED.DD, and prints each on SYS-

OUT preceded by four zeros and a
comma.)

INITIATE LINKAGE EDITOR PROCESSING: To
load and begin execution of the linkage
editor, the user enters the LNK command.
followed by the parameters that are to con­
trol this run. In the example shown, the
parameters are entered in positional for­
mat; however, if he wishes, the user may
instead enter these parameters with
keywords.

User: !nk ts2lnk,n,lklib1"n,y,,(500,100)

(TS2LNIO

(,N)

the member name by which the
linkage-editor object module is to
be stored.

tells the system that the linkage­
editor control statements are not
prestored, but are to be obtained
from SYSIN.

(,LKLIB1)

(,)

(, N)

(, Y)

(,)

tells the system to put the object
module. TS2LNK, in the library hav­
ing the ddname LKLIB1.

tells the system to time-stamp the
listing and created module.

tells the system not to produce an
internal symbol dictionary (ISO).

tells the system to produce a pro­
gram module dictionary listing.

tells the system the listing is to
be stored in a list data set.

(, (500,100»
the line number to be applied to the
first line of the control-statement
source data set, and the increment
to be applied to develop successive
line numbers.

If the user chose to enter his parameters
with keywords. the example would appear:

User: Ink name=ts2lnk,lib=lklibl,lsd=n,­
pmdllst=y,lincr=(SOO,100)

ENTER LINKAGE EDITOR CONTROL STATEMENTS:
When the linkage editor is ready for a con­
trol statement, the system prints out a
line number at the terminal. The user
types the line, presses the RETURN key, and
the line is made available to the linkage
editor.

Sys.User: 0000500 include (lemodl,lemod2,
lemod3)

sys,user: 0000600 combine csectl,csect2

As each control statement is recE!! ved by
the linkage editor, it is analyzed for
correctness and processed according to the
particular functions it specifies.. If
errors are discovered by the linkage edi­
tor, a diagnostic message is typed at the
terminal prompting the user to cClrrect the
statement in error. A typical message is
illustrated by this example.

Sys,User: 0000100 include, (eylel)

System: 0000100 E ••• ILLEGAL DELIMITER,
0000100 INCLUDE, (EYLE1)

Sys,User: #700, include (eyle1)
(the user corrects the statement
in error)

The user signifies that all his linkage
e~itor control statements have been
inserted by entering an END control
statement.

Sys,User: 0000800 end

At this time, the linkage editor
attempts to resolve any unresolved external
references by an automatic search of the
libraries on the program library list. It
then provides a list, at the terminal, of
all finally outstanding unresolved external
references, distinguishing those 1:.hat can
be resolved from SYSLIB from those that
need resolution from the user libl~ary or
job libraries at execution time.

If any errors have been diagno~led, the
linkage editor then asks the user if he
wishes to make mOdifications:

System: (the linkage editor asks the user
if there are any modifications to
the control statement data set)

User: n

The linkage editor then informs the user of
the success (no errors) or failure, (one or
more errors) of the run. Assuming there
were no errors, the system would print out
the following at the terminal:

System: (The system informs user that no
errors were found.)

The linkage editor's output is then auto­
matically stored in the library with ddname
LKLIB1. If the user wants a printout of
the PMD listing requested above in the LNK
command, he types:

User: £rint list.ts2lnkCO},.,edit

The PMD listing printed will be the current
generation of LIST.TS2LNK. The printing of
the list data set is not automatic; it must
be requested using the PRINT command as
above.

system: (system accepts the PRINT command
and assigns a batch sequence num­
ber for a separate background
task for printing of the list
data set.)

If the user wishes to log off at this
point, he issues a LOGOFF command.

~: 10goff

System: (system accepts LOGOFF)

EXAMPLE 2

Conversational Linkage Editing: Control
statements From a Prestored Data Set

This example is identical to Example 1,
except that the linkage editor control
statements are obtained from a prestored
data set SOURCE.TS2LNK; thus, correction
lines are treated in a slightly different
manner. Note that in this example, the
first two operands are entered as keyword
operands, the remaining operands
positionally.

(Statements as shown in Example 1)

~:

system:

Ink name=ts2Ink,
stored=y,lklib1"n,y

0000100 E ••• ILLEGAL DELIMITER,
0000100 INCLUDE, (EYLE1)

(keyboard is unlocked for the
user to enter a correction line)

Sys,User: #100,include (eylel)

Sys,User: # (presses return key)

(Same as shown in Example 1)

USING THE LINKAGE EDITOR IN
NONCONVERSATIONAL MODE

The ways in which non conversational
linkage editing can be specified are
described below.

Section 4: How to Specify Linkage Editor Processing 31

1. The user can start his task conversa­
tionally and then switch to nonconver­
sational mode by using the BACK com­
mand. He may switch at any time he
wishes (and the system will allow him
to do so). He must have created a
data set containing a command proce­
dure prior to issuing the BACK com­
mand. This data set will then be used
as SYSIN to control the nonconversa­
tional continuation of his task.

2. In a conversational task, the user can
issue an EXECUTE command that refers
to a cataloged data set containing a
command procedure that will function
as a SYSIN to specify and control the
linkage editor run. The command pro­
cedure must contain a LOGON and a
LOGOFF command, and all other commands
and parameters required for linkage
editor processing. The linkage editor
control statements can be included in
the command procedure, or they can be
in a prestored data set. Once the
user has issued the EXECUTE command
and received the system's reply iden­
tifY1ng his nonconversational task, he
can perform other tasks at the termin­
al, or he can LOGOFF.

3. The user may prepare his command pro­
cedure as a punched card deck and sub­
mit it to the system operator for
batch processing. The commands are
punched, each starting on a new card,
in the format used to enter commands
from a terminal. {Linkage editor con­
trol statement card-input formats are
described in Section 2.> The card
deck setup is simple (note that LOGON
and LOGOFF commands must start in card
column 3):

LOGON

The first card must be a LOGON com­
mand: the last card of the data set
must be a LOGOFF. Other commands are
as required for the particular linkage
editor run.

When the command procedure data set is
read in, it becomes the SYSIN data set of a
nonconversational task and is executed as
soon as space is available. After execu­
tion, the SYSIN data set is eliminated. It
does not remain cataloged nor does it

32

remain in system storage unless the user
makes arrangements within the command pro­
cedure itself.

An important factor in all nonconversa­
tional processing is that no prompting
facilities are available. The user must
specify exactly what the system is to do in
the command procedure he defines to control
the nonconversational task; any error may
terminate the task. Another factor is that
the system defines and prints out the SYS­
OUT of nonconversational processing.
Results of nonconversational linkage edit­
ing are therefore available through print­
outs from the central computing facility.

EXAMPLE 3

Linkage Editor Processing Initiated Conver­
sationally; Continued Nonconversationally
With BACK Command

The user wants first to correct one of
the linkage editor control statements in
the conversational mode, then to switch to
nonconversational operation to process the
statements. His source statements are pre­
stored in data set SOURCE.TS2LNK. He also
has prestored the command procedure named
LNK2, below, which contains commands defin­
ing his nonconversational linkage editor
run and which will logoff the task
involved.

Source statements are to be taken from
SOURCE. TS2LNK, a prestored data set; no
special output library is desired, nor is a
special versionid. The ISO and a listing
of the PMD are requested. The PMD listing,
by default, will be printed on SYSOUT at
the central facility.

r-----------------------------------,
LNK2 ICDD LNKED.DD I

User:

ILNK TS2LNK,Y",Y,Y I
I LOGOFF I L ___________________________________ J

(the user employs a MODIFY com­
mand to make a correction)

~odify sour~e.ts2lnk
System: (asks user to enter modifications)

(the user enters a correction
line below; EYLE2 is in the same
library as EYLE1, previously pro­
cessed in Example 1. The user
indicates the end of his
modifications)

sys,User: #700,include (eyle2)
ttie

User:

(the user now enters the BACK
command to change the task to
nonconversational mode)

Eack Ink2

System: (accepts task and aRsigns a batch
sequence number>

Further work on other tasks
requires another LOGON.

EXAMPLE 4

Nonconversational Execution Requested From
Terminal by EXECUTE Command

The user wants to initiate a nonconver­
sational task that does not require a prior
conversational phase. Thus, an independent
nonconversational task is created, rather
than changing the user's conversational
task to nonconversational (as was done in
Example 3). His source statements are pre­
stored in data set SOURCE. TS2LNK. The com­
ma~d procedure for controlling his non con­
vers?tional task (and for completely defin­
ing his nonconversational linkage editor
run) is contained in a data set named LNK3.

In this example, the user wants to save
the requested PMD listing in a lis·t data
set and then have it printed on SYSOUT. He
must explicitly include a PRINT command in
his prestored data set.

r-----------------------------------,
(LOGON JOHNDOE,JOH733 I

LNK3 I CDD LNKED. DD I
ILNK TS2LNK,Y."Y,Y,Y I
IPRINT LIST.TS2LNKCO)",EDIT I
I LOGOFF I l ____________________________ . _______ J

(the user requests nonconversa­
tional execution)

~xecute Ink3

System: (accepts task and assigns: a batch
sequence number)

User: (may proceed in conversat.ional
mode)

In each of the following examples, a
card deck is given to the operator who then
initiates the nonconversational task. The
linkage editor proceSSing that is illus­
trated is the same as in Example 1.

EXAMPLE 5

Operator-Assisted Initiation: Linkage Edi­
tor Control Statements Included in Command
ProceSSing

The following command procedure is pre­
pared in punched-card form. The linkage
editor control statements form part of this
procedure, and thus will follow the LNK
command, as shown below.

(the user logs on; LOGON must begin in
column 3)

LOGON JOHNDOE,JOH33

(DDEF commands are retrieved)

CDD LINKED.DD

(linkage editor is loaded for execution
and given its parameters for this run)

LNK TS2LNK,N,LKLIB1"N,Y.,(SOO,lOO)

(the linkage editor control statements
are processed. The PMD listing
requested is automatically printed on
SYSOUT)

INCLUDE (LEMODl,LEMOD2,LEMOD3)
COMBINE CSECTl,CSECT2
INCLUDE (EYELEl)
END

(the user logs off; LOGOFF must begin
in column 3)

LOGOFF

EXAMPLE 6

Operator-Assisted Initiation: Linkage Edi­
tor Control Statements Prestored Prior to
LNK Command

The linkage editor control statements
are first placed in a data set via a DATA
command, after which the LNK command is
issued.

(the user logs on; LOGON must begin in
column 3)

LOGON JOHNDOE,JOH33

(creates a line data set from the
statements that follow the DATA
command)

DATA SOURCE.TS2LNK,I.(SOO,lOO)

(linkage editor control statements to
be placed in the data set)

INCLUDE (LEMOD1,LEMOD2.LEMOD3)
COMBINE CSECTl,CSECT2
INCLUDE (EYLE1)
END

Section 4: How to Specify Linkage Editor Processing 33

34

(the following -%EW completes the data
set creation process begun with DATA
command)

(retrieve DDEF commands)

COD LNKED. DD

(linkage editor loaded for execution
and passed parameters; note that second
parameter (Y) indicates a prestored
data set)

LNK TS2LNK,Y,LKLIB1"N,Y,Y
PRINT LIST.TS2LNK(O)",EDIT

(the user logs off; LOGOFF must begin
in column 3)

LOGOFF

EXAMPLE 7

OPerator-Assisted Initiation USing Pre­
stored Linkage Editor COntrol Statements

The linkage editor control statement
data set has been prestored prior to ini­
tiation of the current nonconversational
task; only in this respect does it differ
from Example 6.

LOGON JOHNDOE,JOH733
COD LINKED. DO
LNK TS2LNK,Y,LKLIB1"N,Y,Y
PRINT LIST.TS2LNK(O),.,EDIT
LOGOFF

APPENDIX A:

Figure 15 shows the format of the
optional PHD listing for an object module.
The format components are described below
in the order in which they appeal!: in the
listing.

MODULE

NAME
is the alphameric name of the object
module. assigned by the user in his
compiler, assembler, or linkage editor
command parameters.

VERSION
is either the eight-charactE!r version
ID for the module, or a time and date
stamp.

LENGTH
is the length of the PHD in bytes.

DIAG SEVERITY
is a value from 0 through 2 that indi­
cates the highest level of diagnostic
encountered while the module was being
generated by the originating proces­
sor. The greater the value, the more
critical the diagnostic level
encountered.

The following applies to entries for
each control section dictionary.

SECTION
is a two-digit hexadecimal control
section number within this PHD.

NAME
is the alphameric name of the control
section.

TYPE

CONTROL
indicates a standard contre)l sec­
tion, as described in Section 1.

COMMON and PROTOTYPE
are as described in Section 1.

VERSION
is a time and date stamp for the con­
trol section.

THE PHD (PROGRAM MODULE DICTIONARY) LISTING

ATTRIBUTES

FIXED, VARIABLE, READONLY, PUBLIC,
PRVLGD, SYSTEM

are as described in Section 1.

CSD LENGTH
is the length of this control section
dictionary, in bytes.

SECT LENGTH
is the length of the control section
in virtual storage, in bytes.

RELOCATABLE DEFINITION
is a section name, or an entry point
whose ENTRY statement appeared within
an unnamed section.

ABSOLUTE DEFINITION
is an EQU item with absolute value
whose name has been declared an entry
point.

COMPLEX DEFINITION
is either an EQU item with a complex
relocatable value, or a simple relo­
catable definition whose ENTRY state­
ment appeared within a named section
other than the control section in
which it is defined.

For each of the above three types of
definitions, these entries appear.

NAME
is the alphameric name of the symbol
defined.

VALUE
is the hexadecimal displacement value
of the symbol relative to the base of
its control section.

REFERENCE
is an external symbol referenced
within the control section.

REF #
is the ordinal hexadecimal number of
the reference.

NAME
is the alphameric name of the
reference.

Appendix A: The PHD (Program Module Dictionary) Listing 35

MODULE
NAME
VERSION
LENGTH
DrAG SEVERITY

SECTION xx
NAME
TYPE
VERSION
ATTRIBUTES
CSD LENGTH

aaaaaaaa
aaaaaaaa (or MO/DD/YYbHH:MM:SS)
xxxxxxxx
xxx

aaaaaaaa
CONTROL(or COMMON or PROTOTYPE)
MOIDD/YYhHH:MM:SS
FIXED or VARIABLE, READONLY, PUBLIC, PRVLGD.
xxxxxxxx

SECT LENGTH xxxxxxxx
RELOCATABLE DEFINITIONS

NAME aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
VALUE xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

NAME aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
VALUE xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

ABSOLUTE DEFINITIONS
NAME aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
VALUE xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

COMPLEX DEFINITIONS
NA~~ aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
VALlT xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx xxx xx

REFERENCES
REF # xxxx xxxx xxxx xxxx xxxx xxxx xxxx
NAME aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa

MODIFIERS FOR COMPLEX DEFS
PAGE xx # MODIFIERS xxxx

LENGTH x x
REF # xxxx xxxx
TYPE y Y
BYTE xxx xxx

x
xxxx
y
xxx

MODIFIERS FOR TEXT (EXTERNAL REFS)

x
xxx x
y
xxx

TEXT PAGE xx VIRTUAL PAGE xx # MODIFIERS xxxx
LENGTH x x x x
REF # xxxx xxxx xxxx xxxx
TYPE Y Y Y Y
BYTE xxx xxx xxx xxx

MODIFIERS FOR TEXT (INTERNAL REFS)
TEXT PAGE xx VIRTUAL PAGE xx # MODIFIERS xxxx

LENGTH x x x x
REF # xxxx xxxx xxxx xxxx
TYPE
BYTE

y
xxx

y
xxx

y
xxx

y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

x
xxx x
y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

x
xxxx
y
xxx

SECTION xxx
NAME
TYPE
ATTRIBUTES
CSD LENGTH
TEXT LENGTH

(etc.)

a = alphameric character
x hexadecimal digits
y +, -, or R

Figure 15. Format of PMD Listing

36

aaaaaaaa
xxxxxxxx

aaaaaaaa
xxxxxxxx

aaaaaaaa
xxxxxxxx

aaaaaaaa
xxxxxxxx

xxxx
aaaaaaaa

x
xxxx
y
xxx

I
x
xxxx
y
xxx

x
xxxx
y
xxx

CXD AND DXD REFERENCE
is a DXD symbol or CXD value
referenced within a control section.

REF #
is the ordinal hexadecimal number of
the reference; the first REF number is
zero.

NAME
is either the name of the DXD symbol
or • (CXD)' for a CXD referenc,e.

LENGTH
is the byte length of a DXD symbol, in
hexadecimal bytes, or, for a CXD
reference, omitted.

ALIGN
is the alignment of a DXD symbol. in
alphameric characters ('BYTE', 'HALF',
'FULL', or 'DOUBLE'), or, for a CXD
reference, omitted.

M~DIFIERS FOR COMPLEX DEFS

PAGE
is the hexadecimal page numbe:r: of PMD
that contains the complex definition.

If MODIFIERS
is the total hexadecimal number of
modifiers for complex definitions.

LENGTH
is the length of the adcon to be modi­
fied, in hexadecimal bytes.

REF If
is the ordinal hexadecimal number, in
the appropriate reference list, of the
reference whose definition value is to
be used in modifying the adcon.

TYPE
indicates one of three operations
(+,-, or R) to be performed in modify­
ing the adcon by the reference value.

(+) The definition value of 1:he
reference at REF # is added to
the field of LENGTH bytes, start­
ing at the indicated byte of the
page to which the modifiE~r
app1ies.

(-) The definition value of the
reference at REF # is subtracted
from the field of LENGTH bytes,
starting at the indicated byte of
the page to which the modifier
applies.

(R) The definition value of t:he name
of the control section in which
the reference at REF # is
defined, plus the R-value dis-

BYTE

placement associated with the
definition, is stored in the
field of LENGTH bytes, beginning
with the indicated byte of the
page to which the modifier
applies.

is the displacement in bytes (from the
origin of its containing page) of the
adcon to be modified.

MODIFIERS FOR TEXT (EXTERNAL REFs, Q-CONs,
and CXDs) and
MODIFIERS FOR TEXT (INTERNAL REFs)

employ the same entries, with the same
contents. as modifiers for complex
DEFs, with these additional entries:

TEXT PAGE
indicates the number assigned by the
linkage editor to the text page to
which the related modifiers pertain.
Text page numbers begin at zero.
Pages reserved but not containing data
constants or instructions (as the
result of DS instructions) are not
aSSigned tex1: page numbers. Although
all other pages are assigned numbers,
only those containing address con­
stants require modifiers and are shown
in the PMD listing.

VIRTUAL PAGE
indicates the number assigned to a
page after processing by the dynamic
loader. Virtual page numbers also
begin at zero. Although all pages,
whether containing reserved space,
data. or instructions, are aSSigned
virtual page numbers, only those vir­
tual page numbers for which there is a
correlated text page containing
address constants (and therefore
requiring modifiers) are shown in the
listing.

And under:

TYPE
two additional operations may be indi­
cated (Q or C) to be performed in
modifying the adcon by the reference
value.

(Q) The definition value of the
reference at REF # is added to
the fie1d at LENGTH bytes, start­
ing at the indicated byte of the
page to which the modifier app­
lies, and the reference is to be
treated as a DXD symbo1.

(C) Same operation as for (Q); and
the reference is a CXD, contain­
ing the cumulative length of a11
DXD symbols encountered.

Appendix A: The PMD (Program Module Dictionary) Listing 37

APPENDIX B: ERROR DIAGNOSTICS AND MESSAGES

Four levels of error det.ect.ion are pro­
vided for the TSS/360 language processors,
to associate different severity levels with
errors or special conditions encountered
during processingo With each occurrence of
an error or special condition. a s€verity
level of 1, 2, or 3 is noted by the lan­
guage processor. The more serious the
error or condition encountered, the greater
the severity level assigned. A.t l:ennina­
tion of language processor execution, the
highest severity level noted during proces·­
sing is printed.

NO ERRORS. No errors were encount:ered
during creation of the object module
(severity level 0). This message nor­
mally does not appear.

MINOR ERRORS. At. l.east one minor error
was encountered durj.ng cr:eation of the
object module. The language processor
takes automatic correctj.ve action, which
probably will not affect the validity of
the module (severity level :U.

MAJOR ERRORS. At least one major error
was encountered during c:r.-ea t.ion of the
object module. If the user is in now'
conversational mode, the processor ei­
ther recognizes a default condition or
makes an assumption as to what. the user
actually desired. The validity of the
module is questionable. If the user is
in conversational mode, t.he processor
prompts the user to correct hi s prOlJ:cam
(severity level 2).

TERMINATED: NO OB.TECT f.~ODur.E CREATED. A
fatal error was encou.nt.ered; the proces­
sor was unable to create the object
module (severity level 3)<

LINKAGE EDITOR ERROR DETECTION

The linkage editor sets two of the f om:
levels of diagnostics provided for language
processors for logging errors and possible
error conditions. The appropz:·iate level of
either 0 (no errors) or 2 (major errors) is
assigned to the output module. (The link­
age editor does not set severity level 1.
however. if any of the input. modules con­
tain a level 1 or 2 code, it is passed on
to the output module.) As error condi·tions
are detected, the linkage editor. governed
by the operation mode in use, responds as
follows:

38

1. Conversational Mode: The linkage edi­
t.o:t:· sen~diagnostic messages to the
terminal" prornpt.ing the user to
coxrect. the error condition in his
program ~ith the appropriate recovery
procedure" Instead of actually
correcting the error at the terminal,
t.he user rna.:\:' choose not to correct the
error. which causes the linkage editor
to continue processing according to a
default condition or tenninate, if
unable to continue"

2. Nonconversational Mode: When an error
cODcEft:ion is det_ected by the linkage
edii:or" the appropriate default condi­
tions are undert:.aken following deliv­
ery Df 'che diaqnostic. and processing
cont_inueS.,Messages are sent to the
syst~enl mrtpu(;. d,?lOc.i:i set (SYSOUT).

~~NKAGE EDITOR DIA9NOSTIC MESSAGES

The diagnostic m(';>ssages produced by the
linkage edit.oJC arl:fle terminal. with the
associa~ed causes, sa~gested conversational
mode recovex-y procedures, and default con­
ditions, dr€ shown in IBM Systeml'360 Time
Sharinq SY.§.!:~_m; .. ~SysteTii tL~ssages. GC28-
2037" Pa.r:t IV, SecLi.on 2. Linkage editor
error messag~s <!i1~e under the examples pre­
fixed hy "line E **",,, and linkage editor
warning messages are <Jnder the examples
prefixed by ~line W •••••

The t:e:cm ",,:,tatemeC:lt group". used in the
diagnostic messages, refers ·to the set of
.linkage editor control s·tat:.ements which
relate to a given form-l INCLUDE statement,
and include the INCLUDE statement itself.
For exampiE'e in the following sequence, the
first two statements form a statement
group, and the last fOUI: form a second
statement group.

COMBJ:NE
INCLUDE
COMBINE
RENAME
TRA.ITS
INCJJUDE

Nl,N3
JOB:r~1Rl {MA)
N4,N5
N!.! (N40)
N40 (VARIABLE)
LIBA(MB)

Statement. gx:oups are affec.ted by the
default act.ion ta.lten by the linkage editor
in maIlY error situations. In these
inst,ances. t.he entire stateme.nt group is
ignored and processing continues with the
first cont.rol st.atement following the
statement grollp~

Each diagnostic message is prefixed by

nnnnnnnbsb···

where nnnnnnn is the line number of the
linkage editor control statement, b is
blank, and s is either E or w; E denotes a
major error (severity level 2), and W
denotes a warning message (severity level
1),

Examples of conversational recovery pro­
cedures are in Section 4, -How to Specify
Linkage Editor Processing.-

Appendix B: Error Diagnostics and Messages 39

APPENDIX C: SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

,-----r- -----------,
I Operation I Operand I
~---+-----------------t
IINCLUDE Ilddname,] (module namel ••••]) I
I (Form 1) I I
L .L_____ .I

r------T
I Operation I operand
~------+------
I INCLUDE I ddname
I (Form 2) I L _____ .L ________ _

---,
I

--t
I
I

--------'
r------r------------------,
I operation I operand I
~-------+--- -----t
IINCLUDg Iddname-(extref[, •••]) I
I (Form 3) I I L ____ --'-_____________ _.I

r-----,- --,
I Operation I operand I
.------+--------- -----t
I I extref1 (extrefa) I
I RENAME I epname1 ((epnamea)] [, •••] I
I I csname1 [(csnamea)] I L _____ .L ____________ .1

r-------,------------------,
I operation I operand I
~------+------------------~
ICOMBINE Icsname.... I L _____ .L ____________________ .1

r----,-------------------,
I Operation I operand I
~-----+--------------------~ I TRAITS I csname { ((• VARIABLE] [, READONLY] I
I I [.PUBLIC] [,PROTO] [,COMMON] I
I !l.PRVLGD] [.SYSTEM])] I L ______ .L- ___ .I

r--------T------
I operation I Operand
~---+--
I END I Always blank l .L _____ _

40

----,
f

---t
I _ _________ .1

Paqe of GC28-2005-Q, Issued February 1, 1912 by TNL GN28-3206

APPENDIX p: LINKAGE EDITOR STATEMENT EXAMPLES AND SIZE LIMITATIONS

INCLUDE STATEMENT EXAMPLES TRAITS STATEMENT EXAMPLE

1. Include modules named MODA and MODB,
from the library with ddname LIBA.

INCLUDE LIBA(MODA,MODB)

2. Include the module havinq external
name EXTERN. Assume that the name is
defined in the JOBLIB hierarchy but
the library name is not known.

INCLUDE (EXTERN)

3. Resolve unresolved references from the
liorary with ddname LIBC. Assume that
one or more modules have already been
linked to the output module.

INCLUDE LIBC

4. Include modules named HODF and MOOG
from the library with ddname LIBJ, and
module named TRIG from the library
hierarchy. Assume that modules MODF
and TRIG both contain a blank
(unnamed) common control section.

INCLUDE LIBJ(MODF,MODG)
INCLUDE (TRIG)

The output module will contain one
blank common control section; its size
wi 11 be the larger of the two input
sections .

RENAME STATEMENT EXAMPLES

1. R~name external reference names XTREF1
and XTREF2 to XR1 and XR2, respective­
ly, in module MODA of the library with
ddname LIBA,and include the module in
the output module.

2.

RENAME XTREF1(XR1),XTREF2(XR2)
INCLUDE LIBA (MODA)

Include modules MODF and MOOG from the
library with ddname LIBB. Assume that
noth modules contain a control section
named CSEC'I'1, and that it is desired
to· override the automatic deletion of
duplicate-named control sections by
renaming the one in module HODF to
CSCT1.

RENAME CSECT1(CSCT1)
INCLUDE LIBB(MODF.MODG)

Assign the PUBLIC attribute to cont.rol
section JSECT of module MODJ of the library
with ddname LIBJ, and include the module in
the output module. Assume that the control
section previously had a READONLY attri­
bute, which is to be retained.

TRAITS JSECT (REAOONl.Y. PUBLIC)
INCLUDE LIBJ(MODJ)

COMBINE STATEMENT EXAMPLE

1. Combine control sections CSECT1.
CSECT2. and CSECT3 of module MODA of

'the library with ddname LIBA, and
include the module in the output
module.

COMBINE CSECT1.CSECT2,CSECT3
INCLUDE LIBA(MODA)

The name assigned to the combined con­
trol section is CSECT1.

2. Combine control sections JSECT and
KSECT of module MODK of the library
with ddnaroe LIBK, and include the
module in the output module. Rename
the combined control section to LSECT.

cm-mINE
RENAME
INCLUDE

JSECT, KSECT
JSECT (LSECT)
LIBI«MODK)

EXAMPLE OF LINKING MODULES

1. Link modules MA, MF, and MG of Figure
10.

2. Assiqn the variable attribute to con­
trol section N2 of module MA. Combine
control sections N1 and Nq of module
MF, and rename the combined section to
N10.

The following set of statements will
accomplish the task.

TRAITS
INCLUDE
COMBINE
RENAME
INCLUDE
END

N2 (VARIABLE)
LlBA{MA)
Nl.Nq
N1 (N10), El (E10)
LIBF(MF,MG)

(1)
(2)
(3)

(4)
(5)

(6)

(1) Assigns the variable attribute to
the first module in the following
INCLUDE (Form 1) statement.

A~pendix D: Linka.qe Editor Statement Examples and Size Limitations 41

Paqe of GC28-20Q5-It, Issued February 1, 1972 by TNL GN28-3206

(2) Includes module MA in the output
module, and leaves external
references ALPHA. BETA, GAMMA and
S H! unresolved.

(3) combines control sections Nl and
N4. to form one section with the
Idbfc'l N1.

(4) ,<enames control section N1, and
rE':names entry point E1 of this
section. Control section Nl of
module MA. already included, also
contains an entry point named E1.
Thus, renaming of the second E1 to
£10 is necessary to avoid removal
of the DEF for che second E1.

(S) Specifies that the preceding
RENAME and COMBINE statements are
to act on input module MF of
library LIBF. After execution of
those statements, includes modules
MF and MG in the output module.
HE'solves external references ALPHA
and GAMMA. Leaves external
references BETA, SIN, and SQRT
unresolved.

(6) lndlcates end of control statement
list. Directs linkage editor to
search program library list for

unresolved external references.
(See section 3, END statement.)

SIZE LIMITATIONS

Figure 16 shows the size limitations
currently imposed c;y the linkage edit.or
upon each input module and the output
lliodule; Figure 17 shows the size limita­
tions imposed upon t.he control statements
submitted to the linkage editor.

r------T------------------T---------------,
I I Input l'iodule I Output Module I
~------+------------------+---------------~
I PMD I 256 pages I 256 pages I
t------+------------------+---------------~
I Text I 256 pages I 256 pages I
~------+------------------+---------------~
I ISD I 512 pages minus I 256 pages I
I I length of output I i
1 I module ISD· I I
~------i------------------i---------------1
'.That is, 512 pages is the limit for the I
I _total length of all input module ISDs I
I plus the output module ISD. I l ___ J

Figure 16. The Linkage Editor Imposes Size
Limitations on its Input and
Output Modules

r------------T-------------------------------T-----·----------------------------_.--------,
I statement: I Number of statements Allowed I Number of Characters Allowed per Statement.!
if-------------f-------------------------------+---;
I INCr.tJDE I No limit. I 256 i }-___________ + _______________________________ .L ________ -----------------------------------1
I RENAME I 64 permitted if each contains the maximum of 256 characters. The limit !
i T.E1UTS I increases as the number of characters per statement decreases. The total I

COfAJHNE i number of characters cannot- exceed 16,384. I
j-·-------,·_··-t-----------,--------------------T--1
I END lOne permitted. Any prestored I 256 I
I I source statements following I I

I the first END statement are I I
I I ignored. I I /-___ .,< __ .< ___ « ____ • .1 _______________________________ .L __ ~

i continuation characters and extraneous blanks. I L _____ ~~ __ ~ ____,. ___ J

Pigure 11. The Linkage Editor Imposes size Lireitations on its Control Statements

The meanings of the words defined in
this glossary apply only to their use in
this book; these words may have slightly
different meanings in other TSS/36() publi­
cations. General TSS/360 definitions are
provided in IBM System/360 Time Sharing
System: Concepts and Facilities,
GC2S-2003.

absolute DEF: A DEF (external definition)
established by an assembler EOU statement
whose operand is an absolute value.. For
instance, this example would produce in the
control section dictionary an absolute DEF
entry for symbol A101 whose value would be
100:

Al0l
ENTRY
EOU

A101
100

~t See address constant.

address constant: Space reserved :in a pro­
gram for the address of a symbol; program
text that changes as the result of relocat­
ing the program in storage. The address
constant reserves storage in a program for
an address that cannot be known when the
program is written and ensures that the
address value will be filled in before the
code containing the address constant is
brought into main storage. In the follow­
ing assembler statement, N~~El contains an
address constant and SUBPROG is the symbol
whose address is furnished:

NAME1 DC A(SUBPROG)

In processing address constants, the lan­
guage processors and linkage editor create
external reference (REF) entries in the
control section dictionary. These entries
enable the dynamic loader to resolve the
address constant (that is, compute the vir­
tual storage address and insert it in the
reserved text word) when the page contain­
ing the address constant is referred to
during program execution.

alias: 1. An alternate name that may be
used to refer to a member of a paxtitioned
data set; 2. an alternate entry point by
which a program (that is, a stored member
of a partitioned data set) may be called.
The linkage editor and language px'ocessors
all produce an external name list which is
used by the VPAM STOW system routine to
compile a list of aliases by which a pro­
gram (that is, object module) may be
called.

APPENDIX E: GLOSSARY

COMBINE: A linkage editor control state­
ment that combines two or more control sec­
tions from an input object module irto one
control section in the object module being
built by the linkage editor. Since aach
control section must start on a page bound­
ary, combining several short control sec­
tions may reduce the total number of pages
required. Page compaction in terms of vir­
tual or main storage may also be achieved
in TSS/360 through CSECT packing (specified
as a LOGON command parameter); an advantage
of combining with the linkage editor is
that space is saved on external storage as
well.

common control section: A type of control
section (created with the COM assembler
language instruction or the FORTRAN COMMON
statement) Which may contain areas and con­
stants referred to by independent assem­
blies or compilations (separate object
modules> that are to be loaded for execu­
tion as one overall program. (See also
control section.)

complex OEF: Either of two types of
external definition (DEF): A type-l com­
plex DEF results from a symbol being named
as the operand of an ENTRY statement in a
control section other than the one in which
the symbol occurs as the name of a state­
ment. This OEF is an entry in the CSD of
the control section containing the ENTRY
statement. A related REF (external
reference) is created in that CSO to refer
to the control section in which the symbol
names a statement.

A type-2 complex OEF results from an EOU
statement whose name is the operand of an
ENTRY statement and whose operands are one
or more symbols defined as external in an
EXTRN statement.

composite ISO: The ISO (internal symbol
dictionary) produced by the linkage editor.
The linkage editor does not recompile a
list of internal symbols, but simply
includes in its output module each ISO
existing in input modules. The composite
ISO thus consists of: 1. each ISO just as
it appeared in its input module, and 2. a
directory which heads the composite ISO and
relates the external definitions and
references of each input module to those in
the output module.

control section: The smallest unit of a
program that is relocatable to virtual
storage; that portion of text specified by
the programmer to be an entity, all ele-

Appendix E: Glossary 43

ments of which are to be allocated contigu­
ous virtual storage locations. A control
section begins on a page boundary and con­
sists of an integral number of pages; the
page (4096 bytes) is the smallest unit of a
program that can be placed in main storage.
Control section may refer to any section
created by the assembler language START,
CSECT, COM, or PSECT instructions (whether
directly by an assembler programmer or
indirectly by the FORTRAN or PLiI compilers
or the linkage editor) or to the type of
section created by the START or CSECT
instruction as distinguished from tne other
instructions. The DSECT and DXD instruc­
tions create dummy sections, not control
sections; this type of section is used to
map storage, not occupy it, and does not
result in a CSD.

control section dictionary (CSO): A table
within the program module dictionary (PMD)
which contains information on the external
definitions and external references within
a particnlar control section. This table
makes possible communication between con­
trol sections in the same or different
object modules. There is one CSD for each
control section; the program module dic­
tionary is essentially a collection of con­
trol section dictionaries.

The CSD is divided into: a heading, a
definition table, a reference table, a
relocation dictionary containing modifica­
tion values, and a virtual memory page
table which relates virtual storage
assigned to the object module to the text
pages it contains.

control statement: A source statement for
the linkage editor. Control statements in
the TSS/360 linkage editor are: INCLUDE
(three forms), RENAME, COMBINE, TRAITS, and
END.

CSD: See control section dictionary.

CSECT: 1. An assembler language instruc­
tion which creates and names a control sec­
tion; 2. the type of control section which
is created by a START or CSECT instruction.

CXD REF: A REF (external reference) entry
created in the reference table of the con­
trol section dictionary by a compiler or as
the result of a CXD assembler instruction.
The value of the CXD REF (which is the
length of combined external dummy sections)
is calculated and filled in by the dynamic
loader. There can be no more than one CXD
REF in any CSD.

CXD-type reference: See CXD REF.

DEF: See external definition.

44

definition: See external definition.

definition table: A component of the con­
trol section dictionary which contains an
entry for each external definition appear­
ing in the control section. (See also con­
trol section dictionary.)

dynamic loader: A TSS/360 system component
which has two main functions: 1. as the
result of some demand (such as a CALL com­
mand), to allocate virtual storage to
object modules residing in external
storage, ana 2. to resolve aaaress con­
stants when a page of text within a module
is actually referred to during program
execution. The dynamic loader does not
load anything into main storage (the resi­
dent SUpervisor does this); it merely
relates an object module's external loca­
tion on an I/O device to a logical (virtu­
al) address within a user's task by chang­
ing relative addresses within a module to
virtual addresses within a task. The
second function, resolution of address con­
stants, is dynamic in that it does not
occur until a page containing address con­
stants is referred to by a page executing
in main storage. Resolution consists of
computing the virtual storage address value
and inserting it into the space reserved
for it in the text.

END: The linkage editor control statement
which terminates control statement
processing.

entry pOint: Generally, any location in a
program or routine to which control can be
passed by another program or routine. (See
also standard entry point.)

entry point name: 1. A symbol whose value
locates an entry point; 2. an operand in
the RENAME control statement which must be
an external entry point (one defined by an
ENTRY assell,nler instruction or the name of
a control section statement such as CSECT),
not an internal entry point (accessible
only from some other place within the same
control section).

exclude: Pertaining to linkage editor out­
put, not to include in the output module
those object modules containing definitions
which would resolve specified external
references. The user specifies external
references he does not want resolved in a
form-3 INCLUDE statement. Presumably the
unresolved references will be resolved by
subsequent INCLUDE statements or by the
dynamic loader.

external definition (DEF): Synonymous with
external symbol definition. A type of
entry in a control section dictionary for
an external symbol that names a statement.
A DEF resolves a corresponding REF. A DEF

is created in the control section dic­
tionary as the result of: 1. an object
module being created (its name is made the
standard entry point DEF and placed in the
PMD header), 2. a control section being
declared (its name is made a DEF), or 3. a
symbol occurring as the operand of an ENTRY
instruction. (see also absolute DEF, relo­
catable DEF f and complex DEF.)

external dummy section: A dummy section
(displacement map) known externally to the
module in which it is defined. Each of
different object modules forming a common
program may contain one or more external
dummy sections; the storage may be secured
for all of them as one block. Each module
will be able to refer to any displacement
represented by a dummy section within that
block. The external dummy section is
created as the result of an assembler DXD
instruction or a DSECT instruction in asso­
ciation with a Q-type address const.ant.
O'he total length of all external dummy
sections defined in object modules loaded
tog~ther must be provided for by a CXD
instruction in one of the modules.) The
external dummy section is used mainly by
the PL/I compiler and assembler language
programs that interface with PL/I programs.

external reference (REF): Synonymous with
external symbol reference. A type of entry
in the control section dictionary for each
external symbol referred to but not: neces­
sarily defined (by an ENTRY statement) in
the control section. The assembler user
creates a REF as the result of an I~TRN
instruction or by setting up a V-t~'pe, R­
type, or Q-type address constant. A REF
may also be created as the result of a com­
plex OEF (external definition). If no
corresponding external definition I[DEF)
exists or is found, the REF is unresolved.

external symbol: A symbol used by more
than one control section within the same or
different object modules. (See also
external definition and external
reference.)

external symbol definition: See e:rternal
definition.

external symbol reference: See ext.ernal
reference.

INCLUDE: A linkage editor control state­
ment which has three forms:

Form-1 - includes into the object module
being developed by the linkage editor one
0r more input object modules from a speci­
fied library, and defines the inpu·t module
to which any preceding TRAITS, COMBINE, or
RENAME statements apply.

Form-2 - includes from a specified
library all object modules whose external
definitions resolve external references in
the module being developed by the linkage
editor.

Form-3 - includes from a specified
library all object modules whose external
definitions resolve external references in
the module being developed by the linkage
editor, except those external references
specified.

internal reference: A type of external
reference (REF) for a symbol which is
internal to the object module (that is, it
is resolvable by an external definition in
some control section within the same object
module).

internal symbol dictionary (ISO): A table
containing the location, length, and type
of all symbols that name program elements
(the module, control sections, instruction
labels, and data areas) within an object
module. The assembler, FORTRAN compiler,
and linkage editor produce an ISD unless
the user suppresses it; the TSS/360 PL/I
compiler does not produce an ISO. The
linkage editor produces a composite lSD,
containing all ISOs present in input
modules and an initial directory pointing
to these retained ISOs. The ISO makes
possible program analysis using the TSS/360
program control system (PCS) commands.

ISO: See internal symbol dictionary.

linkage editor: A system-provided program,
in some respects similar to a language pro­
cessor, which may be optionally used to 1.
join, or link two or more object modules
into a new, comprehensive object module,
and 2. change, or edit, control section
attributes or names, entry point names, or
external references in an object module by
producing a new module that includes the
desired changes. Using the linkage editor
eliminates the need to reassemble or recom­
pile, may save external storage and dynamic
loader proceSSing time, and may reduce pag­
ing activity when the program is executed.

load: 1. Generally, to place data into
main storage or registers; 2. also, in
TSS/360, to place programs (one or more
related object modules) into virtual
storage. The dynamic loader loads an
Object module (that is. allocates virtual
storage addresses to it within a task) as a
consequence of some user or system invoca­
tion; the program. or module(s), is not yet
moved into main storage. Physical transfer
of the program, or module(s), into main
storage is performed in page units by the
resident supervisor. When a page is phys­
ically loaded into main storage, hardware­
implemented dynamic address translation

Appendix E: Glossary 45

converts the virtual address of the page
into a real main storage address.

loader: See dynamic loader.

object module: Also called a program
module or an object program module. an
object module in TSS/360 is the primary
output of a language processor or the link­
age editor. The object module is made up
of a program module dictionary (PMD) con­
taining control information, the text (that
is, the program itself), and. at the user's
option, an internal symbol dictionary
(ISD), used for program analysis. When
invoked by a user, an object module becomes
input to the dynamic loader (unless it is
already loaded>.

~lJ)lect program module:
,-cbject module.

Synonymous with

PMD: See program module dictionary.

program module: Synonymous with object
module.

program module dictionary (PMD): A table
at the logical beginning ot an object
module containing control and descriptive
information required by routines that must
~rocess the module. A PMD consists of a
header and one or more control section dic­
tionaries (CSDs).

pseudo-register: Synonymous with external
dummy section.

Q REF: A reference to an external symbol
that defines an external dummy section (for
instance the name of a DXD statement).

Q-type address constant: A constant that
reserves storage for the value of the dis­
placement of an external dummy section into
an area described by the dynamic loader.
The symbol in the Q-type address constant
must have been previously used as the name
of a DXD or DSECT instruction. (See also
address constant.)

Q-type reference: See Q REF.

Q-value: A value that represents the dis­
placement of an external dummy section into
the storage area reserved for external
dummy sections. The dynamic loader sup­
plies the Q-value. A program using the
Q-value must get or reserve the storage
required for the combined external dummy
sections.

REF: See external reference.

reference: See external reference.

46

relocatable DEF: A DEF (external defini­
tion) whose value during execution is
storage-location dependent. The value of a
relocatable DEF as the result of language
processing or linkage editing will be some
displacement from the beginning of the con­
trol section in which the definition
occurs. For example. if some statement at
byte location 1000, relative to the origin
of its control section, is named CHXAAA,
then

ENTRY CHXAAA

will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamic loader processes relocatable
DEFs by adding, to the value assigned by
the language processor or linkage editor.
the virtual storage address of the defining
control section.

relocation dictionary (RLD): A table
within each control section dictionary
which contains modifier pointers and modi­
fiers for address constants (adcons). Each
modifier pointer indicates a text page
within the control section that contains
address constants; each modifier contains
information which the dynamic loader uses
to determine the final value of the address
constant. There are three RLDs in each
control section dictionary: one for com­
plex DEFs, one for external references, and
one for internal references.

RLD: See relocation dictionary.

RENAME: A linkage editor control statement
that changes entry point names. control
section names, or external references. or
deletes entry point or control sectjr~
names.

resolved: Applied to an external reference
for which the linkage editor or dynamic
loader is able to find a corresponding
external definition.

R-type address constant: An address con­
stant whose value is the address of the
control section in which a specified symbol
was defined. For example, in

A DC R(ENTRY1)

the value inserted in location A by the
dynamic loader will be the address of the
control section in which ENTRYl was defined
(in which an ENTRY statement occurred with
ENTRYl as the operand). (See also address
constant.)

R-value: The virtual storage location of
the origin of the control section in which
an ENTRY statement for a symbol appeared.
conventionally, when linking to reenterable
(nonmodifiable) code in TSS/360. the V-

value locates an executable instruction to
which control is passed; the R-value of a
symbol locates the beginning of a control
section (usually a PSECT) which may be used
for modifiable storage. An R-value is also
assigned to symbols that are the names of
object modules and control sections. The
R-value of the control section is simply
the value of the control section name. The
R-value of a module is either the address
of the first PSECT in the module, or of the
first CSECT if no PSECT exists.

standard entry point: The locatiCln in an
object module at which program execution
will begin if the module is invoked by its
name. A user may call a program to run
(via the CALL command or by direct call) by
specifying the object module name; execu­
tion will begin at the standard entry
point. An object module may have several
entry points to which other programs can
pass control; it can have only onE~ standard
entry point. The FORTRAN and PL/I compi­
lers generate a value which is the location
of the beginning of the main procedure in
the module. The assembler uses the address
of the first control section (CSECT) in the
module as the standard entry poin1: unless
the user has specified another location as
the operand of an END statement. The stan­
dard entry point name is contained as a DEF
in the header of the PMD. The linkage edi­
tor produces a module whose standard entry
point is that of the first input module; it
also retains the standard entry point of
each input module, enabling the user to run
by name not only the linkage-edited module
but any of its component input modules.

symbol: A character or combination of
characters that represents addresses or
specified absolute values. Through their
use as names and in operands, symbols pro­
Vide the programmer with a way to name and
refer to elements (control sections,
instructions, and data areas) of a program.

text: The instructions, constants, and
reserved data areas of an object lIIIodule;
the program itself.

TRAITS: A linkage editor control statement
that specifies new attributes for a deSig­
nated control section.

type-l complex DEF: See complex DEF.

type-2 complex DEF: See complex DEF.

unresolved: Applied to external references
for which the linkage editor or dynamic
loader is unable to find a corresponding
external definition in another object
module or control section. The linkage
editor p=ovides a list of unresCllved
references at the termination of its pro­
cessing (as well as those unresolved but

resolvable by definitions in programs in
SYSLIB) •

version identifier: A character string
that identifies a particular assembly, com­
pilation, or linkage editor run. The
character string can be one-to-eight
alphameric characters specified by the user
in his command, or, if defaulted, will be
the date and time of the run, supplied by
the system as the number of microseconds
elapsed since March 1, 1900. The version
identifier is placed in the program module
dictionary and appears in the PMD listing
section of the list data set.

virtual address: Also called logical
address, an address generated by a program
that references virtual storage and must,
therefore, be translated into a main
storage address as it is used.

virtual memory page table (VMPT): A table
in each control section dictionary which
relates pages of text within the control
section to virtual storage assigned the
control section. A control section may
occupy more space in virtual storage than
its text pages require; ORG instructions
will cause virtual storage to be allocated
which does not contain text pages. The
VMPT tells whether a page is empty
(reserved) or, if it contains text, which
page it is relative to the first page in
the control section containing text.

VMPT: See virtual memory page table.

V-type address constant: A type of address
constant that reserves storage for and
whose value during program execution is the
address of an external symbol. By specify­
ing a symbol in a V-type address constant,
the assembler language EXTRN instruction
need not be used. Conventionally, when
linking to a reenterable (nonmodifiable)
program in TSS/360, the V-type address con­
stant loaded into a register provides the
address to which control is to be passed;
the R-type address constant loaded in
another register provides the location of a
modifiable control section. For each V­
type address constant, an external
reference (REF) is created in the control
section dictionary. (See also address
constant.)

V-value: A virtual storage location that
an external symbol labels. By convention
in TSS/360. when linking to reenterable
(nonmodifiable) code, the V-value of a sym­
bol locates the symbol itself (provides its
address); the R-value of a symbol locates
the beginning of a PSECT which the execut­
able code may use to obtain and modify
data. V-values are provided by the dynamic
loader.

Appendix E: Glossary 47

Where more than one page reference is
given the major reference is first.

#C 3
#P 3

absolute definition 7,14,35
absolute DEFs 7.14,35
adcon 5,13
address constants

relocatable 5
referencing during loading 13

addresses
base 3
main storage 3
virtual storage 3

contiguous 2
alias 9

limitation on duplication 10
application programs 1
area

largest blank common 5
save 5

assembler
address assignments 3
standard entry points of

linked modules 6
users 3,23

attributes
of assembler statements

COM 4
CSECT 4
DSECT 4
PSECT 4
START 4

control section 3
of linkage edited module 6
types

common 5
fixed-length 4
privileged 5
prototype 5
public 5
read-only 5
system 5
variable-length 4

automatic rejection 12
auxiliary entry point 15

BACK command 33
batch processing 32-34
blank common control section 5
braces (metasymbols conventions)
brackets (metasymbols conventions)

CALL command 6,12
CALL macro instruction 9,13
card deck 32

48

17-18
17-18

card format 18
character sets 18
control statement boundaries 18
continuation 18

CDD command 29,28
CDD macro instruction 28
character sets designation

in card format 18
in keyboard format 18

characters
lower-case 18
upper-case 18

COM assembler statement
attributes 4

combination
dynamic 9
object module 9
static 9

COMBINE control statement 25
cautious 25
csname (control section name) 25
examples 25
operand 25
operation 25
placement 25

command procedure
prestored 32

commands
(also see Command System User's Guide)
BACK 33
CALL 6,12
CDD 29,28
DDEF 5,10,28
EXECUTE 33
LNK 26-27,1,11
LOGOFF 34
LOGON 30
PERMIT 5
POD? 9
PRINT 29
RUN 13
SHARE 5
UNLOAD 13

common control sections
largest blank 5
unnamed 12

common storage area 5
blank 5

comparison
between linkage editor and dynamic
loader 14

compiler
FORTRAN 3
PL/I 3

complex definition 7,35
complex DEFs 6-7,13,35

type 1 7
type 2 7

constants 5
text 2

contiguous
addresses 2

main storage 2
control section 2

attributes 3-5
common 5

largest blank 5
unnamed 12

deleting 23-24
named 3,5
names 3
non common 5
privileged 4-6
prototype 5
public 5
renaming 23-24
unnamed 3,5

control section dictionary 3
DEF tables 7

control statements 19-25
COMBINE 25
END 25
examples 41-42
formats 18
INCLUDE 19-23
operand field 17
operand name 17
operation field 17
prestored 31
RENAME 23-24
summary 40
from terminal keyboard 31
TRAITS 24

controlling the linkage editor
conventions

metasymbols 17-18
conversational linkage editing

examples 28-32
usage 28-29

correction line processing 31
creation of object module 1
CSD 7
CSECT 3

(also see control section)
assembler statement attributes 4
unnamed 12

csnarne 3

DDEF command 5,10,28
DDEF macro instruction 28
ddname

defined 17
in INCLUDE statement 19-21

definitions
(also see DEFs)
external (DEFs) 7
limitation 12
tables 7

DEFs (external definitions)
absolute 7,14
complex 7,14

type 1 7
type 2 7

relocatable 7,14
DELETE macro instruction 13
deleting control sections 23
diagnostic messages 38-39
dictionary

control section 3

internal symbol
program module

DSECT 4
duplicate names 10
dynamic loader 3,7

2
2

combination 9
12-13 how it works

linkage 9
linking 9
processing time 15

editing
link (see linkage editing)
linkage (see linkage editing)
program 1

editor
link (see linkage editor)
linkage (see linkage editor)

END control statement 25,10,12
search following 12
operation 25
operand 25
placement 25

entry point
name 6,9
standard 6
SYS labels 6

ENTRY assembler statement 6,7
epname (see entry point name)
EQU assembler statement 7
error

detection
conversational mode 38
nonconversational mode 38

diagnostics 38-39
messages 38- 39

examples
BACK command 32
COMBINE control statement 25,41
control statements 41,42
conversational linkage editing 30-32
diagnostic message 38
EXECUTE command 32
INCLUDE control statement 21-23,41
linkage editor processing 26-34
LOGOFF command 34
nonconversational linkage editing 32-34
operator-assisted initiation 33
output object module 22
prestored control statements 30
PRINT command 31
RENAME control statement 24,41
TRAITS control statement 24,41

executable instructions 5
executable portion of object module 2
EXECUTE command 32
explicit linkage 9
external definitions 7
external reference

resolving 11
external storage 2
external symbol definitions 7
external symbol references (REFs) 8,14

unresolved 23
external symbol values 7,8

R-value 7,8

Index 49

V-value 7.8
EXTRN assenlbler statement 8

fixed-length attribute 3
form-1 INCLUDE control statement
form-2 INCLUDE control statement
form-3 INCLUDE control statement
format

card 18
control statement 17-18
keyboard 18
object module 2

format illustrations 18
FORTRAN

compiler 3

19,11
19-21,11
21,11

main program linkage limitations 12
object module 3
standard entry points of linked

modules 6
subprograms

,BLOCK DATA 12
linkage 9

users 3
functions of linkage editor 1
function:~ summary of linkage editor 15

glossary 43

header
program module dictionary 2

implicit linkage 9
INCLUDE control statement 19-23.11

examples 21-23
forrn-1 19
forrn-2 19-21
form-3 21
forms 19-21,11
placement 19-21
purpose and function 19-21

increment (in LINCR operand) 21
input

linkage editor 1
instructions

(see macro instructions or control
statements)

internal symbol dictionary 2
ISD (LNK operand) 26

(also see internal symbol dictionary)

job library (also see JOBLIB) 9
JOBLIB

in INCLUDE example 22
option 10

KA 18
KB 18
keyboard terminal format 18

character sets 18
continuation lines 18
control statement boundaries 18

50

language processor
creation of object module 1
input 1
source data sets 1

largest blank common control section 5
LIB (LNK operand) 26
libraries

categories
job library (JOBLIB) 9
other user-defined library 10
system library (SYSLIB) 9

resolving references in 22
user library (USERLIB) 9

LINeR (LNK operand) 27
increment 27
line 21

link editing (see linkage editing)
link editor (see linkage editor)
linkage

assembler users 9
dynamic loader 9
explicit 9
FORTRAN users 9
implicit 9
object module 9
symbolic 3.6

linkage editing
(see also linkage editor)
conversational

examples 29
usage 28

nonconversational
with BACK command 32
examples 32-34
with EXECUTE command 32
operator-assisted 33
using 32-34

linkage editor
basic functions 1
control statements 19-25,1
functions summary 15
input 1
output 1,35
processing

examples 26
initiation 30

object module creation 1
rejection action 12
special libraries 10

linked module
attributes 6
standard entry points of

with assembler input modules 6
with FORTRAN input modules 6
with PLII input modules 6

linking
dynamic 9
static 9

(also see INCLUDE control statement)
LIST.name 26
LISTDS (LNK operand) 27
literals 23

pooled 23
LNK command 26-27,1,11

defaults 26-27
operands 26-27
parameters 26-27

LOAD macro instruction 9,12

loader
(see dynamic loader)

loading
FORTRAN main module 9
with explicit linkage 9
with implicit linkage 9

loading process
text page adcon relocation phase 14
virtual storage allocation phase 13

location counter 3
LOGOFF command 34
log-on process

in examples 30
(also see command System User's
Guide)

LOGON command 30
lower-case characters 18
LP (see language processor)
LTORG instruction 23

main program
linkage limitations (FORTRAN) 12

main storage
addresses 3
contiguous 2
locations 2

macro instructions
CALL 9,12
COO 28
ODEF 28
DELETE 13
LOAD 9,12

messages
diagnostic 28,38-39
error 38-39

metasymbols conventions 17
braces 17
brackets 17

minus sign 21
mode

conversational
examples 28-32

non conversational
examples 32-34

modifiable storage 5
modifiers 36,37
modules

object
combination 9
creation of 1
format 2
linking 5-6
shared 6
structure of 2

NAME (LNK operand) 26
named control section 3,5
names

control section 3
duplicate 12
entry point 6

nonconversational linkage editing
with BACK command 32
examples 32-34
with EXECUTE command 32

operator-assisted 33
using 32-34

object module
combination 9
creation 1
executable portion 2
format 2
FORTRAN 4
linkage 1
shared 6
structure 2

object program 1
object program module (see object module)
operator-assisted initiation 33
option

JOBLIB 10,22
ordering of modules

comparison between linkage editor and
dynamic loader 14

output object module
example 22

page 2,3
entries 13
table entry 13

PeS (program control syste~) 2
PERMIT command 5
PL/I programs 6
PMD (program module dictionary) 2
PMD listing format 35-37
PMDLIST (LNK operand) 27
POD? command 9
pooled literals 23
prestored control statements

examples 31
PRINT command 29
privileged control section 5
processing

batch 33
program control system 2
program editing 1
program library list 10,22
program libraries 9-11
program module (see object module>
program module dictionary 2

control section dictionary 2
header 2

protection key 5
prototype control section 5
PSECT 3

attributes 3
public storage 5
punched card (see card)

R-con (R-constant) 7
statement 8
value 7,8

R-value 13
examples 7,8

references, unresolved 11
REFs (external references) 8,14
rejection action 12
relocatable definition 35
relocation 13

Index 51

RENAME control statement 23-24,11
cautions 23
csname (control section name) 23
epname (entry point name) 23
examples 24
extref (external reference) 23
operands 23
operation 23
placement 23

restrictions
loader 5
SYS symbols 5

RUN command 13

save areas 5
search following END control statement 12
SHARE command 5
shared object module 6
source data sets 1
SOURCE. name 26
specifying linkage editor processing 26-34
standard entry points

of linked assembler modules 6
of linked FORTRAN modules 6
of linked PL/I modules 6

START assembler statement
attributes 4

statements
(see control statements)

static linking 11
(also see INCLUDE control statement)

storage
blank common area 5
external 2
main 2,3
modifiable 5
noncontiguous 3
virtual 2,13
working 5

STORED (LNK operand) 26
summary

of control statements
symbolic linkage 3,6
SYS labels 5
SYS symbols restriction
SYSIN 32
SYSLIB (system library)

resolving references
SYSOUT 27
system attribute 5
system library 5,9

resolving references

52

40

5

5,9
22

22

system programs 1
system service routine

privileged 5

tables
external definition (DEFs) 7

task monitor 14
terminal keyboard

entering control statements from 30,28
terminal processing 28

IBM 2741 28
IBM 1052 28
IBM 1056 28

text
constants 2
instructions 2
page 13,37

time slice 2
TRAITS control statement 24

caution 24
csname (control section name) 24
example 24
operands 24
operation 24
placement 24

unnamed
common control sections 12
CSECT 3,5,12

UNLOAD command 13
upper-case characters 18
user library (USERLIB) 9
USERLIB (user library) 9

in INCLUDE example 22

variable-length attribute
V-con (V-constant) 7

statement 8
value 7,8

V-value 7-8,13
VERl~ (LNR operand) 26
ver~hon 35
virtual page 37
virtual storage

allocation 13
location 2

VPAM data sets 9

working storage 5

3

GC28-2005-4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, NY 10601
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New¥ork, New¥ork 10017
[International I

~ ...,
IX>
I

'" o
o
VI
I

""

Technical Newsletter File Number 5360-31

Base Publication No. GC28-2005-4

This Newsletter No. GN28-3206

Date February 1., 1912

IBM System/360 Time Sharing System
Linkage Editor

CIBM Corp. 1966, 1967, 1968, 1970, 1971

Previous Newsletters

This Technical Newsletter provides replacement pages for the sub­
ject publication. Pages to be inserted and/or removed are:

5-6
41-42

A change to the text is indicated by a vertical line to the left
of the change.

Summary of Amendments

• The linkage editor now saves (in the out~pt module> the names
of all input modules ..

• TWO figures have been added showing size limitations imposed
by the linkage editor.

Please file this cover letter at the back of the manual to provide
a record of changes.

IB/\I CorpOrtlllml. Dept. 64i, NeighJH)rhooJ Road, KinKJlon, N. Y. J2401

None

