
Systems Reference Library

Version 8.1

IBM System/360 Time Sharing System

Time Sharing Support System

File No. S360-48
GC28-2006-1

The Time Sharing Support System is an on-line pro­
gram error analysis facility that provides the capabi­
lity of collecting data from the Time Sharing Systern/
360 for analysis, and of altering the TSS/360 storage
and machine registers. This system is used only by
system programmers with authority code 0 or P and is
not intended to be available to any other TSS/360
users.

The functions of TSSS may be performed on command
from a terminal or dynamically during TSS/360 execu­
tion. The programs, tables, and control blocks of
real, virtual, and secondary storage can all be
referred to and modified.

Part I of this publication describes the TSSS system
and its capabilities in a general way. Part II
describes the TSSS command language. defining the func­
tions of the language elements and the language syntax.
Part III presents additional requirements for correct
use of TSSS.

prerequisite Publications

The reader must be familiar with the information con­
tained in:

IBM Systern/360 Principles of Operation, GA22-6821

IBM System/360 Time Sharing System:
Concepts and Facilities, GC2S-2003
System Programmer's Guide. GC2S-2008

IBM System/360 Model 67: Functional Characteris­
tics, GA27-2719

TSS

PREFACE

This publication is intended primarily
for system programmers who are authorized
to use the Time Sharing Support System
(TSSS). The manual describes the capabili­
ties of TSSS and how the system is invoked
and operated by a system programmer. This
publication does not describe when to
invoke TSSS or how to apply its
capabilities.

The publication is organized as follows:
Part I is an overview of TSSS and may be of
interest to parties other than system pro­
grammers; it describes the system and its
capabilities in a generalized way. Part II
describes the unique TSSS command language,
defining the fUnctions of the language ele­
ments and the language syntax. Part III
presents the additional requirements for
correct use of TSSS. Parts II and III con­
stitute, in effect, a handbook for using
TSSS.

A Time Sharing System/360 system pro­
grammer is assumed to be familiar with IBM
System/360 Principles of Operation, GA2~
6821, and with most IBM System/360 Time
Sharing System publications. Among the
latter, the following constitute minimum
prerequisite reading for a full understand­
ing of this publication:

Concepts and Facilities, GC28-2003

System Programmer's Guide, GC28-2008

Second Edition (September 1971)

This is a revision of, and makes obsolete, Gc28-2006-0
and Technical Newsletters GN28-30Q3, GN28-3062, and
GN28-31QQ. Minor changes have been made to the
descriptions of the $PATCH system symbol and the REMOVE
command, and cautions have been added concerning the
use of the $RM symbol in VSS and implanting an AT in
RSS. Changes on the pages are indicated by a vertical
bar to the left of the change.

This edition is current with Version 8, Modification 1
of the IBM System/360 Time Sharing System (TSS/360),
and remains in effect for all subsequent versions or
modifications of TSS/360 unless otherwise noted. Sig­
nificant changes or additions to this publication will
be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edi­
tion of IBM Systemf360 Time Sharing System: Addendum,
GC28-20Q3, which may contain information pertinent to
the topics covered in this edition. The Addendum also
lists the editions of all TSS/360 publications that are
applicable and current.

IBM System/360 Model 67: Functional
Characteristics, GA27-2719

Information required for use of TSS/360
terminals and the Operator's 1052-7
Printer-Keyboard is not completely dupli­
cated in this publication. The following
TSS/360 publications should be referred to:

Terminal User's Guide, GC2S-20i7

Operator's Guide, GC28-2033

For effective use of TSSS, the system
programmer probably will require the fol­
lowing IBM System/360 Time Sharing System
Program Logic Manuals (PLMs) for reference
purposes:

System Logic Summary PLM, GY28-2009

System control Blocks PLM, GY28-20i1

The Program Logic Manuals for the pro­
grams of immediate concern; these are
listed, along with other TSS/360 pub­
lications of interest to system pro­
grammers, in the System Programmer's
Guide.

The TSSS user may wish to become fami­
liar with the internal logic of TSSS; the
publication that meets this need is IBM
System/360 Time Sharing System: Time-8har­
ing Support System PLM, GY28-2022.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impres­
sions for photo-offset printing were obtained from an IBM Printer using
a special print train.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com­
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Time Sharing Systemf360 Publications, Department 643, Nei­
ghborhood Road, Kingston, New York 12401

Copyright International Business Machines Corporation 1968, 1971

PART I: AN OVERVIEW OF TSSS
Introduction • • • • • • • • • • • • • • •

TSSS Concepts: Functional Capabilities •••••
TSSS Concepts: RSS and VSS • • • •
TSSS Concepts: Two User Classes ••
Machine Configuration • • • • • • • • • • •

System Summary • • • • • • • • • • • • • • • •
connecting the System Programmer to RSS or VSS • • • • •
Modes of Operation • • • • • •
Qualification States

Global Operations • • •
Input/Output Overview •

Input Statements
TSSS Output •

CONTENTS

1
1
1
1
1
2
3
3
3
4
4
4
4
5

PART II: THE TSSS COMMAND LANGUAGE • • • • • 7
Language Elements and Notation • • • • 7

Conventions and Notational Symbols •••• • • • • • • • • • 7
The Character Set • • • • • • • • • 7
Language Elements • • • • • • • • • • • • • • • • 8

Data Field Defining Elements 8
SP Symbols . • • • • • • • • • • 8
Immediate Attribute Designation • • • • • • 9
External symbols • • • • • 9
Absolute Addresses 9
Indirect Addressing • • • • • • 10
Subs cripting • • • • • • • • • • • • • • • 10
Range • • • • • • • • • • • • • • • 10

Literals and Constants • • • • • 11
Decimal Integer Literals • • • • • • • • • • • • • • • 11
Hexadecimal Literals 11
Character Li tera Is • • • • • • • • • • • 11
Address Constants • • • • • • • • • • • 11

Operators • • • • . • . • • • 12
Arithmetic Operators • • 12
Relational Operators • • • • • • 12
Boolean Operators • . 13

System Symbols • • • • • • • • • • 13
System Symbols Used for Qualification • • • • • • • • • • 14
$B, $P, $L, $T, and $S System Symbols • • • • • • • • • • 15
$R, $C, and $E System Symbols • • ••••• 15
The PSW System Symbols • • • • . • • • • 16
$CAW and $CSW System Symbols • • • . • 16
$TSKID System Symbol • • • • • ••• 16
$ID System Symbol • • • • • •• •••••• 16
$MAP System Symbol • • • • 17
$10 System Symbol • • • • • • • • 17
$VAM System Symbol ••• • • • • • • • • • • • 18
$DOUT System Symbol • • • • • • • • • • • 18
$AT System Symbol • • • • • • 18
$PATCH System Symbol • • • • • • • • • • 19
$DHDR System Symbol • • • • • • • • • • • • • • • • 19
$STATUS System Symbol • • 19
$TASK System Symbol • • • • • • • • 19

Time Sharing Support System Commands • • • • • • • 20
QUALIFY Command • • • • • • • • • • • • • • 20
DEFINE Command • • • • • • • • . •• 21
AT Command • • • • • •• ••••• • • 24
DISPLAY Command • • • • • • 26
DUMP Command • • • • • • • • • • 27
COLLECT Command •••• • 28
SET Command • 29

iii

PATCH Command • •
REMOVE Conunand
IF Cornmand
RUN Command • • •
STOP Cornmand • • • •
CONNECT Command •
DISCONNECT Command
CALL Command
END Command

PART III: USING TSSS ••••
Connecting the System Programmer

External Interruption Key •
VSS Command • • • • • •

Terminal Usage • • • . •
Prede£ined Statement Sets
General Operating Considerations

Global Quali£ication ••••
Global Operations for the MSP • •
Global Operations for a TSP

RSS Restart • • • • • •
Error Conditions ••••

Error Recovery and TSSS Messages
Error Recovery with TSS/360 Aborted •
No Recovery • • • • . •

APPENDIX A: COMMAND SUMMARY

APPENDIX B: MESSAGES

APPENDIX C: OUTPUT FORMATS
Printing TSSS Dump Tapes
$AT and $PATCH Output Formats •
$MAP Output Format
$STATUS Output Format
$TASK Output Format •

APPENDIX D: AT RELOCATION AREAS •

INDEX •••

ILLUSTRATIONS

• • • • 30
• 31

• • • 32
• • • 33
• • • 34

• • 34
• 35
• 35

• • 36

• • 38
• 38

• • • • 38
• • 38

• • • 39
• 40

• • • 41
• 41

41
• 41
• 41
• 42

42
• 42

• • • • 42

• • • • 43

• 45

• 52
• 53
• 54
• 54
• 55
• 55

• • • 56

• 58

Figure 1. The relationships of RSS, VSS, and TSS/360 in three
modes of operation • • • • • • • • • . • • • • • • • •• •• •• 2
Figure 2. TSSS commands and their functions • • • • • • • • •• 5
Figure 3. Format Illustration of the $10 System Symbol •••• 17
Figure 4. SP Symbol Table and Working Storage Block •••• • 23
Figure 5. Collection Area •••• • • • • • 29
Figure 6. Truncation and padding by SET cornmand and truncation by
COLLEcr command • 30
Figure 7. Methods of connecting the TSSS user. • • • • • • •• 38
Figure 8. Card-to-Tape and Terminal-to-Tape Statement Examples •• 41
Figure 9. Effect of execution of mode-changing commands •••• 44
Figure 10. Formats of AT Relocation Areas ••••••••••••• 56

iv

INTRODUCTION

The Time Sharing Support System (TSSS)
is a subsystem within the Time Sharing
System/360 operating environment. The pur­
pose of TSSS is to provide capability for
on-1ine error analysis and modification of
system programs with minimal dependence on
the system it supports.

Minimal system disturbance when TSSS is
called upon is a primary objective, but
rea1ization of the objective is necessarily
in the hands of the TSSS user. In any
case, the presence of TSSS is unnoticed by
TSS/360 users when TSSS has not been
activated.

Because of the unique function and capa­
bility of TSSS, it is described in this
pub1ication as if it were total1y self­
contained and independent of the System/360
Time Sharing System (abbreviated WTSS/360 n

in this context), which in turn is consid­
ered as the system exc1usive of TSSS un1ess
otherwise specified. In this way, the
functions of TSS/360 and of TSSS may be
contrasted with each other and the transfer
of control between them may easily be
described.

TSSS CONCEPTS: FUNCTIONAL CAPABILITIES

The principa1 purpose of TSSS is to al­
low system programmers to selectively gath­
er data for analysis of system program
errors, and to dynamically correct those
errors whi1e TSS/360 is running. TSSS is
essentia11y a maintenance too1 operated
from a keyboard termina1; it is not to be
confused with programs that automatica11y
attempt to recover from hardware malfunc­
tions.

TSSS shou1d not be confused with the
TSS/360 command system subset that appears
to be simi1ar to the TSSS command language.
That command subset is for problem program­
mers; it employs the TSS/360 command system
and relies on the resident supervisor and
privileged virtual programs that TSSS is
designed to monitor and analyze.

TSSS provides access to a1l rea1, virtu­
al, and secondary storage and to machine
registers. TSSS operations may be ini­
tiated direct1y from the termina1 or may be
initiated at predetermined points during
TSS/360 execution. In the latter case, the
AT command (defined in detail later> is
used to imp1ant "ATs· in executable code

PART I: AN OVERVIEW OF TSSS

and thereby cause the subsequent dynamic
initiation of TSSS operations.

The TSSS user has the power to alter as
well as to inspect any part of any TSS/360
program, table, or control block, and thus
it is incumbent on him to exercise care and
restraint. The power to perform dynamic
maintenance on a system as complex as TSS/
360 is also the power to destroy.

Figure 1 is an i1lustration of the TSSS
relationship to TSS/360, as described in
the following paragraphs.

TSSS CONCEPTS: RSS AND VSS

The Time Sharing Support System actually
is two systems in one, providing two modes
of operation. A Resident Support System
(RSS> is the more powerful of the two; when
it is invoked, TSS/360 activity is tem­
porarily suspended. RSS is very nearly
independent of TSS/360. It has its own
input/output capability and may use any
device in the current configuration. RSS
has access to real storage and to the vir­
tual storage of all current tasks.

The Virtual Support System (VSS) is,
from external appearances, very nearly a
copy of RSS; it performs the same basic
functions, but VSS executes within the
time-shared TSS/360 environment.

RSS, then, generally does not rely on
the TSS/360 resident supervisor and is not
time s1iced; the opposite is true of VSS.
Further, RSS is not associated with any
TSS/360 task, whereas VSS is inVOked within
a specified, existing task. VSS resides in
each task's Initia1 Virtual Storage and
thus may be activated within each task.
Nonethe1ess, VSS has the power to address
rea1 storage as wel1 as the virtua1 storage
of the task within which it is active.

Whether RSS or VSS is executing, the use
of the TSSS command language is identica1
and the functions performed are essentially
identical. The user who emp10ys this com­
mand language is therefore classified
according to the mode in which he has
invoked TSSS. RSS mode or VSS mode.

TSSS CONCEPTS: TWO USER CLASSES

The TSSS user has been joined with sys­
tem programmer authority (authority code 0
or P), which is thereafter recognized by

Part I: An Overview of TSSS 1

Task X

Task X's
VSS

'--

r-. Task X

Task X's
VSS

Task X

Task X's
VSS

Virtual Storage Virtual Storage Virtual Storage

Real Storage Real Storage Real Storage

r
r-......

RSS
.........

--,

8 I
I
I
I • 4 .
I
I "Time

I S!icer"

__ J

White :0- active

Shaded .-: inactive

----,-
1-_
I ---
I
I
\ ---

--"
...... " I

RSS
I

...... /

fJouble !ined ::-:: one task (X) and its VSS routines

---1

8 I
I

RSS
I • 4
I •
I
I "Time

I SlicerI'

___ J

Figure 1. The relationships of RSS, VSS, and TSS/360 in three modes of operation

the TSS/360 command system via his user
identification (userid). A system pro­
grammer may use TSS/360 without invoking
TSSS, however; to make the distinction
clear, a TSSS user is referred to in this
publication as a "System Programmer" (ini­
tial capital letters).

There are two classes of System Program­
mers: When RSS is connected to a terminal,
the user of that terminal is a Master Sys­
tem Programmer (MSP): when VSS is connected
to the terminal, the user is a Task System
Programmer (TSP). (·Connected" is used
here to denote MSP or TSP capability at a
given terminal, whether or not TSSS is cur­
rently executing on behalf of that System
Prog rammer.)

In describing TSSS, user classification
often is irrelevant. The term System Pro-

2

grammer is then used, and in certain
instances it is abbreviated "SP."

It is important to note that only one
MSP can be connected at a given time
(regardless of how many individuals may
have the authority to function as an MSP),
and that multiple TSPs may be connected at
a given time but only one per task.

MACHINE CONFIGURATION

The Time Sharing Support System may be
used with any machine configuration of TSS/
360: system generation as described in IBM
System/360 Time Sharing System: System
Generation and Maintenance, GC28-2010,
together with the Startup procedures per­
formed by the Operator, will prepare TSS/
360 so that TSSS may be invoked. Any ter­
minal supported by TSS/360 may be used as a

TSSS input device. Specifically, the fol­
lowing input/output devices1 are supported
by TSSS:

• IBM 1050 Data Communications System:
1052 Printer-Keyboard, Model 2, and
1056 Card Reader only; attached via a
2102 Transmission Control

• IBM 1052 Printer-Keyboard, Model 1 (the
CPU console keyboard device)

• IBM 2141 Communications Terminal, at­
tached via a 2702 Transmission Control

• Teletype Model 33 or 35 KSR teletype­
writer (a product of the Teletype
Corporation)

• IBM 2540 Card Read Punch, read only

• IBM 2301 Parallel Drum

• IBM 2311 Disk Storage Drive

• IBM 2314 Direct Access Storage Facility

• IBM 2401 Magnetic Tape Unit, Models 1,
2, and 3

• IBM 1403 Printer, Models 2 and Nl

Note: The different keyboard input devices
are not identical in respect to certain
terminology and procedures. The 1052 RE­
QUEST key, the 2741 Attention key, and the
teletypewriter equivalent are all referred
to as the Attention key in this publica­
tion. The signal that the end of an input
string has been reached, whether called
end-of-block, end-of-message, or end-of­
transmission elsewhere, is referred to as
end-of-block (EOB) in this publication.

SYSTEM SUMMARY

This section discusses in greater detail
the relationship of RSS and VSS to each
other and to TSS/360, defines the modes of
operation for TSSS users and how each is
established, and introduces basic concepts
of using TSSS through its unique command
language.

1Terminals that are equivalent to those
explicitly supported may also function
satisfactorily. The customer is respons­
ible for establishing equivalence. IBM
assumes no responsibility for the inpact
that any changes to the IBM-supplied pro­
ducts or programs may have on such
terminals.

CONNECTING THE SYSTEM PROGRAMMER TO RSS OR
VSS

A Master System Programmer (MSP) may
connect a terminal to RSS in only one way.
A Task system Programmer (TSP) may connect
a terminal to vss, or he may have a termi­
nal connected to VSS on his behalf by a
connected MSP. In brief, these procedures
are:

• Pressing a CPU external interruption
key connects the Master System Pro­
grammer at the Operator's terminal.

• With a conversational task active at a
terminal, the VSS command of the TSS/
360 command system connects a TSP at
that terminal.

• The MSP may issue the CONNECT command
to connect a TSP at the terminal of a
logged-on conversational task.

The methods of connecting a System Pro­
grammer are defined in detail in Part III
and under "CONNECT Command" in Part II.

Note that the term "connected" is used
to denote MSP or TSP capability at a termi­
nal. The MSP can be connected only to RSS.
A TSP may be said to be connected either to
VSS or to a task; the meaning is the same.
The period of time during which a System
Programmer is connected is called a TSSS
terminal session.

MODES OF OPERATION

For convenience in describing TSSS, sev­
eral modes of operation and states are
defined as follows:

• RSS mode means that RSS is executing
and TSS/360 operation is suspended. No
VSS activity is possible. Usually the
MSP is connected, but it is possible to
be in RSS mode with no MSP connected;
in that case, RSS is performing a ser­
vice for VSS.

• VSS mode means that vss is executing
within the time slice of a given task
or is in control of the task and is
awaiting a time slice. VSS mode ap­
plies only to the specified task, and
usually a TSP is connected to that
task. However, VSS mode may occur for
any task as a result of global ATs
implanted by at least one connected
TSP.

• Call mode is concurrent with RSS mode
or VSS mode; it means that a card read­
er or tape drive is currently the input
device (see "CALL Command"). The MSP
(RSS mode) or a TSP (VSS mode) must be

Part I: An Overview of TSSS 3

connected. Call mode is either immedi­
ate or dynamic, as described later in
this section under "Input Statements."

• Run mode (or TSS/360 mode) means that a
connected System Programmer has issued
the RUN command and that TSS/360 has
resumed execution, in the case of the
MSP, or the task has resumed execution,
in the case of a TSP.

QUALIFICATION STATES

For TSSS operations, qualification is
defined as a state, controlled by the Sys­
tem Programmer, that determines whether
storage addresses shall be resolved as real
storage addresses, virtual storage address­
es, or secondary storage addresses.

The term used to specify real (non­
relocatable) storage as the subject state
is "real memory" -- real memory is a TSSS
qualifier. The term used to specify the
virtual storage of a given task as the sub­
ject state is ·virtual memory."

External qualification (referencing
secondary storage) is the implied state for
certain operations. As a state, it exists
only for the duration of the operation.

"Global" is a unique TSSS qualification
state. It is established through the same
procedures used to establish real memory or
virtual memory qualification. However,
once established, the global state pertains
to a mode of execution, rather than to spe­
cification of unique storage addresses, as
described below under the heading "Global
Operations."

Either the MSP or a TSP may operate
under each of the qualification states,
within certain limitations that are defined
elsewhere. It should be noted that the use
of real memory qualification always implies
running in RSS mode, at least for a brief
interval. VSS must call upon RSS to per­
form certain functions it cannot perform
for itself.

Global Operations

The preceding list of modes of operation
does not include one unique category -­
global operations. The reason is that, in
addition to special considerations regard­
ing global operations, they always occur
while in run mode from the System Program­
mer's point of view; global operations are
initiated during TSS/360 execution by
dynamic statements that in turn are trig­
gered by "global ATs."

A global AT is one in shared virtual
storage whose execution by any task, wheth-

4

er or not a TSP is connected to that task,
causes the associated dynamic s~atement to
be executed. If the global AT was implant­
ed by the MSP, RSS mode is established for
the duration of execution of the statement;
if implanted by a TSP, VSS mode is estab­
lished, for each task executing the AT, for
the duration of execution of the statement.
Global operations for a TSP are the excep­
tion to the general rule that a TSP must be
connected to a task for VSS to be
activated.

All relevant aspects and implications of
global operations are described and defined
in appropriate sections of this publica­
tion; see "AT Command" in Part II and
"Global Qualification" in Part III in
particular.

INPUT/OUTPUT OVERVIEW

TSSS accepts command statements written
in the TSSS command language, interprets
those statements, and performs the request­
ed operations. There are very few restric­
tions on the System Programmer; he bears
responsibility for correct use of the TSSS
capability.

Input Statements

Figure 2 presents a summary of the TSSS
commands and their functions. With the
exception of CONNECT, they are used in
essentially the same manner for the same
purpos es by both the MSP and a TSP. A
detailed discussion of the commands and
their use appears under the heading "Time
Sharing Support System Commands." "Lan­
guage Elements and Notation" defines ter­
minology and describes the ways in which
valid command operands are formed.

One or more commands, up to a 256-
character maximum, form an input statement.
Statements are typed at the System Program­
mer's terminal or may be issued, after a
terminal session has begun, via a prede­
fined statement set on cards or tape. No
other external data sets of its own are
used by TSSS; the data operated upon con­
sists primarily of TSS/360 programs,
tables, control blocks, and status informa­
tion.

Each TSSS command statement is either
"immediate" or "dynamic"; an immediate or a
dynamic statement may also be "condi­
tional."

Immediate Statements: A command statement
that is processed and executed in its
entirety upon receipt of the input is
called an immediate statement.

r-----------T---,
'Command , Function I
~-----------+---~
I AT , Designates a dynamic statement and the point in TSS/360 execution at I
, , which it is to be executed. I
I I ,
I CALL I Initiates the execution of a prestored set of command statements. I
I I I
I COLLECT 'Moves data from a specified area into a specified collection area. I
I I I
I CONNECT I Causes a TSP to be connected to VSS at the terminal of a specified task. I
, , Valid for an MSP only. I
I , I
I DEFINE ,Enables the SP to define temporary symbols and allocates storage when I
I I necessary. I
I I I
I DISCONNECT' Removes the SP capability from the terminal, restores TSS/360 (except for I
I I patches), and permanently transfers control to TSS/360. I
I I ,
I DISPLAY I Writes data requested by an SP on his terminal. ,
I I I
, DUMP I Writes data requested by an SP on a specified output device. I
I I I
I END I Terminates reading of a device being used for input of prestored state- I
I I ment sets. I
I I I
I IF I Designates a conditional statement; execution of the statement is depen- I
I I dent on the predetermined condition. I
I I I
I PATCH I Alters the contents of a specified data field and keeps a record of the I
I I patch. I
I I I
I QUALIFY I Establishes implicit "real memory,· ·virtual memory,· or "global- qual i- I
I I fication for subsequent operands. I
I I I
I REMOVE I Deletes ATs and their associated dynamic statements, or deletes patches. I
I I I
I RUN I Causes control to revert to TSS/360i ATs can then be executed. I
I I I
I SET I Alters the contents of a specified data field. I
I I I
I STOP I Causes TSS/360 or a specific task to halt. I L-__________ 4 ___ J

Figure 2. TSSS commands and their functions

If call mode is established during
execution of an immediate statement, the
call mode is considered to be immediate.

Dynamic Statements: All commands following
an AT command in a given statement collec­
tively constitute a dynamic statement. A
dynamic statement is not executed at the
time it is received as input but is saved
for subsequent execution at a predetermined
point during TSS/360 execution.

If call mode is established during
execution of a dynamic statement, the call
mode is considered to be dynamic.

If an AT command appears after another
AT command in an input statement, a dynamic
statement is embedded within another dynam­
ic statement.

conditional Statements: The presence of an
IF command in an immediate or dynamic
statement signifies that the remainder of
the statement is conditional; it will be
executed only if the predetermined condi­
tion is satisfied. A conditional statement
may be embedded within another conditional
statement.

TSSS Output

TSSS is capable of producing hard-copy
output in the form of printer dumps and
terminal displays, or dumps to tape for
subsequent printing. Many operations per­
formed by TSSS are internal, such as defin­
ing working storage areas, collecting data
into specified areas, or modifying data.
No physical output is generated automati­
cally by TSSS except for diagnostic mes­
sages written at the System Programmer's
terminal. (The character $ is written at

Part I: An Overview of TSSS 5

the System Programmer's terminal to invite
input, but this output operation has no
other significance.)

TSSS diagnostic messages are divided
into four classes: Class 0 messages result
from permanent I/O errors; Class 1 messages
result from System Programmer errors; Class
2 messages result from system errors; and
Class 3 messages result from errors in
loading and unloading of the transient por­
tion of RSS. (RSS is partially resident
and partially transient, whereas VSS
resides in each task's Initial Virtual
storage.)

The only documentation of a TSSS termi­
nal session is that which the System Pro­
grammer produces, with and without the
assistance of TSSS.

6

The Time Sharing Support System employs
a self-contained, interpretive language
processor, with separate but basically
identical versions in RSS and VSS, that
reads the input device and performs the
operations requested by a System Pro­
grammer. TSSS accepts input written in a
unique command language whose syntax is
both simple and flexible, enabling the Sys­
tem Programmer to specify a wide variety of
operations to be performed by TSSS.

A general discussion of language ele­
ments and notation introduces the command
language description, followed by detailed
definitions of all language elements.

LANGUAGE ELEMENTS AND NOTATION

conventions and Notational Symbols

A group of notational symbols is used in
format representations. in accordance with
conventions governing their use, to lend
precision and ease of understanding to the
syntax of the TSSS command language.

Within each format representation, any
item written in capital letters is to be
written by the System Programmer exactly as
shown (except that they may be typed at a
terminal in lowercase letters). Items
written within format representations in
lowercase letters are terms for which spe­
cific values are to be SUbstituted. These
terms are either self-defining according to
standard usage (e.g., "address," ·parame­
ter") or are defined in this publication
(e.g., "data field," "system symbol").

TSSS commands have no keyword operands
of the type used in the TSS/360 command
system (KEYWORD=parameter), nor are there
positional operands in the TSS/360 sense.
There are poSitional parameters that are
described fully with their occurrence.

The following notational symbolS are
used in format representations; they are
not punctuation marks and must not be writ­
ten by the System Programmer:

[] Brackets. These indicate that the
item or items enclosed therein are
optional and may be omitted at the
user's discretion. If default
values are assumed by TSSS, they
are described in the accompanying
text.

PART II: THE TSSS COMMAND LANGUAGE

{ } Braces. These indicate that one of
the alternative items stacked
within the braces must be selected
by the system Programmer.

[••••] Ellipsis within brackets. This is
the form used to indicate that an
operand format may be repeated:
that is, it specifies that multiple
operands are permitted. An entire
operand (simple or compound, as
defined in the introductory para­
graphs under "Time Sharing Support
System Commands"), in any form that
is valid according to the format
representation, must be supplied,
separated from the preceding
operand by a comma.

Note: Any operand that references real or
virtual storage is implicitly or explicitly
qualified. The explicit qualifiers $RM and
$VM (see "System Symbols·) may prefix any
such operand. This option is not shown in
the command format representations.

The Character Set

The character set used to construct TSSS
command language elements consists of the
following:

• the English alphabet, A through Z,
upper or lowercase

• the arabic numerals 0 through 9

• the special characters + - * / < = > •
, ; : () , & I 1 % $ blank

The character $ has special uses in TSSS
and is not included in the alphabet that is
used to designate symbols other than system
symbols.

The character ~ is not accepted by TSSS
except when within a character literal.

The character # is recognized by TSSS as
a backspace character when the input device
is a 1052 Model 7 Printer-Keyboard and can­
not be used in any other way. For any
other input device, the # is accepted by
TSSS only when it occurs within a character
literal. (The left arrow character on the
Model 33 or 35 KSR teletypewriter keyboard
is recognized by TSSS as the backspace
character for that input device.>

It shOUld be noted that graphic symbols
may vary among devices. The correct bit
configuration will be transmitted to TSSS

Part II: The TSSS Command Language 7

if characters are keyed in at a 1052 or
2741 terminal in accordance with the key­
board position as shown in IBM System/360
Time Sharing System: Terminal User's
Guide, GC28-2017.

Language Elements

The building blocks of the TSSS command
language are the commands, symbols, liter­
als, and operators. The last three of
these elements are combined to form oper­
ands, and there are several kinds of each
type of element. The sections following
describe all of these elements in detail,
in the following order: data field defin­
ing items (exclusive of system symbols),
literals (including constants), operators,
system symbols, and commands. The charac­
ters used only as delimiters are defined by
their use in format representations.

DATA FIELD DEFINING ELEMENTS

For the purpose of describing TSSS and
its command language, a data field is
defined as any storage area, measured in
contiguous bytes, that is addressable in
machine language and has a specific length
attribute. A data field may thus exist in
real storage, in virtual storage, or in
secondary storage (on an external but on­
line device); it may have or may be
assigned additional attributes.

To define data fields in the TSSS com­
mand language, the System Programmer uses
symbols, absolute addresses, indirect
addressing, subscripting, immediate attri­
bute designation, range, or combinations of
these. Of the symbols, SP symbols and TSS/
360 external symbols are discussed in this
section; the numerous system symbols that
define data fields are discussed in the
section entitled "System Symbols."

Note: The term ·symbol" is used in some of
the format representations for data field
defining elements to designate storage lo­
cations in a generalized way. In that con­
text the term encompasses all types of sym­
bols as well as other means of expressing
storage addresses.

SP Symbols

A System Programmer may define data
fields and assign symbolic names of his own
choosing, as described in detail under
"DEFINE Command"; these are called SP sym­
bols. The data field defined by an SP sym­
bol may exist in the System Programmer's
working storage or it may be a TSS/360 data
field.

8

An SP symbol carries with it in a symbol
table the following data field attributes,
shown here with their default values:

• base address - the actual storage
address

• pointer - 0

• length - 1 byte

• type - hexadecimal

• size - same as length

base address
may be a real or virtual storage ad­
dress.

pointer
is a value that is always added to the
base address when a symbol is
resolved, forming the effective ad­
dress of the data field. Pointer is
always zero when an SP symbol is
defined and remains unchanged for all
TSSS internal operations except execu­
tion of the COLLECT command; it should
not be confused with "offset" (see
"Immediate Attribute Designation" be­
low) •

length

type

size

is the number of bytes that partici­
pate in an operation when the symbol
is used by the System Programmer.

indicates whether the data in the data
field is to be treated as hexadecimal,
decimal integer, or character (EBCDIC)
information.

is the total number of bytes in the
data field.

The pointer and size attributes are
intended primarily for use by the COLLECT
command; nonetheless, all data fields are
described internally by TSSS with all of
the above attributes. The System Pro­
grammer may establish such attributes
(except pointer) for a TSS/360 data field
by defining that data field with the DEFINE
command and thereby creating an SP symbol.

An SP symbol is private for the MSP and
for a TSP, with one exception: If a TSP is
operating under global qualification when
the symbol is defined, the symbol is glob­
al. A private SP symbol is recorded in the
System Programmer's SP Symbol Table; a
global SP symbol is recorded in the Global
Symbol Table, which is shared by all TSPs
using the system from TSS/360 startup to
TSS/360 shutdown.

The attributes of an SP symbol may be
changed for a single use of the symbol with
the use of immediate attribute designation
(see below) or they may be referenced
through appropriate use of the $B. $p, $L,
$T. and $S system symbols (see ·system
Symbols").

Immediate Attribute Desiqnation

Every data field is defined in accor­
dance with its default attributes. accord­
ing to type, or is defined for one-time
reference by the System Programmer by using
immediate attribute designation. Base ad­
dress and pointer are not affected by use
of this notation, but an offset from the
base-pIus-pointer address may be specified
to modify the effective address of the data
field. The format for immediate attribute
designation is:

r-------------------------------,
I symbol. (o,l,t,s) I L _______________________________ J

symbol
refers to any representation of a data
field that will resolve to a storage
address.

o,l,t,s
represents specification of values for
offset, length, type, and size, re­
spectively. Offset, length. and size
are normally expressed in decimal
digits. type is normally coded I, X,
or C to represent decimal integer,
hexadecimal, or character, respec­
tively. However, any expressions that
can be resolved to appropriate values
may be used.

Any of the "o,l,t,s· parameters may be
omitted, but all commas to the left of the
last one designated must be retained.
Default values appropriate for the speci­
fied wsymbol W are supplied by TSSS for
length, type, and size. the default for
offset is always zero. In the case of an
SP symbol, the SP Symbol Table supplies the
defaul t values.

Offset is a displacement from an effec­
tive address. it is always specified by the
System Programmer. An effective address is
calculated by TSSS, prior to application of
any specified offset, as the sum of base
address and pointer attribute. Manipulat­
ing the value of the pointer is normally an
internal function.

Note that the value of an offset is not
subtracted from length in a given defini­
tion of a data field. For example. to spe­
cify only the last half of an eight-byte
data field, immediate attribute designation
should specify an offset of 4 and a length

of 4. if length were defaulted. the data
field referenced would consist of the four
bytes desired plus the following four
bytes. Note that symbols given type inte­
ger in immediate attribute format can not
have a length attribute greater than four.
If the length attribute is not given, the
default length is one.

External Symbols

TSS/360 external symbols may be used by
a System Programmer to specify the real or
virtual storage address of a data field.
An MSP may, with proper qualification,
reference any external symbols in TSS/360.
A TSP may reference external symbols of
real storage and of the virtual storage
addressable by the task to which he is
connected.

When an external symbol is referenced by
a System Programmer, it is assigned the
following default attributes:

• pointer - 0

• length - 1 byte

• type - hexadecimal

• size same as length

If different attributes are desired, imme­
diate attribute designation must be used.
By using an external symbol with an offset,
a System Programmer may reference any loca­
tion within a given control section.
Storage maps of external symbols may be
obtained with the $MAP system symbol (see
"System Symbols").

Note: An MSP or TSP should not reference
an-external symbol which has a $ as its
first character. as the $ as a first
character indicates a system symbol in TSSS
(e.g., $PSW). If the symbol used has the $
as a first character and is not a valid
TSSS system symbol, it is rejected.

Absolute Addresses

Actual hexadecimal storage addresses,
real or virtual depending on qualification,
are represented with "L-notation. w The
format for L-notation is:

r-------------------------------,
I L' xxxxxxxx • I L _______________________________ J

xxxxxxxx
represents one to eight hexadecimal
digits; leading zeros are supplied by
TSSS as needed.

Part II: The TSSS Command Language 9

L-notation designates a data field whose
default attributes are:

• pointer - 0

• length - 1 byte

• type hexadecimal

• size same as length

Immediate attribute designation can be used
with L-notation to specify different
length, type, and size attributes.

An example of L-notation is: L'13579B'

Indirect Addressing

The contents of a data field may be the
address of another data field. The System
Programmer may reference the latter data
field via the address of the former (sym­
bolic or otherwise) by using the special
character percent sign (%) to designate
indirect addressing. The format is:

r-------------------------------,
I symbol% I l _______________________________ J

symbol
refers to any representation of a data
field that will resolve to a storage
address.

The effective address of "symbol" (base
address plus pointer, plus offset if speci­
fied) need not be on a fullword boundary.
It designates the starting address of a
four-byte field that is assumed to contain
an address.

When the indirect addressing operator is
used in a TSSS operation, the data field
addressed by that use has an implied length
of four bytes and a type attribute of hexa­
decimal. Immediate attribute designation
can be used to specify different attributes
for the operation.

Multiple levels of indirect addressing
can be specified. The following diagram
depicts an example:

1234 address 1 address 2

L·1234·~%~~~dd;~~~1~~~dd;~~~;I~--d~~~-~
l ________ J l _________ J l ________ J

By including L'1234'%% in the operand of an
appropriate command, the System Programmer
would actually reference "data." Byomit­
ting the second percent Sign, he would
reference "address2" as the contents of a
data field.

Subscripting

A data field may be treated as an array
and a subscript used to reference an ele-

10

ment in that array. The format for sub­
scripting is:

r-------------------------------,
I symbol (n) I L _______________________________ J

symbol

n

refers to any representation of a data
field that will resolve to a storage
address.

is any expression, usually a decimal
integer, that reduces to a value that
will designate the desired element of
the array. A subscript of 0 specifies
the first element, 1 the second ele­
ment, etc.; the value of "n" may be
negative.

The element referenced by subscripting
has the length of the length attribute of
"symbol." If the System Programmer wishes
to create an array in his working storage,
he should define an SP symbol with a size
attribute that is an appropriate multiple
of the length attribute. The size attri­
bute is irrelevant when subscripting TSS/
360 data fields. (Note that a data field
referenced with an external symbol or with
L-notation has a default length attribute
of one byte.)

An example of subscripting is: ARRAY (6)

This example references the seventh ele­
ment of the data field ARRAY, or, put
another way, it references a data field
whose address is base-pIus-pointer of the
symbol ARRAY plus six times the length
attribute of ARRAY, and whose length is
equal to the length attribute of ARRAY.

A data field may be specified as the
range from one storage address to a higher
storage address. Both addresses must exist
in real storage, in the virtual storage of
the same task, or on the same I/O device.
The format is:

r-------------------------------,
I symbol: symbol I l _______________________________ J

symbol
refers to any representation of a data
field that will resolve to a storage
address. The address represented by
·symbol" on the left of the colon must
not have a value greater than that of
"symbol" on the right.

The length of a range is computed as the
second effective address minus the first

effective address plus the length attribute
of the second data field representation.

The following are examples of range
designation:

SYMB1:SYMB3

SYMB2:L' 27F6'

SYMB4.(32):SYMB5.{,16)

In the first example, the length of the
range is from the first byte of the data
field named SYMBl through the last byte of
the data field SYMB3 (as specified by the
length attribute of SYMB3).

In the second example, the range begins
with the first byte of SYMB2 and ends with
the byte whose actual hexadecimal address
is 27F6.

In the third example, the range begins
with the 33rd byte of the data field SYMB4
and extends through a data field named
SYMES whose length for this use is 16
bytes.

LITERALS AND CONSTANTS

A literal in the TSSS command language
is an item of immediate data in the input
stream. Internally the literal becomes the
contents of a data field, but a literal is
not itself to be considered a data field in
that it is not defined and thus cannot be
addressed. There are three kinds of
literals acceptable to TSSS: decimal inte­
ger, hexadecimal, and character.

Only one type of data is classified as a
constant in the TSSS command language: the
address constant. A literal may be called
a constant (e.g., ·character constant-)
without changing its definition, however.

Decimal Integer Literals

A decimal integer literal is written by
the System Programmer as a string of arabic
numerals. Its implied length is always
four bytes, and a decimal integer literal's
maximum absolute value is 23~-1. A decimal
integer literal is translated internally
into its binary equivalent and is treated
as a 32-bit signed integer.

An example of a decimal integer literal
is: 128

Note that the one-byte bit configuration
for the above example is 10000000. If this
binary value were contained in a one-byte
data field of integer type, and if this
data were used in an arithmetic operation,
(see "Arithmetic operators"), it would

first be expanded to the four-byte bit
configuration:

11111111 11111111 11111111 10000000

The result is a negative algebraic value
(in complement form) instead of the binary
representation of 128. Similar results may
be obtained when performing arithmetic
operations on decimal integer fields two or
three bytes long.

Hexadecimal Literals

A hexadecimal literal is written by the
System Programmer as a string of hexadeci­
mal digits (0 through F), enclosed in apos­
trophes and preceded by X. Its maximum
value is determined by length; the length
is limited by the available space in the
2S6-byte input buffer.

An example of a hexadecimal literal is:
X'13579BDF'

Character Literals

A character literal is written by the
System Programmer as a string of characters
enclosed in apostrophes and preceded by C.
Except for the apostrophe, any character
for which there is an EBCDIC graphic,
including blank, may be included. If an
apostrophe within the literal is desired,
two apostrophes must be included in the
input (one of which will be edited out
internally) •

In addition to the above special case,
the character # (·pound sign") cannot be
included in a character literal when the
input device is a 1052-7 Printer-Keyboard.
Instead, that character is recognized as a
backspace character when keyed in at a
1052-7.

The length of a character literal is as
many bytes as there are characters within
the apostrophes (including blanks) minus
edited apostrophes.

An example of a character literal is:
C'2"S COMPLEMENT'

The length of the literal in the example
is 14 bytes.

Address Constants

A storage address may be represented as
an address constant, written by the System
Programmer as a symbol enclosed in apos­
trophes and preceded by A. The value of
the address constant is the actual storage
address associated with the symbol (base
address plus pointer).

Part II: The TSSS Command Language 11

When an address constant is operated
upon, the address value itself is used, not
the contents of the data field designated
by the address.

An example of an address constant is:
A'TABLE'

OPERATORS

Arithmetic, relational, and Boolean
operators are provided for use with symbols
and literals to form expressions. These
expressions are used, in turn, in the for­
mation of TSSS command operands.

Expressions are evaluated left to right,
subject to the following hierarchy of
operator precedence and the conventional
rules of parenthesization:

L unary minus

2. multiplication, division

3. addition, subtraction

4. greater than, less than, equal to

5. logical AND, logical OR

6. logical NOT

Note that if the symbol(s) that are
operands designate a data field(s) on an
external device(s) the operation will not
be performed.

Arithmetic Operators

The conventional arithmetic operations
addition, subtraction, multiplication, and
division are specified by the characters +,
-, *, and /, respectively. The minus sign
(-) may also be used as a unary operator to
denote a negative value. The arithmetic
operators are combined with symbols and
literals to form arithmetic expressions.

For example, 3+6*2 is an arithmetic
expression; operator precedence makes its
value 15. The same expression with paren­
theses added, so that it becomes {3+6)*2,
is evaluated as 18.

The result of an arithmetic operation is
a single value in hexadecimal or decimal;
it is hexadecimal in all cases where the
parameters entering into the operation are
not all of decimal integer type. Any
remainder from division is lost; only the
quotient is saved. A negative result from
any arithmetic operation is carried in com­
plement form.

Arithmetic operations are performed with
the fixed-point instructions; each parame-

12

ter is treated as a 32-bit signed integer.
If the length of a parameter is not four
bytes, the following rules apply:

• If both participating parameters are
decimal integer type, and if either is
less than four bytes in length, it is
expanded to four bytes by propagating
the leftmost bit. If either is more
than four bytes long, it is truncated
on the left.

• In all other cases, any parameter less
than four bytes in length is padded on
the left with zeros; any parameter more
than four bytes long is truncated on
the left.

When any representation of a data field
is provided as a parameter for an arithme­
tic operation, the operation is performed
on the contents of the data field, not on
the address. For example, "A+1" results in
one being added to the contents of the data
field whose name is A. (This addition
takes place in working storage; the origi­
nal value of the data field A is
unchanged.) "A. (1)," on the other hand,
correctly specifies a one-byte offset from
the address of A.

Relational Operators

The relational operators < > = denote
"less than," "greater than," and "equal
to," respectively. These operators are
used to form logical expressions such as
A<B (A less than Bl, A>B (A greater than
B), or A=B (A equal to B). The parameters
compared when a relational operator is
executed can be the following:

• contents of data fields

• literals

• results of arithmetic operations

• Boolean expressions

• any combination of these

The following are examples of logical
expressions containing relational opera­
tors:

A+B>X'FF'

(AIB)=X'FF'

A logical expression is evaluated as
either "true" (an indicator byte is set to
ones) or "false n (the byte is zeroed); it
is meaningless unless used as the operand
of the IF command.

A comparison caused by execution of a
relational operator is left-to-right for as

many bytes as are specified by the length
attribute of the shorter parameter. The
comparison is logical, not algebraic, and
begins with the leftmost byte of both
fields unless both parameters are of deci­
mal integer type. If both have a type
attribute of decimal integer, the longer
parameter is truncated on the left before
the comparison is performed.

For example, given the expression A=64
where A is a one-byte data field, if A is
decimal integer type its contents are com­
pared with the binary representation of 64
(64 is a four-byte decimal integer liter­
al). If A has any other type attribute, it
is compared with the high-order (leftmost)
byte of the literal 64. which contains
zeros.

Note that the equal sign (=) is also
used in the format of the COLLECT, DEFINE,
PATCH, and SET commands, in which instances
it is not a relational operator.

Boolean Operators

The Boolean operators &, I, and 1 repre­
sent the logical functions AND, OR, and
NOT, respectively. Each of them causes a
bit-by-bit operation to be performed. The
AND and OR operations are exactly as indi­
cated for the comparable machine instruc­
tions in IBM System/360 principles of
Operation, GA22-6821. The NOT operation
inverts the bits of the specified data.

AND and OR may be used in the sense of
"both" and "either" in the operand of an IF
command by using the Boolean operator
between two logical expressions containing
relational operators. When that is done,
each expression is evaluated separately,
the result of which is a true or false
indication in the form of a byte of all
ones or all zeros, respectively. The AND
or the OR operation is then performed on
the two indicator bytes to produce a single
true or false indication as the evaluated
operand of the IF command.

Bit manipulation by a Boolean operator
is not performed directly in a specified
data field but rather in working storage.
Thus, only with an appropriate command
(such as SET) will data actually be changed
with a Boolean operator.

The parameters that enter into a Boolean
operation can be the following:

• contents of data fields

• literals

• results of arithmetic operations

• evaluated logical expressions

• any combination of these

The following are examples of Boolean
expressions:

A&B

MASKIX'02'

1 (A<B)

Note that the third example is the
equivalent of specifying "A equal to or
greater than B."

The following are examples of Boolean
expressions comprised of logical expres­
sions:

A=BIA=C

(A=BIA=C>&D=X'FF'

In the first example, the entire expres­
sion would be evaluated as true if either A
equals B or A equals C. In the second
example, the entire expression would be
evaluated as true only if the above is true
and data field D contains X'FF'.

Note that a parenthesized Boolean ex­
pression within a logical expression (as in
the second example under "Relational Opera­
tors") causes the bit manipulation to be
performed prior to the relational compari­
son.

SYSTEM SYMBOLS

TSSS defines a group of "system symbols·
for the System Programmer. These symbols,
each of which has $ as its first character,
define certain data fields or perform cer­
tain functions when used as command
operands or within operands. They are
grouped according to function and are dis­
cussed in the following order:

• $RM, $VM -- used to specify
qualification.

• $B, $p. $L. $T, $S -- used to refer to
SP symbol attributes.

• $R, $C, $E -- used to refer to machine
registers.

• $PSW, $PPSW, $PPSW1. $PPSW2, $SPSW,
$XPSW. $APSW. $TPSW. $IPSW, $MPSW,
$vpsw -- used to refer to real or vir­
tual program status words.

• $CAW, $CSW -- used to refer to the
channel address word and channel status
word.

Part II: The TSSS Command Language 13

• $TSKID -- used to refer to the identi­
fication number of the ·current" task.

• $ID. $MAP -- used to retrieve external
symbols.

• $10, $VAM, $DOUT -- used to specify I/O
devices.

• $AT, $PATCH -- used to refer to ATs and
patches.

• $DHDR -- used to label output of the
DUMP command.

• $STATUS, $TASK
tus indicators.

used to retrieve sta-

In addition to a definition of the func­
tion and a description of the attributes of
each system symbol (with examples), a
representation of the format is shown in
each instance where a variable parameter is
included. If no format representation is
shown, the system symbol or symbols under
discussion appear in the same format as
symbols in general -- simply as a character
string.

Those system symbols that represent data
fields occur in RSS for the MSP domain and
in VSS for a Task System Programmer. They
are resolved with the System Programmer's
default qualification, and any other im­
plicit or explicit qualification is
ignored.

The system symbols that represent data
fields may be used in accordance with the
rules for all data fields (e.g •• with imme­
diate attribute designation). It is the
System Programmer's responsibility to
determine what usage is appropriate in a
given instance.

System Symbols Used for Qualification

Operands containing storage addresses
are qualified either implicitly or explic­
itly as real memory, a virtual memory, or
external (a data field in secondary
storage). Real memory is the term applied
to real storage qualification; virtual
memory is the term used to specify as qual­
ification the virtual storage of a task.
The system symbols $RM and $VM are used to
establish real memory and virtual memory
qualification, respectively.

$RM or $VM may be used as the operand of
the QUALIFY command to establish implicit
qualification, or it may be used with an
individual operand to establiSh explicit
qualification for that operand only, over­
riding the existing state of implicit qual­
ification. The format is:

14

n

n

r-------------------------------,
I $RM[(n)][.] I
~-------------------------------~
I $VM [(n)][.] I L _______________________________ J

with $RM represents a CPU number in a
duplex Model 67 configuration; its
value may be 1 or 2. When it is spe­
cified, any operand that references a
Prefixed storage Area (PSA) will
reference the PSA of the designated
CPU. If wnw is omitted, PSA dedica­
tion is considered irrelevant. The
optional period (.) is used when $RM
precedes a command operand; it is
omitted when $RM is the operand of the
QUALIFY command.

with $VM specifies the virtual memory
of a specific task in literal nota­
tion. Its value is the internal task
identification number of the task. A
TSP can specify only the task to which
he is connected. When nnw is omitted,
global qualification is specified for
a TSP or the current task is specified
by the MSP. The optional period is
used when $VM precedes a command
operand; it is omitted when $VM is the
operand of a QUALIFY command.

Each System Programmer begins a terminal
session in his default implicit qualifica­
tion state: real memory (no CPU specified)
for a Master System Programmer, or the vir­
tual memory of the task to which the Task
System Programmer is connected. Each use
of the $RM or $VM system symbol will respe­
cify the existing qualification, either for
resolution of one or more storage addresses
in a single use of a single operand or, if
used with the QUALIFY command, until speci­
fied again.

For further details, see "QUALIFY Com­
mand" in the following section and "Modes
of Operation" in Part I.

Caution: When using the $RM symbol in VSS
to SET or PATCH, a page of real storage
containing the target location to be
changed is obtained, without TSS/360 activ­
ity being suspended. The entire page is
replaced after the change has been made.
caution should be used, therefore, since
results to the system are unpredictable.

The following examples depict a variety
of formats in which the $RM and $VM system
symbols would appear:

QUALIFY $RM(2)

QUALIFY $VM

command $VM(13).operand

In the first example, implicit qualifi­
cation of real memory is established for a
System Programmer when the QUALIFY command
is executed. If an operand refers to a
PSA in a subsequent statement, the PSA of
CPU 2 will be used.

In the second example, global qualifica­
tion is established when the QUALIFY com­
mand is executed on behalf of a TSP, or the
virtual memory of the current task is es­
tablished as implicit qualification if the
TSSS user is the MSP.

In the third example, the qualification
of "operand- becomes the virtual memory of
task 13 (decimal), overriding the implicit
qualification.

All three examples are valid for an MSP.
The first two are valid for a TSP; the
third for a TSP only if he is connected to
task 13.

Note that $VM(13) and $VM(X·OD') have
the same value.

$B, $P, $L, ST, and $S System Symbols

As was pointed out in the discussion of
SP symbols, the SP symbol attributes are
carried with the symbol in the SP Symbol
Table. The data fields containing this
information may be referenced by the System
Programmer with the $B, $P, $L, $T, and $8
system symbols, referring to the base
address, pointer, length, type, and size,
respectively.

The format for this group of system sym­
bols is:

r-------------------------------,
I $B(Sp symbol) I
~-------------------------------~
I $P(sp symbol) I
t-------------------------------~
I $L(Sp symbol> I
~-------------------------------~
I $T(sp symbol) I
t-------------------------------~
I $S(sp symbol) I l _______________________________ J

sp symbol
represents an SP symbol that was
defined by the System Programmer dur­
ing the current terminal session, or,
under global qualification for a TSP,
a global SP symbol that was defined by
any TSP since the last TSS/360
startup.

The base address, pointer, length, and
size attributes of an SP symbol are rec­
orded in four-byte fields whose addresses

are symbolically expressed with use of the
$B, $P, $L, and $S system symbolS. The
type attribute of each of these fields is
hexadecimal. The data field that deSig­
nates the type of an SP symbol is one byte
long and contains a hexadecimal code as
follows:

• type is hexadecimal 01

• type is character 02

• type is decimal integer 03

The valid use of the $B, $P, $L, $T, or
$S system symbol (i.e., when it is accom­
panied by an SP symbol that can be resolved
under existing qualification) makes it a
designation of a data field, subject to all
rules applicable to data field designation.

The following are examples of this type
of system symbol:

$P(COLLAREA)

$T(TABLE)

Assuming COLLAREA is an SP symbol that
will be resolved with existing qualifica­
tion, the first example above represents
the four-byte data field containing the
pOinter attribute of the SP symbol
COLLAREA. The second example designates a
data field one byte long whose contents is
a code that defines the type attribute of
TABLE.

$R, $C, and $E System Symbols

General purpose, extended control, and
floating point machine registers may be
indirectly referenced with the $R, $C, and
$E system symbols, respectively. The for­
mat is:

n

r-------------------------------,
I $R(n) I
~-------------------------------i
I $C(n) I
~-------------------------------i
I $E(n) I l ______________________________ -J

represents the register number; its
value may be 0 through 15 when used
with $R or $C, and it may be 0, 2, 4,
or 6 when used with $E.

The $R, $C, and $E system symbols actu­
ally represent data fields where the values
contained in the registers when TSSS
receives control are stored. Since the
registers are loaded from those data fields
when TSS/360 regains control, the System
Programmer may alter the contents of TSS/
360 registers as well as inspect the stored

Part II: The TSSS Command Language 15

values. If a range of registers is speci­
fied, the second must not have a lower
value than the first; wraparound will not
be performed.

The data fields referenced with this
group of system symbols are four bytes long
for $R and $C, eight bytes long for $E. In
each case the default type is hexadecimal.

The following is a typical example of
use of this type of system symbol, wherein
all 16 general purpose registers are
specified:

$R(O) :$RC1S)

The PSW System Symbols

A group of old program status words
(TSS/360 extended mode) and virtual old
program status words constitute data fields
that may be referenced with appropriate
system symbols. These are listed below as
they exist in RSS and in VSS.

System
Symbol
$PSW
$PPSW
$SPSW
$XPSW
$IPSW
$MPSW

System
Symbol
$PSW
$PPSW1

$PPSW2
$SPSW

$XPSW
$APSW

$IPSW
$TPSW
$VPSW

In RSS

Type of Old PSW
"Current· PSW
Program Interrupt Old PSW
Supervisor Call Interrupt Old PSW
External Interrupt Old PSW
I/O Interrupt Old PSW
Machine Check Interrupt Old PSW

In VSS

Type of Old VPSW
"Current" VPSW
Recoverable Data Set Paging Error

VPSW
Program Interrupt Old VPSW
Supervisor Call Interrupt Old

VPSW
External Interrupt Old VPSW
Asynchronous I/O Interrupt Old

VPSW
I/O Interrupt Old VPSW
Timer InterrUpt Old VPSW
VSS Activation Old VPSW

The ·current" PSW referenced with the
$PSW system symbol by the MSP is actually
the old PSW that was stored when RSS
received control. The current PSW
referenced with the $PSW system symbol by a
TSP is the same as the one referenced by
the system symbol $VPSW. This is the vir­
tual PSW that was current for the task when
VSS received control.

$PPSWl references the old VPSW portion
of the Recoverable Data Set Paging Error
VPSW. The other PSW system symbols
reference self-defining TSS/360 real and

16

virtual PSWs. They represent the real and
virtual old PSWs as they were at the time
TSS/360 or the task was interrupted by
activation of RSS or VSS.

Real PSWs as referenced by system sym­
bols have a length of ten bytes -- eight
bytes for the stored old PSW and two con­
tiguous bytes for the corresponding inter­
ruption code. Virtual PSWs as referenced
by system symbols have a length of eight
bytes (the virtual PSW format includes the
interruption code). Both have a type
attribute of hexadecimal. The PSW system
symbols represent data fields and are sub­
ject to all rules for data field
designation.

$CAW and $CSW system Symbols

The $CAW and $csw system symbols exist
for the MSP only (i.e., in the RSS system
symbol table). The $CAW system symbol is
used to reference the channel address word.
It is four bytes long and has a type attri­
bute of hexadecimal.

The $CSW system symbol is used by the
MSP to reference the channel status word.
This data field is eight bytes long and has
a type attribute of hexadecimal.

The channel address word and the channel
status word are those that were current
when RSS received control.

$TSKID System Symbol

The $TSKID system symbol represents a
two-byte data field containing the identi­
fication number (hexadecimal) of the task
that was current when RSS received control,
for the MSP, or for a TSP of the task to
which he is connected.

$ID System Symbol

The $ID system symbol makes it possible
for a System Programmer to specify an actu­
al address and have returned to him the
CSECT, PSECT or entry point name whose
address is nearest to but not greater than
the address specified in RM. (In VM the
symbols provided are only the nearest
CSECTs or PSECTs.) The format is:

r-------------------------------,
I $ID(L'xxxxxxxx') I l _______________________________ J

xxxxxxxx
represents a hexadecimal number that
is assumed to be a real or virtual
storage address. The value specified
may be from one to eight digits long;
leading zeros will be supplied by TSSS
as needed.

$MAP System Symbol

A storage map of the TSS/360 supervisor
or of a specific task may be obtained with
the $MAP system symbol. When $MAP is used
as the operand of an appropriate command
(usually DUMP) under real memory qualifica­
tion, the external symbols and their hexa­
decimal addresses of the TSS/360 supervisor
constitute the resulting storage map. In
RSS the elements of the storage map are
formatted for output in ascending order of
the addresses. As an RSS option, the MSP
may specify $MAP with type character and
produce a map that is ordered alphabetical­
ly. In VSS the elements of the real
storage map are always formatted in alpha­
betic ascending order.

When the $MAP system symbol is used as
the operand of an appropriate command under
a virtual memory qualification, the exter­
nal symbols of the task's virtual storage
and their virtual addresses (in hexadeci­
mal) constitute the resulting storage map.
The external symbols provided in a virtual
memory storage map are:

• CSECT and PSECT names, in ascending
order of their addresses.

• Entry point names within a given con­
trol section, in the order in which
they occur in the Control section Dic­
tionary. These follow each of the
associated control section names and
are identified with asterisks after
their addresses.

Qualification determines which storage
map is produced through use of the $MAP
system symbol. The default value when $VM
is specified as qualification by the MSP is
the current task, and when specified by a
TSP it is the task to which he is
connected.

The $MAP system symbol is valid as the
operand of either the DUMP or DISPLAY com­
mand. In either case, the output format is
the same for each element of the map, as
described in Appendix C.

$10 System Symbol

The $10 system symbol may be used to
specify a data field in secondary storage
or to otherwise reference an I/O device.
In Figure 3:

xxxx
when prefixed by C represents a sym­
bolic device address; when prefixed by
X represents an actual device address
(physical path).

decimal integer
a device address which, when converted
into hexadecimal, represents the phys­
ical path.

sp symbol
represents a data field defined by the
system Programmer that contains the
actual or symbolic address of an I/O
device, depending on the symbol type.
(For example, a symbol with type
character should be used if the sym­
bolic address is required; a symbol
with type not character, e.g., hexa­
decimal, should denote the actual
address.)

mode set
represents a literal or data field.
It is used only when specifying a
seven-track magnet:ic tape unit. The
literal or the contents of the data
field provide a byte of information
that is used in construction of a mode
set CCW. The extra commas shown in
the format illustration with mode set
do not represent optional parameters,
but they may not be omitted.

cylinder, track, record
specify the desired cylinder, track,
and record on a direct access device.
If any of these is defaulted, every
item to the right is ignored. If
"cylinder" is defaulted, the entire
device is assumed.

o,l,t,s
represents the data field attributes
"offset," "length," "type," and
"size,· respectively. These may be
defaulted according to the rules for
immediate attribute designation. The
default values are offset, 0; length,
1 byte; type, hexadecimal; size. same
as length.

The following examples depict typical
usage of the $10 system symbol:

$IO(X·0181'".,X'AB')

r-----!~:;;;;:---------l-[-!--------------------------------l]--------------------------------1
I X' xxxx' ", [number of records] ,mode set I
I$IO(decimal integer)[.(o,l,t,s)] I
I sp symbol . ,cylinder[,trackl,record,ll I L-__ J

Figure 3. Format Illustration of the $10 System Symbol

Part II: The TSSS Command Language 17

$IO(X·0190·,4,4,15). (32,8)

In the first example a tape drive whose
actual address is 181 is specified. The
literal X'AB' specifies the bit configura­
tion that is to be used for a mode set ccw
command.

In the second example, a data field on a
direct access device is specified. The
actual device address is 190, and the data
field address is cylinder 4, track 4. rec­
ord 15 plus 32 bytes (offset). The data
field length is eight bytes. The type and
size attributes are defaulted as hexadeci­
mal and eight, respectively.

Note: While an MSP may address any device
in the system, a TSP may address and use
only those devices allocated to his task.

$VAM System Symbol

The $VAM system symbol is similar to the
$10 system symbol, except that it is used
only to specify a direct access device that
is formatted for a virtual access method
(YAM). The format is:

r---,
I IC' XXX X , 1 I I$VAM(X'xxxx' [,y» [. (o,l,t,s)] I
I decimal int. I
I sp symbol I l ___ J

XXXX

when prefixed by C represents the sym­
bolic device address of a VAM­
formatted direct access device; when
prefixed by X it represents the actual
device address (physical path) of a
YAM-formatted direct access device.

decimal into
a device address which, when converted
into hexadecimal, represents the phys­
ical path.

sp symbol

y

represents a data field defined by the
System Programmer that contains the
actual or symbolic address of a VAM­
formatted direct access device,
depending on the symbol type.

represents a relative page number on
the specified device, if that device
is a disk; a head and slot number of
the device if it is a drum. If "y. is
omitted, the entire device is assumed.

o,l,t,s

18

represents the data field attributes
·offset,· "length," ·type," and
·size,· respectively. These attrib­
utes may be defaulted according to the

rules for immediate attribute designa­
tion. The default values are offset,
0; length, 1 page (4096 bytes); type,
hexadecimal; size, same as length.
Offset, length, and size are specified
in bytes.

The following is an example of the $VAM
system symbol specifying the direct access
device (assumed to be VAM formatted) whose
address is 190 and further specifying the
data field comprising the first 256 bytes
on relative page 4:

$VAM(X'0190' ,4}. (,256)

$DOUT System Symbol

The $DOUT system symbol represents a
two-byte data field whose contents are
assumed to be the symbolic device address
of the output device for each execution of
the DUMP command. The value contained in
$DOUT must be established by the System
Programmer, normally using the SET command
and an operand consisting of the $DOUT and
$10 system symbols. An example of this
appears as follows:

SET $DOUT=$IO(C'2A")

As the $10 system symbol is resolved
internally, its value becomes the symbolic
device address in hexadecimal format.

The MSP may specify any tape drive or
printer as the output device for a dump. A
TSP may use only those devices allocated to
the task to which he is connected. When a
valid device designation has been made with
the $DOUT system symbol, each subsequent
execution of a DUMP command issued by that
System Programmer will automatically use
that device for output.

Note: A TSP should obtain the value for
$DOUT (the address of his dump output
device) from the main operator.

$AT System Symbol

The $AT system symbol is used to
reference ATs that have been implanted by
the System Programmer; it may be used as
the operand of a DISPLAY, DUMP, or REMOVE
command. The format is:

r-------------------------------,
I $AT [.location] J l ______________________________ -J

location
represents a symbol or a hexadecimal
address (in L-notation) that corre­
sponds to an address where an AT was
implanted by the System Programmer.
If ·parameter" is omitted ny the MSP,
all of his current ATs are implied.

If "parameter" is omitted by a TSP,
all of his private ATs in virtual
storage and all of the global ATs he
implanted are implied.

$AT represents a data field of variable
length and type as described under "AT
Command."

When the $AT system symbol is used with
the REMOVE command, each specified AT and
its associated dynamic statement are re­
moved from the appropriate AT Table. The
space in the AT Table may then be reused by
the System Programmer.

When the $AT system symbol is used with
the DUMP or DISPLAY command, the output is
formatted as described in Appendix C.

$PATCH System Symbol

The $PATCH system symbol is used to
reference patches that have been inserted
by the System Programmer with the PATCH
command. It may be used as the operand of
a DISPLAY, DUMP, or REMOVE command. The
format is:

r-------------------------------,
I $PATCH[.location] I L _______________________________ J

location
represents a symbol or a hexadecimal
address (in L-notation) that corre­
sponds to an address where a patch was
inserted by the System Programmer. If
"parameter" is omitted by the MSP, all
of his current patches are lluplied.
If "parameter" is omitted by a TSP,
all of his current patches are implied
except for any implanted dynamically
via ATs in real storage (see "REMOVE
Command").

$PATCH represents a data field of vari­
able length and type as described under
"PATCH Command."

When the $PATCH system symbol is used
with the REMOVE command, the original data
is restored and the record of the patch (in
the System Programmer's Patch Table) is
deleted. The space in the Patch Table may
be reused.

When the $PATCH system symbol is used
with the DISPLAY or DUMP command, the out­
put is formatted as described in Appendix
C.

In RSS only, if the task associated with
a particular patch is no longer available
to the system (due perhaps to abnormal ter­
mination or LOGOFF), the format of a DUMP
or DISPLAY of a patch is as described in
Appendix C. except that the ·patch data"
field contains the character string "Task
Unavailable".

$DHDR System Symbol

The $DHDR system symbol is used to label
output of the DUMP command. The SET com­
mand is used to set the symbol to a
character string which is used as a sub­
heading on the next dump taken. The maxi­
mum permissible length of the header is 80
bytes of character information. For
example:

SET $DHDR=C'SAMPLE OF TSSS DUMP'

$STATUS system Symbol

The $STATUS symbol may be used only as
the operand of a DUMP command, and produces
a formatted dump of the primary system sta­
tus indicators, including all machine reg­
isters, PSWs, the TSI, and the XTSI header.
The output data is formatted as indicated
in Appendix C.

$STATUS is not implemented for the VSS
subsystem.

$TASK System Symbol

The $TASK symbol may be used only as the
operand of a DUMP command, and produces a
dump of the primary task status indicators.
This symbol is the virtual storage counter­
part of $STATUS. The output data is for­
matted as shown in Appendix C.

In the VSS subsystem, $TASK produces a
dump which is formatted the same as is that
for RSS, except for the exclusion of the
XTSI header. Task data is available only
for the task to which VSS is connected.
Accordingly, the $TASK operand is used
alone with no subscript.

For use in the RSS subsystem, the symbol
may be subscripted by a task ID, and if so
subscripted, the data produced is for that
task. For example:

DUMP $TASK(X'13')

If no subscript is used, the data produced
is for the current task.

Part II: The TSSS Command Language 19

TIME SHARING SUPPORr SYSTEM COMMANDS

The TSSS commands, in the order in which
they are described, are: QUALIFY, DEFINE,
AT, DISPLAY, DUMP, COLLECT, SET, PATCH,
REMOVE, IF, RUN, STOP, CONNECT. DISCONNECT,
CALL, and END.

Each command description includes a
definition of the command function, the
command format, a detailed fUnctional
description, cautions (where applicable),
programming notes, and examples of usage.

The generalized format for TSSS commands
is:

r---------T------------------------------------, I operation I Operand I
~---------+------------------------------------~
I command I [qualification. Joperand[.(o,l,t,s)] I L _________ L-___________________________________ J

command
one of the 16 TSSS operations.

qualification
either $RM or $VM, which qualifies a
storage address designated by woper-
andw as real or virtual storage (see
·System Symbols Used for Qualifica­
tion"). This optional parameter is
not shown in the individual command
format illustrations; its applicabili­
ty can be determined in each case from
the command's functional description.

operand
the definition of each command operand
and the acceptable means for specify­
ing it are included with each command
description.

o,l,t,s
specification of offset, length, type,
and size, respectively, which may be
included with each designation of a
data field in a command operand except
for one instance with the DEFINE com­
mand. See ·Immediate Attribute Desig­
nationw for use of these parameters in
all operands except those occurring
with the DEFINE command. Except for
the DEFINE command, this option is not
shown in the command format
illustrations.

The command format includes one or more
blankS between operation and operand. The
COLLECT, SET, and PATCH commands, and one
format of the DEFINE command, require two
operands separated by an equal sign. For
purposes of this discussion, however, the
syntactical unit compriSing these operands
and the equal sign are considered a single
compound operand. Each operand, simple or
compound, usually may be followed by addi­
tional operands to save retyping of the
operation itself. These multiple operands

20

are separated by commas. Note that there
are as many executions of the command as
there are operands.

Some of the examples depict more than
one command. Except for AT and IF, each
command operand is separated from a suc­
ceeding command in the same statement by a
semicolon.

TSSS will attempt to execute each com­
mand whenever possible. Incorrect specifi­
cation of parameters is no guarantee that a
command will be rejected. It is the System
Programmer's responsibility to observe his
progress closely to be certain he is
obtaining the results he intends.

No prompting or confirmation messages
are issued by TSSS. Error handling proce­
dures are discussed in Part III, and the
diagnostic messages written to a System
Programmer's terminal are listed and
explained in Appendix B.

QUALIFY Command

The QUALIFY command is used to establish
uniqueness for subsequent command operands
that reference real or virtual storage and
to establish global qualification for a
TSP. Every symbolic or actual storage
address is qualified either implicitly or
explicitly; the QUALIFY command is used to
change the state of implicit qualification.

The format is:

r-----------,-----------------------------,
I Operation I Operand I
~-----------+----------------------------~
I QUALIFY I system symbol I l ___________ i _____________________________ J

system symbol
the real memory, virtual memory, or
global qualifier.

Specified as: the $RM or $VM system
symbol, together with an appropriate
parameter if desired or required (see
·System Symbols Used for Qualifica­
tionW). $VM with no parameter speci­
fies global qualification for a TSP or
the virtual memory of the current task
for the MSP.

Functional Description: A TSSS terminal
session begins in a default qualification
state -- real memory for the MSP, the vir­
tual memory of the associated task for a
TSP. Each time the QUALIFY command is
executed, the qualification state (implicit
qualification) becomes that which is speci­
fied in the command operand. There is no
limit to the number of QUALIFY commands
that may be issued during a terminal
session.

When an AT is implanted with the AT com­
mand. the state of implicit qualification
is assigned to the associated dynamic sta­
tement. Therefore. when the AT is executed
the qualification is that which was current
when the AT was implanted. regardless of
changes made with the QUALIFY command after
the AT was implanted. The state of quali­
fication that was current just prior to
execution of the AT is restored upon execu­
tion of an implied or actual RUN.

cautions: When a TSP establishes global
qualification to implant a global AT and
create a global dynamic statement, any SP
symbols in that statement must be globally
defined (see -DEFINE Command" and "AT
Command") •

If an AT is implanted in real storage by
a TSP, execution of the associated dynamic
statement is performed by RSS, and it is
treated as if the AT had been implanted by
the MSP. Qualification must be handled
accordingly.

When using the $RM symbol in VSS to SET
or PATCH, a page of real storage containing
the target location to be changed is
obtained, without TSS/360 activity being
suspended. The entire page is replaced
after the change has been made. Caution
should be used, therefore, since results to
the system are unpredictable.

Programming Notes: The $RM and $VM system
symbols may be used within the operands of
commands other than QUALIFY to specify
explicit qualification, overriding but not
changing the state of implicit qualifica­
tion.

The QUALIFY command may appear in a
dynamic statement to specify implicit qua­
lification for subsequent commands in that
statement.

If a STOP or CALL command occurs in a
dynamic statement, implicit qualification
remains the same as that which was in
effect for the STOP or CALL command. Sub­
sequently, upon execution of an implied or
actual RUN, qualification reverts to that
which was current prior to execution of the
AT Which initiated execution of the dynamic
statement.

Because execution of ATs appears asyn­
chronous to the System Programmer, and
because qualification can undergo one or
more changes due to AT execution. the cur­
rent state of qualification at a given time
may be in doubt. Liberal use of the QUALI­
FY command can overcome this potential
difficulty.

Example 1:

Assume that a TSP has begun a terminal
session and that at some point he wishes to
reference the TSS/360 resident supervisor.
He issues:

QUALIFY $RM

Execution of this command establishes
the implicit state of qualification as real
memory; subsequent command operands that
represent storage addresses are assumed to
reference real storage unless they are SP
symbols that represent data fields with
virtual memory qualification. Any refer­
ence to data in a Prefixed Storage Area
(PSA) is directed to the current PSA (pri­
mary or alternate) of the CPU executing on
behalf of this TSP. since the $RM operand
does not specify a CPU number.

Example 2:

QUALIFY $VM:DEFINE A:QUALIFY $VM(X'OD')

Execution of this statement, on behalf
of the TSP connected to task 13 (decimal).
establishes global qualification for execu­
tion of the DEFINE command. then estab­
lishes virtual memory 13 as the implicit
qualification state.

DEFINE Command

The DEFINE command enables a System Pro­
grammer to create temporary symbols. either
private or global, and to specify their
attributes. These symbols. called SP sym­
bols, may be the names of data fields in
the system Programmer's working storage or
they may be associated with TSS/360 data
fields (real, virtual. or secondary
storage). The format differs accordingly
and is designated "format 1" or "format 2."

The distinction between private and
global SP symbols is relevant only for a
TSP; it specifies whether a private or
global (shared) SP symbol table records the
symbol definition. All of the MSP's SP
symbols are recorded in the same SP sj7mbol
table.

Format 1: When an SP symbol is to be
defined as the name of a data field in
working storage (storage space is to be
allocated by TSSS when the command is
executed), the format of the DEFINE command
is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+----------------------------~
I DEFINE I syrnboH. (o,l,t,s)] [, •••] I l ___________ ~ _____________________________ J

symbol
the data field name.

Part II: The TSSS Command Language 21

Specified as: a character string of
one to eight alphameric characters.
the first of which must be alphabetic.

o,l,t,s
offset (always zero) plus length,
type, and size attributes, respective­
ly.

Specified as: decimal integers, nor­
mally, for length and size, although
any expression that reduces to an
appropriate value may be used. Offset
is ignored by TSSS and normally is
defaUlted by the System Programmer.
Type is coded I, X, or C to indicate
decimal integer, hexadecimal, or
character, respectively. Any of these
attributes may be defaulted, but all
commas to the left of each attribute
specified (including the comma follow­
ing the ·0") must be retained to iden­
tify the attributes by position.

TSSS default: offset, 0; length, 1
byte; type, hexadecimal; size, same as
length.

Format 1 Functional Description: Except
for a TSP's global qualification, the state
of qualification when the format 1 DEFINE
command is executed is irrelevant, because
both the symbol definition and allocated
storage exist in the System Programmer's
working storage and will be correctly
referenced when the symbol is used in sub­
sequent command operands.

SP symbols defined by a TSP under global
qualification are global symbols. The sym­
bol definition and, if format 1, allocated
storage exist in shared storage, and the
symbol will be resolved only when used in a
statement under global qualification. Any
TSP with global qualification can reference
any other TSP's global symbols.

Format 2: When the SP symbol being defined
is to be a pseudonym (or "alias·) for an
existing symbol or the temporary name of a
TSS/360 data field or I/O device (no
storage is to be allocated), the format of
the DEFINE command is:

r---------T--,
I Operation I Operand I
~---------+---~
I I !external SymbOl! I
I DEFINE Isymbol= sp symbol [.(o,l,t,s)][,···JI
I I system symbol I
I I address I L-________ i __ J

symbol

22

the data field or device name. If
attributes and/or explicit qualifica­
tion are designated they are ignored.

Specified as: a character string of
one to eight alphameric characters,
the first of Which must be alphabetic.

external symbol
a TSS/360 external symbol, which in
turn represents an address in real or
virtual storage, depending on qualifi­
cation.

Specified as: the character string as
assembled for the TSS/360 that is cur­
rently running.

sp symbol
a previously defined SP symbol, pri­
vate or global depending on the cur­
rent qualification state.

Specified as: a character string
identical to the previously defined SP
symbol.

system symbol
any TSSS system symbol that names a
data field or designates an I/O
device. The excluded system symbols
are $RM, $VM, $10, $MAP, $AT, and
$PATCH. Permissible qualification is
defined for each system symbol with
its description (see "System Sym­
bols").

Specified as: a character string.

address
an actual storage address, real or
virtual.

Specified as: a hexadecimal value in
L-notation (e.g., L'012345').

o,l,t,s
an offset specification plus length,
type, and size attributes, respective­
ly.

Specified as: decimal digits, normal­
ly, for offset, length, and size,
although any expression that reduces
to an appropriate value may be used;
type is coded I, X, or C to indicate
decimal integer, hexadecimal, or
character, respectively. Rules for
defaulting are described for format 1.

TSS default: offset, 0; length, 1
byte; type, hexadecimal; size, same as
length.

Format 2 Functional Description: When the
DEFINE command is used with format 2, the
base address of the data field named "sym­
bol" becomes the effective address of the
parameter on tbe right of the equal sign
plus the specified offset.

If format 2 of the DEFINE command is
used under global qualification, the param­
eter on the right of the equal sign must be
-logically global-; i.e., it must be an
external symbol that is shared by all
tasks, a global SP symbol, or a system sym­
bol as defined above but with $IO, $VAM,
and $DOUT excluded as well.

When format 2 of the DEFINE command is
used other than with global qualification,
the state of qualification when the command
is executed is irrelevant if the parameter
on the right of the equal sign is an SP
symbol or a system symbol that deSignates
an I/O device.

General Functional Description: Each SP
symbol created with the DEFINE command is
represented by a 48-byte entry in an SP
symbol table. This table is built dynami­
cally with successive executions of the
DEFINE command, using a block of storage
that is also used to allocate storage when
format 1 is used, as shown in Figure 4.
When execution of a DEFINE command would
overflow the appropriate storage block, the
command is rejected.

origin +48
r---------T---------r-------T---------T---'
I SCB 1 I SCB 2 I • • • I SCB n I I
~---------.1.---------.1.---_S }- _.1. _________ .1. _ -~ I
I I
I I
I I
I)-----------------------------~
I <-------- storage allocation I l ___ J

+8191

Figure 4. SP Symbol Table and Working
Storage Block

Figure 4 depicts the format of a storage
block used to build an SP symbol table and
to allocate working storage when the format
1 DEFINE command is executed. "SCB- stands
for symbol control block, each of which
~onstitutes an entry in the symbol table.
.~ote that the first SCB built via execution
of a format 1. DEFINE command points to the
last (high-order) data field in the storage
block.

The total space reserved for an SP sym­
bol table and for format 1 storage alloca­
tion is two pages (8192 bytes). There is
one such SP symbol table and storage block
·for an MSP, in which a 11 his SP symbols
:eside, and one for each connected TSP.

'rhere is one Global Symbol Table and
storage block that is shared by all con­
nected TSPs when defining global SP symbols
and is shared by all tasks for resolution
of global SP symbols used in global dynamic
stat~"IIents •

Cautions: The DEFINE command should not be
used in global dynamic statements. If it
is, the repeated attempts to redefine the
symbol result eventually in an error
condition.

If the SP symbol being defined by the
MSP ("symbol" in both the format 1 and for­
mat 2 illustrations) already exists in the
RSS SP symbol Table, the symbol is rede­
fined, the original attributes are lost,
and any storage allocated for the previous
symbol definition cannot be referenced with
the symbol.

If the SP symbol being defined by a TSP
("symbol" in both the format 1 and format 2
illustrations) already exists in his priv­
ate SP Symbol Table and qualification is
non-global, the symbol is redefined, the
original attributes are lost, and any
storage allocated for the previous symbol
definition cannot be referenced with the
symbol. The symbol may exist independently
in the Global Symbol Table, however.

A symbol may exist independently in a
TSP's private SP Symbol Table, but if it
already exists in the Global Symbol Table
the symbol is redefined, the original
attributes are lost, and any storage allo­
cated for the previous global symbol
definition cannot be referenced with the
symbol.

Programming Notes: The attributes assigned
to an SP symbol through use of the DEFINE
command may be overridden for a single use
of the symbol with immediate attribute
designation, as described under "Data Field
Defining Elements."

The attributes of SP symbols may be ref­
erenced with the $B, $P, $L, $T, and $S
system symbols, as described in the ·System
Symbols" section.

The pointer attribute of an SP symbol is
always zero at the time the symbol is
defined with the DEFINE command.

Example 1.:

DEFINE A

Execution of this format 1 command
causes one byte of storage (the default
length and size attributes) to be allocated
and assigned the name A. The contents of
the data field A are unknown, and the type
attribute has been defaulted as hexadeci­
mal.

Example 2:

DEFINE MYSYMB=EXTSYMB.(16,4)

Part II: The TSSS command Language 23

Execution of this format 2 command
assigns the temporary name, or pseudonym,
MYSYMB to the TSS/360 data field beginning
16 bytes beyond the address represented by
the external symbol EXTSYMB. The resulting
data field has a length attribute of four
bytes and the default type and size attri­
butes of hexadecimal and four, respectiVe­
ly. EXTSYMB is assumed to exist in real
storage, shared virtual storage, or a
task's private virtual storage, depending
on the implicit qualification when this
DEFINE command is executed. Note that with
format 2 there is no allocation of storage.

Example 3:

DEFINE HEADER. {,8,C),AREA. (,8,,512),
MYSYMB=EXTSYMB.(16,4)

Multiple operands, as shown here, may
include both format 1 and format 2 in the
same statement. Execution of this command
allocates eight bytes of storage as the
data field named HEADER and aSSigns it a
type attribute of character; it then allo­
cates 512 bytes (size) of storage as the
data field named AREA and assigns it a
length attribute of eight bytes and a type
attribute of hexadecimal. AREA thus con­
stitutes a 512-byte array comprising 64
eight-byte elements and can meaningfully be
used with subscripts. The contents of
HEADER and AREA are unknown. Execution of
the command finally would process the third
operand as described under Example 2.

AT Command

The AT command is one of the most basic
tools in the System Programmer's kit. It
provides the means for specifying an
instruction location in running code where,
when that location is reached during TSS/
360 execution, the execution of a TSSS com­
mand statement is triggered. That state­
ment, called a dynamic statement, follows
the AT command in the TSSS input stream and
itself is followed by end-of-block (EOB);
it is then stored to await execution when
the specified instruction location is
reached.

The format of the AT command is:

r-----------T-----------------------------,
I Operation I operand I
~----------+-----------------------------~
I AT I address [, •••] I L ___________ ~ _____________________________ J

address

24

a real storage or virtual storage
location, assumed to contain an
executable instruction.

Specified as: a symbol, or a hexadec­
imal address in L-notation.

Functional Description: The AT command
must be followed by at least one other TSSS
command; any TSSS statement is accepted
without being checked for validity. The
operand of an AT command must be followed
by one or more blanks; unlike other TSSS
commands except IF, the AT command is not
separated from the following command by a
semicolon.

If more than one operand is included
with an AT command, the associated dynamic
statement will be executed when each of the
specified instruction locations is reached.
Conversely, if the operands of two or more
AT commands issued by this System Program­
mer specify the same instruction location,
the ATs are "chained," which results in
execution of the dynamic statements in the
order in which they were received as input.

Execution of the AT command results in
an SVC instruction being implanted at the
specified instruction location. (For con­
venience, this SVC, its associated control
block, and the processing it initiates are
collectively referred to as an AT.) The
overlaid instruction is saved and the
remainder of the input statement is stored;
the input device is then read again.

When an implanted AT is executed, the
stored dynamic statement is treated as
fresh input and is executed, after which
control reverts to TSS/360 with execution
of the original instruction that was saved
when the AT was implanted. In other words,
a dynamic statement ends with an implied
(or explicit) RUN. The exceptions are the
occurrence of a STOP, CALL, or DISCONNECT
command in the dynamic statement.

A TSP's AT in shared virtual storage
that is glohally qualified or any MSP­
implanted AT in shared virtual storage is
called a global AT. Other ATs are called
private ATs; if they reside in virtual
storage, they are executed only by the
designated task.

The number of ATs that may be specified
by the MSP during a given terminal session
1S governed by his AT Table, which is one
page (4096 bytes) long. Each AT requires
28 bytes for control purposes plus as many
bytes as there are characters in the dynam­
ic statement being stored. When overflOW
of the AT Table occurs with execution of an
AT command, that command is rejected.

The above is also true for a TSP, except
that only his private ATs are recorded in
his AT Table.

The number of global ATs that can exist
for all TSPs at a given time is governed in
the same manner by the Global AT Table, a
shared table in virtual storage. This

table is also one page long, but it is used
by all connected TSPs who wish to use it
and is referenced by each task that
executes a global AT in shared virtual
storage.

It should be noted that a TSP issuing an
AT command with real memory qualification
invokes RSS for implanting the AT and again
each time the AT is executed; the MSP's AT
Table is used to record the AT, whether or
not the MSP is connected. The TSP is said
to be operating in the MSP domain. Termi­
nal output is to the MSP terminal, which is
always the Operator's terminal. Commands
within the dynamic statement must meet the
requirements for any commands issued by the
MSP (e.g., SP symbols must be defined in
the RSS SP Symbol Table).

When a TSP implants an AT in real
storage, the maximum length of the input
statement is 238 characters.

cautions: TSSS will not accept any AT for
a destination instruction location contain­
ing any of the following:

• An Execute or Diagnose instruction.

• An SVC instruction, unless the SVC is
an AT for which chaining is permitted.

• A privileged instruction in virtual
storage.

An AT should not be implanted where the
subject instruction of an Execute instruc­
tion is located; execution of the AT SVC
would appear to be spurious. A TSSS error
condition would be recognized, followed by
resumption of TSS/360 processing without
execution of the overlaid instruction.

In RSS only, care should be taken when
an AT is implanted in a private IVM page
that has not been paged into main storage
and has never been changed by the task.
The AT SVC is placed in the permanent copy
of the page and is picked up by tasks that
refer to the page and have no record of the
AT. This results in a system logic error.

An AT cannot be implanted in any loca­
tion where a private AT already exists for
another System Programmer. Note, however,
that an AT specified by a TSP for a real
storage location is treated as if it had
been specified by the MSP. Consequently,
the presence of an MSP AT at the specified
location would result in chaining in this
::ase.

An SP should employ caution when
implanting an AT in:

1. a module which executes with inter­
rupts disabled, or

2. a TSS/360 module which is called by
RSS or VSS or upon which RSS or VSS is
dependent.

3. (RSS only) a program that was loaded
from a JOBLIB.

The TSS/360 modules referred to in 2
include:

RSS
CEAAF
CEALl
CEAIC
CIP
SERR-Bootstrap
Recovery Nucleus
Pathfinding Routines

VSS
Task Monitor
Dynamic Loader and

its SUbroutines

When a TSP implants an AT in a module
that has been loaded by his task, it is his
responsibility to remove the AT (with a
REMOVE command) prior to unloading the
module; failure to do so prevents later
removal of the AT and results in a virtual
storage system error when the task ter­
minates as a result of LOGOFF or an abnorm­
al termination (ABEND).

Programming Notes: For a TSP, an AT in
shared virtual storage can be either global
or private. It is his responsibility to
ensure that the operand of an AT command
issued with global qualification in fact
specifies a shared code location, and to
specify a dynamic statement that can be
executed successfUlly by all tasks using
the shared code.

If execution of the dynamic statement
associated with a TSP's global AT results
in an error condition that normally pro­
duces a diagnostic message, the attempt to
write the message is suppressed if the cu~:­
rent task has no TSP connected. In most
cases, but not always, the error-producing
operation is not performed (see Appendix B,
"Messages"). In the event an I/O operation
was requested (e.g., a DUMP or DISPLAY com­
mand), only when an allocated and specified
device is available to the executing task
will the I/O be performed.

If an AT is implanted in real storage by
a TSP, the AT may be executed without prior
issuance of a RUN command, since the TSS/
360 resident supervisor continues to
execute on behalf of all tasks. Note,
however, that if such an AT causes a STOP
command to be executed, it occurs in the
MSP domain. A $ is written at the MSP ter­
minal and RSS is in control until a RUN or
DISCONNECT command is issued by the MSP.

An AT can be referenced through use of
the $AT system symbol and an appropriate
command, such as the REMOVE command.

Part II: The TSSS Command Language 25

Except for a TSP's ATs in real storage,
all of a System Programmer's ATs are
removed automatically when he issues a DIS­
CONNECT command. A TSP should remove any
ATs he has implanted in real storage prior
to issuing a DISCONNECT (see "REMOVE
Command").

Example 1:

AT INTPROC COLLECT COLLAREA=$IPSW

When this AT command is processed the
remainder of the statement is saved for
subsequent execution. The character $ is
then written at the terminal to invite more
input (or the next statement is read if in
call mode). When the symbolic instruction
location INTPROC is reached (which is after
a RUN command has been issued if INTPROC is
in virtual storage), the COLLECT command is
executed. Upon completion of that opera­
tion, the instruction originally located at
INTPROC is executed and normal processing
resumes. If INTPROC is in shared virtual
code and either the user is the MSP or the
statement was issued by a TSP under global
qualification, the COLLECT command is
executed each time a CPU fetches the
instruction at INTPROC, until the AT is
removed. The same is true if INTPROC is in
real storage. However, if INTPROC is in
shared virtual storage but the TSP has spe­
cified non-global qualification, only the
TSP's task executes the COLLECT command.

Example 2:

AT INTPROC COLLECT COLLAREA=$IPSW;STOP

This statement is processed as is that
in Example 1 until the COLLECT command
execution is completed. Then the STOP com­
mand is executed, which results in a $
being written at the terminal to invite
input; the original instruction at INTPROC
would not be executed at this time.

DISPLAY Command

The DISPLAY command is used to write the
contents of data fields on the System Pro­
grammer's terminal. The format is:

r-----------T-----------------------------,
I Operation I Operand I
.-----------+-----------------------------~
I DISPLAY I {data field}{, ••• 1 I
I I literal I L ___________ ~ ____________________________ _J

data field

26

the location of data residing within
the system; this data can be the
result of an arithmetic or Boolean
operation.

Specified as: any representation of a
data field. or an arithmetic or Bool­
ean expression.

literal
immediate data in the input stream.

Specified as: a character, hexadeci­
mal, or decimal integer literal.

FUnctional Description: The number of
bytes to be displayed is determined by the
length attribute (not size) of the data
field in storage or of the length of the
data protion of the literal. Immediate
attribute deSignation can be used to assign
a temporary length attribute to a data
field in real or virtual storage.

If the data field is in secondary
storage, the type is assumed to be hexadec­
imal. If an offset is specified in this
case, the block is truncated on the left by
the amount of the offset. An entire track,
cylinder, or device can be specified, as
defined under "$10 System Symbol." As
defined under $VAM System Symbol. an entire
page or device can be specified.

The format of the terminal printout is
described in Appendix C. If multiple
operands are used with the DISPLAY command,
the data specified by each is written
beginning on a new line.

Note: When a system symbol representing
a data field is used with the DISPLAY com­
mand. the system programmer's default qual­
ification is used, overriding any further
qualification.

programming Notes: The DISPLAY command
normally is used for short data fields.
especially when executed by RSS. If exten­
sive data fields are to be written, the
DUMP command normally is used.

If the System Programmer presses the
Attention key while the DISPLAY command is
being executed. the display is canceled,
and a message is written to the terminal.
The terminal is then ready to receive
input; the remainder of the current state­
ment, if any, is ignored. If the DISPLAY
command was executed from a predefined sta­
tement set (call mode). reading of the card
reader or tape drive ceases and the termin­
al becomes the input device again.

Example 1:

DISPLAY C'IDENTIFIER',A:B

Execution of this command results in the
printing of the character string IDENTIFIER
on the System Programmer's terminal, fol­
lowed by. on a new line. the contents of
the data field beginning at the base-plus-

pointer address of A and ending with the
last byte specified by the length attribute
of B.

Example 2:

DISPLAY L'1234'.(,4),$PSW

Execution of this command causes the
contents of a four-byte data field whose
storage address is 1234 (hexadecimal) to be
printed on the system programmer's termin­
al, followed by the PSW that was current
when TSSS received control (on a new line).

DUMP Command

The DUMP command is used to write the
contents of specified data fields on a pre­
viously specified output device. The for­
mat is:

r-----------T-----------------------------,
I operation I Operand I
~-----------+-----------------------------~
I I {data field} I
I DUMP I literal [, ••.] I L ___________ i ____________________________ ~

data field
the location of data residing within
the system; this data can be the
result of an arithmetic or Boolean
operation.

Specified as: any representation of a
data field, or an arithmetic or Bool­
ean expression.

literal
immediate data in the input stream.

Specified as: a character, hexadeci­
mal, or decimal integer literal.

Functional Description: The number of
bytes to be written on the output device is
determined by the length attribute (not
size) of the data field in storage or of
the length of the data portion of the lit­
=ral. Immediate attribute designation can
be used to assign a temporary length attri­
bute to a data field in real or virtual
storage.

If the data field is in secondary
storage, the type is assumed to be hexadec­
imal. If an offset is specified in this
case, the block is truncated on the left by

"the amount of the offset. An entire track,
:ylinder, or device can be specified, as
defined under "$10 System Symbol" and "$VAM
System Symbol.·

When the DUMP command is executed, the
address of the output device must be in the
data field $DOUT, and the device must be a
printer or a tape drive. (For a TSP, the

device must be currently allocated to the
task to which he is connected.)

If a dump is to tape, the data is writ­
ten exactly the same as it would be to the
printer -- i.e., in EBCDIC characters, 132
characters to a print line including a
forms-motion byte -- followed by a tape
mark. No labels are written automatically.
The SET command can be used to print the
tape.

The output format of a TSSS dump, and
the procedure for printing a TSSS dump
tape, are described in Appendix C. If mul­
tiple operands are used with the DUMP com­
mand, the data specified by each is written
beginning on a new page.

Note: When a system symbol representing
a data field is used with the DUMP command,
the system programmer's default qualifica­
tion is used, overriding any further
qualification.

programming Note: Pressing the Attention
key (causing an asynchronous interruption)
while the DUMP command is being executed
has the same result as is described under
"DISPLAY Command."

Examples: The following examples would be
equally valid if the DISPLAY command
appeared in place of DUMP. In the same
fashion, the examples under "DISPLAY Com­
mand" would be valid here by substituting
DUMP for DISPLAY.

Example 1:

DUMP COLLAREA

Assuming COLLAREA is an SP symbol repre­
senting a data field (as defined for the
examples under "COLLECT Command"), execu­
tion of this command causes 512 bytes (the
length attribute) of data beginning at the
symbolic address COLLAREA incremented by
the value of the data field's pointer to be
written on the output device specified in
the $DOUT data field. Note, however, that
if COLLAREA is being used as a collection
area as described under ·COLLECT Command,"
the value of the pointer may be unknown.
The $P system symbol can be used to display
and to manipulate the value of pointer.

Example 2:

DUMP $B(COLLAREA)%. (,512)

When this DUMP command is executed the
indirect addressing operator (%) causes the
data field represented by $B(COLLAREA) to
be used as the starting address of a 512-
byte dump. As the indirect addressing
operator is used, the defined length of
COLLAREA is lost; the 512 must be speci-

Part II: The TSSS Command Language 27

fied. As $B(COLLAREA) resolves to the base
address alone of COLLAREA, the problem pre­
sented in Example 1 <unknown pointer value>
is overcome.

Example 3:

DUMP $IO(X'0191',2,11,38).(8)

Execution of this command results in
record 38 on track 11 of cylinder 2, direct
access device whose actual address is
X'191', minus the first 8 bytes, being
written in hexadecimal format on the output
device specified in $DOUT.

COLLECT Command

The COLLECT command is used to gather
data from one data field into another data
field. When more than one exectuion of a
COLLECT command causes data to be moved
into the same destination data field, the
command will cause the data to be placed in
successive elements of the field. The for­
mat is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+-----------------------------~
I I {data field} I
I COLLECT I sp symbol= literal [, •••] I l _________ --i _____________________________ J

sp symbol
a data field defined to serve as a
collection area.

Specified as: a character string.

data field
the location of data to be collected.

Specified as: any representation of a
data field.

literal
immediate data in the input stream.

Specified as: a character, hexadeci­
mal, or decimal integer literal.

Functional Description: The first parame­
ter <SP symbol} deSignates the destination
data field, and the second parameter speci­
fies the data to be moved into the destina­
tion data field. When the COLLECT command
is executed, the data is movea ~n accor­
dance with the length attribute of the
second parameter, and then the pointer
attribute of the first parameter is incre­
mented by the value of the length attribute
of the second parameter.

Note that the destination data field
address is always base plus pointer, there­
by causing successive elements of the field
to be filled with each execution of every

28

COLLECT command that specifies the same SP
symbol as the first parameter. The size
attribute defines the extent of the data
field.

When the value of the pointer attribute
of the first parameter is equal to the size
attribute, or is large enough that the
length of the second parameter is greater
than the remaining space in the data field
(size minus pointer), the pointer is reset
to zero before the movement of data takes
place. The data field is then used as
before each time it is specified as the
first parameter of any succeeding COLLECT
command operands.

A single COLLECT command can appear in a
dynamic statement that will be executed
repetitively (depending on the location of
the AT), in which case each execution will
move the same amount of data into the
collection area. On the other hand, more
than one COLLECT command can move data into
a common collection area. In the latter
case, the fields of the filled-in collec­
tion area may be of variable length.

A data field being collected with a
single execution of the COLLECT command
cannot be more than 4096 bytes long.

caution: Truncation occurs if the length
attribute of the second parameter in a
COLLECT operand exceeds the size attribute
of the first parameter; type is set to
character and the data is truncated on the
right.

programming Notes: A data field (such as
COLLAREA in the examples below) cannot be
referenced symbolically in the usual way,
after it has been used as a collection
area, with any assurance that the value of
pointer is zero. The SET command and the
$P system symbol can be used to reset the
value of pointer.

To determine which byte of a collection
area was the last one used by an execution
of the COLLECT command, the System Pro­
grammer can display the pointer value with
the DISPLAY command and the $P system sym­
bol. Whether the pointer has cycled
through the collection area one or more
times will not be known unless a condition­
al statement is used to predefine that
aspect of the operation, or unless inspec­
tion of the collection area reveals that
information.

The COLLECT command is useful in a glob­
al dynamic statement. A TSP must globally
define the SP symbol that represents the
collection area if the COLLECT command is
to be used globally.

Examples: It is the System Programmer's
responsibility to define a collection area
properly and to manage the space with the
COLLECT command so that the collected data
will be meaningful. Figure 5 depicts an
example of a collection area named
COLLAREA.

COLIAREA
r--------------------------,
I $IPSW I
~-------------------------~

---J~~r--------------------------~
r--------------------------~
r--------------------------~
r--------------------------~ l:-------------------------JL
l:-------------------------lI l __________________________ J

<--------8 bytes--------->

Figure 5. Collection Area

512
bytes

COLLAREA as shown in Figure 5 is an SP
symbol that was defined as having a length
attribute of eight bytes and a size attri­
bute of 512 bytes. If COLLAREA was used to
collect IPSWs, as shown below in Example 1,
eight-byte elements will be filled succes­
sively with each execution of the COLLECT
command. Note that Example 1 is the same
as Example 1 under "AT Command.-

Example 1:

AT INTPROC COLLECT COLLAREA=$IPSW

Each time the instruction location
INTPROC is reached, this COLLECT command is
executed and results in the I/O old VPSW
being stored successively in eight-byte
fields of the data field COLLAREA (assuming
virtual memory qualification). The arrow
in Figure 5 pOints to the effective address
(base plus pointer) of COLLAREA after one
execution of the COLLECT command.

Example 2:

AT NEWADDR COLLECT COLLAREA=C' ASYNC' ,
COLLAREA=$APSW

With this example, each time the
instruction location NEWADDR is reached
this COLLECT is executed. In this case,
the first operand specifies that a literal
is to be placed in COLLAREA at the current
base-pIus-pointer position. The pointer is
then incremented by five (ASYNC is five
bytes long) and the asynchronous I/O old
VPSW is moved to COLLAREA at the new base­
plus-pointer position. Note that a total
of 13 bytes is moved to the data field
COLLAREA with this execution of a COLLECT
command.

SET Command

The SET command is used to insert data
into a data field. The format is:

r---------T-------------------------------,
I Operation I Operand I
~--------+------------------------------~
I I {data field 2 } I
I SET Idata field1 = literal [••••]1 l _________ ~ _______________________________ J

data field1

the location where data is to be
inserted; it can specify an I/O
device.

Specified as: any representation of a
data field, including the $10 or $VAM
system symbol.

data field 2
the location from which data is to be
moved; it can specify an I/O device.
The data can be the result of an a­
rithmetic or Boolean operation.

Specified as: any representation of a
data field. including the $10 or $VAM
system symbol, or an arithmetic or
Boolean expression.

literal
immediate data in the input stream to
be placed in data field1 •

Specified as: a character, hexadeci­
mal. or decimal integer literal.

Functional Description: The SET command
can be used to alter any data field, up to
4096 bytes long. in real, virtual, or
secondary storage. No record of the opera­
tion is kept by TSSS.

Note: When a system symbol representing
a data field is used with the SET command,
the system programmer's default qualifica­
tion is used, overriding any further
qualification.

Cautions: The lengths of both parameters
are used for the SET operation. If they
are not the same, the data specified by the
second parameter is padded or truncated,
according to data type, as shown in Figure
6.

When using the $RM symbol in VSS to SET
or PATCH, a page of real storage containing
the target location to be changed is
obtained, without TSS/360 activity being
suspended. The entire page is replaced
after the change has been made. Caution
should be used, therefore, since results to
the system are unpredictable.

Part II: The TSSS Command Language 29

r---------------------------T-------------------------,---------------------------------,
I Data Type I ! Parameter 2 Less (S.ET Command I
I Parameter 1 Parameter 2 I Parameter 2 Greater I Only) i
t-------------T-------------t-------------------------t---------------------------------~
I Character I Any I Parameter 2 truncated on I Parameter 2 padded on right withl
I I I right I blanks I
I Integer I Integer i Parameter 2 truncated ani Parameter 2 padded on left by I
I I I left ! propagating leftmost bit I
I I I I I
I Integer I Noninteger I Parameter 2 truncated ani Parameter 2 padded on left with I
I I I left I zeros I
I I I I !
I Hexadecimal I Any I Parameter 2 truncated on I Parameter 2 padded on left with!
I I I left I zeros I l _____________ ~ _____________ ~ _________________________ ~ _________________________________ J

Figure 6. Truncation and padding by SET command and truncation by COLLEC'l' command

programming Notes: When both parameters in
a SET command operand specify I/O devices
with the $10 system symbol. and if the
second parameter designates a 2540 Card
Reader or a tape drive, that device is read
repeatedly until end-of-file is reached. A
corresponding write operation is performed
for each read (with no blocking and no data
formatting). This makes possible a card­
to-tape operation for creating a tape file
comprising a TSSS predefined statement set
(see "CALL Command") or a tape-to-printer
operation for printing a TSSS dump that was
written on tape. When the SET command is
used to write to a printer, the record
length is 101 bytes, including the forms­
motion byte.

When the SET command is used to write to
a tape drive, no tape mark is written. If
the operation's purpose is to create a TSSS
predefined statement set, the last command
included in that statement set must be END,
RUN, or DISCONNECT.

When the first parameter in the SET com­
mand operand specifies a direct access
device (using either $10 or $VAM), altera­
tion will not occur past the end of the
specified record. If the length specified
for the first parameter would cause altera­
tion past the end of the record, the state­
ment will be rejected.

Example 1:

DEFINE CTR;SET CTR=X'OO';AT LOC SET
CTR=CTR+X' 01'

In this statement, the System Programmer
defines a one-byte field named CTR (an SP
symbol), sets the value of CTR to zero, and
then creates a dynamic statement that will
increment CTR by one each time the instruc­
tion location LOC is reached.

Example 2:

SET FLAG=FLAGiX'40'

30

With this command, the System Programmer
sets a bit in a replica of the data field
FLAG with the OR operator, then overlays
FLAG with the replica. (Bit manipulation
with Boolean operators is performed in
working storage.)

PATCH command

The PATCH command is used to insert data
into a data field and concurrently to save
the original data and build a block of con­
trol information. The format is:

r---------T-------------------------------,
!OperationiOperand I
t---------+------------------------------~
I i idata field;2!, I
I PATCH I data field~ ==)literal I [•... J ! L _________ ~ _______________________________ J

data field~
the location where data is to be
inserted; it can specify an I/O
device.

§£ecified as: any representation of a
data field, including the .$10 cr $VAM
system symbol.

data field;;!
the location from which data is to be
moved, it can specify an I/O device.
The data can be the result of an a­
rithmetic or Boolean operation.

Specified as: any representation of a
data field, including the $IO or $VAM
system symbol, or an arithmetic or
Boolean expression.

literal
immediate data in the input stream to
be placed in data field1 "

Specified as: a character. hexadeci­
mal. or decimal integer literal.

Functional Description: When a patch is
placed in a real or virtual storage loca­
tion, no other copy of the affected module
is automatically changed. The System Pro­
grammer may reference the appropriate I/O
device with another PATCH (or a SET) com­
mand, however, if he wishes to make such a
change.

Each System Programmer has in his work­
ing storage a two-page Patch Table (8192
bytes) that is the limiting factor in
determining how many patches may be
inserted during a given terminal session.
Each execution of the PATCH command pro­
duces a 24-byte Patch Control Block in the
Patch Table and stores the original data,
from the location that was patched, in the
Patch Table. When a PATCH command is
issued that overflows the Patch Table, the
command is rejected with a message to the
system Programmer's terminal.

The length of a patch (and thus of the
original data being stored in the Patch
Table) is determined by the length attri­
bute of the parameter on the right of the
equal sign; it cannot be greater than 4096
bytes.

Note: When a system symbol representing
a data field is used with the PATCH com­
mand, the system programmer's default qual­
ification is used, overriding any further
qualification.

cautions: A patch cannot be inserted where
another patch has been inserted with the
same starting address by the same System
Programmer. If partial overlapping of
patches is performed (starting addresses at
least one byte apart), the patches can be
removed without loss of any data only by
removing them in the reverse order of their
insertion.

The PATCH command is not appropriate in
a global dynamic statement.

Programming Note: A patch can be
referenced through use of the $PATCH system
symbol with an appropriate command. If the
patch is deleted with the REMOVE command,
the space used by that patch in the Patch
Table is freed for reuse.

Example 1:

PATCH MASK=X'FO'

When this command is executed, one byte
of data at the data field named MASK is
overlaid with the value X'FO', and the
value previously contained in that byte is
saved in the Patch Table with 24 bytes of
control information.

caution: When using the $RM symbol in VSS
to SET or PATCH, a page of real storage
containing the target location to be
changed is obtained, without TSS/360 activ­
ity being suspended. The entire page is
replaced after the change has been made.
Caution should be used, therefore, since
results to the system are unpredictable.

Example 2:

PATCH $VAM(X'0190·,14). (321=X'FO'

When this command is executed, byte 32
of relative page 14 on the VAM-formatted
device, whose actual address is X'190', is
overlaid with the value X'FO' (in main
storage). The original data is saved in
the Patch Table with 24 bytes of control
information, and the altered page is writ­
ten onto its original external location.

REMOVE Command

The REMOVE command is used to delete one
or more ATs and the associated information
in the AT Table, or to restore data that
was altered with the PATCH command and
delete the associated Patch Table entry.
The format is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+----------------------------~
I I J$AT l I
! REMOVE I \$PATCHf [.location] l, ... 1 I L ___________ ~ _____________________________ J

location
the symbolic or actual address of a
real, virtual, or secondary storage
location.

Specified as: a symbol or L-notation.

RSS default: all ATs or patches
implanted by the MSP, plus (1) if $AT,
all real-storage ATs implanted by all
connected TSPSi (2) if $PATCH. all
patches implanted by TSPs via dynamic
statements associated with real­
storage ATs.

VSS default: (1) if $AT, all virtual­
storage ATs. private and global,
implanted by this TSP; (2) if $PATCH,
all patches implanted by this TSP
except any implan1:ed via dynamic
statements associated with real­
storage ATs.

Functional Description: When the REMOVE
command is executed, the original data at
the specified location is restored (an
instruction in the case of $AT, or the
overlaid data in the case of $PATCH). The
space in the AT Table or Patch Table that

Part II: The TSSS Command Language 31

corresponds to each operand is freed and
may be reused.

cautions: Each operand must correspond to
an AT or a patch that has not been removed,
although it need not be specified in the
same way as when the AT or patch was
implanted.

If a TSP implants ATs in real storage
(the MSP domain), he should use the REMOVE
command with a separate operand ($AT with a
location specified) for each such AT prior
to issuing a DISCONNECT command.

An AT implanted in real storage by a TSP
can be referenced with the REMOVE command
of VSS only if the $AT system symbol is
used to specify each AT. If the AT loca­
tion is defaulted, an error occurs.

Programming Note: The REMOVE command is
implied for outstanding ATs implanted by
this System Programmer when a DISCONNECT
command is issued. Patches are not auto­
matically removed when a DISCONNECT is
issued, but the internal record of original
data and control information is lost.

Example 1:

REMOVE $AT.INTPROC

When this command is executed, the
instruction at location INTPROC is restored
to its original state, and the associated
dynamic statement and control information
are deleted from the appropriate AT Table.

Example 2:

REMOVE $PATCH.$VAM(X·0190·,14).(32)

When this command is executed, the spec­
ified patch (from Example 2 under ·PATCH
Command") is overlaid by the original data
from byte 32 of relative page 14 on the
VAM-formatted device, whose address is
X'190·. corresponding entries in the Patch
Table are removed.

When the REMOVE command is used with
$PATCH in RSS and the task associated with
a particular patch is not available to the
system (due, for example, to abnormal t.er­
mination or LOGOFF), the REMOVE command
removes the PCB with no replacement of the
original data.

Note: When removing an AT or PATCH, quali-'
fication must be the same as at the time of
implantation. If the qualification of any
AT or PATCH is unknown, it can be deter­
mined by displaying the $AT or $PATCH sys­
tem symbo1s.

32

IF Command

The IF command is used to designate that
the remainder of the input statement is
conditional; that is, the operand of the IF
command must be evaluated as "trueR if the
remainder of the statement is to be
executed. An IF command may appear within
an input statement as well as at the begin­
ning. The format is:

r-----------~---------------------------_,
I Operation I Operand I
~-----------+-----------------------------~
I IF I expression I L ___________ .L _____________________________ J

expression
a logical expression that reduces to a
single "true" or "false" value; it may
contain arithmetic, relational, or
Boolean operators or a combination of
these.

Specified as: a character string con­
taining data field defining elements
and/or literals, plus, normally. one
or more operators.

Functional Description: When more than one
IF command appears in a statement, perfor­
mance of the evaluation of each is condi­
tional on the result from the preceding
one.

The IF command, like the AT command, is
not separated from the following command by
a semicolon. If the last character of the
operand is alphameric, at least one blank
must separate the operand from the follow­
ing command.

Programming Notes: When an expression is
evaluated as true, a field in working
storage is set to X'FF'; when false, to
X·OO'. If there is no relational operator
« or = or » in the operand of an IF com­
mand, the first byte of the specified field
is inspected for the value "true.~ For
example, "IF A DISPLAY B" would require the
first byte of A to be all ones for the DIS­
PLAY to be executed. Likewise. "IF AtB
DISPLAY Cn would require that the AND
operation performed on the contents of A
and B produces a field whose first byte is
all ones for the DISPLAY to be executed.

When the operand of an IF command in an
unchained dynamic statement is evaluated as
"false," t.he .IF command is followed by an
implied RUN. If the dynamic statement is
chained. however, the "false" value causes
the next dynamic statement in the chain to
be executed. When the operand of an IF
command in an immediate statement proves to
be "false," the input device is then read
again (a $ is first written if not in call
mode) •

Example 1:

IF LOCKBYTE=X'FF' DUMP TABLE

Execution of this statement causes the
contents of the data field named LOCKBYTE
to be compared to the literal X'FF' and, if
equal, the DUMP command to be executed. If
the comparison results in an inequality,
the DUMP command is ignored.

Example 2:

AT LOC IF CTR=X'40' DUMP COLLAREA;IF
,(PTR=A'TABLE') STOP

In this example. the first IF command
begins a dynamic statement that is stored
until TSS/360 execution reaches the in­
struction at LOC. Then the contents of the
data field CTR are compared to the literal
X'QO', and if not equal the remainder of
the statement is ignored and control is
returned to TSS/360. An equality results
in execution of the DUMP command followed
by a comparison of the contents of the data
field PTR with the address of TABLE. In
this case the NOT operator makes equality
the "falseR condition, and the STOP command
would be ignored; any value of PTR other
than the address of TABLE is "true," and
the STOP command would be executed.

Example 3:

IF FIELD=X'FFFFFFFF'IFIELD=X'OOOOOOOO'
DISPLAY FIELD;RUN

In this example, the OR operator speci­
fies that satisfying either of two possible
"true" conditions results in execution of
the DISPLAY and RUN commands. If FIELD
contains any value besides the two speci­
fied, the DISPLAY and RUN commands are
ignored and a $ is written at the terminal
to invite another input statement.

Example 4:

IF (FLAG1IX'FB')=X'FF'I(FLAG2IX'7F')
=X'FF' DUMP STATUS

In this example, the OR operation is
performed on the contents of FLAG1 and the
literal X'FB' and on the contents of FLAG2
and the literal X'7F' in a work area, and
the results in each case are compared with
the literal X'FF'. If either comparison
(or both) results in an equality the DUMP
command is executed. The use of paren­
theses determines that actual bit manipula­
tion with the OR instruction will take
place. The second of the three OR opera­
tors does not cause bit manipulation from
the language syntax point of view (see
"Boolean Operators·).

RUN Command

The RUN command is used to relinquish
control to TSS/360 for resumption of TSS/
360 execution, without disconnecting the
System Programmer. The format is:

r-----------T-----------------------------,
I Operation I Operand I
.-----------+-----------------------------~
I RUN I [address] I L-__________ i---__________________________ J

address
the symbolic or actual storage loca­
tion, assumed to be an instruction
address, where TSS/360 execution is to
resume.

Specified as: a symbol or L-notation.

TSSS default: the point where TSSS
received control, with TSS/360
restored.

Functional Description: Execution of the
RUN command causes normal TSS/360 execution
to resume; only the changes to the system
that may have been effected by the System
Programmer (including implanted ATs) affect
system operation.

In RSS, the RUN command causes the old
PSW that was stored when RSS received con­
trol to be loaded. If the RUN command has
an operand, the PSW is first modified by
(1) turning off the wait state bit if it is
on, and (2) inserting the value of the
operand into the instruction address field.

In VSS. the RUN command causes the task
to be restored and control to pass to TSS/
360. If the RUN command has an operand,
the taSk's current VPSW is first mOdified
by inserting the value of the operand into
the instruction address field.

It is the System Programmer's responsi­
bility to specify an appropriate value for
the PSW being modified. if he supplies an
operand with the RUN command.

When issuing a RUN command with an
operand in RSS, caution should be taken to
ensure that the address specified is within
the addressability range of the supervisor.

cautions: After one or more AT commands
have been issued, a RUN command is required
to execute the implanted ATs, except for a
TSP's ATs in real storage (depending on
location). The RUN command cannot be used
within a dynamic statement to serve that
purpose, and, in fact, a RUN in a dynamic
statement is redundant unless it has an
operand that differs from the defaUlt
value.

Part II: The TSSS Command Language 33

When a RUN command is executed, TSS/360
status is restored as it was saved when
TSSS received control, except for any
changes made to that stored data by the
System Programmer. It is the System Pro­
grammer's responsibility to alter stored
register contents if necessary (e.g., a
base register) when an operand is used with
the RUN command.

Note: If a TSP uses the RUN command with
an operand the address specified should not
be within a virtual memory program which
has a different privilege state than that
of the program which was executing when VSS
was invoked. The privilege state of each
TSS/360 program may be found in the pro­
logue to the CSECT listing for that
program.

Programming Notes: A RUN command with an
operand that occurs in a dynamic statement
will cause any additional chained ATs to be
ignored.

After execution of a RUN command (ex­
plicit or implied), a TSP can regain con­
trol at his terminal with an Attention. An
MSP (connected by use of the external
interrupt key) relinquishes the terminal to
the Operator task when a RUN command is
issued; to regain control (other than
through an implanted AT) he must use the
external interrupt key again.

Example:

RUN ENTRYPT

Execution of this command causes the
address represented by the external symbol
ENTRYPT to be placed in the instruction
address of the current PSW for the MSP or
current VPSW for a TSP, followed by the
processing required to restore TSS/360 or
the task, respectively, and exit to
TSS/360.

STOP Command

The STOP command is used as the last
command in a dynamic statement when control
is to be returned to the current TSSS input
device. The format is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+-----------------------------~
I STOP I I L ___________ ~ _____________________________ J

There are no operands.

Functional Description: The STOP command
terminates processing of the dynamic state­
ment in which it appears; it should appear
as the last command in a statement.

34

Programming Notes: If a STOP command
occurs in a dynamic statement associated
with an AT implanted in real storage by a
TSP, the $ is written at the MSP terminal.
All TSS/360 activity and all VSS activity
is suspended until the MSP issues a RUN or
DISCONNECT command.

If a STOP command is included in an
immediate statement written at the termi­
nal, the remainder of the statement is ig­
nored and a $ is written to invite new
input.

If a STOP command is encountered in a
predefined statement set, reading of the
card reader or tape drive is terminated and
the System Programmer's terminal is solic­
ited for input. If the mode is dynamic
mode when the STOP command is executed, the
SP may change the qualification. However,
when an implied or explicit RUN is executed
the qualification state reverts to that
which was current when the associated AT
was ex ecut ed.

Example:

AT INTPROC COLLECT COLLAREA=$IPSW;STOP

This example repeats Example 2 under RAT
Command.- Execution of the STOP command
results in the termination of processing of
the dynamic statement and the writing of $
on the System Programmer's terminal to
invite input.

CONNECT Command

The CONNECT command enables the Master
System Programmer to connect a Task System
Programmer at a logged-on terminal to that
terminal's conversational task. The CON­
NECT command is not acceptable to the VSS
language processor and cannot be used by a
TSP. The format is:

r-----------r-----------------------------,
I Operation I Operand I
~-----------+----------------------------~
I CONNECT I taskid I L ___________ ~ _____________________________ J

taskid
the task identification number of the
task to which a TSP is to be con­
nected.

Specified as: any representation that
can be resolved to an appropriate
value (for example, an SP symbol or
the system symbol $TSKID); usually a
hexadecimal literal.

Functional Description: Execution of the
CONNECT command causes activation of VSS
within the specified task with a TSP con­
nected to the SYSIN terminal. The MSP must

then issue a RUN or DISCONNECT command
before any TSP activity is possible. When
execution of the CONNECT command has been
successful and the MSP has issued RUN or
DISCONNECT, a $ is written at the TSP's
terminal.

Caution: Specification of the taskid
should be performed carefully. If an unin­
tended value is supplied, it may represent
the task ID of an unsuspecting conversa­
tional user. Or it may be the task ID of a
nonconversational task, which would result
in system error condition. If an invalid
task ID is supplied, an RSS message is
written.

Programming Notes: A conversational task's
taskid is displayed at the user's terminal
by TSS/360 upon successful completion of
TSS/360 LOGON.

If any input from the TSP terminal is
accepted prior to the writing of a $ on the
terminal, that input is delivered to
TSS/360.

Example:

CONNECT X'OOlC'

Execution of this command, issued by the
MSP, results in the terminal dedicated to
task lC becoming a TSP-dedicated device, as
soon as TSS/360 receives control from RSS.

Note that the operand of CONNECT must
resolve to a two-byte field.

DISCONNECT Command

The DISCONNECT command is used to remove
TSSS capabilities from a terminal that is
dedicated to an MSP or a TSP. The format
is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+-----------------------------~
I DISCONNECT I I L ___________ i _____________________________ J

There are no operands.

Functional Description: When the DISCON­
NECT command is executed on behalf of the
MSP, all of his ATs are removed, TSS/360
status is restored, and control reverts to
TSS/360 at the point where it was inter­
rupted by RSS activation.

When the DISCONNECT command is executed
on behalf of a TSP, all of his ATs in vir­
tual storage are removed, the status of the
task is restored, and control reverts to
TSS/360 with VSS no longer active in the
task. The terminal is again dedicated to
the task.

Note that although ATs are removed auto­
matically at disconnect time, patches are
not. However, the Patch Table is lost, as
are all private SF symbols. It is the Sys­
tem Programmer's responsibility to save any
information (for example, with the DUMP
command) he wants to retain for further
use.

Cautions: A DISCONNECT command is in the
MSP domain if included in a dynamic state­
ment associated with an AT implanted in
real storage by a TSP; it disconnects the
MSP and not the TSP.

The DISCONNECT command should not be
used in a global dynamic statement.

programming Notes: It is possible for the
task with which a TSP is associated to be
forced off the system or logged off. When
this happens, the disconnect function is
performed automatically before the logoff
is complete.

If a TSP has defined global SP symbols
during his terminal session, they remain in
the Global Symbol Table after he discon­
nects and may be referenced by the global
dynamic statements of other TSPs.

Example:

DUMP HEADER,STATUS,INFO,TABLE;DISCONNECT

Execution of this statement results in
the contents of the four specified data
fields being written on the output device
specified in $DOUT, then performance of the
DISCONNECT function. All of this System
Programmer's ATs are removed (see -REMOVE
Commandn), and control then reverts to TSS/
360 at the point where it was last inter­
rupted by activation of TSSS.

CALL Command

The CALL command is used to initiate
execution of a predefined set of TSSS com­
mand statements that have been stored as a
deck of punched cards or on tape. The for­
mat is:

r-----------T-----------------------------,
I Operation I Operand I
~-----------+----------------------------~

I CALL I !~:~~~~: l I
I I decimal into I
I I sp symbol I L ___________ i _____________________________ J

xxxx
a device address -- physical path when
preceded by X, symbolic device address
when preceded by C.

Part II: The TSSS Command Language 35

Specified as: hexadecimal digits.

decimal into
a device address which, when converted
into hexadecimal, represents the phys­
ical path.

sp symbol
a data field containing a device
address, with a type attribute of
character to indicate symbolic device
address. Any other type attribute
indicates the physical path.

Specified as: a character string.

Functional Description: When the CALL com­
mand is executed (establishing call mode),
statements are read from the card reader or
tape drive specified by the operand and are
processed exactly as if they had been keyed
in at the terminal. A RUN, STOP, END, or
DISCONNECT command terminates reading of
the device.

Execution of a CALL command with an
operand that specifies a different device
also terminates reading of the current
device.

Predefined statement sets may be
"stacked- in such a way that one group of
statements is executed sequentially until
an appropriate command is reached (see
above), and the following group is executed
when another CALL command is issued.

If a CALL command occurs in a dynamic
statement, execution of that command causes
establishment of dynamic call mode. The
specified device becomes the TSSS input
device, and it is read as a continuation of
the dynamic statement until a RUN, END,
STOP, or DISCONNECT command is encountered.

Messages and any other output that would
be delivered to the System Programmer's
terminal when not in call mode are not
affected by the change of input device;
they still are delivered to the terminal
(and the $ is written to invite input at
the terminal>.

For additional information on using pre­
defined statement sets, see Part III.

cautions: The continuation character (see
"Terminal Usage" in Part III) cannot be
used in predefined statement sets. How­
ever, tape blocks may be up to 256 charac­
ters long, whereas statements on cards can
be no more than 80 characters long.

If a deck of cards is to be used in the
1056 Card Reader, it must comprise cards
with an upper left corner cut. The 1056
Auto EOB switch must be on, or each card
must have a 11-5-9 punch in column 80;

36

otherwise, each read is 256 bytes of data
instead of 80. (If a deck with 11-5-9
punches is used in a 2540 Card Reader, the
character generated by that punch is ig­
nored.) A predefined statement set in a
1056 must end with an END, STOP, RUN, or
DISCONNECT command.

A CALL command shOUld not be used in a
TSP's global dynamic statement.

Programming Note: In addition to the com­
mands in a set of predefined statements
that terminate reading of the called
device, an Attention (asynchronous inter­
ruption) from the System Programmer's ter­
minal, a manual key external interrupt (MSP
only>, physical end-of-file (except 1056
Card Reader), or a permanent I/O error
causes control to revert to the terminal.

Example 1:

CALL X'OOOC'

Execution of this command results in the
device whose physical address is OOC being
read for further TSSS input. Command
statements are then read from that device
until a RUN, END, CALL, STOP or DISCONNECT
command (or one of the interrupts described
under "Programming Note") is encountered.

Example 2:

AT LOC IF FOULUP=ON CALL INPUT

In this command statement, LOC is the
symholic address of an instruction loca­
tion, FOULUP and ON are data fields whose
contents are to be compared for equality,
and INPUT is an SP symbol that represents a
data field containing the address of a card
reader or tape drive. After this AT is
implanted at LOC, its execution causes the
operand of the IF command to be evaluated
and, if it is "true," the device named
INPUT is read as the input device. If the
operand of IF is "false," the CALL command
is not executed; an implied RUN is executed
instead.

END Command

The END command is used as the last com­
mand in a predefined statement set when the
System Programmer wishes to have his ter­
minal read again as the input device. The
format is:

r-----------T-----------------------------, I Operation I Operand I
t-----------+----------------------------~
I END I I l ___________ ~ _____________________________ J

There are no operands.

FUnctional Description: Execution of the
END command causes reading of a card reader
or tape drive to cease and the System Pro­
grammer's terminal to be solicited for
additional input.

The END and RUN commands make it possi­
ble for the System Programmer to stack a
set of predefined statements on a device.
with control returned to the terminal or to
TSS/360. respectively, at the end of each
set. As the last command in the deck (or
tape file). the END command causes control
to return to the terminal without invoking
the time-consuming error-recovery proce­
dures that would result from a physical
end-of-file condition.

Cautions: If an END command is included in
an immediate statement written at the ter­
minal. its execution will halt execution of
the statement and will cause an error mes­
sage to be written. followed by a $ to
invite input.

An END command in a dynamic statement
will cause execution of the statement to
stop and an implied RUN to be executed.
This applies to a dynamic statement in call

mode (END appears in a predefined statement
set that is executing as the result of a
dynamic CALL command). Therefore, to
return control to the terminal when in
dynamic call mode, a STOP command should be
used.

Example:

IF SWITCH=X'FF' RUN

DISPLAY C'SWITCH OPP':END

Assuming that the example comprises two
records in a predefined statement set.
execution of the first results in comparing
the contents of the data field SWITCH with
the literal X'PF' and. if equal. execution
of the RUN command. This terminates the
predefined statement set.

If the comparison yields an inequality,
however. the RUN command is not executed
and the next statement is read. This
results in execution of the DISPLAY and END
commands, the latter returning control to
the terminal where a $ is written to invite
input.

Part II: The TSSS Command Language 37

PART III: USING TSSS

This section discusses general consider­
ations for correct use of the Time Sharing
Support System by a System Programmer.
Applications for using TSSS are not consid­
ered here; the System Programmer should
design and document his own procedures or
have access to existing materials (card
decks, tape volumes, or procedure
descriptions) •

CONNECTING THE SYSTEM PROGRAMMER

The several methods for connecting the
Master System Programmer to RSS and Task
System Programmers to VSS are summarized in
Figure 7 and are described in detail below,
except for use of the CONNECT command,
which is defined in Part II. There can be
only one MSP connected at a given time;
several TSPs may be connected at a given
time, but only one can be connected to a
given task.

External Interruption Key

When the MSP is connected through use of
the external interruption key, he has pre­
empted the system operator's terminal. In
this case the MSP relinquishes control when
he issues the RUN command, thereby allowing
the resumption of TSS/360 execution. He is
still considered to be connected, but he
cannot use the Attention key to communicate
with RSS. (An Attention under those cir­
cumstances delivers an attention interrup­
tion to the operator task.) Except for the
reactivation of RSS that occurs with the

execution of an implanted AT, the MSP must
again press the external interruption key
to reactivate RSS and regain control at the
system operator's terminal.

VSS Command

A system programmer (authority 0 or P)
may invoke VSS within his conversational
task and connect his terminal to VSS with
the VSS command. He thus becomes a TSP.
If the user does not have the correct
authority, the command is rejected.

r-----------~---------------------------_,
I Operation I Operand I
t-----------+-----------------------------~
I VSS I I l ___________ i-____________________________ J

Note: There are no operands.

When a TSP has been connected via use of
the VSS command, the TSS/360 BACK command
should not be used for that task. Also,
the VSS command should not be used in the
SYSIN data set for a task that has been
made nonconversational with the BACK
command.

Upon execution of the VSS command, a $
is printed at the terminal to invite TSSS
input. This type of connection can also be
made by an MSP on behalf of the TSP with
the CONNECT command (see Part II, "CONNECT
Command"). The CONNECT command should not
specify a nonconversational task. ---

r--------------------T--,
I Action I Result 1 I
~--------------------+--~
IExternal Interrup- IMSP connected at operator's terminal; $ written at terminal to I
Ition Key Pressed I invite input; RSS mode; TSS/360 execution temporarily suspended. I
I I I
IVSS command at ITSP connected at same terminal; $ written at terminal to invite I
luser termina12 linput; VSS mode for the task; execution of task temporarily I
I I suspended. I
I (I
(CONNECT command ITSP connected at terminal of specified task; $ written at ter- I
lissued by MSP Iminal to invite input; VSS mode for the specified task: execution I
Ifollowed by RUN lof task temporarily suspended. I
lor DISCONNECT3 I I
t--------------------~--~
11 "Result" means the immediate effect of each action when it is initially taken. I
12The VSS command is in the TSS/360 command system, and requires 0 or P authority for I
I its use. I
13The CONNECT command is RSS only; it can be issued only by the MSP. I l __ -J

Figure 7. Methods of connecting the TSSS user

38

TERMINAL USAGE

From the time the System Programmer is
connected until his TSSS terminal session
ends. he may use his terminal to enter TSSS
command statements. Aside from differences
in language syntax and the functions being
performed. terminals are used similarly for
TSSS and TSS/360, as described in the
appropriate TSS/360 publications. Note
that the remote 1052 Printer-Keyboard and
2741 terminal generate end-of-block (EOB)
automatically when the RETURN key is
pressed, and the 1052-7 does not. Regard­
less of terminal type. RETURN as used here
implies EOB unless otherwise specified.

The following considerations apply
uniquely to TSSS:

• Maximum statement length is 255 charac­
ters (plus EOB). With the 1052-7
Printer-Keyboard (CPU console). as many
lines as desired may be entered prior
to EOB. if no more than 255 characters
are included. The remote 1052 and 2741
terminals generate EOB automatically
with each carr~age return. More than
one line, up to a total of 255 charac­
ters. may be included in an input.
statement from a remote terminal
through use of the continuation
character, a hyphen (-), followed imme­
diately by RETURN. The hyphen may
appear anywhere in a statement and is
not counted as an input character.
Note: The continuation character may
be used in the same way with the 1052-
7. although it is not required.

• The character # ("pound sign") is
interpreted by TSSS as a backspace
character when the input device is a
1052-7 Printer-Keyboard. In that case
the effect of pressing the # key is the
same as pressing the backspace key on
any other terminal, except that the
typing element does not reverse direc­
tion. (If a backspace key is installed
on a given 1052-7. either the backspace
or # may be used interchangeably.)

For each occurrence of the word "back­
space" in the following paragraphs, "#"
can be used interchangeably to cover
the use of a 1052-7 Printer-Keyboard.

With the Model 33 or 35 KSR teletype­
writer. the left-arrow key is used as a
backspace key for TSSS operations.

• Upon recognizing the end of an input
statement (EOB. not preceded by a
hyphen or backspace), TSSS executes the
immediate portion of the statement and
then writes a $ at the terminal to
invite additional input, unless the

statement contains an immediate RUN,
CALL, or DISCONNECT command.

• Mode switching is accomplished (1) with
several of the TSSS commands (defined
in Part II of this publication and sum­
marized in Appendix A), and (2) under
certain circumstances with a CPU
external interruption key (MSP only>,
Attention key (any TSP), and RETURN key
(TSP only).

For the MSP, if the mode is run mode
(TSS/360 is executing), a CPU external
interruption key is used to regain
control at the Operator's terminal.

Any TSP whose task's VSS is in run mode
may press his Attention key to regain
control at his terminal. If a $
appears VSS has been reactivated. If
an underscore appears the VSS Command
is required to reactivate the task's
VSS routines.

• A TSP can reply to an invitation for
input with RETURN only and thereby pro­
duce a TSS/360 Attention for the task;
it is a special type of implied RUN.
This action -- EOB constituting the
only input -- is called the ·void
command. "

When in run mode, an Attention (causing
establishment of VSS mode) followed by
RETURN (reestablishing run mode and
delivering a TSS/360 Attention) pro­
vides a TSP full capability for running
the conversational task. However, at
this time the TSP. now the task user,
should first issue a TSS/360 RUN com­
mand to return the task to the point at
which the initial VSS invocation inter­
rupted it. (This holds true for any
case in which an Attention is issued
while a TSP is connected but VSS is not
active.)

• An Attention when in RSS mode or VSS
mode is recognized only if (1) call
mode processing is in progress, (2) a
DISPLAY or DUMP command is being
executed (or is yet to be executed in
the current command statement) or (3)
the system is reading or writing to the
SP terminal. An Attention causes ter­
mination of call mode or termination of
the displ.ay or dump, followed by a mes­
sage being written at the System Pro­
grammer's terminal and a $ to invite
input. If not in call mode and with no
current I/O or CALL, DISPLAY, or DUMP
command in the current statement, norm­
al end-of-statement processing ensues
without regard to the Attention.

Note: The System Programmer may think
run mode is the current state when

Part III: Using TSSS 39

actually a dynamic statement is being
executed by TSSS. An Attention at that
time produces the results described
above.

• Pressing the external interruption key
twice on the active CPU in RSS mode
causes wRSS restart,· which is
described later in Part III under "Gen­
eral Operating considerations." If the
external interruption key of another
CPU is pressed, the interruption is
ignored.

• Errors in typing may be corrected prior
to ending a line through use of the
backspace key. The backspace deletes
each character that is backspaced over,
after which new characters may be sub­
stituted. For example, if wDISPALY
XYZ· was typed, backspacing over ·ZYX
YLA" and then typing WLAY XYZ· results
in the correct spelling of the DISPLAY
command being placed in the input
buffer.

• An entire line may be deleted by enter­
ing a backspace immediately followed by
RETURN (EGB). If the preceding line
ended with the continuation character,
that line is not deleted. Note that an
attempt to delete and not replace the
last character of a line results in
deletion of the entire line when RETURN
(EOB) is pressed. In many cases, the
deleted character may be replaced with
a blank or a hyphen (continuation
character) to prevent deletion of the
line.

PREDEFINED STATEMENT SETS

Operation of TSSS via predefined state­
ment sets is identical to terminal opera­
tion in most respects but has unique
aspects as well. The language syntax is
unchanged; any free-form statement that
follows the prescribed format is accept­
able. Some variation in the meaning of the
execution of mode switching commands may
occur, however; the differences are
included in the command definitions in Part
II and are summarized in Appendix A.

Other considerations for using prede­
fined statement sets are:

40

• The continuation character is not used.
Cards are read as aO-character records;
tape blocks may be up to 256 characters
in length.

• cards for either a 2540 Card Read Punch
or a 1056 Card Reader should be punched
with the EBCDIC punch code. The

optional code acceptable to TSS/360 is
not correctly interpreted by TSSS. See
-CALL Commandw for special consider­
ations to be observed when the input
device is a 1056 Card Reader.

• When a tape drive is specified as the
input device, no labels are processed.
If the volume used contains one or more
header labels, either the tape should
be positioned manually to a valid TSSS
command statement or execution of the
CALL command will recognize a label as
an invalid statement, which causes an
error message to be written at the ter­
minal. Additional CALL commands can
then be issued until a valid statement
is reached.

• Any tape block following a predefined
statement set (e.g., a trailer label)
that is not preceded by a RUN, END, or
DISCONNECT command is read as an inval­
id statement, causing an error message
to be written at the terminal. When a
tape mark is reached, control returns
to the terminal. No rewind is per­
formed by TSSS.

• pressing the Attention key or perform­
ing RSS restart (described under "Gen­
eral Operating Considerations") while
in call mode terminates reading of the
called device and returns control to
the System Programmer's terminal. The
effect on the command being executed is
the same as is described under -Termi­
nal Usage."

• Predefined statement sets on tape may
be created by any available means. The
TSSS SET command can be used for card­
to-tape or terminal-to-tape operations.
In either case, the tape drive is spe­
cified using the $10 system symbol as
the first parameter in the operand. A
2540 Card Read Punch is specified as
the second parameter for card-to-tape;
a character literal is used as the
second parameter for terminal-to-tape.

The SET command does not write a tape
mark. A predefined statement set
created on tape with the SET command
must always end with an END, STOP, RUN,
or DISCONNECT command.

Figure a shows examples of each type of
operation. In the second example, note the
use of multiple operands with the SET com­
mand, the use of pairs of apostrophes
within a character literal, and the use of
a hyphen as a continuation character. (Two
of the character literals are examples that
appear under "COLLECT Command" in Part II.>

r---, I SET $IO(X'0182')=$IO(X'OOOC') I
~--~
I SET $IO(X'0182')=C'AT INTPROC COLLECT COLLAREA=$IPSW',$IO(X'0182')=C'AT NEWADDR COLL- I
I ECT COLLAREA=C"ASYNC",COLLAREA=$APSW',$IO(X'0182')=C'RUN' I L-__ J

Figure 8. Card-to-Tape and Terminal-to-Tape Statement Examples

GENERAL OPERATING CONSIDERATIONS

Normal TSSS operations are performed in
accordance with the information provided in
the language description (Part II) and in
the preceding portion of Part III. In the
following paragraphs, additional informa­
tion: (1) summarizes the unique aspects of
operating with global qualification, (2)
describes RSS restart, and (3) describes
the several possible courses of action
taken by TSSS when error conditions are
encountered.

GLOBAL QUALIFICATION

Global operations are different for the
MSP and a TSP; the two cases are discussed
separately.

Global Operations for the MSP

By implanting ATs in shared virtual
storage, the MSP causes all tasks using
that code to initiate execution of RSS
operations. Global qualification is not
required; an AT in shared virtual storage
is always global when implanted by RSS. If
global qualification is specified, the task
receiving the AT implantation is the cur­
rent task by default.

In this situation, the MSP will not know
the identification of the task. Therefore,
removing the AT with the REMOVE command
might not be possible because defaulting
the virtual memory qualification again
would probably occur when a different task
is current. (Another step, such as "DIS­
PLAY $TSKID,· can be taken to produce a
printed record of the task identification
for subsequent use.)

The global dynamic statement is stored
and subsequently executed by RSS, so RSS
must be able to resolve all symbols that
occur in the statement.

Global Operations for a TSP

Global qualification has different sig­
nificance for a TSP. A TSP's global ATs
are recorded in the Global AT Table, and
his globally defined SP symbols are record­
ed in the Global Symbol Table. Both of
these tables are shared by all TSPs. When
a global AT is executed by any task, the
Global AT Table and Global Symbol Table (if

there are any SP symbols in the dynamic
statement) are referenced by the VSS of
that task.

Generally, a TSP establishes global
qualification only (1) to issue a global
AT, which automatically assigns global
qualification to the associated dynamic
statement. and (2) to define a global SP
symbol.

A global dynamic statement can meaning­
fully contain only a subset of TSSS com­
mands for execution by all tasks executing
the global AT. Commands that require I/O
to be performed (e.g., DUMP, DISPLAY) are
suppressed when the current task does not
have the required device allocated to it.
Note. however, that an assumed device (one
not specified in the command operand) may
be available for each task to which a TSP
is connected. For example, a display can
be performed by the vss of each task with a
TSP connected when a global AT is executed.
since a TSP terminal is already allocated
to the task executing the AT.

Detection of an error condition during
execution of a global dynamic statement
causes an error message to be written only
if a TSP is connected to that task. For
any other task. the message is suppressed
and the command string, in most cases, is
aborted, although all applicable chained AT
command strings will be executed. As a
result, managing space in a collection
area, say, with a conditional statement
(e.g •• COLLECT AREA=DATAiIF $P(AREA)=FULL
DISPLAY AREA) may be difficult, since, in
this example. the number of executions of
the COLLECT and IF commands versus the
number of suppressions of the DISPLAY com­
mand might not be known.

Note that if the RUN command is used
within a global dynamic statement, its
operand must specify an instruction address
that is valid for all tasks that will
execute the command. (If RUN has no
operand, it is redundant.)

RSS RESTART

When RSS is executing, the MSP may can­
cel the current operation and initiate an
RSS restart by pressing the external inter­
rupt key twice on the CPU that is executing

Part III: Using TSSS 41

~SS. A message indicating RSS restart in
progress appears on the MSP terminal.

After performance of RSS restart the MSP
tables (i.e., the AT Table, SP Symbol Table
and the Patch Table) appear as they did the
last time that RSS was activated. (They
reflect the situation immediately prior to
the last RUN issued on behalf of RSS.) The
implanted AT SVCs and patches have not been
removed.

Note: The initial external interruption
while RSS is active is queued, but restart
does not occur until the second external
interruption is received. In this way TSSS
guards against an accidental or unnecessary
restart. If an external interruption is
pending after the issuance of a RUN or DIS­
CONNECT command, TSSS honors it by printing
a $ at the MSP terminal to invite input.

ERROR CONDITIONS

A number of error conditions may be
detected by TSSS, such as receipt of an
unexpected program interruption. In some
cases, it is possible for the current
operation to be aborted and the error then
ignored; the System programmer retains con­
trol. In other cases the error is serious
enough that TSSS is unable to recover.

Error Recovery and TSSS Messages

When it is possible for TSSS to retain
control after encountering an error condi­
tion, an error message is written at the
System Programmer's terminal. The System
Programmer is then free to retry the opera­
tion or to proceed with another command
statement. Messages are diagnostic only;
they do not require a predetermined
response. It is the System Programmer's
responsibility to determine his course of
action after receiving an error message.

TSSS issues error messages whenever pos­
sible regardless of whether recovery is
achieved. These messages and their mean­
ings appear in Appendix B. Class 0 mes-

42

sages originate with the RSS or VSS I/O
system; Class 1 messages inform the System
Programmer of error conditions resulting
from processing his input (e.g., syntax
errors, AT Table overflow); Class 2 mes­
sages reflect TSSS logic errors; and Class
3 messages indicate an RSS load/unload
failure. (RSS is partially resident and
partially transient; VSS resides in each
task's Initial Virtual Storage.)

A system error condition (e.g., an unex­
pected program interruption) results in a
message, and a "system logic error." In
this case, TSSS does not retain control.
TSS/360 is set in a wait state with only
external interruptions enabled. and TSSS
executes an implied RUN command.

Error Recovery with TSS/360 Aborted

Each time RSS is activated (via an
external interruption key, a service requ­
est from VSS, or execution of an AT
implanted in real storage), if the confi­
guration is duplex the activating CPU
places the other CPU in wait state. If
this operation fails, RSS places "its" CPU
in wait state and considers TSS/360 to be
aborted.

When this type of abort condition
occurs, the MSP can press the STOP key on
the other CPU and then perform an RSS
restart. Subsequently, RSS will execute
but without the AT, CONNECT, DISCONNECT,
and RUN functions.

No Recovery

Some unrecoverable errors result in an
exit to the TSS/360 System Error Processor.

If the task to which a TSP is connected
is abnormally terminated by TSS/360, a DIS­
CONNECT is performed automatically for that
TSP. Note. however, that only his virtual
storage ATs are removed; any ATs implanted
in real storage by that TSP can be removed
only by the MSP. Note also that the TSS/
360 ABEND messages are delivered to the
task's SYSIN terminal.

This command summary consists of two
parts: First, the formats of all commands
are repeated, and under each format the
restrictions on usage of the command are
summarized. Figure 9 summarizes the
results of execution of the mode-changing
commands CALL, END, RUN, and STOP.

r-----------T-----------------------------,
I Operation I Operand I
r-----------+-----------------------------~
I AT I address [••••] I L ___________ ~ _____________________________ J

An AT cannot be placed at the location
of any privileged instruction in virtual
storage or of any Execute. Diagnose, or SVC
instruction, unless that SVC constitutes an
AT implanted by the same System Programmer.

An AT is rejected when there no longer
is sufficient space in the appropriate AT
Table.

r-----------T-----------------------------,
I operation I Operand I
t-----------+-----------------------------~
I II X' xxxx '1 I I CALL I c' xxxx' I
I I decimal into ,
I I sp symbol I L ___________ ~ _____________________________ J

The CALL command operand must specify a
card reader or a tape drive, and for a TSP
the device must have been allocated to the
task by TSS/360.

r-----------T-----------------------------,
I Operation I Operand I
~-----------t-----------------------------~
I I {data field} I
I COLLECT ,sp symbol= literal [, •••] I L ___________ ~ _____________________________ J

The data being collected by the COLLECT
command (specified by the second parameter
in the operand) cannot be more than 4096
bytes in length.

r-----------T-----------------------------,
I Operation I Operand I
• -----------+-----------------------------~
I CONNECT I taskid I L ___________ ~ _____________________________ J

The CONNECT command is invalid for a
TSP. The CONNECT command is executed by
RSS; therefore. the TSP being connected

APPENDIX A: COMMAND SUMMARY

cannot use his terminal until the MSP
issues a RUN or DISCONNECT command.

Format 1:

r-----------.-----------------------------,
I operation I Operand I
.-----------+-----------------------------1
I DEFINE I symbol[.(o.l.t.s)][••••] I L ___________ ~ _____________________________ J

Format 2:

r---------T--,
I Opera tion I Operand I
t---------+--~
I I ! external Symboll I
I DEFINE I symbol= sp symbol [. (0, l,t, s)] [, •••] I
I I system symbol I
I I address I L _________ .L ______________________________________ .J

A DEFINE command is rejected when there
is insufficient space in the SP Symbol
Table or. under global qualification for a
TSP. in the Global symbol Table.

r-----------T-----------------------------,
I Operation , Operand I
t-----------+-----------------------------i
'm~~ucrl , L ___________ ~ _____________________________ J

No restrictions.

r----------~-----------------------------,
, Operation I Operand I
~-----------~-----------------------------i
I I {data field} I
I DISPLAY I literal [, •••] I L ___________ ~ _____________________________ J

No restrictions.

r-----------T-----------------------------,
I Operation I Operand ,
t-----------t-----------------------------1
, ,{data field l I
I DUMP I literal J[, •.•] I L ___________ ~ _____________________________ J

The data field $DOUT must have been set
to the device address of a printer or tape
drive prior to execution of a DUMP command.
For a TSP, the device must have been allo­
cated to the task by TSS/360 •

r----------~-----------------------------,
I Operation I Operand I
t-----------+-----------------------------1
I END I I L ___________ ~ ____________________________ _J

Appendix .A: Command Summary 43

If an END command appears in a prede­
fined statement set executing in dynamic
call mode, it results in an implied RUN.

r-----------T-----------------------------,
I Operation I Operand I
~----------+-----------------------------~
I IF I expression I L-__________ ~ _____________________________ J

No restrictions.

r----------T------------------------------,
I Operation I Operand I
~----------+------------------------------~
I I {'data field}' I
I PATCH I data field1 = literal {, •.•] I
l __________ ~ ______ , ________________________ J

A patch cannot be placed where another
patch exists if both patches have the same
starting address. The length of a patch
cannot exceed 4096 bytes.

r-----------T-----------------------------,
I Operation I Operand I
t-----------+-----------------------------~
I QUALIFY I system symbol I l ___________ ~ _____________________________ j

The operand of a QUALIFY command issued
by a TSP cannot specify the virtual memory
of any task other than the one he is con­
nected to.

r-----------T-----------------------------,
I Operation I Operand I
~----------+-----------------------------~
I I I$AT } I
I REMOVE II$PATCH (.location] [, •••] I l ___________ ~ _____________________________ J

If a TSP implants an AT in real storage
or inserts a patch dynamically with an AT
in real storage, he cannot remove the AT or
patch with execution of the REMOVE command
in VSS if -location" is defaulted; each AT
or patch to be removed must be specified.

r-----------T--------------'---------------l
I Operation I Operand I
t-----------+----------------------------~
I RUN I [address] I L ___________ L ____________________________ _J

If a TSP provides an operand with a RUN
command, real memory qualification will be
ignored: the specified instruction address
is subject to dynamic address translation.

f'----------T------------------------------,
I OperationlOperand I
t----------+------------------------------~
I I {data field} I
I SET Idata field1 = literal [, •••]1 L __________ ~ ______________________________ J

The length of a data field specified in
a SET command operand cannot exceed 4096
bytes, unless both parameters in the
operand specify I/O devices and the second
(the input device for this function) speci­
fies a card reader or tape drive.

r-----------r-----------------------------,
I Operation I Operand I
~-----------+-----------------------------~
ISrop I I l ___________ L-____________________________ J

No restrictions.

r-------T---,
I I Type of Input I
I ~-------------------T-------------------T-------------------T-------------------~
I Command I I IImmediate Call ModelDynamic Call Mode I
I I Terminal Statement I Dynamic Statement I Statement I Statement I
~-------+-------------------+-------------------+-------------------+------------------~
ICALL IChange input de- IGo to dynamic call IChange input de- IChange input de- I
I Ivice, go to imme- I mode. Ivice, same mode. Ivice, same mode. I
I I diate call mode. I I I I
I I I I I I
lEND IStop processing in-I Implied RUN. IControl and $ to IImplied RUN. I
I I put, error message, I I SP terminal. I I
I I $ at SP terminal. I I I I
I I I I I I
ISTOP IStop processing IControl and $ to IStop processing IStop processing I
I I input, $ at SP ISP terminal. I input, $ at SP I input, $ at SP I
I I terminal. I I terminal. I terminal. I
I I I I I I
I RUN IGO to run mode. IGo to run mode. IGo to run mode. IGo to run mode. I L-______ ~ ___________________ ~ ___________________ ~ ___________________ ~ __________________ _J

Figure 9. Effect of execution of mode-changing commands

44

TSSS messages are written at the System
Programmer's terminal, with the exception
of Messages 000 and OOE. Nearly all of
these messages are the result of error con­
ditions encountered by the program. No
prompting or confirmation messages are
issued; no messages require a predetermined
response from the System Programmer.

There are four message classes, each of
which is used to specify a particular type
of error condition:

• Class 0 messages result from errors
detected by the RSS or VSS I/O system.

• Class 1 messages result from System
Programmer errors.

• Class 2 messages result from system
errors; these may be either TSSS logic
errors or TSS/360 errors such as inac­
curate tables.

• Class 3 messages result from failure of
the RSS load or unload fUnction.

In almost all cases, detection of an
error that causes a message to be written
also causes the current operation to be
canceled. Depending on the type, severity,
and location of the error, a different
operation may subsequently be successful.

c

x

yy

The output format for TSSS messages is:

CcHccxyy text of 24 characters or less

represents an alphabetic character;
the first five characters of a message
constitute the module identification
of the module that detected the error
condition.

represents the message class; its
value is 0, 1, 2, or 3.

represents the message number, in
hexadecimal, beginning with 00 for
each class.

In addition to the basic message line,
Class 0 messages include some combination
of the following, each on a separate line
and labeled for identification: symbolic
device address, seek address, physical
path, CSW, PSw, sense data.

APPENDIX B: MESSAGES

If a message results from an error
encountered during execution of a dynamic
statement, the source statement is printed
out below the message (or, if Class 0,
below the I/O data described above). Note,
however, that in dynamic call mode, only
the stored dynamiC statement is printed
out, not the statements of the predefined
statement set.

The following is a complete list of TSSS
messages. Class number and message number
are shown in each case; in output format
each message line also would include a
module 10. A brief explanation of the mes­
sage follows the text. Note that Class 0,
2, and 3 messages in many cases require
knowledge of the internal structure of TSSS
to be fully understandable. The TSSS Pro­
gram Logic Manual, GY28-2022, can be used
to obtain that knowledge.

The action taken by TSSS after writing a
given message is listed separately. It is
the same in most cases and is listed as
"standard," which is defined as follows:
The current operation is canceled at the
point where the error was encountered, and
after the message is written, TSSS invites
input from the terminal unless the error
was encountered during the processing of a
global dynamic statement for a task with no
TSP connected. In the latter case, the
standard system action is to execute an
implied RUN. (Note that a STOP or DISCON­
NECT command appearing in a dynamic state­
ment may not be executed because of an
error encountered during execution of an
earlier command in the same statement.)

If an RSS error message cannot be writ­
ten at the Operator's terminal, RSS exits
to the TSS/360 System Error Processor. If
a VSS message cannot be written to a TSP
terminal (the error occurs while VSS is
active in a task to which a TSP is con­
nected), VSS calls the TSS/360 System Error
Processor. When the task's VSS routines
are returned to, the TSP is disconnected.

o 00 INVAL OPERATION FOR DEVC

Explanation: I/O system was
requested to perform an impossible
operation, such as reading a printer.

System Action: Standard.

o 01 DEVICE NOT SUPPORTED

Appendix B: Messages 45

Explanation: Self-explanatory.

System Action: standard.

o 02 INVALID LENGTH SPECIFIED

Explanation: Module requesting I/O
specified invalid length parameter.

System Action: Standard.

o 03 DEVICE NOT OPERATIONAL

Explanation: Condition code 3
received when Start I/O executed.

System Action: Standard.

o 04 NO SSDAT DEVICE ENTRY

Explanation: Requested device not
represented in SSDAT.

System Action: Standard.

o 05 PAGE BOUNDARY VIOLATION

Explanation: Data crosses page
boundary on single I/O request.

System Action: Standard.

o 06 PERMANENT I/O ERROR

Explanation: Error recovery retry
attempts have failed, or CSW indi­
cates unrecoverable error.

System Action: Standard, in most
cases. If the failing device is the
input device while in call mode (card
reader or tape drive), the terminal
becomes the input device again.

o 07 SYSTEM LOGIC ERROR

Explanation: An internal logic error
has occurred in TSSS. Should not
happen.

System Action: Standard.

o DB DEVICE NOT ALLOCATED

46

Explanation: Program check, inter­
ruption code X'30', received. (VSS
only)

System Action: Standard.

o 09 LOAD REAL ADDRESS FAILED

o OA

Explanation:
instruction.

Hardware failure of LRA
(RSS only)

System Action: Standard.

INVAL FORMS MOTION BYTE

Explanation: First byte in a print
line is not valid as TSSS carriage
control data.

System Action: Standard.

o OB PAGELST ENTRIES EXCEED 8

Explanation: Requested channel pro­
gram exceeds TSS/360 limitation of
eight entries in page table in IORCB.
(VSS only)

System Action: Standard.

o OC INVALID SSDAT ENTRY

Explanation: The table entry con­
tains incompatible or meaningless
data.

system Action: Standard.

o 00 INTERVENTION REQUIRED

o OE

Explanation: If message OOE (below)
cannot be used because the Operator's
terminal is not ready, and if the
Operator's terminal is not a 1052-7
(the audible alarm would be sounded
if it were), this message is written
to the MSP terminal.

System Action: An attempt is made
repeatedly to initiate the I/O opera­
tion on the device.

INTERVENTION REQUIRED

Explanation: This self-explanatory
message is written to the Operator's
terminal when a TSSS device requires
it.

System Action: An attempt is made
repeatedly to initiate the I/O opera­
tion on the device.

o OF NO PHYSICAL PATH EXISTS

Explanation: The SSDAT does not
define a physical path for a given
symbolic device address.

system Action: Standard.

o 10 CHANNEL PROG EXCEEDS MAX

Explanation: The number of CCWs
required to fulfill the I/O request
is greater than available space for
building the channel program.

System Action: standard.

o 11 SP ATTENTION RECEIVED

Explanation: An Attention by a
remote MSP or a TSP, issued while RSS
or VSS I/O is executing at the ter­
minal, is acknowledged.

System Action: The System Program­
mer's terminal is solicited for
input.

1 00 INVAL SYST SYMBOL PARAM

Explanation: Parenthesized parameter
of a system symbol is incorrectly
specified. Does not apply to $RM or
$VM.

System Action: standard.

1 01 NO 'PATCH' AT THIS LOC

Explanation: The $PATCH system sym­
bol's parameter does not specify a
valid patch location.

System Action: standard.

1 02 NO 'AT' AT THIS LOCATION

Explanation: The $AT system symbol's
parameter does not specify a valid AT
location.

system Action: Standard.

1 03 UNDEFINED ALIAS SYMBOL

Explanation: The symbol used as the
second parameter in format 2 of the
DEFINE command cannot be resolved.

System Action: Standard.

1 04 TSP ALREADY CONNECTED

Explanation: The operand of a CON­
NECT command specifies a task to
which a TSP is already connected.
(RSS only)

system Action: CONNECT command is
rejected; the MSP input device is
read again.

1 05 INVALID DEVICE SPECIFIED

Explanation: Self-explanatory.

system Action: Standard.

1 06 UNDEFINED SYMBOL

Explanation: Search of appropriate
symbol tables found no match.

System Action: Standard.

1 07 WRONG NO. OF PARAMETERS

Explanation: Self-explanatory.

System Action: Standard.

1 08 SP SYMBOL TABLE FULL

Explanation: Self-explanatory. If
this was a format 1 use of the DEFINE
command, there may be sufficient
space for a format 2 DEFINE command
or a format 1 command that requests
less storage.

System Action: DEFINE command
rejected. The input device is read
again.

1 09 INVALID TASK ID

Explanation: The task identification
number supplied with a CONNECT or
QUALIFY command was not found in a
search of the TSI chain. (RSS only)

System Action: Standard.

1 OA INVALID VM ADDRESS

Explanation: Self-explanatory.

System Action: Standard.

1 OB INVALID $ID PARAMETER

Explanation: A dictionary search
failed to find an appropriate symbol.

System Action: Standard.

Appendix B: Messages 47

1 OC INVALID CPU SPECIFIED

Explanation: Incorrect specification
of a parameter with the $RM system
symbol.

System Action: Standard.

1 OD INVALID $OOUT DEVICE

Explanation: Self-explanatory.

System Action: Standard.

1 OE INVALID MEMORY QUALIFIER

EXplanation: Self-explanatory.

System Action: Standard.

1 OF BAD PARAMiOPERATION OONE

Explanation: Operation requested was
incorrectly specified but performed
anyway. Result may be unpredictable.

System Action: Processing continues
as if no error occurred.

1 10 OPERATION Nor PERFORMED

Explanation: Operation requested
could not be performed because of
incorrect specification.

System Action: Standard.

1 11 INVALID LITERAL

Explanation: Incorrect specification
of a literal, which can include
-L-notation. n

System Action: Standard.

1 12 INVALID SYMBOL

Explanation: A symbol contains an
invalid character or too many
characters.

System Action: Standard.

1 13 INCORRECT SYNTAX

Explanation: Self-explanatory.

System Action: standard.

48

1 14 INPUT STRING TOO LONG

EXplanation: Self-explanatory.

System Action: Standard.

1 15 PATCH TABLE OVERFLOW

Explanation: Self-explanatory: pos­
sibly a shorter patch will be
accepted.

System Action: PATCH command
rejected; input device is read again.

1 16 REDUNDANT PATCH

Explanation: A patch already exists
at specified location.

System Action: PATCH command
rejected: input device is read again.

1 17 INVALID RSS ADDRESS

Explanation: A segment 2 or 3
address cannot be resolved with the
RSS page tables.

System Action: Standard.

1 18 INVALID RM ADDRESS

Explanation: A segment 0 or 1
address cannot be resolved with the
RSS page tables.

system Action: Standard.

1 19 INVALID 'AT' LOCATION

Explanation: An excluded instruction
resides at specified location.

System Action: AT command rejected:
input device is read again.

1 lA 'AT' TABLE OVERFLOW

Explanation: Self-explanatory: pos­
sibly a shorter dynamic statement
would be accepted.

System Action: AT command rejected:
input device is read again.

1 lB INVALID INPUT CHARACTER

Explanation: Self-explanatory.

System Action: Standard.

1 1C INVALID RECORD ADDRESS

Explanation: Self-explanatory; this
occurs when a dump or display
involves reading from a direct access
device.

system Action: Standard.

1 1D IMPROPER CALL COMMAND

EXDlanation: self-explanatory.

System Action: Standard.

1 1E INVALID REMOVE OPERAND

Explanation: operand not $AT or
$PATCH, or accompanying parameter is
invalid.

System Action: Standard.

1 iF END COMMAND INVALID

Explanation: In~orrect use of the
END command.

System Action: Standard.

1 20 IMPROPER SUBSCRIPT

Explanation: self-explanatory.

System Action: Standard.

1 21 SP ATTENTION RECEIVED

Explanation: An Attention by the
System Programmer, issued while RSS
or VSS was executing, is acknowl­
edged.

System Action: The interrupt may
have caused call mode or a display or
dump to be terminated; see "DISPLAY
Command" and "DUMP Command." The
System Programmer's terminal is so­
licited for input.

1 22 COLLECT PARAM 1 INVALID

Explanation: The parameter that
specifies the collection area in a
COLLECT command operand is invalid.

System Action: Standard.

1 23 INVALID LENGTH

Explanation: More than 4096 bytes
specified by a SET, PATCH, or COLLECT
command.

System Action: Standard.

1 24 OVERFLOW CONDITION

Explanation: Either truncation was
performed during execution of a SET
or COLLECT command, or a fixed-point
overflow exception resulted from an
arithmetic operation.

System Action: processing continues
as if no error occurred.

1 25 IMPROPER IF

Explanation: The logical expression
that constitutes the IF operand can­
not be evaluated as either true or
false.

System Action: Standard.

1 26 ATTRIBUTE ERROR

Explanation: One or more parameters
incorrectly specified with immediate
attribute designation.

System Action: Standard.

1 27 RANGE OPERATOR IN ERROR

Explanation: self-explanatory.

System Action: Standard.

1 28 DUMPED TO xxxxxxxx EOR

Explanation: During execution of the
DUMP command when the output device
is a tape drive, the end of the tape
reel has been reached. xxxxxxxx
represents the storage address (in
hexadecimal) of the last byte of data
written to the tape.

System Action: Standard. If the
remainder of the dump is to be writ­
ten, the reel should be changed on
the current output device (or the
value of $DOUT changed) and a new
DUMP command issued.

1 29 INVALID READ ONLY PAGE

Explanation: The PUT operation was
discontinued because the virtual
memory page was in TWAIT migration,
in transit, or unprocessed by the
dynamic loader.

System Action: Standard. The opera­
tion should be tried again after
issuing the RUN command.

Appendix B: Messages 49

2 00 AT RELOCATION AREA OVFLO

Explanation: The eight AT relocation
areas for this type of AT are all
locked, and an attempt was made to
use them. See Appendix D for a
definition of the AT relocation areas
and a description of their use.

system Action: The System Program­
mer's terminal is solicited for
input. A recovery attempt can be
made (see Appendix D). Alternative­
ly, other commands can be issued.
However, any ATs that reference the
locked AT relocation area cannot be
executed; if encountered, those ATs
will cause this message to be issued.

2 01 UNEXPECTED 'AT' SVC

2 02

2 03

Explanation: A spurious AT SVC
execution occurred. for which there
is no entry in the AT Table.

System Action: After this message is
printed, Message 20E and the accom­
panying PSW are printed, followed by
an implied RUN at the instruction
address following the spurious AT
SVC.

DEVICE NOT IN SSDAT

Explanation: A routine seeking a
symbolic device address in the SSDAT
found no entry for the device.

system Action: Standard.

PAGE NOT IN TSS XPT

Explanation:
flagged "not
found in the
(RSS only)

An addressed page
in core" could not be
External Page Table.

System Action: Standard.

2 04 TSS RSPI CHAIN ERROR

Explanation: Search for an address
in shared virtual storage failed
because of erroneous pointers in
Resident Shared Page Index. (RSS
only)

System Action: Standard.

2 05 SCB COUNT IN ERROR

50

Explanation: Language processing has
detected an invalid count of Symbol
Control Blocks.

System Action: Standard.

2 06 INVALID SCB TYPE

Explanation: Internal logic error:
detected during language processing.

system Action: Standard.

2 07 LOAD REAL ADDRESS FAILED

Explanation: Hardware failure of the
LRA instruction, which was executed
on behalf of VSS. (VSS only)

System Action: Standard.

2 08 ERROR COND-tAT t REMOVED

Explanation: (1) If this message was
immediately preceded by another mes­
sage, a system error detected during
AT processing caused the previous
message to be written; the offending
AT has now been removed. (RSS only)
(2) If this message is written
without another diagnostic message
immediately preceding it, it means
that a branch or LPSW instruction
overlaid by an AT SVC could not be
simulated after the associated dynam­
ic statement was executed. The AT
has been removed.

System Action: Message 20E is writ­
ten (AT SVC PSW FOLLOWS), and an
implied RUN is executed. Note that
in the case described by explanation
(2), a program check can be expected
upon execution of the previously
overlaid instruction.

2 09 INVALID PAGING DEVC TYPE

Explanation: Self-explanatory.
only)

System Action: Standard.

2 OA ADDR EXCEEDS 2301 RANGE

(RSS

Explanation: Invalid relative page
for 2301 drum. (RSS only)

System Action: Standard.

2 OB ADDR EXCEEDS 2311 RANGE

Explanation: Invalid relative page
for 2311 disk. (RSS only)

System Action: Standard.

2 OC ADDR EXCEEDS 2314 RANGE

Explanation: Invalid relative page
for 2314 disk. (RSS only)

System Action: Standard.

2 OD SYSTEM LOGIC ERROR

Explanation: An internal logic error
has occurred in TSSS. Should not
happen.

System Action: Standard.

2 OE AT SVC PSW FOLLOWS

Explanation: This message immediate­
ly follows Message 201 or Message
208. This message may also follow
the diagnostic message that is issued
when a system attempt to remove an AT
is unsuccessful (see Message 20S).
In each case, the AT can be identi­
fied by the instruction address in
the PSW (VPSW in VSS) that is written
immediately following this message.

System Action: An implied RUN is
executed.

3 00 SYSTEM UNLOAD FAIL-READ

Explanation: Permanent I/O error
while attempting to read in TSS/360
resident supervisor pages during RSS
unload function. (RSS only)

System Action: Exit to TSS/360 Sys­
tem Error Processor.

3 01 SYSTEM UNLOAD FAIL-WRITE

Explanation: Permanent I/O error
while attempting to write RSS to its
external residence device. (RSS
only>

system Action: Exit to TSS/360 Sys­
tem Error Processor.

3 02 TSSS SYSERR-UNLOAD FAIL

Explanation: System logic error
makes unload function impossible.
(RSS only)

System Action: Exit to TSS/360 Sys­
tem Error Processor.

3 03 SYSTEM LOAD FAIL - READ

3 04

Explanation: Permanent I/O error
while attempting to read in a tran­
sient RSS page. (RSS only)

system Action: Exit to TSS/360 Sys­
tem Error Processor.

SYSTEM LOAD FAIL - WRITE

Explanation: Permanent I/O error
while attempting to write TSS/360
resident supervisor pages to tem­
porary external location. (RSS only)

System Action: Exit to TSS/360 Sys­
tem Error Processor.

3 05 TSSS SYSERR - LOAD FAIL

Explanation: System logic error
makes load of transient RSS modules
impossible. (RSS only>

System Action: Exit to TSS/360 Sys­
tem Error Processor.

3 06 RSS RESTART IN PROGRESS

Explanation: Restart has been
requested by the MSP by pressing the
CPU external interrupt key.

system Action: RSS restart is per­
formed. Upon completion, RSS retains
control and invites input at the ter­
minal by printing a $.

3 OS SYSTEM LOGIC ERROR

Explanation: A TSSS module has
encountered a program interruption
which is not a paging interruption.
For example, a bad operation code may
have been encountered.

System Action: Standard.

Appendix B: Messages 51

APPENDIX C: OUTPUT FORMATS

This appendix describes the format of
each type of output generated by TSSS
except messages. The message output format
is described in Appendix B, "TSSS
Messages. •

DISPLAY Command Output Formats

Execution of a DISPLAY command whose
operand specifies a data field in real or
virtual storage (with exceptions noted
below) results in output at the System Pro­
grammer's terminal in a format that varies
according to the type attribute of the data
field. Starting with the first line, every
second line of data is preceded by the
storage address of the first byte of data
on that line. The formats are as follows:

• hexadecimal -- four words consisting of
eight digits each, separated by spaces

• decimal integer -- three words, each
consisting of ten digits plus an alge­
braic Sign, separated by spaces

• character -- a continuous character
string, with a period (.) inserted in
any position for which there is no
printable EBCDIC graphic

If more than one operand is used with a
DISPLAY command, the display for each
operand begins on a new line and is for­
matted according to type as described
above.

If a display of the result of an arith­
metic or Boolean operation is performed,
the address preceding the data represents a
TSSS buffer or working storage location.

If a range is specified as the DISPLAY
command operand and the two parameters have
different type attributes, the display is
in hexadecimal.

If a DISPLAY operand specifies an I/O
device, type is assumed to be hexadecimal.
The address preceding each line of data is
relative to the beginning of the block,
starting with zero unless an offset was
specified.

Exceptions: The system symbols $AT,
$PATCH, $MAP, and $ID used as operands of
DISPLAY commands cause different formatting
to be performed, as described under other
headings in this appendix.

If a character, decimal integer, or
hexadecimal literal is the operand of a

52

DISPLAY (or DUMP) command, no storage
address precedes the literal on the print
line.

If the system symbol $DOUT is used as
the operand of a DISPLAY command, the out­
put format is:

r-------------------------------,
I $IO(C'xxxx',,,,yy) I l _______________________________ J

xxxx

yy

represents the hexadecimal data con­
tained in the data field $DOUT,
assumed to be the symbolic device
address of a printer or tape drive.

represents the mode set byte for a
tape drive. For a nine-track tape
drive or for a printer, the value is
normally zero.

The storage address of the $DOUT data
field does not precede the display.

DUMP Command Output Formats

The output resulting from execution of a
DUMP command is identical to that described
under "DISPLAY Command Output Formats,"
except for the following:

• Each line of data is preceded by a
storage address.

• Each line contains twice as much data;
that is, eight eight-digit words of
hexadecimal data, six ten-digit words
of decimal integer data, or a corre­
spondingly longer character string.

• Each operand of a DUMP command causes a
new dump to be initiated, starting a
new page with a header line that reads
"RSS STORAGE PRINT" or "VSS STORAGE
PRINT" as appropriate. Three skip
lines follow the header line. Dump
output may be labeled with a sub­
heading by use of the $DHDR system
symbol.

• If the DUMP operand specifies a direct
access device, the cylinder/track/
record address appears on a separate
line above the first data line.

The logical record format for all dumps
is as follows:

Byte 1: forms motion byte

Bytes 2-132: print data

Hexadecimal output resulting from the
execution of a DUMP command includes
character-format data colinear to the hexa­
decimal data representation. The logical
record length of a TSSS dump with character
and hexadecimal data is 132 bytes, and the
block size is Q092 bytes (31 logical rec­
ords per physical record).

The line format for hexadecimal dumps is
as follows:

Print positions 1-8: data address

Print positions 13-20, 23-30, 33-40,
43-50: hexadecimal data

Print positions 51-54: blank

Print positions 55-62, 65-72, 75-82,
85-92: hexadecimal data

Print position 92: an asterisk

Print positions 99-130: character data

Print position 131: an asterisk

The same formatting exceptions apply to
both the DISPLAY and DUMP commands.

The system symbols $TASK and $STATUS,
used as operands of the DUMP command,
result in different formatting, which is
described in this appendix under the par­
ticular headings.

Printing TSSS Dump Tapes

The procedure for printing a TSSS dump
tape is as follows:

Since the tape is unlabeled, it is first
necessary to issue the DDEF command with
the following operands:

DDNAME=name,PS,DSNAME=dsname,

DCB=(RECFM=FB,LRECL=132,BLKSIZE=4092,

DEN={01112},TRTCH={CIEIT}),

UNIT=(TA,tape type},VOLUME=(,volume
serial)

LABEL= (,NL>, DISP=OLD

(For detailed description of the above com­
mand, see Command System User's Guide,
GC28-2001.)

The PRINT command is then issued, and
must adhere to the following form:

r---------T-------------------------------,
I Operation \ Operand \
t---------+-------------------------------~
\ PRINT IDSNAME=data set name I
I Il.STARTNO=first volume] I
I I [,ENDNO=last volume] I
\ I l.PRTSP=EDIT][,ERASE={YIN}] I
I I [,ERROROPT={ACCEPT\SKIPIEND}] I
I I [,FORM=paper form] I
I I [,STATION=station idl I l _________ ~ _______________________________ J

OS NAME
identifies the data set that is to be
printed.

Specified as: a fully qualified data
set name.

STARTNO
specifies the sequential position of
the first dump to be printed.

specified as: a decimal number
between 1 and 131.

ENDNO
specifies the sequential position of
the last dump on the tape to be
printed. If STARTNO and ENDNO are
entered as the same number, the one
volume specified is printed.

Specified as: a decimal number
between 1 and 131.

System default: If STARTNO and ENDNO
are defaulted, all dumps on the tape
are printed.

PRTSP
this parameter is required for the
printing of a multiple-volume data
set.

Specified as: EDIT

System default: only the first volume
is printed.

ERASE
specifies that the catalog entry
created by the PRINT command is to be
deleted. If it is desirable to keep
the catalog entry without having to
DDEF again, this parameter should be
omitted.

Specified as: Y or N

System default: N; there is no dele­
tion of the catalog entry.

ERROROPT
deSignates the action to be taken when
an uncorrectable error is found while
reading a data set record.

Appendix C: Output Formats 53

Specified as:
ACCEPT -- error record will be
accepted

SKIP -- error record will be
skipped

END -- print operation will be
terminated

System default: END is assumed.

FORM
designates the form number of the
printer paper to be used.

Specified as: one-to-six alphameric
characters.

System default: the installation's
standard printer form is used.

STATION
indicates identity of a remote station
to which the output is to be directed.

Specified as: one-to-eight alphameric
characters.

System default: station ID from Task
Common is used.

$AT and $PATCH Output Formats

When the system symbol $AT or $PATCH is
used as the operand of a DISPLAY or DUMP
command, the output appears in a special
format. Information extracted from the AT
Table or Patch Table is formatted into one
or more print lines (50 bytes per line for
a display, 101 bytes per line for a dump)
without a storage address preceding the
formatted data.

Each execution of the DISPLAY or DUMP
command (there is one execution per
operand) causes a header line to precede
the data, identifying the data fields by
relative position. If the $AT or $PATCH
operand has no accompanying parameter, all
outstanding ATs or patches are formatted
under the single header line.

When $AT is the operand, the information
written to the output device consists of:

54

• the qualification of the AT address,
expressed as the characters RM or VM

• the hexadecimal address of the
implanted SVC

• the qualification of the AT command
string

• the character-string text of the stored
dynamic statement.

The header under which this data is written
appears as:

QUALIFICATION ADDRESS QUALIFICATION COMMAND TEXT

When $PATCH is the operand, the informa­
tion written to the output device consists
of:

• the qualification of the patch, ex­
pressed as the characters RM, VM, or
EXT (external device>

• the address of the patch

• the original data at the patch location

• the patch data.

The address is a hexadecimal storage
address for RM or VM qualification; for EXT
qualification, the address specifies a
location on a direct access device in the
following format:

r------------r--------r-----r------T------,
meaning I symholi c de-I I I I I
of data Ivice addresslcylinderltracklrecordloffsetl

~------------+--------+-----+------+------1
length in I I I I I I
hex digits I 4 I 2 I 2 I 2 I 4 I l ____________ ~ ________ ~ _____ ~ ______ ~ ______ J

The header under which this data is written
appears as:

QUALIFICATION ADDRESS ORIGINAL DATA PATCH DATA

$MAP Output Format

When the $MAP system symbol is used as
the operand of a DISPLAY or DUMP command,
the output consists of a group of syrnbol­
address elements in the following format:

Data

No. of print
Characters

r------~----T-------T------,
I I I hex I 1
I symbol I blank I address 1 blanks 1
~------+-----+-------+-----~
I I I I 1
1 8 1 1 18 or 9 12 or 31 L ______ ~ ____ ~ _______ ~ ______ J

Each element is 20 characters long.

Real Storage: The address field is eight
digits long and is following by three
blanks. One display line contains two ele­
ments (40 characters); one print line con­
tains five elements (100 characters). In
either case, in RSS the elements are
ordered by address, starting with the low­
est, whereas in VSS the elements are
ordered alphabetically.

In the case of a dump, the storage map
is preceded by a header line that reads RM
STORAGE MAP.

Virtual storage: When the storage map ele­
ment is a CSECT or PSECT name, the address
is eight digits long and is followed by
three blanks. When the storage map element
is an entry point within the control sec­
tion, the address portion consists of eight
hexadecimal digits followed by an asterisk,
after Which there are only two blanks.

One display line contains two elements
(40 characters); one print line contains
five elements (100 characters). The ele­
ments are ordered by control section
address, starting with the lowest, with
each group of entry points in a control
section occurring in the same order in
which they are found in the control Section
Dictionary.

In the case of a dump, the storage map
is preceded by a header line that reads VM
STORAGE MAP.

$ID output Format

When the $ID system symbol is used as
the operand of a DISPLAY or DUMP command,
the output format is identical to the $MAP
output format. The only difference is that
$ID output consists of one element. Note
that the input address supplied by the Sys­
tem programmer is not included in the out­
put format (unless it happens to correspond
to the symbol being returned).

$STATUS Output Format

When the $STATUS symbol is used as the
operand of a DUMP command to produce a for-

matted dump of all system status indica­
tors, the output data is formatted as
follows:

Print Line Number
1
2
3
4
5, 6, 7
8, 9, 10
11, 12

13, 14, 15
16

17-21
22-34

$TASK output Format

Contents
Primary Header
$DHDR
Task ID, CPU ID
Current PSW
General Registers
Control Registers
Floating Point
Registers

Old PSWs
Channel Address Word,
Channel Status Word

TSI
XTSI Header

When the $TASK symbol is used as the
operand of a DUMP command to produce a dump
of all task status indicators, the output
data is formatted as follows:

Print Line Number
1
2
3
4
5, 6, 7
8, 9, 10
11, 12

13, 14, 15, 16
17-21
22-34

Contents
Primary Header
$DHDR
Task ID, User ID
Task's Current PSW
General Registers
Control Registers
Floating Point
Registers

Old Virtual PSWs
Task's TSI
Task's TSI Header

Appendix C: Output Formats 55

APPENDIX D: AT RELOCATION AREAS

If a System Programmer is to recover
from the error condition signaled by Mes­
sage 200, AT RELOCATION AREA OVFLO, he must
understand the information provided in this
appendix.

AT Processing

Control-program processing of an AT (as
opposed to processing of the associated
stored dynamic statement) involves the use
of an "AT relocation area.- An RSS real­
storage CSECT comprises eight contiguous
areas for ATs in real storage; two virtual
storage CSECTs, one for use by RSS, the
other for use by VSS, each comprises eight
contiguous AT relocation areas for ATs
located in a task's virtual storage. The
CSECT names and formats for these AT relo­
cation areas are depicted in Figure 10.

An AT is an SVC instruction that over­
lays a TSS/360 instruction at a specified
location and is accompanied by a block of
control information that includes a copy of
the overlaid instruction. To resume TSS/
360 execution at the point of interruption,
after execution of an AT's dynamic state­
ment, a copy of the overlaid instruction is
executed in an AT relocation area. (It is
simulated if it is a branch or LPSW
instruction.) The contiguous "return SVC·
instruction (see Figure 10) then makes it
possible for the PSW instruction address to
be set to the appropriate TSS/360 next
sequential instruction.

CEHJAB (RSS CSECT1)

Use of AT Relocation CSECTs

An AT relocation area is filled in
dynamically with each execution of an AT
SVC, locked, and then unlocked upon exit to
TSS/360. During normal operations, only
the first AT relocation area in a CSECT is
used, since processing of each AT is nor­
mally completed before another AT SVC is
executed.

The instruction overlaid by an AT SVC
can produce a program check when executed,
of course. Control then goes to the TSS/
360 program interrupt processing routines.
If an AT located in that portion of the
resident supervisor also produces a program
check, an infinite loop could result.
However, as soon as all eight AT relocation
areas are locked, the next execution of the
offending AT results in Message 200 being
written.

Recovery

If the System Programmer wishes to
attempt recovery from the error condition
described above, he can do the following:

1. DISPLAY the AT relocation CSECT to
identify the ATs involved.

2. REMOVE the offending ATs.

3. Unlock at least one AT relocation
area.

r-----T-----------T------T------T----------T-----------T------------,
Ilock I overlaid I return I instr. I AT SVC I pointer to I I
Ibyte I instruction! SVC I length I address Ilock byte I unused I l _____ ~ ___________ ~ ______ ~ ______ ~ _________ ~ ___________ ~ ____________ J

2 2 to 6 2 2 4 4 0 to 4
length in bytes (total = 20)

CZHZAB (VSS CSECT1)
r-----T-----------T------T------T----------y-----------y-------------------T------------,
Ilock loverlaid I return I instr.I AT SVC lpointer to I character I I
Ibyte I instruction I SVC Ilengthl address Ilock byte I identifier2 I unused I l _____ ~ ___________ ~ ______ ~ ______ ~ __________ ~ ___________ ~ ___________________ ~ ____________ J

2 2 to 6 2 2 4 4 8 0 to 4
length in bytes (total = 28)

1 Each CSECT contains eight contiguous. identical AT relocation areas.

2 Character identifier = CEHJAVAT for an RSS-irnplanted AT.
Character identifier = CZHZAVAT for a VSS-implanted AT.

Figure 10. Formats of AT Relocation Areas

56

The command statement for zeroing the
entire AT relocation CSECT in RSS is:

SET CEHJAB. (,160)=X'OO'
CZHZAC.(,224}=X·OO·

For the VSS CSECT the statement is:

SET CZHZAB. (,224)=X'00'

Note: If the RSS AT relocation CSECT
becomes fully locked due to errors encoun­
tered with a TSP's ATs in real storage,
Message 200 is written at the MSP terminal
(Operator's terminal if no MSP is
connected).

Appendix D: AT Relocation Areas 57

INDEX

Where more than one page reference is
given, the first page number indicates the
major reference.

$AT system symbol 18
output format 54

$B system symbol 15
$C system symbol 15
$CAW system symbol 16
$CSW system symbol 16
$DHDR system symbol 19
$DOUT system symbol 18
$E system symbol 15
$10 system symbol 17
$ID system symbol 16

output format 55
$L system symbol 15
$MAP system symbol 17

output format 54
$P system symbol 15
$PATCH system symbol 19

output format 54
$R system symbol 15
$5 system symbol 15
$STATUS system symbol 19

output format 55
$T system symbol 15
$TASK system symbol 19

output format 55
$T5KID system symbol 16
$VAM system symbol 18

absolute addresses 9
address constants 11-12
addressing 9-10
arithmetic operators 12
AT command 24,5
AT processing 56
AT relocation area 56
AT relocation CSECTS 56
$AT system symbol 18

output format 54
AT table 24
Attention 39

in call mode 40
authority codes 0 and P 1

$B system symbol 15
backspace 39,40
base address attribute 8
Boolean operators 13
braces 7
brackets 7

$C system symbol 15
call mode 3,44

dynamic 5
effect of execution 44

58

CALL command 35,5
card-to-tape operation 40
cards punched in EBCDIC 40
$CAW system symbol 16
character literal 11
character set 7
COLLECT command 28,5
commands 20-36

general format of 20
conditional statement 5
CONNECT command 34,5
connecting SP to T5SS 3,38-40
constant 11
continuation character 39
control, regaining, at terminal 40
conventions, language 7
correction of errors 39
$CSW system symbol 16

data field 8
decimal integer literals 11
DEFINE command 21,5
deletion of line 40
$DHDR system symbol 19
diagnostic message classes 5-6
DISCONNECT command 35,5
DISPLAY command 26,5

output format 52
$OOUT system symbol 18
DUMP command 27,5

output format 52
dump tapes, printing 53
dynamic call mode 5,44
dynamic statement 5

$E system symbol 15
ellipsis 7
END command 36,S

effect of execution 44
EOB (end-of-block) 3,39
error conditions 42
error recovery 42
explicit qualification 14
external interruption key 38
external qualification 4
external symbol 9

format, output 52

global AT 4,24
global AT table 24
global operations 4,41
global qualification 41,4

established by QUALIFY 15
Global Symbol Table 35

hexadecimal literals 11

$10 system symbol 17
$ID system symbol 16

output format 55
IF command 32,5
immediate attribute designation 9
immediate call mode 5,44
immediate statement 4
implanted AT 24
implicit qualification 14
implied RUN 24,44

EOB as 39
independence, RSS, of TSS/360 1
indirect addressing 10
Initial Virtual Storage 1
input statements 4

$L system symbol 15
language elements and notation 7-8
length attribute 8
line, deletion of 40
literals (See decimal integer, hexadecimal,

and character literals)
L-notation 9-10

machine conf iguration 2- 3
$MAP system symbol 17

output format 54
map 54-55,17
Master System Programmer 2
maximum statement length 39
message classes 5-6,45
messages 45- 51
mode switching 39,44
modes of operation 3
MSP 2

global qualification for 41
MSP domain 14,25

notational symbols 7

offset 9
Jperating considerations
Jperators (See arithmetic,
Boolean operators)

Operator's terminal 38
output, TSSS 5,52

$P system symbol 15
$PATCH system symbol

output format 54
',l>ATCH command 30,5

atch Table 31
pointer attribute 8
predefined statement

effect of END in
PRINT command 53
printing dump tapes
PSW system symbols

19

set
37

53
16

41
relational, and

40,35-36

qualification states 4
QUALIFY command 20,5

$R system symbol 15
range 10-11
real memory qualification 4
real storage, AT in 25
real storage map 54
relational operators 12-13
REMOVE command 31,5
resident supervisor (TSS/360) 1
restart, RSS 40,41
RSS concepts 1
RSS mode 3
RSS restart 40,41
RUN command 33,5

effect of execution 44
run mode 4,114

$S system symbol 15
SET command 29,S
shared virtual storage, AT in 25,4
size attribute 8
SP symbol 8
SP symbol table 8
statement, maximum length of 39
$STATUS system symbol 19

output format 55
STOP command 34,5

effect of execution 44
storage map 17,54-55
subscripting 10
symbol, special meaning of 8
System Error Processor (TSS/360) 45,42
System Programmer 2
system symbol 13

used for qualification 14
system symbols, format of 15-19

$T system symbol 15
tape block after predefined statement
set 40

tape drive as input device 40
$TASK system symbol 19

output format 55
Task System Programmer 2
taskid 311
terminal session 3

default qualification state 20
terminal usage 39
terminal-to-tape operation 40
$TSKID system symbol 16
TSP 2

global qualification for
TSSS commands, general format
TSSS messages 42,115-51
TSSS output 5,52
type attribute 8
typing errors, correcting 40

user classes 1
userid 2

41
of 20

Index 59

$VAM system symbol 18
virtual memory qualification 4
virtual storage, AT in 25
virtual storage map 55
void command 39
VSS concepts 1
VSS command (TSS/360) 38
VSS mode 3

60

GC28-2006-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S,A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

G1
()
IV
00
I

IV
o
o
a-

