File No. S360-25
GC28-2007-4

=== Systems Reference Library

IBM Time Sharing System
FORTRAN IV

This publication describes and illustrates the use
of the IBM FORTRAN IV langquage for the IBM Time Sharing
System (TSS).

The IBM FORTRAN IV language is a symbolic
programming language that parallels the symbolism and
format of mathematical notation. It provides
programming features and facilities that can be used in
FORTRAN programs to solve mathematical problems.

The material in IBM FORTRAN IV is arranged to
provide a quick definition and syntactical reference to
the var ious elements of FORTRAN IV by means of a box
format. Each element is described, with appropriate
examples of possible use.

The reader should have a basic knowledge of the
FORTRAN language. While some information relating
FORTRAN IV to TSS is presented, most of the necessary
guidance required by a FORTRAN user to perform a task
is given in IBM Time Sharing System: FORTRAN
Programmer's Guide, GC28-2025.

PREFACE

This manual describes the IBM Time
Sharing System FORTRAN IV language. The
material in this publication is arranged to
provide a quick definition and syntactical
reference to the various elements of
FORTRAN IV by means of a box format. Each
element is described, with appropriate
examples of possible use.

Five appendixes give additional
information for writing a FORTRAN Iv source
program:

A: FORTRAN Comparison

B: Table of Source Program Characters

C: Other FORTRAN Statements Accepted by
I8M FORTRAN IV

D: FORTRAN-Supplied Subprograms

E: Fxamples of FORTRAN-Written Programs

The user should have a basic knowledge
of the FORTRAN language before using this
publication. While some information
relating FORTRAN IV to TSS is presented,
most of the necessary guidance required by
a FORTRAN user tc perform a task is given
in IBM Time Sharing System: FORTRAN
Programmer's Guide, GC28-2025.

This publication also refers to IBM Time
Sharing System: FORTRAN IV Library
Subprograms, GC28-2026.

Third kdition (May 1976)

This edition replaces, but does not obsolete,
GC28-2007-3.

This edition is current with Release 2.0 of the IBM
Time Sharing System (TSS/370), and remains in effect
for all subsequent versions or modifications of TSS
unless otherwise noted. Significant changes or
additions to this publication will be provided in new
editions or Technical Newsletters.

Requests for copies of IBM publications should be made
to your IBM repreSentative or to the IBM branch office
serving your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed,
comments may be addressed to the IBM Corporation, Time
Sharing System--Dept 80M, 1133 Westchester Avenue,
White Plains, New York 10604.

© International Business Machines Corporation 1966,
1967, 1971, 1976

INPRODUCTION + « i a
IBM Time sharing system FORTRAN IV
Special kFeatures of TSS FORTRAN IV

- - - w - - e @

[

ELEMENTS OF THE LANGUBGE . . . « . o ¢ « « o « o «
Statements . . . L . 4 b 4 4 4 e e e s e e s e a4 s
Coding FORTRAN Statements o o - o o o o« - &
Card Input . . .« ¢ ¢ 4 v s s a e e e s e w . e 2
Keyboard Input . . + ¢« ¢ & & & « o s 4 e e ow . . 2
Constants 4 4 4 e a4 e s e e e e e e e e s
Integer Constants o o & ¢ & ¢ . e s s ua e e a4 a 3
Real Constants . . < + 4 & v « & 4 o w « « o o a4 . 4
Complex ConsStantd . « o« o o o « o 2 o « o « o« « - 9
Logical ConsStants . o « o « « o o o o o s e o« . 5 &
Literai Constants . . o « & « & « o « o 2 @ o . - &
Hexadecimal Constants « o &« + o « « « . #&
Symbolic Names e |
Variables « « ¢ & o o 4 ¢ 4 w4 a4 s e e . . E
Variable Names . . « « « .
Variable Types and Length Specifications
Type Decliarvation by the Predefine i
Type Declaration by the IMPLICIT
Statement 4 e o 4 4 2 4 4w = s s a4 . .
Type Declaration by EXPLICIT Specification
Statements 4 . 4 e a4 i e e e a e w e e .
AXTAYS « o « & o w 4 e a2 m e e s e e e s a4 e s e s
Subscripts . . e 4 6 m e s 4 e m e e s = ow ow o
Declaring the Sige of an Array . . . « . <« « « . .
Arrangement of Arrays in Storage
EXpressions .« . . . 4 4 4 s o« s s s a a s s w e s e
Arithmetic EXpressions « o« « o o« 4 « o o
Arithmetic Operators« « « + « « « . .
Logical EXpPresSsions .« « o o = 2 o+ o« s s s = s
Relational Operators« « « = « o« o« o« =
Logical Operabors . « & « « « a2 o « = s a o« s

a e e EE— - * - - s e oa

£y

ARITHMETIC AND LOGXICAL ASSIGHMENT STATEMENT

CONTROL STATEMENTS . & 4 o 4 4 o « = o o o « o = « =
GO TO StatementsS . - o o 2 o o = = = o a « a+ = « s+
Unconditional GO TO Statement « + . .
Copputed GG TO Statement & & . &+ o . .
ASSIGN and Assigned GO TO Statements -
Arithmetic IF Statement o . . + .+ <« < o« a2 o« . o«
Logical IF Sratement . . « . o « + « & « 2 o+ 4+ =
DO Statement+ ¢« 4 e < s w & = = = 2 . . 2f
CONTINUE Statement . . . o« o« « = o o o o « o o + 2%
PAUSE Statement e 14
STOP Statement . .« o o s« w s e e e w a a . . . A
END Statement . £

INPUT/OUTPUT STATEMENTS . e m e s e & m e a w s
READ Statement . . o« « o « « = o a w« = s 2 = = s =
REBD {(A,X) o « 2 o o o o o s « o a o « = « o « =
READ {(a,b} List &« . « + & =« o o« o o = =«
RERD (a) LiSLT 2+ 2 v 2 o o 2 4 o o 2« o + o o a a
Indexing I/0 ListsS . . o 4 o o o o 4« 5 s 4 e o o«
Readine Format Statements « -« -« o+ . o«

WRITE Statement e e e e e a e e e W e w % w w a
WRITE (@,%X} .+ « o o o o o o o a o o o « o« « o =
WRITE (a,b) List . o & « a o o « o « =« a2 = « « =
WRITE () List . ¢ 4 o o o o o o o o o« a o « + =

FOKMAT Statement . . . <« .« o« <« « < <
¢ Format Code . . o o« & o o o « =
Numeric Format Codes (I,F,E,D, and

Format Code . . . ¢ « & ¢« o« « «

Format Code . « « o« o o o o o «

and E Format Codes « .

Format Code . . . ¢ ¢ ¢ o o o

Format Code . . « ¢ ¢ o o« & « a

Format Code . + + v o o o o o« a

Literal Data in a Format Statement
H Format Code . &« ¢ o « « 2 « o =
X Format Code . & o & « o o o« o =
T Format Code . « o o o 2 o o« o« =
Scale Factor - P « a e
Carriage Control
Additional Input/Output Statements . .
END FILE Statement
REWIND Statement « « . . .
BACKSPACE Statement « & & ® o ° ®

P N

SPECIFICATION STATEMENTS
The Type Statements
IMPLICIT Statement < «
Explicit Specification Statements
Additional Specification Statements .
DIMENSION Statement
Adjustable Dimensions
COMMON Statement . . « « . « . . .
Blank and Labeled Common
Programming Considerations
EQUIVALENCE Statement
Programming Considerations

SUBPROGRAMS « e o @ @ @ o © o« @ o o =
Naming Subprograms . . . « « o « « =
FunctionsS . <« ¢ o« o o o « o« « =« « =

Function Definition

Function Reference
Statement Functions
FUNCTION Subprograms . . . -

Type Specification of the FUNCTION

RETURN and END Statements in a FUNCTION

Subprogram . . <« . . « « e e e

Multiple Entry into a FUNCTION Subprogram

SUBROUT INE Subprograms
CALL Statement < .

RETURN Statement in a SUBROUTINE Subprogram

ENTRY Statement « « . .
Rdditional Rules for using ENTRY .
The EXTERNAL Statement
BLOCK DATA Subprogram

APPENDIX A: FORTRAN COMPARISON

APPENDIX B: SQURCE PROGRAM CHARACTERS

-

-

-

-

-

Subprogram

-

-

APPENDIX C: OTHER FORTRAN STATEMENTS ACCEPTED

TSS FORTRAN IV . ¢ v ¢ o @« « 2 2 o o =
READ Statement . . . < ¢« ¢« « « .« .
PUNCH Statement « @ o e @ ® o o e
PRINT Statement . - - e e o e
DATA Initialization Statement - e
DOUBLE PRECISION Statement

APPENDIX D: FORTRAN SUPPLIED SUBPROGRAMS

Mathematical Subprograms
Service Subprograms . . . « e e o =
Machine Indicator Tests Subprograms

.

. -

The EXIT, DUMP, and PDUMP Subprograms

EXIT Subprogram <« & ¢« ¢ 2« o « « « « « « 90
DUMP Subprogram 4 o ¢ « o« « « « « « « 90
PDUMP Subprogram . . . <« . o« « o o « o « « « « « 90

APPENDIX E: EXAMPLES OF FORTRAN-WRITTEN PROGRAMS . 91
Example Program 1 ¢ ¢ ¢ ¢« 4 ¢« « <« . .91
Example Program 2 . . .« o« ¢ o o o« 2 « « = o « « « . 9N

INDEX & . 4 4 4 o 4 ¢ o e o o o o o o a 2 s o « o« = 97

Figure 1. FORTRAN coding form
Figure 2. Example Program 1 .
Figure 3. Example Program 2 « . « - - 93

.
.
.
.
.
0
.
s
.
.
w

L 3
.
.
L[]
.
.
.
.
.
L]
©
[y

Table 1. Insurance premium codes « . . 12
Table 2. Determining the mode of an expression
containing variables of different types and lengths 15
Table 3. Valid combinations uasing the arithmetic
OpPerator #* e o e o o 2 o o * e o o« o « o 15
Table 4. Mathematical function subprograms 87

FIGURES

TABLES

INTRODUCT ION

IBM TIME SHARING SYSTEM FORTRAN IV

TSS FORTRAN IV includes a language, a compiler, and a set of system-
suppl ied subprograms.

For more information regarding the compiler and system-supplied pro-
grams, see FORTRAN Programmer's Guide and FORTRAN IV Library Subpro-
grams. The FORTRAN compiler operates under the control of TSS, which
provides the compiler with input/output and other services. Object pro-
grams generated by the compiler operate under TSS control and are depen-
dent on it for similar services.

The TSS FORTRAN IV language is compatible with and encompasses the
American National Standards Institute (ANSI) FORTRAN, including its
mathematical subroutine provisions. Source programs written in FORTRAN
consist of a set of statements constructed from the elements of the lan-
guage described in this publication.

SPECIAL FEATURES OF TSS FORTRAN IV

TSS FORTRAN IV is a further development of previously implemented
FORTRAN systems and contains many of the features of these systems (See
*Appendix A: FORTRAN Comparison®). The following features facilitate
the writing of source programs and reduce the possibility of coding
errors:

1. Variable Attribute Control: The attributes of variables and arrays
may now be explicitly specified in the source program. This faci-
lity is provided by a single explicit specification statement that
allows a programmer to:

a. Explicitly type a variable as integer, real, complex, double
precision, or logical.

b. Specify the number of storage location bytes to be occupied by
each variable or member of an array.

c. Specify the dimension of an array.

d. Specify data initialization values for variables.

2. Adjustable Array Dimensions: The dimensions of an array in a sub-
program may be specified as variables; when the subprogram is
called, the absolute array dimensions are substituted.

3. Additional Format Code: An additional format code - G - can be
used to specify the format of numeric and logical data. Previously
implemented format codes are also permitted.

4. Mixed Mode: Expressions may consist of constants and variables
that are of the same ands/or different types and lengths.

5. Namelist I/0: Formatting of input/output data is facilitated by
reading and writing operations without reference to a FORMAT state-
ment or list.

6. Spacing Format Code: The T format code allows input/output data to
be transferred beginning at any specified position.

7. Literal Format Code: Apostrophes may be used to enclose literal
data.

Introduction 1

ELEMENTS OF THE LANGUAGE

STATEMENTS

FORTRAN statements are composed of FORTRAN key words used in conjunc-
tion with the basic elements of the language (constants, variables, and
expressions). The five categories of FORTRAN statements are:

1. Arithmetic and Logical Assignment Statements: Replace the current
value of a designated variable after calculations have been
performed.

2. Control Statements: Govern the flow and terminate the execution of
the object program.

3. Input/Output Statements: Exchange information between a user’'s
program and a named collection of data, called a data set.

4. Specification Statements: Declare the properties of variables,
arrays, and subprograms (e.g., type and amount of storage reserved)
and describe the format of input or cutput data.

5. Subprogram Statements: Define and name functions and subroutines.

CODING FORTRAN STATEMENTS

Card Input

The statements of a FORTRAN source program can be written on a stan-
dard FORTRAN coding form, Form X28-7327 (see Fiqure 1). FORTRAN state-
ments are written one to a line from columns 7 through 72. 1If a state-
ment is too long for one line, it may be continued on as many as 19 suc-
cessive lines by placing any character, other than a blank or zero, in
column 6 of each continuation line. For the first line of a statement,
column 6 must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a
statement number consisting of from one through five decimal digits.
Leading zeros in a statement number are ignored. Statement numbers may
appear anywhere in columns 1 through 5 and may be assigned in any order;
the value of statement numbers does not affect the order in which the
statements are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

Comments to explain the program may be written in columns 2 through
80, if the letter C is placed in column 1. Camments may appear anywhere
within the source program except immediately preceding a continuation
line. They are not processed by the FORTRAN compiler, but are printed
on the source program listing. Blanks may be inserted where desired to
improve readability.

Keyboard Input

The conversational capability of TSS FORTRAN allows statements to be
entered via a keyboard at a terminal. The rigid card column rules are
relaxed for this means of input. A detailed description of keyboard
input is contained in FORTRAN Programmer's Guide.

IBM FORTRAN Coding form

R SRS L .

FORTRAN STATEMENT

- . g e L LI N S SR

Figure 1. FORTRAN coding form

CONSTANTS

A constant is a fixed, unvarying quantity. The three classes of con-
stants are those that deal with numbers (numerical constants), truth
values (logical constants), and literal data (literal constants).

Numerical constants may be integer, real, or complex numbers; logical

constants may be .TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters enclosed by apostrophes.

INTBEGER CONSTANTS

r = ——————
| Definition]
- — : |
| Integer Constant - a whole number written without a decimal point; i
| it occupies two or four storage locations; four storage locations is |
] the standard length. |
| |
{ Maximum Magnitude: 2147483647, i.e., (231-1). |
L —_— 3

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and may not contain embedded commas.

Examples: Valid Integexr Constants:

0

91

173
-2147483647
-12

Elements of the Language 3

Invalid Integer Constants:

0.0 (contains a decimal point)
27. (contains a decimal point)
3145903612 {exceeds the allowabl e range)
5,396 (contains embedded comma)

REAIL CONSTANTS

Definition

Real Constant -- a number with a decimal point optionally followed
by a decimal exponent, or an integer constant followed by a decimal
exponent. The exponent may be wri’ .e2n as the letter E or D followed
by a signed or unsigned, one- or two-digit integer constant. & real
constant may assume one of two forms:

1. From 1 throagh 7 decimal digits, optionally followed by an E and
a decimal exponent. This form occupies 4 storage locations.

2. Either 1 through 7 decimal digits, followed by a D and a decimal
exponent, or 8 to 16 decimal digits, optionally followed by a D
and a decimal exponent. This form occupies 8 storage locations
and is sometimes referred to as a double-precision constant.

Magnitude: (either form) 0 or 16-93 through 163 (i.e., approxim-
ately 107S).

P—.-—-—..———-——-—ﬂ——*-—-———.——-},—-‘-‘

s s S . B e, st . e o S — —— - oy S ool

A real constant may be positive, zero, or negative (if unsigned, it
is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent E or D permits
the expression of a real constant as the product of a real constant
times 10, raised to a desired power. If a decimal exponent is giwven,
the decimal point is not required.

Examples: Valid Real Constants (4 storage locations):

+0.

-999.9999

0.0

5764.1

7 .0E+0 (i.e., 7.0 x 10° = 7.0)
19761.25E+1 (i.e., 19761.25 x 10* = 197612.5)
7E3

7.E3

7.0E3 (i.e., 7.0 x 103 = 7000.0)
7.0E03

7.0E+03

7.0E-03 (i.e., 7.0 x 10-3 = _007)

Valid Real Constants (8 storage locations):

21.98753829457168

1.0000000

7.9D3

7.9D03 (i.e., 7.9 x 103 = 7900.0)
7.9D+03

7.9D+3

7.9D-03 (i.e., 7.9 x 10-3 = _[0079)
7.9D0 (i.e., 7.9 x 10° = 7.9)
0.0D0 (i.e., 0.0 x 10° = 0.0)
7D3 (i.e., 7 x 103 = 7000)

Invalid Real Constants:

(] {missing a decimal point)
3,471.1 (contains embedded comma)
1.E (missing a one- or two-digit integer

constant following the E; note that it is not
interpreted as 1.0 x 109°)

7.9D {missing a 1- or 2-digit integer
constant following the D)

1.2E+113 (E is followed by a 3-digit
integer constant)

21.30980 (value exceeds the magnitude permitted;
that is, 21.3 x 10°°>1693)

23.5E+97 (value exceeds the magnitude permitted;

that is, 23.5 x 1097>16¢3)

COMPLEX CONSTANTS

r - T T e 1
| Definition i
p--—-- - - — U
| Complex Constant -- an ordered pair of signed or unsigned real con- |
| stants separated by a comma and enclosed in parentheses. These real |
| constants may assume one of two forms: |
| |
| 1. From 1 through 7 decimal digits, optionally followed by an }F]
| decimal exponent. In this form, each number in the pair occu- |
| pies 4 storage locations. }
| |
| 2. Either 1 through 7 decimal digits, followed by a D decimal |
| exponent, or 8 through 16 decimal digits, optionally followed by |
| a D decimal exponent. In this form each number in the pair |
| occupies 8 storage locations. i
| i
| Magnitude: (either form) O or 16-°% through 1623 (i.e., approxim- |
} ately 1073) for each real constant in the pair. |
L — ———— e e e e e e e e e i

The real constants in a complex constant may be positive, zero, or
negative (if unsigned they are assumed to be positive), but they must be
within the given range. The first real constant in a complex consgant
represents the real part of the complex number; the second represents
the imaginary part of the complex number.

Examples: Valid Complex Constants:

(3.2,- 1.86) (has wvalue 3.2-1.86i)
(-5.0E+03,.16E+02) (has wvalue -5000.+16.01i)
(4.0E+03,.16E+02) (has value 4000.+16. 0i)
(2.1,0.0) (has value 2.1+0.01)
(4.7D+2,1.9736148) {has value 470.+1.97361481i)

where i =\/—1

Invalid Complex Constants:

(292704 ,1.697) (real part does not
contain decimal point)

(1.2E113,279.3) (real part contains
invalid decimal exponent)

(.0034E4, .005D6) (parts differ in length)

Elements of the Language 5

LOGICAL CONSTANTS

| S - 1
| Definition |
p--——=- oo -~ ——
| Logical Constant -- The two logical values are:]
I |
| .TRUE. |
| .FALSE. |

A logical constant must be preceded and followed by a period. The
logical constants .TRUE. and .FALSE. specify that the value of the
logical variable they replace, or the term of the expression they are
associated with, is true or false, respectively (see "Logical
Lxpressions™).

LITERAL CONSTANTS

- 1
| Definition]
b= . e
| Literal Constant -- a string of alphameric and/or special characters |
| enclosed in apostrophes. |
L ———]

The numoer of characters in the string, including blanks, may not be
greater than 255. Since apostrophes delimit literal data, a single apo-
strophe within such data is represented by double apostrophes. An
alternative form for a literal constant is wH immediately followed by a
string, of length w, of alphameric and/or special characters. A single
apostrophe within such data is represented as a single apostrophe.

Examples:

*DATA’

' INPUT /OUTPUT AREA NO. 2'

' X~-COORDINATE Y-COORDINATE Z-COORDINATE'
'3.14°

lDONI lTl

5HDON'T

HEXADECIMAL CONSTANTS

| 1
| Definition |
e e e e e 2 o e e e e . o o o e e e e e e o S o o S . o e J
1

| Hexadecimal Constant -- the character Z followed by a number formed |
| from the set 0 through 9 and A through F. |
L 1

Hexadecimal constants may be used only as data initialization values.

One storage location contains two hexadecimal digits. If a constant
is specified as an odd number of digits, a leading hexadecimal zero is
added to fill the storage location. The internal form of each hexade-
cimal digit is:

0-0000 4-0100 8-1000 Cc-1100
1-0001 5-0101 9-1001 D-1101
2-0010 6-0110 A-1010 E-1110
3-0011 7-0111 B-1011 F-1111

Examples:

21CU49A2F1
Z BADFAD

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "Variable Types and Length Specifications®). The following 1list
shows the maximum number of digits for each length specification.

Length Specification of Variable Maximum Number of Hexadecimal Digits
16 32
8 16
4 8
2 4
1 2

If the number of hexadecimal digits is greater than the maximum, the
leftmost digits are truncated; if the number of digits is less than the
maximum, leading hexadecimal zeros are added.

SYMBOLIC NAMES

- —_
| Definition

b—-- - -
| Symbolic Name -- from 1 through 6 alphameric (i.e., 0 through 9, or
| alphabetic, A through Z and $) characters, the first of which must

{ be alphabetic.

[

b.—-—-—-—-L‘-—-J

Symbolic names are used in a program unit (i.e., a main program or a
subprogram) to identify elements in the following classes.

s An array and the elements of that array (see "Arrays")

e A variable (see "Variables")

A statement fuanction (see "Statement Functions®™)

e An intrinsic function (see Appendix D)

A FUNCTION subprogram (see "FUNCTION Subprograms")

A SUBROUTINE subprogram (see "SUBROUTINE Subprograms®)

A block name (see "BLOCK DATA Subprograms")

e An external procedure that cannot be specified as either a SUBROU-
TINE or FUNCTION subprogram (see "The EXTERMAL Statement®)

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

B block name can also be an array, variable, or statement function
name in a program unit.

A FUNCTION subprogram name must also be a variable name in the FUNC-
TION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a SUBROU-

TINE subprogram name, a block name, or an external procedure name in any
unit of an executable program, no other program unit of that executable

Elements of the Language 7

classes

[y
=}
[\
=

=<

AN varrable is a symbolic representation of a guantity that

b

B > different . The value of a variable may change either
ror rent £ a prugramr or at differemnt sStages within the

ralue of
time t

i by some pre-
ue of A varies
for B.

an aid in document-
¥ may look at
t ¢ compute the
a given rate of

names <an Sey
& other tharn t 3
function. For exanple
vhain length of time
could have peon writte

: However, it would be more meaningful
statensnt if the programmer had written

yle Hames:

moxre than 6
irst character 13 not alphabetic)
snitains a special character}

SPECIFICATIONS

onrds to the type of data the variable
able represents ined lata, a real

ding standard and optional

the number of storage locations reserved
img list shows each variable type with its
length.

The three ways a programmer may declare the type of a variable are by
use of the:

1. Predefined specification contained in the FORTRAN language,
2. IMPLICIT specification statement,
3. Explicit specification statements.

The optional-length specification of a variable may be declared only
by the IMPLICIT or Explicit specification statements. If, in these sta-
tements, no length specification is stated, the standard length is
assumed (see "The Type Statements®).

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify
variables as integer or real:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer of standard length, 4.

2. If the first character of the variable name is any other letter,
the variable is real of standard length, &.

This convention is the traditional FORTRAN method of implicitly spe-
cifying the type of a variable as being either integer or real. 1In all
examples that follow, it is presumed that this specification holds,
unless otherwise noted.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

This statement allows a programmer to Specify the type of variables
in mich the same way as was specified by the predefined convention.
That is, in both, the type is determined by the first character of the
variable name. However, the programmer, using the IMPLICIT statement,
has the option of specifying which initial letters designate a particu-
lar variable type. Further, the IMPLICIT statement is applicable to all
types of variables ~-- integer, real, complex, and logical.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement sSpe-
cifies that variables beginning with the letters A through M are real
variables, and variables beginning with the letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable ander the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section "Type
Statements."®

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statements (INTEGER, REAL, COMPLEX, and LOGIC-
AL) differ from the first two ways of specifying the type of a variable,
in that an explicit specification statement declares the type of a par-
ticular variable by its name, rather than as a group of variables begin-

ning with a particular character.

For example, assume:

Elements of the Language 9

1. That an IMPLICIT specification statement overrode the predefined
convention for variables beginning with the letter I, by declaring
them to be real.

2. That a subsejuent Explicit specification statement declared that
the variable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
with the character I are real. Note that variables beginning with the
letters J through N are specified as integer by the predefined
convention.

The Explicit specification statements are discussed in greater detail
in the section "Type Statements."

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, sewventh
variable, etc.). Consider the array named NEXT, which consists of five
variables, each currently representing these values:

273, 41, 8976, 59, and 2

NEXT(1) represents 273
NEXT(2) represents 41
NEXT(3) represents 8976
NEXT(4) represents 59
NEXT(5) represents 2

Each variable in this array consists of the name of the array (i.e.,
NEXT) followed by a number enclosed in parentheses, called a subscript.
The variables that constitute the array are called subscripted
variables. Therefore, the value of the subscripted variable NEXT (1) is
273; the value of NEXT(2), is 41; etc.

The subscripted variable NEXT(I) refers to the "Ith"™ subscripted
variable in the array, where I is an integer variable that can assume a
value of 1, 2, 3, 4, or 5, in this array.

To refer to the first element of an array, the array name must be
subscripted; the array name does not represent the first element. The
number of subscripts must correspond to the declared dimensionality,
except in the EQUIVALENCE statement, which is explained in “EQUIVALENCE
Statement."”

SUBSCRIPTS

A subscript is an index that specifies one of the coordinates that
identify a particular element of an array. From one to seven subscripts
are used in accordance with the dimensionality of the array being sub-
scripted. Multidimensional subscripts are separated by commas. The
subscripts, enclosed in parentheses, follow the array name.

10

I
I
{
|
i
-

General Form

Subscripts -- may be one of seven forms:

v
Cl
vec'
v-c'*
c*Vv
csvect
c*y-c*

where v represents an unsigned, nonsubscripted, integer variable.

(™ S - . i S g St W g P s e S Sy
e e e e e e ot e e e e o

c and c'" represent unsigned integer constants.

Wwhatever subscript form is used, its evaluated result must always be
greater than zero. For example, when reference is made to the sub-
scripted variable V(I-2), the value of I should be greater than 2.

Examples:

ARRAY (IHOLD)
NEXT(19)
MATRIX (I-5)
A (5+L)
Wu*M+3)

These are valid subscripted variables for their corresponding arrays:

Array Name Subscripted Variable

A a(5, 100, J, K+2)

TABLE TABLE (1,1, 1,1, 1,1, 1)
B B(1, J, K, L, M, N)

MATRIX MATRIX(I+2,6%JOB~3,KFRAN)

consider the following array, named LIST, consisting of two subscript
parameters, the first ranging from 1 through 5, the second from 1
through 3.

Column 1 Column 2 Column 3
Row 1 82 4 7
Row 2 12 13 14
Row 3 91 1 31
Row 4 24 16 10
Row 5 2 8 2

The correct reference for the number in row 2, column 3, would be
LIST (2,3)
LIST (2,3) has the value 14; LIST (4,1) has the value 24,

Ordinary mathematical notations might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LIST(I,J),
where I equals 1, 2, 3, 4, or 5, and J equals 1, 2, or 3.

As a further example, consider the array named COST, consisting of
four subscript parameters. This array might be used to store all the
premiums for a life insurance applicant, given (1) age, (2) sex, (3)
health, and (4) size of life insurance coverage desired. A code number
could be developed for each statistic; IAGE represents age; ISEX, sex;
IHLTH, health; and ISIZE, policy size desired (see Table 1).

Elements of the Language 11

(o mmTmmmm—— e - T e e -
] AGE | SEX |
fmm o= T ——{
| Age in years Code] Sex Code |
| | |
| 1-5 IAGE=1 i Male ISEX=1 |
| -10 IAGE=2 | Female ISEX=2 |
| . . R — ———
] . . i POLICY SIZE i
[. . —— —
| 96-100 IAGE=20]]
p————- - —— -4 Dollars Code |
i HEALTH ! |
po——— - -——=9 1,000 ISIZE=1 {
i Health Code | 3,000 ISIZE=3 |
| { 5,000 ISIZE=4 |
| Poor IHLTH=1 i 10,000 ISIZE=5 |
i Fair IHLTH=2 { 25,000 ISIZE=6 |
| Good IHLTH=3 | 50,000 ISIZE=7 |
| Excellent IHLTH=4 1 100,000 ISIZE=8 |
e e e e e e e e e o e e e e e e e e A ——d — — J

Suppose an applicant is 14 years old, male, in good health, and
desires a policy of $25,000. From Table 1, the statistics can be repre-
sented by these codes

IAGE=3 (11 - 15 years old)
ISEX=1 (male)

IHLTH=3 (good health)
ISIZE=6 (525,000 policy)

Thus, COST (3, 1, 3, 6) represents the premium for a policy, given
the statistics above. Note that IAGE can vary from 1 to 20, ISEX from 1
to 2, IHLTH from 1 to 4, and ISIZE from 1 to 8. The number of sub-
scripted variables in the array COST is the number of combinations that
can be forwed for different ages, sex, health, and policy size available
- a total of 20x2x4xB or 1280. Therefore, up to 1280 different premiums
may be stored in the array named COST.

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscript parame-
ters of the array and the maximum value of each subscript. This infor-
mation must be given for all arrays before using them in a FORTRAN pro-
gram, so that a storage area of sufficient size may be reserved.

Dec laration of this information is made by a DIMENSION statement, a COM-
MON statement, or by one of the Explicit specification statements
(INTEGER, REAL, COMPLEX, and LOGICAL); each is discussed in "Specifica-
tion Statements.”™

ARRANGEMENT OF ARRAYS IN STORAGE
Arrays are stored in ascending storage locations, with the value of
the first of their subscripts increasing most rapidly, and the value of

the last increasing least rapidly.

Examples: The array named A, consisting of one subscript parameter,
which varies from 1 to 5, appears in storage as

A(1) A(2) a(3) A(4) A(5)

12

The array named B consists of two subscript parameters; the first
subscript varies over the range from 1 to 5, and the second varies from
1 to 3. The array appears in ascending storage locations in this order

B(1,1) B(2,1) B(3,1) B{4,1) B(5,1) B(1,2) B(2,2) B(3,2)y B{Y4, 2}
}

C~B(s,2) B(1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5, 2},
respectively.

The following list is the order of an array named C that consists of
three subscript parameters; the first subscript varies from 1 to 3; the
second, from 1 to 2; and the third, from 1 to 3.

c(1,1,1) C(2,1,1) C(3,1,1) c{1,2,1) C(2,2,1) c{(3,2,1) C(1,132¥wwuj

L—*>C(2,l,2) c(3,1,2) C(1,2,2) C(2,2,2) Ci(3,2,2) C(1,1,3) C(2,1,3¥~"m}

L—*’C(3,1,3) c(1,2,3) c(2,2,3) c(3,2,3)

Note that C(1,1,2) and ¢{1,1,3) follow in storage c(3,2,1) and C(3,2,2),
respectively.

EXPRESSIONS

Expressions in their simplest form consist of a single constant or
variable. They may alsc designate a computation or show a relationship
between two or more constants and/or variables. Expressions may appear
in arithmetic and logical assignment statements and in certain control
statements.

FORTRAN provides two kinds of expressions: arithmetic and logical.
The value of an arithmetic expression is always a number whose type 1is
integer, real, or complex. However, the evaluation of a logical expres-
sion always yields a truth value: .TRUE. or .FALSE. .

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable, or subscripted variable of the type integer, real, or complex.
I1f the constant, variable, or subscripted variable is of the type integ-
er, the expression is in the integer mode. If it is of the type real,
the expression is in the real mode, etc.

Examples :

Expression Type of Quantity Mode of Expression
3 Integer Constant Integer of length 4
I Integer Variable Integer of length &
3.0 Real Constant Real of length &4
A Real Variable Real of length &
3.14p03 Real Constant Real of length 8
B(2¢I) Real Variable Real of length &
(2.0,5.7) Complex Constant Complex of length 8
C Complex Variable Complex of length 8

(specified as such in a
Type statement)

Elements of the Language 13

In the expression B{(2%#I), the subscript (2#I), which must always
represent an integer, does not affect the mode of the expression. That
is, the mode of the expression is determined solely by the type of con-
stant, variable, or subscripted variable appearing in that expression.

More complicated arithmetic expressions containing two or more con-
stants ands/or variables may be formed by using arithmetic operators that
express the computations to be performed.

Arithmetic Operators

The arithmetic operators are:

Arithmetic Operator Definition

** Exponentiation
* Multiplication
/ Division

+ addition

- Subtraction

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: These are the rules for
constructing arithmetic expressions that contain arithmetic operators:

1. BAll desired computations must be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or function
reference (see "SUBPROGRAMS") appears in an arithmetic expression,
they must be separated from one another by an arithmetic operator.
For example, the two variables A and B will not be multiplied if
written as

AxB or AB or AeB

1f multiplication is desired, then the expression must be written
as

A*B or B#*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, these expressions are invalid

A*/B and A*-B

However, in the expression, A*¥-B, if the - is meant to be a minus
sign rather than the arithmetic operator designating subtraction,
then the expression could be written as

A* (-B)

In effect, -B will be evaluated first, and then A will be multip-
lied with it (for further uses of parentheses, see Rule 6).

3. The mode of an arithmetic expression is determined by the type of
the operands (where an operand is a variable, constant, function
reference, or another expression) in the expression. Table 2 indi-
cates how the mode of an expression that contains operands of 4dif-
ferent types may be determined using the operators: +, -, *. /.

Table 2 shows a hierarchy of type and length specification (see
"Type Statements®™) that determines the mode of an expression. For
example, complex data that has a length specification of 16, when
combined with any other types of constants and variables, results
in complex data of length 16.

14

2.

Determining the mode of an expression containing
variables of different types and lengths

e T LB T ¥ B hJ B
| { INTEGER | INTEGER | REAL | REAL | COMPLEX |COMPLEX]
e - = /] (2) | W) I W 1 ® | (8) | (16) |
b + } 1 i + + ’
| INTEGER| Integer | Integer | Real | Real | Complex |Complex|
| (2 | (2) |) N C)) I (8 | (8) | (16} |
- 1 } % + + +
|INTEGER| Integer | Integer | Real { Real | Complex |Complex]
[D B 4) | o)) | ® | (8) | (16) |
- 1 } + $ o ———{
| REAL | Real | Real | Real | Real | Complex |Complex|
| 4y |) |) | W) | (8 | (8) | (16) |
e $—- 4 + 4 + +

| REAL | Real | Real { Real | Real | Complex |Complex|
| 8) | (8) | (8) | (8) | &) i (16) | (16) |
L— i Iy 1 i L 4 *
LB T v) T T Al
|COMPLEX | Complex | Complex | Complex | Complex | Complex |Complex|
I 8 | (8) i (8) | (®) | (1) i (8) | (16) |
L 'y 4 i d 4 J______.....__.{
L T ¥ T T v T

| COMPLEX | Complex | Complex | Complex | Complex | Complex |Complex|
| (16) | (16) | ae6) | (16) | (16) | (16) | (16) |
L L 4 i i i s 3
Assume that the type of the following variables has been specified

as

Variable

Names

Type

ROOT, E
A, I, F
c,D

Real variables
Integer variables
Complex variables

Length Specification

4,8
4,2,2
16,8

Then, the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operators

(*1 ¢ 7 *)

Expression Mode of Expression
ROOT#*5 Real of length 4§

A+3 Integer of length 4
C+2.9D1¢0 Complex of length 16
E/F+19 Real of length 8
C-18.7E05 Complex of lemgth 16
A/I-D Complex of length 8

The arithmetic operator denoting exponentiation (i.e.,*#*) may only
be used to combine the types of constants, variables, and suk-
scripted variables shown in Table 3.

Table 3. Valid combinations using the arithmetic operator #*#*
 Sa—— =1
| Base Exponent |
e

|Integer or Real (either length) #* Integer or Real (either length)|

| |
#* Integer (either length) |
4

Assume that the types of the following variables are as specified,
and that their length specification is standard.

vVariable Names T

ROOT , E Real wvariables

A, I, F Integer variables
Cc Complex variables

Elements of the Language 15

16

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operator

*¥

Examples:

Expression e Result
ROOT*#* (A+2) (Real**Integer) (Real)
C*#*p (Complex**Integer) (Complex)
ROOT**] (Real**Integer) (Real)
I**F (Integer**Integer) (Integer)
7.98E21**ROOT (Real#*#*Real) (Real)
ROOT**2_.1E5 (Real #*Real) (Real)
A*%*E (Integer**Real) (Real)

Order of Computation:

Where parentheses are omitted, or where the

entire arithmetic expression is enclosed within a single pair of
parentheses, the order in which the operations are performed is as

follows:

Operation Hierarchy

Evaluation of Functions (see 1st (highest)
"Subprograms")

Exponentiation (*%) 2nd

Multiplication and Division (* and /} 3rd

Addition and Subtraction {(+ and -) 4th

In addition, if two operators of the same hierarchy (with the
exception of exponentiation) are used consecutively, the component
operations of the expression are performed from left to right.
Thus the arithmetic expression A/B*C is evaluated as if the result
of the division of A by B was multiplied by C.

For example, the expression

(A#B/C*%1+D)

is evaluated in this order

a. C**I Call the result X (exponentiation)
b. A*B Call the result Y (multiplication)
c. YsX Call the result 2 (division)
d. 2Z+D Final operation (addition)

For exponentiation the evaluation is from right to left.
expression

Thus, the

A**B*%C
is evaluated as

a. B**C
b. A*#%Z

Call the result 2
Final operation

Use of Parentheses: Parentheses may be used in arithmetic expre-
ssions, as in algebra, to specify the order in which the arithmetic
operations are to be performed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is
used.

For example, the expression
(B+ ((A+B) *C)+A*+2)

is evaluated in this order

a. (A+B) Call the result X

b. (X*C) Call the result Y
C. A**2 Call the result 2
d. B#Y+2Z Final operations

7. 1Inteqer Division: When division is performed using two integers,
the answer is truncated and an integer answer is given. For
example, if I=9 and J=2, then the expression (I/J) would yield an
integer answer of 4 after truncation.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant, logical variable, or logical subscripted variable, the value
of which is always a truth value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of three
forms .

1. Relational operators combined with arithmetic expressions whose
mode is integer or real.

2. Logical operators combined with logical oonstants (.TRUE. and
.FALSE.), logical variables, or subscripted variables.

3. Logical operators comktined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operators"®
items 2 and 3 are discussed in "Logical Operators."

Relational Operators

The six relational operators, each of which must be preceded and fol-
lowed by a period, are:

Relational Operator Definition

.GT. Greater than (>)

.GE. Greater than or equal to (>)
.LT. Less than (<)

-LE. Less than or equal to (X)
.EQ. Equal to (=)

.NE. Not equal to (%)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relatlonal operators. For example, assume
that the types of these variables have been specified as

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L Logical variable

c Complex variable

Tﬁ%n, the following examples illustrate valid and invalid logical
expressions using the relational operators.

Examples: Valid Logical Expressions Using Relational Operators:

(ROOT*A).GT.E
A.LT.I

E*%2_.7 .EQ.(5¢ROCT+4)
57.9.LE.(4.7+F)
.5.GE..9#*ROOT
E.EQ.27.3D+05

Elements of the Lanquage 17

Invalid Logical Expressions Using Relational Operators:

C.LT.ROOT (Complex quantities may never appear in logical
expressions)

C.GE.(2.7,5.9E3) (Complex quantities may never appear in logical
expressions)

L.EQ. (A+F) (Logical quantities may never be joined by rela-
tional operators)

E**2_EQ97.1E9 (Missing period immediately after relational
operator)

.GT.9 (Missing arithmetic expression before relational
operator)

Logical Operators

The three logical operators, each of which must be preceded and fol-
lowed by a period, are as follows. (A and B represent logical constants
or variables, or expressions containing relational operators).

Logical Operator Definition

.NOT. .NOT.A - if A is .TRUE., then .NOT.A has the value
.FALSE.; if A is .FALSE., then .NOT.A has the value
. TRUE.

LAND. A.AND.B - if A and B are both .TRUE., then A.AND.B

has the value .TRUE.; if either A or B or both are
.FALSE., then A.AND.B has the value .FALSE.

.OR. A.OR.B - if either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.; if both A and B are
.FALSE., then A.OR.B has the value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT..

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE. may be combined with the logical operators to form logical
expressions. For example, assume that the types of these variables are
as specified.

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L, W Logical variables
C Complex variable

Then, the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Examples: Valid Logical Expressions:

(ROOT*A .GT.A) .AND.W
L.AND..NOT.(I.GT.F)
(E+5.9D2.GT.2*E) .OR.L

-NOT .W.AND..NOT.L
L.AND..NOT.W.OR.I.GT.F
(A*%F.GT.ROOT) .AND. .NOT. (I.EQ.E)

Invalid Logical Expressions:

A.AND.L (A is not a logical expression)

.OR.W (.OR. must be preceded by a logical
expression)

NOT.(A.GT.F) (missing period before the logical operator
-NOT.)

18

(C.EQ.I).AND.L (a complex variable may never appear in a log-
ical expression)

L.AND..OR.W (the logical operators .AND. and .OR. must
always be separated by a logical expression)

.AND.L (.AND. must be preceded by a logical
expression)

Oorder of Computations in Logical Expressions: Where parentheses are
omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, this is the order in which the operations
are performed.

Operation Hierarchy
Evaluation of Functions 1st (highest)
Exponentiation (#*#%) 2nd
Multiplication and division (*# and /) 3rd

Addition and subtraction (+ and -) 4th

.T., .LE., .EQ.,.NE.,.GT.,.GE. Sth

.NOT. 6th

~AND. Tth

-OR. 8th

For example, the expression
(A.GT.D®**B_.AND. .NOT.L.OR.N)
is evaluated in this order

1. D#*¢B Call the result
2. A.GT.W Call the result
3. .NOT.L Call the result
4. X.AND.Y Call the result
S. Z.0R.N Final operation

{exponentiation)

(relational operator)

{highest logical operator)
(second highest logical operator)

N XKL

Use of Parentheses in logical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the innermost pair of parentheses is evaluated first. For
example, the logical expression

((I.GT.(B+C)).AND.L)
is evaluated in this order

1. B+C Call the result X
2. I.GT.X Call the result Y
3. Y.AND.L Final operation

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more gquantities.
For example, assume that the values of the logical variables A and B are
.FAISE. and .TRUE., respectively. Then these two expressions are not
equivalent

.NOT . (A.OR.B)
.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is
.TRUE.; but .NOT.(.TRUE.) implies .FALSE.. Therefore, the value of the
first expression is .FALSE..

In the second expression, .NOT.A is evaluated first. The result is

.TRUE.; but .TRUE..OR.B implies .TRUE.. Therefore, the value of the
second expression is .TRUE..

Elements of the Language 19

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

[roT T ——— - 1
| General Form |
e - e ~
I a=hb |
| , [
| where a is any subscripted or nonsubscrirted variable |
| |
| b is any arithmetic or logical expression |
| |
| Note: a must be a logical variable if, and only if, b is a logic- |
| al expression. |
e e e P]

The FORTRAN arithmetic and logical assignment statement closely
resembles a conventional algebraic equation; however, the equal sign of
the FORTRAN arithmetic statement specifies replacement rather than equi-
valence. That is, the expression to the right of the equal sign is eva-
luated, and the resulting value replaces the current value of the vari-
able to the left of the equal sign.

Assume that the type of the following variables has been specified

as:

Variable Names Type Length Specification
I, Jd, W Integer variables 4,4,2

A, B, C, D Real variables 4,4,8,8

k. Complex variable 8

G, H Logical variables 4,4

Then, the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types.

Statements Description
A =B The value of A is replaced by the current value of B.
W = B The value of B is converted to an integer value and

the least significant part replaces the value of W.

A =7 The value of I is converted to a real value and this
result replaces the value of A.

I =1 +1 The value of I is replaced by the value of I + 1.

I#*¥J+D I is raised to the power J and the result is con-
verted to a real value, to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the com-
plex variable is set to zero.

1

A = C#*D The most significant part of the product of C and D
replaces the value of A.

G = .TRUE. The value of G is replaced by the logical constant
.TRUE. .

i = .NOT.G If G is .TRUE., the value of H is replaced by the

logical constant .FALSE.. If G is .FALSE., the value
of H is replaced by the logical constant .TRUE..

1]

3..GT.I

(1.0,2.0)

The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical constant .TRUE. replaces the value of G. 1If
3. is not greater than I, the logical constant
-FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant (1.0,2.0). Note that the state-
ment E = (A,B), where A and B are real variables, is
invalid.

The real part of the complex variable E replaces the
value of A.

The value of A replace8 the value of the real part of

the complex variable E; the imaginary part is set
egqual to zero.

Arithmetic and Logical Assignment Statement 21

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially; that is,
after one statement has been executed, the statement immediately follow-
ing it will be executed. This section discusses the statements that may
be used to alter and control the normal sequence of statement execution
in the program.

GO TO STATEMENTS

The GO TO statements cause control to be transferred to the statement
specified by a statement number. The three GO TO statements are:
unconditional GO TO, computed GO TO, and assigned GO TO. Every time the
same unconditional GO TO statement is executed, a transfer to the same
specified statement is made. However, the computed and assigned GO TO
statements cause control to be transferred to one of several statements,
depending upon the current value of a particular variable.

Unconditional GO TO Statement

——- - 1
| General Form |

———

k
| GO TO X
|

| where X is an executable statement number
L

b o s

This GO TO statement causes control to be transferred to the state-
ment specified by the statement number. Every subsequent execution of
this GO TO statement results in a transfer to that same statement.

Example:

50 GO TO 25
10A =B + C

-

25 C = E%*2

-

-

Explanation: Every time statement 50 is executed, control is trans-
ferred to statement 25.

Computed GO TO Statement

| General Form

-

| GO TO (X1, X2, X3¢ -<-¢Xn), i

where X4¢X 2--.,Xn, are executable statement numbers

i is a nonsubscripted integer variable in the range:
12 i n

v

[i s e o e
e e et e o, e s s o cad

22

This statement causes control to be transferred to the statement num-
bered xi, Xas X3¢---¢ Or Xn, depending on whether the current value of i
is 1, 2, 3,..., or n, respectively. If the value of i is outside the
allowable range, the next statement is executed.

Example:
GO TO (25, 10, 50, 7), ITEM

50 A = B+C

7 C = E®#2+A

-

]

25 L C.GT.D.AND.F.LE.G

10 B = 21.3802

Explanation: If the value of the integer variable ITEM is 1, statement
25 will be executed next. If ITEM is equal to 2, statement 10 will be
executed next, and so on.

ASSIGN and Assigned GO TO Statements

General Form

-T-—"ﬂ

;
2
e
3
(¢]
3

GO TO m, (511530§31--« +Xn)
where i is an executable statement number
X4sX2¢X49--++Xpn are executable statement numbers

m is a nonsubscripted integer variable of length 4, to which
is assigned one of these statement numbers: X,,X,,X;s-<«<X,-

h-ﬂ——-—-u-.-——-—.—n—-——-h—-l

[— —— s ———_— g, o— _— . q—

The assigned GO TO statement causes control to be transferred to
the statement numbered x,,X,,X3,---,0r Xpn, depending on whether the
current assignment of m is X,,X ;,X;4..-,0r X,,. For example, in the
stat_oment

GO TO N, (10, 25, 8)

if the current assignment of the integer variable N is statement 8,
that statement is executed next. If the current assignment of N is
statement 10, that statement is executed next. Similarly, if N is
assigned statement number 25, that statement is executed next.

The current assignment of the integer variable m is determined by

the last ASSIGN statement executed. Only an ASSIGN statement may be
used to initialize or change the value of the integer variable m. The

Control Statements 23

value of the integer variable m is not the integer statement number;

ASSIGH 10 TC I is not the same as I=10.

ASSIGN 50 TO NUMBER
t9 506 TO NUMBER, (35, 50, 25, 12, 18}

Statement 50 ig sxecuted immediately after statement 10.

2GS IGN 10 TO ITEM

13 G0 TO ITEM, (8, 12, 25, S0, 10)

g 8= C+ D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E%%2

ianaction: The first time statement 13 is executed, control is

transferred to statement 10. On the second execution of statement 13,
contynl is transferred to statement 25.

Arithmetic IF Statement

i
|
|
|
i
i
|
!
i
]

P — - S
{

General Form

i,_,. e e e e e St it i - —— p—— —

IF (a) X, ,X3,X5

X40X5+X, axre statement numbers

e o s, cmoen ot spee ol

i

! .

| where a is an arithmetic expression which is not complex
!

|

i

This statement causes control to be transferred to the statement num-
bered x,,X,,%X; when the value of the arithmetic expression a is less
than, egual to, or greater than zero, respectively. The first execut-
able statement following the arithmetic IF statement shoyld have a sta-
tement number ; otherwise, it can never be referred to or executed.

24

Example:

-

IF (A(J,K)#*#3-B)10, 4, 30

4 D= DB+ C
30 C = D#*#*2
10 E = (F#B)/D+1

*

Explanation: If the value of the expression (A(J,K)**3-B) is negative,
statement 10 is executed next. If the value of the expression is zero,
statement 4 is executed next. 1If the value of the expression is posi-
tive, statement 30 is executed next.

Logical IF Statement

r - ey
| General Form

- —— -

| IF(a)s

|

| where a is any logical expression

|

| s is any statement except a specification statement, DO sta-

i tement, or ancother logical IF statement

L — e o

The logical IF statement is used to evaluate the logical expression a
and to execute or skip statement s, depending on whether the value of
the expression is .TRUE. or .FALSE., respectively.

Example 1:

-

5 IF(A.LE.0.0) GO TO 25

10 C=D + E

15 IF(A.EQ.B) ANSWER = 2.0%AarsC
20 F = G/H

25 W = X¢%Z

-

-

Explanation: In statement 5, if the value of the expression is .TRUE.
(i.e., A is less than or equal to 0.0), the statement GO TO 25 is
executed next, and control is passed to statement 25. If the value of
the expression is .FALSE. (i.e., A is greater than 0.0), the statement
GO TO 25 is ignored, and control is passed to statement 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A
is equal to B), the value of ANSWER is replaced by the value of the
expression (2.0%A/C), and statement 20 is executed. If the value of the
expression is .FALSE. (i.e., A is not equal to B), the value of ANSWER
remains unchanged, and statement 20 is executed next.

Control Statements 25

Example 2: Assume that P and (are logical variables.

-

5 IF(P.OR..NOT.Q)A=B
10 C = B*%2

-

Explanation: In statement 5, if the value of the expression is .TRUE.,
the statement A=B is executed next and control continues to statement
10. If the value of the expression is .FALSE., the statement A=B is
skipped and statement 10 is executed.

DO Statement

e e ———— _—
| General Form
End of DO Initial Test
range variable value value Increment
bo X i = L Mo« LLUEY

where x 1s the statement number of an executable statement that
follows the DO statement

i is a nonsubscripted integer variable

my, M,, M,, are either unsigned integer constants greater
than zero or unsigned nonsubscripted integer variables whose
values are greater than zero. The sum my+ms3+1 must not
exceed the size of virtual storage. (m,, is optional; if it
is omitted, its value is assumed to be 1. In this case, the
preceding camma must also be omitted.)

————— L

The DO statement is a command to execute repeatedly the statements
that focllow, up to and including the statement numbered x. The range of
a DO is that set of statements that will be executed repeatedly; i.e.,
it is the sequence of consecutive statements immediately following the
DO statemment. The first time the statements in the range of the DO are
executed, 1 is initialized to the value m*; each succeeding time i is
increased by the value m). When, at the end of an iteration, i is equal
to the highest value that does not exceed m¢, control passes to the sta-
tement following the statement numbered x. Thus, the number of times
the statements in the range of the DO is executed is given by the

expression: °

where the brackets represent the largest integral value not exceeding
the value of the expression. If m, is less than m,, the statements in
the range of the DO are executed once. Upon completion of the DO, the
DO variable is undefined.

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary toc compute the

26

amount of each different part that is presently available. This amount
may be calculated by subtracting the number of each item used, OUT(I),
from the previous stock omn hand, STOCK(I).

Example 1:

5 I=0

10 I=I+1

25 STOCK (I)=STOCK(I)- OUT(I)
15 IF(1-1000) 10,30,30

30 A=B+C

*
-

Explanation: The three statements (5, 10, and 15) required to control
the loop could be replaced by a single DO statement, as shown in Example
2.

Example 2:

DO 25 1 = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)
30 A=B+C

Explanation: The DO variable, I, is set to the initial value of 1.
Before the second execution of statement 25, I is increased by the
increment 1 and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test value, 1000, control passes out of
the DO loop, and statement 30 is executed next. Note that the DO vari-
able I is now undefined; its value is not necessarily 1000 or 1001.

Example 3:

-

-

Do 25 1=1, 10, 2

15 J=I+K
25 ARRAY(J) = BRAY(J)
30 =B C

-
-

Explanation: Statement 25 is the end of the range of the DO loop. The
DO variable, I, is set to the initial value of 1. Before the second
execution of the DO loop, I is increased by the increment 2, and state-
ments 15 and 25 are executed a second time. After the fifth execution
of the DO loop, I equals 9. Since I is now equal to the highest value
that does not exceed the test value, 10, control passes out of the DO
loop, and statement 30 is executed next. Note that the DO variable I is
now undefined; its value is not necessarily 9 or 11.

Control Statements 27

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statment (i, m,, m_,, m,) may not be
changed by a statement within the range of the DO loop, or by any
subprograms that are called within the range of a DO loop.

2. A DO statement may contain other DO statements within its range.
All statements in the range of an inner DO must be in the range of

the outer DO. A set of DO statements satisfying this rule is
called a nest of DOs.

Example 1:
DO 501 =1, 4

A(I) = B(I)#**2

Range of
DO 50 J=1, 5 outer DO
Range of
50 C(J+1) = A(I) inner DO
Example 2:
DO 10 INDEX = L, M
N = INDEX + K
Range of
po 15 J = 1, 100, 2 outer DO
Range of
15 TABLE (J) = SUM(J,N)-1 inner DO

10 B(N) = A(N)

3. A transfer out of the range of any DO loop is permissible at any
time.

4. I1f, and only if, a transfer is made from the range of an innermost
DO loop, transfer back into that loop is allowed, provided none of
the indexing parameters (i,m,,m,,m;) are changed outside the range.
A transfer back into the range of any other DO within a nest of DOs
is not permitted.

Example:

DO DO
DOT)I DO;>4

;>3 t)s

Explanation: The transfers specified in the example by the numbers

i, 2, and 3 are permissible; those specified by 4, 5, and 6 are
not.

28

5. The indexing parameters (i,m,,.,m,,m,;) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement using those parameters.

6. The last statement in the range of a DO loop (statement x) may not
be a GO TO, arithmetic IF, PAUSE, STOP, RETURN, or another DO sta-
tement. Also, the last statement may not be a logical IF statement
containing any of those statements.

CONTINUE Statement

A |

General Form |

e 4

CONTINUE i

r—T
i
1

CONTINUE is a dummy statement which may be placed anywhere in the
source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO statement to avoid end-
ing the DO loop with any of the statements that are not permitted as the
last statement in the range of a DOC.

Example 1:

bc 30 1 =1, 20
7 IF (A(DI)-B(I)) 5,30,30
5 A(I) =a(I) +1.0
B(I) = B(I) -2.0
GO TO 7
30 CONTINUE
40 C = A(3) + B(T)

-
-

Explanation: The CONTINUE statement is used as the last statement in
the range of the DO statement, to avoid ending the DO loop with the sta-
tement GO TO 7.

Example 2:

DO 30 I1=1,20
IF(A(I)-B(I))5,40,40
5 Aa(I) = C(I)
GO TO 30
40 A(1) = 0.0
30 CONTINUE

-
-

Explanation: The CONTINUE statement provides a branch point that
enabl es the programmer to bypass the execution of statement 40.

Control Statements 29

PAUSE Statement

General Form

PAUSE
PAUSE n

PAUSE ‘'message’

where n is an unsigned l-through 5-digit integer constant

|
b Ll

message is any literal constant

r-—--—‘—"'"—-—-r‘-—-]

A PAUSE statement executed in a program results in a message being
written as follows:

PAUSE Statement Resulting Message

PAUSE PAUSE 00000

PAUSE n PAUSE 1-5 digit integer
PAUSE ‘message’ PAUSE text of message

In nonconversational mode, the message is written on the standard
system output data set and the pause is ignored, so the program con-
tinues execution at the next executable statement. In converstaional
mode of execution, the pause message is written at the user's terminal
and the program waits until the user resumes execution via the TSS com-
mand system.

STOP Statement

| 1
| General rorm |
b — ———-
r

| sToP |
| STOP n |
| |
| where n is an unsigned 1-through 5-digit integer constant |
- - 1

This statement terminates the execution of the object program; mes-
sage will be displayed as follows:

STOP Statement Message
STOP STOP
STOP n STOP 1-5 digit integer

END Statement

r
| General Form |

———— —_— - —_————

| END]
J

| S — .

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram.

The END statement must be contained on a single line.

30

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between input/ocutput devices and internal
storage. The named collection of data, called a data set, is a con~-
tinuous string of data that may be divided into FORTRAN records.

A data set is referred to by an integer constant or integer variable,
called the data set reference number.

. There are five I/0 statements: READ, WRITE, END FILE, REWIND, and
BACKSPACE. The READ and WRITE statements cause transfer of records from
and to data sets and internal storage. The END FILE statement defines
the end of a data set; the REWIND and BACKSPACE statements control the
positioning of data sets.

In addition to these five statements, the FORMAT and NAMELIST state-
ments, although they are not I/0 statements, are used with certain forms
of the READ and WRITE statements. The FORMAT statement specifies the
form in which the data is to be transmitted; the NAMELIST statement spe-
cifies a list of variables or array names to be used in an input/output
operation. Also, both statements allow the user to divide a data set
into FORTRAN records.

Even though the I/0 statements are device independent, the source or
the destination of the data being transferred influences the specifica-
tion of the records and data formats. Therefore, subsequent examples
are in terms of card input and print-line cutput, unless otherwise
noted.

READ STATEMENT

~ ————=q
General Form

|
|
I
|
u
L

READ (a, b, END=c, ERR=d) list

where a is an unsigned integer constant or an integer variable of

length 4 that represents a data set reference number.

b is either the statement number or array name of the FORMAT
statement describing the data being read, or a NAMELIST
name.

¢ is the statement number to which transfer is made upon
encountering the end of the data set.

d is the statement number of the statement to which transfer

is made upon encountering an error condition in data
transfer.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented; they specify
the number of items to be read and the storage locations
into which the data is placed.

i o s o s S, T —— s M s A i s, O aaan s ——

The READ statement may take many different forms. For example, the
parameters END=c and ERR=4 are optional and, therefore, may or may not

Input/OCutput Statements 31

dAppeat in oo

et e r b

the parameter 1ist, the para-

ters END=c or ERR=d i3 used after the a
v, they may agpear in any order within
are valid READ statements

T
Fhid

3

cxample,

ewzhggs,c

made to a statement specified by the END parameter,

rven the program as to the number of items in the list

s>re encountering the end of the data set. If an END

specified 1n a READ statement, the end of the data set
ot the obj L ProXgram.

9
R

to a dfaf'ment upe01f19d by the ERR parameter,
i : assoclated with the record in error.
. { 3 thie ram as to which input record or reco-
rds are in error; onliy ihdt an urrur occurred during transmission of
data § list. If an ERR parameter is not specified in a
HEAD ervor terminates execution of the object program.

foyms of the REAMD statement are

4 may be used, in the combination
52 three forms.

f:om the data set associated with a
itied by the NAMELIST name X. The

: name that refers to a specific list
names 1nto WulCh the data is placed. A specific
ray names receives a NAMELIST name by use of a

e programmer need only use the NAMELIST name in
it to reference that list thereafter in the

constructing and using the NAMELIST state-

""""""" 1

|

- ~

|

|

oo Are NaMELIST nanes |
|

are variable Oor array names H
e e e o e e e e —_— —————1

Z. MELI ST enclosed in slashes. The list of variable or
ing to a NAMELIST name ends with a new NAMELIST
lashes oy with the end of the NAMELIST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names .

4. A NAMELIST name may be defined only once by its appearance in a
NAMELIST statement and must be so defined before its use. the
NAMELIST name may appear only in READ or WRITE statements in the
program.

i
.

A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement.

6. Variable or array names appearing anywhere in a NAMELIST statement
or NAMELIST name may not appear in a FUNCTION, SUBROUTINE, or ENTRY
statement.

Example: Assume that A, I, and L are array names.

-

NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

»

READ (5,NAM1)

-

Explanation: The READ statement causes the record that contains the
input data for the variables and arrays that belong to the NAMELIST
name, NAM1l, to be read from the data set associated with the data set
reference number 5.

Input Data

When a READ statement refers to a NAMELIST name, input data in the
form described below is read from the designated input data set.

The first character in the record must always be blank. The second
character of the first record of a group of data records to be read must
be & (ampersand), immediately followed by the NAMELIST name. The NAME-
LIST name must be followed by a blank amd must not contain embedded
blanks. This name is folloWwed by any combination of data items 1 and 2
below, separated by commas. (A comma after the last item is optional.)
The end of a data group is signaled by SEND.

The form the data items may take is

1. Variable name = constant

The variable name may be a subscripted variable name or a single
variable name, subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

The set of constants may be in the form
k* constant

where k is an unsigned integer called the repeat constant. It
represents the number of successive elements in the array to be
initialized by the specified constant. The number of constants

must not be greater than the number of elements in the array.

Input/Output Statements 33

Input constants may also be Hollerith (H format) or hexadecimal (2
format) data. The H format is used as in FORMAT statements. The repeat
constant may not be used with the H-format option. The size of the
character string should not exceed the size of an element. To use the Z
format, prefix the hexadecimal characters to be read with a "2".

Constants used in the data items may be integer, real, literal, com-
plex, or logical data. If the constants are logical data, they may be
in the form T or .TRUE. and F or .FALSE..

Any selected set of variable or array names belonging to the NAMELIST
name appearing on the first record may be used as specified by items 1
and 2 in the preceding text. Names that are made equivalent to these
names may not be used unless they also belong to the NAMELIST name.

The end of a group of data is signaled by the character string &END,
with no embedded blanks and all appearing in the same record.

Bl anks must not be embedded in a constant or repeat constant, but may
be used freely elsewhere in a data record. The last item on each record
that contains data items must be a constant followed by a comma. (The
comma is optional on the record that precedes the record containing
EEND.) Trailing blanks after integers and exponents are treated as
Zeros.

Example: Assume that L is an array consisting of one subscript paramet-
er ranging from 1 to 10.

Column 2

]
First data card: ENAM1 I(2,3)=5, J=4,
L.ast data card: A(3)=4.0, L=2,3,8*4,EEND

Explanation: If this data is input to be used with the NAMELIST and
READ statements previously illustrated, the following actions take
place: The first data card is read and examined to verify that the name
is consistent with the NAMELIST name in the READ statement. If the name
does not match the NAMELIST name, the next NAMELIST group is read. When
the data card is read, the integer constants 5 and 4 are placed in
I1(2,3) and J, respectively; the real constant 4.0 is placed in A(3).
Since L is an array not followed by a subscript, the entire array is
filled with the succeeding constants. Therefore, the integer constants
2 and 3 is placed in L(1} and L(2), respectively, and the integer con-
stant 4 is placed in L(3), L(&),...,L{10).

READ (a,b) List

This form is used to read data from the data set associated with a
into the storage locations specified by the variable names in the list.
The list, used in conjunction with the specified FORMAT statement b (see
"FORMAT statement”), determines the number of items (data) to be read,
the locations, and the form the data will take in storage.

Example 1: Assume that the variables A, B, and C have been declared as
integer variables.

75 FORMAT (G110, GB, G9)

-

34

READ (J, 75) A, B, C

Explanation: The READ statement above causes input data fram the data
set associated with data set reference number J to be read into loca-
tions A, B, and C, according to the FORMAT statement referenced (state-
ment 75). That is, the first 10 characters of the record are read, con-
verted to internal form, and stored into A, the next 8 characters into
3, and the next 9 characters into C.

The list can be omitted from the READ (a,b)list statement. In this
case, a record is skipped or data is read from the data set associated
with a, into the storage locations occupied by FORMAT statement b.

Example 2:

98 FORMAT ('HEADING®)

READ (5,98)

Explanation: The statements above would cause the characters H, E, A,
D, I, N, and G, in storage, to be replaced by the next 7 characters in
the data set associated with data set reference number 5.

Example 3:

98 FORMAT (G10,*HEADING®)

Explanation: The statements above would cause the next record in the
data set associated with data set reference number 5 to be skipped. No
data is transferred into internal storage because there is no list item
that corresponds with format code G10.

READ (a) List

The form READ (a) list of the READ statement causes binary data
(internal form) to be read from the data set associated with a into the
storage locations specified by the variable names in the list. Since
the input data is always in internal form, a FORMAT statement is not
required. This statement is used to retrieve the data written by a

WRITE (a) list statement.

Example:
READ (5) A, B, C

Input/Cutput Statements 35

Explanation: This statement causes the binary data from the data set
associated with data set reference number 5 to be read into the storage
locations specified by the variable names A, P, and C.

The list may be omitted from the READ (a) list statement; in this
case, a record is skipped.

Example:

READ (5)
Explanation: The statements above would cause the next record in the
data set associated with data set reference number 5 to be skipped. No

data is transferred into internal storage.

Indexing I/0 Lists

Variables within an I/0O list may be indexed and incremented in the
Same manner as those within a DO statement. These variables and their
indexes must be included in parentheses. For example, suppose it is
desired to read data into the first five positions of array A. This may
be accomplished by using an indexed list:

15 FORMAT (G10.3}

READ (2,15) (A(1),1i=1,5)
This is equivalent to

15 FORMAT (G10.3)

-

po 12 1 = 1,5
12 READ (2,15) A(D)

As with DO statements, a third indexing parameter may be used to spe-
cify the amount by which the index is to be incremented at each itera-
tion. Thus,

READ (2,15) (A(1), I1=1,10,2)
causes transmission of values for A(1), A(3), a(5), A(7), and A(9).
Furthermore, this notation may be nested. For example, the statement
READ (2,15) ((c(1,J3),D(1,0),3=1,3),1I=1,4)
would transmit data in this order:
c{i,1), D(1,1), Cc(1,2), D(1,2), c(1,3), D(1,3)
c(2,1), pD(2,1), C(2,2), Dt2,2), C(2,3), D(2,3)
c¢3,1), D(3,1), C(3,2), D(3,2), C(3,3), D(3,3)
c{s,1), DW4,1), C(4,2), D(4,2), C(4,3), D,3)
since J is the innermost index, it varies more rapidly than I.
As another example, consider
READ (2,25) 1,(Cc(J3),J3=1,1)
T™e variable I is read first and its value then serves as an index to

specify the number of data items to be read into array C.

36

If it is desired to read data into an entire
Sary to index that array in the I/0 list. Fory example, .
array A consists of one subscript parameter, varying in t
to 10. Then this READ statement, referring t¢o FORMAT stateme
5,

READ (2,5) A

would cause data to be read into A{1}, A{2),...,81{(1

The indexing of I/0 lists applies to WRITE lists, as wall as READ
lists.

Reading Format Statements

FORTRAN provides the facility for variabi
allowing a FORMAT statement to be read int
using the data in the array as the FORMAT
I/0 statements.

nts by
G e ¢
- subs equent

For example, the statements belcw result in A, B, and arrvay C Vg
read, converted, and stored according to the format specifications read
into the array FMT at object time.

DIMENSION FMT (18)
1 FORMAT (1BAW)
READ (5,1) FMT
READ (5,FMT) A,B,(C(I),I=1,5)

1. The name of the variable format specifi
DIMENS ION statement, even if the array

2. The form of the format codes read intc the FMT L1 :
must take the same form as a source program FORMAT statement,
except that the word FORMAT is omitted (see “The FORMAT
Statement”).

3. If a format code read in at object time contains £ @ ophe s
within a literal field that is defined by apostr« i e
used for output only. If an obiect time format code is to be used
for input and if it must contain a literal field with an internal
apostrophe, the H format code must be used for the literal field
definition.

WRITE STATEMENT

—_ - . e e e e o e e i e o i e
| General Form |
b - S
| WRITE (a, b) list %
‘ !
| where 4 is an unsigned integey constant oy i
| length 4 that represents a data ser yef i
' |
| b is either the statement number o©r array name of the FORMAT |
| statement describing the data beingy written, or a NAMELIST i
| name. i
| list is a series of variable or array names, =8 rated by i
| commas, which may be indexed and incremented ney spe H
i the number of items to be written and the Gy age Locations |
1 from which the data is taken.

L e e = U e e e e e o e e e e e < e]

The WRITE statement may take many different forms. For example, the
list or the parameter b may be omitted.

The three basic forms of the WRITE statement are

WRITE(a,x)
WRITE(a,b)list
WRITE(a)list

WRITE (a,x)

This form is used to write data from the storage locations specified
by the NAMELIST name x into the data set associated with a (see
"READ(a,x)").

Example:
WRITE(6,NAM1)

Explanation:

This statement causes all variable and array names (as well as their
values) that belong to the NAMELIST name, NAM1, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name

1. All variables and arrays and their values belonging to the NAMELIS
name w#ill be written out, each according to its type. The complete
array is written out by columns.

2. The output data will be written such that

a. The fields for the data will be large enough to contain all the
significant digits;

b. The output can be read by an input statement referencing the
NAMEL IST name.

Example: Assume that A is a 3-by-3 array.

NAMELIST/NAM1/A,B,I,D
WRITE (8,NAM1)

Assuming that the output is punched on cards, the format would be:

Output Card Column 2
-

First ENAM1
Second A=3.4, 4.5, 6.2, 25.1,
Third 9.0, -15.2,-7.6, 0.576Ebl2,
Fourth 2.717,B=3.14,1=10,D=0. 378E-15,
Fifth §END

WRITE (a,b) List

This form is used to write data in the data set associated with a

from the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement

38

b, determines the number of items (data) to be written, the locations,
and the form the data will take in the data set.

Example 1:
75 FORMAT (G10, G8, G9)

WRITE (J, 75) A, B, C

Explanation: The WRITE statement above causes output data to be written
in the data set associated with the data set reference number J, from
locations A, B, C, according to the FORMAT statement referred to (state-
ment 75). (Format statements are described in a later section.)

The list may be omitted from the WRITE (a,b) list statement. In this
case, a blank record is inserted, or data is written in the data set
associated with a from the locations in storage occupied by FORMAT sta-
tement b.

Example 2:
98 FORMAT (* HEADING')

WRITE (5,98)

The statements above would cause a blank and the characters H, E, A,
D, I, N, and G in storage to be written in the data set associated with
data set reference number 5.

Example 3:
98 FORMAT (G10, 'HEADING')

-

WRITE (5,98)

Explanation: The statements above would cause a blank record to be
placed in the data set associated with data set reference number 5. No
data is transferred into the data set because there is no list item that
corresponds with format code G10.

WRITE (a) List

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) from the storage locations specified by the variable
names in the list to be written in the data set associated with a.
Since the output data is always in internal form, a FORMAT statement is
not required. The READ (a) list statement is used to retrieve the data
written by a WRITE (a) list statement.

Example:

WRITE (5)A, B, C
Explanation: The statement causes the binary data from the locations

specified by variable names A, B, and C to be written in the data set
associated with data set reference number 5.

Input/Output Statements 39

FORMAT STATEMENT

|
|
i
i
i
|
{
|
|
i
]
!
{
i
-

X FORMAT (C.4Cgs--+oCn/Ca"¢C3" ¢---eCp'/--2)
wher e x is a statement number (1 through 5 digits)

|

{

|

|

i Cy¢Caer--¢Cp and ¢,",¢,",...,C," are format codes which may
| be delimited by one of the separators: comma, slash, or

i parenthesis; these codes specify the length, decimal point
{ (if any), and position of the data in the data set.

|
|
L

The character / is used to separate FORTRAN records.

RO I

The FORMAT statement is used in conjunction with the READ and WRITE
statements to specify the desired form of the data to be transmitted;
the form is varied by the use of different format codes.

The format codes are

G ~-- to trausfer integer, real, complex, or logical data

I -- to transfer integer data

F -~ to transfer real data that does not contain a decimal exponent
D -- to transfer real data that contains a D decimal exponent

E -- to transfer real data that contains an E decimal exponent

L ~- to transfer logical data

Z -~ to transfer hexadecimal data

A -- to transfer alphameric data

Literal -- to transfer a string of alphameric and special characters
H -~ to transfer literal data

X -- to either skip data when reading or insert blanks when writing
T -~ to specify the pesition in a FORTRAN record where transfer of data

is to start
P -~ to specify a scale factor

Any nuomber used in a FORMAT statement, except the statement number or a
literal, must be less than or equal to 255.

USE OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement. The points discussed below are illustrated by
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

2. A FORMAT statement may be used to define a FORTRAN record, as
follows:

a. If no slashes or additiconal parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement (left parenthesis) to the end of the FORMAT
statement f{(right parenthesis). Thus, a new record is read when

Lg

the format control is initiated (left parenthesis); a new reco-
rd is written when the format control is terminated (right
parenthesis).

Example:

---corresponds to 1
FORTRAN record

If slashes appear within a FORMAT statement, FORTRAN records
are defined as starting from the beginning of the FORMAT state-
ment and proceeding to the first slash in the FORMAT statement,
from one slash to the next succeeding slash, or from the 1last
slash to the end of the FORMAT statement. Thus, a new record
is read when the format control is initiated, and thereafter a
record is read upon encountering a slash; a new record is writ-
ten upon encountering a slash or when format control is
terminated.

Example:
X FORMAT (--=-/ --==/ =-==)

<===> <===> <--->

| | |
i | |

each corresponds to 1 FORTRAN record

If more than one level of parentheses appears with a FORMAT
statement, a record is defined by the beginning of the FORMAT
statement and the end of the FORMAT statement. At this point,
the definition of the FORTRAN record continues at the first-
level left parenthesis that is closest to the right of the FOR-
MAT statement and finishes at the end of the FORMAT statement.

Example 1:

0 1 2 2 0
X FORMAT (--- (--- (---)) ---)

< >

e e e >

|

| |

| |

| |

| |

each corresponds t 1 FORTRAN record

Example 2:
0 1 1 1 1 0
x FORMAT (--- (-==) —-== (-==) ---)
o ———— e e >
e >

each corresponds to 1 FORTRAN record

Input/Output Statements 41

(T

When defining a FORTRAN record by a FORMAT statement, it is impor-
tant to consider the original source f{input) or ultimate destina-
tion (output}) of the record. For example, if a FORTRAN record is
to be punched for output, the record should not be greater than 80
characters. For input, the FORMAT statement should not define a
FORTRAN record longer than the actual record in the data set.

Blank cutput records may be introduced or input records may be

ski pped by using consecutive slashes (/) in a FORMAT statement. If
there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1.

Successive items in an I/0 list are transmitted according to suc-
cessive format codes in the FORMAT statement, until all items in
the list are transmitted. If there are more items in the list than
there are codes in the FORMAT statement, control transfers to the
preceding left parenthesis of the FORMAT statement, and the same
format codes are used again with the next record. If there are
fewer items in the list, the remaining format codes are not used.

A forwat code may be repeated as many times as desired by preceding
the tormat code with an unsigned integer constant.

A limited parenthetical expression is permitted to enable repeti-
tion of data fields according to certain format codes within a
longer FORMAT statement. Two levels of parentheses, in addition to
the parentheses required by the FORMAT statement, are permitted.
The second level of parentheses facilitates the transmission of
complex quantities.

When transferring data on input or output, the type of format code
used, type of data, and type of variables in the I/0 list should
correspond.

In the examples below, the output is shown as a printed line. A
carriage control character ‘x° (see "Carriage Control™) is speci-
fied in the FORMAT statement but does not appear in the first print
position of the print line. This carriaqge control character
appears as the first character of the output record on any I/0
medium except the printed line.

G Format Code

where a is optional and is an unsigned inteqger constant, less than

or equal to 255, used to denote the number of times the same
format code is repetitively referenced

w 1is an unsigned integer constant, less than or equal to

255, specifying the total field length

s is an unsigned integer constant specifying the number of
significant digits

g, S s T oty S ey i s st e s

The G format code is a generalized code, in that it may be used to

determine the desired form of data, whether integer, real, complex, or
logical.

42

The .s portion may be omitted when transferring integer or logical
data; if present, it is ignored. When real data is transferred, the w
portion of the G format code includes four positions for a decimal
exponent field.

If the real data, say n, is in the range 0.1<n<10#**s (where s is the
s portion of the format code Gw.s), this exponent field is blank.
Otherwise, the real data is transferred with an E or D decimal exponent,
depending on the length specification (either four or eight storage
locations, respectiwvely) of the real data.

If insufficient positions are reserved by s, the number is rounded to
s digits for output, and truncated to s digits for input. If excessive
positions are reserved by s, zeros are filled in on the right.

For simplification, the following examples deal with the printed
line; however, the concepts developed apply to all input/output media.

Example 1: Assume that the variables A, B, C, and D are real, with
values of 292.7041, 82.43441, 136.7632, and .8081945, respectively.

1 FORMAT ('x',G12.4,G12.5,G12.4,G12.7)
2 FORMAT ('x',G13.4,G13.5,G13.4)
3 FORMAT ('x',G13.4)

-

WRITE (5, n) A, B, C, D

-

Explanation:

a. If n had been specified as 1, the printed output would be (b repre-
sents a blank)

Prinmt position 1 Print position 48
L]

]
bbb292.7bbbbbb82. 434 bbbbbbb136.8bbbb.8081945bbbb

b. If n had been specified as 2, the printed output would be

Print position 1 Print position 39

[] -
bbbb292.7bbbbbbb82. 434bbbbbbbb136. 8bbbb Line 1
bbbl . 80 82bbbb Line 2

It can be seen that by increasing the field width reserved (w),
blanks are inserted.

c. If n had been specified as 3, the printed output would be

Print position 1

-
bbbb232.7bbbb Line 1
bbbb82.43bbbb Line 2
bbbb136 .8bbbb Line 3
bbb0 .8082bbbb Line 4

The same format code was used for each variable in the list.
Each repetition of the same format code caused a new line to be
printed.

Input/Output Statements 43

Example 2: Assume that the variables I, J, K, and L are integer, with

values of 292, 443428, 4908081, and 40018, respectively.

i
2
3

Expla

a.

D.

Ce

FORMAT {'x*,610,2G7,55}
FORMAT (7x°,G6)
FORMAT (*x*,4G10)

-

WRITE (5, a¥ 1, J, ¥, L

-

nation:

1f n had been specified as 1, the printed output would be

Print position 1 Print position 29
& @
bbbbbbb292b443428490808140018 Line 1

The same results would be achieved, if FORMAT statement 1 had been
wr itten as

FORMAT {("x*,G10, G7, G7, G5}

Note that the .s portion of the G format may be omitted when trans-
mitting integer data.

If n had been specified as 2, the printed output would be

Print position 1

E

bbb292 Line 1
443428 Line 2
A EEEk Line 3
D40018 Line 4

Mote that the second format code G6 is an incorrect specification
for the third wvaviable ¥, i.e., 4908081. The field will be filled
with asterisks.

It n had been specified as 3, the printed output would be

Print position 1 Print position 40
L] -
bbbbbbbZ92Lbbbil34 280bbu908081bbbbb4 0018 Line 1

From the above example, it can be seen that increasing the fieid
width w improves readability.

Example 3: Assune

N N

4y

Variable Type Length Value
I Integer 2 292
A Real g 471.93
B Real 4 81.91
D Real 8 6.9310072
C Compl ex 8 (2.1,3.7)
L Logical 1 . TRUE.

FORMAT {("x°,G63,2G9.2,613.7,2G8.2,G3)
FORMAT ("x' ,G3/'x"®,2G610.2/"'x°,69.1/"x"*,268.2,G3)
FORMAT (/7'x®,G3,269.2//'%x",G13.7,2G8.2,G3///)

.

WRITE (5,n) I,A,B,D,C,L

-«

Explanation:

a.

If n has been specified as 1, the printed output would be

Print position 1 Print position 53
L] "

292b0.47Eb03bb82.bbbbb6.931007bbbbb2. 1bbbbb3. 7bkbbbbT
When complex data is being transmitted, two format codes are
required. The real and imaginary parts are each treated as separ-
ate real numbers, and the parentheses and comma are not printed as
part of the output.
If n has been specified as 2, the printed output would be

Print position 1

L]

2982 Line 1
bb0.47Eb03bbk82.bbbb Line 2
bbb7 .bbbb Line 3
b2.1bbbbb3. 7TbbbbbbT Line 4

The use of the slash (/) to separate twn format codes causes the
data not yet printed to be printed on a new line. If the output
data is to be punched on cards, the slash specifies that the fol-
lowing data will be punched on another card.

If n has been specified as 3, the printed output would be

Print position 1

(blank line) Line 1
{blank line) Line 2
292b0.47Eb03bb82 .bbbb Line 3
(blank line) Line 4
16.931007bbbbb2. 1bbbbb 3. 7TbbbbbbT Line 5
{blank line) Line 6
{blank line} Line 7
{blank line) Line 8

Note that the two consecutive slashes appear ing at the beginning
and the three at the end of the series of format codes cause blank
lines to be inserted as shown. However, n consecutive slashes
appearing elsewhere in a FORMAT statement cause the insertion of
n-1 blank lines, as shown in line 4.

The principles illustrated in the previous output examples also apply

when using the READ statement on input. Also, there are further consi-
derations when using the FORMAT statement on input or output.

1.

2.

When reading real input data with a G format code, a decimal point
mist be included.

The use of additional parentheses (up t©c two levels) within a FOR-

MAT statement is permitted to enable the user to repeat the same
format code when tr nsm tting data. For example,

Input/Cutput Statements 45

10 FORMAT (2(G10.6,G7.1),GU4)
is equivalent to
10 FORMAT (G10.6, G7.1, G10.6, G7.1, Gu)

3. If a miltiline listing is desired, with the first two lines to be
printed according to a special format and all remaining lines
according to another format, the last format code in the statement
should be enclosed in a second pair of parentheses. For exanmple,

FORMAT (*'x*,G2,2G3.1/'x',G10.8/("x*,3G5.1))

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the last left
parenthesis. Thus, the printed output would take the form

G2,63.1,53.1
G10.8
G5.1,G5.1,G5.1
G5.1,G5.1,G5.1

As anocther example, consider the statement
FORMAT (°*x*',G2/2(*x*,G3,G6.1),G9.7)

If there are 13 data items to be transmitted, the printed output on
a WRITE statement would take the form

G2
G3,66.1,'x"',63,66.1,G9.7
G3,G6.1,'x",G3,G6.1,G9.7
G3,G6.1

Numeric Format Codes (I,F,E,D, and Z)

Five types of format codes are available for the transfer of numeric
data. These are specified in this form

— b
| General Form |
r -t
| alw |
| aFw.d I
| aEw.d |
| abw.d |
| aZw {
| |
| where a is optional and is an unsigned integer constant, less than |
| or equal to 255, used to denote the number of times the same |
| format code is repetitively referenced I
{ |
| 1, F, E, D, and Z are format codes |

|
: w is an unsigned integer constant less than or equal to 255, |
i specifying the total field length of the data |
| |
{ d is an unsigned integer constant specifying the number of |
| decimal places to the right of the decimal point, i.e., the |
| fractional portion |
O, —_—— e e e e e e e e e e e e e e . e e e e e e e e e e . e e e e e 3

4o

For purposes of simplification, the following description of format
codes deals with the printed line. The concepts developed apply to all
input/output media.

1 Format Code

The I format code is used to transmit integer data.

If the number of characters to be transmitted is greater than w, on
input, the excess rightmost characters are lost; on output, the entire
field, w characters, will be filled with asterisks.

If the number of characters is less than w, on input, leading blanks
are not significant; embedded and trailing blanks are treated as zeros.
On output, the leftmost nositions are filled with blanks.

If the quantity is negative, the position preceding the leftmost
digit contains a minus sign. In this case, an additional position
should be specified in w for the minus sign. If w is such that no space
exists for the minus sign, the entire field, w characters, will be
filled with asterisks.

The following examples show how each of the quantities on the left is
printed according to the format code I3 (b represents a blank).

Internal Value Printed Value

721 721

~721 L {incorrect because of insufficient
specification)

-12 -12

568114 X (incorrect because of insufficient
specification)

0 bb0

-5 b-5%

9 bb9

F Format Code

For F format codes which are used in conjunction with the transfer of
real data, w is the total field length reserved, and 4 is the number of
places to the right of the decimal point (the fractional portion) . This
differs from the G format code, where the number of significant digits
is specified. The total field length reserved must include sufficient
positions for a minus sign (if any) and a decimal point. The sign, if
negative, is printed.

If insufficient positions are reserved by d, the fractional portion
is rounded to the dth position. 1If excessive positions are reserved by
d, zeros are filled in on the right. The integer portion of the number
is handled in the same manner as numbers transmitted by the I format
code.

The following examples show how each of the guantities on the left is
printed according to the format code FS5.2.

Internal Value Printed value

12.17 12.17

-41.16 *EhES (inocorrect, insufficient
specification)

-.2 -0.20

7.3542 b7.35 (last two digits of accuracy lost;

insufficient specification)

-1. -1.00

9.03 b9.02

187 .64 *hhdw (incorrect; insufficient

specification)

Input/Output Statements 47

D and E Format Codes

The D and E format codes are used in conjunction with the transferral
of real data that contains a D or E decimal exponent, respectively. A D
format code indicates a field length of 8; an E code indicates a length
of 4. For D and E format codes, the fractional portion is again indi-
cated by d. The w includes field 4, spaces for a sign, the decimal
point, plus four spaces for the exponent.

For output, space for at least one digit preceding the decimal point
should be reserved. 1In general, w should be at least equal to d+7. If
insufficient positions for d are supplied, the fraction is rounded to
the dth position. If excessive positions are supplied, zeros are added.

The exponent is the power of 10 by which the number must be multip-
lied to obtain its true value. The exponent is written with a D or an
£, followed by a space for the sign and two spaces for the exponent
(maximum is 75).

The following e:amples show how each of the quantities on the left is
printed according to the format codes (D10.3/E10.3).

Internal Value Printed Value

238. b0.238Db03

~.002 -0.200E-02

.00000000004 b0.400D-10

~21.0057 ~0.210Eb02 (last three digits of accuracy

lost; insufficient field width)

when reading input data, the start of the exponent field must ke
marked by an E or, if that is omitted, by a ¢+ or - sign (not a blank}.
Thus, E2, E+2, +2, +02, EO02, and E+02 all have the same effect and are
permissible decimal exponents for input.

Numbers for E, I', and F format oodes need not have their decimal
point punched. If it is not present, the decimal point is supplied by
the d portion of the format code. If it is present in the card, its
position overrides the position indicated by the 4 portion of the format
code.

Z Format Code

[—————— PO p— PR,

| General Form

T+
]
3
f
§
i
|
|
I
|
[
!
[
i
I
i
i
f
|
a
l
t
|
i
i
|
i
a

where a is optional and is an unsigned integer constant, less than
or equal to 255, used to denote the number of times the same
format code is repetitively referenced

w is an ursigned integer constant, less than or equal to 255,
specifyine the number of characters of data

o ot s A s T s s e, oy o s

The Z format code is used in conjunction with the transfer of hexade-
cimal numbers.

One storage location contains two hexadecimal digits. In read and
write operations, padding and truncation are on the left. However, in a
read operation, the padding character is a hexadecimal zero; in a write
operation, it 1is a blank.

If an eight-byte internal field with the hexadecimal pattern
*0123456789ABCDEF' is required, the external record could contain the

L5

characters 123456789ABCDEF and would be read by a 215 format code. The
high-order zero is automatically provided as the padding character.

L Format Code

e

| General Form |

* - T e 1

L !

|

|

| where a is optional and is an unsigned integer constant, less than
| or equal to 255, used to denote the number of times the same
| format code is repetitively referenced
|

|

|
L

w is an unsigned integer constant less than or equal to 255,
specifying the mumber of characters of data

e s Ut S sy S g,

logical variables may be read or written by means of the format code
Lw.

On input, the first T or F encountered in the next w characters of
the input record causes a value of .TRUE. or .FALSE., respectively, to
be assigned to the corresponding logical variable. If the field w con-
sists entirely of blanks, a value of .FALSE. is assumed.

On output, a T or an F is inserted in the output record corresponding

to the value of the logical variable in the I/0 list. The single
character is preceded by w - 1 blanks.

A Format Code

- ———— e e e e e e e »
General Form i
ahw i

i
where a is optiocnal and is an unsigned integer constant, less than |}

i
or equal to 255, used to denote the number of times the same |
format code is repetitively referenced i

!
w is an unsigned integer constant less than or egual to 25%, |
specifying the number of characters of data !

- e . s e e s . et ep— D e 1

b

The format code Aw is used to read or write alphameric data. If w is
equal to the number of characters corresponding to the length specifica-
tion of each item in the I/0 list, w characters are read or written.

On input, if w is less than the length specification of each item in
the I/0 list, w characters are read and the remaining rightmost charac-
ters in the item are replaced with blanks. If w is greater than the
length specification, the number of characters equal tc the difference
between w and the length specification are skipped, beginning with the
leftmost character, and the remaining characters are read.

On output, if w is less than the length specification of the item in
the I/0 list, the printed line will consist 0f the leftmost w charaats
of the item. If w is greater than the length specification, the printed
line will consist of the characters right-justified in the field and

will be preceded by blanks. Therefore, it is important toc always alioc-
ate enough storage area “o handle the characters being written {see "The

Type Statements®).

Input/Output Statements 49

Example 1: Assume that the array ALPHA consists of one subscript param-
eter ranging from 1 through 20. The following statements could be writ-
ten to copy a record from one data set to another.

-

10 FORMAT (20A4)

-

READ (5,10) (ALPHA(I),I=1,20)

WRITE (6,10) (ALPHA(I),I=1,20)

Explanation: The READ statement would cause 20 groups of characters to
be read from the data set associated with data set reference number 5.
Each group of four characters would be placed into the 20 storage loca-
tions starting with ALPHA(1) and ending with ALPHA(20). The WRITE sta-
tement would cause the 20 groups of four characters to be written on the
data set associated with data set reference number 6.

Example 2: As another example, consider all the variable names in the
list of the READ statement, below, to have been explicitly specified as
REAL, and the array CONST to have been specified as having one subscript
parameter ranging from 1 through 10. Then assume this input data is
associated with data set reference number 5

LBCDE...XY251234567890b

where ... represents the alphabetic characters F through W, and b means
a blank. These statements could be written

-

10 FORMAT (27A1,10A1,Al1)
20 FORMAT ('x*,6(7A1,5X))

READ (5,10}

a,B,C,D,E,F,G,H,I,
1 J,K,L,M,N,0,P,Q,R,
2 s,T,0,V,%W,X,Y,2,5,
3 (CONST (IND),IND=1, 10), BLANK
DO S0 INDEX = 1,5
WRITE (6,20)G,R,0,U,P,BLANK,CONST (INDEX),
1 B,L,0,C,K,BLANK,CONST(INDEX),
2 F,I,E,L,D,BLANK,CONST(INDEX),
3 G,R,0,U,P,BLANK,CONST(INDEX+5),
4 B,L,0,C,K,BLANK,CONST(INDEX+5),
5 F,I,E,L,D,BLANK,CONST(INDEX+5)

50 CONTINUE

-

50

Explanation: The READ statement would cause the 37 alphameric charac-
ters and the blank in the data set associated with data set referemnce
number 5 to be placed in the storage locations specified by the variahle
names in the READ list. Thus, the variables A through Z receive the
values A through 2, respectively; the variahle $ receives the value §$;
the numbers 1 through 9, and 0, are placed in the 10 fields in stocrage
starting with CONST(1) and ending with CONST(10); and the variable BLANK
receives a blank. The WRITE statement within the DO loop would cause
the follosing heading to be printed. A subsequent WRITE statement
within the DC loop could then be written to print the corresponding out-
put data.

Print Position 1 Print Position 67
[] L]
éROUP 1 BLOCK 1 FIELD 1 GROUP 6 BLOCK 6 FIELD é
: : (outpu; data) - - -
GROU; 2 BLOEK 2 FIE;D 2 GROGP 7 BLOEK 7 FIE;D 7

- - (output data) - - -

- - - -— -

- - - “ - -

- - - - - -

GROUP 5 BLOCK 5 FIELD 5 GRGUP] BLOCK 0 FIELD O

- - (output data) - - -

Literal Data in a Format Statement

Literal data consists of a string of alphameric and special charac-
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be less than or equal to 255. For example:

25 FORMAT (* 1970 INVENTORY REPORT')

An apostrophe within the string is represented by two successive apo-
strophes; for example, the characters DON'T are represented as:

DON''T

The effect of the literal format code depends on whether it is used
with an input or output statement.

INPUT

A number of characters, equal to the number of characters between the
apostrophes, are read from the designated data set. These characters
replace, in the FORMAT statement, the characters within the apostrophes.
For example,

-

5 FORMAT (° HEADINGS')

-

READ (3,5)

-
-

-

Input/0Output Statements 51

would cause the next nine characters to be read from the data set asso-
ciated with data set reference number 3; these characters would replace

the blank and the eight characters in HE A D I N G S in the FORMAT
statement.

OUTPUT

All characters (including blanks) within the apostrophes are written
a4s part of the output data; thus,

-

«

5 FORMAT {(* THIS IS ALPHAMERIC DATA")

-

-

WRITE (2,5%5)

-
-

-

would cause the following record to be written on the data set asso-
ciated with the data set reference nunmber 2

Is ALPHAMERIC DATA
where & andicates a blank.

g4 Format

General Form

w is an unsigned integer constant less than or equal to 255,
specifying the number of characters following H

e S e S I e
: i |

{

! £

| oy

i 77

| 3
(t

L-.-._-»--—qu.-—-l

Th+ H format code is used in conjunction with the transfer of literal
data.

Tne format code wH is followed in the FORMAT statement by w (w<255)
"haracters; for example,

5 FORMAT (31H THIS IS ALPHAMERIC INFCORMATION)

Blanks are significant and must be included as part of the count w.

The efifect of wH depends on whether it is used with input or output.

input, w characters are extracted from the input record and
lace the w characters of the literal data in the FORMAT
statement.

o

[{
¥

L

On output, the w characters following the format code are written
as part of the output record.

A _Forwmat

General Form |

,N-Mww_Mw-am_v-_-wﬂﬁmﬁwv,-_-w__h_w_“,~_~--__-~—___-__»-___g_{

ey % 15 an unsigned integer constant less than or equal to 255,
pecifying the number of blanks to be inserted on output or |
the nunber of characters to be skipped on input |

'
|
!
!
i

Wwhen the wX (w<255) format code is used with a REARD statement (i.e.,
on input), w characters are skipped before the next data item is read
in. For example, if a card has six 10~-column fields of integer quanti-
ties, and the second quantity is not to be read, then

5 FORMAT (110,10X%,4110)
may be used with the appropriate READ statement.

When the wX format code is used with a WRITE statement (i.e., on out-
put), w characters are left blank. Thus, the facility for spacing
within a printed line is available. For example,

10 FORMAT ('x* ,3(Fé6.2,5X))
may be used with an appropriate WRITE statement to print this line

123.45bbbbb817.32bbbbh524 .67 bbbbb

T Format Code

' 1
} General Form |
pm e 4
| Tw |
| |
| where w is an unsigned integer constant less than or equal tc 255, |
| specifying the position in a FORTRAN record where the |
! transfer of data is to begin |
e e e e et e e e et e e ot o e e e o e it e e e e e e . —a

Input and output may begin at any position by using the format code
Tw (w<255). Only when the output is printed does the correspondence
between w and the actual print position differ. In this case, because
of the carriage control character, the print position corresponds to
w-l, as in

5 FORMAT (T40, *1970 INVENTORY REPORT' T80, °'DECEMBER® T1, ' PART
NO. 10095*)

The FORMAT statement above would result in this printed line

Print Print Print
Position 1 Position 39 Position 79
] - L]

PART NO. 10095 1964 INVENTORY REPORT DECEMBER

These statements

5 FORMAT (T40, ' HEADINGS')

READ (3,5)
would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
HEADIM NG S in the FORMAT statement.

The T format code may be used in a FORMAT statement with any type of
format code. For example, this statement is valid

5 FORMAT (T100, F10.3, TS50, E9.3, Tl, ® ANSWER IS')

Input/Output Statements 53

Scale Factor - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a format code.

The scale factor is defined for input and output as
external quantity = internal quantity x 10#*#*scale factor

For input, when scale factors are used in a FORMAT statement, they
have effect only on real data which does not contain an E or D decimal
exponent. For example, if input data is in the form xx.xxxx and, it is
to be used internally in the form .xxxxxx, the format code used to
effect this change is 2PF7.4.
INPUT

As another example, consider this input data

27bbb-93.2094bb-175.8041bbbb55.3647

where b represents a blank.

These statements

5 FORMAT (I2,3F11.4)

READ (6,5 K,A,B,C
would cause these variables in the list to assume these values

K : 27 B : —-175.8041
: -93.2094 C : 55.3647

These statements

S FORMAT (I2,1P3F11.4)

READ (6,5) K,A,B,C
would cause these variables in the list to assume these values

K : 27 B : -17.5804
A : -9.3209 C : 5.5364

These statements

5 FORMAT (12,-1P3F11.4)

READ (6,5) K,A,B,C

would cause the variables in the list to assume these values

K : 27 B : -1758.041x
A : -932.094x C : 553.647x

where x represents an extraneous digit.

54

OUTPUT

Assume that the variables K, A, B, and C have these values

K 1 27
A 3 -93.2094

B : -175.8041
C 1 55.3647
these statements

S5 FORMAT (I2,1P3F11.4)

-

WRITE (4,5) K,A,B,C

would cause the variables in the list to output these values

K s 27 B : -1758.041x
A : -932.094x C : 553.6u47x

where x represents an extraneous digit.
These statements

5 FORMAT (I2,-1P3Fi1.4)

WRITE (4,5) K,A,B,C
would cause the variables in the list to output these values

K : 27 B : -17.5804
A : -9.3209 C : 5.5364

For output, when scale factors are used, they have effect only on real
data. However, this real data may contain an E or D decimal exponent.

A positive scale factor used with real data that contains an E or D
decimal exponent increases the number and decreases the exponent. Thus,
if the real data was in a form using an E decimal exponent, and the sta-
tement FORMAT (1X,I2,3E13.3) used with an appropriate WRITE statement
resulted in this printed line

27bbb-0 .932EDbO 2bbb~0.175Eb03 bbbb0.553Eb02

then the statement FORMAT (1X,I2,1P3El13.3) used with the same WRITE sta-
tement would result in this printed output

27bbb~9.320EbO1bbb-1.758Eb0 2bbbb5. 536Eb0OL

The scale factor is assumed to be zero if no other value has been
given. However, once a value has been given, it will hold for all for-
mat codes (i.e., those that correspond to real data) following the scale
factor within the same FORMAT statement. This also applies to format
codes encleosed within an additional pair of parentheses. Once the scale
factor has been given, a subsequent scale factor of zero in the same
FORMAT statement must be specified by 0OP.

carriage Control

When records written under format control are prepared for printing,
the following convention for carriage control applies:

First Character Cary ‘age Advance Before Printing
Blank One .iine

0 Two lines

1 To first line of next page

+ No advance

Input/Output Statements 55

The first character of the output record may be used for carriage
control and does not appear in the first print position of the print
line. However, it appears in all other media as data.

Carriage control can be specified in either of two forms of literal
data. These statements would both cause two lines to be skipped before
printing

10 FORMAT (*0°', 5(F7.3))
10 FORMAT (1HO, 5(F7.3))

ADDITIONAL INPUT/OUTPUT STATEMENTS

The statements END FILE, REWIND, and BACKSPACE are used to control
the data sets, as described in the following text.

END FILE Statement

T T e - e |
| General Form]
R ——— e - ——
{ END FILE a |
i |
| where a 1s an unsigned integer constant or integer variable of |
| length 4 that represents a data set reference number i
e e e e e e e e e e e e e et e e e e e e e e e e -3

The END FILE statement defines the end of the data set associated
with a. A subsequent WRITE statement defines the beginning of a new
data set.

REWIND Statement

ro - - S — - -
! General Form |
e R .
| REWIND a |
i |
| whexe a is an unsigned integer constant or integer variable of |
| length 4 that represents a data set reference number |
S ———— _— _— -1

The REWIND statement causes a subsequent READ or WRITE statement ref-
erring to a to read data from or write data into the first data set
associated with a. REWIND causes a logical rewinding to the beginning
of the first data set associated with the specified data set reference
nunber; it does not always cause a physical rewinding of the tape. If,
however, the specified data set is the first on the tape, physical, as
well as logical, rewinding occurs.

BACKSPACE Statement

| S e I |
i General Form |
S e e e e ~
{ BACKSPACE a [
| |
! where a is an unsigned integer constant or integer variable of |
{ length 4 that represents a data set reference number |
| IS - e e e e - S |

The BACKSPACE statement causes the data set associated with a to bac-
kspace one record. If the data set associated with a is already at its
beginning, execution of this statement has no effect.

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate storage locations for
this data. Specification statements describing data may appear anywhere
in the socurce program, but must precede any statements which refer to
that data. The specification statements are the type statements IMPLI-
CIT, INTEGER, REAL, COMPLEX, and LOGICAL, and the DIMENSTON, COMMON, and
EQUIVALENCE statements.

THE TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement and the Explicit specification statements (INTEGER, REAL, COM-
PLEX, and LOGICAL).
The IMPLICIT specification statement enables the user to

1. Specify the type of a group of variables ox arrays according to the
initial character of their names.

2. Specify the amount of storage to be allocated for each variable
according to the associated type.

The EFxplicit specification statements enable the user to

1. Specify the type of a variable or array according to their particu-
lar name.

2. Specify the amount of storage to be allocated for each variable
according to the associated type.

3. Specify the dimensions of an array.
4. Assign initial data values for variables and arrays.

IMPLICIT Statement

et e e e e o e e e . o - i e e ey

General Form |

_________________ - R .mﬁw_mwum”m%m“wmwmm_w“_ﬁﬂuww+

IMPLICIT type*si{a,,d8,5--+)¢---,typersia, a,,...) }

—

where type represents one of the following: INTEGER, REAL, COM-
PLEX, or LOGICAL

*s is optional and represents one of the permissible length
specifications for its associated type

a,, 4,,.-.. represent single alphabetic characters each
separated by commas, or a range of characters (in alphabetic
sequence) denoted by the first and last characters of the
range separated by a minus sign (e.q., (A-D))

[—— e e e T i e Wt i min e

t
!
[
|
|
{
|
f
|
!
|
i)

The IMPLICIT statement, if specified, should be the first statement
in a main program, and the second statement in a FUNCTIOCN, SUBROUTINE,
or BLOCK DATA subprogram.

The IMPLICIT type statement enables the user to declare the type of
the variables appearing in his program (i.e., integer, real, complex, or

Specification Statements 57

logical) by specifying that variables beginning with certain designated
letters are of a certain type. Furthermore, the IMPLICIT statement
allows the programmer to declare the number of locatiocns to be allocated
for each specified variable in a group. The types that a variable can
assume, and the permissible lengths are

Type Length Specification

INTEGER 2 or 4 (standard length is 4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is 8)
LOGICAL 1 or 4 (standard length is 4)

For each type there is a corresponding standard length specification.
If this standard length specification (for its associated type) is
desired, the *s may be omitted in the IMPLICIT statement. That is, the
variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, the *s5 must be included within
the IMPLICIT statement.

Example 1:
IMPLICIT REAL (A-H, O-Z,5), INTEGER (I-N)

Explanation: All variables beginning with the characters I through N
are declared as INTEGER. Since no length specification was explicitly
given (i.e., the *s was omitted), four storage locations (the standard
length for INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H,
O through Z, and $) are declared as REAL with four storage locations
allocated for each.

Note that the statement in Example 1 performs the same function of
typing variables as the predefined convention (see "Type Declaration by
the Predefined Specification®).

Example 2:
IMPLICIT INTEGER*2(A-H), REAL#8(I-K), LOGICAL(L,M,N)

Explanation: All variables beginning with the characters A through H
are declared as integer, with two storage locations allocated for each.
All variables beginning with the characters I through K are declared as
real, with eight storage locations allocated for each. RAll variables
peginning with the characters L, M, and N are declared as logical, with
four locations allocated for each.

Since the remaining letters of the alphabet (O through Z and $) were
left undefined by the IMPLICIT statement, the predefined convention will
take effect. Thus, all variables beginning with the characters ©
through Z and § are declared as real, each with a standard length of
four locations each.

bExample 3:
IMPLICIT COMPLEX*16(C-F)

kxplanation: All variables beginning with the characters C through ¥
are declared as complex, each with eight storage locations reserved for
the real part of the complex data and eight storage locations reserved
for the imaginary part. The types of the variables beginning with the
characters A, B, G through Z, and $ are determined by the predefined
convent ion.

28

Explicit Specification Statements

r ——————r
| General Form !
b —-—
| type*s a*s, (k,)/x,/,b*s, (k,)/x,/,...,2%8 (k)/x / |
i |
| where Type is INTEGER, REAL, LOGICAL, or COMPLEX }
| |
| *g ,*s %3 ,,...,%s are optional; each s represents one of
= =1 =2 =n i —

H the permissible length specifications for its associated |
: £xee |
| a,b,...,z represent variable, array, or function names (see |
i " SUBPROGRAMS") |
| |
} (k),(k;),...,(k,) are optional; each k is composed of 1 }
| through 7 unsigned integer constants, separated by commas, |
| representing the maximum value of each subscript in the |
i array; each k may be an unsigned integer variable only when |
| it appears in a Type statement in a subprogram i
| |
i /X, / ¢/X,/ 4.+ 4/%,/ are optional and represent initial data |
s values —j

The Explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of a variable or array by its name, rather
than by its initial character. This differs from the other ways of spe-
cifying the type of a variable or array (i.e., the predefined convention
and the IMPLICIT statement). Also, the information necessary to alloc-
ate storage for arrays (dimension information) may be included within
the statement. However, if this information does not appear in an
Explicit specification statement, it must appear in a DIMENSION or COM-
MON statement (see "DIMENSION Statement™ or "COMMON Statement").

Initial data values may be assigned to variables or arrays by use of
/x,.,/, where x_1is a constant or list of constants separated by commas.
This set of constants may be in the form "r* constant®, where r is an
unsigned integer, called the repeat constant.

No element may have more than one initial value given in the same
program. A function name may not have an initial value assigned to it.
An initially defined variable or a variable of an array may not be in
blank common; in a labeled common block, they may be initially defined
only in a BLOCK DATA subprogram. Initial data values may not be
assigned to dummy segments appearing in a FUNCTION, SUBROUTINE, or ENTRY
statement.

In the same manner in which the IMPLICIT statement overrides the pre-
defined convention, the Explicit specification statements coverride the

IMPLICIT and predefined convention. If the length specification is
omitted (i.e.,*s), the standard length per type is assumed.

Example 1:
INTEGER*2 ITEM/76/, VALUE
Explanation: This statement declares that the variables ITEM and VALUE

are of type integer, with two storage locations reserved for each.
Also, the variable ITEM is initialized to the value 76.

Example 2:
COMPLEX C,D/(2.1,4.73/,E*16
Explanation: This statement declares that the variables C, D, and E are

of type complex. Since no length specification was explicitly given for

Specification Statements 59

C and D, the standard length is assumed. Thus, C and D have eight
storage locations reserved for each (four for the real part, four for
the imaginary part) and D is initialized to the value (2.1,4.7). 1In
addition, 16 storage locations are reserved for the variable E. Thus,
if a length specification is explicitly written, it overrides the
assumed standard length.

Example 3:
REAL*8 ARRAY, HOLD, VALUE#$4, ITEM(5,5)

Explanation: This statement declares that the variables ARRAY, HOLD,
VALUE, and the array named ITEM are of type real. In addition, it
declares the size of the array ITEM. ARRAY and HOLD have eight storage
locations reserved for each; VALUE has four locations reserved; and ITEM
has 200 storage locations reserved (eight for each variable in the
array). Note that when the length is associated with the type (e.g.,
REAL*8), the length applies to each variable in the statement unless
explicitly overridden (as in the case of VALUE#*4).

Example 4:
REAL A(5,5)/20#6.9E2,5%1.0/, B(100)/100%0.0/,TOAD*8(5)/5%0.0/

Explanation: This statement declares the size of each array, A and B,
and their type (real). The array A has 100 storage locations reserved
(four for each variable in the array); the array B has 400 storage loca-
tions reserved (four for each variable). Also, the first 20 variables
in the array A are initialized to the value 6.9E2 and the last five
variables are initialized to the value 1.0. BAll 100 variables in the
array B are injtialized to the value 0.0. The array TOAD has 40 storage
locations reserved (eight for each variable). Also, each variable is
initialized to the value 0.0.

Example 5:
REAL A/Z1234CAF9/,B

Explanation: This statement declares that the variables A and B are of
type real, each with four storage locations reserved. Also, variable A
is initialized to 1234CAF9 by using the hexadecimal constant. Note that
the maximum number of digits allowed is dependent upon the length speci-
fication of the variable being initialized. If the number of digits is
greater than the maximum allowed, the leftmost hexadecimal digits are
truncated; if less than the maximum, hexadecimal zeros are supplied on
the left (see "Hexadecimal Constants®).

ADDITIONAL SPECIFICATION STATEMENTS

DIMENSION Statement

General Form

DIMENSION a ,(k,),a,(k,), a;(k,),...,a, (k)

|
|
-

——————e L

where a,, 23,, 2;4--+, @, are array names

ki» kv k;ye-.-,k, are each composed of 1 through 7 unsigned
integer constants, separated by commas, represerting the
maximum value of each subscript in the array; k, through k,
may be integer variables of length 4 only when they appear
in a DIMENSION statement within a subprogram.

._-———-—--——-———---'-r-.—j

,.
|
|
|
l
i
|
t
|
|
!
{
|
|
|
|
|
|
|
|
|
|
|
|
i
I
|
|
i
|
|
1
1
|
|
|
-

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSICR statement. The follow-
ing examples illustrate how this information may be declared.

Examples:

DIMENSION A(10), ARRAY (5,5,5,5,5 , LIST(10,100)
DIMENSION B(25,50),TABLE(25,25,25)

Adjustable Dimensions

The previous examples showed that the maximum value of each subscript
in an array was specified by a numeric value. These numeric values
(maximum value of each subscript) are known as the absolute dimensions
of an array and may never be changed. However, if an array is used in a
subprogram {see "Subprograms®™) and is not in Common, the size of this
array does not have to be explicitly declared in the subprogram by a
numeric value. That is, the Explicit specification statement, appearing
in a subprogram, may contain integer variables that specify the size of
the array. When the subprogram is called, these integer variables
receive their values from the calling program. Thus, the dimensions
{size) of a dummy array appearing in a subprogram are adjustable and may
change each time the subprogram is called.

The absolute dimensions of an array must be declared in a calling
program. The adjustable dimensions of an array, appearing in a subpro-
gram, should be less than or equal to the absclute dimensions of that
array, as declared in the calling program.

The following exampie illustrates the use of adjustable dimensions:

Example:
Calling Program Subprogram
REAL*8 A({(5,5) SUBROUTINE MAPMY(...,R,L,M,...)
CALL MAPMY(...,R,2,3,...) REAL#8... ,R{(L,M),...

pO 100 I=1.L

@

Explanation: The statement REAL#*8 A(5,5) appearing in the calling pro-

gram declares the absolute dimensions of the array A. When the subrou-

tine MAPMY is called, the dummy arqument R assumes the array name A, amd
the dummy arguments L and M assume the values 2 and 3, respectively.

The correspondence of the subscripted variables of the arrays A and R
is shown in the following example.

R(1,1) R(2,1) R(1,2) R(2,2) R(1,3) R(2,3)

A(1,1) A(2,1) A(3,1) A(4,1) A(S5,1) A(1,2) A(2,2) ...
A(1,2) A(2,2) A(3,2) A(4,2) A(5,2)

A(1,3) A{2,3) A(3,3) A(4,3) A(5,3)

A(1,4) A(2,4) A(3,u™ A(4,4) A(5,U4)

a(1,5) A(2,%) Aa(3,5. A(4,5) A(5,5)

Specification Statements 61

Thus, in the calling program, the subscripted variable A(1,2) refers to
the sixth subscripted variable in the array A. However, in the subpro-
gram MAPMY the subscripted variable R(1,2) refers to the third sub-
scripted variable in the array A, which is A(3,1). This is so because
the dimensions of the array R, as declared in the subprogram, are not
the same as those in the calling program.

If the absolute dimensions in the calling program were the same as
the adjusted dimensions in the subprogram, the subscripted variables
R(1,1) through R(5,5) in the subprogram would always refer to the same
storage locations as specified by the subscripted variables A(1,1}
through A(5,5) in the calling program, respectively.

The numbers 2 and 3, which became the adjusted dimension of the dummy
array R, could also have been variables in the argument list of the cal-
ling program. For example, assume that this statement was in the cal-
ling program:

caLL MapMyYy (...,A,I,J,...)

Then, as long as the values of I and J were previously determined, the
arguments may be variables. Also, the variable dimension size may be
passed through more than one level of subprograms; for example, within
the subprogram MAPMY could have been a call statement to another subpro-
gram in which dimension information about A could have been passed.

if an array has a variable dimension, that array name must be a dummy
variable (i.e., must appear in a FUNCTION, SUBROUTINE, or ENTRY state-
ment). The variable dimension itself can be a dummy variable or can
appear in a COMMON statement.

COMMON Statement

- ——

| General Form

COMMON /x/a (k) ,blk,),.../x/clk,),dtk), ..

where a,b,...,c,4... are variable or array names

|
|
|
|
| through seven unsigned integer constants, separated by com—
| mas, representing the maximum value of each subscript in the
| array

|

|

|

|

L

/xr/ ... represent optional common block names consisting of
one through six alphameric characters, the first of which is
alphabetic. These names must always be embedded in slashes

- - ————d

A
I
i
|
I
{
ki +K,s---k;,k ... are optional and are each composed of one |
|
|
|
!
]
|
|

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statement

COMMON TABLE
and a second program contains the statement
COMMON LIST

the variable names TABLE and LIST refer to the same storage locations.

62

If the main program contains the statements:

REAL A,B,C
COMMON A,B,C

and a subprogram contains the statements:

REAL X,Y,Z
COMMON X,Y,Z

A.shares the same storage location as X; B shares the same storage loca-
tion as ¥Y; and C shares the same storage location as 2.

Consider the following examples:

Example 1:
Calling Program Subprogram
. SUBROUTINE MAPMY (...)

- -

»

COMMON A, B, C, R(100)

REAL A,B,C COMMON X, ¥, 2, S(100)
INTEGER R REAL X,Y,2

- INTEGER S
CALL MAapMY (...) .

rxplanation: In the calling program, the statement COMMON A,B,C,R(100)
would cause U412 storage locations (four locations per variable) to be
reserved in this manner

T T L 4 -
Beginning | A | B | C | Layout of
of common | 4 locations | 4 locations | 4 locations | storage
area a | | |

b p-—me + 1

} R(1) | e < e i R(100) |

| 4 locations | | # locations |

' i ——t |

The statement COMMON X, Y, 2, S(100) would then cause the variables
X, ¥, 2, and S(1)...5(100) to share the same storage space as A, B, C,
and R(1}...R{100).

The example above shows that COMMON statements may be used to func-
tion as a medium to implicitly transmit data fram the calling program to
the subprogram. That is, values for X, Y, 2, and S(1)...S(100), because
they occupy the same storage locations as A, B, C, and R{(1)...RQ00), do
not have to be transmitted in the arqument list of a CALL statement.
Arguments passed through COMMON must follow the same rules of presenta-
tion with regard to type, length, etc., as arquments passed in a list
(see "SUBPROGRAMS").

Example 2: Assume COMMON is defined in a main program and three subpro-
grams as

Main program -- COMMON A,B,C
Subprogram 1 -~ COMMON D,E,F
Subprogram 2 -- COMMON Q.,R,5,T7T,U
Subprogram 3 -- COMHMON V. W,X,Y,2

Also, assume the lengti. specifications of these variables are so defined
that the common area is shared as follows

Specification Statements 63

o o mn

3

;

Iz

i ; tLe : locations} 2 locations

Lon O S SY SO GOU

validly referr=d to
YV, W, ¥X,¥,%2. In addi-
Z. It is alsc poss-
¢ and R in Subprogram 2.
and in certain cases may
ryiavie, and O and R are

Ea

cstorage area (com-
Tnat is, no par-
variables that

59 separate areas
i 5i¥ alphameric
oiccks that have

ior named) common are pre-
25, For example, the
e¢led common area HOLD by

distinguished from labeled
mon by fw0 consecutive
inning <f the common sta-
nple, in

laced in blank common in
placed in the common area

of gy fhe single statement

Example 3: Assume that A, B, C, K, X, and Y each occupy four locations
of storage, H and G each occupy eight locations, and D and E each occupy
two locations.

Calling Program Subprogram

- SUBROUTINE MAPMY(...)
COMMON H, A /R/ X, D // B -

. COMMON G, Y, C /R/ K, E
CALL MAPMY(...) -

Explanation: In the calling program, the statement COMMON H,A/R/X,D//B
causes 16 locations (four locations each for A and B, and eight for H)
to be reserved in blank common in this order

r 1
Beginning | H A B |
of blank | 8 locations U4 locations 4 locations]
common | |

3 - 1

[‘ |

| continuation of blank common |

|

! _]

and also causes six locations (four for X and two for D) to be reserved
in this labeled common area R in this order

- -1
Beginning X D |
of labeled |
common R 4 locations 2 locations |

e -

continuation of labeled common |

[e sy S G s S s oy

- P P |

The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY
would cause the variables G, Y, and C to share the same storage space
(in blank common) as H, A, and B, respectively. It would also cause the
variables K and E to share the same storage space (in labeled common
area R) as X and D, respectively. The length of a COMMON area may be in-
creased by using an EQUIVALENCE statement (see "EQUIVALENCE Statements®)

Programming Considerations

Variables in a COMMON block may be in any order. However, consider-
able object-time efficiency is lost unless the programmer ensures that
all the variables have proper boundary alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in this order

length of 16 (complex)

length of 8 (complex or real)

length of 4 (real or integer or logical)
length of 2 (integer)

length of 1 (logical)

Specification Statements 65

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by the reference number associated with the variable.
(Displacement is the number of storage locations from the beginning of
the block to the first storage location of the variable.) The following
list shows the reference number for each type of variable.

Type of Length Reference
Variable Specification Number
Logical 1 1
4 Y
Integer 2 2
4 4
Real 4 4
8 8
Complex 8 8
16 8

The first variable in every COMMON block is positioned as if its
length specification were eight. Therefore, a variable of any length
may be the first assigned within a block. To obtain the proper align-
ment for other variables in the same block, it may be necessary to add a
dummy variable to the block. For example, the variables A, I, and CMPLX
are REAL#*4, INTEGER*#4, and COMPLEX#*8, respectively, and form a COMMON
block that is defined as

COMMON A, I, CMPLX

Then, the displacement of these variables within the block is illus-
trated by

A I CMPLX
4 storage 4 storage 8 storage
locations locations locations
displacement displacement displacement
0 storage 4 storage 8 storage
locations locations locations

The displacements of I and CMPLX are evenly divisible by their
reference numbers. However, if I were an integer with a length specifi-
cation of 2, then CMPLX is not properly aligned (its displacement of 6
is not evenly divisible by its reference number of 8). In this case,
proper alignment is ensured by inserting a dummy variable with a length
specification of 2 either between A and I or between I and (MPLX.

EQUIVALENCE Statement

General Form

EQUIVALENCE (a, b, ¢, ...), (4, e, £,...)

where a, b, ¢, 4, e, f£,... are variables that may be subscripted.
The subscripts may have two forms: If the variable is sing-
ly subscripted it refers to the position of the variable in
the array (i.e., first variable, 25th variable, etc.); if
the variable is multisubscripted, it refers to the position
in the array in the same manner as the position is referred
to in an arithmetic statement

[— S i e o S . i g S g
h‘———-—-.—.”-_-h—-J

66

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program or subprogram. It is
analogous to the option of using the COMMON statement to control the
allocation of data storage among several programs. When the logic of
the program permits, the number of storage locations used can be reduced
by causing locations to be shared by two or more variables of the same
or differing types and lengths. The EQUIVALENCE statement cannot be
used to obtain mathematical equality of two variables.

gExample 1:

DIMENSION B(5), Cc(10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), C(5,3)), (D(5,10,2), E)

Explanation: This EQUIVALENCE statement indicates that the variables
A,B(1), and C(5,3) are assigned to the same storage locations; also that
D(5,10,2) and E are assigned to the same storage locations. 1In this
case, the subscripted variables refer to the position in an array in the
same manner as the position is referred to in an arithmetic statement.
Note: Variables or arrays that are not mentioned in an EQUIVALENCE sta-
tement are assigned to unique storage locations. The EQUIVALENCE state-
ment must not contradict itself or any previously established equiva-
lences. For example, the further equivalence specification of B{2) with
any other element of the array C, other than C(6,3), is invalid.

Example 2:

DIMENSION B(5), c(10, 10), D{(5, 10, 15):
EQUIVALENCE (A, B(1), C(25)), (D(100), E}

Explanation: This EQUIVALENCE statement indicates that the variable A,
the first variable in the array B, namely B(1), and the 25th variable in
the array C, namely C(5,3), are to be assigned the same storage loca-
tions. Also, it also specifies that D(100), i.e., D(5,10,2), and E are
to share the same storage locations. Note: The effects of the ECUIVA-
LENCE statements in examples 1 and 2 are the same.

Variables that are brought into COMMON through EQUIVALENCE statements
may increase the size of the block, as indicated by these statements:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

This would cause a common area to be established containing the
variables A, B, and C. The EQUIVALENCE statement would then cause the
variable D(1) to share the storage location with B, D(2) would share
with C, and D(3) would extend the size of the common area, in this
manner

A (lowest location of the common area)
B, D{(1)
c, D(2)

D(3) (highest location of the common area)

Since arrays must be stored in consecutive forward locations, a vari-
able may not be made equivalent to another variable of an array in such
a way as to cause the array to extend before the beginning of the common
area. For example, this EQUIVALENCE statement is invalid

COMMON A, B, C

DIMENSION D(3)
EQUIVALENCE (B, D(3))

Specificaticn Statements 67

because it would force D(1) to precede A, as follows:

D (1)
A, D(2) (lowest location of the common area)
B, D(3)
C (highest location of the common area)

Programming Considerations

Two variables in one COMMON block or in two different COMMON blocks
may not be made eguivalent. Variables in an equivalence group may be in
any order. However, considerable object-time efficiency is lost unless
the programmer ensures that all the variables have proper boundary
alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the group
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in this order:

length of 16 (complex)

length of 8 (complex or real)

length of 4 (real or integer or logical)
length of 2 (integer)

length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the group so that the displacement of each variable in the
group can be evenly divided by the reference number associated with the
variable. (Displacement is the number of storage locations from the
beginning of the group to the first storage location of the variable.)
(The reference numbers for each type of variable are given under “COMMON
Statement.") The first variable in each group is positioned as if its
length specification were eight.

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and
COMPLEX*8, respectively, and are defined as

DIMENSION A(10), I(16), CMPLX(5)
EQUIVALENCE (A{(1), I(7), CMPLX(1))

Then, the displacement of these variables within the group is illus-
trated by

I(1) 64 storage locations I(16)
A(D) 40 storage locations A(10)
CMPLX (1) 40 storage locations CMPLX (5)
displacement displacement
0 storage 24 storage
locations locations

The displacements of A and CMPLX are evenly divisible by their reference
numbers. However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A(1), I(6), CMPLX(1))

then CMPLX is not properly aligned (its displacement of 20 is not evenly
divisible by its reference number, 8).

68

It is sometimes desirable t
requires the same computation to
each calculation. WMWriting that ¢
tements required to perform the
and then could be referred to freely,
having the same effect as though thes:

written. If a general program wer
number, it would be desirable to be

required.

The FORTRAN language provides
of subprograms. There are three
Functions, FUNCTION subprograms,
there is a group of FORTRAN-suppl

3 8e

The first two classes of sub
differ frowm SUBROUTINE subprogram
one value to the calling program; 54
any.

NAMING SUBPROGRAMS

A subprogram name consists of
ters, the first of which must be
contain special characters (see Ap
may be typed (as variables are} a

1. Type declaration of a st
accomplished in one of
by the IMPLICIT statene
ments. Thus, the same ruies
apply to Statement Functions.

]

£

e

2. Type declaration of FUNCT
made in one of three ways:
IMPLICIT statement, or by
cification of the FUNCTION

3. Type declaration of a subrout
TINE subprogram cannot be def
returned to the calling prog
the variable names appearing
program and/or the implicit

For the FUNCTION and SUBROUTINE
call by subprogram name gives the
references or calls can alsc bs ma
defined in ENTRY statements.

FUNCTIONS

A function is a statemwent o
variables. To use a function in

1. Define the function (i.e., specify what calculations are to be
performed),

2. Refer to the function by name, where regquired in the program.

Function Definition

The three steps in the definition of a function are

1. The function must be assigned a unique name by which it may be
called (see "Naming Subprograms®).

2. The arguments of the function must be stated.
3. The procedure for evaluating the function must be stated.

Items 2 and 3 are discussed in detail in the sections dealing with
the specific subprogram ("Statement Functions,®™ "FUNCTION Subprograms,®

etc.).

Function Reference

The name of a function, appearing in any FORTRAN arithmetic expres-
sion, refers to the function. Thus, the appearance of a function, with
its arguments in parentheses, causes the computations to be performed as
indicated by the function definition. The resulting guantity replaces
the function reference in the expression and assumes the type of the
function. The type and length of the name used for the reference must
agree with the type and length of the name used in the definition.

STATEMENT FUNCTIONS

Statement functions are defined by a single arithmetic or logical
assignment statement within the program in which they appear. For
example,

FUNC(A,B) = 3.%A+B**2 +X+Y+7Z

defines the statement function FUNC, where FUNC is the function name and
A and B are the function arguments.

The expression on the right defines the computations that are to be
performed when the function is used in an arithmetic statement. This
function might be used in this way

C = FUNC(D,E)
which is equivalent to

C = 3.%D+E#$2, +X+4Y+Z

Note the correspondence between A and B in the function definition
statement and D and E in the arithmetic statement. The quantities A and
B, enclosed in parentheses following the function name, are the argu-
ments of the function. They are dummy variables for which the quanti-

ties D and E, respectively are substituted when the function is used in
an arithmetic statement.

70

TTTTTY

General Form

name (a,b,...,n) = expression

|

3

l
-

where name is any subprogram name (see "Naming Subprograms®).

a,b,...,n are distinct (within the same statement) nonsub-
scripted variables

expression is any arithmetic or logical expression that does
not contain subscripted variables; any statement functions
appearing in this expression must be defined previously

e ———— -

B i PO A gy S AT it s .

The actual arguments must correspond in order, nunber, and type to
the dummy arguments. At least one argument must be used. A maximum of
15 variables appearing in the expression may be used as arguments of the
function.

Note: All Statement Function definitions to be used in a program must
precede the first executable statement of the program.

Examples: Valid statement function definitions:

SUM(A,B,C,D) = A+B+C+D

FUNC(Z) = A+X#*¥*Z

AVG (A,B,C,D) = (A+B+C+D) /4
ROOT(A,B,C) = SQRT(A**2+B*%2+C*%2)
VALID(A,B) = .NOT.A.OR.B

Note: The same dummy arguments may be used in more than one Statement
Function definition and, as variables, outside Statement Function
definitions.

Invalid statement function definitions

SUBPRG (3,J,RK)=3%1+J%#3 (argquments must be variables)
SOMEF(A(I),B)=A(I)/B+3. (arguments must be nonsub-
scripted)

SUBPROGRAM(A,B) =A**%2+B**2 (function name exceeds limit
of six characters)

3FUNC{(D)=3.14%*E (function name must begin with
an alphabetic character)
ASF(A)=A+B(I) (subscripted variable in the

expression)
valid statement function references

NET = GROS - SUM(TAX, FICA, HOSP, MISC)
ANS = FUNC(RESULT)
GRADE = AVG(LAB, LECTUR, SUM(TEST1, TEST2, TEST3, TEST4), FACTOR)

Invalid statement function references

WRONG = SUM(TAX,FICA) (number of arguments
does not agree with
above definition)

MIX = FUNC{I) (mode of argument
does not agree with
above definition)

Subprograms 71

FUNCT ION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program.

e - ===
| General Form |
k S ~
| FUNCTION name (3 ,,3,,8 ;4. s8.) |
| - I
i . |
| . |
| RETURN |
I . |
| -]
| . |
| END |
| |
| where name is subprogram name {(see "Naming Subprograms”) |
| |
| a,,8,4834.-.-,a, are nonsubscripted variable, array, or dummy |
{ names of SUBROUTINE or other FUNCTION subprograms. There |
i miust be at least one argument in the argument list. (Argu- |
| ments in a FUNCTION or SUBROUTINE subprogram may be enclosed |
| in slashes within the commas. This form is eguivalent to |
i the normal format without the slashes.) |
[- 1

Since the FUNCTION is a separate subprogram, the variables and state-
ment numbers within it do not relate to any other program.

The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or BLOCK DATA
statement .

The arguments of the FUNCTION subprogram (i.e., a,,3,,8;4---¢2,} may
be considered as dummy variable names. These are replaced at the time
of execution by the actual arguments supplied in the function reference
in the calling program. The actual arguments may be: any type of con-
stant, any type of subscripted or nonsubscripted variable, an array
name, an arithmetic or logical expression, or the name of another sub-
program. The actual arguments must correspond in number, order, type,
and length to the dummy arguments. The array size must also be the
same, except when adjustable dimensions are used. If the actual argu-
ment corresponds to a dummy argument that is defined or redefined in the
subprogram, the argument must be a variable name, subscripted variable
name, Oy array name. All arguments in a subprogram refer to the storage
area assigned to the argquments by the calling program.

The relationship between variable names used as arguments in the cal-

ling program and the dummy variables used as arquments in the FUNCTION
subprogram is illustrated by

Example 1:

Calling Program FUNCTION Subprogram
- FUNCT ION SOMEF(X,Y)
N SOMEF = X/Y

4 = SOMEF({B,C) RETURN
B END

Explanation: The value of the variable B of the calling program is used
in the subprogram as the value of the dummy variable X; the value of C
is used in place of the dummy variable Y. Thus if B = 10.0 and C = 5.0,
then A = B/C, which is equal to 2.0.

The name of the function must be assigned a value at least once in
the subprogram as the argument of a CALL statement, as a DO variable, as
the variable name on the left side of an arithmetic statement, or in an
input list (READ statement) within the subprogram.

Example 2:
Calling Program FUNCTION Subprogram
FUNCTION CALC (A,B,J)
. I = J*2
ANS = ROOT1#CALC(X,Y,I) .
. CALC = A¥*+1 /B
RETURN
END

Explanation: The values of X, Y, and I are used in the FUNCTION subpro-
gram as the values of A, B, and J, respectively. The value of CALC is
computed, and this value is returned to the calling program, where the
value of ANS is computed. The variable I in the argument list of CALC
in the calling program is not the same as the variable I appearing in
the subprogram.

When a dummy argument is an array name, an appropriate DIMENSION or
Explicit specification statement must appear in the FUNCTION subprogram.
None of the dummy arguments may appear in an EQUIVALENCE or COMMON sta-
tement within the subprogram nor may they be given initial data values.

Type Specification of the FUNCTION Subprogram

In addition to the three ways of declaring the type of a FUNCTION
name (i.e., predefined convention, IMPLICIT statement, Explicit specifi-
cation statement), there is the option of explicitly specifying the type
of a FUNCTION name within the FUNCTION statement.

——
General Form

type FUNCTION name*s (@ ,,3a,,a s--+¢a)

where type is INTEGER, REAL, COMPLEX, or LOGICAL

*s is optional and represents one of the permissible length
specifications for its associated type

2,483,428 ;,-.-,a8, are nonsubscripted variable, array, or dummy
names of SUBROUTINE or other FUNCTION subprograms. (There

|

r

|

i

{

i name is the name of the FUNCTION subprogram
|

|

|

|

|

| must be at least one argument in the arqument list)
L

SIS R

Subprograms 73

Example 1:
REAIL, FUNCTION SOMEF (A,B}

-

SOMEF = A%*#%2 + B%*2

RETURN
END

Example 2:
INTEGER FUNCTION CALC*2 (X,Y,2)

CALC = X+Y+Z%#%2

RETURN
END

Explanation: The FUNCTION subprograms SOMEF and CALC in examples 1 and
2 are declared as type REAL (length 4) and INTEGER (length 2),
respectively.

RETURN and END Statements in a FUNCTION Subprogram

All FUNCTION subprograms must contain both an END and at least one
RETURN statement. The END statement specifies, for the compiler, the
end of the subprogram; the RETURN statement signifies a logical conclu-
sion of the computation and returns any computed value and control to
the calling program. More than one RETURN statement may be used in a
FORTRAN subprogram.

Example:

FUNCTION DAV (D,E,F)
IF (D-E) 10, 20, 30
10 A = D+2.0%E

5 A= F+2.0*E

20 DAV = A+Bes2

RETURN
30 DAV = B##$2

RETURN
END

74

Multiple Entry into a FUNCTION Subprogram

The standard entry into a FUNCT1ON subprogram is made by a function
reference in an arithmetic expres$ion, when the function reference uses
the name defined in the FUNCTION statement. Entry is made at the first
executable statement following the FUNCTION staterent.

It is also possible to enter a FUNCTION subprogram by a functicn
reference to a name defined in an ENTRY statement in the FUNCTICN sub-
program. Entry is made at the first executable statement following the
ENTRY statement. The name given in the FUNCTION statement is used to
return the value of the function to the point of reference, rather than
the name of the ENTRY statement.

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects: the rules for naming FUNCTION and SUBROUTINE subprograms
are the same, they both require an END statement, and they koth cocntain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
does not need to return any results to the calling program, as does the
FUNCTION subprogram.

The CALL statement (discussed later in this section) is used in a
main program or another subprogram to invoke a SUBROUTINE subprograir.

Since the SUBROUTINE is a separate subprogram, the variables and sta-
tement numbers within it do not relate to any other program.

The SUBROUTINE statement must be the first statement in the sulpro-
gram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE sub-
program, it must immediately follow the SUBROUTINE statement.

e 1
| General Form |
i
b —
| SUBROUTINE name (a,,3,,2;,---,a,) |
: - |
- I
| - |
| RETURN]
| |
| END |
| |
| where name is the subprogram name (see "Naming Subprograms") |
| |
| 4,s8,,3,4-+.,a, are arguments. (There need not be any.) |
| Each argument used must be a nonsubscripted variable or i
| array name, the dummy name of another SUBROUTINE or FUNCTICN |
| subprogram, or of the form * where the character "#" denotes |
| a return point specified by a statement number in the cal-]
| ling program {
L 3

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arquments so used must appear
on the left side of an arithmetic statement or in an input list within
the subprogram, as arguments of a CALL statement, as DO variables, or as
arguments in a function reference. The SUBROUTINE name must not arpear
in any other statement in the SUBROUTINE subprogram.

Subprograms 75

The arguments (a,, a,, @,,...,a,) may be considered as dummy variable
names that are replaced at the time of execution by the actual argquments
supplied in the CALL statement. The actual arguments must correspond in
number, order, type, and length to the dummy arguments. The array size
must also be the same except when adjustable dimensions are used. Dummy
arguments may not appear in an EQUIVALENCE or COMMON statement within
the subprogram nor may they be given initial data values.

Example: The relationship between variable names used as arguments in
the calling program and the dummy variables used as arguments in the
SUBROUTINE subprogram is illustrated in this example. The object of the
subprogram is to copy one array directly into another.

Main Program SUBROUTINE Subprogram
DIMENSION X(100),Y(100)
- SUBROUTINE COPY(A,B,N)
. DIMENSION A (100),B(100)
. DO 10 I =1, N
CALL cOPY (X,Y,K) 10 B(I) = A (I)
. RETURN
. END

CALL Statement

The CALL statement is used only to call a subroutine subprogram.

| General Form

{ CALL name (a,,2,,8;4+--,2n)

where name is the subroutine's subprogram name, or a name def ined
in an ENTRY statement in the SUBROUTINE subprogram

plied to the subroutine subprogram; each may be of the form
én where n is a statement number {(see "RETURN Statements in

{
|
| a,,2;48;4--.,3, are the actual arguments that are being sup-
|
] a SUBROUTINE Subprogram™)

L

h-—-—.-.---.-———..._——__-l——-—v—l

The standard entry into a SUBROUTINE subprogram is made by a CALL
statement that refers to that subroutine's subprogram name. Entry is
made at the first executable statement following the SUBROUTINE state-
ment. Also, it is possible to enter a SUBROUTINE subprogram by a CALL
statement that refers to a name defined in an ENTRY statement in the
SUBROUTINE subprogram. The ENTRY statement is described below.

Examples:

CALL OUT

CALL MATMPY (X,5,40,Y,7,2)
CALL QDRTIC (X,Y,Z,RO0T1,RO0T2)
CALL SUB1 (X#+Y¥*5,'ABDF’,SINE)

The CALL statement transfers control to the subroutine subprogram and
replaces the dummy variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a CALL statement may be:
any type of constant, any type of subscripted or nonsubscripted vari-
able, an arithmetic expression, the name of a subprogram, or a statement
number (see "RETURN Statements in a SUBROUTINE Subprogram®).

The arguments in a CALL statement must agree in number, order, and
type with the corresponding arguments in the subroutine subprogram. The

76

array sizes must also be the same in the subroutine and the calling pro-
grams, except when adjustable dimensions are used (see "Adjustable
Dimensions™). If an actual arqument corresponds to a dummy argument
that is defined or redefined in the referenced subprogram, the actual
argument must be a wvariable name, subscripted variable name, or array
name. All arguments in a subprogram refer to the storage area assigned
to the arguments by the calling program.

RETURN Statement in a SUBROUTINE Subprogram

General Form

;
|
——— e
!
I
!
!
n
|
!

where i is an integer constant or variable of length 4 whose
value, say n, denotes the nth statement number in the arqu-
ment list of a SUBROUTINE statement

[s S o S i T S e)

The normal sequence of execution following the RETURN statement of

a SUBROUTINE subprogram is to the next statement following the CALL in
the calling program. It is also possible to return to any numbered
statement in the calling program by using a return of the type where i
is an integer constant or variable. Returns of the type RETURN may be
made in either a SUBROUTINE or FUNCTION subprogram (see, "RETURN and
END Statements in a FUNCTION Subprogram®). Returns of the type RETURN
i may only be made in a SUBROUTINE subprogram. In a main program, a
RETURN statement performs the same function as a STOP statement.

Example:

Calling Program Subprog ram

. SUBROUT INE SUB (X,Y,Z,%,%*)

=

10 CALL SUB (A,B,C,£30,640)

20y = A+ B 100 IF (R) 200,300,400
. 200 RETURN
. 300 RETURN 1
N 400 RETURN 2

30 Y = A+ C END

Explanation: Execution of statement 10 in the calling program causes
entry into subprogram SUB. When statement 100 is executed, the return
to the calling program will be to statement 20, 30, or 40, if R is
less than, equal to, or greater than zero, respectively.

A CALL statement that uses a RETURN i form may be best understood
by comparing it to a CALL and computed GO TC statement in sequence.
For example,

CALL SUB (P,§20,Q,835,R,£22)

Subprograms 77

is equivalent to:

CALL SUB (P,Q,R,I)
GO TO (20,35,22),1

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

ENTRY Statement

The standard (normal) entry into a SUBROUTINE subprogram from the
calling program is made by a CALL statement that references the sub-
program name. The standard entry into a FUNCTION subprogram is made
by a function reference in an arithmetic expression. Entry is made at
the first executable statement following the SUBROUTINE or FUNCTICN
statement.

A subprogram may also be entered (either SUBROUTINE or FUNCTION) by
a CALL statement or a function reference that references an ENTRY sta-
tement in the subprogram. Entry is made at the first executable sta-
tement following the ENTRY statement.

| General Form

ENTRY name (a,,3,,8;5++2¢3,)

where name is the name of an entry point containing from one to
six alphabetic and/or numeric characters, the first of which
is alphabetic

A21,8,¢8;34--+,8, are the dummy arguments corresponding toc an
actual argument in a CALL statement or in a function
referrence

;
|
I
1
|
l
1
|
!

i o s S e T s i S

ENTRY statements do not affect control seguencing during normal
execution of a subprogram. The order, type, and number of arguments
need not agree between the SUBROUTINE or FUNCTION statement and the
ENTRY statements, nor must the ENTRY statements agree among themselves

l

|

|

|
L.

in these respects. Each CALL or function reference, however, must agree

in order, type, and number with the SUBROUTINE, FUNCTION, or ENTRY sta-
tement that it references. Entry may not be made into the range of a
DO; further, a subprogram may not reference itself directly or through
any of its entry points. This statement is regarded as nonexecutable
within its subprogram, . If it appears in a function subprogram the
name given in the FUNCTION statement is still used to return the value
of the function to the point of reference, rather than the name of the
ENTRY statement.

Example 1:

Calling Program Subprogram

. SUBROUTINE SUB1 (U,V,W,X,Y,Z)
1 CALL suB1 (aA,B,C,D,E,F) .

. U=V

2 CALL SUB2 (G,H,P) -
. ENTRY suUB2 (T,U,V)

78

3 CALL SUB3

- ENTRY SUB3

END

Explanation: The execution of statement 1 causes entry into SUB1,
starting with the first executable statement of the subroutine. Execu-
tion of statements 2 and 3 also causes entry into the called program,
starting with the first executable statement following the ENTRY SUB2(T,
U,V) and ENTRY SUB3 statements, respectively.

Intry into a subprogram initializes all references in the entire sub-
program to items in the argument list. Return from a subprogram is made
by way of the entry point referenced. ENTRY statements may only appear
in FUNCTION or SUBROUTINE subprograms. The dummy arguments in a subpro-
gram may appear in any statement if they first appear as dummy arguments
in a FUNCTION, SUBROUTINE, or ENTRY statement. This is a valid example

SUBROUTINE SsUB (X,Y,z,I)

-

ENTRY SUB1 (A,B)

Example 2:

Calling Program Subprogram

. SUBROUTINE SUB1 (U,V,W,X,Y,2)

. RETURN

. ENTRY SUB2 (T,%,*)
CALL suBi1 (aA,B,C,D,E,F) T=V+W+U

- ENTRY SUB3 (%,%)

. T=T+X*Y*¢7Z

. 50 IF (U-X) 100, 200, 300
CALL SUB2{(G,810,820}) 100 RETURN 1

. 200 RETURN 2

. 300 RETURN

. END
CALL SUB3(610,820)

5 Y =A+B

C+D

E+F

10 Y
20 Y

(]

-

-

Explanation: A call to SUBL merely performs initialization. Subsequent
calls to SUB2 and SUB3 result in execution of different sections of the
subroutine SUB1. Then, depending upon the result of the arithmetic IF

Subprograms 79

at statement 50, return is made to the calling program at statement 10,
20, or the next executable statement following the CALL.

Additional Rules for using ENTRY

1. A CALL may only change the value of explicit arguments (or implicit
arguments in COMMON). It cannot affect the value <f those that
were initialized by some previous CALIL.

2. If a name is identified as a dummy argument only by its appearance
in a given ENTRY statement, no use of that dummy argument may
appear in statements preceding (physically) the ENTRY statement.

3. The appearance of an ENTRY statement does not alter the rules
regarding the placement of Statement Functions in subprograms.

4. If new dimensions for an adjustable dimension array are to be
passed to a subprogram with an ENTRY, the array name must appear in
the argument 1list of the ENTRY.

The EXTERNAL Statement

- I e 1
| General Form |
F - - ~— - e
| EXTERMAL a,b,cs... |
| |
| where a,bsc,... are names of subprograms that are used as argu- |
i ments in other subprograms |
[% P - 5 |

If a FORTRAN-supplied in-line function is used in an EXTERNAL state-
memt, it is not expanded in-line; the fumnction is assumed to be part of
a library. (The FORTRAN-supplied in-line and out-cf-limne functions are
given in Appendix D.)

The name of any subprogram that is used as an argument in another
subprogram must appear in an EXTERNAL statement. For example, assume
that SUB and MULT are subprogram names in the following statements.

kxample 1
Calling Program Subprogram
. SUBROUTINE SUB(X, ¥, %)
- IF (X} 4,6,6
. n D =Y (X,2%%2)
EXTERNAL MULT
CALL SUB (A, MULT,C) 6 RETURA
- END

Explanation: The subprogram name MULT is used as an argument in the
subprogram SUB. The subprogram name MIULT is passed to the dummy vari-
able Y; the variables A and C are passed to the dummy wariables X and 2.
The subprogram MULT will be called and executed oniy if the value of A
is negative.

80

Example 2

CALL SUB (A,B,MULT (C,D),37)

-
-

bxplanation: An EXTERNAL statement is not required because the subpro-
gram named MULT is not an argument; it is executed first and the result
pecomes the argument.

BLOCK DATA SUBPROGRAM

To enter data into a COMMON block, a separate subprogram must be
Aritten. This separate subprogram contains only the DATA, COMMON,
DIMENSION, EQUIVALENCE, and Type statements associated with the data
being defined. Data may be entered into labeled (named), but not unla-
beled, COMMON by the BLOCK DATA subprogram.

} General Form |

b— —_—— -
BLOCK DATA i

END

r————

1. The BLOCK DATA subprogram may not contain any executable
statements.

2. The first statement of this subprogram must be the BLOCK DATA
statement.

3. All elements of a COMMON block must be listed in the COMMON state-
ment, even though they do not all appear in the DATA statement.
For example, the variable A in the COMMON statement below does not
appear in the DATA statement:

BLOCK DATA

COMMON/ELN/C,A ,B/RMG/Z,Y

REAL B(4)/1.0,1.2,2%1.3/,2%8(3) /3%7. 64980825D0/
COMPLEX C/(2.4,3.769)/

END

4. Data may be entered into more than one COMMON block in a single
BLOCK DATA subprogram.

5. No element may have more than one initial wvalue assigned in the
same program.

Subprograms 81

APPENDIX A: FORTRAN COMPARISON

This appendix contains a description of the differences in the FOR-

TRAN language supported by IBM OS and 0OS/VS, and by the IBM Time Sharing
System. The FORTRAN language for IBM OS and OS/VS is described in IBM
FORTRAN IV Langquage, GC28-6515.

1.

82

Extensions

TSS -~ Does not allow generalized subscripts and direct access 1I/0
statements; no list-directed I/0; no free format input.

OS and 0OS/VS -- Allows the above.

Call by Value

TSS -- Treats all argquments as call-by-name whether or not they are
enclosed in slashes.
OS and 0S/VS -- Treats arguments not enclosed in slashes, and not

declared as an array, as call-by-value.

Dummy Arguments

TSS -- Dummy arguments may not appear in any statement until
defined as such in an ENTRY, SUBROUTINE, or FUNCTION
statement.

0S and OS/VS -- Restriction holds only for executable statements.

ENTRY in FUNCTION Subprograms

TSS -- The name of a FUNCTION subprogram must be used to return the
value of the function, even though entry was made through an
ENTRY statement.

0S and 0S/VS -- The ENTRY name may be used to return the value of
the function.

APPENDIX B: SOURCE PROGRAM CHARACTERS

r LI v e 1
| Alphabetic | EBCDIC or BCD | Numeric | EBCDIC or BCD |
| Characters | Card Punches | Characters | Card Punches |
- } 1 } 3
H A | 12-1 { 0 { 0 |
| B i 12-2 | 1 I 1 |
| c | 12-3 { 2 | 2 |
{ D | 12-4 | 3 i 3 |
| E | 12-5 | 4 | 4 |
| F | 12-6 | 5 | 5 {
| G | 12-7 i 6 i 6 |
| H | 12-8 } 7 t 7 {
| I | 12-9 | 8 | 8 i
| J | 11-1 | 9 I 9 |
| K | 11-2] | |
| L | 11-3 | | [
I M [11-4 - + v i
i N | 11-5 | Special i EBCDIC | BCDIC |
} o { 11-6 | Characters |Card Punches|Card Punches|
| P | 11-7 F + 1 i
{ Q | 11-8 | + | 12-6-8 | 12 |
| R | 11-9 | - | 11 i 11 |
} S i 0-2 i / | 0-1 } 0-1 i
| T i 0-3 } = | 6-8 i 3-8 {
| U i 0-4 | . | 12-3-8 | 12-3-8 {
| v i 0-5 |) i 11-5-8 | 12-u4-8 I
{ W } 0-6 i * { 11-4-8 | 11- 4-8 |
| X i 0-7 | s (comma) | 0-3-8 | 0-3-8 |
| Y | 0-8 | (** | 12-5-8 I 0-4 -8 |
i Z | 0-9 {’ (apostrophe) | 5-8 | 4-8 i
i s | 11-3-8 | bl ank | tno punch) | (no punch) |
" _____ 1 - A i ﬁ.
| Source programs are coded in either BCD or EBCDIC character codes; |
}] mixing the two, however, is not allowed. i
| +*Considered an alphabetic character in EBCDIC only. i
| *¢Considered a special character in EBCDIC only. |
L 3

Appendix B: Source Program Characters 83

APPENDIX C: OTHER FORTRAN STATEMENTS ACCEPTED BY TSS FORTRAN IV

This appendix describes features of previously implemented FORTRAN IV
languages that are incorporated into the IBM Time Sharing System FORTRAN
IV language. The inclusion of these language facilities allows existing
FORTRAN programs to be recompiled for use in IBM Time Sharing System
with little or no reprogramming.

READ Statement

r 1
| General Form i
— , —— y
| READ b, list |
] |
| where b, is the statement number or array name of the FORMAT sta- |
] tement describing the data |
| |
| list is a series of variable or array names, separated by |
| commas, which may be indexed and incremented; they specify |
| the number of items to be read and the storage locations |
| into which the data is placed |
| 3
This statement causes data to be read from the data set associated
with the system input.
PUNCH Statement
- 1
| General Form |
4
i - = 1
! PUNCH b, list |
] |
| where b is the statement number or array name of the FORMAT state- |
| ment describing the data |
| |
| list is a series of variable or array names, separated by |
| commas, which may be indexed and incremented; they specify |
| the number of items to be written and the storage locations |
| from which the data is taken |
A — 1
The PUNCH statement causes data to be written in the data set asso-
ciated with the system output.
PRINI Statement
e —— - - -1
| General Form |
b ——- - — — ~
| PRINT b, list |
| |
| where b is the statement number or array name of the FORMAT state- |
| ment describing the data |
| |
| list is a series of variable or array names, separated by {
{ commas, which may be indexed and incremented; they specify
] the number of items to be written and the locations in |
| storage from which the data is taken |
b e e e e _— - p]

84

The PRINT statement causes data to be written in the data set asso-
ciated with the system output.

DATA Initialization Statement

= I 1
| General fForm |

k- -~ P

DATA ¥ ,pecn eV, /i, %0 sl %] /v % oo, v /i ¢ *d,+ L..,1 %4 /,...

where Vis-+-,Vv are variables, subscripted variables (in which
case, the subscripts must be integer constants), or array

| |
| |
i |
| |
| names |
| |
i d,,...,4 are values representing integer, real, complex, i
i logical, or literal hexadecimal data constants {
| I
{ i,,--.,1 represent unsigned integer constants indicating |
1 the number of consecutive variables that are to be assigned |
| the value of 4,,...,4 i
L e e e o i P U

A data ipitialization statement is used to define initial values of
variables and arrays. There must he a one-for-one correspondence
between these variables (i.e., v,,...,v) and the data constants (i.e.,
d,,..-,d4.

Example 1:

DIMENSION D(5, 10}
DATA A, B, ¢/5.0,6.1,7.3/,D/725%1.0,25%2.0/

Explanation: The DATA statement indicates that the variables A, B, and
C are to be initialized to the values 5.0, 6,1, and 7.3, respectively.
Also, the statement specifies that the first 25 variables in the array D
are to be initialized to the value 1.0, and the second 25 to the wvalue
2.0.

gxample 2:

DIMENSION A(5), B(3,3), L(4)
DATA A/5#%1.0/, B/9%#2.0/, L/4%* TRUE./, C/'FOUR'/

Explanation: The DATA statement specifies that all the variables in the
arrays A and B are to be initialized to the values 1.0 and 2.0, respec-
tively. All the logical variables in the array L are initialized to the
value .TRUE.. The letters T and F may be used as an abbreviation for
.TRUE. and .FALSE., respectively. Also, the variable C is initialized
with the literal data constant FOUR.

An initially defined variable, or variable of an array, may not be in
pvlank common; however, in a labeled common block, they may be initially
defired only in a block data subprogram (see "SUBPROGRAMS").

DOUBLE PRECISION S5tatement

T
| General Form |

e e i e e €~ .y S s it S P e A .8 S T . i e Lo T . A S i D S e S Ao S e e T S . S o St i ,'
| DOUBLE PRECISION a,b,C,... i
| |

| where a,b,c,... are variable names that may be dimensioned in the |
| statement, or function names H

e e o e e e e e e e i e i o i e

PR —— |

Appendix C: Other FORTRAN Statements Accepted by TSS FORTRAN IV 85

86

The DOUBLE PRECISION statement explicitly specifies that the

var iables a,b,c,... are of type double precision. This statement over-
rides any specification of a variable made by either the predefined con-

vention or the IMPLICIT statement. This specification is identical to
that of type REAL+*8.
Also, FUNCTION subprograms may be typed double precision, in this way

DOUBLE PRECISION FUNCTION name (a,,a,,3;,---,3,)

APPENDIX D: FORTRAN SUPPLIED SUBPROGRAMS

The FORTRAN supplied subprograms are of either of two types: mathe-
matical subprograms and service subprograms. The mathematical subpro-
grams correspond to a FUNCTION subprogram; the service subprograms
correspond to a SUBROUTINE subprogram. Appendix D lists the in-1line and
out-of-line mathematical FUNCTION subprograms. An in-line subprogram is
inserted by the FORTRAN compiler at any point in the program where the
function is referenced. An out-of-line subprogram is located on a
library. A detailed description of out-of-line mathematical subprograms
and service subprograms is given in FORTRAN IV Library Subprograms.

MATHEMATICAL SUBPROGRAMS

All functions are used as described in the section "FUNCTION Subpro-
grams® -- i.e., A = AMOD(X ,X,), where A is the value and X, and X, are
the arguments.

Table 4. Mathematical function subprograms (part 1 of 3)

r - T T Y N v T 1
| | | { 1In-Line (I) |No. of| Type of | |
}LFunction |Name |Definition/Usage jout-of-Line (0){ Arg. i Argume mts JFunction ,l
. - + t + + t 1 1
|Exponential | EXP jeaxrg { e} i 1 |Real &4 |Real su |
| |DEXP |earg | o | 1 |Real *8 {Real *8B f
	CEXP	earg	o i 1	Complex #8	Complex *8	
	CDEXP	earg	o	1	Complex *16	[Complex *16
		A=EXP(X,)				
—- t + } + + + ?						
Natural Logarithm{ALOG {ln (Arg)	o} i 1	Real 4	Real *4 i			
{ {DLOG	1ln (Arg)	o { 1	Real #8 jReal *8 }			
i	CLOG	{ln (Arg)	0 i 1	Complex *8	Complex *8	
	CDLOG	{1n (Arg)	o 1 1	Complex *16	[Complex *16	
[A=ALOG(X)		I I i		
b 1 = } --—-+ + t i						
Common Logarithm	ALOG10	log,, (Arg)	(o] i 1	Real 4 jReal *4]		
	DLOG10	log,, (Arg)	o	1	Real *8	Real *8
		A=ALOG10 (X ,)	i			
i t : { + + t 4						
hrcsine	ARSIN jarcsin (Arg) { o i 1	Real #*4	Real *u			
	DARSI N	A=ARSIN(X,)	i	Real *8	Real *8 i	
o + ¥ 1 + + ¢ {						
Arccosine	ARCOS	arcos (Arg)	o] § 1	Real *&4 {Real *4		
	DARCOS	A=ARCOS (X ,)			Real *8 {Real *8	
- -4 + 4 1 + 4 i
jarctangent |ATAN jarctan (Arg) { (o] i 1 |Real »4 {Real *4 |
| |ATAN2 |arctan (Arg,/Arg,) | [¢] } 2 |Real *4 | Real *4 |
| | DATAN jarctan (Arg)] (o] { 1 |Real 8 |Real *8 |
| |DATAN2|arctan (Arg, /Arg,) | [o] i 2 |Real *8 | Real *8 |
{ L IA=ATAN(X;) !‘ J } 1
po————— T T T D | T ¥ L]
|Trigonometric |SIN Isin{Arg) | [o] § 1 |Real *4 fReal *4 i
{Sine |DSIN |sin{Arg) | (o} { 1 |Real *8 jReal *8 i
{ (Argument in [CSIN |sin(Arg) } o] i 1 |Complex *8 |Complex *8 |
{ radians) |CDSIN }sin (Arg) | [} i 1 |Complex *16 |Complex *1i6 |
| } {A=SIN(X,) | i { i \
b 4 4 4 4 4 e '
¥ T T T T T v
| Trigonometric jcos jcos (arg) | o | 1 |Real #*4 | Real *u4 |
|Cosine {pCos |cos (Arqg) |] { 1 |Real #8 {Real *8 }
} (Argument in {Cccos |[cosiArg)] o i 1 Complex *8 |Complex #8 |
| radians) jCDCOS |cos {Arg) | C | 1 Complex *16 [Complex *16 |
1 | |A=COS{X,) i i | 1
. 1 + } 4 1 {
JTrigonome tric | TAN jtan (Arg) | [} { 1 |Real *4 |Real *4 |
| Tangent | DTAN [A=TAN(X,) ! 1 {Real 8 |LReal *8 !
F _— % j' T ¥ J T
lr‘nigonometric jCOTAN |cotan (Arg) i (o} | 1 Real =4 |Real *4 |
{Cotangent | DCOTAN | A=COTAN(X,) { J LReal -8 !Real 8 :
- + %7 ‘{' kt T ¥
| Square Root ESQRT { (Arg? | (o] | 1 |Real #4 |Real *4 }
| JDSQRT | (Axg) i o} i 1 Real #*8 |[Real *8 }
§ {CSQRT | (Ara) i o} f 1 Complex *8 |[Complex *8 |
{ JCDSQRT{ (Ax 1} } o { 1 Complex *16 |Complex ¢16 |
i | |A=SORT(X,) | | | |
Tt o t } + + + 1
|Hyperbolic {sINd |sinh (Arg) | o | 1 |Real *u4 {Real *u4 i
|Sine [DSINH |A=SINH(X,) | i | Real *8 |Real *8 |
B e e e e e e B R 1 L e L L —d

Appendix D: Fortran Supplied Subprograms 87

Table 4. Mathematical function subprograms (part 2 of 3)
| A T i T DS Y T 1
]] | In-Line (¥) |No. of]| Type of |
JFunction | Name {|Definition/Usage |out-of ~Line {0 | Arg. | Arquments |[Function |
——— $ 3 —- 1 4 4 ___,_-+_ 4
T L] T ¥ T 1
|Hyperbolic [COSH |cosh (Arg) | [¢] i 1 |Real #*4 jReal #*4 |
|Cosine |DCOSH |A=COSH(X)} | } |Real *8 |Real *8 i
e 4 4= } + T i
{Hyperbolic |TARH |(tanh{Arg) § O i 1 |Real =4 {Real *4 i
| Tangent |DTANH {tanh (Arqg) i o] { 1 |Real *8 | Real *8 {
i |A=TANH(X,) |] | | |
——————— — + + + —— R 3 - 1
Exror Function	ERF	2 x =-u?	o]	1	Real *4 {Real =4
	[DERF	» / e du { o] H 1	Real *8	Real *8	
		o		!	
i		A=ERF (X,) I			l
b= t + 4o - fomm ot —-t --4					
Complemented { ERFC {jl-erf (x) i [¢] 3 1	Real *t	Real =4 }			
{ Error Function	DERFC	A=ERFC(x,)	o} i 1 [Real *8	Real *8 {	
- t + —4-- + - + -4					
{Gamma {GAMMA	% x-1 -u	(o} {f 1 [Real *u	Real =t {		
i {DGAMMA	© u e du 1 [s) § 1 }JReal ¢8 {Real *8				
i		9 1		!	
\	ANS=GAMMA (X, }				
1 4 4 } - [4 4				
r T hs T T] Al *					
Log ~gamma	ALGAMA	i o]	1	{Real *4	Real #4 {
	DLGAMA [log T(x)	¢]	1	Real *8	Real #8 i
i [A=ALGAMA(x,)	i] i !			
e —- + ¢ -1 e + ——-{					
Remainder ing	MOD	arg, (mod Arg,)	I { 2 J	(Integer *4	Integer *4
	AMOD {A=MODI(X, ,X,) t 1	2	Real *4 {Real *4 i		
	pMOD		I { 2	Real *§ jReal #*8	
[3 o - e o -1					
Absolute value	IABS		Argj	1	1
1 {ABS	{ 1 i 1	[Real *4	Real 4 1		
	DABS	A=ABS{(X,)	I	1	Real #8
[+ } e } " 4					
{caBs		vAkT+x2	for X, +x,	o i 1	Complex #8
1	CDABS [A=CABS(X,) 0 1 Complex *16	Real *8			
‘,_ 4 4 4 + 4 P ! ;					
T e T T - T T e YT — 4					
{Truncation	INT {Sign of Arg times	I { 1 Q'Real Y TIIm:egexf *y ;			
I	llargest integer i 1 } { {				
	1<jArg] i {		{		
	AINT	1 I	1	Real *4	Real #*4
	IDINT [I=INT(X,) } I	1	Real *8 jInteger #*4		
3 —— 1 3 fom ot -t .					
Largest value	AMAX0	Max (Arg, ,Arg,,...)	I { 22	Integer *4	Real *4
{	AMBX]1	i I } 22	Real #4 {Real #*4		
i [MAXO0	H I	22	[Integer *4	Integer *4	
{MAX1	} i I	22	Real t4 jInteger #*4		
	DMAX1 jA=pMAXO(X, ,X,,..X.)} I	22	Real #*8	Real #*8 t	
l‘__ __________________ "i U o [P——— %, 3 U o 4					
Smallest value	AMINO (Min (Arg, ,Arg,,;...Jt I i =2 iInteqer *4 '[Real *Yy 1‘				
fAMIN1	{ I { 22 [Real #4 j{Real #*4				
	MINO		I i 22	Integer *4	Integer 4
IMINI	I	22	Real #u	Integer *4	
	DMIN1I	[A=AMINO(X, 6 ,X,,..X,.)	I	22 [Real <8	Real #8
b + + 4 -+ + -t i					
Float	FLOAT	Convert from i I	1	Integer *4	Real 4
	[PFLOAT{integer to real	I	1	Integer *4	Real *8 i
		A=FLOAT(X,) {		i }	
b 4 + -4 " + + -1					
{Fix	IFIX	Convert from] I i 1	Real =i {Integexr *4		
	HFIX	real to integer { I { 1	Real =4 }	Integerxr *2	
	[I=IFIX(X,)] {		1		
F + 4 + + t + i					
Transfer of sign	SIGN	Sign of Arg, times	I i 2	Real =4	Real #*4
l	flarg,				
i	ISIGN	i I { 2	Integer *4 {Integer *»§		
i	DSIGN	A=SI@(X,,X,) i 1 i 2	Real %8 JReal *8 i		
____________________ - ‘L 4 4 o 1 3}					
[Positive {DIM	Arg.-Min(Arg,,Arg,)	I I 2 [Real 8 {Real *4			
Ichffetence	LIDI.M 1A=DIM(X,,X,) L i	Integer *4%	Integer =4		
r . T T T — % 4 4 —_———					
toptaiuung most	SNGL		I { 1 }Real 8 iReal oy {		
Isignificant part	i i	i i]			
of a Real *8 { i	i i	{			
argument	{A=SNGL(X,) § 1				
% 4 3 - i 3 $ 4					
r) T H T t t —-———q					
Obtain real	REAL		I H 1	Complex =*8 ;Real 4y [
part of complex		1 { 1 {			
jargument 1 jA=SNGL (X} i H { i |
[8 i A. i —de i — i 3

88

Table 4. Mathematical function subprograms (part 3 of 3}

[T T e e B Sl T ———— T o i e Fo T 1
| | | In-Line (I) |No. of| Type of i
| Function [Name |Definition |out-of-Line (0)}| Arg. | Arguments |[Function i
_______ -4 4 -4 -__,._,+__._____ [_.___+_-__._____._.__{
T T L
|Obtain 1maq1nary | AIMAG | | I | 1 |Complex #8 |Real ¢u |
|part of complex | | | | | |
largument | |A=AIMAG(X,) | { | | |
O e T — S f-mmme- oo e pommmmmmm e !
{Express a Real {DBLE |) I | 1 |(Real =4 | Real @*8 {
|*4 argument in i i | | | | |
|Real *8 form | |A=DBLE (X,) | | | | |
prm oo - mmm e . R e et
|Express two real |CMPLX IC"Argﬁu\rg, | I | 2 |Real #4 |Complex *8 |
jarquments in com |DCMPLX | | I | 2 |Real *8B | Complex *16 |
|plex form] [A'CMPLX(X,,XZ) | | | | |
O — } T e D
|Cbtain conjugate |CONJG tC‘x iy i I | 1 |Complex *8 jComplex *8 }
Jof a complex |DCONJG {For Arg=x+iY | I i 1 |Complex *#16 |Complex *16 |
largument | |A=CONJIG(X) | | | i i
| SO 3 N - ————d — i § S, S — 4

SERVICE SUBPROGRAMS

MACHINE INDICATOR TESTS SUBPROGRAMS

In the list of pseudc machine-indicator test subroutines below,
assume that i1 is an integer expression and that j is an integer vari-
able. These subroutines are referred to by CALL statements.

SLITE (i): If i = 0, all sense lights will be turned off. If i = 1, 2,
3, or 4, the corresponding sense light will be turned on.

SLITET (i, j}: Sense light i (equal to 1, 2, 3, or 4) will be tested and
turned off. The variabie j will be set to 1 if i was on, or j will be
set to 2 if i was off.

kExample: Assume that the program is to continue if sense light i is on
and the results are to be written if sense light i is off. This can be
done by using the logical IF statement or a computed GO TJ statement:

-

-

CALL SLITET (3,KEN)

Go TO (6, 17) ,KEN
17 WRITE (3, 26) (ANS (K) , K=1, 10)
6 CONT INUE

-

Explanation: When the statement CALL SLITET(3,KEN) is executed, the
variable KEN is assigned the value 1 or 2 depending on whether sense
light 3 is on or off, (and the sense light is turned off). If KEN is 1,
statement 6 is executed next; if KEN is 2, statement 17 is executed.

OVERFL (j): Jj is set to 1 if a floating-point overflow condition
exists, i.e., if the result of an arithmetic operation is greater than
1663; j is set to 2 if neither an overflow condition or underflow condi-
tion exists; j is set to 3 if floating-point underflow condition exists,
i.e., if the result of an arithmetic operation is less than 16-93. The
machine is left in a no-overflow condition. 1If a sequence of operations
caused both overflow and underflow to occur, the value of j returned
represents whichever of these two conditions occurred last.

DVCHK (4): If the divide ¢ eck indicator is on, j is set to 1 and the

divide check indicator is turned off; if the divide check indicator is
off, j is set to 2.

Appendix D: Fortran Supplied Subprograms 89

THE EXIT, DUMP, AND PDUMP SUBPROGRAMS

EXIT Subprogram

A CALL to the EXIT subprogram terminates the execution of the object

program.

DUMP Subprogram

A CALL to the DUMP subprogram

CALL DUMP (A,,B,,F, ,...,A,,B,,F,)

causes the indicated limits of storage to be dumped and execution to be
termd nated.

1.

2.

4.

A and B are variable data names that indicate the limits of storage
to be dumped; either A or B may represent upper or lower limits.

Fn is an integer indicating the dump format desired

Fn =0 hexadecimal
logical *1
logical #*4
integer *2
integer =4

real *4

real *8

complex *8
complex*16
literal character

Voo E WNRE

If the argument F, is omitted, it is assumed to be equal to 0, and
the dump will be hexadecimal.

The arguments A and B should be in the same program (main program
or subprogram) or same common block.

PDUMP Subprogram

cau
ret

30

A CALL to the PDUMP subprogram
CALL PDUMP (A, ,B,,F,,...,A_ ,B, ,F))

ses the indicated limits of storage to be dumped and control to be
urned to the calling program.

APPENDIX E: EXAMPLES OF FORTRAN-WRITTEN PROGRAMS

LXAMPLE PROGRAM 1

Example program 1 (Figure 2) is designed to find all the prime num-
bers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7,
11,... are prime numbers. The number 9, for example, is not a prime
number, since it can be divided evenly by 3.

IBM FORTAAN Codm Tacm
T SAMPLE PROGRAM t { - E,{ﬁ B } * 1
S .l ‘:/66 | B LS ddodo
- L m—— e
Ic *%EK NUM@EQ PROBLEM 3 ! l |] i
100 waxr (648) | J e
PRI

8 FORMAT (52H FOLLOWING IS‘A LIET OF E NUMBERS FROM i TO 1809/
}19xast/i9xs1ug/1QXv1H3)
D@t 1S |
3 AT t
102 A= sqar(sy : v :
183 <A : . ‘ i
1@‘4 DO 1 K= 34022 i
195 L=1/%
186 TF (%K~ 1311204
1 CONTINUE i
4

[EEUIS S SO

197 WRITE (695)I
5 FORMAT (129)
2i1+2 | .
xas 1F{1008- !}7e4s3
[WRIT E (639)
| FORMAT (14H PROGRAM EEQOR)

i
+

7 WRITE (616) | | |

| GI FORMAT (31H THIS IS THE GNf) QF THE| PROGRAM) ; | F
| 109 sTOP| , S ! ;]
i END ; !) . . i S . 2 { |

i i i } I ! {

B b e =

Figure 2. Example Program 1

EXAMPLE PROGRAM 2

The n points (x , ¥y) are to be used to fit an m degree polynomial by
the least-squares method.

y = a,* ax + a,x2 + ... + axm

To obtain the coefficients a , at,..., a , it is necessary to solve
these normal equations

(1) Wea, + W,a, + ... + Wmam = Z,
(2) W,a, + W,a, + ... ¢+ Wm+ am = Z,

-

(m+1) Wma + Wm+,a, + ... + W mam = Zm

where

Appendix E: Examples of Fortran-Written Programs 91

n
W, =2 xi Z,
i=
n
W, = I xi=3 Z,
i=1
- Zm
n
W,m = X xi3m
i=1

oY

"ﬁ‘MS
-y

[T R- I "TMS

<
| o
o3
[

[ery
~
(o8
]
[
»

v
;-
-]

After the Ws and Zs have been computed, the normal equations are
solved by the method of elimination, which is illustrated by the follow-
ing solution of the normal equations for a second degree polynomial (m =

2).
1)
(2)

(3)

Wea, * W,a, + W,a, = 2,

1

W,a, + W,a, + W,a, = Z,

W,a, + W,a, + Wa,6 =2,

The forward solution is

1. Divide equation (1) by W .

2. Multiply the equation resulting from

from equation (2).

step 1 by W,, and subtract

3. Multiply the equation resulting from step 1 by W,, and subtract
from equation (3).

The resulting equations are

(4) a, + bj,a, + b;a, = b,
{(5) b,, a, + by;a, = b,
(6) by, a, + by;a;, = by,
where
b,, = W, /W,, b,; = W, /W,,

b;; = W,-b;, W, , b,; = W,~b;;W, , by

b;, = W;-b,;,W, , by; = W,~b,;W.., by,

b,

Z /W,
Z)"b]
2.-b,

Wi

wZQ

Steps 1 and 2 are repeated, using equations (5) and (6), with b, and

b
(7
(8)

92

;3 instead of W, and W, .

a, + Ca; = Cyy

C; 3@, = Cy,

The resulting equations are

where:

c,, =b, /b, . C,u = b, /by,

i

C i3

The backward solution is

(9 a,

C 3, /C3;

(10) a, C, =C,,a,

(11 a, =b,,-b,,a,-b,; a,

b;; ~¢,3 by, , €3y = b; ~c, by,

from equation (8)
from equation (7)

from equation (4)

Figure 3 is a possible FORTRAN program for carrying out the calcula-

tions for the case: n = 100, m < 10.
in W(1), W(2), W(3), ..., W(2M+1), respectively.

wOI w]L'

Zos

are stored in 2 (1), 2 (2), 2 (3), ..., Z(M+1), respectively.

IBM FORTAAN Ceding Farm
[T SAMPLE PROGRAM 2 - ,;ﬁf;»}"”

FORIRAN §

QEAJ‘X(160)foldgfiw(215zl(]i)’A(ii),é(

—

FORMAT (I29I3/((4F14.7))

2/ FORMAT (5E15.6) i
READ {S531)) MﬁN?(X(Iﬁ»YfI)’[=X,N)

LW = 2%MHt : !

LB =| M+2 !

LZ = M+t i

DO 5 J=23LW |

See |

DO 6 J=ibpLE |
6 2(J) = 0.9 ;
I=1sN

2(1)] = Z()+Y(T)
J=2+LE
P
W(
13] [2(
DO 16 J=LBsL

P = P

L i""

11212)

) |
MW o= B +Y(IIRP
1 W

N
H i

Figure 3. Example Program 2 (part 1 of 3)

Appendix E: Examples of Fortran-Written Programs

W, ««-, W,m are stored
Zl' zzl

93

IBM TONTAAN Cading Porm L
[~ _SAMPLE PROGRAM 2 I S
[L 1 e/66 [|

e

H T _ - . roijltjsi-www
CAG WO = WP |

17100 28 TI=tsLZ |

b0 20 K=ltoLZ i} o J.

28 B(KST) = W(J-1) o [R .]ff'wi"

22 B(ksLB) = Z(K)| B IR T T D T D D
2300 3t L=

€
"
=
+
&l

{

B(LyJ)) = r(u"f)"/brvL) R D TR S S R B
) :

28333433

28 00 311 =11sL 3 R e R]

fd
[e]
w

ﬂ_w”_
‘
N
‘
|
i
i
|
!
|
|
et
|
|
t
i

Figure 3. Example Program 2 {(part 2 of 3)

IBM FORTRAN Cofimg Form Rt b ool
[~ SAMPLE PROGRAM 1 1= I I A T -3 3 g
B B ‘Ii FoRTRAN SIATEMENT - - R

10@A+B{1-1%J)tA(J) B
B(>LB)-SieMh - []

) §4b3s o ; DA o
652) (A(T)sT=1>2) | . : .

s

Figure 3. Example Program 2 (part 3 of 3)

9y

The elements of the W array, except W(1l), are set equal to zero; W(1)
is set equal to N. For each value of I, X and Y are selected. The
powers of X are computed and accumulated in the correct W counters.

The powers of X are mailtiplied by Y , and the products are accumulated
in the correct Z counters. To save machine time when the object program
is being run, the previously computed power of X is used when computing
the next power of X . Note the use of variables as index parameters.

By the time control has passed to statement 17, the counters have been
set to

N
W(1) = N z(1) = T Y,
1=1
N N
W2) =% X, 2(2) = ¥ ¥,X,
=1 1=1
N N
W3) =3 x 2 2(3) = T ¥,x,2
=1 1=1
. N
. Z(M+1) = Z Y, X M
. 1=1

N
W2M+1) = £ X, 2M
=1

By the time control has passed to statement 23, the values of W,, W,
...y W,m+ have been placed in the storage locations corresponding to
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the
values of Z,, 2,, ..., Zm have been stored in the locations correspond-
ing to the column of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to these computed values

wﬁ wl WZ z0
W, W, W, z,
W, W, W, zZ,

This matrix represents equations (1), (2), and (3), the normal equa-
tions for M = 2.

The forward soclution, which results in equations (4), (7), and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
Al terms in the M + 1 eguations, which would be obtained in hand calcu-
lations, have replaced the contents of the locations corresponding to
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the
constants on the right~-hand side of the equations have replaced the con-
tents of the locations corresponding to column M + 2, rows 1 through
11+ 1, of the B array. For the illustrative problem, columns 1 through
4, rows 1 through 3, of the B array would be set to these computed
values

Appendix E: Examples of Fortran-Written Programs 95

0 0 Ci; Cg,
This matrix represents equations (4), (7), and (8).

The backward solution, which resuits in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through #40.
By the time control has passed to statement 41, which prints the values
of the A9 terms, the values of the (M + 1) *A, terms have been stored in
the M + 1 locations for the A array. For the illustrative problem, the
A array would contain these computed values for a,, a,, and a,

Location Contents

A((3) C,, /Cqy

A(2) C2¢ —C23 &

A1) b,,~-b,, a,~-b,; a,

The resulting values of the AI terms are then printed according to
the FORMAT specification in statement 2.

96

Where more than reference is given, the

major reference is first.

A format code 49-51
ABS 88
absolute dimensions of an array 60-61
absolute value 88
addition 14
adjustable dimensions of an array
AIMAG 89
AINT 88
ALGAMA 88
ALOG 87
ALOG1O 37
alphabetic characters 83
alphameric data format code
AMAXO0 88
AMAX1 88
AMINO 88
AMINL 88
AMOD 88
.AND. 18
arccosine 87
ARCOS 87
arcsine 87
arctangent 87
arguments, dummy 82
literal constant 52,83
arithmetic assignment statement
arithmetic condition 17
arithmetic expressions 13-17
arithmetic IF statement 24-25
arithmetic operators 14,15
arrangement of arrays in storage 12-13
arrays 10-13
absolute dimensions of 60-61
adjustable dimensions of 60-62,1
name of an array 33,66-68
size 12
subscripts
ARSIN 87
ASSIGN statement 23-24
assigned GO0 TO statement
ATAN 87
ATAN2 87
attribute control,

49-51

10-11

23-24

variable 1

BACKSPACE 56,31

BCDIC card punches 83

beginning of a data group 33
beginni ng-of-data transfer code 53
blank common area 64-65

blank output records 42

BLOCK DATA subprogram 81

boundary alignment 65-66

CABS 88
CALL statement 76-77
call-by-value 82

60-62,1

20-21,2

card input 2

carriage control 55-56
Cccos 87

CDABS 88

CDCOs 87

CDEXp 87

CDLOG 87

CDSIN 87

CDSQRT 87

CEXp 87

characters in program 83
CLOG 87

CMPLX 89

coding FORTRAN statements 2
comments 2
COMMON 62-66,57,12
blank 6u4-65
implicit argquments 82
named common area 64-65
statement 62
common logarithm 87
compiler 1
complemented error function 88
compl ex
argument
obtaining conjugate 89
obtaining imaginary part 89
obtaining real part 88
COMPLEX 57-59,15
constant 5
real arguments expressed in complex
form 89
statement
CONJC 89
constants 3-8
continuation line 2
CONTINUE statement 29
control statements 22-30,2
cos 87
COSH 88
COTAN 87
CSIN 87
CSQRT 87

57-59

D format codes
DABS 88
DARCOS 87
DARSIN 87
data initialization
data set 31

DATAN 87

DATAN2 87

DBLE 89

DCMPLX 89

DCONJC B89

DCcos 87

DCOSH 88

DCOTAN 87

decimal places Uu6,48
decimal point 48
DERF 88

48,46

85,6,59

Index

97

DERFC 88
DEXP 87
DFLOAT 88
DSIN 87
DGAMMA 88
difference, positive 88
DIM 88
dimension
adjustable 94
DIMENSION 60-61,12,57
displacement, array 68

division 14,17
DLGAMA 88

PLOG 87

DLOGLO 87
DMAX1 88

DMINL 88

DMOD 88

0DC loop programming considerations 28-29

DO statement 26-27

DOUBLE PRECISION 85-86
DSIGN 88

DSINH 87

DSQRT 87

DTAN 87

DTANH 88

dummy argument 71,82
dummy array 61

dummy variables 76,68
DUMP subprogram 90
DVCHK 89

E format codes 48,46
EBCDIC card punches 83
elements of the language 2
¢END 33-34

END 30,31,72

END FILE 56,31

end of a data group 34

o NIRY statement 78-80,82
EQUIVALENCE 66-68,57
ERF 88

ERFC 88

ERR 31

error function 88
EXIT Subprogram 90
EXp 87

explicit specification
exponential 14-15,87
expressions 13-19
EXTERNAL statement

59-60,9-10,57

80-81

F format code
fix 88
FLOAT 88
FORMAT #40-5¢,1, 31
alternate Hollerith 6
codes 42-53
statement rules
FORTRAN
coding form 3
differences between 0S8 or 0S/VS and TSS
FORTRAN 82
records 41-42
special TSS FORTRAN IV features 1
supplied subprograms 87-90,69

47,46

40-42

98

function 69
function subprograms
return of value 82

72-75,69,87

G format code H2-4é
GAMMA 88

general format code U42-46
GO TO statements 22-24

assigned GO TO 23-24

H format code 52
hexadecimal constants 6-7
HFIX 88

hyperbolic cosine 88
hyperbolic sine 87
hyperbolic tangent 88

I format code
IABS 88

IDIM 88
IDINT 88

IF statement
IFIX 88
imaginary part of a complex argument 89
IMPLICIT 57-58

IMPLICIT specification 9

in-line subprogram 87

47,46

24-26

indexing I/0 lists 36-37
initialization of data 85,6,59
input data 33-34

inputsoutput statements 31-56

insert blanks 52-53
INT 88
INTEGER 57-60,12

integer constants 3-4
integer data format code
integer division 17
integer mode 14

I/0 lists 31-37,38-39
ISIGN 88

47,46

keyboard input 2

L formai code 49
labeied common area
largest value 88
length
specification for variables
total field length 44-45
list 31-37,38-39
{see also NAMELIST)
literal constants 6,1
literal data 51-52
literal format code 1
log-gamma 88
logical
assignment statement 20-21
constants 6
expressions 17-19,13
format code 49
IF statement 25-26
operators 13

64~65

7,44-45

machine indicator tests subprograms 89
mathematical subprograms 87

MAX0O 88

MAX1 88
MINO 88
MIN1 88
mixed mode 1
MCD 88

mode 13,1

modulus 88

multiline listing 43-45

multiple 2ntry into a FUNCTION
subprogram 75

multi plication 14

named common area 64-65
N&AMELIST 32-34,38-39
I/70 1
name 32, 33
natural logarithm 87
nested DOs 28
LNOT. 18
numeric characters 83
numeric format codes 47-49,46
numerical constants 3-5

obtaining the conjugate of a complex
argument 89
obt aining the imaginary part of complex
argument 89
obtaining the real part of complex
argument 88
operators
logical 18
relation of 17
optional length specification of
variables 8-9
.OR. 18
order of compution 19
in arithmetic expressions 16
in logical expressions 19
0S/TSS FORTRAN differences 82
out-of-1line subprogram 87
OVERFL 89

54-55
47-49

P scale factor
padding character
parentheses

in arithmetic expressions

in logical expressions 19
PAUSE statement 30
PDUMP subprogram 90
positive difference 88
PRINT statement 84-85
printing 55-56
programs, sample FORTRAN
PUNCH 84

16-17

91-96

READ 31-37

READ lists 31-37

reading FORMAT statements 37

real
complex form, two real arguments
expressed in 89

constants U4-5

mode 14

REAL 9,57-60,88
relational operators 17
remaindering 88
RETURN statement
REWIND 56,31

88-89,77,72-73,75-76

sample FORTRAN programs 91-96
scale factor 54-55
service subprogram 89,87
SIGN 88

SIN 87

SINH 87

skip characters 52-53
SLITE B89

SLITET 89

smallest value 88

SNGL 88

source program characters 83
spacing format code 53,1

SQRT 87

square root 87

standard length specification of
variables 7

statement 2

control 22-30
functions 70-71,69
inputsoutput 31-56
numbers 2
specification 57-68
subprogram 69-81

S5T0P statement 30

storage specification 6&0-66

subprogram 69-81,87-89
name 69
sexvice 89,87

statements 2
subroutine subprogram 75-81,87
subscript 10-11,82
subtraction 14

T format code 53
TAN 87
TANH 88
transfer of sign 88
trigonometric cosine 87
trigonometric cotangent 87
trigonometric Sine 87
trigonometric tangent 87
truncation 88
TSS FORTRAN IV 2

special features 2

TSS/0S, 0S/VS FORTRAN differences 82
type specification of the FUNCTION
subprogram 73-74
type statements 57-60

value, call-by 82
variable 8-10
attribute comtrol 1
length specification 7,89
names 8,31
predefined specification of variable
type 7
types 8-9

99

WRITE 37-39,31 X format code 52
WRITE lists 38-39
writing blank lines 39

Z format code 48-49,46

100

GC28-2007-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y_, U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

AINVHLHO4 waisAg bulieys awi | NG|

(G2-09€S "ON a|14)

7£002-8209D "V'SN Ul patulig

