
--- ------ ----- ---- ----- -- ----------_.- Systems Reference Library

IBM Time Sharing System

FORTRAN IV

File No. S360-25
GC 28- 2007-4

This publication describes and illustrates the use
of the IBM FORTFAN IV language for the IBM Time Sharing
System (TSS).

The IBM FORTRAN IV language is a symbolic
programming language that parallels the symlx>lism and
format of mathematical notation. It provides
programming feat.ures and facilities that can be used in
FOR'IRAN programs to solve mathematical problerrs.

'!be material in IBM FORTRAN IV is arranged to
provide a quick definition and syntactical reference to
the var ious elements of FOR'1RAN IV by means of a box
format. Each element. is described, with appropriate
examples of possible use.

'!he reader should have a basic knowledge of the
FORTRAN language. While some information relating
FOR'IRAN IV to TSS is presented, most of the necessary
guidance required by a FORTRAN user to perform a task
is given in IBM Time Sharing System: FORTRAN
Programmer·s Gui.de, GC28-2025.

PREFACE

This manual describes the IBM Time
Sharing System FORTRAN IV language. The
material in this publication is arranged to
provide a quick definition and syntactical
reference to the various elements of
FOR'lRAN IV by means of a box format. Each
element is described, with appropriate
examples of possible use.

Five appendixes give additional
information for writing a FORTRAN Iv .i;ource
program:

A: FORTRAN Comparison
B: Table of SOurce Program Characters
C: Other FORTRAN statements Accepted by

IBM FORTRAN IV
D: FORTRAN-Slpplied Subprograms
E: Examples of FORTRAN-Wei tten Programs

The user should have a basic knowledge
of the FORTRAN language before using this
publication. While some information
relating FORTRAN IV to TSS is presented,
most of the necessary guidance required by
a FORl'RAN user to perform a task is given
in IBM Time Sharing system: FORTRAN
Programmer"s Guide, GC28-2025.

This publication also refers to IBM Time
Sharirg System: FORTRAN IV Library
Subprograms, GC28-2026.

Third Ldition (May 1976)

This edition replaces, but does not obsolete,
GC28- 2007 -3.

This edition is current with Release 2.0 of the IBM
Time Sharing System (TSS/370), and remains in effect
for all subsequent versions or modifications of TSS
unless otherwise noted. Significant changes or
additions to this publication will be provided in new
editions or Technical Newsletters.

Requests for copies of IBM publications should be made
to your I~l representative or to the IBM branch office
serving your locality.

A form is provided at the back of this publication for
reader's corrunents. If the form has been removed.
comments may be addressed to the IBM Corporation, Time
Sharing System--Dept 80M, 1133 Westchester Avenue,
White Plaius. New York 10604.

© International Business Machines Corporation 1966,
1967, 1971, 1976

IN'l'RODUC'T ION •
IBM Time sha.rinq syst,em FOHTFAN IV ,
Specia.l kedtureG of TSS FORTRA.N IV

ELEMENTS Of THl': LANGUAGE •
Statements

Coding FOR't'RAN Si.~atement5
Card Inplt .
KeybodLd IUplt

Constants
Integet: Constitnt;s
Rea 1 Constants •
Compl{~x Const,dnts
Logical constants
Literal. Constant.s
Hexadeci mal Cons t ants
S ymha li c N ci !i1<t:'S

Variables
Variablt~ NdH1>ccS

Variable '1''1P(~3 and Length Specifi.cat.io!lb ,j

Type DFclaration ley the Predefinnl Sp(;cifJ.Gdti.,·:, "
Type De<:: ld.rat ion by the IMPLICIT Specif l.cation
Sta temen t.'f
Type Dec.tarat.1.0fi EXPLICIT ficat ion
Statenen ts

Arrays •
Subscripts
Declaring the Size of all A:t'ray
Arrangement of Arrays in 5'tor::h~e

Express ions
Ari thmetic Exp}. essions

Arithroetic Operators
Logical Ex p.t: f":±;3 ions

Relat.i'.mal
Logical Operators

ARITHMETIC ANll r~OGICAr, ASSIGNMENt' S'l'~TEMENT

CONTROL STAT_LMEN''l'S •
GO TO statement~~; "

Unconditional C::() TO Stat:ement
Computed GO TO statement •
ASSIGN and A..ssigned (:;() TO Stat.snenLs
Arithmet. ic IF statement
Logical IE S-tat.cment.
00 st atement ,
CON'T INUE':.>t.at ement •
PAUSE statement
STOP Stat.'·,:?ml?~it.

END st~at;ement

INP UT/OU'l'P U1' ,'TATEMI.;N'I'S
READ stat.ement •

READ (a,x)
READ (a.b) l.ist
READ (a) I,ist
Indexinq I/O List.s •
Readino F01:Ulat. Stateml?..nts

WRITE st.at'<~ment
WRITE (,i.X)

WRITE \ a, b) List •
WRITE {a} List

31

FORMAT Statement
(; Format Code
Numeric Format Codes (I,F,E,D, and Z)
I Format Code • • • .
F Format Code
L and E Format Codes . . . · ·
Z Format Code · · . -
L Format Code
fl. Format Code . - . · · Literal Data in a Format Statement .
H Format Code
X Format Code
T Format Code
Scale Factor - P ••••.
Carri age Cont rol • •

Additional Input/Output Statements •
END FILE statement •
REWIND Statement •••
BACKSPACE Statement

SPECIFICATION S~TEMENTS _
The Type Statements

IMPLICIT Statement • • _ _ •
Explicit Specification Statements

Additional Specification Statements
DIMENSION Statement • _ •••
Adjustable Dimensions
COMMON Statement • • • •
Blank and Labeled C01l11OOn •
Programming Considerations.
EQUIVALENCE statement
Programming Considerations •

• • 40
• 42

• • 46
• 47

• • • • • 47
48
48

• • • • 49
• • 49
• • 51

• 52
52
53
54

• • 55
56

• 56
56

• • 56

• • • • 57
• 57
• 57

59
• 60
• 60

• • 61
• 62
• 611

• • • • 65
• 66
• 68

SUBPROGRAMS ••• • • _ • • • 69
Naming Subprograms • • • • • • 69
Functions •••• 69

Function Definition • • 70
Function Reference . • 70

Statement Functions • • 70
FUNCTION Subprograms • • • • • ••• 72

Type specification of the FUNC'IION Subprogram • 73
RETURN and END statements in a FUNCTION
Subprogram. • • • • • • • • • • • • • •. • 74
Multiple Entry into a FUNCTION Su~rogram • 75

SUBROUTINE Subprograms • • • • • • • • • • • ••• 75
CALL statement • • • • • • • • • •• • • • • • • 76
RETURN Statement in a SUBROtJI'INE Subprogram •• 77
ENTRY Statement •• • • • 78
Additional Rules for using ENTRY. 80
The EXTERNAL Statement 80

BLOCK DATA Subprogram • • • • • • • 81

APPENDIX A: FORTRAN COMPARISON. • • 82

APPENDIX B: SOURCE PROGRAM CHARACI'ERS • • 83

APPENDIX C: OTHER FORTRAN STATEMENTS ACCEP'lED BY
TSS FORTRAN IV • • • • • • • • 8q

READ Statement • • 84
PUNCH Statement • 8q
PRINT Statement • • • • • • • 84
DATA Initialization Statement • 85
DOUBLE PRECISION statement • • • 85

APPENDIX 0: FORTRAN SUPPLIED SUBPROGRAMS
Mathematical subprograms • • • • • • •
Service Subprograms •••••••••

Machine Indicator Tests SUbprograms

87
• • 87

• • • • 89
• 89

The EXIT, DUMP, and PDUMP Subprograms • • ••• 90
EXIT Subprogram • • • • • 90
DUMP Subprogram • • • • • 90
PDUMP Subprogram •••• • • •• • • 90

APpmCIX E: EXAMPLES OF FORTRA~WRITTEN PROGRAMS
Example Program 1
Example Program 2

INDEX

• 91
• 91
• 91

91

3 Figure
Figure
Figure

1.
2.
3.

FORTRAN coding form
Example Program 1
Example Program 2

• • • • 91
•• 93

Table 1. Insurance premium codes ••••••••• 12
Table 2. Determining the mode of an expression
containing variables of different types and lengths 15
Table 3. Valid combinations ~sin9 the arithmetic
operator.. 15
Table 4. Mathematica1 function subprograms •••• 81

FIGURES

TABLES

INTRODUCTION

IBM TIME SHARIK; SYSTEM FORTRAN IV

TSS FORTRAN IV includes a language, a compiler, and a set of system­
supplied subprograms.

FOr more information regarding the compiler and system-supplied pro­
grams, see FORTRAN Programmer·s Guide and FORTRAN IV Library Subpro­
grams. The FORTR~N compiler operates under the control of TSS, ~hich
provides the compiler ~i.th input/output and other services. Object pro­
grams generated by the compiler operate under TSS control and are depen­
dent on it for similar services.

The TSS FORTRAN IV language is compatible with and encompasses the
American National Standa.rds Institute (ANSI) FORTRAN. including its
mathematical subroutine provisions. Source programs written in FORTRAN
consist of a set of stat~ements constructed from the elements of the lan­
guage described in this publication.

SPECIAL FEATURES OF TSS FORTRAN IV

TSS FORTRAN IV is a further development of previously implemented
FORTRAN systems and cont.ains many of the features of these systems (see
-Appendix A: FORTRAN Comparison-). The following features facilitate
the writing of source programs and reduce the possibility of coding
errors:

1. Variable Attribute Control: The attributes of variables and arrays
may now be explicit~ly specified in the source program. This faci­
lity is provided by a single explicit specification statement that
allows a prograllUlYaz" to:

a. Explicitly type a variable as integer, real. complex. double
precision, or logical.

b. Specify the number of storage location bytes to be occupied by
each variable or member of an array.

c. Specify the dimension of an array.
d. specify data initialization values for variables.

2. Adjustable Array Dimensions: The dimensions of an array in a sub­
program may be spe<:ified as variables; when the subprogram is
called, the absolute array dimensions are substituted.

3. Additional Format Code: An additional format code - G - can be
used to specify the format of numeric and logical data. Previously
implemented format codes are also permitted.

4. Mixed Mode: Expressions may consist of constants and variables
that are of the same and/or different types and lengths.

5. Namelist I/O: Formatting of input/output data is facilitated by
reading and .,ritin~J operations without reference to a FORMAT state­
ment or list.

6. Spacing Format Code: The T format code allows input/output data to
be transferred beginning at any specified position.

1. Literal Format Code: Apostrophes may be used to enclose literal
data.

Introduction 1

ELEMENTS OF THE LP>NGUAGE

STATEMENTS

FORTRAN statements are composed of FORTRAN key words used in conjunc­
tion with the basic elerrents of the language (constants, variables, and
expressions). The five categories of FORTRAN statements are:

1. Ar ithmetic and Logical Assignment Statements: Replace the current
value of a ~esignated variable after calculations have been
performed.

2. Control Statements: Govern the flow and terminate the execution of
the object program.

3. Input/OUtput Statements: Exchange information between a user's
program and a named collection of data, called a data set.

4. Specification Statements: Declare the properties of variables,
arrays, and subprograms (e.g., type and amount of storage reserved)
and describe the format of input or output data.

5. SUbprogram statements: Define and name functions and subroutines.

CODING FORTRAN STP>TEMENTS

Card Input

The statements of a FORTRAN source program can be written on a stan­
dard FORTRAN coding form, Form X28-7327 (see Figure 1). FORTRAN state­
ments are written one to a line from columns 7 through 72. If a state­
ment is too long for one line, it may be continued on as many as 19 suc­
cessive lines by placing any character, other than a blank or zero, in
column 6 of each continuation line. For the first line of a statement,
col umn 6 must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a
statement number consisting of from one through five decimal digits.
Leading zeros in a statement number are ignored. statement numbers may
appear anywhere in columns 1 through 5 and may be assigned in any order;
the value of statement numbers does not affect the order in which the
staterrents are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

Comments to explain the program may be written in columns 2 through
80, if the letter C is placed in column 1. Canments may appear anywhere
within the source program except immediately preceding a continuation
1 ine. They are not processed by the FORTRAN compiler I but are printed
on the source program listing. BlankS may be inserted where desired to
improve readability_

Keyboard InfUt

The conversational capability of TSS FORTRAN allows statements to be
entered via a keyboard at a terminal. The rigid card column rules are
relaxed for this means of input. A detailed description of keyboard
input is contained in FORTRAN Programmer's Guide.

2

IBM FORTRAN Codmg FllffTI

E:~~=--=~--=-_- 1

F+~rl --r-----

-- - I

- f I-

Figure 1. FORTRAN coding form

CONSTANTS

A constant is a fixed, unvarying quantity. The three classes of con­
stants are those that deal with numbers (numerical constants), truth
values (logical constants), a~l literal data (literal constants).

Numeri cal constants may be integer, real, or complex numbers; logical
constants may be • TRUE. or. FALSE.; literal constants may be a string
of alphameric and/or special characters enclosed by apostrophes.

Hfr:a; ER CONSTANTS

r---,
I Definition I
r--------------------------·-·----------------------------------~
I Integer constant - a whole number written without a decimal point; I
I it occupies two or four storage locations: four storage locations is I
I the standard length. I
I I
I Maximum Magnitude: 2141483641, i.e., (2 3 :1.-1). I l ____________________________ . ___________________________________ J

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and may not contain embedded commas.

Examples: Valid Integer constants:

o
91
173
-21474836117
-12

Elements of the Language 3

Invalid Integer Constants:

0.0
27 •
3145903612
5,396

REAL CONST ANI'S

(contains a decimal point)
(contains a decimal pOint)
(exceeds the allowabl e range)
(contains embedded comma)

r--,
I Definition I
.--~
I Rea 1 Constant -- a number with a decimal point optionally followed I
I by a decimal exponent, or an integer constant followed by a decimal I

exponent. The exponent may be wri'~n as the letter E or D followed I
by a signed or unsigned, one- or Lwo-digit integer constant. A real I
constant may assume one of two forms: I

1.

2.

From 1 through 7 decimal digits, optionally followed by an E and
a decimal exponent. 'Ibis form occupies 4 storage locations.
Either 1 through 7 decimal digits, followed by a D and a decimal
exponent, or 8 to 16 decimal digits, optionally followed by a D
and a decim:ll exponent. 'Ibis form occupies 8 storage locations
and is scmetimes referred to as a double-precision constant.

Magnitude: (either form) 0 or 16- 85 through 16e3 (i.e., approxim-

I
I
I
I
I
I
I
I
I

I ately 107~). I l __ J

A real constant may be positive, zero, or negative (if unsigned, it
is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded conunas. '!he decimal exponent E or D permits
the expression of a real constant as the product of a real constant
times 10, raised to a desired power. If a decimal exponent is g1 ven,
the decimal point is not required.

Examples: Valid Real Constants (4 storage locations>:

+0.
-999.9999
0.0
5764.1
7.0 E+O
19761. 25E+l
7EJ
7.E3
7.0EJ
7.0Eln
7.0E+03
7.0E-03

(i. e., 7.0 x 100 = 7. 0)
(i.e., 19761.25 x 101 = 197612.5)

(i.e., 7.0 x 10 3 = 7000.0)

(i.e., 7.0 x 10- 3 = .007)

valid Real Constants (8 storage locations):

4

21.98753829457168
1.0000000

7.9D3 I 7.9003
7.90+03
7.90+3
7.9D-03
7.900
0.000
7D3

(i.e., 7.9 x 10 3 = 7900.0)

(i. e., 7.9 x 10- 3 = • 0079)
(i.e., 7.9 x 100 = 7.9)
(i. e., 0.0 x 100 = O. 0)
(i.e., 7 x 103 = 7000)

Invalid Real Constants:

o
3,471.1
loE

7.9D

1.2E+113

21.3D90

23.5E+97

COMPLEX CONSTANTS

(missing a decimal po int)
(contains embedded corrrna)
(missing a one- or two-digit integer
constant following the Ei note that it is not
interpreted as 1. 0 x 10 0)

(missing a 1- or 2-digit integer
constant following the D)
(E is followed by a 3-digi t
integer constant)
(value exceeds the magnitude permitted;
that is, 21.3 x 10 g o>16 63)

(value exceeds the magnitude permitted;
that is, 23.5 x 10 lJ7>16 e3)

r------------------------·---,
I Definition I
r---··------------------~
I Complex Constant -- an ordered pair of signed or unSigned real con- I
I stants separate:} by a comma and enclosed in parentheses. These real I
I constants may assume one of two forms: I
I I
I 1. From 1 through 7 decimal digits, optionally followed by an f I
I decimal exponent. In this form, each nunber in the pair occn- I
I pies 4 storage locations. I
I I
I 2. Either 1 through 7 decimal digits, followed by a D decimal I
I exponent, or 8 through 16 decimal digits, optionally followed by I
I a D decimal exponent. In this form each number in the pair I
I occupies 8 storage locations. I
I I
I Magnitude: (either form) 0 or 16- 65 through 16 63 (i. e., approx im- I
I ately 10715) for each real con stan t in the pair. I l ___ J

The real constants in a complex constant may be pOSitive, zero, or
negative (if unsigned they are assuned to be positive), but t.hey must be
within the given range.. The first real constant in d complex constant
represents the real part of the complex number; the second repres ents
the imaginary plrt of the complex number.

Examples: Valid complex Constants:

(3.2,- 1.86)
(-5 .OE+03, .16E+02)
(4.0E+03, .16E+02)
(2.1,0.0)
(4.70+2,1.9136148)

(has
(has
(has
(has
(has

value 3.2-1. 86i)
value - 5000. +16. Oil
value 4000.+16.0i)
value 2.1+0.01)
value 410.+1. 9136148i)

IIthere i =..;-:::1
Invalid Complex constants:

(292104,1.697)

(1. 2E;113, 279. 3)

(.0034E4,.005D6)

(real part does not
cont ain decimal po in t)
(real part contains
invalid decimal exponent)
(parts differ in lergth)

Elements of the Language 5

LOGICAL CONSTANTS

,---,
I Definition I
r--f
I Logical Constant -- The two logical values are: I
I I
I . TRUE. I
I . FALSE. I l __ J

A logical constant llllSt be preceded and followed by a period.
logical coustant3 .TRUE. and. FALSE. specify that the value of
logical variable they replace, or the term of the expression they
associated with, is true or false, respectively (see WLogical
Expressions") •

LITERAL CONSTANTS

The
the
are

,---~
I Definition I
r--f
I Literal Constant -- a string of alphameric and/or special characters I
I enclosed in apostrophes. I l __ J

The numner of characters in the string, including blanks, may not be
greater than 255. Since apostrophes delimit literal data, a single apo­
strophe within such data is represented by double apostrophes. An
alternative form for a literal constant is wH immediately followed by a
string, of length w, of alphameric and/or special characters. A Single
apostrophe within such data is represented as a single apostrophe.

Examples:

'DATA'
, INPUT /OUTPUT AREA NO.2'
'X-COORDINATE Y-COORDINATE
'3.14'
'DON' 'T'
5HDON"T

HEXADECIMAL CONSTANTS

Z-COORDINATE'

,---,
I Definition I
r--~
I Hexadecimal Constant -- the character Z followed by a number formed I
I from the set 0 through 9 and A through F. I l __ J

Hexadecimal constants may be used only as data initialization values.

One storage location contains two hexadecimal digits. If a constant
is specified as an odd number of digits, a leading hexadecimal zero is
added to fill the storage location. '!he internal form of each hexade­
cimal digit is:

6

0-0000
1-0001
2-0010
3-0011

4-0100
5-0101
6-0110
7-0111

8-1000
9-1001
A-1010
B-1011

C-llOO
0-1101
E-1110
F-1111

Examples:

ZlC49A2Fl
ZBADFAD

The maximum number of eUgi ts allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see ·Variable Types and Length Specifications·). The following list
shows the maximum number of digits for each length specification.

Length Specification of Variable
16

8
4
2
1

Maximum Nunber of Hexadecimal Digits
32
16

8
4
2

If the number of hexadecimal digits is greater than the maximum, the
leftmost digits are truncated; if the number of digits is less than the
maximum, leading hexadecimal zeros are added.

SYMBOLIC NAMES

r---,
I Definition I
~---~ 1 Symbolic Name -- from 1 through 6 alphameric (i.e., 0 through 9, or I
1 alphabetic, A through Z and $) characters, the first of which must I
I be alphabetic. I L __ -l

Symbolic names are used in a program unit (i.e., a main program or a
subprogram> to identify elements in the following classes.

• An array and the elements of that array (see "Arrays·)

• A variable (see "Varlables")

• A statement function (see "Statement Functions ")

• An intrinsic function (see Appendix D)

• A FUNCTION subprogram (see "FUNCTION Suq>rograms·)

• A SUBROUTINE subprogram (see "SUBROUTINE SUq>rograrns")

• A block name (see "BI.OCK DATA Subprograms")

• An external procedure that cannot be specified as either a SUBROU­
TINE or FUNCTION subprogram (see ·The EXTERNAL Statement")

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A block name can also be an array, variable, or statement function
name in a program unit.

A FUNCTION subprogram name must also be a variable name in the FUNC­
TION'subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a SUBROU­
TINE subprogram name, a block name, or an external procedure name in any
uni t of an executable program, no other program unit of that executable

Elements of the Language 7

\] .'

t'·ll'

ic representatiun of
The IId1u£:' ot a vdLldul,!

':_1 f)Y:<) ql" Gilf or it t d. i f t (.> l-(~ ni-,

C:JdS:~;f-~S in any

d quantity that
may change either
stages within the

':q,p \1"ltlE' 01 t'- i 'c' de
ft:orn time -t(> t ':uc:-"lI?;

fl'i:~ rf or!r""t1 wi Lh d 11"::;'",

nni nell by ,:}owe pre­
t .tv< ".)'(1 t.ie of p,.,. varies
vaJ \1t::' :tor [3 ...

,:~'H;l:~'nn"::~ ~~--;.1-:-_her t.h,ln the pr~)<:'i' ;:rrn.H1{~:C ~ndy look at
1. ~! ,,-' f-'\l'l-:: i-I- i~ 1:-: d -:.x{3 ~ l.(~d.e.i' !_; t'_d.flf1 i t-_ s f'l..lnt'...::t. i()n,,, _FoY (.l-Xd r-,p .ie' # too cOl'npute the

.-j, CE:T"~::""::ii_n lenqth ()j: tiHi~_:- t d. qiven rate- of
~:~ t d ~'f~IT!el_~ t cO~-lld !ldVl:: b<~e n_ wl:'.i t 't.e n:::

wO,f' ". ,,1(',,, ndt.v" H ',,1. .v:d1:iun. However, i.t would. be more meaningful
t_t'l ii.)!T"L:c~nf·t r~~~~'.;J-:.Lrlq 'i:.~(~S_~_:: ~;1.t,'jLerr~t::nt if the pr()9:,:r:a!nnt(~£ ['lad wr.'it,t.en

f cc}nt.ain"d WK.lx-e tJlan 6 '(;har-act-ers)
£.t,Lx:~:t. chaL·dc·tel~ is not
{(:cntains a special charactf::::r)

t.o til,,, ty pe of da1:a the var iable
"xax1.ablt? repX:>('-'±Jt:?!llt~~~ i,rft> . .i~ger ctat-.d.!! a real

'oT ;,bll2. d. dlnq ,;tan(Ia!:·d and opt.ional
:::<"ty·.uainfC's of :,,!:Dr;:Lle locat.i.ons reserved

Thp f;:) lowiu1 li::ot shows EdCh vacLable type with its

" d 0,

1 f,
q 1

The three ways a programmer may declare the type of a variable are by
use of the:

1. Predefined specification contained in the FORTRAN language,

2. IMPLICIT specification statement,

3. Explicit specification statements.

The optional-length specification of a variable may be declared only
by the IMPLICIT or Explicit specification statements. If, in these sta­
tements, no length specification is stated, the standard length is
assumed (see -The Type statements·).

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify
variables as integer or real:

1. If the first character of the variable name is I. J. K, L, M. or N,
the variable is integer of standard length, 4.

2. If the first character of the variable name is any other letter,
the variable is real of standard length, 4.

This convention is the traditional FORTRAN method of implicitly spe­
cifying the type of a variable as being either integer or real. In all
examples that follow. it is presumed that this specification holds,
unless otherwise noted.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

This statement allows a programmer to specify the type of variables
in I1Uch the s arne ~ay as ~as specified by the predefined convention.
That is, in both, the type is determined by the first character of the
variable name. However, the programmer, using the IMPLICIT statement,
has the option of specifying which initial letters designate a particu­
lar variable type. Further, the IMPLICIT statement is applicable to all
types of variables -- int4:!ger, real, complex, and logical.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement spe­
cifies that. variables beginning with the letters A through M are real
variables, and variables beginning with the letters N through Yare
integer variable3, then the variable ITEM (which would be trea ted as an
integer variable ~nder the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT. statement is presented in greater detail in the section "Type
Statements. •

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statements (INTEGER, REAL, COMPLEX, and LOGIC­
AL) differ from the first two ways of specifying the type of a variable,
in that an explicit specification statement declares the type of a par­
ticular variable by its name. rather than as a group of variables begin­
ning with a particular character.

For example, assume:

Elements of the Language 9

1. That an LMPLICIT~pecification statement overrode the predefined
convention for variables beginning with the letter I, by declaring
them to be real.

2. That d subsequent Explicit specification statement declared that
the v'ariable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
~ith the character I are real. Note that variables beginning with the
letters J through N are specified as integer by the predefined
convention.

The Explicit specification statements are discussed in greater detail
in the section "Type statements."

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT, which consists of five
variables, each currently representing these values:

273, 41, 8976, 59, and 2

NEXT (1)

NEXT(2)

NEXT (3)

NEXT(4}

NEXT(5)

repres ents 273
represents 1t1
represents 8976
represents 59
represents 2

Each variable in this array consists of the name of the array (i.e.,
NEXT) followed by a number enclosed in parentheses, called a subscript.
The variables that constitute the array are called subscripted
variables. Therefore, the value of the subscripted variable NEXT (1) is
273; the value of NEXT(2), is 411 etc.

The subscripted variable NEXT(I) refers to the -Ith" subscripted
variable in the array, where I is an integer variable that can assume a
value of 1, 2, 3, 4, or 5, in this array.

To refer to the first element of an array, the array name must be
subscripted; the array name does not represent the first element. The
number of subscripts must correspond to the declared dimensionality,
except in the EQUIVALENCE statement, which is explained in -EQUIVALENCE
Statement. •

SUBSCRIPTS

A subscript is an index that specifies one of the coordinates that
identify a particular element of an array. From one to seven subscripts
are used in accordance with the dimensionality of the array being sub­
scripted. Multidimensional subscripts are separated by commas. The
subscripts, enclosed in parentheses, follow the array name.

10

r---------------·---------------------------------------,
I General Form I
..-----------------------.---------------------------------------1
I Subscripts may be one of seven forms: I
I I
I v I 'c' I I v+c' I
I v-c' I
I c*v I
I c~+c' I
I c*v-c' I
I I
I where v represents an unsigned, nonsubscripted, integer variable. I
I I
I c and c' represent unsiqned integer constants. I l ___ 1

\tlatever sutscript form is used, its evaluated result must always be
greater than zero. For example, when reference is made to the sub­
scripted variable vtI-2). the value of I should be greater than 2.

Examples:

ARRAY (IHOLD)
NEXT{19}
MATRIX (I-5)
1\ (5*L)
W(4*M+3)

These are valid subscripted variables for their corresponding arrays:

Array Name
A
TA.BLE
B
MATRIX

Subscripted Variable
A(5, 100, J, K+2)
TABLlI!: (1, 1, 1, 1, 1, 1, 1)
B (I, J, K, L, M , N)
MATRIX(I+2,6*JOB-3,KFRAN)

Consider the following array, named LIST, consisting of two subscript
parameters, the first ranqing from 1 through 5, the second from 1
through 3.

Column 1 Column 2 Colmnn 3
Row 1 82 4 1
Row 2 12 13 14
Row 3 91 1 31
Row 4 24 16 10
Row 5 2 8 2

'!be correct reference for the number in row 2, column 3, would be

LIST <2,3)

LIST (2,3) has the value 14; LIST (4,1) has the value 24.

Ordinary mathematical notations might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LIST (I, J),
where I equals 1, 2, 3, 4, or 5, and J equals 1, 2, or 3.

As a further example, consider the array named COST, consisting of
four subscript parameters. This array might be used to store all the
premiums for a life insurance applicant, given (1) age, (2) sex, (3)
health, and (4) size of life insurance coverage desired. A code number
could be developed for each statistic; IAGE represents age; ISEX. sex;
IHLTH, health1 and ISIZE:, policy size desired (see Table 1),

Elements of the Language 11

Tabl e 1. Insura nce premium codes
r----------------------------------T-----------------------------------,
I AGE I SEX I
r----------------------------------+-------------------------------~
I ~ in years Code I Sex Code I
I I I
I 1-5 IAGE=1 I Male ISEX=1 I
I 6-10 IAGE""2 I Female ISEX=2 I
I ~-----------------------------------~
I I POLICY SIZE I
I t-----------------------------------~
I 96-100 IAGE=20 I I
.----------------------------------f Dollars Code I
I HEALTH I I
~----------------------------------~ 1,000 ISIZ£:l I
I Heal th Code I 3,000 ISIZE=3 I
I I 5,000 ISIZE=4 I
I Poor IHLTH=1 I 10,000 ISIZ£:5 I
I Fa ir IHLTH=2' 25.00 a lSI ZE=6 I
I C',ood IHLTH=3 I 50,000 ISIZ£:7 I
I Excellent IHLTH=4 I 100,000 ISIZE=8 I l __________________________________ ..1.-_____________________________ ~

Suppose an applicant is 14 years old. male, in good health, and
desires d policy of $25,000. From Table 1, the statistics can be repre­
sented by these codes

IAGE=3
ISEX==1
IHLTH=3
I SI ZE=6

(1~ - 15 years old)
(male>
(good health)
($25,000 policy)

Thus, COST (3, 1, 3, 6) represents the premium for a policy, given
the statistics above. Note that I~GE can vary from 1 to 20, ISEX from 1
to 2, IHLTH from 1 to 4, and ISIZE from 1 to 8. The number of sub­
scripted variables in the array COST is the number of combinations that
can he formed for different ages, sex, health, and policy size available
- a tot.al of 20x2x:4x8 or 1280. Therefore, up to 1280 different premiums
may be stored in t.he array named COST.

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscript parame­
ters of the array and the maximum value of each subscript. This infor­
mation ITLlst be given for all arrays before using them in a FORTRAN pro­
gram, so that a storage area of sufficient size may be reserved.
Dec laration of this information is made by a DIMENSION statement, a COM­
MON <;taternent, or by one of the Explicit specification statements
(INTEGER, REAL, COMPLEX, and LOGICAL); each is discussed in "Specifica­
tion Statements."

ARRAl'JGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
t.he first of their subscripts increaSing most rapidly, and the va lue of
t.he last increasing least rapidly.

Examples.: The array named A, consisting of one subscript parameter,
which varies from 1 to 5. appears in storage as

1\(1) A(2) A(3) A(4) A(S)

12

In the expression B(2.I), the subscript (2.1), which must always
represent an integer, does not affect the mode of the expression. That
is, the mode of the expression is determined s:>lely by the type of con­
stant, variable, or subscripted variable appearing in that expression.

More complicated arithmetic expressions containing two or more con­
stants and/or variables may be formed by using arithmetic operators that
express the computations to be performed.

Arithmetic operators

The arithmetic operators are:

Arithmetic Operator Definition
Exponentiation
Mul tipl ication
Division
Addition
subtraction

••
*
/
+

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: These are the rules for
cunstructing arithmetic expressions that contain arithmetic operators:

1. All desired computations must be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or function
reference (see "SUBPROGRAMS·) appears in an arithmetic expression,
they llIuSt be separated from one another by an arithmetic operator.
For example, the two variables A and B will not be multiplied if
written as

AxB or AB or A-B

If multiplication is desired, then the expression must be written
as

A*B or B.A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, these expressions are invalid

A*/B and A*-B

However, in the expression, A.-B, if the - is meant to be a minus
sign rather than the arithmetic operator designating subtraction,
then the expression could be written as

A* (-B)

In effect, -B will be evaluated first, and then A will be multip­
lied with it (for further uses of parentheses, see Rule 6).

3. The mode of an arithmetic expression is determined by the type of
the operands (where an operand is a variable, constant, function
reference, or another expression) in the expression. Table 2 indi­
cates how the mode of an expression that contains operands of dif­
ferent types may be determined using the operators: +, -, *. /.

14

Table 2 shows a hierarchy of type and length specification (see
"Type Statements") that detern~nes the mode of an expression. For
example, complex data that has a length specification of 16, when
combined with any other types of constants and variables, results
in complex da ta of length 16.

Table 2. Determinillq the mode of an expression containing
variables of different types and lengths

r------_r---------~-------_r---------~--------T---------,_------,
1 I INTEGER , lNTEGER I REAL I REAL I COMPLEX IC(Jo!PLEXI
I" - • /1 (2) I (4) ,(4) 1 (8) I (8) I (16) I
r------t---------+--·------f--------+_-------+ -f-----i
IINl'EGERI Integer I Integer, Real I Real I Complex ,Complexl
I (2) I (2) I (4) I (4) I (8) I (8) 1(16)1

r-----+-------+--·-------+---------+-------+_ --f-----i
I INl'EGER I Integer I Integer I Real I Real ,Complex I complex I
I (4) I (4) I (4) I (4) I tS) I (S) I (16) I
r------+--------+--·------+-------+_------+-----f------i
IREAL I Real I Real I Real ,Real I Complex IComplexl
I (4) I (4) I (4) I (4) ,(8) I (8) I (16) I
r------+--------+--------f---------+_-------+-----f------i
IREAL I Real ,Ileal I Real I Real I Complex I Complex I
1 (8) I (8) I (8) I (8) I (8) I (16) I (16) I
r------+------+-·-------+-------+_------+-----+------i
I COMPLtx I Complex I Complex I Complex I Complex I Complex IComplexl
I (8) , (8) I (8) I (8) I (16) I (8) I (16) I
r-------+-------+---------+--------+_-----+--------f------i
I COMPLEX I Complex I Complex I Complex I Complex I Complex IComplexl
I (16) I (16) I (16) I (16) I (16) I (16) I (16) I L--____ L--______ ~. _______ ~ ________ L_ ____ L_ ______ ~ _____ J

Assume that the type of the following variables has been specified
as

Variable Names
ROOT, E
A, I, F
C, D

~
Real variables
Integer variables
complex variables

Length Specification
4,S
4,2,2
16,8

'!hen, the following examples illustrate row constants and variables
of differing types may be oombined using the arithmetic operators
(+, -, /, .)

Expression
ROOT. 5
A+3
C+2.9D10
ElF+19
C-18.7EOS
WI-D

Mode of ExpreSSion
Real of length ..
Integer of length ..
Complex of length 16
Real of length 8
Complex of length 16
Complex of length 8

4. The arithmetic operator denoting exponentiation (i.e., ••) may only
be used to combine the types of constants, variables, and SUL­
scripted variables shown in Table 3.

Table 3. Valid conbinations using the arithmetic operator ••

,--,
I Base Exponent I
r---~
I Integer or Real (either length) •• Integer or Real (either length) I
I I
IComplex (either length) •• Integer (either length) I L-__ J

Assume that the types of the fOllowing variables are as specified,
and that their length specification is standard.

Var iable Names
ROOT,E
A, I, F
C

~
Real variables
Integer variables
Complex variables

Elements of the Language 15

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operator
**.

Examples:

Expression
ROOT •• (A+2)
C··I>.
ROOT··I
I··F
7. 98E21 •• ROOT
ROOT··2.1E5
A··E

~
(Real **Integer)
(Complex •• Intege r)
(Real**Integer)
(Integer •• Integer)
(Real**Real)
(Real**Real)
(Integer •• Real)

Result
(Real)
(Complex)
(Real)
(Integer)
(Real)
CReal)
CReal)

5. Order of Cbmputation: Where parentheses are omitted, or where the
entire arithmetic expression is enclosed within a single pair of
parentheses, the order in which the operations are performed is as
follows:

Operation
Evaluation of Functions (see

·Subprograms·)
Exponentiation (.*)

Hierarchy
1st (highest)

Mul t iplication a rrl Division (* and /)
Addi tion and Subtraction (+ and -)

2nd
3rd
4th

In addition, if two operators of the same hierarchy (with the
exception of exponentiation) are used consecutively, the component
operations of the expression are performed from left to right.
Thus the arithmetic expression A/S*C is evaluated as if the result
of the division of A by S was multiplied by C.

For example, the expression

is evaluated in this order

a. C**1
b. A*S
c. Y/X
d. Z+D

Call the result X
Call the result y
Call the result Z
Final operation

(expon entiat ion)
(mul tipl ica tion)
(division)
(addition)

For exponentiation the evaluation is from right to left. Thus, the
expression

A··S**C

is eval ua ted as

a. s**c
b. A •• Z

Call the result Z
Final operation

6. USe of Parentheses: Parentheses may be used in arithmetic expre­
ssions, as in algebra, to specify the order in which the arithmetic
operations are to be performed. Where parentheses are used, the
expreSSion within the parentheses is evaluated before the result is
used.

For example, the expression

(B+ «A+B) *C)+A.*2)

is evaluated in this order

16

a. (A+B)
b. (X*C)
c. A**2
d. B+Y+Z

Call the result X
Call the result Y
Call the result Z
Final operations

1. Integer Division: When division is performed using two integers,
the answer is truncatl~d and an integer answer is given. For
exanp.le, if 1=9 and J:=2, then the expression (I/J) would yield an
integer answer of " after truncation.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant, logical variable, or logical subscripted variable, the value
of which is always a truth value (i.e., either . TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of three
forns •

1. Relational operators combined with arithmetic expressions whose
mode is integer or real.

2. Logical operators combined with logical constants LTRUE. and
.FALSE.), logical variables, or subscripted variables.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operator~~";
items 2 and 3 are discussed in -Logical Operators.·

Relational Operators

The six relational operators, each of which must be preceded a nd fol­
lowed by a period, are:

Relational Operator
.GT.

Definition
Greater than (»

.GE.

.LT.
Greater than or equal to (~)

Less than «)
.LE.
.EQ •

Less than or equal to «)
Equal to (=)

.NE. Not equal to (;t.)

The relational operators express an aritnnetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relational operators. For example, assume
that the types of these vclriahles have been specified as

Variable Names
ROOT, E
A, I, F
L
C

~
Real variables
Integer variables
Logical variable
Complex variable

• Then, the follOWing examples illustrate valid and invalid logical
expressions using the relational operators.

Examples: Valid Logical Expressions Using Relational Operatorsl

(Roar*A) .GT. E
A.LT.!
E.*2.7.EQ.(5*ROOT+4)
57.9 .LE. (II. 7+F)
.5. GE •• 9 * ROOT
E. EQ. 27 • 30+05

Elements of the Language 11

Invalid Logical Expressions using Relational Operators:

C.LT.ROOT (complex quantities may never appear in logical
expressions)

C.GE.(2.7,S.9E3) (Complex quantities may never appear in logical
expressions)

L.EQ. (h+F)

E** 2.EQ97 .1E9

.GT.9

Logical Operators

(Logical quantities may never be joined by rela­
tional operators)
(Missing period immediately after relational
operator)
(Missing arithmetic expression before relational
operator)

The three logical operators, each of which must be preceded and fol­
lowed by a period, are as follows. (A and B represent logical constants
or variables, or expressions containing relational operators).

Logical Operator
.NOT.

.AND.

.OR.

Definition
.NOT.A - if A is .TRUE., then • NOT.A has the value
.FALSE.; if A is .FALSE., then .NOT.A has the value
• TRUE.

A.AND.B - if A and B are both .TRUE., then A.AND.B
has the value .TRUE.: if either A or B or both are
.FALSE., then A.AND.B has the value .FALSE.

A.OR.B - if either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.: if both A and Bare
.FALSE., then A.OR.B has the value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT ••

Only those expressions which, when evaluated. have the value .TRUE.
or .F~~SE. may be combined with the logical operators to form logical
expressions. For example, assume that the types of these variables are
as specified.

Variable Names
ROOT, E

~
Real variables

A, I, F Integer variables
Logical variables
Complex variable

L, W
C

Then, the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Examples: Valid Logical Expressions:

(ROOT*A.GT.A).AND.W
L.AND •• NOT.(I.GT.F)
(E+5.9D2.GT.2*E).OR.L
.NOT.W.AND •• NOT.L
L.AND •. NOT.W.OR.I.GT.F
(A**F.GT.ROOT).AND •• NOT.(I.EQ.E)

Invalid Logical Expressions:

18

A.AND.L
.OR.W

NOT. (A .GT .F)

(A is not a logical expression)
(.OR. must be preceded by a logical
expression)
(miSSing period before the logical operator
• NOT. >

(c. EQ. 1) • AND. L (a complex variable may never appear in a log­
ical expression)

L.AND •• OR.W

.AND.L

(the logical operators • AND. and .OR. must
always be separated by a logical expression)
(.AND. must be preceded by a logical
expression)

Order of computations in Logical Expressions: Where parentheses are
omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, this is the order in which the operations
are performed.

Operation
Evaluation of FUnctions
Exponentiation (**)

Hierarchy
1st (highest)
2nd

Multiplication and division (* and /)
Addition and subtraction (+ and -)
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

3rd
4th
5th

.NOT. 6th

.AND. 7th

.OR. 8th

For example, tbe expression

(A.GT .D**B .AND •• NO!'. I •. OR. N)

is evaluated in this ordE!r

1. D**B Call the result W (exponentiation)
2. A.GT.W Call the result X (relational operator)
3. .NOT.L Call the result Y (highest logical operator)
q. X.AND.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Use of Parentheses in Loqical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parEmtheses are used, the expression contained
within the innermost pair of parentheses is evaluated first. For
example, the logical expression

«I.GT.(B+C».AND.L)

is evaluated in this order

1. B+C
2.I.GT.X
3. Y.AND.L

Call the lresult X
Call the result Y
Final operation

The logical expression to Which the logical operator .NOT. applies
must be enclosed in parentheses if it contain s two or more quanti ties.
For example, assume that the values of the logical variables A and Bare
• FALSE. and .TRUE., respectively. Then these two expressions are not
equivalent

.NOT. (A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. '!be result is
.TRUE.; but .NOT. '-TRUE.) implies. FALSE.. Therefore, the value of the
first expression is • FALSE ••

In the second expression, • Nor. A is evaluated first. The resu It is
.TRUE.; but .TRUE •• OR.B implies .TRUE •• Therefore, the value of the
second expression is .TRUE ••

Elements of the Language 19

ARITHME'l'IC AND LOGICAL ASSIGNMENT STATEMENT

r--,
I General Yorm I
~--f
I ~ =, ~ I
I I
I whf're ~ is :lny subscripted or nonsubscri Fted variable I
I I
I b is any arithmetic or logical expression I
I I
! NoU,,: ~ must be a logical variable if, and only if, !! is a logic- I
I al expression. I t ___ , __ J

The FOR'lRAN arithmetic and logical assignment statement closely
resembles a conventional algebraic equation; however, the equal sign of
the FORTRAN arithmetic statement specifies replacement rather than equi­
valence. That is, the expression to the right of the equal sign is eva­
luated, and the resulting value replaces the current value of the vari­
able too the left of the equal sign.

Assume that the type of the following variables has been specified

Variable Names
I, J, W
A, B, C, D
1-_

Uf H

~
Integer variables
Real variables
Complex variable
Logical variables

Length Specification
4,4,2
4,4,8,8
8
4,4

'Then, the following examples illustrate valid arithmetic statements
USing constants, variables, and subscripted variables of different
types.

St_ateme.nts ------,--
A B

A I

I "" I + 1

E I **J+D

A. C *D

C, '" • TRUE.

II • NOT.G

20

Description
The value of A is replaced by the current value of B.

The value of B is converted to an integer value and
the least significant part replaces the value of W.

The value of I is converted to a real value and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

I is raised to the power J and the result is con­
verted to a real value, to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the com­
plex variable is set to zero.

The most significant part of the product of C and D
replaces the value of A.

The value of G is replaced by the logical constant
.TRUE ••

If G is .TRUE., the value of H is replaced by the
logical constant .FALSE.. If G is .FALSE., the value
of H is replaced by the logical constant .TRUE ••

G.:= 3 •• GT.I

E = (1.0,2.0)

A E

E = A

The value of I is converted to a real valuel if the
real constant 3. is greater than this result, the
logical constant. '!RUE. replaces the value of G. If
3. is not greater than I, the logical constant
• FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant (1.0,2.0). Note that the state­
ment E = (A,B), where A and B are real variables, is
invalid.

The real part of the complex variable E replaces the
value of A.

The value of A replaces the value of the real part Of
the complex variable E J the imaginary part is set
equal to zero.

Ari thmetic and Logical Assignment statement 21

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially: that is,
after one statement has been executed, the statement immediately follow­
ing it will be executed. This section discusses the statements that may
be used to alter and control the normal sequence of statement execution
in the program.

GO TO STATEMENTS

The GO TO statements cause control to be transferred to the statement
specified tJy a statement number. The three GO TO statements are:
unconditional GO TO, computed GO TO, and assi<Jled GO TO. Every tinE the
same unconditional GO TO statement is executed, a transfer to the same
specified statement is made. However, the computed and assigned GO TO
statements cause control to be transferred to one of several statements,
depending upon the current value of a particular variable.

unconditional GO TO Statement

,---,
I General Form I
~---4
I GO TO X I
I ,
r where ~ is an executable statement number I l __ J

This GO TO statement causes control to be transferred to the state­
ment specified by the statement number. Every subsequent execution of
this GO TO statement results in a transfer to that same sta tement.

Example:

50 GO TO 25
10 A = B + C

25 C = E**2

Explanatio.l1: Every time statement 50 is executed, control is tra ns­
ferred to statement 25.

computed GO TO Statement

r--,
I General Form I
t--~
I GO TO (~1' ~4' ~3' ••• ,~n), ~ I
I I
I where ~1'~ 41'" ,~n, are executable statement numbers I
I I
I i is a nonsubscripted integer variable in the range: I
I l?i?n I l __ J

22

'Illis statement causes control to be transferred to the statement num­
bered ~1" ~;u "!3" •• " or ..!n, depending on whether the current value of .!
is 1, 2, 3, ••• , or n, respectively. If the value of i is outside the
allowable range, the next statement is executed. -

Example:

GO TO (25, 10, 50, 7), ITEM

50 A ;::; B+C

25 L = C.b~.D.AND.F.LE.G

10 B = 21.3m2

Explanation: If the value of the integer variable ITEM is 1, statement
25 wi 11 be executed next. If ITEM is equal to 2, statement 10 wi 11 be
executed next, and so on.

ASSIGN and Assigned GO TO Statements

r------------------------·---,
IGEner~F~m I
t---~
I ASSIGN! TO m I
I I
I I
I I
I GO TO!!!, (!.1'!.:U!.3'.' •• !.n) I
I I
I where i is an executable statement number I
I I
I ~1 '~a'!.3'· •• '~n are executabl e stat EmEnt numbers I
I I
I ~ is a nonsubscripted integer variable of length 4, to which I
I is asSigned one of these statement numbers: ~I'~2'!.3'· •• !.". I l ___ J

'Ille assigned GO TO statement causes control to be transferred to
the statement numbered ~1'~a,~b,'" ,or ~n' depending on whether the
current assignment of !!! is ~1'~a'~b"'. ,or ~n' For example, in the
stat..;ment

GO TO N, (10, 25, 8)

if the current assignment of the integer variable N is statement 8,
that statement is executed next. If the current aSSignment of N is
statement 10, that statement is executed next. Similarly, if N is
assigned statement number 25, that statement is executed next.

'!he current asSignment. of the integer variable!!! is determined by
the last ASSIGN statement:. executed. O'lly an lISSIGN statement may be
used to initialize or change the value of the integer variable!!!. The

Control Statements 23

val. UP ()f t,he integer variable m is not t,he in teger statement number;
1\;"SrU'i 10 TO I is not the same-as I=10.

A..SS IGN 50 1'0 NUMBER
lOG (I '1'0 N UHB E R • (3 S. 50. 2 5, '1 2. 1 g)

Statement 50 is EXecuted iInmediately after st,atement. 10.

A:jS lGN 10 TO ITEM

!3 GO '1'0 ITEM, (8,12,25.50.10)

10 B":::: C .. D
ASSIGN 25 TO ITEM
GO TO 13

The first time st,ateme.nt, 13 is execu'ted, control is
t:o statement 10. On the sec'ond execution of statement 13,

c{,ntrol i~; transferred to statem.ent 25.

A ri thnoetic IF statement

f .•. ,_. ,,,,.---_. - ----------.----------,-•• --- ~.--.. --- ------------------------,

GaH~:cal Form I
-.. - .. -.. --- .. -.-------------------.~--.---... --.------------ .. ---------------~

~:1...~;;j.~3 I
I

where a is an arithmetic expression which is not complex I
I

!:.:l..'~~'~3 are statement numbers I _._.". ___ ~ _________ ~ ____________ . __ . ____ __ ~._. __ ------------------------.1

'T°nis st~atement causes control t,o be trans! erred to the statement num­
iHc'xed '~:L¥~a6~3 when the value of the arithmetic expression!! is less
trl.iHl if equal to, or greater than zero, respectively. The first execut­
.ible statement. following the ariUUllet.ic IF statement shalld have a sta­
LI"'HH':td:, number; otherwise, it can never be referred to or executed.

24

IF (A(J,K) •• 3-B)10, 4, 30

4D=B+C

Explanation: If the value of the expression (A(J,K) •• 3-Bl is negative,
statement 10 is executed next. If the value of the expression is zero,
statement 4 is executed next. If the value of the expression is posi­
tive, statement 30 is executed next.

Logical IF Statement

r---,
I Gm&~F~m I
r----------------------------------·---------------------------~
I IF(a)s I
I I
I where a is any logical expression I
I I
I ~ is any statement except a specifi cation statement, DO sta- I
I tement, or another logical IF statement I l ____________________ . __ J

The logical IF statement is used to evaluate the logical exprf:ssion ~
and to execute or skip statement ~. depending on whether the value of
the expression is • TRUE. or • FALSE •• respectively.

Example 1:

5 IF(A.LE.O.O) GO TO 25
10 C = D + E
15 IF(A.EQ.B} ANSWEH = 2.0*WC
20 F = G/H

Explanation: In statement 5, if the value of the expression is • TRUE.
(i .e., A is less than or equal to 0.0), the statement GO TO 25 is
executed next, and control is passed to statement 25. If the value of
the expression is • FALSE. (i. e., A is greater than 0.0), the sta tement
GO TO 25 is ignored, and control is passed to statement 10.

In statement 15, if the value of the expression is • TRUE. (i.e., A
is 6:lual to B), the value of ANSWER is replaced by the value of the
expression (2 .O*WC), and statement 20 is executed. If the value of the
expression is . FALSE. {i.e., A is not equal to Bl, the value of ANSWER
renains unchanged, and statement 20 is executed next.

Contr 01 Sta teme nts 25

Example 2: Assume that P and Q are logical variables.

5 IFIP.OR .. NOT.Q)A=B
10 C = B**2

~xplanation: In statement 5, if the value of the expression is .TRUE ••
the statement A=B is executed next and control continues to statement
10. If the value of the expression is .FAL~., the statement A=B is
skipped and statement 10 is executed.

DO Statement

r--,
I General Form I
t--1
I End of DO Initial Test I
I range variable value value Increment I
I I
I DO x i = !!!:t. !!!;Z'!!!3 I
I I
I where x is the statement number of an executable statement that I
I follows the DO statement I
I I
I i is a nonsubscripted integer variable I
t I
I !!!1.' !!!;z. !!!3' are either unsigned integer constants greater I
I than zero or unsigned nonsubscripted integer variables whose I
! values are greater than zero. The sum m.:z+m3+1 must not I
I exceed the size of virtual storage. (!!.l3' is optional; if it I
! is omitted, its value is assumed to be 1. In this case, the I
I preceding canma must also be omitted.) I l __ J

'Ibe DO stat.ement is a command to execute repeatedly the statements
that follow, up to and including the statement numbered x. The range of
a DO is that set of statements that will be executed repeatedly; i.e.,
it. is the sequence of consecutive statements immediately following the
DO statemment. The first time the statements in the range of the DO are
executed, i is initialized to the value m+; each succeeding time i is
iTlcreased by the value m). When, at the-end of an iteration, i is equal
to the highest value that does not exceed m(. control passes to the sta­
tement follCllNing the statement numbered x. - Thus, the number of t.imes
the statements in the range of the DO is-executed is given by the
expression: D

r: ,
I l!!:.l; - l!!:1. I
I ------- I +1
I .i!!3 I
l J

where the brackets represent the largest integral value not exceeding
the value of the expression. If!!!.:z is less than !!.l1' the statements in
the range of the DO are executed once. Upon <x>mpletion of the 00, the
IJ() variable is undefined.

There are several ways in which looping (repetitively executing the
s&ne statements) may be accomplished when using the FORTRAN language.
Por example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the

26

amount of each different part that is presently available. This amount
may be calculated by subtracting the number of each item used, OUT(l),
from the previous stock on hand, STOCK(l).

Example 1:

5 1=0
10 1=1+1
25 STOCK(1)=STOCK{1)- OUT(1)
15 1F(I-I000) 10,30,30
30 A=B+C

Explanation: The three statements (5, 10, and 15) required to control
the loop could be replaced by a single DO statement, as shown in Example
2.

Example 2:

00 25 I = 1,1000
25 STOCK(l) = STOCK(l)-OUT(I)
30 A=B+C

Explanation: The DO variable, I, is set to t~he initial value of 1.
Before the second execution of statement 25, I is increased by the
increment 1 and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test value, 1000, control passes out of
the 00 loop, and statement 30 is executed next. Note that the DO vari­
able I is now undefined: its value is not necessarily 1000 or 1001.

Example 3:

DO 25 I=1, 10, 2
15 J=I+K
25 ARRAY(J) = BRAY(J)
30 A=B+C

Explanation: statement 25 is the end of the range of the DO loop. The
DO variable, If is set to the initial value of 1. Before the second
exec..-ution of the DO loop" I is increased by the increment 2, and state­
ments 15 and 25 are executed a second time. After the fifth execution
of the DO loop, I equals 9. Since I is now equal to the highest value
that does not exceed the test value, 10, control passes out of the DO
loop, and statement 30 is executed next. Note that the DO variab le I is
now undefined; its value is not necessarily ~I or 11.

Control Statements 27

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statment (i, ~1' ~~, ~3) may not be
changed by a statement within the range of the DO loop, or by any
subprograms that are called within the range of a DO loop.

2. A DO statement may contain other DO statements within its range.
All statements in the range of an inner DO must be in the range of
the outer DO. A set of DO statements satisfying this rule is
called a nest of DOs.

Example 1:

DO 50 I = 1, Ii

AU) = B(I)**2

DO 50 J=·1. 5

50 C(J+l) = AtI)

Example 2:

DO 10 INDEX L, M

N = INDEX + K

DO 15 J ;: 1. 100, 2

15 TABLE(J) = SUM(J,N)-l

lOB (N) ;: A (N)

} Range of
inner DO

} Range of
inner DO

Range of
outer DO

Range of
outer DO

3. A transfer out of the range of any DO loop is permissible at any
time.

4. If, and only if, a transfer is made from the range of an innermost
DO loop, transfer back into that loop is allowed, provided none of
the indexing parameters (i'~l '~2'!!!3) are changed outside the range.
A transfer back into the range of any other DO within a nest of DOs
is not permitted.

28

Example:

DO DO

.-____ ---'0=-0"'-) 1 ,.--_____ .::.0.::.0) 4

• 2----5

Explanation: The transfers specified in the example by the numbers
1, 2. and 3 are permissible: those specified by 4, 5, and 6 are
not.

5. The indexing parameters (!.'!!'1 '!!'4,!!!3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement using those parameters.

6. The last statement in the range of a DO loop (statement ~) may not
be a GO TO, arithmetic IF, PAUSE, STOP, RETURN, or another DO sta­
tement. Also, the last statement may not be a logical IF statement
containing any of those statements.

CONTINUE Statement

r---~-----------.----,
I General Form I
t-----------------------.-------------.------------.----------------~
I CONTINUE I L-_______________________ . ___________________________________ . ____ 1

CONTINUE is a dummy statement which may be placed anywhere in the
30urce program without affecting the seque nce of execution. I t may be
used as the last statement in the range of a 00 statement to avoid end­
ing the DO loop with any of the statements that are not permitted as the
last statement in the range of a DO.

Example 1:

DO 30 I =: 1, 20
1 IF (A(I)-B(I}) 5,30,30
5 An) =A(I) +1.0

B(I) = B(I) -2.0
GO TO 1

30 CONTINUE
40 C = AD} .. B(7)

Explanation: The CONTINUE statement is used as the last statement in
the range of the 00 statement, to avoid endin<J the DO loop with the sta­
tement GO TO 1.

Example 2:

DO 30 1=1,20
IF(A(I)-B(I»5,40,40

5 AU} = Cn)
GO TO 30

40 An) = 0.0
30 CONTINUE

Explanation: The CONTINUE st.atement provides a branCh point. that
enabl es the programmer to bypass the execution of stat_ement 40.

Control statements 29

PAUSE Statement

r--,
I General Form I
~--f
I PAUSE I
I PAUSE n I
I PAUSE 'message' I
I I
I where n is an unsigned 1-through 5-digit integer constant I
I I
I message is any literal constant I L ___ -J

A PAUSE statement executed in a program results in a message being
written as follows:

PAUSE Statement
PAUSE
PAUSE n
PAUSE 'message'

Resul ting Message
PAUSE 00000
PAUSE 1-5 digit integer
PAUSE text of message

In nonconversational mode, the message is written on the standard
system output data set and the pause is ignored, so the program con­
tinues execution at the next executable statement. In converstaional
mode of execution, the pause message is written at the user's terminal
and the program waits until the user resumes execution via the TSS com­
mand system.

STOP Statement

r--,
I General ¥orm I
~--f
I S'IDP I
I STOP!! I
t I
I where !! is an unsigned 1-through 5-digit integer constant I L __ J

This statement terminates the execution of the object program; mes­
sage will be displayed as follows:

STOP Statement
STOP
STOP !1

END Statement

Message
S'IDP
STOP 1-5 digit integer

r--,
I General Form I
.--~
I END I L ___ J

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram.

The END statement must be contained on a single line.

30

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between input/output devices and internal
storage. The named collection of data. called a data set, is a con­
tinuous string of data that may be divided into FORTRAN records.

A data set is referred to ~ an integer constant or integer variable,
called the data set reference number.

_ There are five I/O statements: READ, WRITE, END FILE, REWIND, and
BACKSPACE. The READ and WRITE statements cause transfer of records from
and to data sets and internal storage. The END FILE statement defines
the end of a data set; the REWIND and BACKSPACE statements control the
positioning of da ta sets.

In addition to these five statements, the FORMAT and NAMELIST state­
ments, although they are not I/O statements, are used with certain forms
of the READ and WRITE statements. The FORMAT statement specifies the
form in which the data is to be transmittedJ the NAMELIST statement spe­
cifies a list of variables or array names to be used in an input/output
operation. Also, both statements allow the user to divide a data set
into FORTRAN records.

Even though the I/O statements are device independent, the source or
the destination of the data being transferred influences the specifica­
tion of the records and data formats. Therefore, subsequent examples
are in terns of card inl~t and print-line output, unless otherwise
noted .

READ STATEMENT

r---,
I General Form I
~--f
I READ (!!. ~. END=£. ERR~) list I
I I
I where a is an unsigned integer constant or an integer variable of I
I length 4 that represents a data set reference number. I
i I
I b is either the statement number or array name of the FORMAT I
I statement describing the data being read, or a NAMELIST I
I name. I
I I
I c is the statement number to which transfer is made upon I
I encountering the end of the data set. I
I I
I dis the statement number of the s'tatement to which transfer I
I Is made upon encountering an error condition in data I
I transfer. I
I I
I list is a series of variable or array names, separated by I
I commas, which may be indexed. and incremented: they specify I
I the number of items to be read and the storage locations I
I into which the data is placed. I l ______________________ . ___________ . _______________________________ J

'!he READ stat.ement may take many different forms. For example, the
fJarameters END=c and ERR=d are optional and, therefore, mayor rna y not

Input/OUtput Statements 31

,,_lpp(~,ir in
i1Ft

T ERR=d :is used after the a
.t.i'_l~.i; {- Itt ~ni:'ti't-'J tolley ma_y arrif--'dr In any c:r{lpr wjtllin

f('\ X~~i{!~..f ar~,;; ~'>.rc: l.id iiEAD ~3tdtements

Fl\L I~!~ i. C (; E e F li''- -f H
~--, 1-. j\ D ~ f-i 'i-n FPH lGG" t'·j'JD-·~:B) X 5 Y!l'Z

If d. t· [dn;:;''': i,; nh,;d,," t ,';tdtf.rnent "pecifit,,(l by the END pararreter,
r,i "L ,_i.""r~ h;p proqr"iP as to t_he number of items in t.he li",t
read b>"fc.'r,c "·lhJ,UIl'.C!:inq tly, end of t_he data set. If an END
Pdrd:r.'cclJ'r i c ; nut .;peclfied .ill a RE.I\D statement, the end of the dati.! set

errnil1dt.r";--:; '--:y,P(~i1t -i.()n. ,;:_::[th.;·?'- ob prcx]:r'arn~

If il t_l:im::ter }3 mil('\f~ to a statpIDent ~;pecified by the ERR parameter,
);'1 'lde,l j'-l 'he' lift i;'em,~ dF;30<':i':lted with the record in error.
4u ., ;;,; u '" tl.iE: pro q:r am as to ''''hieh input record or 1: eco-
(d.,~ ,.~ ji' Fr!Or; i.Hlly tild.L an ero! occurred during transmission of
del.::., ·tl::' ;:i U ;:.he 11EAO lic;L If an ERR parameter is not specified in a
,'FAD " dt>::-:npnt. eln '."'ru.,r tcrmiJ'\dt.(~S execution of the object prograrr..

Thrt'-: pax'ar::'\t=_?t~e:rF; E:r~D~I.-· an.d E;;Rk
~j'e: ~~t)c.')._d ab()Vf:.: l_n e:)~,~'n of these

indY be used.
th ree form:;.

in the combination

Th 7', re'K! dat.a f rom the da t.d set, associated with a
.i.litn ;,;p,,,c\ fi(:d by the NAMELIST name~. The

C':!Yllc- viix::iablf.' nam:' that refers to a specific list
of \'a"j ,)i).lf's or d~-Ll.? niH',€,::> int:o wtd .. en t.he dat.a is placed. A specific
Li,;t 1: Vile 1-; 1.'-.' d,TdY n,£f!.e'; r.'."ce:l.ves a NAMELIST name by use of a
?·~t-:'~·lELL;T t;t: t'd'i('iY:-__ The> proq:r;ul'rr",', need only use the NAMELIST name in
tJl!.:," h'~~/\ Za~x;' ~"~-d't~~fiient to x-efer~:-·:n.ce t.hat list therf~-after in the

"lit' t;n:-ma"~ and .'cules 1''1r constructing and using the NAMELIST state­
Utat t ·':~[E_~ dp-~::3'c.'r }l)(o::j ~.':,~?I()w",

'-'-'-~'-"".-----"'-"'''-'''-'-''----'------'-----'---------------------,

I c:t;~~H::-.tLl

~.- .- --.-....

i N?\(·'tE:I.;T

I
''''--.- _-.-._ ... " ,,----- ..--.. _- .. ----.----.-----'0 .. ---'--------------- -----f

N;\MELIST names

I
I
I
I

"'}""~.:ri,"." are variable or array names I ,_. ___ ... ______ ._ ... _ .. _. ____ .. _ ... _ .. _" ___ . __ .~ __ ,. _ . .._ ___ . ___ ... _ ____ . ______ . __ • ________ . ____________ J

to defininq and using a NAMELIST name:

I.. ;\ t'U\("1El.J~;T TI._,nH' cf>n"ist.s of ft'(,m 1 through 6 alphameric characters,
h:f. f:i..i':3t". {:_t '1"Jhich i,:~ ".llp~habet.ic",

,ii. l~A'1E,LJC·.:.·nd:;'e 'j;3 ;",nc]osed in slashes. The list of variable or
"j.!Td'y l'l;\i!:""" ii,. 119 to a NlU'lELIS'T name ends with a new NAMELIST

.:',m" ''-''f:lo~:e "n slapA1f:,' (n: ,.rit'Il the (,'flc1 of t.h-e- NAMELlST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names.

4. A NAMELI ST name may be defined only once by its appearance ina
NAMELIST statement and must be so defined before its use. the
NAMELIST name rray appear only in READ or WRITE statements in the
program.

5. A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement._

6. Variable or array names appearing anywhere in a NFIMELIST statement
or NAMELIST name may not appear in a FUNCTION, SUBROUTINE, or ENTRY
statement.

Example: Assume that A, I, and L are array names.

NAMELIST /N~~1/A,B,I,J,L/NAM2/A,C,J.K

READ (S,NAMl>

Explanation: The READ st~atement causes the record that contains the
input data for the variables and arrays that belong to the NAMELIST
name, NAM1, to be read fI:om the data set associated with the data set
reference number 5.

Input Data

When a READ statement refers to a NAMELIST name, input data in the
form described below is read from the designated input data set.

The first character in the record must always be blank. The second
character of the first record of a group of data records to be read must
be ~ (ampersand), immediat.ely followed by the NAMELIST name. The NAME­
LIST name must be followed by a blank am must not contain embedded
blanks. This name is followed by any combination of data items 1 and 2
below, separated by commas. (A comma after the last item is optional.)
The end of a data group is Signaled by iEND.

The form the data itens may tak e is

1. Variable name = constant

The variable name may be a subscripted variable name or a single
variable name, subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

The set of constants may be in the form

k. constant

where k is an unsigned integer called the repeat constant. It
represents the nwnbel: of successive elements in the array to be
initialized by the specified constant. The number of constants
must not be greater t.han the number of elements in the array.

Input/Output Statements 33

Input constants may also be Hollerith (H format) or hexadecirral (Z
format) data. The H format is used as in FORMAT statements. The repeat
constant may not be used with the H-format option. The size of the
character string should not exceed the size of an element. To use the Z
format, prefix the hexadecimal characters to be read with a ·Z".

constants used in the data items may be integer, real, literal, com­
plex, or logical jata. If the constants are logical data, they may be
in the form T or • TRUE. and F or . FALSE .•

Any selected set of variable or array names belonging to the NAME LIST
name appearing on the first record may be used as specified by items 1
and 2 in the preceding text. Names that are made equivalent to these
names may not be used unless they also beloa} to the NAMELIST name.

TIle end of a group of data is signaled by the character string 'END,
with no embedded blanks and all appearing in the same record.

Blanks must not be embedded in a constant or repeat constant, but may
be used freely elsewhere in a data record. The last item on each record
t.hat contains data items must be a constant followed by a comma. (The
comma is optional on the record that precedes the record containing
l;END.) Trailing blanks after integers and exponents are treat_ed as
zeros .

Example: Assume that L is an array consisting of one subscript paramet­
er ranging from 1 to 10.

Colunm 2
•

First dat a card: 'NAMl 1(2,3)=5, J=4,

Last data card:

Explanation: If this data is input to be used with the NAMELIST and
READ statements previously illustrated, the following actions take
place: The first data card is read and examined to ver ify that the name
is consistent with the NAMELIST name in the READ statement. If the name
does not match the NAMELIST name, the next NAMELIST group is read. When
the data card is read, the integer constants 5 and 4 are placed in
1(2,3) and J, respectively; the real constant 4.0 is placed in A(3}.
Since L is an array not followed by a subscript, the entire array is
filled with the succeeding constants. Therefore, the integer constants
2 and 3 is placed in L(1) and L(2}, respectively, and the integer con­
stant 4 is placed in L(3). L(4) , ••• ,LOO)'

READ (a, b) List

This form is used to read data from the data set associated with a
into the storage locations specified by the variable names in the list.
The list, used in conjunction with the specified FORMAT statement b (see
"FORMAT statement"), detennines the number of items (data) to be read,
the locations, and the form the data will take in storage.

Example 1: Assume that the variables A, B, and C have been declared as
integer variables.

75 FORMAT (GlO, G8, G9)

34

READ (J, 75) A, B, c

Explanation: The READ statement above causes input data from the data
set associated with data set reference number J to be read into loca­
tions A, B, and C, according to the FORMAT statement referenced (state­
ment 15). That is, the first 10 characters of the record are read, con­
verted to internal form, and stored into A, the next S characters into
a f and the next 9 characters into C.

The list can be omitted from the READ (a,b)list statement. In this
case, a record is skipped or data is read from the data set associated
with ~, into the storage locations occupied by FORMAT statement ~.

Example 2:

98 FORMAT (. HFADING')

READ (5,98)

Explanation: The statements above would cause the characters H, E. A,
0, I, N, and G, in storage, to be replaced by the next 1 characters in
the data set associated with data set reference number 5.

Example 3:

98 FORMAT (G10,' HEADING')

READ (5,98)

Explanation: The statements above would caus e the next record in the
data set associated with data set reference number 5 to be Skipped. No
data is transferred into internal storage because there is no list item
that corresponds with format code G10.

READ (a) List

The form READ (a) list of the READ statement causes binary data
(internal form) to-be read from the data set associated with a into the
storage locations specified by the variable names in the list: Since
the input data is always in internal form, a FORMAT statement is not
required. This statement is used to retrieve the data written by a
WRITE (~) list statement.

Example:

READ (5) A, B, c

Input/Outplt Statements 35

.Explanation: This statement causes the binary data from the data set
associated with data set reference number 5 to be read into the storage
locations specified by the variable names A, P, and C.

The list may be omitted from the READ (a) list statement; in this
case, a record is skipped.

Example:

READ (5)

Explanation: The statements arove would cause the next record in the
data set associated with data set reference number 5 to be skipped. No
data is transferred into internal storage.

Indexinq I/O Lists

Variables within an I/O list may be indexed and incremented
same manner as those within a DO statement. These variables
indexes must be included in parentheses. For exarrple, suppose
desired to read data into the first five positions of array A.
be accomplished by using an indexed list:

15 FO~~AT (GI0.3)

READ (2,15) (A(I),I=l,S)

This is equivalent to

15 FORMAT (GI0.3)

DO 12 I = 1,5
12 READ (2,15) ACI)

in the
and their
it is

This may

As with DO statements, a third indexing parameter may be used to spe­
cify the amount by which the index is to be incremented at each itera­
tion. ThUS,

READ (2,15) {An}, 1=1.10,2)

causes transmission of values for A(U, A(3), A(S}, An), and A(9)'

}'urthermore, this notation may be nested. For example, the statement

READ (2,15) «C(I,J),D(I,J),J=I,3),I=1,4)

would transmit data in this order:

c<1,ll, D(l,1), C<1,2), 0<1,2). Cn,3), D<1,3)
C(2,l), 0<2,1), C(2,2), 0(2,2), Ce2,3), 0(2,3)
C(3,l}, 0(3,1), C(3,2), 0(3,2), C(3,3), DC3,3)
C(Q,l}, 0(4,1), C(4,2), 0(4,2), C(4,3), 0(4,3)

Since J is the innermost index, it varies more rapidly than I.

As another example, consider

READ (2,25) I,(C(J),J=l,I)

'Ihe variable I is read first and its value then serves as an index to
cipecify the number of data items to be read into array C.

16

It it
sary to
array A
to 10.
5,

is desired to read data into aD ent.Ln", ,'Hldl, it 1 ;y)t ~leCE'~;"
index tmt array in t.he I/O li~:;L For: e, d,JS'-1:noe rhd.::. the
consists of one subscri pt pin::ametE't, va:c/ in t i"o r ann cd' 1
Then this READ statement. refe ·~o FOHNA.T st." tiC'fliE'nT_ H ~::1rbpl ed

READ (2.5) A

would caUSE data to be read into hOi. AU) ,rdj(l}

The indexinq of I/O lists applies to WHITE lL;t.'5. d'; we
list.s.

FORTRAN provides the facil it.y tor variablp FOI.:l'-1l'·,l ~;l>3tf'C(·nts i.i')

allowing a FORMAT staterrr:>nt t.O be read :Lot;;, ,H1 dJ:ra~" Hi ~'tUI"dqf: d

using the data in the arr:ay as the FOHM/ffpec.ifi at_~()nf, fcr c,.uh3"·'pH:nt
I/O statements.

Fbr example, the statement.s below result in A, H, i,nd array
read, converted, and stored according t.O thE~ format:" ication::; J:ead
into the aI-ray FMT at object time.

DIMENSION PMT as>
1 FORMAT <lSA4}

READ (5,1) l"MT
READ (S,FMT) A"B,(C(I),I""l,S;

1. The name of t_he variable format. '3per:.:ii.icat,i.cm "'.,1'.;1: dH:'f:a r 1h ,.
DIMENSION statement, even ifLhe array size l~;. :))11 I.

2. The form of the format (.'Odes :read into tr:~, f'jv\'l' L!d.i a or. ct. tim"?
ITUst take the same fonn as <1 source pXD9ram FO'K}/J\T SLcitJ2m(-.'nt,
except that t.he fNOl:-d FORMAT is orrdt.t .. ed \:3e~3 t4·1"'he f'()Hf>;~~~'

Statement") •

3. If a format code read in at object: t:\J(\€ cl:mtalns d,out)l{, ,cir~"cdrophes
within a literal field that is defined apos fi, .1.t should bE:
used for output only. If an ob t,ime fonw-i", c'ode ~; t(, be used
for input and if it must contain <l! lit:eldi fi,::dd with <>1, int"!.nat
apostrophe. the HEormat code must: be usp.j tor the lit",'ral r12Jcl
definit ion.

WRITE STATEMENT

,---------------------_._------.,,,. __ .• __ . __ ._----. ---_ .. _ .• , .. , ,-_."."._._ - ". ---- ,,,.- '''-'''- 'j

I General }o'orm
t------------------·----·------·,,··--·,·· .. ··-----.. - .. "._ ... , -,. ,,, -._---,--._, ... -.... _-
I WRITE (a. b) list
I--
I where d is an unsigned intege:t· constant: or '.:Hi :;"ltege.: VilX db1"
I "length 4 thal: represent,s d ai:lI:d Het: ref et enee nUrnIJPL,

of

I
I
I
I
I
I
I
I
1

b is either the st.a tement nun\t';(:~x or
statement describing the data bein]
name.

at-ray nt'ime uf t,'tie

list is a series of variable or "'lrTay (h',n:"""',, b(~dr.:~?(~
commas, which may be ind~:;xed a:nd lIlcc£c"fn£:<1tt"c'ithEc\i' specify
the number of items to be written and trw t>tor2q~~',(jC':it ions
from which the data is taken.

l ________ . __________ ._._. . ________ . __ ._, __ " ____ ._ ... __ ~._. "._.". __ , ... ,_. __ ""''"., ".', .. ".- ."" .. _

'!he WRITE statement may take many differen t forms. For example. the
list or the parameter!? may be omitted.

The three basic forms of the WRITE statement are

WRITE(a,x)
WRITE(a,bHist
WRITE(~)rist

WRITE Ca,x)

This form is used to write data from the storage locations specified
by the NAMELIST name x into the data set associated with a (see
"READ(~,~}·) •

Example:

WRITE(6,NAM1)

Explanation:

'!his statement causes all variable and array names (as well as thei r:
values) that belong to the NAMELIST name, NAM1, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name

1. All variables and arrays and their values belonging to the NAMELIST
narne",ill be written out, each according to its type. The complete
array is written out by columns.

2. The output da ta will be written such tha t

a. The fields for the data will be large enough to contain all the
Significant digits;

b. The output can be read by an input statement referencing the
NAMEL 1ST name.

Example: Assume that A is a 3-by-3 array.

NAMELIST/NAM1/A,B,I,D
WRITE (8,NAMU

Assuming that the output is punched on cards, the format would be:

Output Card

First
second
Third
Fourth
J.o'ifth

Column 2
•
A=3.4, 4.5, 6.2, 25.1,

9.0, -15.2,-7.6, O.576Eb12,
2.717,B=3.14,I=10,D=0.378E-15,
UND

WRITE (arb) List

This form is used to write data in the data set associated with a
from the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT stat.ement

38

b, determines the number of items (data) to be written, the locations,
and the form the data will take in the data set.

Example 1:

75 FORMAT (GIO, Ga, G9)

WRIT):; (J, 15) A, B, C

Explanation: The WRITE statement above causes output data to be written
in the data set associated with the data set reference number J, from
locations A, B, C, according to the FORMAT statement referred to (state­
ment 75). (Format statements are described in a later section.)

The list may be omitted from the WRITE (a,b) list statement. In this
case, a blank record is inserted, or data is Written in the data set
associated with ~ from the locations in storage occq>ied by FORMAT sta­
tement b.

Example 2:

98 FORMAT (. HEADING')

WRITE (5,98)

The statements above would cause a blank and the characters H, E, A.
D. I, N, and G in storage to be written in the data set associated with
data set reference number 5.

Example 3:

98 FORMAT (GIO, 'HEADING')

WRITE (5,98)

Explanation: The statements above would cause a blank record to be
placed in the data set associated with data set reference number 5. No
data is transferred into the data set because there is no list item that
corresponds with format code GIO.

WRITE (a) List

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) fromithe storage locations specified by the variable
names in the list to be written in the data set associated with a.
Since the output data is always in internal f arm. a FORMAT statement is
not required. The READ (~) list statement is used to retrieve the data
written by a WRITE (~) list statement.

Example:

WRITE (S)A, B, C

Explanation: The statement causes the binary data from the locations
specified by variable names A, B, and C to be written in the data set
associated with data set .~eference number 5.

Inrut/Output Statements 39

FORMAT STATEMENT

,---,
I General Form I

----.--I

where x is a statement number (1 through 5 digits)

S::1'.£4'··· .'£n and 's::1' '~2' •••• ,.£n' are format codes whiCh may
be delimited by one of the separators: comma, slash, or
parenthesis; these codes specify the length, decimal point
(if any), and position of the data in the data set.

I
I
I
I
I
I
I
I
I

I The character / is used to separate FORTRAN records. I l _____ . ___ J

'Ille FORMAT st.at.ement is used in conjunction with the READ and WRITE
statements to specify the desired form of the data to be transmitted;
the form is varied by the use of different format codes.

TIle format codes are

G to transfer integer. real, complex, or logical data

I to transfer integer data

F 1:.0 t.!"ansfer real data that does not contain a decimal exponent

D to transfer real data that contains a D decimal exponent

E t.o transfer real data that cont.ains an E decimal exponent

i, t.o transfer logical data

Z t.o transfer hexadecimal data

A t.o transfe:r alphameric data

Literal -- to transfer a string of alphameric and special characters

H t.o tran.sfer literal data

X to either skip data when reading or insert blanks when writing

T to specify the position in a F'ORI'RAN record where transfer of data
is to start

p -- to specify a scale factor

hny nuw.ber used in a FORI"tAT statenent. except the statement number or a
I. it.eral. must be less than or equal to 255.

USE OF THE FORMAT STATEMENT: This section contains general information
on t:he FORMAT statement. The points discllssed below are illustrated by
the t2xamples that follow.

1. F'ORMAT statements are nonexecutable and may be placed anywhere in
t.he source program.

2" A FORMA'r stat ement may be used to define a FORTRAN record, as
follows:

a. If no slashes or additional parentheses appear within a FORMAT
st.atement, a FORTRAN record is defined by the beginning of the
FORMAT st.atement (left parenthesis) to the end of t.he FORtv'lAT
statt"'ment (right parenthesis). Thus. a new record is read when

the format control is initiated (left parenthesis); a ne ... reco­
rd is wri tten when the format control is terminated (right
parenthes is) •

Example:

x FORMA'r (----, ----, ----)

<-------------->
•
I
I
l---corresponds to 1

FORTRAN record

b. If s lashes appear within a FORMAT statement, FORTRAN records
are defined as starting from the beginning of the FORMAT state­
ment and proceeding to the first slash in the FORMAT statement,
from one slash to the next succeeding slash, or from the last
slash to the end of the FORMAT stat.ement. Thus, a new record
is read when the format control is initiated, and thereafter a
record is read upon encountering a slash; a new record is writ­
ten upon encountering a slash or when format control is
terminated.

Example:

x FORMAT (----/ ----/ ----)

<---> <---> <--->
I I
I I ,
each corresponds to 1 FORTRAN record

c. If more than one level of parentheses appears with a FORMAT
statement. a record is defined by the beginning of the FORMAT
statement and the end of the FORMAT statement. At this point,
the definition of the FOR'lRAN record continues at the first­
level left parenthesis that is closest to the right of the FOR­
MAT statement and finishes at the end of the FORMAT statement.

Example 1:

~ FORMAT

Example 2:

~ FORMAT

0 1 2 21 0
(--- (--- (--- » ---)

<----------------->
I <---------->
I I
t I
I I
1 I
each corresponds to 1 FORTRAN

0 1 1 1 1 0
(--- (---) (---) ---)

<--------------------->
I
I
I
I
I

<------->
I
I
I

record

each corresponds to 1 FORTRAN record

Input/Output Statements 41

When defining a FORTRAN record by a FORMAT statement, it is impor­
tant to consider" the original source (input) or ultimate destina­
tion (output) of the record. For example, if a FORTRAN record is
t.O be punched for output, the record should not be greater than 80
characters. For input, the FORMAT statement should not define a
FORTRAN record longer than the actual record in the dataset.

). Blank ootput records may be introduced or input records may be
ski pped by us ing consecutive slashes (I) in a FORMAT sta tement. If
there are n consecutive slashes at the beginning or end of a FORMAT
st.atement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the nunber of
records skipped or blank records inserted is n-1.

4. Successive items in an 1/0 list are transmitted according to suc­
cessive format codes in the FORMAT statement. until all items in
the 1 ist are transmitted. If there are more items in the Ii st than
there are c'Odes in the FORMAT statement, control transfers to the
preceding left. parenthesis of the FORMAT statement, and tl1e same
format codes are used again with the next_ record. If there are
fewer items in the list, the remaining format. codes are not used.

',. A format code may be repeated as many times as desired by preceding
the format code with an unsigned integer const.ant.

C. Pc limited parentbetical expression is permitted to enable repeti­
tion of data fields according to certain format codes wi thin a
lonqer FORMAT statement. Two levels of parentheses, in addition to
the parentheses required by t.he FORMAT statement, are permitted.
The sf!cond level of parentheses f acili ta tes the transmi ssion of
complex quanti ties.

"J. When transferring data on input or output, t.he type of format code
used, type of data, and type of variables in the I/O list stlould
corr es pond.

8. In the examples below, the output is shown as a printed line. A
carriage control character 'x' (see "Carriage Control") is speci­
fied in the FORMAT statement hut does not appear in the first print
posi tion of ttle print line. This carriaqe control character
appears as the first character of the output record on any I/O
medium except the printed line.

G Format Code

r---.,
I General Form I
l--1
I aGw.s I
I I
I wh('re a is optional and is an unsigned integer constant, less than I
I or equal to 255, used to denote the number of times the same I
I format code is repetitively referenced I
I I
I w is an nIlS igned integer constant, less than or equal to I
I 255. specifying the total field length I
I I
lsi s an tIDsigned integer constant 3 peci tying the number ot I
I significant digits I l __ J

The G format code is a generali zed code, in that it may be used to
determine the desi red form of data. whether integer, real, complex, or
logical.

42

The .~ portion may be omitted when transferring integer or logical
data: if present, it is ignored. When real data is transferred, the w
portion of the G format code includes four poSitions for a decimal
exponent field.

If the real data, say n, is in the range 0.1$n<10**s (where s is the
s portion of the format code Gw.s), this exponent field is blank.
otherwise, the real data is transferred with an E or D decimal exponent,
depending on the length specification (either four or eight storage
locations, respectively> of the real data.

If insuffi cient positions are reserved by ~, the number is rounded to
s digits for output, and truncated to s digits for input. If excessive
positions are reserved by!!, zeros are-filled in on the right.

FOr simplification, the following examples deal with the printed
line: however, the concepts developed apply to all inplt/output medi a.

Example 1: Assume that the variables A., B, C, and D are real, with
values of 292.1041, 82.43441, 136.1632, and .8081945, respectively.

1
2
3

FORMAT
FORMAT
FORMAT

('x·,G12.4,G12.5,G12.4,G12.7)
(• x' ,"G13. 4 ,G13. 5,G13. 4)
(. x' ,G13. 4)

WRITE (5, n) A, B, C, D

hxplanation:

a. If n had been specified as 1, the printed output would be (b repre­
sents a blank)

Print position 1 Print position 48
• •
bbb292.1bbbbbb82.434bbbbbbb136.8bbbb.8081945bbbb

b. If!! had been specified as 2, the printed output lo1ould be

Pr int position 1 Print posi ti on 39
• •
bbbb292.1bbbbbbb82.434bbbbbbbb136.8bbbb
bbbO.8082bbbb

Line 1
Line 2

It can be seen that by increasing the field width reserved (~),
blanks are inserted.

c. If!! had been specified as 3, the pr intE!d output would be

Pr in t posi tion 1
•
bbbb292.1bbbb
bbbb82.43bbbb
bbbb13 6 .8 bbbb
bbbO .8082bbbb

Line 1
Line 2
Line 3
Line 4

The same format code was used for each variable in the list.
Each repetition of the same format code caused a new line to be
printed.

Input/OUtput Statements 43

EXd_J'!lE..lel: Assume that the variables T. J. K, and L are integer, with
values of 292.443428,4908081, and 40018, respectively •

.1 FORMAT ('x',GIO.2G7.GS)
2 F'OPJ1A'I' (• x' ,(6)
3 FORMAT ('x',4GI0)

[,oJ H l'i' f; (5 • n) I. J, K. L

d. If n had been specified as I, the pr·inted output would be

Print pcsition 1 Print position 29
hbbLbbb292b44342849080814001B Line 1

The ':, arne result.s would b;:~ achieved. if FORMAT statement 1 had been
WI: itten "IS

FORt'1A'l' ('x' ,Gl0. G7. G7. G5)

Note thdt t.ne ,~ portion of i.he G format may be omitted when trans­
rn itt ing in t.eg E:r da tJ.1 •

n. If Xl i!Cid heen specified as 2., t.b,: PI"" inted output would be

Pr int ..
bbb292
'+4.1428

b40018

t.ion 1

Line 1
Line 2
Line 3
Line 4

Not,,· tr;"t the ;·;econd tor:-ma.t code G6 is an incorrect specification
fur the tch:ixd variable X, I.e .• 4903081. The field will be filled
wi til ast.e.cisks.

c. It 11 had t,een specified dS 3, the printed output would be

tion 1 P r i nt po si ti on 4 0
bbhbbt>tl2 92bbbb Ll4 3 (I 28bbb490 80 Blbbbub40018 Line 1

From t.ll'" aboll>" eXAmple, it can b.~ seen tlJat increaSing the field
widLh ~c impn)ves readability_

e 3:

I
{,

1:'
i.J
C
L

1 F01U1AT
2 F'..:)fiJ'lAT

FOht';AT

!~J{£~~
Inte'JIC'r
Real
R.-?al
Real
Compl ex
Loqical

Len.s!:l:!
2
4
4
8
8
1

(• J{' • G J • :.' C 9 • 2 • C 1 :3 • 7 • 2 C;8 • 2 • G 3)

Value
~
471. 93

81. 91
6.9310072

(2.1,3.7)
.TRUE.

(, x' • G J/ • x • • 2G 1 O. 2/ 'x •• G <}. 1 / • x ' • 2(; 8. 2 • G 3)
(/./ • x· • G 3. 2G9. 2/ / • x • , G 11. 7, 2G 8. 2,e; 3/ / /)

WRI'l'E (5,!}) I,A,B,D,e,L

Explanation:

a. If n has been specified as 1, the pr lobed output would be

Pr int post tion 1 Print position 53
292bO.47Eb03bb82.bbbbb6. 931001bbbbb2. lbbbbb3.7bbbbbbT

When complex da ta is bel iXJ transmitted. two format codes a.re
required. The real and imaginary parts are each treated as separ­
ate real numbers, and the parentheses and comma are not printed as
part of the output.

b. If n has been specified as 2. the printed output would be

Print position 1 ..
292
bbO.41Eb03bbb82.bbbb
bbb7.bbbb
b2.1bbbbb3.1bbbbbbT

Line 1
Line 2
Line 3
Line 4

The use of the slash {/} to separate tw:> format codes causes the
data not yet printed to be printed on a new line. If the output
data is to be punched on cards, the slash specifies that the fol­
lowing data will be punched on another card.

c. If ~ has been specified as 3, the printed output would be

Print poSition 1 ..
(blank line)
(blank line)
292bO.41Eb03bb82.bbbb
(blank line)
b6. 931007bbbbb2 .1bbbbb3. 7bbbbbbT
(blank line)
(blank line)
(blank line)

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

Note that the two consecutive slashes appearL~g at the beginning
and the three at t-he end of the series of format codes cause blank
lines to be insert~ed as shown. However. n consecutive slashes
appearing elsewhere in a FORMAT statement-cause the insertion of
n-l blank lines, as shown in line 4.

The principles illustrated in the previous output examples also apply
when using the READ statement on input. Also, there are further consi-­
derations when using the FORMAT statement on input or output.

1. When rt}ading real input data ,..ith a G format code, a decimal p:nnt
must be included.

2. The use of additional parentheses (up to tlok) levels) within a FOR­
MAT statement is pennitted to enable the user to repea t the ~;arr-e

format code when t:.r nsmitting data. F'or exawple,

Input/Output Statements 45

10 FORMAT (2(G10.6,G7.1),G4)

is equivalent to

10 FORMAT (G10.6, G7.1, G10.6, G7.1, G4)

3. If a multiline listing is desired, with the first two lines to be
printed according to a special format and all remaining lines
according to another format, the last format code in the statement
should be enclosed in a second pair of parentheses. For example,

FORMAT ('x·,G2,2G3.1/·x',GI0.8/(·x' ,3G5.1»

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the last left
parenthesis. Thus, the printed output would take the form

G2,G3.1,~3.1

GIO.8
G5.1,G5.1,G5.1
GS.l,G5.1,G5.1

As another example, consider the statement

FORMAT ('x·,G2/2('x·,G3,G6.1>,G9.7)

If there are 13 data items to be transmitted, the printed output on
a WRITE statement would take the form

G2
G3,G6.1,·x·,G3,G6.1,G9.7
G3,G6.1,'x·,G3,G6.1,G9.7
G3,G6.1

Numeric Format codes (I,F,E,O, and Z)

Five types of format codes are available for the transfer of numeric
uata. These are specified in this form

r--,
I General Form I
~--f
I ~I~ I
I ~F~.~ I
t ~E~.~ I
I aOw.d I
I aZw I
I I
I where a is optional and is an unsigned integer constant, less than I
I or equal to 255, used to denote the number of times the same I
I format code is repetitively referenced I
I I
I I. F. E. 0, and Z are format codes I
I I
I w is an unsigned integer constant less than or equal to 255, I
I specifying the total field length of the data I
I I
I d is an unsigned integer constant specifying the number of I
I decimal places to the right of the decimal point, i.e., the I
I fractional portion I L ___ J

46

For purposes of simplification, the following description of format
codes deals ~ith the printed line. The concepts developed apply to all
input/output media.

I Format Code

The I format code is used to transmit integer data.

I f the number of characters to be transmitted is greater than w, on
input, the excess rightmost characters are lost; on output, the entire
field, ~ characters, will be filled with asterisks.

If the number of characters is less than w. on input, leading blanks
are not significant, embedded and trailing blanks are treated as zeros.
On output, the leftmost nos it ions are filled with blanks.

If the quantity is negative, the position preceding the leftmost
digit contains a minus sign. In this case, an additional position
should be specified in w for the minus sign. If w is such that no space
exists for the minus sign, the entire field, w characters, will be
filled with asterisks.-

The foll~ing examples show how each of the quantities on the left is
printed according to the format code 13 (b represents a blank).

Internal Value Printed Value
721 721
-721 ••• (incorrect because of insufficient

s pecif ica tion)
-12 -12
568114 ••• {incorrect because of insufficient

specif ica ti on)
0 bbO
-5 b-5
<) bb9

F Format Code

For F format codes which are used in conjunction with the transfer of
real data, w is the total field length reserved. and d is the number of
places to the right of the decimal point (the fractional portion). This
differs from the G format code, where the number of Significant digits
is specified. The total field length reserved must include sufficient
positions for a minus sign (if any) and a decimal point. The sign, if
negative, is printed.

If insufficient positions are reserved by ~, the fractional portion
is rounded to the ~h position. If excessive positions are reserved by
~, zeros are filled in on the right. The integer portion of the number
is handled in the same manner as numbers transmitted by the I format
code.

The foll~ing examples show how each of the quantities on the left is
printed according to the format code F5.2.

Internal Value
12.17
-41.16

-.2
7.3542

-l.
9.03
187.64

Printed Value
12.17
•••••
-0.20
b1.35

-1. 00
b9.0:" ,.

(incorrect, insufficient
specification)

(last two digits of accuracy lost,
insufficient specification)

(incorrect; insufficien t
specification)

Input/Output Sta terre nts 41

D and E Format Codt!'s

The D and E format codes are used in conjunction with the transferral
of real data that contains a 0 or E decimal exponent, respectively. A 0
format code indiCdi:.es a field length of 8; an E code indicates a length
of 4. For D and E format codes, the fractional portion is again indi­
cated by 5!. The ~ includes field E. spaces for a sign. the decimal
poi nt. plus four 9 paces for the exponent.

For out~t, space for at least one digit preceding the decimal point
should be reserved" In general, w should be at least equal to d+7. If
insufficient pooitions for d are supplied. the fraction is rounded to
the ~th position. If excessive positions are supplied, zeros are added.

The exponent is the power of 10 by which the number must be multip­
lied to obtain its true value. The exponent is written with a D or an
j~, followed by a space for the Sign and two spaces for the exponent
(maximum is 75).

The following examples show how each of the quanti ties on the left is
print~ed according t:o the format codes (DI0.3/EI0.3).

Internal Value 238:------
-.002
.00000000004
-21.0057

Printed Value
bO.238Db03
-0. 200E- 02
bO.4000-10
-0.210Eb02 (last three digits of accuracy

lost; insufficient field width)

When reading input data. the start of the exponent field must l:e
marked by an E or, if that is omitted, by a + or - sign (not a blank).
Thus. E2. E+2, +2. +02, E02, and E+02 all have the same effect and are
per'miss ible decimal exponents for input.

Numbers for E, D, and F format. codes need not have their decimal
point punched. If it is not present, the decimal point is supplied by
the g portion of the format code. If it is present in the card, its
posi t ion overrides the position indicated by the d portion of the format
code. -

Z Format Code

r---------------··---------------·------------------------------------,
I General Form I
l----------------- -- --- i
t aZw I
I I
I where a is optional and is an unsigned integer constant. less than I
I or equal 1:0 255. used to denote the number of times the same I
I format code is repetitively referenced I
I I
I Vi is an unsigned integer constant. less than or equal to 255, I
I specifyinq the number of characters of data I l ________________ ... ___ j

The Z format code is used in conjunction with the transfer of hexade­
cimal numbers.

One storage location contains two hexadecimal digits. In read and
wr it-e operatiOns, padding and truncation are on the left. However, in a
read operation, thE" padding character is a hexadecimal zero; in a write
opE'r.,t ion, it is a blank.

If a,1 eight-byte internal field with t:he hexadecimal pattern
'OJ 2J4S6789ABCDEF' is required, the ext_ernal record could contain the

characters 123456789ABCDEF and would be read by a Z15 format code. 'l'he
high-order zero is automatically provided as the padding character.

L Format Code

.----------------------.------------------------------····_··-_·,,···_--··---·--··1
i General !,'orm I
r--------------------,--------------------,-··---,-----... - .. ------.. ,--
I aLw
I
I where
I
I
I

a is optional and is an unsigned integer constant, less than
or equal to 255, used to denote the number of times the same
format code is repetitively referenced

I w is an unsigned integer ("'Onstant less than or equal to 25'),
I specifying the number of charact.ers of data
l ___________________ ,_. __________________________________ ,~. _____ ._ .. ____ .. .1

Logical variables rna y be read or wr·it.ten by lll€ans of the fOrT(ldt code
Lw.

en input, the first T or F encountered in the next w characters of
the input record causes a value of • TRUE. or. FALSE. , -res pec"tivcd.y. to
be aSSigned to the corresponding logical variable. If the field ~ con­
sists entirely of blankS, a value of .FALSE. is assumed.

On output, a T or an F is inserted in the output !:€cord corre" fJond':'nq
to the value of the logical variable in the I/O list. The sinqle
character is preceded by ~ - 1 blanks.

A Format Code

r--------------------'-·---------------·----------------------'",--,. --'-··-"-'1

I General Form
t----------------------,-·-------------"'----------------,---------, .. _.--------.-----1
I aAw
I
I where
I
I
I

a is optional and is an unsigned integer constant, less
or equal to 25'5. used to denote the number of timfc's th~'
format code is repetitively referenced

t !ld.ll

I "! is an unsigned integer constant less than or equal v .. 2'>5,
I specifying the number of characters of data
L _______________________ . ___________________ , ________ ... __ ._ .• _________ •.. ,_, _." ... _._".1

The format code Aw is used to read or writ.e alphameric ddtd.. U w i,;,
equal to the number of charact-..ers correspondi ng to the lengt.h spe c:i
tion of each item in the I/O list, ~ characters are read or writ"ten"

On input, if w is less than the length specificat.ion of E'acrl iten, in
the I/O list, w characters are read and the f'€maining rightmost charac­
ters in the item are replaced with blanks. If w is greater than t.he
length specification, the number of characters equal 1:.0 the differ-ene,,,
between wand the length specification are sk ipped, beginning wi t.h the
leftmost -character, and the remain Lng characT.ers are read.

On output, if ~ is less than the length specification of t.hE' item in
the .1/0 list, the printed line will consist of the leftmost ~ character";
of the item. If 'II is greater than the length specification, the pri fired
line wi 11 consist -of the characters right-jusH fied in the field dnd
will be preceded by blanks. 'ftlerefore, it is important to always alloc­
ate enough storage area ~o handle the characters being writ.ten (see "1tJe
Type statements·).

Input/Output Statements 49

Example 1: Assume that the array ALPHA consists of one subscript param­
eter ranging from 1 through 20. The following statements could be writ­
ten to copy a record from one data set to another.

10 FORMAT (20A4)

READ (5,10) (ALPHAU) ,1=1,20)

WRITE (6,10) (ALPHAU) ,1=1,20)

Explanation: The READ st atement would cause 20 groups of characters to
be read from the data set associated with data set reference number 5.
Each group of four characters would be placed into the 20 storage loca­
tions starting with ALPHA(1) and endin:] with ALPHA(20)' Tt>e WRITE sta­
tement would cause the 20 groups of four characters to be wLitten on the
data set associated with data set reference number 6.

Example 2: As another example, consider all the variable names in the
list of the READ statement, below, to have been explicitly specified as
REAL, and the array CONST to have been specified as having one subscript
parameter ranging from 1 throUJh 10. Then assume this input data is
associated with data set reference number 5

hBCDE ..• XYZ$1234561B90b

where ••.
a blank.

represents the alphabetic characters F through W, and b means
These statements could be written

50

10 fo'ORMAT
20 FORMAT

!{EAD
1
2
3

(21A1,10A1,A1)
('x' ,6(1A1,5X»

(S,10)A,B,C,D,E,F,G,H,I,
J,K,L,M,N,O,P,Q,R,
S,T,U,V,W,X,Y,Z,$,
(CONST (IND}.IND=l, 10), BLANK

DO 50 INDEX == 1, 5

WRITE
1
2
3
4
5

(6,20)G,R,O,U,P,BLANK,CONST(INDEX>,
B,L,O,C,K,BLANK,CONST(INDEX),
F,I,E,L,D,BLANK.CONST(INDEX),
G,R,O,U,P,BLANK,CONST(INDEX+S),
B,L,O,C,K,BLANK,CONST(INDEX+S>,
F,I,E,L,D,BLANK,CONST(INDEX+S)

50 CONTINUE

Explanation: The RFAD statement would cause the 37 alphameric charac­
ters and the blank in the data set associated with data set reference
number 5 to be placed in the storage locations specified by the variable
names in the RFAD list. ThUS, the variables A through Z receive the
values A through Z, respectively; the variabl. e $ receives the value $;
the numbers 1 through 9, and 0, are placed in the 10 fields in storage
starting with CONST(l) and ending with CONST(lO); and the variable BLANK
receives a blank. The WRITE statement within the 00 loop would cause
the following heading to be printed. A subsequent WRITE statement
within the 00 loop could then be written to print the correspondi ng out­
put data.

Print Position 1 Print Position 67
• •
I ,
GROUP 1 BLOCK 1 FIELD 1 GROUP 6 BLOCK 6 FIELD 6

(outpIt data)

GROUP 2 BLOCK 2 FIELD 2 GROUP 7 BLOCR 7 FIELD 1

(outpIt data)

GROUP 5 BLOCK 5 F'IELD 5 GROUP 0 BLOCK 0 FIELD 0

(out pIt data)

Literal Data in a Format statement

Literal data consists of a string of alphameric and special charac­
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be less than or equal to 255. For example:

25 FORMAT (. 1910 IN\TENTORY REPORT')

An apostrophe within t.he string is represented by two success! ve apo­
strophes; for example. the characters DON'T are represented as:

DON'tT

The effect of the literal format code depends on whether it is used
wi th an input or output statement.

INPtlI'

A number of characters, equal to the number of characters between the
apostrophes. are read from the deSignated data set. These characters
replace, in the FORMAT st.atement. the characters within the apostrophes.
For example.

5 FORMAT (' BEADINGS')

READ (3,5)

Input/Output Statements 51

would CdU~.H? tbe next nine characters to be read from the data set asso­
cia ted '''''itt! da ta set reference number 31 these characters would replace
nv'; blank and the eight characters in H E A DIN G S in the FURMAT
s td tt-!ml'm t ..

All character.:! (including blanks) within the apostrophes are written
dS part of the output data; thus,

'> FOm-tAT (. THIS IS ALPHAMERIC DATA')

WHITE (2.5)

\.;ould {>mse t.he following record to be written on the data set asso­
cjated with t.he data set reference nunber 2

LlTHl:::; IS ?.LPHAMER IC DATA

",'he r,' r.l i ndi cat.e..s a blank .•

'1

(_ -- ---.....• -_. -_ _--,
C~t:-nera 1 :r-'orrn I

.-----.. ---- ------ -- .------.------------ --- -.------------------------- -----f
I
I

Wh,T\~ "! is an unsigned integer constant less than or equal to 255, I
:;;l:->eci fying the number of characters following H I

-.. -... ----... ----_._-- .. _ .. _--'
The H forma t code is used in conjunction wi t.h the transfer of literal

(i.dt.a~

Tt;e format code wH is followed in the FORMAT statement by w (w$255)
,·hdI"acte.c-;; for example,

in;,!"lA? (31H THIS IS ALPHAMERIC INFORMATION}

fn"nk~c; dr':?- significant and must be included as part of the count w.
"if "'trect of wH depends on whether- it is used with input or output.

,
r .

un ~~t" '!!
t" ef) 1 d (.:f"' the
~~ t_fi. t E'm(~n t ~

characters are extracted f rom the input record dnd
w characters of the literal data in the FORMAT

::n output, the IN charact.ers following the format code are written
f?rt of t be output record.

--,
I

... -_. - ---- ---------------- ... -.-- ------- ------------------- ------~
I
I

,.J 1,; aIt U n:c~ igned integer constant 1 f'SS t_han or equa 1 to :<55, I
f{'c·jfyincr t.he number of blanks h) be in~~erted on output or I

L n'.l.ll.be: of characters to be skipped on input I
__ J

Yllen the wX (\11$255) format code is used wi th a REJI,D statement (i.e.,
on input). ~ -characters are skipped before the next data item is read
in. For example, if a card has six lO-column fields of integer quanti­
ties, and the second quantity is not to be read. then

5 FORMAT UI0 ,lOX, IIUO)

may be used with the appropriate READ statement.

When the wX format code is used with a WRI'fE state,ment (i.e., on out­
put), ~ characters are left blank. ThuB. the facility for spacin',J
within a printed line is available. FOr example,

10 FORMAT ('x' ,3(F6.2.SX»

may be used with an appropriate WRITE statement to pr int this line

123.45bbbbb811~32bbbbb524.67bbbbb

T Format Code

,--1 I General Form I
~--,----------------f
I ~ I
I I
I where ~ is an unsigned integer constant less than or equal to 255. I
I specifying the position in a FORTRAN record where the I
I transfer of data is to begin I l _________________________ , ________________________ . ________________ .J

Input and output may begin at any position by usinq the format code
T~ (~.s2 55) • Only when the output is printed does the correspondence
between 101 and the actual print position differ. In this case, because
of the carriage control character, the print position corresponds to
~-1, as in

5 FORMAT (T40, '1970 INVENTORY REPORT' TSO, 'DECEMBER' Tl, • PART
NO. 10095')

The FORMAT statement above would result in this print.::d line

Print
Position 1
•
PART NO. 10095

'lhese statements

READ <3,5)

Print
Position 39
•
1964 INVENl'ORY REPORT

Print
Position 19
•
DECEMBER

would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
H E A DIN G S in the FORMAT statement.

'lhe T format code may be used in a FORMAT statement with any type of
format code. FOr example, this statement is valid

5 FORMAT (TI00 .. Fl0.3. TSO, E9.3, Tl. • ANSWER IS')

In{Ut/OJt:put Statements 53

Scale Fact~r - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a f OrIna t code.

The scale factor is defined for input and output as

external quantity = internal quantity x lO •• scale factor

For input, when scale factors are used in a FORMAT statement, they
have effect only on real data which does not contain an E or D decimal
exponent. For example, if input data is in the f~rn xx.xxxx and, it is
to be used internally in the form .xxxxxx, the format code used to
effect this change is 2PF7. 4.

INPUT

As another example, consider this input data

27bbb-93.2094bb--175. 8041bbbb55. 3647

where b represents a blank.

These statements

5 FOR~AT (I2,3F11.4)

READ (6,5) K,A,B,C

would cause these variables in the list to assume these values

K
A

27
-93.2094

These statements

B
C

-175.8041
55.3647

5 FORMAT (I2,1P3F11.4)

READ (6,S) K.A,B,C

would cause these variables in the list to assume these values

K
A

27
-9.3209

These statements

B
C

-17.5804
5.5364

5 FORMAT (12, -1P 3F11. 4)

READ (6,5) K,A,B,C

would cause the variables in the list to assume these values

K
A

27
-932.094x

B
C

-1758.04lx
S53.647x

where x represents an extraneous digit.

54

OUTPUT

Assume that the variables K, A, a, and C have these values

K s 27
A s -93.2094

these statements

a -175.8041
e 2 55.3647

5 FORMAT (I2,1P3F11.4)

WRITE (4,5) K,A,D.e

would cause the variables in the list to output these values

K
A

27
-932.094x

B
e

-1758.041x
553. 641x

where x represents an ext.raneous digit.

'lbese statements

5 FORMAT <12 ,-1P3Fll. 4)

WRITE (4,5) K,A,B,e

would cause the variables in the list to output these values

R 27
A : -9.3209

B
e

-17.5804
5.53611

For output, when scale factors are used, they have effect only on real
data. However, this real data may contain an E or D decimal exponent.
A pos itive scale factor u.sed with real data that contains an E or D
decimal exponent increases the number arrl decreases the exponent. Thus,
if the real data was in a form using an E decimal exponent, and the sta­
tement FORMAT (lX" 12" 3E13. 3) used with an appropriate WRITE staterrent
resulted in this printed line

27bbb-O.932Eb02bbb-O.175Eb03bbbbO.553Eb02

then the statement FORMAT (lX,I2,lP3E13.3) used with the same WRITE sta­
tement would result in this printed output

27bbb-9.320EbOlbbb-1.. 758Eb02bbbb5. 536EbOl

The scale factor is assu.med to be zero if no other value has been
given. However, once a value has been given, it will hold for all for­
mat codes (Le., those that correspond to real data) following the scale
factor within the same FORMAT statement. This also applies to format
codes enclosed within an additional pair of parentheses. Once the scale
factor has been given, a subsequent scale factor of zero in the same
FORMAT statement must be specified by OP.

Carriage Control

When records written under format control are prepared for printing,
the following convention for carriage control applies:

First Character
Blank
o
1
+

can: ;.age Advance Bef ore Printing
One line
Two lines
To first line of next page
No advance

Input/OUtput Statements 55

~be first character of the output record may be used for carriage
control and does not appear in the first print Fosition of the print
line. However. it appears in all other media as data.

Carriage control can be specified in either of two forms of literal
data. These statements would both cause two lines to be skipped before
printing

10 FORMAT ('0'. 5(F1.3»
10 FOR~AT (lHO, S(F7.3»

~~DITION~~~PUT/OUTPUT STATEMENTS

'file statements END FILE. REWIND, and BACRSPACE are used to control
the data sets, as described in the following text.

END FILE Statement

f ,- - ------- - --------------------,~- ---------- -~------------------- ------,

I GEneral Form I
t.---~
I END FILE a I

I
whp-re a i G an uns igned integer constant or integer variable of I

length 4 that represents a data set reference number I
l _________ . __ J

The END FILE statement defines the end of the data set associated
wi i:h a. A subsequent WRITE statt:!mpnt defines the beginning of a new
dat.a set.

REWIND st atement

r .. --------·----------------·------------·-----------------------------,
! General Form I
:---_._.",,--_. __ ._------_._----------------------_._-------.-----------------------~
j R:&<IND ~ I

I
where a is an uns igned integer constant or integer variable of I

i length 4 that represents a dat.a set reference number I
t."_,_, _______ ~ __ ,_~_. ___ . ___________________________________ ~ ____________ ______ J

The REWIND statement causes a subsequent READ or WRITE statement ref­
;prring to a to read data from or write data into the first data set
.:.s~3{y:;idted-with a. REWIND causes d logical rewinding to the beginning
of thE first. data set associated wit.h the specified data set. reference
nurnber; it does not always cause a physical rewinding of the tape. If,
however, the specified data set is the first on the tape, physical, as
well as logical. rewinding occurs.

BACKSPACE statemen t

,---,
I General Form I
~-------.--f

BACKSPACE; a I
I

! where a is an unsigned integer constant or integer variable of I
! length 4 that represents a data set reference number I l _____ . __ J

Toe BACKSPACE statement causes the data set associated with a to bac­
kspace one record. If the data set associated with a is alreadj at its
beqinning. execution of this statement has no effect-::-

56

'Ihe specification stat€m1ents provide the compiler with inforrra t_ion
arout the nature of the data used in the source program. In addl tion,
they supply the informa tlon required to allocate storage locations for
this data. Specification statemlents describing dat_a may appear anywhere
in the source program, rut must precede any st~tements which refer to
that data. The specificat.ion statement13 are the type statements IMPLI­
CIT, INTEGER. REAL, COMPLEX, and LOGICAL, and the DIMENSION, COMMON, and
EQUIVALENCE statements.

THE TYPE STATFNENTS

There are two kinds of type statement_s: the IMPLICIT specification
statement and the Explicit: specification statements (INTEG.ER, REAL, COM­
PLEX, and LOGICAL).

The IMPLICIT speciflcatioIiI statement ena.bles the usertu

1. Specify the type of a group of variables or arrays according to the
initial character of their names.

2. Specify the amount of storage to be allocated fot.:' each variable
according to the associated type.

The Explicit speCification stat_anent_s enable -the user tf}

1. Specify t_he type of Ci variable or array accordilHJ to their particu­
lar name.

2. Specify the amount of storage to be allocated for each variable
according to the associated type.

3. Specify the dimensions of an array.,

~. ASSign initial data values for variables and arrays.

IMPLICIT Statement

r------------------------------------'---'-----'-------.---.,,-.,---------------,
I General Form I
~---------------------- --. -,--------------.---.---------------. ----'., -_._--_._------- ~

, IMPLICIT ~·~(~1.~1 •• ··) •• ·-,!:.Yl2~·§{<!,.'!,.···) I
I I
! where ~ represents one of t,he following: INTEGER. RF:AL. COM- I
! PLEX, or LOGIC1U, I
I I
I ·s is optional and represents one of the pr"rrnissible length I
I sPecifications for its associated type I
I I
I i!l' i!,,'" represent sillgle alphabetic characters each I
I separated by con[[las. or a range of chacacters (in alphabetic I
I sequence) denoted by the first and last. characters of the I
I range sepa.rated by a minus sign (e_, g •• (A-D») , l __________________ , _______ . _________________ , ____ , ________________ , ______ , _____ ,' _____ J

'lhe IMPLICIT statement. if specified, should be the first staterrent
in a main program, and the second statement in a FU~TION. SUBROUTINE,
or BLOCK DATA subprogram.

The IMPLICIT type sta t.ement enables t.he user to declare the type of
the variables appearing in his program U. e .• integer, real, complex. or

SrecificatiofJ St.at:.ements 57

logical) by specifying that variables beginning with certain designated
letters are of a certain type. Furthermore, the IMPLICIT statement
a llows the programmer to decl are t he number 0 f locat ions to be a lIce ated
for each specified variable in a group. The types that a variable can
assume~ and the permissible lengths are

~ Length SEec if ica ti on
INTEGER 2 or 4 (standard length is 4)
REAL 4 or 8 (staooard length is 4)
COMPLEX 8 or 16 (standard length is 8)
I.OGICAL 1 or 4 (standard length is 4)

FOr each type there is a corresponding standard length specification.
If this standard length specification (for its associated type) is
desired, the *~ may be omitted in the IMPLICI'I statement. That is, the
variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, the *s must be included within
the IMPLICIT statement.

Example 1:

IMPLICIT REAL (A-H, o-Z,$), INTEGER (I-N)

EXElanation: All variables beginning with the characters I through N
are declared as INTEGER. Since no length specification was explicitly
given (i.e., the *s was omitted), four storage locations (the standard
length for INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H.
o through Z, and $) are declared as REAL with four storage locations
allocated for each.

Note that the statement in Example 1 performs the same function of
typing variables as the predefined convention (see ftType Declaration by
the Predefined Specification-).

Example 2:

IMPLICIT INTEGER*2(A-H), REAL*8(I-K), LOGICAL(L,M,N)

Explanation: All variables beginning with the characters A through H
are declared as integer, with two storage locations allocated for each.
luI variables beginning with the characters I through K are declared as
real, with eight storage locations allocated for each. All variables
beginning with the characters L, M, and N are declared as logical, with
four locations allocated for each.

Since the remaining letters of the alphabet (0 through Z and $) were
left undefined h¥ the IMPLICIT statement, the predefined convention will
take effect. Thus, all variables beginning with the characters 0
through Z and $ are declared as real, each with a standard length of
four locat,ions each ..

Example 3:

H,PLICIT COMPLEX*16(C-F)

Explanation: All variables beginning with the characters C through F
dre declared as complex, each with eight storage locations reserved for
the real part of the complex data and eiqht storage locations reserved
for the imaginary part. The types of the variables beginning wit h the
charc:cters A, B, G through Z, and $ are determined by the predefined.
convpntion.

Explicit Specification statements

r---,
I General Form I
r----------------------·---------------------------------------I
I ~.~ ~·~l (~1)/~1/'~·~2 (~2)/~2/'-·· • .!·!!n(~n)/~n/ I
I I
I where ~ is INTEGER, REAL, LOGICAL, or COMPLEX I
I I
I .~ •• ~I ,.!!. 2 I· •• ".~ n are opt ion al J ea ch s represents one of I
I the permissible length specifications for its associated I
I ~ I
I I
I a.b •••• ,z represent variable, array, or function names (see I
I ·SiiBPROGRAMs") I
I I
I (~ I) , (~2) ••••• (~n) are optional, each ~ is composed of 1 I
I throogh 7 unsigned integer constants, separated by commas, I
I representing the maximum value of each subscript in the I
I arraYI each k may be an unsigned integer variable only when I
I it appears iii a Type statement in a subprogram I
I I
I /~1/'/~2/'.·.'/~n/ are optional and represent initial data I
I values I l __ ~

The Explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of a variable or array by its name, rather
than by its initial character. This differs from the other ways of spe­
cifying the type of a variable or array (i.e., the predefined convention
and the IMPLICIT statement). Also, the information necessary to alloc­
ate storage for arrays (dimension information) may be included within
the statement. However, i.f this information does not appear in an
Explicit specification statement, it must appear in a DIMENSION or COM­
MON statement (see "DIMENSION Statement- or "COMMON Statement").

Initial data values may be assigned to variables or arrays by use of
/~n/' where ~n is a consta.nt or list of constants separated by commas.
This set of constants may be in the form "r. constant", where r is an
ullsigned integer. called the repeat constant.

tt) element may have more than one initial value given in the same
program. A function name may not have an initial value aSSigned to it.
An initially defined variable or a variable of an array may not be in
blank common; in a labeled common block, they may be initially defined
only in a BLOCK DATA subpx'ogram. Initial data values may not be
assigned to dummy segments appearing in a FUNCTION, SUBROUTINE, or ENTRY
statement.

In the same manner in which the IMPLICIT statement overrides the pre­
defined convention, the Explicit specification statements override the
IMPLICIT and predefined convention. If the length specification is
omitted (Le ••• ~), the standard length per type is assumed.

Example 1:

INTEGER*2 ITEM/76/, VALUE

Explanation: This statement declares that the variables ITEM and VALUE
are of type integer, with two storage locations reserved for each.
Also, the variable ITEM is initialized t:o the value 76.

Example 2:

COMPLEX C,D/(2.1,4.1}/,E*16

Explanation: This statement declares that the variables C, D, and E are
of type complex. Since no length specification was explicitly given for

S recificat ion Statements 59

C and D, the standard length is assumed. Thus, C and D have eight
storage locations reserved for each (four for the real part, four for
the imaginary part) and D is initialized to the value (2.1,4.7). In
addition, 16 storage locations are reserved for the variable E. Thus,
if a length specification is explicitly written, it overrides the
assumed standard length.

Example 3:

REAL*S ARRAY, HOLD, VALUE*4, ITEM(5,S)

Explanation: This statement declares that the variables ARRAY, HOLD,
VALUE, and the array named ITEM are of type real. In addition, it
declares the size of the array ITEM. ARRAY and HOLD have eight storage
loCations reserved for each; VALUE has four locations reserved; and ITEM
has 200 storage locations reserved (eight for each variable in the
array). Note that when the length is associated with the type (e.g.,
REAL*8>, the length applies to each variable in the statement unless
explicitly overridden (as in the case of VALUE*4).

REAL A(5,S)/20*6.9E2,5*1.0/, B(100)/100*0.0/,TOAD*S(S)/S*0.01

Explanation: This statement declares the size of each array, A and B,
and their type (real). The array A has 100 storage locations reserved
(four for each variable in the array); the array B has 400 storage loca­
tions reserved (four for each variable). Also. the first 20 variables
in the array A are initialized to the value 6.9E2 and the last fi ve
variables are initialized to the value 1.0. All 100 variables in the
array Bare init.ialized to the value O. O. The array TOAD has 40 storage
locations reserved (eight for each variable). Also, each variable is
initialized to the value O. O.

Example 5:

REAL A/Z1234CAF9/,B

Explanation: This statement declares that the variables A and B are of
type real, each with four storage locations reserved. Also, variable A
is initialized to 1234CAF9 by using the hexadecimal constant. Note that
the maximum number of digits allowed is dependent upon the length speci­
fication of the variable being initialized. If the number of digits is
greater than the maximum allowed, the leftmost hexadecimal digits are
truncated; if less than the maximum, hexadecimal zeros are supplied on
the left (see ·Hexadecimal Constants·).

ADDITIONAL SPECIFICATION STATEMENTS

DIMENSION Statement

r--,
I General Form I
~---4
I DIMENSION ~ l(~ I) '~2 (~2)' ~3 (~3) , ••• '~n (~n) I
I I
I where ~J' ~2' ~3"'" ~n are array names I
I I
I ~" ~ H ~H"'·'J!. n are each composed of 1 through 7 unsigned I
I integer constants, separated by commas, representing the I
I maximum value of each subscript in the arra Yi J!. j through ~n I
I may be integer variables of length q only when they appEar I
I in a DIMENSION statanent within a subprogram. I L __ J

60

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. The follow­
ing examples illustrate heM this informat.ion may be declared.

Examples:

DIMENSION AnO), ARRAY (5,5,5,5,5), LIST{10,lOO)
DIMENSION B(25,50>,TABLE(25,25,25)

Adjustable Dimensions

The previous examples showed that the maximum value of each subscript
in an array was specified by a numeric value. These numeric values
(maximum value of each subscript) are kneMn as the absolute dimensions
of an array and may never be changed. However, if an array is USf..'<l in a
subprogram (see "Subprograms") and is not in Common, the size of this
array does not have to be explicitly declared in the subprogram by a
numeric value. That is, the Explicit specification statement, appearing
in a subprogram, may contain integer variables that specify the size of
the array. When the subprogram is called, these integer variables
receive their values from the calling program. Thus, the dimensions
(size) of a dummy array appearing in a subprogram are adjustable and may
change each time the subprogram is called.

The absolute dimensions of an array must be declared in a calling
program. The adjustable dimensions of an array, appearing in a subpro­
gram, should be less than or equal to the absol ute dimensions of that
array, as declared in the calling program.

The following example illustrates the use of adjustable dimensions!

Example:

Call ing Program SUbprogram

REAL*8 A(S,S) SUBROUTINE MAPMY(•••• R,L.M ••••)

CALL MAPMY(••• ,A,2,3, •••) RFAL*8 ••• ,R (L,M), •••

00 100 I=l,L

Explanation: The statement REAL*8 A(S.5) appearing in
gram declares the absolute dimensions of the array A.
tine MAPMY is called. the dummy argument R assmnes the
the dummy arguments L and M assume the values 2 and 3,

the calling pra­
When the s ubrou-·
array name A, and
respect! ve lye

The correspondence of the subscripted variables of the arrays A and R
is shown in the following example.

R (1,1) R(2,l} RU,2) R(2 ,2) R(1,3) R(2,3)
AU,!) A(2,l> A(3,1> A(4,U A(5,l> A(1 .. 2) A(2,2) ...
A(1,2) A(2.2) A<3,2) '" (4.2) A(5.2)
A(1,3) A(2.3) At3,3) A(4,3) A(5.3)
A(1,4) A(2,4) A(3. Lt\ A(4,4) A(S,4)
Atl,S) A<2,S) A(3,5. A(4.5) A(S,S)

Specificat.ion StatemE,nt:s 61

Thus, in the calling program, the subscripted variable A(1,2) refers to
the sixth subscripted variable in the array A. However, in the subpro­
gram MAPMY the subscripted variable R(1,2) refers to the third sub­
scripted variable in the array A, which is A(3,1). This is so because
the dimensions of the array R, as declared in the subprogram, are not
the same as those in the calling program.

If the absolute dimensions in the calling program were the same as
the adjusted dimensions in the subprogram, the subscripted variables
R(l,i) through ReS,S) in the subprogram would always refer to the same
storage locations as specified by the subscripted variables A(!,l)
through A (S,5) in t he calling program, respectively.

The numbers
array R, could
.I.~ng program.
I ing program:

2 and 3, which became the adjusted dimension of the dummy
also have been variables in the argument list of the cal­
For example, assume that this statement was in the cal-

CALL MAPMY (.•• ,A, I,J , •••)

Then, as long as the values of I and J were previously determined, the
arguments may be variables. Also, the variable dimension size may be
passed through more than one level of subprograms: for example, within
the subprogram MAPMY could have been a call statement to another subpro­
gram in which dimension information about A could have been passed.

If an array has a variable dimension, that array name must be a dummy
variable (i.e., must appear in a FUNCTION, SUBROUTINE, or ENTRY state­
ment). The variable dimension itself can be a dummy variable or can
appear in a COMMON statement.

COMMON Statement

r--,
I General Form I
~---~
I COMMON /~/ 2. (~1) ,!!(~ 2) , •• ./!/~(~3) ,g(~),.". I
i I
I where ~,~, ••• ,£,~ ... are variable or array names I
I I
I ~I ,~ 21"' '~JI~ ••• are optional and are each composed of one I
I through seven unsigned integer constants, separated by com- I
I mas, representiIJ} the maximum value of each subscript in the I
I array I
I I
I /r/ ••• represent optional common block names consisting of I
I one through six alphameric characters. the first of which is I
I alphabetic. These names must always be embedded in slashes I l __ J

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statEment

COMMON TA BL E

and a second program contains the statement

COMMON LIST

the variable names TABLE and LIST refer to the same storage locations.

62

If the main program contains the statements:

REAL A,B,C
COMMON A,B,C

and a subprogram contains the statements:

REAL X,Y.Z
COMMON X"Y,Z

A shares the same storage location as X; B shares the same storage loca­
tion as Yi and C shares the same storage location as Z.

Con sider the following examples:

Example 1:

Calling Program

COMMON A, B, c, R(100)
REAL A, B,C
INI'EGER R

CALL MAPMY t •••)

Sul'J>roqram
SU BROUT I NE MAPMY (•••)

COMMON X, Y, Z, S(100)
REAL X, 'l,Z
INTEGER S

.t.xplanation: In the calling program. the sta.tement COMMON A. B,C, R(100)
would cause 412 storage locations (four locations per variable) to be
reserved in this manner

r----------------r----------------T---------------,
Beginning I A I B I C I Layout of
of comlt'on I 4 locations I q locations I "locations I storage
area I I I I

~--------------+---------------+-----------~ I R(1) I I R(100) I
I 4 locations I I "locations I l ______________ .1. ______________ .L-___________ J

The statement COMMON X, 'I, Z, S(100) would then cause the variables
X, 'I, Z, and S(1) ••• S(100) to share the same storage space as A, B, C,
and R (1) ••• R (lOO) •

The example above shows that COMMON statements may be used to func­
tion as a mediWi to implicitly transmit data frem the calling program to
the subprogram. That is, values for X, 'I, Z, and 8(1) ••• 8(100), because
they occupy the same storage locations as A, H, C, and R{l) ••• R(lOO), do
not have to be transmitted in the argument list of a CALL statement.
Arguments passed through COMMON must follow the same rules of presenta­
tion with regard to type, length, etc .• as arguments passed in a list
(see "SUBPROGRAMS·).

Example 2: A.ssume COMMON is defined in a main program and three subpro­
grans as

Main program
Subprogram 1
Subprogram 2
Subprogram 3

COMMON
COMMON
COMMON
COHMON

A,B,C
D,E,F
Q.R,S.T,U
V.~,X,Y,Z

Also, assume the lengtb specifications of these variables are so defined
that the cornwan area is shared as follows

Specification Statements 63

,-_ - .. , -- " - .•... -"" "'''-T-- ... -----------,

I
I 2 locations I

" -""-- ~-' .. -.-. -.--..... ----., .. -+---------------~
I

i 2 locations I
.. " ... -.-+~------.--------~

u I
2 locations I

-_._---------- ~

Y Z I
l I(Jations I 2 locations I
•. __ ._ •• _ ___ . _ • .1. •.• , __ . ___ . ________ J

Tl,~] L,,c, va lidly referr ~d to
,tI -~nd V,'';,X,Y,Z. In addi-

,u, d'l.J L. It is diso poss­
dud f) <:indo H in Subprogram 2.

nn·pn,'t ;jnd in cert.ilin cases IT-dY

~~ :j,-_1:.! d,i.;,~e-g ,,:t...nd U and .k are
';.,·a 1 ,Hid imaqi:\ary parts of D.

,,?-:'F:r ''!h':(c' by the proqrammer rr.ost

(",:~'~rtrl;{)n "_it.orage area (corn­
dIed. Toat is, no par-

The va:riables tndt
i(lTH·;j iocation,> relative to
~~~_~-,,-'/L\l~:·~r,. vdridt)les and arrays 
c.::.{~r:_ ,_)f th{?~:je seIJarate areas 
c:.Tl(~ tt1::uugh:3.ix alphd~ric 

-'._het-:; t~Jccks t.hat nave 

1 Pc! ~or named) GOllUllOn are pre-
l,'i'LP Fer example, the 
Li\~'cLE·d corrmorl. at'ea HOLD ty 

i',t~lng;lished from lat)eled 
t\~'() con secut i ve 

n.uirl'j ,j{ t he common sta­
!~. tn 

j oJ. dced 1.11 blank common in 
in the common area 

d. FPt'd ti ng in COr.1MON s ta tement s ar e 

j~i.:: inql(, stdtt-:'rnent 



Example 3: Assume that A, B, C, K, X. and Y each occupy four locations 
of storage, H and G each occupy eight locations, and D and E each occupy 
two locat ions • 

Call inq Program Subprogram 
SUBROUTINE MPMY( ••• ) 

COMMON H. A /R/ X. D // B 
COMMON G, V, C /R/ K. E 

CALL MAPMY( ••• ) 

Explanation: In the calling program, the statement COMMON H,A/R/X,D//B 
causes 16 locations (four locations each for A and B, and eight for H) 
to be reserved in blank common in this order 

Beginning 
of blank 
common 

r-----------------------------------------------------------, I H A B I 
I 8 locations 4 locations 4 locations I 
I I 
~------------------------------------------------------------f 
I I 
I continuation of blank common I 
, I l __________________________________________________________ J 

and also causes six locations (four for X and two for D) to be reserved 
in this labeled common area R in this order 

r-----------------------------------------------------------, 
Beg inning I X D I 
of labeledl I 
common R I 4 locations 2 location s I 

~-----------------------------------------------------------~ 
I I 
I cont inu at ion 0 f 1 abel ed common I 
I I l ____________________________________________________________ J 

The statement COMMON G,Y.C/R/K.E appearing in the subprogram ~APNY 
would cause the variables G. V, and C t.O share the same storage space 
(in blank common) as H. A, and B. respectively. It would also cause the 
variables K and E to share the same storage space (in labeled common 
area R) as X and D, respectively. The length of a COMMON area may be in­
creased by using an EQUIVALENCE statement (see -EQUIVALENCE Staterrents W ) 

Programming Considerations 

Variables in a COMMON block may be in any order. However, consider­
able object-time efficiency is lost unless the programmer ensures that 
all the variables have proper boundary alignment. 

Proper alignment is achieved either by arranging the variables in a 
fixed descending order according to length, or by constructing the block 
so that dummy variables force proper alignment. If the fixed order is 
used, the variables must appear in this order 

length of 16 ( complex) 
length of 8 (complex or real) 
length of 4 (real or integer or logical> 
1 ength of 2 ( integer) 
length of 1 (logical) 

Srecification Statements 65 



If the fixed order is not used, proper alignment can be ensured by 
constructing the block so that the displacement of each variable can be 
evenly divided by the reference number associated with the variable. 
(Displacement is the number of storage locations from the beginning of 
the block to the first storage location of the variable.) The following 
list shows the reference number for each type of variable. 

Type of Length Reference 
Variable sEecification Number 
Logical 1 1 

II II 

Integer 2 2 
II II 

Real II II 
8 8 

Complex 8 B 
16 8 

The first variable in every COMMON block is positioned as if its 
length specification were eight. Therefore, a variable of any length 
may be the fi rst assigned within a block. TO obtain the proper a lign­
ment for other variables in the same block, it may be necessary to add a 
dummy variable to the block. For example, the variables A, I, and CMPLX 
are REAL*II, INTEGER*II, and COMPLEX*8, respectively, and form a COMMON 
block that is defined as 

COMMON A, I, CMPLX 

Then, the displacement of these variables within the block is illus­
trated by 

A 

4 storage 
locations 

di s placement 
o storage 
locations 

I 

/I storage 
locations 

displacement 
/I storage 
locations 

CMPLX 

8 storage 
locations 

displacement 
8 storage 
locations 

The displacements of I and CMPLX are evenly divisible by their 
reference numbers. However, if I were an integer with a length specifi­
cation of 2, then CMPLX is not properly aligned (its displacement of 6 
is not evenly divisible by its reference number of 8). In this case, 
proper alignment is ensured by inserting a dtmmy variable with a length 
specification of 2 either between A am I or between I and CMPLX. 

EQUIVALENCE Statement 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 
I EQUIVALENCE (~, E, £., ••• ), (~, ~, !, ... ) I 
I I 
I wh€re ~,~, £, Q, ~, f,.·. are variables that may be subscripted. I 
I The subscripts may have two forms: If the variable is sing- I 
I ly subscripted it refers to the pOSition of the variable in I 
I the array (i.e., first variable, 25th variable, etc.): if I 
I the variable is multisubscripted, it refers to the pOSition I 
I in the array in the same manner as the pOSition is referred I 
I to in an arithmetic statement I l ______________________________________________________________________ J 

bb 



The EQUIVALENCE statem.ent provides the option for controlling the 
allocation of data storage within a single program or subprogram. It is 
analogous to the option of using the COMMON statement to control the 
allocation of data storage among several programs. When the logic of 
the program permits, the number of storage locations used can be reduced 
by causing locations to be shared by two or more variables of the same 
or di ffer ing types and lengths. The EQUIVALENCE statement cannot be 
used to obtain mathematical equality of two variables. 

Example 1: 

DIMENSION B(S), C(10, 10}, D(S, 10, 15) 
EQUIVALENCE (A, B(l), C(S,3», (0(S,10,2>, E) 

Explanation: This EQUIVALENCE statement indicates that the variables 
A,B(1), and C(S,3) are assigned to the same storage locations; also that 
0(5,10,2) and E are assigned to the same storage locations. In this 
case, the subscripted variables refer to the position in an array in the 
same manner as the posit.ion is referred to in an arithmetic statement. 
Note: Variables or arrays that are not mentioned in an EQUIVALENCE sta­
tement are assigned to unique storage locations. The EQUIVALENCE state­
ment must not contradict itself or any previously established equiva-
I ences. For example, the further equivalence specification of B( 2) with 
any other element of the array C, other than C(6,3), is invalid. 

Example 2: 

DIMENSION B(S), cno, 10), D(S, 10, 15)· 
EQUIVALENCE (A. B(D, COS}), (D(100), E) 

Explanation: This EQUIVALENCE statement indicates that the variable A, 
the first variable in the array B, namely B(l), and the 25th variable in 
the array C, namely C(5,31, are to be assigned the same storage loca­
tions. Also, it also specifies that 0(100), i.e., 0(5,10,2), and E are 
to share the same storage locations. Note: 'Ihe effects of the ECUIVA­
LENCE statements in examples 1 and 2 are the same. 

Variables that are brcmght into COMMON through EQUIVALENCE statements 
may increase the size of the block, as indicated by these statements: 

COMMON A, B, C 
DIMENSION 0(3) 
EQUIVALENCE (B , DC1» 

This would cause a common area to be established containing the 
variables A, B, and C. The EQUIVALENCE statement would then cause the 
variable 0(1) to share the storage location with B, D(2) would share 
with C, and D(3) would extend the size of the common area, in this 
manner 

A (lowest location of the common a.rea) 
B, 0(1) 
c, 0(2) 

0(3) (highest location of the common area) 

Since arrays must be stored in consecutive forward locations, a vari­
able may not be made equivalent to another variable of an array in such 
a way as to cause the array to extend before the beginning of the common 
area. For example, this EQUIVALENCE statement is invalid 

COMMON A, B, C 
DIMENSION D(3) 
EQUIVALENCE (B, D (3» 

Specification Statements 67 



because it would force 0(1) to precede A, as follows: 

0(1) 
A, O( 2) 
B, D (3) 

C 

(lowest location of the common area) 

(highest location of the common area) 

Programming Considerations 

Two variables in one COMMON block or in two different COMMON blocks 
may not be made equivalent. Variables in an equivalence group may be in 
any order. However, considerable object-time efficiency is lost unless 
the program11€r ensures that all the var iables have proper boundary 
alignment. 

Proper alignment is achieved either by arranging the variables in a 
fixed descending order according to length, or by constructing the group 
so that dummy variables force proper alignment. If the fixed order is 
used, the variables must appear in this order: 

length of 16 ( complex) 
length of 8 (complex or real) 
length of 4 (real or integer or logical) 
length of 2 ( integer) 
length of 1 (logical) 

If the fixed order is not used, proper alignment can be ensured by 
constructing the group so that the displacement of each variable in the 
group can be evenly divided by the reference number associated with the 
variable. (Displacement is the number of storage locations from the 
beginning of the group to the first storage locat ion of the variable.) 
(The reference numbers for each type of variable are given under "COMMON 
statement.") The first variable in each group is positioned as if its 
length sVecification were eight. 

For example, the variables A, I, and CMPLX are REAL*4, INTEGER *4, and 
COMPLEX*8, respectively, and are defined as 

DIMENSION A(10), 1(16), CMPLX(S) 
EQUIVALENCE (A(l), 1(7), CMPLX(l)} 

'lhen, the displacement of these variables within the group is illus­
trated by 

I (1) 64 storage locations 1(16 ) 

A(l) 40 storage locations A (10) 

CMPLX(l) 40 storage locations CMPLX(S) 

displacement displacement 
0 storage 24 storage 
locations loca tions 

The displacements of A and CMPLX are evenly divisible by their reference 
numbers. However, if the EQUIVALENCE statement were written as 

EQUIVALENCE (A(l), 1(6), CMPLX(l» 

then CMPLX is not properly aligned (its displacement of 20 is not evenly 
divisible by its reference number, 8). 

68 



It is somet.l.l'll"'S des irat.:l e t() '.IT l'U' " pl.',., 
requires t.:.he same 
each calculat~ion, t.hat Pl(YF 
tements requi red to per'foun the compul<1tcLon 
and then could be referred LO free 
having the same effect- a:,; t: 'Lti,;-:'>" in 
point in t.he program where the rer n"w:,-, 

For example, t,o take t:he Cd!)e .t~)()". uf 
'llritten. If a genE'raJ ram were ... .IT 

number, it would be de 
subprogram) with otrlP.r pxoqrams 't;I}lET" 

required. 

The FORTRAN language provi.d,-','o f"y 
of subprograms. There are t:hn~e cIa 
Functions,. FUNCTION !,Jubprogrcuns «t <1(1'..1 

there is a group of FORTHA",,- [YO 

The first h'iO class€E of 
differ from SUBR;JUTINE (:q;:-a1T!s, 
one value to t.he callinq pn-;'jr;.!n; SU 
any. 

NAMING SUBPROGAAHS 

A subprogram name conE; ist:s f 
ters, the first of' l#lhich rm.ls·t" be 
contain special charact.ex·,; ;"ec> 

may be typed (as vaciahlNi are) dC' 

1. Type decla~,at ion 0L_d _st:.:2.~:.'::1.".iI~lt_ 
accomplished in one of t,hree ",ct.ys·; 
by the IMPLICIT ,;;tat.el'II;,'nt, ')C 

ments. Thus. th<~ 8ame [".1'-";-':' 

apply to Statement FunctIon>:; 

2. Type d~_cla;:'!!JoI:~ __ 2.!~ .. J;::Q~~C~T}:~};L 
made in one of three ways l.", ',. 
IMPLICIT st,,! tement, or "" !C'zPl ~ 
cification of the FUNCTION 

3 • Type decl:.i!!:~t i O!!_2,Lil,f'.l!E:;:.i"jtJ.'-1:::",.:.\AJ:;;:=i';~ 
TINE su bprogl:'am caJ:uloi: be 0<;: f lJicd .br-cc';;" 
returned t:o t.he callin:! l.').;:;)':p:: 'f 

the variable names S,n u)~, 

program arrl/or the implic:U: dc;run,f:",ts 

For the r~UNCTION and EUBHOtrr::N2 i:tT'~' 
call by subprogr'~m name qives t.he ". 
references or calls can aIso 
defined in ENTRY statements. 

FUNCI'IONS 

A function is a :3t'l temenycf t:r,f" 
variables. To us e a ftl. net ion in 



1. Define the function (i.e. , specify what calculations are to be 
performed) , 

2. Refer to the function by name, where required in the program. 

Function Definition 

The three steps in the definition of a functi on are 

1. The function must be assigned a unique name by which it may be 
called (see -Naming SubprogramsW ). 

2. The arguments of the function must be stated. 

3. The procedure for evaluating the function must be stated. 

Items 2 and 3 are discussed in detail in the sections dealing with 
the specific smprogram (-statement Functions," "FUN:TICN Subprograms," 
etc.). 

Function Reference 

The name of a function, appearing in any FORTRAN arithmetic expres­
sion, refers to the function. Thus, the appearance of a function, with 
its arguments in parentheses, causes the computations to be performed as 
indicated by the function definition. The resulting quantity replaces 
the function reference in the expression and assumes the type of the 
funct ion. The type and length of the name used for the reference must 
agree with the type and length of the name used in the definition. 

STATEMENT FUNCTIONS 

Statement functions are defined by a single arithmetic or logical 
assignment statement within the program in which they appear. For 
example, 

FUNC(A,B) = 3.*A+B**2.+X+Y+Z 

defines the statement function FUNC, where FUNC is the function name and 
A and B are the function arguments. 

The expression on the right defines the computations that are to be 
performed when the function is used in an arithmetic statement. This 
function might be used in this way 

C = FUNC(D,E) 

~hich is equivalent to 

C 3.*D+E*.2.+X+Y+Z 

Note the correspondence between A and B in the function definition 
statement and D and E in the arithmetic statement. The quantities A and 
B, enclosed in parentheses following the function name, are the argu­
ments of the function. They are dummy variables for which the quanti­
ties 0 and E, respectively are substituted when the function is used in 
an arithnEtic statement. 

10 



,----------------------------------------------------------------------, I General Form , 
t----------------------·------------------------------------------f 
I name (!!,!!, .•. ,!!) = ~ession , 
I , 
I where name is any subprogram name (see -Naming Subprograms·). , 
I , 
I a,b, ••.• n are distinct (within the same statement) nonsub- I 
I scripted-variables I 
I I 
I expression is any arithmetic or logical expression that does I 
I not contain subscripted variables; any statement functions I 
I appearing in this expression must be defined previously I l ______________________________________________________________________ J 

The actual arguments Inust correspond in order, number, and type to 
the dummy arguments. At least one argument must be used. A maximum of 
15 variables appearing in the expression may be used as arguments of the 
funct ion. 

~ote: All statement Function definitions to be used in a program must 
precede the first executable statement of the program. 

Examples: Valid statement function definitions: 

SUM(A,B,C,D) :: A+B+C+O 
FUNC(Z) = A+X*Y*Z 
AVGCA,B,C,O) = (A+B+C+O}/4 
ROOT(A,B,C) = SQRTCA*.2+B.*2+C •• 2) 
VALID(A,B) = .NOT.A.OR.B 

Note: The same dummy arguments may be used in more than one Statement 
Function definition and,- as variables, outside Statement Function 
definitions. 

Invalid statement function definitions 

SUBPRG(3,J,K}=3*I+J •• 3 
SOMEF(A(I),B)=A(I)/B+3. 

SUBPROGRAM (A,B) =A •• 2·t-B*.2 

3FUNC(D)=3.14*E 

ASF (A) =A+B (n 

(arguments must be variables) 
(arguments must be nonsub­
scripted) 

(function name exceeds limit 
of six characters> 
(function name must begin with 
an alphabetic character) 

(subscripted variable in the 
expression) 

Valid statement function references 

NET = GROS - SUM (TAX, FICA, HOSP, MISC) 
ANS = FUNC (RESULT) 
GRADE AVG(LAB, LECTUR, SUM(TEST1, TEST2, TEST3, TEST4), FACTOR) 

Invalid statement function references 

WRONG = SUM(TAX,FICA) 

NIX FUNC(n 

(n umber 0 f ar gumen ts 
does not agree with 
above definition) 
(mode of argument 
does not agree with 
above definition) 

Subprograrr.s 11 



FUNCTION SUBPROGRAMS 

The FUNCTION subprogram is a FORTRAN subprogram consisting of any 
number of statements. It is an independently written program tha t is 
E~xecuted wherever its name appears in another program. 

r-------------------------------------------------------------------, 
j General rorm I 
t-------------------------------------------------------------------f 
I r~UNCTION name (~1'~2 '~3"" '~n) I 
! I 
I I 
I I 
I RETURN I 
I I 
I I 
I I 
i END I 
I I 
I where name is subprogram name (see -Naming Subprograms~) I 
! I 
! ~J¥~21~J •••• '~n are nonsubscripted variable, array, or dwnroy , 
! names of SUBROUTINE or other FUNCTION subprograms. There I 
I must be at least one argument in the argument list. (Argu- I 
I ments in a FUNCTION or SUBROUTINE subprogram may be enc losed I 
I in slashes within the commas. This form is equivalent to I 
I the normal format without the slashes.) I l _______________________________________________________________________ J 

Since the FUNCTION is a separate subprogram, the variables and state­
ment_ numbers within it do not relate to any other program. 

The FUNCTION subprogram may contain any FORTRAN statement except a 
SUBROUTINE statement, another FUNC'I'ION statement, or BLOCK DATA 
statement. 

The arguments of the FUNCTION subprogram (i.e., ~ 1,.5!2'~J'" "~n) may 
be considered as dummy variable names. These are replaced at the time 
of execution by the actual arguments supplied in the function reference 
in the calling program. The actual arguments may be: any type of con­
stant, any type of subscripted or nonsubscripted variable, an array 
name, an arithmetic or logical expression, or the name of another sub­
program. The actual arguments must correspond in number, order, type, 
and 1 ength to the dummy arguments. The array size must also be the 
same, except when adjustable dimensions are used. If the actual argu­
ment corresponds to a dummy argument that is defined or redefined in the 
subprogram, the argument must be a variable name, subscripted variable 
name. or array name. All arguments in a sutprogram refer to the storage 
a rea aSSigned to the arguments by the call ing program. 

The relationship between variable names used as arguments in the cal­
l Lng prC)gram and the dummy variables used as arguments in the FUNCI'ION 
subprogram is illustrated by 

Cal1inq Program 

SOMEF(B,C> 

72 

FUNCTION 5ubproqram 

FUNCI'ION SOMEF (X. y) 
SOMEF :: X/y 

RE'TURN 
END 



Explanation: The value of the variahle B of the calling program is used 
in the subprogram as the value of the dummy variable Xi the value of C 
is used in place of the dummy variable Y. Thus if B = 10.0 and C = 5.0, 
then A = B/C, which is equal to 2. o. 

The name of the function must be assigned a value at least once in 
the subprogram as the argument of a CALL statement, as a DO variable, as 
the variable name on the left side of an arithmetic statement, or in an 
input list (READ statement) within the subprogram. 

Example 2: 

Calling Proqram 

ANS = ROOT1*CALC(X,Y,I) 

FUNCTION SUbproqram 

FUNCTION CALC (A,B,J) 

CALC = A •• I/B 

RETWN 
END 

Explanation: The values of X, Y, and I are used in the FUNCTION subpro­
gram as the values of A, B, and J, respectively. The value of CALC is 
computed, and this value is returned to the calling program, where the 
value of ANS is computed. The variable I in the argument list of CALC 
in the calling program is not the same as the variable I appearing in 
the subprogram. 

When a dummy argument is an array name, an appropriate DIMEl'ISION or 
Explicit specification statement must appear in the FUNCTION subprogram. 
None of the dummy arguments may appear in an EQUIVALENCE or COMMON sta­
tement within the subprogram nor may they be given initial data values. 

Type Specification of the FUNCTION Subprogram 

In addition to the three ways of declaring the type of a FUNCTION 
name (i.e., predefined convention, IMPLICIT statement, Explicit specifi­
cation statement), there is the option of explicitly specifying the type 
of a FUNCTION name within the FUNCTION statement. 

r----------------------·-----------------------------------------, 
I General Form I 
~----------------------------------------------------------------4 
I ~ FUNCTION ~.~ (a l,a 2,a 3' •• • ,a n) I 
I I 
I where ~ is INTEGER I REAL, COMPLEX, or LOGICAL , 
I I 
I name is the name of the FUNCI'ION subprogram I 
I I 
I .s is optional and represents one of the permissible length I 
I specifications for its associated type I 
I I 
I a 1 ,a 2,a 3 , ••• ,a n are nonsubscripted variable, array, or dummy I 
I names of SUBROUTINE or other FUNCTION subprograms. (There I 
I must be at least one argument in the arguroent list) I l ____________________________________________________________________ J 

SUbprograms 73 



Example 1: 

REAL FUNCTION SOMEF (A,B) 

SOMEF 

RETURN 
END 

A**2 + B**2 

Example 2: 

INTEGER FUNCTION CALC*2 (X,Y,Z) 

CALC 

RETURN 
END 

X+Y+Z·*2 

Explanation: The FUNCTION subprograms SOMEF and CALC in examples 1 and 
2 are declared as type REAL (length 4) and INTEGER (length 2), 
respecti vel y. 

RETURN and END Statements in a FUNCTION Subprogram 

All FUNCTION subprograms must contain both an END and at least one 
RETURN statement. The END statement specifies, for the compiler, the 
end of the subprogram; the RETURN statement signifies a logical conclu­
sion of the computation and returns any comp.1ted value and control to 
the calling program. More than one RETURN statement may be used in a 
FORTRAN subprogram. 

Example: 

14 

FUNCTION DAV (D,E,F) 
IF (D-E) 10, 20, 30 

10 A :::. D+2.0*E 

5 A = F+2.0*E 

RETURN 
30 DAV :: B**2 

RETURN 
END 



Multiple Entry into a FUNCTION Subprogram 

The standard entry in1:0 a FUNCTION subprograrr is made by a function 
reference in an arithmeti(; expresSion. when the function referencE uses 
the name defined in the FUNCTION statement. Entry is made at the first 
executable statement following the FUNCI'ION staterrent. 

It is also possible to enter a FUNCTION subprogram by a functi en 
reference to a name defined in an ENTRY staterrent in the FUNCTICN sub­
program. Entry is made at the first executable statement followi ng thE' 
ENTRY statement. The name given in the FUNCTION statement is used to 
return the value of the function to the point of reference, rath~r than 
the name of the ~NTRY statement. 

SUBROUTINE SUBPROGRAMS 

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects: the rules for naming FUNCTION and SUBROUTINE sub~rogrdms 
are the same r they both require an END statement, and they coth contain 
the same sort of dummy arguments. Like the FUNCTION subprogram, the 
SUBROUTINE subprogram is a set of commonly used computations, but it 
does not need to return any results to the calling ~rogram, as dOES the 
FUNCTION subprogram. 

The CALL statement (discussed later in this section) is used in a 
main program or another subprogram to invoke a SUBROUTINE subpr.og raw. 

Since the SUBROUTINE is a separate subprogram, thE variables dnd sta­
tement numbers within it do not relate to any other program. 

The SUBROUTINE statement must be the fi rst statement in the sLllpro­
gram. The SUBROUTINE subprogram may contain any FORTRAN statement 
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK 
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE sub­
program, it must immediately follow the SUBROUTINE statement. 

,----------------------------------_._---_._-------------------------, 
I General Form I 
~---------------------------------------------------------------------~ 
I SUBROUTINE ~ (~I'~2.~J'···'~n) I 
I I 
I I 
I I 
I REI'URN I 
I I 
I END I 
I , 
I where name is the subprogram name (see "Naming Subprograms") I 
I I 
I ~1,22'~J, ••• ,2n are arguments. (There need not be any.) I 
I Each argument used must be a non subscripted variable or I 
I array name, the dummy name of another SUBROUTINE or FUNCTION I 
I subprogram, or of the form • where the character "." denotes I 
I a return point specified by a statement nmnber in the ca 1- I 
I ling program I l ____________________________________________________________________ J 

The SUBROUTINE subprogram may use one or more of its arguments to 
return values to the calling program. Any arguments so used must appear 
on the left side of an arithme1:ic statement or in an input list within 
the subprogram, as arguments of a CALL statement, as DO variables, or as 
arguments in a function reference. The SUBROUTINE name must not a~pear 
in any other statement in the SUBROUTINE subprogram. 

Subprograms 75 



The arguments (~l' ~2' ~ 3'.' • '~n) may be considered as dummy variable 
names that are replaced at the time of execution by the actual arguments 
suppl ied in the CALL sta tement. The actual arguments must correspond in 
number, order, type, and length to the dummy arguments. The array size 
must also be the same except when adjustable dimensions are used. Dummy 
arguments may not appear in an EQUIVALENCE or COMMON statement wi. thin 
the :>ubprogram nor may they be given initial data values. 

Exa!!!ple: The relationship between variable names used as arguments in 
the calling program and the dummy variables used as arguments in the 
SUBROUTINE subprogram is illustrated in this example. The object of the 
subprogram is to copy one array directly into another. 

Main Program 

DIMENSION X{100},Y(100) 

CALL COPY (X,Y,K) 

SUBROUTINE SubprOgram 

SUBROUTINE COPY(A,B,N) 
DIMENSION A (100),B(100) 
DO 10 I = 1, N 

10 BCI) = A (I) 

RETURN 
END 

CALL statement 

The CALL statement is used only to call a subroutine subprogram. 

r----------------------------------------------------------------------, 
I General Form I 
~---------------------------------------------------------------------1 
I CALL name (~1'~2.!!3 .. ··'~n) I 
I I 
I where name is the subroutine's subprogram name, or a name defined I 
I in an ENTRY statement in the SUBROUTINE subprogram I 
I I 
I ~l '~2 '~3"" ,~ n are the actual arguments that are being sup- I 
I plied to the subroutine subprogram; each may be of the form I 
I &n where n is a statement number (see wRETURN Statements in I 
I a SUBROUTINE Subprogram") I L ___________________________ ~ _______________________________________ J 

The standard entry into a SUBROUTINE subprogram is made by a CALL 
statement that refers to that subroutine'S subprogram name. Entry is 
made at the first executable statement following the SUBROUTINE state­
ment. Also, it is possible to enter a SUBROUTINE subprogram by a CALL 
statement that refers to a name defined in an ENTRY statement in the 
SUBROUTINE subprogram. The ENTRY statement is described below. 

Examples: 

CALL OUT 
CALL MATMPY (X,5,40,Y,7,2) 
CALL QDRTIC (X,Y,Z.ROOT1,ROOT2) 
CALL SUBl <X+Y*S,'ABDF' ,SINE) 

The CALL statement transfers control to the subroutine subprogram and 
replaces the dum~y variables with the value of the actual arguments that 
appear in the CALL statement. The arguments in a CALL statement may be: 
any type of constant, any type of subscripted or nonsubscripted vari­
able, an arithmetic expression, the name of a subprogram, or a statement 
number (see "RErURN Statements in a SUBROUTINE Subprogram"). 

The arguments in a CALL statement must agree in number, order, and 
type with the corresponding arguments in the subroutine subprogram. The 

16 



array sizes must also be the same :in the subroutine and the calling pro­
grams, except when adjust~ble dimensions are used (see "Adjustable 
Dimensions"). If an actual argument corresponds to a dununy argument 
that is defined or redefined in the referenced subprogram, the actua 1 
argument must be a variable name. subscri pted variable name, or array 
name. All arguments in a subprogram refer to the storage area assigned 
to the arguments by the calling program. 

RETURN Statement in a SUBROUTINE Subprogram 

,----------_._-------------------------------------------------, 
I General }i'orm I 
t----------------------------------·------ ----------------------:t 
, RETURN I 
, I 
I RETURN i I 
I I 
I where i is an integer constant or variable of length 4 whose I 
I value, say n, denotes the nth statement number in the argu- I 
I ment list of a SUBROUTINE statement I L ___________________ . _______________________ . ______________________ J 

The normal sequence of execution followirq the RETURN statement of 
a StEROUTI NE subprogram i.s to the next statement follClNing the CALL in 
the calling progr3m. It is also possible to return to any numbered 
statement in the callin9 program by usir.g a return of the type where .! 
is an integer constant or variable. Returns of the type RETURN may be 
made in either a SUBROUTINE or FUNCTION subprogram (see, "RETURN am 
END Statements in a FUNCTION SubprogramW ). Returns of the type RETURN 
i may only be made in a SUBROUTINE subprogram. In a main program, a 
RETURN statement performs the same function as a STOP statement. 

Example: 

calling Program 

10 CALL SUB (A,B,C,.30,&40) 
20 Y = A + B 

30 Y = A + C 

40 Y = B + C 

END 

100 
200 
300 
400 

SubprCXJ ram 

SUBROUTINE SUB (X,Y,Z,*,*> 

IF (R) 200,300,400 
RETURN 
RETURN 1 
RETURN 2 
END 

Explanation: Execution of statement 10 in the calling program causes 
entry into subprogram SUB. When statement 100 is executed, the return 
to the calling program will be to statement 20, 30, or 40, if R is 
less than, equal to, or greater than zero, respectively. 

A CALL statement that uses a RETURN i form may be best understood 
by comparing it to a CALL and computed GO TO statement in sequence. 
For example, 

Subprograms 77 



is equivalent to: 

CALL SUB (P,Q,R,I) 
GO TO (20,35,22},I 

where the index I is assigned a value of 1, 2, or 3 in the called 
subprogram. 

ENTRY Statement 

The standard (normal) entry into a SUBROUTINE subprogram from the 
calling program is made by a CALL statement that references the sub­
program name. The standard entry into a FUNCTION subprogram is made 
by a function reference in an arithmetic expression. Entry is made at 
the first executable statement following the SUBROUTINE or FUNCTICN 
statement. 

A subprogram may also be entered (either SUBROUTINE or FUNCTION) by 
a CALL statement or a function reference that references an ENTRY sta­
tement in the subprogram. Entry is made at the first executable sta­
tement £ollONing the ENTRY statement. 

,---------------------------------------------------------------------, 
I General Form I 
t----------------------------------------------------------------------f 
I ENTRY name (~l '~2 '~3 , ••• '~n) I 
I I 
I where name is the name of an entry point containing from one to I 
I six alphabetic and/or nurr€ric characters, the first of which I 
I is alphabetic I 
I I 
I ~l '~2 '~3 •••• '~n are the dununy arguments corresponding to an I 
I actual argument in a CALL statement or in a function I 
I referrence I l ______________________________________________________________________ J 

ENTRY statements do not affect control sequencing during norma 1 
execution of a subprogram. The order, type, and number of arguments 
need not agree between the SUBROUTINE or FUOCTION statement and the 
ENTRY statements, nor must the ENTRY statements agree among themselves 
in these respects. Each CALL or function reference, however, must agree 
in order, type, and number with the SUBROUTINE, FUNCTION, or ENl'RY sta­
tement that it references. Entry may not be made into the range of a 
DOi further, a subprogram may not reference itself directly or through 
any of its entry points. This statement is regarded as nonexecutable 
within its subprogram,. If it appears in a function subprogram the 
name given in the FUNCTION statEment is still used to return the value 
of the function to the point of reference, rather than the name of the 
ENTRY statement. 

Example 1: 

calling Program SUbprogram 

SUBROUTINE SUBl (U,V,W,X,Y,Z> 

1 CALL SUBl (A,B,C,D,E,F) 
U = V 

2 CALL SUB2 (G,H,P) 
ENTRY SUB2 (T,U,V> 

78 



3 CALL SUB3 

EN'IRY SUB3 

END 

Explanation: The execution of statement 1 causes entry into SUB1, 
starting with the first executab1e statement of the subroutine. Execu­
tion of statements 2 and 3 also causes entry into the called program, 
starting with the first executable statement following the ENTRY SUB2(T, 
U,V> and ENTRY SUB3 stat.ements, respectively. 

Entry into a subprogram initializes all references in the entire sub­
program to itel1S in the argument list. Return from a subprogram is made 
by way of the entry pOint referenced. ENTRY statements may only appear 
in FUNCTION or SUBROUTINE subprograms. The dunmy arguments in a subpro­
gram may appear in any statement if they first appear as dummy arguments 
in a FUNCTION, SUBROUTINE, or ENTRY statement. This is a valid exanple 

SUBROUTINE SUB (X,y,Z,I) 

ENTRY SUB1 (A,B) 

C = A+B 

Example 2: 

Calling Program 

CALL SUBl (A,B,C,D,E,F) 

CALL SU83(&10,'20) 
5 Y =A+B 

10 Y = C+D 
20 Y E+F 

50 
100 
200 
300 

SUbprog rare 

SUBROUTINE SUBl <U,V,W,X,Y,Z> 
RETURN 
ENTRY SUB2 (T,*,*) 
T=V*W+U 
ENTRY SUB3 f*,*) 
T=T+X*Y*·Z 
IF (U-X) 100, 200, 300 
RETURN 1 
RETURN 2 
REl'URN 
END 

Explanation: A call to SUB1 merely performs initialization. Subsequent 
calls to Saa2 and SUB3 result in execution of different sections of the 
subroutine SUBl. Then, dependim upon the result of the arithmetic IF 

subprograms 79 



at statement 50, return is made to the calling proqram at statement 10, 
20, or the next executable statement following tlle CALL. 

AdditJ-onal Rules for using EN'mY 

1. A CALL may only change the value of explicit argurnents (or implicit 
arguments in COMMON). It cannot affect the va Ine of those that 
were initialized by some previous CALL. 

2. If a name is identified as a dummy argumeni: only by its appearance 
in a given ENTRY statement, no use of that dummy argument rna y 
appear in statements preceding <physically) the ENTRY statement. 

). The appearance of an ENl'RY statement does not_ alter the rules 
regarding the placement of Statement_ Functions in subprograms. 

4. If new dimensions for an adjustable dimension array are to be 
passed to a subprogram with an ENTRY, the array name must appear in 
the argument list of the ENTRY. 

The EXTERNAL Statement 

r--------------------------------------------------------------- 'I 
I General Form ! 
'"----------------------------------------.---~-,----.---------------1 
I EX'I'ERNAL ~,E.£,··· I 
I I 
I whE'x€ 5!,Q.£.... are nanes of subprograms tilat are used as argu- I 
! ments in other subprograms I 1. __________________________________________ • ___ ~ __ • ___________________ .J 

If a FORTRAN-supplied in-line function is used in an EXTERNAL state­
ment, it is not expanded in-line; the function is assumed to be part of 
a library. (The FORTRAN-supplied in-line and Qut-oi-line functions are 
9i ven in Appendix D.) 

The name of any subprogram that is used as an iU'Jl.lment in another 
subprogram must appear in an EXTERNAL statement. 1"or example, assume 
that SUB and MULT are subprogram nanes in the following statements. 

bxample 1 

Calling Program 

4 
EXTERNAL MULT 

6 

Su.bprogral!l 

SUBROUTINE SUB(X,Y.Z) 
IF {Xl I.i ,6,6 
D == 'l tX.Z •• 2} 

RETUR.ii 
END 

Explanation: The subprogram name MULT is used as an argument in the 
~;ubprogram SUB. The subprogram name MJLT is passed to t.he dummy vari­
able Y; the variables A and C are passed to the dUI!lJ:ny variables X arrl Z. 
The subprogram MULT will be called and executed only if the value of A 
is negative. 

80 



Example 2 

CALL SUB (A,B,MULT (C,D),37) 

J:.xplanation: An EXTERNAL statement is not required because the subpro­
gram named fviULT is not an argument; it is executed first and the resul t 
oecomes the argument. 

BLOCK D~TA SUBPROGRAM 

To enter data into a COMMON block, a separate subprogram must. be 
Nritten. This separate subprogram contains only the DATA, COMMON, 
DIMENSION, EQUIVALENCE, and Type statements associated with \.he data 
beil'¥:3 defi ned. Data may be entered into labeled (named), but not unl a­
beled, COMMON by the BLOCK DATA subprogram. 

,-------------------------------------------------------------------, 
I General Form I 
~-----------------------------------------------------------------~ 
I BLOCK DATA I 
I I 
I I 
I I 
I END I L-____________________________________________________________________ J 

1. The BLOCK DATA subprogram may not contai n any executable 
statements. 

2. 'llle first statement of this sUq>rogram must be the BLOCK DATA 
statement. 

3. All elements of a COMMON block must be 1 isted in the COMMON sta te­
ment, even though they do not all appear in the DATA statement. 
For example, the variable A in the COMMON statement below does not 
appear in the DATA statement: 

BLOCK DATA 
COMMONlELNlC,A,B/RMG/Z,Y 
REAL B(10/1.0,1. 2,2*1. 3/ ,Z*S( 3) /3*7. 649S0825DOI 
COMPLEX C/(2.4,3.769)1 
END 

4. Data may be entered into more than one COMMON block in a single 
BLOCK DATA subprogram. 

5. No element may have more than one initial value assigned in the 
same program. 

SUbprograms 81 



APPENDIX A: FORTRAN COMPARISON 

This appendix contains a description of the differences in the FOR­
TRAN language supported by IBM 00 and OS/VS, and by the 11M Time Sharing 
system. The FORTRAN language for IBM OS and OS/VS is described in IBM 
FOR'lRAN IV Language, GC28-6S15. 

1. Extensions 

TSS -- Does not allow generalized subscripts and direct access I/O 
statements; no list-directed I/O; no free format input. 

OS and OS/VS -- Allows the above. 

2. Call by Value 

TSS -- Treats all arguments as call-by-name whether or not they are 
enclosed in slashes. 

OS and OS/VS -- Treats arguments not enclosed in slashes, and not 
declared as an array, as call-by-value. 

3. DUmmy Arguments 

TSS -- Dummy arguments may not appear in any statement until 
defined as such in an ENTRY, SUBROUTINE, or FUNCTION 
statement. 

OS and oS/VS -- Restriction holds only for executable statements. 

4. ENTRY in FUNCTION Subprograms 

82 

TSS -- The name of a FUNCTION subprogram must be used to return the 
value of the fUnction, even though entry was made through an 
ENTRY statement. 

OS and OS/VS -- The ENTRY name may be used to return the va lue of 
the function. 



APPENDIX B: SOURCE PRCXiRAM CHARACTERS 

r------------T-----------------r-------------~-----------------------, I Alphabetic I EBCDIC or BCD I Numeric I EBCDIC or BCD I 
I Characters I Card Punches I Characters I Card Punches I 
~-----------t-----------------f-------------+_------------------------i 

A I 12-1 I 0 I 0 I 
8 I 12-2 I 1 I 1 I 
C I 12- 3 I 2 I 2 I 
D I 12-4 I 3 I 3 I 
E I 12-5 I 4 I 4 I 
F I 12-6 I 5 I 5 I 
G 12-7 I 6 I 6 I 
H 12-8 I 7 I 7 I 
I 12-9 I 8 I 8 I 
J 11-1 I 9 I 9 I 
K 11- 2 I I , 
L 11-3, I , 
M 11- 4 f--------+_---------..,-----------i 
N 11- 5 I Speci al ,EBCDIC, BCDIC , 
o 11-6 I Characters ICard Punches' Card Punches' 
p 11-7 ~------------+_---------__f-----------i 
Q 11- 8 I + ,12-6 - 8 ,12 I 
R 11-9 I I 11 I 11 I 
S 0- 2 I / ,0-1 I 0-1 I 
T 0-3 I = I 6-8 I 3-8 I 
U 0-4 I I 12-3-8 , 12-3-8 I 
V 0-5 I ) I 11-5-8 t 12-4-8 I 
W 0-6 I. I 11-4-8 I 11- 4-8 I 
X 0-7 I ,(comma) I 0-3-8 I 0-3-8 I 
Y 0-8 I ( •• , 12-5-8 I 0-4 -8 I 
Z 0-9 If (apostroPle) I 5-8 I 4-8 I 
$. I 11- 3-8 I blank I (no punch) I (no punch) I • ____________ ..l..-.--________ . ____ ..L-____________ ..L-__________ ..L _________ -i 

I Source programs are coded in either BCD or EBCDIC character codes; I 
I mixing the two, however, is not allowed. I 
, .Considered an alphabetic character in EBCDIC only. , 
I ·.Considered a special character in EBCDIC only. , L ______________________________________________________ J 

Appendix B: Source Program Characters 83 



APPENDIX C: OTHER FORTRAN STATl!MENTS ACCEPTED BY TSS FORTRAN IV 

This appendix describes features of previously implemented FOR 'IRAN IV 
languages that are incorporated into the IBM Time Sharing System FORTRAN 
IV language. The inclusion of these language facilities allows existing 
FORTRAN programs to be recompiled for use in IBM Time Sharing System 
with little or no reprogranmdng. 

READ Statement 

r----------------------------------------------------------------------, 
I General Form I 
I---------------------------------------------------i 
I READ Q. list I 
I I 
I where b, is the statement number or array name of the FORMAT sta- I 
I tement describing the data I 
I I 
I list is a series of variable or array names, separated by I 

COiiiiiias, which may be indexed and incremented; they specify I 
the number of items to be read and the storage locations I 

I into which the data is placed I l ____________________________________________________________________ J 

This statement causes data to be read from the data set associated 
with the system input. 

PUNCH Statement 

r---------------------------------------------------------------------, 
I General Form I 
1---------------------------------------------------------------------~ 
, PUNCH b , list I 

- - I 
where b is the statement number or array name of the FORMAT state- I 

ment describing the data I 

list is a series of variable or array names, separated by 
commas, which may be indexed and incremented; they specify 
the number of items to be written and the storage locations 
from which the data is taken 

I 
I 
I 
I 
I l __________________________________________________________________ J 

nle PUNCH statement causes data to be written in the data set assa­
ciat_ed with the system output. 

P RI Nl S ta tf'..ment 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------~ 
I PRINT h, list , 
I - -- I 

where b is the statement number or array name of the FORMAT state- , 
ment describing the data , , 
1 ist is a series of variable or array names, separated by I 
commas, which may be indexed and incremented: they specify I 
the number of items to be written and the locations in I 
storage from which the data is taken I l ____________________________________________________________________ J 

84 



The PRINT statement causes data to be written in the data set asso­
ciated with the system QlJ'tput. 

DATA Initialization Statement 

,--------------------------------------------------,_.--------------- '1 

I General Form i 
~----------------------.---------------------------------------~ 
I DATA ~,,·· .. 2':,,1!.*9.1re··.in.5!,,/,2n+I.·.·'y /!n+\*g,' 1"·'!·,9 I •... I 
I I 
I where Vl' •••• ~ are variables, subscripted variables <in which I 
I case, the sub&:;ripts must be integer constants), or array I 
i names I 
I I 
I Q tI ... • ~, are va.lues representing integer, real, complex, I 
I logical, or literal hexadecimal data constants I 
I I 
I ! l' " •• , i represent unsigned integer constatnts indicati ng I 
I the number of consecutive var iables that are to be assigned I 
I the val ue of d I ••••• d I l ___________________ = .. _______ = __________________ . ______________ J 

A data ini tializa tion stat,ement is used to define initial values of 
variables and arrays. 'I'here must be a one-for-one correspondence 
between these variables (L e. ,y l ••••• y ) and the dat.a constants (i.e •• 
;,!! ..... ~). 

Example 1: 

DIMENSION DCS ,10) 
DATA A, B, C/S.O,6.1.1.3/.D/2S*1.0.2S*2.0/ 

Explanation: The DATA statement indicates that the variables A, B, and 
C are to be initialized to the values 5.0,6,1, and 7.3, respectively. 
Also, the statemE';nt specifies that the first 25 variables in the array D 
are to be initialized to 'the value 1. O. and the second 25 to the value 
2 .0 • 

t:xample 2: 

DIMENSION AiS). B (3,3). L (4) 
DATA A/S*1.0/. B/9*2.0/. Ll4*.TRUE./, C/'FQUR'/ 

Explanation: The DATA statement specifies t_hat all the variables in tbp 
arrays A and B are to be initializ ed to the values 1. 0 and 2.0, respec­
tively. All the logical variables in the array L are initialized to t_be 
value .TRUE.. The let.ters T and F may be used as an abbreviation for 
.TRU.E;. and . FALSE •• respectively. Also, the variable C is initialized 
with the literal data constant FOUH. 

An initially defined variable, or variable of an array, may not be in 
olank conunon; howevrT. in d labeled common block, th€'y may be lni tia lly 
defir:ed only in a bl(x:k data subprogram (see "SUBPRa',RAMs·). 

DOUBLE PRECISION Statement 

r--------------'-----------------------------------------------------, 
I General Form ! 
1------------------,----------------------------'-------·-----------------1 
I DOUBLE PRECISION .ii.~._S.", t 
I I 
I where ~.E'E.'" are variable names that may be dimensioned in the I 
I statement, or funct.ion names I l ___________________ , ____ . ______ - ____________________ , ________________ J 

Appendix C: Other FORTRAN Statements Accepted by TSS FORTRAN IV 8S 



'!he DOUBLE PRECISION statement explicitly specifies that the 
variables ~,~,£, ... are of type double precision. This statement over­
rides any specification of a variable made by either the predefined con­
vention or the IMPLICIT statement. This specification is identical to 
that of type REAL*S. 

Also, FUNCTION subprograms may be typed double precision, in this way 

86 



APPENDIX D: FORTRAN SUPPLIED SUBPROGRAMS 

The FORTRAN supplied subprograms are of either of two types: mathe­
matical subprograms and service subprograms. The mathematical subpro­
grams correspond to a FUNCTION subprogram: the service subprograms 
rorrespond to a SUBROUTINE subprogram. Appendix D lists the in-l ine and 
out-of-line mathematical .FUNCTION subprograms. An in-line subprogram is 
inserted by the FORTRAN compiler at any point in the program where the 
function is referenced. An out-of -lire subprogram is located on a 
library. A detailed description of out-of-line mathematical subprograms 
and service subprograms is given in FORTRAN IV Library Subprograms. 

MATHEMATICAL SOBPROORAMS 

All functions are used as described in the section "FUNCTION Subpro­
grams" -- i.e., A = AMOD(X1 ,X 2 ), where A is the value and Xl and Xz are 
the arguments. 

Table 4. Mathematical function subprograms (part 1 of 3) 
,-------------T------T--------·--------,-------------T---,---------,---------, 
I I I I In-Line (I) Ilb. otl Type of I I 
I FUnction IName I Definition/Usage IOut-ot-Line (0) I Arg. I Arguments I Function I 
~-----------t-----+_-----------------+------------+---+----------t-----------i 
I Exponential lEX£' learg I 0 ! 1 IReal.1I IReal .11 I 
I IVEXP learg I 0 I 1 IReal.8 IReal *8 I 
I I CEXP I earg I 0 I 1 I complex.8 I Complex.e I 
I !COEXP learg I 0 I 1 IComplex .16 Icomplex .16 I 
I I IA=EXP(X,) I I I I t 
t------------t----f---------------t-------------f-----t-----------t------------f 
INatural LogarithnlALOG Iln (Ar'l) I 0 I 1 'Real *11 tReal *11 I 
, IOLOG Iln (Arg) I 0 ! 1 tReal *8 tReal *8 I 
, ICL(x; Iln (Arg) I 0 I 1 IComplex *8 I Compl ex *8 I 
I ICOLOG lIn (Ar'l) I 0 I 1 Icomplex .16 IComplex .16 I 
I I I A=ALOG (X , ) I I I I I 
r--------------t-----+_- ------·----------f-------------t----t--------~------------ f 
ICommon Logarithm IAL(x;10llog,o (Arg) I 0 I 1 IReal.1I IReal *11 I 
I I DLOG10 \log,o (Arg) I 0 I 1 IReal *8 IReal *8 I 
\ I lA=AL(x;lO(X ,) 1 I I 1 I 
• ------------+-----_+_----------------f-------·------~-----_+_---- ----+------------1 
IArcsine IAlWIN larcsin (Arg) I 0 I 1 IReal.4 IReal *11 I 
I IDARSlNIA=I'.RSINeX,) I I IReal .8 IReal .8 I 
r-----------t------+-----------------+------------+-----+-------+------------i 
IArccosine IARCOS larcas (Arg) I 0 I 1 IReal.1I IReal .4 I 
I 1 DARCOS I A=ARCOS (X , ) I I I Real .8 I Real * 8 I 
r------------f------+_----------------+------------f-----+-------+_---------~ 
IArctangent IATAN I arctan (Arg) I 0 I 1 tReal.4 IReal */1 I 
I I ATAN2 I arctan (Arg, /Arg ,) I 0 I 2 I Real .11 I Real .4 I 
I IDATAN larctan (Arg) I 0 I 1 IReal.8 IReal .8 I 
I IDATAN21arctan IArgJArq,) I 0 I 2 IReal *8 IReal .8 I 

~---------__ ----t------~~!~~(X~~---------~---------------~--__ ~----------~------------~ 
I Trigonometric ISIN Isin(Arg) I 0 I 1 lReal *4 IReal *4 I 
ISine IDSIN Isin{Arg) I 0 I 1 IReal *8 lReal .8 I 
I (Argument in \CSIN Isin(Arg) I 0 I 1 IComplex.8 IComplex *11 I 
I radians) ICOSIN !sin(Arg) I 0 I 1 ICOOlplex .16 IComplex ·16 I 
I I IA=SIN{X,) I ! I I I 
r--------------+-----+-------------------+---------------+_-----t------------+-----------1 
I Trigonometric ICOS IcoslArg) I 0 I 1 IReal.1I IReal .4 I 
ICosine lOCOS loos(Arg) I 0 I 1 IReal *8 IReal .8 I 
t (Argument in ICCOS leoseArg) I 0 I 1 ICanplex.8 IComplex·8 1 
I radians) ICOCOS IcostArg) I 0 I 1 lComplex .16 lComplex .16 I 
I I IA=COSIX,) I I I I I 
r-----------+------f-------------.. ---------+---+---------+---------f 
ITrigonometric ITAN Itan IArg) I 0 ! 1 tReal *" IReal .4 I 
I Tangent IOTAN IA=TAN(X,) I I IReal.8 IReal ·B I 
r-------------+------i-----------------+---------+--+-------+------f 
I Trigonometric ICOTAN leotan (Arg) t 0 I 1 IReal.4 tReal .4 I 
I Cotangent IOCOTANIA=COTANIX,) I I IReal.8 IReal *8 I 
I-----------+----_+_------------+_-------------f-----+-------t---------I 
I Square Root I SQRT I Lug) I 0 I 1 1 Real." I Real .4 I 
I IDSQRT I (Aq) I 0 I 1 tReal.8 IReal *8 I 
I ICSQRT I (Aru) I 0 ! 1 lComplex *8 I Complex·8 I 
I ICDSQRTI O\.r'~) I 0 I 1 ICOIIJplex *16 lComplex *16 I 
I I I A=S\JJ:<T (X, ) I I I I I 
r--------------t------+_----------------+--------t---+_--------f----------- f 
IHyperbolic ISItf:! Isinh (Arg) 1 0 I 1 lReal·4 IReal *" I 
ISine IDSINHIA=SINH(X,) I I IReal.B IRleal.8 I L ___________ .L.-. _____ ..l..-________________ .L-_____ , ____ ~ ___ L _______ 4--______ -1 

Appendix D: Fortran Supplied Subprograms 81 



Table 4. Mathematical function subprograms (part 2 of 3) 

r------------T------.----------------.,.-------'---'--'i------T------·------T-----------l 
I I I I In-Line U) lib. ofl Type of I I 
I FUnction I Nallle fDefinitionl'Usage I OUt.-of -Line (O) I Arg. I Arguments I Function I 
.--------------f.-----4-------------------f------------t------+----·------f------------~ 
Illypertolic ICOSH IC03h (Jrrg) I a I 1 IReal *4 IReal '4 I 
ICo»ine IDCOs!! IA=COSH(X , ) I I IReal *8 IReal *S I 
~---------------f------f_----------------+-·-------------f-----f------------f·-------------; 
IHyperbolic ITANH Itanh(Arg) I 0 I 1 IPeal *4 IReal *4 I 
I Tangent IDTANH lunh (Arg) I 0 I 1 !Real *8 I Real *8 I 
I I IA=TANH(X,) I I I I I 
.--- -----------f-----f_-----------------f------------··--f-----f-----------f------------f 
I Error Function I E.RF I 2 x -uc>. I 0 I 1 I Real *4 I Real .4 I 
I IDERF I-"-J e du I 0 ! 1 \l<eal *8 IReal *S 1 
I I I a I i I I I 
I I IA=ERF(X , ) I I I I I 
• --------------t-----f-----------------i------- ---- -·---+-------f---------f-- ----------~ 
IComplemented I ERFC Il-erf (x) I 0 I 1 I Real '" I Real *4 I 
IError Function (DERFC IA=ERFC(x , ) I 0 I 1 iHeal *S IReal *s I 
~-·--------------t------f-------------------f-------------t------t------------f------------~ 
I Gamma IGAMMA I r = x-l -u I 0 I 1 IReal "'4 IReal *4 I 
I IDGAMMAI u e du I 0 I 1 IReal·S IReal *8 I 
I I I 'J I I I I I 
I I IANS=GAMMAIX , ) I I! I I 
r------------+------f------------------f---------------t__.-----+-----------+-------------~ 
I Log-gamma I AL GAM A I I 0 I 1 IReal *4 IReal *4 I 
! \OLGAMAIl:Jg, rlx) I 0 I 1 IRedl *S I Real *8 j 
I I IA~ALGAMA(x,) I I I I I 
~-------------f------+__---------------·--+--------------f----·--t-----------t-----------~ 
I Remainder ing I MOl) IArg, (mod Arg,> I I I 2 IInteger *4 IInteger *4 I 
I IAMOD IA=M.OD(X"X,) I I ! 2 IReal *4 iReal *4 I 
I IDMOD I I I I 2 IReal *8 IReal *S I 
I-----------------+-----f------------------+--·---------------t------f------------t---·---------f 
I Absolute val ue I lABS II A.rg I I I ! 1 lInt egeI *4 1 Integer *4 I 
I lABS I I I I 1 tHeal'4 IReal *4 I 
I I DABS IA=ABS(XI) I I I 1 !Real *S IReal *8 I 
I 1-----f-------------------+ ---------- ------t-------t------ ---·-t------------ ~ 
I ICABS 11~1 for x, +x,.! 0 I 1 IComplex *8 IReal *4 I 
! ICDABS !A=CABS(X,} I 0 I 1 IComplex *lb IReal *8 I 
1---------------t------f_------------------t---------- -- ··-·-t-----·-t-------- -----+ -----------~ 
ITruncation I lID 15ign of Arg times I I I 1 IReal *4 IInteger *4 I 
I ! Ilargest integer I I I I I 
I I 1~IArgl I I I I I 
I pUNT I ! I I 1 IReal *4 I Real *4 I 
I 11DINT II=INT(X,) I I I 1 IReal *8 lInteger *4 I 
t --------------f------f_------------------t----·------ ----+ -- ----t--------- --f------------f 
ILargest value IAMAXO IMax (Arg,.Arg" ••• ) I I 1:,2 IInteger.o IReal'4 I 
I IAMAXI I I I I 22 IReal *4 IReal *4 I 
I I MAXO I ! I I 2: 2 I Integer *4 I Integer *4 I 
I IMAXl I I I I 22 !Real ~4 I Integer *4 I 
I IDMAXl IA=AMAXO(X"X, ••• Xo ) I I I ;.,2 IReal '8 IReal *S I 
I---------------+-----+__-----------------f---------------t----t-----------t__----------i 
ISmallest value IAMINO IMin (Arg, ,Arg" ••• ll I I ~ IInt.eger *4 IReal *4 I 
I IAMINI I ! I I 22 IReal .,. IReal *4 I 
I IMINO ! I I I 22 IInteger *4 IInteger *4 I 
I l~jINI I I I I -~ IReal *4 IInteger *4 I 
I IDMINl I A=AMINi){X, ,X""X o ) ! I 1;,2 IReal *8 IReal *S I 
~--------------t__-----+__----------------f--------------t-·----t---------f_----------~ 
IFloat IFLOAT IConvert from I I I 1 IInteger *4 IReal *4 ! 
I IDFLOATlinteger to real I I I 1 I Integer *4 I Real *8 I 
I I IA=FLOAT(X,) I I I I ! 
t----------------t------+__-----------------f---------------f------f------------t------------f 
IFix !IFIX IConvert from I I I I IReal *4 {Integer *4 I 
I I HE'IX I real to integer I I I 1 I Real *4 I Integer *2 I 
I I II=IFIX(X , ' I ! I I I 
i--------------f------+__--------------f_-----------f----f_--.-.-------f_-----------~ 
ITransfer of sign ISIGN ISign of Arg, times I I I 2 iReal *4 IReal *4 I 
I I II~rg, I I I i I I 
I 115IGN I I I {2 IInteger *4 Iinteger *4 I 
I IDSIGN 1l\=SIGN(X"X,) I I I 2 IReal *s IReal *s I 
i---------------f------+__--------------t-----------t------f_----------t------------f 
IP,?sitive IDIM !Arg,-Min(Arg"Arg,) I I ! 2 IReal *4 IReal *4 I 
Id1fference I1D1M IA=D1M(X,.X,) I ! ,Integer *4 !Integer *4 I 
~-----------------f.------f_-----------------i--------------+----f---------+------------~ 
!Obtaining most ISNGL I I I ! 1 IReal *8 IReal .4 I 
!significant part I I I I I I I 
lof a Real .9 I I I I! I I 
!argumEnt I !A=SI«iLlX,) I ! I I ! 
f--------------t------f_----------------f----------------+----t-----------f------------~ 
!Cbtain real IREAL I I I I 1 IComplex *8 IReal·4 r 
I part of compl ex I It! I \ I 
I al:gument I IA=SNGL(X, ) I ,! I I l----________ J.. _____ ..L-______ . ________ J.. ______________ -.l. _____ .1. ____________ .1. ____________ --1 

88 



Table 4. Mathematical function subprograms (part 3 of 3) 

r---------------T------,.-------¥-----------T-------"---------T-----'T-----------,.------------, 
! I I I In-Line (1) INo. of! Type of I I 
! Function IName I DefinitJi.on IOut-ot-Line (0) I Arg_ I Argwnents IFunction I 
t ---------------t ------+------------------t---------------f-----+----- ----t·------.-- - - - ~ 
,Obta1.n imaq1nary ,"!MAG I I I ! 1 IComplex 08 IReal 04 I 
lpart of complex I I I I I I I 
largurrent I IA=AIMAG(X,) I I I I I 
t --- ---- -- -----.-- t ------f------------------ t-----·-------·-f------f-···----- -----t------ --- -- -, 
(Express a Real IDBLE I I I I 1 IReal +4 IReal *8 I '.4 arg ume nt in I I I I I I I 
IRedl .8 form I IA=DBLE(J(,) I I I I I 
f--- - -- -- -- -- .--. - -. - -f- - ----f-------·---------f--------- ----f------t----------t------ ---.- .. -~ 
Il:.xpress two real ICMPLX IC=Arg,+iArg, I I I 2 IReal *4 IComplex.8 I 
I acgumfflls in mm-I DCI1PLX I I I I 2 I Real .S I CampI ex .16 I 
Iplex form I I A=CMPU{II X , ,X,) I I I I I 
\--------------t------f-------------------f-------·--------t-----+--------·--f------------~ 
IObtain conjugate IOON,JG IC=X-iY I I I 1 IComplex.S IComplex·8 I 
lof d complex IDCONJGIFOr Arg"X+iY I I I 1 ICCIlIplex *lb Icomplex .16 I 
lar'lurrent. I IA=OONJG(X,) I I I I I 
L ______________ ..1. _ _____ -i-__ _____ . __________ .1 ______________ 4- __ ___ L ______ . _____ .1. _____________ J 

SERVICE SUBPRCX:;RAMS 

MACHI NE INDICATOR TESTS SUBPROGRAMS 

In the list of pseudo machine-indicator te st subroutines below, 
assune that i is an integer expression and that j is an integer vari­
able. These subroutines are referred "1:0 by CALL statements. 

SLITE U) : If i == 0, all sense lights will be turned off. If i 1 • 
3, or 4, thE~ corres pond ing sense light will be turned on. 

2, 

SLITET (if j>_: Sense light i (equal to 1, 2, 3, or 4) \Jill be test.ed and 
turned off. The variable j Ii ill be set: to 1 if i was on, or j wi 11 be 
set to 2 if i was off. 

Fxample: Assume that the program is to conti.nue if sense light i is on 
and the results are to be written if sense light i is off. This can be 
done by using the logical IF statement or a computed GO 1'0 statement: 

CALI. SLITET (3 ,KEN) 
GO TO (6, 17) ,KEN 

17 WRITE (3,26) (ANS (K) , K=l, 10) 
6 CONTINUE 

Explanation: When the statement CALL SLITET( 3,KEN) is executed, the 
variable KEN is aSSigned the value 1 or 2 depending on whether sense 
1 ight 3 is on or off, (and the sense light is turned off). If KEN is 1, 
statement 6 is executed next; if KEN is 2, statement 17 is executed. 

OVERF~: j is set to 1 if a floating-point overflow condition 
exists, Le., if the result of an arithmetic operation is greater than 
16e3 ; j is set to 2 if neither an overflow condition or underflo.l condi­
tion exists; j is set to 3 if floating-point lDderflow condi tion exists, 
Le., if the result of an arithmetic operation is less than 16-83 • The 
machine is left in a no-overflow condition. If a sequence of operations 
caused both overflow and underflow to occur, the value of j returned 
represents whichever of these two conditions occurred last. 

DVCHK (j): If the divide c eck indicator is on, j is set to 1 and the 
divide check indicator is turned off; if the divide check indicator is 
off, j is set to 2. 

Appendix D: Fortran Supplied Subprograms 89 



THE EXIT, DUMP, AND PDUMP SUBPROGRAMS 

EXIT Subprogram 

A CALL to the EXIT subprogram terminates the execution of the object 
program. 

D\J1P Subprogram 

A CALL to the DUMP subprog ram 

causes the indicated limits of storage to be dumped and execution to be 
terminated. 

1. A and B are variable data names that indicate the limits of storage 
to be dumped; either A or B may represent upper or lower limits. 

2. Fn is an integer indicating the dump format desired 

Fo = 0 
1 
2 
3 
4 
5 
6 
1 
8 
9 

hexadecimal 
logical *1 
logical .4 
integer .2 
integer *4 
real *4 
real *8 
complex * 8 
complex*16 
literal character 

3. If the argument Fn is omitted, it is assumed to be equal to O. and 
the dump will be hexadecimal. 

4. The arguments A and B should be in the same program (main program 
or subprogram) or same common block. 

PDUMP Subprogram 

A CALL to the PDlliP subprogram 

CALL PDUMP (Al'Bl.Fl' •••• An,Bn.Fn) 

causes the indicated limits of storage to be dumped and control to be 
returned to the calling program. 

'JU 



APPENDIX E: EXAMPLES OF FORTRAN-WRITl'EN PROGRAM:> 

~XAMPLE PRCGRAM 1 

Example program 1 (Figure 2) is designed to find all the prime num­
bers between 1 and 1000. A prime number is an integer that cannot be 
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7, 
11, . . . are prime numbers. The number 9, for examp Ie, is not a pri me 
number. since it can be divided evenly by 3. 

IBM 
- -- -T --t 

1. j 

. i ' 
I , 

NU1sER5 iFROM 
I ' 

I 

rigure 2. Example Program 1 

EXAMPLE PRCGRAM 2 

The n poin ts (x • Y ) are to be used to fi t an m degree polynomial by 
the least-squares method. 

To obtain tne coefficients a , a+, •••• a , it is necessary to solve 
these normal equations 

where 

(1) 

( 2) 

(m+1) 

n 

+ Wmam = Zo 
+ Wm+1am = Z\ 

Z 
n 
~ yi 
i=l 

Appendix E: Examples of Fortran-written Programs 91 



n 
WI = 1: xi 

i=1 

n 
Wz = 1: xi 2 

i=1 

n 
Wzm = 1: xi2m 

i=1 

n 
ZI = 1: yixi 

i=1 

n 
Z2 = 1: yixi2 

i=1 

n 
Zm = 1: yixim 

1=1 

After the WS and ZS have been computed, the normal equations are 
solved by the method of elimination, which is illustrated by the follow­
ing solution of the normal equations for a second degree polynOmial (m = 
2) • 

The forward solution is 

1. Divide equation (1) by W • 

2. Multiply the equation resulting from step 1 by WI' and subtract 
from equation (2). 

3. Multiply the equation resulting from step 1 by W2 , and subtract 
from equation (3). 

The resulting equations are 

(5) 

(6 ) b 12 a l + b 33 a Z =b 14 

where 

b l2 = W I/WO' b ll = Wz /W 0, b l = Z /Wo 

b 22 = W 2-b12 WI , b n = W1-b 11 Wj , b l4 = ZI-bl Wu 

b J? W]-b IZ W2 b31 = W4-b 13 W24 , b34 = Zz-b l Wu 

Step:; 1 and 2 are repeated, using equations (5) and (6), with b a and 
b 32 instead of Wo and WI. '!be resulting equations are 

92 



where: 

The backward solution is 

(9) a 2 = c)4/c 1J from equation (8) 

( 10 ) a I = C 24 -c 21 a 2 from equation (7) 

( 11) a 0 = b 14 -b! 2 a 1 -b 13 a 2 from equation (10 

Figure 3 is a possible FORmAN program for carrying out the calcula­
tions for the case: n = 100, m :s: 10. Wo , WI' W 2f ••• , W2 m are stored 
in W(1), W(2l. W(3), ••• , W(2M+l), respectively. Zo, Zj, Z2f ••• , Zm 
are stored in Z (U, Z (2), Z (3), ••• , Z(M+l), respectively. 

Figure 3. Example Program 2 (part 1 of 3) 

Appendix E: Examples of Portran-Written Proqrams 93 



Figure 3. Example Program 2 (part 2 of 3) 

Figure 3. Example Program 2 (part 3 of 3) 

94 



'!be elements of the W array. except W(1), are set equal to zero; W(l) 
is set equal to N. For each value of I, X and Y are selected. The 
powers of X are computed and accumulated in the correct W counters. 
The powers of X are nnltiplied by Y , and the products are accumulated 
in the correct Z counters. To save machine time when the object program 
is being run, the previously computed power of X is used when computing 
the next power of X. Note the use of variables as index parameters. 
By the time control has passed to statement 11, the counters have been 
set to 

W(t) = N 

N 
W(2) = ~ Xi 

1=1 

N 
W(3) :::: E X ~ 

1=1 

N 
W(2M+1) = L X. 2 M 

1=1 

N 
Z(1) = ~ Y j 

1=1 

N 
Z(2) = ~ Y;X; 

1=1 

N 
Z(3) = E 'f;X; 

1=1 
~ 

N 
Z(M+1) = ~ YjXjM 

1=1 

By the time control has passed to statement 23, the values of Woo WI' 
••• , W2 m+ 1 have been placed in the storage locations corresponding to 
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the 
values of Zo, Zl' •••• Zm have been stored in the locations correspond­
ing to the column of the B array. For example, for the illustrative 
problem eM = 2), columns 1 through q, rows 1 through 3, of the B array 
would be set to these computed val ues 

W, 

This matrix represents equations (1), (2), and (3), the normal equa­
tions for M = 2. 

The forward solution, which results in equations (4), (7), and (8) in 
the illustrative problem, is carried out by staterr€nts 23 through 31. 
By the time control has passed to statement 33, the coefficients of the 
Al terms in the M + 1 e~Jations. which would be obtained in hand calcu­
lations, have replaced the contents of the locations corresponding to 
columns 1 through M + 1, rows 1 tlU:'ough M + 1, of the B array, and the 
constants on the right-hand side of the equations have replaced the con­
tents of the locations corresponding to column M + 2, rows 1 through 
It + 1, of the B array. For the illustrative problem, columns 1 through 
4. rows 1 through 3, of the B array would be set to these computed 
values 

Appendix E: Examples of Fortran-Written Programs 95 



1 

o 1 C 23 C 24 

o o C 33 

This matrix represents equations (4), (7), and (8). 

The backward solution, which results in equations (9), (10), and (11) 
in the illustrative problem, is carried out by statements 33 through 40. 
By the time control has passed to statement 41, which prints the values 
of ,the A9 terms, the values of the (M + 1) *A j terms have been stored in 
the M + 1 locations for the A array. For the illustrative problem, the 
A array would contain these computed values for a 2 I ai' and a o 

Location 
A (3) 

A (2) 

A(l) 

contents 
C 34 /C 33 

The resul ting va lues of the AI terns are then printed according to 
the FORMAT specification in statEment 2. 

96 



where more than reference is given, the 
major refers\ce is first. 

A format code 49-51 
A85 88 
absolute dimensions of an array 60-61 
absolute value 88 
addition 14 
adjustable dimensionn of an array 60-62,1 
AIMAG 89 
AINT 88 
ALGAMA 88 
ALOG 87 
ALOG10 81 
alphabeti c characters 83 
alphameric data format code 49-51 
AMAXO 88 
At-lAX1 88 
AMINO 88 
AMI Nt 88 
AMOD 88 
• AND. 18 
arccosi ne 87 
ARCOS 81 
arcai ne 81 
arctangent 81 
arguments, dummy 82 
literal constant 52,83 
arithmetic assignment statement 20-21,2 
arithmetic condition 17 
ari th me tic expressions 13-17 
aritlulletic IF statement 21J-25 
ari thmetic operators 14,15 
arrangement of arrays in storage 12-13 
arrays 10-13 

absolute dimensions of 60-61 
adjustable dimensions of 60-62,1 
name of an array 33,66-68 
size 12 
subscripts 10-11 

i-l.RSIN 81 
ASSIGN statement 23-24 
assigned GO TO statement 23-24 
ATAl~ 87 
A'I'AN2 81 
attribute control, variable 1 

BACKSPACe 56,31 
BCDle card punches 83 
beginni ng of a data group 33 
beginni ng-of-data transfer code 53 
blank common area 64-65 
b 1a nk output records 42 
BLOCK DATA subprogram 81 
boundary alignment 65-66 

CABS 88 
CALL statement 
cal1-by-va1ue 

76-77 
82 

card input 2 
carriage control 55-56 
ccos 87 
CDABS 88 
CDCOS 87 
CDEXP 87 
CDLOG 87 
CDSIN 87 
CDSQRT 87 
CEXP 87 
characters in program 83 
CLOG 87 
CMPLX 89 
coding FORTRAN statements 2 
comments 2 
COMMON 62--66,57,12 

blank 64-65 
implicit arguments 82 
named common area 64-65 
statement 62 

common logarithm 87 
compiler 1 
compI em en ted error f unc ti on 88 
complex 

argument~ 

obtaining conjugate 89 
ottaining imaginary part 89 
obtaining real part 88 

COMPLEX 57-59,15 
constant 5 
real arguments expressed in complex 
form 89 

statement 57-59 
CONJC 89 
con stan ts 3- 8 
conti nuation line 
CONTINUE statement 
control statements 
cos 87 
COSH 88 
CarAN 81 
CSIN 87 
CSQRT 87 

2 
29 
22-30,2 

D format codes 48,46 
DABS 88 
DARCOS 87 
DAR SIN 87 
data initialization 85,6,59 
data set 31 
DATAN 87 
DATAN2 87 
DBLE 89 
DCMPLX 89 
OCONJC 89 
DCOS 87 
DCOSH 88 
DCOTAN 87 
decimal places 46,48 
decimal pOint 48 
DERF 88 

INDEX 

Index 91 



DERFC 88 
DEXP 87 
DFLOAT 88 
DSIN 87 
DGAMMA 88 
difference. positive 88 
DIM 88 
dimension 

adjustable 94 
DIMENSION 60-61,12,57 

displacement, array 68 
division 14,17 
DLGA!>tA 88 
DLO(~ 87 
DLOGIO 87 
DMAXl 88 
DMINl 88 
DMOD 88 
DO loop programming considerations 28-29 
DO statement 26-27 
DeUBLE PHECISION 85-86 
DSIGN 88 
OSI NH 87 
Df>QRT 87 
DTAN 87 
DTAl,,'H 88 
dummy argument 71,82 
dwnrny array 61 
dummy variables 76,68 
DUMP subprogram 90 
DVCHK 89 

E format codes 48,46 
EBCDIC card punches 83 
e lerrent s of the language 2 
&END 33-34 
END 30,31,72 
END FILE 56.31 
end of a data group 34 
cNI'RY ,itaternent 78-80,82 
EQUIVALENCE 66-68,57 
ERF 88 
ERFC 88 
ERR 31 
error function 88 
EXIT Subprogram 90 
EXP 87 
expli ci t slJ€cification 59-60,9-10,57 
exponential 14-15,87 
express l()l;;:i 13 -19 
EXTF:RNAL stat:ement 80-131 

f' format coJde 47,46 
fix fJ8 
FLOAT 88 
FOR~AT 40-5t,1,31 

alter nat", Hollerith 6 
code s 42- 53 
stdt'.':'llIent rules 40-42 

FORC1FA~-J 

c:od1 nq form 3 
differencE'f> between as or OS/VS and TSS 

98 

i"URTZAN 8 2 
recotds 41-42 
SpeC.ld 1 TSS FORTRAN IV features 
supplied subprograms 87-90,69 

1 

function 69 
function subprograms 72-75,69,87 
return of value 82 

G format code 42-46 
GAMMA 88 
general format code 42-46 
GO TO statements 22- 24 

assigned GO TO 23-24 

H format code 52 
hexadecimal constants 6-7 
HFIX 88 
hyperoolic cosine 88 
hyperbolic sine 87 
hyperoolic tangent 88 

I format code 47.46 
lABS 88 
IDIM 88 
lDINT 88 
IF statement 24-26 
IFIX 88 
imaginary part of a complex argurrent 89 
IHPLICIT 57-58 
IMPLICIT specification 9 
in-line subprogram 87 
indexing I/O lists 36-37 
initialization of data 85,6,59 
input data 33-34 
input/output statements 31-56 
insert blanks 52-53 
HIT 88 
INTEGER 57-60,12 
integer constants 3-4 
integer data format code 47,46 
integer division 17 
integer mode 14 
I/O lists 31-37,38-39 
ISIGN 88 

keyboard input 2 

L fo!"ma t o:'de 49 
lab-:lt,d common area 64-65 
larrJest value 88 
length 

specification for variables 7,44-45 
total field leny th 44 -4.5 

list 31-37,38-39 
(see also NAMELIST) 

literal constants 6,1 
literal data 51-52 
literal format code 1 
loq-gamma 88 
logical 

assignment statement 20-21 
constants 6 
expreSSions 
format code 
IF stat_ement 
operators 18 

17-19,J 3 
49 

25- 26 



machine indicator tests subprograms 89 
mathematical subprograms 87 
NAXO 88 
MAXI 88 
MIN 0 88 
/>iI N1 88 
mixed mode 
tv\OD 88 
mexie 13,1 
modulus 88 
mul ti Ii ne Ii 3ting 
multiple entry into 

43-45 
a flJNCTION 

~,u .tpro gr am 7 ':; 
multiplication 14 

ILlmed common area 64-65 
Ni~,ELIS'I 12-34,38-39 

I/O 1 
na[!,e 32,33 

natural logarithm 87 
nest.eel DOs 28 
. NOT. 18 
numeric characters 
numer ic format codes 
numerical constants 

83 
47-49,46 

3-5 

obtaininiJ th,,; conjugate of a complex 
anJurre fit 89 

obt aininq the imaqinary p:irt of complex 
arg UIrent 89 

obt.aininq the real part of complex 
argument B8 

opera t.ors 
logical 18 
re la ti on 0 f 1 7 

optional length specific~tion of 
variables 8-9 

• OR. 18 
order 0 f compution 19 

ina ri thrretic expressions 16 
in logical expressions 19 

OS/TSS FORTRAN differences 82 
out-of-line subprogram 87 
OVERFL 89 

P scale factor 54-55 
padding character 41-49 
parentheses 

in arithmetic expressions 16-11 
in lO,Jical expressions 19 

PAUSE statement 30 
PDUMP subprogram 90 
positive difference 88 
PRINT st~tement 84-85 
printing 55-56 
programs, sample FORTRAN 91-96 
PUNCH 84 

READ 31- 37 
READ lists 31-37 
reading FORMAT statements 37 
real 

complex form, two real arguments 
expressed in 89 

constants 4-5 
mode 14 
REAL 9,57-60,88 

relational oper ator s 17 
remaindering 88 
RETURN statement 88-89,77,72-73,7~-76 

REWIND 56.31 

sample FORTRAN prograrrs 91-96 
scale factnr 54-55 
service subprogram 89,87 
SIGN 88 
SIN 87 
SINH 87 
skip characters 52-53 
SLITE 89 
SLI'rET 89 
smallest value 88 
SNGL 88 
source prograrr characters 83 
spacing format code 53,1 
SQRT 81 
square root 87 
standard length speCification of 
variables 7 

statemen t 2 
cont rol 22- 30 
functions 70-71,69 
i npu t/output 31-56 
numbers 2 
specification 57-68 
subprograrr: 69-81 

S'lDP statement 30 
storage s pecificat~ion 60-66 
subprogram 69-81,87-89 

name 69 
service 89,87 
statements 2 

subroutine subprogram 75- 81,87 
subscript 10-11,82 
subtracticn 14 

T format code 53 
TAN 87 
TANH 88 
tran sfer of Sign 88 
trigonometric cosine 87 
trigonometric cotangent 87 
trigonometric Sine 87 
trigonometric tangent 87 
truncation 88 
TSS FORTRAN IV 2 

special features 2 
TSS/OS. OS/VS FORTRAN differences 82 

type specification of the FUNCTION 
subprogram 73-74 

type statements 57-60 

value. call-by 82 
var labl e 8-10 

attribute control 1 
length specification 7,89 
names 8.31 
predefined specification of variable 
type 7 

types 8-9 

99 



WRITE 31-39,31 
WRITE lists 38-39 
writing blank 1 ines 39 

100 

X forma t code 52 

Z format code 48-49,46 





GC28·2007-4 

---- -'fl ----- - --- -----. -..--- - -----_ .... ----- _.-
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

.,., 
o 
::tJ 
-l 
::tJ 
» 
z 

< 
.,., 
en 
z 
o 
ttl 
w en o 
N 
01 


