
IBM Z20-1788-0

'SALES and SYSTEMS GUIDE

IBM Time-·Sharing System/360

Concepts and Facilities

This document is being furnished for System/360 instructional use only. It
contains prel iminary technical information, and the contents are subject
to change. The contents represent "best available information" as of the
publ ication date. This materia I is to be considered automatica Ily replaced
by the normal SRL publ ication upon its release.

This publ ication describes the basic concepts of Time-Sharing System/360
and gu ides the programmer in the use of its various fac i I ities.

Time-Sharing Systern/360 is an advanced set of language translators and
service programs, operating under the supervisory control and coordination
of a complex control program. TSS/360 permits the concurrent sharing of a
single or multiple processor system by many tasks and by programmer-
users, at terminals conversing with the system. The virtual memory concept
of TSS/360 permits each task, or programmers, to assume a memory of up
to 4 bill ion bytes of memory. It is designed for use with IBM System/360,
Model 67. .

IBM CONFIDENTIAL

I

Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

Introduction.
Definitions.
The Time-Sharing Concept.
Virtual Memory Concept and Effects
The Paging Concept.
Multiprocessing
System Partitioning.
Levels of TSS/360
Command System.
Data Management.
Language Processors.
Sort/Merge
Interfaces

1
1

2
2
7
7
8

8
9
9
9
9
9

System/360 Model 67, Equipment Information • 11
Dynamic Address Translation 11
Address Translation 11
Relocation Mode 11
Storage Protection Extensions 14
Fetch Protection 14
Reference and Change. 14
Operational Differences in System/360,

Model 67, Machine Instructions. . . 14
Operational Differences in System/360,

Model 67, Input/Output. 15
Time-Sharing System/360 Operations . .. 16

Conversational Mode 16
Nonconversational Mode. 16
Command Language Subsystem. 17
Program Checkout Subsystem . . . 18
Language Processors. 20
Data Management. 21
Time-Sharing System Commands 21
Terminal and Main Operator Functions . . . 28
System Administration and Accounting . . . 35

Coding and Linkage Conventions. 36
Language Processing 36
Control Section Generation 37
Control Section Attributes. 37
CSECT - Control Section. 37
PSECT - Prototype Control Section .. 37
COM - Common· Control Section.. .. 37
R-Type Address Constant . . . 38
V -Type Address Constant 38

Reenterable Routines 38
Coding Conventions - Reenterable

Routines
Linkage Conventions
Program Types, System Symbols, and

... 38
.. 39

External Name Conventions. . . . 40
Symbolic Linkages 41
Protection Classes 41
Linkage Editor and Dynamic Loader . 41

Data Management Concepts and Facilities. . . 44
Data Set Control. . . . 44
Data Access 44
Storage Allocation. . . . 45
Data Set Names. 46
Data Set Cataloging ... 46
The Catalog. 46
Cataloging Data Sets. 46
Data Set Security Protection . 47
Generation Data Groups 47
Data Set Storage and Volumes. 47
Data Storage on Magnetic Tape Volumes .. 47
Volume Labeling 47
Data Set Record Formats. 47
Logical Records. 48
Record Blocking. 48
Record Formats. 48
General Services 48
Sequential Access Method (SAM) . . . 49
Queued Sequential Access Method (QSAM) . 49
Basic Sequential Access Method (BSAM) .. 49
Virtual Access Method (V AM). 50
Sequential Organization (SV AM). 50
Index Sequential Organization (VISAM) ... 51
Partitioned Organization (VPAM) . . .•. 51
Printer Forms Control. 52
Data Flow 52

Major Differences between OS/360 and
TSS/360 as they Affect the Programmer. . . 54

Data Management Functions . 54
Job Management Functions . •. 54
User Program Conventions. .. 55

Glossary 55

I

INTRODUCTION

The Time-Sharing System/360 (TSS/360) provides
to many simultaneous users a wide variety of
program services to assist them in obtaining a
solution to their individual computer problems.
TSS/360 users call for these services through com­
mands which they introduce to the system through
a remote terminal consisting of a keyboard, a
printer and, optionally, a card reader, a paper tape
reade~, or a display device. They can enter and
construet programs and data sets, debug programs
in a conversation mode with the system, and request
execution of programs using specified data sets. In
addition, users can specify that their programs and
data sets are to be added to, deleted from, modified,
copied, or moved to and from input/output units
according to their data processing needs" While the
user(s) is performing these functions, he is in
constant communication with the system, and is
aware of the functions being performed by it. As
requests for various services are made, the system
informs the user(s) of action it has taken, of ad­
ditional information required to co'mplete services
requested, and of any mistakes made by the user in
requesting services.

To provide efficient service to all users, the
System/360 time-sharing system allows them easy
and open access to the central data processing
facility. Multiple remote consoles provide to many
simultaneous users a direct means of monitoring
and controlling the computers that are servicing
their needs. These users, at remote terminals,
can, if they desire, limit themselves to the services
to which they are accustomed in a multiprogrammed,
batch-processing environment. Experience has
indicated, however, that users take advantage of
the broader range of services that are part of a
time-sharing system. These services provide an
easy man-machine communication that facilitates
such problems as program writing and checkout,
and complex design problems where rapid computer
arithmetic and human judgment are requi.red.

The Time-Sharing System/360 includes:
• A time-sharing supervisor with a ti.me-slicing

capability
• A command language for communication

between user and system in both conversational
and batch modes, including a program check­
out subsystem, for source level debugging

• Data management and cataloging facilities
• A mnemonic assembly language compiler with

macro capability - batch and conversational
modes

• A FORTRAN IV compiler - batch and
conversational modes

• A Programming Language I (PL/I)
incremental compiler

• A COBOL compiler - batch mode
• A sort/merge program, oriented to direct

access storage
• An open-ended library of mathematical and

utili ty programs
The Computing System/360, Model 67, was

designed specifically for time sharing. The special
time-sharing features include:

• Multi-tailed storage units
• Multiple central processing units (CPU's)
• Dynamic storage relocation
• High-speed multiplexor channels
• Dual input/output paths
• Store and fetch protection
• System partitioning capabilities
In addition, the Time-Sharing System/360 takes

advantage of the standard System/360 multiprogram­
ming features, such as the privileged instructions,

. the interval timer, and the supervisory mode.

DEFINITIONS

][n relation to the TSS/360, the term "users"
represents the totality of all potential terminal
eustomers. That is, the system has a list of all
legitimate users. This is a predefined list, usually
compiled jointly by the manager of the computer
center and all departments serviced by the center.
Active users, then are the subset users who are
currently working on terminals or whose jobs are
being run in the nonconversational mode (batch or
background). A session is defined as the total
work done by an active user at a terminal from the
moment he requests service from the system
(LOGON) to the time he notifies the system that he
is relinquishing his terminal (LOGOFF). A task is
a basic unit of work, such as a FORTRAN com­
pilation or a program module execution. The task
is associated with the discrete virtual memory that
it is a part of and is the basic multiprogramming
unit under the TSS/360 supervisor. A job can be
eomposed of several tasks, but becomes meaningful
only in the baekground mode. That is, active
users at terminals create tasks rather than jobs.

. IBM CONFIDENTIAL 1

Operational Characteristics

The normal mode of operation of the TSS/360 is to
have users at remote terminals working in a conver­
sational mode with the system. In the conversational
mode, the user can direct the system as he proceeds
and may change his tactics in solving the problem or
modify his approach as he examines the results of
his action and finds that modifications must be
made. By having the user at a terminal conversing
with the system in this manner, the system can be
used as a powerful tool to aid in the solution of the
user's problem. Figure 1 is a graphic representation
of the general conversational operation of TSS/360
and can be used as a guide throughout the manual.

Conversational Mode of Operation

Any user at any terminal has full access to the
system and its services without regard to any other
user who may simultaneously be using the system.
When a user initially logs on at a terminal, the
system establishes a task monitor to service him
for the duration of his session at the terminal. The
task monitor expects inputs from, and direct mes­
sages and instructions back to, the user. The input
expected from the user at the terminal consists of
commands that specify the programs to be executed.
The source of these input commands is defined to be
a system input (SYSIN). Similarly, messages sent
from the task to the user who is directing or com­
manding it are sent via a system output (SYSOUT).
In a conversational mode of operation, the SYSIN
device is the keyboard or, possibly, a card reader
or a paper tape reader that is associated with the
terminal that the user is using. The SYSOUT device
is the printer that is associated with the terminal
that the user is using.

Nonconversational Mode of Operation

In many situations, the programs that are to be
executed can be defined ahead of time, so that no
variation occurs as execution of the program proceeds.
In such a case, a user can establish a sequence of
commands to perform the functions he desires and
can store these commands in the system as a data
set. The user can request execution of these
commands in nonconversational mode by estab-
lishing a nonconversational task (background job).
The SYSIN associated with this nonconversational
task is not a terminal; instead it is a data set that
is stored on a direct access device or tape or some
other medium internal to the system. When a
nonconversational task has been established, commands
are taken, one at a time, from this internal data
set to direct the program execution required.

Similarly, SYSOUT for a nonc:onversational task is
not a terminal but may be a data set that is printed
eventually on a systems printer by the system. This
printout is returned to the originating user; he can
then examine it at his convenience to determine
how the execution of his nonconversational task
proceeded.

THE TIME-SHARING CONCEPT

Time sharing is a technique that is used in remote
computing systems to provide more equitable
response to a large number of simultaneous users
at different terminals. Each user is given the
illusion that he alone has all of the computer re­
sources at his disposal. The system techniques
that provide this illusion are not evident to the user.

Time slicing is a method used in time sharing to
provide each active task a period of time when it
alone is using a central proceSSing unit. A time
slice to be optimum should be long enough to do
meaningful work for the task and short enough so
that other waiting tasks are not delayed unreasonably.
The supervisor allocates time slices to the queue of
tasks in accordance with preset priorities set by
the installation.

VIRTUAL MEMORY CONCEPT AND EFFECTS

The virtual memory concept is a solution to two
distinct but related problems:

The 24-bit addressing capability of standard
System/360 allows a maximum of 16 million
addressable bytes. In praetice, however, the
programmer is restricted to using addresses
that represent the actual physical storage on
his machine. Thus, the programmer does not
have the ability to write a program addressing
16 million contiguous by teE:. If the total program
size exceeds the available core storage, the
programmer must overlay his program. This
places an undue clerical burden on large programs
and is a frequent source of error.

In a multitasking environment, the supervisor
has the job of paging (swapping) active tasks into
whatever core storage is actually available.
During execution of tasks, this physical frag­
menting of programs must not be apparent to
the user, so that he may think of his program as
being in contiguous memory locations.

Both problems are solved through the virtual memory
concept, a combined programming system-equip­
ment approach, which is described below.

In a multitasking environment, the supervisor
has the job of space sharing the programs of many
users. The more users that are in core storage,

2 IBM CONFIDENTIAL

I

VIRTUAL ME:MORY MAx. CAPACITY 4096 PAGES

DUE TO DYNAMIC

ADDRESS TRANS­

LATION CONSECU­

TIVE PAGES OF
VIRTUAL MEMORY

NEED NOT BE CON­
SECUTIVE IN CORE
STORAGE.

DRUM

r------.... L ________ ~

VIRTUAL MEMORY ADDRESSES OF PAGES COMMON TO TWO

DIFFERENT USERS NEED NOT BE THE SAME. THEY SHARE
THE SAME PAGE IN COf;iE STORAGE (FOR EXAMPLE PAGE X

I 1

mllnI01lli1Dn
OF USER I AND PAGE Y OF USER 2 RESOLVE TO PAGE 2 IN

I I 1.-_______ ...,

I I
1"- -:--.- ----I

~-1 1
1------ ----.04
I I
~--------I
: 1 r----- ----:
L.. _______ ~

CPU

I

CORE STORAGE)

ITJJnr[CjlliffiJ~
1 ,

~------~--l
1----------/
}- _____ ----I
I I
~- _._-----1
I I
1--- -------1
1 1
~-------- --I
1 1
I- - - - - - ---1
I I L _________ ~

ru;; TeRMINAL

NUMBER 2

WORKING STORAGE

PAGES ARE ON DRUM

(EXAMPLE OF CAPACITY

,-- - - -----1
~.-------"""1

1 1 1-·-------,
'-- - ------'
I I 1--------,
r-'- - -- ---I
1 I •• r -. -- -- ----I L . _______ _'

1 I L_, _______ I

1 I r-'-- -- --1 L. ______ --'

r---- ---,
~---------'
~--------j .1 1
t---- -------1
1 1 r---------1
II .------- ---:
1----------1 L _______ _'

WAIT WAIT
OTHER TERMINALS

WAITING FOR THEIR

TIME SLICE

ARE ON AUXILIARY FILES

DISK PACKS

750-190 PAGES WHERE VCORE

ONE PAGE 4096 BYTES)

Figure 1. Operation of time-sharing system/360

IBM CONFIDENTIAL 3

the faster the control can be transferred between
users, and the lower the resulting overhead cost.
In the time-sharing system, space sharing and
time sharing are facilitated by breaking up programs
into pages of 4096 eight-bit bytes. Core storage is
allocated in page increments.

Programs on the Computing System/360,
Model 67, operate in one of two states, that is,
unrelocated or relocated. Programs that run un­
relocated run essentially as do programs on other
models of System/360. Programs that run re­
located are divided automatically into pages of
4096 bytes (see Figure 2), and a map is created
consisting of one entry per page. All pages present
in the map are logically existent. The total number
of pages in the map represents the size of the
program's virtual memory, up to a maximum of
1, 048, 776 pages. The entries in the map also
indicate w~ther the corresponding page is or is
not currently resident in core storage. Those pages
that are currently resident are physically existent.
Only those pages of a task that are actively used
are brought into core storage. Core storage never
contains the pages of a task that are not referenced.
At execution time, core storage holds only a few
parts of a user's task, but what is more important,
it holds only the active parts.

o

Page 0

4k

Page 1

8k

Page 2

12k

Page 3

16k

L~_

Figure 2.

--

-

Subdivision of a
task by pages

1 Page = 4096 Bytes
= 102..::1 Words

The heart of this technique is an equipment
development called dynamic address translation.
This technique could be called a.ddress mapping, for
it involves the transformation of virtual memory
addresses into core storage addresses by means of
an equipment table lookup (see Figure 3). Each
task in the system (the work introduced at a single
terminal) requires for its operation a set of dynamic
storage relocation tables (called page tables), with
entries for each page of virtual memory used. These
tables are developed by the TSS/360 supervisor as
the task is created and as new page requirements
are made known by the task. As required pages are
fetched into core storage, the supervisor enters
into the page table the location of each page. During
execution, the equipment automatically does a table
lookup on each address as it is referred to by the
user, and the corresponding core storage address
is chosen. If the user refers to a location that is
not in core storage, an automatic interrupt occurs
that causes control to be transferred to the super­
visor, which sets up a page-turning routine to fetch
the missing page. All of this is not apparent to the
user. To him, core storage is limited only by the
addressing capabilities of the equipment.

Other advantages are derived from the dynamic
address translation. Since mulltiple users can be
served concurrently, it is inefficient to require
each user to provide a copy of subroutine or language
processors. For example, if eight users require
a square root subroutine, just one "read only" copy
of the routine need be in core storage. Each user's
tables need contain only a reference to the sub­
routine. During the execution of a particular user's
task, his tables will send him to the square root
subroutine and then (again through his private tables)
back to his own pages in core storage.

To exploit this feature, it is required that the
location of parameters be raised in general registers,
that the routine do no internal storing, and that
results be stored in locations passed in general
registers. (A full description of the conventions
for entering "read only" (reenterable) routines may
be found under" Coding and Linkage Conventions".)

Still another advantage to the virtual memory
concept is the protection provided both to the system
and to the various tasks. The TSS/360 supervisor
is automatically protected against accidental or
mischievous action within any task by virtue of the
fact that each task operates only within its own
virtual memory (as defined by its relocation tables);
the core storage area occupied by the supervisor is
not addressable through the relocation table of any
task. It therefore is not a part of the same virtual
memory as the task and is completely protected.

Tasks are protected against interference by each
other in essentially the same ~ray. Each task has

4 IBM CONFIDENTIAL

I

0 Map

Page 0

4k

Page 1

8k

Page 2

12k

Page 3

16k

Page 4

20k

Page 5

21k

Figure 3.

its own virtual memory and relocation tables. As
the supervisor controls the use of core storage, no
task has the ability to address any portion of another
task's core. Shared programs and data Bets are
an exception to this.

A page of parallel reenterable code is also
sharable. Sharable means that the code may be
executed by multiple users concurrently, and only

§
'..-1
.j...)

ro
C)
0
H
(j)
bO
ro

Po;

~
E
C)

~
0

E-t
Cfl
~
(j)

.j...)

I=l
'..-1
0

P-;

one copy of the shared page is required (see Figure 4).
In other words, the maps of the different tasks
point to the same page in core storage. The total
number of physical pages is less than the total
number of logical pages. The shared pages are
a physical intersection of the two programs. Since
the two programs have distinct maps, they are
10gicallY'disjointed (see Figure 5).

In summary, the virtual memory concept allows
each task in a time-sharing system to operate as
though the full virtual memory were available to it,
with all necessary storage bookkeeping being
performed by a combination of equipment and
programming features. Note, however, that the
transfer of pages from auxiliary storage into core
storage, consumes a certain amount of time. The
most efficient total use of the system, therefore,
is dependent on minimizing this as much as possible.
A program that makes many random widely-spaced
references to a large table, or that transfers con­
trol frequently over large sections of code, can
cause enough paging effort to degrade the total
system performance. This should be avoided.

IBM CONFIDENTIAL 5

Logical
Prog A

o

2

Als

Map

Figure 4. Example of shared code

Virtual
Memory

A

Physical Prog. A

Figure 5. Shared code intersection

SHARED CODE]

Common
Page

Pointer

Bis

Map
Logical
Prog. B

o

2

Virtual
Memory

B

Physical Prog. B

Physical Intersection of Virtual Memory

6 IBM CONFIDENTIAL

I

THE PAGING CONCEPT

The TSS/360 supervisQr has the jQb Qf placing active
tasks into. available CQre stQrage. The task runs in
CQre stQrage, but because Qf space limitatiQns Qr
relocatiQn Qf prQgrams, the prQgram cQntiguQus in
virtual memQry may be scattered thrQughout CQre
stQrage. This physical fragmenting Qf programs
is not apparent to. users, who. shQuld think Qf their
prQgrams as being in cQntiguQus virtual memQry
IQcatiQns ..

Physical fragmenting, Qr paging, has the fQllQwing
effects:
• The entire task need nQt be in CQre stQrage at

one tiIne. Instead, pages Qf many tasks are
present, and several may be ready fQr executiQn.
The system, therefQre, has many QPPQrtunities
to. do. useful wQrk while swapping a page.

• Swap time is reduced as an Qverhead factQr,
since only active pages Qf a task ever require
mQvement between CQre stQrage and auxiliary
stQrage.

• Actual CQre size ceases to. have any significance
to. a prQgrammer. AlthQugh written and executed
as a classical set Qf cQntiguQus instructiQns and
wQrking space, a task exists in the machine as
scattered pages. TherefQre, the prQgrammer' s
cQncept Qf the task in executiQn is oriented to.
virtual memQry rather than to. actual CQre stQrage.,

• With so. much virtual memQry space available, it
becQmes PQssible to. extend the page-tu.rning CQn­
cept to. replace input/Qutput QperatiQns uPQn data.
If a task in virtual memQry allQcates a large area
fQr data stQrage, the space that is Qccupied by
the data set can be treated as an extensiQn Qf the

virtual memQry, and can be Qperated UPQn
directly withQut 'explicit read Qr write cQmmands.
As each page Qf the data is referred to., it is page­
turned into. CQre stQrage by the system. The
effect, to. the prQgrammer, is the same as if the
entire data set were always present in CQre stQrage.

The page-turning cQncept (see Figure 6), then, prQ­
vides fQr efficient use Qf the equipment, while allQwing
the system to. ~andle many tasks in rapid successiQn.
In additiQn, it frees the cQmputer user frQm the
arbitrary bQunds Qf actual CQre size.

MULTIPROCESSING

The number Qf tasks that can be serviced efficiently
in a time-sharing system is increased by adding
central prQcessing units in parallel. The TSS/360
is designed to. Qperate using two. Qr mQre central
prQcessing units (CPU's) in parallel. With two. Qr
rnQre CPU's Qperating in parallel, the system can
reCQver frQm the failure Qf Qne, and cQntinue to.
prQvide efficient service to. users. It also. allQws
for system grQwth withQut upheaval. The system
is designed to. accept up to. fQur CPU's, each Qf
which is a device to. be allQcated by the TSS/360
supervisQr.

The supervisQr is nQt changed by executiQn,
and thus presents no. prQblems with respect to.
simultaneQus executiQn by mQre than Qne CPU. The
supervisQr dQes, hQwever, mQdify certain system
tables. To. prevent cQnfusiQn within the time­
sharing envirQnment, the supervisQr makes the
mQdificatiQns in a sequential manner, rather than
in parallel. In these circumstances, the CPU that
is executing the supervisQr that first begins to.
mQdify the system tables lQcks Qut all Qther CPU's
until the mQdificatiQns have been cQmpleted. The
lQcking Qut Qf CPU's is aecQmplished thrQugh the

,..;;----'---; WORKING
STOR~AGE

SWAPPING DRUM PHYSICAL CORE FILE STORAGE

Figure 6. P age turning concept

IBM CONFIDENTIAL 7

use of a combination of programming mechanisms
and wired-in (equipment) interlocks. CPU's are
locked out only when necessity demands, and the
lockout time is held to a minimum.

In summary, two or mbre processors in the
Time-Sharing System/360 provide computational
power, reliability, and flexibility. The system can
allocate tasks among several CPU's, or it can oper­
ate with only one. In addition, the system can be
"partitioned" . This means that a selected CPU plus
storage and I/O devices can operate as an autonomous
unit.

SYSTEM PARTITIONING

Normal operation must be altered under two conditions
(this altering is called partitioning):

1. If a control device becomes inoperative or is
required for servicing, it must be made logically
unavailable to the resources of the supervisor; at the
same time, it should be disconnected phYSically
from the system. Partition switches are located on
each tail coming from a unit. To remove a unit
from the system physically means that all partition
switches connecting the unit are turned off manually.
Since a unit may be actively engaged at a time when
a physical partition is required, it is first necessary
to notify the supervisor, via the operator's console,
of the intention; as soon as the supervisor can logi­
cally disconnect the unit (remove it from the list of
available devices), it so signals the machine room
operator. At that point, the device can be discon­
nected physically. V"hen a partitioned unit is
returned to the system, a message is sent to the
supervisor, through the operator's console, and
the physical partition switches are turned on. The
supervisor updates its device availability table and
can begin to schedule its use.

2. If a particular subset of the total system
resources is required for special runs that are best
scheduled in a non-time-sharing environment, the
supervisor again must be required to produce this
logical partition. As soon as the supervisor can
remove the required units from its pool of devices
available to time sharing, it logically does so. It
may have to wait for some I/O to complete or for
a particular CPU to be released from an active
program. Since all system activity is under its
scrutiny, the supervisor eventually knows when all
of the required units are available. It then sets up
the partitioned subsystem with the job that requires
it, and starts it up. During the partition time, an
observer can see two systems working in parallel.
After the job completes its run, the CPU signals
the supervisor, which logically returns the units
to its table of available devices. As soon as it can,
the supervisor begins to reschedule time-sharing
activity on the units.

8

LEVELS OF TSS/360

The Time-Sharing System/360 programming
environment is divided into three privilege levels:

• Level 1, the highest privilege level, is the
supervisor.

• Level 2 contains the task monitor and many
service routines.

• Level 3, the lowest level, is the TASK or
problem program.

Level 1, the supervisor, is parallel reenterable
and resides in core storage in the unrelocated mode.
It runs in the supervisor state, that is, it has access
to all instructions and occupies about 25 pages. The
supervisor is responsible for handling all interrupts,
scheduling and allocation of processor execution
time, core space, I/O data paths, and auxiliary
storage. The supervisor initiates all channel
programs, but is responsible for access and error
recovery of only those I/O devices that are being
used for paging.

The supervisor is not acceiSsible to users and
therefore is completely protected from interference.
The only way that a user's task can communicate
with the supervisor is through the use of a service
(SVC) call, which causes an interrupt. Thus the
supervisor can perform work only in response to
an interrupt either through a lLser call or through an
equipment action, such as maehine-check of I/O action.

Level 2 modules are reenterable; they run using
time slices as do users tasks, and are relocatable,

residing in a task's virtual memory. Because the
modules are reenterable, only a single copy need
be in core storage, and the copy can be shared
among several tasks. BecauBe level 2 modules
operate in a semiprivileged state, they cannot
communicate directly with the problem's program;
instead, control is passed to or from these modules
by use of SVC's, which create interrupts that are
processed by the supervisor in level 1, which in
turn passes the requests to level 2 modules. Level
2 modules allocate and access all I/O devices and
channel programs for nonpaging I/O, allocate and
reserve virtual memory, and consist of service
routines, such as catalog services and the task
monitor. The task monitor module initiates and
services tasks.

Level 3 consists of problern programs that run
in the nonprivileged mode, that need not be re­
enterable. that are relocatable, and that reside in
virtual memory. Level 3 modules include the
language processors, assembly program, and
user-written processing modules.

Nonprivileged SVC's are available to level 3
modules to request service of level 2 programs.
No interrupt scheme exists for level 3 programs,
since they do not process interrupts. All instruc­
tions are executed sequentially, and each is

IBM CONFIDENTIAL

I

finished before the next is started. This creates a
very simplified operating environment and eases
the programming burden for the user. The user
may control problem execution by specifying certain
pages of his program module as read only pages.
This bounds the operating module and simplifies
debugging.

Privilege relates to the type of machine language
instruction a module can execute; priority relates
to the time that the task will be executed; and com­
mand privilege relates to the types of commands the
user can execute.

COMMAND SYSTEM

The command system consists of the command
language interpreter (CLI), the various eommand
programs, and the program checkout subsystem
(PCS). CLI and PCS are the interface between
user and system; they enable users to enter, manipu­
late, and control the running of programs. CLI
enables operators to control the operation of the
system. CLI and PCS occupy part of each user's
virtual memory. Command system is a level
3 program.

DATA MANAGEMENT

Data management facilities control I/O devices and
provide device-independent operation for system
modules and problem tasks. The command system
interfaces with the data management system through
macro instructions. The data management system

is relocatable, and required routines are loaded
into the user's virtual memory. Data management
is a level 2 function.

LANGUAGE PROCESSORS

The TSS/360 language processors translate source
language program modules into object program
modules. Conversational facility and language
diagnostics are provided for terminal users during
the analysis passes of the FORTRAN and macro
assembly processors. The processors reside in
the user's virtual memory.

SORT/MERGE

The sort/merge program is a level 3 task, residing
in the user's virtual memory, that uses virtual
memory as a scratch area to sort or to merge
data sets.

INTERFACES

The interface between the various TSS/360 com­
ponents are designed so that modifications and
additions can easily be made to the system (see
Figure 7). IBM-supplied programs - such as the
compilers, utility programs, etc. - are treated
no differently by the 'supervisor than are user­
supplied programs. This permits easy additions to
the program libraries by both IBM and the user.

IBM CONFIDENTIAL 9

Command
System

Data
Management
System

Supervisor

Command
Language ~
Interpreter

IV

j
Sequential

(SAM)

2311
2400
1403
2540
2671

~
Other Interrupts

Dynamic Problem
~

Progr'ams Linkage -

Command
Programs

IV 'f .. ~

If
Input/Output Macros

VI

i ~ ~
Terminal Virtual Graphic
Access Memory Access
(TAM) Access (GAM)

(VAM)

1050 2311 2250
AT+T35 2314 2280
2741 2321
2260

II II II!

t
Supervisor Calls (SVC's)

Dispatcher

Interrupt Processors Queue Processors

Figure 7. TSS/360 system interfaces

10 IBM CONFIDENTIAL

Service
Routines

I

I

SYSTEM/360 MODEL 67, EQUIPMENT
INFORMA TION

Time sharing, by its very nature, requires ex­
tremely large storage capacity. However, not all
information must be immediately available in core
storage, since all tasks and data sets are not
simultaneously active. When tasks or data sets,
or portions, become active, they must be moved
quickly into core storage so that delays are
minimized.

DYNAMIC ADDRESS TRANSLATION

The dynamic address translation feature of
System/360, Model 67, minimizes the housekeeping
required in the scattering of the program and its
data in eore storage. It permits the use of the
virtual memory, which is far larger than actual core
storage. The virtual addresses are translated to
actual addresses by relocation tables that are set
up and changed on a continuing basis by the super­
visor as information is moved back and forth between
core storage and drums or other storage devices.
This moving of information is controlled by the
supervisor in response to user demands.

Part of the equipment provided is a set of eight
associative registers that maximize processor
performance by doing an automatic table lookup for
address translation. These registers are called
associative registers, since, in the translation
process, they are referred to by their contents
rather than by physical location.

Another feature provided to maximize address
translation speed, is storage of the instruction
address (that is, the instruction counter) in the trans­
lated or relocated form. This feature obviates the
need for instruction address translation until a
branch occurs or a page boundary is crossed.

The IBM 2067 processor uses either a 24-bit or
a 32-bit addressing for the time-sharing system,
so that a program may have up to 16 million 8-bit
bytes or 4096 segments of 256 pages. The TSS/360
programming system works with equal facility in
either addressing mode.

The processor recognizes the relocation mode
only when it has previously been switched into the
extended control mode, as described below. In the
extended control mode, bit 4 of the program status
word (PSW) specifies the extent of logical addressing,
that is, when bit 4 is a zero, 24-bit logical addressing
takes place; when bit 4 is a one, 32-bit logical ad­
dressing takes place. Bit 5 of the PSW (in extended
control mode) specifies relocation vs nonrelocation
mode. When bit 5 is a one, relocation takes place;
when bit 5 is a zero, no relocation takes place.
When bit 4 is a one, bit 5 must be a one, otherwise

a specification exception is recognized.
The following summarizes the modes of operation

specified by bits 4-5 of the PSW in the extended
control mode.

Bit 4 Bit 5 Mode of Operation

0 0 No relocation, 24-bit address arith-
metic

0 1 Relocation, 24-bit address arithmetic

1 0 Specification exception

1 1 Relocation, 32-bit address arithmetic
(specification exception if 32-bit
addressing option is not provided)

ADDRESS TRANSLATION

The relocation tables used to translate a logical
address into an actual address consist of segment
tables and page tables. These tables are placed
in main storage at the segment table origin and
page table origin, respectively. Each table occupies
the number of storage locations specified by the
respective table length amount.

For the purpose of address translation, the
maximum addressable storage capacity of 232

bytes is divided into 4096 segments, each segment
jls divided into 256 pages, and each page
contains 4096 bytes. Consequently, a logical ad­
dress consists of a segment field, a page field, and
a byte field. The segment field consists of twelve
bits (bits 0-11); the page field of a logical address
eonsists of eight bits (bits 12-19); and the byte field
eonsists of twelve bits (bits 20-31).

[___ s_e~g~~ ___ p_a~g~.e ____ ~I _____ B~y_t_e ____ ~
o 11 12 19 20 31

Segment table origin is specified by the contents
of bit positions 8-31 of the table register (control
register 0). The length is generally 64 bytes, or
one group of entries (16 entries per group, 4 bytes
per entry). The address of the table origin must be
a multiple of 64; hence, bits 26-31 of the table
register must be zeros, or a data exception is re­
cognized. Each 4-byte entry in the segment table
defines a page table. The first byte (bits 0-7)
defines the length of the page table; the remaining
three bytes (bits 8-31) define the page table origin.
The unit of length for a page table is a 2-byte entry.

IBM CONFIDENTIAL 11

Thus, the table is variable in multiples of two bytes.
Each page table's origin is located at a byte address
that is a multiple of 2. Thus, bit 31 of each seg­
ment table entry that defines a page table is zero.
If bit 31 is one, no translation takes place, and a
segment relocation exception is recognized (program
interruption with interruption code 16).

Figure 8 illustrates the translation action. Bits
0-19 of the logical (or virtual) address are first
compared with the corresponding bits of each assoc­
iative register having bit 36 set to one. If a match
is found, bits 20-31 of that register are used as
bits 0-19 of the core storage address, and bit 37 at
the associative register is set to one. Bits 20-31
of the logical address are used directly as bits
20-31 of the core storage address.

If no match is found, or if no register in the
associative array has bit 36 set to one, the logical
address must be translated by means of the segment
and page tables. This translation proceeds as in­
dicated by the dotted lines in Figure 8. The segment
field of the logical address (bits 0-11) is first added
to the origin address portion of the table register
(bits 8-31). (For this addition, the segment field
of the logical address is aligned with bits 18-29 of
the table register, since the entry to be fetched is
four bytes long and has a byte address that is a
multiple of 4.) The quantity obtained by this addition
is the address of the segment table entry.

The segment table entry is used with the page
field of the logical address in much the same manner
as the table register contents were used with the
segment field.

Bits 12-19 of the logical address are aligned with
bits 23-30 of the origin portion of the segment table
entry (bit 8-31), and the two quantities are added.
The resultant 24-bit quantity is used as the address of
of a 2-byte page table entry, which is later fetched
from storage. As described earlier, if bit 31 of the
segment table entry is one, a segment relocation
exception is recognized. In addition, bits 12-19 of
the logical address are compared to bits 0-7 of the
segment table entry, and, if the former is greater
than the latter, a page relocation exception is
recognized (program interruption, with interruption
code 17).

The 2-byte table entry consists of a page address
portion (bits 0-11) and control bits (bits 12-15). Bits
13-15 must be zeros, or a specification exception
is recognized, and the instruction is suppressed.
Bit 12 defines the status of the page address portion
of the entry. If bit 12 is zero, the page address is
used as bits 0-19 of the core storage address. If
bit 12 is one, a page relocation exception is recog­
nized. Thus, bit 12 serves to indicate whether the
page referenced is actually available in core. Bits
13-15 are reserved for future use.

12

The actual core address obtailned by the trans­
lation method described above iB not only used to
address core storage but is also. loaded into an
associative register along with the segment and
page fields of the virtual address. Thus, it is
made available for future use without the need for
repeating the translation process. When an as­
sociative register is so loaded, bit positions 36
and 37 in the register are set to one. (Selection of
the registers to be loaded is under control of a
usage algorithm, which uses, in. sequence, the
registers with bit 37 set to zero. When bit 37 is
one in all registers, this bit is)~eset to zero in each
register.) Bit 36 is used to indi.cate the presence
of a valid entry in the associative register. It is
reset to zero each time the content of the table
register is changed.

RELOCATION MODE

Relocation of addresses provided by the processor
is specified by bit 5 of the PSW. When the bit is a
one, relocation takes place; when the bit is a zero,
the logical address is used as the actual address.

All core storage locations where information is
stored in the course of an operation are subject
to relocation.

Addresses provided by the channels, either for
fetching channel control words from core storage
or for fetching data from or storing data into core
storage, are never relocated, regardless of the
setting of bit 5 in the PSW.

Locations whose addresses are generated by the
processor or channels for updating or interruption
purposes (equipment-generated addresses), such as
the timer, channel status words, or PSW addresses,
are not relocated via the relocation tables. However,
when the program module specifies these locations,
they are subject to relocation, as defined above.

Core storage addresses in the range 0-4095
(including the aforementioned equipment-generated
addresses) are relocated by means of the primary
or alternate prefix, as defined in System/360
Principles of Operation, unless the prefix is
disabled by means of the prefix deactivation switch.
Consequently, the prefix is applied when the actual
core address, that is, either the virtual address
when no relocation takes place or the translated
address obtained via the relocation tables, falls
within the range 0-4095.

When relocation is specified" the storage pro­
tection, by means of the protection keys, is still
active.

Whenever access to core storage is made by the
equipment for the purpose of fetching an entry from
a relocation table in the course of an address trans­
lation process, storage protection is ignored, that
is, the equipment acts as though the block of storage

IBM CONFIDENTIAL

I

PAGE TABLE

-,-------+----\

o 7 8

LENGTH

TABLE REGISTER

[
ORIGIN 0 J

29 30 J
.......... -------t

SEGMENT TABLE

ORIGIN

\

"

29 30 31

/

I
j

/
/

/kf
-~ I

PAGE TABLE

1\

I
I
/

/

/

PAGE TABLE 0 11 12 15 .
/

/

SEG

CORE
STORAGE CTRL
ADDRESS

\

ASSOCIATIV1E
REGISTER

8 11 17

I
INSTR COUNTER

RELOCATED FORMAT

~

\I

Figure 8. Simplified data flow for dynamic relocation

IBM CONFIDENTIAL

-

/
/

LOGICAL ADDRESS

__ ---, I
SEGMENT PAGE

/
/

/

8

/

!J
/

19 20

I
BYTE

31

CORE STORAGE ADDRESS

13

containing the relocation tables were not fetch­
ppotected during the storage cycle in which the
relocation table entry is fetched. However, if the
addresses at which the relocation tables are located
are generated by the task, they are subject to storage
and fetch protection in the normal manner.

If the storage address, generated in the address
translation process for fetching a relocation table
entry, exceeds the storage capacity of the instal­
lation, an addressing exception is recognized,
resulting in an interruption (interruption code 5).

STORAGE PROTECTION EXTENSIONS

The advanced storage protection features of the
IBM System/360 have been made still more useful
and flexible in the IBM 2067 processor and core
storage units. Although the storage protection keys
are functionally a part of core storage, they are
discussed here because they are logically related
to the new and expanded features of the processor.

Storage protection is achieved in System/360 by
providing main storage into blocks of 2048 bytes.
A 4-bit key is associated with each block. When
storing of data is specified by an instruction from
the processor or a channel, this storage protection
key is matched with another key supplied by the
current program status word (PSW) or channel
address word (CA\V). When a mismatch is detected,
storing is suspended, and a processor interrupt
occurs. The protected storage location remains
unchanged.

The 4-bit storage protection keys have been
extended to seven bits. Bits 0-3 are the standard
4-bit storage protection keys. Bit 4 is the fetch
protection bit, bit 5 is the reference bit, and bit 6
is the change bit. The protection keys in the PSW
and the CAW remain unchanged at four bits in length.

FETCH PROTECTION

When the fetch protection bit is zero, no protection
against fetching by either a processor or a channel
is indicated, regardless of the value of the 4-bit
storage protection key in the PSW or the CAW, or
the value of bits 0-3 of the storage key.

When the fetch protection bit is one, the data
or instruction in the corresponding storage block
are protected against fetching whenever they are
protected for storing.

When an instruction causes a fetch protection
violation, execution of the instruction is terminated,
a program interruption occurs, and a protection
exception is indicated in the old PSW. The protected
information is never loaded into a register or
moved to another location.

Fetch protection violations caused by a channel

result in a termi~ation of data transmission; thus,
the protected information is never transferred to
any output medium. The violation is indicated in
the channel status work (CSW) , which is stored as
a result of the channel operation.

Locations whose addresses :are generated by the
processor for updating or interruption purposes -
such as the timer, CAW, and PSW - are not fetch­
protected. When a program specifies these locations,
however, they are subject to protections.

REFERENCE AND CHANGE

Bit 5 of the storage key, the reference bit, is set
to one each time the corresponding storage block
is accessed for storing or fetching by a processor
or a channel. Bit 6, the change bit, is set to one
each time data is stored in the corresponding
storage block by a processor or a channel.

The storage key is not part of addressable storage.
The key is changed by the set-storage-key instruction,
and is inspected by the insert-storage-key instruction.
These instructions, bits 0-6 of the storage key,
correspond to bits 24-30 of the register designated
by ,the Rl field.

The reference and change recording is always
active. It is independent of the problem supervisor
or masked state of the processor, of the type
instruction of I/O command be:lng executed, and of
the manner in which the addre~ls is generated.
Hence, reference for updating or interruption pur­
poses - such as the timer, CSW, or PSW
locations - are included in the reference and change
recording.

OPERATIONAL DIFFERENCES IN SYSTEM/360
MODEL 67, MACHINE INSTRUCTIONS

Five new instructions have been added to the
System/360, Model 67, and the operation of certain
previously established instructions is modified when
the 32-bit addressing option is operative.

Two of the new instructions have been added to
the basic machine operation set. Load multiple
control (LMC) and store multiple control (STMC)
are privileged operations that do not concern the
problem programmer, and load real address (LRA)
is used only by the system. Aecordingly, their
description is omitted here.

The remaining two instructions, branch and store
(RR and RX formats), are shown below.

Instruction Mnemonic Type Code

BRANCH and STORE BASH RR OD

BRANCH and STORE BAS RX 4D

IBM CONFIDENTIAL

I

The braneh and store instructions are very similar
to the branch and link instructions and other
System/360 models. In coding for TSS/360, the
programmer must use the BAS instruction. instead
of the BAL instruction for linking to a subroutine
that uses the stored PSW value to return. This is
required to allow compatibility with the 32-bit
addressing option wherein the BAL instruction
stores only 24 bits of the 32-bit location counter
value from the PSW. The BALR instruction should
still be used to obtain the condition code, instruction
length, and program mask in a general purpose
register, since the BAS or BASR instructions
do not provide this information.

The updated logical instruction address of the
PSW is stored as link information in the general
register, specified by RI . The logical instruction
address is later replaced by the logical branch
address.

Condition code: The code rema:ins
unchanged.

Program interruption: None.

Programming note: The link information is stored
without branching when in the RR format and when
the R2 field contains zeros.

When branch and store is the subject instruction
of execute, the instruction-length code is 2.

OPERATIONAL DIFFERENCES IN SYSTEM/360,
MODEL 67, INPUT/OUTPUT

The model 67 extends the normal System/360 input/
output capabilities to include:

1. Up to 28 input/output channels
2. Multiple path I/o - any CPU (of the one to

four available) may access any and all I/O
devices on all attached channels

3. The fetch storage protection feature, which
allows system control over the ability to
read from certain portions of core storage

The dynamic address translation feature is not
available for translating addresses contained in
I/O commands (CCW's); hence, the TSS/360
supervisor intercepts all I/O requests and translates
the CCW addresses from virtual memory addresses
(which the user or system routines supply) to actual
core storage addresses.

IBM CONFIDENTIAL 15

TIME-SHARING SySTEM/360 OPERATIONS

The command language is the medium of communi­
cation between the TSS/360 and its users. The
command language is designed primarily for users
who communicate with the TSS/360 during execution
of their tasks; this operating mode is described as
conversational in that the user remains online to
the system, engaging in a dialogue with it, during
the execution of his tasks.

The various commands in the language enable the
user to construct, checkout, and execute program
modules and/or manipulate his data sets; for
example, he may issue commands specifying that
they are to be modified in a specific manner,
shared with other users, copied, and moved to or
from I/o devices located at the computer center.
Other commands are reserved for the main system
operator to control and monitor the system con­
figuration and to facilitate servicing of system
requests for I/o device handling. Still other
commands are reserved for the system administrators
to establish user accounting records and to control
user access to the system.

A subset of the command language system is the
program checkout subsystem (PCS), which provides
the user with conditional dump capabilities during
program testing. The portion of the command
system that is active for a user occupies part of
that user's virtual mt$mory.

The device management facilities of the command
system allocate I/O devices, directing operator
actions with them and with data volumes in response
to user requirements. The user need not be directly
involved with devices. Instead, his commands are
contained in data sets that are interpreted by the
command language as device requests and that are
presented to the system operator for execution.

The command language also serves as the control
language for users who prefer the nonconversational
mode of operation; that is, offline preparation of
programs and data for batch submission and execution
by TSS/360 without user monitoring. The user is
free to switch from conversational to nonconver-­
sational mode if he satisfies the requirements for
that mode before he initiates it. For example, he
may modify a prestored program or set of test
data in the conversational mode, then initiate non­
conversational execution of the modified data sets.
With this approach, the user need not attend the
system during execution of his program; he simply
postpones receipt of the results of that execution.

CONVERSATIONAL MODE

For conversation operation with TSS/360, the
user employs a terminal that can be remote from
the computer center. Each terminal consists of a
printer-keyboard, such as an IBM 1052 or an
IBM 2741 or a Teletype Model 35 KSR; optionally,
an IBM 1056 Card Reader can be supplied with th~
IBM 1052. TSS/360 users are authorized to use
the system by a system administrator. Once
authorized, the user has access, through his
terminal, to the total facilities of TSS/360, including
the system assembler, compilers, and service
routines. As he requests these facilities (either by
commands on his keyboard or by feeding them in
punched-card form through the card reader), he
is engaged in a dialogue with the system. He is
told of the actions taken by the system in response
to each command, asked for additional information
needed to complete an action, i.nformed of errors
in his command entry, and told. of the options he
may exercise. The commands, command abbrevi­
ations, and the system responses are in English
prose, designed for clarity and ease ~ Ct r
comprehension.

NONCONVERSATIONAL MODE

For nonconversational operations with TSS/360, the
user need not ever see, much less use, a terminal.
Instead, he can prepare his programs and data on
punched cards or magnetic tape, together with a
sequence of job control instructions for the program
and data, and submit the job in that form for batch
execution. The job control instructions are written
in TSS/360 command lan.guage.

A nonconversational user with access to a termi­
nal can use the conversational mode to enter changes,
etc., to programs and/or data previously entered
in nonconversational mode. Since the user is not
available to correct errors during nonconversational
operation, his job is terminated when any errors
are encountered. The nonconversational mode is
thus most useful for jobs that do not justify the user's
attendance during execution or that do not require
his resolution of problems. The conversational
mode, conversely, is most suited to interactive
program development, which involves the user in
a self-corrective dialogue, and to use of the system
in a tutorial role.

16 IBM CONFIDENTIAL

I

TSS/360 commands are executed interpretively;
that is, each command is analyzed and then executed
immediately after entry from a keyboard, a terminal
card reader, or after retrieval from a prestored
data set. The command and its parameters are
validated before execution. In conversational mode,
any errors or omissions produce requests to the
user for correction or completion of the parameters;
in nonconversational mode, any errors or omissions
force termination of the job. Once the command is
accepted as correct, all actions it requires are
performed before the next command is sought. The
system does not record the commands it executes;
the user has a record of these commands - on his
printer output, his input card deck to the terminal
card reader, or in his prestored command sequence.
The results produced by command execution are
retained by the system.

COMMAND LANGUAGE SUBSYSTEM

The command language subsystem consists of the
programs, routines, and subroutines that support
the command language. The subsystem includes
three major functional parts:

• The command language interpreter (CLI),
which recognizes each command, links to
the appropriate command routine, and handles
messages to and from the user

• The command routines, each of which performs
the action(s) required to carry out its corre­
sponding command

• The batch monitor, which initiates and
supervises nonconversational processing

When a user starts conversational operation by
turning on his terminal, dialing up the system, and
pressing the ATTENTION button, a task is created
for him. Each task is active only during its time
slices, making use of CPU time only during succes­
sive time slices. A task exists from log on, whether
explicit or implicit, through log off. Upon creation
of the task, a copy of the command language inter­
preter is loaded into the task's virtual memory,
and, since the first operation must be a log on, the
CLI adds a copy of the LOGON command routine.
For a conversational user, an implicit log on is
assumed, causing the LOGON command routine to
issue prompting messages through the CLI to the
user. The CLI reads the user's responses, passing
them on to the LOGON command routine to check
the user's credentials, to establish accounting
records for the charge number that he supplies, and
to save his options concerning confirmation and
system :messages for other command routines.

When the implicit log on procedure is completed
under control of the LOGON command routine, the
command routine informs the C LI, which then asks

the user to enter his next command. This command
is recognized by the CLI, which moves the corre­
sponding command routine into the user's virtual
memory, replacing the now unnecessary LOGON
command routine. As before, the command routine
passes prompting or diagnostic messages through
the CLI to the user if parameters are miSSing or
in error, obtaining user responses through the eLI.
'When the user enters or calls in program data sets
from external storage, these data sets are also
added to his task. Similarly, copies of the system
assembler and/or compiler(s) are moved to the
user's virtual memory as he requests them; these
language processors are also executed conversation­
ally, informing the user of system response to each
of his source language statements, so enabling him
to alter his tactics in the light of each response.

The user can interrupt execution of his task by
actuating the ATTENTION button at his terminal;
the responses to this interrupt depend upon the
operation in progress. If the user's task is ex­
ecuting a compiled or assembled program, the
ATTENTION interrupt stops that processing without
disrupting it; the user can, with the appropriate
eommand, direct the system to resume processing
from the point of interruption. If the user is
.entering a command and has not completed that
operation, he can use the ATTENTION button to
cancel that partial entry.

A task ends when a LOGOFF command is issued.
The CLI examines the command, causes the LOGOFF
command routine to be added to the task, and passes
to the conversational user queries on the disposition
of his uncataloged data sets. The data sets he
chooses to save are entered in his catalog; all others
are lost (like a console patch) as soon as his task
ends. Upon disposition of his last data set, the
system is so notified, the user's task is eliminated
from the system, and all of his influences are
removed from the system.

A nonconversational job differs from the above
description in several ways. The nonconversational
job can be submitted to the system operator(s) on
punched cards and/or magnetic tape. A task is
created for the job by the batch monitor when the
facilities (for example, I/O devices) required for
the job are available for assignment to it. The
job must contain explicit LOGON and LOGOFF
commands, since the user is not available to re­
spond to prompting. For the same reason, the
task for the nonconversational job is terminated
upon encountering a situation that requires user
resolution, that is, a situation resolved in con­
versational mode by user responses to prompting
or diagnostic messages. In this nonconversational
mode, the system input (SYSIN) to the task is not
a terminal but a prestored set of commands.

IBM CONFIDENTIAL 17

.Similarly, the system output (SYSOUT) from the
task is a data set, not a terminal. This data set is
printed out eventually and returned to the user for
examination.

A user may change from conversational to non­
conversational operation if he has developed a
prestored set of commands to direct the latter.
As before, the CLI interprets his request to change
mode, links to the appropriate command routine,
and handles any communications between that
routine and the user. The command routine next
establishes the new task in nonconversational mode
and gets a batch sequence number from the batch
monitor. The task established initially for the user
is eliminated, since no further communication
with the user is expected or needed by the non­
conversational task. The user may, if he so desires,
initiate further conversational operation from his
terminal by logging on again; however, this operation
should be unrelated to the nonconversational job.
If no task space were available for the user's non­
conversational task, his command would be rejected.
The user could reissue the command later, after
continuation in conversational mode.

PROGRAM CHECKOUT SUBSYSTEM

The IBM Time-Sharing System/360 Program
Checkout Subsystem (PCS) is designed to assist
users in the checkout of new or revised modules.
Among the new approaches made possible by the
overall design of the IBM Time-Sharing System/360
is direct user intervention in the loading and ex­
ecution of a task. This permits the user to check on
its progress; modify it, where the source of difficulty
is immediately evident, and, if the output is not
acceptable, systematically pinpoint where the trouble
originated. This flexibility is achieved without
interfering with the system's power to serve many
users simultaneously and efficiently, and without
including any statements that are needed only for
checkout or for program logic error or malfunction
detection in the module while it is being written.
Instead, PCS, under user supervision, effectively
controls the execution of a particular module or
set of modules, and is responsive to requests for a
wide variety of actions that bring the user into
direct communication with the process of module
loading and execution - which is the task that is to
be completed successfully. The following is a
general introduction to the objectives and concepts
underlying PCS.

PCS Objectives

The functional specifications underlying PCS
design are to:

• Make data items and instructions within a
module "visible" to a user, who can request
their display by means of symbolic references

• Enable the user to modify the contents of data
items within a module by assignment state­
ments, expressed in symbolic terms and with
standard representation of integer numbers,
floating-point numbers, a.nd character strings

• Permit the user to specify - either symbol­
ically or by virtual memory addresses -
points within a module at which execution will
start and stop; on stopping, items may be
displayed or modified as indicated above,
followed by either resumption of execution or
a pause for user intervention

• Provide a means of defining logical conditions
or specific event occurrences that will deter­
mine whether action is to be taken at stated
points in the module

• Give the user a programming language and
syntax that are easy to remember, and that
lend themselves to operation from remote­
access terminals

Symbolic Referencing Capability

PCS is designed to work in conjunction with the
language processors, implemented for the IBM
Time-Sharing System/360, and with the command
language interpreter (CLI), the dynamic loader,
and the linkage editor.

A prerequisite for the most effective use of PCS
is that the user retain the intenlal symbol diction­
ary, which the language processors produce; it is
the retention of the dictionary that permits use of
the program's own symbols in writing checkout
statements. Because CLI recognizes checkout
statements and passes them to PCS for interpre­
tation and response, the services of PCS are
always available to the user. Note that the full
power of PCS cannot be used in a shared module;
the user is limited to investigatory action, such as
displaying the contents of any location in virtual
memory. The ability to change variable, or to use
dynamic checkout statements that take effect upon
the occurrence of specified object module events,
or to intervene in a task's execu.tion is not available
until a "nonshared" module is loaded.

18 IBM CONFIDENTIAL

I

References to a source module are ma.de in
terms of the programmer's own internal symbols;
this avoids need for concern about core storage
locations. IT the user had not earlier suppressed
the output of the internal symbol dictionary (ISD)
by the language processor, he has access to most
of the symbols contained in his program, along
with their attributes, at checkout time. If he had
not anticipated the need for program checkout,
and does not have an lSD, the user can still refer
to his program in terms of its external symbols.

Automati.c Display Format

A drawback of conventional snapshot and core
dumps is that it is necessary to specify how
internal machine code is to be represented, so
that dump output may be easily readable; for
instance, a portion of core storage containing
integral numbers should be shown differently
from one containing floating-point numbers.
To present data in the form in which it is most
likely to be understood PCS utilizes various types
of information from the lSD's produced by the
language processors. This is automatic, and
the user need not specify either conversion or
format requirements.

Statement Types

The user communicates with PCS conversationally
through jnput of PC S statements at the terminal.
PCS statements are of several types.

Statements whose requests are acted upon
immediately by PCS are termed immediate state­
ments. Dynamic statements are those which are
not acted upon until the occurrence of a specified
event during object program execution. Immediate
and dynamic statements may be either conditional
or unconditional. Consequently, there are basically
four statement types:

• Unconditional immediate
• Conditional immediate
• Unconditional dynamic
• Conditional dynamic

In addition to these four statement types, PCS
control directives exist, which control the effect
of prior statements and modify the processing
of later statements.

Event Specification

The execution of a program is one event that is
made up of an indefinite number of constituent
events. PCS allows definition of specific events -
such as executing certain object program module
statements.

PC S permits symbolic reference to events by
the user's symbolic labels. The occurrence of
a defined event while the task is being executed
can trigger a variety of PCS actions, such as the
display, modification, or testing of data and/or
the cessation of task execution.

Conditionally

This function provides for comprehensive logical
statements that can determine whether an action
is to be performed by PCS while monitoring the
program's execution.

Statement Examples

This section presents a few examples of the type
of operations possible in PCS. All internal
symbols are written with preceding periods.

AT . ERREXT DISPLAY O:15R O:6D DUMP
• TOP:. BOT

When program control arrives at ERREXT,
all 16 general purpose registers are displayed
at the terminal, and all four floating-point
register s and memory locations, TOP through
BOT, are dumped offline.

AT . CALL SET. POINT = A'. DATA'

When the instruction at CALL is reached, the
variable POINT is set to the address of DATA.

AT . S3

The user is informed each time control
reaches the instruction at S3.

AT .DIAGIF .DLEVEL LT 3 RUN .CONT

When control arrives at DIAG, program control
is transferred to CONT if the value of the
variable DLEVEL is less than 3.

AT . LOOP DISPLAY %, .1

When control arrives at LOOP, a count of the
number of times LOOP has been reached and
the value of the variable I are displayed. (%
is a counter that is incremented each time the
PCS statement is executed.)

AT . ALPHA IF .X LT 0 SET .X = O.

When control arrives at location ALPHA, if
X is less than zero, it is set to zero.

IBM CONFIDENTIAL 19

AT. GOBACK IF . SOR TAB(. I) GT
. SORTAB(. 1+1) STOP

At location GOBACK, if the Ith entry in
SORTAB is greater than I+1st, the program
stops.

SET .Z(.I,.J)=.X(.I)*. Y(.J)

The I, J entry in the array Z is set to the
product of the Ith entry in X and the Jth entry
in Y immediately after the statement is input.

AT. 99 IF . WRONG STOP

At statement number 99, if the logical variable
WRONG is true, the program stops.

LANGUAGE PROCESSORS

The TSS/360 FORTRAN and COBOL compilers
produce executable object programs from source
programs written in the FORTRAN IV and COBOL
languages, respectively. The compilers and their
object program modules are intended for e5cecution
on the TSS/360 computer configuration, in con­
junction with the supervisor, loader, data
management, command language interpreter
(CLI), and other components of the TSS/360.

In addition to the production of executable
program modules, the compilers also detect and
give notification of source program errors, and
produce various documentation describing the
object program module(s).

The TSS/360 assembler produces, from source
language programs written in the System/360
assembler language, machine language programs
in a format suitable for operation within the
Time-Sharing System/360.

The assembler is integrated with other
components of the TSS/360 in a way that enables
users at remote terminals to control the portion
of the assembly that is concerned with source
statement syntax. The assembler design is such
that a full range of diagnostic messages can be
supplied for the benefit of the conversational user.
Other components of the Time-Sharing System/360
provide facilities for the correction of source
language statements during the course of the
assembly.

The assembler can also function as a batch-mode
language processor when conversational operation
is not desired.

The Time-Sharing System/360 is designed to
help the user enter source language statements as
required by the user-specified language processor.
The user initiates source language processing by

issuing a LOAD command that names the language
processor he wants. The language processor is
then loaded. After the user commands RUN, he
is prompted for the information required by the
language processor. At this time, the user supplies
the name of his source data set, tells whether it is
to be created or is prestored, and gives the starting
number and increment value for line numbers. He
also chooses any options available for the language
processor that he has selected. After its initiali­
zation, the language processor requests source
language statements as they are needed. These
statements are either read from a prestored
source data set or requested from the terminal
user. Diagnostics are issued on a statement-by­
statement basis. All diagnostics pertaining to a
statement are put out before the next statement
is requested.

In conversational mode, a Hne number or, in
some cases, a pound sign - that is, # - is printed
at the terminal when it is ready to accept the next
source statement. The user also uses these line
numbers when he wishes to modify his program
online if an error is spotted. To do this, the user
types in %, signaling the processor that the user
is now entering his own line number and a modifi­
cation line. If the new line number is less than
the last line number issued, a correction is
assumed, and the last line number is reissued to
resume the normal sequence. If the new line
number is greater than the last line number issued,
the new line is rejected, and the last line number
is reissued. If the last line number issued is itself
used to enter a line, the next sequential line number
is issued. The user can delete lines by prefixing
a D to the line numbers. For example:

500 % D, 300

means that 500 is the last line number issued, and
the user wants to delete line 300. The processor
handles the deletion, then reisE:ues line 500.
Note that modifications of any but the last entered
statement cause the language processor to restart
from the first statement.

When the entire source program is entered, the
user is given the option of terminating the language
processing (due to uncorrected fatal errors, usu­
ally), making modification to his source program
and restarting, or running the processor to
produce an object module. Mter the processor
is finished, it indicates its results by a severity
code. This code is placed in the object module,
and a message is printed to inform the user.
The severity codes are:

o - no errors
1 - warning diagnostics issued

20 IBM CONFIDENTIAL

I

2 - fatal diagnostics issued
3 - fatal diagnostics issued and no object code

produced
If language processing is done in the noncon­

versational mode, commands and the source
program must be supplied as prestored data sets.
There is no prompting, thus no chance for source
statement modifications and corrections. The
language processor accepts one statement at a
time until the entire source program is handled;
it is then run to get an object module.

DATA MANAGEMENT

The data management commands free the
programmer from much of the clerical work
involved in manipulating his data sets. Supported
by the time-sharing catalog system, these com­
mands enable the programmer to access his data
sets by symbolic name alone. The commands
provide for the reading in of data sets from tape,
card reader, or the terminal. They enable the
programmer to modify his data sets easily and to
erase unwanted data sets. They permit the
cataloging and uncataloging of data sets, and
they also furnish automatic control of direct
access storage space allocation, relieving the
programmer of the details of allocating such
space.

Aside from its control features, data manage­
ment also provides security for every data set.
Unauthorized access to a data set is prohibited,
ensuring each programmer that no other users
can access his data sets without his permission.
The data management commands enable the data
set owner to grant various levels of access to
other programmers so that they can share his
data set on his terms.

Data management also provides data access
facilities to schedule and control the transfer of
data between input/output devices and main storage.
This includes reading and writing records, blocking
and deblocking records, overlapping read-write
and processing operations, reading, validating,
and writing volume and data set labels, and
repositioning volumes automatically. By the use
of data management commands, the programmer
can copy data sets or have them printed, punched,
or written on tape without having to learn to access
characteristics of the various input/output devices
attached to the system.

TIME-SHARING SYSTEM COMMANDS

Command Format

Each command consists of a verb and, in most
cases, a body. The verb identifies the command
and the action to be performed (for example,
ERASE). Every command verb, except LOGON,
has a standard abbreviation that can be used in
place of the verb, whenever the command is
entered. The body of the command contains
parameters, which are separated from the verb
by a blank or a tab.

The TSS/360 commands may be divided into
four functional groups - user commands, system
operator commands, system administrator com­
mands, and program checkout commands.

• User commands are intended for the
programmer. Almost all of these commands
may be entered from his terminal or may be
placed in a stored data set for nonconver­
sational execution. Table 1 lists the user
commands and gives the function of and
privilege class of each.

• System operator commands are reserved
for the main system operator only. They
permit him to monitor system operation, to
adjust the system configuration, to control
system time and data information, and to
communicate with tasks and with users.
Table 2 lists the system operator commands,
their functions, and their privilege class.

• System administrator commands are also
reserved, and enable the system adminis­
trator to identify users to the system, obtain
accounting information, alter priority, and
delete former users from the system.
Table 3 lists the system administrator
commands, their functions, and their privilege
class.

• Program checkout commands provide for
conditional dumps and halts during obj ect
module execution, as well as display of
information addressed symbolically. Table 4
shows the program checkout subsystem
commands.

Command Privilege Classes

Each user is assigned one or more privilege
classes, which determine the commands he may

IBM CONFIDENTIAL 21

use. There are four privilege classes: A, B,
·c, and D. Class A is assigned to the system
control operator. Class B is assigned to the
system administrator. Class C is for subordinate
system operators. Class D is assigned to TSS/360
users at terminals and nonconversational task
operations.

Whenever a user attempts to enter a command
for which he does not have the correct privilege
class, a diagnostic message is issued, and the
command is ignored. Some commands are
available to several privilege classes, but the
exact function of the command may differ according
to the class of the user entering the command.
Such is the case, for example, with the PRESENT

LINE command.
Note that a single user is not limited to a single

privilege class. The system operator, for example,
normally holds privilege classes A, C, and D. In
a small installation, one user might have all four
privilege classes.

Some duplicate commands appear in the
following tables, but there are no duplicate functions.
For example, the command PRESENT is included
in Tables 1 and 2, because the user can present
only his own priority while a system administrator
can present the priority of any user that he has
joined. Both the main system operator and the
system administrator(s) can use commands other
than those specifically reserved for them.

22 IBM CONFIDENTIAL

I

Table 1. User commands

Command
Command
Abbreviation Function

Privilege
Class

~"-------~~I~~~~-----r----------------~----------'------------------------------+-----------~

:8"sLIS:O~

e~

...I!lUtlfHO "'~~
.e.....~_

CANCEL

CATALOG
""-

CHANGE

£~N.t!~Mj U:O~

CHANGE PASSWORD

.9HECKPT

,b .. "copy

DATA --...-...

DATADEF

DDCALL
..... ~-

ERASE
~

ERASEID

LOGOFF

LOGON _ ..

MODIFY
~,.,...

PERMIT -------

DO PR

~TT py ..

CAN

CA

C CONF

CPA

CHP

DT

DD

DDC

E

ER

LO

none

M

PE

To print a data set

To punch a data set onto cards

To write a data set on tape for offline
printing

To cancel a nonconversational task

To enter or change a data set name in
the catalog

To change the confirmation status of a task

To change the user's pas sword

To checkpoint a task by saving its current
status and thus allow an eventual restart

To make a copy of an existing data set

To build a data set from input records
on SYSIN

To identify and describe a data set to the
system

To retrieve DATADEF commands from a
cataloged line data set

To erase the direct access storage belonging
to a data set or data set member; if the data
set is cataloged, its name is also removed
from catalog

D

D

D

A, D

D

D

D

D

D

D

D

D

D

To remove the internal symbol dictionary D
(ISD) from an object module

To load an object module into virtual memory D
for execution

To indicate the end of a task D

To identify the user to the system at task
initiation

To insert, delete, and/or replace line(s) in
a data set

To permit or restrict sharing of a data set
by other users

IBM CONFIDENTIAL

D

D

D

23

Table 1. User commands (continued)

Command Priyilege
Command Abbreviation Function Class

PRESENT PA To print accounting information for user"s A,B,C,D
ACCOUNTING charge number(s)
.... 'oIIft:w _lilt,.."

PRESENT CHARGE P CH
NUMBER

To present a user's charge number(s) B I
PRESENT COMMAND P CO To print a description of any TSS/360 command D
.¥'tJI" """ v ... 4# IJ¥I' I.(

PRESENT DATA SET PD To print class, last usage, page count,a.nd A,B,C,D
STATUS type of user's data set

\/.."", -..., ~ WI 41·'IIIhIt

~ESENT DATE
., ..,..,..". "'~ "4

PDA To print the current date and clock time D

PRESENT LINE PL To present one or more lines of the user's A,B,C,D
~ .. w-.w.w. line data set

PRESENT RESOURCES PR To present a list of allocated equipment A,B,C,D
elements

PRESENT TASK PT To tell a user whether a task is currently in A,B,C,D
STATUS the system and how long it has been logged on
r~, ... It""JJI'''''1II

PRESENT VIRTUAL PV To get a list of what is contained in the user's D
MEMORJ" MAP
'filii""' w_ .. , virtual memory

RELEASE REL To release a data set or to remove a job D ~

library from the program library list

REMOTE REMO To change a conversational task to the D
nonconversational mode

RESTART RES To restart a previously checkpointed task D ,.

RUN ... To begin execution of a loaded program or to D ..ee,_t, ... ,
restart an interrupted program

SHARE SH To allow a user to share cataloged data sets D
~

belonging to another user

UNCATLG UNC
~~~+-:~ 

To delete a catalog entry for a user's data D 
set or sets 

UNLOAD UW &.r To remove an object module from virtual D 
~.f..(,t.,",~"-

memory 

BATCH B To enter a nonconversational task into the C 
system 

24 
IBM CONFIDENTIAL 



Table 2. System operator commands 

Command Privilege 
Command Abbreviation Function Class 

1--

ATTACH A To logically include and, if a physical switch A - exists on the configuration console, to 
physically connect an equipment element to 
the system 

-/!t-tt.J t.J 0 v"'; 4..:E 
z<J3HOABCA:S'f' BR To send a message from the main system A 

operator to all terminal users currently 
active in the system 

BULKIO RDCARD BURDC To read input from a high-speed card reader, A 
create and catalog a new data set, and, if the 
data set is a command procedure, request 
initiation of a nonconversational task 

BULKIO RDoTAPE BURDT To read a data set from tape and create a A 
V AM data set within the system 

CANCEL CAN To cancel a nonconversational task A,D 

CHANGE CONSOLE C CON To change'the primary or backup consoles A 
for the system operator 

CHANGE DATE C DA To change the system date A 

CHANGE TIME C TI To change the system time of day A 

DETACH DE To logically phase out and, if a physical A 
switch exists on the configuration console, to 
physically remove an equipment element from 
the system 

MESSAGE ME To allow the main system operator to direct A 
message to a specified user or add a message 
to the operator log 

PARTITION PAR To phase out and physically remove from A 
TSS/360 a predefined list of equipment 

PRESENT CONSOLE P CON To present the subchannel numbers and A,B 
backup consoles for the system operator 

PRESENT OWNER PO To present the current user of a device A 

PRESENT RESOURCES PR To get a Hst of all equipment elements in the A,B,C,D 
time-sharing partition or a list of all equip-
ment elements assigned to any task or user 

PRESENT TASK PT To get the amount of proceSSing time used A,B,C,D 
STATUS thus far by any task in the system 

REPLY REP To allow the operator to answer a message C 
from the system 

IBM CONFIDENTIAL 25 



Table 2. System operator commands (continued) 

Command Privilege 
Command Abbreviation Function Class 

RETURN RET To physically connect and make availabl13 A 
to TSS/360 the equipment removed by a 
previous PARTITION command 

SHUTDOWN SD To allow the main system operator to A 
terminate the time-sharing operation I 

Table 3. System administrator commands 

Command Privilege 
Command Abbreviation Function Class 

CHANGE CHARGE C CH To change a user's charge number B 
NUMBER 

CHANG E PRIORITY CP To change the priority of any user B 

CHANGE PRIVILEGE CPR To change a user's privilege B 

JOIN J To announce a new user and his initial A,B 
status to the system 

PRESENT PA To get accounting information about any A,B,C,D 
ACCOUNTING user in the system 

PRESENT CHARGE P CH To print the charge number(s) B 
NUMBER of any user in the system 

PRESENT DATA PD To get class, last usage, page count, and A,B,C,D 
SET STATUS type of any data set in the system 

PRESENT LINE PL To present one or more lines from a data A,B,C,D 
set in the system 

PRESENT PASSWORD P PA To get the password of any user in the system A,B 

PRESENT PRIORITY PP To get any user's priority A,B 

PRESENT PRIVILEGE P PR To have a user's privilege class (es) presented A,B 

QUIT QU To deprive a currently joined user of aceess B 
to the system 

26 IBM CONFIDENTIAL 



Table 4. Program checkout subsystem commands 

Command Privilege 
Command Abbreviation Function Class 

DISPLAY D To present the contents of data fields and/or D 
machine registers 

DUMP DU To dump offline the contents of data fields D 
and/ or machine registers 

QUALIFY QUAL To qualify internal symbols of a specified D 
program 

REMOVE REM To remove specific PCS statements D 
that resulted from use of AT phrases 

SET S To change the contents of data locations or D 
machine registers within a program 

STOP ST To stop execution of an object program, D 
return control to the user terminal, and 
present current location of the object program, 
as well as program status information 

AT AT To inform the user when specific locations D 
are reached during execution of his object 
program (when AT is used without a following 
action verb) 

IF' IF Used with a dynamic and/or action verb to D 
form a valild PCS statement 

1.....-. 

IBM CONFIDENTIAL 27 



TERMINAL AND MAIN OPERATOR FUNCTIONS 

The main system operator at the computer center 
is responsible for control of the computer and its 
peripheral equipment. Prime responsibility is 
exercised by the main system operator, who may 
be assisted in tending input/output devices by 
subsidiary system operators. 

The main system operator is joined (that is, 
granted access to the system) at system initiali­
zation and logged on (that is, has a task created 
for him) whenever TSS/360 is started up. He is 
authorized automatically to use all commands in 
the command language (except those which identify 
a user to the system and those used to initiate 
user program execution). The commands reserved 
exclusively for his use allow him to assign equip­
ment, maintain the operator log, request 
configuration displays, send messages to other 
terminals, enter general system information, 
and respond to system messages. In addition, the 
main system operator can join and can quit 
subsidiary system operators who aid in, or 
perform all, peripheral equipment handling. 

System Messages 

The time-sharing system issues three types of 
messages to the user: (1) prompting,. (2) response, 
and (3) confirmation messages. Included within 
the prompting category are a subclass of diagnostic 
messages, which identify errors and request 
corrective action by the user. 

All system messages issued to the user are 
printed on the system output unit (the terminal 
in conversational mode) unless the user has 
requested, with one parameter in the LOGON 
command, that only message numbers be printed. 
If this option is chosen, only the variable field 
(for example, parameter in error) and the message 
code number are printed. A PRESENT LINE 
command, designating the message code number, 
can be used to display the text of the message. 

Prompting 

Under certain conditions, the system prompts the 
user if he does not supply all parameters for a 
command. To prompt, it prints out a message 
asking for the missing parameter. This occurs 
only during conversational operations. The 
general conditions for prompting are as follows: 

• The system always prompts for a missing 
mandatory parameter. 

• The system prompts for an optional para­
meter only if the user has previously asked 
for confirmation. 

• The system never prompts for an optional 
parameter if the user indieates, by commas, 
that the omission was intentional. 

• The system always prompts for the user's 
identification, password, charge number, 
and confirmation requirement when he starts 
a conversational task. 

• The system always prompts for the disposition 
of the user's uncataloged data sets when he 
ends a conversational task. 

An extension of prompting tells the user of any 
error that he made in entering a parameter. In 
this case, the system prints a diagnostic message 
(for example, USERID INVALID. REENTER.), 
which asks the user to enter the correct parameter. 

To signal the user that it is ready to accept the 
next command or statement, thl:3 system prints an 
underscore beneath the first character position of 
a new line. This asks the user to enter his next 
command or statement. However, when the user 
is entering source language statements to a 
language processor, a line number is printed at 
the start of a new line to show that the next line 
can be entered. One other exception occurs when 
the user is entering lines for a DATA or MODIFY 
command. The system then requests new input 
by printing either a pound sign (#) or a line number. 

Confirmation 

When the user starts a task, he is asked whether 
he wishes confirmation. If he requests it, the 
system issues a confirming message for many 
commands. (In some cases, such as the PRESENT 
commands, the action itself confirms the correct­
ness of the command, and no message is required. ) 
The user who requests confirmation is also 
prompted for all optional parameters in commands, 
provided he does not show, by commas, that he has 
intentionally omitted the parameters. Some sample 
confirmation messages are: 

(program name) LOADED. 
DA TADEF COMMAND ACCEPTED. 

The user can change the option that he selected at 
log on by issuing the CHANGE CONFIRMATION 
command. 

28 IBM CONFIDENTIAL 

I 



Responses 

The system prints out a response message for 
certain commands to request information from the 
user or to indicate the result of an action. 
Responses are similar to confirmation messages, 
but are always issued. Some typical response 
messages are: 

(data set name) MODIFIED. 
LOGON ACCEPTED (date) AT (time). 
ENTER MODIFICATIONS. 

System: STARTUP IN PROGRESS. 

TSS/360 Main Operator Terminal Session (Example) 

A sample main operator terminal session follows. 
It illustrates the dialogue between the operator 
and the system from startup to shutdown, showing 
typical uses of operator commands. Note that 
the operator must always strike the ATTENTION 
key before entering any input, except when 
responding to a diagnostic message requesting 
reentry of an erroneous parameter. An underscore 
issued by the system in response to an attention 
interrupt indicates that the system is ready to 
receive the operator's input. In the following 
example the underscores are shown as system 
output on a separate line from the operator's 
input. In actual operation, however, the operator 
types his input in directly over the underscore. 

0001 INSERT DATE IN FORMAT MMDDYY. 
system startup 
initiated 

Operator: hits ATTENTION key 

System: 

Operator: REPLY 1001, 102866 

System: 1001 MSG NO. NOT FOUND, REENTER. date and time set 

Operator: 0001 

System.: 0002 INSERT TIME IN FORMAT HHMM 

Operator: hits ATTENTION key 

System: 

Operator: REPLY 0002, 0350 

IBM CONFIDENTIAL 29 



System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

30 

RESOURCES NAME 

2067.1 CENTRAL PROCESSING UNIT 
2067.2-1,2,3,4 CENTRAL PROCESSING UNIT 
2365.12-1,2,4,5,8 STORAGE ELEMENT 
2167 CONFIGURA TION UNIT 
2846-1,2,3,4 CHANNEL CONTROLLER 
2860.1 SELECTOR CHANNEL 
2860 .. 2 SELECTOR CHANNEL 
2870 MULTIPLEXOR CHANNEL 
2825.5 CONTROL UNIT 
2822 PAPER TAPE READER CONTROL 
2150.1 CONSOLE 
2403.2-1,3 MAGNETIC TAPE UNIT AND CONTROL 
2702.1 TRANSMISSION CONTROL 
2803.1 TAPE CONTROL 
2816 TAPE SWITCHING UNIT 
2820.1 STORAGE CONTROL 
2841. 1-1,2 DISK STORAGE CONTROL 
1051. 1 PRINTER KEYBOARD CONTROL UNIT 
2301 DRUM STORAGE 
2311-1,2 DISK STORAGE 
2401. 1-1, 2,3 MAGNETIC TAPE UNIT 
2402.3-1,2,3,6 MAGNETIC TAPE UNIT 
1052-1,2 PRINTER KEYBOARD 
1403.2 PRINTER 
2540.1 CARD READ PUNCH 
2671. 1 PAPER TAPE READER 
2741 COMMUNICA TIONS TERMINAL 
1316-1,2 DISK PACK 
2973 DISK SWITCH 

0003 REPLY OK WHEN CONFIGURATION IS CORRECT 

hits ATTENTION key 

DETACH 2067. 2-4 

0004 SET SWITCH 36 TO OFF. 
REPLY OK WHEN DONE. 

sets switch as directed, then hits ATTENTION key 

REPLY 0004, OK 

2067.2-4 DETACHED 

IBM CONFIDENTIAL 

system configuration 
presented 

unit detached 



Operator: 

System: ----
Operator: 

System: ---

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

Operator: 

System: 

hits ATTENTION key 

ATTACH 2065.12-6 

0005 SET SWITCH 24 TO ON. 
REPLY OK WHEN DONE. 

sets switch as directed, then hits ATTENTION key 

REPLY 0005, OK 

2065.12-6 ATTACHED. 

hits ATTENTION key 

ATTACH 2402.3-4 

2402.3-4 ATTACHED 

hits ATTENTION key 

REPLY 0003, OK 

STARTUP COMPLETED. 
OTHER TASKS START RUNNING. 
0006 MOUNT VOLUME LABELED JOEDOE ON 
1316-1. REPLY YES WHEN DONE OR NO 
IF ACTION CANNOT BE DONE. 

0007 ATTENTION REQUIRED BY 1403.2. 
REPLY :YES WHEN DONE OR NO IF 
ACTION CANNOT BE DONE. 

hits ATTENTION key 

BULKIO RDCARD 

BULKIO RDCARD COMMAND ACCEPTED 
AND ASSIGNED BSN 0081. 

IBM CONFIDENTIAL 

units attached 

configuration affirmed 

system requests 
operator action 

nonconversational 
task initiated 

31 



Operator: hits ATTENTION key 

System: 

Operator: REPLY 0006, YES 

Operator: hits ATTENTION key 

System: 

Operator: MESSAGE USERJOED, VOLUME LABELED 
JOEDOE MISSING 

Operator: hits ATTENTION key 

System: 

Operator: BROADCAST SYSTEM WILL GO DOWN AT 
0500. TIME NOW IS 0430 HOURS, 28/10/66 

Operator: hits ATTENTION key 

System: 

Operator: REPLY 0007, NO 

Operator: hits ATTENTION key 

System: 

Operator: SHUTDOWN 

System: SHUTDOWN COMPLETED. 

Operator: physically shuts down system. 

TSS/360 User Terminal Session (Example) 

This sample terminal session illustrates an 
assembly of a prestored data set. The assembly 
is conducted conversationally up to its last seg­
ment. The user then issues an attention interrupt, 
enabling him to create and catalog a data set of 
prestored commands. He then remotes this 
command data set, effecting nonconversational 
resumption and completion of assembly, thus 
freeing the terminal for a new task. 

A description of terms that appear in the 
session follows. 

userid the user's identification 
consisting of from three to 
eight alphameric characters, 
the first of which is alphabetic 
(alphameric refers to the letters 
A through Z and the numerals 

password 

charge number 

priority 

32 IBM CONFIDENTIAL 

J 

reply to first 
. system request 

message sent to 
user 

message sent to 
all users 

reply to second 
system request 

system shutdown 

o through 9; blanks and special 
characters are not included). 
Each userid must be unique 
within the system. 

a code word containing from 
one to eight nonblank charac­
ters. Alphabetic, numeric, 
and special characters except 
for 0, and tab are valid. The 
password validates the user to 
the system. 

the user's account number, 
consisting: of from one to eight 
alphameric characters. 

a one-digit numeric code from 
zero to nine. Zero is the lowest 
priority, nine the highest. 



prompting 

confirmation 

User: 

System: 

User: 

System: 

User: 

System: 

User: 

System: ----

User: 

System: 

User: 

User: 

System: 

User: 

User: 

messages issued by the system, 
to which the user must respond. 
Prompting is issued for any 
mandatory parameter that is 
omitted. Prompting messages 
for optional parameters are 
issued only if the user has 
requested confirmation. 

messages informing the user 
of the action taken by the system 
in response to a command or 

hits ATTENTION key 

ENTER USERID. 

USERNAME, UN1507, N, , PASSWORD 

LOGON ACCEPTED 10/17/66 AT 1015. 
NO CONFIRMATION. 
FULL MESSAGES. 

LOADASM 

RUN 

ENTER SOURCE DSNAME. 

APPLE. PIE 

response 

SOURCE DS PRESTORED? ENTER Y OR N. 

Y 

ENTER LISTING DSNAME. 

APPLE. LIST, , YYNNNNN 

MODIFICA TIONS? ENTER Y OR N. 

N, 

hits ATTENTION key 

IBM CONFIDENTIAL 

command parameter. Confir­
mation messages are supplied 
on1y if the user has requested 
confirmation. 

messages that inform the user 
of the system action taken for 
a command or command para­
meter. Response messages 
are issued without regard for 
the user's confirmation option. 

-- user logs on 

assembler loaded 

assembly initiated 

parameters for pre­
stored source data 
set entered 

indicates no modifi­
cations and processing 
to continue 

assembly processing 
interrupted 

33 



System: 

User: 

System: 

User: 

System: 

User: 

System: 

User: 

System: 

User: 

System: 

User: 

System: 

User: 

System: 

34 

DATA APPLE. CONTINUE 

# 

RUN 

# 

N, N (To answer prompts about cataloging source and 
listing data sets) 

# 

LOGOFF 

# 

% END 

CATALOG APPLE. CONTINUE 

REMOTE APPLE. CONTINUE 

TASK RUNNING NONCONVERSATIONALLY. 
ASSIGNED BSN 0359. 

IBM CONFIDENTIAL 

,~ommand data set 
,~reated 

J- command data set 
cataloged 

~ execution resumed 
~ none onver sationally 



SYSTEM ADMINISTRATION AND ACCOUNTING 

Access to TSS/360 is controlled by system 
administrators, who can authorize or deny such 
access to the users for whom they are responsible. 
Each system administrator is joined (that is, 
granted access to the system) by the main system 
administrator. The administrators, in turn. can 
join users by identifying them to the system, 
assigning each a password. a user ID, privilege 
classes (up to but not including administrator 
level), a priority. and charge numbers. To 
assure accountability, the system prefixes a 
user's ID and charge numbers with a unique code 
derived from his administrator's ID. Once he 
is joined by an administrator. a user can access 
TSS/360 freely until his authorization is revoked 
by his administrator. 

The system maintains accounting statistics 
from which charges can be derived for each 
TSS/360 user. To some extent, the user can 
study his statistics to learn morc effective ways 
of cmploying the system. The PRESENT 
ACCOUNTING command enables the user to get 
all accounting statistics for each charge number 
assigned to him. 

Accounting statistics fall into two main 
categories - static and dynamic. Static statistics 
apply to the storage of cataloged data, sets; dynamic 
statistics deal with the time the user actually 
works with the TSS/360. 

Static statistics are kept for every cataloged 
data set residing on public storage in the system. 
These statistics are a function of the type of 
storage used for the data set, the data set page 
length. and the number of days the data set is 
cataloged. Such statistics are accumulated under 

the charge number assigned to the user when he 
created the data set. 

Dynamic statistics are accumulated while the 
user is logged on the system. When the user logs 
on, a table is set up for his dynamic statistics, 
and is continually updated as long as the user 
remains on the system. At log off, the table is 
again updated to show total times, and the dy­
namic statistics are transferred to a master set 
of statistics accumulated for the user under his 
eurrent charge number. Dynamic statistics 
include: 

• Total CPU time used. 
• Accumulated time for each reserved I/o 

, unit. This information reflects both the 
length of time that an I/O unit was reserved 
for the user and the type of unit reserved. 
Type refers to the terminal model, tape 
drives, disk pack, printer. punch, etc. 

• Accumulated channel usage. This indicates 
the number of channel accesses for I/O 
made during the time that the user is active 
on the system. 

• Accumulated time for active pages in storage 
during the user's time slice. This reflects 
the actual number of pages of storage re­
quired during each time slice and is thus the 
user's total "page - time slice" usage. 

• Accumulated time for pages in virtual 
memory. This accounts for the time that 
a page is part of the task's virtual memory. 

All accounting statistics are accumulated for 
a user identification and for the charge number 
associated with that identification. Thus, a main 
account (that is, a charge number) can have 
subaccounts, each identified by the charge number 
that is linked with a user identification. 

IBM CONFIDENTIAL 35 



CODING AND LINKAGE CONVENTIONS 

It is often convenient to write a large program in 
sections. The sections may be assembled or 
compiled separately, tlien combined later into one 
executable object program module. The TSS/360 
language processors provide facilities for creating 
multisectioned programs and symbolically refer­
encing separately compiled programs or program 
sections. 

The concept of program sectioning is a 
consideration at coding time, compile time, and 
load time. To the programmer, a program is a 
logical unit. He may want to structure it into 
sections commonly called control sections; if so. 
he writes it in such a way that control passes 
properly from one control section to another. 
regardless of the relative position of the control 
sections in storage. 

In writing a TSS/360 program. the basic unit 
of structure is a control section comprised of 
coding. the virtual memory location assignments 
of which can be adjusted, independently of other 
coding. at linkage or load time without altering or 
impairing the operating logic of the program. 
Each control section is assigned at least one page 
(4096 bytes) of virtual memory and an origin at 
a page boundary by the dynamic loader routine. 
The assigning of a page(s) to control sections 
facilitates the linking to, and loading of, control 
sections. since a page is the smallest piece of 
information that can be relocated independently 
within the time-sharing environment. 

A TSS/360 program can be sectioned using 
three types of control sections, one of which is 
called simply "control section" (CSECT). and the 
other two, "prototype control section" (PSECT) 
and "common control section" (COM). Regardless 
of the degree to \\hich a program is sectioned, the 
programmer knows the elements that constitute his 
virtual memory, because he has described them 
symbolically. He cannot, however, make any 
assumptions about the position or ordering of 
control sections, since their virtual memory 
location assignments may have been adjusted by 
the linkage editor and/or the dynamic loader 
routines, and their core storage addresses may 
be changing constantly with the time-sharing 
environment. 

In the following discussions, the term "control 
section" is used inclusively for all three types of 
control sections (CSECT, PSECT, and COM). unless 
specified otherwise. 

LANGUAGE PROCESSING 

Processing by the language processors - assembler 
and FORTRAN compiler - primarily involves the 
translation of source statements into executable 
machine language. The output from the language 
processors is an object program module. a 
machine language equivalent of the source program. 
The processors also produce a printed listing of 
the source statements and objeet statements, and 
additional information useful to the programmer 
in analyzing his program. The object program 
module consists of one or more control sections 
and a control dictionary. The eontrol dictionary 
contains information that the linkage editor and the 
dynamic loader routines require to complete cross­
referencing between cor:ITol seetions. 

The name of an obj ect module produced by the 
assembler consists of the first eight characters 
of the list data set name supplied by the user, while 
the name of the program module produced by the 
FORTRAN compiler consists of the first six charac­
ters of the list data set name suppl ied by the user. 
This program module is divided into three 
identifiable subsets: the program module dictionary 
(PMD), the text module (TXT). and the internal 
symbol dictionary (ISD). A brief summary is 
provided below: 

1. The PMD comprises a heading that contains 
the standard entry point to the module and other 
information common to the whole module. together 
with one control section dictionary (CSD) for each 
control section in the module. Each CSD contains 
information regarding the external symbol 
definitions and references. relocation pointers. 
and paging information - in short. all information 
required to produce from the text a fully linked, 
executarle. object module. 

2. The text module contains the pure binary 
text of instructions and constants generated by the 
assembler or compiler. This is acted on and 
allocated to virtual memory by the information in 
the CSD. The text for each control section in the 
module begins on the page boundary in the text 
module. 

3. The internal symbol dictionary is provided 
optionally for use with the program checkout 
subsystem. 

36 IBM CONFIDENTIAL 



CONTROL SECTION GENERATION 

Control sections are generated in response to four 
specific directives (CSECT, PSECT, COM, START). 
They may be assigned names. In default of a 
specific directive, one unnamed control section 
per module is generated. 

Control sections are generated by the FORTRAN 
compiler according to the following rules: 

1. One fixed-length, reenterable, read-only 
section is generated to contain the instruetions and 
constants. 

2. One fixed-length prototype section is gener­
ated to contain variables. 

3. One common section is generated for each 
common block declared in the source code. 
The main entry point and the control sections 
generated for instructions and variable are named 
by affixing standard suffixes either to the FORTRAN 
names of the routines (in the case of subroutines) or 
to the program module name. The common 
sections are named from the declared common 
hlock names. The suffixes are: 

1. Main entry point: # E 
2. PSECT: #P 
3. CSECT: #C 

CONTROL SECTION ATTRIBUTES 

To facilitate dynamic linkage and loading within the 
time-sharing system, it is often necessary to 
indicate that certain attributes are characteristic 
of the data or instructions within a control section. 
One or more of the following operands may be used 
in CSECT, PSECT, COM, and START directives 
to indicate which attributes are to be assIgned to 
the section. Attributes may be specified singly or 
in combination, where meaningful. 

~. Variable-length. This is a section of inde­
terminate length. At load time, each such 
section is allocated 20 pages. 

• Read only. This attribute specifies that the 
control section may not be stored into; it 
causes memory protection. 

o Public. This attribute specifies a control 
section that may be shared by several users. 

o Prototype control. This is a special control 
section used by reenterable routines for 
communication and temporary storage. A 
separate copy of the prototype section is 
provided to each user of a public reenterable 
routine. 

• Common. This is a control section common 
to all modules in which it is declared. 

• Privileged. This is a control section eligible 
to be classed as a privileged system program 
when placed into the TSS/360 System Library 
(SYSLIB). 

CSECT - CONTROL SECTION 

The CSECT identifies the beginning of a control 
section. If a symbol names the CSECT instruction, 
the symbol is established as the name of the control 
section; otherwise, the section is considered to be 
unnamed. All statements following the CSECT are 
assembled as part of that control section until a 
statement identifying a different control section is 
encountered. The text of each control section 
starts on a page boundary, and a virtual memory 
page table is constructed as the text is produced. 

PSECT - PROTOTYPE CONTROL SECTION 

Within the time-sharing system, a single copy of a 
commonly used reenterable routine appears to have 
different virtual memory location assignments to 
different users, although its physical disposition 
in storage remains unchanged. When control is 
transferred to a reenterable routine, the calling 
task must supply an address constant that reflects 
the virtual memory assignments of the calling 
program so that the reenterable routine may obtain 
data storage unique to the user. Ordinarily, this 
would imply that a program which calls a reenter­
able routine should be knowledgeable about all 
address constants that might be required within the 
hierarchy of reenterable programs. To minimize 
this clerical burden, a prototype control section is 
defined for use by reenterable programs to simplify 
the handling of address constants and working 
storage. 

On loading of the reenterable routine, a copy of 
the contents of all nonpublic sections (prototype 
sections) is made and assigned virtual memory 
locations within the domain of the calling program. 

In a reenterable program, all working storage 
and address constants are assembled within a 
prototype section or within some other nonpublic, 
nonread-only control section; the user need not 
know any of the internal requirements of the 
routine he calls. 

Communication of prototype section information 
is accomplished through the use of an R-type ad­
dress constant. This supplies the location of the 
control section, which is required by the reenterable 
program for working storage and address constants 
unique to the calling program. Use of the R-type 
address constant causes the loader to supply the 
location of the section in which the entry point name 
was declared. 

COM - COMMON CONTROL SECTION 

The COM directive identifies and reserves common 
areas of storage that may be referred to by inde­
pendent assemblies or compilations that have been 

IBM CONFIDENTIAL 37 



linked and/or loaded for execution as one overall 
program. 

One blank common section and any number of 
named common control sections can be designated 
in an assembly or compilation. 

No instructions or constants are assembled in 
the blank common control section. Data can be 
placed there only through execution of the program. 
Instructions and constants, however, can be 
assembled in named common control sections. 

R-TYPE ADDRESS CONSTANT 

The R-type address constant is used to link to 
reenterable modules. It supplies the location of 
the control section in which the entry point was 
declared (usually a PSECT). It is not necessary 
for the programmer to know the name given to the 
control section by the reenterable module, since 
he needs only to know the desired entry point 
within the reenterable module. Use of the R-type 
address constant causes the dynamic loader to 
supply the location of the control section as a 
function of the entry point name. 

V -TYPE ADDRESS CONSTANT 

A V -type address constant is used to reserve 
storage for the address of an external symbol 
that is used for effecting branches to other 
modules. The constant may not be used for 
external data references; it is specified as one 
relocatable symbol that does not require identi­
fication in an EXTRN statement. Whatever 
symbol is used is assumed to be an external 
symbol, since it is supplied in a V -type address 
constant. 

REENTERABLE ROUTINES 

As previously stated, each task in the time-sharing 
system is protected by virtual memory addressing. 
There still remains the problem of shared 
routines - that is, routines addressable by two 
or more tasks simultaneously. For this sharing 
to be feasible, such routines must be incapable 
of alteration by either task - either through 
referencing or through execution. 

In addition, to minimize paging, it is desirable 
that as many pages of a task as possible remain 
unchanged by execution. This arises because an 
unchanged page in core storage does not require 
copying out to auxiliary storage at the end of the 
current task's time slice, since a fresh copy of 
the original page suffices for future needs. 

Reentrancy permits both of these needs to be 
satisfied. A reenterable routine is one that meets 
several criteria: 

1. It must not be alterable by any user task. 
This is achieved by making it read only through 
the use of the equipment storag'e protection keys. 

2. It must not be altered by loading or relo­
cation. This is achieved through forbidding the 
inclusion of any relocatable address constants 
within the reenterable routine. 

3. It must not modify itself when executed. 
This is achieved by the programmer who codes 
the routine and is monitored by the equipment 
storage protection keys. 

A routine that meets all theE:e criteria would 
itself be capable only of operattng on the general 
registers of the System/360 and in locations whose 
addresses were passed in a general register as a 
parameter. This restriction is avoided without 
compromising the above requirements by separating 
all the data that is modified by the relocation or 
operation of the reenterable routine into a prototype 
control section. This includes parameters, 
temporary storage, and the relocatable address 
constants (Adcons) required to :refer to and cover 
the reenterable routine. The location of the 
prototype control section is furnished to the 
reenterable routine in the SAVE area of the calling 
routine at the time the routine is called, and is 
referenced by the routine loading a base register. 
In general, addressability (base register coverage) 
of the PSECT must be maintained throughout the 
execution of a reenterable routine. 

Protection of the sharing tasks against inter­
ference, each from the other, is provided by giving 
each sharing task a separate copy of the PSE CT. 
Neither task's copy is addressable by the other, and 
each task's copy is addressable by the reenterable 
routine only while it is under control of that task. 

Minimization of paging is achieved by the 
concentration of changeable items into PSE CT' s, 
so that only the pages of the PSE CT require 
recopying when paged out. 

CODING CONVENTIONS - REENTERABLE 
ROUTINES 

FORTRAN-compiled programs are generated as 
reenterable modules (with PSECT's) by the com­
piler. However, the programmer who wishes to 
write a reenterable routine in assembler language 
has several responsibilities: 

• Entry and exit must be in accordance with 
the system linkage conventions. A save area 
must be provided if any other subroutines is 
to be called. 

• Both a reenterable code control section 
(CSECT) and a prototype section (PSECT) 
must be written and assembled together unless 
the routine contains no relocatable Adcons and 
requires no local storage of its own. 

38 IBM CONFIDENTIAL 



• All Adcons, temporary storage, program 
switches, or other data that may be relocated 
or modified by execution must be written in 
the PSECT or in some other nonpublic, 
nonread-only control section. 

• The ENTRY statement that defines the entry 
point(s) to the reenterable routine must also 
be written in the PSE CT or in some other 
nonpublic, nonread-only control section. The 
label that is made an entry point is defined in 
the control section. This convention permits 
the resolution of the R-type address constants 
in referring to the routine. 

• Care must be taken that no byte within the 
CSE CT is in any way subj ect to modification. 
by loading or execution of the code. 

• The reenterable and read-only attributes 
must be assigned to the CSECT. If the 
routine is to be shared, the PUBLIC attribute 
must also be assigned. 

LINKAGE CONVENTIONS 

Linkage conventions are those conventions which 
govern communication among programs. Basically, 
there are two types of communication: the type 
that involves the supervisor (supervisor-assisted 
linkages are characterized by an SVC) and the type 
that is independent of the supervisor. 

There are two classes of modules that 9perate 
in virtual memory - privileged and nonprivileged. 
All language processors and most user modules 
are nonprivileged. Generally, privileged modules 
require some special capability, such as access 
to tables internal to the supervisor or the ability 
to give privileged SVC's. Using the definition of 
privileged and nonprivileged modules, and under­
standing that any module must necessarily belong 
to one of these classes, the following three types 
of linkage conventions have been developed: 

Type I - Between two nonprivileged or between 
two privileged modules 

Type II - From a nonprivileged to a privileged 
module 

Type III - From a privileged to a nonprivileged 
module 

Type I linkages are independent of the supervisor, 
whereas type II and type III linkages are supervisor­
assisted. The design is such that the called module 
does not know the type of linkage involved (that is, 
whether the calling module is privileged). Macro 
instructions are provided in the system macro 
library, which provides the appropriate linkage. 

In the TSS/360, all linkage among modules 
residing in virtual memory conforms to the 
conventions outlined below. 

Conventions for Type I, Type II, and Type II~ 
.Linkages 

General Register Usage 

15,0 Supervisor parameter 
registers 

1 Parameter list register, 
supervisor parameter 
register 

13 Save area register 
14 Return register 
15 Entry point register, 

return code register 

It is the responsibility of the called module to 
rnaintain the integrity of general registers 2-12, 
so that their contents are the same at exit as they 
were at entry to the called module. It is the 
responsibility of the calling module to maintain 
the floating-point registers around a call. General 
registers 0, 1 and 13-15 must conform to the 
previously stated conventions. 

Save Area 

In any type I linkage, whenever one module calls 
another, the calling module provides a save area 
for use by the called module; the calling module 
is known as the owner of the save area. This save 
area is addressed by the save area register on 
entry to a called module and has the following 
format: 

1. Word 1 - contains the length of the save 
area and any appendages to it in bytes. This 
field is set by the calling module in its own save 
area. 

2. Word 2 - contains a pointer to the save 
area of the calling module. This field is set by the 
called module in its own save area. This allows all 
save areas of active modules to be linked in a 
reverse chain. 

3. Word 3 - contains a pointer to the save 
area of a called module after its invocation. This 
field is set by the called module in the calling 
module's save area. This allows all save areas 
of active programs to be linked in a forward 
chain. When the called module is complete, if 
trace forward has been specified, it sets the low­
order bit of this field to 1, to stop the forward 
chain. 

4. Word 4 - contains the return linkage for 
use by the called module when it is complete. 
This field is set by the called module in the calling 
program's save area. 

IBM CONFIDENTIAL 39 



5. Word 5 - contains the entry point address 
to the called module. This field is set by the called 
module in the calling module's save area. 

6. Word 6-18, register save area - these fields 
are set by the called module in the calling module's 
save area, as necessary, to preserve registers 
0-12. 

7. Word 19 - contains the address of the PSECT 
belonging to the called module. This field is set by 
the calling module in its own save area. 

A module may use its own PSE CT for a save 
area provided that the head of the PSE CT is for­
matted as indicated above. However, a called 
module should never use its own PSECT to save 
registers under any circumstances. The calling 
module always provides save area locations. 

Various linkage techniques are provided in 
macro form in TSS/360, including: 

CALL - both implicit and eXplicit linkage (see 
below) 

LOAD - explicit load of a module by an external 
name 

SAVE - save registers (used normally at entry 
points) 

RETURN - restore registers 
DELETE - explicit unlinking of a module 

Implicit Linkage 

The use of a V -type or an R-type address constant 
to refer to an external symbol constitutes an 
implicit linkage call. When a previously undefined 
external symbol is referred to, the loader is in­
voked by a relocation interrupt, and performs the 
necessary action to link together the referenced 
and referencing module. This action is automatic 
and requires nothing of the user beyond specification 
of external symbols and Adcon types, as required 
by the as sembler . 

Explicit Linkage 

In certain types of programming, situations arise 
when a given run of a module may cause only one of 
a number of independent subroutines to be required. 
Since dependence on normal implicit linkage requires 
the presence of Adcons in the calling module for all 
such subroutines, some unnecessary overhead is 
experienced in preparing the unused ones for linking. 

To allow for this situation, two explicit linkage 
functions are provided. These cause the desired 
subroutine module to be retrieved and linked upon 
the execution of an explicit dynamic LOAD or CALL 
macro. 

Use in FORTRAN 

If a call is to be made to an explicitly-linked 
subroutine, an implicit call is made to a library 
load subroutine, which takes the first parameter 
in the calling sequence as the name of the subrou­
tine to be linked and executes a LOAD macro, after 
which it executes a normal FOHTRAN call to the 
newly-linked routine, using the remainder of the 
original parameter list. 

If a parameter to be passed is the address of 
another subroutine, a pointer to two Adcons (V-type 
and R-type) is passed instead of passing both Adcons. 

Explicit Unlinking 

Occasions may arise when a user wishes to dispense 
with a linked module because it is no longer needed, 
and he wishes to free virtual memory space. This 
facility is provided by the DELETE macro. The 
unlinking process consists of the following steps: 

1. Deletion of the dictionary for the unlinked 
module, removal of its external references from 
their use chains, maintenance of memory map, 
and explicit call chain tabulations 

2. Release of pages and page tables relevant to 
the unlinked module 

3. Deletion of any modules (as above) that, as 
a result of unlinking this module, have become 
superfluous to the allocation. Specifically, deletion 
of a module occurs if it no longer has either: 

a. Any explicit callers 
b. Any users of its external definitions 

PROGRAM TYPES, SYSTEM SYMBOLS, AND 
EXTERNAL NAME CONVENTIONS 

The TSS/360 system provides user facilities to link 
to many of the system service routines, such as the 
I/O access method entry points. Most references 
to these system entry points are provided in the 
TSS/360 macro library, and the user need not 
actually use the external symbols that the system 
has defined. However, as system facilities are 
invoked, the system-defined external symbols 
contained therein are added to the task dictionary 
for that user. 

The following discussion describes the types of 
external symbols that the system defines and that 
are hence restricted from user definition, and the 
types of external symbols that the system has 
defined for user referability. 

Logically, the TSS/360 operating system contains 
and handles three types of modules: 

40 IBM CONFIDENTIAL 



1. Resident supervisor module operating with 
core storage addresses 

2. System modules operating in virtual memory 
with privileged status; that is, modules possessing 
a greater freedom than user modules in the use of 
other system modules and resident supervisor 
services. The I/O access method routines are 
examples of such system routines. 

:3. User modules - there are two types: 
a. IBM-provided 
b. User-written 

The linking of system modules together with 
IBM-provided and user-written modules introduces 
the external symbols defined by the TSS/360 oper­
ating system modules into user referability. The 
IBM -defined external symbols are: 

1. User-referable system symbols. These are 
all of the form SYSxxxxx. A user module may not 
define such a symbol. -

2. User-referable system function symbols. A 
user module may define such a symbol. 

All system routine modules, control sections, 
prototype sections, and entry point names start 
with the alphabetic letter C. User-written modules 
must avoid the use of external symbols starting 
with the letter C. 

SYMBOLIC LINKAGES 

Symbols may be defined in one module and referred 
to in another, thus effecting symbolic linkages 
between independently assembled modules. The 
linkages can be effected only if the language proc­
essor is able to provide information about the 
linkage symbols to the dynamic loader, which 
resolves these linkage references at load time. 
The assembler or compiler places the necessary 
information in the control dictionary on the basis 
of the linkage symbols identified by the ENT~Y and 
EXTRN statements. Note that these symbolic 
linkages describe linkages between independently 
compiled control sections. 

In the program where the linkage symbol is 
defined (that is, used as a name), it must also be 
identified to the language processor by an ENTRY 
statement. It is identified as a symbol that names 
an entry point; this means that another module will 
use that symbol to effect a branch operation or a 
data reference. This information is placed in the 
control dictionary. 

Similarly, the module that uses a symbol defined 
in some other module must identify it by an EXTRN 
statement or a V -type address constant reference. 
It is identified as an externally defined symbol (that 
is, defined in another module) that is used to effect 
linkage to the point of definition. This kind of infor­
mation is also placed in the control dictionary. 

PROTE CTION CLASSES 

Since the supervisor programs are protected by 
virtue of nonaddressability, the service routines 
and the user's own routines are the only ones with 
which he is concerned regarding protection. Cer­
tain service routines are not accessible to the user 
directly. These routines are assigned a storage 
class of C, which indicates that the user module 
may neither write into them nor refer to them with 
a read or branch. His only communication with 
these routines is through supervisor calls, which 
provide a monitored and protected entry to the 
service routines. 

Another category of service routines, for 
example, FORTRAN library subroutines, are given 
a storage class of B. This permits the user to 
read and transfer to them, but not to write into 
them. The user may provide this level of pro­
tection to his own routines through specification of 
the read-only attribute on the control section. The 
eode CSECT generated by the FORTRAN compiler 
is protected automatically in this way. The lowest 
eategory of protection, used for user routines that 
do not have the read-only attribute, is storage 
class A. Areas within this class may be freely 
read and written by user routines. 

Good coding practice dictates that read-only 
protection be used whenever there is not a specific 
reason for storing into a section of a program. In 
addition, it must be used for reenterable or public 
routines. 

LINKAGE EDITOR AND DYNAMIC LOADER 

The linkage editor and the dynamic loader can take 
control sections from various assemblies and 
compilations and combine them properly with the 
help of the corresponding control section diction­
aries. Successful combination of separately 
produced control sections depends on the techniques 
used to provide symbolic linkages between the 
control sections. 

Linkage Editor 

The linkage editor is a service prograrn, used 
optionally in association with the language 
processors. 

The output of a single compilation or assembly 
is called an obj ect program module or simply a 
module. Normally, this single module is input 
directly to the dynamic loader, and all other 
modules necessary to form a task are dynamically 
linked together. However, the user· may find it 
desirable to process one or more modules through 
the linkage editor before employing the loader. 

IBM CONFIDENTIAL 41 



The linkage editor can perform the following 
functions, as specified by the user: 

• Two or more modules, created by the same 
or by different language processors, can be 
statically linked together to form one program 
module. A statically linked module requires 
somewhat less loader processing time and 
makes more efficient use of virtual memory 
(at the cost of linkage editor processing time-). 

• Control sections within modules can be 
replaced, deleted, or renamed. 

• Entry names and external references can be 
renamed. 

• Entry names can be deleted. 
• A new module entry point (transfer point) can 

be defined. 
• The attributes of control sections can be 

changed. 
• Two or more control sections can be combined 

into a single control section. 
Processing by the linkage editor is governed by 

statements arriving from a remote terminal device 
(conversational mode) or from the primary input 
device (nonconversational mode). Users at the 
terminals can correct control statement errors 
detected by the linkage editor. 

Subroutines from a user library can be included 
in the output module at specified points. However, 
if it is desirable that this type of routine be included 
dynamically at execution time, a library statement 
to the linkage editor creates tables for the dynamic 
loader, facilitating the loading of these routines at 
execution time. Thus, user libraries need not 
contain standard system subroutines;' if the routine 
is sharable, it is possible that the copy linked to 
is already in core storage. 

Output from the linkage editor is the same as the 
output from any language processor and is in a form 
processable by the dynamic loader. The output 
module consists of three parts: the dictionary, the 
text, and, optionally, the internal symbol dictionary. 
The dictionary contains all the information necessary 
to process and load the text (including information 
about all control sections within the module), re­
location information, and the initial entry point to 
the program. Also supplied is information 
pertaining to user library requirements and the 
total blank COMMON requirements of the output 
module. The output module from the linkage editor 
can be executed or processed again as input to the 
linkage editor. 

Dynamic Loader 

The dynamic loader is one of a subset of service 
routines that is initialized into the user's virtual 
memory at LOGON time. It is available for use 
by other system routines and by the user, in either 
conversational or nonconversational mode. With 
this facility the user need not use the linkage 
editor's services between creation of program 
modules by a language processor and execution of 
the program (task). This is useful especially when 
a given run of a module may cause only one of a 
number of indepencient routines to be required. 
That particular routine may then be explicitly 
called at execution time, eliminating the require­
ment for linking the unused routines. 

The dynamic loader allocates virtual memory 
and links external symbols among various 
separately assembJ0d or compiled program modules 
on a dynamic basi". To the dynamic loader, there 
are no programs - only control sections that must 
be fashioned into an object task. The dynamic 
loader allocates virtual memory as follows: 

• CSE CT' s of specified length are allocated a 
fixed number of pages. 

• PSECT's are handled similarly to CSECT's. 
However, when the PSECT is associated with 
a shared public routine, its external page 
table is saved, and a fresh copy is made for 
each user of the routine. 

• COM control sections are allocated a variable 
number of pages, depending on the longest 
length declared in any module already loaded. 

The dynamic loader consists of three independent 
routines. The first, the explicit linkage routine, 
is called by the user through a supervisor call 
(SVC). The user provides a name as input to the 
routine. The loader finds the module, and if the 
module has not already been processed, information 
about the module is placed in the loader tables, 
virtual memory addresses are assigned to its 
various control section$, and page tables are 
constructed for the module. If any relocation is 
necessary, the pages are marked "unavailable" 
and "unprocessed by loader". 

The implicit linkage routine is called when a 
page-unavailable interrupt occurs due to a user 
program reference to a page for which the loader 
has constructed a page table entry but has not 
performed the relocation of address constants. 
This routine relocates the address constants in the 

42 IBM CONFIDENTIAL 



referenced page. External references to new 
modules from the page cause the loader to "link" 
them in a manner similar to that described above 
for an explicit linkage call. 

Another facility available is the unlinking of 
modules. The explicit unlinkage routine is entered 
through an SVC, which causes the loader to delete 
all table entries for the module specified by name. 

Later linkages may be caused either by 
implicit references from the linked module or by 
explicit calls. Implicit and explicit linkage are 
further described below. 

When a symbol within a module is referred to 
initially., either explicitly or implicitly, the 
following action occurs in the dynamic loader: 

1. The PMD for the module containing the 
symbol definition is obtained from the library 
and inserted in a task dictionary. 

2. The external page table for the module is 
retrieved froD the library; from this, and from 
the virtual memory tables within the CSD, a new 

page table entry is constructed for each control 
section. These pages are assigned virtual memory 
addresses, and a memory map is constructed with 
an entry for each control section. 

3. All pages for the new sections are marked 
"unavailable". Those which require relocation of 
Adcons within the test are marked "unprocessed 
by loader". 

4. When a page-unavailable interrupt is 
detected by the paging supervisor, the page is 
retrieved from auxiliary storage and placed in the 
user's virtual memory. If the unprocessed bit is 
set, the loader is provided with the virtual 
memory address of the retrieved page. 

5 .. The loader then locates (through the memory 
map) the dictionary for the control section that 
includes the referred-to page. 

6. All test modifiers for this page are executed, 
thus relocating all Adcons in that page. Any new 
symbols referred to by the page cause this cycle 
to be started over at step 1 above. 

IBM CONFIDENTIAL 43 



DA TA MANAGEMENT CONCEPTS AND FACILITIES 

The management of data in a time-sharing system 
poses many problems that either do not exist or 
can be ignored with less severe consequences in a 
more conventional batch processing system. All 
data in the entire installation must be available to 
each terminal user within a ''reasonable'' time span; 
this capability should not be restricted by the data 
management system. Any restrictions on the un­
limited accessibility of data should be imposed 
only by the users themselves, for security reasons, 
for example. The size of the data sets may 
require large amounts of storage online and 
accessibility within a matter of milliseconds. IBM 
supplies this magnitude of storage in a wide range 
of devices having large capacity and various degrees 
of accessibility. 

The data management function of Time-Sharing 
System/360 assists programmers in achieving 
maximum efficiency in managing the mass of data 
and the many programs that are processed in an 
installation. To attain this objective, data manage­
ment facilities have been designed that provide 
systematic and effective means of classifying, 
identifying, storing, cataloging, and retrieving 
all data (including loadable programs) processed 
by the TSS/360. 

All data in the Time-Sharing System/360 is 
maintained in the form of data sets. A data set 
is a named, organized collection of one or more 
related records. Information in data sets is not 
restricted to a specific type, purpose, or storage 
medium. 

The facilities provided can be grouped into 
three major categories: data set control, data­
access, and storage allocation. 

DA TA SET CONTROL 

This section describes the data set control facilities 
of TSS/360. Data set identification, cataloging, 
security, storage space allocation, and data defi­
nition procedures are described. Information is 
also provided on label and record formats. 

TSS/360 provides a comprehensive group of 
facilities that feature automatic and efficient control 
of many data processing operations performed 
previously by programming personnel as clerical 
tasks. A number of these control facilities are 
described in the following paragraphs. 

Data set location control, supported by an 
extensive cataloging system, enables programmers 
to retrieve data and program modules by symbolic 
name alone, without specifying device or volume 
serial number. In freeing computing personnel 
from the necessity of maintaining involved 

volume serial number inventory lists of data and 
programs stored with the system, the catalog 
reduces manual intervention and its concomitant 
human error. 

Another major facility of the cataloging system 
enables programmers to classify successive gener­
ations (updates) of related data. These generations 
can be referred to relative to the current generation. 
The system automatically maintains a list of the 
most recent generations that have been produced. 

Control of confidential data js a recurring 
managerial problem that is solved by the data set 
protection facility of TSS/360. Using this facility, 
a programmer can prevent unauthorized access to 
data sets requiring protection. Unauthorized 
attempts to gain access to such data sets result in 
an abnormal termination. 

In addition to data set location control and 
protection, control of direct access storage space 
allocation is provided by the system. This control 
facility frees programmers of the details involved 
in allocating direct access storage space to a data 
set. The programmer need specify only the amount 
of space required and, optionally, the storage 
device required, and space is allocated accordingly. 

The system, as well as providing a wide range 
of control facilities, permits the programmer to 
organize data sets and individual records in a 
variety of standard formats that can be selected to 
meet specific data processing needs. 

DATA ACCESS 

The data access facilities provided by the operating 
system are a major expansion of the input/output 
control systems (IOCS) of previous operating 
systems. 

Input/ output routines are provided to schedule 
and control the transfer of data between core 
storage and input/output devices. Routines are 
available to perform the following functions: 

• Read data 
• Write data 
• Block and deblock record.s 
• Overlap reading/writing and processing 

operations 
• Read, verify, and write volume and data 

set labels 
• Reposition volumes automatically 
• Detect error conditions, and correct them 

when possible 
• Provide exits to user-written error and 

label routines 
Flexibility has been a majOJC' design principle in 

the system's data access facilities. The program-

44 IBM CONFIDENTIAL 



mer and the installation can select from several 
methods of data access to obtain a group of facilities 
tailored to their processing requirements. Each 
access method supplies a comprehensive group of 
macro instructions that permit the programmer to 
specify input/output requests with a minimum of 
effort; the programmer need not be concerned with 
learning the individual access characteristics of the 
many input/o~tput devices supported by the system. 

The following access methods are available to 
the user of TSS/360: 

1. SAM - Sequential access method 
2. VAM - Virtual access method 
3. TAM - Terminal access method 
4. GAM - Graphic access method 

Within V AM, various data organizational methods 
are provided to assist the user in organizing data. 

STORAGE ALLOCATION 

Data storage within the proposed time-sharing 
system is organized into a hierarchy that might 
be described as constituting a triangle of variable 
dimensions (see Figure 9). 

Storage media closer to the base of the triangle 
store data at a lower unit cost but require longer 
access time. Storage media closer to the apex 
permit fast access at a higher cost per unit. The 
total area of the triangle corresponds to the total 
data capacity of the system. Response time can 
be improved by increasing the number and capacity 
of the devices with faster accessibility. The design 
of the data management system permits this flexi­
bility without requiring recompilation of programs 
or reformatting of data. 

"On-Line" Storage 

Figure 9. Storage allocation 

Disk Files 

2311 

Disk Packs 

2321 

Data Cells 

Magnetic 
Tape 

The vertical data set fiow is triggered auto­
matically whenever idle time is present on either 
CPU, and core space and channel time are available. 
If any device has a data set density above an 
installation-designated normal level, a task is 
created to reduce its content. The activity of each 
data set can be determined as a function of two 
sets of data: 

1. • time in the system 
• total number of calls, c 

2. • time of last call, tn 
• time of next-to-last call, tn - 1 
• time of second-to-last call, tn - 2 

Each of these sets can be used to calculate an 
"activity" rate (rl and r2), as follows: 

c 
r1 = time in system 

r2 = ra tn _ ~ _ 1 + (1 -a) 1 1/2 L tn - 1 - tn - 2J 

These can be combined to give a usage rate, r, in 
the following manner: 

r ~ [lIr2 + (1 - II) r 1]f 
a and {3 are parameters that can be set by the 
installation to adjust the responsiveness of the 
vertical data set movement to variations in 
aetivity. When an imbalance is indicated, based 
on usage rate, a task can be invoked by the system 
that schedules an interchange from device to 
device, as space permits, moving higher-rate 
data sets from devices lower in the hierarchy and 
exchanging them with lower-rate data sets. 

Active Storage 

Passive Storage 

Archival Storage 

IBM CONFIDENTIAL 45 



DATA SET NAMES 

The name of a data set identifies a group of 
records as a data set. All data sets are recognized 
by name alone (that is, referable without volume 
identification), and all data sets residing on a 
given volume must be distinguished from one 
another by unique names. To assist in this, the 
system provides a means of qualifying data set 
names. 

A data set name is a series of one or more 
simple names joined together so that each repre­
sents a level of qualification. For example, the 
data set name DEPT999.SMITH.DATA3 is 
composed of three simple names that are delimited 
to indicate a hierarchy of categories. Starting 
from the left, each simple name is a category 
within which the next simple name is a unique 
subcategory. 

Every simple nanle consists of from one to 
eight alphameric characters, the first of which 
must be alphabetic. The special character period 
(.) separates simple names 'from each other. 
Including all simple names and periods, the length 
of a data set name must not exceed 44 characters. 
Thus, a maximum of 22 qualification levels is 
possible for a data set name. As the TSS system 
adds an eight-character user ID qualifier to all 
user names, the user is restricted to 35 characters. 

To specify the use of a partieular data set by 
a problem progranl, the programmer denotes the 
data set name and other pertinent information (for 
example, volume number) in a command language 
statement called the data definition (DATADEF) 
statement. 

To permit different data sets to be processed 
without module reassembly, the programmer does 
not refer to the data set by name, but refers to a 
data control block associated with the DATADEF 
(DD) statement at object time. The programmer 
reserves space for a data control block at assembly 
time by issuing a DCB macro instruction. 

DATA SET CATALOGING 

The cataloging facility of the Time-Sharing 
System/360 enables the programmer to refer to 
data sets without specifying their physical locations. 
When a data set is cataloged, the volume serial 
number is associated in the catalog with the name 
of the data set. All TSS/360 data set organizations 
are capable of being cataloged. 

THE CATALOG 

The catalog of data sets is a data set residing on 
a direct access volume. It is organized into 
indices that connect data set names to corresponding 
volume numbers (and to data set sequence numbers 
for magnetic tape volumes). 

As described previously, a data set name 
consists of one or more simple names. For every 
distinct level of qualification in the name of a 
cataloged data set, the catalog includes a group 
of one or more index blocks. 

The hierarchy of index levels is determined by 
the order of the data set names, with the highest 
level being the leftmost name. The records in 
each index consist of the simple names and physi­
cal locations of all subordinate indices or data sets. 
Thus, only the lowest-level index indicates the 
volume number of the data set. 

CATALOGING DATA SETS 

To insert, delete, and modify data set entries in 
the catalog, statements are provided within the 
TSS/360 command language. To catalog a data 
set, the CATALOG statement is provided. To 
allow the sharing of data sets a.mong two or more 
users, the PERMIT and SHARE statements are 
available for the modification of the catalog. The 
ERASE statement deletes data set entries from the 
catalog, and thus deletes the data sets. 

DATA SET SECURITY PROTECTION 

Through the facilities provided by the catalog, the 
protection of data sets from unauthorized use is 
enforced. Unless the owner, or creator, of a data 
set authorizes (via the PERMIT command language 
statement) the sharing of a data set, no other user 
is allowed access to that data E:et. The PERMIT 
statement allows the user to make data sets avail­
able to any subset of users, or to all users of the 
system. The access of the sha.ring users may be 
restricted to reading only, may be accorded the 
privilege of both reading and writing a shared data 
set, or may be given unlimited access, which 
includes the addition or deletion of data set names 
in the catalog. Once a user has been authorized 
to share a data set, he must issue a SHARE com­
mand to indicate that he does indeed wish to share 
the data set. 

VAM data sets may be shared among users. 

46 IBM CONFIDENTIAL 



GENERATION DATA GROUPS 

Certain data sets that are periodically updated 
may be chronologically related to each other. For 
example, similar payroll data sets may be created 
every week. Cataloging such data sets with unique 
data set names would be as inconvenient as giving 
them all the same name and accounting for volume 
identification. For this reason, the system 
provides an option within the cataloging facility 
that assigns numbers to individual data sets in a 
chronological collection, thereby enabling the 
programmer to catalog the entire collection under 
a single name. The programmer can distinguish 
among successive data sets in the collection with­
out assigning a new name to each data set. Since 
each data set is normally created by updating the 
data set created on the previous run, the update 
is called a generation number. 

A generation data group is a collection of 
related cataloged data sets that can be referred 
to by a common name in a DA TADEF statement. 
The programmer can refer to a particular gener­
ation by specifying, with the common name of the 
group, either the generation name or the relative 
generation number of the data set. 

DATA SET STORAGE AND VOLUMES 

System/a60 provides a variety of devices for 
collecting, storing, and distributing data. Despite 
this variety, the storage units have many common 
characteristics. For convenience, therefore, the 
generic term "volume" is used to refer to such 
diverse storage media as tape reels, disk packs, 
data cells, and drums. 

Direct access volumes playa major role in 
TSS/360. These volumes are used to store not 
only the operating system itself, but also all 
program modules. In addition, direct access 
volumes are used by many installations as the 
chief storage media for the vast number of data 
sets processed each day. 

Before a direct access volume can be used for 
data storage, it is initialized by a volume initial­
ization utHity program. This program creates a 
volume label and reserves the area on the volume 
that the system uses for space management. This 
area is called the volume table of contents (VTOC). 
VoluUt.e initialization effectively clears the volume 
of any existing data by indicating to the VTOC that 
all the space on that volume (except that space 
occupied by the volume label and VTOC) i.s available 
for allocation. 

1: Volume label - identifies the volume and 
contains a pointer to the VTOC. The volume 
labels of direct access volumes are always on 
cylinder 0 and track O. 

2. Volume table of contents - describes the 
contents of a direct access volume. Basically, 
there are two types of entries in a VTOC: an entry 
for each data set stored on the volume, and an 
entry for each available set of contiguous tracks. 

Each data set entry contains the name, 
description, and location on the volume of its 
associated data set. This entry is called the 
data set control block (DSCB). Each entry of 
available storage indicates a group of contiguous 
tracks that are available for allocation. 

DA TA STORAGE ON MAGNETIC TAPE VOLUMES 

Because of the serial nature of magnetic tape 
devices, the system does not provide space 
allocation facilities comparable to those for direct 
access volumes. New data sets may be added after 
those that already exist on a volume. 

Although the system does not reserve space 
for a data set on a magnetic tape volume, it can 
position the volume so that the data set is written 
on unused space. When a new data set is to be 
placed on a magnetic tape volume, the programmer 
should specify the relative position of this data 
set in the data set sequence number parameter of 
its DATADEF statement. When this parameter 
is specified for a data set with standard labels or 
with no labels, the system positions the volume 
so that the data set can be written. Nonstandard 
labels are not provided for in TSS/360. 

VOLUME LABELING 

Various groups of labels are used in secondary 
storage of TSS/360 to identify magnetic tape and 
direct access volumes, as well as the data sets 
they contain. 

Magnetic tapes can have standard labels, or 
they can be unlabeled. Only standard label formats 
are used on direct access volumes. Volume, data 
set control block, and user labels are used; how­
ever, user labels are allowed only within SAM. 

DATA SET RECORD FORMATS 

Data processing operations are concerned with 
individual data records within a data set. All 
records of a data set must have the same format. 
The formats of these records is the subject of the 
following discussion. 

IBM CONFIDENTIAL 47 



Time-Sharing System/360 data sets can be 
organized in three ways: 

Sequential 

This is the familiar tape-like structure, in which 
physical records are placed in sequence. Thus, 
given one record, the "next" record is uniquely 
determined. The sequential organization is used 
for all magnetic tapes, and may be selected for 
direct access devices. Punched tape, punched 
cards, and printed output are considered to be 
sequentially organized. 

Index Sequential 

Records are arranged in logical sequence (ac­
cording to a key that is part of every record) on 
the tracks of a direct access device. In addition, 
a separate index or set of indices maintained by 
the system gives the location of certain principal 
records. This permits direct, 'as well as 
sequential, access to any record. Records may 
be added to and deleted from the data set as 
required, with appropriate updating of the index. 

Partitioned 

This structure has characteristics of both the 
sequential and indexed sequential organizations. 
Independent groups of sequentially organized data, 
each called a member, are in direct access 
storage. Each member has a simple name stored 
in a directory that is part of the data set and 
contains the location of that member's starting 
point. An example of partitioned data set use is 
the storage of program modules in a form structur ... 
ally similar to program libraries. As a result, 
partitioned data sets are often referred to as 
"libraries" . 

LOGICAL RECORDS 

A data set is made up of a collection of logical 
records that usually have some relation to one 
another. The logical record is usually the basic 
unit of information for a data processing program. 
A logical record might be, for example, either a 
single character, all information resulting from 

a given business transaction, or parameters from 
a given point in an experiment. The maximum 
logical record lengths are shown below. 

Maximum Logical Record Lengths 

Data Set Maximum Number 

Access Method Organizatio:n of Bytes in a Record 

Sequential access 

method (SAM) Sequential 32,767 

V irtual access method Sequential 1,048, 767 

Virtual access method Index sequential 4,000 

RECORD BLOCKING 

Blocking of records is the process of grouping 
a number of logical records before writing them 
on a volume. Such a grouping is called a block. 
Blocking improves effective data rate and con­
serves storage space on the volume by reducing 
the number of inter-record gRpS in the data set. 
In many cases, blocking also increases processing 
efficiency by reducing the number of input/output 
operations required to process a data set. 

RECORD FORMATS 

Logical records may be in on'8 of three formats: 
fixed-length (format F), variable-length (format V), 
or undefined (format U). 

The prime consideration in the selection of a 
record format is the nature of the data set itself. 
The programmer knows the type of input his task 
will receive and the type of output it will produce. 
His selection of a record format is based on this 
knowledge, as well as on an understanding of the 
type of input! output devices that are to handle the 
data set and of the access method used to read or 
write the data set. 

GENERAL SERVICES 

Certain macro instructions provide services that 
prepare data sets for processing, and core storage 
for use as buffers and buffer pools. Of these macro 
instructions, DCB, DCBD, OPEN, and CLOSE are 
used with all of the access methods. 

48 IBM CONFIDENTIAL 



r--.-----------------.--------------------------~ 

Macro Instruction 

DeB 

DCBD 

OPEN 

CLOSE 

FEOV 

GETPOOL 

FREE POOL 

GETBUF 

Function 

Constructs a data control 
block for interfacing with 
the supervisor 

Provides symbolic names 
for data control block 
parameters 

Connects the data set to 
the user's task 

Disconnects the data set 
from the user's task 

Forces an end of volume 

Gets a buffer pool 

Frees a buffer pool 

Gets a buffer from a pool 

FREEBUF Returns a buffer to a pool 
~. ________________ ~ ______________________ ~ __ _1 

The DeB macro, OPEN macro, and CLOSE macro 
are required for each of the access methods 
discussed in the following sections. 

SEQUENTIAL ACCESS METHOD (SAM) 

SAM supports the greatest variety of devices of 
the TSS/360 access methods. Its organizational 
methods may be used for the following devices: 

• Magnetic tapes 
• Direct access 
• Paper tape readers 
• Card readers and punches 
• Printers 

Two organizational methods are supplied within 
SAM. The queued sequential access method (QSAM) 
performs blocking and deblocking of logical records, 
whereas the basic sequential access method (BSAM) 
operates only upon physical blocks. 

QUEUED SEQUENTIAL ACCESS METHOD (QSAM) 

The queued sequential access method (QSAM) is, 
for the most part, device-independent, permitting 
program modules that can be written to use one of 
a number of different input/output devices. Records 

of a sequential data set can be stored and retrieved 
without the writing of blocking/deblocking, and 
buffering routines by the user. Simple buffering 
is used. 

The QSAM macro instructions (GET, RELSE, 
PUT, PUTX, TRUNC), the device-dependent macro 
instructions (CNTRL, PR TOV) , and the general 
service macro instructions (GETPOOL, FREEPOOL, 
OPEN, CLOSE, FEOV) are used with the queued 
sequential access method. 

Macro instructions available under QSAM are: 

Macro Instruction Function 

GET Gets a logical record from 
a sequential data set 

PUT Includes a logical record 
in an output data set 

PUTX Returns an updated record 
to a sequential data set or 
includes a record of an 
input data set in an output 
data set 

HELSE Causes the remaining logi-
cal records in a buffer to 
be ignored 

TRUNC Causes the next logical 
record to be written on the 
first record of the next 
block --- that is, the current 
buffer area is regarded as 
filled 

CNTRL Controls a printer or a card 
reader 

PRTOV Tests for printer carriage 
overflow 

BASIC SEQUENTIAL ACCESS METHOD (BSAM) 

The macro instructions included in this group 
permit the user to gain access to blocks of a 
sequentially organized data set. The user can 
remain device-independent by restricting himself 
to a subset of macro ·instructions. For users to 
whom device independence is not a limiting factor, 
a macro extensive set can be used. 

IBM CONFIDENTIAL 49 



Macro Instruction Function 

Device Independence: 

READ Reads a block 

WRITE Writes a block 

CHECK Tests for completion, and 
waits if not complete 

Tape/Direct Access 
Device Independence: 

NOTE Notes where a block was 
written 

POINT Points to a block to read 

Device-Dependent: 

PRTOV Tests for printer carriage 
overflow 

CNTRL Controls a card reader, a 
printer, or a magnetic 
tape drive 

VIRTUAL ACCESS METHOD (VAM) 

VAM is designed specially for TSS/360, and it 
performs the input/output of data by using the 
paging supervisor. Because of its use of the 
paging supervisor, V AM data sets are limited 
to direct access devices, and all actual input/ 
output through VAM is in blocks of pages, which 
are 4096 bytes in length. 

V AM organizes data sets by relative page 
number. That is, each block of a data set is 
assigned, as it is created, a page number that 
is relative to the beginning of the data set. These 
relative page numbers are then related to an input/ 
output device address through a relative pagel ex­
ternal page correspondence table (RESTBL), which 
is created from data in data set control blocks 
(DSCB) and maintained within virtual memory by 
V AM routines. Appropriate external device 
addresses from RESTBL are passed to the paging 
supervisor, as required, for the building of 
external page table entries for virtual memory 
areas associated with a V AM data set. 

V AM is designed to minimize the number of 
virtual memory pages associated with an open data 

set, since only the data set pa~~es on which the user 
is currently operating are located in virtual memory. 
In addition, one or more pages are required for the 
RESTBL. For a partition organization data set, 
the partition organization direetory is required. 
For index sequential, an overfllow page and a 
directory space may be requir

'
3d, depending upon 

the data set. V AM also provides, within the 
sequential organizational method, the facility for 
the user to input or to output data set pages into 
or from virtual memory areas of any size up to 
a segment (256 pages). 

The user must open a data set before it can be 
processed by VAM, and he must close the data set 
when he has finished processing it. Again, as for 
the other access methods, the primary means of 
communication between the user and the V AM 
routine i~ a data control block (DCB). 

V AM also provides facilities for the sharing of 
data sets between many users vJith no inconvenience 
to the users. The sharing is controlled on a page 
basis. Any number of users up to 255 may be 
simultaneously reading the same page of a data 
set. However, once a user has obtained a data 
set page for updating, or is creating a data set 
page, no other users are allowed to access this 
page until it has been written or rewritten. 

Three data set organization methods are 
available under VAM: sequential, index sequential, 
and partitioned. Each of these methods is described 
briefly in the following paragraphs. 

SEQUENTIAL ORGANIZATION (SVAM) 

A sequential data set is one in which the order of 
records is determined by their physical position 
within the data set. During the creation of a 
sequential data set, logical records are linked 
together one behind the other. Normally, these 
records are then read back in the order in which 
they were written, although a capability is 
provided whereby logical records may be read 
and updated non sequentially . 

Sequential processing has value in cases where 
the user makes an orderly sweep through his data 
set, or where the user defines his own random 
accessing criteria. 

The logical records of which a V AM sequential 
data set is comprised may be variable-length, 
fixed-length, or undefined, wherein logical record 
length is assumed to be a multiple of 4096 bytes. 

User references to a virtual access method 
sequential data set are made through the following: 

50 IBM CONFIDENTIAL 



Macro Instruction Function 
1---. 

SETL SpeQifies the point at which 
sequential retrieval is to 
begin 

GET Gets the next se~ential 
logical record 

PUT Adds a new logical record to 
to the data set 

PUTX Returns an updated logical 
record to a data set 

INDEX SEQUENTIAL ORGANIZATION (VISAM) 

In an indexed sequential data organization, the 
records are ordered on a data key. The data key 
may be a control field that is in an intrinsic part 
of the information in the recor(i (for example, a 
part number), or it may be some arbitrary identi­
fier associated with the record, such as a line 
number. When the record is stored, the data key 
must be associated directly with the record, and 
is consj.dered part of the record. 

The data set also contains directories and 
locators relating to the keys and actual addresses 
of the records in the data set. For the data set as 
a whole, a page directory gives the value of the 
key for the first record associated with each data 
page. On each page an ordered set of locators 
specifies either the location of the record on the 
page or the position of a corresponding locator on 
an overflow page. 

A reference to an indexed sequential data set 
must be made through the following indexed 
sequential access method macro instructions: 

~.----------------.---------------------------~ 

Macro Instruction Function 
~.-----------------~--------------------------~ 

SETL 

ESTEL 

GET 

PUT 

READ 

.Specifies the point in an 
indexed sequential data set 
at which sequential retrieval 
is to begin 

Ends sequential retrieval 

Gets the next sequential 
logical record 

Places a logical record in 
an output buffer, from which 
it is written 

Gets a logical record with 
corresponding keys 

Macro Instruction Function 

WRITE Places a logical record in 
the data set, positioned in 
the data set according to 
the value of the key on the 
record being written 

DELREC Deletes a logical record 
from a data set 

RELEX Releases an exclusive 
control of a record 

PARTITIONED ORGANIZATION (VPAM) 

The partitioned data organization combines 
individually organized groups of data into a 
single data set. Each group of data is referred 
to as a member, and each member is identified 
by a unique eight-character alphmeric name. 
The data set contains a partitioned organization 
directory (POD), which points to the first block 
of each member and gives the length of each 
member. The POD originally occupies the first 
page allocated to a partitioned data set, and 
expands into additional pages as required. 

Members are located within the partitioned 
data set by using the FIND macro instruction, and 
new members are combined into the data set by 
use of the STOW macro instruction. Facilities 
are provided to enable the user to relate additional 
names to a member. These additional names are 
referred to as aliases, and a member may be 
located by use of either the member name or an 
alias name. 

A DCB for a partitioned data set must be opened 
(by use of the OPEN macro) before any processing 
of the data set can be done. Similarly, a DCB 
must be closed (by use of the CLOSE macro) when 
processing with that DCB is completed. 

A FIND of a member is a limited" open", the 
attributes of the member are filled into the DCB 
and the DCB is logically positioned to the member. 
Similarly, certain types of STOW's are limited 
"close" as final buffers are written and the attri­
butes of the member· are updated within the POD. 

A member of a partitioned data set may be index 
sequential organization or sequential organization. 
Whenever an existing partitioned data set is opened 
for output, the associated DCB is positioned to the 
logical end of the data set. 

A new member can then be created using any of 
the organization methods and later stowed, at which 
time a directory entry is created for the new 
member. 

IBM CONFIDENTIAL 51 



Once a member is stowed, it may later be 
referenced only after a FIND for the member has 
been executed. A member may be read, extended, 
or updated in place. 

A reference to a partitioned data set must be 
made through the following macros: 

Macro Instruction Function 

FIND Prepares a data set member 
for processing 

STOW Updates the partitioned 
organization directory and, 
in certain cases, disconnects 
a data set member from the 
user's task 

In addition to these macros, the sequential and 
index sequential macros are available to the user 
for performing operations upon partitioned data 
set members. 

PRINTER FORMS CONTROL 

The BU LKIO command provides to the user the 
facility to specify a form number on which the 
data set is to be printed. TSS/360 instructs a 
system operator to mount the specified form before 
printing begins. 

Print Control Characters 

For output data sets to be printed, the user may 
insert his own print control characters as the 
first byte of each logical record, or he may elect 
to omit print control characters and have the 
printing edited with a fixed spacing between lines. 

If print control characters are used, they may 
be either FORTRAN or machine code, but may not 
be intermixed within the same data set. 

Terminal Access Method (TAM) 

TAM provides the necessary communication with 
a terminal. Routines are included to cause the 
proper action to be taken upon the termination of 
any channel program operating a low-speed 
terminal device. 

Graphic Access Method (GAM) 

The graphic access method (GAM) provides 
programming systems support for the following 
graphic devices: 

• 2250 Display Unit 
• 2280 Film Recorder 
• 2282 Film Recorder/Scanner 

GAM generates graphic orders for the control of 
these graphic devices; it facilitates handling, both 
in core storage and in the graphic device buffer; 
it accomplishes input/output control functions, and 
it controls the dispatching of asynchronous light 
pen, alphameric keyboard, program function key­
board, attention, and error interrupts. Embodied 
in GAM is a graphic interrupt supervisor, which 
queues and distributes graphic interrupt conditions. 
GAM is also responsible for the management of 
graphic device buffer storage. 

DATA FLOW 

Data flow through the system is from any auxiliary 
storage device into core and, if necessary, back 
into auxiliary storage as processing is completed. 
The data management routines within the time­
sharing supervisor maintain statistics on activity 
of each data set and assign the sets to storage­
level hierarchies on the basis of activity. As a 
data set is used frequently, it moves upward 
within the storage hierarchy to devices of faster 
accessibility, and thus "closer" to core storage. 
As activity diminishes, it tends to drift lower in 
the hierarchy to devices of less cost per unit of 
storage capacity. 

The method of data management and flow has 
several advantages: 

• The supervisor achieves an automatic balance 
between the activity of data and the storage 
level to which the data is allocated. 

• The bulk of the data and programs is kept in 
devices of lowest cost per unit of storage 
capacity without compromising response time. 

• The system capacity and response can be 
matched to the user's requirements without 
program module modification. 

• The ultimate in "fail-softl'! capability can be 
achieved at the lowest cost. Duplexing of 
secondary storage is kept: to the minimum 
commensurate with total oapacity and response 
time. 

The entire system philosophy of data flow is 
based on the page, the basic unit of data in the 
system. A page may contain e:ither a program or 
data. Pages are ordinarily the units that are 
extracted from cataloged locations within secondary 
storage and loaded into core. These pages are then 
copied into a paging area on drum or, occasionally, 
on disk. The page flow, then, is from drum to 
core storage and back, as dete rmined by the 

52 IBM CONFIDENTIAL 



task-scheduling and core storage allocation rou­
tines within the supervisor. 

Each data set resident in the system is cataloged 
in an index that is maintained on disk file. Infor­
mation concerning the size and location of the data 
set is contained wi thin the index, thus enabling the 
system to gain access to the data set, or to any 
page within it. 

When a page is brought into core storage, its 
availability is recorded in the appropriate page 
table entry. 

Programs and data sets may be introduced into 
the system in several ways. Certain tasks may 
create them, as is the case with compilers. Users 
may create them by requesting the system to save, 
under a new name, a data set with which they have 
been working, or data may enter from a wide 
variety of sources: 

• Keyboard input 
• Low-speed and high-speed card readers 
• Paper tape readers 
• Tape units 
• Disk packs 
.. Remote data links 
Data, by whatever means it arrives, must be 

cataloged, and storage of the required size must 
be assigned. Control information may govern the 
device type into which it is loaded, but not the 
specific I/O device. It need not remain in the 
device into which it was loaded originally.. De­
pending on its activity, it may rise within the 
hierarchy of storage to a device with faster access 
speeds or, if comparatively inactive, sink to a 
device of slower accessibility. 

Data may be loaded with control information 
specifying that it is to be kept in the load location, 
or it may be left to the system's regulatory ability 
to locate it in the device most suited to its usage 

and system storage capacity. 
Two levels of data flow are present in the time­

sharing system. The first is the flow into core 
storage, in response to calls, of pages from a 
cataloged storage location within the storage 
hi.erarchy. Modified ·pages flow back to the 
cataloged secondary storage. 

The second is a vertical movement between 
devices within different levels of the storage 
hierarchy to balance the system dynamically. 
The system maintains the density of each storage 
device and brings programs and data sets into a 
level of storage accessibility commensurate with 
their activity. 

As additional data sets are introduced into the 
system, provision must be made for a periodic 
purging of the lowest or the most passive level of 
online storage to some type of archival storage. 
The archival storage may be tape, removable disk 
packs, or removable data cells. 

The object of this data flow activity is twofold. 
First, to use the various I/O devices in the most 
efficient manner; second, to have files located as 
close in the hierarchy to core storage as their 
usage requires and storage capacity permits. 

An additional advantage of this dynamic method 
of storage allocation is the minimizing of the cost 
of fail-soft capability. Ideally, the failure of any 
I/O device in the system should not be of concern 
to the terminal user. Duplexing of all input/output 
devices provides the ultimate in fail-soft capability. 
However, full duplexing of large numbers of fast­
acceSSing storage devices may be prohibitively 
expensive. This automatic method of keeping only 
the high-activity files in the fast-access devices 
tends to reduce the total cost of secondary storage, 
thus making full duplexing more attractive. 

IBM CONFID ENTIAL 53 



MAJOR DIFFERENCES BETWEEN OS/360 AND 
TSS/360 AS THEY AFFECT THE PROGRAMMER 

DATA MANAGEMENT FUNCTIONS 

The facilities for addressing extremely large areas 
of virtual memory permit TSS/360 to offer data 
management services that differ from those of 
OS/360. 

The following compares organization and access 
methods for the two systems: 

Operating System Time-Sharing System 

Sequential Direct Access 
Only 

Organization Queued Basic Queued Basic --
Sequential QSAM BSAM QSAM BSAM VSAM 

Indexed 
sequential QISAM BISAM VISAM 

Direct BDAM 

Partitioned BPAM VPAM 

Telecommuni-

cation QTAM BTAM TAM 

Graphic GAM 

Data set identification is comparable in the two 
systems for QSAM or BSAM. 

Cataloging and library management on OS/360 
is primarily via the data definition statement, 
whereas on TSS/360, separate commands exist for 
this function. The protection of data sets, which is 
a special feature of OS/360, is standard on TSS/360. 

The operation of data management macros is 
similar in both systems; in particular, the data 
required to OPEN data sets is identical (derived 
from DCB's DD statements and data set labels). 
However, under VSAM, physical block size is 
set to conform with the paging mechanism. 

Allocation of input/output devices is automatic 
on TSS/360. The reservation of physical units 
takes place in the DD statements, which reserve 
a device for a logical data set directly, instead 
of indirectly, as in OS/360. 

TSS/360 provides a different level of device­
independence than does OS/360. Also, it is not 
possible to interchange all data sets (for example, 
TSS/360 VAM data sets) from OS/360 to TSS/360, 
and vice versa, because of differences in labels 
and organization conventions. 

Note: TSS/360 offers special facilities for 
terminal communication via the GATE routine 
of CLI. 

JOB MANAGEMENT FUNCTIONS 

A correspondence exists between the effects of 
command language commands for the time-sharing 
system and the JOB CONTROL language of OS/360. 
However, note the following differences: 

Statement Format 

OS/360 
TSS/360 

/ /name operation operands 
operation operands 

"Whereas OS/360 statements may have a name and 
are identified by the presence of slashes in the 
first two positions, TSS/360 statements cannot 
have a name and are identified only by the initial 
presence of an operand. 

Number of Operations 

From the user's viewpoint there are only three 
OS/360 operations: JOB, EXEC, and DD. From 
the same viewpoint there are 49 TSS/360 operations 
(and an equal number of abbreviations). Compa­
rable keywords are: 

OS/360 
TSS/360 

JOB, EXE C, DD 
LOGON, LOAD, RUN, DD 

Parameter Syntax 

OS/360 

Parentheses are 
used to delimit 
lists. 

A specified card 
position holds a 
possible continu­
ation character, 
and the continuation 
card starts at a 
specified column 16. 

TSS/:WO 

Parameters separated by 
commas are treated as 
lists « same for TSS on 
card input). 

A spec ial keyboard 
combination - tab and 
carriage return - implies 
that a continuation state­
ment follows. The latter 
starts in the usual position 
(same as OS/360 for card 
input) . 

Definition of Named Job Steps 

This is possible on OS/360, but not on TSS/360. 

54 IBM CONFIDENTIAL 



Definition of Procedures 

OS/360 permits any set of control cards to be 
cataloged as a procedure by entering a keyword 
on the JOB card. To do this on TSS/360 a separate 
run of DATA is required. On TSS/360, predefined 
procedures cannot be called as part of other 
command strings. 

Setting of Time and Page Constraints 

No facilities exist on TSS/360. 

USER PROGRAM CONVENTIONS 

The principal difference between writing programs 
for TSS/:360 and for OS/360 is that account must 
be taken of a different effective address size (a 
possible 32 bits instead of 24 bits). This means 
that the use of high-order bits of Adcons and the 
use of short Adcons is no longer possible with 
safety. Any program written for OS/360 may 
require careful examination before it can be 
reassembled to run 0:1 TSS/360. 

GLOSSARY 

Access method. Any of the data management 
techniques available to the user for transferring 
data between main storage and an input/output 
device. 

Adcon. (Same as "address constant".) 

Address constant. A value, or an expression 
representing a value, used in the calculation of 
virtual memory addresses. 

Alias. An alternate name that may be used to 
refer to a member of a partitioned data set; an 
alternate entry point at which execution of a 
program can begin. 

Allocate. To grant a resource to, or reserve it 
for, a tiSk. 

Asynchronous. Without regular time relationship; 
hence, as applied to task execution, unexpected 
or unpredictable with respect to instruction 
sequence. 

Attribute. A characteristic; for example, attri­
butes of data include record length, record format, 
data set name, associated device type and volume 
identification, use, creation date, etc. 

Auxiliary storage. Data storage other than core 
storage used to hold active programs. 

Basic access method. Any access method in which 
each input/output statement causes a corresponding 
machine input/output operation to occur. (The 
primary macro instructions used are READ and 
WRITE. ) 

Batch processing. The processing of a task under 
the direction and control of a prestored command 
sequence. 

Block (records). (1) To group records for the 
purpose of conserving storage space or increasing 
the efficiency of access or processing. (2) A 
physical record so constituted, or a portion of a 
telecommunications message defined to be a unit 
of data transmission. 

Buffer (program input/output). A portion of core 
storage into which data is read, or from which it 
is written. 

Catalog. (1) The collection of all data set names 
and location indices. (2) To include the volume 
identification of a data set in the catalog. 

Cataloged data set. A data set that is represented 
in an index or hierarchy of indices that provide the 
means for locating it. 

Checkpoint. (1) A point at which information about 
the status of a task can be recorded so that the 
task can be restarted. (2) To record such 
information. 

Control block. A storage area through which a 
particular type of information required for control 
of the operating system is communicated among 
its parts. 

Control dictionary. The external symbol dictionary 
and relocation dictionary collectively, of an object 
or a load module. 

Control section. The smallest separately relo­
eatable unit of a module; that portion of text 
specified by the programmer to be an entity, all 
elements of which are to be loaded into contiguous 
main storage locations, starting at a page boundary. 

Conversational. Able to control, interrogate, 
modify, and observe a task, from a terminal 
remote from the control, data processing facility. 

IBM CONFIDENTIAL 55 



Core storage. The total amount of core storage 
available for TSS/360 use in the IBM 2365 core 
storage units. 

Data control block. A control block through which 
the information required by access routines to 
store and retrieve data is communicated to them. 

Data definition name (dd name). A name appearing 
in the data control block of a program that corre­
sponds to a name field of a data definition statement. 

Data definition (DATADEF) statement. A command 
language statement that describes a data set 
associated with a particular task. 

Data management. A general term that collectively 
describes the functions of the supervisor that 
provide access to data sets, enforce data storage 
conventions, and regulate the use of input/output 
devices. 

Data organization. A term that refers to anyone 
of the data management conventions for the 
arrangement of a data set. 

Data set. The major unit of data storage and 
retrieval (consisting of a collection of data in one 
of several prescribed arrangements and described 
by control information) to which the system has 
access. 

Data set control block (DSCB). A data set label 
for a data set in direct access storage. 

Data set label (DSL). A collection of information 
that describes the attributes of a data set, and 
that is normally stored with the data set; a general 
term for data set control blocks and tape data set 
labels. 

Device independence. The ability to request 
input/output operations without regard to the 
characteristics of the input/output devices. 

Direct access. (1) Retrieval or storage of data by 
a reference to its location on a volume, rather than 
relative to the previously retrieved or stored data. 
(2) A type of storage device, such as IBM's 2301, 
2311, 2314, and 2321. 

Dump. (1) To copy the contents of all or part of 
storage onto an output device so that it can be 
examined. (2) The data resulting from (1). 
(3) A routine that will accomplish (1). 

Dynamic address translation. The translation of 
virtual memory addresses to core storage addresses. 

Entry point. Any location in a program to which 
control can be passed by another program. 

Extent. The locations on input/output devices 
occupied by or reserved for a particular data set. 

External reference. A reference to a symbol 
defined in another module. 

External symbol. A control E:ection name, an 
entry point name, or an external reference. 

External symbol definitions. Control information 
associated with a program module that identifies 
the external symbols in the module. 

Fetch storage protect. The equipment feature 
that disallows any reference to a fetch-protected 
storage block; an attempted reference causes an 
equipment interrupt. 

Generation data group. A collection of successive, 
historically related data sets. 

Index (data management). (1) A table in the 
catalog structure used to locate data sets. (2) A 
table used to locate the records of an indexed 
sequential data set. 

Installation. A general term for a particular 
computing system, in the context of the overall 
function it serves and the individuals who manage 
it, operate it, apply it to problems, service it, 
and use the results it produces. 

Job library. A series of interconnected user­
identified program modules. 

Language translator. A general term for any 
assembler, compiler, or other routine that accepts 
statements in one language and produces equivalent 
statements in another language. 

Library. (1) In general, a collection of objects 
(for example, data sets, volumes, card decks) 
associated with a particular use, and the location 
of which is identified in a direetory of some type. 
(2) Any partitioned data set. 

Linkage. The means by which communication is 
effected between two routines or modules. 

Linkage editor. A program that produces an object 
program module by transformtng other program 
modules into a format that is acceptable to the 
dynamic loader, optionally combining separate 
control sections into a single control section, 
resolving symbolic cross-references among them, 

56 IBM CONFIDENTIAL 



replacing, deleting, and adding control sections 
automatically on request. 

Load. To dynamically lin$ to, that is, to bring a 
program module into virtual memory when it is 
referenced. 

Locate mode. A transmittal mode in wh:ich data ------
is pointed to rather than moved. 

Logical record. A record from the standpoint of 
its content, function, and use, rather than its 
physical attributes; that is, one that is defined in 
terms of the information it contains. 

Macro instruction. A general term used to 
collectively describe a macro instruction statement, 
the corresponding macro instruction definition, the 
resulting assembler language statements, and the 
machine language instructions and other data 
produced from the assembler language statements; 
loosely, anyone of these representations of a 
machine language instruction sequence. 

Module (programming). The input to, or output 
from, a single execution of an assembler, compiler, 
or linkage editor; a source, or program module; 
hence, a program unit that is discrete and identi­
fiable with respect to compiling, combining with 
other units, and loading. 

Move mode. A transmittal mode in which data is 
moved between the buffer and the user's work area. 

Multiprogramming. A general term that expresses 
use of the computing system to fulfill two or more 
different requirements concurrently. 

Multitask operation. Multiprogramming; called 
mu.ltitask operation to express parallel processing 
not only of many programs, but also of a single 
reenterable module used by many tasks. 

Name. A set of one or more characters that 
identifies a statement, data set, module, etc., 
and that is usually associated with the location of 
that which it identifies. 

• Object module. (see "program module". ) 

Operator command. A statement to the command 
language program, issued via a console device, 
which causes it to provide requested information, 
alter normal operations, initiate new operations, 
or terminate existing operations. 

Page. A total of 4096 bytes, the first byte of which 
whose address ends in twelve binary zeros. 

Paging. Transcription of a page to or from core 
~storage and a direct access device. 

~Parallel processing. Concurrent execution of one 
or more tasks. 

Physical record. A record from the standpoint of 
1:he manner or form in which it is stored, retrieved, 
and moved; that is, one that is defined in terms of 
physical qualities. 

Polling. A technique by which each of the terminals 
sharing a communications line is periodically 
interrogated to determine whether it requires 
servicing. 

Private library. Any partitioned data set that i.s 
not the system library (SYSLIB). 

Privileged. (1) Pri.vileged user: one capable of 
executing certain system control commands from 
a terminal. (2) Privileged module: a system 
module that is allowed to communicate with the 
TSS/360 supervisor. (3) Privilege of access: 
an attribute of the level of allowable sharability 
of a shared data set; could be read-only access, 
read/write access, or no access. 

Problem program module. Any of the class of 
routines that perform processing of the type for 
which a computing system is intended, and including 
routines that solve problems, monitor and control 
industrial processes, sort and merge records, 
perform computations, process transactions 
against stored records, etc. 

Processing program. A general term for any 
module that is not a supervisor program. 

...:Program. A collection of related program modules. 

Program module. The output of a single execution 
~)f an assembler or a compiler, which constitutes 
input to the dynamic loader or the linkage editor. 
A program module consists of one or more control 
sections in relocatable (though not executable) form 
and an associated program module dictionary . 

Protection key. An indicator associated with a 
task that appears in the program status word 
whenever the task is in control, and that must 
match the storage keys of all storage blocks that it 
ils to use. 

(~ualified name. A data set name that is composed 
~)f multiple names separated by periods (for example, 
TREE. FRUIT. APPLE). 

IBM CONFIDENTIAL 57 



Qualifier. All component names in a qualified name 
other than the rightmost (which is called the simple 
name). 

Queued access method. Any access method that 
automatically synchronizes the transfer of data 
between the program using the access method and 
input/output devices, thereby eliminating delays 
for input/output operations. (The primary macro 
instructions used are GET and PUT. ) 

Ready condition. The condition of a task that is 
in contention for the central processing unit, all 
other requirements for its activation having been 
satisfied. 

Record. A general term for any unit of data that 
is distinct from all others when considered in a 
particular context. 

Reenterable. The.attribute of a control section 
that allows the same copy of the section to be 
executed concurrently by two or more tasks. 

Relocation. The modification of address constants 
required to compensate for a change of origin of a 
module or control section. 

Resource. Any facility of the computing system 
or operating system required by a job or task, 
including main storage, input/output devices, the 
central processing unit, data sets, and control 
and processing programs. 

Restart. To reestablish the status of a task using 
the information recorded at a checkpoint. 

Return code. A value that is by system convention 
placed in a designated register (the return code 
register) at the completion of a module. The value 
of the code, which is established by user convention, 
may be used to influence the execution of succeeding 
modules, or, in the case of an abnormal end-of-task, 
it may simply be printed for programmer analysis. 

Return code register. A register identified by 
system convention in which a user-specified 
condition code is placed, at the completion of a 
program. 

Reusable. The attribute of a routine that the same 
copy of the routine can be used by two or more 
tasks. (See "reenterable", "serially reusable".) 

Secondary storage. Auxiliary storage. 

Seek. To position the access mechanism of a 
direct access device at a specified location. 

Serially reusable. The attribute of a routine that 
when in core storage the same copy of the routine 
can be used by another task after the current use 
has been concluded. 

Service program. Any of the class of standard 
routines that assist in the use of a computing 
system and in the successful execution of problem 
modules, without contributing directly to control 
of the system or production of results, and including 
utilities, simulators, test and debugging routines, 
etc. 

Shared routines. Routines containing one or more 
control section addressable simultaneously by two 
or more tasks. 

Simple buffering. A technique for controlling 
buffers in such a way that the buffers are assigned 
to a single data control block and remain so 
assigned until the data control block is closed. 

Simple name. The rightmost component of a 
qualified name (for example, APPLE is the simple 
name in TREE. FRUIT. APPLE). 

Source module. A series of st.atements in the 
symbolic language of an assembler or a compiler, 
which constitutes the entire input to a single 
execution of the assembler or <compiler. 

Stacked job processing. A technique that permits 
many tasks to be grouped (stacked) for presentation 
to the system, which automatically recognizes 
each task, one after the other. 

storage block. A contiguous area of core storage 
consisting of 2048 bytes to which a storage key can 
be assigned. 

storage key. An indicator associated with a 
storage block or blocks, which requires that 
tasks have a matching protection key to use the 
blocks. 

store storage protect. The equipment feature that 
disallows a store into a protected storage block; 
an attempted reference causes an equipment 
interrupt. 

Supervisor. The progra111 modules supplied by 
IBM that control and monitor the usage of the 
model 67. 

58 IBM CONFIDENTIAL 



Synchr.On.Ous. Occurring c.Oncurrently and with a 
regular .Or predictable time relati.Onship. 

SYSIN. A name used c.Onventi.Onally as the data 
definiti.On name .Of a data set in the input task 
stream. 

SYSOUT..:... An indicat.Or used in data definiti.On 
statements t.O signify that a data set is to be written 
int.O the system .Output data set. 

Systemmacr.O instructi.On. A predefined macr.O 
instructi.On that pr.Ovides access t.O TSS/a60 system 
facilities. 

Task. A unit .Of w.Ork f.Or the central processing 
unit, fr.Om the standp.Oint .Of the c.Ontr.Ol pr.Ogram; 
theref.Ore, the basic multipr.Ogramming unit under 
the supervis.Or. 

Task monit.Or. The supervis.Or functi.On that selects 
from the task queue the task that is to have control 
of a central processing unit, and gives control to 
the task. 

Task management. A general term that collectively 
describes those functions of the supervisor that 
regulate the use by tasks of the central processing 
unit and other resources (except for input/output 
devices). 

Teleprocessing. A term associated with telecom­
munications equipment and systems. 

Text. The c.Ontrol sections .Of a program module. 

Throughput. A measure of system efficiency; the 
rate at which work can be handled by a computing 
system. 

Time slice. The maximum peri.Od of time each 
task is allowed to execute bef.Ore that task is placed 
in a queue of tasks that are vying for the 
system resources. 

Transmittal mode. The meth.Od by which the 
contents of an input buffer are made available to 
the pr.Ogram, and the method by which a program 
makes records available for output. 

Turn-around time. The elapsed time between 
submission of a task to a c.Omputing center and 
the return .Of results. 

U format. A data set format in which blocks are 
of unspecified or otherwi~e unknown length. 

User. Anyone who utilizes the services of a 
computing system. 

V format. A data set format in which logical 
records are of varying length and include a length 
indicator; and in which V format logical records 
may be blocked, with each block containing a 
block length indicat.Or. 

IBM CONFIDENTIAL 59 



Z20-1788-0 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, New York 10601 

N 
N 

T' ...... 
~ 
00 
I 
o 


	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

