
The Adesse Corporation

VM System Product

CP INTERNALS

Richard Alexander

Larry Chace

Bob Cowles

INTRODUCTION

This manual is a companion to the Adesse Corporation's VM
System Product CP Internals course. The course has been de­
veloped by practicing system programmers and is intended for
system programmers who have a basic familiarity with VM/SP.
We hope this document strikes the right balance between two
competing needs: on the one hand we would like to present
the material such that a beginning programmer could benefit
from it, and on the other hand we would like to be of help
to the veteran programmer. It is clearly impossible for a
manual of this size to completely address both kinds of
needs.

The first three chapters concentrate on an overview of
the hardware and software architectures exploited by CPo A
bas ic understanding of the total system archi tecture wi 11
help you as we then move on to the more specific topics
that follow. Most of the manual is concerned with detailed
descriptions of the major parts of CPo The control blocks,
the modules, and the algorithms are covered to a degree of
detail that we hope is appropriate in each case. The final
part of the manual covers topics that are more general in
nature; that is, they involve several of the previous de­
tailed topics.

You should be familiar with IBM System/370 architecture.
We assume that concepts such as DAT, I/O interrupts, and
DASD are familiar to you, although we do review such con­
cepts in the first chapter. We also assume that you are ba­
sically familiar wi th the workings of an interrupt-driven
timeshared operating system.

We hope that this book will be of value to you. The spe­
cific information is based upon VM/SP Release 2 and in many
cases has been updated to release 3 with HPO. As with any
subject as complex as CP, mistakes are unavoidable; we would
be appreciative if you would report any errors to the Adesse
Corporation at the following address:

The Adesse Corporation
Post Office Box 607

Ridgefield, Connecticut 06877
Tel: 203-431-3071

May 31, 1985

iii -

CONTENTS

INTRODUCTION . iii

PART I General Architecture

Chapter page

1. SYSTEM/370 ARCHITECTURE 3

Introduction . . • • • • • • • • . 3
Overv i ew • • . • . . • • . • . . . • • • • 3
References • . • • •. ••• • • • •. 3

Main storage . .• ...•. •.•.•• 4
Add res sin g . .•• . • • . . • • • 4
Protect ion . . . • •• ••••••..•• 5

CPU • • • • • • . • • •• ••• • • • 6
Reg isters . . • . • • •. •••.•. 6

General purpose registers . •••. 6
Control registers . •• ..•••• 6

Program status word • • . • . • • • • •. 7
Basic control mode • . • . • . . • • . 7
Extended control mode • . . • . . • • • •. 8
Swapping 9

Dynamic address translation .•..••••. 11
Registers • • • • .. .•.•.•••. 11
Tables 12
Translation .••.•.•.•...•••. 14
Interruptions . • .. .•• .••. 15

CPU status . •••.• . • • • • • . 15
I/O subsystem . • • • •. •••••••••. 16

Overview . • • • • •••••. 16
Hardware devices • 0 0 0 0 0 0 0 • 16
I/O addressing 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 18
Hardware constructs . 0 0 0 • 0 • 0 0 0 • 19
I/O instructions 0 0 • 0 0 0 • 0 • 20

External interrupt sources • 0 0 0 0 0 0 0 0 0 • 21
Timers 21

Interval timer 0 • 0 • 0 0 0 •• 0 0 • 0 0 21
CPU timer . 0 0 0 0 0 • 0 0 0 • • • 21
TOD clock • 0 • 00 • • 0 0 0 0 0 0 0 • 22
Clock comparator 0 0 0 0 • 0 0 0 • 23

Other external interrupt sources . o. 0 • 24
System console . 0 0 0 • 0 • 0 • 0 • 0 0 0 0 0 • 24
Summary 25

- v -

2.

3.

VIRTUALIZATION 29

Introduction • . • • . . • 29
Overview • • . .. •• 29
References . •• • . .•. 29

Principles of virtualization • . . • 29
Virtual system/370 • • . .. 30

Virtual CPU . • • • • • • • 31
Virtual instruction processing 31
Virtual program interruptions • 32

Virtual memory • • . • • 32
Virtual I/O . • . . . • . • • 33
Virtual external operations 33
Virtual system console . • 34

CP resources 35
Summary • 36

CP ARCHITECTURE AND CONTROL BLOCKS • . 39

Introduction . . .• ..•... .. 39
Overview. ".39
References•... 39

General concepts•... • ... 40
Control block structure 40

Linked lists • . . . • . 40
Circular linked lists . ~ 42
Contiguous elements . . • • 42
Contiguous pointers •. 43

Naming conventions. 44
Module naming • 44
Entry point naming . . • 45
Naming trends in CP ••.. 46
Control block names 46
System-wide equates .. . •...... 47

Programming convent ions . • 47
Prologue 47
Module attributes 48
Register conventions . . • • 48
Linkage conventions .. .• 48
Save areas . • • . . • 50
Other SVC usage 51

Memory. . • • . .. 52
Real memory•.. 52

Prefixed storage area . . •...... 52
V=R region . . • . . . • . . • • . 52
CP nucleus . • . . • . • 52
Dynamic paging area (DPA) 53
CP trace table . • • 53
Free storage area . •• 54

Virtual machine memory . • • . . . •. .. 54
CPU 54

Real CPU • • • . • • . •. 54
CPEXBLOK . • • • . . 55
IOBLOK• 55

- vi -

TRQBLOK • • . • •
Virtual machine CPU . • •

I/O

· 55
• • 58

. 58
Real I/O • . • . • .. •.•.. . 58

Real I/O control blocks .•...... 58
Real DASD areas • . . . • ... 59

Virtual machine I/O • • . • 60
External operations . • • • . 61

Real external operat ions • 61
Virtual machine external operations 61

System console . . . • • . . • . • . . . 61
Real system console 61
Virtual machine system console 62

Summary 62

PART I I Specific Topics

Chapter page

4.

5.

DISPATCHER . . 67

Introduction • 67
Overview 67
References • • • 67

Publications . • • 67
CP modules • 67

Flow of control . • • • . . . 68
Maintenance of CPU utilization statistics . . 69

CP time and problem state time 69
Wait time • • • . • 70

Virtual machine interrupt simulation
(unstacking) .•.......•..... 70

PER and pseudo page fault interrupts . .. 70
External interrupts 71
I/O interrupts • . • •. .. 72

New PSW validation . • • . . . 72
Check for disabled or idle wait 73
Interface to scheduler . . . • . . . • . .. 73
Dispatch CP services •• . . • . . . •. .. 74

Unstack and dispatch IOBLOKs and TRQBLOKs . . 75
Unstack and dispatch CPEXBLOKs 75

Dispatch virtual machines • . 76
Select highest priority ready virtual

machine . . • •. .. 76
Clean-up after previous VM if not current . . 77
Setup for dispatching a virtual machine . . . 77
Fast reflect dispatching path . . •. .. 77

Wait time accounting •.......•.•... 78

SCHEDULER

Introduction•..
Overview . . . • . • . .

- Vll -

· 81

· 81
81

Good response time .•.•...•...• 81
Maximize throughput • • . • • • . 81
Relative resource consumption rate . . • . 82

References•. • 82
Publications • • • . . • . . . • 82
CP modules • • • • . . 83

VM scheduler terminology • . . • •.•... 83
In-queue versus in a queue .. .•.... 84
Time slice end vs.- queue slice end 84
Q1, Q2, and pseudo-Q3 85
Run 1 is t 85
Eligible lists 85
Drop from queue 86

Check virtual machine for status change 86
Virtual machine is not runnable (VMRSTAT

not zero) 86
Virtual machine is runnable (VMRSTAT is

zero) 86
Time slice end 87
Queue slice end 87
Terminal I/O 88
Long wait 88
Delayed queue drop and paging checkpoint . 88
Pre-emption of pseudo-Q3 virtual machines . . 89

Maintenance of the scheduler queues and
statistics • . • . . • . . . 89

Working set size prediction 90
Resident pages averaged over page reads . . 90
Resident pages averaged over CPU use . 91
Prediction of new working set size 91

Calculation of queue priority 91
Calculate bias due to external priority .. 92
Calculate CPU use delay 92
Combine delay factors for priority 93

Add to eligible lists • • 93
Necessary conditions•. 93
Necessary actions .. •........ 93

Eligible list selection algorithm ..•... 94
Add virtual machines that fit in run

list . • • • . . .• 94
Special checks 94

Drop from eligible lists . . • 95
Sufficient conditions 95
Necessary actions . • • . • • 95

Add to the list of dispatchable machines . . . 96
Add to queue . . . • . . •• . 96
Add to run 1 ist . • • . . • • . • • 96

Drop from the list of dispatchable
machines •...••.•.. _. . .. 97

Perform pseudo drop and add for Q3 . . 97
Perform full drop from queue 98

Scheduler exit processing .•...•.... 99
Tuning options . . • . • . . 99

SRM command • . . . 99

- vi i i -

6.

APAGES . • • • . • • . • . • . • . • . 99
Interactive bias (IB) . • . • •• 100
MAXWSS . • • 100
DSPSLICE . . .••.. 100

SET PRIORITY command or CP directory
priority.

SET FAVORED and SET FAVORED with percent
SET QDROP command

Summary . •. .•• • .

TIMER HANDLING •

Introduction
Overview
References

Publications . . •
CP modules • . . .

CP timer maintenance
Location 80 timer
TOD clock

Initialization •......•..•..
Use of the TOD clock within CP .. .

Clock comparator
TRQBLOK maintenance and queues
Scheduling a timer interrupt request
Resetting an outstanding request
Return of control when timer event

occurs
CPU t·imer

Maintaining the proper timer value . . .
Macros for maintaining the CPU timer

properly • • . .
Maintenance of wait time statistics
Maintenance of" problem state statistics

Virtual machine timer maintenance
Location 80 interval timer

SET TIMER ON option
SET TIMER REAL option ..

Clock comparator
Initialization
Simulation of clock comparator

instructions ...
CPU timer •

Initialization .
Interaction with Cp's use of the CPU

time r
CPU timer simulation during virtual

wa it.
Simulation of CPU timer instructions

Pseudo timer and DIAGNOSE code X'OC' ..•
DIAGNOSE code X'70' for SCP timing support
Summary • • • • . . • • • • • • • • • • • •

- IX -

101
101
102
103

107

107
107
107
107
108
108
108
110
110
110
III
III
112
112

113
113
113

114
115
115
116
116
116
117
117
117

117
118
118

118

119
119
120
121
122

7.

8.

INTER-VIRTUAL-MACHINE COMMUNICATIONS .

Introduction . • . • . • . . • • . • . . .
Overview . . •. •. • . • •
References . • • . . • . . . • • . • . .

Publications .••.•.. . ..
CP modules . . • •

VMCF control blocks • . • . . . • •
IUCV control blocks • . • . . . •
High level processing• .•.
Initializing for communications. . •.
Reflect external interrupt • .
Communications•....

SEND • • • • • • • • • • • • • • • • • • • .
RECE IVE • . •. •
REPLY • • • • • • • • • • • • • • • • e

Control •• .. • . • .
QUIESCE and RESUME
CANCEL (VMCF) and PURGE (IUCV)
REJECT . . . • • •

Terminating communications
IUCV path functions

CONNECT . . •
ACCEPT
SEVER • •• ••• • • • • • • • • • • •

CP services via IUCV
Summary

STORAGE MANAGEMENT

Introduction . . • . . • • .
Overview
References . • . • . • . . . • . • . . .

Publications ..•...•.
CP modules • •

Real storage control blocks
User storage management - dynamic paging area

(DPA) • • • • • • • • • • • • • •
Introduction • • • • • . • • • . •.
DMKPTR operat ion .. .• • .
DMKPTRAN - page fault ...••....
Free list management •.••.
Flush list management
SELECT and friends •• .•.....
DMKPTRLK and DMKPTRUL . • .
DMKPTRXX • • • • • • • • • • • • • • • •

CP control block requests - free storage
management • . . . • . .

Free storage initialization ••....
DMKFREE method of operation •...•.
DMKFREE requests for larger blocks .
Extend processing . . . • . • .
DMKFRET method of operation
Subpool returns . . • . . . • .

- x -

125

125
125
126
126
126
127
128
129
129
130
131
131
132
132
133
133
134
135
135
136
136
137
137
138
139

143

143
143
143
143
143
144

144
144
146
147
148
148
148
149
149

150
151
151
152
152
153
153

9.

Free storage garbage collection . .
Miscellaneous • • .

HPO Changes
Surruna ry •••• ••••••••

PAGING
Introduction . . . • • • .

Overview . .
References .•.•.••..........

Publications •.............
CP modules

Preview
System DASD areas

Page space •
Temp space • . . . •
Dump space •

Paging hierarchy .•..........
DMKFMT utility program
SYSOWN mac ro •
Allocation map ...•... '. . ..
Cylinder format
Internal compressed page addresses .

Paging overview
Modules . •
Control blocks

SWPTABLE •
IOBLOK and extension
ALOCBLOK and friends •
RECBLOK • • • • • • • • • • • • • • .
RDCBLOK

Operation of DMKPGT
Operation of DMKPGU
Operation of DMKPAG

Introduction to DMKPAG
Building IOBLOKs

Operation of DMKPAH ...•..........
Surruna ry • • • • • • • • • • • • • • • •

10. PAGE MIGRATION.

Introduction . • . •
Overview
References

Publications ...•......
CP modules . • . . •

Page migration - DMKPGM ..•• . .
Scanning order . . • . . • •
Selection criteria. . . • . •. . .•.
Upward migration . . . • . . . •
Unconventional techniques

SWPTABLE migration - DMKSTR
Controlling migration parameters .. .
Surrunary and critique

- xi -

153
154
155
157

161

161
161
161
161
161
162
162
163
163
163
164
164
164
165
166
167
168
168
169
169
170
171
171
171
172
174
175
175
175
177
178

181

181
181
182
182
182
182
183
184
185
185
186
187
188

11.

12.

I/O PROCESSING . .

Introduction • •.
Overview • •
Review of 370 I/O processing •
References . • •
'Publications

CP modules .• . • . . . • . . . • .
Basic CP I/O facilities ..••....•.

Control blocks • . .
DMKIOS (and DMKIOQ) . o.
DMK I OT • • • • • • . • • • • • • • • • • • •

Support of virtual machine I/O requests
Device independent support . • .

Initial checks ...•••.
Channel program translation . 0 •••••

Conversion to real I/O
Status and interrupt reflection ...

Device dependent support • . • .
Virtual DASD • . . . • • • .
Virtual console . . . • • . .
Virtual unit record devices ... 0 •••

Dedicated devices
Virtual CTCA . . • . • . •

Support of CP-generated I/O • .
Real DASD . •. ..• .. .
Real unit record devices. •••
Real terminals ~ • . . . • o· • • • • • • • •

Miscellaneous topics . • . . . • .
TIO loop handling ...
DIAGNOSE X'14', X'18', x'20', and X'58'
Special V=R processing . • . 0 • • • • • • •

TERMINAL SUPPORT .

Introduction . • .. . •.....
Overview. e ••••••

References . • • • . . . • • •
Publications • • .
CP modules . . . • • . . • .

Virtual machine console devices
3215 mode•.•...
3270 mode . •

I/O simulation review ..
Real terminal I/O . .

Control block review
Slow-speed terminals . • • . • • . •

2741 and 3767 • • • • • • • • • • . • . •
TTY and 3101 ••. • • • • . • • • • • .

Local 3270 terminals .
Remote 3270 terminals • • . •

Hardware • . .
Control blocks
Program logic

- XII -

191

191
191
191
192
192
192
193
194
195
198
199
199
199
200
201
201
202
202
203
203
203
203
203
204
204
204
204
205
206
207

211

211
211
211
211
212
213
213
214
214
215
215
216
216
218
218
220
220
221
221

Logical device support . • . . . • • • . •. 223
"Hardware" . • . • • • . • . 223
Control blocks . • • • •. 224
Program logic • . . .• .•. 225

Full-screen processing • • . . . 227
Display terminal mode . • • 227

Application program use .••.... 227
CP program logic • . • 228

Full-screen mode • 229
Virtual machine use 229
CP program logic. 229
Full-screen application example 230

3270 SIO processing • .• 232
Secondary user facility 233

13. SPOOLING . .

Introduction . .• •••
Overview . . • .•
References . .. •.•.. . . .

Publications ..•.........
CP modules . . . • . •

System spool
Pointers and control blocks •.......
Data buffers • ••

Input spooling ...•..•...•.....
Real reader I/O •
Virtual reader I/O . • . • • . . •

Review of virtual I/O
Virtual reader SIO . • . . . •
Virtual reader close •

Output spooling • .• . •.....
Virtual printer I/O •

Review of virtual I/O • .•.
Virtual printer SIO .•
Virtual printer close • .•.....

Real printer I/O • . . . •
Starting the real printer ..••..
Write the next buffer
Close the real printer . •

Spooling commands•.....
Virtual spooling
Real spooling

Miscellaneous topics
Console spooling'
SPT APE • • • • • • • • • • • • • • • . • . •

Logic flow in DMKSPT
Logic flow in DMKSPS
Potential problems with SPTAPE .•.

Summary

- xiii -

237

237
237
237
237
238
239
239
240
241
241
242
242
242
243
244
244
244
244
245
247
247
247
248
249
249
252
253
253
254
255
256
258
258

14. SPOOL FILE RECOVERY
Introduction . • .

Overview
References . . . • . • . • .

publications . • • • • .
CP modules . • . • .

Data areas • . e • ,. • • • •

Warmstart area . • . • . •
Checkpoint area •.
Pointers in DMKRSP . .• • .

Program logic• •
Warmstart logic . . •

SHUTDOWN logic•......
ABEND logic
IPL logic•....

Checkpoint logic
Saving the checkpoint data .
Restoring the checkpoint data

Summary . . . • • . •

15. CONSOLE FUNCTIONS AND CP COMMANDS

16.

Introduction ••.....
Overy iew II • •

References•.....
Publications ..•...
CP modules •

System console facilities .•.
Command processing

DMKCFM logic • . . • . .
DMKCFC logic • . • • . .
General command processor logic

Common subroutines•.
Special scanning for QUERY and SET . . .
Exit from console function mode .

Selected command logic ..•.
ADS TOP command • . • • .
INDICATE command .. •.•.
DEFINE command• • .

Programming considerations ..•.......

DIAGNOSE INTERFACE •

Introduction . .•
Overview
References . . . • . . • . • •

Publications • . • . . . • • .
CP modules . • . • . •

Instruction format ..•..••...•.
Return conditions ...•.•.•.
Common DIAGNOSE codes • .• • • . .
Example DIAGNOSE . . • • . • . . . • . . • . .
DIAGNOSE processing • • . . • . . • . .

- xiv -

261

261
261
261
261
262
262
262
263
264
264
264
264
265
266
267
267
268
269

273

273
273
273
273
274
274
275
276
277
279
279
280
281
281
282
282
282
283

287

287
287
287
287
287
288
288
288
289
291

Summary • •

17. MULTIPROCESSOR SUPPORT

292

295

Introduction ~ • • • • • •• ••••• 295
Overview • • • • • • • •• •••.•.• 295
References . • • • • • • . • • • • • • • • . 295

Publications • • • • . . • • • • •• 295
CP mod u 1 e s • • • • • . . . • . • • . • • 2 96

370 MP/AP architecture review.. ••.•. 297
Prefix register • • • • . • • • . • . . • • 297
Instructions • • • • • • . •• 297

Instructions for shared memory 297
Signal Processor • • . • . . . • 297

CP architecture for MP/AP • . • . . . • 298
Storage and data structures . . . • 298

Layout of main memory .•••...• 298
Lock words . • . . . • 299
Save areas . • . . • • 299
Shared segments • . • • .. .• • 300
PSA • • • • • • • • • • • • • • • 300

Signaling.......... • •••• 301
Emergency signal . .. ••••• 301
External call . • . • • . 302

Locking structure • • 302
Spin locks • • • • 302
Defer locks • •• .•••••..•. 303
Private locks • • • • • • •• 303
CP-defined locks 303
Lock hierarchy • • • . . . •. ..• 305

CP macros for MP/AP support . • . • 306
COUNT . . • • . . • • 306
TRACE . . . • . • . • •• 307
SWITCH • • • . . . • . • 307
CHARGE . ..• • . . • . . . • • • 308
LOCK • • • • • • . . . • • • • • • • 308
SWTCHVM . .•..• ••••••• 310

Implications for user modifications • • • • • • 310
Considerations • • • • • • • • • • • 310

Does it need protection? . . • • • • • • 310
Is it already protected? . • • • 311

And if you have to ••• • . • . ..• 311
Switch VMBLOKs • . • • . . • •. 312
Obtain the global system lock ..•• 312
Maintain a queue . • • . . • . . . • . • 313
Set a flag ••••••..•••.... 315
Define and use a private lock • ... 315

18. TRACE TABLE AND DUMPS

Introduction • • •••
Overview •
References • •

Publications

- xv -

319

319
319
319
319

CP modules • • • • • • • • • • • • .
Trace table operation • • ••.
Trace table entries • . • . • • • . • • • •
Dump facility overview •••••••••.
Processing the output of a CP dump
Sununary

19. SYSTEM DIRECTORY •

Chapter

Introduction . .• ••• • • • • • • •
Overview .. •••• • • •••.
References . • . •.• • • . • • • .

Publications • • • • • • . . • • • .
CP modules . • • • • • . • • • • • •

Directory structure • • • • • • • . • • • .
UDIRBLOK • . • • • • • • • • • .
UMACBLOK • • • • • • • • • • • •
UDEVBLOK . • • • . . • • • . • •
Masking • • e e •

Building the directory •••
DIRECT command • . • • • • • . .
DMKUDRDS - directory dynamic swap . • .
DMKUDRBV - directory activation .••.

Other entry points in DMKUDR • . .
Updating the directory in place ..
Sununary II

PART III Global Topics

20. MICROCODE ASSISTS

Introduction ••••.•••••.•••.
Overview . • • • • • • • • • • •
References . • • • • • • • • • •

Publications • • • • • • • . • •
CP modules . • • • • • • • •

Standard VMA • • . •• • • • • • •
VMA processing • • • • • • •• ••.

VMA instruction simulation .••
SVC interrupt simulation
Shadow table handling . . • . • • • • • •

Hardware control of VMA
VMA commands • • • •

ECPS • • • • • • • • • • • •
CP assist • •. • ••••.•••.
Extended VMA • • • • •
Virtual interval timer • . • • . • • • . • •

Preferred machine assist
Sununary

- XVl -

319
320
320
322
323
323

327

327
327
328
328
328
328
329
329
329
330
330
330
331
331
331
332
332

page

339

339
339
339
339
340
341
341
342
343
344
344
346
346
347
348
349
349
351

21. GUEST OPERATING SYSTEM SUPPORT •

Introduction . • . . . • • .•
Overview and historical perspective
References . • . . . • . •

Publications . . • • . • . • • .
CP modules

General facilities for guest operating
systems • •

Error recording . . •
Quiesce VM • ••
Performance options • •

SET FAVOR . . . • •
SET RESERVE . . •
V=R • • • • • • •
STBYPASS and STFIRST
STMULT I • •

Pseudo page faults for VS/l
Support for MVS

DIAGNOSE X'6C' and low address protection
Single processor mode . . . •

Restrictions ...•..•.....
Operation
Summary . . ~

Fast privileged instruction simulation .. .
Preferred machine assist . . .
Summary

22. VIRTUAL MEMORY IN-ITIALIZATION

355

355
355
355
355
356

356
356
357
357
357
357
358
359
359
359
360
361
361
361
363
364
364
364
364

369

Introduction . • . • 369
Overview 369
References 369

Publications . . • . . • • . . . 369
CP modules . • 369

IPl Logic flow • 370
Scan the IPL command line . . . • 370
Load from a virtual device . •..... 371
DMKVMI log i c . . . • • • 371
Load from a saved system . . • . 372

Saving a saved system • •. ... 373
Discontiguous saved segments . . . • . . • . . 373

DCSS support logic • 373
Implications for memory protection .•. 374

Summary•.. • . . . 375

23. CP INITIALIZATION

Introduction
Overview .
References • . . . •

Publications
CP modules

Hardware initial program loading

- xvi i -

379

379
379
379
379
379
380

DMKCPI initial housekeeping ••••
Main storage initialization. . •...
ECPS initialization
SAVEAREA initialization •.....•...•.
Preparation for extend processing ...•...
Dispatcher initialization .•.••..•.•.
Establish the other PSA ..•••..••.•.
I/O subsystem initialization . 0 •••••

-Mini-IOBLOK stack initialization ..••.
System address buffer initialization •..
System VMBLOK initialization . • .• . ..
Calculate the number of DASD slots. .. .
Virtual machine assist initialization .. .
Extended 370 processor? • • • . . . •
System console initialization
Directory initialization
Location 80 timer test •.•...•.
Spool file recovery. . . •.
Allocate dump space • . • • . . •
Final paging initialization.
3705 initialization. . • .•
T-disk initialization ..•....••
Operator LOGON
Program product map initialization •.....
Pageable nucleus paged out • . •
Continue initialization in DMKCPJ
DMKCPJ continuing intialization
SUIIUTl:a ry • • • • • • • • • • • • • •

Appendix

A. CP MODULES (ALPHABETICALLY)

B. SELECTED CP CONTROL BLOCKS .

C. CP MACROS

- xvi i i -

380
381
381
382
383
383
383
384
385
385
385
385
386
386
386
387
387
388
388
389
389
390
390
391
391
391
391
392

page

395

403

407

LIST OF TABLES

Table

1. System console functions.

2. CP module names ..•

3.

4.

5.

6.

7.

8.

9.

10.

CP entry point names

Naming trends - module splits .•.....

CP nucleus register usage

Special external interrupts within CP ...

Effect of external priority on CPU delay factor

External priority effect on observed load

Functions common between lUCY and VMCF

CORFLAG flag definitions

11. DMKPTRAN parameters

page

. . 35

· 45

45

· 46

· 49

. . 71

92

101

126

145

146

12. Load Real Address conditon codes. 146

13. DMKFRE entry points • 150

14.

15.

16.

17.

18.

19.

Paging subsystem modules and functions • • .

SWPTABLE flag definitions . .• . ..

Entry points of DMKPGT

Entry points of DMKPGU

Relative priority of paging requests

DMKPTRXX flags . • • . ••

20. When to invoke page migration

21. System console functions . . . •

- XIX -

168

170

173

174

177

182

187

275

22.

2'3 •

24.

25.

26.

DMKCFC command table . •

Table of SET parameters

Common DIAGNOSE codes • . • • •

SIGP order codes used by VM/SP .

MP-related fields in the real PSAs .

27. SIGP - emergency signal function codes

28. SIGP - function codes for external call

29.

30.

31.

32.

33.

34.

35.

36.

Defined locks within CP

Hierarchy of locks within CP

Trace table entries . . .

Directory control blocks

Selected DMKUDR entry points . .

VMA privop timings (microseconds)

CP assist instructions •.•

Expanded VMA instructions

- xx -

278

280

289

298

301

301

302

303

306

321

328

331

343

347

348

LIST OF FIGURES

Figure

1.

2.

Basic control mode PSW . .

Extended control mode PSW

3. DAT register fields

4. Segment table entry

5. Page table entry .

I/O control words

Interval timer . .

CPU timer format .

TOD clock format •

Singly-linked list

Doubly-linked list

. · ·

. · ·
· ·

Singly-linked circular list

· · ·
· · ·
· · ·

· ·
· ·
· ·

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Doubly-linked inclusive circular list

Contiguous items ...

Contiguous pointers

SAVEAREA format

Layout of real memory

CPEXBLOK example . .

IOBLOK format

TRQBLOK format

DMKDSPRQ (request queue anchors) .

- xxi -

· · ·
· · ·
· · ·

· . ·

· . ·

·

page

8

9

· 12

· 13

14

· 20

• • 22

• • 22

· • 23

·41

· 41

· 42

· 43

· 43

· 44

• • 50

• • • 53

• 56

· 57

· 57

· . 75

22.

23.

24.

25.

26.

27.

28.

29.

30.

3l.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Required fields in a TRQBLOK ...•

Allocation record for CKD devices

3350 paging and spool cylinder layout

Four-byte internal compressed slot address .

SPLINK format• ...

BUFFER format

The DIAGNOSE instruction .

Using DIAGNOSE 8

Layout of MP/AP memory .

Example of COUNT macro and CS

possible operands for the CHARGE macro .

LOCK macro operands

Example of SWTCHVM usage

Example of obtaining the system lock

Example of adding to a queue with CS ...•...

Removing a queue entry with CDS

Example of setting a flag with CS

Example of private lock• .•...

MICBLOK format • . . • • . .

41. PMA dispatcher

- XXll -

111

165

167

168

241

277

289

291

299

307

308

309

312

313

314

314

315

316

345

351

PART I

GENERAL ARCHITECTURE

The first part of this course concentrates on architecture,
both hardware and software. A basic understanding of the
general system architecture will help you as we move on to
more specific topics.

1.1 INTRODUCTION

Chapter 1

SYSTEM/370 ARCHITECTURE

This chapter will give you a quick review of the architec­
ture of System/370; we will emphasize those features that
are of particular interest to a CP system programmer.

1.1.1 Overview

System/370 is an extension of the original System/360 de­
sign. The system consists of the following components:

1. Main storage (also called "storage" or "core").

2. Central processing unit ("CPU").

3. Input/output facilities.

4. External interrupt sources.

5. System console.

The next chapter describes how CP divides these real com­
ponents so that each VM user sees a small replica of a com­
plete System/370.

1.1. 2 References

Several documents provide a description of the System/370
architecture:

1. IBM System/370 Principles of Operation (GA22-7000) is
the official public description of the hardware, as
seen from the point of view of a program.

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203) describes some simulated ad­
ditional instructions invented by CPo

- 3 -

3." "System/370 Reference Summary" (GX20-1850, also known
as the "green card" or "yellow booklet") is a highly
concentrated quick guide to many of the hardware fea­
tures and is invaluable for system programmers.

1.2 MAIN STORAGE

System/370 main storage (also called "real memory") is a
contiguous array of memory elements in which programs and
data may reside. The memory is also used by the I/O subsys­
tem to contain commands and buffer areas.

1. 2.1 Addressing

Main storage is addressed in elements of 8 binary digi ts
("bi ts") each; each such element is called a "byte". Each
byte is assigned a number, or "address", starting with 0 for
the first byte and increasing by 1 for each additional byte.
Since each byte contains 8 bits, numeric contents of a byte
may range from 0 to 255. For ease of notation, the contents
of a byte are usually given as a 2 digit hexadecimal value
in the range from X'OO' to X'FF'; each digit represents 4
bits and is sometimes called a "nibble". Bytes may be com­
bined as follows to allow the storage of larger values:

1. A "halfword" consists of 2 adjacent bytes
an address that is a multiple of 2. As
decimal number, a halfword's range is
65535.

starting at
an unsigned
from 0 to

2. A "word" consists of 2 halfwords (or 4 bytes) start­
ing at an address that is a multiple of 4. As an un­
signed decimal number, a word's range is from 0 to
4294967295.

3. A "doubleword" consists of 2 words (or 8 bytes)
starting at an address that is a multiple of 8. As
an unsigned decimal number, a doubleword's range is
from 0 to 18446744073703551615, but it is rarely used
in that format.

The number of bytes of main storage is usually given in
terms of "K" (1024) or "M" (1024K or 1048576). The real
storage size may range from 240K to 16M for various sizes of
System/370 machines. (Some main storages are now being
built with more than 16M, but they require special address­
ing that we will describe in a later section.)

- 4 -

In most cases, memory addresses are represented as 3-byte
values, usually r ight-adj usted wi thin a word. Such an ad­
dress has a range from 0 to 16777215, which exactly covers
the 16M maximum main storage size. In order to keep. in­
structions to a reasonable size, however, the entire 3-byte
address is not used directly. Instead, a 12-bit displace­
ment and a 4-bit register specification are used in instruc­
tions; the 12 bit value is added to the contents of the se­
lected register to form the total 24-bit address. The
register is called a "base register", since it contains the
base address of a 4K block of memory; the block can start at
any address.

1.2.2 Protection

System/370 provides a means by which portions of main memory
can be protected from undesired writing or reading; this is
called memory protection and is implemented by having a spe­
cial 7-bit memory element associated with each 2K section of
main storage. These "protect keys" are not an addressable
part of main memory but instead are kept in an independent
storage area. The protection applies equally to data and to
instructions. The key is formatted as follows:

1. Bi ts 0 through 3 represent a code. number. The only
programs that can utilize the associated memory area
are those whose codes match the key's.code or whose
codes are O. A program key of 0 is cons idered to
"match" with any memory protection code. Therefore,
there are 15 "user" protect key values (1 - 15) and
one "system" protect key value (0).

2. Bit 4, if set, specifies that fetching (reading) from
the associated memory area is to be under control of
the protect key code value. If this bit is set, then
the memory area is said to be "fetch protected"; that
is, it cannot be read by other users. If this bit is
zero, then any user-is allowed to read from the memo­
ry area, since the protect key codes are not checked
in this case.

3. Bit 5 is set whenever any part of the memory area is
referenced for storing or fetching of instructions or
data; the reference may be caused by the CPU or by an
I/O channel. This bi t can be used to detect which
parts of main memory are being heavily used or rarely
used.

4. Bit 6 is set whenever any part of the memory area is
changed, or, more precisely, is the target of a store
operation. The store may be caused by the CPU or by

- 5 -

an I/O channel. (No comparison is made to see if the
new value is different from the old value, as might
be implied by the term "changed".) This bi t can be
used to determine whether or not the contents of the
memory area must be saved if the area must be taken
over temporarily for some other purpose.

1. 3 CPU

The central processing unit consists of an arithmetic and
logical processing unit (which we will not discuss here),
various sets of registers, a program status word, and an ad­
dress translator.

1. 3.1 Registers

The CPU contains a number of registers that are used in the
execution of the various instructions in a program. Two
different sets of registers are of particular interest to
CP, the general purpose registers and the control registers.

1.3.1.1 General purpose registers

The 16 general purpose registers are each 4 bytes in length
and usually contain either storage addresses or operands for
arithmetic and logical operations. Several registers (O, 1,
and 2) have special meanings to the hardware in certain con­
texts:

1. Register 0, when used as an address, always has the
effective value 0, no matter what is actually in the
register, so that it may be used to address the first
4K area of storage. Since no real base reg i ster is
needed for the first 4K, that area is usually re­
served by programming systems for special use.

2. Registers 1 and 2 receive results from the TRT
(translate and test) instruct ion. Programmers must
therefore be careful when using TRT.

1.3.1.2 Control registers

The control registers are a second set of 16 registers that
control special functions; they are not generally available
to users' programs. The control registers are used only in

- 6 -

the Load Control (LCTL) and Store Control (STCTL)
instructions; no other instructions make explicit use of the
control registers. The most important of the control regis-'
ters are:

1. CRO contains individual bits that control various op­
tions 'such as block multiplexing, dynamic address
translation, and external interruptions.

2. CRI contains a pointer to the segment table used by
dynamic address translation.

3. CR2 contains individual I/O channel interrupt mask
bits.

4. CR6 contains flags and a pointer used for the micro­
programmed assists that improve the speed of certain
CP functions.

5. CR9, CRIO, and CRII are used to control "program
event recording", which can be used to aid in program
debugging.

6. CR14 and CR15 are used to control hardware error re­
covery.

1.3.2 Program status word

The program status word (PSW) contains the master control
information. The PSW has two formats, basic control mode
(BC mode) and extended control mode (EC mode), which are se­
lected according to bit 12 within the PSW.

1.3.2.1 Basic control mode

The System/370 starts execution in BC mode; this is the mode
in which System/360 machines always run. Figure 1 shows the
format of the BC mode PSW, which is as follows:

1. Bits 0-7 are the "system mask"~ bits 0-5 enable in­
terrupts from channels 0 through 5, bit 6 enables in­
terrupts from all other channels, and bit 7 enables
"external" interrupts, as described in later sec­
tions.

2. Bits 8-11 form the protection key code that is used
in conjunction wi th the memory protect ion keys al­
ready described.

- 7 -

3. Bits 12-15 are various control bits, which are often
labelled BMWP. Bit 12 specifies the mode of the PSW
(BC or EC), and must be 0 for BC mode. Bit 13 allows
machine check (error) interrupts to take place. Bit
14 specifies that the CPU is in a "wait" state; that
is, it is doing nothing at all. Bit 15 specifies
that the CPU is in "problem" state; that is, no "su­
pervisor" state instructions are allowed to execute.

4. Bi ts 16-31 contain the last interrupt code, which
will be described in a later section.

5. Bits 32-33 contain the length of the last instruction
that was executed.

6. Bits 34-35 contain the last "condition code" that was
set by an arithmetic or logical instruction. This
code may then be used by a "branch on condition" in­
struction to modify the flow of the program.

7. Bits 36-39 contain the "program mask", which enables
interruptions for various abnormal arithmetic condi­
tions such as overflow.

8. Bits 40-63 contain the address of the next instruc­
tion to be executed. .This field is often referred to
as the "instruction counter" or IC.

+--------+--------+--------+--------+
I012345IEIkkkkOMWPI interrupt code I
+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
Illccmmmmi instruction address I
+--------+--------+--------+--------+

32 40 48 56 63

Figure 1: Basic control mode PSW

1.3.2.2 Extended control mode

If bit 12 is on, then the PSW is interpreted somewhat dif­
ferently. System/370 introduced EC mode to allow several

- 8 -

+--------+--------+--------+--------+
CAW: IkkkkOOOOI real address of CCW I

+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
CCW: I opcode I real address of data I

+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
I ffffffOO I (unused) I byte count
+--------+--------+--------+--------+

32 40 48 56 63

+--------+--------+--------+--------+
CSW: IkkkkOLCcl real CCW address I

+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
lunitstatlchanstatl residual count I
+--------+--------+--------+--------+

32 40 48 56 63

Figure 6: I/O control words

1. 4.5 I/O instructions

Several CPU instructions are available for performing and
controlling I/O operations. These instructions are all lim­
i ted to supervisor state and are usually issued only when
the CPU is disabled for I/O interrupts.

1. SIO: The Start I/O instruction is used to begin the
channel program pointed to by the channel address
word. I f certain error condi t ions exist, then the
condi t ion code wi 11 ref lect the errors. Otherwise,
the channel takes over the I/O operation and the CPU
is free to continue with the next instruction.

2. TIO: The Test I/O instruction can be used to examine
the status of an I/O device. A TIO loop is sometimes
used as an alternative way of waiting until an I/O

- 20 -

operation is complete since the TIO will clear a
pending I/O interrupt.

3. HIO and HDV: The Halt I/O and Halt Device instruc­
tions can be used to stop a channel program before it
finishes normally. Al though this is not commonly
used, some types of terminal devices are supported by
channel programs containing unending sequences that
must then be halted ~or the next operation to contin­
ue.

1.5 EXTERNAL INTERRUPT SOURCES

External interrupts can be caused by the various system tim­
ers as well as by other fac iIi ties such as the operator's
EXTERNAL button and the multiprocessor feature.

1. 5.1 Timers

Several hardware timers are provided in System/370 to assist
user- and system programs. System/360 provided only a single
timer, the interval timer descr ibed below; System/370 has
added several others. Note that there is only one of each
of these timers per cpu.

1.5.1.1 Interval timer

This timer consists of the word of main memory at address 80
(X'50'). Bits 0 through 23 of this word are decremented at
a rate of 300 times per second; some CPUs offer higher reso­
lution by decrementing more bits more often. When the con­
tents go from zero to -1, an external interrupt is requested
and stays pending unt i I the interrupt is actually taken.
This timer "wraps" after about 15.5 hours.- Figure 7 shows
the format of the interval timer.

1.5.1.2 CPU timer

The cpu timer is a special register that can be accessed
only with the Store cpu Timer (STPT) and Set cpu Timer (SPT)
instructions. The timer is a doubleword in which bit 51 is
caused to decrement every microsecond when the cpu is run­
ning or waiting, but not when it is stopped (from the opera­
tor console). The exact rate of decrementing is such that
the timer runs at least as fast as the fastest cpu instruc-

- 21 -

tion.
request
pending
the CPU

1.5.1.3

+--------+--------+--------+--------+
Itttttttt tttttttt tttttttt ????????I
+--------+--------+--------+--------+
o 8 16 24 31

Decremented at 300 per second ----+

Figure 7: Interval timer

Whenever the time is negative (bit 0 is one), a
for an external interrupt is made; the request stays
until bit 0 is made O. Figure 8 shows the format of
timer.

+----- Causes an external interrupt
1
1

+--------+--------+--------+--------+
Itttttttt tttttttt tttttttt ttttttttl
+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
Itttttttt tttttttt tttt???? ????????I
+--------+--------+--------+--------+

32 40 48 56 63

Decremented every 10**-6 -----+

Figure 8: CPU timer format

TOD clock

The time of day (TOO) clock is also a special register; it
can be accessed only by the Store Clock (STCK) and Set Clock

- 22 -

(SCK) instructions. The TOO clock is a doubleword in which
bit 51 is caused to increment every microsecond; bit 31 (the
last bit in the left-hand half of the doubleword) increments
every 1.048576 seconds and is often used as an approximation
to one second. This clock has a period of about 143 years
and by convention the value 0 is taken to mean 0:00 a.m.
Greenwich Mean Time on January· 1, 1900. The TOO clock caus­
es no interrupts. Note that the Store Clock (STCK) instruc­
tion is the only timer instruction that can be issued from
problem state; all other timer instructions are valid only
in supervisor state. STCK is also the only timer instruc­
t ion whose operand can be on a non-doubleword boundary.
Figure 9 shows the format of the TOO clock.

+--------+--------+--------+--------+
Itttttttt tttttttt tttttttt ttttttttl
+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
Itttttttt tttttttt tttt???? ????????I
+--------+--------+--------+--------+

32 40 48 56 63

Incremented every 10**-6 -----+

Figure 9: TOO clock format

1.5.1.4 Clock comparator

Associated with the TOO clock is a second special doubleword
register, the clock comparator. Whenever the clock compc~a­
tor contains a value that is less than the value in the TOO
clock, an external interrupt is requested, and that request
remains pending until the value is no longer less than the
TOO clock. The clock comparator can be accessed only v i a
the instructions Store Clock Comparator (STCKC) and Set
Clock Comparator (SCKC).

- 23 -

1. 5.2 Other external interrupt sources

There are several other sources for external interrupts.
The two that are used commonly by CP are the following.

1. The INTERRUPT key on the system console causes an ex­
ternal interrupt to become pending. The interrupt
stays pending until it is accepted or until a CPU re­
set is performed.

2. The multiprocessor facility provides for "malfunction
alert", n emergency signal", and "external call" in­
terrupts as a means of signalling between processors.
In each case, an interrupt code is stored to further
identify the type of interrupt.

1.6 SYSTEM CONSOLE

The Principles of Operation describes the system console in
terms of "keys", which are set by the operator, and "indica­
tors", which may be read by the operator. Some funct ions
require both input and output and are therefore described as
"controls". The exact hardware implementation of the system
console depen~s upon the. model of System/370. In some cases
it will be made up of real switches and lights and in other
cases it will be one or more menus on a CRT device. Some of
the common console functions are the following.

1. Address compare controls -- provide a means of stop­
ping the processor when it references a given storage
address.

2. Configurator controls -- provide a means of altering
various aspects such as main storage size and avail­
able I/O channels.

3. Display and enter controls -- provide a means of ex­
amining and altering the contents of memory, regis­
ters, and the PSW.

4. Interrupt key -- generate an external interrupt.

5. Load key -- read and execute a program, usually the
initial phase of an operating system.

6. Load unit address controls -- specify the I/O device
address for use with the load key.

7. Manual indicator
stopped.

show that the processor has

- 24 -

8. Power off.key
I/O devices.

9. Power on key
I/O devices.

turn off the processor and attached

turn on the processor and attached

10. Rate control -- specify the speed at which the pro­
cessor should run, usually full speed or 1 instruc­
tion at a time.

11. Restart key -- cause the PSW to be stored and a new
PSW to be loaded.

12. Start key -- allow the processor to resume executing
instructions.

13. Stop key -- cause the processor to halt after the
current instruction.

14. Store status key cause the processor's reg isters
to be stored into memory.

15. System reset key -- cause the processor and the I/O
devices to reset to an initial condition.

16. Wait indicator -- show that the processor is in the
wait state.

1.7 SUMMARY

This chapter has presented an overview of those aspects of
System/370 that are of most interest to a CP system program­
mer. For a complete descr ipt ion, you should refer to the
Principles of Operation.

- 25 -

- 26 -

NOTES

- 27 -

- 28 -

2.1 INTRODUCTION

2.1.1 Overview

Chapter 2

VIRTUALIZATION

The main function of CP is to divide the various components
of the real System/370 such that each human user of VM be­
comes the operator of a virtual machine, a small replica of
a complete System/370. Ideally, each replica is an exact
functional equivalent of a real system, although some of its
components may be smaller or slower; a program that executes
correctly on the real system should execute correctly on the
replica, within certain limits that we will describe in sub­
sequent chapters.

2.1.2 References

1. IBM Sgstem/370 Principles of Operation (GA22-7000> is
the official public description of the hardware, as
seen from the point of view of a· program.

2. IBM Virtual Machine/Sgstem Product: Sgstem Program­
mer's Guide (SC19-6203) describes some simulated ad­
ditional instructions invented by CPo

3. IBM Virtual Machine/Sgstem Product: Introduction
(GC19-6200) gives an introduction to CP facilities.

2.2 PRINCIPLES OF VIRTUALIZATION

Cp's virtualization of System/370 differs from a simulation
in that as much of the real System/370 as possible is used
for the replica. Pure simulation of the entire System/370
would make the replica run very slowly. By taking advantage
of various features of System/370 architecture, CP can safe­
ly allow a virtual machine to use many of the real machine
features. Only in certain cases does CP have to resort to
simulation of a feature.

- 29 -

In order for any machine architecture to be
virtualizable, it is necessary that important machine state
changes can be trapped by an overall supervisory program
(often call the "hypervisor"); this serves 2 main purposes.
The first purpose is the protection of the hypervisor and of
the other virtual machines. The running virtual machine
must not be allowed to modify those portions of the real ma­
chine that are assigned for other use. The second purpose
is the correct simulation of various functions. If real ma­
chine components (such as the general purpose registers) are
currently assigned to the running virtual machine, then it
should be allowed to use them in a normal fashion, and no
trap should occur. Other facilities (such as the I/O sub­
system), belong to the hypervisor; virtual machine referenc­
es to I/O must be trapped and simulated in such a way that
the trapped instructions will appear to have executed nor­
mally (although perhaps more slowly).

It is not sufficient that privileged instructions be
trapped and simulated; various interrupt conditions must
also be simulated. That requires the hypervisor to perform
the PSW swap just as it would be performed by the real hard­
ware, according to the state of the virtual machine.

An additional requirement for virtualization is that
there be protection for any facilites that map virtual ma­
chine memory to real machine memory. In order to be pro­
tected, the memory mapping components should be located out­
side of the virtual machine memory; that usually means that
the memory map is contained within the real machine memory
space.

Wi th very few exceptions, the components of System/370
are virtualizable in a fully functional manner. It is com­
mon practice, in fact, to run CP itself in a virtual machine
for test purposes. That constitutes a good test of the ac­
curacy of the virtual machine design.

2.3 VIRTUAL SYSTEM/370

In the following paragraphs we will discuss, in general
terms, the processes by which CP virtualizes each of the 5
major components of System/370.

- 30 -

2.3.1 virtual CPU

The virtual machine CPU can be broken down into 2 parts: in­
structions and interruptions. The state of the virtual ma­
chine "hardware" is kept by CP in various control blocks in
areas of main storage reserved for Cp's own use. In gener­
al, every register in the real CPU is replicated in a con­
trol block. When the virtual machine is actually running,
many of its registers are located in the corresponding real
registers.

2.3.1.1 virtual instruction processing

You will recall that the running CPU is in either of 2
states: problem state or supervisor state. The System/370
instruction set has been so designed that the problem state
instructions are "safe"; that is, their execution by a vir­
tual machine cannot adversely affect any other virtual ma­
chine. CP, therefore, needs to do nothing to simulate these
instructions; they run at full speed on the real System/370
hardware.

Supervisor state instructions, on the other hand, can af­
fect other virtual machines since those instructions might
alter the state of the I/O subsystem or important CPU con­
trol registers. CP must therefore intercept such instruc­
t ions when they are about to be executed by a vi rtual ma-·
chine. After interception, CP must simulate the
instructions in such a way that the instruction appears to
have executed, from the virtual machine's own point of view,
and that other virtual machines are not adversely affected.

The interception is performed by a simple and efficient
mechanism defined in the System/370 architecture. When the
current PSW contains the "problem state" bit, then the exe­
cution of privileged instructions is not allowed but instead
a "privileged instruction" program check interrupt is gener­
ated. CP receives that interrupt and can then proceed to
simulate the instruction. At the end of the simulation, CP
causes the virtual machine to resume execution with the next
instruction and at full CPU speed.

For most instructions, then, no simulation at all is
needed and the instruct ions are executed di rectly by the
real CPU. For privileged instructions, CP routines simulate
the instruction, thereby assuming the role of "hardware" for
the virtual machine. At any instant in time, the real CPU
corresponds almost exactly to the virtual machine CPU. Over
longer periods of time, however, CP will have switched the
real CPU from one virtual machine to another in a time-mul­
tiplexed fashion. The net effect is that each virtual ma-

- 31 -

chine appears to have a CPU that is slower than the real
~PU: just how much slower is a function of system load and
the scheduling algorithms.

2.3.1.2 virtual program interruptions

In some cases, instructions are not simulated. For example,
if the virtual machine is supposed to be in problem state
and it nevertheless tries to issue the SIO instruction, then
CP cannot simulate the instruction because the instruction
would not have been allowed on a real System/370 running in
problem state. Instead, CP must do what the real hardware
would have done: it must generate an interrupt for- the vir­
tual machine. In a similar fashion, if a virtual machine
program issues an SVC instruction, then CP must generate a
virtual SVC interrupt.

That process (called "interrupt reflection") consists of
simulat ing the PSW swapping procedure that occurs in the
real hardware. The virtual PSW is stored into the virtual
machine's old PSW location and a new virtual PSW is fetched
from the virtual machine's new PSW location. Thus, the pro­
gram check interrupt handler in the virtual machine gets
control to process the attempt to execute a supervisor state
instruction from problem state or the SVC interrupt handler
in the virtual machine gets control td handle the SVC in­
struction.

CP takes this action whenever it must give an interrupt
to the virtual machine. CP simulates the PSW swapping pro­
cess that the hardware would have followed. This applies to
all classes of interrupts, program check, SVC, I/O, and ex­
ternal: machine-check interrupts, however, are not usually
reflected to the virtual machine.

2.3.2 virtual memory

Since the virtual CPU actually runs on the real CPU, it then
follows that the virtual machine's memory actually resides
in the real memory. Similarly, just as CP divides the real
CPU among the various virtual machines, it also divides the
real memory among them. By using the dynamic address trans­
lation (DAT) feature of the real System/370, CP is able to
accomplish two things: (1) it can scatter a given virtual
machine's memory throughout available real memory, and (2)
it can allow portions of the virtual machine's memory to be
absent from real memory when not being used. The result is
that real memory contains parts of several virtual machine
memories at anyone time: everything is kept sorted out by a
combination of DAT hardware and software control blocks.

- 32 -

When a virtual machine references a non-resident portion
of its memory, then an interruption is generated by hard­
ware; this is either a page exception or a segment excep­
tion. CP must fetch into main storage the current copy of
the referenced page, as stored on drum or disk, and then ad­
just the DAT hardware and software control blocks so that
the virtual machine can re-execute the interrupted instruc­
tion and proceed from there. The process of fetching a page
might require that some other page be written out to drum or
disk in order to make available a place into which to read
the desired page. This entire process is invisible to the
virtual machine's programs.

2.3.3 Virtual I/O

There are 3 kinds of virtual I/O devices: those that are in
fact real I/O devices (ATTACHed or dedicated), those that
are a portion of a real device (minidisks), and those that
are merely simulated. System/370 I/O instructions are priv­
ileged instructions and will therefore be intercepted by CP
when they are issued by a virtual machine. In all cases, CP
must examine and re-build the I/O channel programs to pro­
tect itself and the other virtual machines. For simulated
I/O devices, various CP routines will perform the necessary
operations such that the virtual machine program behaves as

. if· the I/O device were real. For example, if a simulated
card reader is being read, then CP will move the "card" im­
age into the virtual machine memory location specified in
the READ channel command word. For all 3 types of virtual
I/O devices, CP must also reflect I/O interrupts to the vir­
tual machine to indicate virtual channel program completion.

2.3.4 Virtual external operations

Some of the external operations, such as the various timers,
are simulated by CP in a manner analogous to CPU and memory;
CP uses the corresponding real System/370 facilities for
each virtual machine as it is being run. As a result, the
timers' contents are swi tched very often, and CP must use
various control blocks to save the timer values for the non­
running virtual machines. When a virtual timer would gener­
ate an external interrupt, then CP must reflect that inter­
rupt to the virtual machine.

Some of the System/370 timers can be referenced only by
means of privileged instructions, and so those timer refer­
ences can be intercepted by CPo The interval timer, how­
ever, cannot be intercepted, since it is just a virtual ma­
chine memory location. CP includes special routines that

- 33 -

attempt to simulate the interval timer, and there is also
special microcoded support available on some real System/370
processors. The simulation is not perfect but it is ade­
quate in most cases.

Other external operations have been defined for use only
in a virtual machine environment. Facilities such as VMCF
and IUCV allow virtual machines to communicate wi th each
other according to a defined protocol. Note that these fa­
cilities are NOT defined in the Principles of Operation and
are therefore purely software conventions. Indeed, much of
the power of CP can be seen in its ability to simulate non­
existent "hardware" facilities.

2.3.5 virtual system console

Each System/370 has a system console for control of the cpu.
The Principles of Operation describes various control facil­
ities, some of which are listed in table 1 below. On real
System/370 configurations, the system console may be a panel
of lights and switches or it may be a special mode of opera­
tion for the normal operator I/O device. CP simulates these
facilities by means of commands that can be entered by the
user (the virtual machine's operator). These are called
"console function mode" commands because when they are i~­
sued the user's terminal is operating not as a virtual ma­
chine I/O device but rather as the virtual machine's system
console.

- 34 -

TABLE I

System console functions

Console function.
Address compare controls.
Configurator controls ------­
Display and enter controls -­
Interrupt key --------------­
Load key -------------------­
Load unit address controls --
Manual indicator -----------­
Power off key --------------­
Power on key ---------------­
Rate control ---------------­
Restart key ----------------­
Start key ------------------­
Stop key -------------------­
Store status key -----------­
Sy~te~ r~set key --------~--­
Walt indicator --------------

2.4 CP RESOURCES

CP cmd or msg
ADS TOP and PER
DEFINE and SET
DISPLAY and STORE
EXTERNAL
IPL
IPL
"CP Read" msg
LOGOFF
LOGON
PER and TRACE
RESTART
BEGIN
#CP or "PAl" key
STORE STATUS
SYSTEM RESET
"disabled wait" msg

For all 5 of the components described above, CP provides
simulation for the user virtual machines. In each case,
however, CP itself must use corresponding facilities on the
real System/370. CP routines when executing use the CPU and
they must be resident in main memory. They must perform I/O
as a result of either virtual machine I/O requests or CP's
own processes such as paging and spooling. CP must use the
timers to control the sharing of the CPU and to prepare ac­
counting records.

All of these requirements mean that CP must administer
resource allocation for itself as well as for virtual ma­
chines. In many of the following chapters we will point out
the complexities that result from this dual usage.

- 35 -

2.5 SUMMARY

From the point of view of the real System/370 hardware, CP
is just an operating system (that is, it is just a program).
From the point of view of the virtual machine operating sys­
tem, CP is part of the hardware, namely, that part that di­
vides the real System/370 into many smaller private Sys­
tem/370 configurations. When you are looking at CP routines
it is often helpful to remember that, from the point of view
of the virtual machine, CP is hardware and must therefore
behave according to the Principles of Operation.

- 36 -

NOTES

- 37 -

- 38 -

Chapter 3

CP ARCHITECTURE AND CONTROL BLOCKS

3.1 INTRODUCTION

3.1.1 Overview

This chapter should give you a general description of the
structure of CPo First we will briefly introduce some con­
trol block structures, naming conventions, and programming
conventions. We will then describe how CP manages each of
the 5 main components of System/370, both the real compo­
nents for itself and the virtual components for the users.
We will make brief references to some of the major control
blocks.

3.1.2 References

The following IBM publications are the basic documentation
for CP, and they are all appropriate for this chapter. At
the risk of being repetitious we will include with each fol­
lowing chapter the applicable subset from this list.

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SC19-620l).

2. IBM Virtual Machine/System Product: Operator's Guide
(SC19-6202).

3. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

4. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic, Volume 1 (CP) (LY24-5220).

5. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP .
(LY20-0892).

- 39 -

3.2 GENERAL CONCEPTS

CP consists primarily of a single program that is loaded
from a DASD system residence volume when the LOAD function
is performed on the real machine. The program is made up of
many small routines grouped together into modules, each of
which can be assembled separately. In addition to its rou­
tines, CP also requires various control blocks, most of
which are assigned to locations in real memory as needed.
Appendix A in the back of this book gives a very short sum­
mary of each of the CP modules and appendix B gives a cross
reference of many control blocks.

In this chapter it will be very difficult to avoid refer­
ences to things that we have not yet discussed. In order to
start, let us say that CP consists of a "dispatcher" routine
that examines lists of data items representing work to be
done. For each piece of work, the dispatcher passes control
to an appropriate processing routine that ultimately returns
control to the dispatcher. Some of the lists are found via
pointer words located in the first page of real memory.

After that over-simplification, let us put the CP program
logic aside for a moment and look at some conventions.

3.2.1 Control block structure

When CP needs to store data items in memory, it usually does
so by defining an appropriate control block. The block of
memory contains the data and also other information that can
be used to identify the associated virtual machine or other
similar data items. Since there are several different kinds
of data and several di fferent ways in which CP uses the
data, CP uses several di fferent control block structures.
We will describe each control block when we encounter it,
but the following generalizations should help you to visual­
ize the different structures.

3.2.1.1 Linked lists

The linked list is a simple structure in which each element
of the list points to the next element; this is the singly­
linked list, as shown in Figure 10. A word is usually used
to point to the first item in the list, and this word is
called the "anchor". An optional second word may be used to
point to the last item in the list; that makes it easier to
add a new item to the list. Sometimes the list is referred
to as a queue. (In each case, the numbers used below are
arbitrary memory addresses.)

- 40 -

+--------+
50 100 This is the 'anchor' word.

+--------+

+--------+--------+--------+--------+
100 I 200 I data-O I

+--------+--------+--------+--------+

+--------+--------+--------+--------+
200 a I data-l I

+--------+--------+--------+--------+

Figure 10: Singly-linked list

In many cases it is important to be able to move backward
in the list or to easily add or remove items in the middle
of the list. For that purpose a second set of pointers is
used to indicate each item's predecessor. Figure 11 shows
the doubly-linked list. Again, the second anchor word may
or may not be present.

+--------+--------+
50 I 100 I 200 I First and last.

+--------+--------+

+--------+--------+--------+--------+
100 300 a data-O

+--------+--------+--------+--------+

+--------+--------+--------+--------+
200 a 300 data-2

+--------+--------+--------+--------+

+--------+--------+--------+--------+
300 200 100 data-l

+--------+--------+--------+--------+

Figure 11: Doubly-linked list

- 41 -

3.2.1.2 Circular linked lists

In some cases it is inconvenient to use a linked list struc­
ture since the end conditions (pointer = 0) must always be
tested. In such cases, CP uses a circular list, in whi ch
the last item points "forward" to the first item. Figure 12
below shows a circular list with single pointers. In pro­
cessing such a list, you can identify the last item because
its forward pointer contains the value in the anchor word.

+--------+
50 I 100 I This is the 'anchor' word.

+--------+

+--------+--------+--------+--------+
100 I 300 data-O I

+--------+--------+--------+--------+

+--------+--------+--------+--------+
200 I 100 data-2 I

+--------+--------+--------+--------+

+--------+--------+--------+--------+
300 I 200 data-l I

+--------+--------+--------+--------+

Figure 12: Singly-linked circular list

Double pointers could also be used if it is necessary to
easily move backwards in the list or add or delete in the
middle of the list. Figure 13 shows an doubly-linked circu­
lar list in which the anchors are included in the chain.
This is a very common CP list structure.

3.2.1.3 Contiguous elements

In some cases the data items have a constant length and they
can be addressed by some kind of indexing operat ion. For
this case a set of contiguous control blocks may be more ef­
ficient because the pointer words do not have to be used.
The System/370 segment table has this structure, with con­
trol register 1 act ing as the anchor. Figure 14 shows an
anchor and 4 contiguous data items.

- 42 -

+--------+--------+
50 I 100 200 First and last.

+--------+--------+

+--------+--------+--------+--------+
100 I 300 50 I data-O

+--------+--------+--------+--------+

+--------+--------+--------+--------+
200 50 300 data-2

+--------+--------+--------+--------+

+--------+--------+--------+--------+
300 I 200 I 100 I data-l I

+--------+--------+--------+--------+

Figure 13: Doubly-linked inclusive circular list

+--------+
50 I 100 I Add n*length.

+--------+

<------------- length -------------->
+--------+--------+--------+--------+

100 I data-O I
+--------+--------+--------+--------+

data-l I
+--------+--------+--------+--------+
I data-2 I
+--------+--------+--------+--------+
I data-3 I
+--------+--------+--------+--------+

Figure 14: Contiguous items

3.2.1.4 Contiguous pointers

In yet other cases, it may prove more efficient to maintain
a set of contiguous pointer words, each of which contains

- 43 -

the address· of the actual data item., (This, you will
recall, is the structure 'of the System/370 segment table,
where each data i tern represents a page table.) 'Figure 15
shows this structure.

<-width-->
+--------+

50 100 Index by n*width.
+--------+

300
+--------+

700
+--------+

+--------+--------+--------+--------+
100 I data-O

+--------+--------+--------+--------+

+--------+--------+--------+--------+
300 I data-l

+--------+--------+--------+--------+

+--------+--------+--------+--------+
700 I data-2

+--------+--------+--------+--------+

Figure 15: Contiguous pointers

3.2.2 Naming conventions

3.2.2.1 Module naming

CP follows a simple and straight forward naming convention
for modules. Every module has a six character name begin­
ning with the letters "DMK". The second three letters usu­
ally attempt to describe the function of the module. An ex­
ample is the module DMKDSP, the CP dispatcher. Table 2
lists some of the modules and their functions; the capital
letters show the derivation of the names.

- 44 -

3.2.2.2

TABLE 2

CP module names

DMKCFC - Console Function Commands
DMKCPI - CP Initialization
DMKDSP - DiSPatcher
DMKDAS - DASD error recovery
DMKFRE - FREe storage management
DMKIOS - I/O Supervisor
DMKPGT - Page GeT
DMKRSP - Real Spooling manager
DMKTHI - Temperature and Humidity Index {I/UJ" Loft}, i)

Entry point naming

The names of module entry points (subroutines) are usually 8
characters long, where the first six are' the module 'name and
the last two are often descriptive of the associated func­
tion. Most. entry point names define subroutines but some
define pointer words or system-wide variables. Examples of
entry point names follow in Table 3.

TABLE 3

CP entry point names

DMKIOSQV - Queue I/O from Virtual machine
DMKIOSQR - Queue I/O from CP (Real)

DMKDSPCH - main entry point (DiSPatCH)
DMKDSPA - fast reflect path
DMKDSPB - use if VPSW changes

DMKDSPQS - maximum time slice ("Quantum Size")
DMKDSPRQ - Request Queue (CPEXBLOKs and IOBLOKs)

DMKFREE - FREE storage get
DMKFRET - Free storage RETurn

- 45 -

3.2.2.3 Naming trends in CP

Some existing CP modules have been split as new functions or
new device support have been added. The new name for the
split-off module is usually the same as the name for the ex­
isting module, except that the last letter is changed to the
next letter in the alphabet. For example, DMKCPI was split
into DMKCPI and DMKCPJ. As one might expect, such a conven­
t ion somet imes runs into trouble. Table 4 lists several
module splits and also lists a family of modules.

3.2.2.4

TABLE 4

Naming trends - module splits

DMKPGT - DMKPGU
DMKPGTPG - DASD Page Get
DMKPGUPR - DASD Page Release

DMKCPI - DMKCPJ
CP Initialization

DMKCFM - Console Function Mode processing
DMKCFC - command name table
DMKCFD - ADSTOP and LOCATE
DMKCFF - (subroutine for DMKCFG)
DMKCFG - IPL
DMKCFH - SAVESYS
DMKCFJ - BEGIN, QUERY, REQUEST, SET, and SLEEP
DMKCFO - operator SET
DMKCFS - initial parsing routine for SET"
DMKCFT - TERMINAL
DMKCFU - privileged SET
DMKCFV - non-privileged SET
DMKCFW - SCREEN
DMKCFY - non-privileged SET

Control block names

Control block names in CP are very regular, typically having
a name of up to four descriptive characters followed by the
pseudo-word "BLOK". For example, the "VMBLOK" is the con­
trol block that describes each virtual machine to the sys­
tem. Similarly, the "IOBLOK" represents an I/O request, and

- 46 -

"CPEXBLOK" represents a small program to be executed as a
part of CPo In most cases, the fields of a control block
begin with the descriptive part of the control block name,
making it quite easy to associate a field with its control
block.

3.2.2.5 System-wide equates

Every CP module includes at least one special copy section;
EQU COpy makes avai lable a set of standard global names.
These equates control the symbolic names of many hardware
and software functions, such as the register names (RO
through RI5), the PSW and control register bits, and certain
commonly used software flags. Since the names in the EQU
COPY are not restricted to any given module, they do not
follow any particular naming convention

The convent ions used wi th the names of fields and bi t
flags help make CP easier to understand; there are a few ex­
ceptions to the naming conventions, however, and we will try
to point them out as we encounter them in each chapter.

3.2.3 Programming conventions

There is a regular i ty in CP modules which often makes CP
easier to maintain and understand than some other operating
systems. Since CP is distributed and maintained in source
form, it is relatively easy to accomplish major modifica­
tions. In order to preserve order, system modifiers both in
and out of IBM should respect the conventions. If the con­
ventions are ignored, the system becomes more difficult to
trouble-shoot and maintain.

3.2.3.1 Prologue

Every CP module has an English prologue with a description
of what the module does, what its entry points do, what are
the entry and exi t condi t ions, and how the reg isters are
used. Unfortunately, some prologues in CP show a certain
amount of neglect. Under the pressure of time, programmers
sometimes fail to update the English text so that for many
critical modules the description is more history than reali­
ty. You will find that the prologues are an invaluable aid
in understanding the modules, but you must keep in mind that
the prologues may not be entirely up to date. You should be
particularly careful concerning module names that might not
reflect recent module splits.

- 47 -

3.2.3.2. Module attributes

CP modules may be· either resident or pageable. The resident
modules make up the resident nucleus, which is always pres­
ent at a fixed address in real storage. The pageable mod­
ules are present in real storage only when they have been
read in from a paging device and they may be at various
storage addresses. They must therefore:

1. be no larger than one page (4096 bytes).

2. use the CALL and EXIT macros for linkage.

3. not use address constants (or the LA instruction) to
refer to themselves or to other pageable modules (ex­
cept in conjunction with the CALL or TRANS macros).

Pageable nucleus modules are temporarily locked into main
storage during execution.

Resident modules need not be reentrant, except where re­
quired by their use in multiprocessor configurations. Page­
able modules are usually reentrant, to avoid having to write
them back out to the paging device when they are no longer
needed.

With very few exceptions, all CP components run in super­
visor state with address translation off and interrupts dis­
abled. In general, therefore, CP modules run wi thout loss
of control between instructions.

3.2.3.3 Register conventions

Almost all modules in CP use the "Rnn" notation for regis­
ters. There are a very few except ions, mostly in modules
deal ing wi th error recovery. Table 5 shows the reg ister
conventions used in most modules.

3.2.3.4 Linkage conventions

The linkage conventions in CP are tailored for high perform­
ance. The macros used for subroutine calls and returns are:

1. CALL -- The CALL macro is used to invoke a subrou­
tine, usually located in another module. The macro
is intelligent enough to recognize certain commonly­
used resident subroutines that have special pre-allo-
cated save areas and will generate a BALR R14,R15 in­
struction to invoke these subroutines. The macro

- 48 -

TABLE 5

CP nucleus register usage

R6 - VCHBLOK or RCHBLOK
R7 - VCUBLOK or RCUBLOK
R8 - VDEVBLOK or RDEVBLOK
R9 - Command line BUFFER
RIO - IOBLOK or TRQBLOK
RII - VMBLOK
Rl2 - CSECT for current module
R13 - SAVEAREA
R14 - BALR return address
R15 - BALR called routine address

generates an SVC 8 instruction for all other
subroutine. calls. The SVC 8 performs several func­
tions. First, it makes sure the called module is
locked into memory (in case it is pageable). Second,
it allocates a SAVEAREA for the called subrout ine.
Third, it preserves R12, R13, and the return address
by storing them into the new SAVEAREA. Finally, it
points R12 to the called entry point and then branch­
es there. (Note that this is not the standard OS/360
save area format.)

2. EXIT -- If a subroutine was invoked via CALL (using
SVC 8), then it must return using the EXIT macro,
which restores RO through Rl1 from the SAVEAREA and
then issues an SVC 12. SVC 12 process ing restores
the caller's R12, R13, and the return address and
also may unlock the called module if pageable. (If a
subroutine was invoked via a BALR, then it simply re­
stores the caller's registers from whatever save area
it used and then returns with a BR R14 instruction:
it must NOT issue an EXIT macro.)

3. GOTO -- The GOTO macro is used when one module wishes
to pass control to another module without later get­
ting control back. This occurs most often when a
process is complete: such a process ends with a GOTO
DMKDSPCH. The macro loads R12 with the specified en­
try point address and then branches there.

4. RELOC The RELOC macro
point in a pageable module.

- 49 -

is issued at each entry
It stores RO through R11

5.

3.2.3.5

into the SAVEAREA. Remember that the CALL macro has
already saved Rl2 and R13. RELOC adjusts Rl2 to
point to the beginning of the module rather than to
the specific entry point. This method of addressing
is standard in CPo

ENTER -- The ENTER macro
RELOC; it just saves RO
SAVEAREA.

Save areas

is a trivial
through RII

subset of
into the

Most CP routines. get control with Rl3 pointing to a
SAVEAREA, as defined by the SAVEAREA DSECT. It is 96 bytes
long and allows for RO through Rl1 to be saved in the fields
beginning with SAVEREGS. There is also room for 9 words of
working storage labelled SAVEWRKI through SAVEWRK9. The
working storage area is available for any use that the rou­
tine requires, and many CP routines work hard to satisfy all
the i r temporary storage requi rements wi th these 9 words.
Figure 16 shows the format of the SAVEAREA.

+--------+--------+--------+--------+
o I SAVERETN SAVER12

+--------+--------+--------+--------+
8 I SAVER13 SAVEWRKI

+--------+--------+--------+--------+
10 I I

I SAVEREGS (RO - Rll) I
I I
+--------+--------+--------+--------+

40 SAVEWRK2. .. SAVEWRK9 I
+--------+--------+--------+--------+

Figure 16: SAVEAREA format

To improve system efficiency, CP initialization constructs a
list of pre-allocated SAVEAREAs. SVC 8 (CALL) obtains the
next element from the list, if available, and SVC 12 (EXIT)
places the SAVEAREA back onto the list for re-use.

- 50 -

Some CP routines do not use the standard SAVEAREA but in­
stead use one of several special register save areas, as
listed below:

1. TEMPSAVE (X'200':X'23F') is used as a temporary save
area by various routines.

2. BALRSAVE (X' 240' : X' 27F') is used by most rout ines
that are called by BALR and not by SVC 8.

3. FREESAVE (X'280':X'2BF') is used by the free storage
management routines in DMKFRE.

4. Several other specialized save areas also exist for
use by the first-level interrupt handlers and by the
special multiprocessor communication routines.

3.2.3.6 Other SVC usage

In addi t ion to SVC 8 and SVC 12, there are several other
SVCs used by CPo

1. SVC 0 results in a CP AijEND. This will be discussed
at length during the chapter on the CP trace table
and dumps. Let it be said that SVC 0 is invoked
whenever any part of CP encounters a serious error.
SVC 0 invokes the system dump routine, DMKDMP.

2. SVC 16 returns a SAVEAREA. This SVC simply gives
back a SAVEAREA without the loss of control involved
wi th an SVC 12. R13 is restored from the SAVER13
field.

3. SVC 20 gets a SAVEAREA. A SAVEAREA is given to a
program from the SAVEAREA stack maintained by DMKSVC.
Unlike SVC 8, SVC 20 does not cause loss of execution
control. R13 is set to point to the SAVEAREA, which
contains the previous R13 value in SAVER13. If
DMKSVC's stack of SAVEAREAs is depleted, it will call
the free storage manager, which might send the system
into that dreaded state, "extend" processing. Extend
processing will be discussed in much more detail, but
it is important to understand that control can be
lost while getting a SAVEAREA if a system extend is
necessary.

4. SVC 24 is an esoteric SVC. In a multiprocessor envi­
ronment it stacks a high-priori ty CPEXBLOK for the
other processor.

- 51 -

5. SVC ·76 is the error recording SVC in CP and guest
SCPs. If the SVC 76 routine can understand the gen­
eral- register contents it gets on entry, then it will
record the error. If, however, the contents are un­
intelligible, then the SVC is reflected to the virtu­
al machine.

3.3 MEMORY

3.3.1 Real memory

Main storage in a CP system can be divided into several ba­
sic areas. For convenience, the initial main storage divi­
sions are given in Figure 17. Each page frame of main stor­
age is described by an entry in a control block called the
CORTABLE, located in module DMKSYS. By scanning the
CORTABLE, CP can identify the use of each page frame.

3.3.1.1 Prefixed storage area

The PSA is a processor's real page frame 0, in which hard­
ware generated interrupts are posted. It is also one of the
main CP control blocks, since it is always addressable with­
out a base register. The PSA contains many anchors for
chains of other control blocks, several special pre-allocat­
ed save areas, and a set of commonly-used constants.

3.3.1.2 V=R region

The V=R region allows an almost one-to-one mapping of a
guest operating system's virtual storage and real main stor­
age. The mapping is exact except that the guest operating
system's page 0 (virtual PSA) can not be the real PSA. CP
puts the V=R page 0 at the end of the V=R region. The size
of the V=R region is set in DMKSLC, which is not actually a
module but is instead a TEXT deck containing an "SLC" loader
·control card.

3.3.1.3 CP nucleus

The CP resident nucleus is always located in cont iguous
.storage just above the optional V=R region. All resident CP
modules are in this area. The end of the resident nucleus
is DMKCPEND in module DMKCPE.

- 52 -

Free Storage

Trace Table

Dynamic
Paging

Area

CP Resident Nucleus

V=R page 0 (optional)

V=R region (opt ional)

4K
PSA

OK

Figure 17: Layout of real memory

3.3.1.4 Dynamic paging area (DPA)

The dynamic paging area is that portion of main storage left
after all other sections have been assigned. It is the area
in which virtual machine pages and pageable nucleus pages
are located. When main storage is a scarce resource, the
DPA can also be used to .satisfy requests for CP control
block storage.

3.3.1.5 cp trace table

The trace table is an area in which critical operations of
CP are recorded for error detection and correction purposes.
The trace table is logically one endless buffer into which
many CP routines insert fixed length entries.

- 53 -

3.3.1.6 Free storage area

The free storage area is that portion of main store set
aside for CP control blocks. It is managed by the module
DMKFRE. I f the free storage area becomes depleted enough,
then DMKFRE will "extend" into the DPA by taking control of
a page. This involves a great deal of system overhead and
is therefore an undesirable condition.

3.3.2 virtual machine memory

CP uses dynamic address translation to define the memory of
each virtual machine. A segment table and associated page
tables are built for each virtual machine and that set of
tables is used by the real hardware when the virtual machine
is running. Since the virtual machine cannot see the ta­
bles, CP is free to specify which pages are currently in
real memory. The virtual machine will run normally as long
as it references only those pages. Any attempt to reference
other pages will result in an interrupt that will pass con­
trol back to CP. The paging and real storage management
routines in CP will cause the referenced virtual machine
page to be brought into real storage and wi 11 update the
segment and page tables so that the virtual machine can be
allowed to re-execute the interrupted instruction. The ap­
propriate CORTABLE item will be updated to show that the
real page frame now contains the particular virtual machine
page.

CP itself uses segment and page tables for certain spe­
cial functions, thus allowing the use of various common rou­
t ines that perform pag ing I/O operat ions. Note, however,
that CP does not run with DAT enabled and therefore does not
incur page faults.

3.4 CPU

3.4.1 Real CPU

Conceptually, CP consists of a single endless main program,
the dispatcher (DMKDSP). That program passes control to
other CP routines to perform pieces of work. If no CP work
remains to be done, then the dispatcher in effect re-config­
ures the real System/370 so that a virtual machine will be­
gin execution.

The items of CP work to be performed are represented by 3
kinds of control blocks. These blocks are created by vari­
ous CP routines and are then "stacked" onto queues of work

- 54 -

to be done. All CP execut ion is under control of these
blocks except for the dispatcher itself, and the initial han­
dling of real interrupts.

3.4.1.1 CPEXBLOK

The CP execution block (CPEXBLOK) is the major control block
for specifying a piece of work to be performed at a later
time. The CPEXBLOK contains the values for the reg isters
(CPEXREGS) and an execution address (CPEXADD). The doubly­
linked circular queue of pending CPEXBLOKs is manipulated by
DMKSTK and by DMKDSP. DMKSTK "stacks" a CPEXBLOK by placing
it onto the queue. Soon thereafter, DMKDSP "unstacks" the
CPEXBLOK by taking it off the queue, loading the real regis­
ters, and branching to the CPEXADD address; note that this
is a branch and not a call. CP is then said to be "running
under" the CPEXBLOK. Figure 18 shows the format of the
CPEXBLOK and contains an example of its use.

3.4.1.2 IOBLOK

The IOB~OK is the element by which a CP I/O operation is in­
itiated, and it is also the element that controls execution
of an I/O interrupt handling routine. When an I/O operation
completes, the IOBLOK is "stacked" by the interrupt handler
and then lat~r "unstacked" by the dispatcher, which points
RIO to the IOSLOK, loads Rll from IOBUSER, and loads R12
from IOBIRA (interrupt return address); no other registers
are loaded. The dispatcher then branches to the address in
R12, making the interrupt handling routine in effect a sub­
routine of the dispatcher. The routine will ultimately re­
turn via GOTO DMKDSPCH. Figure 19 shows the format of the
IOBLOK.

3.4.1.3 TRQBLOK

The timer request block (TRQBLOK) is used by CP routines to
request a TOD clock comparator interrupt. At the specified
time, the TRQBLOK is stacked to the dispatcher and is then
unstacked just 1 ike an IOBLOK. In fact, the very same
fields and .registers are involved: RIO points to the
TRQBLOK, Rll is loaded from TRQBUSER, and the dispatcher
branches on RI2 to the address in TRQBIRA. Figure 20 shows
some of the fields in the TRQBLOK.

- 55 -

+--------+--------+--------+--------+
o CPEXFPNT CPEXBPNT I

+--------+--------+--------+--------+
8 CPEXMISC I CPEXADD I

+--------+--------+--------+--------+
10 I I

I CPEXREGS (RO - R14) I
I I
+--------+--------+--------+--------+

LA
CALL
USING
LA
ST
STM
CALL

B

RO,CPEXSIZE Obtain storage for
DMKFREE the cpexblok.
CPEXBLOK,Rl Now set the address
RI5,INTR of the deferred task
RI5,CPEXADD to be run later
RO,RI4,CPEXREGS with these values.
DMKSTKCP Make it runnable.

Somewhere, then go to dispatcher.

INTR DS OH Task executed later.
(This is optional.) USING *,RI5

GOTO Dispatcher This task is done.

Figure 18: CPEXBLOK example

- 56 -

+--------+--------+--------+--------+
o I lOBRADD I lOBFLAG I lOBLlNK I

+--------+--------+--------+--------+
8 I lOBFPNT lOBBPNT I

+--------+--------+--------+--------+
10 I lOBCYL IlOBVADD I lOBMlSC

+--------+--------+--------+--------+
18 I lOBUSER I lOBlRA I

+--------+--------+--------+--------+
20 I lOBCAW lOBRCAW I

+--------+--------+--------+--------+
28 lOBCSW

+--------+--------+--------+--------+
I I
I (other fields) I
I I
+--------+--------+--------+--------+

Figure 19: lOBLOK format

+~-------+--------+--------+--------+

o I TR~nL I
+--------+--------+--------+--------+

8 TRQBFPNT TRQBBPNT
+--------+--------+--------+--------+

10 I TRQBTOD I
+--------+--------+--------+--------+

18 I TRQBUSER TRQBlRA I
+--------+--------+--------+--------+
I
I (other fields)
I
+--------+--------+--~-----+--------+

Figure 20: TRQBLOK format

- 57 -

3.4.2 virtual machine CPU

The virtual machine CPU is represented by the VMBLOK control
block. Each VMBLOK contains a virtual machine's status and
its register contents. (Since the VMBLOK is the major con­
trol block for a virtual machine, it also contains many oth­
er fields that have nothing to do wi th the virtual CPU.)
The VMBLOKs are circularly chained together and the chain is
anchored in the PSA. The VMBLOK points to other control
blocks containing addition information, such as the segment
table, the virtual I/O conf igurat ion, and the user's real
terminal device. The user virtual machine VMBLOK is creat­
ed at LOGON and is deleted at LOGOFF. The system's own pri­
vate VMBLOK and the system operator VMBLOK are both assem­
bled as a part of module DMKSYS and therefore always exist
as the first two items on the VMBLOK chain.

3.5 I/O

3.5.1 Real I/O

3.5.1.1 Real I/O control blocks

The real I/O configuration is represented by 3 types of con­
trol blocks. Each is of fixed length and all of them are
located wi thin the module DMKRIO. To change CP' s view of
the I/O configuration, you must update and assemble DMKRIO
and then generate a new copy of the entire CP nucleus.

1. The RDEVBLOK represents a real I/O device and con­
tains the device address, its status, pointers to its
control units, and pointers to active or waiting IOB­
LOKs. All of the RDEVBLOKs are contiguous in stor­
age. A field in the PSA points to the first RDEVBLOK
and most other control blocks refer to the RDEVBLOK
by an index value which is its displacement from that
first one. The RDEVBLOK is generated by the RDEVICE
macro in DMKRIO.

2. The RCUBLOK represents a real control unit and con­
tains the controller address, its status, pointers to
its channels, pointers to its current IOBLOKs, and
indicies to its RDEVBLOKs. All the RCUBLOKs are con­
tiguous and the first one is addressed by a pointer
word in the PSA. The RCUBLOK is generated by the
RCTLUNIT macro in DMKRIO.

3. The RCHBLOK represents a real I/O channel and con­
tains the channel address, its status, pointers to
its current IOBLOKs, and indicies to its RCUBLOKs.
All the RCHBLOKs are contiguous and the first one is

- 58 -

addressed by a pointer word in the PSA. The RCHBLOK
is generated by the RCHANNEL macro in DMKRIO.

Whenever a CP routine needs to perform I/O, it constructs
an IOBLOK (as described above) and calls DMKIOS, the I/O su­
pervisor, which ultimately performs the desi red I/O oper,a­
tion. The queue of IOBLOKs for a given device is anchored
in the RDEVBLOK.

3.5.1.2 Real DASD areas

There are several different DASD areas that are reserved for
CP functions. The areas are:

1. Nucleus space contains a copy of the CP nucleus, both
resident and pageable. At CP initialization time,
the nucleus is read into main storage.

2. Directory space is an area that defines the configu­
ration of each virtual machine. Each description
contains the memory limits, I/O configuration, and
options for the virtual machine.

3. Checkpoint space is the area in which critical con­
trol blocks needed to recover spool files after a
system crash are wri tten. It is used during CP ini­
tialization.

4. Error recording space is that area into which CP re­
cords hardware errors for later reporting via the
EREP program.

5. Page space is the area in which CP keeps virtual ma­
chine memory pages when they are not in use in main
storage. The page space is sometimes called pre­
ferred page space.

6. Spool space is really a misnomer, since there is re­
ally no space reserved exclusively for spool files.
Internally, CP refers to this space as "temp" space,
the area that is used to hold spool files and any
pages that overflow the preferred page space.

7. Dump space is a new and optional area that is used to
hold the spool pages of a CP system dump. I f there
is not sufficient dump space defined in a system, CP
uses spool space to hold the dump. Because of the
relative simplicity of the dump-writing routine, dump
files must occupy contiguous DASD records in either
dump or spool space.

- 59 -

8. Named system space is a collection of areas described
by entries in the module DMKSNT. This facility pro­
vides pre-loaded virtual memory contents for commonly
used processes such as CMS.

9. Warmstart space is the area in which critical spool­
ing control blocks are saved across planned and un­
planned system outages. It is written during system
SHUTDOWN and ABEND processing and it is read during
system initialization.

Each of these areas is formatted into page-sized records
of 4096 bytes. The first data record on track 0 of a given
cylinder is record 1, and the record number increases con­
tinually from track to track to the end of the cylinder. On
some DASD devices filler records are placed between the page
records to allow time for track swi tching wi thin a single
channel program. This format is discussed in more detail in
the paging chapter.

3.5.2 Virtual machine I/O

The virtual machine I/O configuration is defined by a series
of control blocks that are very much like those used for the
real I/O configuration. Each virtual device has its
VDEVBLOK, each virtual controller has its VCUBLOK, and each
virtual channel has its VCHBLOK. These are interconnected
by pointers and are anchored in the VMBLOK; in appropriate
cases, the VDEVBLOK also points to the associated RDEVBLOK.

Cp's handling of virtual I/O instructions involves simu­
lation of the instruction according to the state of the vir­
tual I/O system as shown in the VxxxBLOKs. When appropri­
ate, CP will construct an IOBLOK for the real I/O operation
resulting from the virtual operation.

When the dispatcher prepares to let a virtual machine re­
sume execution, it will reflect virtual I/O interrupts to
the virtual machine when those interrupts are pending in the
VxxxBLOKs and enabled in the virtual PSW and control regis­
ters. The dispatcher will reset the appropriate VxxxBLOK
status bits to show that the pending interrupt has been tak­
en.

- 60 -

3.6 EXTERNAL OPERATIONS

3.6.1 Real external operations

CP uses the real timers for virtual timer simulation, for
dispatching and schedul ing purposes, and to accumulate ac­
counting data. TRQBLOKs are used whenever CP needs to set
an "alarm clock" to expire at some future time. The queue
of TRQBLOKs is kept in order by ascending time-to-expire and
the first item in the queue has its value loaded in the real
clock comparator. The interval timer and CPU timer are
loaded and stored as needed for schedul ing and account ing
purposes.

Other external interrupts cause control to pass to spe­
cific handling routines. These exist for the EXTERNAL key
(to disconnect the system operator) and for the various mul­
tiprocessor interrupts.

3.6.2 virtual machine external operations

The chapter on timer handling describes the details of cp's
simulation of the various virtual timers, including how and
when the virtual values are loaded into the real timers.
The dispatcher examines a queue of external interrupt blocks
(XINTBLOKs) that represent pending virtual external inter­
rupts. When a virtual machine can be dispatched, and if it
is enabled for a pending external interrupt, then the dis­
patcher will reflect that virtual interrupt via virtual PSW
swap.

3.7 SYSTEM CONSOLE

3.7.1 Real system console

The real system console is used by the system operator to
IPL CP to begin VM/SP operations. The real RESTART key can
be used by the operator to cause a CP ABEND and dump. The
system console itself is otherwise hardly used. (This is of
course distinct from the I/O device that is the LOGON device
for the system operator and from which the operator issues
CP commands to control VM/SP.)

- 61 -

3.7.2 virtual machine system console

The virtual system console is simulated on the user's LOGON
terminal through a set of CP commands and messages. These
correspond roughly to the real system's keys and indicators.
The various commands will change the state of the virtual
machine as appropriate to their functions. Some additional
features are also provided, such as the abi 1 i ty to def ine
new virtual devices, to change the virtual memory size, or
to send messages to the operator of some other virtual ma­
chine.

3.8 SUMMARY

In many cases, in order to understand what CP is doing and
why it is doing it, you need only to think about the real
System/370 hardware; CP takes the place of hardware for many
portions of the virtual machine. Other aspects of CP are
more general in nature and are not based upon hardware simu­
lation. Many of these structures have evolved over a long
period of time and are not as easy to understand.

- 62 -

NOTES

- 63 -

- 64 -

PART I I

SPECIFIC TOPICS

The following chapters each discuss some specific topic in
the design and structure of CPo Although the topics are in­
terrelated and do interact with each other, we have tried to
describe each one independently. In order to make it easier
for you to find material about a given subject, we have ar­
ranged the chapters into related groups. This leads to some
minor inconveniences; for example, storage management and
paging are grouped together and they both preceed the chap­
ter on general I/O processing, even though paging of course
involves I/O operations. Please keep this in mind if you
try to read straight through the chapters.

.:....--'--- --

VMBLO~A...
- -- -- .. _----

D l SPATc'~ER. ()VER.\ll Elu

4.1 INTRODUCTION

4.1.1 Overview

Chapter 4

DISPATCHER

The CP dispatcher, in module DMKDSP, is responsible for re­
flecting asynchronous events to virtual machines via the
simulation of the 370 interrupt mechanism, for the dispatch
of asynchronous tasks wi thin CP, and for the dispatch of
virtual machines. Understanding the operat ion of the dis­
patcher is vital to understanding the flow of control within
CP since all paths eventually lead to the instruction la­
belled DMKDSPCH, "the end of the world".

Detailed discussions of logic concerned with MP/AP sup­
port, timer maintenance, single processor mode, and the
Quiesce VM support have been deferred to later chapters.

4.1.2 References

4.1.2.1 Publications

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SC19-6201).

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

3. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-0891).

4. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

4.1.2.2 CP modules

1. DMKDSP - handles primary dispatching function for CP
and virtual machine tasks.

- 67 -

2. DMKSTK - places requests for deferred execution on
the appropriate dispatcher queue.

3. DMKSCH - handles the ordering and selection of virtu­
al machines that are "in-queue" and therefore eligi­
ble to be dispatched.

4.1.3 Flow of control

The dispatcher gains control, usually through its main entry
point at DMKDSPCH, when processing is complete for some CP
function. DMKDSP also gains control when the initial pro­
cessing for an interrupt has been completed and an IOBLOK,
TRQBLOK, or CPEXBLOK has been stacked for later processing.
Other entry points gain control:

1. after a virtual location 80 timer interrupt.

2. for a fast re-dispatch of the current user after a
program interrupt .

. 3. when the virtual PSW of a machine has been switched
and therefore must be checked for validity.

The processing at these qther entry points differs slightly
from the main entry since some tests need not be made at
certain of the entry points.

If the last virtual machine dispatched (pointed to by the
PSA field RUNUSER) has the VMDSP flag set in the VMDSTAT
field of the VMBLOK, the dispatcher will skip many checks
(even though entered at its main entry point) in an attempt
to reduce overhead as much as possible for this frequently
executed code~ In particular, if a virtual machine was run­
ning at the time of an I/O interrupt (the I/O old PSW has
the problem state bit on), then many unnecessary checks can
be avoided.

The normal flow of control described in this chapter is:

1. Maintain CPU utilization and wait statistics.

2. Perform the following functions for the virtual ma­
chine whose VMBLOK is pointed to by Rll.

a) Simulate or "unstack" virtual machine interrupts.

b) Validate new PSW and check for idle or disabled
wait states.

- 68 -

c) Interface to the scheduler for any virtual machine
status changes.

3. Unstack and dispatch pending IOBLOKs or TRQBLOKs.

4. Unstack and dispatch pending CPEXBLOKs.

5. Dispatch highest priori ty virtual machine that is
ready to run.

6. Determine allocation of wait time and load a wait PSW
if there is no work to perform.

That is a lot of function for one CP module, but then the
dispatcher has grown to require three base registers to cov­
er all its code.

4.2 MAINTENANCE OF CPU UTILIZATION STATISTICS

Among the duties of the dispatcher is the collection of sta­
tistics on CPU utilization. As mentioned previously, much
of the logic dealing with timer maintenance is covered else­
where. The material in this section is brief and is includ­
ed to complete the picture of the tasks performed within the
dispatcher.

4.2.1 CP time and problem state time

A flag in the PSA, CPSTATUS, indicates the state of the pro­
cessor before the current function was performed. If the
flag indicates that a virtual machine was being run, various
timers are updated. At this time, regardless of which vir­
tu~l machine was "current" when the dispatcher was entered
(R11 pointed to the VMBLOK of the virtual machine), R11 is
reloaded to point to the VMBLOK for the virtual machine run­
ning when CP gained control (from the field RUNUSER in the
PSA). The field PROBTIME in the PSA is updated to reflect
the amount of time the processor has been running in problem
st,ate (running a virtual machine). The location 80 interval
timer for a virtual machine is updated (in processors that
do not have microcode assist to maintain the interval timer)
and an interrupt is posted if the timer has become negative.

If the CPSTATUS flag indicates that an asynchronous CP
task (CPEXBLOK, IOBLOK, or TRQBLOK) has been executing and
is now complete, control proceeds to the code that attempts
to unstack interrupts for the current virtual machine whose
VMBLOK is pointed to by RlI.

- 69 -

4.2.2 wait time

r'f CPSTATUS indicates that the processor was in wait state
prior to performing the current function, then the appropri­
ate values in the PSA are incremented to indicate the amount
of time spent in IONTWAIT, PAGEWAIT, or IDLEWAIT. The man­
ner· in which the wait time is allocated to I/O, paging, or
idle wait when the dispatcher loads a wait PSW is covered in
a later section. Since there is no "current" virtual ma­
chine to check for interrupts that require unstacking, con­
trol is passed to the check of the dispatcher queues for as­
ynchronous CP tasks.

4.3 VIRTUAL MACHINE INTERRUPT SIMULATION (UNSTACKING)

Simulation of the 370 hardware-performed function of storing
an old PSW and loading a new PSW from a fixed location in
page 0 is performed within the dispatcher. This section of
code is skipped if the dispatcher can determine that no
event calling for an interrupt to be unstacked (simulated)
has occurred (VMDSP in VMDSTAT is on) or if the virtual ma­
chine is in a wait for some CP function to be completed.

The form of the interrupt simulation is tied very much to
the architecture of the virtual machine. The CP command

SET ECMODE OFF I ON

causes the switch between 360 and 370 architecture virtual
machines. CP indicates 370 architecture by sett ing the
VMV370R flag in VMPSTAT of the VMBLOK. Since 370 architec­
ture virtual machines may be in either BC or Ee mode, the
fact that a virtual machine is currently running in extended
control mode is signalled by the flag labelled VMEXTCM in
VMESTAT of the VMBLOK.

4.3.1 PER and pseudo ~ fault interrupts

Virtual PER (Program Event Recording) interrupts are simu­
lated by storing the old virtual machine PSW in the program
check old PSW location, saving the appropriate interrupt
codes in the hardware-defined locations of the virtual ma­
chine's page 0 and branching to the PSW validation section
of the dispatcher to check out the Program Check New PSW.

Pseudo page fault (PPF) interrupts are simulated as a
special type of program check (X' 14') and indicate that a
page requested by a task running within a multiprogramming
supervisor with VM handshaking (e.g. VS/l) is now available.

- 70 -

These interrupts are unstacked only if the virtual machine
is running with an EC mode PSW and the actual work is per­
formed by a routine in DMKVAT (virtual address translation).
It is possible for multiple PPFs to be pending; each pend­
ing interrupt is described by a PGBLOK and the VMPGPNT field
in the VMBLOK points to the queue of PGBLOKs for a virtual
machine.

4.3.2 External interrupts

If the virtual machine is disabled for external interrupts
or if the VMPXINT field of the VMBLOK is zero (indicating
that no external interrupts are pending) processing contin­
ues at the point of checking for pending I/O interrupts.
VMPXINT points to the queue of XINTBLOKs that describe each
pending external interrupt by priority, interrupt code, and
any bits that must be enabled in CRO to accept this inter­
rupt.

Special processing is required for external interrupts
caused by functions only provided within CP and not defined
by the 370 archi tecture.. For these external interrupts,
other CP routines are called (see table 6) to store addi­
tional interrupt information such as communication parameter
lists.

TABLE 6

Special external interrupts within CP

Code
X'2402'
X'400l'
X'4000'

CRO Mask
Bit 22
Bit 31
Bit 30

Routine
DMKHPSEX
DMKVMCEX
DMKIUARF

Function
Logical Devices
VMCF
IUCV

If the virtual machine's page 0 is not resident, it is
paged- in. The external interrupt is simulated as requi red
by 360 or 370 architecture. If the external new PSW is en­
abled for interrupts and the interrupt is not class 0 (ex­
ternal interrupts only presented once, such as the location
.80 timer), then an external interrupt loop condition exists.

- 71 -

A further check is made for an external interrupt loop that
occurs if the external new PSW is invalid (resulting in a
program check) and the program check new PSW is enabled for
external interrupts. In either case, the virtual machine is
made not-runnable (placed in console funct ion mode) and a
message is written to the VM's console. When external in­
terrupt stacking is complete, a branch is made to the start
of the code to unstack interrupts; a new PSW means that all
checks for pending interrupts must be repeated.

4.3.3 I/O interrupts

The code for simulating I/O interrupts is executed only if
the virtual machine has an interrupt pending on a chann"el
that is enabled for interrupts. The VMIOINT halfword field
in the VMBLOK contains a B'l' for each channel with an I/O
interrupt pending. This interrupt pending mask is "ANDed"
with the mask of enabled channels (constructed from the VM's
PSW and, for virtual 370 architecture machines, the contents
of virtual control register 2). If the result is zero a
branch is taken to the dispatcher code that checks idle PSW
wait conditions (see below).

The subsequent eight-page section of code in the dis­
patcher deals with scanning the virtual I/O control blocks
looking for the first channel/control uni t/device combina­
tion that has an interrupt pending. Once the pending inter­
rupt is found the virtual CSW is constructed, PSWs are
swapped, and the interrupt pending status is cleared from
the appropriate virtual I/O control blocks. Control is then
transferred to the dispatcher routine that validates a new
virtual PSW.

4.4 NEW PSW VALIDATION

The purpose of this section of code is to ensure architec­
tural consistency within the tables and control blocks being
maintained for a virtual machine. The only check for a 360
architecture virtual machine is to ensure that the EC mode
bit in the PSW is not turned on; if it is, the VM is put in
console function mode and an error message is written to the
virtual machine's console. For 370 architecture virtual ma­
chines (having VMV370R set in VMPSTAT), the major concern is
for virtual machines that are entering or leaving extended
control mode (VMEXTCM in VMESTAT and EXTMODE in VMPSW+l are
not both B'l' or B'O'). In the case of a mode change, rou­
t ines in DMKVAT are called ei ther to release or construct
the shadow page tables that are needed to handle multiple
address spaces within a virtual machine.

- 72 -

Once the new PSW check is complete, control normally
transfers to the section of code that unstacks pending in­
terrupts. This is necessary in case the new PSW is enabled
for interrupts.

4.5 CHECK FOR DISABLED OR IDLE WAIT

The purpose of this section of code is to check for a virtu­
al PSW wait condition that will never be satisfied (disabled
wait) or one that may not be satisfied for more than several
hundred milliseconds (idle wait).

The halfword mask field VMIOACTV in the VMBLOK is "anded"
with the mask of enabled channels to determine if any I/O
operations are active that would remove the virtual machine
from the wait condition; if so, this section of code is ex­
ited since the virtual machine is probably in a short wait
condi t ion. Pos i t i ve tests for IUCV or VMCF messages out­
standing to virtual machines wi th the SET QDROP OFF USERS
option (if the current virtual machine is enabled for VMCF
or IUCV interrupts) or for pages in transit when VM hand­
shaking is being used (VMNDCNT in the VMBLOK is nonzero) im­
ply a short wait condition so this section of code is exit­
ed.

If the virtual machine is enabled for I/O interrupts on
any channel, or if it is enabled for external interrupts and
the control registers indicate the machine is enabled for
timer, IUCV, VMCF, or external button interrupts, then the
virtual machine is flagged as being in idle wait (VMIDLE in
VMRSTAT field of the VMBLOK is set to 'lIB) and this section
of code is exited. When the above tests fail, the virtual
machine has entered a disabled wait state. The virtual ma­
chine is put in console function mode and a warning message
containing the hexadecimal represent at ion of the disabled
PSW is written to the virtual machine's console.

4.6 INTERFACE TO SCHEDULER

At this point in the processing, the interrupt simulation is
complete and DMKDSP is just about ready to get down to the
real task of dispatching. However, the current virtual ma­
chine may have experienced an important status change during
the processing just completed. This change may require that
the scheduler be notified of the new state of affairs.

The check as to whether or not the scheduler must be
called is rather cursory but does eliminate unnecessary
calls to the scheduler for the most common cases (e. g. a

- 73 -

running virtual machine was interrupted by a privileged
operation that has been simulated and the machine can be run
again wi thout delay). The scheduler is called unless all
the following conditions are true:

1. The VMRSTAT field of the VMBLOK is clear, indicating
that the virtual machine is not waiting on any exter­
nal events or CP services (i.e. the virtual machine
is runnable).

2. The VMDSTAT field of the VMBLOK indicates that the
virtual machine was runnable the last time the sche­
duler was called for this virtual machine (VMRUN is
set on), that the virtual machine is in the run list
(VMINQ is set on), and that there has not been a
queue slice end or a time slice end.

3. The VMOSTAT field of the VMBLOK indicates that the
virtual machine is not being logged off the system
(VMKILL is not set).

4. The VMQSTAT field of the VMBLOK indicates that the
virtual machine has not just performed some console
I/O (VMPRIDSP is not set).

If the test fails because the VMKILL flag is.set, the module
DMKUSOFF is called to start logoff processing before the
scheduler is called.

4.7 DISPATCH CP SERVICES

There are two queues of deferred CP functions maintained for
the dispatcher: the IOBLOK and TRQBLOK queue consisting of
completed I/O and timer requests, and the CPEXBLOK queue
consisting of other deferred CP tasks that must now be per­
formed. These queues are anchored at DMKDSPRQ, a 4-word
area whose format is show in figure 21. Note that the de­
ferred tasks gain control by direct branch and not via CALL
or BALR. Return of control to the dispatcher from one of
these tasks is usually by a return branch to the entry
DMKDSPCH.

- 74 -

+--------+--------+--------+--------+
o I a(lst CPEXBLOK} I a(last CPEXBLOK} I

+--------+--------+--------+--------+
8 I a(lst IOBLOK I a(last IOBLOK I

I or TRQBLOK} I or TRQBLOK} I

+--------+--------+--------+--------+

Figure 21: DMKDSPRQ (request queue anchors)

4.7.1 Unstack and dispatch IOBLOKs and TRQBLOKs

Since the fields of the IOBLOK and the TRQBLOK that the dis­
patcher is concerned about are at the same offsets wi thin
those two blocks, except as noted below, the dispatcher
makes no distinction between the two types of deferred ser­
vice request. For the normal case, when the system is not
extending, the dispatcher loads Rll from IOBUSER in the
IOBLOK, R12 from IOBlRA in the IOBLOK, and the CPU timer
from the VMTTlME field of the VMBLOK pointed to by Rll.
With RIO pointing to the IOBLOK (or TRQBLOK), it then
branches to the interrupt processing routine whose address
is in R12. Note that the interrupt routine gains control
with only RIO-RI2 set to defined values, and that the inter­
rupt routine is responsible for releasing the storage occu­
pied by the lOBLOK/TRQBLOK.

When the system is extending, only IOBLOKs for pag ing
tasks (IOBPAG in lOBFLAG is set) are unstacked. IOBLOKs and
TRQBLOKs are dist inguished by the fact that the uppermost
bi t in the TOD clock value is set on for the next 60-odd
years; since the corresponding bit position in an lOBLOK is
always zero, a simple test prevents TRQBLOKs from being un­
stacked during periods when the system is extending. This
kludge should work until about the year 2043, when the TOD
clock wraps.

4.7.2 Unstack and dispatch CPEXBLOKs

If there are no IOBLOKs or TRQBLOKs to unstack, the dis­
patcher performs a SSM ENABLE/DISABLE sequence to allow any
hardware stacked interrupts (both external and I/O) to oc­
cur. Assuming the system is not extending, the first
CPEXBLOK is removed from the queue (at label DMKDSPRQ). The
full set of 16 registers is loaded from the CPEXBLOK; the

- 75 -

storage occupied by the CPEXBLOK is released (with
appropriate contortions to preserve the register contents):
the condi t ion code is set by doing an LTR on Rl5 (loaded
from CPEXADD in the CPEXBLOK) and the dispatcher exits by
branching to the address in R15.

If the system is extending, only CPEXBLOKs that relate to
paging act ivi ty are unstacked. The dispatcher contains a
list of valid (paging related) exit addresses and compares
CPEXADD in the CPEXBLOK to the list to see if the request
should be unstacked.

If there are no CPEXBLOKs to unstack, then the dispatcher
is free to run a virtual machine, unless the system was ex­
tending. For the latter case, control is passed to the code
that loads a real wait psw.

4.8 DISPATCH VIRTUAL MACHINES

The shortage of certain critical resources during extend
processing means that virtual machines should not be dis­
patched at this time. Any of these condi t ions cause a
branch of control to the code that loads a real wait psw.

4.8.1 Select highest priority ready virtual machine

The list of dispatchable virtual machines is maintained by
the scheduler and pointed to by two words at the label
DMKSCHRL. _ The dispatcher scans this "run 1 ist" for the
first virtual machine that is ready to run. A virtual ma­
chine is ready to run if VMRUN in VMDSTAT is set on and no
CP wait flags in VMRSTAT are set. A fast re-dispatch path
is taken for the virtual machine if the following conditions
hold:

1. The selected virtual machine is the one that was run­
ning before an interrupt caused control to return to
CPo

2. There is a problem state PSW in the I/O old PSW
field, indicating that CP was entered due to an I/O
interruption.

3. The virtual machine is still eligible for fast re­
dispatch as indicated by VMDSP in VMDSTAT being set
on.

The ECPS microcode does not implement this particular fast
re-dispatch path.

- 76 -

4.8.2 Clean-up after previous VM if not current

If the selected virtual machine is not the same as the one
previously dispatched, and the previous machine was using at
least one shared system, DMKVMASH must be called to verify
that no shared pages have been altered. The newly selected
virtual machine is allocated a fresh quantum of time in the
location 80 timer. The standard quantum size is maintained
in DMKDSPQS; however, if the virtual machine has already ex­
perienced a quantum end (VMCOMP in VMQLEVEL is set on) then
the size of the allocated quantum is multiplied by 4 (so
that long running compute-bound tasks require less system
overhead). The floating point registers are also loaded at
this point. The fast re-dispatch paths do NOT restore the
floating point registers.

4.8.3 Setup for dispatching ~ virtual machine

The code to load the real control registers and PSW with the
proper information to run a virtual machine has never been
easy, but the addition of the microcode assists (VMA, ECPS,
and 370E) along with features like single processor mode
(SPMODE) have made this complex piece of code almost impos­
sible to understand. Suffice it to state that the contents
of the new PSW and control registers are constructed piece­
meal, with most of the code being dedicated to setting the
correct bits in CR6 for the microcode assist options. For
4300-class processors this section of code is microcode as­
sisted and, since options like SPMODE are not available on
those machines, the microcode implementing this path can be
greatly si~plified. At any rate, the control registers get
set up, the timers get loaded, the general purpose registers
get restored, and finally the LPSW is executed to dispatch
the virtual machine.

4.8.4 Fast reflect dispatching path

Normal entry to the fast re-dispatch entry of the dispatcher
(DMKDSPA) assumes that the running virtual machine attempted
a privileged operation that has now been simulated and the
virtual PSW with which to dispatch the virtual machine is in
the real program check old PSW field. Therefore, by making
a few simple tests to verify that no major status change has
occurred ei ther to the system (not extending?) or to the
virtual machine (VMDSP still set?), it is necessary only to
update the virtual location 80 timer (if the timer is run­
ning and microcode assist is not available) and re-dispatch
the virtual machine wi th a very minimum of setup. Of
course, if any of the tests for using the fast re-dispatch

- 77 -

path fail, the long path through the main entry point is
taken. ,

One additional possibility exists for skipping the major­
ity of the virtual machine setup code. As mentioned above,
when the previously running virtual machine is about to be
re-dispatched, it is eligible for fast re-dispatch (VMDSP is
still set), and the PSW with which to resume its execution
is in the I/O old PSW field, then the virtual machine is
dispatched along the fast re-dispatch path wi thout going
through the full setup.

4.9 WAIT TIME ACCOUNTING

If the dispatcher searches through all its queues and cannot
find any work to perform, it branches to the section of code
that loads a real wa i t PSW. However, as ment ioned at the
beginning of this chapter, when the system comes out of wait
state the amount of wai t time is decremented from one of
three "timers" depending on the reason for the wait: really
nothing to do (IDLEWAIT), or the system was bottlenecked due
to high paging activity (PAGEWAIT), or high I/O activity
(IONTWAIT) •

The wait time is classified as IDLEWAIT if there are no
virtual machines on the run list, or if none of the virtual
machines on the run list is in page wait or I/O wait (as in­
dicated by VMPGWAIT or VMIOWAIT in the VMRSTAT field of
their VMBLOK). If more than half the pageable page frames
are allocated to virtual machines in the run list that are
in page wait (VMPGWAIT in VMRSTAT is set on) or if there are
virtual machines in page wait but none in I/O wait (VMIOWAIT
in VMRSTAT is set on), then the wait time is classified as
PAGEWAIT; otherwise, the wait time is considered IONTWAIT.

Once the classification is performed, the CPU timer is
loaded with the appropriate time value and flags are set in
the PSA in the field CPSTAT3 to indicate to which field the
timer value should be returned when the system leaves wait
state. Finally, after setting up CRO for possible MP signal
events, the wait PSW is loaded.

- 78 -

NOTES

- 79 - .

- 80 -

DMl<..~RL: --------

E1

Chapter 5

SCHEDULER

5.1 INTRODUCTION

5.1.1 Overview

The purpose of a scheduler is to make resource allocat ion
decisions that maximize the throughput of the system and
minimize response times. Achievement of these goals must be
subject to installation-specified constraints on the rela­
tive rates various virtual machines should receive resourc­
es. Since these goals are often in di rect conf 1 ict wi th
each other, this chapter explains the algorithms used by
DMKSCH to implement and to resolve apparent conflicts in re­
source allocation policy.

5.1.1.1 Good response time

By far the majority of interactive transactions consume very
1 itt le resource. The CP scheduler employs several mecha­
nisms to give short transactions (and the initial parts of
long transactions) preferential treatment at two critical
times, when the check is made to see if the virtual ma­
chine's working set fits into the page frames available, and
when the internal priority is calculated. To improve the
human factors associated with using the system, virtual ma­
chines performing console I/O are usually given the same
preferential treatment. The VMQl flag in the VMQLEVEL field
of the VMBLOK indicates that a virtual machine is receiving
this type of preferential treatment.

5.1.1.2 Maximize throughput

Resource contention is the major reason that most computing
systems do not perform at full capacity. Historically, the
paging and memory subsystems have been a major source of
contention in timesharing systems. The CP scheduler is no
except ion to the long 1 ist of t imeshar ing schedulers that
make careful working set calculations in an attempt to im­
prove system throughput by avoiding "thrashing".

- 81 -

One source of increased contention, and decreased
throughput, is the loading and unloading of pages for large
or long transact ions. To improve thr"oughput, the scheduler
implements a special algorithm for virtual machines running
large or long transactions. The execution of this algorithm
has the result of loading and unloading the machines' pages
one-eighth as often, but it runs the machines eight times as
long whi Ie they are in the run 1 ist. Various adjustments
are made to the run list priority of these machines to pre­
vent them from depriving more interactive machines of re­
sources. They are also el ig ible for pre-empt ion from the
run list if an interactive machine requires their page
frames to be able to run.

One other well-known way to improve throughput is to in­
sure that compute-bound virtual machines get control of the
CPU after the I/O-bound machines have started their I/O and
are wai t ing for it to complete. CP uses the locat ion 80
timer to determine when a particular virtual machine may be
"hogging" the CPU. The scheduler attempts to improve
throughput by moving such machines to a posi tion that is
lower in the run list and setting the VMCOMP flag to signal
the dispatcher that this virtual machine is compute-bound
and should receive a longer time slice.

5.1.1.3 Relative resource" consumption rate

The scheduler dynamically calculates each virtual machine's
use and "fair share" of the CPU resource. Virtual machines
that are receiving more or less than their fair share of the
CPU time receive appropriate adjustments to their internal
priority until their resource consumption rate is on target.
A virtual machine's relative fair share of CPU is controlled
by its CP directory priority, with a priority of 64 (in the
range of 0-99) being considered the "normal" priority value.

5.1.2 References

5.1.2.1 Publications

1. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

2. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-0891).

3. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

- 82 -

4. Young, C. J .. , VM/370 Biased Scheduler, Release 1 PLC
9, TR 75.0001, IBM Development Center, Burlington,
MA, August, 1973.

5. Schatzoff, M. and L. H. Wheeler, CP-67 Paging Priori­
ty Dispatcher, IBM Cambridge Scientific Center Tech­
nical Report No. G320-2088, March, 1973

6. Wheeler, L. H., C. S. C. VM/370 Extended I, Dispatch­
ing and Scheduling, IBM Cambridge Scientific Center
Technical Report No. ZZ20-6001, July, 1974.

7. Cogger, R. and R. Cowles, VM Scheduler, A White Pa­
per, Proceedings of SHARE XLVI, Feb. 1976.

8. VanLeer, Paul, The Truth about the Fair Share Schedu­
ler, Proceedings of SHARE LV, Vol. 2, August, 1980.

5.1.2.2 CP modules

1. DMKSCH - is the "boss" who makes the decisions.

2. DMKSTP - periodically looks around the system and
calculates new averages for various control values
that the scheduler uses. The TRQBLOK is rescheduled
to expire at a later time, just like a snooze alarm.

3. DMKCPI - schedules the TRQBLOK that triggers the tim­
er driven calculations performed by DMKSTP and calls
an entry point in DMKSTP to initialize certain
fields.

4. DMKDSP - determines when a virtual machine has en­
tered a "long wait" condition and also performs the
majori ty of calls to the scheduler to check for a
change in status of the virtual machine.

5.2 VM SCHEDULER TERMINOLOGY

The scheduler maintains several flags in the VMBLOK that
summarize the state of the virtual machine the previous time
the scheduler was called. By examining the current state of
the virtual machine (determined primarily by the flags in
VMRSTAT) and its previous state (determined primarily by the
VMRUN and VMINQ flags in VMDSTAT), the scheduler can deter­
mine if any important status change has occurred and take
actions it deems necessary. The scheduler maintains three
queues of virtual machines, the run list and two eligible
lists.. At some level, the job of the scheduler can be

- 83 -

viewed as one of moving virtual machines among the queues
and ordering the queues in a fashion that implements poli­
cies concerning the relative importance of throughput, re­
sponse time, and fair distribution (or appropriate unequal
distribution) of resources.

5.2.1 In-queue versus in ~ queue

For mostly historical reasons, a virtual machine that is in
the run list is said to be "in-queue" (and the VMINQ flag is
on). In earlier versions of the VM scheduler, the virtual
machines on the run I ist were a subset of the "in-queue"
virtual machines. Only runnable virtual machines were al­
lowed in the run list (makes sense, doesn't it?). However,
that bit of consistency was dropped in an effort to cut down
on the frequency with which machines had to be added or
dropped from the run list. Note that the "in-queue" condi­
tion is not the same as "in a queue". The latter means that
a virtual machine is in the run list or one of the eligible
lists, implying that one or both of the flags VMRUN or VMINQ
are set on. .

5.2.2 Time slice end vs. queue slice end

As explained above in the introduction and in the chapter on
the dispatcher, the location 80 interval timer is used to
help prevent a single virtual machine from blocking other
run list virtual machines from accessing the CPU resource.
The initial interval timer value for a time slice (or "quan­
tum" as it is often called) is maintained in the dispatcher
at label DMKDSPQS ("quantum size"). On the other hand, the
queue slice is the maximum amount of virtual or overhead
time that a virtual machine is allowed to consume before be­
ing dropped from the run list (in order to allow other vir­
tual machines to be added to the run list.) The queue slice
values are maintained in the scheduler at labels DMKSCHQl
and DMKSCHQ2 for the interactive and "less interactive"
queue slices. Initially, DMKSCHQI is eight times the time
value of DMKDSPQS, and DMKSCHQ2 is eight times the value of
DMKSCHQl. While the virtual machine is dispatched, the vir­
tual CPU time remaining in the queue slice is normally kept
in the CPU timer. When looking at CP code, be sure to look
at the instructions and not just at the comments; many of
the comments are incorrect when referring to the meaning of
VMQSEND (queue slice end) and VMTSEND (time slice end).

- 84 -

5.2.3 Ql, Q2, and pseudo-Q3

The terms referring to the "Qn" for a virtual machine are
mostly incorrect or at least misleading. A virtual machine
is said to be in "QI" when it is in the run list or the QI
eligible list and is distinguished by having the VMQI flag
set in VMQLEVEL.

A "Q2" virtual machine is basically one that is not in
the high pr ior i ty interact i ve queue (QI) and it has not
(yet) reached the status of a long-running transaction (Q3).
Both Q2 and Q3 transactions wait on the Q2 eligible list un­
til sufficient page frames are available for them to run.

Once a virtual machine running a transaction completes
six consecutive Q2slices, it is "moved" to Q3 (pseudo-Q3).
The idea behind Q3 is to cut down on overhead by running the
really long transactions for eight times as long while they
are in the run list but to run them only one-eighth as of­
ten. Q3 is implemented by means of some flags, a counter
(VMQ3CNT) containing the number of Q2 slices remaining in
the Q3 slice, and a little bit of extra code to recognize a
Q3 virtual machine and not drop it completely from the run
list until its quota of Q2 slices is exhausted.

5.2.4 Run list

The run list contains those virtual machines whose working
sets can be contained within the available page frames. A
virtual machine must be on the run list to receive system
resources for any purpose except CP commands entered through
the console. A virtual machine in the run list mayor may
not be runnable, therefore it is dist inguished from other
virtual machines by hav"ing the VMINQ flag of VMDSTAT set on.
The priority of the virtual machine within the run list is
the time at which it would have received a queue slice under
the assumption that the CPU time was received at the "fair
share" rate for that virtual machine. The queue anchor for
the run list is at label DMKSCHRL.

5.2.5 Eligible lists

The eligible lists contain those virtual machines that are
runnable but whose working sets cannot fit into the avail­
able page frames. The scheduler ensures that if a machine
is runnable, then it is in either the run list or an eligi­
ble list; therefore, any virtual machine with VMINQ set off
and VMRUN set on in VMDSTAT must be in one of the eligible
lists. The state of the VMQI flag in VMQLEVEL determines

- 85 -

which eligible list the virtual machine is on. The queue
anchors for the eligible lists are in the control blocks of
DMKSCH that are mapped by the VMQBLOK DSECT. The VMQBLOKs
are labelled DMKSCHQI and DMKSCHQ2 and contain the length of
the queue slice (in timer units) and other counters and sta­
tistics of importance to the scheduler.

5.2.6 Drop from queue

A virtual machine is removed from the run list when it com­
pletes a queue slice, enters CP console function mode (CP
READ), or loads a wait state PSW when it has no high-speed
(disk or tape) I/O outstanding. When a virtual machine is
removed from the run list it is "dropped from queue".

5.3 CHECK VIRTUAL MACHINE FOR STATUS CHANGE

The virtual machine for which the scheduler is called may be
in one of several different states. The first partition of
the states is based upon whether or not the virtual machine
is currently runnable (VMRSTAT in the VMBLOK is zero).

5.3.1 virtual machine is not runnable (VMRSTAT not zero) -- --- ---
If the virtual machine is in the run list (VMINQ in VMDSTAT
is on) then a branch is taken to check for a long or idle
wait condition. Otherwise, if the virtual machine was run­
nable on the previous call to the scheduler (VMRUN in
VMDSTAT is on) then since it is not in the run list, the
virtual machine must be in an eligible list. Since only
runnable virtual machines are allowed in the eligible list,
the current machine must be removed from the eligible list,
but no other status change is required. If the virtual ma­
chine was not runnable on the previous call to the scheduler
(VMRUN in VMDSTAT is off), then no status change has oc­
curred and the scheduler exits immediately.

5.3.2 Virtual machine is runnable (VMRSTAT is zero)

If the virtual machine was runnable on the previous call to
the scheduler (VMRUN in VMDSTAT is on) and it is not in the
run list (VMINQ in VMDSTAT is off), then the machine is al­
ready in an eligible list ~nd no status change has occurred
and the scheduler exits immediately. If the virtual machine
is not in the run list and was not runnable on the previous

- 86 -

call to the scheduler (VMINQ and VMRUN in VMDSTAT are both
off), then the virtual machine must be added to an eligible
list (see the discussion later in this chapter). The final
alternatives apply to a virtual machine that is runnable and
in the run list. If the virtual machine was runnable on the
previous call to the scheduler then a check is made to see
if a time slice has expired while the virtual machine was
running; otherwise, the scheduler checks whether the virtual
machine has exceeded its queue slice.

5.3.3 Time slice end

The time slice ("quantum") is the amount of CPU time that a
virtual machine is allowed to use wi thout another virtual
machine being dispatched. Recall that the dispatcher allo­
cates a new time slice by setting the real location 80 timer
to the value in DMKDSPQS whenever a new virtual machine is
dispatched. A time slice end indicates that the virtual ma­
chine has used a significant quantity of CPU while not al­
lowing any virtual machines of lower priority to be dis­
patched; in other words, the virtual machine is probably
compute-bound.

When a time slice end occurs (VMTSEND in VMDSTAT is on),
the scheduler temporarily alters the run list priority of
the offending virtual machine so that it is moved lower in
the run list. The amount of the change in priority is 1/4
of the time remaining until the machine is scheduled to drop
from the run 1 ist (VMEPRIOR is the scheduled time for the
drop). Since the change in VMEPRIOR is only temporary, the
run list is, in this case, not maintained in strict priority
order.

5.3.4 Queue slice end

When a virtual machine exceeds its queue slice (VMQSEND in
VMDSTAT is'set), it is dropped from the run list and added
to the appropriate eligible list (assuming it is currently
runnable). However, virtual machines that are running long
transactions and are therefore in the pseudo-Q3 go through a
full drop from the run list only when the number of Q2 slic­
es allowed in Q3 (VMQ3CNT) is decremented to zero.

- 87 -

5.3.5 Terminal I/O

Virtual machines that have recently performed I/O to their
consoles are indicated by having VMPRIDSP set in VMQSTAT.
Since console I/O is normally indicative of the start of a
new transaction (and most transactions are short) or of the
output generated at the end of a transaction, the scheduler
at tempts to insure rapid process ing of the transact ion by
placing the virtual machine in Ql if it is not already
there. If the virtual machine is in an eligible list, it is
dropped and control is passed to the routine that performs
the Ql priority calculation before placing the virtual ma­
chine in the Ql el igible 1 ist. I f the virtual machine is
currently in the run list, it is dropped and added to the Ql
eligible list only if the deadline by which it should have
been dropped has passed by more than one second. This last
test allows a Ql priority slice to be delivered to a virtual
machine that is otherwise "buried" at the bottom of the run
list and that might otherwise take a relatively long time to
complete a queue slice.

5.3.6

Any virtual machine that is detected to be waiting for an
event taking longer than a normal disk or tape operation is
dropped from the run list. The scheduler always drops vir­
tual machines from the run 1 ist when they have VMIDLE,
VMLOGON, or VMLOGOFF set in VMRSTAT. A virtual machine in
console function wait" (VMCFWAIT in VMRSTAT set) is also con­
sidered to be in long wait unless the machine is executing a
virtual console function (VMVIRCF and VMCF in VMDSTAT set)
and the console function is waiting on a page (VMPGWAIT in
VMRSTAT set). After dropping the virtual machine from the
run list, the scheduler checks the eligible list for virtual
machines that may now fit into the available page frames.

5.3.7 Delayed queue drop and paging checkpoint

When the virtual machine's total number of page reads
. (VMPGREAD) exceeds its paging checkpoint value (VMPCKP), the
virtual machine is checked for a "delayed queue drop" re­
quest (only possible for pseudo-Q3) and has its working set
adjusted if previous projections appear to be incorrect.

As discussed later in this chapter, the scheduler over­
commits the real memory frames in order to add certain vir­
tual machines to the run list (e.g. Ql virtual machines).
To ensure that this overcommi tment does not lead to long
term thrashing, at the time of overcommitment a Q3 virtual

- 88 -

machine is flagged for delayed queue drop (VMDLDRP in
VMQSTAT). When the paging checkpoint is reached, a virtual
machine with VMDLDRP set is dropped from the run list if the
number of available page frames exceeds the sum of the work­
ing sets of machines in the run list (PAGUSAGE) by 12.5%.

As programs running within a transaction go through dif­
ferent phases, the working set of a virtual machine can un­
dergo significant changes in size. To track such changes,
at a paging checkpoint the scheduler adjusts the working set
size if the number of resident pages (VMPAGES) is larger
than the projected working set size (VMWSPROJ) plus 16. The
adjustment is performed by averaging the VMWSPROJ and
VMPAGES to produce a new VMWSPROJ.

Whether or not the virtual machine's working set project­
ion is adjusted, the next paging checkpoint must be set up.
The minimum of the projected working set size (VMWSPROJ) and
16 is added to VMPGREAD to be stored in VMPCKP as its next
checkpoint.

5.3.8 Pre-emption of pseudo-Q3 virtual machines

When a virtual machine running in pseudo-Q3 reaches the end
of one of its Q2 slices, the scheduler checks the eligible
lists for interactive virtual machines that have already
been delayed past their deadline. If such a machine is
found on the eligible list and has been waiting on the list,
the pseudo-Q3 virtual machine is dropped from the run list
to make room for the more interactive machine. The actual
logic that performs the tests is quite a bit more complicat­
ed than described here and is covered in more detail in the
section dealing with selection of virtual machines from the
eligible list.

5.4 MAINTENANCE OF THE SCHEDULER QUEUES AND STATISTICS

In the previous section the major concern was to look for a
status change that impl i es the scheduler should do some­
thing. The next section discusses the things that the sche­
duler does, namely, maintaining the scheduler and dispatcher
queues and collecting statistics.

- 89 -

new functions to be supported. Figure "2 shows the format of
the EC mode PSW, which is formatted as follows:

1. Bits 0-7 (the system mask) are redefined. Bit 1 en­
ables program event recording (PER). Bi t 5 enables
dynamic address translation, which will be described
later. Bit 6 enables I/O interrupts from any channel
that is also enabled in CR2. Bit 7 enables any ex­
ternal interrupt that is also enabled in CRO.

2. Bits 8-15 are the same as in BC mode.

3. Bi ts 18-23 contain. the condi t ion code and program
mask fields (bits 34-39 in BC mode).

4. Bits 24-31 and 32-39 are reserved and must be O.

5. Bi ts 40-63 are the instruct ion counter, as in BC
mode.

+--------+--------+--------+--------+
1 .P ..• TIElkkkklMWPI .. ccmmmmIOOOOOOOOI
+--------+--------+--------+--------+
o 8 16 24 31

+--------+--------+--------+--------+
1000000001 instruction address 1
+--------+--------+--------+--------+

32 40 48 56 63

Figure 2: Extended control mode PSW

1.3.2.3 Swapping

The CPU changes status from time to time by storing the cur­
rent PSW into main storage and fetching a new PSW from some­
where else in main storage. Such PSW swapping may of course
change any or all of the various fields in the PSW and usu­
ally indicates a change from a user program to a system pro­
gram. In addition to swapping PSWs, the CPU can also simply
load a new PSW, in which case the old PSW is lost. The Load
PSW (LPSW) instruction is available only in supervisor state
and is the usual way for a system program to return to an
interrupted user program.

- 9 -

5.4.1 Working set size prediction

The use of a feedback loop to help calculate a predicted
working set size is a central feature of the VM/SP schedu­
ler. The code implementing the working set size prediction
is fairly ~ifficult to understand. It is highly recommended
that the paper wri tten by Paul Van Leer and found in the
Proceedings of SHARE LV (see references) be used in conjunc­
tion with a listing of DMKSCH if an in-depth understanding
of this topic is desired.

5.4.1.1 Resident pages averaged over page reads

The paging subsystem maintains several VMBLOK values of In­
terest to the scheduler.

1. VMXPG - is the maximum number of resident pages dur­
ing a stay in the run list.

2. VMRDINQ - is the number of page reads performed for
this virtual machine during the most recent stay in
the run list.

3. VMPAGES - is the current number of resident pages for
the virtual machine.

4. VMPGRINQ - is the sum of the number of pages current-
ly resident for a virtual machine at each page read.

One method of calculat ing the average number of resident
pages is to merely divide the sum of the resident pages by
the number of page reads. Performing that calculation, one
arrives at the average number of resident pages PER PAGE
READ, not per unit of time; the time-averaged value for res­
ident pages may be as much as twice this value.

The scheduler uses various heuristics to determine what
adjustments have to be made to arrive at a reasonable value
for the average number of resident pages. The two extreme
case for adjustment are:

1. A virtual machine that starts with no resident pages,
reads 20 pages immediately, and then completes the
sl ice wi thout reading addi t ional pages. For this
virtual machine the average number of resident pages
is 20 when averaged over time and 10 when averaged
over page reads.

2. A virtual machine that starts with 20 resident pages,
reads a few pages during its slice, and (possibly)
has a few pages stolen from it during the slice so

- 90 -

that it has about 20 pages resident at the end of the
slice. For this virtual machine, the average number
of resident pages is 20 when averaged over ei ther
time or page reads.

The scheduler attempts to distinguish between these cases
(and several others) and to arrive at a reasonable value for
the average number of resident pages us ing informat ion it
can glean from the VMBLOK fields mentioned above. For a
more detailed explanation, refer to the SHARE presentation
given by Paul VanLeer (see the references).

5.4.1.2 Resident pages averaged over CPU use

One serious concern throughout the scheduler algorithms is
the amount of productive CPU time (CPU used for functions
other than paging) that is delivered between page reads.
The system-wide average for the amount. of product i ve CPU
time delivered per page read is maintained in DMKSCHKA. The
ratio of the virtual machine's CPU time between page reads
and the average for the system is used to adjust the value
for average resident pages. It is biased upward for virtual
machines using less than the average amount of CPU time be­
tween page reads; the implication being that increasing the
number of resident pages would have increased the amount of
productive CPU time between page reads.

5.4.1.3 Prediction of new working set size

Except for a number of special cases that must be consid­
ered, the new projected working set size is taken to be the
square root of the product of the two forms for the average
resident pages calculated above.

5.4.2 Calculation of queue priority

The priority that determines the ordering of the run list
and the eligible lists is considered to be the deadline for
the virtual machine to receive the CPU time within its queue
slice. As a partial TOD clock value, the priority has a
precision of approximately 30 milliseconds, is based at the
time of IPL, and can run for approximately 14 years before
going negative (probably longer than the system will run be­
fore going down). The priority is calculated by adding sev­
eral "expected delay" factors to the current TOD to arrive
at a new deadline. Several important factors in computing
the amount of delay a virtual machine will experience are
discussed below.

- 91 -

5.4.2.1 Calculate bias due to external priority

The CP ·directory and the privileged SET PRIORITY command al­
low the specification of an external priority for a virtual
machine. The scheduler uses this external priority in de­
termining the relative importance of the virtual machine by
adjusting the virtual machine's expected CPU use delay with
a bias factor. Table 7 indicates the bias factor resulting
from a number of different values for the external priority.

TABLE 7

Effect of external priority on CPU delay factor

External Priority
o

11
21
32
43
54
64
75
85
96

Bias Factor for CPU
1
2
4
8

16
32
64

128
256
512

The interpretation of the numbers is that the expected delay
for a virtual machine at priority 64 is 32 times the delay
for an equivalent virtual machine running at priority 11.
After appropriate scaling, the product of this bias and the
average delay for virtual machines at the standard priority
of 64 is used as a major part of the deadline priority cal­
culation.

5.4.2.2 Calculate CPU use delay

System-wide averages are maintained on the· recent averages
for certain values, namely, the amount CPU time used while
on the run list and the length of stay on the run list. The
scheduler calculates the amount of time the virtual machine
will spend on the run list just to receive a queue slice of

- 92 -

CPU time given the bias resulting from the external
priority.

5.4.2.3 Combine delay factors for priority

Although only the calculation for the delay in CPU use was
mentioned above, a calculation for the delay due to paging
activi ty is also performed. These delays are combined and
then adjustments are made in. order to bias the priority in
favor of virtual machines running shorter transactions. The
amount of the bias is largely a function of how many Q2
slices have already been completed by the transaction.

5.4.3 Add to eligible lists

5.4.3.1 Necessary conditions

Any virtual machine that is runnable and not currently in
the run list is added to an eligible list. An exception to
this rule is the case of "assured execution" machines, those
that have been SET FAVORED and therefore have the VMAEX flag
set in VMQLEVEL. Virtual machines that are favored are nev­
er placed in the eligible list but instead proceed directly
to the run list.

5.4.3.2 Necessary actions

1. Timestamp the entry to the eligible list by storing
the TOD clock into VMTODINQ.

2. If the difference between the previous timestamp
(when the virtual machine dropped from a list) and
the current timestamp is greater than about 5 sec­
onds, then the count of consecutive Q2 slices is set
to zero.

3. If the VMQI flag in VMQLEVEL is set the virtual ma­
chine is added to the Ql el ig ible list; otherwi se,
the virtual machine is added to theQ2 eligible list.
VMEPRIOR is used as the priori ty to determine the
point of insertion within the list; the list pointers
are chained through VMQFPNT'and VMQBPNT at the begin­
ning of the VMBLOK.

4. A Monitor Call instruction is issued to allow the
(optional) collection of data about virtual machines
being added to the eligible lists.

- 93 -

5.4.4 Eligible list selection algorithm

Whenever the set of virtual machines in the eligible lists
or in the run list changes, the scheduler checks the eligi­
ble lists for virtual machines that may now be added to the
run list.

5.4.4.1 Add virtual machines that fit in run list

The standard algori thm for adding virtual machines to the
run list is to add them in priority order, first from the Ql
eligible list and then from the Q2 eligible list, until the
addition of another machine would cause the sum of the pro­
jected working set sizes for the machines in the run list to
exceed the number of page frames available.

5.4.4.2 Special checks

While virtual machines are being selected for addition to
the ruh list, additional checks as outlined below are per­
formed.

1. Prevent Q2 lockout by Ql virtual machines. This
check is performed whenever Ql virtual machines are
b~ing selected for the run list. If the highest pri­
ority virtual machine in the Q2 eligible list has a
priority that is better than the highest priority Ql
machine, and if the difference between the priorities
is more than one-eighth of the average eligible list
delay (maintained in DMKSCHET by DMKSTP), then a Q2
lockout condition is considered to exist and Ql vir­
tual machines are not considered for adding to the
run list.

2. Overcommit available pages by 12.5% for Ql virtual
machines.

3. Preempt Q3 machines to make room by scheduling them
for a delayed drop from the run list (VMDLDRP in
VMQSTAT set). Virtual machines preempted in this

. fashion are set up for a paging checkpoint when they
have performed five additional page read operations.

a) The system must not be running heavily in problem
state for it to overcommit memory by this method.

b) The preempt ing machine must be past its deadl ine
for the current queue slice.

- 94 -

c) The preempting machine must have an earlier dead­
line than the machine being preempted.

d) The preempted machine must not be favored.

e) The preempted machine must be in Q3 and have exe­
cuted at least one of its Q2 slices.

f) The preempted machine must not already be flagged
for a delayed drop. If the machine is so flagged,
its working set size is discounted from the number
of pages in use.

4. If attempting to add a Ql virtual machine and there
are no Ql virtual machines in the run list, allow the
available pages to be overcommitted by 50%.

5. If the number of virtual machines in the run list is
less than 4, check for large virtual machines that
are causing the low multiprogramming level. If the
current virtual machine has a working set greater
than twice the average working set or greater than
one thi rd of the avai lable pages, it is cons idered
large. If the next virtual machine on the eligible
list has a deadline that is close to that of the cur­
rent virtual machine, the current virtual machine is
bypassed and lower priori ty virtual machines may be
added to the run list.-

5.4.5 Drop from eligible lists

5.4.5.1 Sufficient conditions

A virtual machine is dropped from an eligible list for one
of three reasons:

1. The virtual machine is not currently runnable.

2. The virtual machine has been selected for addition to
the run list.

3. The virtual machine has performed I/O to its console
and it is being dropped so that it may be re-added to
the Ql eligible list.

5.4.5.2 Necessary actions

The virtual machine is removed from the eligible list and
the VMRUN flag is reset to indicate that it is no longer in
one of the lists.

- 95 -

5.4.6 Add to the list of dispatchab1e machines

Because of certain functions, such as the drop that occurs
between Q2 slices for the pseudo-Q3 machines, adding virtual
machines to the run list is separated into two routines and
their functions are referred to as "add to queue" and "add
to run list".

5.4.6.1 Add.to queue

This routine performs most housekeeping functions necessary
when a virtual machine is added to the run list.

1. Timestamp the VMBLOK with time of entry to run list.
Update stat ist ics, maintained by the scheduler, on
the total amount of time virtual machines are spend­
ing in the eligible lists.

2. Perform necessary maintenance of virtual machine tim­
ers. The details of actions performed here are cov­
ered in the chapter on timer maintenance.

3. Initialize the paging counters.

a) VMRDINQ is set to the current number of page reads
(VMPGREAD) •

b) VMPGRINQ and VMXPG (maximum number of pages resi­
dent) are set to VMPAGES, the current number of
pages resident for the virtual machine.

c) The number of pages stolen while in the run list
(VMSTEALS) is cleared to zero.

4. Add the proj ected working set size of this virtual
machine to the working set sum of machines in the run
list (PAGUSAGE).

5. Set the next paging checkpoint to occur when the vir­
tual machine has read a number of pages equal to its
working set size (or 16, whichever is larger).

5.4.6.2 Add to run list

Based upon the value of VMEPRIOR, the VMBLOK is inserted at
the appropriate spot in the run list and the VMINQ and VMRUN
flags are set on.

- 96 -

5.4.7 Drop from the list of dispatchab1e machines

Just as there are routines for adding machines to the dis­
patch list, there are also several routines for removing ma­
chines. The rout ine that removes the VMBLOK from the run
list is basically the same one that removes a VMBLOK from an
eligible list and has already ,been discussed. There are two
routines used to "drop from queue", one for the "pseudo­
drop" performed on Q3 transact ions between each of the Q2
slices comprising the Q3 slice and another for the normal
drop from queue that is performed for each virtual machine
at the end of its queue slice.

5.4.7.1 Perform pseudo drop and add for Q3

The following actions are performed for Q3 virtual machines
when they exceed the in-queue limits for a Q2 slice, but the
field VMQ3CNT indicates that more Q2 slices remain within
the Q3 slice.

1. Adjust the virtual machine's priority.

a) Subtract the current TOD from the deadline to de­
termine the amount of time the virtual machine is
ahead of schedule (minimum of zero).

b) Divide the amount ahead of schedule by two and add
it and the current TOD to the expected amount of
time in the run list for this virtual machine to
complete a Q2 slice (VMQPRIOR). The result is
stored in VMEPRIOR and is a new deadline for this
virtual machine to complete its next Q2 slice.

2. Update the timers associated with the virtual machine
and maintain various CPU utilization statistics.
Much of this work is covered in the chapter on timer
maintenance, so the finer details are left until
then.

a) Update VMVTIME to include all virtual CPU time re­
ceived while in the run list.

b) Calculate the amount of overhead CPU time used in
the queue slice, add to the virtual CPU time used
in the queue slice, and update the CPU utilization
statistics for the virtual machine (VMUHS).

c) If the virtual machine did not achieve the system
average for the amount of CPU used between page
reads, then it is penalized by having an addition­
al amount added to its current CPU utilization
value (VMUHS).

- 97 -

3. Initialize the paging counters.

a) VMRDINQ is set to the current number of page reads
(VMPGREAD) •

b) VMPGRINQ and VMXPG (maximum number of pages resi­
dent) are set to VMPAGES, the current number of
pages resident for the virtual machine.

4. The average of the current number of pages resident
(VMPAGES) and the proj ected working set size
(VMWSPROJ) is calculated and becomes the new project­
ed working set size.

5. The new paging checkpoint value (VMPCKP) is set to be
the projected working size (but at least 16) plus the
current number of page reads (VMPGREAD).

5.4.7.2 Perform full drop from queue

Much of the code executed in this section of the scheduler
performs the working set size projection and the calculation
of the virtual machine priority based on the transaction
characteristics during the just completed queue slice. Oth­
er functions performed are described below.

1. Remove the working set size of this virtual machine
from the sum of working sets of virtual machines in
the run list.

2. Save statistics about the elapsed time the virtual
machine was in the run 1 ist. Also, timestamp the
VMTODINQ field wi th the time of drop from the run
list.

3. Update the timers associated with the virtual machine
and maintain various CPU utilization statistics.
Much of the work necessary is covered in the chapter
on timer maintenance, so the finer details are left
until then.

a) Update VMVTIME to include all virtual CPU time re­
ceived while in the run list.

b) Calculate the amount of overhead CPU time used in
the queue slice, add to the vi~tual CPU time used
in the queue slice, and update the CPU utilization
statistics for the virtual machine (VMUHS).

c) If the virtual machine did not achieve the system
average for the amount of CPU used between page

- 98 -

reads, then it is penalized by having an
additional amount added to its current CPU utili­
zation value (VMUHS).

4. For non-Ql transactions, increment the count of con­
secutive Q2 slices (VMQ2CNT).

5. For non-Q3 transactions, clear the count of Q2 slices
remaining in the Q3 slice.

6. Issue the Monitor Call instruction so that statistics
may be (optionally) collected about virtual machines
that drop from the run list.

5.5 SCHEDULER EXIT PROCESSING

Before the scheduler exits, it reloads Rll (the VMBLOK
pointer) and the CPU timer so as not to surprise the caller.
If the virtual machine for which the scheduler was entered
was dropped from the run list, DMKPTRRS is called to place
the virtual machine's page frames on the "flush list" (see
the paging chapter). Under any of the conditions listed be-
low, the call to DMKPTRRS is not made.

1. The virtual machine is running in the V=R area.

2. The virtual machine has the SET QDROP OFF option.

3. The virtual machine has been re-added to the run
list, and the system is not experiencing heavy paging
activity as indicated by the upper byte of DMKPTRXX
(see the paging chapter).

5.6 TUNING OPTIONS

5.6.1 SRM command

Various "knobs" are available to control how the scheduler
allocates resources between var ious types of transact ions.
Access to these knobs is through the QUERY SRM and SET SRM
commands.

5.6.1.1 APAGES

The number of page frames currently avai lable for pag ing
(DMKDSPNP) can be queried and altered. In many cases, rais­
ing APAGES causes increased paging but cuts down on the time

- 99 -

There are 6 condi t ions under which a PSW swap .can occur.
The following is a list of these conditions along with the
locations of the old (stored) PSW and the new (fetched) PSW:

1. Restart: (new location: X'O'; old location: X'B') A
restart interrupt is taken whenever the system opera­
tor presses the "restart" button on the system con­
sole. CP processes this interrupt by stopping all
processing immediately and taking a memory dump; this
is a PSA002 ABEND.

2. External: (old: X'lB'; new: X'5B') An external in­
terrupt is taken whenever any of several events oc­
curs. The most common external interrupts are those
that are triggered by the several system timers,
which are described in a later. section.

3. SVC: (old: X'20'; new: X'60') An SVC interrupt is
taken whenever any program executes the Supervisor
Call (SVC) instruction. The second byte of the in­
struction is a code that is stored as the interrupt
code. SVC is the only explicit means by which a
problem state program can cause a supervisor state
program to start execution. The interrupt code is
usually set to indicate what supervisory function is
desired.

4. Program check: (old: X'2B'; new: X'6B') A program
check interrupt is taken whenever the CPU detects an
error in the use of an instruction, such as an inval­
id address or an arithmetic overflow. Several other
funct ions also generate program checks, such as dy­
namic address translation, program event recording,
and monitoring.

5. Machine check: (old: X'30'; new:·X'70') A machine
check interrupt is taken whenever the CPU detects
that a hardware error has occurred. Control is usu­
ally passed to routines that attempt to retry the
failing instruction and record the error for later
diagnosis and repair.

6. I/O: (old: X'3B'; new: X'7B') An I/O interrupt is
taken whenever an I/O channel signals the CPU that
some I/O operation is complete or has encountered an
error. The interrupt code gives the I/O device ad­
dress and the channel status word gives additional
information that is discussed in a later section.

Each new PSW in CP is in EC mode and turns off address
translation and I/O and external interrupts. Each IC field
points to the "first level interrupt handler" (FLIH) for
each of the interrupt types. When the PSWs are swapped, an

- 10 -

spent by virtual machines in the eligible lists. The
effects on response time of altering this value are in gen­
eral unpredictable since they are dependent on the charac­
teristics of the load.

5.6.1.2 Interactive bias (IB)

The interactive bias shift value (DMKSCHIB) can be queried
and altered. The value is used as a shift amount to bias
priority calculations in favor of virtual machines in Ql or
for the first Q2 slice following a Ql slice. A value for IB
of 2 means that virtual machines in Ql are projected to drop
32 times (2 ** (3 + IB» sooner than normal, relative to the
current time.

5.6.1.3 MAXWSS

The maximum working set size to be projected for any virtual
machine (DMKSCHWX) can be queried and altered.· The schedu­
ler never assigns a projected working set size larger than
DMKSCHWX (assuming that it is positive). When the maximum
value is used to trim a working set size calculation,
VMWSERNG is set on in VMQSTAT to force the virtual machine
to "self-steal" once its resident page count reaches the
working set size value. This parameter may be useful in
cases where excessively large virtual machines are blocking
other virtual machines on the eligible lists. Careful moni­
toring of response times and paging rates should be per­
formed if this feature is used.

5.6.1.4 DSPSLICE

The dispatcher's value for the time slice or "quantum size"
(DMKDSPQS) can be queried and altered. The initial value of
the time slice is determined in DMKSTP during CP initializa-'
tion and is based upon processor speed. This initial value
may be altered with the effect of changing the frequency at
which the scheduler may be able to detect a high priority
virtual machine that is blocking other virtual machines from
receiving CPU time. Some installations have reported a
small variation in the initial yalue of DMKDSPQS; IBM evi­
dently considers this to be normal behavior.

- 100 -

5.6.2 SET PRIORITY command or CP directory priority

As discussed earlier, the external priority of a virtual ma­
chine has a significant effect on the rate at which it is
expected to use CPU time. Table 8 illustrates the impact of
having machines at various priori ties in terms of how the
scheduler at tempts to apport ion the CPU resources. The
standard value used both in the table and by the scheduler
is for a virtual machine wi th priori ty 64. The values in
the table represent relative CPU use, not absolute CPU use;
the effects can only be observed when virtual machines of
different priorities are actually competing for CPU resourc­
es. From the table you can see that a priority 64 virtual
machine competing for CPU "sees" the same load if there are
eight other machines running at priority 64 or one other ma­
chine running at priority 32.

5.6.3

TABLE 8

External priority effect on observed load

External Priority
o

11
21
32
43
54
64
75
85
96

Equivalent VMs
64
32
16

8
4
2
1

1/2
1/4
1/8

SET FAVORED and SET FAVORED with percent

The SET FAVORED command allows the specification of virtual
machines that are important enough never to be placed on the
eligible lists. The standard deadline priority is calculat­
ed for such machines except that no eligible list delay is
factored in. Normally, this option would be used in con­
junction with the SET RESERVED and/or SET QDROP OFF options
so that the potential effects of overloading the paging sub­
system are minimized. This option is indicated by the VMAEX
flag in VMQLEVEL.

- 101 -

The SET FAVORED with percent command allows the specifi­
cation of a target level of CPU time that should be given to
a given virtual machine. A virtual machine with this option
set (VMAEXP in VMQLEVEL) has a deadline priority calculated
assuming that it will receive CPU time at exactly the speci­
fied rate; no other special functions are provided by this
option. If more than 100% of the CPU time is allocated to
virtual machines, each of the favored machines simply re­
ceives proportionally less of the time. Again, this option
is normally used in combination with other options to
achieve the desired results.

5.6.4 SET QDROP command

This command is a rather strange recent addition to VM. The
reason it is strange is that in what might be considered the
normal mode of use,

SET QDROP <userid> OFF

the command doesn't do what is suggested. In this mode, the
action really performed is to set a flag indicating that the
virtual machine's pages should not be placed on the flush
list if it is dropped from the run list; the virtual machine
is still dropped from the run list when it enters a "long
wait" condition. The flush list is discussed in the chapter
on paging; however, the result of the above action is that
the virtual machine's pages are not available for immediate
reuse by other virtual machines but have to be "stolen" one
at a time. Since it involves relatively high overhead, page
stealing is done after the flush list is exhausted; there­
fore, the pages of a virtual machine with QDROP OFF are typ­
ically used after the flush list is empty, making it more
likely that the pages can be reused when the virtual machine
becomes runnable again.

Another form of this command really does have the expect­
ed effect. The second form of the command,

SET QDROP <userid> OFF USERS

is useful for service virtual machines using VMCF or IUCV.
The effect of this command on the virtual machine for which
it is issued is the same as described with the first form.
The difference is that when virtual machine A communicates
with virtual machine B (that has QDROP OFF USERS) via VMCF
or IUCV, a co'unter is incremented and virtual machine A is
not dropped from the run list for loading a wait PSW as long
as the counter is non-zero and the machine is enabled for
the appropriate kind of external interrupts. In effect,
QDROP OFF USERS allows the specification of a particular

- 102 -

kind of wait condition that the dispatcher is to consider as
a short wait rather than a long wait; when that condition is
satisfied, the dispatcher does not set the VMIDLE flag in
VMRSTAT when it checks out a newly loaded wait PSW. BEWARE:
Some applications using VMCF keep a dummy request outstand­
ing during th~ duration of a set of transactions (so that an
application can determine when a central server has been re­
set or re-IPL'ed). If such an application is being used,
the virtual machines communicating with the central server
that has QDROP OFF USERS will always remain in the run list
and may greatly degrade the performance of other virtual ma­
chines.

5.7 SUMMARY

The scheduler is a very complicated module and it has the
unenviable task of implementing policy decisions. The poli­
cies implemented by the scheduler can be very frustrating if
the management at your installation desires different or ad­
ditional policies to be implemented.

- 103 -

- 104 -

NOTES

- 105 -

- 106 -

Chapter 6

TIMER HANDLING

6.1 INTRODUCTION

6.1.1 Overview

Cp's task of simulating all the timing facilities of a Sys­
tem/370 is not an easy one. Since CP has its own require­
ments for these facilities, some amount of complexity arises
from the necessi ty of sharing the timers between the re­
quirements of the simulation and Cp's own requirements (e.g.
for scheduling and accounting).

This chapter discusses the manner in which cp's require­
ments and the virtual machine's simulation requirements are
handled for:

1. Location 80 interval timer.

2. TOO clock.

3. TOO clock comparator.

4. CPU timer.

The major control blocks used in CP timing facilities are
discussed, as are the techniques for using those facilities.
The rules for maintaining consistency between the various
flags, registers, and timer contents are also covered in
some detail.

6.1.2 References

6.1.2.1 Publications

1. IBM Virtual Machine/System Product: System Program­
mer's Guide (SCI9-6203).

2. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-0891) .

...:. 107 -

3. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

6.1.2.2 CP modules

The following CP modules are of major interest in under­
standing timer maintenance:

1. DMKBLD initializes the virtual machine control
blocks associated with the virtual timer simulation.

2. DMKCPI - initializes the TOD clock, stores the cur­
rent date and TOD clock value at midnight to simplify
future calculat ions, and schedules a timer request
for midnight to update the stored date.

3. DMKDSP - has primary responsibility for simulation of
the location 80 interval timer and is responsible for
dispatching expired timer requests.

4. DMKPSA - contains the external first level interrupt
handler.

5. DMKSCH - handles simulation of timers that must run
when the virtual machine is in voluntary wait state.
Contains the routines to maintain the timer request
queue.

6. DMKTMR - handles simulation of privileged instruc­
tions that reference the timers.

6.2 CP TIMER MAINTENANCE

6.2.1 Location 80 timer

CP uses the location 80 timer for two purposes: to maintain
the vi rtual machines' locat ion 80 timers if they have SET
TIMER ON or SET TIMER REAL, and to prevent a virtual machine
that is relatively high in the run list from locking out
other virtual machines' access to the CPU resource. There
are three fields in the PSA that are used for location 80
timer maintenance:

1. QUANTUM at location 84 (X'54') contains the interval
timer value when the virtual machine was dispatched.
(Note that this field is only indirectly related to
the dispatcher's "quantum" or time slice value.)

- 108 -

2. TIMER at locat ion 80 (X' 50') is the actual interval
timer.

3. QUANTUMR at location 76 (X'4C') is the value of the
interval timer when an interrupt caused control to
return to CPo

The dispatcher sets a new value in TIMER whenever a virtual
machine other than the previous RUNUSER is about to be dis­
patched. The new value comes from the field DMKDSPQS unless
the virtual machine is marked as compute bound (VMCOMP in
VMQLEVEL is on), in which case the new value is 4 times the
contents of DMKDSPQS. In setting up to actually dispatch a
virtual machine, the dispatcher moves the current value of
TIMER to QUANTUM. All of the first-level interrupt handlers
move the current value of TIMER to QUANTUMR, thereby pre­
serving the interval timer value when CP was entered due to
an interrupt. Upon entry to the dispatcher, the difference
between QUANTUM and QUANTUMR is used to update the virtual
machine's locat ion 80 timer. A vi rtual external interrupt
is queued if the value of the virtual timer has gone neg­
ative. If the real location 80 timer is negative, the vir­
tual machine is flagged as having gotten a time slice end
(VMTSEND in VMDSTAT set on) for later action by the schedu­
ler.

The first level interrupt handler for external interrupts
"handles" location 80 interval timer interrupts. It moves
the current value of TIMER into QUANTUMR and exi ts to the
main entry point of the dispatcher when various tests indi­
cate no other possible cause for the external interrupt.
Note that the ECPS microcode support for the locat ion 80
timer attempts to present the interrupt directly to the vir­
tual machine; if the interrupt cannot be presented virtual­
ly, then an external interrupt with a half-word code of
X'01xx' (where the "xx" bytes are not checked) is presented
to the real machine. When the external interrupt handler
detects such an interrupt, it exi ts to a dispatcher entry
point that queues a location 80 timer interrupt for the cur­
rent RUNUSER virtual machine.

The ini t ial value of DMKDSPQS is determined dur ing CP
initialization. Execution time of a certain part of the
initialization code is compared with a "standard" value and
then DMKDSPQS is adjusted to account for the speed of the
real CPU.

- 109 -

interrupt code is stored in main memory to indicate the
reason for the interrupt. Each interrupt routine must save
the general purpose registers into a reserved area in the
first 4K of memory and is then free to examine the interrupt
code and take appropriate action. When the interrupted pro­
gram is to be resumed, its registers must be reloaded and
the old PSW must be restored via an LPSW instruction. The
interrupted program will then resume execution immediately.

1. 3.3 Dynamic address translation

Dynamic address translation (DAT) is also referred to as
"virtual addressing" and is the technique by which a program
is allowed to use addresses that do not necessarily corre­
spond to the real addresses used by the hardware. DAT has
four major functions in CP:

1. A user can be given apparent memory addresses, such
as the first 4K, which have special meaning in the
real hardware and which must therefore actually be
used by CP itself.

2. A user's memory may be fragmented into a great many
pieces in the real memory, and yet these pieces will
appear contiguous to the user.

3. A user may have addressable memory that is not en­
tirely located in the real memory. Thus, many users
can all be allowed to have only some of their appar­
ent memory available at any given time, thus reducing
the amount of real memory that would otherwise be
necessary.

4. Each user's vi rtual memory is completely isolated
from all other virtual memories as well as from CP's
(real) memory. This allows total memory protect ion
without any conflicts in the use of the protect keys.

1.3.3.1 Registers

In order to support DAT, several registers have been added
to System/370.

1. An EC mode PSW
cording to the
bi t 5 turned
takes place.
5 on, and are

allows DAT to be turned on or off, ac­
setting of bit 5. CP itself runs with
off, so that no address translation

User virtual machines are run with bit
therefore subject to translation.

- 11 -

6.2.2 TOD clock

6.2.2.1 Initialization

A significant portion of code in the CP initialization mod­
ule, DMKCPI, is devoted to initializing the TOD clock. The
current date and day-of-week index are stored in various
places (PSA, DMKDMP for dumps, DMKCQY to record IPL time,
DMKSYS), and the value of the TOD clock at midnight is cal­
culated and saved. This code in DMKCPI is the only place in
CP where a complete conversion from TOD clock value to Gre­
gorian date and time is required because it is the only
place that issues a Set Clock instruction within CP (except
for AP/MP systems that have to synch their TOD clocks); all
subsequent calculat ions can use the stored values of the
current date and the TOD clock value at midnight to simplify
the calculation of the current time. A TRQBLOK is scheduled
to expire at midnight, at which time DMKMID is invoked to
change the date and day-of-week index in all the relevant
places and write a message to all logged on users. The only
other item worth noting about initializing the TOD clock is
that if the operator enters a year with a value of less than
50, the TOD clock value is set with the assumption that it
is now after the year 1999.

6.2.2.2 Use of the TOD clock within CP

The current TOD clock contents are often stored in a local
data area. When queuing a TRQBLOK, TRQBTOD (see Figure 22)
provides a handy doubleword aligned place to put the value
temporarily when calculating the TOD clock value at which
the TRQBLOK should expire.

One important aspect of using the TOD clock is that the
condition code returned by the instruction is always
checked, and if it is non-zero (indicating that the value
stored may not be valid), the module almost invariably per­
forms a GOTO DMKCVTAB to promptly terminate the system with
a CVTOOl ABEND code. The only time the system is not termi­
nated by branching to DMKCVTAB is in sections of code that
may be called during CP initialization before the TOD clock
is initialized.

The Set Clock (SCK) instruction always results in a re­
turn code of zero when executed by a virtual machine. How­
ever, no action is taken other than setting the return code.

- 110 -

6.2.3 Clock comparator

CP uses the clock comparator for all internal functions that
require the use of timing services. In addition, the clock
comparator is used to simulate a clock comparator for 370
architecture virtual machines and to simulate the proper ac­
tion of the virtual CPU timer and location 80 interval timer
for a virtual machine that enters a voluntary wai t state
(loads a wait PSW).

6.2.3.1 TRQBLOK maintenance and queues

The CP control block used to govern all clock comparator re­
quests is the TRQBLOK mapped by the TRQBLOK DSECT in the
TIMER COPY file (see Figure 22).

TRQBVAL DS
TRQBFPNT DS
TRQBBPNT DS
TRQBTOD DS
TRQBUSER DS
TRQBIRA DS

D
F
F
D
F
F

TOD clock value for expiration
Forward pointer in TRQBLOK .chain
~ackward pointer in TRQBLOK chain
TOD when TRQBLOK was queued
A(VMBLOK) for associated VM
Address to receive control

Figure 22: Required fields in a TRQBLOK

TRQBLOKs are similar enough to IOBLOKs that some parts of CP
treat them almost equivalently (e.g. the dispatcher). Since
the storage occupied by a TRQBLOK is never released by any
of Cp's timing services, a TRQBLOK can reside either in per­
manently allocated storage or can be acquired dynamically by
calling DMKFREE. In the latter case, it is the responsibil­
ity of the caller to insure that the storage is later re­
leased.

The clock comparator of the real machine is loaded with
the time of expiration (TRQBVAL) of the first TRQBLOK on the
request queue, anchored at the symbol DMKSCHTQ. The request
queue is ordered by TRQBVAL and is maintained by two rou­
tines within the scheduler module, DMKSCHST and DMKSCHRT.

- III -

6 •. 2.3.2 Scheduling a timer interrupt request

A TRQBLOK must be at least 4 doublewords long. The conven­
tion usually followed within CP is that TRQBLOKs, whenever
poss ible, are based from RIO. The fields that must be
filled in are:

1. TRQBVAL - a doubleword containing the TOD clock value
when this TRQBLOK is to cause an interrupt to be gen­
erated. Normal procedure is to STCK into TRQBVAL and
perform a doubleword add of the appropriate constant.
Note that the constant may be easily defined (letting
the assembler do the hard work) by using a DC
FL8S12E6'seconds' or a DC FL8S12E3'milliseconds'.

2. TRQBUSER - a fullword containing the address of the
VMBLOK to be in register 11 when the TRQBLOK is un­
stacked and the interrupt rout ine rece i ves control.
Normally, this is the same as the current Rll value
so a ST Rll,TRQBUSER is sufficient.

3. TRQBIRA - a fullword containing the address of the
routine to receive control when the TRQBLOK is un­
stacked. The routine receives control with this ad­
dress in R12. Please note that this routine receives
control from the dispatcher via direct branch rather
than a CALL: therefore, the routine must be in a CP
resident module or in a module that has been locked
into memory for the time that the TRQBLOK is out­
standing. A technique used in some parts of CP is to
add a small appendage to an existing resident module
that then issues a CALL macro to load the appropriate
pageable module.

The TRQBLOK is placed on the timer request queue by loading
the address of the TRQBLOK into Rl and calling DMKSCHST.
Note that DMKSCHST uses the low memory save area BALRSAVE,
so be sure that the module from which the call is made does
not also use that save area.

6.2.3.3 Resetting an outstanding request

A TRQBLOK is often scheduled as a time limit for some event
to occur. If the event occurs prior to the expiration of
the time interval, the TRQBLOK may be removed from the timer
request queue by loading Rl with the address of the TRQBLOK
(it must have been saved away somewhere to do this) and
calling DMKSCHRT. Again, note that DMKSCHRT uses BALRSAVE
so some care must be exercised. If the TRQBLOK is to be re­
turned to CP free ~torage, be sure to clear the pointer to
it (it is usually a good idea to -do this before calling
DMKFRET) •

- 112 -

If the TRQBLOK is not immediately released or resides in
permanently allocated storage, it is a good pract ice to
clear TRQBFPNT to zero. Following this practice simplifies
later tests that need to know whether or not the time inter­
val request is active. The main reason this practice is
necessary is that DMKSCHRT is constructed to remove the
TRQBLOK from whatever queue it might be on, either the timer
request queue, or the dispatcher queue of unstacked
TRQBLOKs; as a result, it performs NO checks to verify that
the TRQBLOK is on any queue or that the addresses in
TRQBFPNT or TRQBBPNT are valid.

6.2.3.4 Return of control when timer event occurs

When the clock comparator interrupt associated with a
TRQBLOK occurs, the block is placed on the dispatcher's
queue of IOBLOKs and TRQBLOKs (via CALL to DMKSTKIO) in FIFO
order. When the TRQBLOK is unstacked, the routine specified
in TRQBIRA receives control with its entry point in R12, the
address of the TRQBLOK in RIO, the address of the associated
VMBLOK from TRQBUSER in Rll, and the CPU timer containing
the CP overhead time from the VMTTIME field of the associat­
ed VMBLOK. At this point, the routine receiving control
should establish a good base register (usually the beginning
of the module is loaded into R12) and clean up any TRQBLOK
pointers as described above.

6.2.4 CPU timer

The CPU timer serves a dual purpose in CP; it is used both
in the simulation of a virtual CPU timer and in controlling
the CPU time used by a virtual machine during one stay in
the run list (the amount of time is called a queue slice).
Maintenance of the CPU timer while a virtual machine is dis­
patched is covered later; this section primarily discusses
the maintenance of the CPU timer while within CPo

6.2.4.1 Maintaining the proper timer value

The rule for maintaining the proper CPU timer value is sim­
ple: when running CP code the current value for VMTTIME
from the VMBLOK pointed to by Rll has been loaded into the
CPU timer, and when running in problem state the current
value for VMTMOUTQ from the VMBLOK of the RUNUSER has been
loaded into the CPU timer. Since the VMTTIME field is used
to account for CPU time in CP on behalf of a virtual ma­
chine, it is important for Rll and the CPU timer to be con-

- 113 -

sistent and to charge the CPU time to the virtual machine
being serviced.

If it is absolutely necessary to have a section of code
where Rll and the CPU timer are not consistent, that code
must not contain calls to other modules that have the possi­
bility of losing control of the CPU or storing the current
value of the CPU timer into the wrong VMBLOK. Common errors
in this regard are calling a module via SVC 8 or calling
DMKFREE to request free storage; SVC 8 requires that the
system obtain a save area, and any request for CP free stor­
age runs the possibility of losing control while the system
extends its free storage into the dynamic paging area.

6.2.4.2 Macros for maintaining the CPU timer properly

With the addition of the AP/MP support to CP, several macros
were added to aid programmers in maintaining consistency be­
tween the VMBLOK pointer (Rll) and the CPU timer. This dis­
cussion covers only the uniprocessor versions of these mac­
ros; use of the macros in AP/MP systems is discussed in the
chapter on multiprocessor support.

The CHARGE macro is used in most circumstances when deal­
ing with the CPU timer.

1. CHARGE START - causes the current value of VMTTIME
(from the VMBLOK pointed to by Rll) to be loaded into
the CPU timer.

2. CHARGE STOP - causes the current value in the CPU
timer to be stored in VMTTIME (from the VMBLOK point­
ed to by Rll). Note that timing is not actually
stoppeq. by this macro, so it can be used in cases
where a current value for VMTTIME is required but
charging of the CPU time to the virtual machine con­
tinues.

3. CHARGE SWITCH,operand - causes the following actions
to be taken:

1. The current contents of the
stored in the VMTTIME field
pointed to by Rll.

CPU timer are
of the VMBLOK

2. Rll is loaded with the contents of the loca­
tion defined by "operand" (assumed to be the
address of a VMBLOK).

3. The CPU timer is loaded with the VMTTIME field
from the new VMBLOK pointed to by Rll.

- 114 -

6.2.5

The other macro of
uniprocessor systems,
SWITCH,(RI); however,
AP/MP systems. Refer
for an explanation of

interest is SWTCHVM. For
SWTCHVM is equivalent to CHARGE
this equivalence is NOT true on
to the chapter on AP/MP support
the impact of using SWTCHVM.

Maintenance of wait time statistics

When the dispatcher cannot find any work, it attempts to de­
termine if a resource shortage is causing the" wait condi­
tion. The current virtual machines in the run list are
scanned to add up the total working set of virtual machines
in page wait and the number of virtual machines in I/O wait.
The wait state is considered to be due to paging activity if
the sum of the working sets of virtual machines in page wait
is more than half of the pages available (pageable + re­
served - shared). Otherwise, if there is at least one ma­
chine in I/O wait, the wait state is considered to be due to
I/O activity; if both tests fail, the real machine is con­
s idered to be in an idle wa i t state. Based on the above
classification, an appropriate flag is set in CPSTAT3 indi­
cating the kind of wait (CPTPAGE, CPTIONT, CPTIDLE) and the
appropriate timer value is loaded into the CPU timer
(PAGEWAIT, IONTWAIT, IDLEWAIT). The CPWAIT flag is set in
CPSTATUS to indicate that the processor is entering wai t
state, and an enabled wait PSW is loaded.

When an interrupt causes an exi t from wai t state, the
first level interrupt handlers store the current value of
the CPU timer into the field WAITEND. Upon entry to the
dispatcher, since CPWAIT is set indicat ing that wai t time
accounting should be done, the flags in CPSTAT3 are checked
to determine which timer value was being used and WAITEND is
moved to PAGEWAIT, IONTWAIT, or IDLEWAIT as appropriate.

6.2.6 Maintenance of problem state statistics

Whenever a new virtual machine is dispatched, the value from
VMTMOUTQ is placed in the PSA field PROBSTRT. Subsequent
e,ntries to the dispatcher then result in the PROBTIME field
being updated to include the difference between the current"
VMTMOUTQ for the RUNUSER and PROBSTRT; of course, PROBSTRT
is then updated to contain the new value of VMTMOUTQ for
that user. Any code wi thin CP that changes the value of
VMTMOUTQ for the current RUNUSER must also perform the same
maintenance on PROBTIME and PROBSTRT as the dispatcher would
have done. In particular, DMKTMR and DMKSCH have routines
that perform this function if CP has been running a virtual
machine (CPRUN in CPSTATUS is on) and the RUNUSER field is
equal to the VMBLOK pointer in RII.

- 115 -

6.3 VIRTUAL MACHINE TIMER MAINTENANCE

A virtual machine can have ei ther 360 or 370 archi tecture
(controlled by the SET ECMODE OFF/ON command or the ECMODE
option in the CP directory). In 360 architecture (VMV370R
in VMPSTAT is off), the only timing facilities available are
the location 80 interval timer and the TOD clock. In 370
architecture (VMV370R inVMPSTAT is on), the virtual machine
can use simulated versions of the CPU timer and clock compa­
rator in addition to the facilities available to 360 archi­
tecture virtual machines.

6.3.1 Location 80 interval timer

Under control of the CP SET TIMER command or CP directory
options, the location 80 interval timer maintenance is in
one of the following modes:

1. OFF - no location 80 timer maintenance is performed
and· no external interrupts are presented. (In
VMTLEVEL, VMTON and VMRON are off.)

2. ON - virtual CPU time used by the machine is decre­
mented from the virtual timer, but CP time and wait
time are not. (In VMTLEVEL, VMTON is on and VMRON is
off.)

3. REAL - virtual CPU time and voluntary wait time (vir­
tual wait PSW loaded) are decremented from the value
in the timer, but involuntary wai t and CP time are
not. (In VMTLEVEL, VMTON is off and VMRON is on.)

6.3.1.1 SET TIMER ON option

The change in the real location 80 timer is used to decre­
ment the virtual location 80 timer for virtual CPU time, as
has already been described in the section about real loca­
t ion 80 timer maintenance. The addi t ional comment that
should be made is that when the virtual machine's page 0 is
not resident in real memory, the current value of the loca­
tion 80 interval timer is maintained in the field VMTIMER
within the VMBLOK. Special checks within cp's paging system
recognize when a virtual machine's page 0 is moved in or out
of real memory and move the current timer value between vir­
tual location 80 and VMTIMER as appropriate.

- 116 -

6.3.1.2 SET TIMER REAL option

When a real machine enters a wait state, the location 80 in­
terval timer continues to run. Similarly, if a virtual ma­
chine is using the REAL option for the location 80 interval
timer enters a voluntary wait state, the timer continues to
run. CP code in the scheduler accomplishes this by queuing
aTRQBLOK that is set to expire when the interval in the
virtual location 80 timer would expire; the field TRQBTOD is
timestamped wi th the TOD clock value when the request is
queued. When the virtual machine comes out of voluntary
wait, the TRQBLOK is reset (via call to DMKSCHRT) and the
difference between the current TOD clock value and TRQBTOD
is used to update the contents of the virtual location 80
timer. Updating a REAL interval timer for virtual CPU time
is exactly the same as described above for maintaining a
timer that is ON.

If by chance the time interval for the TRQBLOK should ac­
tually expire, then the dispatcher unstacks the block to
pass control to a routine in the scheduler module (DMKSCH80)
that queues an external interrupt for the virtual machine
and exits back to the dispatcher.

6.3.2 Clock comparator

6.3.2.1 Initialization

Fora 370 architecture virtual machine (VMV370R is VMPSTAT
is set on), the VMBLOK extension (ECBLOK) contains a pointer
to a TRQBLOK used to simulate the virtual clock comparator.
The TRQBVAL field of this TRQBLOK contains the value of the
virtual clock comparator and its initial value is zero. The
CKCMASK flag in byte 2 of virtual control register 0 is ini­
tially set to zero, indicating the virtual machine is not
enabled for clock comparator interrupts.

6.3.2.2 Simulation of clock comparator instructions

The Store Clock Comparator (STCKC) instruction is simulated
by placing the contents of the TRQBVAL field in the instruc­
tion's operand location after making appropriate checks for
storage protection, addressing, and alignment.

The Set Clock Comparator (SCKC) instruction is simulated
by the following:

1. Check for storage protection, addressing, and align­
ment. If problems are encountered, call DMKPRG to
reflect a program interrupt.

- 117 -

2. Call DMKSCHRT to remove the current request from a
queue, if necessary (determined by whether or not
TRQBFPNT is zero).

3. Place the new value for the virtual clock comparator
into TRQBVAL and store the current TOD into TRQBTOD.
If the request has already expired, place the TRQBLOK
on the dispatcher's queue by calling DMKSTKIO; other­
wise, place the TRQBLOK on the timer request queue by
calling DMKSCHST.

4. Check the queue of external interrupts pending for
the virtual machine. If an interrupt for the clock
comparator is found, remove it from the queue and re­
lease the storage for the XINTBLOK.

When the TRQBLOK is unstacked by the dispatcher, indicat­
ing that the interval has expired, the following actions are
taken:

1. Clear the TRQBFPNT to indicate that the TRQBLOK is no
longer on a queue and disallow fast re-dispatch for
the virtual machine.

2. Obtain storage for an XINTBLOK and enqueue it on the
pending external interrupt queue for the virtual ma­
chine.

6.3.3 CPU timer

6.3.3.1 Initialization

For a 370 architecture virtual machine, the ECBLOK also con­
tains a pointer to a TRQBLOK used to simulate the virtual
CPU timer. Unl ike the virtual clock comparator, the value
for the virtual CPU timer is placed in the EXTCPTMR field of
the ECBLOK rather than being strictly maintained in the
TRQBVAL field of the TRQBLOK. The initial value is zero.

6.3.3.2 Interaction with CP's use of the CPU timer

As noted before, CP normally maintains the remaining queue
slice time in the real CPU timer while a virtual machine is
actually executing. When an interrupt occurs and control is
transferred to CP, the first level interrupt handlers store
the current contents of the CPU timer in the VMTMOUTQ field
of the VMBLOK and reload the CPU timer wi th the VMTTIME
field of the VMBLOK of the virtual machine causing the in­
terruption.

- 118 -

A special case that must be handled occurs when the time
remaining in the virtual CPU timer is less than the time re­
maining in the queue slice. To handle this situation, a
significant amount of complexity is introduced into the tim­
er maintenance. First of all, the field TRQBQUE is syn­
chronized with EXTCPTMR such that the time remaining in the
queue slice in TRQBQUE corresponds to the time remaining in
the virtual CPU timer stored in EXTCPTMR. When the value in
EXTCPTMR is less than TRQBQUE, the real CPU timer is loaded
with the virtual CPU timer value and a flag is set (VMCPUTMR
in VMTLEVEL). In addition to the code in DMKTMR to maintain
consistency for these fields, there are several routines in
the scheduler to maintain these timer values and also to up­
date VMVTIME. The VMVTIME field of the VMBLOK contains the
actual virtual time only when the virtual machine is not in
the run list: when the virtual machine is in the run list,
the amount of time used in the current queue slice must be
added to VMVTIME to give an accurate value for the total
virtual CPU time.

6.3.3.3 CPU timer simulation during virtual wait

I f the vi rtual machine enters a voluntary wai t state, the
virtual CPU timer must still run. Its current value is add­
ed to the TOD ~lock value (placed· in TRQBTOD) and the
TRQBLOK is added to the timer request queue by calling
DMKSCHST. When the virtual machine exits from voluntary
wait, the TRQBLOK is removed from the queue by calling
DMKSCHRT: the difference· between the current TOD and TRQBTOD
gives the amount to subtract from EXTCPTMR to yield a cur­
rent value for the virtual CPU timer. Whenever the TRQBLOK
is queued because the virtual machine is in voluntary wait,
the timer is said to be "stamped" and the VMSTMPT flag in
VMTLEVEL indicates this condition. If the TRQBLOK expires,
then control passes to a routine in the scheduler module
(DMKSCHCP) that queues the external interrupt for the virtu­
al machine and exits back to the dispatcher.

6.3.3.4 Simulation of CPU timer instructions

For a Set CPU Timer (SPT) instruction, the following actions
must be taken:

1. Check for storage· protection, addressing, and align­
ment. If there are problems, call DMKPRG to stack a
program interrupt.

2. Update TRQBQUE by calculating the amount of CPU time
used recently: this may be either the difference be-

- 119 -

2. CRa contains bits that specify the format of the vir­
tual memory configuration. The page size may be ei­
ther 2K or 4K, and the segment size may be either 64K
or 1M. CP selects 4K pages and 64K segments.

3. CRl always contains the real memory address of the
segment table; this register is often referred to as
the "segment table origin" (STO) register. Each vir­
tual machine has its own segment table, and therefore
CP must place the correct table address into CR1 be­
fore letting a virtual machine execute. Figure 3
shows the register fields used by DAT.

1.3.3.2

+----
I
I

translation on/off
+---- EC mode on
I

+--------+--------+--------+--------+
PSW: I ••••• T •. • •.. 1 • .• .••.....• I

+--------+--------+--------+--------+
a 8 16 24 31

++---- page size
I I ++---- segment size
I I II

+--------+--------+--------+--------+
eRO : I • • • • • • •• PPO S5. •• •• 0 • • • •• •• e ••••• I

+--------+--------+--------+--------+
a 8 16 24 31

segtablen . segtab address
+--------+--------+--------+--------+

CR1: Illlllllllaaaaaaaa aaaaaaaa aa• I
+--------+--------+--------+----~---+

a 8 16 24 31

Figure 3: DAT register fields

Tables

The tables used by DAT are the segment table and the page
table; these tables reside in real memory. For each virtual
machine, CP maintains one segment table and enough page ta-

- 12 -

tween TRQBQUE and VMTMOUTQ or the difference between
EXTCPTMR and VMTMOUTQ, depending on the setting of
VMCPUTMR in VMTLEVEL.

3. Check for a possible CPU timer interrupt that may be
pending; dequeue the XINTBLOK and release it if
found.

4. Place the new value for the CPU timer in EXTCPTMR.
If the value is negative, call DMKFREE to get a
XINTBLOK, queue the external interrupt request, and
exi t to the dispatcher. I f the new value is less
than the time remaining in the queue slice (TRQBQUE),
also place the virtual CPU timer value in VMTMOUTQ
and set the VMCPUTMR flag indicating that the virtual
CPU timer is "tracking in the real CPU timer". If
the new value is greater than the time remaining in
the queue slice, move the TRQBQUE value to VMTMOUTQ
and clear the VMCPUTMR flag.

Execution of the Store CPU Timer (STPT) instruction pro­
ceeds in a similar fashion as the first part of the SPT in­
struction. However, once the queue slice time remaining has
been updated, the value of the virtual CPU timer in EXTCPTMR
is also updated and the result is placed in the operand lo­
cation.

6.4 PSEUDO TIMER AND DIAGNOSE CODE X'OC'

A virtual machine can access certain date and timing infor­
mation by using DIAGNOSE code X'OC' or by issuing a SIO to a
special "timer" device (defined by the CP DEFINE command).
Both methods return the date (mm/dd/yy) and current time
(hh :mm: ss) . In addi t ion, the virtual time and the total
time <virtual + overhead CPU) are returned; however DIAGNOSE
code X I OC' returns these times in microseconds (8 bytes,
rightmost bi t represents one microsecond), and the pseudo
timer returns the time values in location 80 interval timer
uni ts (4 bytes, rightmost bi t is approximately 13 microse­
conds). The code that implements the two funct ions, al­
though in different modules, is almost the same in that they
both call DMKTMRPT to get the total problem time and
DMKCVTDT to obtain the current date and time information.
Of course, to convert to interval timer units, the returned
values are divided by 13; note that the result is modulo the
value that can be stored in the interval timer. The code to
handle DIAGNOSE code X' OC' is located in DMKHVC and the
pseudo timer code is in DMKVSP.

- 120 -

6.5 DIAGNOSE CODE X'70' FOR SCP TIMING SUPPORT

Certain operating systems use the TOO clock to perform ac­
counting for CPU utilization among various tasks. DIAGNOSE
code X'70' allows such operating systems a relatively undis­
ruptive way of obtaining accurate timing information without
requiring extensive changes. The DIAGNOSE is issued once
after the OS is IPL'ed and points to a 16 byte area in which
CP subsequently maintains the TOO clock value and the total
CPU time each time the virtual machine is dispatched.

The algorithm for using the timers to do task timing 1S:

Save the total CPU time when a task is dispatched. This
value may be placed in the same field that previously held
the TOO at which the task was dispatched. Note that a priv­
ileged ope rat ion, 1 ike STIDP, is necessary to get the cur­
rent total CPU time field updated in the DIAGNOSE code X'70'
area. When it is desired to calculate the task's CPU usage:

1. Execute a STCK to get the current TOO.

2. Subtract from this value the TOO at the last dis­
patch; the result is the amount of CPU time used
since the last dispatch.

3. Add the result of the prev ious' step to the total CPU
time at the last dispatch.

4. Subtract from the result of the previous step the CPU
time that was saved when the task· was first dis­
patched. The result is the CPU time used by the cur­
rent task.

5. Check that none of the DIAGNOSE code X' 70' values
changed during the above calculation; if they have,
redo the calculation.

Note that while this DIAGNOSE code was added especially to
improve the accuracy of MVS task timing, MVS does not use
this DIAGNOSE code; MVS was modified instead to use the CPU
timer for task timing. Also, use of this diagnose code
means that certain ECPS functions are not performed; in par­
ticular, the DSP2 ECPS instruction that performs the func­
tion of setting up to dispatch a virtual machine is at least
partially disabled.

- 121 -

6.6 SUMMARY

This chapter has covered the use of the real hardware timers
by CP and the techniques used by CP to simulate these timers
for virtual machines. A description of the "pseudo-timers"
used to record the amount of time the CPU spends in wai t
state was included, as was a description of the handling of
TRQBLOKs along wi th guidel ines for us ing TRQBLOKs wi thout
getting into trouble.

- 122 -

NOTES

- 123 -

- 124 -

Chapter 7

INTER-VIRTUAL-MACHINE COMMUNICATIONS

7.1 INTRODUCTION

7.1.1 Overview

There are two distinct and quite different inter-virtual ma­
chine communication facilities supported by CPo The two fa­
cilities are significantly different in the capabilities
provided; therefore, some understanding of how they work in­
ternally is very useful in determining the best match be­
tween application and communication facility.

Virtual Machine Communication Facility (VMCF) was intro­
duced in VM/370 Release 3 PLC 8 and provided a much-needed
high performance way of transferring data between virtual
machines wi thout having to resort to shared minidisks or
spool files. Al though the funct ion prov ided by VMCF was
sorely needed, IBM and customer installations used VMCF only
for some specialized applications (for example, Interactive
File Shqring and the Real Time Monitor). The limitations of
the VMCF protocols and support made it unsuitable or undesi­
rable for the more complex application requirements that
soon developed.

In Release 6 of VM/370, IBM released the Inter-User Com­
munication Vehicle (IUCV) to provide a more powerful inter­
virtual machine communications facility and to support the
requirements of their VS/1-based SNA support (VCNA). IUCV
provides functions that more closely resemble those one
would expect to find in a modern communications network; it
serves as a base for communicating both among virtual ma­
chines and with CP-provided services.

The two communications protocols have a number of func~
tions that must be performed in a logically similar fashion.
Table 9 indicates the names of the functions that are common
between the VMCF and IUCV protocols. Since IUCV communica­
tions· includes the construction of a logical communications
path, there are addi t ional IUCV funct ions to handle these
paths (CONNECT, ACCEPT, and SEVER). In addition, IUCV com­
munications may be programmed in a manner that eliminates
most external interrupts during normal message passing. The
IUCV funct ions of SET MASK, TEST COMPLETION, and DESCRIBE
are used in this "almost no interrupts" mode.

- 125 -

TABLE 9

Functions common between IUCV and VMCF

VMCF
AUTHORIZE
UNAUTHORIZE
SEND
RECEIVE
CANCEL
REJECT
REPLY
SEND/RECEIVE
QUIESCE
RESUME

7.1.2 References

7.1.2.1 Publications

IUCV
DECLARE BUFFER
RETRIEVE BUFFER
SEND (I-WAY)
RECEIVE
PURGE
REJECT
REPLY
SEND
QUIESCE
RESUME

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SCI9-6201).

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (SCI9-6203).

3. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-0891).

4. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

7.1.2.2 CP modules

1. DMKIUA - handles initial processing of IUCV request
and contains several high-use routines for things
such as external interrupt reflection and enqueuing
message blocks.

2. DMKIUC - handles low-use funct ions such as QUIESCE
and RESUME for IUCV communications.

- 126 -

3. DMKIUE - handles high-use functions such as SEND and
RECEIVE for IUCV communications.

4. DMKIUG - handles low-use functions such as PURGE and
REJECT for IUCV communications.

5. DMKVMC - handles all VMCF communication functions.

7.2 VMCF CONTROL BLOCKS

The VMCF control blocks are relatively simple to understand
and maintain. While a virtual machine is performing VMCF
communications, the VMBLOK contains a pointer (VMCPNT) to a
master VMCBLOK. The master VMCBLOK contains information
such as:

1. Whether or not special messages (SMSG) are being ac­
cepted.

2. Whether or not priority messages are being accepted.

3. The userid of a specific virtual machine that is au­
thorized to communicate with this virtual machine, if
communications are so limited.

4. The count of the number of outstanding messages sent
from this virtual machine.

5. The count of messages sent to virtual machines with
the QDROP OFF USERS option.

6. A pointer to a chain of VMCBLOKs representing pending
interrupts or messages for this virtual machine.

7. The TOD clock value when VMCF communication was ini­
tialized.

8. The address and length of the external interrupt
buffer.

The messages sent between virtual machines are specified by
a VMCF parameter list mapped by the VMCPARM DSECT. Within
VMCF, the parameter 1 ist is copied to CP free storage and
converted to a VMCBLOK.

The VMCBLOK contains fields that describe the specific
message and indicate its current status.

1. The address and length of the SEND buffer
source virtual machine. The reply buffer
specified for SEND/RECV functions.

- 127 -

in the
is also

2. A flag indicates whether or not a VMCF interrupt is
pending from this VMCBLOK.

3. A f lag indicates whether or not the communicat ions
process is complete (following the reflection of the
last interrupt) and that the VMCBLOK can then be re­
leased.

4. A flag indicates whether or not this message was sent
to a virtual machine with the QDROP OFF USERS option.

7.3 IUCV CONTROL BLOCKS

The IUCV control blocks are a bit more complicated than VMCF
due to the increased capabilities and performance require­
ments. A virtual machine that has initialized for IUCV com­
munications has a field in its VMBLOK (VMIUCV) that points
to a IUCVBLOK. The IUCVBLOK contains the standard sort of
control information that one might expect based on the VMCF
control blocks. However, in the IUCV world, the information
is divided between the IUCVBLOK and another block, the Com­
munications Control Table (CCT). The IUCVBLOK contains
flags indicating the kind of interrupts enabled and pointers
to control blocks called MSGBLOKs representing external in­
terrupts that are pending for control-type functions
(QUIESCE, RESUME, CONNECT, SEVER). The CCT contains the
queue pointers for:

1. messages that are pending and not yet received (the
SEND queue),

2. messages that have been RECEIVEd but no reply has
been sent (the RECEIVE queue), and

3. messages that have been completed and that are wait­
ing to generate an external interrupt or for a TEST
COMPLETION function to be executed.

Like VMCF, the queues are singly-linked lists. Unlike VMCF,
pointers are maintained to both the head and the tail of the
list to shorten the path-length of adding an entry to the
end of the list.

Because IUCV is a path-oriented communication protocol,
there must be cross-links between the virtual machine con­
trol blocks at either end of any communications path. At
the end of the CCT are pointers to Path Descriptor Segments
(PDSEGs). Each PDSEG contains a number of entries linking
paths and indicat ing the path status (connect ion pending,
SENDs are not allowed, etc.). The PDENT performs the cross
link by having a pointer to the CCT of the virtual machine

- 128 -

at the other end of the path and the path-id by which the
other virtual machine knows. the path. The path-id for a
given path is local to each end of the communication link
and is formed from the PDSEG index and the PDENT index to
provide a unique and high performance method of determining
paths.

7.4 HIGH LEVEL PROCESSING

The execution of a "communications instruction" in a virtual
machine (X'B2FO' for IUCV and DIAGNOSE code X'68' for VMCF)
resul ts in a real program check interrupt that the first
level interrupt handler examines and then passes control to
the appropriate communications module. The communications
module (DMKIUA for IUCV and DMKVMC for VMCF) has a high lev­
el routine that performs the following functions:

1. Verify that the user has issued all necessary ini­
tialization calls so that control blocks are initial­
ized and the location and length of the external in­
terrupt buffer is known.

2. Copy the communications parameter list into CP free
storage. Since the parameter list may be split
across page boundaries within the virtual machine,
the code for checking all the nasty error conditions
is centralized and processing of the parameter list
is simplified.

3. Examine the parameter
funct ion requested and
cessing routine.

list for the communications
invoke the appropriate pro-

4. When the prrocessing routine is complete, return con­
trol to the high level rout ine to pass the results
back to the requesting virtual machine.

7.5 INITIALIZING FOR COMMUNICATIONS

The VMCF AUTHORIZE or the IUCV DECLARE BUFFER functions must
be executed by a virtual machine before it is allowed to
send or receive messages using the corresponding protocol.
For the initialization call, the virtual machine must pro­
vide the address of an external interrupt buffer that will
be used for storing the message header when a message ar­
rives or when a message has been sent. The interrupt buffer
must be within the virtual machine's memory and have a pro­
tect key such that "store access" is allowed based upon the
PSW protect key when the initialization function is invoked.

- 129 -

bles to completely cover the virtual machine's defined
memory sh:e.

1. The segment table consists of a series of fullword
values. Each word corresponds to a segment (64K
bytes) and contains the real memory address of the
page table for that segment. The entire segment ta­
ble must be located in a single contiguous area of
real memory. A control bit in each word can be set
to show that the segment is "invalid"; that is, the
segment table entry does not currently. point to a
valid page table. If the "invalid" bit is set, then
the CPU will generate an interrupt when any address­
ing process tries to use that segment. Figure 4
shows the format of a segment table entry.

1 causes a segment exception ----+
1 indicates common segment -----+1
1 forces segment protection ---+11

1 1 1
leng page table address 1 1 1

+--------+--------+--------+--------+
IIIIIOOOOlaaaaaaaa aaaaaaaa aaaaaPCII
+--------+--------+--------+--------+
a 8 16 24 31

Figure 4: Segment table entry

2. The page table consists of a series of halfword
items, one for each page (4K bytes) in a segment.
The first 12 bits of the halfword contain the high­
order 12 bits of the real memory location where the
page is located. If the system has more than 16M of
storage, then the otherwise unused bits 13 and 14 are
used to contain the even higher order real address
bi ts. An" inval id" bi t allows the gene rat ion of an
interrupt if the page table entry is used in any ad­
dressing process. CP sets that bit to indicate,
among other things, that the virtual machine's page
is no longer resident in real memory; the interrupt
serves to notify CP that the virtual machine wants to
reference the page and that CP must restore the page
to real memory before the virtual machine can be al­
lowed to continue processing. Figure 5 shows the
format of a page table entry for a 4K page.

- 13 -

Once the validity -checks in the interrupt buffer address
are successfully completed, the control blocks are obtained
and initialized. Any special options specified by the call­
er are set (e.g. willing to accept priority messages) and
control is returned to the high level routine.

7.6 REFLECT EXTERNAL INTERRUPT

The following description generally applies to both VMCF and
IUCV commun icat ions; IUCV also has the DESCRIBE and TEST
COMPLETION functions that allcw the application to get the
same information as would be provided by the external inter­
ruption but without having to go through the interrupt simu­
lat ion. Throughout the remainder of the chapter, the con­
trol block that describes the message is referred to as a
Message Descriptor (MD). For VMCF and IUCV, the control
block corresponding to the MD is the VMCBLOK and the
MSGBLOK, respectively.

When the MD is queued for a virtual machine, a flag in
the MD indicates the virtual machine does not know of the
presence of that MD until informed by an external interrupt.
When the virtual machine enables for external interrupts
(with the appropriate additional bit set in CRO), the queue
of MDs is searched for one with the flag indicating that an
external interrupt should be presented. For VMCF communica­
tions, the virtual machine is not allowed to RECEIVE or oth­
erwise process the message described by the MD while this
flag is set.

Once an appropriate MD is found, descriptive information
about the message is moved into the interrupt buffer (the
parameter list for the synchronous IUCV functions) and the
flag changed to indicate that an interrupt is no longer
pending for this MD. Since moving the data to the interrupt
buffer may involve bringing several pages of the virtual ma­
chine into memory, it is recommended that the interrupt
buffer not cross a page boundary and, if possible, that the
buffer be located in page 0 of the virtual machine (page 0
has to be resident to reflect the external interrupt in any
case). Considering the amount of free storage available in
page 0 of a CMS virtual machine, such a recommendation al­
most seems like an open invitation to use the IBM copyright
area. However, such practices should be discouraged since
there will most certainly be problems when some other pro­
grammer decides to use that prime piece of memory.

Once the message information has been copied, the storage
occupied by the MD is released if the transaction is com­
plete. This normally occurs when the message sender is giv­
en the final status, but certain functions like SMSG imple-

- 130 -

ment a I-way transfer of information with no acknowledgement
that the data was received.

7.7 COMMUNICATIONS

In this section, the normal communication functions are de­
scribed: SEND, RECEIVE, and REPLY. At the conceptual lev­
el, the functions provided by VMCF and IUCV are very simi­
lar: however, the ability of IUCV to send messages of
various classes along a communicat ions path may provide a
facility that simplifies code within an application.

Descriptions of VMCF and IUCV refer to the message sender
as the "source": the receiver of a message is called the
"target" by IUCV and the "sink" by VMCF. In the following

, discussions, we adopt the IUCV nomenclature of "source" and
"target" for the sending and receiving virtual machines, re­
spectively.

7.7.1 SEND

The purpose of the SEND function is to queue the MD for an­
other virtual machine. The MD specifies the source virtual
machine and the virtual address and length of the message.
For 2-way communications, the MD also contains the virtual
address and length of the reply buffer wi thin the source
virtual machine (for VMCF, 2-way communication is indicated
by the SEND/RECEIVE function).

The steps performed by the SEND function are as follows:

1. Validate the parameters supplied by the source virtu­
al machine. Besides checking that the caller is not
violating memory protection or addressing in the
specification of the message (and reply) buffers, the
message identifier is checked to insure that there
are no outstanding messages between the source and
target with the same identifier.

2. Allocate storage for the MD and initialize based upon
fields in the parameter list. Note that for VMCF,
additional storage is not obtained: the parameter
list is simply reused as a message descriptor by
shuffling some of the fields around.

3. Add the MD to the queue MDs awaiting processing by
the target virtual machine.

- 131 -

4. Ensure that an external in~errupt of the appropriate
type is queued for the target virtual machine. Note
that the flag is set in the MD to indicate that an
external interrupt is pending.

Control is returned to the high level routines (VMCF just
exits with an appropriate return code).

7.7.2 RECEIVE

Once tre target virtual machine has been notified of the ex­
istence of the message by receiving the external interrupt
(or by using the IUCV DESCRIBE function), the transfer of
data is initiated by the RECEIVE function. The steps for
performing the RECEIVE are as follows:

1. Validate the parameter list. The buffer to receive
the data must be within the virtual machine memory.

2. Move the data from the source virtual machine's memo­
ry to the target virtual machine's memory. Due to
the need to check for storage protect violat ions,
data movement is performed in blocks of up to 2K at a
time. Greatest efficiency can be obtained for moving
large amounts of data if the source and target buff­
ers start at the same offset wi thin a 2K block of
memory.

3. If the message was for a I-way communication (VMCF
SEND function or IUCV SEND with the I-WAY flag set),
enqueue the MD on the source virtual machine and in­
sure that an external interrupt of the appropriate
type is pending for the source virtual machine.

If the communications is 2-way, the MD is moved to the REPLY
queue for IUCV; but for VMCF communications (SEND/RECV func­
tion), the MD is merely flagged that the receive function
has been performed.

7.7.3 REPLY

The REPLY function specifies the data returned to the source
virtual machine in response to a message. The following
steps are performed by the REPLY function:

1. Val idate the parameter 1 ist. The normal val idat ion
of virtual addresses and memory protect ion occur;
also the MD for which the function is requested must
indicate that the message has been RECEIVEd and is
waiting for a REPLY function to be executed.

- 132 -

2. Move the data from the target virtual machine'$ memo­
ry to the source virtual machine's memory. The same
efficiency considerations apply here as discussed for
the RECEIVE function.

3. Enqueue the MD for the source virtual machine and in­
sure that an external interrupt of the appropr iate
type is outstanding for the source virtual machine.

All data transfer operations for a message transaction are
now complete. The only remaining task is to inform the
source virtual machine by external interrupt (or the IUCV
TEST COMPLETION function).

7.8 CONTROL

In addition to the normal message-passing functions dis­
cussed in the previous section, both VMCF and IUCV implement
certain control funct ions that allow appl icat ions to more
easily manage the data flow.

7.8.1 QUIESCE and RESUME

Under a number of conditions, the target virtual machine may
desire to halt the flow of incoming messages:

1. The application running in the virtual machine is
terminating; it is still possible to process messages
that are queued but no new messages should be sent to
this virtual machine.

2. The appl icat ion is rece i ving messages at a faster
rate than it can handle'them and wants to process its
current queue of work before any new messages are
sent.

The QUIESCE function merely sets a flag in a control block
indicating that no further SEND functions should be allowed
on the specified path (IUCV) or to the virtual machine
(VMCF). It is a good practice to QUIESCE communications be­
fore terminating an application so that messages already
sent by a source can be handled and the procedures for error
recovery in the source may be .simplified.

The RESUME function resets the flag that was set by
QUIESCE. In addition, for IUCV the source virtual machine
is presented with a external interrupt for IUCV to indicate
that the path has been RESUMEd. When using VMCF, IBM recom­
mends that the IDENTIFY function be executed to notify the

- 133 -

source virtual machines that the target is once again
accepting messages; in practice, this requires that the tar­
get remember the userids of all source machines and the ap­
plication running the source virtual machines understand the
meaning of the IDENTIFY (the source may not know that commu­
nications were quiesced, so that case too must be handled).

7.8.2 CANCEL (VMCF) and PURGE (IUCV)

When the source virtual machine wishes to "take back" a mes­
sage it has sent to a target, the IUCV function PURGE or the
VMCF funct ion CANCEL should be executed. I n general, the
message may be in anyone of a number of states:

1. The external interrupt has not been presented to the
target so the target does not know that the message
exists.

2. The target has been informed of the message but has
not executed a RECEIVE function.

3. The RECEIVE function is currently being executed.

4. The RECEIVE function has been executed and is waiting
for the target virtual machine to REPLY.

5. The target machine is in the process of transmitting
the REPLY.

6. The message processing is complete and the interrupt
notifying the source virtual machine is pending.

The first and last cases above are the easiest to handle in
terms of not interfering with the applications program run­
ning in the virtual machine. In these cases the MD is de­
queued and released; a return code indicates to the applica­
tion the fact that in the latter case the message has not
been CANCELled but has, in fact, been completed. Note that
in the last case, the MD is queued on the source virtual ma­
chine's VMBLOK; this case is always checked for first. If
data transfer is in progress (RECEIVE or REPLY being execut­
ed), a VMCF CANCEL is rejected with an indication that the
MD is busy and a lUCY PURGE does not find the MD since it is
not on any queue at the time. For the remaining cases when
the target knows of the message but has not fully processed
it yet, VMCF protocol calls for simply dequeuing the MD and
releasing it while lUCY protocol calls for flagging the MD
as PURGEd but not actually dequeuing and releasing the MD
until after the target attempts to process the message (the
target receives an indication that the message was PURGEd
and is no longer available).

- 134 -

7.8.3 REJECT

The REJECT function allows a target to terminate processing
for a message for whatever reason it desires. After valida­
tion of the caller's parameter list, processing for this
function is as follows:

1. Search the invoker's queue(s) for the MD.

2. Flag the MD as REJECTed and return the MD to the
source virtual machine.

3. Enqueue an external interrupt (if hecessary) for the
source virtual machine.

Of course, the information passed back to the sourceindi­
cates that the message was REJECTed and the communications
protocols allow for the REJECT function to supply a "reason
code" to the source indicating the cause of the rejection.

7.9 TERMINATING COMMUNICATIONS

The VMCF UNAUTHORIZE and the IUCV RETRIEVE BUFFER functions
allow an application to terminate inter-machine communica­
t ions. Note that these funct ions are also performed when­
ever a virtual machine is reset (LOGOFF, IPL, SYSTEM RESET,
DEFINE STORAGE, etc.). The basic processing is to:

1. PURGE/CANCEL all completed MDs queued for the invok­
er.

2. REJECT all pending messages.

3. Clear pending external interrupts associated with the
communicat ions protocol. Release all control blocks
and clear any pointers to them in the VMBLOK.

Because IUCV is a path-oriented protocol, the clean-up when
communications are terminated can be more complete than is
the case with VMCF (see the discussion of the SEVER function
later in this chapter). Note that VMCF SEND messages queued
on another virtual machine do not get cleared by an
UNAUTHORIZE function. The actual data transfer operat ion
for the SEND could actually occur for a different session of
the source virtual machine than the one actually invoking
the SEND funct ion, as long as the source had performed a
VMCF AUTHORIZE before the target executed a RECEIVE or REPLY
function.

- 135 -

7.10 IUCV PATH FUNCTIONS

Much of the preceding discussion has been independent of
lUCY or VMCF. This section discusses the specific functions
available due to the path-orientation of lUCY. The path-o­
rientation of lUCY introduces at least one critical differ­
ence in comparison with VMCF; CP knows which virtual machine
is on each end of the path and the communications functions
can more easily keep each virtual machine aware of the sta­
tus of the other machine in terms of the communications
link. One area really showing this difference is
QUIESCE/RESUME processing. The VMCF protocol for notifying
communicating source virtual machines that a target virtual
machine has issued a RESUME (by having the target issue an
IDENTIFY to each of the source virtual machines) can at best
be termed a kludge. lUCY handles the problem automatically
by notifying the source virtual machine immediately when the
target issues either a QUIESCE or a RESUME on the path.

7.10.1 CONNECT

A virtual machine issues the lUCY CONNECT function when it
desires to establish a communications path to a process run­
ning in another (or the same) virtual machine . Permission
to ut i 1 ize lUCY communicat ions must be granted by the in­
stallation; the CP directory entry for the virtual machine
contains the limit on the number of active lUCY connections
it can have. Once this permission has been checked, pro­
cessing for the CONNECT function proceeds as follows:

1. A currently unused PDENT is found for both the source
and the target virtual machines. Some number of
these unused entries are set up at the time lUCY com­
munications is ini tialized wi th the DECLARE BUFFER
function; more PDENTs can be dynamically allocated
(by acquiring additional PDSEGs) as necessary within
the directory specified limits on the number of ac­
tive connections.

2. Initialize the PDENT on each end of the path to con­
tain the address of the CCT for the virtual machine
at the other end, the pathid of the other end of the
path (remember, this is just the index to the PDENT
for the other end of the path), and a flag indicating
that this path is pending connection.

3. Stack an external interrupt for the target machine so
it knows that a CONNECT request is pending.

At this point, the source virtual machine must wait on a re­
sponse from the target; the only funct ion the source can

- 136 -

perform on the path is a SEVER, which may be desireable if
the target does not respond wi thin a reasonable period of
time.

7.10.2 ACCEPT

A virtual machine requests the ACCEPT function to complete
the establishment of a communications path that has been in­
it iated by the issuing of a CONNECT request from another
virtual machine. After parameter val idat ion, the ACCEPT
routine performs the following:

1. Reset the connection pending flags at both ends of
the path.

2. Set a flag at both ends of the path indicating that
the path is valid.

3. Stack an external interrupt to inform the source vir­
tual machine that the path is now ready for communi­
cations.

Normal IUCV message-sending funct ions may now be executed
for the communications path.

7.10.3 SEVER

The SEVER funct ion may be used to terminate communi cat ions
along a communicat ions path or as a response to a CONNECT
request. After a communications path is established, a
SEVER function must be executed on both ends of the path for
all the resources to be reclaimed.

If the pathid in the SEVER parameter list is marked as
being valid, the following actions are performed:

1. QUIESCE the path at both ends. This prevents either
end from sending additional messages.

2. Invoke PURGE for MDs on the invoker's REPLY queue
that are associated with the path being severed.
These MDs represent messages that have been "deliv­
ered" and are waiting for the virtual machine to en­
able for the appropriate external interrupts or to
execute the TEST COMPLETION function.

3. Dequeue any external interrupts assoc iated wi th the
path being severed.

- 137 -

4. Invoke REJECT for any MDs on the invoker's SEND or
RECEIVE queues that are associated with the path be­
ing severed. These MDs represent messages sent to
the virtual machine that have not been RECEIVEd (the
SEND queue) or REPLYed to (the RECEIVE queue).

5. Invoke PURGE for any MDs on the target's SEND or
RECEIVE queues that are associated with the path be­
ing severed. These MDs are messages sent from the
source virtual machine but not yet completely pro­
cessed by the target virtual machine.

6. Enqueue an external interrupt for the target virtual
machine to notify it that the path is being severed.

7. Set a flag in the PDENT of the target indicating that
the path has been severed.

The communications path has now been partially broken. Com­
plete termination of the path is held up until the target
executes a SEVER, indicating that it has performed any nec­
essary clean-up functions.

If the pathid indicated in the parameter list is invalid,
then the SEVER funct ion must be in response to a pending
CONNECT or a pending SEVER. All outstanding MDs are now re­
leased and the PDENTs are returned to their initial status.
An addi t ional check is performed if the last act i ve path·
within a dynamically acquired PDSEG has been deactivated, in
which case the storage occupied by the PDSEG is released ..

7.11 CP SERVICES VIA IUCV

Although the preceding discussion assumed the communicating
processes resided within virtual machines, IUCV allows com­
munications paths to be established between CP service func­
tions and virtual machines or between CP services (although
no intra-CP usages exist at the current time). -

To communicate with a CP system service, the name of the
service must be specified in the CONNECT parameter list.
The names of all available CP services are contained in a
table located at label CPNMTBL in module DMKIUC. Note that
the names of all the CP services start with an '*' and are
therefore easily distinguished from a virtual machine user­
ide

Besides the CP name table, another table in DMKIUA at la­
bel CPENTTBL lists the entry points to gain control when the
CP system service is the target of a part icular funct ion.
Entry points are provided for the following functions for
each defined system service:

- 138 -

1. CONNECT.

2. MESSAGE (SEND).

3. SEVER.

4. QUIESCE.

5. RESUME.

These entry points are sufficient to provide full lUCY com­
munications between CP and an application running in a vir­
tual machine. Currently-defined CP system services are:

1. *CCSConsole Communications Services, used by
VCNA/VTAM. The entry points to perform the lUCY
functions are all in module DMKVCT.

2. *MSG - Message System Service, used to reroute a num­
ber of virtual console messages back to an applica­
tions program. The entry points to perform the lUCY
functions are all in module DMKMSG.

3. *BLOCKIO - DASD Block I/O System
virtual machines with asynchronous
access to virtual DASD devices.
function is in module DMKBIO.

Service, providing
device independent
Support for this

Using the modules mentioned above, it should be a relatively
easy task to establish a communications path between CP and
an application running in a virtual machine, something re­
quiring significant and complex modifications in the past.

7.12 SUMMARY

This chapter has presented an overview of the internal oper­
ation of the VMCF and lUCY inter-machine communication pro­
tocols along some understanding of their differences, both
positive and negative. Even though it has been around for
some time, VMCF has many limitations that preclude its use
for many applications. lUCY appears to be IBM's choice for
adding new functions (such as the block I/O support in VM/SP
Release 3) and therefore would be the choice for most new
applications you plan to develop.

- 139 -

1.3.3.3

for use by software ----+
1 causes a page exception --+ I

I I
0-11 of addr. I I

+--------+--------+
laaaaaaaa aaaalxx?1
+--------+--------+
a 8 I 115

II
used for >16M real storage ---++

Figure 5: Page table entry

Translation

The address translation process proceeds as follows:

1. The low-order 12 bits of the address are saved, since
they are merely the displacement into the given page.

2. The high-order 8 bits are used as an index into the
segment table. I f the "inval idlY bi t is on in the
given segment table entry, or if the entry is beyond
the defined range of the segment table, then an in­
terrupt is generated.

3. The page table address is gotten from the segment ta­
ble entry and the next 4 bits of the address are used
as an index into the page table. I f the "i nval id"
bit is on in the chosen page table entry, then an in­
terrupt is generated. Otherwise, the 12 high-order
bi ts from the page table entry are concatenated to
the saved 12 low-order bits to form the real 24-bit
memory address.

Naturally, this process takes time, even for the very
fast electronic circuits that are employed. For that rea­
son, many System/370 CPU models contain a "translation look­
aside buffer" (TLB), which contains a number of virtual ad­
dresses and their corresponding real addresses. Whenever
the previously described translation process is invoked, the
results are saved in the TLB. Since most program addressing
sequences tend to be sequential, there is a very good chance
that another reference to the page will occur very soon, and
the TLB entry can therefore be used to speed up the transla­
tion process. The TLB is designed so that it can be

- 14 -

- 140 -

NOTES

- 141 -

- 142 -

8.1 INTRODUCTION

8.1.1 Overview

Chapter 8

STORAGE MANAGEMENT

Recall from the CP architecture chapter that there are two
kinds of real storage management in CPo There is user stor­
age allocated in 4k pages and administered by the module
DMKPTR. This storage is also called the dynamic paging area
(DPA). There is another type of storage called free stor­
age. Free storage is that portion of main memory set aside
for CP control blocks. This storage is administered by the
module DMKFRE. User storage administrat ion is discussed
first, followed by free storage administration.

8.1.2 References

8.1.2.1 Publications

1. IBM Virtual Machine/System Product: Da ta Areas and
Control BLock Logic (LY20-0891).

2. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

3. R. Parmelee, et al., Analysis of Algorithms for CP-67
Free Storage Management, IBM Cambridge Scientific
Center, July 1971.

4. E. Bozman, et al., "Analysis of Free-Storage Algor­
ithms - Revisited," pp. 44, IBM Systems Journal, Vol.
23, No.1, 1984.

8.1.2.2 CP modules

1. DMKFRE - manages CP working storage.

2. DMKPTR - manages the dynamic paging area.

- 143 -

8.2 REAL STORAGE CONTROL BLOCKS

The primary real storage control block is the CORTABLE. It
is anchored in the PSA and has one element for every 4096
byte frame of real storage installed on the system. All of
the CORTABLE entries are generated in one block of memory as
a result of the expansion of the SYSCOR macro in DMKSYS; the
first CORTABLE entry is labelled DMKSYSCS. Each entry is a
fixed length, currently 16 bytes long. The information in a
CORTABLE entry varies as the status of a page frame changes.
Details of the information in the CORTABLE entry follow.

8.3 USER STORAGE MANAGEMENT - DYNAMIC PAGING AREA (DPA)

The part of Cp's real storage not devoted to the PSA, the
fixed nucleus, the trace table area, the free storage area,
and the V=R area is called the dynamic paging area (DPA).
This space is managed by the module DMKPTR. It is adminis­
tered in page-sized blocks. The DPA is given to DMKPTR at
CP initialization by DMKSTA. If the V=R area is unlocked by
operator command, then it is logically added to the DPA.
Practically speaking, DMKPTR administers the DPA by manipu­
lating the CORTABLE.

In .additio~ to the main entry point DMKPTRAN, there are
several other entry points for specialized system functions.
The more critical of these secondary entry points are
DMKPTRFE and DMKPTRFT, used to get storage for and accept
storage from DMKFRE. DMKFRE administers CP storage allocat­
ed in doublewords, primarily for control block purposes.

8.3.1 Introduction

In order to allocate storage effectively, DMKPTR maintains
two lists of page frames. The free list is doubly-linked
through the CORTABLE entries and is anchored at DMKPTRFI.
This list represents all of the page frames that are avail­
able for immediate allocation. The flush list, sometimes
called the user page list, is also doubly-linked through the
CORTABLE entries and is anchored at DMKPTRUl. This list
contains page frames that may be available for allocation,
but it may be necessary to write the page out to DASD before
the page frame can be made available for the free list. If
a page frame is allocated to an active user, the CORTABLE
entry for that frame contains pointers to the user's
SWPTABLE, PAGTABLE, and VMBLOK. The flag byte in the
CORTABLE keeps track of the status of the page frame. The
definitions for the flag bits are given in table 10.

- 144 -

TABLE 10

CORFLAG flag definitions

Hex Flag name Definition

80 CORIOLCK Frame locked; CORLCNT positive.
40 CORCFLCK Frame locked for console function.
20 CORFLUSH Frame on flush list.
10 CORFREE Frame on free list.
08 CORSHARE Frame contains a shared page.
04 CORRSV Frame reserved.
02 CORCP Frame owned by CPo
01 CORDISA Frame disabled (not ava i lable) .

Most calls to DMKPTR are made via the TRANS macro, which is
the standard means by which CP routines obtain the real ad­
dress of a specified page of virtual memory. The expansion
of the TRANS macro contains a Load Real Address (LRA) in­
struct ion; if this instruct ion exe.cutes wi th a condi t ion
c6de of zero, then the needed page is already in main stor­
age and the call to DMKPTR is avoided. This design elimi­
nates much potential overhead in the memory management sys­
tem. DMKPTR is called from within the TRANS macro only when
the LRA instruction completes with a non-zero return code.
The DMKPTR module can also be is invoked with the CALL mac­
ro. Its main entry point is entered with a normal save
area.

There are several parameters that can be specified on a
call to DMKPTRAN. The parameters and their meanings are
listed in table 11.

- 145 -

BRING
DEFER
SYSTEM
IOERR
VFAULT
LOCK

TABLE 11

DMKPTRAN parameters

Read the page in if not already resident.
Don't return to caller until page is resident.
The page is in the system virtual memory.
Return paging errors to caller; don't ABEND.
User virtual page fault.
Lock this page in real storage.

8.3.2 DMKPTR operation

At the beginning of DMKPTR another LRA instruction is exe­
cuted, just in case the entry was via direct call and not
via the TRANS macro. The condition code returned by the LRA
largely determines which path is taken through DMKPTR. Ta­
ble 12 details the meaning of the condition codes returned
from a LRA instruction.

TABLE 12

Load Real Address conditon codes

CC Bits BC Mask Meaning

0 8 Page is resident.
1 4 Segment exception.
2 2 Page exception.
3 1 Length violation.

When a condition code of 0 is returned by the LRA, then the
code at the label RESIDENT is executed. This sect ion of
code picks up the CORTABLE entry address and branches to
TESTLOCK, which checks on the lock status of the page frame.

- 146 -

I f a condi t ion code of 1 results from the LRA, then
DMKSTRAN is called to handle the segment exception. The
segment inval id bi t is used to help CP keep track of idle
segments for possible migration from drum to disk. DMKSTRAN
will mark the segment "valid" and will then return to DMKPTR
for re-execution of the LRA instruction.

If a condition code of 3 is returned from the LRA, then
an addressing exception is reflected back to the caller
since the virtual address was greater than the virtual ma­
chine's memory size.

If the LRA instruction results in a condition code of 2,
the code beginning at label GETENTRY is executed. A condi­
tion code of 2 indicates a normal paging exception. The
flow of control is described in the following section.

8.3.3 DMKPTRAN = ~ fault

If a user causes a page fault by referencing a page whose
page table entry has the "invalid" bit set, then the result­
ing program check interrupt causes control to pass the
DMKPRGIN, the first level program check interrupt handler.
That routine calls DMKPTRAN with Rl containing the virtual
address of the page causing the exception and Rll pointing
to the VMBLOK of the virtual machine. '.

If the page is in main storage but is not connected to
this user, then the appropriate pointers in the CORTABLE en­
try for the page frame are filled in, and the request is
treated like a satisfied page-in.

Assuming the page is out of main storage and occupies a
DASD slot, the code at label READPAGE will get a page frame
from the free list and build a CPEXBLOK with a CPEXADD re­
turn address of DMKPTRFD request ing that the page be read
into that page frame. It will then chain the CPEXBLOK from
the anchor at DMKPTRRQ and exit to DMKPAG. Upon completion
of the page-in, the code at label PAGIN will get control.
The CORTABLE entry will be updated and the virtual interval
timer will be updated, if the page brought in is the user's
page O.

Finally, the code at the label TESTLOCK will check to see
if DMKPTR's caller requested the page frame to be locked in
storage. If locking was not requested, DMKPTRAN will return
to its caller. If locking was requested, the CORIOLCK flag
in the CORTABLE entry will be set and the count field
CORLCNT will be incremented. DMKPTRAN will then return to
its caller.

- 147 -

8.3.4 Free list management

In addi t ion to administering the page translat ion process,
DMKPTR also keeps track of that portion of main storage cur­
rently available for paging activity. The free list of page
frames ini tially describes all of the pages in the DPA.
Pages are taken from the free list to satisfy all storage
requests for page-sized blocks. Pages are added to the free
1 ist when its supply of pages becomes low. The threshold
value for the minimum number of pages on the free list is
the number of virtual machines in Ql plus the number of vir­
tual machines in Q2 plus 1. Candidates for pages for the
free list come primarily from flush list. During replenish­
ment, each page frame on the flush list is examined. If it
has been nei ther referenced nor changed, it is immediately
put on the free list. If it has been changed, it is sched­
uled for page-out, and after that process is completed, the
page frame is placed on the free list. If there are no page
frames on the flush list, the full CORTABLE is scanned look­
ing for candidate pages. The best candidates are page
frames that have not been referenced recently.

8.3.5 Flush list management

The flush list describes page frames whose owners are no
longer in the multi-programming set, even though comments in
DMKPTR refer to it, inaccurately, as the "user page 1 i st" .
When a virtual machine is dropped from queue, its resident
pages are placed on the flush list by means of a call to
DMKPTRRS. At queue drop time, no pages are paged-out to
backing storage. DMKPTRRS is also called from page migra­
tion and virtual machine reset. If the user later referenc­
es a page that is still in storage, the page is "reclaimed"
from the flush list and returned to the user. If the page
frame is needed before the user references it again, the
page is written out to a page slot on DASD if changed. Pag­
es are also placed on the flush list when there are tempo­
rarily no available DASD slots into which to write the page.
As described above, when the amount of free storage is low,
the flush list is searched for candidate page frames.

8.3.6 SELECT and friends

SELECT is the internal label of the logic in DMKPTR that
checks to see if the number of page frames on the free list
is below the critical threshold described earlier. If the
threshold has been reached, the contents of the flush list
are checked. The next frame on the flush list is added to
the free 1 ist through a call to DMKPTRFT if unchanged. If

- 148 -

changed, then a page-out is scheduled to refresh the DASD
copy of the page. After page-out, the frame is placed on
the free list as before by a call to DMKPTRFT. After a
frame is added to the free list or has been scheduled for a
page-out, the threshold of free pages is checked again.
This process is continued until the number of pages on the
free list rises above the threshold.

If SELECT finds that there are no pages on the flush
list, then the CORTABLE is scanned. This logic begins at
label SELPAG. SELPAG uses the following logic for maintain­
ing the reference history of the CORTABLE entries. SELPAG
maintains a pointer to the last CORTABLE entry it has exam­
ined. The scan starts here. A page is chosen when its
hardware reference bits are off. If the reference bits are
on, they are reset to off so that when the next pass is made
they may still be off. At the end, the CORTABLE search
wraps to the beginning. When an unreferenced page is found,
(and one eventually should be), then the address of the next
entry in the CORTABLE is saved so the scan can start there
next time. If the unreferenced page belongs to an in-queue
user, SELECT counts it as a "steal". I f there is no page
frame avai lable after two scans, the system ABENDS wi th a
PTR007.

8.3.7 DMKPTRLK and DMKPTRUL

DMKPTRLK and DMKPTRUL are two entry points to manage
CORIOLOK, the lock flag in the CORTABLE entry for each
frame. DMKPTRLK is called to turn on the flag. If it is
already on, the counter at CORLCNT is incremented. DMKPTRUL
decrements this counter and if this call brings the counter
to zero, it turns off the flag.

8.3.8 DMKPTRXX

This full word flag area, introduced by Lynn Wheeler for his
scheduler and page migration support, is used to give sys­
tem-wide indications of various conditions such as "heavy
paging". The primary users of these flags are:

1. DMKSCH, the scheduler.

2. DMKDSP, the dispatcher.

3. DMKPTR, the real memory manager.

4. DMKPGM, the page migrator.

- 149 -

searched by very high speed hardware, and th,at compares
favorably to the two extra memory references that are neces­
sary for normal translat ion. The TLB and the segment and
page tables must of course be kept synchronized, and so when
CP changes a segment or page table entry it must also elimi­
nate the corresponding entry in the TLB. That is normally
done by purging the entire TLB with the PTLB instruction.

1.3.3.4 Interruptions

Three different program check interrupts can be caused as a
result of DAT.

1. ~ segment-translation program check interrupt signals
that an accessed segment table entry contained the
"invalid" bit or that the addressed segment was be­
yond the range of the segment table. The instruction
counter portion of the PSW is not updated to point to
the next instruction; this allows the interrupted in­
struction to begin execution again.

2. A page-translation program check interrupt signals
that an accessed page table entry contained the "in­
valid" bit or that the addressed'page was beyond the
range of the page table. The instruction counter is
also not advanced in this case.

3. A translat ion-speci f icat ion program check interrupt
signals that some invalid configuration was detected
in the segment table, the page table, or control reg­
isters.

1.3.4 CPU status

The Principles of Operation defines 3 different sets of CPU
states.

1. The stopped state is entered when the operator press­
es the STOP key on the system console. The operating
state is entered when the operator presses the START
key or the RESTART key. Only in the operating state
can the CPU execute instruct ions and accept inter­
rupts.

2. The wait state is entered when a PSW is loaded with
bit 14 set to 1. The CPU ceases to execute instruc­
t ions but it can be interrupted if the appropr iate
PSW and control register mask bits are set to 1. The
running state is entered when a PSW is loaded wi th

- 15 -

Scheduling and page migration in CP are discussed in other
chapters. A complete def ini t ion of the DMKPTRXX f lags is
given in the page migration chapter.

8.4 CP CONTROL BLOCK REQUESTS = FREE STORAGE MANAGEMENT

All buffers needed for control blocks are obtained by calls
to entry point DMKFREE and returned by calls to entry point
DMKFRET. Table 13 1 ists the entry points assoc iated with
free storage allocation and deallocation. When initial free
storage is exhausted, CP allows pages from the DPA to be as­
signed for temporary free storage usage. The assignment of
a DPA page for free use is called "extending". Because of
the extra work associated wi th extend process ing, system
programmers should carefully monitor free storage usage.

DMKFREE

TABLE 13

DMKFRE entry points

Main entry to allocate a subpool block
or a block from the free storage chain.

DMKFRERC - Same as DMKFREE except set a return code
if no storage is available.

DMKFRERS - Move and merge subpool entries into the
free storage chain. Invoked from DMKUSP
(LOGOFF) and DMKTMR (once per hour).

DMKFRET - Return a block to a subpool or
free storage chain.

DMKFRETR - Free storage initialization and
replenishment. Called from CP initialization
(DMKSTA) and extend processing (DMKPTRFR).

DMKFRETE - Move CP control blocks out of the DPA.
Put them on the free storage chain, never in
a subpool. Called at LOGOFF (DMKUSP).

- 150 -

8.4.1 Free storage initialization

The free storage area is established by module DMKSTA called
by DMKCPI at CP initialization. DMKSTA calls DMKFRETR to
add the initial pages to the free storage list. The amount
of initial free storage is dependent on the total main stor­
age in the system, the existence of a V=R area, and the yal­
ue of the FREE parameter on the SYSCOR macro in DMKSYS. If
the value specified is greater than 25 percent of the real
storage (less the V=R area), then the value is ignored. If
the value is ignored or is defaulted, the amount of initial
free storage is calculated as sum of three pages for the
first 256K bytes of memory plus one page for every addition­
al 64K bytes, not count ing the V=R area. As a rule of
thumb, IBM recommends one page of initial free storage per
maximum simultaneous user.

8.4.2 DMKFREE method of operation

All free storage is requested in doubleword units. The sub­
pools range in size from 3 to 33 doublewords, in steps of 3.
A subpool is a linked list of blocks of same-sized memory.
At CP initialization the number of blocks in subpools is
zero. During garbage collection, blocks in subpools are
merged back onto the free storage chain to reduce memory
fragmentation. From time to time IBM has increased the
sizes of subpools as control blocks have increased in size.
The subpool entries are given out and returned in a last in
- first out (LIFO) manner. IBM has stated that 99 percent
of free storage requests are handled out of the subpools.
If a module requests a block of storage whose size falls be­
tween two subpool sizes, DMKFREE rounds up the request to
the next higher subpool size. I f the assoc iated subpool
size is empty, the request is processed as described below
for requests larger than 33 doublewords. If a larger block
of storage is found, the request is satisfied by splitting
the larger block from the low address side and returning the
remainder to the free storage chain. If no equal or larger
block is found, the larger subpools are searched in descend­
ing order down to the subpool size of the request. I f a
larger subpool entry is found, the block is split with the
remainder going to a smaller subpool if appropriate. If no
subpool has an entry to satisfy the request, extend process­
ing is invoked as described below.

- 151 -

8.4.3 DMKFREE requests for larger blocks

If the requested storage size is larger than MAXSPSIZ, cur­
rently 33 doublewords, then the free storage chain is
searched looking for the correct sized block. While search­
ing the free storage chain, if an equal sized block is found
fro,m the ini t ial free storage area, the request is sat is­
fied. If the equal sized block is from extended storage,
i. e. the DPA, its address is remembered but the search is
continued. When the end of the chain is reached, if no
larger or equal sized block is found out of ini tial free
space, the DPA block is used. If a larger sized block· out
of initial free space is found, the request is satisfied by
splitting off the requested size from the high end of the
block. The remainder is left on the free storage chain.

8.4.4 Extend processing

If there is no block large enough, DMKFRE declares an extend
condition, makes several special provisions,and calls
DMKPTRFR to get a page from the DPA. The special provisions
include 1) giving the system, via an SVC 16, an extra
SAVEAREA because DMKPTR is invoked wi th a save area, 2)
marking the PSA field XTNDLOCK, and 3) saving the BALRSAVE
and FREESAVE areas in a field within DMKFRE called EXTNDSAV.
This saving of the BALRSAVE area is necessary because rou­
tines in CP that are needed to page out a page use BALRSAvE.
DMKPTRFR calls DMKFRERS to give a page from the DPA to
DMKFREE for use. This call uses FREESAVE. The saving of
the FREESAVE solves the reentrancy problem for DMKFRE. Af­
ter the return from DMKPTRFR, 1) a save area is reserved
again via an SVC 20, 2) BALRSAVE and FREESAVE are restored
from EXTNDSAV, 3) the XTNDLOCK is turned off, and finally,
4) the register values on invocation of DMKFRE are reloaded
from FREES AVE and DMKFRE is reinvoked. The only thing that
CP can do during the call to DMKPTRFR is to process the re­
quest. Users can not be dispatched and most other functions
are suspended. The suspension of all work until the free
storage request is satisfied is what makes extending the
system costly and to be avoided. While it may be obvious to
a system programmer that he may lose control on a call to
DMKFREE, it is probably not obvious that he may also lose
control on a CALL to a resident module that is invoked by
SVC 8. The SVC processing includes getting a SAVEAREA for
the called program. If DMKSVC has no more SAVEAREAs to give
out, it will call DMKFREE for a SAVE AREA , perhaps causing an
extend. This subtlety has caused some grief among CP system
programmers.

- 152 -

8.4.5 DMKFRET method of operation

DMKFRET is the entry point in DMKFRE that is called when a
CP module is ready to return a block previously allocated by
DMKFREE. DMKFRET is called with register 0 containing the
number of double words to be returned and register I point­
ing to the block. The returning block is returned to a sub­
pool or to the free storage chain .. Any adjacent blocks are
merged together to become a larger block. Because DMKFRET
deals with returning blocks, it does not care about extend
processing.

8.4.6 Subpool returns

When the size of a block falls between two subpool sizes,
the request is rounded up to the next larger subpool size.
The block is simply returned to the correct subpool by
chaining it LIFO. I f the returned block is greater than
MAXSPSIZ, currently 33 doublewords, it is placed on the free
storage chain, merged with adjacent blocks if appropriate,
and then checked with the large block logic.

During the merge processing, blocks originating from the
DPA are noted. After the merging is complete, if a block
from the DPA is large enough, it is c~rved up on page bound­
aries and the whole pages are .returned to the DPA via a call
to DMKPTRFT. The remnants of the original block are chained
into the free storage chain. In order to accommodate some
modules in CP that call for large blocks with a short life
span, DMKFRE checks to see if the previous caller of
DMKFRET is the same as the current one. If the callers are
the same, then blocks allocated by calls from DMKQCNFT,
DMKQCOFT, and DMKVCNFT are not returned to the DPA, but
rather are simply placed on the free storage chain. The ra­
tionale for this logic is that if some activity is generat­
ing many calls from one of these places, performance is bet­
ter if the blocks are immediately available. Frequent
extends are avoided.

8.4.7 Free storage garbage collection

As may be apparent, without some sort of garbage collection,
storage would become fragmented over time. CP provides for
regular garbage collect ion by several means. The pr imary
garbage collection is done whenever any user issues the
LOGOFF command. Module DMKUSP is called during logoff pro­
cessing and performs the following activities:

- 153 -

1. Run down all of the allocation block chains for pag­
ing and spooling space. If a RECBLOK is found with
no records allocated, then call DMKFRET to return it
to free storage.

2. After all of the inactive RECBLOKs are returned, call
DMKFRERS. This entry point runs through all of the
subpool chains and returns all of the entries to the
free storage chain, merging adjacent blocks as appro­
pr iate. DMKFRERS wi 11 also return to the DPA any
whole pages it finds if the pages were not part of
initial free storage.

3. Check to see if there are pages from the DPA being
administered by DMKFRE (extended pages), and if so,
then run down 1) the chains of spool file blocks
(SFBLOKs), 2) the paging and spooling allocation
blocks and associated RECBLOKs, and 3) the 3211
pr inter index work areas. I f any blocks are found
from the DPA, call DMKFREE to get a potential substi­
tute block. If the substitute block is also from the
DPA, then return the block and exit. As long as the
substitute block is from initial free space, copy the
contents of the old block into the new block and put
the new block onto the current chain. Call DMKFRETE
to return the old block to free storage. The reason
that a special entry point must be used is that
bloCks returned via this entry point are not put in

·the subpools, but are rather merged directly into the
free storage chain. Since the subpools are managed
as a LIFO stack, if the old blocks were returned with
a normal call to DMKFRET, they would be the first
ones used when the next call was made to DMKFREE for
a potential substitute control block.

A less complete garbage collection is done by a call once
an hour from DMKTMR to DMKFRERS to merge the subpool entries
into the free storage chain.

8.4.8 Miscellaneous

The chain of free storage is maintained in ascending address
sequence. If CP is running on a system with ECPS active,
all of the subpool manipulation in DMKFRET and DMKFREE is
executed in microcode.

Free storage management is a problem in CP. The algor­
ithms were developed when CP was much simpler. In general,
if an installation experiences FREE or FRET problems, IBM
will recommend using a trap to ABEND the system when a free
storage inconsistency condition arises. The trap is called

- 154 -

the FRE013 trap because FRE013 is the ABEND code when the
trap is executed. The trap keeps extra information, basi­
cally the user who requested the block and the size of re­
quest, for every block given out. If a block is given back
on behalf of a user different from the one who requested it
originally, CP will ABEND. The same ABEND occurs when the
amount of space a caller returns differs from that original­
ly allocated. Problems of a general class called "storage
eaters" can be resolved with the help of the FRE013 trap.
Unfortunately there is overhead involved wi th maintaining
the additional information. Some installations have chosen
to accept the additional overhead and have installed the
trap on their normal system. They believe it is worth the
overhead to detect storage problems induced either by IBM or
by the installation itself. IBM has incorporated the FRE013
trap into release 4 of VM/SP, where it is called the "stor­
age overlay trap".

More information about ABEND is given in the chapter on
the CP trace table.

8.5 HPO CHANGES

The fourth reference listed at the beginning of this chapter
describes some simulation work done to improve the existing
FREE/FRET algorithm. Basically there are two subpool groups
with different element sizes. Requests for storage from 2
to 128 doublewords are handled with a set of subpool chains
that vary by multiples of 2 (2, 4, 6, 8, ... , 128). A sec­
ond set of subpools handles requests for storage from 129
through 512 doublewords. Not ice that 512 doublewords is
4096 bytes of storage. The increment in size between sub­
pool chains in this second group is 32 (160, 192, ... , 512).

A second change involves the decision of what to do with
a piece of returned storage. As you recall, with the SP al­
gori thm all pieces of storage smaller than 33 doublewords
were put back into· the appropriate subpool in LIFO order.
The HPO algori thm maintains a double set of subpools for
each element size. The second set contains elements coming
from the DPA (extended storage). Only when the first sub­
pool is empty will the corresponding extended storage sub­
pool be searched. This approach alleviates the "stickiness"
assoc iated wi th extended storage by reduc ing its frequency
of use.

The HPO rewrite of DMKFRE also modifies the garbage col­
lection algorithm used in DMKFRERS. First, a period of time
must have expired before any collect ion wi 11 be done. The
default time interval, located at label RSMIN, is 1 second.
I f a subpool element is in the· extended storage subpool

- 155 -

chain, then it is put back onto the free storage chain. If
the element is from initial free storage, then the element
must have been unused for an amount of time before it will
be returned to the free storage chain. For blocks from 2 to
128 doublewords, the idle time must be greater than the val­
ue at THRSHLD, 60 seconds. For blocks from 160 to 512
doublewords, the time value is shifted right by the value at
BIAS. The EQU value of BIAS is 2, giving a minimum time of
15 seconds for these larger subpool sizes.

A small criticism seems appropriate. While the algor­
ithmic changes described above seem reasonable, the simula­
tion studies used to justify the changes are not convincing.
No information was given as to the type of terminals being
used. In particular, full-screen 3270 applications tend to
use many large storage blocks for terminal I/O. That would
not be the case if the terminals were line mode ASCII de­
vlces, and the resulting subpool usage could be quite dif-
ferent. .

Note that the HPO algori thms are not used on a system
where the ECPS assist for DMKFRE is operational. Two things
can be concluded from this fact. The first is that if HPO
is run on a 43xx systems with ECPS, the older, and faster,
algorithms will be used. A second result is that you can
not arm and disarm the ECPS call dynamically with the system
up and r~nning. With the base SP implementation, the ECPS
microcode instruction could be NOPed on-the-fly for debug­
ging purposes becaused the software and the microcode use
the same subpool algorithm. Since the HPO software uses the
existence of a NOP instruction to signal that it should use
the "improved" algorithms, the system will die a horrible
death if the NOP is suddenly changed to an operational ECPS
micro instruction. You can, of course, turn off the ECPS
micro instruction by modifying CP initialization before the
free storage system is initialized.

The simulation studies showed that about three free stor­
age pages were needed for every logged on user. This number
agrees with the experience of other CMS-intensive installa­
tions. Therefore, to avoid extending, you should specify on
the SYSCOR macro a number of pages approximately equal to
three times the number of simultaneous users you expect on
your system. This is about three times the amount of free
storage that IBM recommends.

- 156 -

8.6 SUMMARY

This chapter has dealt with the two different kinds of real
storage that exists within CPo Each kind serves a different
need. DMKPTR services requests by users and CP for main
storage pages. DMKFRE services requests for control blocks
allocated in doubleword blocks. Storage management is an
important function that is critical to performance. CP has
developed algorithms that meet most of the performance
needs. The one weak characteristic is extend processing.
Extending is done whenever DMKFRE can not satisfy a request
for storage from the free area. DMKFRE must call DMKPTRFR
to get a page of the dynamic paging area to continue servic­
ing requests. While this processing is in progress, other
work is suspended.

Installations can explicitly assign storage to different
functions by specifying parameters on the SYSCOR macro dur­
ing system generat ion. Free storage usage, in part i cular ,
should be closely monitored by a system programmer.

- 157 -

- 158 -

.
....... ..u..w..

• I •
~lo

~ld ...

D
C. Pa BL.DKA..

FREE STORAGE MANAGEMENT

a

'~

I ~ - a

\
~

-. '---__ ..-.I ••• a..-.--__ ---'

3 6 33
\. J

----~~~--------~

SUBPOOLS FREE

NOTES

- 159 -

bi t 14 set to O. The CPU executes instruct ions at
full speed or at reduced speed, depending upon the
setting of the system console rate selector keys.

3. The CPU is in problem state when PSW bit 15 is 1 and
in supervisor state when the bit is O. Only some CPU
instructions are allowed in problem state; the privi­
leged instructions will be terminated with a program
check interrupt.

1.4 I/O SUBSYSTEM

1.4.1 Overview

The System/370 I/O subsystem is qui te complex but it is
characterized by a few simple principles. In effect, the
following process takes place:

1. A program builds a series of commands for an I/O de­
vice and issues a Start I/O (SIO) instruction toini­
tiate the commands.

2. An independent processor, the I/O channel, takes the
commands and begins executing them wi th the help of
an I/O control unit and the requested I/O device.
The CPU is freed to cont inue process ing if it can.
If it can do no more work, the CPU may enter the wait
state.

3. When the I/O operation is complete, the channel caus­
es an I/O interrupt and stores status bits into memo­
ry. The resulting PSW swap causes an I/O first level
interrupt handler to start execut ing. Finally, the
original requestor of the I/O is informed that the
I/O has completed so that the requestor can continue
processing.

1.4.2 Hardware devices

The hardware of the I/O subsystem can be organized into
three types of components that are connected in a particular
arrangement.

1. Attached to the CPU is the channel; a given CPU may
have up to 16 channels. Each channel operates inde­
pendently of the other channels, at least from a
software point of view. The channel contains one or
more subchannels, each of which is basically a pro­
cessor that can execute a series of channel commands.
There are three types of channels:

- 16 -

- 160 -

9.1 INTRODUCTION

9.1.1 Overview

Chapter 9

PAGING

The CP paging system is conceptually straightforward. CP is
strictly a demand paged system. It never tries to page-in a
virtual machine's pages until the virtual machine attempts
to reference them. This ignorance of history has its
strengths and weaknesses. At the invocat ion of the next
command, the system does not try to anticipate which pages
the virtual machine is likely to use.

9.1.2 References

9.1.2.1 Publications

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SCI9-6201).

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

3. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-089l).

4. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

9.1.2.2 CP modules

1. DMKFMT - performs standalone disk formatting.
that this is not a part of the CP nucleus.)

2. DMKPAG - constructs paging IOBLOKs.

3. DMKPAH - processes paging I/O interrupts.

- 161 -

(Note

4. DMKPGT - allocates DASD slots.

5. DMKPGU - deal locates DASD slots.

6. DMKPTR - requests page I/O operations.

7. DMKSYS - contains variables used by paging.

9.1.3 Preview

The paging subsystem is driven by the module responsible for
real storage management, DMKPTR. If a page the virtual ma­
chine wants is not in any of the real storage management
queues, DMKPTR requests that the page be read into memory.
If real memory frames are in short supply, it is DMKPTR that
decides which changed pages need to be written out and re­
quests that it be done.

The paging subsystem relies on several parts of Cp's ar­
chitecture that we need to review. We will then examine the
modules executed to perform a paging request and the associ­
ated control blocks. We will cover at some length the al­
gor i thms for page select ion and I/O performance opt imiza­
tion. Finally we will follow a page-in operation from page
fault through page posting.

9.1. 4 System DASD areas

There are several kinds of DASD volumes known to CPo The
only kind of importance to the paging subsystem is the so­
called "CP-owned" volume. The volume serial names of CP­
owned volumes are declared wi th the SYSOWN macro in the
DMKSYS data module. Not ice that there is a nomenclature
problem here. Another kind of volume that CP understands is
a so-called "system" volume. This kind of volume contains
only user minidisks. Its name does not appear in the SYSOWN
macro. The usage of the cylinders on a CP-owned volume is
declared in the allocation map written on cylinder 0 by the
standalone utility program DMKFMT. The kinds of usage that
CP understands are:

1. PAGE - preferred paging.

2. TEMP - spool files and overflow paging.

3. DUMP - CP ABEND real memory dumps.

4. DRCT - system directory.

- 162 -

5. TDSK - temporary minidisks.

6. PERM - minidisks, CP nucleus, etc.

The first four
s c r i bed be low.
and dump space
subsystem.

cyl inder types are page format ted, as de­
For most purposes page space, temp space,

are handled in the same way by the pag ing

9.1.4.1 Page space

Page space refers to that space so declared in the alloca­
tion record. The cylinders set aside for paging will be
used only for paging slots. CP automatically recognizes
when paging space is defined over fixed-head cylinders. The
IBM 2305 is completely fixed-head. The IBM 3350 can have a
feature making cylinders 1 and 2 accessed by fixed heads.
There may be other drives that will be offered with a fixed
head area. Since the use of these fixed head areas for pag­
ing can add significant performance to a system, CP manages
these areas specially. The paging space not defined under
fixed heads is called moveable head paging space. Both of
these kinds of paging space are known as "preferred" paging
space.

9.1.4.2 Temp space

The temp space mentioned above serves two functions. First
and foremost it is the space in which spool files res ide.
It is, therefore, also known as spool space. However, it
has a second major function. It is the space in which pages
for the paging subsystem are placed when the preferred fixed
head and moveable head spaces are full.

9.1.4.3 Dump space

A separate page-formatted dump area is a recent addition to
CPo If there is no explicit dump space defined, CP will al­
locate space for system dumps out of the temp space. Unfor­
tunately, the dump program must have contiguous DASD slots
for a dump. If there has been high spool usage, there is a
non-trivial probability that there are not enough contiguous
DASD slots into which to write a dump. If this condition
arises, the dump will fail. In order to solve this reli­
ability problem, IBM recently added the ability to specify
in the allocation record of a CP-owned volume an area to be
used only for dumps. More about dumps is given in the chap­
ter on trace table and dumps.

- 163 -

9.1. 5 paging hierarchy

The description of the varieties of paging space should sug­
gest a hierarchy. CP does in fact manage the paging space
as a hierarchy wi th fixed head (FH) preferred areas used
first. Moveable head(MH} prefered space is used when the
fixed head space is full. Finally the temp space is used
when the moveable head space is full. This hierarchy allows
CP's paging subsystem to optimize performance based on the
kind of DASD devices it has to manage.

9.1. 6 DMKFMT utility program

The DMKFMT ut iIi ty program ("Format/Allocate") is a stand­
alone IPL-able program that page formats cylinders of a vol­
ume and marks the usage of the cylinders (or blocks for FBA
devices). The exact format of each track is device depen­
dent. All modern devices have the track capacity to fit
several pages on a track. In order to get good performance,
DMKFMT will write filler records between the 4K page records
if the track size is large enough. The existence of these
filler records allows the device to head switch between page
slots without losing a revolution.

9.1. 7 SYSOWN macro

The SYSOWN macro in DMKSYS allows you to specify by name
which volumes are CP-owned. All paging, temp, and dump
space must be on volumes named in this macro. Each name on
the SYSOWN macro generates a 6 byte field wi th the EBCDIC
name and a 2 byte field. Initially the macro fills in the
two byte field with a value of X'FFFF'. At CP initializa­
tion, if a volume with the entry's name is found on-line,
the two byte field is filled in with the halfword displace­
ment from the beginning of the real device blocks to the
real device block that represents the address where this
named volume was found.

A word of caution is needed. When you decide to add a
new name to the SYSOWN macro, you should add the new name
after all the existing volumes containing temp space. The
reason for this restriction is that spool files have a com­
pressed DASD slot address imbedded in them. By changing the
absolute order of the volume names, you will change the slot
addresses. Spool files on the volumes whose order has
changed will be useless and a cold start of CP will be need­
ed. A method of circumventing this problem if it is neces­
sary to add a volume name in the middle of the exist ing
SYSOWN names is to dump the spool to tape with the SPTAPE

- 164 -

command, shut down the system, and then IPL the new system
with the altered SYSOWNed list. It is much simpler to just
add the new name to the end of the SYSOWN list.

9.1.8 Allocation map

The allocation map, which is written on every DASD volume
formatted and allocated by DMKFMT, is the master information
forCP initialization to set up the paging, temp, dump, and
other areas. For CKD devices the allocation map contains
one byte for every cyl inder on the device. The possible
uses that can be specified and their associated values are
given in Figure 23.

Flag Value

00
01
02
04
OC
08
10
FF

Usage

Temporary
Permanent
T-disk
Directory
Directory - in use
Paging
Dump
End of Volume

Sample Allocation Record

+--+
I 01 01 08 08 08 08 08 01 01 01 01 01 01 01 01 FF na I
+--+

Figure 23: Allocation record for CKD devices

Notice that a X'FF' is used to mark the first non-existent
cyl inder in the volume. Us ing this layout the allocat ion
map can be fixed length. In the sample allocation record
displayed in Figure 23, the first two cylinders are reserved
for permanent space. The next five cylinders are designated
paging space and the last eight cylinders are also permanent
space. Thi s allocat ion record does not descr ibe any known
device but is used only for illustrative purposes. The al-

- 165 -

location record is always written on cylinder 0, head 0,
record 4 on CKD devices.

FBA devices have their allocation records written in
blocks 3 and 4 of the. volume. These two records are a log­
ical extent map of the assigned page usage. Each entry is
12 bytes long, consisting of a flag of the same value as de­
scribed for CKD devices and a start and end page number for
the extent. Each page number requires four bytes of space.

9.1. 9 Cylinder format

DMKFMT writes as many 4K page-sized records on a track as
will fit. Specifically, each type of DASD is fitted with as
many records as possible. Filler records are written to al­
low a head swi tch wi thout the device losing a revolut ion.
The 3350 cylinder layout is included in figure 24 as an ex­
ample.

A cylinder's page-sized records are numbered sequentially
beginning wi th 1. Using the 3350 as an example the first
page slot on acyl inder has a record number of 1 and the
last page has a record number of 120.

Since cylinder a has the volume label, the allocation re­
cord, and other information, it does not have the full com­
plement of page slots. For example all of track a of cylin­
der a on a 3350 is used up by volume information. However,
the 2305 cylinder a track a has one page slot.

- 166 -

Head 0
+------+------+----+------+----+------+----+------+
I RO I Rl I Fl I R2 I F2 I R3 I F3 I R4 I

+------+------+----+------+----+------+----+------+
8* 4096 400 4096 400 4096 400 4096

Head 1
+------+------+----+------+----+------+----+------+
I RO I R5 I Fl I R6 I F2 I R7 I F3 I R8
+------+------+----+------+----+------+----+------+

8* 4096 400 4096 400 4096 400 4096

Head 29
+------+------+----+------+----+------+----+------+
I RO I Rl17 I Fl I Rl18 I F2 I Rl19 I F3 I R120 I

+------+------+----+------+----+------+----+------+
8* 4096 400 4096 400 4096 400 4096

*: Record length in bytes

Figure 24: 3350 paging and spool cylinder layout
(All cylinders except cylinder 0)

9.1.10 Internal compressed ~ addresses

Throughout the paging and spooling subsystems, CP keeps
track of the external DASD slots with a compressed four byte
address. This address takes advantage of the fact that the
page slots on a cylinder are numbered in ascending sequen­
tial order. To uniquely identify each DASD paging slot, CP
uses the format illustrated in Figure 25. For count key and
data (CKD) devices, such as the 3350 and 3380, the slot ad­
dress is of the form "CCPD" , where "CC" is the cylinder num­
ber on the device, and "PH is the record number on that cyl­
inder, starting with 1. The "D" is the position of the DASD
volume in the SYSOWN list, starting with O. For fixed block
architecture (FBA) devices, such as the 3310 and 3370, the
compressed address is represented by "PPPD" , where "PPP" is
the relative page number, starting with O.

- 167 -

C C P D for CKD devices

P P P D for FBA devices

Figure 25: Four-byte internal compressed slot address

9.2 PAGING OVERVIEW

9.2.1 Modules

The modules of the paging subsystem are given in table 14.

TABLE 14

Paging subsystem modules and functions

DMKPTR -
DMKPAG -
DMKPAH -
DMKPGT -
DMKPGU -

DMKIOS -

r-equests page- ins and page-outs.
builds IOBLOKs with CCWs.
posts page-ins.
allocates DASD paging and temp slots.
deal locates paging and temp slots;
allocates and deal locates system
virtual addresses.
schedules I/O on a real device.

A user page fault in System/370 is signalled by a program
interrupt code X'IO' for a page exception or by code X'll'
for a segment exception. Module DMKPRG gets control on all
program exceptions. DMKPRG calls DMKPTR after determining
that the exception is a paging or segment exception. If the
page is still in memory on the free or flush list, the page
is connected to the user's virtual memory and no further
processing is needed. The page is said to be "reclaimed".
I f the page is not present in main storage, then DMKPTR
schedules a page-in by building a CPEXBLOK and putting it on

- 168 -

the queue of page-in requests anchored at DMKPTRRQ. During
DMKPTR's management of real storage frames, if a page-out is
needed (because a changed page frame is required for some
other purpose), DMKPTR bui lds a CPEXBLOK and chains it to
the 1 ist anchored at DMKPTRWQ. After a CPEXBLOK has been
put on either the read queue or the write queue, DMKPAG is
entered via GOTO.

If there are other requests for the same page on the same
device, as in the case of a page shared by several users,
DMKPAG simply chains the CPEXBLOK to the existing IOBLOK.
Normally DMKPAG must build an IOBLOK that contains the chan­
nel program to be executed to read or write the page. It
chains the CPEXBLOK from the IOBLOK for later execution when
the page-in or page-out completes. If there are other pag­
ing operations for the same device and cylinder, DMKPAG will
slot-sort the requests with device dependent algorithms to
enhance the performance of the paging subsystem. Finally
DMKPAG calls DMKIOSQR to schedule the actual I/O.

After the I/O operation completes, the interrupt return
address(IRA) from the page IOBLOK gets control. The entry
point at the beginning of DMKPAH executes the code to un­
chain the CPEXBLOKs from the IOBLOK and call DMKSTK to stack
them for later execut ion. After all of the CPEXBLOKs are
stacked, the IOBLOK is put back on DMKPAG's list of pre-for­
matted IOBLOKs. Later the CPEXADD address in each of the
CPEXBLOKs gains control; the return address is in DMKPTR,
which will post the paging operation complete, allowing the
user to continue execution.

9.2.2 Control blocks

9.2.2.1 SWPTABLE

SWPTABLEs are the control blocks that map a user's virtual
memory into the DASD page slot space. There are 256 seg­
ments possible in a 16 megabyte address space. Each
SWPTABLE maps one segment of user virtual memory. A segment
is 64K bytes or sixteen 4K pages. The SWPTABLE header has a
pointer to the VMBLOK, a segment table index number for this
segment, a flag (SWPFLAG2) of status information about all
of the pages in this SWPTABLE, and a pointer to the PAGTABLE
for the segment. Each SWPTABLE entry for a page of user
virtual memory has the page number within the segment, the
virtual storage keys for the two 2K blocks making up the
page, the CCPD of the page, and a flag to mark the status of
the individual page. The definitions of the flag bits are
given in table 15.

- 169 -

a) The selector channel contains exactly one subchan­
nel. That means that the channel can execute ex­
actly one channel program at a time, controlling
exactly one device. Selector channels are used
with tapes and channel-to-channel adapters.

b) The block multiplexor channel contains several
subchannels, so that several channel programs can
be active at a given time. However, at anyone
time only one of the subchannels can be transmit­
ting a block of data over the channel, so the var­
ious subchannels must be able to disconnect from
the channel during mechanical motion or other
periods when the devices are idle. The overall
effect is that records from several devices may be
interspersed as the corresponding channel programs
are executed. Block multiplexors can control
disks, display terminals, and some "unit record"
devices such as printers and card readers. If se­
lector-type devices are attached to the block mul­
tiplexor channel, then the operation of those de­
vices forces the channel to operate in selector
channel mode for the duration of the channel pro­
gram.

c) The byte multiplexor channel also contains several
subchannels and can therefore also execute several
channel programs at once. The subchannels share
the channel by using it for just a few bytes at ~
time. The overall effect is that all subchannels
appear to be executing and transmitting data si­
multaneously. Byte multiplexor channels can oper­
ate devices such as teleprocessing lines and some
card reagers and printers.

2. The control unit is attached to the channel and oper­
ates as an intermediary between the channel and the
device; this is done mainly to conserve hardware and
reduce cost. The control uni t manages device posi­
tioning, which can often be performed wi thout using
the channel. A typical controller may support 8 tape
drives or 8 or 16 disk drives. Most controllers can
simultaneously position each of the attached devices
and can transmit data to or from anyone of the de­
vices. A controller that is busy transmi tt ing data
with one device will return a "control unit busy" if
asked to perform another data transmission. Some
controllers are integrated wi th the assoc iated de­
vice.

3. The third component is the device, the unit that ac­
tually performs the I/O operation. Devices are such
things as tape drives, disk drives, terminals, card

- 17 -

TABLE 15

SWPTABLE flag definitions

Flag Name

80
40
20
10
08
04
02
01

SWPTRANS
SWPRECMP
SWPALLOC
SWPSHR
SWPREFl
SWPCHGl
SWPREF2
SWPCHG2

Definition

Page in transit
No need to deallocate CCPD*
Page scheduled for allocation
Page is shared
First 2K referenced
First 2K changed
Second 2K referenced.
Second 2K changed

* SWPRECMP also means "recompute the CCPD"

9.2.2.2 IOBLOK and extension

The standard CP IOBLOK is discussed in another chapter.
Briefly, it has flag bytes, the cylinder number of this re­
quest, a pointer to the user's VMBLOK, a CAW, and an ·inter­
rupt return address{IRA) to which this request will be un­
stacked. Extensions to the IOBLOK are made for all paging
requests. The extension for CKD devices contains a standard
DASD channel program and the associated cylinder, head, sec­
tor, and record number of the DASD slot. The end of the
DASD channel program is a SENSE channel command word. This
last CCW is changed to a Transfer-in-Channel(TIC) to branch
to another IOBLOK' s channel program if there are mul t iple
requests for page slots outstanding.

A further redefinition of the IOBLOK is made if the pag­
ing request is to an FBA device. A normal FBA channel pro­
gram is contained in this extent wi th the provision of
chaining to another IOBLOK's channel program with a TIC CCW
if appropriate. On earlier hardware, the operation code
used to hold the place in the channel program if the TIC was
not needed was a SENSE. The SENSE operation was used in or­
der to "preserve track orientation" (which is meaningless at
the end of a channel program). Unfortunately the SENSE op­
erat ion to a 3880 control uni t can cause a missed revolu­
tion. Therefore IBM introduced a PTF to change the ending
operation code to a NOP.

- 170 -

9.2.2.3 ALOCBLOK and friends

The ALOCBLOK for CKD devices and its equivalent for FBA de­
vices, the ALOFBLOK, are the major control blocks for infor­
mation about the status of paging and spool slots. There is
one ALOCBLOK per device, chained from the RDEVBLOK and
threaded through all the chains anchored in DMKPGT for DASD
devices wi th areas of declared usage. As an example of a
complex case, if a 3350 has a fixed head area and its allo­
cation record says that it has bands of cylinders for paging
and temp usage, its ALOCBLOK may appear on three ALOCBLOK
chains, one for each type of space (FH, MH, or temp).
ALOCBLOKs are built by CP initialization or by module
DMKVDG, the ATTACH command, when a CP-owned volume is at­
tached to the system. Although the functions are identical,
the formats of the ALOFBLOK and the ALOCBLOK are sufficient­
ly dissimilar to force modules that deal with them to have
two paths, one for FBA devices and one for CKD devices. If
new function is added for DASD, then both legs of code must
be updated.

9.2.2.4 RECBLOK

The RECBLOK is the control block th~t contain~ the status of
a part icular cyl inder' s contents. I t is cha ined from the
ALOCBLOK according to the use made of the cylinder (FH, MH,
or temp). It exists on a chain with cylinder numbers closer
to the middle of the device chained ahead of cylinpers fur­
ther from the center. There are two bytes reserved for the
cylinder number that this RECBLOK represents. There is a
counter of maximum pages and allocated pages on this cylin­
der. There is a RECFLAG that marks the usage of this cylin­
der and also records if the cylinder is full. Finally there
is a bi t map of the pages on the cyl inder. A zero in the
map signifies that the page is available for allocation. A
one means that the page is already allocated. For FBA de­
vices there is an extension to the base RECBLOK. This ex­
tension records the real first page number and last page
number of the pages represented by this RECBLOK. The RECMAP
is a bit map whose first bit represents the first page in
the extent.

9.2.2.5 RDCBLOK

There is a new control block for FBA devices called the real
device characteristics block, RDCBLOK. There is one block
for each type of FBA device attached to the system. The an­
chor for the chain is in the PSA. The RDCBLOK records the
physical characteristics of the device. The one character-

- 171 -

istic of the device that the paging subsystem uses is the
number of pages per real cylinder. This number is calculat­
ed and used for building new RECBLOKs as appropriate. A
pointer to a device's RDCBLOK is found in the RDEVBLOK.

9.3 OPERATION OF DMKPGT

DMKPGT's main preoccupation is allocating available DASD
slots for paging and temp functions as close as possible to
the center of the device. The program returns a page slot's
CCPD to the caller.

DMKPGT has anchors for each type of device that can have
an ALOCBLOK. In fact DMKPGT has an anchor for each device
type within a device usage. There is at most one ALOCBLOK
per device. Threaded through each ALOCBLOK are pointers to
the next ALOCBLOK with the same kind of space. For example,
there is a chain of ALOCBLOKs for 3350s wi th temp space,
3350s with page space, and possibly, 3350s with fixed head
page space. Each device can be on each chain. There is an
anchor for each usage type and device. For example,
DMKPGT5F, DMKPGT5M, and DMKPTR5T are the anchors for 1)
fixed head 3350 preferred paging, 2) movable head 3350 pre­
ferred paging, and 3) temporary 3350 space for spooling and
overflow paging respectively.

All entry points in DMKPGT run through a three-level
nested loop. The outermost loop looks down the three lists
of ALOCBLOK anchors. Each anchor points to a circular chain
of ALOCBLOKs that represent all the volumes of the same de­
vice type (such as 3350) that have been declared to have
cylinders with the same function (FH, MH, or temp). The
ALOCBLOK has several counters for the usage of the cy11nders
on the device it represents. One of the fields, ALOCMAX, is
the maximum number of cylinders on the device. The next two
counters count the number of cylinders allocated by type of
use. ALOCUSEP is for paging cylinders used, and ALOCUSET is
for temp cylinders used. These two counters are initialized
to the value of the maximum number' of cylinders on the vol­
ume minus the number of possible cylinders to be allocated
for that particular use. After incrementing the appropriate
counter a simple comparison between that counter and ALOCMAX
indicates whether there should be additional cylinders
available on the device for this type of usage.

The middle loop in DMKPGT searches down the ALOCBLOK
chain looking for an ALOCBLOK with an available page slot.
If no page is available, a new cylinder is allocated for the
function being sought and the first RECBLOK for that cylin­
der is created. Whenever it is necessary to allocate a new
cylinder, the ALOCBLOKs on the chain are relinked so that

- 172 -

pages are allocated first from the device wi th the most
recently allocated cyl inder. Moving the ALOCBLOK of the
newly created RECBLOK to the head of the ALOCBLOK chain for
this device type and page slot usage produces a rough round­
robin allocation algorithm. The chain of RECBLOKs from each
of the anchors in the ALOCBLOK is ordered by the distance
the cylinder is away from the middle. Using this scheme, CP
will always allocate the available slot closest to the mid­
dle of the volume.

The thi rd and innermost loop is the search through the
RECBLOKs anchored in the appropriate ALOCBLOK field. The
ALOCBLOK contains four anchors for chains of RECBLOKs. The
first is ALOCPGFH, for fixed head paging cylinders. The
second is ALOCPGMH, for moveable head cylinders. The third
is ALOCRECS, for spool usage of temp cylinders. The fourth
is ALOCRECP, for general (non-preferred) page usage of temp
cylinders.

Although there are several entry points in DMKPGT, they
can be classified into two categories. The most often
called entry points allocate one page at a time for the pag­
ing and spool ing funct ions. Other entry points allocate
contiguous pages on temp or dump space for system and 370X
dumps. The entry points to DMKPGT are enumerated in table
16.

TABLE 16

Entry points of DMKPGT

DMKPGTPG- Allocate a slot of user virtual memory.
DMKPGTSG - Allocate a slot of user SPOOL space.
DMKPGTPM - Allocate a slot of temp space for paging.

Used by page migration.
DMKPGTCG - Assign contiguous slots for 370X dumps.
DMKPGTDT - Allocate contiguous slots for system dumps.

Called by DMKPGUDT.
DMKPGTDG - Allocate page slots for the SPTAPE command.

Called by DMKPGUDG.

- 173 -

9.4 OPERATION OF DMKPGU

DMKPGU performs two major functions. Entry points DMKPGUPR,
DMKPGUSD, DMKPGUSP and DMKPGUDU are called by other CP mod­
ules to disassociate a user virtual memory address from a
given DASD paging slot. The CCPD of the slot to be deallo­
cated is picked up from the SWPCYL field for the specified
virtual memory address. The RDEVBLOK of the device is found
from the 'D' part of the compressed address by a call to in­
ternal subroutine FINDEVIC. The ALOCBLOK for the device is
pointed to by the RDEVALLN field. The RECBLOK representing
the correct cylinder (the CC in CCPD for CKD devices and the
PPP in PPPD for FBA devices) is located. The bit that rep­
resents that page is turned off in RECMAP. DMKPGUPR is
called to deallocate one slot from a user's memory.
DMKPGUSD is called to deallocate one slot of spool space.
DMKPGUSR is called to deallocate a set of spool slots. The
other entry points associated with this function allocate or
deallocate mUltiple slots with one call. The system dump
function and certain spool file functions call these entry
points.

TABLE 17

Entry points of DMKPGU

DMKPGUPR - Deallocate a slot of user virtual memory.
DMKPGUSD - Deallocate a slot of user SPOOL space.
DMKPGUSP - Deallocate a slot of system virtual memory.
DMKPGUSR - Deallocate a set of SPOOL slots.
DMKPGUDU - Deallocate contiguous slots for system dumps.
DMKPGUDT - Allocate contiguous slots for system dumps.
DMKPGUDG - Allocate page slots for the SPTAPE command.

DMKPGUVG - Assign a system virtual address.
DMKPGUVR - Release a system virtual address.

The second major function of DMKPGU is invoked via calls
to DMKPGUVG and DMKPGUVR. These entry points assign and re­
turn addresses in the system virtual memory. While CP does
not run with DAT enabled, it does use virtual addresses when
referring to DASD page slots, thereby allowing CP to use the
same page I/O routines for its own use that it uses for vir­
tual machine page I/O. This system virtual memory is used

- 174 -

extensively by the directory updating process and the SPOOL
system (see those chapters for more detail).

At label PAGTABL there is a 160 byte field that is the
bi t map of system vi rtual addresses; this provides for a
maximum of 1280 pages in the system virtual address space.
When DMKPGUVG is called, the field at PAGTABL is searched
for the first avai lable bi t. When the first zero bi tis
found, the virtual address the bit represents is constructed
and returned to the caller. If no zero bit is found, then a
PGU005 ABEND results.

The return of a page of system virtual memory to the
avai lable addresses is performed by DMKPGUVR. A process
similar to DMKPGUVG, but in reverse order, is carried out.
The virtual page address is transformed into the correct bit
and byte offset in the PAGTABL field. The .corresponding bit
is turned off if it was on. A PGU006 ABEND results if the
bit was already off.

CP is very good about consistency checking throughout the
page allocation and deallocation process. CP will ABEND if
any logical inconsistency is detected.

9.5 OPERATION OF DMKPAG

9.5.1 Introduction to DMKPAG

DMKPAG has two responsibilities. First it builds IOBLOKs
needed to satisfy the paging request. Then it slot-sorts
the existing paging requests to optimize the throughput of
the paging subsystem.

9.5.2 Building IOBLOKs

DMKPAG gets control via GOTO to work off paging requests
queued from DMKPTRRQ and DMKPTRWQ. Each of the CPEXBLOKs on
these queues represents one user's request for one page not
in real memory. DMKPAG maintains two stacks of preformatted
paging IOBLOKs. IOBLOKs used by the paging system are larg­
er than normal and contain the channel programs for the page
request. When a stack is exhausted, DMKFREE is called to
get storage for the IOBLOK. The first type of IOBLOK is
used to satisfy paging requests for normal CKD and FBA de­
vices. The second, recently developed, is used to request
pages from what are called 'extended CKD' devices. Extended
CKD devices are devices running wi th the speed matching
buffer feature in an IBM 3880 storage director. Though the
types vary in detail, the logic is the same. An IOBLOK must

- 175 -

be initialized and the channel programs filled with request
dependent data. The CCPD of the requested DASD slot is
transformed into sector, cylinder, head, and record numbers.

The requesting CPEXBLOK is chained to the in-transit
queue anchor in the IOBLOK if no other IOBLOK exists for the
same page. If another IOBLOK exists, this request is simply
added to the CPEXBLOK chain anchored at IOBMISC.

If there is no other request for the same page, DMKPAG
scans the pending IOBLOKs for the device looking for re­
quests for the same cyl inder. I f there are none, DMKPAG
queues an I/O request by calling DMKIOSQR. If other IOBLOKs
for the same cylinder exist, DMKPAG sorts the requests by
slot number using a device dependent algorithm. All records
on a cylinder having the same angular displacement on the
track are said to be in the same slot. A minimum optimiza­
tion is to re-chain the channel program to bypass the SEEK
of the second and subsequent requests to a cylinder. Most
of the devices have record layouts for paging to allow opti­
mization of this critical function. The IBM 3350 page for­
mat, for example, has 400 byte filler records inserted be­
tween page-sized data records to allow head switching
without loss of a revolution.

For requests to the same relative slot (angular displace­
ment) on the cylinder, there is a priority scheme to decide
which request is scheduled first, as shown in table 18. The
purpose of this scheme is to guarantee good response time to
requests from users who are currently competing for cpu re­
sources. After the request has been slot-sorted with other
requests, DMKPAG starts again at the top to process the next
page request or else exits if the read and write queues are
empty.

- 176 -

TABLE 18

Relative priority of paging requests

User Status Request Type Priority
Ql Read 1
Q2 Read 2
Ql Write 3
Q2 Write 4
El Read 5
not El Read 6
El Write 7
not El Write 8

Note: Request is for same slot on same cylinder.
Ql is the dispatcher's queue 1 list of VMBLOKs.
Q2 is the dispatcher's queue 2 list of VMBLOKs.
El is dispatcher's eligible list.

9.6 OPERATION OF DMKPAH

DMKIOT stacks the IOBLOK as a result of the interrupt at the
end of the paging channel program. DMKPAHIO then gets con­
trol as the execution address specified in the IOBIRA. If
there is an error with the I/O, DMKPAH reschedules I/O ini­
tialization. After five unsuccessful retries, DMKMCHST is
called to terminate the system.

When the I/O is successful, DMKPAH stacks the in-transit
CPEXBLOKs for later execution. DMKSTKCP is called for each
CPEXBLOK chained from the IOBLOK. Each CPEXADD points to
DMKPTR, which exits to its original caller with the page now
resident (for a page-in request) or written out (for a page­
out request). DMKPAH replenishes the supply of preformatted
paging IOBLOKs by chaining the IOBLOK to the chain anchored
at DMKPAGSK for FBA and normal CKD devices. For extended
CKD devices the returning IOBLOK is chained to the list an­
chored at DMKPAGEX.

- 177 -

9.7 SUMMARY

The most important point to remember about this chapter is
that CP is a demand paged system. Its paging subsystem
works as an extension to its real memory management. Path
lengths for non-error paths in the paging subsystem are very
short.

The module names to remember are:

1. DMKPTR.

2. DMKPGT - DMKPGU.

3. DMKPAG - DMKPAH.

4. DMKIOS.

The control blocks associated with paging are:

1. SWPTABLE.

2. CPEXBLOK.

3. IOBLOK with extensions.

The control blocks involved in DASD slot administration are:

1. ALOCBLOK and friends.

2. RECBLOK and extensions.

- 178 -

SWPTABLE

SWPVM
SWPPAG

SWP ENTRY

VMBLJK

VMSEG

PAGE-TABLE
HEADER

PAGSWP

PAGTIME

PAGE
TABLE

DYNAMIC ADDRESS TRANSLATION

VMBLOK ALOCBLO:

RDEVBLOK

IOBLOCK

ACORETBL

SEGTABLE

PAGTABLE

CORTABLE

CPEXBLO

Paging Overview

PAGE ALLOCATION CONTROL BLOCKS

COMPLICATED CASE

[I
o 1

DMKPGT
ANCHOR

FH
PAGING

•

/
RECBLOK

/ CYL 2 FH

\. RECBLOK
CYL 1 FH

2

PERM

ALOCPNT

ALOCPGFH

ALOCRECS

ALOCPNTF

ALOCPNTT

ALOCMAP

I PAGE (MH)

100

ALOCMAX

ALOCFLG

ALOCPGMH

ALOCDEVP

ALOCPNTM

ALOCRECP

PERM

200

~ RECBLOK
II, MH
~

- RECBLOK
MH

(RECBlOK

(MH

RECBLOK E C

IOBLOK CHAINING 3

DMKPAG
RDEVFIOB

IOBFPNT-+---~' IOBFPNT
IOBCYL 2 IOBCYL3
IOBMISC IOBMISC

. PAGECCWS PAGECCWS·
PAGESNS

AGEIOB

IOBFPNT 0
IOBCYL 2
IDBMISC
PAGECCWS
PAGESNS

IN-TRANSIT CPEXBLOK QUEUE

IOBFPNT IOBFPNT
IOBLOK
IOBCYL 2

CPEXBLOK
IOBMISC IRA PTR -.

-0 en PAGEIOB
::::0 r-
........ 0
o --f
::::0 I
........ en
--f 0
........ ::::0

IOBLOK N --f
rn rn
t:::::t t:::::t

IOBCYL 2

-- IN-TRANSIT QUEUE --

NOTES

- 179 -

1. 4.3

readers, and printers. The channel-to-channel
adapter (CTCA) can be used to connect two channels,
allowing one to read and the other to write as a
means of transmitting data between two computer sys­
tems. A device can perform one operation at a time;
some operations involve data transfer and others in­
volve only physical motion.

I/O addressing

Just as memory locations have addresses, so do components in
the I/O subsystem. In general, I/O addresses are 3 hexa­
decimal digits or nibbles (12 bits):

1. The first nibble is the channel number, which ranges
from 0 to the installed maximum, since some CPUs have
less than the full set of 16 channels.

2. The second nibble is the controller number. Most
channels allow at most 8 controllers to be attached
(for various physical reasons), but their addresses
usually may be chosen at will.

3. The third and last nibble is the device number.

The address scheme is slightly modified in a few cases,
so that the control unit number may actually occupy anywhere
from 0 to 5 bits:

1. Some controllers, such as the 3705, support a great
many devices. They therefore respond to several con­
troller addresses, even though the device is actually
only one controller. The same is true of the 3274
display controller.

2. In the case of disk devices, an additional subdivi­
sion is introduced, the "string". A string is a
group of 8 disks with device address 0 to 7 or 8 to
F. One or more strings can be attached to the con­
troller. In such a case, the upper 3 bi ts of the
controller address nibble are used to address the
controller and the remaining bit plus the upper bit
of the device address combine to address the string.
Some older disk devices, however, allowed only 1
string per controller, so that 5 bi ts were used as
the controller address. This variation is of little
interest to progranuners but must be considered by
anyone who sets up the hardware configuration.

- 18 -

- 180 -

10.1 INTRODUCTION

10.1.1 Overview

Chapter 10

PAGE MIGRATION

What happens to performance when the number of active pages
in the system exceeds the capacity of the preferred paging
area? Specifically, what happens when the fixed head areas
overflow? The process that deals wi th this problem is
called "page migration".

As long as the fastest devices have page slots available,
CP automatically moves changed pages to the highest perform­
ance device type. This phenomenon is a side effect of the
way DMKPTR and DMKPGT function. Before page-out of changed
pages, DMKPTR calls' DMKPGT to allocate a new DASD CCPD.
Since DMKPGT always allocates 'pages on the fastest'devices
first, active pages will tend to move to these devices.
This beneficial effect disappears when the fixed head page
areas become full. Introduced as a part of the Wheeler
PRPQ, and now incorporated into VM/SP', page migrat ion deals
wi th the problem of a full fixed head area by trying to
identify inactive pages and moving them to non-preferred
space, i.e. general paging and spool space. The identifica­
tion of activity is done on a segment basis. Each page ta­
ble, mapping one segment of virtual memory, is time-stamped
whenever any page in the segment is processed by DMKPTR.
Periodically CP scans all VMBLOKs in the system for unrefer­
enced segments and moves those pages from preferred page
space to temp space. In addition, during times of pressure
on free storage, CP also moves the page tables and SWPTABLES
of the migrated segments from memory onto DASD page slots.
This process is called SWPTABLE migration. With the de­
creasing price of main storage and the corresponding in­
creasing popularity of large real memory systems, the con­
tinued value of SWPTABLE migration may be doubtful.
However, the continued need for page migration is assured as
long as there are virtual memory operat ing systems and a
lack of high performance, large capacity DASD devices.

- 181 -

10.1.2 References

10.1.2.1 Publications

1. IBM Virtual Machine/System Product: Operator's Guide
(SC19-6202).

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

3. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP

. (LY20-0892) •

10.1. 2.2 CP modules

1. DMKPGM - controls page migration.

2. DMKSTR - controls SWPTABLE migration.

10.2 PAGE MIGRATION - DMKPGM

Remember the strange word of flags at DMKPTRXX introduced in
the chapter on real storage management? Several f lags of
this word are used by page migration and SWPTABLE migration.
Refer to table 19 for a complete definition of the flags.

Byte Flag

o 80
40

1 80
40
02
01

2 80

TABLE 19

DMKPTRXX flags

Definition

Signals heavy paging.
Signals another measure of high paging.
Indicates that the FH space is full.
Indicates the MH space is full.
Marks recalibration of the paging stats.
Activates page migration.
Activates SWPTABLE migration.

All other flags are currently undefined.

- 182 -

Page migration, controlled by DMKPGM (PaGe Migration), is
invoked ei ther by the MIGRATE command (entry point
DMKPGMUS) or by a CPEXBLOK stacked by DMKSTP (entry point
DMKPGMEP). The MIGRATE command can be issued for a specific
VMBLOK or for all VMBLOKs. If a userid is specified, only
that VMBLOK's pages will be considered for migration. If no
parameter is given, then all users' pages are considered.
When DMKPGMEP is called then all users are candidates for
migration. We will discuss the system-wide case. The user­
specified case is a subset of the logic needed for general
page migration.

10.2.1 Scanning order

As with several other processes in CP, page migration runs
in a four-level nested loop. The outermost loop is control­
led by a counter in SAVEWRKl+1. Page migration will loop
normally three times on the VMBLOK scan trying to find suf­
ficient inactive pages to move. "Sufficient pages" is de­
fined to mean one-eighth of the total of fixed head pages in
the system. "Sufficient moveable head pages" means one­
eighth of the total of moveable head pages in the system.
For the first VMBLOK scan, the time that a segment needs to
be unreferenced is 12 minutes. On the s~cond pass,. the time
is halved. The third pass uses an unreferenced interval of
one-quarter the first interval. If the fourth pass is need­
ed, the interval is zero minutes.

(The fourth pass through page migration is a last ditch
effort to clear some preferred space. First the reference
interval for a segment is set to zero. I f there are no
fixed head pages in the system, the moveable head preferred
pages of all VMBLOKs are searched. Since this last action
is so drastic, it is executed, at most, every 30 minutes.)

The second loop scans the 1 inked 1 ist of VMBLOKs. To
stop the search, page migration makes use of the fact that
the system's own VMBLOK will be the first on the chain.
During the scan of VMBLOKs, if the 12.5 percent vacant fixed
head pages threshold is met, migrat ion terminates. I f the
moveable head page areas were also full, 12.5 percent of
these pages must be moved.

The third loop scans a user's segments. Scanning a seg­
ment means looking at the segment table entry and the page
table header. For each VMBLOK the fourth and innermost loop
looks at the individual page table entries (PTEs).

- 183 -

10.2.2 Selection criteria

Let us loo"k at the cri teria DMKPGM uses to determine whether
to move a page. Fi rst the VMBLOK must meet the following
conditions:

1. Migration is not inhibited (VMINHMIG).

2. User is not in the process of logging on or off
(VMLOGON + VMLOGOFF).

3. The user is not in queue (VMINQ).

For a segment's pages to be considered for migration, all of
the following must be true.

1. SEGINV flag must be on.

2. PAGSTMP + interval must be less than the current
time.

3. Count of active segment table entries must be zero
(PAGACT = 0). That is, the segment must not be ac­
tively shared.

For shared pages, the time criterion is ignored. Migration
invoked by command ignores shared pages.

For each page in a segment table, the following condi­
tions must hold in order for the segment to be migrated.

1. SWPRECMP not on.

2. SWPTRANS + SWPALLOC not on.

3. PAGINVAL flag in PTE on.

4. Real storage frame number in the PTE is O.

The last 2 conditions are double-checks to be sure that the
page is not in use.

If the operator has issued the "SET MHFULL percent" com­
mand, and the moveable head areas are full, preferred mov­
able head pages are considered for movement. If ei ther of
these two criteria fails, then moveable head pages are not
processed.

When a page finally passes all of the selection criteria,
it is migrated by the process described below. Remember
that the information needed to move the page is contained in
the page table entry and its corresponding SWPTABLE.

- 184 -

1. Call DMKPTRFR to obtain a real storage page frame.

2. Build a CPEXBLOK with CPEXADD pointing to the inter­
nal label RDRETN. Place the CPEXBLOK onto the read
request queue at DMKPTRRQ and go to DMKPAGIO to per­
form the page-in operation.

3. When RDRETN gets control after the page-in, call
DMKPGTPM to allocate a slot on a slower speed paging
device. In VM/SP the new slot is taken from temp
(spool) space. In HPO systems at release 3.4 and
higher, special space can be reserved solely for page
migration.

4. Build a CPEXBLOK with CPEXADD pointing to the inter­
nal label WRTRETN. Place the CPEXBLOK onto the write
request queue at DMKPTRWQ and go to DMKPAGIO to per­
form the page-out operation.

5. When WRTRETN get control after the page-out, release
the old DASD slot by calling DMKPGUPR and update the
SWPTABLE entry with the new slot's CCPD. Call
DMKPTRFT to release the real storage frame.

This process is repeated for each page in the current seg-.
mente

10.2.3 Upward migration

During the VMBLOK scan, if no segments are identified as mi­
gration candidates, and if the VMBLOK has more than two pag­
es on moveable head DASD, then each SWPTABLE is scanned for
pages to mark so they will be moved upward in the paging hi­
erarchy. The marking of a page to migrate upward is accom­
plished by turning on the SWPCHGI flag for each moveable
head page.

10.2.4 Unconventional techniques

Several techn iques used in DMKPGM are non-standard in CP.
First, one pageable module (DMKPGM) invokes a second page­
able module (DMKSTR) via a stacked CPEXBLOK. Normally such
logic is forbidden, but Lynn Wheeler knew that at DMKSCHTI+8
there is code that loads R15 from RO and issues an SVC 8.
Therefore this location is used as the address in the
CPEXADD field. CPEXRO is loaded with the adcon of DMKSTRSM,
which will invoke segment table migration. A second viola­
tion of convention occurs when DMKPGM turns off the DMKPTRXX
FHFULL and MHFULL flags during the call to DMKPTRRS. DMKPGM

- 185 -

knows that DMKPTRRS. executes different logic based on these
flags'. After returning from DMKPTRRS, the flags are re­
stored to their original settings. The last non-standard
logic in DMKPGM to be mentioned is that, just before it ex­
its, it moves 40 bytes of migration statistics into DMKSCHMS
(Migrat ion Stat ist ics), so that the scheduler can conven­
iently have access to them. DMKSTRSM, SWPTABLE migration,
moves more statistics to an adjacent area just before it ex­
its.

10.3 SWPTABLE MIGRATION - DMKSTR

Swap table migrat ion is started wi th a call to DMKSTRSM.
DMKSTR is the module that also handles hardware-generated
segment exceptions, program interrupt code X'II'. Swap ta­
ble migration is really a misnomer, since both the page ta­
bles and the SWPTABLEs of a segment are moved from storage
to DASD page space during DMKSTR processing. Lynn Wheeler,
when designing SWPTABLE migration, created a mechanism that
had broader uses than just migration. Normally a virtual
machine has one "real memory", the segment table origin
(STO) of which is contained in field VMSEG in the VMBLOK.
Whenever the user is dispatched, the real control register 1
must be loaded wi th the STO address. For SWPTABLE migra­
tion, there is a field in the VMBLOK called VMSWPMIG. This
field serves as a page table origin for a second one-segment
"real memory" for the user. There is a fixed mapping of the
virtual memory address represented by a particular SWPTABLE
into a 256-byte slot in this memory space.

DMKSTRSM moves page tables and SWPTABLES of each migrated
segment to a page in the memory space and causes that page
to be written out of main storage. The SEGINV and SEGMIG
flags are set on for each migrated segment.

When the user attempts to reference a page in a migrated
segment, a segment exception is generated by the hardware.
Because of the SEGMIG flag, DMKSTR can determine that the
segment exception interrupt is due to migration. The page
containing the page tables and SWPTABLEs for the segment is
brought into memory, and the page tables and SWPTABLEs are
moved to free storage and re-connected to the other control
blocks. The virtual machine can then re-execute the inter­
rupted instruction.

- 186 -

10.4" CONTROLLING MIGRATION PARAMETERS

The module that generates system-wide load and performance
statistics is DMKSTP. It is invoked initially during CP
initialization. At the end of processing, DMKSTP stacks a
TRQBLOK with a timer set to expire in one minute if the mul­
t i -programming level is less than 0.05. I f the mul t ipro­
gramming level is above 0.05, then DMKSTP uses a time of
five minutes. DMKSTP is responsible for determining when
migration should be invoked. If there have been more calls
to DMKPTR for an extended page than the current count of ex­
tended pages or if the amount of free storage consumed by
page tables and SWPTABLEs is greater than 12 per cent of the
total, then the appropriate DMKPTRXX flag is turned on to
start SWPTABLE migration. The amount of free storage con­
sumed by page tables and SWPTABLEs is approximated by multi­
plying the number of segments active in the system (TTSEGCNT
in DMKPSA) by 23 and then by 8. Free storage is calculated
by subtracting the address of DMKFREHI from the real memory
size.

DMKSTP builds a CPEXBLOK for page migration (DMKPGMEP)
according to the logic shown in table 20.

I-If
I
I-If
I
I
I
I
and

At

TABLE 20

When to invoke page migration

preferred paging full
or
lots of paging activity (DMKPTRXX+O = X'CO')

and
I-If SWPTABLE migration set
I or
I-If count of FH pages> 1152 (2305-1).

least 10 minutes since last migration call.

- 187 -

10.5 SUMMARY AND CRITIQUE

Page migration in CP performs a very important function. To
maintain high performance, a system wi th a total page set
greater than the capaci ty of the fastest paging devices
needs a mechanism to move inactive pages to slower devices.
DMKPGM and DMKSTM implement algorithms to accomplish this
purpose. The code in DMKPGM and DMKSTM is non-standard and
difficult to understand. The algorithms suffer from their
primitive nature. The use of the segment time stamp is es­
pecially poor. A finer method of detecting inactive pages,
not segments, is needed. Several installations have modi­
fied the timing constants associated with page migration to
force it to use a shorter reference interval. The standard
is 12 minutes for the first pass, 6 for the second pass and

.3 for the third pass. Installations can use the "SET SRM
PGMTLIM" to lower the ini t ial interval. A second constant
is the threshold of one-eighth the total FH pages in the
system. When one-eighth the total are moved from fixed head
areas, migration stops. This number is too high for heavily
loaded paging subsystems. Many installations have lowered
the number to one-sixteenth or one-thirtysecond. A third
critical time is the interval between successive invocations
of migration. The ten minute standard has been lowered by
many installations to five or, even, one minute. In their
HPO product, IBM has legitimized these revised time and
threshold constants by incorporating them into the base sys­
tem. More work in this area is needed ..

- 188 -

VMBLOK VMBLOK VMBLOK

header

SEGTABLE PAGTABLE SWPTABLE

DMKPGT •• ALOCBLOK ALOCBLOK

RECBLOK

RECBLOK

Page Migration Overview

NOTES

- 189 -

1. 4.4 Hardware constructs

In order to manage I/O operat ions, several hardware con­
structs are used (these are also shown in figure 6):

1. Channel address word (CAW): Location X'48' in real
memory is used to contain the real memory address of
the channel program that is about to be started. In
effect, this word in memory contains a parameter that
is passed to the selected I/O channel.

2. Channel command word (CCW): The series of I/O com­
mands is made up of doublewords that are called
"channel command words". Each CCW contains an opera­
tion code, a data address pointer, a data length val­
ue, and several control flags. The entire series of
CCWs is called a "channel program".

3. Channel status word (CSW): Location X'40' in real
memory is a doubleword that is called the "channel
status word". The CSW is a result value that is
stored by the channel when it wants to communicate to
the CPU the completion or the failure of a channel
program. The CSW contains status flags, a residual
length value, and a pointer to the end of the channel
program.

4. I/O old and new PSW: Locations X'38' and X'78' in
real storage are the old and new I/O PSWs. Whenever
a channel wishes to indicate that an I/O operation is
complete it causes an I/O interrupt. I f the CPU is
enabled for that interrupt (PSW bits and CR2), then
the current PSW is stored into X'38' and a new PSW is
fetched from X'78'. The new PSW should be disabled
for I/O interrupts and contains the address of the
program that will process the I/O completion.

- 19 -

- 190 -

11.1 INTRODUCTION

11.1.1 Overview

Chapter 11

I/O PROCESSING

CP I/O processing can be divided into three major areas:

1. The basic facilities used by all I/O operations~

2. The virtualization of I/O requests issued by a virtu­
al machine.

3. Cp's own I/O requests performed to real I/O devices.

This chapter wi 11 concentrate on the 'normal' I/O pro­
cessing logic; error handling will be covered in less de­
tail.

11.1.2 Review of 370 I/O processing

As you will recall from the introductory chapter, System/370
I/O is initiated by CPU instructions and carried out by the
I/O subsystem consisting of the devices, control units, and
channels. Each I/O device has one or more I/O addresses,
and the address includes the address of the associated con­
troller and channel. In general terms, typical I/O process­
ing consists of the following operations:

1. An application program (the 'user' of some I/O de­
vice) constructs a channel program to perform some
function on the device.

2. The appl icat ion program typically calls some system
program (an I/O supervisor, or 'lOS') that waits if
necessary until the device is available for use.

3. The lOS sets the CAW to point to the channel program.

4. The lOS issues an SIO instruction to start the chan­
nel program running in the channel.

- 191 -

5. The lOS passes control back to the application pro­
gram, which typically issues some 'wait' function.

6. At some later time an interrupt from the channel
causes the current PSW to be stored and a new PSW to
be fetched.

7. The new PSW causes the I/O interrupt routine in the
lOS to run, and that routine causes the application
program to be re-activated to continue processing.

From the point of view of a virtual machine, exactly that
set of operations must appear to take place. From the point
of view of CP, exactly that set of operations must actually
take place whenever a real I/O device is used. . .

11.1.3 References

11.1.3.1 Publications

1. Principles of Operation (GA22-7000) contains a de­
scription of the general I/O architecture.

2. Special Feature Description: Channel to Channel Adap­
ter (GA22-6983) describes the CTCA in detail.

3. For the various devices, see the appropriate "Compo­
nent Description" manuals.

11.1.3.2 CP modules

1. DMKCCW - translates channel programs from virtual to
real.

2.

3.

4.

5.

6.

DMKCNS - supports

DMKDAD - performs

DMKDAS - performs

DMKDAU - performs

DMKDGD - performs

real line mode terminal devices.

3380 error recovery.

CKD error recovery.

FBA error recovery.

synchronous I/O for DIAGNOSE X' 18' .

7. DMKDGF - handles interrupts for DIAGNOSE X'l8'.

8. DMKGIO - performs synchronous I/O for DIAGNOSE X'20'.

9. DMKGRF - supports real local 3270 terminal devices.

- 192 -

10. DMKIOQ - finds paths and manages I/O request queues.

11. DMKIOS - starts all real I/O operations.

12. DMKIOT - handles all real I/O interrupts.

13. DMKISM - supports virtual ISAM channel programs.

14. DMKRGA - supports real BSC 3270 devices.

15. DMKRGB - supports real BSC 3270 devices.

16. DMKRGC - supports real BSC 3270 devices.

17. DMKRGD - supports real BSC 3270 devices.

18. DMKRSG - supports special 3800 functions.

19. DMKSCN - locates real and virtual I/O control blocks.

20. DMKTAP - performs real tape error recovery.

21. DMKUNT - translates channel programs from real to
virtual.

22. DMKVCA
adapter.

supports the virtual channel-to-channel

23. DMKVIO - simulates virtual I/O interrupts.

24. DMKVSC - performs CCW translation checks for V=R.

25. DMKVSI - processes a virtual I/O instruction.

26. DMKVSJ - processes a virtual I/O instruction.

11.2 BASIC CP I/O FACILITIES ---
There are three major components to Cp's I/O processing rou­
tines:

1. DMKIOS, the I/O supervisor (some 3300 lines of code).

2. DMKIOT, the I/O interrupt handler (some 1500 lines).

3. Various control blocks, especially the IOBLOK and the
RxxxBLOK and VxxxBLOK groups.

- 193 -

11.2.1 Control blocks

Several control blocks are used by CP I/O processing; the
most important of these blocks are described below:

1. The IOBLOK is the basic unit of work for an I/O re­
quest; any routine in CP wishing to perform I/O must
obtain an IOBLOK from free storage, construct in the
IOBLOK various pointer and flag values, and then call
the I/O supervisor with the IOBLOK address as a pa­
rameter. The IOBLOK contains such information as the
address of the associated I/O device, the address of
the VMBLOK for whom the I/O is requested, and the ad­
dress of the channel program.

2. The RDEVBLOK is a portion of DMKRIO and represents a
real I/O device in the system configuration. The
RDEVBLOK contains flags indicating the current status
of the device; it also contains pointers to the con­
trol units by which the device can be accessed. Ad­
ditional pointers indicate which IOBLOK is currently
active on the device.

3. The RCUBLOK is contained in DMKRIO and represents a
real I/O control unit in the system configuration.
The RCUBLOK contains flags that indicate the status
of the control unit; it also contains pointers to the
attached devices and to the channels by which the
control unit can be accessed.

4. The RCHBLOK is contained in DMKRIO and represents a
real I/O channel in the system conf igurat ion. The
RCHBLOK contains flags that indicate the status of
the channel; it also contains pointers to the at­
tached control units.

5. The VDEVBLOK is constructed in free storage and rep­
resents an I/O device in a virtual machine's configu­
ration. The VDEVBLOK is very similar to the RDEVBLOK
and contains similar flags and pointers.

6. The VCUBLOK is constructed in free storage and repre­
sents an I/O control unit in a virtual machine's con­
figuration. The VCUBLOK is very similar to the
RCUBLOK and contains similar flags and pointers.

7. The VCHBLOK is constructed in free storage and repre­
sents an I/O channel in a virtual machine's configu­
ration. The VCHBLOK is very similar to the RCHBLOK
and contains similar flags and pointers.

To find the real I/O blocks for a given device, you can
use the routine DMKSCNRU (scan for a real unit). That rou­
tine's logic is as follows:

- 194 -

:roBL.oKA.

eN'
elL,

j) I~V :

G
o

3

"7
J

-

0 2

E

'/..'0 '

~~,

~tFFFF)

'I-'~ ',,--

~IFFFrl

• • •

t

I -- .
•
• ·

Ct1KRIP 0'1 - "'I

~ ~

~*~("-Ai / '

/ /::iJV'<>- ,,,. /<:0 /'bK .. /

/
!

I

I
I

-0 ---

,

~ .. ~
-- - S

QO

d1
Q

_-Ji ~

~ ---

!. ---

~c.. A(DMK~C.T)
~c. At01'\KR.~OCH)
•
•

1. Multiply the 4-bi t channel number by 2 and use the
resul t tb index into the channel lookup table at
DMKRIOCT. Each halfword in that table contains the
displacement of an RCHBLOK from the first RCHBLOK.
Add the halfword value to the address of DMKRIOCH.
The resulting RCHBLOK address is placed into R6.

2. Multiply the 5-bi t control .uni t number by 2 and use
the result to index into the RCHBLOK's table of con­
trol units, starting at RCHCUTBL. Each halfword af­
ter RCHCUTBL is the displacement of an RCUBLOK from
the first RCUBLOK. Add the halfword value to the ad­
dress of DMKRIOCU. If this is a subordinate RCUBLOK,
then get the pointer to the primary RCUBLOK. The re­
sulting RCUBLOK address is returned in R7.

3. Multiply the 3-bit device number by 2 and use the re­
sul t to index into the RCUBLOK' s table of dev ices,
starting at RCUDVTBL. Each halfword after RCUDVTBL
is the displacement of an RDEVBLOK from the first
RDEVBLOK, except that the displacement is in terms of
doublewords or quadwords. Multiply the displacement
by a or 16, according to the bi t RDIDX in CPSTAT5,
and add the result to the address of DMKRIODV. The
resulting RDEVBLOK address is returned in Ra.

CP arbi trarily generates an RCUBLO~ for each group of a
RDEVBLOKs, no matter how the. real devices and control units
are configured; this structure simplifies much of the work
in the I/O supervisory routines. Since some RCUBLOK status
information must apply to the entire corresponding control
unit address range, the first RCUBLOK of such a range is
considered the "primary" RCUBLOK; all other RCUBLOKs in the
range contain a pointer to it. As shown above, DMKSCNRU al­
ways returns the address of the primary RCUBLOK.

11. 2.2 DMKIOS (and DMKIOQ)

DMKIOS is the portion of the I/O supervisor that queues and
starts I/O requests. Its two main entry points are DMKIOSQV
for virtual machine I/O and DMKIOSQR for CP I/O; both entry
points result in the same basic logic being run, the main
difference being that virtual machine I/O processing re­
quires changing the status of the VMBLOK. At service level
305, DMKIOS was split, with certain subroutines moving to a
new module, DMKIOQ. The descriptions below will continue to
use the old subroutine names, with the new ones given in pa­
rentheses. The main logic flow through DMKIOS is as fol­
lows:

- 195 -

1. If the real device is already busy (RDEVSTA4:
RDEVBUZY), then queue the IOBLOK onto the RDEVBLOK
and return to the original caller.

2. Otherwise, call the internal subroutine IOSTRTDV:

a) Mark the device 'scheduled' (RDEVSTA4: RDEVSCHD).

b) Call the internal routine IOSFINDP (DMKIOQFP) to
get a path to the device, consisting of an avail­
able channel and an available control unit. If no
path is operational, then return to the caller of
IOSTRTDV to simulate CC=3. If all paths are busy,
then queue the IOBLOK onto the RCHBLOK or RCUBLOK
and exit to the original caller.

c) Place the IOBLOK address into RDEVAIOB and set
RDEVBUZY and clear RDEVSCHD in RDEVSTA4.

d) Set RCHBUSY for a selector channel and set RCUBUSY
for a shared control unit.

e) Set the real CAW from IOBCAW and clear the real
CSW and RDEVCSW.

f) For CP I/O or for virtual machine DIAGNOSE or
SIOF, issue a real SIOF. For virtual machine SIO,
issue a real SIO.

g) If the result is CC=3 (hardware not operational),
then:

i) Unbusy all the RxxxBLOKs.

i i) I f there is no alternate path, then return
with IOBCC3 and IOBFATAL error indications.

iii) If there is an alternate, then try again on
another path (point b above).

h) If the result is CC=2 (channel busy), then:

i) Queue .the request on the RCHBLOK.

ii) Return to the caller if this is a byte mul­
tiplexor operation.

iii) Find an alternate path (point b) for a se­
lector or block multiplexor.

i) If the result is CC=l (CSW stored), then:

i) Unbusy the RCHSTAT and RCUSTAT.

- 196 -

i i) Stack the IOBLOK (call DMKSTKIO).

iii) If there was a unit check in the CSW, then
schedule a SENSE IOBLOK. Otherwise, start
up any queued I/O for this device or con­
troller or channel.

j) If the result is Cc=o (success), then:

i) Set RDEVSTA4: RDEVBZCH to show that the de­
vice is busy on the channel.

ii) If this is a virtual machine SIO request,
then clear VMIOWAIT.

iii) If this is not for the active running virtu­
al machine, then call DMKSCHDL to inform the
scheduler of the virtual machine's change of
state.

iv) If this is a byte multiplexor, or a selec­
tor, or a block multiplexor with no queued
requests, then return to the caller. Other­
wise, issue a TCH instruct ion to cause a
"channel available" interrupt as soon as I/O
interrupts are re-enabled by the dispatcher.
T}:le interrupt will cause DMKIOT and DMKIOS
to re.:.issue the queued request, which will
then have a very good chance of rece i vi ng
Cc=o instead of CC=2. This saves some real
time by allowing the block multiplexor chan­
nel to be given as many requests as possi­
ble.

3. Return to the original caller.

The internal subroutine IOSFINDP (DMKIOQFP) mentioned
above has the following logic flow:

1. For the case that there is only one path defined for
the device, and if both the channel and the control­
ler are avai lable (operat ional and not busy), then
return to use the path. If either the channel or the
controller is not operational, then return for CC=3
processing. Otherwise, one of them is busy, so queue
the IOBLOK onto the busy component and exi t to the
original caller of IOSTRTDV.

2. For the case that there are alternate paths to the
device, and if no path is operational, then return
for CC=3 processing. I f an avai lable path can be
found, then return to use that path. Otherwise,
queue the IOBLOK onto the first busy path component

- 197 -

-
and create associated mini-IOBLOKs and queue them
onto all other operational paths; return to the orig­
inal caller of IOSTRTDV.

The major subroutines IOSQDEV, IOSQCU, and IOSQCH
(DMKIOQQD, DMKIOQUS, and DMKIOQSK) all use common logic to
queue an IOBLOK onto an RxxxBLOK:

1. For non-DASD, add the IOBLOK to the FIFO chain an­
chored at RxxxFIOB and update the field RxxxLIOB.

2. For DASD, also add the IOBLOK to the chain anchored
at RxxxFIOB, but insert fixed head requests FIFO be­
fore all moveable head requests and insert moveable
head requests in order by increasing seek addresses.

11. 2.3 DMKIOT

DMKIOT, the I/O interrupt portion of . the I/O supervisor,
gains control directly from the I/O new PSW whenever an I/O
interrupt occurs. Although various unusual and error condi­
tions make DMKIOT rather complex, its logic is quite simple
for the common case of channel end plus device end:

1. Call DMKSCNRU to the RxxxBLOKs associated with the
"interrupting device.

2. Save the CSW into RDEVCSW and into IOBCSW.

3. In turn clear RCHBUSY, RCUBUSY, RDEVBZCH, and
RDEVBUZY.

4. Call DMKSTKIO to stack the completed IOBLOK so that
execution can resume at the address contained in
lOB IRA.

5. Go to DMKIOSRS to restart any queued I/O requests us­
ing this path:

a) If there is an IOBLOK queued on the RDEVBLOK, then
start its I/O operation and GOTO to DMKDSPCH.

b) If there is an IOBLOK queued on the RCUBLOK, then
start its I/O operation and GOTO to DMKDSPCH.

c) If there is an IOBLOK queued on the RCHBLOK, then
start its I/O operation and GOTO to DMKDSPCH.

d) If nothing is queued on this path, then GOTO to
DMKDSPCH.

- 198 -

6. The major subroutines IOSDQDV, IOSDQCU, and IOSDQCH
(DMKIOQDE, DMKIOQDU, and DMKIOQDH) all use common
logic to remove the next IOBLOK from the RxxxBLOK:

11. 3

a) For non-DASD, remove the next item from the chain
anchored at RxxxFIOB.

b) For DASD, remove the next IOBLOK if it is a fixed
head request. If it is a moveable head request,
then remove the IOBLOK whose seek address is next.
Use the RDEVCYL value for the current seek address
and the RDEVSKUP flag to indicate in which direc­
tion the disk arm is currently being moved.

SUPPORT OF VIRTUAL MACHINE I/O REQUESTS

Each I/O request from a virtual machine must be handled dif­
ferently, depending upon the exact type of virtual or real
I/O device being used. The following is a description of
the processing that CP must perform for several types of de­
vices.

11.3.1 Device independent support

The initial handling of virtual machine I/O is common to all
device types and involves these processes:

1. initial checks

2. channel program translation

3. conversion to real I/O

4. status and interrupt reflection

11.3.1.1 Initial checks

When the virtual machine I/O supervisory routines issue an
I/O instruction, such as SIO, a privileged operation program
check interrupt occurs on the real machine since the virtual
machine is actually running in problem state. The following
steps are initiated as a result:

1. DMKPRG gets control from the interrupt and, after
noting that the virtual machine is in virtual super­
visor state, passes control to DMKPRVLG.

- 199 -

2. DMKPRV notes that the instruction is an I/O instruc­
tion (the opcode is in the range X'9C' through X'9F')
and passes control to DMKVSIEX.

3. DMKVSIEX begins the actual simulation of the SIO in­
struction. It first computes the device address and
then calls DMKSCNVU to locate the virtual I/O blocks
for that virtual device. A failure to find the
blocks results in the termination of the SIO simula­
tion by setting the CC to 3 ("device not operation­
al").

4. If the virtual channel block indicates that a previ­
ous operation is still active, then the SIO is termi­
nated wi th CC = 2 ("busy"). I f the previous opera­
tion's completion status has not yet been returned to
the virtual machine, then the SIO is terminated with
CC = I ("CSW stored"), and DMKVIO is given control to
build the new CSW.

5. DMKVSI then locates the virtual page 0, or causes it
to be paged in if it is not already resident, and ex­
amines the virtual CAW (location X'48').

6. For certain virtual devices, DMKVSI passes control at
this point to special processing routines that will
be described later: DMKVCN for virtual consoles and
DMKVSP for spooled unit record devices.

7. For all other devices, DMKVSI builds an IOBLOK with
the interrupt address pointing to DMKVIOIN.

11.3.1.2 Channel program translation

Virtual machine channel programs are subjected to a virtual­
ization process that can affect all three major components
of the channel program:

1. The CCW opcodes are in some cases modified since cer­
tain sequences cannot be supported for virtual ma­
chines.

2. The address portions of the CCWs must be converted to
real memory addresses within the real machine since
the I/O channels require real memory addresses. The
addressed pages must also be paged into real memory
and locked there for the duration of the I/O opera­
tion.

3. The data portions must be modified in certain cases.

- 200 -

DMKVSI calls DMKCCWTR to perform the CCW translation (for
the V=R virtual machine, DMKVSI first calls DMKVSCVR to see
if the translation is needed for this channel program, and
if not then the call to DMKCCWTR is skipped). The result is
a new channel program that contains real memory addresses
and the appropriate opcodes. Certain special simulation for
ISAM channel programs is also performed before control is
returned from DMKCCWTR.

11.3.1.3 Conversion to real I/O

DMKVSI continues to process the virtual SIO by performing
these steps:

1. Increment VMIOCNT, the count of virtual machine I/O
operations. Put the virtual machine into the IOWAIT
status (VMRSTAT: VMIOWAIT), unless this is an SIOF
instruction and block multiplexing is enabled in vir­
tual CRO and ECMODE is on and I/O tracing is not ac­
tive.

2. If this is a virtual CTCA, then call DMKVCAST to fin­
ish the SIO.

3. For all other devices, call DMKIO?QV to queue the
IOBLOK on the real device.

4. GOTO to DMKVSJ to clear VMEXWAIT and return to the
dispatcher via the fast entry point. The virtual ma­
chine will now either run or not run, depending upon
the settings of the status bits such as VMIOWAIT.

11.3.1.4 Status and interrupt reflection

Virtual machine I/O operations must result in an I/O inter­
ruption exactly like on a real system. For that reason, CP
must generate I/O interruption codes and cause the virtual
machine to perform PSW swaps as necessary to complete the
virtualization processes.

1. When the channel program ends, DMKIOT gets control
via the real I/O interrupt and stacks the IOBLOK to
the dispatcher, which later uses the IOBlRA address
to pass control to DMKVIOIN.

2. DMKVIOIN locates the VDEVBLOK, VCUBLOK, and VCHBLOK
for the corresponding virtual device and gets the CSW
from IOBCSW.

- 201 -

3. The status is copied from IOBCSW to VDEVCSW and the
appropriate 'interrupt pending' bits are set in the
VxxxBLOKs.

4. DMKUNTRN is called to untranslate the CSW address
field.

5. The appropriate 'busy' indicators are cleared in the
VxxxBLOKs.

6. DMKUNTFR is called to fret the real CCW chain and to
perform any special data conversion such as minidisk
relocation for "read home address".

7. The appropriate virtual 'interrupt pending' bits are
set in the VCUBLOK and VCHBLOK, as is the summary bit
VMPEND: VMIOPND.

8. If VMDSTAT: VMTIO was set, then the virtual machine
is taken out of VMEXWAIT.

9. The IOBLOK IS FRETted and control is passed to
DMKDSPCH.

11. 3.2 Device dependent support

Certain types of virtual devices require special handling,
which is described briefly below.

11.3.2.1 Virtual DASD

Certain channel program opcodes cannot be allowed for mini­
disks. For example, DMKCCWTR changes a "write home address'
command to a "read home address" with the skip bit since the
real home address area must contain the real cylinder and
head addresses and not the virtual {minidisk relative} ad­
dresses. DMKCCWTR must also modi fy seek addresses since
they must contain the real cylinder or block addresses and
not the values relative to the minidisk. Each seek address
must also be checked to insure that it does not go beyond
the extent of " the minidisk. In some cases, input data must
also be converted. The count field of record 0 and the home
address, for example, are relocated from real cyl inder to
virtual cylinder by DMKUNTFR.

- 202 -

11.3.2.2 virtual console

(Virtual console processing in DMKVSPEX is covered in detail
in the chapter on terminal support.)

11.3.2.3 virtual unit record devices

(Virtual unit record device support in DMKVSPEX is described
in the chapter on spooling.)

11.3.2.4 Dedicated devices

For dedicated devices all opcodes are allowed. Channel pro­
gram translat ion must of course sti 11 perform its address
conversion and page locking functions.

11.3.2.5 virtual CTCA

The virtual channel-to-channel adapter is supported by
DMKVCA; entry points exists for each of the simulated I/O
instructions. The CTCA status is maintained in the CHXBLOK,
which contains a mirror image, the CHYBLOK, which describes
the "other" of the two connected virtual selector channels.
DMKVCA uses a complex arrangement of multiple CPEXBLOKs to
perform the appropriate I/O interrupt signalling that the
real CTCA performs. For control CCWs, DMKVCA causes atten­
t ion interrupts to appear on the "other" channel, and for
data transfer CCWs DMKVCA itself performs the data movement
between the associated virtual machine buffer areas.

11.4 SUPPORT OF CP-GENERATED I/O

In addition to the I/O operations that CP initiates in order
to simulate I/O requests from virtual machines, there are
also I/O operations that CP initiates on its own behalf.

CP-generated I/O is performed very much like VM-generated
I/O; the major difference is that there is no VMBLOK whose
status might have to be changed during the I/O processing.
The entry point DMKIOSQR is called to execute or queue a CP
I/O request, and the flag bit IOBCP indicates that the I/O
request originated in CPo The IOBlRA field points to the
routine that will process the I/O completion. In some cas­
es, such as wi thin the pag ing subsystem, addi t ional data
areas are placed behind the IOBLOK so that they are pre-

- 203 -

served and are addressable; such techn iques are poss ible
because the caller of DMKIOSQR is responsible for obtaining
and releasing free storage for the IOBLOK. CP performs its
own I/O to several different types of devices.

11. 4.1 Real DASD

CP must perform its own I/O to DASD devices such as disks
and drums for the following purposes:

1. to save and restore copies of memory pages that have
had to be paged out due to memory contention.

2. to maintain the directory of users and their virtual
machine configurations.

3. to spool input cards and output lines and cards while
driving real card readers, line printers, and card
punches.

All of this DASD I/O is performed as paging, which is de­
scribed in detail in the chapter on paging.

11. 4.2 Real unit record devices.

(Real unit record device support is covered in detail in the
chapter on spooling.)

11. 4.3 Real terminals

(Real terminal support is covered in detail in the chapter
on terminal support.)

11. 5 MISCELLANEOUS TOPICS

In conclusion, we will discuss several miscellaneous topics:

1. TIO loop handling.

2. DIAGNOSE X'14', X'lS', X'20', and X'5S'.

3. Special V=R processing.

- 204 -

11. 5.1 TIO loop handling

Special processing is performed by CP to handle the case of
a virtual machine executing the sequence of a TIO instruc­
tion followed by a BC instruction back to the TIO. If nor­
mal instruction simulation were to be followed, and if the
tested device were busy, then a loop would result and system
throughput would suffer. The virtual machine would also be
charged" for the CPU consumption suffered in the loop and es­
pecially in the simulation of the TIO instructions. As a
result, special code is present in DMKVIO, DMKVSI, and
DMKVSJ to detect the TIO case and modify the simulation pro­
cess:

1. Whenever DMKVSI is invoked to simulate any I/O in­
struction, it first clears the VMTIO flag in VMDSTAT.
As DMKVSI progresses with its simulation, the VMTIO
flag is set under the following conditions: VCHBUSY
is on, VDEVBUSY is on, the virtual device is neither
a CTCA nor a dedicated terminal line, and the in­
struction is TIO.

2. When DMKVSI exits via DMKVSJ, if VMTIO is on and the
virtual device is a terminal (CLASTERM, implying a
start-stop terminal), then VMIDLE is forced on. For
all device types when VMTIO is set, control is passed
to the dispatcher, which wi 11 not run the VMBLOK
since its VMEXWAIT is still set from the TIO simula­
tion.

3. When an I/O interrupt occurs and control ultimately
passes to DMKVIO, if VMTIO is set then VMEXWAIT is
cleared. This will allow the next instruction, per­
haps a BC back to the TIO, to be executed. I f the
device is a terminal (CLASTERM), then VMIDLE is also
cleared so that the VMBLOK once again may be dispat­
chable.

The net effect of this logic is that a TIO to a busy de­
vice results in suspension of the virtual machine until the
device gives an interrupt. That effectively prevents a sub­
sequent BC instruction from looping, assuming of course that
normal programming conventions are followed. (The special
tests for CTCA and dedicated terminal lines appear to be in­
cluded to prevent suspension when various IBM telecommunica­
tion access method routines are in use with those devices.)

- 205 -

11.5.2 DIAGNOSE X'14', X'lS', x'20', and X'SS'

The DIAGNOSE codes X' 14 I, X' 18 I, X' 20 I, and X' 58 I are all
provided as alternative methods for virtual machine I/O un­
der certain special conditions; in many cases CP can do a
more efficient simulation of I/O processing when the
DIAGNOSE instructions are used since they are almost always
synchronous and rarely cause virtual I/O interrupts. DMKHVC
gets control as a result of the program check interrupt that
occurs when a virtual machine attempts to issue the DIAGNOSE
instruction. DMKHVC calls the following routines:

1. For X '14 I,
request.
IOBLOK and
patcher to

DMKDRD is called to process a spool file
For the read request, DMKDRD bui Ids an
calls DMKIOSQV. DMKDRD goes to the dis-

wait until the I/O completes.

2. For X'18 ' , DMKDGD is called to process a standardized
CKD DASD read or wr i te request. After translat ing
the channel program via DMKCCW, DMKDGD builds an
IOBLOK and calls DMKIOSQV. DMKDGD goes to the dis­
patcher to wait for I/O completion, at which time
control is passed to DMKDGF via the unstacked IOBLOK.

3. For X '20 I, DMKGIO is called to process a general
channel program for any device type. The channel
program is translated by DMKCCW and an I/O operation
is requested via DMKIOSQV. DMKGIO goes to the dis­
patcher to wait until the I/O completes.

4. For X '58 I, DMKHVC sets flags indicat ing a DIAGNOSE
and goes to DMKVSI to initiate the standard process­
ing for SIO. In certain cases this DIAGNOSE executes
asyncronously, -just like SIO.

Note that these act ions are all simi lar to normal virtual
SIO handling, except that VMEXWAIT and VMIOWAIT are not
cleared unt i 1 the I/O operat ion completes on the real de­
vice. At that time VMEXWAIT and VMIOWAIT are cleared and
the virtual machine is again dispatchable. Except for some
special cases associated with the X' 58 ' code, no I/O inter­
rupts are reflected to the virtual machine; the virtual PSW
condition code indicates the result of the I/O operation.
DIAGNOSE X' 58' logic is discussed in greater detail in the
chapter on terminal support.

- 206 -

11. 5.3 Special V=R processing

If the command SET NOTRANS ON is given, and if the virtual
machine is running in the V=R area, then DMKVSI calls
DMKVSCVR before call ing DMKCCWTR to translate the channel
program. DMKVSCVR returns with a code indicating whether or
not CCW translation should be performed for the channel pro­
gram. Translation will be required if any of the following
conditions are met:

1. Any CCW attempts to perform I/O to virtual page O.

2. Any CCW attempts to perform I/O beyond the V=R area.

3. The device is not a dedicated device.

4. SIO tracing is active.

5. The device is a dialed terminal line.

6. There exists an alternate path to the real device.

7. The device is dedicated as read-only.

8. Device status is pending.

This process is non-trivial, but it is far less work than
would be performed by DMKCCWTR for normal translation.

- 207 -

- 208 -

NOTES

- 209 -

- 210 -

12.1 INTRODUCTION

12.1.1 Overview

Chapter 12

TERMINAL SUPPORT

The system console is a special device in many ways. It is
the one device that is present on every System/370. It is
an I/O dev ice, but it also has other funct ions, such as
stopping and starting the CPU. It is the major communica­
tions facility between the programming system and the opera­
tor.

Support of the virtual machine's system console is much
like ather virtualization processes performed by CPo From
the point of view of the virtual machine, the console ap­
pears to be a standard System/370 console device; from the
point of view of the user, the console is probably some kind
of terminal device. CP perf6tms the appropriate transforma­
tions between the virtual and real devices. In this chapter
we will discuss the virtual system console as an I/O device
and we will examine how CP handles various real terminal de­
vices. The chapter on console functions has a discussion of
the virtual system console control facilities.

As a part of VM/SP, CP supports a "logical" 3270 terminal
that is actually implemented as a program interface and is
used by the VM/Passthru program product. The logical termi­
nal is processed by CP very much as if it were a real de­
vice; only at the lowest level is special processing per­
formed.

12.1.2 References

12.1.2.1 Publications

1. IBM 4341 Process Functional Characteristics and Pro­
cessor Complex Configurator (GA24-3672) contains a
description of the real consoles: 3278 and 1052.

2. IBM 3270 Component Description (GA27-2749) describes
the local and remote 3270 terminals.

- 211 -

3. IBM Sgstem/360 Component Description IBM 2702 Trans­
mission Control (GA22-6846) describes the start-stop
terminals.

4. General Information - Binarg Sgnchronous Communica­
tions (GA27-3004) contains a good introduction to bi­
nary synchronous communications.

5. IBM Virtual Machine/Sgstem Product: Sgstem Program­
mer's Guide (SC19-6203).

6. IBM Virtual Machine/Sgstem Product: Sgstem Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

12.1.2.2 CP modules

1. DMKBSC - remote 3270 error recovery.

2. DMKCFM - console commands.

3. DMKCNS - slow-speed terminal I/O.

4. DMKGRA - local 3270.

5. DMKGRC - local 3270.

6. DMKGRF - local 3270.

7. DMKGRH - 3066 (console for 370/168).

8. DMKHPS - logical device (DIAGNOSE and I/O requests).

9. DMKHPT - logical device (external interrupts).

10. DMKQCN - real console write.

11. DMKQCO - real console read.

12. DMKRET - RETRIEVE key for 3270 and 3101.

13. DMKRGA - remote 3270.

14. DMKRGB - remote 3270.

15. DMKRGC - remote 3270.

16. DMKRGD - remote 3270.

17. DMKSND - SEND command processing.

- 212 -

18. DMKTTY - special ASCII and 3101 handling.

19. DMKVSI - virtual SIO handling.

20. DMKVSJ - virtual SIO handling.

12.2 VIRTUAL MACHINE CONSOLE DEVICES

CP supports two types of virtual consoles, the 3215 and the
3270. The user can select which type of console support he
wants by using the TERMINAL CONMODE command. Of course, the
selected mode must be supported by the programming system
that is being run in the user's virtual machine.

12.2.1 3215 mode

By default, the virtual console is a 3215, which is identi­
cal to the old System/360 1052 operator's console; the 1052
and the 3215 are typewriter-like devices that support the
following CCW opcodes:

1. Write (X'Ol' and X'09'): These commands write a line
to the console. X' 01' leaves the typing element at
the end of the 1 ine, whereas X' 09' performs a car­
riage return at the end of the line.

2. Read (X'OA'): This command unlocks the keyboard and
reads the characters that are typed on the keyboard
AS THEY ARE TYPED. Since this command must be issued
by the channel before the characters can be typed,
the operator must push a "REQUEST" key, which causes
an ATTENTION I/O interrupt. The programming system
must respond by issuing the X'OA' read command. When
the operator pushes the "END OF BLOCK" key (or its
equivalent), the read command is completed.

3. Alarm (X'OB'): This command causes the console alarm
to sound.

Most modern terminal devices do not require the operator
to push some sort of request key before typing, and so 3215
mode processing may seem unusual; that support gives rise to
many of the strange features of VM console support, such as
the little-known SET AUTOREAD command in CMS. IBM operating
systems continue to support the ancient 1052 and its newer
3215 version, even though the modern CPUs do not include
such consoles.

- 213 -

12.2.2 3270 mode

By issuing the TERMINAL CONMODE 3270 command, a user can re­
quest that CP simulate a virtual 3270 console. The virtual
machine must be running a programming system that supports
the 3270 as a console. The real terminal must be a 3270 for
this mode to be valid, since CP does not simulate 3270s on
other types of terminal devices. The following is a summary
of the channel commands that are commonly used in 3270 mode:

1. Write (X'Ol') and Erase/Write (X'05'): These com­
mands write control information and output characters
to the 3270. X'05' erases the screen before writing.
The first character is a control character that can
lock or unlock the keyboard or sound an alarm.

2. Read modified (X'06'): This command reads all modi­
fied fields from the screen. Note that this command
is usually issued in response to an attention I/O in­
terrupt from the 3270, which in turn is the result of
the operator pushing one of the "action" keys such as
ENTER or a PF key.

12.3 I/O SIMULATION REVIEW

General I/O simulation has already been covered in ~he chap­
ter on I/O processing. For console SIO, much of the same
logic is used, with the exception of the final simulation
modules; the logic flow is as follows.

1. When the virtual machine issues a SIO instruction to
begin a channel program for its console, a privileged
operat ion program check occurs. The resulting PSW
swap gives control to DMKPRGIN.

2. DMKPRGIN verifies that the virtual machine is in vir­
tual supervisor state and goes to DMKPRVLG to simu­
late the privileged instruction.

3. DMKPRVLG
that it
simulate
tion.

checks the instruction's opcode and sees
is SIO. It therefore goes to DMKVSIEX to
the execution of the virtual SIO instruc-

4. DMKVSIEX checks the status of the virtual console and
then goes to DMKVCNEX to process the console SIO re­
quest.

5. DMKVCNEX works through the channel program and passes
control via CALL to DMKQCNWT for writes and to
DMKQCORD for reads.

- 214 -

6. DMKQCNWT and DMKQCORD first construct a CONTASK that
describes the console I/O operation. They then pass
control to various device-dependent routines to com­
plete the 510 simulation processes. When those rou­
tines have finished, DMKQCN and DMKQCO return control
to DMKVCN .

. 7. DMKVCN finishes the SIO simulation by setting the ap­
propriate status bits and then going to DMKDSPCH.
The virtual machine will be dispatched later follow­
ing the SIO instruction, which will appear to have
executed normally, just as on a real System/370.

12.4 REAL TERMINAL I/O

All of the processing that was described in the preceding
section is independent of the type of terminal upon which
the virtual console is being simulated. DMKQCN and DMKQCO
must invoke device-dependent rout ines to bui ld the actual
channel programs that are needed to perform terminal I/O.
In the followings sections we will first review several im­
portant control blocks and then we will examine the logic
flow for several common types of terminals.

12.4.1 Control block review

Several control blocks are used extensively in console I/O
processing:

1. The RxxxBLOKs describe the status of the real termi­
nal devices.

2. The VxxBLOKs describe the status of the virtual con­
sole and its virtual I/O paths.

3. The BSCBLOK is used as an I/O work area for remote
3270 terminals.

4. The NICBLOK is used to logically subdivide the
RDEVBLOK for remote 3270 terminals.

5. The CONTASK describes a single real -t-erminal I/O op-
eration. It contains flags, a VMBLOK address, a
channel program, and any output data.

- 215 -

12.4.2 Slow-speed terminals

Slow-speed terminals are all those terminals that are not
3270s. In general, such terminals perform their I/O a line
at a time and have no full screen support. The IBM 2741,
1050, 1052, 2150, 3101, 3210, 3215, 3767, and 7412 as well
as ASCI I ("TTY-compat ible") terminals are all supported by
DMKCNS. (DMKCNS derives its name from the fact that in re­
lease 1 of VM/370, no other terminals were supported as vir­
tual machine consoles; all the support code was in DMKCNS.)
Much of the logic is common to the different device types,
but we will examine each one separately.

12.4.2.1 2741 and 3767

The IBM 2741 and 3767 typewri ter terminals are supported
identically by CPo These terminals transmit in a 6-bit code
that is neither ASCII nor EBCDIC but is instead related to
the positions of the characters on the 2741 typing element.
Start ing at the point where DMKQCN has prepared an output
CONTASK, the logic flow is as follows:

1. DMKQCN stacks a CPEXBLOK to DMKCNSIC and then goes to
DMKDSPCH.

2. DMKCNS IC first translates the output data to 2741
line code and then constructs a channel program to
write the translated data with a possible added car­
riage return and a number of "idle" characters (to
cover the carriage return time).

3. If no I/O operation is currently active on the de­
vice, then the channel program is started by a call
to DMKIOSQR; DMKCNS then exits by going to DMKDSPCH.

4. If there was I/O active, and if it was a "prepare",
then DMKCNS itself issues an HDV ("halt device") in­
struction to terminate the prepare. DMKCNS exits by
going to DMKDSPCH to wai t unt i 1 the HDV completes.
At that time, DMKIOT stacks the completed lOB. The
dispatcher will later pass control to DMKCNS, which
then starts the new I/O operation by calling
DMKIOSQR; once again DMKCNS exits by going to
DMKDSPCH.

5. Similar processing takes place if the active I/O is a
read and the new I/O is a priority write; that is,
the read is halted, the write is started, and the
read is re-issued after the write has completed.

- 216 -

6. Once the write has completed, DMKIOT gets control and
stacks the completed IOBLOK, resulting in the dis­
patcher later going to DMKCNSIN, which unstacks the
CONTASK from the RDEVBLOK and then calls DMKQCOET.

7. DMKQCOET spools the output in case console spooling
is enabled and then FRETs the CONTASK storage. If
"return" was requested in the CONTASK, then DMKQCO
builds a CPEXBLOK that will clean up and exit back to
DMKVCN, as described above. DMKQCO then returns to
DMKCNS.

8. DMKCNS starts the next available CONTASK, or, if none
is available, it issues a SIO to begin a "prepare"
channel program, which in effect waits until the user
hits the "ATTN" key. DMKCNS then goes to DMKDSPCH.

For a console read request, starting at the point where
DMKQCO has prepared an input CONTASK, the logic flow is as
follows:

1. DMKCNS builds a channel program consisting of a write
of a control character ("circle-C"), a read for the
desired number of characters, a skip-read to consume
any extra input, and a nop to force concurrent ending
status.

2. This channel program is started as was described
above for output CONTASKs.

3. When the read channel program completes, DMKIOT
stacks the completed IOBLOK. As a result, DMKCNSIN
later gets control to handle the interrupt.

4. DMKCNSIN examines the input buffer to see how many
characters were read and whether or not the read end­
ed with the standard control character sequence.

5. I f the read completed normally, then the data is
translated to EBCDIC and a new CONTASK is started to
write a "circle-D" control to the terminal to lock
its keyboard. DMKCNS calls DMKQCOET to finish pro­
cessing the read CONTASK and to move the input data
to the original user's buffer area. Control is given
to DMKDSPCH, which will later dispatch the virtual
machine.

6. If the read completed abnormally, DMKCNS will try
again if data check was found or will reflect an at­
tention interrupt by calling DMKQCOET as above.

- 217 -

12.4.2.2 TTY and 3101

The teletypwriter and IBM 3101 ASCII terminals are handled
identically, except when the user has selected TERMINAL MODE
3101, in which case some special processing is performed for
the 3101. In the standard TTY mode, input and output CON­
TASKs are processed by DMKCNS just as they are for 2741s,
except that the control character sequences are different
and the data is transmitted in ASCII.

For 3101 mode, DMKCNS calls DMKTTY (!) to generate spe­
cial sequences.

1. For output, DMKTTY tries to compress multiple blanks
into a special sequence to save data transmission
time.

2. If the 3101 screen has filled (that is, the TERMINAL
SCROLL count has been reached), then DMKTTY writes a
."***MORE***" prompt and waits for the user to hit the
ENTER key. DMKTTY then erases the prompt and allows
the new output to be written.

3. For input CONTASKs, DMKTTY checks to see if a 3101 PF
key was pushed, and if so handles the generation of
the proper input data sequence, using the PF defini­
tions that were given by the user via the SET PF com­
mand.

12.4.3 Local 3270 terminals

Locally attached 3277, 3278, and 3279 terminals are support­
ed by DMKGRF, with some assistance from DMKGRA and DMKGRC.
(When local 3270 support was added to VM/370, DMKGRF was so
named to distinguish the new 3270 "graphics" terminals from
the slow-speed terminals: over the years, DMKGRF has been
split into several other modules.) Output CONTASKS are pro­
cessed as follows, for the general case in which the screen
does not become full:

1. DMKQCN passes control to DMKGRFIC, which is the de­
vice-dependent routine for local 3270 terminals.

2. DMKGRFIC must contend wi th many spec ial condi t ions,
such as keeping track of the current output line num­
ber and handl ing the generat ion of screen message
such as "MORE" and "HOLDING".

3. DMKGRFIC bui Ids an IOBLOK that
program to wr i te the output to
DMKIOSQR to queue up the IOBLOK
3270 as soon as possible.

- 218 -

contains a channel
the 3270 and calls
for writing to the

4. DMKGRF then goes to DMKDSPCH to wait for the write to
complete.

5. When the wri te completes, DMKIOT gets control and
stacks the complete IOBLOK. As a result, the dis­
patcher later goes to DMKGRFIN, which cleans up the
CONTASK and calls DMKQCOET to return the con task to
DMKQCN. DMKGRF then goes to DMKDSPCH.

For a read request, a different logic flow is needed
since a response from the user is wanted.

1. DMKQCO goes to DMKGRFIC as described above.

2. DMKGRF sets up an IOBLOK and a TRQBLOK (timer inter­
rupt queue block). The TRQBLOK is used for two pur­
poses: (1) to act as a normal TRQBLOK to handle the
50 second and 10 second timeouts associated with the
3270 screen getting full, and (2) to serve as a gen­
eral work area. The TRQBLOK po ints to an interrupt
handling routine in DMKGRF.

3. I f necessary, DMKGRF generates a data stream and a
channel program to wri te the "CP READ" or "VM READ"
messages into the status area. The usual sequence of
DMKIOSQR, DMKDSPCH, and DMKIOTIN processing will fol­
low.

4. DMKGRF exits to DMKDSPCH to wait for the user to en­
ter the input and press an "action" key such as ENTER
or a PF key.

5. When the user enters the input, an attention I/O in­
terrupt is generated. DMKIOT gets control and builds
and stacks an ATTN IOBLOK, which later results in the
dispatcher passing control to the interrupt handling
routine in DMKGRF.

6. DMKGRF sets up a channel program in
sue the X' 06' (read modi f ied)
DMKGRF calls DMKIOSQR to queue the
its to DMKDSPCH.

the IOBLOK to is­
channel command.
read and then ex-

7. When the read completes (a very short time later),
DMKGRFIN is given control via the stacked IOBLOK and
returns the input data to the virtual machine's buff­
er area as defined in the original virtual channel
program.

8. Control
tually
status
IOBLOK

is then passed to DMKDSPCH, which will even­
simulate a virtual I/O interrupt using the
information that has been moved from the

to the VDEVBLOK.

- 219 -

Since the real 3270 keyboard is usually unlocked, it is
pqssible for the user to enter input and press an action key
at almost any time, even when the virtual machine does not
have a read request active; that is in fact the normal con­
dition for CMS command mode processing. In this case,
DMKGRF reads the data as shown above and places the data
into a special I-line buffer. It then causes a virtual at­
tention I/O interrupt to be stacked for the virtual machine
console. When the virtual machine issues a SIO with a read
request, DMKVCN can then simulate the read by using the data
from the special buffer.

12.4.4 Remote 3270 terminals

Remote 3270 terminals represent a complex subsystem in them­
selves, and so we will discuss three aspects of their sup­
port: the hardware itself, the control blocks, and the pro­
gram logic.

12.4.4.1 Hardware

The hardware associated with remote 3270 terminals consists
of the following:

1. Attached to the channel is a 2701, 2703, 3704, 3705,
or 3725 control unit capable of supporting the binary
synchronous communications technique (BSC).

2. Attached to the TP control unit is a modem, then a TP
line, and finally a second modem at the remote end.

3. Attached to the second modem is a 3271, 3274, 3275,
or 3276 cluster controller. The cluster controller
has a two-character address that is unique on the TP
line. (Note that VM/SP supports only 1 cluster con­
troller per TP line, although modifications have been
produced to extend the support to allow mUltiple
clusters per line in a "multi-drop" configuration.)

4. Attached to the cluster controller are various termi­
nals or printers, such as the 3277, 3278, 3279, and
3287. Each such device has a two-character address
that is unique on the cluster controller.

Unlike local 3270s, remote 3270s cannot cause an atten­
tion interrupt when the user presses an "action" key; this
limitation is caused by the rules of BSC. As a result, CP
must poll each cluster controller from time to time to see
if any attached terminal has had an action key pushed. The

- 220 -

polling period must-be chosen to give good apparent terminal
response and yet not incur too much system overhead. Termi­
nal response is also affected by the sharing of a single TP
line for several terminals on the cluster controller and by
the fact that input data streams must be broken into multi­
ple blocks of up to 256 bytes each.

12.4.4.2 Control blocks

Since the TP line is defined in DMKRIO as a single device
with a unique 3-digit hex address and RDEVBLOK, some addi­
tional control block structure is needed for CP to be able
to support a user at each of the many attached remote termi­
nals. The RDEVBLOK is reserved for doing low-level I/O to
the TP line and contains pointers to two other control
blocks:

1. The BSCBLOK is a general status and work area that is
used by many of the BSC channel programs. The
BSCBLOK is gotten from free storage when the operator
starts the TP line.

2. The NICBLOK represents either the cluster controller
or an attached terminal or printer. The NICBLOKs are
generated with the CLUSTER and TERMINAL macros in
DMKRIO and are grouped together for each TP line.
The NICBLOK corresponds to the RDEVBLOK for a local
3270 in that it contains the anchors for queued ter­
minal I/O and other information unique to a particu­
lar virtual machine.

Additional control information is carried in the CCWs
that are used to perform I/O on the TP line. Byte 5 of the
CCW is undefined by the I/O hardware, and so CP places into
each CCW a code value that defines the purpose of the CCW.

12.4.4.3 Program logic

The following is a list of the rout ines that are di rect ly
involved in remote 3270 support; in each case, the major en­
try point names are given:

l. DMK~IN: I/O second level interrupt handler.

2. DMK~TM: timer second level interrupt handler.

3. DMKRGBIC: process queued CONTASKs.

4. DMKRGBRE: perform a remote I/O operation.

- 221 -

5. DMKRGBFL: perform a polling operation.

6. DMKRGBSN: scan NICBLOKs for queued work.

7. DMKRGC decode an input stream.

8. DMKRGDxx: extended data stream processing.

When DMKQCN and DMKQCO have queued CONTASKS onto the
NICBLOK, they then go to DMKRGBIC, which is the main entry
point for remote support. The major processing in DMKRGBIC
is as follows:

1. If the TP line already has active I/O, then just exit
to DMKDSPCH.

2. If there are no queued CONTASKS for any NICBLOK on
this cluster, then just exit to DMKDSPCH.

3. If a write CONTASK is found; then build an IOBLOK,
generate a write channel program, call DMKIOSQR, and
exit to DMKDSPCH.

4. If a read CONTASK is found, start a polling operation
and exit to DMKDSPCH.

All TP line IOBLOKs contain an IOBlRA field that points
to DMKRGAIN; 'when the I/O completes, DMKIOTIN stacks the
IOBLOK, causing DMKRGAIN to get control. The major process­
ing is as follows:

1. Give any input data stream to DMKRGC for decoding.

2. Handle write completions.

3. Obey the various BSC protocol rules (ACK, NAK, etc.).

Much of Cp's handling of remote 3270s involves polling
the clusters to ask if any attached terminal has input to be
read. The major polling loop is as follows:

1. Various routines pass control to DMKRGBSN, which exe­
cutes the following logic:

a) Scan the NICBLOKs for this cluster. If any queued
CONTASKs are found, then go to the appropriate
handler.

b) If no CONTASK is found, and if BSCSCAN is set,
then clear BSCSCAN and go to DMKDSPCH. This be­
gins a polling delay period.

- 222 -

c) If BSCSCAN was not set, then build an IOBLOK con­
taining the polling channel program. This channel
program will terminate either with a NOP (code 7)
if no terminal has any pending input or wi th a
READ if some terminal did have pending input.
Call DMKIOSQR to start the channel program and go
to DMKDSPCH.

2. At I/O interrupt time, DMKRGAIN examines the termi­
nating CCW. If it is the code 7 NOP then schedule a
timer interrupt for the poll ing delay (. 5 seconds),
set BSCSCAN, and go to DMKRGBSN (above) . I f some
other termination occurred, then go to the appropri­
ate handling routine, which in this case will cancel
the outstanding timer interrupt request.

3. If the polling timer interrupt occurs, then DMKRGATM
gets control and goes to DMKRGBSN.

12.4.5 Logical device support

Logical devices provide a means for a virtual machine to
work jointly with CP in such a way as to simulate a local
3270 terminal. The standard user of logical devices is VM/
Passthru, but other programs may also use the interface.
Console processing for logical devices is lik'e that for lo­
cal 3270 devices, except that the routines DMKHPSQR and
DMKHPSDG take over the funct ions that have been descr ibed
for DMKIOSQR (execute a channel program) and DMKIOTIN (han­
dle an I/O interrupt). DMKHPS provides the interface be­
tween CP and what we will refer to as the "LDVM" (Logical
Device Virtual Machine). We can vLew this support in the
same way we viewed remote 3270 support, in terms of hard­
ware, control blocks, and program logic.

12.4.5.1 "Hardware"

While there is no real hardware associated with logical de­
vice support, the following components are analogous to the
3270 hardware:

1. The LDVM corresponds to the 3274 controller. This
virtual machine acts as a concentrator and interface
between CP and the real users. Typically those users
have terminals that are ATTACHed or DIALed to the
LDVM, but there is no requirement that there be any
real terminals or even users at all; the LDVM must
simply be·· able to simulate the actions of real 3270
terminals.

- 223 -

2. Corresponding to the 3274 channel cables is a special
software interface between CP and the LDVM. This in­
terface is bidirectional, with DIAGNOSE X' 7C' per­
forming data transfer as well as LDVM/CP signalling
and the "service processor external interrupt" (code
X'2402') providing CP/LDVM signalling.

12.4.5.2 Control blocks

There are several control blocks associated with logical de­
vice support:

1. The X'2402' service processor external interrupt
stores an interrupt code into the word of memory at
location X' 80' in the LDVM's virtual memory. This
word is re-defined to contain the 2-byte device ad­
dress, a I-byte flag, and a I-byte reason code, all
of which are used by CP to indicate what action the
LDVM should take next.

2. The field VMVMPS in the system VMBLOK contains a
pointer to the "system communication block", for
which there is no defined control block DSECT. This
block contains 8 pointer words, each containing the
address of the VMBLOK for the LDVM associated with a
group o(logicai device~. Th~ first pointer word is
for the LDVM for devices X t 4EOO' through X'4FFF', the
second is for X' 4COO' through X' 4DFF', and so on.
Note that 8 LDVMs can be supported, and each can con­
trol 512 logical devices. This and SNA support are
the only cases in which CPuses a I6-bit device ad-·
dress rather than the usual 12-bit address (for SNA
support, all terminals have the address X'DEAF').

3. The field VMVMPS in the LDVM VMBLOK contains a point­
er to the "CP diagnose console interface control
block", which is mapped by the VMPSCOM dsect. This
control block corresponds to a single logical device
and the various VMPSCOMs are chained in a singly­
linked list in device address order. The first half
of the VMPSCOM contains pointers to data and CCWs be­
ing processed. The second half contains an RDEVBLOK
so that many CP routines can behave as if the logical
device were a real 3270. This RDEVBLOK is unusual in
that it is located in free storage (not in DMKRIO),
contains the X'4000' bit in the device address field,
and has no associated RCUBLOK or RCHBLOK.

- 224 -

12.4.5.3 Program logic

In order to fully understand the program logic you should
study the description of DIAGNOSE X'7C' in the System Pro­
grammer's Guide, since that explains the functions that are
available to the LDVM. The following description will in­
volve only the interactions between CP and the LDVM and will
ignore the internal LDVM logic for supporting its real de­
vices and users. We will examine the process by which a
logical device LOGON proceeds; that will include initializ­
ing, CP writing, and CP reading after an attention inter­
rupt.

1. Initialization begins when the LDVM issues DIAGNOSE
X' 7C' with the INITIATE function (Ry = 1). Control
is passed through privileged operation simulation to
DMKHPSDG for decoding of the DIAGNOSE parameters.
DMKHPSDG INITIATE logic performs the following:

a) Construct the VMPSCOM and master VMPSCOM if not
yet present.

b) Fill in the RDEVBLOK fields with their initial
values for an unused local 3270 device.

c) Call DMKS·TKIO to stack a stand-alone DE IOBLOK to
DMKGRFIN, which will in turn perform the standard
functions for·a new 3270 session (namely the ·writ­
ing of the VM logo).

2. When CP writes output to the logical device, the fol­
·lowing two-step process takes place:

a) After DMKGRF has constructed the wri te channel
program, it will notice the X'4000' bit in the de­
vice address and rather than calling DMKIOSQR will
instead call DMKHPSQR, which will queue an exter­
nal interrupt X'2402' for the LDVM. The dispatch­
er will notice the queued external interrupt and
will call DMKHPTEX to place the appropriate infor­
mation into location X'80' of the LDVM; that in­
formation will show that the logical device has a
write operation pending.

b) The LDVM will receive the X'2402' external inter­
rupt and will examine location X'80' to determine
what kind of service is needed for which logical
device. In this case, the LDVM will decide to
ACCEPT the data that CP is trying to write to the
logical device. The LDVM will perform the ACCEPT
function by issuing a DIAGNOSE X'7C' with Rx = de­
vice address, Ry = 2, Rx+l = a buffer address, and
Ry+l = the length of the buffer. DMKHPSDG wi 11
again get control and will do the following:

- 225 -

i} Find the VMPSCOM block for the logical de­
vice.

i i } TRANS in the LDVM
specified buffer.

page(s} containing the

iii} Move the CCW opcode (write or erase/write)
from the CONTASK to the buffer. Move the
data (the VM logo) to the buffer.

iv) Place the data length into the LDVM Ry.

v) Go to the dispatcher to let the LDVM resume
execution following the DIAGNOSE instruc­
tion. The LDVM can then appropriately dis­
pose of the output data (the VM logo).

3. Input processing is· also a two-step process, which
begins when the LDVM signals CP that input data is
available for CP to read:

a) The LDVM simulates the ENTER key (to clear the VM
logo) by issuing DIAGNOSE X'7C' with Rx = device
address, Ry = 3, Rx+l = the address of any input
data, and Ry+l = the length of that data.
DMKHPSDG performs the following actions:

i) Find the VMPSCOM block for this logical de­
vice.

ii) TRANS in the LDVM page(s) containing the in­
put data.

iii) If a CP read IOBLOK is already queued on the
RDEVBLOK, then move the data into Cp's buff­
er area and stack the IOBLOK with CE+DE for
standard I/O completion.

iv) If no CP read IOBLOK is queued, then get
free storage, copy the data, and create and
stack an ATTN IOBLOK to DMKGRFIN.

b) When the ATTN IOBLOK is unstacked and control
passes to DMKGRFIN, normal process ing results in
the building of a read IOBLOK, but DMKHPSQR is
called (instead of DMKIOSQR):

i) If LDVM data is already available, then move
the data into the CP buffer, release the
temporary data buffer, and stack the IOBLOK
with CE+DE.

- 226 -

ii) If no data is available, then keep the
IOBLOK queued on the RDEVBLOK and stack an
external interrupt X'2402' to the LDVM with
the reason code at location X' 83' showing
the type of read (read buffer or read modi­
f ied) .

Logical device support is very neatly written and well
structured. While it currently supports only 3277 and 3278
logical devices, there is no architectural reason why addi­
tional device types could not be added. The interface be­
tween CP and the LDVM is clean, simple, and efficient.

12.5 FULL-SCREEN PROCESSING

The previous descriptions of 3270 support have all assumed
that TERMINAL CONMODE 3215 was in effect. That means that
the virtual machine operation system uses 3215 channel pro­
grams and that CP translates those channel programs into
3270 operations; the virtual machine treats the 3270 as a
line mode device.

The original support in VM/370 for the local 3270 termi­
nals included a. special facility by which programs could use
the 3270 as a display terminal; this facility was used by
the CMS EDIT command and was available for general applica­
tion program use. Display terminal mode was later expanded
to full-screen mode for use with the XEDIT editor; the new
support allowed application program control of the entire
3270 screen as well as the PF keys. VM/SP also added sup­
port for CONMODE 3270, so that the virtual machine operating
system can use the terminal as a 3270 while CP continues to
use it as a line mode device.

12.5.1 Display terminal mode

12.5.1.1 Application program use

The initial full-screen support in release 2 of VM/370 added
DIAGNOSE code X'58', by which the application program can
specify the address of a channel program to be issued for a
given device, usually the virtual console. The channel pro­
gram can consist of one or more CCWs whose opcode is X'19'
and whose "unused" byte (bits 40-47) contain the following:

1. X'FF' will just clear the 3270 screen immediately.
X'FE' will clear the screen and will also insure that
all previous terminal I/O has completed. In both of
these cases no output data is written to the screen.

- 227 -

2. For other values, bit 40 (X'80') causes "MORE" status
to be entered before the write is performed, even if
the screen is already cleared. Bits 42-47 contain
the line number where the data should start being
written; the first line on the screen is line O.

This facility allows writing into the top N-2 lines of
the screen, with the loss of whatever was in those lines, or
into the input area, with no change to the output area. The
X'FF' or X'FE' flag value can be used in the first write to
switch the screen without entering "MORE" status and there­
fore requiring the user to hit the PA2 key. Note that there
is no special support for reading from the terminal. All
the 3270 action keys (ENTER, PA2, PFl, etc.) perform their
normal functions as defined by CP's 3270 line mode support.

12.5.1.2 CP program logic

This form of DIAGNOSE X'58' is handled very much like a nor­
mal console SIO instruction, except that the virtual machine
remains in VMEXWAIT and VMIOWAIT until the I/O operation has
been, performed and no virtual I/O interrupt is generated.
DMKVCN does not call DMKQCNWT as it does for line mode out­
put; instead it calls DMKQCNWF and passes a parameter con­
taining the screen line number at which the output is to be
written:

1. If the output is to the input area (the line number
is 2 less than the screen size), then the data is
written to the screen just like line mode output.
This operat ion does not interfere in any way wi th
line mode output and does not affect the 'line count
or the "MORE" status.

2. If the output is to the output area (anything above
the input area), then "MORE" status will be entered
if the screen is not already clear; the output data
will be written after the user hits the PA2 key. Any
subsequent line mode output will cause "MORE" status
to be entered if there is data in the output area.

(The CP logic for entering the "MORE" status can be com­
pared to a 3-position switch: the "Ieft" position is line
mode and the "right" position is display or 3270 mode. The
switch is placed into the "center" position by anything that
clears the screen, such as the CLEAR and PA2 keys or the
DIAGNOSE X'58' codes given above. If the switch is moved
from one side to the other, then a "MORE" condition will re­
sult. If the switch moves from either side to center or
from center to either side, then the change will take place
immediately and without a "MORE" condition.)

- 228 -

.~.

12.5.2 Full-screen mode

The XEDIT editor introduced in VM/SP requires total control
of the 3270 terminal screen and keyboard. XEDIT must be
able to write the full screen and must be able to intercept
all of the act ion keys. Other appl icat ion programs have
similar requirements. As a result, DIAGNOSE X'58' was en­
hanced in VM/370 release 6 with BSEPP by providing two new
CCW opcodes, X'29' for writing and X'2A' for reading. These
opcodes allow the user to write and read standard 3270 data
streams without modification by CPo

12.5.2.1 Virtual machine use

It is the responsibility of the application program to gen­
erate proper data streams for the user's 3270 terminal. The
program must also be able to intercept the ATTN interrupt
that results from the user pushing an action key; the pro­
gram must be able to interpret the data stream that it then
reads from the 3270 terminal. Since CP still uses the ter­
minal as a line mode device for its own output, the applica­
tion program must be able to recognize special status codes
that indicate that CP had taken over the screen for its own
output; the program must be able to refresh the previous
screen contents in this case. The detailed description of
DIAGNOSE X'58' in the System Programmer's Guide is complex,
but it does fully and accurately represent the various sta­
tus conditions. You should also examine the code in XEDIT
or other full-screen applications if you want to see how the
conditions are handled.

12.5.2.2 CP program logic

CP support for full-screen operations is basically quite
simple; CP merely passes data unmodified between the virtual
machine and the terminal. Complexi ties arise when CP must
use the terminal for its own output. Two status bi ts are
maintained in the field TRQBFLG2 in the TRQBLOK associated
with the terminal:

1. CRTFSSA indicates that the application program is us­
ing the terminal in full-screen mode. This bi t is
set when an X' 29' opcode is found wi th the
'ERASE/WRITE' f lag set. CRTFSSA corresponds to the
'system available' lamp on the old 3277 terminal.

2. CRTFSII indicates that the terminal is in "input in­
hibited" status; the keyboard is locked and the user
cannot enter data or push any act ion key. This bi t
also corresponds to a lamp on the 3277.

- 229 -

These two bi ts represent the state of the terminal and
indicate whether or not CP can use the terminal for its own
output. The four possible conditions are summarized in the
following list:

1. SA=O and 11=0 indicates that CP is in control of the
terminal. CP output and virtual machine line mode
output will be written as it becomes available. A
full-screen write from the virtual machine will place
the terminal into "MORE" status until the user pushes
the PA2 key.

2. SA=l and 11=0 indicates that a full-screen
ERASE/WRITE has been issued and that only full-screen
operations will be performed. Since 11=0, input is
not inhibited and full-screen reads may therefore be
issued. CP output will be queued in memory waiting
for II to be set to 1.

3. SA=l and 11=1 indicates that full-screen mode is
still in effect but that the keyboard is now locked.
This is the case after a full-screen read has been
processed. If CP has output waiting, it will take
control of the terminal immediately and start writing
the output data. The next full-screen operation will
end with a special CSW status, X'SE' (attention,
channel-end, device-end, and unit-check). This spe­
'cial status tells the application program that the
screen had been stolen and that the application
should issue first a non-full-screen dummy read and
then a full-screen ERASE/WRITE to restore the previ­
ous screen contents. As a result of the dummy read,
the screen will be placed into "MORE" status so that
the user can read the CP output; when he pushes the
PA2 key, then the restored full-screen data will ap­
pear.

4. SA=O and 11=1 is a temporary condition that only ex­
ists between the at tent ion interrupt from an act ion
key and the full-screen READ command from the virtual
machine.

12.5.2.3 Full-screen application example

Below is an example of some application program coding that
could be used for full-screen processing. This is only the
very basic code and does not include attention interrupt
handling and screen image construction routines. This is
given only as a general example and is not even guaranteed
to assemble properly, much less perform any useful purpose.

- 230 -

START LA RO,ZERASE
BAL R14,IOREQ

Clear the screen to allow
full-screen operations.

*
* This is the main loop. Write a new screen image
* and wait for the user to do something. Decode the
* attn interrupt and ignore everything but 'enter'.
*
WRITE BAL

LA
BAL
BE
BAL
LA
BAL
BE
CLI
BNE

R14,BUILDSCR
RO,ZWRITE
R14, IOREQ
READCP
R14,IOWAIT
RO,ZREAD
R14, IOREQ
WRITE
ZAID,X'7D'
WRITE

Go build the screen image.
Write the screen using

erase/write, and handle
any cp screen robbery.

Wait for an attention.
Now go read the

new command, and
re-write if stolen.

*** Here we can process

If this is not 'enter',
then just ignore it.

the 'enter'ed data.
B WRITE When done, go do it again.

*
*
*
*

In case cp took over the screen before a write,
issue a dummy read to clean things up.

READCP LA
BAL
B

*

RO,READUM
R14,IOREQ
WRITE

Issue a garden-variety
read to re-enter full
screen mode.

*** The 'BUILDSCR' and 'IOWAIT' routines
*** are left as exercises for the reader.
*

*
* data areas and ccws.
*
READUM CCW
ZWRITE CCW

ORG
ZSCFLG DC

ORG
ZREAD CCW

ORG
DC
ORG

ZERASE CCW
ORG
DC
ORG

CONADD DC

X'02' ,0,X'30',1 Dummy for stolen screen.
X'29' ,*-*,X'20' ,*-* Full-screen write
ZWRITE+5 with a flag:
X'80' 80: erase/write.
,
X'2A' ,ZAID,X'20' ,30
ZREAD+5
X' 80'
,
X'19' ,0,X'20',1
ZERASE+5
X'FF'

,
A(x'009')

- 231 -

Full-screen read
with a flag:
80: read modified.

Initial write to
clear the screen
(avo id 'MORE'.)

Console address.

* * Subroutine to perform 3270 full-screen i/o.
* RO points to the channel program. return with
* cc = be to retry an error (cp stole the screen).
*
IOREQ SSM

L
IOROIO TIO

BC
BC

IOR020 DIAG
BC
BC
BC
BC

IOR030 TIO
BC
BC

IOR040 CLI
BNE
CLI
BE
CLI
BE
CLI
BE
TM
BNZ
TM
BZ

IOR050 TIO
BC
BC

IOR060 MVC
LTR
BR

*+1
Rl,CONADD
O(Rl)
6,IOROIO
1,GONEAWAY
RO,Rl,X'58'
8,IOR030
4,IOR040
2,IOR020
1,GONEAWAY
O(Rl)
2,IOR030
1,GONEAWAY
X ' "4 5' , X ' 0 0 '
GONEAWAY
X'44' ,X'OC'
IOR060
X' 44' , X' 08 '
IOR050
X'44' ,X'8E'
0(R14)
X'44' ,X'BO'
IOR020
X'44' ,X'OC'
IOR020
O(Rl)
2,IOR050
1,GONEAWAY
ZCOUNT , X ' 46 '
R14,R14
R14

12.5.3 3270 SIO processing

Be sure we have quiet.
Be sure that any

previous operation
has completed
correctly.

Start the channel program
and continue if started.

Check for any status bits.
Loop if it was busy.
Quit if console is gone.
Wait for the 'sio'

to complete.
Quit if console is gone.
For channel errors

we can only quit.
If it completed normally,

then we are all done.
If only channel end,

go wait for device end.
If cp stole the screen,

return with error cc.
For attn, cue, or busy,

restart the diagnose.
If neither ce nor de,

then try it once again.
Wait until device end

finally comes in.
Quit if console is gone.
Save the residual count.
Set a non-error condition

code and return.

DIAGNOSE X'58' is defined to be a 3215 operation; it is val­
id only for TERMINAL CONMODE 3215. In some guest operating
system environments it is better to have the virtual machine
console run wi th TERMINAL CONMODE 3270; the guest system
will then use SIO and 3270 channel programs for the console.
CP support for full-screen mode has been extended to allow
the use of SIO and the standard CCW opcodes for ERASE/WRITE,
READ MODIFIED, etc., instead of the X'29' and X'2A' opcodes

- 232 -

for DIAGNOSE X' 58 I. Most of the same logic is applicable,
since the same problem has to be solved: CP must be able to
steal the console and use it in line mode while the virtual
machine uses it as a 3270.

An additional feature is provided by TERMINAL SCRNSAVE
ON; CP itself will save the contents of the screen before
stealing it. The contents will be restored by CP when con­
trol of the terminal is swi tched back to the virtual ma­
chine. This support is needed because it may not be possi­
ble to change the guest operating system to handle the
special X I 8E I status (after all, the guest thinks that it
has a normal 3270 console). If TERMINAL SCRNSAVE OFF is
given, then CP will not save the screen contents before
stealing the screen. In that case, CP will simulate the
pressing of the CLEAR key, since that is the signal to many
guest operating systems that the console screen must be re­
written.

12.6 SECONDARY USER FACILITY

CP provides support for a second userid to be associated
with a virtual machine. The secondary userid is active
whenever the virtual machine is running disconnected; that
is, whenever the prima~y userid is not logged on to a termi-
nal. .

Whenever DMKQCN or DMKQCO try to perform terminal I/O and
find that there is no terminal, they examine the VMSECUSR
field. If it is non-blank, then it contains the userid of
the secondary user. The I/O request is re-directed to that
userid with an appropriate prefix to indicate the original
userid. The CP command "SEND" may be used to simulate an
input operation for a secondary userid; the support for SEND
is contained in DMKSND.

- 233 -

- 234 -

NOTES

JJ f(k f- t;!} 1 fL/ ~ ~ ~;'-.~ Cc ~ (~£~ /J.;15(J) /f-: -4 ~ -r
j;{ c c vv' "_(7-',/-v~.

o / C C -{-SI("'(!

- 235 -

- 236 -

13.1 INTRODUCTION

13.1.1 Overview

Chapter 13

SPOOLING

The spooling subsystem is the portion of CP that moves data
between real and virtual unit record devices: printers,
punches, and readers. Four maj or funct ions make up the
spooling subsystem.

1. Virtual spooling support provides the simulation of
printers, punches, and readers for each virtual ma­
chine.

2. Real spooling support provides I/O control for the
real un i t record dev ices attached to the computer
system.

3. The system spool area provides DASD storage for keep­
ing the spooled data available for long periods of
time and across system IPLs.

4. Spooling commands allow the virtual and real spooling
devices to be interconnected in many different ways.
They also support the manipulation of spooled data
files.

In this chapter we will start with the structure of the
system spool area and then proceed to input spool ing and
output spooling. At the end, we will discuss the spooling
commands and some other related topics.

13.1.2 References

13.1.2.1 Publications

1. IBM Virtual Machine/System Product: Operator's Guide
(SCI9-6202).

2. IBM Virtual Machine/System Product: CP Command Ref­
erence for General Users (SC19-6211).

- 237 -

3. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

4. For descriptions of the real (and virtual) spooling
devices, see the appropriate Component Description
manuals.

13.1.2.2 CP modules

1. DMKCPB - supports the NOTREADY, RESET, and READY com­
mands.

2. DMKCPS - supports the SHUTDOWN command.

3. DMKCQR - supports the QUERY FILES.

4. DMKCSB - supports the LOADBUF and LOADVFCB commands.

5. DMKCSO - supports the real spooling commands.

6. DMKCSP - supports the SPOOL command.

7. DMKCSQ - supports the CLOSE, FREE, and HOLD commands.

8. DMKCST - supports the TAG command.

9. DMKCSU - supports the CHANGE command.

10. DMKCSV - supports the ORDER, PURGE, and TRANSFER com­
mands.

11. DMKDEF - supports the DEFINE command.

12. DMKPIA - contains the 3289-E character sets.

13. DMKPIB - contains the 3262 character sets.

14. DMKRSP - is the real device spooling manager.

15. DMKRSQ - supports real spooling for the 3800.

16. DMKSPL - is the spool file manager.

17. DMKSPS - supports the SPTAPE command.

18. DMKSPT - supports the SPTAPE command.

19. DMKTCS - supports real 3800 separator and overlay.

20. DMKUCB - contains the real 3211 UCB images.

- 238 -

,
"

- --

- -

- --

\J SPLC.TL'.

RSPLC.TL'.

-- --

21. DMKUCC - contains the real 3203 UCB images.

22. DMKUCS - contains the real 1403 UCS images.

23. DMKVSP - is the virtual device spooling manager.

24. DMKVSQ - supports virtual output spooling.

25. DMKVSR - utility subroutines for DMKVSP.

26. DMKVST - supports printer output for CP commands and
spooled console.

27. DMKVSU - utility subroutines for DMKVSP.

28. DMKVSW - continuation of DMKVSP.

13.2 SYSTEM SPOOL

The system spool area consists of two major parts, pointers
and control blocks in real storage and data buffers on DASD.
The major control blocks are the SFBLOK and the RECBLOK.

13.2.1 Pointers and control blocks

The system spool space has its origin in the CP nucleus,
DMKPSA; the words ARSPPR, ARSPPU, and ARSPRD are the chain
anchor pointers. They point to DMKRSPPR, DMKRSPPU, and
DMKRSPRD, which in turn point to the first SFBLOK for each
of the device types. Each SFBLOK points to the next SFBLOK
in the chain. The SFBLOKs remain in real storage at all
times while CP is running; they are copied to the system.
checkpoint area to allow CP to restart after a shutdown.

Each spool file is represented by its own SFBLOK, which
contains the following information:

1. SFBPNT memory address of the next SFBLOK.

2. SFBSTART: DASD address of the first data buffer.

3. SFBLAST: DASD address of the last data buffer.

4. SFBOWNER: userid of the current owner.

5. SFBORIG userid of the originator.

6. SFBRECS address of the RECBLOK.

- 239 -

7. SFBFNAME: the assigned file name.

8. SFBDATE the creation date.

9. SFBTYPE virtual device type.

10. SFBFILID: file id number.

II. various other items.

The RECBLOK is used to describe which DASD pages have
been assigned to a spool file. Since each RECBLOK describes
one cyl inder, multiple RECBLOKs may be cha ined from the
SFBLOK. The RECBLOK chain exists only when a spool file is
active on a real or virtual device.

13.2.2 Data buffers

The actual data portion of the spool file is maintained in
page-sized buffers residing on DASD. The buffers are resi­
dent in real storage only when data is being moved between
the buffer and a real or virtual I/O device. Each buffer is
described by the SPLINK DSECT in SPOOL COpy and contains the
following:

1. the DASD address of the next and previous buffers.

2. the number of data records in the buffer.

3. the TAG information; the TAG is a NOP (with data but
without the SKIP bit) and is located at the beginning
of the first buffer.

4. the data records and the CCWs needed to process them.

The CCWs consist of a data transmission CCW (READ or WRITE)
followed by a TIC to skip over the data itself. Since bytes
4 through 7 of the TIC CCW are unused by the I/O subsystem,
the data area begins at byte 4; the TIC is therefore some­
times referred to as a "half-TIC". At the end of the buffer
is a NOP CCW that is used to cause a real I/O device to re­
turn concurrent channel end and device end. The CCWs com­
prise a single chained channel program. Figure 26 shows the
format of a spool file buffer. Note that SPNXTPAG and
SPPREPAG are DASD pointers; they are in the format "CCPD" or
"PPPD". The fields SPFILID and SPTIME are used as file val­
idation indicators during checkpoint starts.

- 240 -

+--------+--------+--------+--------+
o I SPNXTPAG I SPPREPAG I

+--------+--------+--------+--------+
8 I SPRMISC I SPRECNUM I

+--------+--------+--------+--------+
10

CCWs and data

+--------+--------+--------+--------+
FF8 ISPFILID I SPTIME

+--------+--------+--------+--------+

Figure 26: SPLINK format

13.3 INPUT SPOOLING

Input spooling consists of reading card images from a real
reader and saving those images into the system spool. When
the destination virtual machine issues a read request, the
card images are then read from the spool and presented one
at a time to the virtual reader.

13.3.1 Real reader I/O

Real reader I/O begins when the system operator places a
card deck into the real reader and pushes the START button.
The resulting standalone device end interrupt causes the
following operations to take place:

1. Control is passed to the real spooling manager
DMKRSPEX via an unstacked IOBLOK.

2. DMKRSP calls DMKSPLOR to open a reader file; this re­
sults in the allocation of an SFBLOK and a real memo­
ry page with a CP virtual address. The buffer page
is filled with a channel program that will read 42
card images into the buffer.

3. DMKRSP then calls DMKIOSQR to read the first card
into a temporary buffer. That card is scanned to
find the destination userid and any optional parame­
ters such as the file class.

- 241 -

4. DMKRSP calls DMKIOSQR to issue a SIO to the reader to
read the next 42 cards, which will fill the buffer
page.

5. When the I/O completes, DMKRSP calls DMKPGTSG to ob­
tain a DASD slot to contain the buffer and calls
DMKRPAPT to write the buffer into the assigned DASD
slot in the system spool.

6. If there was a previous page in the spool file, then
it is read by calling DMKPGUVG and DMKRPAGT. The
forward point~r is updated and the page is re-written
by calling DMKRPAPT and DMKPGUVR.

7. The reading process continues until physical end of
file. The reader spool file is then chained onto the
DMKRSPRD chain. I f the dest inat ion vi rtual machine
is logged on, then a standalone device end interrupt
is sent to the machine at its lowest virtual reader
address.

13.3.2 Virtual reader I/O

13.3.2.1 Review of virtual I/O

The general process of virtual I/O simulation has been dis­
cussed in another chapter. To review:

1. A virtual machine SIO results in a program check in­
terruption, which causes DMKPRGIN to start running.

2. Since the virtual machine is in virtual supervisor
state, DMKPRGIN goes to DMKPRVLG.

3. Since the opcode isSIO, DMKPRVLG goes to DMKVSIEX.

4. Since the virtual I/O device is a virtual reader,
DMKVSIEX goes to DMKVSPEX.

13.3.2.2 Virtual reader 510

DMKVSPEX simulates the SIO to the virtual reader by the fol­
lowing process:

1. If there is not already an open reader file, then:

a} Get a VSPLCTL work area from free storage and link
it to the VDEVBLOK.

- 242 -

b) Run the chain anchored at ARSPRD to find an avail­
able reader file for this user and this reader
class.

c) Call DMKPGUVG to assign a virtual page in CP's own
address space.

d) Call DMKRPAGT to read the first buffer page into
that virtual address.

2. Call DMKVSRGC to get the next virtual reader CCW.
Check it for a valid opcode.

3. Call DMKVSRMD to simulate the read operation:

a) Call DMKPTRAN to page in the virtual machine's
buffer, as addressed by the current virtual CCW.

b) Call DMKPSASC to check for storage protection vio­
lations.

c) Move the data from the spool buffer page to the
virtual machine's buffer.

4. Advance the spool buffer pointer to the next spool
CCW:

a) Using the imbedded TIC, move to the next CCW in
the spool buffer.

b) I f there is nothing left in the buffer, get the
forward chain from SPNXTPAG and call DMKRPAGT to
read the next DASD buffer into the virtual buffer
area.

c) Accumulate a chain of RECBLOKs for later use in
freeing the DASD slots belonging to the spool
file.

5. Finish by s~tting the appropriate "interrupt pending"
bits in the VxxxBLOKs and constructing the virtual
CSW. Go to DMKDSPCH.

13.3.2.3 virtual reader close

When the end of the reader spool file is found, or when cer­
tain spooling commands are given, the spool file is closed:

1. For files that are to be kept, call DMKCKSPL to
checkpoint the file.

- 243 -

2. For files that are to be purged, unchain the SFBLOK
and call DMKSPLDL to delete the file.

3. DMKSPLDL puts the SFBLOK on a chain of 'delete'
SFBLOKs, anchored from DMKRSPDL. I f the delete task
(DMKSPLDR) is not active, call DMKSTKCP to stack a
CPEXBLOK that will start the delete task. Return to
DMKVSP and from there exit to DMKDSPCH.

4. DMKSPLDR processes each SFBLOK chained from DMKRSPDL
either by calling DMKPGUSR for the whole file or by
calling DMKPGUSD for each buffer of the file. It
then FRETS the SFBLOK.

13.4 OUTPUT SPOOLING

Output spooling includes both virtual and real processing
for printers and punches. Console spooling is also a part
of output spooling, but we will discuss it as a special top­
ic at the end of this chapter.

13.4.1 virtual printer I/O

The processing for virtual printers and virtual punches is
almost identical; the same routines are used except when de­
vice differences force special handling. For that reason,
we will discuss only virtual printer processing in this sec­
tion.

13.4.1.1 Review of virtual I/O

The initial processing of a virtual printer I/O operation is
exactly like the processing of virtual reader operations as
de~cribed above, so please refer to that description.

13.4.1.2 Virtual printer SIO

DMKVSPEX simulates the SIO to the virtual printer by the
following process:

1. If an open printer spool does not already exist, then
call DMKSPLOV to:

a) Obtain an SFBLOK and a VSPLCTL block from free
storage.

- 244 -

b} Call DMKPGUVG to assign a virtual page in ep's ad­
dress space.

c) Call DMKPGTSG to assign a page slot on a spooling
DASD device.

2. Call DMKVSRGC to get the next virtual printer CCW and
check it for valid opcodes. Also, if necessary, call
DMKPGTSG to assign a new page slot on spooling DASD.

3. For CCWs that include data (or for NOPs with a length
greater than 1):

a) Call DMKVSRMD to move the data from the virtual
machine memory to a work buffer.

b) Add the write CCW and the trailing half-TIC.

c) Truncate any trailing blanks in the data portion
and adjust the CCW data length appropriately.

4. Call DMKVSQPD to move the CCW, the half-TIC, and any
data to the current spool buffer page. If that page
fills, then call DMKRPAPT to wr i te the page to the
spooling DASD device.

5. I f there are more virtual CCWs, then repeat these
steps.

6. At the end of the virtual CCWs:

a) Set the appropriate ".interrupt pending" bits in
the VxxxBLOKs.

b) Build the new virtual CSW.

c) Set VMIOPND and clear EXWAIT in the VMBLOK.

d) Go to DMKDSPCH to let the virtual machine contin­
ue.

13.4.1.3 virtual printer close

The virtual printer is usually closed by the CLOSE command
or by the CLOSE operand on the SPOOL command; these both re­
sult in a call to DMKVSPCO. The virtual printer is also
closed if an invalid virtual printer CCW opcode is received;
this is handled by DMKVSPEX calling its own internal subrou­
tine PRTEOF, which is described below.

1. DMKVSPCO consists of the following logic:

- 245 -

a) If the virtual device is busy, then stack a
CPEXBLOK that will cause control to return when
the device is no longer busy.

b) Call the internal subroutine PRTEOF, described be­
low.

c) EXIT to the caller.

2. The actual close process is handled by DMKVSP's in­
ternal subroutine PRTEOr:

a) If the spool file is still empty, then purge it.

b) Update the VMLINS counter.

c) TRANS in the last spool buffer, update its
SPNXTPAG pointer, fill in the verification infor­
mation at the end of the buffer, and write the
buffer back to DASD via DMKRPAPT. Update the
SFBLAST pointer.

d) Call DMKSPLCV to finish the virtual close process:

i) Finish the SFBLOK construction.

ii) Call DMKRPAGT to read the first buffer, set
the TAG informat ion, and call DMKRPAPT to
re-write it.

iii) If the spool file is to be transferred to a
virtual reader, then send a message to the
recipient and reflect a DE interrupt to a
suitable virtual reader.

iv) If the spool file is to be processed by a
real spooling device, then add the SFBLOK to
the appropriate chain and call DMKCSOSD to
wake up the real devices.

e) Call DMKRPAGT and DMKPGUVR to release the virtual
buffer page.

f) FRET the VSPLCTL block.

g) Return to the caller (the CLOSE or SPOOL command
or DMKVSP itself).

- 246 -

13.4.2 Real printer I/O

Real output spooling support is similar to real input sup­
port in many ways. DMKRSP is the driving routine and it
uses standard spool buffers with integral channel programs.
Since real printer and real punch support use the same logic
in almost all cases, we will discuss only printer support.
The support consists of three major portions:

1. Starting the real device.

2. Writing the next spool buffer to the device.

3. Closing the device at the end of the spool file.

13.4.2.1 Starting the real printer

The real printer is started either by the operator issuing
the START command or by the closing of a virtual printer
file. The following actions take place:

1. DMKCSOST (START command) or DMKCSOSD (virtual printer
close) calls DMKSTKIO to stack an IOBLOK containing a
stand-alone DE interrupt. The interrupt address

. (IOBlRA) is DMKRSPEX, which is therefore given con­
trol when the IOBLOK is unstacked by the dispatcher.
DMKRSPEX recognizes this initial DE interrupt and be­
gins the processing of starting the printer.

2. DMKRSP gets storage for the RSPLCTL block and calls
DMKPGUVG to allocate a virtual page in cp's address
space.

3. For each of the classes that is enabled for the de­
vice, DMKRSP runs the chains of printer SFBLOKs,
looking for the first one that matches and is avail­
able for processing. Checks are also made for proper
forms requirements.

4. DMKURSTA is called to display a message on the opera­
tor's console.

5. DMKSEPSP is called to write out a printer separator
page.

13.4.2.2 write the next buffer

For subsequent device end interrupts on the printer,
DMKRSPEX takes the following actions:

- 247 -

1. If that was the last buffer in the spool file, then
call the internal routine "PRTEOF" described below.

2. Test for certain operator commands having been given,
such as DRAIN or FLUSH, and if so perform those ac­
tions.

3. Call DMKRPAGT to page-in the next buffer from the
spool file.

4. Accumulate a chain of RECBLOKs that indicate the pag­
es belonging to the spool file.

5. Relocate the addresses in the CCWs to point to the
data portions.

6. Call DMKIOSQR to start the new channel program to the
device.

7. Go to DMKDSPCH while the I/O is active. The ending
interrupt will begin this process again from the top.

13.4.2.3 Close the real printer

The internal subroutine "PRTEOF" gets control after the last
spool file buffer has been written to the printer. This
routine closes the printer as follows:

1. Call DMKSEPTL to write the trailing separator page.

2. Call DMKSPLDL to delete the spool file.

3. If another spool file should be printed, then start
again at the SFBLOK search logic described above.

4. Call DMKRPAGT and DMKPGUVR to release the vi rtual
buffer page.

5. Fret the RSPLCTL and the IOBLOK.

6. Go to DMKDSPCH.

- 248 -

13.5 SPOOLING COMMANDS

In this section we will briefly discuss the logic of each of
the various spooling commands. The commands can be divided
into two major groups:

1. The class G commands, which affect virtual spooling
devices or the user's own spool files.

2. The class D commands, which affect real spooling de­
vices or all users' spool files.

The processing modules described below are all pageable and
are called by DMKCFM, the console function main routine.

13.5.1 virtual spooling

The class G spooling commands, which affect virtual spooling
devices and spool files, are processed as follows:

1. CHANGE: DMKCSUCH

a) Run the chain of SFBLOKs and make changes as re­
quested. Copy the changed fields into the first
buffer page of the file.

b) Call DMKCKSPL to checkpoint the changed SFBLOKs.

c) If appropriate, call DMKCSOSP to start the real
output devices.

2. CLOSE: DMKCSQCL

a) Call DMKVSPCR to close a virtual reader.

b) Call DMKVSPCO to close a virtual printer or punch.

3. DEFINE: DMKDEFIN

a) Call DMKVDSDF to get the necessary VxxxBLOKs.

b) Set initial values into the VDEVBLOK.

4. DETACH: DMKVDDDE

a) Call DMKVDREL to perform the release . funct ion,
which involves calling DMKCFQRD to reset any pend­
ing virtual interrupts and DMKVSPCx to close any
active spool file.

- 249 -

b) Nullify the VDEVADD field to show that the virtual
device does not exist. Nullify the device pointer
in the VCUBLOK and possibly the controller pointer
in the VCHBLOK.

5. LOADVBUF: DMKCSBVL

a) Find the VDEVBLOK and get the VFCBBLOK or build a
new one.

b) Move the FCB image from DMKFCB.

6. NOTREADY: DMKCPBNR

a) Find the VDEVBLOK and set VDEVNRDY.

7. ORDER: DMKCSVOR

a) Find the desired spool file's SFBLOK.

b) Find the user's first SFBLOK.

c) Chain the desired SFBLOK in front of the first
SFBLOK.

8. PURGE: DMKCSVPU

a) Find the next SFBLOK to be purged.

b) Call DMKSPLDL to schedule the actual purge opera­
tion, which will be carried out by DMKSPLDR.

c) Repeat for all requested spool files.

9. QUERY: DMKCFJQU, DMKCQPRV,
DMKCQHQF, and DMKCQHQU

DMKCQGEN, DMKCQREY,

10.

a) For each of the various operands given below, call
the named rout ine to actually search the SFBLOK
chains and display the number of files or a summa­
ry of each file.

b) For QUERY UR (class D) , call DMKCQPRV.

c) For QUERY UR (class G) , call DMKCQGEN.

d) For QUERY FILES, call DMKCQREY and go to DMKCQHQF.

e) For QUERY RDR, PRT, PUN, READER, PRINTER, or
PUNCH, call DMKCQHQU.

READY: DMKCPBRY

- 250 -

a) Find the VDEVBLOK and exit if busy.

b) Clear VDEVNRDY and set up a pending DE virtual in­
terrupt.

c) Set VMIOPND.

11. SPOOL: DMKCSPSP

a) Set new values into the VDEVBLOK as requested.

b) For the CLOSE option, call DMKVSPCO.

c) For the FOR and TO options, call DMKUDRFU to vali­
date the userid.

d) For the TO option, call DMKSTKIO to stack an
IOBLOK wi th a vi rtual DE for the target virtual
machine's reader.

12. TAG: DMKCSTAG

a) For TAG QUERY device, find the VDEVBLOK and the
VSPXBLOK and display the tag information.

b) For TAG QUERY file, find the SFBLOK, get the first
buffer page via DMKPGUVG and DMKRPAGT, and display
the tag information.

c) For TAG_device, find the VDEVBLOK and the VSPXBLOK
and save the new tag information.

d) For TAG file, find the SFBLOK, get the first buff­
er page via DMKPGUVG and DMKRPAGT, save the new
tag information, and re-write the buffer via
DMKRPAPT.

13. TRANSFER: DMKCSVTR

a) For each spool file to be transferred, change
SFBUSER.

b) If transferring to a user, send a message to the
recipient and stack an IOBLOK wi th a DE for the
user's first appropriate virtual reader. The
IOBLOK will cause DMKVIOIN to get control.

c) If transferring to the system, call DMKCSOSD to
start the system printer or punch.

d) Call DMKCKSPL to checkpoint the changed SFBLOKs.

- 251 -

13.5.2 Real spooling

The class D spool commands, which affect real spooling de­
vices and spool files, are processed as follows:

1. BACKSPAC: DMKCSOBS

a) Find the RDEVBLOK for the device and set RDEVBACK.

b) Save the backspace count in the RSPLCTL block.

2. DRAIN: DMKCSODR

a) Find the RDEVBLOK for the device and set RDEVDRAN.

b) Send a message to the operator.

c) Call DMKCKSPL to checkpoint the new device status.

3. FLUSH: DMKCSOFL

a) Find the RDEVBLOK and set RDEVTERM.

b) If requested, set SFBSHOLD and set SFBCOPY to 1.

. 4. FREE: DMKCSQFR

a) For all of the user's SFBLOKs, clear SFBSHOLD.

b) Call DMKCKSPL to checkpoint the changed SFBLOKs.

c) Remove the user's SHQBLOK if there is no longer
any hold status present.

d) Call DMKCKSPL to checkpoint the hold queue status.

5. HOLD: DMKCSQHL

a) Starting at DMKRSPHQ, find the user's SHQBLOK. If
not found, create a new one.

b) Set the print or punch hold bit in the SHQBLOK.
Call DMKCKSPL to checkpoint the hold queue status.

c) For all the user's SFBLOKs of the appropriate
type, set SFBSHOLD.

d) Call DMKCKSPL to checkpoint the changed SFBLOKs.

6. LOADBUF: DMKCSBLD

a) Find the RDEVBLOK and build an IOBLOK.

- 252 ~

b) Set up the CCW string, using data located in these
routines:

i) DMKPIA for 3289-E.

ii) DMKPIB for 3262.

iii) DMKUCB for 3211 UCB.

iv) DMKUCC for 3203 UCB.

v) DMKUCS for 1403 UCS.

c) Call DMKIOSQR to start the buffer load and go to
DMKDSPCH.

d) When the I/O completes, fret all buffer areas and
call DMKCKSPL to checkpoint the device changes.

7. REPEAT: DMKCSORP

a) Find the RDEVBLOK for the device and find the ac­
tive SFBLOK.

b) Store the repeat count or the hold bi t into the
SFBLOK.

8. START: DMKCSOST

a) Find the RDEVBLOK for the device and clear
RDEVDRAN.

b) Send a_message to the operator.

c) Stack an IOBLOK with a DE to cause DMKRSPEX to get
control later.

13.6 MISCELLANEOUS TOPICS

The following topics are peripherally associated wi th the
spooling subsystem.

13.6.1 Console spooling

Console spooling support is very much like spooled printer
support, except that the data to be spooled comes from the
console I/O routines rather from the virtual SIO simulation
routines. The basic logic flow is as follows:

- 253 -

1. When DMKQCNWT or DMKCQORD have console data to be
spooled, they call DMKQCOCS, which removes any imbed­
ded 3270 SF characters and converts 3270 attribute
characters to blanks.

2. DMKQCOCS then calls DMKVSTVP for each "line" to be
spooled (long console output is broken into lines of
up to 132 characters each):

13.6.2

a) If the virtual printer is busy (due to active
tracing, for example), then build a buffer con­
taining the console data. Build a CPEXBLOK and
add it to the chain of CPEXBLOKs that is anchored
at DMKVSPWA. Exi t back to the caller as if the
data has been spooled.

b) If the virtual printer is available, then perform
the spooling operation as follows:

If no console file is
DMKSPLOV to open one.
checkpoint the new SFBLOK.

.open, then call
Call DMKCKSPL to

ii) Change the output CCW to perform a skip to
channell for every 60 lines of output.

iii) Call DMKVSQPD to actually move the data into
the spool buffer.

c) When the data is moved, check DMKVSPWA to see if
there is a deferred CPEXBLOK for this user and
this virtual device. If so, unchain the CPEXBLOK
and call DMKSTKCP to give the CPEXBLOK to the dis­
patcher for imminent execution.

SPTAPE

The SPTAPE command is a special facility that allows a class
D user to move spool files between DASD and tape. The mod­
ule DMKSPT gets control from DMKCFM to process the SPTAPE
command. DMKSPT parses the command's operands and sets up
module DMKSPS to actually perform the tape I/O operations.
DMKSPT constructs a special control block, the SPTBLOK,
chained to the tape's RDEVBLOK. The SPTBLOK contains con­
trol information for use by DMKSPS and is released at the
end of the requested processing. Note that the SPTAPE com­
mand itself terminates immediately, but its I/O operations
will run to completion asynchronously.

- 254 -

13.6.2.1 Logic flow in DMKSPT

DMKSPT consists of a short main routine and several subrou­
tines~ The main routine itself decodes the first parameter,
the operation code, and then divides into smaller routines
for each of the 5 operations:

1. For 'DUMP', do the fOllowing:

a) Use the subroutines RADDR and PRTPU to process the
remaining parameters.

b) Search the desired spool file chain and select
those spool files that match the given selection
parameters. Construct a chain of small control
blocks, FILELISTs, containing the spool file id
numbers of all the selected files.

c) Use the subroutine INIT to build the SPTBLOK, an
IOBLOK, and a page buffer. Chain the FILELISTs
onto the SPTBLOK.

d) Place into SPTINTR an index value that will later
cause control to pass to the dump routine in
DMKSPS. Use the subrout ine CALLIOS to start a
MODESET channel program and then exit to DMKCFM.

2. For 'LOAD' do the following:

3.

4.

a) Use the subroutines RADDR and PRTPU to process the
remaing parameters.

b) Use the subroutine INIT to build the SPTBLOK, an
IOBLOK, and two page buffers.

c) Set the SPTLOAD flag to show that spool files are
to be loaded, and set an index value into SPTINTR
such that control will later pass to the SPTSCAN
routine in DMKSPS. Use the subroutine CALLIOS to
start a read channel program and then exi t to
DMKCFM.

For 'SCAN' , follow exactly the same logic as for
LOAD, but do not set the SPTLOAD flag.

For 'STOP' , do the following:

a) Use the subroutine RADDR to get the tape's
RDEVBLOK.

b) Set the SPTSTOP flag in the SPTBLOK and exit imme­
diately to DMKCFM.

- 255 -

5. For 'CANCEL', perform the same logic as for 'STOP',
except set the SPTCAN flag.

The subroutine INIT not only builds an SPTBLOK and an IOBLOK
but it also locks into storage the pageable module DMKSPS so
that the I/O interrupt processing routines in DMKSPS will be
available when the tape channel programs complete.

13.6.2.2 Logic flow in DMKSPS

The IOBLOK for tape I/O contains an IOBlRA field that points
to DMKSPSIO. That entry point therefore gets control from
the dispatcher whenever an I/O operation completes on the
tape drive. DMKSPSIO fields exceptional conditions such as
unit check and unit exception (tape EOF) and then uses the
index value in SPTINTR to pass control to the appropr iate
internal routine:

1. For 'DUMP', SPTINTR contains an index to the SPTSF
routine, whose logic is as follows:

a) If SPTCAN is set, then perform BSF, WTM, and RUN
tape operations and set the SPTINTR index to pass
control to SPTFREE, which will clean up everything
and terminate the SPTAPE operation by going to
DMKDSPCH.

b) If SPTSTOP is set, then perform those same func­
tions, except do not issue the RUN tape operation.

c} If there is another SFBLOK to write to tape, get
it and build a channel program to write it to
tape. Write a message to the system operator in­
dicating which file is now being dumped. Set the
SPTINTR index to pass control to the SPTSPL rou­
tine at tape I/O completion. Start the channel
program and exit to DMKDSPCH.

d) If there are no more SFBLOKs to dump, then perform
the selected termination operations (UNLOAD,
REWIND, or LEAVE) and pass control to SPTFREE for
clean up.

2. For the second phase of 'DUMP', the SPTINTR index has
been changed to pass control to SPTSPL:

a} If SPTCAN is set, then perform as described above.

b) Call DMKRPAGT to page-in the first or next DASD
page of the spool file. Bui Id a channel program
to write that page to tape. Leave the SPTINTR in-

- 256 -

dex so that control will continue to come to
SPTSPL.

c) If this is the last page of the spool file, then
change the channel program to do a final WTM and
change the index to pass control to SPLSF. Start
the channel program and exit to DMKDSPCH.

3. For 'LOAD' and 'SCAN', STRINTR contains an index to
SPTSCAN, whose logic is as follows:

a) If SPTCAN is set, perform a RUN operation and pass
control to SPTFREE to clean up.

b) If SPTSTOP is set, go directly to SPTFREE.

c) If a unit exception occurred, then process the end
of the spool file.

d) I f a normal read completed,. and if it was an
SFBLOK that should be loaded, then get storage for
an SFBLOK and copy the contents. Call DMKCKTSF to
get a new spool file ide Set the index to pass
control to SPTSPLNK after the next tape read is
complete. Start a channel program to read the
first data buffer and exit to DMKDSPCH.

e) If an SFBLOK read completed and if the spool file
is not to be loaded, then start a channel program
to perform the FSF tape operat ion and exi t to
DMKDSPCH.

4. The second phase of 'LOAD' continues with the routine
'SPTSPLNK', whose logic is as follows:

a) For normal I/O completion, call DMKPGTSG to assign
a new DASD spool slot and call DMKRPAPT to write
the data buffer into the spool.

b) If that was not the last data buffer in the spool
file, then start a channel program to read the
next buffer and exit to DMKDSPCH.

c) If that was the last data buffer, then chain the
SFBLOK onto the appropriate spool file chain and
call DMKCKSPL to checkpoint the new file. Start a
channel program to forward space over the pending
tape mark and read the next SFBLOK. Set the
SPTINTR index to pass control to SPTSCAN and exit
to DMKDSPCH.

- 257 -

13.6.2.3 Potential problems with SPTAPE

There are several potential problems that you might encoun­
ter when using SPTAPE:

13.7

d} Tape error recovery consists of rewinding and un­
loading the tape. If the tape has subsequent good
data, then you will have to manually reposition
the tape beyond the error locat ion. You might
want to consider adding some logic to DMKSPSIO to
do an FSF command instead of a RUN in this case.

e} There is no interlock to control simultaneous
SPTAPE LOAD operations. If you have multiple
tapes - to load, be VERY careful about trying to
load them at the same time. It is possible that
you can safely load a print file tape simultane­
ously with a punch file tape, but be very careful.

SUMMARY

The spool ing subsystem includes port ions of several maj or
functional areas: real I/O device support, virtual I/O de­
vice support, paging, and command processing. The virtual
device support includes not only the virtualization of the
corresponding real devices but also new funct ions such as
TRANSFER that are the virtualization of many real-life oper­
ations involving the physical movement of unit-record data.

- 258 -

NOTES

- 259 -

- 260 -

14.1 INTRODUCTION

14.1.1 Overview

Chapter 14

SPOOL FILE RECOVERY

The CP spool file recovery facility is designed to allow CP
spool files to continue to exist across planned and
unplanned system outages. The spool files themselves are
stored on DASD in TEMP space and are therefore available af­
ter CP is reloaded; the SFBLOKs and other associated data,
however, are normally present only in main storage and must
therefore be saved on DASD to allow their continued exis­
tence. CP provides two methods of preserving the data:
warmstart and checkpoint.

The warmstart area is used as temporary storage for crit­
ical data during the time that the CP nucleus is being load­
ed or reloaded; the data is written once and read once for
each system outage~ The checkpoint area is used as backup
storage in case the warmstart cannot be used; the data is
written incrementally and is read only if necessary.

Please note that the term "checkpoint" is often used
wi thin CP to mean either the warmstart f ac i 1 i ty or the
checkpoint facility, depending upon the context. That con­
fusion is basically historical in nature but it makes read­
ing the code extremely difficult in places. For that reason
we have used the term "spool file recovery" instead of the
term "spool file checkpoint" that is more typically used by
IBM. In a similar fashion, the terms "warm" and "cold" may
have slightly different meanings in various contexts.

14.1.2 References

14.1.2.1 Publications

1. IBM Virtual Machine/System Product: Operator's Guide
(SCI9-6202).

2. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

- 261 -

14.1.2.2 CP modules

1. DMKCKP - write warmstart data.

2. DMKCKS - write checkpoint data.

3. DMKCKT - checkpoint recovery.

4. DMKCKV - checkpoint recovery.

5. DMKCPI - CP initialization.

6. DMKDMP - CP ABEND restart.

7. DMKSAV - reload CP nucleus.

B. DMKWRM - read warmstart data.

14.2 DATA AREAS

14.2.1 Warmstart area

The warmstart area is located on the SYSRES device; its
block or cylinder address is stored in DMKSYSWM. The area
is in standard CP page format and each page contains multi­
ple logical records of various lengths. The warmstart area
is unused during normal CP operations: only when the system
is being shutdown or restarted does CP write into the warm­
start area copies of all the critical data from memory. The
data is read at the next initialization of CP, either at the
next IPL or during CP restart.

The warmstart area contains the following:

1. A header: BX'FF' and a code number that must be pres­
ent at the beginning of each page of the warmstart
area. The BX' FF' indicates that the warmstart area
was completely wr i t ten dur ing the prev ious shutdown
processing and the code is checked in all warmstart
pages to help insure that the data is logically cor­
rect.

2. Var ious RDEVBLOK status bi ts for the enabled termi­
nals so that they can be re-enabled when the system
is started again.

3. All the queued account ing cards that have not yet
been transferred to the assigned accounting card re­
ceiver virtual machine.

4. The system log messages.

- 262 -

5. All defined SFBLOKs.

6. All DASD RECBLOKs (showing DASD slots allocated to
spool files).

7. All SHQBLOKs (containing all userids, all of whose
spool files are being held).

14.2.2 Checkpoint area

Like the warmstart area, the checkpoint area is located on
the SYSRES device and its starting cylinder or block address
is contained in DMKSYSCH. The area is in page format and is
a maximum of 369 pages long. The checkpoint data is a copy
of the important data (but not everything that is saved in
the warmstart area) but, unl ike the warmstart area, it is
wri tten as the data is changed. The area is divided into
"slots" that are used in a pseudo random fashion to reduce
overhead. The checkpoint data is used only when the warm­
start data cannot be used; addi t ional processing must be
performed by CP to regenerate all the cri tical data that
warmstart would have preserved.

The checkpoint area contains three major structures:

1. The first page contains the spool fileid bit map,
which contains 1 bit for each possible spool fileid
(1 through 9900). A bit is 1 if the corresponding
spool fileid is in use. This map is used to prevent
the duplicate use of a fileid number.

2. The next 1 to 6 pages contains the "slot map". Each
map item is a halfword and corresponds to a "slot" in
the thi rd port ion of the area. The poss ible values
for each map item are:

a) X'FFFF': unused slot.

b) X'FEFE': the current logical end of the map.

c) X'FEEE': the physical end of the map.

d) X'EEEE': slot has RDEVBLOK status bits.

e) X'AAAA': slot has an SHQBLOK.

f) X'nnnn': slot has the SFBLOK for fileid X'nnnn'.

3. The remaining pages of the checkpoint area contain
the "slots", each of which is an SFBLOK size in
length, so that there are 34 slots per page. If the

- 263 -

14.2.3

slot actually contains an SHQBLOK or some RDEVBLOK
status bits, then the extra space in the slot is un­
used.

Pointers in DMKRSP

The real spooling manager, DMKRSP, serves as a convenient
location for several pointers and data words that must be
resident in main storage. Some of the more important ones
are:

1. DMKRSPSW: is X'OO' if checkpointing is alive and
well. If this is X'FF', then no checkpointing will
be performed.

2. DMKRSPEC: the number of checkpoint slots available.

3. DMKRSPSM and DMKRSPSR: the virtual and real addresses
of the spool fileid bit map.

4. DMKRSPMl through DMKRSPM6: the virtual addresses of
the 6 checkpoint slot map pages.

5. DMKRSPID: the next spool fileid to be assigned.

14.3 PROGRAM LOGIC

This section describes the logic of warmstart and check­
point.

14.3.1 Warmstart logic

Warmstart logic can be divided into three major areas:

1. SHUTDOWN processing for normal system termination.

2. ABEND processing for abnormal system termination.

3. IPL processing for system initialization.

14.3.1.1 SHUTDOWN logic

The logic flow resulting from the class A operator command
SHUTDOWN is as follows:

- 264 -

1. The console function master routine DMKCFM calls
DMKCPSSH to process the SHUTDOWN command.

2. DMKCPSSH stores 'CPCP' into CPID at X'370' in DMKPSA.
That word is used as a flag by many of the warmstart
routines.

3. DMKCPSSH calls DMKDMPRS, which simulates an IPL se­
quence by using the "read IPL" CCW opcode X'02'. The
result is that DMKCKP is loaded from the SYSRES de­
vice, just as if the operator had pushed the IPL but­
ton on the real system console.

4.

5.

DMKCKP first loads the rest of itself, since DMKDMPRS
has loaded only the first page of DMKCKP. At this
point CP ceases to operate: DMKCKP takes over the new
PSWs and with them the entire real system.

DMKCKP wr i tes the warmstart
area on the SYSRES device.
from its various sources,
SFBLOKS, etc.

data into the warmstart
The data is collected

such as the RDEVBLOKs,

6. DMKCKP writes 8X'FF' into the first warmstart record
to signal that it has in fact completely saved all
the critical data. It then moves 'SHUT' to CPID
(X' 370'), issues the 960 I and 961 I messages and is­
sues LPSW to load a wait state PSW with a code of 8.
At this point VM/370 has been successfully shut down.

14.3.1.2 ABEND logic

CP errors result in the execution of an ABEND macro (totally
different from the OS macro of the same name).

1. A CP ABEND passes control to DMKDMPDK to wr i te the
system dump.

wARM
2. DMKDMPDK moves 'WRM' to CPID at X'370' and loads

DMKCKP by simulating the IPL sequence as described
above. (The 'WRM' indicates that the "system is
warm": that is, critical system data is present in
memory and must be saved.)

3. DMKCKP first loads the rest of itself.

4. DMKCKP wri tes the warmstart data and the complet ion
code 8X'FF' as described above.

5. DMKCKP then loads and goes to DMKSAVRS.

- 265 -

14.3.1.3 IPL logic

At this point, we will break the logic flow and start again,
this time following what happens when the system operator
pushes the IPL button on the real system console.

1. DMKCKP is loaded from the SYSRES device into X'800'
or X'800' above the V=R area.

2. DMKCKP loads the rest of itself since the IPL process
loads only the first page of DMKCKP.

3. If CPID (X'370') = 'CPCP', DMKC~P performs the
SHUTDOWN processing described above. This allows an
orderly shutdown even if the system operator cannot
issue the SHUTDOWN command in the normal manner (for
example, if the system console became inoperative.)

4. Otherwise, DMKCKP moves 'COLD' to CPID (X'370') and
loads and goes to DMKSAVRS. (The 'COLD' indicates
that the "system is cold"; that is, there is no crit­
ical data to save. This does NOT imply that a "cold
start" will be performed.)

At this p'oint, the logic flows for ABEND and IPL join and
continue as follows:.

1. DMKSAVRS loads the rest of the CP nucleus from the
nucleus area on the SYSRES device.

2. DMKSAVRS then goes to DMKCPINT, the actual initiali­
zation routine.

3. (DMKCPINT performs many functions that are beyond the
scope of this chapter; only the warmstart and check­
po int funct ions are given here.) DMKCPINT asks the
operator what kind of start is desired: WARM, COLD,
CKPT, or FORCE (these choices are further explained
below) •

4. DMKCPINT then calls DMKWRMST to perform the requested
type of start. (DMKWRMST logic is given separately
below.)

5. DMKCPINT then goes to DMKDSPCH to start running the
system.

Let us now look more closely at the processing that is
performed by DMKWRM, since that is at the heart of the warm­
start facility. Based upon the operator's response, one of
the following logic paths is followed:

- 266 -

1. A response of "WARM" indicates that CP should read
the warmstart data and use that data to reconstruct
the critical data.

a) If the first record does not contain the 8X'FF'
flag, then issue the DMKWRM920I message and enter
a wait state 9.

b) Otherwise, read all the warmstart records and re­
build all the critical data: terminal enables, ac­
counting cards, logmsgs, SFBLOKs, RECBLOKs, and
SHQBLOKs.

c) Call DMKCKSPL to checkpoint everything in case of
future failures.

d) Store the TOD clock value into the first warmstart
record and also into DMKRSPCV so that DMKCKP can
perform the verification described previously.

e) Exit back to DMKCPI with the spool files complete­
ly restored.

2. A response of "COLD" indicates that CP should begin
with no spool files at all, and that all other warm­
startable functions beset to their null condition.

a) Call DMKCKSIN to initialize the checkpoint area,
making it completely empty.

b) Exit back to DMKCPI with no spool files at all.

3. If the response is either CKPT or FORCE, then the op­
erator is indicating that the warmstart data should
be ignored and that CP should try to rebuild the
cri tical data from what is avai lable in the check­
point area. That logic is described in the next sec­
tion.

14.3.2 Checkpoint logic

As with warmstart, there are two basic operations in check­
point: saving data in~o the checkpoint area, and restoring
data from the checkpoint area.

14.3.2.1 Saving the checkpoint data

Routines making changes to the critical spool file data will
call DMKCKSPL to insure that the changes are recorded in the

- 267 -

checkpoint area. The logic of DMKCKSPL is quite simple.
The following notes should help you when looking at it:

1. Upon entry, R2 contains flags that indicate the type
of control block to be saved and the type of change
which occurred. Typical flags are "add a new
SFBLOK", "change an SFBLOK", "delete an SFBLOK",
"change an RDEVBLOK", etc.

2. A subroutine, DMKCKTFS, is called to locate the slot
for the specified control block. The slot contents
are updated according to the request and if necessary
the slot map item is also updated. If an SFBLOK is
being added, then DMKCKTSF is called to assign the
spool fileid and set the corresponding bit in the bit
map. If an SFBLOK is being deleted, then DMKCKTSD is
called to clear the bit in the bit map.

3. Pages are read using the standard sequence of calling
DMKPGUVG to assign a virtual page address and then
calling DMKRPAGT to read in the page. Writing is
performed by the standard sequence of first calling
DMKRPAPT to write the page back into its DASD slot,
then calling DMKRPAGT (!) to release the real storage
frame, and then calling DMKPUGVR to release the vir­
tual page. For pages that have a permanent ly as­
signed virtual address, DMKPTRAN is used to read the
page or to locate it if it is already in real stor­
age.

4. The subroutine "NEXTCYL" really gets the next page,
not the next cylinder.

14.3.2.2 Restoring the checkpoint data

The logic for restoring the checkpoint data is located in
DMKCKVWM, which is called from DMKWRMST when the operator
requested CKPT or FORCE. DMKCKVWM does the following:

1. Perform some initialization by calling DMKCKTMP,
which builds pointers to the checkpoint maps.

2. Process each slot map item as follows:

a) If the slot map item is X'FFFF', then skip it
since it is unused.

b) If the slot map item is X'EEEE', then page-in the
slot and set the RDEVBLOK status bits according to
the slot's contents.

- 268 -

c) If the" slot map item is X'AAAA', then page-in the
slot and build an SHQBLOK in free storage using
the slot's contents.

d) If the slot map item is a spool fileid, then page­
in the slot and build a new SFBLOK in free storage
using the slot's contents. Read each spool file
buffer and construct RECBLOKs to indicate which
TEMP space slots are allocated to the spool file.

3. Perform the above steps for all slot map pages. Then
unlock and release the appropriate pages and exit to
DMKWRMST.

14.4 SUMMARY

Warmstart logic allows the memory-resident portions of the
spool ing system to be saved across most system outages.
Checkpoint logic allows recovery in case the warmstart be­
comes invalid. Variations of checkpoint processing allow
the recovery of valid spool files and the elimination of er­
roneous files.

- 269 -

- 270 -

NOTES

- 271 -

- 272 -

Chapter 15

CONSOLE FUNCTIONS AND CP COMMANDS

15.1 INTRODUCTION

15.1.1 Overview

The VM user is the system operator of the virtual machine.
CP simulates the virtual machine system console via a set of
commands and messages. Most of the System/370 system con­
sole funct ions are avai lable, along wi th some addi t ional
functions. Commands allow the user to control the operation
of the virtual machine and to modify the virtual machine
configuration. This chapter will discuss the functions that
are avai lable to all users for use wi th the i r own vi rtual
machines. We will not discuss the additional privileged
commands that can be used by system operators and system
programmers to control the real VM system, but most of those
commands are processed in a similar manner.

15.1.2 References

15.1.2.1 Publications

1. IBM System/370 Principles of Operation (GA22-7000) 1S

the official public description of the hardware, as
seen from the point of view of a program.

2. IBM Virtual Machine/System Product: System Program­
mer's Guide (sc19-6203) describes some simulated ad­
ditional instructions invented by CPo

3 • IBM Virtual Machine/System Product:
(SC19-6202) describes the special
commands.

Operator's Guide
system operator

4. IBM Virtual Machine/System Product: CP Command Ref­
erence for General Users (SC19-6211) describes the
general purpose commands.

5. IBM Virtual Machine/System Product: Commands (Gener­
al User) Reference Summary (SX20-4401) is a concise
listing of command syntax.

- 273 -

6. IBM Virtual Machine/System Product: Commands (Other
than General User) Reference Summary (SX20-4402) is a
concise listing of command syntax for the privileged
commands.

15.1.2.2 CP modules

1. DMKCFC - is the command name lookup routine.

2. DMKCFM - has the main processing loop for commands.

3. DMKCVT - contains many conversion subroutines.

4. DMKSCN - contains the main parameter scan subroutine.

5. Many other modules are called for the detailed pro­
cessing of the various CP commands.

15.2 SYSTEM CONSOLE FACILITIES

There are several different kinds of system console facili­
ties that are simulated by CP, as listed below.

1.. Keya and· in~icators are the operator interface
troIs as defined for the System/370 console.
keys are implemented as a group of CP commands
the indicators are implemented as CP messages.

con­
The
and

2. The "system activity display" or system activity me­
ter is implemented via a second group of CP commands.
These give the user various measurements of real or
virtual machine activity.

3. The IBM Customer Engineer is simulated, in effect, by
other CP commands that can alter the virtual machine
configuration.

Table 21 gives a summary of the system console functions and
their corresponding CP commands and messages.

- 274 -

15.3

TABLE 21

System console functions

Console function
Address compare controls
Configurator controls ---~--­
Display and enter controls -­
Interrupt key --------------­
Load key -------------------­
Load unit address controls -­
Manual indicator -----------­
Power off key --------------­
Power on key ---------------­
Rate control ---------------­
Restart key ----------------­
Start key ------------------­
Stop key -------------~-----~
Store status key -----------­
System reset key -----------­
Wait indicator --------------

System activity meter

IBM Customer Engineer

COMMAND PROCESSING

CP cmd or msg
ADS TOP and PER
DEFINE and SET
DISPLAY and STORE
EXTERNAL
IPL
IPL
"CP Read" msg
LOGOFF
LOGON
PER and TRACE
RESTART
BEGIN
#CP or "PAl" key
STORE STATUS
SYSTEM RESET
"disabled wait" msg

INDICATE and QUERY

DEFINE and DETACH

"Console function" mode is defined as being in effect when­
ever the user's input is directed at CP and not at the vir­
tual machine. On a 3270 terminal, console function mode is
indicated by "CP READ" appearing at the bottom of the termi­
nal screen. Non-3270 terminals indicate console funct ion
mode by the prompt string "CP". The virtual machine is
placed into console function mode by anyone of several
events:

1. The user presses the "PAl" key on a 3270 terminal
that was in a "RUNNING" or "VM READ" condition.

2. The user types in a line consisting of the characters
"#CP", where "#" is the current TERMINAL LINEND char­
acter.

3. The user hits the BREAK key twice in rapid succession
on a line mode terminal.

- 275 -

4. A virtual machine program issues the DIAGNOSE X '8'
instruction with a null command string.

5. A virtual machine encounters an ADSTOP or a PER
event.

We are going to describe the case in which the virtual ma­
chine stays in console function mode for a series of com­
mands. It is possible to execute just one command, either
by prefixing it with "#CP" or by issuing it with DIAGNOSE
X' 8'. In such a case, the virtual machine leaves console
function mode at the end of the command processing. For the
purposes of this discussion, we will also assume that "SET
RUN ON" has not been issued.

When in console function mode, the virtual machine is in
the System/370 "manual" state, as if the virtual STOP key
had been pressed. All input is now interpreted as CP com­
mands until the virtual machine is taken out of console
function mode (that is, 'until the virtual START key is
pressed). The routine DMKCFM contains the main processing
loop for commands.

Note that the command processing is performed as a part
of the terminal I/O interrupt or the program check interrupt
for DIAGNOSE. If the command processing is complex or re­

,quires many I/O operations, then the processing routines may
stack a CPEXBLOK to allow the processing to continue asynch­
ronously.

15.3.1 DMKCFM logic

Once console function mode has been entered, DMKCFM process­
es each command in the following basic loop:

1. Show that the virtual machine is in the stopped state
by writing "CP" to a line mode terminal or "CP READ"
to a 3270 terminal. This corresponds to the real
"manual" indicator light.

2. Allocate a BUFFER control block from free storage and
read the next command from the terminal. Place the
command address and length into the BUFFER pointer
words. Use R9 to address the BUFFER.

3. Call DMKSCNFD to scan off the command name field.

4. Call DMKCFCMD to check the command name against the
list of valid names. For a valid command, DMKCFCMD
returns the address of the command's processing rou­
tine.

- 276 -

5. Call the processing routine. (A few commands will
not return to DMKCFM but will instead remove the vir­
tual machine from console function mode and allow it
to resume execution.)

6. Return to the second step in the lOOPi that is, read
the next command.

The BUFFER control block is used to' pass the command
string to all subsequent processing routines. Figure 27
shows the format of the BUFFER. The command string is in
BUFIN, and BUFNXT and BUFCNT contain the address and length
of the as-yet-unprocessed portion of the string.

+--------+--------+--------+--------+
o

BUFIN

+--------+--------+--------+--------+
FO BUFNXT BUFCNT

+--------+--------+--------+--------+

Figure 27: BUFFER format

15.3.2 DMKCFC logic

Module DMKCFC consists of a small search routine and a table
of valid CP commands. Using the command name and length
passed to it as parameters from DMKCFM, the search routine
locates the command table entry and checks that a sufficient
abbreviation has been given and that the user is allowed to
issue the command. This check is performed by using the
VMCLASS field in the VMBLOKi VMCLASS specifies the command
classes (A through H) that are enabled for this user.
DMKCFC compares the classes enabled for a user and the
classes permi t ted to execute the command. I f at least 1
permi tted class is found in VMCLASS, then the command is
considered legal. Otherwise, DMKCFC returns wi th an error
code. Each entry in the command name table is 16 bytes long
and is generated by a local macro called COMND. The COMND
macro specifies the name of the command, its minimum abbre­
viation length, the classes permitted to execute the com­
mand, and the address of the command's actual processing
routine. Table 22 gives several entries from DMKCFC's com-

- 277 -

mand table. Notice that a command can be enabled for
multiple classes.

TABLE 22

DMKCFC command table

+------------ command name
I +------ permitted privilege class
I I +---- minimum length
I I I +-- routine to call
I I I I

COMNBEGO COMND LOGON,O,I,DMKLOGON,NCL=1
COMND LOGIN,O,I,DMKLOGON,NCL=1
COMND DIAL,O,I,DMKDIAL,NCL=1

COMNBEGI COMND ATTACH,B,3,DMKVDAAT
COMND ATTN,G,4,DMKCFJRQ,TYPE=A
COMND ADSTOP,G,6,DMKCFDAD

COMND SET,A+B+E+F+G+H,3,DMKCFJSE,TYPE=A
COMND SHUTDOWN,A,8,DMKCPSSH
COMND SLEEP,O,2,DMKCFJSL,NCL=I,TYPE=A
tOMND- spACE,D,3,DMKCSOSP

COMND WARNING,A+B,I,DMKMSGWN
COMND *,O,I,O,NCL=I,TYPE=A

COMNDEND COMND CP,O,2,O,NCL=I,TYPE=A

Length Field Use

8 Command name
1 CP class(es)
1 No class (NCL) flag
2 Minimum characters
4 Address of execution module

The macro parameter TYPE specifies the type of address
constant to be generated; the default is V. The "no class"
flag is set by specifying NCL=l. Contrary to popular opin­
ion, this flag does not indicate commands with a low level
of cultural acumen. Instead, if it is set to one, the com­
mand can be issued before logon is complete. Before you en­
ter your userid and password, it is impossible to determine
what your VMCLASS value will be. Hence the name of the flag

- 278 -

is NCL. The following commands have the NCL flag set to 1:
LOGON, LOGIN, DIAL, DISCONN, LOGOFF, LOGOUT, MSG, MESSAGE,
SLEEP, *, and CPo It is also possible to issue the NCL com­
mands, other than the first three, after logon.

The command table has two different points to begin the
command search. The first, label COMNBEGO, is used for exe­
cut ing commands before logon. After logon, the search be­
gins at label COMNBEG1. Therefore the three commands LOGON,
LOGIN, and DIAL can be found only when they are issued be­
fore logon. The other commands with the NCL flag set to 1
are valid both before and after LOGON.

15.3.3 General command processor logic

Each command has a main processing routine that is called
from DMKCFM after the command name has been processed.
These processing rout ines are usually located in pageable
modules because they are relatively seldom used. In many
cases control has to be passed to addi t ional rout ines be­
cause the command logic is often larger than 1 page.

15.3.3.1 Common subroutines

While the exact logic of each command routine is of course
unique, some common functions are needed for many commands,
and so several utility subroutines exist in the resident nu­
cleus. The following is a list of some of these routines.

1. DMKCVTHB converts an EBCDIC string of hexadecimal
characters to their equivalent binary value.

2. DMKERMSG writes an error message in the standard for­
mat and opt ionally returns to its caller's caller
(usually DMKCFM).

3. DMKSCNFD scans for the next BUFFER data field and re­
turns its address and length.

4. DMKSCNAU scans the circular chain of VMBLOKs, looking
for one belonging to the specified userid.

5. DMKSCNRU returns with the addresses of the RDEVBLOK,
RCUBLOK, and RCHBLOK for the specified real I/O de­
vice.

6. DMKSCNVU returns with the addresses of the VDEVBLOK,
VCUBLOK, and VCHBLOK for the specified virtual I/O
device.

- 279 -

7. DMKQCNWT writes a line of output to the user's termi­
nal.

15.3.3.2 Special scanning for QUERY and SET

QUERY and SET are unusual commands in that they have parame­
ters that are dependent upon privilege classes. Appropriate
checks cannot be made in DMKCFC because that routine checks
only the command name. Both commands therefore have an ini­
tial processing routine, DMKCFJ, that scans off the first
parameter and performs the class validi ty checking before
invoking the real processing routines. DMKCFM calls entry
point DMKCFJQU for QUERY and DMKCFJSE for the SET command.
Let us look more closely at SET processing. We will assume
that the command is "SET DUMP AUTO". DMKCFJ has a table of
SET parameters, containing for each its name, minimum abbre­
viation, privilege class, module index, and a branch index
(used for further branching within the next processing mod­
ule). Each entry is 12 bytes long. Table 23 shows both the
parameter table entry for "SET" and a module address table
with the linkage code.

*
*

TABLE 23

Table of SET parameters

DC CL8'DUMP ',ALl(4,B,8,4)
I I I I I
I I I I I

Parameter ------+ I I I I
Minimum parameter length -----+ I I I
Permitted privilege class(es) --+ I I
Module index (into R7) -----------+ I
Branch index (into R6) -------------+

L R15,SETMODS(R7}
CALL (15)

Get our adcon and call
the parameter routine.

(There is no return.)

SETMODS DC
DC
DC
DC

A(DMKCFSET)
A(DMKCFOEX)
A(DMKCFUEX)
A(DMKJRLSE)

o Module Index
4
8

12

- 280 -

As with the processing in DMKCFC, DMKCFJ scans the param­
eter table looking for a val id match. I f a match is not
found, an error message is generated by a call to DMKERMSG.
When a match is found, the module index is used to load into
R15 the address of the correct entry point from the table at
label SETMODS, and the branch index wi thin the module is
loaded into R6. In the case of "SET DUMP", DMKCFUEX will be
called with 4 in R6. DMKCFUEX will use the contents of R6
as an index into its own table of processing routines, one
of which will then get control to handle the "DUMP" parame­
ter and the addi t ional "AUTO" parameter. DMKCFUEX has no
reason to return to DMKCFJ and so upon entry it issues an
SVC 16 to delete its SAVEAREA and make current the previous
one. When DMKCFUEX is finished, it will EXIT directly back
to DMKCFM; this is an attempt to avoid unnecessary use of
the pageable module DMKCFJ.

15.3.3.3 Exit from console function mode

The following commands do not return to DMKCFM but instead
take the virtual machine out of console function mode, al­
lowing it to resume execution:

1. ATTN -simulates an attention I/O interrupt from the
virtual machine console followed ~y the ~TART key.

2. BEGIN simulates the System/370 console START key.

3. EXTERNAL simulates the System/370 INTERRUPT key fol­
lowed by the START key.

4. IPL simulates the System/370 LOAD key.

5. RESTART simulates the System/370 RESTART key.

Console function mode will also be ended by a second
"PAl" key depression from a 3270 terminal.

15.4 SELECTED COMMAND LOGIC

To further illustrate CP command processing, we will give
below some examples of typical commands. For all commands,
CP must decode the command string. In some cases, the ef­
fect of the command is just the setting or displaying of
some memory contents. In other cases, complex processing is
necessary to implement the requested function.

- 281 -

15.4.1 ADSTOP command

ADSTOP is the console function command that performs the ad­
dress comparison operation. The corresponding COMND table
entry in DMKCFC points to DMKCFDAD as the processing rou­
tine. DMKCFDAD calls DMKSCNFD to get the address parameter,
calls DMKCVTHB to convert it to binary, and compares it to
VMSIZE in the VMBLOK to check that the address is within the
virtual machine's memory.

In order to let the CPU run at full speed, ADSTOP is im­
plemented by storing an SVC X'B3' instruction at the desig­
nated memory address. DMKCFDAD uses the TRANS macro to
bring the virtual page into real memory and saves the tar­
getted instruction, which it then replaces with the SVC
X'B3'. DMKCFDAD then EXITs back to DMKCFM. At some later
time, the virtual machine will be taken out of console func­
tion mode and will begin normal execution.

When the SVC is executed, DMKSVC restores the original
instruction, issues a message "ADSTOP AT ... " via DMKQCNWT,
and calls DMKCFM to place the virtual machine in console
function mode (that is, it presses the virtual "STOP" key).

15.4.2 INDICATE command

The INDICATE command provides a virtual "system activity me­
ter" to show how the virtual machine or the real machine is
performing. Routine DMKTHIEN is called by DMKCFM to process
the command ("THI" was the original name of this command:
"temperature and humidity index"). DMKTHIEN calls DMKSCNFD
to get the parameters, if any, and checks each one for va­
lidity using its own table. It obtains a work area via
DMKFREE and builds in it a message containing the system or
user performance data. The information is gotten from vari~
ous fields in the PSA and in DMKSCH and is converted to
character format by DMKCVTBD. DMKQCNWTis called to display
the message and FRET the work area. DMKTHIEN then EXITs
back to DMKCFM and the command is complete.

15.4.3 DEFINE command

The DEFINE command is the implementation of the "virtual
Customer Engineer" and has DMKDEFIN as its main processing
routine: the logic for DEFINE STORAGE and DEFINE CHANNEL has
been split off into module DMKDEG. Let us take as an exam­
ple "DEFINE GRAF 123". DMKDEFIN calls DMKSCNFD for the
first parameter and checks "GRAF" against an internal table
of valid parameters. It then calls DMKSCNFD again for the

- 282 -

second parameter and then calls DMKCVTHB to convert the
address to binary. After all the parameters have been
scanned and checked; DMKDEFIN calls DMKVDSDF to perform the
actual device definition.

DMKVDSDF calls DMKFREE to obtain storage, if necessary,
for new sets of VxxxBLOKs (remember that the blocks must be
contiguous for each of the 3 types). It then stores into
the new VDEVBLOK all the appropriate flag and status bits to
show that this is a virtual 3270 device for which there is
not yet a corresponding real device. DMKVDSDF then EXITs to
DMKDEFIN, which builds a verification message in its SA­
VEWRKn area, calls DMKQCNWT to write the message, and then
EXITs to DMKCFM. The command is now complete.

15.5 PROGRAMMING CONSIDERATIONS

There are several programming considerations that you should
keep in mind if you want to write a command processing rou­
tine or modify an existing one.

1. The VxxxBLOKs can move across calls that define new
virtual devices or that can lose control in such a
way that a device can be detached in the meant ime.
The standard convention is to subtract the origins of
the VxxxBLOKs from R6, R7, and R8 before such a cali
and to then add the origins again afterwards. Many
IBM APARs contain this code because this is a very
subtle trap that has caught IBM several times.

2. While you are processing the command BUFFER, you must
be careful not to change R9, its base address. Even
if your routine does not explicitly use the BUFFER,
some subroutines might (such as DMKSCNFD).

3. Many of the command processing routines are nearly
full. IBM often has to split the modules as a result
of adding new funct ion or applying APARs. I f you
have code in such a module, then you must examine
each PUT tape to see if your code has to be moved to
a new module. This is of course a potential problem
in all of CP, but the problem is perhaps more severe
in the area of command processing routines.

- 283 -

- 284 -

NOTES

- 285 -

- 286 -

16.1 INTRODUCTION

16.1.1 Overview

Chapter 16

DIAGNOSE INTERFACE

The DIAGNOSE instruction, operation code X'83', is a privi­
leged instruction. It is reserved for System/370 model-de­
pendent diagnostic operations. For example, to validate er­
ror checking circuits, a DIAGNOSE operation can force a bad
Error Correction Code (ECC) in main storage.

The instruction is four bytes long and has a layout simi­
lar to the LOAD MULTIPLE (LM) inst ruct ion. In System/37 0,
the standard way for a user process to invoke a supervisor
service is to issue a Supervisor Call (SVC). Because the
operat ing system in the vi rt ual machine may have all SVC
numbers assigned, another method had to be found for virtual
machines to communicate wi th CP. The DIAGNOSE instruct ion
was chosen. Internally it is also know as the Hypervisor
Call. When DIAGNOSE is issued from a virtual machine, a
privileged operation exception is generated. The DIAGNOSE
interface is used to execute CP commands and to manipulate
the archi tectural extensions available to the virtual ma­
chine.

16.1.2 References

16.1.2.1 Publications

1. IBM Virtual Machine/System Product:
mer's Guide (SC19-6203).

16.1.2.2 CP modules

System Program-

1. DMKHVC is the initial processing routine for
DIAGNOSE instructions.

2. DMKHVD - contains addi t ional pageable DIAGNOSE pro­
cessing routines.

- 287 -

3. DMKHVE - contains addi t ional pageable DIAGNOSE pro­
cessing routines.

16.2 INSTRUCTION FORMAT

The DIAGNOSE instruction is specified in a user program as
one byte of operation code (X'83'), one byte for the two
register numbers, and finally two bytes containing the hexa­
decimal code of the function to be performed. Codes from
X'OO' through X'FC' are reserved for IBM use. Codes from
X'lOO' through X'lFC' are available to installations for lo­
cal uses.

The two specified registers are designated X and Y for
descriptive purposes. If more that two registers are need­
ed, up to two more registers can be designated as registers
'X+I' and 'Y+I'. In this case, neither 'x' nor 'Y' is usu­
ally allowed to be RIS.

16.3 RETURN CONDITIONS

In addition to the four instruction condition codes, a pro­
gram can receive a program interrupt with an operation,
specification, or ·other exception code to indicate an error
condi t ion. The System Programmer's Guide contains a de­
scription of the uses and error conditions for each DIAGNOSE
code.

16.4 COMMON DIAGNOSE CODES

Table 24
codes and
cessfully
must have
try.

lists some of the more frequently-used DIAGNOSE
their privilege classes. Also notice that to suc­
execute the DIAGNOSE X' 4C', the virtual machine
the ACCOUNT option specified in its directory en-

- 288 -

TABLE 24

Common DIAGNOSE codes

Code Class(es) Description

04 C+E examine real storage.
08 G execute a console function.
OC G virtual clock.
14 G spool file manipulation.
18 G DASD I/O.
20 G general I/O.
3C A+B+C dynamic directory swap.
4C (ACCOUNT) punch accounting card.
58 G 3270 full screen interface.

16.5 EXAMPLE DIAGNOSE

As an exercise, let us look at one DIAGNOSE code closely.
It will serve as the model for other DIAGNOSE processing.
DIAGNOSE X'08' is used by CMS and user programs to execute
CP commands. It is specified in the form given in Figure
28.

+----------------+
I 83 I xy I 0008 I
+----------------+

83 is the operation code.
x is the first parameter register.
y is the second parameter register.
0008 is the DIAGNOSE function code.

Figure 28: The DIAGNOSE instruction

The X register contains the address of the command line to
be executed. Normally the response lines for the command

- 289 -

are printed on the virtual console. The first byte in
register Y is a flag byte. The other three bytes of regis­
ter Y contain the length of the command line. There are two
flag values currently defined. The first flag value, X'80',
indicates that the printing of any needed password be sup­
pressed. The X'40' flag value specifies that the user wants
the command output to be placed in a buffer in the user's
virtual memory. This facility allows programs to examine
the output generated by commands they issue.

If the X'40' flag is used, then two additional registers
must be given. They are designated the 'X+I' and 'Y+I' reg­
isters. Register 'X+l' contains the address of the response
buffer supplied by the user and register 'Y+l' contains the
length of this buffer.

Normal completion of this DIAGNOSE, as with all others,
ends in a condition code of 0 being set. A condition code
of 1 indicates that the user-supplied buffer was insuffi­
ciently large to hold all of the output from the command.
Register 'Y+l' is returned with the number of bytes truncat­
ed from the response. A recovery procedure in this circum­
stance is to calculate the size of a larger buffer and reis­
sue the DIAGNOSE. I f the length of the command line is
specified as zero, the user's virtual console is placed in
CP mode. If the length of the response buffer is specified
as a number outside of the range from 1 to 8192, a specifi­
cat ion except ion is generated. Other error condi t ions are
handled in analogous ways. Figure 29 shows a typical user
invocation of DIAGNOSE code X'08'.

- 290 -

*

LA
L
LA
LA

R2,CMD
R4,PARM
R3,RESBUFF
R5,LRESBUFF

DC X'83240008'
BZ OKCONT

* Handle error conditions
B SOMEWHER

*
CMD DC C'Q RDR ALL
LCMD EQU *-CMD
*
RESBUFF DC CL80' ,
LRESBUFF EQU *-RESBUFF
*

DS OF
PARM DC X' 40'

DC AL3{LCMD)

,

Load X register.
Load Y register.
Load X+l register.
Load Y+l register.

Issue DIAG R2,R4,8.
Ok, continue normally.

here.

CP command
and its length.

Output buffer
and its length.

Flag byte and
command length.

Figure 29: Using DIAGNOSE 8

16.6 DIAGNOSE PROCESSING

Because operation code X'83' is a privileged operation,
DMKPRGIN goes to DMKPRVLG. DMKPRV determines that the oper­
ation code is a X'83' and goes to DMKHVCAL (HyperVisor
Call). Finally DMKHVC uses the DIAGNOSE code in the in­
struction to index into a branch table to pass control to
the module or internal subrout ine that wi 11 process the
DIAGNOSE request.

In the case of DIAGNOSE X' 08', a subroutine labelled
HVCONFN gets control. It checks the parameters for validity
and then invokes DMKCFMEN, the normal console command pro­
cessor. Upon return, DMKHVC goes to DMKDSPCH. Other
DIAGNOSE codes function in a similar manner.

- 291 -

16.7 SUMMARY

The DIAGNOSE interface is the primary way in which architec­
tural extensions to the System 370 virtual machine are in­
voked. Codes X'OO' to X'FC' are reserved for IBM's use.
Codes X'lOO' to X'lFC' are reserved for installation use.

- 292 -

NOTES

- 293 -

- 294 -

Chapter 17

MULTIPROCESSOR SUPPORT

17.1 INTRODUCTION

In Release 4 of VM/370, IBM distributed support for Attached
Processor (AP) configurations. With VM/SP, IBM added sup­
port for MultiProcessor (MP) systems and also improved the
AP support in response to marketing opportunities and to en­
hance the performance of VM on the engines made in Pough­
keepsie.

An AP configuration has 2 processors sharing main memory
but only one processor is allowed to perform I/O operations.
An MP configuration is similar except that both processors
are able to perform I/O operations. The limit of two pro­
cessors is a restriction of the software implementation
within CP and is not a restriction imposed by the hardware
architecture.

17.1.1 Overview

This chapter covers the hardware features available in Sys­
tem/370 processors to support multiprocessing and discusses
the manner in which CP uses those hardware features to in­
crease system throughput. Implications for user modifica­
tions are discussed, including examples of how to adequately
protect data structures from simultaneous update in a MP
system.

17.1.2 References

17.1.2.1 Publications

1. Brown, M. P. et aI, VM/SP MP and Enhanced AP Support,
IBM Washington Systems Center Technical Bulletin,
GG22-9212, December 1980.

2. Enichen, M. C., and D. R. Patterson, VM/SP: Introduc­
tion to Multiprocessing Concepts, IBM Washington Sys­
tems Center Technical Bulletin, GG22-9247, September
1981.

- 295 -

3. IBM Sgstem/370 Principles of Operation, GA22-7000.

17.1.2.2 CP modules

1. DMKAPI - handles initialization functions specific to
systems with more than one processor.

2. DMKCLK - handles synchronization of the TOD clock for
MP configurations with more than one TOD clock.

3. DMKCPU - handles VARY commands when the device speCI­
fied is a processor rather than an I/O device.

4. DMKDSP - processes TRQBLOKs, IOBLOKs, and CPEXBLOKs
in relationship to the locks that must be held. Con­
tains an entry point such that if the system lock is
not held, virtual machines can still be dispatched.

5. DMKEXT - handles processing for the SIGNAL macro in­
struction. Issues the SIGP instruction to the other
processor and handles the external interrupt result­
ing from another processor performing a SIGP.

6. DMKIOS - allowsei ther processor to queue an I/O· re­
quest for any path. Processors are swi tched only
when the I/O can be started on a path that the other
processor owns.

7. DMKLOK - handles requests for MP locks that cannot be
sat isf ied immediately. Central izes handl ing of both
spin and defer locks.

8. DMKSVC - handles SVC 24 to SWITCH processors. Also,
handles the chain of SVC save areas maintained for
each processor.

9. DMKMC* this family of modules handles various
pathological conditions that arise in a multiproces­
sor situation.

- 296 -

17.2 370 MP/AP ARCHITECTURE REVIEW

This section is the obligatory review of the hardware char­
acteristics on System/370 processors that are specific to
multiprocessing systems. For more details on the hardware
support, refer to the System/370 Principles of Operation
manual.

17.2.1 Prefix register

The prefix register in multiprocessor and attached processor
systems acts as a "magic mirror" on certain addresses. When
bits 0-11 of a real address formed by a processor are all
zero, bits 8-19 of the prefix register are substituted. The
result of replacing the 0-11 zero bits of a real address
with the contents of the prefix register bits 8-19 is called
an absolute address. Conversely, when bi ts 0-11 of a real
address match bits 8-19 in the prefix register, the absolute
address is formed by replacing bits 0-11 of the real address
with zeros. Note that addresses formed by the channels when
fetching the Channel Address Word and storing the interrupt
address and Channel Status Word are real addresses and are
therefore relocated by the pref ix reg ister. However, the
addresses within channel programs are absolute and not af­
fected by the contents of the prefix register.

17.2.2 Instructions

17.2.2.1 Instructions for shared memory

The instructions used for serializing accesses to memory are
Compare and Swap (CS), and Compare Double and Swap (CDS).
By using these two instructions it is possible to perform
some kinds of operat ions on counters, 1 inked 1 ists, etc.
without the necessity of defining a lock for a resource.
Also, it is possible to define and implement a resource lock
mechanism using these instructions, as is discussed later.

17.2.2.2 Signal Processor

The Signal Processor instruction (SIGP) has a number of de­
fined order codes used to implement communications between
processors. Table 25 lists the subset of the defined SIGP
order codes that are used by VM/SP. Note that only the
first 3 order codes are meant to be used frequently; use of
the other order codes is limited to situations where a per­
formance problem induced by their use is not a high priority
issue.

- 297 -

The emergency signal and external call functions cause
the addressed, processor to have an external interrupt pend­
ing. Additionally, any processor that fails and enters the
"check-stop" state causes all other processors to have a
malfunction alert external interrupt pending. These exter­
nal interrupts have specific interrupt codes and also have
assigned mask bits in CRO.

Code
1
2
3
4
5
6
7
9

TABLE 25

SIGP order codes used by VM/SP

Meaning
Sense
External call
Emergency signal
Start
Stop
Restart
Initial Program Reset
Stop & Store Status

Other than the separate mask bi ts and interrupt codes,
the difference between an emergency signal and an external
call is that a processor can have only one external call"
condition pending but a processor can keep pending an emer­
gency signal condition from each CPU of a multiprocessor
system (including itself).

17.3 CP ARCHITECTURE FOR MP/AP -- ---
17.3.1 Storage and data structures

17.3.1.1 Layout of main memory

Figure 30 shows the layout of main memory following a normal
CP initialization. The PSAs of the processors may be in the
dynamic pag ing area if the VARY PROC command is used to
change the operation from UP-mode to MP-mode without an in­
tervening IPL.

- 298 -

PSA for IPL Processor

PSA for non-IPL Processor

Free Storage
and

Trace Table

Dynamic
paging
Area

CP Resident Nucleus
4K

Absolute PSA
OK

Figure 30: Layout of MP/AP memory

17.3.1.2 Lock words

In general, any 4-byte location in memory can be defined to
be a lock for some resource. Certain CP-defined locks have
a small data structure associated with them to aid in debug­
ging and performance investigations. For these CP-defined
locks, there is not only the lock itself, but also Rl2 at
the time the lock was obtained (this should be the base ad­
dress of the CP module that obtained the lock), the amount
of time spent spinning while trying to obtain the lock (in
microseconds), and the number of times the lock was request­
ed and not available.

17 •. 3.1.3 Save areas

Each processor maintains its own singly-linked list of SVC
save areas anchored in its PSA. Compare and Swap is used to
add entries to the list, and Compare Double and Swap is used
to remove list entries along with incrementing a counter for
the number of entries deleted. (Why CDS is used in this
case and not CS is an interesting exercise for the reader).
References to a processor's private save area chain have to

- 299 -

be protected because if one processor runs out of SVC save
areas, it steals save areas from the other processor before
becoming desperate enough to call DMKFREE. In fact, while'
the processor is stealing one save area it steals two
(they're cheap). This leads to a somewhat humorous picture
of the two p,rocessors steal ing save areas back and forth
from each other until there are none left and someone has to
call DMKFREE to carve a save area from CP free storage.

17.3.1.4 Shared segments

Because there is no read-only bit defined in the 370 archi­
tecture for the page tables, CP must maintain a duplicate
set of shared segments and pages for each processor. When­
ever a virtual machine is being dispatched by a processor or
when a processor may access the virtual machine's memory, a
check must be performed that the virtual machine's segment
table points to the right set of shared pages for that pro­
cessor. Normally this check is performed by the SWTCHVM
macro (discussed in more detail later). Note that the HPO
version of VM/SP does in fact support the segment protection
f ac iIi ty that i~ ava i lable on some System/370 processors.
In this case, only one copy of each shared segment is main­
tained for the entire system.

1 7 . 3 . 1. 5 P SA

Some values maintained in the PSA of a uniprocessor system
are maintained in the absolute PSA of a multiprocessor sys­
tem. Examples of these fields are: CPUID, trace table
pointers, paging rate, pointers to monitor buffers, count of
page and swap tables in the system, etc. When the PSA MACRO
expands in an assembly listing, fields in the absolute PSA
have a comment to that effect.

All other PSA fields are ei ther dupl icated between the
processors (have the same value) or are maintained separate­
ly by each processor (like the chain anchor for the SVC save
area parameter list). Table 26 lists some of the PSA fields
that are interesting from the multiprocessing point of view.

- 300 -

TABLE 26

MP-related fields in the real PSAs

APSTATl-5
EMS PEND
EMSREC
XCPEND
LPUADDR
LPUADDRX
PREFIXA
PREFIXB
TIMEDISP
TRACPROC

17.3.2 Signaling

AP/MP status flags
Emergency signals pending
Emergency signals received
External calls pending
Logical address of processor
Logical address of other proc
Prefix reg contents
Prefix reg contents-other proc
Disp. to overhead in VMBLOK
Value to OR with trace code

17.3.2.1 Emergency signal

Table 27 lists the function codes and their meanings defined
wi thin CP. Whenever the SIGNAL macro is used to issue an
emergency signal request to the other processor, the program
does not resume until the other processor has received the
external 'interrupt and started processing the request.

TABLE 27

SIGP - emergency signal function codes

Fen Code
X'8000'
X'4000'
X'2000'
X'lOOO'
X'0800'
X'0400'

Meaning
Quiesce
Extend
TOD clock sync
Shutdown
TOD clock check
Extend exit

17.3.2.2 External call

Table 28 lists the function codes and assigned meanings when
the SIGNAL macro is used to issue an external call to the
other processor.

17.3.3

TABLE 28

SIGP - function codes for external call

Fen Code
X'8000'
X'4000'
X'2000'
X'lOOO'

Locking structure

Meaning
Alternate Proc. Recovery
Resume
Wakeup
Dispatch

In order to protect data structures from simultaneous up­
date, certain functions and data areas should not be updated
unless the processor has first obtained a specific "lock".
Owning the lock insures that only one processor at a time is
updating or examining fields. Note that there is nothing
magical about this protection and nothing within CP force~
that a particular lock be held at a particular time (except
that requesting a lock the processor already holds results
in a LOKOOI ABEND of the system).

17.3.3.1 Spin locks

One kind of system lock protects resources that are only
used for short periods of time, such as a queue that is be­
ing updated. Since the lock is held for short periods of
time, it doesn't make sense for the other processor to per­
form some complicated procedure for deferring the request;
instead, the other processor loops until the lock is avail­
able (termed "spinning on the lock"). These "spin locks"
are used to serialize processing within the first level in­
terrupt handlers so that interrupts can be processed without
requiring a global lock.

- 302 -

17.3.3.2 Defer locks

Certain resources may require protection for longer periods
of time; for these types of fields there is defined a type
of lock that defers processing until the lock is available.
These "defer locks" cause the current status of the proces­
sor to be saved in a CPEXBLOK when the lock is not avail­
able. Control returns via the standard CPEXBLOK unstack
mechanism when the lock is available.

17.3.3.3 Private locks

Any CP system programmer may def ine addi t ional locks. If
the lock word is defined within DMKLOK, the whole lock data
structure of four fullwords (as discussed above) must be
provided. If the lock word is not in DMKLOK, then only one
fullword (suitable for use by a CS instruction) is required.
These "private locks", as they are called, are all spin
locks so they should only be held for very short periods of
time. It is the programmer's responsibility to explicitly
release any lock that is obtained.

17.3.3.4 CP-defined locks

Name
SYS
VMBLOK
RL
TR
DS
10
RM
RDEVBLOK
FREE

TABLE 29

Defined locks within CP

Type
DEFER
DEFER
SPIN
SPIN
SPIN
SPIN
SPIN
SPIN (Private)
SPIN

- 303 -

Comments
Global system

Run list
CKC request queue
Dispatcher queues
I/O subsystem
Real mem/paging
IOBLOK queue
Free storage

Table 29 lists the locks defined by IBM to protect various
resources within CPo Although all the documentation would
lead one to believe there is something special about some of
the locks, there is really no difference in the implementa­
tion of how the locks are treated (except the VMBLOK lock).
In part icular, there is no di fference between the global
system lock (SYS) and the other spin locks except that only
the dispatcher actually spins wai t ing for that lock to be
available. For a more details, see the section on the LOCK
macro, below.

The CP-defined locks are u~ed to serialize access to the
following resources and functions:

1. SYS - All execution under IOBLOKs, TRQBLOKs and CPEX­
BLOKs is done with the system lock held. Also, exe­
cution of pageable CP modules, and selection of pages
for stealing require ownership of the global system
lock. I f any lock other than a VMBLOK lock must be
held along with the system lock, the system lock must
be obtained first to avoid deadlock.

2. VMBLOK - The VMBLOK lock is at the field labelled
VMLOCK within the VMBLOK, and the field VMLOCKER con­
tains the contents of R12 at the time the lock was
obtained. The VMBLOK lock of a virtual machine is
held whi Ie the virtual machine is dispatched on a
processor and is used to serial ize updates to the
VMBLOK itself. I f the VMBLOK lock cannot be ob­
tained, a deferred execution CPEXBLOK is stacked.

3. RL - The run list lock serializes access to the run
list by the dispatcher and the scheduler. Use of
.this lock allows virtual machines to be dispatched
without having to hold the global system lock.

4. TR - The TRQBLOK list lock serializes access to the
clock comparator request queue. This lock allows se­
rialization between the routines in the scheduler and
the external FLIH that can remove the top entry from
the queue without holding the global system lock.

5. DS - The dispatcher queue lock serializes access to
the CPEXBLOK, IOBLOK, and TRQBLOK queues. This lock
allows serialization between the dispatcher and rou­
tines that do not hold the global system lock but
call DMKSTK to add the deferred execution blocks to
the appropriate queue.

6. 10 - The I/O lock serializes I/O initiation and in­
terrupt processing (DMKIOS and DMKIOT). Also, access
to certain fields in the real I/O control blocks is
serialized; the complete list of fields is contained
in Reference 1.

- 304 -

7. RM - The real storage management lock serializes ac­
cess to many of the lists and queues within the pag­
ing subsystem. This lock allows much of the paging
subsystem to execute without requiring the ownership
of the global system lock.

8. RDEVBLOK This lock IS contained within each
RDEVBLOK and ser ial izes access to the IOBLOK queue
(at RDEVFPNT). This lock allows serialization of ac­
cess to queued I/O requests by a processor that holds
the 10 lock or the RM lock and allows the requests to
be manipulated by either the paging subsystem or the
I/O subsystem.

9. FREE - The free storage lock is obtained and released
within DMKFRE to serialize access to the free stor­
age chains. This lock allows serialization of free
storage management for any funct ion wi thin CP that
needs to acquire or release free storage without re­
quiring the ownership of any particular lock.

17.3.3.5 Lock hierarchy

Any system of locks is suscept ible to deadlock si tuat ions
unless certain precautions are taken .. One well-known way of
preventing deadlock is to insure that locks are always re­
quested in a certain order.

Table 30 gives the hierarchy of the currently defined
locks within CPo Note that there have been no situations in
the CP code where the RM lock and the I/O lock need to be
held at the same time that weren't eliminated by the use of
the RDEVBLOK lock. Therefore, no ordering is defined be­
tween these two locks. For the other locks, if a processor
owns a lock, it may only request locks lower in the hier­
archy and not higher. Note that this hierarchy is NOT en­
forced in any consistent fashion. It is primarily the re­
sponsibility of the programmer to insure that the hierarchy
is obeyed.

- 305 -

TABLE 30

Hierarchy of locks within CP

SYS lock

RM lock I/O lock

RL lock

TR lock

DS lock

RDEVBLOK and other private locks

FREE lock

11.3.4 CP macros for MP/AP support

This section describes some of the macros used within CP in
support of the multiprocessor code. While other macros are
affected by MP support, these are the macros encountered
most frequently.

11.3.4.1 COUNT

The COUNT macro is an excellent tool for demonstrating the
use of Compare and Swap. Figure 31 contains a small code
segment that at one time demonstrates the use of CS to up­
date a value without a lock and also is an example of the
code generated by the COUNT macro when assembled for a MP
configuration.

- 306 -

L
TRYAGAIN OS

LR
A
CS
BNE

R14,COUNTER Get counter
OH
Rl,R14 Copy original value
Rl,Fl Bump the counter
R14,Rl,COUNTER Try to store it
TRYAGAIN -> No good, again

Figure 31: Example of COUNT macro and CS

17.3.4.2 TRACE

The TRACE macro handles obtaining a trace table slot on both
UP and MP systems. The code generated for UP systems han­
dles the check for whether the trace table should wrap and
places the trace code in the first byte of the entry. On an
MP system, the trace table slot must be allocated wi th CS
since the prbcessors share the table pointers that are main­
tained in the absolute PSA. Addi tionally, the TRACPROC
field from the real PSA is "or'ed" with the trace code to
identify the processor generating that particular entry.

17.3.4.3 SWITCH

The SWITCH macro provides a way to have execution proceed on
a particular processor (or the other processor). The macro
generates an SVC 24 that causes the SVC interrupt handler to
save register and execution address in a special CPEXBLOK
that is stacked LIFO on the dispatcher's queue.

The macro can take an operand that supplies the logical
processor address either in a register or a half-word stor­
age location. Note that use of the macro without an operand
implies that a switch should be made to the I/O processor,
which only has meaning in AP mode.

A similar way of performing the same function is to pre­
pare a CPEXBLOK and call either DMKSTKOP (to stack it for
the Other Processor) or DMKSTKMP (to stack it for My Proces­
sor). DMKSTK puts the logical processor address in the
CPEXBLOK to identify which processor may unstack it. If one
processor, when going through the dispatcher, finds a
CPEXBLOK for the other processor that is currently idle,
then the act i ve processor issues a SIGNAL DISPATCH to the
idle processor.

- 307 -

17.3.4.4 CHARGE

CHARGE
START
STOP
SWITCH,operand
SYNC

Figure 32: possible operands for the CHARGE macro

As ment ioned in the chapter on timer support, the CHARGE
macro is used to help maintain correspondence between the
contents of Rll and the CPU timer value. VMBLOKs contain
two fields, VMCPTIME and VMAPTIME, that are used to record
the overhead time attributed to each processor. In the PSA
of each processor, the field TIMEDISP gives the offset into
the VMBLOK of the field to be used. VMCPTIME and VMAPTIME
are both initialized to X'3FFFFFFFFFFFFOOO'.

1. START - the CPU timer is loaded from the offset in
the VMBLOK indicated by TIMEDISP.

2. STOP - the CPU timer is stored into the offset in the
VMBLOK indicated by TIMEDISP.

3. SWITCH - the charging is STOPped for the current
VMBLOK, Rll is loaded from the location indicated by
the operand, and charging for the new VMBLOK is
STARTed.

4. SYNC - the values of VMCPTIME and VMAPTIME are added
together and placed in VMTTIME (really!).

17.3.4.5 LOCK

The LOCK macro is used to request ownership of one of the
CP-defined locks discussed above.

1. The first operand is positional, required, and indi­
cates the type of operation to be performed.

- 308 -

LOCK RELEASE,TYPE=type,SPIN=YES,SAVE
OBTAIN NO

Figure 33: LOCK macro operands

2. The second operand is keyword, required, and 'indi­
cates the name of the lock to be obtained or re­
leased. The val id names for "type" are the same as
have been discussed before except that the free stor­
age lock cannot be specified, and the RDEVBLOK lock
should be specified as TYPE=PRIVATE.

3. If TYPE=PRIVATE, then register 1 is assumed to point
to the lock word when the macro is invoked.

4. If TYPE=VMBLOK, then register 1 must contain the ad­
dress of the VMBLOK to be locked. After obtaining
the lock, the lock manager calls DMKVMASW to insure
that the segment table for the virtual machine points
to the proper set of shared segments for this proces­
sor.

5. The SPIN keyword is opt ional, defaults to YES, and
indicates whether or not the processor is to loop un­
til the lock is available.

6. I f both OBTAIN and SPIN=NO are spec i f ied, then the
resul ts of the lock request are variable. I f the
lock was obtained, condition code 0 is set. If the
lock could not be obtained because it was owned by
the other processor, a condi t ion code of 1 is set.
If the lock could not be obtaIned because it was al­
ready owned by the current processor, you will soon
be looking at the dump caused by a LOKOOI ABEND.

7. The key.word SAVE is optional and specifies that the
programmer really cares about the contents of regis­
ters 0, 1, 14, and 15, so they should be saved and
then restored before exi t from the macro expans ion.
The registers are saved in a 4-word save area named
LOCKSAVE defined within the PSA of each processor.

If the lock cannot be obtained, or if the request is for a
VMBLOK lock and the shared segments must be straightened
out, control is transfered to var ious rout ines wi thin the

- 309 -

lock manager, DMKLOK. Note that the lock manager performs
no particular special processing for the deferral of re­
quests for the global system lock.

17.3.4.6 SWTCHVM

The SWTCHVM macro provides a convenient interface to the
rout ine DMKLOKSW to handle the detai Is of swi tching to a
different VMBLOK in a multiprocessor environment. Normal
processing when the SWTCHVM is executed proceeds as follows:

1. Obtain the lock for the VMBLOK addressed in Rl. If
the lock cannot be obtained, stack a deferred execu­
tion CPEXBLOK and exit to the Dispatcher.

2. Update the shared segments, if necessary, to be the
segments used by the current processor.

3. Execute a CHARGE SWITCH to update Rll and the CPU
timer fields.

4. Release the lock on the VMBLOK pointed to by Rll on
entry to the routine.

5. Return to the caller.

Various options of the SWTCHVM macro allow the programmer to
specify that the shared segment pointers need not be updat­
ed, that the return should be on the same processor invoking
the macro, or that it is not necessary to obtain the lock of
the new VMBLOK.

17.4 IMPLICATIONS FOR USER MODIFICATIONS

One serious concern in the acquisition of a MP or AP system
is the conversion of user modifications so that they work
properly on the new hardware. This section comments on what
kinds of mods require changes for MP/AP support and provides
some examples based upon techniques already used within CPo

17.4.1 Considerations

17.4.1.1 Does it need protection?

Careful examination and thought is needed to assess the po­
tential impact of race conditions caused by two processors
updating a field at the same time. Unfortunately, since

- 310 -

each processor has access to all of memory, the altering of
any storage location causes, in theory, a possible problem.
In practice, however, the processors tend to "mind their own
bus iness" so that a local modi f icat ion that, for instance,
implements a new query-type funct ion qui te poss ibly would
not require changes.

17.4.1.2 Is it already protected?

Many parts of CP are already serialized by requiring the
global system lock to be held when they are executed. Exam­
ples of such areas are:

1. CP command processing.

2. Execution of pageable CP modules.

3. Processing invoked by the unstacking of a TRQBLOK or
IOBLOK.

4. Processing invoked by the unstacking of a CPEXBLOK.

In fact, looking carefully at the list of locks, one can ob­
serve that the resources that have separate locks are on the
high performance interrupt generated paths where one proces­
sor locking out the other could seriously degrade system
performance.

Data areas wi thin CP that are only accessed whi Ie the
global system lock is held require no further protect ion.
IMPORTANT: The VMBLOK lock is held while a virtual machine
is dispatched and is generally used to serialize updates to
that control block and its appendages. In "normal" CP code,
the processor owns the lock for the VMBLOK pointed to by Rll
but this should be verified and SWTCHVM used before updating
fields of another VMBLOK.

17.4.2

Of course, in some cases an additional lock must be obtained
or access to a particular resource serialized in some fash­
ion. Below are some examples of the techniques used within
CP to protect fields from s imul taneous update by multiple
processors.

- 311 -

17.4.2.1 Switch VMBLOKs

L Rl,OTHERVM
SWTCHVM ,

C Rll,SAVERll
BE NOSWT
L Rl,SAVERll
SWTCHVM ,

NOSWT EXIT

get other VMBLOK
over to other vm

do we need to switch
-> nope, all set
yes, get original VMBLOK

Figure 34: Example of SWTCHVM usage

Figure 34 shows a simple example of swi tching to another
VMBLOK in a module invoked by the SVC 8 form of CALL. Note
that the test for avoiding the SWTCHVM if Rll has not been
changed is not strictly necessary since the code in DMKLOKSW
checks for that condi t ion and simply returns if Rl = Rll,
but such a test is often performed in any case.

17.4.2.2 Obtain the global system lock

Figure 35 shows an example of obtaining the global system
lock and the code necessary to defer the request if the lock
is not available. This code is often within a local subrou­
tine of a module that must obtain the lock since writing the
same code does get very tedious and there is no macro de­
fined to handle it. There are several observations that can
be made about the code:

1. The LOCK macro generates
lock cannot be obtained.
is very useful, DMKLOKDF
the lock was unavailable
condition code.

a call to DMKLOKDF if the
Rather than doing much that
counts the number of times

and returns with a non-zero

2. The CPEXBLOK pointed to by VMDFTPNT is a permanent
appendage of every VMBLOK and is not released by the
di~patcher when it is unstacked.

- 312 -

L
CLC
BE
LOCK
BZ
L
USING
STM
LA
ST
CALL
DROP
GOTO

GTLK DS

R15,=A(DMKLOKSY+2) get addr of lock
LPUADDR,O(R15) do we own the lock?
GTLK -> yes, piece of cake
OBTAIN,TYPE=SYS,SPIN=NO
GTLK -> hard work, but success
Rl,VMDFTPNT get address of defer block
CPEXBLOK,Rl
RO,R15,CPEXREGS
RO,GTLK
RO,CPEXADD
DMKSTKDE
Rl
DMKDSPRU

OH

save registers
address of defer routine
set return point
go stack the CPEXBLOK

run a user while waiting

Here when lock obtained

Figure 35: Example of obtaining the system lock

3. The external names DMKSTKDE and DMKDSPRU must have
expl ic i t EXTRN statements wi thin the module. How­
ever, DMKLOKDF is addressed wi th a V-type address
constant.

4. DMKDSPRU is the standard exit point if the system
lock cannot be obtained. The dispatcher has suffi­
cient protection to be able to dispatch virtual ma­
chines even though the global system lock may be held
by another processor.

17.4.2.3 Maintain a queue

Figure 36 illustrates the technique for adding an entry to a
singly linked list using the Compare and Swap instruction.
The technique shown is in fact used by CP to maintain the
local SVC save area chain for each processor.

Figure 37 illustrates the technique for removing an entry
from a singly linked list. Note that Compare Double and
Swap must be used to protect from a pathological but possi­
ble case resulting from the other processor removing two en­
tries and replacing the top entry between the time that

- 313 -

USING QENTRY,Rl Map the new queue entry
L RO,QHEAD Get pointer to first entry

QLOOP DS OH
ST RO,QNEXT Point to rest of list
CS RO,Rl,QHEAD New entry is the first
BNZ QLOOP -> Failed, try again

QHEAD DC A(*-*) Pointer to first qentry

QENTRY DSECT
QNEXT DS F

Figure 36: Example of adding to a queue with CS

LM
RLOOP DS

LTR
BZ
LA
L
ALR
CDS
BNZ

QCNT DC
QFIRST DC

R14,R15,QCNT Get queue header info
OH
R15,R15 Is entry available
NOENTRY -> Nope, recover somehow
RO,l Increment value
Rl,QNEXT-QENTRY(,R15) Point to 2nd entry
RO,R14 Bump delete counter
R14,RO,QCNT Get the first entry
RLOOP -> Failed, try again

F'O '
A(*-*)

Delete counter
Pointer to first entry

Figure 37: Removing a queue entry with CDS

QFIRST is loaded and the CS would be done. While .that
circumstance seems unlikely, it could happen if one proces­
sor was manually stopped or had to field a recoverable ma­
chine check in the middle of the code sequence.

- 314 -

17.4.2.4 Set a flag

Figure 38 shows the technique for setting a flag in a word
that both processors might try to "maintain" at the same
time. Such examples of setting and resetting flags may be
found in DMKEXT, which handles SIGP instructions and the ex­
ternal interrupts resulting from a SIGP. Flags for pending
external calls and emergency signals must be treated in the
fashion shown.

L R1,FLAG Get the current value
FLOOP DS OH

LA RO,MASKEQU What we want to set
OR RO,Rl New value for flag
CS R1,RO,FLAG Stuff it away
BNZ FLOOP -> Oops, not fast enough

FLAG DC F' 0' Flag word (bits 24-31)
MASKEQU EQU X'40' User is a blankity

Figure 38: Example of setting a flag with CS

17.4.2.5 Define and use a private lock

Figure 39 shows how a private lock is defined and used. The
LOCK macro assumes Rl contains the address of the lock word
when TYPE=PRIVATE is coded. The standard basic restrictions
apply in that if a error is encountered, CP terminates.
Standard errors that a programmer would want to protect
against are: obtaining a lock already held (LOKOOI ABEND)
and releasing a lock that is not yet held (LOK003 ABEND).
The RDEVBLOK lock used by the I/O and paging subsystems to
serialize access to the queue of I/O requests pending for a
device (at RDEVFPNT) is an example of the use of a private
lock within standard CP code.

- 315 -

LA Rl,MYLOCK A(my own special lock)
LOCK OBTAIN,TYPE=PRIVATE,SPIN=YES

.
(Lots of good high-quality code)

LA Rl,MYLOCK Finger the lock again
LOCK RELEASE,TYPE=PRIVATE Give it back

MYLOCK DC F'O' Lock for smc resource

Figure 39: Example of private lock

- 316 -

\
Pl

fLllI

.'"

\

E'tT
. FLI'" ~

-~

MP/AP
STORAGE & DATA STRUCTURES
SHARED SEGMENTS

VMBLOK
. VMSEG

~

PAGE --T-ABL-E
SEGTABLE

SWAP TABLE

SEGPAGE ..J PAGE TABLE
~

SWAP TABLE

VMBLOK
VMSEG

SEGTABLE

""....

SEGPAGE

PREF/~ }a,6/S r£~

o

A8SfJLUT£
ADD~eS~

o f J.D .II

•

f= ~~
•

.,. cc:' 0

LOOP L RA~WO.O

LR Ry, R~
A Ry. F.1.. .

(' S· /? .. , R'II WGI!I)

8N 2 LOfJP

MP/AP

STORAGE & DATA STRUCTURES

REAL MEMORY

PSA PROC IPL

PSA PROC NONIPL

DYNAMIC
PAGING

AREA

CP NUCLEUS

ABSOLUTE PSA

PREFIX PSA's NOT NECESSARY AT HIGH
MEMORY

MP/AP

LOCK WORDS

LOCK

LOCKER

SPIN TIME

SPIN COUNT

NOTES

- 317 -

- 318 -

18.1 INTRODUCTION

18.1.1 Overview

Chapter 18

TRACE TABLE AND DUMPS

This chapter is concerned wi th two of the most often used
facilities in CP for finding errors. The first is the CP
trace table. The second is a CP dump.

18.1.2 References

18.1.2.1 Publications

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SC19-620l).

2. IBM Virtual Machine/System Product: Operator's Guide
(SCl9-6202).

3. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

4. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

5. IBM Virtual Machine/System Product: S~stem Messages
and Codes (SC19-6204).

18.1.2.2 CP modules

1. DMKDMP - writes system dumps to the system spool, to
tape, or to a printer.

2. Many CP modules contain the TRACE macro, which ex­
pands into the code that places data into the trace
table.

- 319 -

18.2 TRACE TABLE OPERATION

The trace table is simply an area of main storage that is
allocated at IPL time. Its size generally increases as the
amount of main storage increases. If an installation wants
to explicitly set the trace table size, there is a parameter
in DMKSYS for specifying the size.

There are three pointers, TRACSTRT (X'OC'), TRACEND
(X'IO'), and TRACCURR (X'14'), located in the absolute PSA.
The three addresses are the beginning of the trace table,
the end of the trace table, and the address of the next
trace table entry to be used. Since these pointers are in
the absolute PSA, they are shared by all processors in a
mul t iprocessor envi ronment; there is just one trace table
even in an AP or MP system. Any module within CP that cre­
ates an entry in the trace table updates the current entry
pointer. When the last entry of the trace table is created,
the current pointer wraps to the beginning entry. Each en­
try is 16 bytes long and has a fixed format. The flags used
by CP modules to decide which items to trace are located at
TRACEFLG (X'400') in the PSA. By setting the trace table
flags, you can selectively trace events in the system. For
example, if you are tracking an I/O problem, you can set the
trace table f lags to trace only SIOs, I/O interrupts, and
posting I/O interrupts to virtual machines.

A detailed discussion of the entries follows.

18.3 TRACE TABLE ENTRIES

Table 31 describes the various entries in the trace table.
While reading the trace table, you should remember:

1. The hexadecimal ID is ORed with a X'40' if the entry
was generated on the non-IPL side of an multiproces­
sor system and is ORed with X'80'if the entry was
generated in ECPS microcode.

2. If the SVC is X'OC' (EXIT), then the return address
is given instead of R15.

- 320 -

Entry Type

EXT Intrp
SVC Intrp
PGM Intrp

Machine
Check Intrp
I/O Intrp

Get Storage
(FRE)

TABLE 31

Trace table entries

Module ID Information in entry

DMKPSA 01 Interrupt Code & old PSW.
DMKSVC 02 Interrupt Code, R15, & old PSW.
DMKPRG 03 Interrupt Code, old PSW &

first 3 bytes of VPSW.
DMKMCH 04 VMBLOK, first 4 bytes of

MCH interrupt code, & old PSW.
DMKIOT 05 RAddr, CSW, & old PSW addr.

DMKFRE 06 VMBLOK, amount requested,
and address assigned.

Return DMKFRE 07 VMBLOK, amount and address
Storage (FRET) to be given back.
Enter SCH DMKSCH 08 VMBLOK, VMBLOK flags, & R14.

09 VMBLOK & YMBLOK flags. Queue Drop DMKSCH
Run User DMKDSP OA PSA RUNUSER value & RUNPSW.

SIO or
SIOF

Unstack I/O
VCSW Store

Test I/O

Halt Device

Unstack
IOBLOK or
TRQBLOK

NCP BCU
Lock Spin

SIGP

Clear Ch
IUCV

SNA CCS
DIAG 80

OB CC, RAddr, IOBLOK addr, DMKIOS
DMKCPI
DMKCNS
DMKDSP OC
DMKVSI OD

18 CAW & CSW+4.

VAddr, VMBLOK, & VCSW.
VAddr, VMBLOK, VCSW,

DMKCPI
DMKIOS
DMKCNS
DMKIOS
DMKVSI
DMKCPI
DMKDSP

& instruction opcode.
OE RAddr, CC, addr of lOB, CAW,

& CSW+4.
OF CC, RAddr, addr of lOB, CAW,

& CSW+4.

10 VMBLOK, VMBLOK flags, IOBLOK
or TRQBLOK addr, &
interrupt return address (IRA).

DMKRNH 11 CON flags
DMKLOK 12 VMBLOK, lockword addr and

contents, & return addr.
DMKEXT 13 Return addr, cc, function &

order codes.
DMKVSI 14 CC, RAddr, VMBLOK & VCSW
DMKIUA 15 function code, path id,

& addr of IUCVBLOK.
DMKVCV 16 Transaction type.
DMKMHC 17 HCBLOK & MSFBLOK addr, MSSF cmd

- 321 -

18.4 DUMP FACILITY OVERVIEW

If CP encounters a log i calor phys i cal error, it issues an
SVC a to ABEND CP. The ABEND request is processed by
DMKDMP, a res ident nucleus module. The contents of rna in
memory and the registers are dumped and CP tries to restart
itself. The standard ABENDs in CP have names composed of
two parts. The first three characters of the name spec i fy
the module issuing the ABEND and the last three characters
are a three digit number. For example, a PRGOOl ABEND in CP
indicates that DMKPRG, the program interrupt handler, has
fielded an interrupt code of 001. Program interrupt code
001 is an operation exception, which should not occur within
CPo Therefore CP is terminated. The possible causes of
each ABEND are documented in the System Messages and Codes
manual.

The normal destination of the dump created by an ABEND of
CP is a spool file. As was mentioned earlier, an installa­
tion may explicitly reserve dump space. If dump space is
reserved and not occupied by a previous dump, then the dump
spool file is allocated in the dump space. If no dump space
is reserved or the reserved space is full of previous dumps,
the dump program attempts to allocate contiguous space in
the spool. If th.e spool space is fragmented enough to pre­
vent allocation of contiguous space, the dump fails. With
the SYSOPR macro in DMKSYS the installation can specify the
userid to which the dump should be directed.

If the dump program has been fa~ling because of reported
I/O errors on the spool or dump space, the SET DUMP command
can be used to redirect future dumps to a tape drive or to
the real pr inter. Since DMKDMP is not very clever, if the
installation is trying to wri te a dump on tape, the dump
must fit on one reel and will be written at 1600 bpi. The
dump tape is written 132 bytes per record unblocked. Any
system with more than about 4 megabytes of storage can not
be written on one reel of tape. Also the installation must
have a real tape drive available and ready for use during
the time the tape is the target for the dump. The ability
to re-direct the dump to a tape is helpful when an installa­
tion is creating a dump for the IBM support center.

- 322 -

18.5 PROCESSING THE OUTPUT OF A CP DUMP

If the dump has been to a spool· file, normally a system pro­
grammer logs on to the userid specified in DMKSYS as the re­
cipient of system dumps and issues the commands needed to
process the dump. A full discussion of this process is out­
side of this presentation. If the installation has the In­
teractive Problem Control System (IPCS) product, the User's
Guide has documentation. If the installation does not have
IPCS, then the VMFDUMP command is available for reading the
dump from the virtual reader, storing it on a CMS minidisk
and optionally, printing it.

If the dump has been written to a tape, it can be printed
by attaching a tape drive to the system programmer's virtual
machine, mounting the tape, and using the MOVEFILE command
with the appropriate FILEDEFs for the tape drive and the
virtual printer. The details of this process are documented
in the Operator's Guide manual.

18.6 SUMMARY

This chapter. has dealt with two tools available to debug CPo
The trace table and CP dumps are invaluable for tracking
down problems and documenting them. Several other facili­
ties are also available. SMART, the real time monitoring
system for VM, allows a system programmer to look at format­
ted trace table entries while the system is running. SMART
also allows the setting of trace table flags to record only
entries that are helpful in tracking a particular problem.

- 323 -

- 324 -

NOTES

- 325 -

- 326 -

19.1 INTRODUCTION

19.1.1 Overview

Chapter 19

SYSTEM DIRECTORY

The CP directory is a page-formatted DASD space containing
data items that define the configuration of each virtual ma­
chine. Each definition contains the userid, password, memo­
ry limits, I/O configuration, and options for the virtual
machine.

There are two different facilities for maintaining the
directory. The directory can be built from scratch by issu­
ing the DIRECT command in CMS or by running a standalone
program on real hardware. Both of these facilities use the
module DMKDIR. The second way of updating the directory al­
lows selected fields for an ~xistinq virtua~ machine config­
uration to be modified without regeneration of the full di­
rectory. This second method is used by the' IBM product
known as 'DIRMAINT', although it can also be used by a user­
written program.

Before we look at these two methods of maintaining the
directory, we will review the structure of the directory
space. Remember that utility program DMKFMT writes an allo­
cation record 1024 bytes long. One of the kinds of space
that can be declared for special use is directory space. A
directory cylinder is marked in the allocation map with ei­
ther a X'04' or X'OC'. The X'OC' flag marks a cylinder that
contains the current system directory. This current direc­
tory is also pointed to by a field in the DASD volume's VOLI
record. An X' 04' flag marks a cylinder available for re­
ceiving a new directory. After the new directory is built,
the allocation map entry will be changed to X' OC' and the
old directory's cylinder will be changed to X'04'. The use
of the build and swap technique is used in directory mainte­
nance for maximum reliability. All directory cylinders are
page-formatted and most accesses to the directory use the
paging subsystem for I/O.

- 327 -

19.1.2 References

19.1.2.1 Publications

1. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SC19-620l).

19.1.2.2 CP modules

1. DMKDIR - is the DIRECT command, both as a CMS command
and as a stand-alone program. (It is not a part of
the CP nucleus.)

2. DMKUDR - contains the major subroutines that deal
with directory I/O.

3. DMKUDU - supports the update-in-place DIAGNOSE X'84'.

19.2 DIRECTORY STRUCTURE

The directory exists as page-sized records in the directory
space. There are five different control blocks used to map
different kinds of directory data. Table 32 lists the five
different control blocks.

Name

UDIRBLOK
UMACBLOK
UDEVBLOK
UIPLBLOK
UIUCBLOK

TABLE 32

Directory control blocks

Length

X'18'
X'50'
X' 38'
X'40'
X'lO'

Information

Userid and password
Options and IPL name
Virtual device
IPL parameters
IUCV parameters

Each page in the directory is devoted to one kind of control
block. For example, all of the UDIRBLOKs exist in pages
containing only UDIRBLOKs.

- 328 -

The directory space is page-formatted. Each page in the
directory is addressed with a CCPD similar to DASD slot ad­
dresses in CP paging space.

19.2.1 UDIRBLOK

A UDIRBLOk is bui 1 t for each USER card in the di rectory
source file. In addition to the userid and password, there
are pointers to the machine description blocks (UMACBLOKs)
associated with this user. These pointers consist of a CCPD
and an offset into the page.

The first UDIRBLOK on a page is not a description of a
user. It is a control block containing pointers to the last
UDIRBLOK on the page and the CCPD for the next page of UDIR­
BLOKs. Each page can contain 169 UDIRBLOKs plus the pointer
control block.

19.2.2 UMACBLOK

The user machine description block (UMACBLOK) is pointed to
by the UDIRBLOK. This control block maps the ACCOUNT card,
the IPL card, the OPTIONS card, and all parame~ers given on
the USER card except userid and password. The UMACBLOK can
also contain information specified by a SCREEN card. Like
the UDIRBLOK, there is only one UMACBLOK per userid. The
UMACBLOKs for several virtual machines are located on one
page.

The UMACBLOK also contains the pointers to the first
UDEVBLOK for the virtual machine. If the IPL card does not
specify parameters, the named system to be IPL'ed is con­
tained in the UMACBLOK. If, however, the IPL card specifies
parameters, then the UMACBLOK contains the CCPD and offset
of the IPL extension block (UIPLBLOK). There can also be
pointers to an UIUCBLOK if IUCV has been authorized for this
virtual machine.

19.2.3 UDEVBLOK

The UDEVBLOK contains information about one virtual device
described by an MDISK, SPECIAL, or SPOOL card. For virtual
DASD devices, there are passwords for each of the access
modes, the volume name of the real device that contains the
virtual disk, and the size and relocation factor for the mi­
nidisk.

- 329 -

19.2.4 Masking
. .

Many fields in directory control blocks are masked for se­
curity by exclusive ORing onto the field a mask value of
X'AAAAAAAAAAAAAAAA'. If someone is casually perusing a dump
or examining CP storage, the userids, passwords, and other
data will not exist in "clear text". Unfortunately, the
mask is distinctive enough that someone having access to
dumps or CP storage can spot the data areas and do the ex­
clusive OR operation manually. CP programs that deal with
the directory will perform the exclusive operation on data
coming into or going out of the directory.

19.3 BUILDING THE DIRECTORY

During CP initialization, the allocation records of CP-owned
disks are read into main storage and searched for the X'OC'
flag that marks the active directory. All of the UDIRBLOK
pages are mapped into the CP' s own virtual memory. These
pages are paged-out through normal paging mechanisms to pag­
ing space. The list of the virtual memory addresses of
these pages is anchored at DMKSYSPL (page list). The CCPD
fo the beginning of the active directory is stored at
DMKSYSUD (user directory). Directory pages containing other
directory control blocks are not touched. When one of. them
is needed, that page will be paged-in, but will never be
written to the paging space. Placing the UDIRBLOK pages in
the page space is a performance feature of CPo

19.3.1. DIRECT command

DMKDIR is the module that runs standalone on real hardware
or is invoked from CMS as the DIRECT command. It reads a
source file and builds the appropriate control blocks in
page-sized records. It also reads the VOLI record and allo­
cation record on cylinder 0 and updates them if the source
directory is processed without error. If DMKDIR is execut­
ing on native hardware, then it is finished. If, however,
it is running under CMS, DMKDIR executes a DIAGNOSE X'3C',
which performs a dynamic directory swap to make the new di­
rectory active in the system without an IPL. The only pa­
rameter for this DIAGNOSE is the volume name of the volume
containing the new directory.

- 330 -

19.3.2 DMKUDRDS = directory dynamic swap

As part of the dynamic swap processing, DMKUDRDS also reads
the VOLl and allocation records using an extended IOBLOK.
The IOBLOK contains all of the buffer areas for the contents
of the VOLl and allocation records. After validity checking
the directory pointers, DMKUDRDS calls DMKUDRBV (Build Vir­
tual buffer).

19.3.3 DMKUDRBV = directory activation

DMKUDRBV is responsible for getting virtual addresses for
the new di rectory's UDIRBLOK pages. I t then calls DMKLOCKQ
to serialize access to the fields in DMKSYS to be updated.
DMKUDRBV then stores the new directory's beginning CCPD at
DMKSYSUD and the anchor to the list of virtual addresses for
the new UDIRBLOK pages at DMKSYSPL. It rescinds the serial­
ization request by calling DMKLOCKD and returning to
DMKUDRDS, which returns to its caller.

19.4 OTHER ENTRY POINTS IN DMKUDR

In order for LOGON, LINK, and other CP processes to access
data in the directory in a standard way, there are several
entry points in DMKUDR. Table 33 lists selected entry
points and their functions.

TABLE 33

Selected DMKUDR entry points

Entry point

DMKUDRFU
DMKUDRFD
DMKUDRMD
DMKUDRXI
DMKUDRIA

Description

Find User (UDIRBLOK).
Find Device (UDEVBLOK).
Find Machine (UMACBLOK)~
Find IPL Extension (UIPLBLOK).
Find IUCV (UIUCBLOK).

- 331 -

DMKUDRFU moves the contents of a UDIRBLOK into a buffer
supplied by the caller. It also exclusive ORs the userid
a'nd password wi th the X' AAAA' mask to make the data readable
to the caller. The other entry points perform similar func­
tions.

19.5 UPDATING THE DIRECTORY IN PLACE

It should be noted that the DIRECT command rebuilds the en­
tire directory. Until recently, the DIRECT command, or its
standalone equivalent, was the only way of making any change
to the di rectory • Given a large di rectory wi th several
thousand users, there was much unneeded processing required
to make even a minor change in the directory. In addition,
installations had asked IBM for a facility to allow general
users to modify their own LOGON and minidisk passwords.

To provide this funct ion, IBM invented a new DIAGNOSE
code. DIAGNOSE X'84' will update selected existing fields
in the active directory by simply paging in the appropriate
record, making the change, and paging the record back out to
directory space. The module responsible for this processing
is DMKUDU. The module is well written and is recommended to
anyone wishing to understand directory processing in gener­
al. There is a limit to what the 'update in-place' function
can perform. It can not add control blocks. If a user
wants an new minidisk, the standard directory process must
be used.

Remember that all of the UDIRBLOKs are mapped into the
system virtual memory and therefore can exist both in page
space and in directory space. For any request that changes
the contents of a UDIRBLOK, DMKUDU must page-out the changed
page to both the page space ,and the directory space (or the
object space, as it is referred to in DMKUDU).

19.6 SUMMARY

The directory facility is unique to CPo The paging subsys­
tem is used by all accesses to the directory. DMKDIR builds
a directory from a source file. DMKUDR allows CP programs
to access directory contents in a standard way. DMKUDU up­
dates fields in the active directory based on user request.
DMKDIR uses DIAGNOSE I/O when it is executing under CMS and
SIOs when running on the real machine. The major outstand­
ing problem with the directory is its size. When CP/67 was
designed, directories with thousands of users were not an­
tic ipated. The IBM product, DIRMAINT, does not alleviate
the performance problem caused by directory searchs. How-

- 332 -

ever, by using the 'update in-place' mechanism, it does
solve most of the updating performance problem. It also al­
lows users to change passwords and other virtual machine
characteristics in real time.

- 333 -

- 334 -

DASD DIRECTORY SPACE LAYOUT

CCPD CCPD
1---"1~ ____ -------~ UMA-CBLOKs UD I RBLOKs .

CCPD

UD I RBLOKs

o

NOTES

- 335 -

- 336 -

PART III

GLOBAL TOPICS

The following chapters discuss "global" topics, each of
which involves several of the specific topics which we have
already discussed. Each chapter should show you how various
parts of CP interact to perform large-scale tasks.

20.1 INTRODUCTION

Chapter 20

MICROCODE ASSISTS

Since its introduction, VM/370 has been the target of criti­
cism about the "excessive" overhead of privileged instruc­
tion simulation. Some of that criticism has been shown to
be unjustified, but there are certain cases in which in­
struction simulation does in fact consume a great deal of
system resource; that is especially true when a virtual
storage operating system is run in a virtual machine. The
more complex virtual operating systems (such as MVS, VM, and
TSS) suffer more from instruction simulation overhead than
do the simpler systems (such as VS/l and DOS/VS). In an at­
tempt to improve the simulation, IBM has implemented various
parts of the simulation in hardware or in microcode.

20.1.1 Overview

This chapter will discuss the two forms of assists, VMA and
ECPS for VM. There exist assists for MVS and for VSl, but
we will not discuss them. Each type of assist provides sup­
port for certain instructions and features, and each can be
enabled and disabled in whole or in part. Some examples of
instruction timings will also be given.

20.1.2 References

20.1.2.1 Publications

There is little generally available documentation on VMA and
ECPS, but the following should be of some help:

1. IBM Virtual Machine/System Product: System Program­
mer's Guide (SCl9-620 3) . This has a br i ef descr ip­
tion of VMA.

2. IBM Virtual Machine/System Product: Da ta Areas and
Control BLock Logic (LY20-0891)

- 339 -

3. IBM Virtual Machine/Sgstem Product: Sgstem Logic and
Problem Determination Guide Volume 1 CP
(LY20-0S92). This has an excellent description of
ECPS.

4. Virtual-Machine Assist and Shadow-Table-Bgpass Assist
(GA22-7074). This is a detailed description of VMA.

5. The best description of VMA is given in the mainte­
nance instructions for RPQ S20573, VMA for the
370/16S. These instructions are exceedingly de­
tailed, but they do not refer at all to ECPS.

20.1. 2.2 CP modules

1. DMKBLD - builds a VMBLOK.

2. DMKCFS - processes the SET ASSIST command.

3. DMKCFY - processes the SET SASSIST command.

4. DMKCPI - performs system initialization.

5. DMKDSP - is the system dispatcher.

6. DMKFPS· - performs special OS/VS simulation.

7. DMKIUE - processes an IUCV interrupt.

S. DMKPMA - supports the preferred machine assist.

In addi t ion to those modules, the following modules have
logic that is associated with ECPS:

1. DMKCCW - performs CCW translation.

2. DMKDGD - performs DIAGNOSE X'IS' I/O.

3. DMKDGF - handles DIAGNOSE X'IS' I/O interrupts.

4. DMKFRE - manages CP control block storage.

5. DMKHVC - handles virtual DIAGNOSE simulation.

6. DMKMCH - handles machine check processing.

7. DMKPGS - handles paging.

S. DMKPRV - handles privileged instruction simulation.

9. DMKPTR - handles paging.

- 340 -

10. DMKRPA - handles paging.

II. DMKSCN - various scan subroutines.

12. DMKSTR - handles paging.

13. DMKSVC - handles CP CALL and EXIT macros.

14. DMKTMR - handles timer support.

15. DMKTRA - handles virtual paging.

16. DMKUNT - performs CCW and CSW translation.

17. DMKVAT - manages shadow page tables.

18. DMKVAU - manages shadow page tables.

19. DMKVMA - supports shared segment protection.

20. DMKVSI - handles virtual SIO simulation.

2I. DMKVSJ - handles virtual HIO simulation.

20.2 STANDARD VMA

The original Virtual Machine Assist feature was provided on
the models 135,145,158,165-11,168,3031,3032,3033 and
3081; in some cases VMA was an RPQ rather than a standard
feature. We wi 11 discuss VMA processing, hardware control
of VMA, and the associated CP commands.

20.2.1 VMA processing

VMA performs three types of work that would otherwise have
to be performed by CP itself:

1. Simulation of certain privileged instructions.

2. Simulation of most virtual machine SVC interrupts.

3. Automatic maintenance of shadow page tables for vir­
tual storage virtual machines.

- 341 -

20.2.1.1 VMA instruction simulation

The major source of virtual machine overhead in many cases
was found to be the simulation of a few privileged instruc­
t ions that were issued very often by VS/l and VS/2. Such
instructions of course cause a privileged operation excep­
tion interrupt when they are issued from a virtual machine.
CP must field the interrupt and eventually simulate the ef­
fect of the instruction. For many common cases the majority
of CP processing was merely the overhead of dealing with de­
coding the instruction and dispatching the virtual machine
after the s imulat ion was completed; the actual simulat ion
itself was often very simple. For such cases, VMA was in­
troduced; hardware or microcode in VMA would perform the
simulation without ever giving control to CP, thereby avoid­
ing most of the overhead of the total s imulat ion process.
The following is a list of the instructions that are simu-
lated by VMA: .

1. IPK ("insert PSW key")

2. ISK ("insert storage key")

3. LPSW ("load PSW")

4.· LRA (" load real address")

5. RRB ("reset reference bit")

6. SPKA ("set PSW key from address")

7. SSK ("set storage key")

8. SSM ("set system mask")

9~ STCTL ("store control registers")

10. STNSM ("store then and system mask")

11. STOSM ("store then or system mask")

In some cases, VMA cannot fully simulate the instruction.
For example, if a SSM instruct ion enables for interrupts
that have been pending for the virtual machine, then addi­
tional processing must be performed in the dispatcher to
simulate the PSW swapping that is part of the interruption
processing. In such a case, VMA will quit and let the pri­
vop exception take place so that CP will perform the simula­
tion. In such cases, some additional processing time is re­
quired, but that is usually overshadowed by the improvements
that VMA is able to achieve on the average.

- 342 -

Table 34 shows some comparative timings with and without
VMA for some older System/370 models.

TABLE 34

VMA privop timings (microseconds)

Ope ode 145 158-3 168-3
std VMA std VMA std VMA

------ --- --- --- --- --- ---
IPK 638 638 314 3 78 2
ISK 708 24 333 7 85 8
LPSW 743 15 352 6 92 2
LRA 1131 40 518 12 133 12
RRB 799 28 367 9 104 8
SPKA 673 673 324 4 81 2
SSK 739 28 344 9 96 14
SSM 720 11 350 6 90 3
STCTL 2015 39 871 13 271 9
STNSM 733 8 355 5 91 3
STOSM 733 9 355 6 91 3
SVC 721 32 331 9 85 7
(TIO 897 961 409 438 107 115)

As you can see, most of the instructions are very much
faster when VMA is available. Some however, like TIO, that
are not handled by VMA take a little longer since VMA first
looks at the potential privop exception to see if it is one
that VMA can handle. In an extreme situation, VMA might end
up causing more overhead than it is worth, but such a case
is only theoret ical; in all known real test si tuat ions VMA
has shown a significant overall improvement in system
throughput and reduced overhead. Test MVS systems with VMA
have shown relative batch throughput improvement factors of
2 to 3 when compared to non-VMA systems.

20.2.1.2 SVC interrupt simulation

VMA handles SVC interrupts from problem state by simulating
the PSW swapping in the virtual machine's page O. However,
that simulation is not performed if the SVC number is 76; in
that case, a normal SVC interrupt is caused, giving control

- 343 -

to CPo That strange behavior is designed to allow CP to
intercept "error recording" calls, which in OS are performed
by SVC 76. If CP finds that RO and Rl contain valid error
recording information, it then performs the recording itself
and treats the SVC as a NOP. If the registers are not valid
for error recording, CP then reflects the SVC interrupt to
the virtual machine for its own SVC interrupt handler to
process. Table 34 above shows the improvement in CPU utili­
zation when VMA is able to handle the SVC interrupt.

20.2.1.3 Shadow table handling

For the case of a virtual storage operating system in a vir­
tual machine, CP must maintain "shadow page tables", which
perform a two-level translation from virtual-virtual ad­
dresses to real addresses. The shadow table is used by the
real hardware since its segment table address is in CRI.

Wheh such a table is active and a page exception inter­
rupt occurs, and if the associated real page is in fact
still available in real storage, then VMA examines the other
page tables and attempts to update the shadow table entry
for the correct virtual-virtual to real translation. This
process can avoid a real page except ion interrupt and the
associated CP handling.

20.2.2 Hardware control of VMA

VMA is controlled by control register 6. The following bits
in CR6 pertain to VMA:

1. Bit 0 enables VMA. If this bit is 0, then VMA is in­
active.

2. Bit 1 indicates that the virtual machine is in virtu­
al problem state.

3. Bi t 2 inhibi ts VMA I S processing of ISK and SSK in­
structions.

4. Bit 3 disallows the virtual supervisor mode execution
of the 370 DAT instructions; the virtual machine must
behave as if it were executing on a virtual 360.

5. Bit 4 inhibits VMA's processing of virtual machine
SVC instructions.

6. Bit 5 inhibits VMA's processing of virtual page table
exceptions for shadow table validation.

- 344 -

7. Bits 8 through 28 contain the real memory address of
the doubleword aligned MICBLOK, which contains other
values used by VMA.

The format of the MICBLOK is given in Figure 40. Note
that some of the MICBLOK fields are used by ECPS and not by
VMA itself; those fields will be described later. The
MICBLOK must not cross a 2K memory boundary; when the virtu­
al machine's MICBLOK is obtained from free storage, DMKLOG
must insure that this restriction is obeyed and so it will
continue to call DMKFRE until a block is obtained that does
not cross a 2K boundary. The MICBLOK is addressed by
VMMICRO in the VMBLOK and of course by CR6 when the virtual
machine is running.

+----------+----------+----------+----------+
o I MICRSEG (address of real segment table) I

+----------+----------+----------+----------+
4 I MICCREG (address of virtual cregs)

+----------+----------+----------+----------+
8 I MICVIP I MICVPSW (address of v PSW)

+----------+----------+----------+----------+
C I MICWORK (address of work area) I

+----------+------~---+----------+----------+

10 I MICVTMR (address of v interval timer) I
+----------+----------+----------+----------+

14 I MICEVMA I MICEVMA2 I MICEVMA3 I reserved I
+----------+----------+----------+----------+

18 I MICPMPSA (PMA: address of Cp's PSA) I
+----------+----------+----------+----------+

lC I MICPMMSK (PMA: CP's creg 2) I
+----------+----------+----------+----------+

20 I MICCREGO (PMA: virtual creg 0)
+----------+----------+----------+----------+

MICVIP (B'lOOOOOOO'): a virtual interrupt is pending.

Figure 40: MICBLOK format

The most important thing for a system programmer to re­
member about the MICBLOK is this:

THE MICBLOK IS USED BY HARDWARE; YOU CANNOT CHANGE IT.

- 345 -

That is, you cannot re-format it in any way. You must be
very careful when turning on bi ts in the MICBLOK for the
same reason. Similarly, VMA assumes that various fields in
the VMBLOK are at certain standard offsets. In effect, you
cannot re-format the portion of the VMBLOK defined by IBM;
if you need to add any fields to the VMBLOK, then add them
at the end.

20.2.3 VMA commands

CP provides several commands that can be used to enable or
disable VMA. These commands also affect ECPS, as described
in a later section.

1. SET SASSIST OFF/ON clears or sets bi t 0 of CR6 for
the entire system. This command can be issued only
by the system operator since it is limited to class A
users.

2. SET ASSIST OFF/ON clears or sets bit 0 of CR6 (if
setting has been enabled for the entire system) when
the current virtual machine is being dispatched.
This command can be issued by any class G user.

20.3 ECPS

Extended Control Program Support places additional function
into microcode. ECPS is available in several forms:

1. Full ECPS is a standard feature of the models 135-3,
138, 145-3, 181, 4341, and 4381.

2. A subset of ECPS is available on the models 3031 and
3031AP.

3. A different subset is available on the 4331.

ECPS replaces (and includes the functions of) VMA. There
are three major components of ECPS:

1. Control Program Assist is the implementation in mi­
crocode of several portions of CPo These are simple
routines that are executed very often.

2. Extended VMA includes the VMA functions and enhances
them to assist more instructions in more cases.

3. Virtual Interval Timer Assist causes a virtual inter­
val timer (at a virtual address X'50') to be updated
along with the real interval timer.

- 346 -

20.3.1 CP assist

CP Assist is implemented via a new instruction of the fol­
lowing format:

EGxx abbb cddd

The second byte "xx" contains an operation sub-code that de­
fines the assist routine to be invoked. The base-displace­
ment values "abbb" and "cddd" point to two parameter lists
whose contents are different for each of the assist rou-.
tines. Typically the first list contains pointers to data
values and the second list contains exit addresses. Table
35 gives a list of CP Assist instructions.

EGOO
EG01
EG02
EG03
EG04
EG05
EGOG
EG07
EGOa
EG09
EGOA
EGOB
EGOC
EGOD
EGOE
EGOF
EGIO
EGII
EG12
EG13
EGl4
EGl5
OAOa
OAOC

TABLE 35

CP assist instructions

DMKFRE
DMKFRET
DMKPTRLK
DMKPTRUL
DMKCCWO
DMKUNTFR
DMKSCNVU
DMKDSPI
DMKCCW
DMKCCW
DMKVAT
DMKVAU
DMKCCWI
DMKDSPO
DMKSCNRU
DMKCCW
DMKUNTRN
DMKDSP2

DMKVMA
DMKFRE
DMKFRET

Get free storage (old)
Return free storage (old)
Lock a page
Unlock a page
CCW decode
Free real CCW chain
Find VxxxBLOKs
Full dispatch
TRANS in a page
TRANS and lock a page
Invalidate segment table
Invalidate page table
Decode first ccw
Main dispatcher
Find RxxxBLOKs
CCW decode
Untranslate CCWs
Fast dispatch
Store ECPS version ID
Locate changed shared page
Get free storage (new)
Return free storage (new)
CALL macr.o
'MJ?~ macro
SXil

- 347 -

CP Assist can be disabled by replacing the E6xx
instruct ions wi th NOP instruct ions (NOP plus NOPR for 6
bytes total). CP itself performs that funct ion in DMKCPI
when it finds that ECPS is not available on the processor.
Note that some of the CP Assist instructions call each other
internally, and so if you disable one of the routines then
you may have to disable others as well. The CP Logic manual
has a good description of the interrelationships.

Each CP Assist instruct ion is followed by regular code
that performs the same function, and that code is executed
if the E6xx instruction is converted to NOPs. Each line of
code is identified by a percent sign (%) in column 64, di­
rectly before the update id .field.

IF YOU NEED TO CHANGE ANY LINE OF CODE CONTAINING A % IN
COLUMN ~ THEN YOU MUST----oISABLE-rrHE ASSOCIATED E6xx
INSTRUCTION.

That caution strictly need not apply if your CPU does not
support ECPS, but to violate the caution is to invite trou­
ble!

20.3.2 Extended VMA

The second major' component of ECPS is an extended VMA. Ta­
ble 36 gives a list of the additional instructions that are
handled by EVMA.

TABLE 36

Expanded VMA instructions

80
82
83
9C
9F
AC
AD
B206
B208
B209
B20D

SSM
LPSW
DIAGNOSE
SIO, SIOF
TCH
STNSM
STOSM
SCKC
SPT
STPT
PTLB

- 348 .-:

(part ial)
(partial)
(part ial)
(partial)
(complete)
(partial)
(partial)
(partial)
(partial)
(complete)
(complete)

Control of EVMA is in CR6, whose bit 6 enables or disa­
bles the entire EVMA support. Individual bits in the
MICBLOK (fields MICEVMA and MICEVMA2) are used to enable and
disable each of the individual instruction assists. CP nor­
mally runs wi th all of the EVMA funct ions enabled, except
when the microcode and the software are incompatible:

1. The support for PTLB cannot be used at all by VM/SP
due to the software's support of multiple shadow page
tables.

2. The support for TCH cannot be used if the micro code
is at version number 18 or 19.

3. The support for SIO cannot be used if the microcode
is at version number 21 and HPO is installed.

4. The ECPS instruction E60E (DMKSCNRU) cannot be used
if the RDEVBLOK shift value is 4, as indicated by bit
RDIDX in CPSTAT5. This can occur if a very large
number of RDEVBLOKs are generated in DMKRIO.

20.3.3 virtual interval timer

The third major component of ECPS is the virtual interval
timer support. This support, when enabled by bit 7 of CR6,
causes a virtual address X' 50' to be updated whenever the
real X'50' is updated. The virtual timer is located via the
field MICVTMR, which CP causes to point to the running vir­
tual machine's virtual X'50' when it is resident in real
storage or to the field VMTIMER in the VMBLOK when the vir­
tual page 0 is not in real storage. Virtual interval timer
support allows the virtual machine interval timer to be as
accurate as the real interval timer, which is important for
the correct execut ion of certain older ope rat ing systems
such as OS/MVT.

20.4 PREFERRED MACHINE ASSIST

The preferred machine assist (PMA) is available on the 3033,
308x, and 4381 processors and provides additional perform­
ance improvements for a V=R MVS virtual machine. This as­
sist reduces CP overhead by running the virtual machine in
real supervisor state for almost all instructions, including
some I/O operations. CP support for PMA is available only
in HPO versions of VM/SP.

PMA is controlled by bi t 0 in control register 6; when·
the bit is 1, then PMA is active for the current virtual ma-

- 349 -

chine. The MICBLOK is also extended to provide some
additional data. Since the PMA virtual machine is given the
absolute PSA as its page 0, CP assigns another page as a
"pseudo-absolute" PSA and places its address into the prefix
register. When the PMA microcode swi tches control back to
CP to handle some instruction, then it also loads the prefix
register with cp's value from the MICBLOK and clears bit 0
in control register 6. This operation is referred to as a
"context switch". Most of the special code for PMA is con­
tained in the new module DMKPMA.

PMA supports dedicated I/O channels, and for those chan­
nels no CP intervention is required for I/O instructions or
interrupts. The PMA microcode examines the CP control reg­
ister 0 contents, as stored in the MICBLOK, to determine
which channels belong to CP; all other channels are assumed
to belong to the PMA virtual machine. If an I/O instruction
refers to a non-CP channel, then that instruction executes
normally; if it refers to a CP channel, then a privileged
operation program check interrupt is generated along with a
context switch to CPo CP initialization builds the MICBLOK
channel mask by examining the RCHBLOKs in DMKRIO; those
channels that are not generated in DMKRIO are therefore ded­
icated to the PMA virtual machine. The CP channel mask is
stored in DMKDMPC2 and the PMA channel mask is in DMKDMPG2.

The following program check interrupts may occur to
switch control from the PMA virtual machine to CP:

1. An operation exception (X'Ol') occurs when a TB (Test
Block) instruction is executed.

2. A privileged operation exception (X'02') occurs for a
SIGP, a LCTL that loads CR2 or CR6, or a SIO to a
virtual (non-dedicated) channel.

3. A specification exception (X'06') occurs when an LPSW
instruction loads a wait state PSW.

4. A context switch exception (~'27') occurs when an in­
terval timer or CP I/O channel interrupt is pending.

These interrupts are handled by the routine DMKPMAIN.

Other interrupts that occur while a PMA virtual is run­
ning belong to the virtual machine and will be handled di­
rectly by it with no CP intervention. This includes inter­
rupts for the clock comparator, the CPU timer, dedicated I/O
channels, SVC instruct ions, and program checks. Note that
since the PMA virtual machine runs in real supervisor state,
it will actually execute the DIAGNOSE instruction. You can­
not use DIAGNOSE to pass control to CP for any purpose. The
interval timer is not used by MVS and so it is used by CP to

- 350 -

interrupt the PMA virtual machine from time to time, even
when no other interrupt conditions occur.

Dispatching the PMA virtual machine is particularly dif­
ficult because the prefix register must be set to 0 for MVS,
leaving CP no place from which to load the PSW and the reg­
isters. PMA therefore includes a new instruct ion, "Load
Guest PSW", E6l6xxxxxxxx. That instruction uses the MICBLOK
address in control register 6 as an indirect pointer to the
VMBLOK and from there to the virtual PSW. The approximate
sequences of instructions in the dispatch routine DMKPMASW
is shown in Figure 41 below.

20.5

SPX
MVC
LCTL
LCTL
SPT
LM
DC

ZERO Give MVS the absolute PSA.
TIMER, ..• T Time-slice to interval timer.
CO,C15,EXCRO Get MVS's control regs,
C6,C6,VMMICRO but keep the MICBLOK.
EXTCPTMR Get MVS's CPU timer value,
RO,R15,VMGPRS and all its registers.
X'E6l600000000' Load guest PSW and go.

Figure 41: PMA dispatcher

SUMMARY

Rarely do system programmers have to be concerned with VMA
and ECPS, except to be sure they are in use if available on
the CPU. I f for some reason you need to modi fy those por­
tions of CP that are present in VMA or ECPS, then you must
be sure to disable the microcode versions so that your soft­
ware modifications will be used. That of course implies a
penalty in CPU consumption for that function. It is some­
times possible to redesign a modification in such a way that
the microcode can be allowed to run normally. Even IBM is
not immune from this problem, since VM/SP has to disable
parts of ECPS with which it is no longer compatible.

- 351 -

- 352 -

NOTES

- 353 -

- 354 -

Chapter. 21

GUEST OPERATING SYSTEM SUPPORT

21.1 INTRODUCTION

21.1.1 Overview and historical perspective

The past decade has seen many changes in the status of VM in
terms of how IBM chose to market various features. Initial­
ly, VM was viewed as a vehicle for converting from one oper­
ating system to another (MVT to MVS) or for testing new re­
leases of an operating system. In neither of these
environments was it particularly important how well virtual
operating systems performed under VM, so only a token effort
was devoted to improving their performance, except by user
installations running VM. By the time that VM became a
strategic product, VS/l and DOS/VS installations were clam­
oring for a timesharing system on processors that could not
possibly support TSO. Also, a manufacturer of plug-compati­
ble processors was marketing an enhancement to VM allowing
MVS and SVS to run alongside CP (in real supervisor mode)
wi th nearly the same performance as nat i ve operat ion. The
late '70s saw a number of IBM enhancements to improve the
efficiency of guest operating systems.

This chapter discusses several of the facilities and op­
tions available in VM to improve the operation of IBM's op­
erating systems. The emphasis is on those facilities de­
signed for MVS, if for no other reason than that appears to
be IBM's major direction and likely to be of most interest
to you.

21.1.2 References

21.1.2.1 Publications

1. IBM Virtual Machine/System Product: Operating Sys-
tems in a Virtual Machine (GCI9-6216).

2. IBM Virtual Machine/System Product: Planning and
System Generation Guide (SCI9-6201).

- 355 -

3. IBM Virtual Machine/System Product: Operator's.Guide
(SC19-6202).

4. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

5. IBM Virtual Machine/System Product: Data Areas and
Control BLock Logic (LY20-0891).

6. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

21.1.2.2 CP modules

1. DMKFPS - provides the fast path simulation of privi­
leged instructions heavily used in guest operating
systems.

2. DMKPRV - handles the Set Prefix Register (SPX) and
Store Prefix Register (STPX) instructions as well as
the Signal Processor (SIGP) instruction when running
with SPM,ODE on.

3. DMKSPM - processes the SPMODE ON/OFF command. Allo­
cates 10 "back pocket" IOBLOKs used by DMKIOS and
DMKIOT to reflect control unit busy status back to a
virtual machine running -in SPMODE.

4. DMKVAT and DMKVAU - handle virtual address transla­
tion and maintenance of the STO blocks used to speed
up shadow page table maintenance.

5. DMKVSC - checks channel programs to verify that they
are valid for bypassing CCW translation.

21.2 GENERAL FACILITIES FOR GUEST OPERATING SYSTEMS

21.2.1 Error recording

In order to centralize the collection and recording of EREP
data, CP intercepts all virtual machine execution of SVC 76
and moves the EREP records to -its own data area. The hard­
ware microcode assists recognize the special handling re­
quired for SVC 76 and do not reflect the interrupt to the
virtual machine.

In some circumstances, EREP data 1S recorded in multiple
areas. First, SVC 76 issued by MVS on the native-mode pro-

- 356 -

cessor is not intercepted and the data is therefore recorded
in SYSI.LOGREC. Second, if the QVM function is used to make
a transition from running art·SCP under VM to running the SCP
native, while the SCP is running in native mode all EREP
data is recorded in the SCP' s recording area rather than
Cp's recording area. Installations using these facilities
must recognize that EREP data from several sources must be
merged to have a complete record of the hardware informa­
tion.

21. 2.2 Quiesce VM

The QVM command allows the VM/SP system operator to make a
transition from running an SCP under VM to running the SCP
native. Many restrictions must be observed before this com­
mand may be used; it would be advisable to carefully study
the documentat ion in IBM Virtual· Machine/System Product:
Operating Systems in a Virtual Machine (GCI9-6216) and the
code in DMKQVM.

21.2.3 Performance options

There are several performance options available for improv­
ing the schedulin~ for a virtual machine running a guest op­
erating system or for reducing the overhead of simulating a
real machine for "well behaved" guests.

21.2.3.1 SET FAVOR

The SET FAVOR command is a performance option affecting the
scheduling of virtual machines. For more· information, refer
to the chapter on the scheduler.

21.2.3.2 SET RESERVE

The SET RESERVE command allows an installation to reduce the
paging of a particular virtual machine without the necessity
of allocating enough real memory to contain the whole virtu­
al machine.

DMKPTRRL in module DMKPTR contains the limit (set by the
class A SET RESERVED userid nn command) of the number of re­
served pages allowed for a virtual machine. DMKPTRRC in
module DMKPTR contains. the number of pages currently re­
served. The CORRSV flag in the CORFLAG byte of the cortable

- 357 -

indicates that a particular page has been reserved. When
the SELECT routine in DMKPTR scans the cortable looking for
an available page frame, it does not select (or reset the
change and reference bits) for reserved pages until:

1. the second pass unless the page steal is happening
for the reserved page virtual machine, and

2. DMKPTRRC is already equal to or greater than
DMKPTRRL.

When a page is read into memory for the reserved page virtu­
al machine, CORRSV is set and DMKPTRRC is incremented so
long as DMKPTRRC is less than DMKPTRRL. The number of pages
available to the system for paging (DMKDSPNP) is adjusted
each time DMKPTRRC is changed because the reserved pages are
included in the working set size of the reserved page virtu­
al machine (VMWSPROJ) but are NOT included in the available
page count.

The RESERVEd page option must be used with care since it
performs what has been referred to as a "random lock" of
pages in the virtual machine's memory. Pages the virtual
machine references often enough to keep in real memory never
get reserved since CORRSV is only set when the particular
page is read.

21. 2.3.3 V=R

Defining a V=R region is the first requirement for being
able to use a number of performance options discussed below.
These options are especially important to reduce the over­
head associated with OS guest virtual machines.

Since the virtual and real addresses are the same for all
memory except page 0, and since all pages are resident, us­
ing V=R eliminates paging for a virtual machine and it also
eliminates the possibility of the CP scheduler placing the
virtual machine in an eligible list. Specifying SET NOTRANS
ON for a virtual machine running in the V=R area allows CP
to bypass CCW translation for dedicated devices or full-vol­
ume minidisks in most cases. Refer to DMKVSC for the code
that determines if CCW translation can be bypassed. The
most likely traps for the unaware are that devices having an
alternate path defined or that devices using virtual re­
serve/release or defined to be read/only are not eligible
for CCW translation bypass. Note also that the guest oper­
ating system is expected to use SIOF for its normal I/O op­
erations and SIO for unusual cases (like performing a SENSE
operation).

- 358 -

21.2.3.4 STBYPASS and STFIRST

The CP Di rectory opt ions of STFIRST or VIRT=REAL must be
specified before the SET STBYPASS command may be issued by a
virtual machine. For a V=R virtual machine, SET STBYPASS VR
causes CP to bypass most shadow table maintenance and in­
stead use the page and segment tables of the guest system.
For a V=V virtual machine or a V=R virtual machine running
wi th Single Processor Mode (see discussion later in this
chapter), SET STBYPASS nnnnK defines size of the guest oper­
at ing system nucleus that is common to all address spaces
within the guest.

21.2.3.5 STMULTI

The SET STMULTI command allows the specification of the size
of the stack of shadow page tables maintained for a virtual
machine. Without STMULTI, CP purges and rebuilds the shadow
page tables each time the virtual machine reloads its Con­
trol Register 1 (the Segment Table Origin or STO register).
With the STMULTI option turned on, CP maintains several sets
of shadow page tables, each associated with a different val­
ue of the STO register. Therefore, when the guest operating
system loads a new STO value, CP may often be able to avoid
rebuilding the shadow page tables by using the tables it had
previously constructed for that particular value of the STO
register. One additional operand of the SET STMULTI command
allows the operator of a virtual machine running MVS to
specify the number of segments at the high end of the virtu­
al address space that are common to all address spaces, al­
lowing CP to bypass much of its shadow table maintenance for
those segments. The number of saved shadow page tables can
be var ied wi th the SET STMULTI command but· it has a max imum
value of six.

21.3 PSEUDO PAGE FAULTS FOR VS/l

Most of what is commonly called 'VM/VS handshaking' is real­
ly code in VS/l. VS/l ini tialization issues a STIDP in­
struction and examines the version code field; the value
X' FF' indicates that VS/l is running in a virtual machine.
VS/l then performs several operations such as using DIAGNOSE
X'08' to issue the CP CLOSE command for virtual printers.

The only significant portion of VM/VS handshaking that is
in CP is "pseudo page fault" processing, by which VS/l can
continue to execute even though it has suffered a real page
fault. CP tells VS/l that the page fault occurred and VS/l
in turn suspends its currently active TCB. Meanwhile CP

- 359 -

causes the page to be brought into memory. CP then tells
VS/l that the page is available, and VS/l makes the suspend­
ed TCB runnable once again. The CP logic flow is as fol­
lows:

1. The real page fault causes DMKPRG to receive control.
If the virtual machine is in 370 mode (SET ECMODE
ON), if the virtual PSW translate bit is off and the
I/O interrupt bit is on, and if SET PAGEX ON was pre­
viously given, then DMKPRG goes to DMKVATPF to handle
the pseudo page fault.

2. DMKVATPF calls DMKPTRAN to bring in the page, if nec­
essary. I f that call requi red a page- in operat ion,
then control returns immediately to DMKVAT, which in
turn simulates a program check interrupt ion wi th a
code of X'14'. DMKVAT exits to the dispatcher, which
finishes the interrupt simulation.

3. When the page-in operation completes, a CPEXBLOK pre­
viously constructed by DMKPTR gains control. The
CPEXBLOK logic constructs a PGBLOK and attaches it to
the VMBLOK; the PGBLOK contains an interrupt code of
X'14' and the virtual address of the new page with
bit 0 set to 1 as a "page-in" flag. The CPEXBLOK

. logic sets the flag VMPGPND in VMPEND and then exits
to the dispatcher, which finishes simulating the sec­
ond pseudo page fault interrupt for the virtual ma­
chine.

Note that this logic can be used wi th any virtual machine
operat ing system that can process the X' 14' program check
interrupt. Currently, IBM includes that logic only in VS/l,
but some users have added the logic to OS/MVT with satisfac­
tory results.

21.4 SUPPORT FOR MVS

IBM has placed a great deal of emphasis in recent years on
running MVS under VM in a production environment. While
nothing on the order of the support for VS/l handshaking has
been forthcoming from MVS development, there have been sig­
nificant additions to CP in order to decrease the overhead
of running a guest MVS operating system. Hardware support
for MVS under VM has been provided for some new processors
in the form of the preferred machine assist (PMA).

- 360 -

21. 4.1 DIAGNOSE X'6C' and low address protection

The newer 370 processors include a facility known as Low Ad­
dress Protection (LAP). The purpose of LAP is to detect and
prevent programming errors that store into the first 512
bytes of memory. When activated by turning on bit 3 of Con­
trol Register 0, LAP forces a protection exception for any
instruction that attempts to store in addresses 0-512; the
check on the address range is performed BEFORE translation
(if any) and prefixing are done.

MVS SP Release 3 makes use of LAP to protect its low mem­
ory from inadvertent modification. To allow legitimate mod­
ification of the first 512 bytes of memory, MVS maps another
page of its address space to real page zero; since LAP
checking takes place before translation, store operations
through this alternate page address proceed normally but are
much less likely to happen by mistake. CP needs to know all
virtual pages that might map to page 0 since CP relocates
page 0 of a virtual machine running in the V=R area and di­
rectly changes the page tables of the guest system to re­
flect this fact. MVS issues DIAGNOSE X'6C' to inform CP of
the location of the page being used to bypass LAP and gain
store access to the first 512 bytes of memory. CP insures
that changes made to the shadow page tables or the page ta­
bles .of the guest for page 0 of the guest's vir~ual memory
are also reflected in the page table entry for this addi­
t ional page.

21. 4.2 Single processor mode

VM/SP has no support for virtual machines to run in MP or AP
mode. Therefore, when MVS runs under VM there is no way to
have the MVS virtual machine dispatched on more than one
processor at a time. Faced with the problem of needing the
ability to use more of the resources of an MP system for a
virtual MVS (and needing some response to a software product
developed and marketed by Amdahl that allowed a guest MVS
system to run in real supervisor state), IBM developed the
Single Processor Mode (SPMODE) of operation. SPMODE may be
used on an AP or MP processor complex. I t operates by al­
lowing MVS to run in real supervisor state with full control
of one processor while sharing the other processor with VM
and other virtual machines.

21.4.2.1 Restrictions

As one might imagine, use of SPMODE involves observing many
restrictions; the IBM publication Operating Systems in a

- 361 -

Virtual Machine should be read with great care. Some of the
restrictions are as follows:

1. If the VM system is generated for AP or MP operation,
it must be running in UP mode before SPMODE may be
used. Use the VARY PROCESSOR command to remove one
of the processors from the configuration and return
VM to a UP mode of operat ion. On 3081 processors,
take care to use the YLOG operand of the VARY
PROCESSOR command so that the second processor is not
physically varied offline and is still useable by the
MVS system.

2. The MVS system must be set up to run in a V=R area
and generated to match exactly the I/O configuration
accessible from the processor on which it is running
in native mode.

3. The STBYPASS V=R option may not be used. Instead,
use STBYPASS nnnnK and the STMULTI options to improve
the performance of shadow table maintenance for the
part of MVS running under VM.

4. The MVS virtual machine must be IPLed or re-IPLed af­
ter the system operator (or class A user) issues the
SPMODE ON command.

5. Before leaving SPMODE, the MVS system should finish
all processing and the MVS virtual machine should be
reset (by the IPL, SYSTEM RESET, or LOGOFF commands
for example). The system operator can then enter the
SPMODE OFF command.

6. When in SPMODE of operation, the MVS system operator
should not vary the main processor offline.

7. The LOGREC data is recorded both by VM, for errors
occurring while the MVS under VM side is running, and
by MVS, for errors occurring while the native MVS is
running. The data from SYSl. LOGREC and CP' s error
recording cylinders must be merged to get a complete
record of the errors that have been logged. IBM re­
commends that you look at the timestamp of the re­
cords to track the proper order of events (and you
thought that was what they made computers for!).

8. Virtual and real channel reconfiguration are not sup­
ported. The MVS CTRLPROG sysgen macro should not
specify OPTIONS=(CRH) if SPMODE is going to be used.
Note that this option IS specified in the MVS/SP IPO
system distributed by IBM.

- 362 -

9. TCAM should not be generated with the VM/370 option.
Instead, use SET NOTRANS ON to allow TCAM's dynami­
cally modified channel programs to operate properly.

10. RESTART does not produce a dump of VM when SPMODE is
being used. Refer to the procedure described in Op­
erating Systems in a Virtual Machine for the gory de­
tails on how to get VM to produce a dump.

21.4.2.2 Operation

When SPMODE is turned on, a flag in the PSA is set to indi­
cate the mode of operation, a page frame is allocated to
contain the prefix area for use by CP, Cp's page 0 is copied
to the page frame, and the pref ix reg ister is loaded wi th
the address of the page. Note that CP is using the prefix
register even though it is running in uniprocessor mode be­
cause the MVS system running in real supervisor mode on the
other processor will think that is has full control and ac­
cess to absolute page 0; therefore, CP must get its page 0
out of harm's way.

Once SPMODE is on, CP simulates SIGP instructions and re­
flects MP-type external interrupts for the virtual machine
running in the V=R area. When MVS is IPLed in the V=R area,
its tests now irtdicate that multiple processors are avail­
able and so it initializes forMP operation. Of course,
part of the initialization involves firing up the other pro­
cessor (under MVS's control) and then the system is off and
running wi th two processors able to dispatch work in MVS.
Since the other processor is operating in native mode using
the page tables of the operating system, CP cannot directly
change the page tables of the MVS guest; rather, it must
maintain a set of shadow page tables to remap some of the
pages for the virtual MVS system (this is the reason for
STBYPASS VR not being allowed in SPMODE).

One additional bit of nasty work to be taken care of is
the tracking of the virtual prefix register for the virtual
side of the MVS system and making sure that the shadow page
tables remain consistent with virtual prefixing. CP allo­
cates sufficient storage for up to three additional private
page tables that it must maintain. The first page table is
a copy of the first page table from the MVS system except
that page 0 is mapped to the page specified by the most re­
cent Set Prefix (SPX) instruction. The second page table is
a copy of the MVS page table containing the virtual prefix
page. The page table entry for the prefix page must be al­
tered to point to the page containing Cp's prefix so that
address translation followed by prefixing results in access
to absolute page O. The third page table is used if

- 363 -

DIAGNOSE X'6C' has been issued and the page used for
accessing page a while bypassing LAP is not in the same seg­
ment as the prefix page. The page table entry for the page
ref erenced by DIAGNOSE X' 6C' is altered so that references
to it map to the page specified by the most recent SPX in­
struction.

21.4.2.3 Summary

Use of SPMODE is a way to bring more of the hardware re­
sources to bear on the MVS system. Depending on the config­
uration, performance of other virtual machines could be se­
riously degraded since there is less resource to give them
and VM has less control over the allocation of that re­
source.

21.4.3 Fast privileged instruction simulation

Reordering the special case tests in the privileged instruc­
tion simulation leads to .improved performance for the cases
frequently executed by V=R virtual machines running 'SVS or
MVS. The module DMKFPS performs fast path simulation of
frequently executed instructions and is particularly effi­
cient for virtual machines with STBYPASS VR. The module
quickly exits back to DMKPRV or DMKPRW if there is anything
unusual about the instruction or its operands (not resident,
crossing a page boundary, etc.).

21.5 PREFERRED MACHINE ASSIST

(For a discussiong of PMA, please refer to the chapter on
microcode assists.)

21. 6 SUMMARY

Many options and features are available within VM to improve
the performance and useabi 1 i ty of guest operat ing systems
under VM. This chapter has presented a discussion of some
of the facilities available but, depending on your hardware
and software requiremenis, there may be other options useful
to your installation. The IBM publication, IBM Virtual Ma­
chine/Sgstem Product: Operating Sgstems in a Virtual Ma­
chine (GCl9-62l6), is an invaluable reference for providing
suggestions as to other options that may be appropriate.

- 364 -

The performance of guest operating systems has improved
enormously during recent years. Most of the _improvements
for running MVS under VM have been made on the VM side; con­
sider the performance improvements that could be made if the
MVS developers undertook to improve performance by taking
cognizance of the CP services and doing things like avoiding
privileged operations whenever possible.

- 365 -

- 366 -

NOTES

- 367 -

- 368 -

Chapter 22

VIRTUAL MEMORY INITIALIZATION

22.1 INTRODUCTION

22.1.1 Overview

Virtual machine memory can be initialized in two different
but related ways. The IPL command can load programs and
data into memory as well as start virtual machine execution;
this is a virtualization of the real LOAD function. In ad­
dition, pre-loaded segments of memory can be attached to the
virtual machine, and for this there is no real counterpart.

22.1.2 References

22.1.2.1 Publications

1. IBM Virtual Machine/System Product: System Program­
mer's Guide (SC19-6203).

2. IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

22.1.2.2 CP modules

1. DMKCFF - contains subroutines for DMKCFG.

2. DMKCFG - supports the IPL command and DIAGNOSE X'64'
processing.

3. DMKCFH - supports the SAVESYS command.

4. DMKCFP - performs a virtual machine reset.

5. DMKHVC - processes all DIAGNOSE instructions.

6. DMKHVD - supports the special DIAGNOSE X'40'.

7. DMKPGS performs virtual memory resets.

- 369 -

8. DMKVMA - supports shared memory segments.

9. DMKVMI - is the IPL simulator routine.

22.2 IPL LOGIC FLOW

The chapter on command processing describes the basic logic
flow for the first portion all CP commands, where DMKCFM ex­
amines the table of valid command names in DMKCFC and then
calls the appropriate processing routine. For IPL the se­
lected routine is DMKCFGIP. An alternative entry point,
DMKCFGII, is called during LOGON processing if an IPL state­
ment is present in the user's directory entry.

The overall logic flow for IPL simulation is comprised of
the following steps:

1. Scan the command line and examine the parameters.

2. For IPL from a virtual device, load the IPL simulator
routine and set up the registers and virtual PSW such
that the simulator will get control when the virtual
machine is dispatched. Exit to our caller.

3. For IPL from a named system, find the entry in the
system name table, set up the virtual machine con­
tents, and exit to our caller.

22.2.1 Scan the IPL command line

The process of scanning the command line is the standard one
of calling DMKSCNFD to locate the next token and then set­
ting flags to correspond to the value of the token. The to­
ken 'PARM' is handled differently in that the remainder of
the command line is simply stored into the virtual machine's
registers.

If the first token is a hexadecimal number in the range
X'OOO' to X'FFF', then IPL from a virtual device is attempt­
ed. Otherwise, IPL from a saved system is assumed.

- 370 -

22.2.2 Load from a virtual device

Do the following:

1. DMKSCNFD is called until there are no tokens left on
the command line. For each token, set a flag corre­
sponding to the token. For the CYLNO and BLKNO to­
kens convert the following token to a decimal number
and save it. For the PARM token store the remainder
of the command line into VMREGS.

2. Call DMKCPFRR to reset the virtual machine and call
DMKPGSPO to possibly clear virtual storage.

3. Select the address at which the IPL simulator routine
will be run. Use the address X'20000' or the middle
of memory, whichever is smaller.

4. Call DMKRPAPT to force a page-out of the virtual mem­
ory page just selected.

5. Call DMKRPAGT to force a page-in of the IPL simula­
tor, DMKVMI, into the selected virtual address.

6. Copy the command parameters into virtual page 0 so
that DMKVMI can f.ind them.

7. Call DMKSCNVU to find the VxxxBLOKs for the "IPL de~
vic'e. If the device cannot be found, then give the
DMK040 error message and exit to DMKCFM, leaving the
virtual machine in a reset condition.

8. Take the virtual machine out of virtual wait and out
of VMIOWAIT so that it wi 11 start execut ion at the
entry point of DMKVMI within the virtual memory.
Exit to DMKCFM.

22.2.3 DMKVMI logic

When the dispatcher gets around to running the virtual ma­
chine, then DMKVMI will start execution in virtual supervi­
sor state within the virtual memory. Except for a few minor
parts of DMKCPI, this is the only CP routine that runs in
real problem state.

1. Save into DMKVMI the registers, which contain the
PARM data, and the flags, which have been placed into
the first 2 doublewords of virtual memory.

2. Use a DIAGNOSE code X'24' to determine the IPL device
type and use that to select an internal routine.

- 371 -

There is one routine for DASD, another for TAPE, and
another for READER and CTC.

3. Each of the routines first reads the 24 byte IPL re­
cord and then begins a process of performing I/O us­
ing the IPL channel program. Each CCW is checked to
be sure that DMKVMI itself does not get overwritten.

4. At the end of the IPL channel program, use DIAGNOSE
X' 8 ' to set an ADSTOP if that was requested. Use
DIAGNOSE X'8' to cause an ATTN if that was requested.
Store the IPL device address into the I/O interrupt
code area in page o. Po int to the saved reg isters
and issue the special DIAGNOSE X'40' to restore the
orig inal virtual machine page, load the reg isters,
and load the virtual PSW from location O. This com­
pletes the virtual IPL and the virtual machine is now
running the loaded program.

22.2.4 Load from ~ saved system

Loading from a saved system is quite different in detail al­
though the final effect is much the same as what we have
just described. The parameter scan is· abbreviated since
only the PARM parameter is allowed for IPL by name. The
logic flow continues as follows:

1. Perform a TRANS operation to get the real address of
DMKSNTBL, the system name table built at SYSGEN time.

2. Find the given IPL name in DMKSNTBL and call DMKPGSPO
to reset the virtual memory.

3. Get the CCPD or PPPD address of the saved system on
DASD and call DMKCFFSB to set the saved virtual PSW
and registers into the VMBLOK and build the SWPTABLE
entries for the saved virtual memory pages.

4. If the new virtual PSW will cause the virtual machine
to run in ECMODE, then call DMKVATMD to prepare a new
set of shadow page tables.

5. Take the virtual machine out of wai t and out of
VMIOWAIT so that it wi 11 run as soon as poss ible.
The virtual machine will then continue execution from
the point at which the SAVESYS command had been giv­
en.

- 372 -

22.3 SAVING A SAVED SYSTEM

A system image can be saved with the SAVESYS command. The
user must first load the appropriate system into memory and
bring it to the point at which a saved image is required.
For.CMS, that point is the first console read. The SAVESYS
command is processed by DMKCFH:

1. TRANS in DMKSNTBL and search for the name of the sys­
tem.

2. Get a free storage buffer for saving the protect keys
of the pages in the saved system area.

3. TRANS in each page of the saved system and call
DMKRPAPT to write each page out to its assigned DASD
location, as shown in the DMKSNTBL entry. Save each
page's protect keys into the gotten buffer.

4. Temporarily using the first saved virtual page, build
a control area containing the virtual PSW, registers,
protect keys, and current date and time. Call
DMKRPAPT to wr i te that page out to the first DASD
slot assigned to the saved system.

22.4 DISeONTIGUOUS SAVED SEGMENTS

A discontiguous saved segment, or DCSS, is a group of seg­
ments at a specific memory address; the segments' contents
are written to DASD by the SAVESYS command as described
above. The DIAGNOSE code X'64' can be used to attach such a
segment to a virtual machine at the defined memory address.
As initially implemented, a DCSS was intended to be discon­
tiguous; that is, it usually occupied an address range above
that of the virtual machine proper. In fact CP supports the
overlapping of a DCSS with the original virtual memory, but
application programs must be very carefully designed if they
are to support the use of an overlapped DCSS. IBM-provided
funct ions such as CMS free storage management would most
likely have problems if an overlapped DCSS were being used.

22.4.1 Dess support logic

DIAGNOSE X'64' supports three functions, LOADSYS to attach a
DCSS to a virtual machine, PURGESYS to detach a DCSS, and
FINDSYS to return the memory address of a DCSS. One of the
parameters to DIAGNOSE X'64' is the name of the DCSS and the
other is a code for the desired function. DMKHVC and DMKHVD

- 373 -

decode the DIAGNOSE and call DMKCFGCL for the X'64'
processing:

1. Check the function code for legality. Give an error
if the user is running V=R.

2. If this is the LOADSYS function, then enter at point
1 above in "load from a saved system". Of course,
the PSW and registers will not be set as in the case
of IPL, but the rest of the logic is almost identical
to IPLing a saved system.

3. TRANS in DMKSNTBL and search for the named DCSS. If
not found, give an error return.

4. For the FINDSYS function, set up to return the begin­
ning and ending addresses of the DCSS. Set the con­
dition code to show whether or not the segment is al­
ready loaded. Exit to the caller.

5. For the PURGSYS function, call DMKPGSPS to purge the
segment if already loaded. Exit to the caller.

22.4.2 Implications for memory protection

Since a DCSS may be shared among several virtual machines
and since segment protection is not available on many Sys­
tem/370 processors, CP must provide for the possibility that
the currently running virtual machine might change the con­
tents of the DCSS. This is of course always a poss ibl i ty
since the virtual machine can run in protect key 0 and the
DCSS is naturally in the virtual machine's address space.

The solution to this problem is simple: DMKDSP must check
the DCSS for modi f icat ion whenever RUNUSER in the PSA is
changed. That check is performed in DMKVMASH, which exam­
ines all the change bits in the DCSS's protect keys. If any
change bit is set, then the virtual machine is given an er­
ror message and is placed into console funct ion mode (CP
READ). The changed page is marked invalid so that it will
be refreshed when next accessed.

For a multiprocessor, this problem becomes worse since a
virtual machine might be running on one processor while
DMKVMASH is running on the other. The solut ion is to have
two sets of shared pages, one for each processor. When a
virtual machine is dispatched its segment tables must be up­
dated to use that real processor's vers ion of any loaded
DCSSs.

- 374 -

Both of these functions contribute to CP overhead. They
can be eliminated on those processors that include a read­
only protection bit in the segment table entry. Such hard­
ware is included with the 308X family of processors and is
supported in HPO.

22.5 SUMMARY

Virtual memory initialization includes the critical function
of virtual IPL simulation. Named systems and DCSSs can im­
prove performance but they are not virtualizations of real
machine functions. DCSSs provide a simple form of shared
virtual memory.

- 375 -

- 376 -

NOTES

- 377 -

- 378 -

Chapter 23

CP INITIALIZATION

23.1 INTRODUCTION

23.1.1 Overview

The purpose of this chapter is two-fold. The first purpose
is to give an overview of the order in which various CP com­
ponents are initialized after a hardware IPL. The second
purpose is to provide an opportunity to tie together the
chapters that we have already discussed. This chapter is a
"walk-through" of CP initialization and each step should
help you recall the basic logic of the component parts.

23.1.2 References

23.1.2.1 Publications

1. IBM Virtual Machine/Sgstem Product: Operator's Guide
(SCl9-6202).

2. IBM Virtual Machine/Sgstem Product: Sgstem Program­
mer's Guide (SC19-6203).

3. IBM Virtual Machine/Sgstem Product: Data Areas and
Control BLock Logic (LY20-0891).

4. IBM Virtual Machine/Sgstem Product: Sgstem Logic and
Problem Determination Guide Volume 1 CP
(LY20-0892).

23.1.2.2 CP modules

1. DMKAPI - performs multiprocessor initialization.

2. DMKCKP - is the bootstrap loader.

3. DMKCPI - is the main CP initialization routine.

4. DMKCPJ - contains additional initialization logic.

- 379 -

5.DMKCPK - initialization for CP-owned DASD volumes.

6. DMKCPX - initializes the T-disk space.

7. DMKSAV - loads the CP nucleus into main storage.

8. DMKSTA - initializes main storage allocation.

9. DMKWRM - initializes spool file processing.

23.2 HARDWARE INITIAL PROGRAM LOADING

Every System/370 includes the old "big blue" LOAD button or
its logical equivalent. When the system operator pushes
LOAD or selects the load option on the system console, then
the hardware initial program load function begins. This
causes the loading of DMKCKP, as descr ibed already in the
spool file recovery chapter. DMKCKP eventually invokes
DMKSAV, which reads into main storage the entire CP nucleus,
including the pageable part. DMKCPI, the module with prima­
ry responsibility for CP initialization, is a part of the
pageable nucleus. It is invoked with a branch from DMKSAV
and uses R12 and R13 for base registers. As function has
been added to CP, DMKCPI has been split often and modified
even more often. After it has executed, DMKCPI calls
DMKCPJ, a module recently created from code in DMKCPI, which
continues initialization. When all initialization tasks are
completed, DMKCPJ goes to the dispatcher.

23.3 DMKCPI INITIAL HOUSEKEEPING

DMKCPI must first establish the environment in which it is
running. It proceeds with this discovery as dynamically as
possible. For the most part, features that CP will use are
hard-coded only when there is no dynamic way to determine
their existence.

1. Set up new PSWs in PSA.·

2. Load Control Registers CO-C14.

3. Set ClocK Comparator with X'FF's.

4. STore ID Processor (I f running second level,
allow UP operation only.)

- 380 -

5. STore Address Processor (program except ion if
UP hardware.)

6. If MP hardware installed, issue:
CONnect Channel Set (X'B200')
for channel sets from X' 00' to X' 3F'
subsequent SENSE I/O operation for the
vice address.

wi th a
IPL de-

7. Calculate the number of BCT instructions that
will execute in 50 milliseconds and store the
result into the field BCTWAIT in the PSA. Val­
id results range from 1000 to 5 million. This
gives CP the approximate processor speed.

23.4 MAIN STORAGE INITIALIZATION

Call DMKSTA to perform main storage initialization. DMKSTA
sets up the trace table, the dynamic storage area, and the
free storage area (see the trace table chapter and the stor­
age management chapter). DMKSTA primes DMKFRE by giving it
control of the (ree storage chain. From this point, control
blocks are gotten by calling DMKFRE.

8. Call DMKSTANT to initialize main storage.

23.5 ECPS INITIALIZATION

Call the subroutine INITECPS to determine which level of
ECPS is active on this hardware and modify CP to execute
correctly at that level (see the microcode assists chapter).

Load control register 6 to enable ECPS and EVMA; prime the
program check new PSW to catch a program check interrupt.
Mark the flag byte PSAEVMA to indicate that the following
instructions have EVMA active.

o MICLPSW LPSW
o MICSCSP STCK, SPT
o MICSIO SIO
o MICSTSM STNSM, STOSM, SSM
o MICSTPT STPT
o MICTCH TCH
o MICDIAG DIAG

- 381 -

Issue an X'E612' instruction to determine the ECPS level
number. If a program interrupt occurs, then ECPS is not ac­
tive on the hardware. Therefore, convert all the ECPS in­
structions in CP to NOPs, using the address list at label
CPATABLE. Restore the program check new PSW and return con­
trol to the mainline of DMKCPI.

I f the X' E612' instruct ion executes, then check the ECPS
level and store it at DMKCPEML. If the ECPS level is below
18 or above 21, then convert the ECPS instructions to NOPs
as described above. If the level is 18 or 19, then disable
the TCH assist (MICTCH in PSAEVMA) and modify the
DMKFREE/DMKFRET assist instructions; this modification is
necessary to reflect the increase in the maximum subpool
size in DMKFREE at the level 20 microcode (see the storage
management chapter). If the level is exactly 20, then leave
the instructions as assembled. If the level is 21 and if
HPO is installed, then disable the SIO assist (MICSIO in
PSAEVMA) .

23.6

9. Determine if ECPS is active on this hardware.
If it is, then determine the level number and
modify CP accordingly.

SAVEAREA INITIALIZATION

For a un iprocessor, set as ide some save areas ina stack
maintained by DMKSVC; the number of save areas is 18 plus an
additional 3 for each megabyte of main storage (see the CP
archi tecture chapter.) For a multiprocessor, compute that
same number and set aside three-quarters of that value for
each processor. Reserve the save areas by making individual
calls to DMKFREE. Get an extra save area and anchor it at
DMKFRESV for use in extend processing (see the storage man­
agement chapter).

10. Initialize the save area stack.

- 382 -

23.7 PREPARATION FOR EXTEND PROCESSING

Get the various CPEXBLOKs needed for extend processing; call
DMKFREE to get one area large enough to contain 16 CPEXBLOKs
and anchor them at DMKPTRFA. For a multiprocessor get five
more CPEXBLOKs and anchor them at DMKFREAP.

Call DMKFREE for a 12 doubleword work area to be used by
DMKIOS and anchor it at PSAIOSW.

23.8

11. Reserve the "back-pocket" CPEXBLOKs needed for
extend processing.

12. Get a work area for DMKIOS.

DISPATCHER INITIALIZATION

13. Place the address of the system VMBLOK (ASYSVM)
into the PSA fields RUNUSER and LASTUSER.

23.9 ESTABLISH THE OTHER PSA

On a multiprocessor, obtain the SYS lock and initialize the
other processor's PSA. Begin using PSA prefixing on both
processors. (CP's locking structure must be used from now
on.)

14. Call DMKAPI to initialize the other processor.

- 383 -

23.10 I/O SUBSYSTEM INITIALIZATION

At the label MOUNTIPL, begin processing all the I/O devices
defined in DMKRIO. Start with the IPL device and then do
all the others.

15. Issue an HIO to the device and record the
event in the trace table.

16. Issue a TIO to the device.

17. If RDEVCLAS is either CLASTAPE or CLASDASD (not
CLASFBA), issue a SIO with a Release CCW. This
operat ion determines whether or not the Re­
serve/Release feature is installed on the de­
vice.

18. If extended CKD device issue SENSE ID to deter­
mine if fixed head feature is installed.

19. If CLASDASD or CLASFBA, read VOLI label record.

a) Issue a TIO instruction.

b) VOLI record OK?

c) CALL DMKSCNVS for duplicate volume name.

d) If CP-formatted, look for directory pointer
52 bytes into the VOLl record.

e) If CLASFBA, read real device characteristics
and notice if the reserve/release feature is
installed. Build RDCBLOK if needed.

f) Read allocation record.

g) If allocation record valid, build ALOCBLOK
and chain it.

20. On the non- IPLed processor perform this same
I/O initialization.

- 384 -

23.11

23.12

MINI-IOBLOK STACK INITIALIZATION

21. Initialize the mini-IOBLOK stack and anchor it
at ,DMKIOSMQ (see the I/O processing chapter).

SYSTEM ADDRESS BUFFER INITIALIZATION

Calculate the number of system virtual memory pages that can
be allocated at any given time, based on the real memory
size minus the V=R size. If the main storage size specified
in DMKSYS is less than the real storage size, then use the
DMKSYS storage size in the calculations. Use a default of
120 buffer pages for processors with less than 655k bytes of
available storage. Increase the default up to a maximum of
1280 if the processor has more than 3 megabytes of available
storage. Store the calculated maximum into DMKPGUBN.

23.13

23.14

22. Dynamically calculate the maximum number of
pageable system virtual address pages.

SYSTEM VMBLOK INITIALIZATION

23. Call DMKBLDRT to build Cp's own page and swap
tables.

CALCULATE THE NUMBER OF DASD SLOTS

24. Call the internal subroutine CALCUL to add up
the number of fixed head and movable head DASD
slots in the system.

- 385 -

23.15 VIRTUAL MACHINE ASSIST INITIALIZATION

Set bi t 0 in CR6 to enable VMA' 'and then issue a Set System
Mask instruction in problem state. If it fails, then VMA is
not active on the processor, and therefore turn off the
flags CPMICAVL AND CPMICON in CPSTAT2 in DMKPSA.

23.16

25. Invoke internal subrout ine MICTEST2 to check
for VMA.

EXTENDED 370 PROCESSOR?

Execute a Test PRoTection instruction'X'E502' to determine
if the 370 architectural extensions are available. If the
instruction executes without an interruption, then turn on
the flags CP370EAV and CP370EON in CPISTAT2 in DMKPSA.

26. Test for 370 architectural extensions.

23.17 SYSTEM CONSOLE INITIALIZATION

Begin initialization of the operator interface. First, 10-
ca te and ver i fy the ava i labi 1 i ty of a system console. The
internal subrout ine beg inning wi th label STRTERM contains
most of this logic. This subroutine calls DMKSCNEP for the
primary console address and each of the alternates listed in
DMKRIO unt i lone is located wi th what appears to be an
available path. Check the path with a TIO and a subsequent
SENSE. Stop the search at the first available console de­
vice and use it as the system console. For consoles at­
tached through teleprocessing lines, make an additional call
to DMKCNSEN to issue an ENABLE to the line before trying the
TIO and SENSE.

After the console is ver if ied, wr i te the in i t ial console
messages. Prompt the operator to change the TOD clock val­
ue. If the operator changes the time, convert the value to
internal use by an algorithm documented by Richard Stone in
an article appearing in the "Communications of the ACM", Oc­
tober 1970, page 621.

- 386 -

.Bui ld a TRQBLOK to cause a timer i'nterrupt at midn ight.
Bui ld a second TRQBLOK to expi re in 60 minutes to cause
DMKTMRFR ·to be entered to garbage collect the free storage
area (see the storage management chapter).

23.18

27. Locate and verify the system console.

28. Issue DMKCPI955 if memory is too small for CPo

29. Write console message with CP release and level
information.

30. Ask operator verification of TOD.
as requested.

Change TOD

31. Bui ld TRQBLOKs for midnight message and free
storage garbage collection.

DIRECTORY INITIALIZATION

Store the active user directory location into DMKSYSUD and
'build the virtual page list for user machine descriptions.
Normal di rectory processing is now ava i lable. Lock DMKCPI
and DMKCPJ into main storage to avoid problems when paging
activity starts.

32. Initialize the CP directory.

33. Lock DMKCPI and DMKCPJ into main storage.

23.19 LOCATION 80 TIMER TEST

Check that the interval timer at X'50' is running by doing
the following test. First, in case CP is runn ing second
level, force a trip through the real CP dispatcher by exe­
cuting a Store ID Processor instruction. Then, execute a 3
instruction loop 25,000 times. If the timer does not
change, then send a message to the system console. Repeat
this test until the interval timer is found to be working.

- 387 -

Send a warning message to the system console if ECPS is
available on this hardware but had to be disabled because of
a mismatch between the software and microcode levels.

23.20

23.21

34. Check that the timer is working properly.

35. Write a message to system console if ECPS and
software are at different levels.

SPOOL FILE RECOVERY

36. Ask the operator for kind of start: WARM,
COLD, CKPT, or FORCE.

37. Call DMKWRMST with the parameter provided by
the operator.

ALLOCATE DUMP SPACE

38. Preallocate explicit dump space, if available,
or temp space for system dump. Write a message
to the system console if dump allocation fails.

39. Call DMKIOSQR to write DMKSYM into the begin­
ning of the dump space.

- 388 -

23.22 FINAL PAGING INITIALIZATION

Begining at the label ALOCLP, loop through the CP-owned list
at DMKSYSOW generating a system-wide count of temp pages
(DMKPGTTM & DMKPGT90). Call an internal subroutine to fold
the allocation map for each volume around the ceriter of the
volume (see the paging chapter). Call the internal subrou­
tine INDXBLD, which uses the installation-specified informa­
tion in DMKSYS to update the indirect lists of pointers to
the ALOCBLOK chains maintained in DMKPGT.

23.23

40. Loop through CP-owned volumes.

a) Count the number of temp pages in the CP­
owned space.

b) Call internal subroutine ALOCFOLD to logic­
ally fold the ALOCMAP about the center of
the volume.

41. Calculate and set system-wide 90 percent temp
page count.

42. Call internal subrout ine INDXBLD to implement
in DMKPTR the device search orders specified in
DMKSYS.

43. Call internal subroutine RECHAIN to relink AL­
OCBLOKs according to the search order.

3705 INITIALIZATION

Use the 3705 addresses in DMKRIO to locate RDEVBLOKs wi th
RDEVTYPC not equal to CLASTERM (that is, the 3705 base ad­
dresses), and mark them 'not ready' since the 3705 may not
even be running.

44. Process 3705s (count in DMKRIORN), marking base
addresses 'not ready'.

- 389 -

23.24 T-DISK INITIALIZATION

Invoke the module DMKCPX for each volume with T-disk space
defined. DMKCPX clears the T-disk by stacking CPEXBLOKs
that will in turn perform I/O to clear the beginning of each
T-disk cylinder.

45. Call DMKCPXCK for every T-disk volume.

23.25 OPERATOR LOGON

Initialize the operator virtual machine by calling DMKLOGOP.
If this call fails, then write a message to the system con­
sole asking for an explicit LOGON of the operator. Read the
reply line and give the line to DMKCFMEN to be processed as
a normal CP command. Upon successful creation of the opera­
tor virtual machine, write to the system console the names
of the volumes in the CP-owned list that are not now online.
Write the names of duplicate volumes. Write a map of main
storage. Call DMKCQRFI to display the number of spool files
present. Call DMKCSOSD to start the real spool devices.

46. AUTOLOG the operator virtual machine by calling
DMKLOGOP.

47. If AUTOLOG fails, force
prompting system console
line to DMKCFMEN.

explicit LOGON by
and pass i ng command

48. Report to operator names of CP-owned volumes
not online currently.

49. Report duplicate volume names.

50. Report main storage size.

51. Report FREE, TRACE, NUCLEUS, DYNAMIC, and V=R
sizes.

52. Call DMKCQRFI to report number of spool files
in system.

53. Call DMKCSOSD if operator requested real spool
device start.

- 390 -

23.26

23.27

PROGRAM PRODUCT MAP INITIALIZATION

54. CALL DMKHVDPP to initialize program product bit
map.

PAGEABLE NUCLEUS PAGED OUT

Make explicit calls to DMKPGTPG and DKMRPAPT to write out to
page space the symbol table module DMKSYM and the IPL simu­
lator program DMKVMI. Invoke the TRANS macro for each page
in the pageable nucleus to bring those pages into main stor­
age. They will later be written out to the paging space due
to normal system activity.

23.28

23.29

55. Page out the symbol table and IPL simulator.

56. TRANS in all pageab~e nucleus pages and cause
DASD slots to be assigned.

CONTINUE INITIALIZATION IN DMKCPJ

57. GOTO DMKCPJNT

DMKCPJ CONTINUING INTIALIZATION

58. Call DMKIOEFL to initialize error recording.

59. Setup machine check new PSW and enable machine
checks in control register C14.

60. Call DMKNLDR to load 3705 program for those
3705s that have automatic loading specified in
the RDEVBLOK.

- 391 -

23.30

61. Mark APSTATl with initialization complete flag.

62. I f this is a system restart, enable avai lable
3705 lines by calling DMKCPVAE for CLASGRAF and
CLASTERM. Enable NET ATTACHed lines by calling
DMKNETAE.

63. Perform monitor initialization.

64. Perform IUCV initialization.

65. Call DMKDIDEP to initialize the missing inter­
rupt handler and build a TRQBLOK for a one min­
ute timer.

66. Unlock DMKCPI and DMKCPJ.

67. Write the final initialization message.

68. If restarting after a system ABEND and the op­
erator was not logged onto the current system
console, then disconnect the operator virtual
machine with active console spooling.

69. GOTO DMKDSPCH. Whew!

SUMMARY

CP is completely initialized. Users can logon. The course
is finished.

- 392 -

NOTES

- 393 -

- 394 -

Appendix A

CP MODULES (ALPHABETICALLY)

The following is a list of all the modules that make up the
CP nucleus, with a very brief description of each module's
function. This list is current as of VM/SP release 3 ser­
vice level 307; modules that are new at some service level
or are a part of HPO are marked as such. Modules that pro­
cess CP commands are marked with the character string "cmd:"
for easier identification.

DMKACO - accounting
DMKACR - channel machine check recovery
DMKALG - cmd: AUTOLOG
DMKAPI - AP/MP initialization
DMKATS - changes to shared segments
DMKBIO - DASD block I/O via IUCV
DMKBLD - build VMBLOK, ECBLOK, or paging tables
DMKBOX - 3270 VM logon picture
DMKBSC - remote 3270 line error recovery
DMKCCH - channel check error recovery
DMKCCW - virtual CCW translation
DMKCDB - cmd: DISPLAY and DCP
DMKCDM - cmd: DUMP and DUMPCP
DMKCDS - cmd: STORE and STCP
DMKCFC - command name lookup
DMKCFD - cmd: ADSTOP and LOCATE
DMKCFF - cmd: subroutines for DMKCFG
DMKCFG - DIAGNOSE X'64' and cmd: IPL
DMKCFH - cmd: SAVESYS
DMKCFJ - cmd: SLEEP, BEGIN, QUERY, REQUEST, and SET
DMKCFM - read and execute console commands
DMKCFO - cmd: privileged SET operands
DMKCFP - virtual machine reset and cmd: SYSTEM
DMKCFQ - virtual device reset
DMKCFS - cmd: non-privileged SET operands
DMKCFT - cmd: TERMINAL
DMKCFU - cmd: more privileged SET operands'
DMKCFV - cmd: SET STBYPASS and STMULTI
DMKCFW - cmd: SCREEN
DMKCFY - cmd: SET ASSIST, AFFINITY, PF, and TIMER
DMKCKP - system IPL and forced shutdown
DMKCKS - spool file checkpoint
DMKCKT - subroutines for DMKCKS
DMKCKV - checkpointed file recovery
DMKCLK - AP/MP TOD clock synchronization
DMKCNS - slow-speed terminal handler

- 395 -

DMKCPB - cmd: EXTERNAL, READY, NOTREADY, RESET, REWIND
DMKCPE - end of CP nucleus
DMKCPI - CP initialization
DMKCPJ - continuation of DMKCPI
DMKCPK - (HPO) continuation of DMKCPI
DMKCPO - cmd: processor VARY OFFLINE
DMKCPP - online conversion from AP/MP to UP
DMKCPS - cmd: HALT and SHUTDOWN
DMKCPT - cmd: device VARY
DMKCPU - cmd: processor VARY ONLINE
DMKCPV - cmd: ENABLE, DISABLE, LOCK, UNLOCK, ACNT
DMKCPW - cmd: device VARY OFFLINE
DMKCPX - routines to clear T-disks
DMKCPZ - (HPO) cmd: VARY ONLINE for 3880-11
DMKCQG - cmd: QUERY VIRTUAL
DMKCQH - cmd: QUERY RDR, PTR, and PUN
DMKCQP - cmd: various configuration QUERY
DMKCQQ - continuation of DMKCQP
DMKCQR - continuation of DMKCQP
DMKCQS - cmd: QUERY SCREEN and MITIME
DMKCQY - cmd: more miscellaneous QUERY
DMKCSB - cmd: LOADBUF and SPACE
DMKCSC - cmd: LOADBUF and LOADVBUF
DMKCSO - cmd: more real device spooling
DMKCSP - cmd: virtual spooling
DMKCSQ - cmd: CLOSE, HOLD, and FREE
DMKCST - cmd: TAG
DMKCSU - cmd: CHANGE
DMKCSV - cmd: ORDER, PURGE, and TRANSFER
DMKCVT - various conversion subroutines
DMKCVU - floating hex to EBCDIC conversion
DMKDAD - 3375 and 3380 error recovery
DMKDAS -'other CKD device error recovery
DMKDAU - FBA device error recovery
DMKDEF - cmd: DEFINE device
DMKDEG - cmd: DEFINE STORAGE and CHANNELS
DMKDEI - cmd: DEFINE for MSS
DMKDGD - DASD I/O via DIAGNOSE X'18'
DMKDGF - interrupt handler for DIAGNOSE X'18'
DMKDIA - cmd: DIAL
DMKDIB - cmd: subroutines for DMKDIA
DMKDID - missing interrupt detector and handler
DMKDMP - CP ABEND dump routine
DMKDRD - spool I/O via DIAGNOSE X'14' and X'34'
DMKDSB - DASD statistical buffer unload
DMKDSP - CP and virtual machine dispatching
DMKEIG - 2880 channel logout error recovery
DMKEMA - error messages 0 - 139
DMKEMB - error messages 140 - 423
DMKEMC - error messages 424 - 999
DMKENT - linkage between monitor routines
DMKEPS - password checking
DMKERM - error message edit and output
DMKEXT - external interrupt handler

- 396 -

DMKFCB - printer forms control buffer definitions
DMKFPS - fast path simulation for privops
DMKFRE - control block storage management
DMKGIO - virtual machine I/O via DIAGNOSE X'20'
DMKGRA - subroutines for 3270 support
DMKGRC - subroutines for extended 3270 support
DMKGRF - support for local 3270 and 3066 devices
DMKGRH - special routines for 3066 support
DMKGRT - more subroutines for 3270 support
DMKGRU - tables for 3278-3
DMKGRV - tables for 3278-4
DMKGRW - tables for 3278-2A
DMKGRX - tables for 3278-5
DMKHPS - logical device support
DMKHPT - subroutines for DMKHPS
DMKHVC - main DIAGNOSE handler
DMKHVD - pageable continuation of DMKHVC
DMKHVE - pageable continuation of DMKHVC
DMKIOC - subroutines for DMKIOF
DMKIOE - I/O error recording
DMKIOF - pageable continuation of DMKIOE
DMKIOG - I/O error recording initialization
DMKIOH - I/O error recording initialization
DMKIOJ - I/O error recording subroutines
DMKIOQ - (305) subroutines for DMKIOS
DMKIOS - main I/O scheduler
DMKIOT - I/O interrupt handler
DMKISM - ISAM channel program processing
DMKIUA - IUCV main routine
DMKIUC - IUCV subroutines
DMKIUE - IUCV subroutines
DMKIUG - IUCV subroutines
DMKIUJ - IUCV subroutines
DMKIUL - IUCV subroutines
DMKJRL - security journaling support
DMKLNK - cmd: LINK
DMKLOC - system resource lock routines
DMKLOG - cmd: LOGON
DMKLOH - cmd: subroutines for DMKLOG
DMKLOK - AP/MP inter-processor lock support
DMKMCC - cmd: MONITOR
DMKMCD - continuation of DMKMCC
DMKMCH - machine check interrupt handler
DMKMCI - cmd: SET MODE
DMKMCT - AP/MP processor recovery
DMKMHC - MSSF (support processor) calls
DMKMHV - virtual MSSF support
DMKMIA - monitor start and stop
DMKMID - change date at midnight
DMKMNI - various monitor subroutines
DMKMNJ - more monitor subroutines
DMKMNL - (HPO) monitor collection for 3880-11
DMKMON - MONITOR CALL interrupt handler
DMKMOO - subroutines for DMKMON

- 397 -

DMKMPO - (HPO) AP/MP instruction processing
DMKMSG - cmd: MSG, SMSG, MSGNOH, WNG, and ECHO
DMKMSW - I/O error message writer
DMKNEA - cmd: NETWORK ATTACH and NETWORK DETACH
DMKNEM - op-code mnemonics_for trace and per
DMKNES - cmd: various NETWORK operands
DMKNET - cmd: NETWORK main routine
DMKNLD - 3705 program loader
DMKNLE - 3705 memory dumper
DMKOPR - emergency operator console writer
DMKPAG - build paging channel programs
DMKPAH - paging interrupt handler
DMKPEI - cmd: PER
DMKPEL - cmd: continuation of DMKPEI
DMKPEN - cmd: PER END
DMKPEQ - cmd: QUERY PER
DMKPER - PER interrupt handler
DMKPET - PER output writer
DMKPGM - page migration
DMKPGS - virtual memory release .
DMKPGT - paging DASD slot management
DMKPGU - continuation of DMKPGT
DMKPIA - LOADBUF support for 3289-E
DMKPIB - LOADBUF support for 3262
DMKPMA - (HPO) preferred machine assist support
DMKPRG - program check interrupt handler
DMKPRV - privop simulation

. DMKPRW - continuation of DMKPRV
DMKPSA - CP page 0 work area and subroutines
DMKPTR - main page fault processing
DMKPTS - (HPO) continuation of DMKPTR
DMKQCN - queue a virtual console write request
DMKQCO - queue a virtual console·read request
DMKQCP - force disconnect
DMKQVM - cmd: QVM
DMKRET - support PF key retrieval
DMKRGA - remote 3270 interrupt handling
DMKRGB - remote 3270 main routines
DMKRGC - remote 3270 input decoding
DMKRGD - remote 3270 extended function routines
DMKRIO - I/O configuration tables
DMKRNH - support 370x NCP terminals
DMKRPA - explicit page read and write
DMKRSE - real spooling device error recovery
DMKRSP - real spooling output
DMKRSQ - subroutines for DMKRSP
DMKRST - real spooling input
DMKSAV - read or write CP nucleus
DMKSBL - small block letter formatter
DMKSCH - system scheduler
DMKSCN - various scan subroutines
DMKSCO - continuation of DMKSCN
DMKSEP - separator page writer
DMKSEV - 2870 channel logout error recovery

- 398 -

DMKSIX - 2860 channel logout error recovery
DMKSNC - save 370x control program image
DMKSND - cmd: SEND
DMKSNT - saved systems definitions
DMKSPK - spool file deletion
DMKSPL - open and close spool files
DMKSPM - cmd: SPMODE
DMKSPS - I/O routine for SPTAPE processing
DMKSPT - cmd: SPTAPE
DMKSRM - cmd: SRM
DMKSSP - starter system re-configuration routine
DMKSSS - MSS common service routine
DMKSST - more MSS support routines
DMKSSU - more MSS support routines
DMKSTA - main storage initialization
DMKSTD - resident work area for DMKSTP
DMKSTK - schedule CP work to be done
DMKSTP - various scheduler feedback routines
DMKSTR - page migration interrupt handling
DMKSVC - SVC interrupt handler
DMKSYM - symbol table for dumps
DMKSYS - system generation parameters
DMKTAP - tape I/O error recovery
DMKTAQ - (307) continuation of DMKTAP
DMKTBL - terminal translation tables
DMKTBM - more terminal translation tables
DMKTBN - even more terminal translation tables
DMKTCS - real 3800 printer initialization
DMKTCT - more 3800 printer initialization
DMKTDK - T-disk allocation
DMKTHI - cmd: INDICATE
DMKTMR - 370 mode timer simulation
DMKTRA - cmd: TRACE
DMKTRC - trace interrupt handling
DMKTRD - trace I/O operations
DMKTRK - DASD alternate track processing
DMKTRM - 2741 terminal type identification
DMKTRP - cmd: CPTRAP
DMKTRT - cmd: CPTRAP subroutines
DMKTTY - special ASCII terminal handling
DMKTTZ - resident data area for DMKTTY
DMKUCB - 3211 UCB images
DMKUCC - 3203 UCB images
DMKUCS - 1403 UCS images
DMKUDR - user directory I/O routines
DMKUDU - user directory update via DIAGNOSE X'84'
DMKUNT - CCW and CSW translation
DMKURS - real spooling device message writer
DMKUSO - cmd: LOGOFF, FORCE, and DISCONN
DMKUSP - cmd: subroutines for DMKLOG and DMKUSO
DMKVAT - shadow page table processing
DMKVAU - continuation of DMKVAT
DMKVCA - virtual CTC support
DMKVCB - continuation of DMKVCA

- 399 -

DMKVCH - cmd: ATTACH and DETACH
DMKVCN - virtual console SIO simulation
'DMKVCP - SNA terminal support
DMKVCR - SNA terminal support
DMKVCT - SNA terminal support
DMKVCV - SNA terminal support
DMKVCX - SNA terminal support
DMKVDA - cmd: ATTACH
DMKVDC - cmd: subroutines for ATTACH and DETACH
DMKVDD - cmd: DETACH
DMKVDE - cmd: subroutines for ATTACH and DETACH
DMKVDG - DASD space allocation subroutines
DMKVDR - virtual device release
DMKVDS - cmd: subroutines for ATTACH, DEFINE, and LINK
DMKVDT - (HPO) ATTACH for 3880-11
DMKVER - process virtual machine SVC 76
DMKVIO - virtual I/O interrupt simulation
DMKVMA - shared segment protection
DMKVMC - VMCF processing
DMKVMD - cmd: VMDUMP
DMKVMI - IPL simulator
DMKVRR - (HPO) V=R virtual machine recovery
DMKVSC - V=R CCW translation checker
DMKVSI - virtual I/O instruction simulation
DMKVSJ - continuation of DMKVSI
DMKVSP - virtual spool I/O simulation
DMKVSQ - continuation of DMKVSP
DMKVSR - c6ntinuation of DMKVSP
DMKVST - virtual printer support
DMKVSU - virtual spooling subroutines
DMKVSV - virtual 3800 spooling support
DMKVSW - continuation of DMKVSP
DMKWRM - spool warm start processing
DMKWRN - continuation of DMKWRM
DMKZTD - T-disk clear routine

- 400 -

NOTES

- 401 -

- 402 _

Appendix B

SELECTED CP CONTROL BLOCKS

The table on the following page is a cross-reference showing
all the CP control blocks that we have referenced in this
book and the chapters containing those references. The
chapter names are abbreviated according to this scheme:

l. DSP - dispatcher.

2. SCH - scheduler.

3 • TIM - timer management.

4. IMC - inter-machine communication.

5. STO - storage management.

6. PAG - paging.

7. PGM - page migration.

8. lOP - I/O processing.

9. TRM - terminal support.

10. SPL spooling subsystem.

11. SFR - spool file recovery.

12. CFC - console functions and CP commands.

13. MPA - multiprocessor support.

14. TRT - trace table and dumps.

15. DIR - system directory.

16. MIC- microcode assists

17. GOS - guest operating system support.

18. VMI - virtual memory initialization.

19. CPI - CP initialization.

- 403 -

Table of control blocks and chapters

D S T I S P P I T S S C M T D M G V C
S C I M T A G 0 R P F F P R I I 0 M P
P H M C 0 G M P M L R C A T R C S I I

ALOCBLOK X X X
ALOFBLOK X X X
BSCBLOK X
BUFFER X
CCT X
CHXBLOK X
CONTASK X
CORTABLE X X
CPEXBLOK X X X X X X X X X X X
DMKSYSOW X X
ECBLOK X
Flt.ELIST X
IOBLOCK X X X X X X X X X
IUCVBLOK X
MICBLOK X X
MSGBLOK X
NICBLOK X
PAGTABLE X X X
PDENT X
PDSEG X
PGBLOK X X
PSA X X X X X X X X X
RCHBLOK X X X X X
RCUBLOK X X X X X
RDCBLOK X X X
RDEVBLOK X X X X X X X
RECBLOK X X X X
SAVEAREA X X
SFBLOK X X
SHQBLOK X X
SPLINK X
SPTBLOK X
SWPTABLE X X X
TRQBLOK X X X X X X
UDEVBLOK X
UDIRBLOK X
UIPLBLOK X
UIUCBLOK X
UMACBLOK X
VCHBLOK X X X X
VCUBLOK X X X X
VDEVBLOK X X X X
VMBLOK X X X X X X X X X X X X X X X
VMCBLOK X
VMCPARM X
VSPLCTL X
XINTBLOK X

404

NOTES

- 405 -

- 406 -

Appendix C

CP MACROS

The following list is a summary of the macros that are de­
fined in cp's macro libraries. This does not include those
macros which are defined locally within a given ASSEMBLE
file.

1. ABEND - cause CP to terminate with an ABEND code.

2. CALL - invoke another CP rout ine as a subrout ine.
The routine will be called via SVC S or via BALR, ac­
cording to a table contained in the macro definition.
A parameter value can be specified for transmission
in R2. For AP/MP systems, AFFinity can be specified
to cause control to return to the calling processor.

3. CHARGE - handle the CPU timer as an accumulator of a
virtual machine's CPU consumption.

4. CLRIO - generate the CLRIO instruction, X'9DOl'.

5. CLUSTER - generate a NICBLOK for a remote 3270 clus­
ter controller. This is used in DMKRIO as a part of
the system I/O configuration.

6. COUNT - increment a counter using CS logic for AP/MP
systems.

7. CPF - generate a DIAG XIS' sequence for executing a
CP command from a virtual machine. (This appears to
be unused and obsolete.)

8. DECHEX converts a dec imal number (0-15) to its
hexadecimal equivalent. This is an inner macro used
in the RCHANNEL, RCTLUNIT, RDEVICE, and SYSCOR mac­
ros.

9. DECMP - decrement a fullword counter using CS logic
for AP/MP systems.

10. ENTER - save registers RO through Rll into SAVEREGS
at the entry point of a routine called via SVC 8.

11. EXIT - load registers RO through Rll from SAVEREGS
and issue SVC 12 to return from a routine called via
SVC S.

- 407 - .

12. GOTO - after loading an optional parameter into R2,
pass control to the specified routine. R12 is loaded
with the routine's address. No return will be made.

13. GRTBLOK - define a GRTBLOK, which contains the de­
vice-specific information for each of the models of
3277 and 3278 terminals. This macro also def ines
many symbols used in the 3270 support routines.

14. HEXDEC - convert a hexadecimal digit into its decimal
equivalent. This is an inner macro used by the
RCHANNEL, RCTLUNIT, and RDEVICE macros in DMKRIO.

15. IPTE - (HPO - in member 'ISKE') generate the IPTE in­
struction X'B221'.

16. ISKE - (HPO - in member 'ISKE') generate the ISKE in­
struction X'B229'.

17. IUCV - generate code to invoke various IUCV func­
tions. For use in a virtual machine, this macro gen­
erates the X'B2FO' instruction. For use in CP, this
macro generates a CALL to DMKIUA.

18. JPSCBLOK - generate the "journaling and password sup­
pression cqntrol block". This is a DSECT unless it
is in the DMKSYS CSECT.

19. LOCK - generate code for AP/MP systems to obtain or
release a lock word.

20. MAXDV - generate code to place the maximum virtual
device address (X'5FF' or X'FFF') into a register.
Used in various routines to check the validity of a
virtual device address.

21. MSG - generate code to place length,
rameter values into RO, R1, and R2.
routines to generate messages that
standard CP heading string (DMK ...).

address, and pa­
Used in various

do not have the

22. NAMENCP - generate a named system entry in DMKSNT for
a 370x control program.

23. NAMESYS - generate a named system entry in DMKSNT for
a saved system.

24 .;-,-N~E3800 - generate a named system entry in DMKSNT
for a 3800 definition table.

25. pAGTBL generate a page table for a private or
~ shared segment. (This appears to be unused and obso­

lete.) .

- 408 -

- 412 -

NOTES

- 413 -

- 414 -

	00001
	00003
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	001
	003
	004
	005
	006
	007
	008
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	065a
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	080a
	081
	082
	083
	084
	085
	086
	087
	088
	089
	09
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	10
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	11
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	12
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	13
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	14
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	15
	150
	151
	152
	153
	154
	155
	156
	157
	158
	158a
	158b
	159
	16
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	17
	170
	171
	172
	173
	174
	175
	176
	177
	178
	178a
	178b
	178c
	178d
	178e
	179
	18
	180
	181
	182
	183
	184
	185
	186
	187
	188
	188a
	189
	19
	190
	191
	192
	193
	194
	194a
	194b
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	238a
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	316a
	316b
	316c
	316d
	316e
	316f
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	334a
	335
	336
	337
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	412
	413
	414

