Installed
User
Program

SH20-1857-0

SCRIPT/370 Version 3
User’s Guide

Program Number: 5796-PHL

This guide contains usage and reference information for
SCRIPT/370 Version 3, a text processing program that
executes under the Conversational Monitor System (CMS)
component of IBM Virtual Machine Facility/370 (VM/370).

The SCRIPT text processing program formats input files
created by the CMS Editor. SCRIPT control words inter-
spersed within textual data describe how SCRIPT is to
format the output file. Functions performed by SCRIPT
control words include:

® Single- or multiple-column formatting

® Automatic concatentation and justification of output lines

® Pagination control, including sizing, page numbering, and
specification of up to six top and bottom titles to appear
on every output page

® Indention or offset of blocks of text

® Automatic heading formatting and table of contents
generation

® Extensive symbolic capabilities, includihg conditional

processing control, communication via terminal input/
output, and a macro capability. - -

JIBIM

PROGRAMMING SERVICES PERIOD

During a specified number of months immediately following initial availability of each licensed
program, designated as the PROGRAMMING SERVICES PERIOD, the “customer may submit
documentation to a designated IBM location when he encounters a problem which his diagnosis
indicates is caused by a licensed program error. During this period only, IBM through the program
sponsor(s), will, without additional charge, respond to an error in the current unaltered release of the
licensed program by issuing known error correction information to the customer reporting the
problem and/or issuing corrected or notice of availability of corrected code. However, IBM does not
guarantee service results or represent or warrant that ail errors will be corrected. Any onsite
programming services or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN °‘AS IS’ BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

First Edition (September 1976)

A form for readers’ comments has been provided at the back of this publication.
If this form has been removed, address comments to: IBM Corporation, 1049
Asylum Avenue, Hartford, Connecticut 06032. Attention: Mr. G. M. Saitman.

--©- Copyright International Business Machines Corporation 1976

SCRIPT/370 Version 3 is an IBM
User Program (IUP) that runs
Conversational Monitor System

Installed
under the
(CMS) compo-

nent of IBM Virtual Machine Facility/370
(VM/370) .

This user's guide contains "how to" and
reference information concerning SCRIPT.
Knowledge of VM/370, CMS, and the CMS
Editor is required., Information about

VM/370 and CMS is contained in the publica-
tions:

IBM Virtual Machine Facility/370:

Introduction, Order No. GC20-1800
Terminal User's Guide, Order No.
GC20-1810

CMS Command and Macro Reference, Order
No. GC20-1818

CP Command Reference for General
Users, Order No. GC20-1820

How To Use This Book

Users who have had no experience with

SCRIPT/370 will find basic information on
its operation and control word processing
in "Section 1. How To Use SCRIPT." The
topics discussed in Section 1 are:

* sSimple Text Formatting

e PFormatting Pages and Titles

e Multiple Column Processing

e Head Levels and Tables of Contents

e Combining SCRIPT Files

e Automatic Formatting and Page
Composition

s Symbol Processing

e Interactive SCRIPT Processing
e Writing SCRIPT Macros

e EasySCRIPT

e Automatic Hyphenation

PREFACE

SCRIPT Command"
available with the

"Section 2. The
describes the options
SCRIPT command of CMS.

"Section 3. Control Words"™ provides an
alphabetical list of SCRIPT control words.
Bach control word description may contain:

word and a
and parame-

format of the control
its .operands

e The
discussion of
ters (if any)

e Usage notes

e Examples

"Section 4. EBrror Messages"™ lists the
error messages generated by the SCRIPT
processor, and their associated return
codes.

"Section 5. Installing SCRIPT/370"

describes the procedure for installing the
SCRIPT program on your system, and the
procedure for verifying its operation.

There are two appendixes:

e "Appendix A: Summary of SCRIPT Control
Words"® 1lists all the SCRIPT control
words, operands, and default values.

e "ippendix B: Compatibility of Version 3
with EBarlier Versions" summarizes new

SCRIPT control words and command
options. Changes to control words and
command options available in earlier

versions of SCRIPT are described,

as a
conversion aid.

This book was entirely formatted by
SCRIPT/370 Version 3.

word or
following

In this book, whenever a control
command format is shown, the
conventions are used:

e Stacked items represent choices: you can
(or must) choose one of the itenms.
shown within

e If an item is brackets,

such as

[n]
it indicates that the operand or parame-

ter is optional. You do not have to
enter it.

Preface 1iii

iv

If one or more items are shown within

braces, such as

{OoN }
{ OFF}

it indicates that you must choose omne or
the other.

If an operand or parameter is shown with
neither brackets or braces, ‘there is no
choice: you must enter it.

Keyword operands are shown in all
uppercase letters, for example, NORM is
a keyword operand of the .PN (PAGE-NUM-
BERING-MODE) control word. You must
enter keyword operands exactly as shown.

SCRIPT/370 Version 3 User's Guide

Variable parameters are shown in lower-
case letters. For example, the letter

n

is always shown when a numeric parameter
is required.

Ellipses in examples, such as

indicate that text lines not pertlnent
to the example are not shown.

SECTION 1. HOW TO USE SCRIPT
What Is SCRIPT? . . « ¢ « &
Who Uses SCRIPT? . . . « . .
How SCRIPT Works
Control Words.
Control Word Operands. . . .
Invoking the SCRIPT Processor.
When Do You Have To Use SCRIPT
Words?

o & o ¢ o
Qe & s & o ¢ o
o

¢ e s o s o s o

P e o ¢ o o o &
[R

e o s o ¢ ¢ o

* o s o ¢ s o

o+

How Do You Dec1de thch Control Hord5'

To Use? ¢ o o o o o e s e o o o
SCRIPT Optional Features e e o s o e o

SIMPLE TEXT FORMATTING
Breaks « « ¢« « ¢ o
SPACES « « o 4 o o
Conditional Spaces
Multiple Spaces. .
Page Ejects. . « .
0dd and Even Pages . .
Ooverriding SCRIPT Default P
Suspending Concatenation
Justification
Indenting Text
Indenting Lines. . .
Paragraphing
Offsets. . . o o o
Indents and Offsets.
Using Tabs with SCRIPT
Some Uses for Tabs .
Let SCRIPT Do It . . .« &

o o 0 o o
s o 8 o ¢
e & g o o o
® & o o o o s
s & o o o2 s o @

oo o 2 o o o o
L e & ¢ o o o o

t e o 4 o o &
=]

o

Qe ¢ o ¢ 4 o o

a

.-..-.c-ﬁ’
[-2g]
s & o o 8 ¢ o 4 U e ¢ o o s o

o 4 e & o 2 0 s e 0+ o
9 s ¢ s s s o s 0 e
s N ® o o s o o o 8 o

Centering and nght-Justlfylng ine
Underscoring and Capitalizing. .
Entering SCRIPT Text and Control Words

Stacking SCRIPT Control Words. . . .
When You Need a Period in Column One
Placing Comments in SCRIPT Files . .

e & % & & ¢ & & & » s 8 0+ o s

FORMATTING PAGES AND TITLES. . .
Changing the Line Length
When Is Line Length Important?
Top and Bottom Titles. . « . . .
How To Specify Titles.
Specifying the Page Number in Titles
Where To Put Top and Bottom Title
Control WOrds . « o ¢ o ¢ o« o o o o @
Positioning Titles in Top and Bottom
Margins « o « o o o ¢ o o o o o o o o
Page Numbers . « « ¢« o ¢ ¢ o ¢ o o« o o @
Multiple TitleS. ¢« o« « o« 2 o o o o o« o &

MULTIPLE-COLUMN PROCESSING . . .
The Effect of Column Definitions
Formatting Lists « « &
Column EBjeCtS. « « ¢« o « o o« o o &
Suspending and Restoring Multiple-C
Processing. « « o« « o = e e e e
Column Balancing and Prlntlng. . .

lumn

s e O s s s
s o s s o o

HEAD LEVELS AND TABLES OF CONTENTS . . ;
Default Characteristics for Heading
LevelS. .o ¢ o o o o o o o o o o o o o o

Spacing and Page Ejects.
Changing Heading Level Definitions .
The Table of Contents. . « « « « « « &
Printing the Table of Contents . . .
Adding Lines to the Table of Contents
Like this one . « ¢« ¢ ¢« ¢« o o o « «

e« o & o o o

COMBINING SCRIPT PILES . . .
Using the IMBED Control Word

The APPEND Control Word. .
Masterfiles. . « . « « . . .
Delayed Imbeds

Saving File Status
Terminating Imbeds and Other
A Profile SCRIPT . « « o .o «

s s o o
e a o o o o

iles

s o & o 8 o o ¢
S o & & o & &
® & 8 o o o o

e Fxfs o o o s

AUTOMATIC FORMATTING AND PAGE
COMPOSITION « o ¢ o o o @ . o
Using Special Characters wlth SCRIPT

Conditional Character Translation.
Drawing BoXeS. « « o « o o o o o o o
Keeping Blocks of Text Together. . .

Conditional Column and Page Ejects

Keeps. [] L] L] L] . L] L] L] . L] - - L] L]
Footnotes and Headnotes. . « « « « &
Revision Code Indicators « « « « «

SYMBOL PROCESSING. . . «
The Current Page Number. .
Symbol Substitution. . . .
Compound Symbols
Ondefined Symbols. . . .
Unsetting Symbols. . . .
Inhibiting Substitution.
Reserved Set Symbols
. Symbols for the System Date and Tim
Symbols for SCRIPT Control Values.
The &§$RET Special Symbol
&0 Through &9. . . . e e o s o
Attribute Symbol Preflxes. e o e
Some Things You Can Do with Set Symbols
Numbering Illustrations.
Conditional Processing with IF and
GOTOO L] . L] . - . . - - - . .o L] .
Using Symbols to Invoke SCRIPT Control
Words « e e o o o e o & o o
Extended Symbol Proce531ng .
symbol Libraries
Array Set Symbols.
Controlling Array Elements

* ® & e s o o
e & & s o & s a
¢ 8 o o o & &
e & o & o o o o
e & & o o & &

e

INTERACTIVE SCRIPT PROCESSING. . « . .« =«
Setting Symbols on the SCRIPT Command
Line. « « ¢« ¢ ¢ o o o & e o o % o ‘o o

Communicating with vn/370. e o o o e o o

WRITING SCRIPT MACROS. . . .

How Macros Are Defined . . « ¢« o o ¢ o o«
What To Name Your MacCro. « « « o« o o o
Special Symbols for Macros . . « « .« .

Symbol Substitution in Macro Definitions

When Should You Use MacCros? . « « o« « &

Contents

EASYSCRIPT

EaSYSCRIPT TagSe « o o « « o o o o o

EasySCRIPT Formats . « « « « o « o
Headings « o o o

Setting the Headlng Counter. . o o

BasySCRIPT Heading Defaults. . . .
Cross-Referencing BasySCRIPT Piles .
Examples of EasySCRIPT Formatting. .
ParagraPhsS « « ¢« o o ¢ ¢ a o o o o @
Automatic Item Numbering . . « ¢ o .
Un-nu.bered LiStS. e e e e e o o e o
Bulletsl . L] Ll . L L] L] - L] L] L] L] . L
Tables of Contents . « « &« ¢« ¢« o « &

AUTOMATIC HYPHENATION. . .

How the Hyphenator Works
Altering the ﬂyphenator's
Characteristics . . . « o o o
Hyphenating Single Hords e o o @

The Hyphenation Exception chtlonary
The HYPEDIT Command. « « « « o« o »

SECTION 2. THE SCRIPT COMMAND.
SCRIPT File Characteristics.
SCRIPT Command Options .
ADJUST . « « o o o
CENTER .
CONTINUE
FILE . .
LIB. .
MARK .
NOWAIT
NOSPIE
NOPROF
NUMBER
PRINT.
TERM .
PAGE .
QUIET.
STOP .
UPCASE .
UNFORMAT
SYSVAR .
TWOPASS.

¢ o & & & o % s s o
e & o 8 & & & o 8 4 & o & 0 ¢ 0o ¢ o 3 & 3 =

@ 8 ¢ 8 o o 6 s 8 4 & g 0 8 g & o 0 4 s o
8 & 8 5 8 0 % 8 & 9 0 8 6 8 o 8 s 0 s & &
. 8 8 6 & 8 0 & & 6 & & & 8 5 o 6 ¢ & & 5 & o

s ©® e & & g & ¢ & g o g g & 3 o g o
e 8 o 8 @ g & o 3 9 O g o & g o 4
O‘l“.’.'.".‘..‘..
® ® @ & o o & o o o & o g ° o o 4 &
e & o & 6 o 8 o & ¢ & o o * o & 4 o
e ® ¢ & & 4 & g 8 o 8 g o & ¢ 06 o oo 4
e 6 ¢ & o o 8 4 8 4 % o o 8 4 0 4 »
s 8 o 6 8 g & 4 & ¢ 8 4 ¢ B 3 8 o ¢

SECTION 3. CONTROL WORDS
Control Word Defaults. .
Initial Settings . .
ees (Set-label). . . .
.AP (Append)
.BC (Balance-Columns)
+BM (Bottom-Margin). .
«BR (BREAK) « « ¢« « &
.BT (Bottom-Title) . .
BX (BOX) e « « « o &
.CB (Column-Begin)
.CC (Conditional-Column-Begin

e 8 ¢ 0 o 3 & o o

s & & 5 o & o

+CD (Column-Definition).
.CE (Center) . . « « « &
.CL (Column-Length). . .
~<CM - (Comment)s s+ 5 s o & &
.CO (Concatenate-Mode) .
.CP (Conditional-Page-Eject)
.CS (Conditional-Section).
.CWH (Control-Word-Separator)
.DH (Define-Head-Level). .
.DI (Delay-Imbed). . . « « &
.DM (Define-Macro) . . « . =«

° o
e
.

® 6 o & 8 6 & 8 o 8 o s 4 4 o s ¢ s s o s
® o 6 8 o % o 8 ¢ 8 & s * s & & 6 & s o & & @

vi SCRIPT/370 Version 3 User's Guide

e 6 0 8 8 6 & 8 e & & o & o & & & ° s 8 o s

¢ 6 6 6 6 & & 8 6 & &6 8 & 8 86 & 6 0 0 8 o

60
60
61
61
61
61
62
63
63
63
64
65
65

66
66

66
66
67
67

69
69
69
70
70
70
70
71
71
71
71
71
71
72
72
72
73
73
73
73

74

75
75
75
76
77
77
78
78
79
79
80
81
81
82
83

e & » o s 8 o o

—83

84
84
85
86
87
87

.DS
'gB
<EF
«-BP
. ET
IBZ

«PM

.rn
<FO
'PS
«GO
.HO
-HHM
<HN
- HS
<HW
.B!

.IF

.IL
«IM
.In
.JU
'KP
+1LI
.LL
.Ls
.MC
.us
QOB
.OF
.OP
.oT
.PA
+PL
+«PN
.PP
.PS
.PT
-QQ

-QU

<«RC
‘RD
.RB
'RI
<RV
.SA
+«SC
«SE
.sK
‘SP
<SS
«SU
.Sy
.TB
.TC
'TB
.THM
IR
«TT
.TY

ucC

.UD
.ON
'UP
.US

(Double-Space-Mode) . .

(Even-Page-Bottom-Title)

(End*Of"Pile) e o o o o
(Bven-Page-Eject) . . .
(Even-Page-Top-Title).
(BasySCRIPT) « « « .

(Pooting-Margin) .

(Footnote) . . . &

(Pormat-Mode). . .

(Pooting-Space). .

(Goto) L] L] - L]

- .H6 (Head-Level-n
(Heading-Margin)
(Headnote) . . .
(Beading-Space) .
(Hyphenate-Word)
(Hyphenate). . .
(If) * e & ¢ e
(Indent-Line). .
(I.bed) L] . - e - e
(Indent)
(Justify-Mode) .
(Keep) « « « «
(Literal). . . .

) .
(Line-Length) . .«
(Line-Spacing)
(Multicolumn-Mode) . .
(Macro-Substitution) .
(0odd-Page-Bottom-Title)
(Offset) . « « ¢« « . &
(0odd-Page-Eject) . . .
(0odd-Page-Top-Title) .
(Page-Eject)
(Page-Length). . « « .
(Page-Numbering-Node) .
(Paragraph-Start). . .
(Page~Number-syabol) .
(Put-Table-of-Contents)
(Qllle "Qllit) e« e e o o
{(Quit) o
(Revision- Code). .
(Read-Terminal). .
(Restore-Status) .
(Right-adjust) . .
(Read-variable) . .
(Save-Status). . .
(Single-Column-Mo .
(Set-symbol) . . .
(Skip-Lines) . .
(Space-Lines). . . o
(Single-Space-Mode) . .
(Substitute-Symbol). .
(Systea-Command) . . .
(Tah"setting) e @ o e e
(Table-of-Contents). .
(Terminal-Input) . . .
(Top-Margin)
(Translate—character).
(Top-Title). . « « . .
(fype-on-Teraminal) . .
(Underscore~Capitalize)
(Underscore-Definition)
(Undent) . . « ¢ « o« &«
(Uppercase). « « « «
(Underscore) . « . .« .

e

.
e o Lue o & ¢ & o @

)

SECTION 4. ERROR MESSAGES.
Return Codes « « o« ¢ o o o

@ 8 8 & 8 8 6 & 6 & 9 & 6 8§ 6 & 6 & 5 8 4 O & & @& 4 6 & 6 8 & T 8 6 5 B O 8 o 6 & & 2 8 & B 8 & s 0 0 8 B 8 s 6 0 o 8 b s o0

@ o 0 8 0. 8 8 8 6 & & .8 6 6 4 8 6 8 8 8 8 & 8 8 & 5 0 & & 6 3 8 4 6 & 4 0 8 0 4 b 4 6 4 % b o 0 4 8 o s 0 s o o 0 0" o o * 0

e o & & 8. g 8 @ 6 0 4 & 8 6 a 8 9 8 8 4 8 g B ¢ & 3 O 8 o & ¢ * g 6 4 & 6 9 6 ¢ O g 0 o & e 3 % g s g 6 g 0 2 ¢ % 3 o 20 g 8 ¢ g

o o © 8 0. g & g 8 6 @ ® ¢ 6 s 8 3 & % & % 4 6 g ° 4 O s o * 3 & ¢ O 3 & 6 s 06 4 & g s e © o 3 6 3 & o v p & 2 g O o 6 s ¢ o o s ,

s & 8 & o 0 ¢ ¢ 6 ¢ 5 s 0 4 s * o
O
(%)

Response Messages. . .
Warning Messages . . .

. .129 Choose Installation Options.141
Brror Messages . . « . .

. 130 IKSGEND Loads and Genmods SCRIPT . . . 141
.130 Step 3. Verify Correct Installation of

. 130 the SCRIPT Module . . ¢ « « « o« « o « 142
.130

.131 APPENDIX A: CONTROL WORD SUMMARY155

Severe Error Messages.
Terminal Error Messages
Message Descriptions .

SECTION 5, INSTALLING SCRIPT/370139 APPENDIX B: COMPATIBILITY OF SCRIPT 3
Step 1. Access a Read/Write CMS Disk WITH EARLIER VERSIONS . « . « ¢ « .163
and Mount the SCRIPT Tape « « « « « « o139 Control Word Compatibility 164
Step 2A. Load the SCRIPT Module.139 Command Option Compatibility167
Step 2B. Execute the IKSGEND EXEC

Procedire « « « « o « o o « « o o o « <140 INDEX:. ¢ ¢ o o o = o o o o o o o o o « 2169

Contents vii

Figure

Figure
Figure

Figure
Figure

viii

Example of Indents; Offsets,
and UndentSoaccoooccnucooc01018
SCRIPT Default Page Layout...25
Example of SCRIPT Multiple-
Column Pormatting..c.eceeesss32
Master File Structute..s....(39
Sample EasySCRIPT Heading.
FOrBatScesesccevsoscenconcscseceeh?

-SCRIPT/370 Version 3 User's Guide

Figure

Figure

FPigure
Fiqure

Fiqure

BaSYSCRIPT Tags..w....;......93

. TN Translate Tableccceceosaa 128

SCRIPT Control word
Sulnary.....................155

‘'SCRIPT Control Word

Conpatlhllity...............164
SCRIPT Command Option

Conpatlblllty...............167

WHAT IS SCRIPT?

SCRIPT/370 Version 3 is a text processing
program that runs under CMS, the Conversa-
tional Monitor System. CMS is the interac-
tive time-sharing component of IBM Virtual
Machine Facility/370 (VM/370). That's
quite a mouthful: all those words assume
that you know 1) what a text processing
program is and 2) that you know about CMS
and VM/370.

First, let's talk about CMS and VM/370:
you have to know how to use CMS if you want
to use SCRIPT. You have to know how to
create and edit files using the CMS Editor,
how to manage CMS disks and how to enter
CMS commands. That kind of information is
not provided in this publication: to learn
about VM/370, how to log onto the systen,
and how to use CMS, see the VM/370 Terminal
User's Guide, and ¥YM/370 CMS User's Guide.

Now, text processing programs: what are
they? Essentially, a text processing
program (or simply, a text processor) is a
program that reads input data, formats it
into manuscript pages, and prints the
results, which is the output. The input
data consists of text that has been entered
at 'a terminal that is attached to a compu-
ter. The terminal is just like a typewrit-
er, except that the text is saved on a
direct access storage device, or disk.

Since the data is stored, it can be
retrieved ‘and modified at any time, using
an editing program. Then a text processing
program, such as SCRIPT, can be executed to
process the modified data and produce an
output file that incorporates the changes.
Additions or deletions of text are reflect-
ed in the output: SCRIPT knows how wide
each page must be, and how many 1lines to
print on each page. It £ills up a page
with text, then begins printing a new page
automatically. It continues
until it reaches the end of the input data,
that is, the end-of-file.

All text processing programs can do
these simple things. SCRIPT, however, is
more flexible than other text processors.
This flexibility takes several forms:

e SCRIPT is exceedingly simple and fantas-
tically complex. How can this be?
SCRIPT can format an entire document
automatically, with no controls from you
at all. All you have to do is enter the
input text. However, there are an

processing

unlimited number of instructions (or
combinations of instructions) that you
can give to SCRIPT, to tell it how you
want the text formatted. Thus, you can
choose how simple you want SCRIPT to be.

e SCRIPT disk files are independently
maintained. There is no special editor
or editing system that you must use to
modify or update your SCRIPT files. If

you are using CMS, you use the CHMS
Editor. In addition, you can use many
other CHMS file systenm commands to

modify, copy,

Oor rearrange
input files. '

your SCRIPT

e The imbed capability of SCRIPT makes it
possible to combine many SCRIPT files to
produce a single, integrated output
file. These imbedded files can be
arranged in any sequence, and while they
are being processed, SCRIPT treats then
all as if they were <contained in a
single, continuous input file.

o The most useful and exciting features of
SCRIPT are its macro and symbolic
capabilities, which make SCRIPT very
much 1like a high-level programming
language. You can define your own
control words, conditionally process
text, perform variable symbol substitu-
tions, and even do simple arithmetic
functions in a SCRIPT file.

see that while SCRIPT is a
is much, much,

So, you can
text processing program, it
more.

WHO USES SCRIPI?

SCRIPT can be used by anyone who wants to
simplify the work of typing, correcting,
printing, and examining 1letters, manus-
cripts, or memos. SCRIPT is used by:

Secretaries
Programmers
Publications specialists
Administration personnel

Any written document that is subject to
changes or updates is a good candidate for
SCRIPT processing. Once you have learned
how to use SCRIPT, you will find that you

can use it for Jjust about all of your
typing and writing needs. In fact, you
will probably never want to use anything
else!

Section 1. How To Use SCRIPT 9

Introduction

SCRIPT reads input lines from CMS disk
files. As it reads the lines, it formats
them, and scans the text for ‘"control

words" which are recognized by SCRIPT as
instructions to perform particular tasks.

CONTROL WORDS

Control words are normally identified by a
period (.) in column 1. For example,

.Sp

is a control word that tells SCRIPT to
leave a blank space between text 1lines on
output, and the control word

.Pa
tells SCRIPT to start a new page of output.

Each control vord has a short, 2-charac-
ter name and a 1long, descriptive nanme.
Thus, the .SP control word has the 1long
name, SPACE-LINES, and the .PA control word
has the long name, PAGE-EJECT. When you
enter SCRIPT control words with input text
into a SCRIPT file, you can use either the
short or the long form, in any combination
of uppercase and lowercase letters, but you
must always precede it with a period. The
control words are named so as to be -as
descriptive as possible, to make it easier
for you to learn and to remember then.

~ The .SP control word, for example, may

be entered in a variety of ways, among
them:

«Sp «SPACE

.SPACE-LINES .spa

.space-lines «SPACE-L

The long names for the control words are
provided for «clarity; the short forms are
the real control word names. . You should be
aware that if you use the long names of the
control words, SCRIPT must perform extra
steps to translate the long form to its
short, two-letter equivalent.

In this book, when control words are
used in examples, the short name is used;
in text, either the short name or the long
name may be used. When the long

name is

CONTROL WORD OPERANDS

Most SCRIPT control words have operands or
parameters, that you use to specify how you
wvant a control word processed. Many
control words accept the keyword operands
ON and OFF, so you can inhibit or restore a
SCRIPT function or setting. For example,
CENTER is a control word that tells SCRIPT
to begin centering output on the page, and

.C€ Oon

)
and
.ce Off

are control 1lines that start and stop
centering (.CE 1is the short name for the
CENTER control word). -

Many control words accept numeric
parameters, that you use to specify an

extent or a value for a SCRIPT operation,

for example
.sp 10

indicates that you want 10 lines of space

.Sp 2
indicates that you want 2 lines of space,
and so on. Control words that accept

numeric parameters may also accept keyword
operands. The CENTER control word, shown
above, allows you to specify a particular
number of lines to center, for example:

.ce 10
Each of the control word descriptions in

Section 3 lists the operands and parameters
accepted by each control word.

INVOKING THE SCRIPT PROCESSOR

You invoke the SCRIPT processor by issuing
the SCRIPT command from the CMS environment

of VM/370. When you issue the SCRIPT
command, you must specify the filename of
the CMS file that contains your SCRIPT

input. The filetype of the file must be
SCRIPT. PFor example, if you create a file
with the CMS file identifier TEST SCRIPT,
then to invoke SCRIPT to process the file,
you issue the command - -

used, it is shown without the period (.).

10 SCRIPT/370 Version 3 User's Guide

script test
SCRIPT responds with the line:

SCRIPT/370 VERSION 3, LEVEL n - mm/dd/yy

where n is the version level of SCRIPT/370,
and mm/dd/yy is the date of that version
level. If you are using a typewriter
terminal, you next receive the message:

ADJUST PAPER, THEN PRESS RETURN

Then, SCRIPT processes the text and control
words " in the file, and the results are
typed at your terminal.

If you are using a display terminal, the
display screen goes into a MORE... status,
and you must press the Cancel key (or
equivalent) to see the first screenful of
SCRIPT output.

Options of the SCRIPT
to specify whether you want your output
printed on the real system printer or
written into a CMS disk file. For example,
if you want the output from SCRIPT proces-
sing to be printed on the printer in the
computer room, use the PRINT option:

command allow you

script test (print

The SCRIPT command
detailed description of
options, are shown in
SCRIPT Command."

format, and a
each of the
"section 2. The

——— sEs=as ————m e

A SCRIPT file may contain no control words
at all. In this case, the output format of
the SCRIPT file is determined by a set of
default characteristics. By using SCRIPT
control words, you can override these
defaults, as well as provide additional
kinds of controls over SCRIPT processing.
The number of SCRIPT control words you need

to learn is directly proportional to the
complexity of the documents you want to
produce.
When you create a SCRIPT file, some of
the things you must consider are:
e How is the text formatted? Do you want
to add spaces between 1lines or para-

graphs? Indent lines? Create numbered or
bulleted lists?

e What size paper are you using for SCRIPT
output? How many lines of text should
be on the page? How wide is it? Do you
want special titles on the top or bottom
of each page? Where, and in what
format, do you want the page number to
appear?

e Are you going to use multiple-column

processing?

Introduction

e Do you want to generate a table of
contents listing major headings, and the
page numbers on which they occur?

e How long is the final document going to

be? Can you organize it into several
input files and let SCRIPT combine them?
e Are you going to have illustrations?
Are you going to create tables using

SCRIPT? Do you need to 1leave blank
pages or blank space so that artwork can
be included later? How are you going to
number the illustrations?

e Are you using variable information? Can
you use symbolic names throughout a
document to represent information that
changes frequently?

e Do you want the SCRIPT processing to be
interactive? Are there types of infor-
mation you may want to enter during
SCRIPT processing? '

e Are you using the same sequences of
control words frequently? Can you write
a SCRIPT macro so that you do not have
to rekey all the control words in the
sequence each time you want to use it?

The remainder of Section 1 contains
information describing how you can use
SCRIPT control words to perform these
functions in a SCRIPT file.

HOW DO YOU DECIDE

WHICH CONTROL WORDS TO
USE? '

Experience and personal preference. This
book describes many formatting techniques,
and shows lots of examples. No one example
or technique is necessarily the best way to
format something: there are usually several
ways to do the same thing. As you become
more experienced in using SCRIPT, certain
standard ways of doing things will evolve
and may be accepted as installation stan-
dards where you work.

SCRIPT OPTIONAL FEATURES

In addition to the capabilities 1listed
above, there are two SCRIPT features that
are available as options. These are:

e Automatic hyphenation
e EasySCRIPT

The first of these 1is exactly what is
sounds 1like: SCRIPT can decide when and
where to hyphenate words that fall at the

Section 1. How To Use SCRIPT 11

Introduction

end of an output line, thus making your
output look - more professional, and elimi-
nating wasted space. ,

EasySCRIPT is another optional feature:
it provides a number of high level GHML
(Generalized Markup Language) "tags" which
you can use instead of SCRIPT control words
to format a document. EasySCRIPT is a very

12 SCRIPT/370 Version 3 User's Guide

useful tool for people who do not have a
lot of time to learn about SCRIPT, but who
must produce consistently-formatted docu-
ments in a short period of tieme. Since
SCRIPT control words can be mixed with
EasySCRIPT tags in an input file, you can
learn EasySCRIPT first, then learn about
other SCRIPT control words later, when you
have time.

One of the things that SCRIPT does when it
processes your input text is to format it,
so that regardless of how you enter the
input lines in the SCRIPT file, the output

text is consistently justified in columns
of a regular width. This formatting
consists of two processes, which SCRIPT

performs simultaneously:

e Concatenation - the process of spilling
words back and forth from one 1line to
another to fill out a column to its
prescribed width, and

e Justification - the process of adding
extra blanks between words in an output
line so that the right edges are evenly
aligned (right-justified).

entered in a SCRIPT

Thus, lines that are

file as:

The quick brown
fox
came over to greet the lazy poodle.

may be formatted as:

The quick brown fox
came over to greet the
lazy poodle.

As SCRIPT reads input, it "saves"™ words
until it accumulates enough words to fill
an entire line. When the next word in the
input would make the 1line too long, SCRIPT
justifies and prints the 1line, then begins
formatting the next line. When two input
lines are concatenated, SCRIPT inserts one
blank between the last word from one line
and the first word from the next.

If you enter text in a SCRIPT file with
no control words, all of the text is
formatted as in the above example.?}

Most writing that you do, however,
requires some kind of formatting: para-
graphing, for example. You can do this
kind of formatting very easily in SCRIPT,
using no control words at all, or you can
use control words to provide the format-—

ting. In either case, you must be familiar
vith the concept of "breaks."

1211 of the examples of SCRIPT formatting
in this book are shown, for convenience,
with very short lines.

SINPLE TEXT FORNATIING

BREAKS

When you want an input 1line to begin a new
line of output, and do not want it conca-
tenated with the lipne above it, you must
cause a break, so that SCRIPT prints the
partial 1line that is being saved before
processing the new line.

One of the simplest ways to cause a
break in a SCRIPT file is to begin a line
with one or more blank characters (by using
the space bar on your terminal keyboard).
When SCRIPT reads an input line that begins
with a blank character, the formatting
process 1is interrupted, all of the text
that has accumulated for the current line
is printed as is, even if more words would
have fit on the line, and the next input
line begins a new output line.

To create paragraphs in text, then, all
you have to do is to enter spaces before
each 1line that you want +to mark a new
paragraph. For example, the lines:

The quick brown

fox

came over to greet the lazy poodle.
But the poodle was frightened

and ran awvay.

may appear on SCRIPT output as:

The gquick brown fox
came over to greet the
lazy poodle.

But the poodle was
frightened and ran
avay.

similar break using the
(BREAK) . The

You can cause a
SCRIPT control word, .BR
lines

The quick brown
.br
fox

result in the output:

The gquick brown
fox

If you want text to have leading blanks, as
for paragraphing, you must supply the
blanks on the text 1line. For an alternate
method of paragraphing, you may want to use
the .PP (PARAGRAPH-START) control word,
which provides a blank 1line space, and
3-character indention on the first 1line.

Section 1. How To Use SCRIPT 13

Simple Text Formatting

The paragraphs in this book were created

with the .PP control vord.

SPACES

If you want to leave spaces between lines
of text, you can enter a 1line of blanks
into the text file by pressing the space
bar at least once on a 1line that has no
other text, then pressing the Return or

Enter key.

Instead of entering a blank line, you
can use the .SP (SPACE-LINES) control word.
Thus, the lines

The quick brown fox came over to
greet the lazy poodle.

.Ssp

But the poodle was frightened
and ran away.

are formatted as follows by SCRIPT:
The quick brown fox
came over to greet the
lazy poodle.
But the poodle was
frightened and ran
avay.

The .SP control word allows you to enter

a numeric parameter, indicating how many
spaces you want to leave on the text
output. For example,

.Sp 5

indicates that you want to leave 5 lines of
.space in the text output. You can use
multiple spaces when you want a heading or
a title to stand out, for example the
lines:

A Love Story
.«Sp 3

The quick brown fox

was eager

to meet the pretty poodle.

may result in:

A Love Story

The quick brown fox

was eager to meet the
pretty poodle.

also

The .SP control word.

break.

causes a

14 SCRIPT/370 Version 3 User's Guide

CONDITIONAL SPACES

When you enter input for a SCRIPT file, you
cannot always be sure where a new page may
begin. If a page eject happens to occur at
a place in your file where you had provided
for extra spaces, you may not want those
spaces to appear at the top of the new

page. -For these situations, SCRIPT
provides the control word, .SK (SKIP-
LINES). As with the .SP control word, you

can specify the number of spaces that you
wvant to skip:

.sk 3

Skips are ignored if they happen to
occur at the top of an output page. (If you
are using multiple-column processing, the
lines are ignored if they occur at the top
of a column.) 1In any other situation, the
«SK control word is equivalent to the .SP
control word. You may find it convenient,
therefore, to use the .SK control word
whenever you want spaces, and the .SP
control word only when you need to provide
space at the top of a page (for example, if
you need to leave room for an illustration
at the top of the page).

MULTIPLE SPACES

If you want to produce output that is
double-spaced or triple-spaced, there are
control words that you can use to indicate
to SCRIPT that while formatting is to
continue for each text line, extra spaces
should be inserted between each line on
output. For double-spacing, use the .DS
(DOUBLE-SPACE-MODE) control word:

.ds

After this control word is processed, all
output text lines have an additional space
between them. Any spaces or skips that you
have placed in the file are doubled as
well; if you have a .SP 2, then your output
has four spaces.

An additional SCRIPT comntrol word, .LS
(LINE-SPACING), allows you to specify some
other increment for - output spacing. You
can, for example, specify :

.1s &4

so that there are four 1lines of space
between each text line of output, and each
.SP or .SK control word value is multiplied
by four.

The .DS and .LS control words can both
be canceled by the control word .SS (SIN-

GLE-SPACE-MODE) , which returns SCRIPT

output to normal single-spacing.

Default SCRIPT formatting is designed for
paper that is 8 1/2 by 11 inches, that is,
standard typewriter-size paper. As SCRIPT
formats text, it keeps track of how many
lines it has filled on a page; when it
reaches the bottom of the page, it performs
a "page eject" and continues output on a
nev page, pausing at the top of the page to
print the top titles, if any. The default
title, printed at the top of the page,
indicates the page number. SCRIPT always
keeps track of the current page number as
it is processing.

If you are directing your SCRIPT output
to the terminal, you may want to use the
STOP option on the SCRIPT command 1line.
The STOP option tells SCRIPT to pause at
the end of each page of output, so that you
have time to insert a new sheet of paper.

When you are entering SCRIPT input, you
may want to force SCRIPT to begin a new
page of output before printing the next
text. To do this, use the .PA (PAGE-EJECT)
control word:

.pa

This control word causes a break, so SCRIPT
prints the last output 1line, then 1leaves
the remainder of the current page blank.

The .PA control word also allows you to
specify a numeric parameter, so that you
can assign a page number to the new page.
For example, if you are creating a SCRIPT
file with a title page and then you want
the second output page to be numbered page
one, you can use the control word:

.pa 1

For an alternate method of suppressing the
numbering of introductory pages, see the
discussion of the .PN (PAGE-NUMBERING-MODE)
control word in Section 3.

When you specify a page number with the
.PA control word, the numbering sequence is
reset and continues sequentially.

ODD ARD EVEN PAGES

occur when you use the
(ODD-PAGE-EJECT) and .EP
When these control

Page ejects also
control words .OP
(EVEN-PAGE-EJECT) .

Simple Text Formatting

words are encountered, SCRIPT perforas
either one or two page ejects, such that
the next page to contain text is even-num-
bered (in the case of the .EP control word)
or odd-numbered (in the case of the .OP
control word). For example, if SCRIPT is
currently processing output page numbered
three and then reads the control word

.0p

it does a page eject, prints only top and
bottom titles on page four, and prints the
next text on the page numbered five.

These control words are convenient when
you are formatting a document that is to be
published, and certain pages must begin on
even- or odd-numbered pages.

OVERRIDING SCRIPT DEFAULT FORMATTING

When you are creating SCRIPT documents,
there may be occasions when you do not want
SCRIPT to concatenate and Jjustify your
input lines. You may want, for example, to
present a simple list, such as:

Boston
Chicago
New York
Providence

If these 1lines are processed when SCRIPT
formatting is in effect, these four names
may be concatenated as follows:

Boston Chicago New
York Providence

To prevent this, you may use the .BR
control word between each entry to force a
break, or you can use the .FO (FORMAT-MODE)
control word to suspend SCRIPT formatting:

.fo off
Boston
Chicago
New York
Providence

To restore normal formatting after suspend-
ing it, use the control word:

.fo on

Since ON is the default operand for the .FO
control word, you can use:

.fo
You should use the .FO‘ OFF control word
when you create tables or charts in SCRIPT;

but remember to turn formatting back on
wvhen you resume entering text.

Section 1. How To Use SCRIPT 15

Simple Text Formatting
SUSPENDING CONCATENATION AND JUSTIFICATION

The .FO control word suspends all format-
ting, both concatenation and justification.
There are times, however, when you may want
to suspend either one of these processes,
but not both. SCRIPT, therefore, provides
the .JU (JUSTIFY-MODE) and the .CO (CONCA-
TENATE-MODE) control words, vwhich can be
used to suspend and restore justification
and concatenation, respectively.

For example, you may want to produce
SCRIPT output that resembles normal type-
writer output, that is, "ragged right"
output. In this case, you do not want to
suspend concatenation, since you still want
each line to contain as many words as can
fit on it, but you do not want extra blanks
inserted between the words to pad the line
to a specific length. To achieve this
format, use the .JU control word, specify-
ing the OPF operand:

.ju off

When the .JU OFF control word is in effect,
output is formatted as in the preceding
paragraph.

To resume justification of input 1lines,
use the ON operand of the .JU control word:

.ju on

Since ON is the default mode of operation
for the .JU control word, you do not need
to specify ON.

Concatenation can be suspended in a
similar way. To restore concatenation, use
the control word

«CO On

Since ON is the default mode of operation
for the .CO control word, you do not need
to specify ON.

Since full format mode is made up of
justification and concatenation, you can
restore them both with .FO ON, even if they
have been turned off individually with .CO
OFF and .JU OFF.

When you are creating documents, you may
want to set off paragraphs or portions of
text by indenting then. This of ten

improves the readability of a manuscript by
emphasizing certain text. Using SCRIPT,
you can conveniently cause paragraphs to be

16 SCRIPT/370 Version 3 User's Guide

indented using the the .IN (INDENT) control
wvord. For example, the lines

This line is not indented.
.in 5
This line is indented.

result in

This line is not indented.
This line is indented.

The .IN control word acts as'a break, so
that text accumulated -before the .IN
control word is processed and printed, then

‘the next text is processed.

The .IN control words effectively sets a
new left margin for output text, so that
when you want text indented, you do not
have to enter blanks in front of the input
lines (as you would for normal typing).
When default SCRIPT formatting is. in
effect, SCRIPT continues to concatenate and
Justify input text lines that begin in
column 1, but prints the output indented
the number of character spaces you specify.

Here's another example:

These few lines of text

are formatted

with enough words

.in 5

so that you can

see how SCRIPT's formatting
process

.in +3

continues and may

.in -6

even be reversed, by using a
negative value.

These lines may result in:

These few lines of
. text are formatted
with enough words
so that you can
see how SCRIPT's
formatting
process
continues and
may
even be reversed,
by using a negative
value.

In this example, the first .IN control word
shifts output to the right 5 spaces so that
text begins in column 6. The second .IN
control word requests that the current
indention be incremented by 3 spaces, so
the left margin is now in column 9. When

you supply a negative value with the .IN
control word, the margin is shifted to the
left.

Simple Text Formatting

v

I

L

L}

|

|

.'
Topics may frequently require |
elaboration, resulting in: |
.sk |
.0f 5. i
1. Lists that enumerate exceptionms. |
.sk |
.0f 5 |
2. Subdivisions of the topic, |
that result in discussions of |
varying degrees of length. |
.of |
.sk |
.un 5 : |
.up This is a Second Heading |
.sk |
There is a hierarchy involved |
_here; some items are clearly |
more important than others. |
.sk _ |
We are illustrating the coatrol |
words described below. |
.sk |
.of 8 |
INDENT moves the left margin |
of all subsequent output. |
.of 8 |
OFFSET moves the left largln of |
all but the next line. |
.of 8 i
UNDENT moves the left margin of |
only the next line. |
.in 0 |
.sk |
The end: the .IN control word {
clears everything. |

[P o e e = S G S T e T — — — T O . > e T e = e = T = -

Input Output
.in 5 THIS IS A HEADING
.un 5
.up This is a neadlng Topics may frequently require
.sk elaboration, resulting in:

1. Lists that enumerate
exceptions.

2. Subdivisions of the
topic, that result in
discussions Qf varying

degrees of length.

THIS IS A SECOND HEADING

There is a hierarchy involved
here; some items are clearly
more important than others.

We are illustrating the
control words described below.

INDENT moves the 1left margin
of all subsequent
output.

OFFSET moves the 1left narg1n
of all but the next
line.

UNDENT moves the left margin

of only the next line.

The end: the .IN control

word
clears everything. :

b M e o . . o S —— e . G . = T D — D Gan . —— . S — —— — . —— . o = ke = ol

Figure 1.

INDENTS AND OFFSETS

Any INDENT control word cancels a current
offset and resets the 1left margin. If you
specify a positive or negative increment

with the INDENT control word when an offset
is in effect, the offset is canceled, and
the new 1left margin is computed from the
current indent value.

and .OUN
current

Both the .IL
(UNDENT) control
margin (the

(INDENT-LINE)
words wuse the

value) when computing the margin for the
next line.
To achieve a format that has several

levels of offsetting, you can combine the

18 SCRIPT/370 Version 3 User's Guide

indent value plus the offset-

Example of Indents, Offsets and Undents

.IN and .OF control words. See Figure 1
for an example of one technique to use. If
you frequently need to create documents
using similar formats, you may want to use
EasySCRIPT. EasySCRIPT is described later
in this section.

When you create lists using indents and
offsets, you should use a tab character to
provide the space required between the item
indicator (that 1is, the number ' or special
character), and the first word of - text.
When SCRIPT Jjustifies a 1line, it dinserts
extra blanks where blanks already appear on
the line. If you use blank spaces follow-
ing the item indicator, SCRIPT may add
extra blanks when it justifies the line; if
so, the first line may not be aligned with
the remainder of the offset iten.

Simple Text Formatting
SOME USES FOR TABS

Tab characters at the beginning of input
lines cause breaks. Thus, you can conven-
iently use tab characters to begin para-
graphs or to create tables or charts. For
example, the lines

.tb 10

We are planting:
(TAB) Marigolds
(TAB)Peonies
(TAB) Cucumbers
.br

this year.

are formatted as:

We are planting:
Marigolds
Peonies
Cucumbers
this year.

You should remember, however, to use the
INDENT control word when you want to indent
blocks of formatted text. If each line of
text begins with a tab character, SCRIPT
does not format the text.

Note, in the above example, the use of
the .BR control word following the tabbed
items. If SCRIPT formatting is in effect
when these 1lines are processed, and there
is no break after the last tabbed item,
SCRIPT concatenates the next 1line with the
last item on the list.

Tab Fill Characters

When you specify tab settings with the .TB
control word, you can specify a character
to be used as a "fill" character when
SCRIPT formats the 1line. Ordinarily,
SCRIPT uses a blank to pad a line through a
tab position. However, if you specify a
tab setting such as

otb C/S
then enter a line that begins with a tabd
character, the positions normally filled
with blanks are filled with periods

instead. Thus, the line
(TAB) This line begins with a tab.
is formatted as:
eeeesThis line begins with a tab.
You can specify a different £ill charac-
ter for each tab setting position you
specify with the TAB-SETTING control wvord.

If you do not specify a fill character,
SCRIPT always uses a blank.

20 SCRIPT/370 Version 3 User's Guide

EI SCRIPI D

il

There are several SCRIPT control words you
can use to simplify the composition of
pages and text or titles. Each of these
control words accepts a text line as a
parameter, and formats the line for you.
Using these control words you can automati-
cally: :

e Center lines on a page
o Right-justify a text line or title

e Underscore, capitalize, or both under-

score and capitalize a line

CENTERING AND RIGHT-JUSTIFYING LINES

The CENTER control word (.CE) adjusts a
line on the page so that there are an equal
number of spaces in each margin. The line:
.ce Chapter 1
may appear:
Chapter 1

(.RI) control word
title so that it is

The RIGHT-ADJUST
adjusts a text line or

flush with the right margin. Thus,
.ri Chapter 1
appears as:
Chapter 1

Both the .CE and .RI control words allow
you to specify a numeric parameter, indi-
cating how many input 1lines should be
right-adjusted, as in:

.ce 4

After this control word is processed,
the next four lines from the input file
are centered within the current
margins.
concatenated or

The lines are not

fied.

Justi-
You can also use, with the .CE and .RI
control words, the operarnds ON and OFF:
.Ti on

.ri off

All the text 1lines between the .RI ON and

Simple Text Formatting

REMEMBER CONTIROL WORDS THAT DO NOT ca

_____ Many control words that provide
format functions do not cause breaks, so
you can type individual words or phrases of
a sentence on different input lines, as you
require. The underscoring and capitalizing
control words are a good example of this.

DO NOT CAUSE

The input lines

This

.up sentence

.us has several control
.uc words in

.up it.

result in
This SENTENCE has
several control WORDS
IN IT.

STACKING SCRIPT CONTROL WORDS

Whether you are using a few or many control

words in text formatting, you can take
advantage of SCRIPT's stacking facility.
This allows you to enter more than one

control word on a single
enter a control word and text on the same
input line. To separate the control words,
or the control word and text line, you can
use a semicolon (;), for example:

input line, or to

.sk;.ce on
is equivalent to the two lines:

.sk
.ce on

Stacking SCRIPT control words is conve-
nient whenever you need to use more than
one control word between text lines. When
you return to edit the file later on, you
can see all the control words together, and
this can save time, especially if you are
using a typewriter terminal.

Redefining the Control Word Separator:

You must be careful when you use semicolons
on text lines that are processed as control
word lines. For example, the line

.us Be careful; semicolons end lines.
results, on output, in:

Be careful

semicolons end lines.

22 SCRIPT/370 Version 3 User's Guide

To avoid this
special control word,

problem, there is a
«CW (CONTROL-WORD-SE-

PARATOR), that allows you to indicate a
character other than a semicolon as the
separator for stacking control words. For
example, you can enter the line- above as
follows:

«CW

.us Be careful; semicolons end lines.

.CW }

The .CW 3 line restores the control word

separator.

The .CW control word is useful when you
are defining symbolic tags that are made up
of more than one control word. For infor-
mation on defining symbolic tags, see
usymbol Processing" later in this section,

WHEN YOU NEED A PERIOD IN COLUMN ONE

When SCRIPT processes input, every 1line
that contains a period in column one is
treated as a control word. If there is a
period, and what follows is not a vwvalid
control word, SCRIPT issues an error
message. What happens when you need to
enter a period as text in column one?

You can use the .LI (LITERAL) control
vord, which tells SCRIPT that you do not
want a line interpreted as a control word,
for example: '

.1i ...and so it goes.
prints as
...and so it goes.

You can specify parameters with the .LI
control word, if there are many lines that
begin with a period, for example the
sequence:

Study the following control words:
.1i on

. DS

.PA

.IH.

.1i off

This assignment is due on Monday.

results in:

Study the folloving
control words: .DS .PA
.IM. This assignment
is due on Monday.

The output pages that SCRIPT formats are
designed to fit on standard typewriter
paper, 8 1/2 by 11 inches. This default
format - is also suitable for standard
11-inch computer forms. SCRIPT pages have:

e 66 lines per page
® 60 characters of text on each line

The. control words that determine these
values are .PL (PAGE-LENGTH), which - bas a
default value of 66 and .LL (LINE-LENGTH),
which has a default value of 60, In
addition, SCRIPT allows 6 1lines at the top
of the page and 6 1lines at the bottom of
the page for margins. These 12 1lines are
included in the overall page length; thus,
the total nuaber of text lines on a page is
5“.

There are control words that determine
the size of the margins. They are:

.TH (TOP-MARGIN)
«BM (BOTTOM-MARGIN)

By changing the values of these control
words, you can adjust the dimensions of a
page of output. Two immediate considera-
tions are: .

e The physical size of the paper on which
you are printing SCRIPT output.

e The number of lines printed or typed per
page on the output device.

The latter is important because SCRIPT
assumes, in addition to 11-inch paper, that
output is printed at 6 lines per inch
(thus, the page 1length of 66). You can
see, then, that if you are creating output
that prints at 8 lines per inch, you nmay
want to use the PAGB-LENGTH control word to
reset this value:

.pl 88

Similarly, if you are printing 6 lines
per inch on a different size of paper, for
example 14-inch forms, you would also need
to change the page length. 1In other words,
the page length value should be the same as
the number of physical print lines on the
paper.

When you change the page length, the top
and bottom margins do not change automati-
cally. If you need to format an output
page, for example if you need exactly 68
lines of text, you can use the .TH
(TOP-MARGIN) and . BN (BOTTOM-MARGIN)

24 SCRIPT/370. Version 3 User's Guide

control words to adjust the number of text
lines that SCRIPT prints . on each page. To
print output with 68 lines of text. on
14-inch paper printed at 6 lines per inch,
you could use the control words: ..

.pl 84
.ta 8

to achieve hhfdntput-fdrnat of 68 lines per
page. o

Usually, . once you have . set . the
formats for a document you do not need to
change them; the values for these control
vords remain in effect until you explicitly
reset them.

page

Occasionally, however, you may need to
adjust a page dimension during SCRIPT
processing. Using the formatting example
above, if you need to print a page using
only 65 text 1lines, you can recalculate
values for the top or bottom margin, or you
can let SCRIPT do it:

.bm +3

increases the bottom margin by 3 charac-
ters, effectively decreasing the number of
text 1lines on the page. To restore the
original page depth, use the control word

.bm -3

The control words that are used to lay
out the format of a page are summarized in
Figqure 2.

CHANGING THE LINE LENGTH

When you are changing the default dimen-
sions of SCRIPT output, you must consider
the width of pages as well as the length.
The SCRIPT default, 60 characters, 1is
designed for typewriters or printers that
print 10 characters per inch. You can
calculate how wide you want your text lines
to be and use the .LL control word to set
the page width, that is, to control the
right-hand margin of your output.

.11 89

The above 1line tells SCRIPT that you want
89 characters on a line. SCRIPT uses this
amount to format output 1lines until you
explicitly reset the line 1length. As with

Formatting Pages and Titles

the .PL, .BM, and .TM control words, you

can adjust the line length by a positive or

negative specification. The line

.11 -20
resets the line length to 20 less than the
current ‘value. If you use this control
word in conjunction with an indent control
word:

.in 20

you can effectively center formatted output
on a page.

WHEN IS LINE LENGTH IMPORTANT?

When SCRIPT is concatenating text, the line
length represents the maximum number of
characters that SCRIPT prints on a 1line.
If SCRIPT is not concatenating text (as
when .PO OFF is in effect), then any lines
that are longer than the current line print
as they ‘appear in the input file, and
extend into the right margin.

The .LL control word also controls the

vidth of top and bottom titles that print
on output pages. ‘

TOP AND BOTTOM TITLES

When you use SCRIPT to create documents
that are more than a single page, SCRIPT
provides, by default, a top title that

appears right justified on
output page: ’

the top of each

PAGE 26

SCRIPT.provides control words for you to

set titles that are printed on the bottom
of each page as well as the top. You can
use titles to indicate page numbers,
chapter or section headings, document

titles or form numbers, or almost anything
you want. The control . words to set titles
are:

.ET (EVEN-PAGE-TOP-TITLE)
.0T (ODD-PAGE-TOP-TITLE)

.EB (EVEN-PAGE-BOTTOM-TITLE)
.0B (ODD-PAGE-BOTTOM-TITLE)

same titles on both
can use

If you want the
even- and odd-numbered pages, you
the control words:

«IT (TOP-TITLE)
«BT (BOTTOM-TITLE)

26 SCRIPT/370 Version 3 User's Guide

HOW TO SPECIFY TITLES

Bach title consists of three parts, which
are printed in the following positions
according to the current line length:

part 1 is left justified
part 2 is centered
part 3 is right justified

These parts are specified in the title
control word line by using four delimiters,
usually a diagonal (/). When you set a
title, you must specify what information
you want to provide in each section of the
title. To center the words "First Draft"®
at the top of every output page, you
specify:

.tt //Pirst Draft//

If you want this title to appear on the
left side of every output page, you specify

.tt /Pirst Draft///

To cancel a title (so that it no longer
prints on output pages), you make all three
parts null:

bt ////

The above ‘control word cancels any bottom
title control words that may be in effect.

If you need to create a title that
contains the diagonmal character, you can
choose any character that does not appear
in the title as the delimiter:

.bt <LSCRIPT/370 is Pun!<K
If you use even or odd title control-
words (.ET, .0OT, .EB, .OB) then the titles
you specify appear only on the even- or

odd-numbered pages. For example, the
titles:

.eb /Pirst Draft///
.ob ///3une 1776/

result in the words “First Draft" appearing
on the lower 1left of each even-numbered
page of output and the words "June 1776"

appearing on the 1lower right of each
odd-numbered page of output.

Even and o044 SCRIPT titles are conve-
nient for formatting manuscripts that

require folios or page numbers to be
printed flush with the outside margins on
left and right pages of books.

Formatting Pages and Titles

.ha 3

then SCRIPT allows 3 blank lines between
the top title (if any) and the first line
of text on the page. The top margin value,
however, does not change. Instead, the
position of the top title changes.

Increasing a top or bottom
not automatically change the
footing margins, either. If you try to
decrease a top or bottom margin to a value
too small to accommodate the titles plus
the heading or footing margin, an error
results.

margin does
heading or

BAGE NUMBERS

In addition to using top and bottom title
control words to indicate and change how
page nuambers appear on an output file,
there are a few fancy things you can do
with the .PN (PAGR-NUMBERING-MODE) control
vord. Operands of the .PN control word
allov you to specify: :

PAGE NUMBERING: If you do not want SCRIPT
to print the page number on output, but
want SCRIPT to continue incrementing the
numbers, use

«pn off
If you do not want SCRIPT to increment the
page number counter, you can use the
control word:

«pn offno
To restore either of the above, use:

.pn on

FRACTIONAL PAGINATION: You can also specify

that you want fractional pagination to
begin with the next even-numbered page:

.pn frac
If this control word is encountered while

then subse-
46.2, 46.3,

SCRIPT is processing page 46,
quent pages are numbered 46.1,
and so on until the control word

.pn nora

is processed. Then, SCRIPT does a page
eject and numbers the next page u47.

ROMAN NUMERALS FOR PAGE NUMBERS:

want page numbers to be printed
case roman numerals use:

When you
in lower-

.pPn roman

28 SCRIPT/370 Version 3 User's Guide

!

This operand is useful for printing front
matter, such as prefaces, forewords, and so
on. To restore arabic numbering, use the
control word:

.pn arabic
PREFIXES FOR PAGE NUMBERS: If your document
uses special numbering schemes, such that
each chapter or section requires a prefix
in front of the page number, you can use
the PREF operand of the .PN control vord,
for example:

.pn pref 1-

After this control word is encountered, a
bottom title that is specified as:

bt /8///
prints as
1-28

This operand is useful for texts that begin
a nev numbering scheme with each section.

A1l of the above operands affect titles

that have a page number symbol (normally
the &) in then.
In addition, the automatic table of

contents generated by the heading 1level
(.Hn) control words contain the page
numbers in the format specified by the .PN
control word. PFor information on creating
tables of contents in SCRIPT, see ‘"Head
Levels and Tables of Contents" later in
this section.

You can actually set up to 12 titles at one
time in a SCRIPT file. These 12 possible
titles are:

e Six 1lines of titles for even-numbered
pages

of titles for

e Six 1lines odd-numbered

pages

fhen you want to use multiple titles,
there are two things you must consider:

1. Specifying the text of the titles.

2. Allocating space for the titles to

print.

A1l of the title control words accept
numeric parameters of 1 through 6, which
indicate the number of the title line. For
top titles (.TT, .ET, .OT), title 1lines 1

HULTIPLE-COLUBN PROCESSING

SCRIPT can format output in up to nine
columns. The control words that you might
use for multiple-column formatting are:

«CD (COLUMNK-DEFINITION)
«CL (COLUMN-LENGTH)

«SC (SINGLE-COLUMN-MODE)
.MC (MULTICOLUMN-MODE)
«CB (COLUMN-BRGIN)

«BC (BALANCE-COLUMNS)

When you
ple-column
procedure to
control wvords.

want SCRIPT to- process multi-
output, use the following
determine how to specify the

1. Decide how lany columns you want and
how 'wide you want each column to be.

2. Decide how much space you want to leave
between each formatted colunmn. This
space is called the “gutter.®

3. Deteramine vhere you want each coluan to
be placed on the page, based on the
coluan length plus the gutter length.

4. Calculate the overall 1line 1length,
which is the sum of the lengths of the
columns plus the length(s) of the
gatter(s) .

For example, if you want to process text
in three columns on paper that is 11 inches
wide, you might first decide that each
column should have 28 characters, and that

you wvant to leave a 3-character gutter
between the columns. You could use the
control words:

.cl 28

.cd 30 3162

.11 90

The .CL (COLUMN-LENGTH) control word
specifies the width of each column. The
first parameter of the .CD (COLUMN-DEFINI-
TION) control word indicates the number of
columns, and the remaining parameters
indicate howv far each column is shifted
from the left margin (its displacement).

Using the above example, if you want the
first column to be printed in column 1,
then specify 0 as the displacement. Then
the second column can begin in positipn 31
(28 + 3), and the third in position 62 (31
+ 28 + 3). The overall width is the total
width of the columns (3 x 28) plus the
width of the gutters (2 x 3), or 90, which
you can use for the line length (.LL).

The LINE-LENGTH control word controls
the wvidth of top and bottom titles; there-
fore, you only have to include it if you
have specified any top and/or bottom title
control words, and if you want the titles
to be right- and 1left-justified with the
outside margins of the 3-column format.
Let's see what happens when vwe use the
three control words shown above:

0ok ol ke o o ok ok ok ok ok oK ok 3 ok ok ok ok ok

Now we are having SCRIPT To get line spaces across While temporarily in
process ‘in three column the entire width of the single-column mode, we add
format, using the control page, ve restored single-co- spaces and some asterisks,
words .CL 28, .CD 3 0 31 62, lumn formatting. We did to make the page look
and .LL 90. We had to do a this with the control word: . better. Similarly, we have
little more, . however, to to be sure and leave spaces
provide the nice spacing .cd 1 after this short threecolumn

between the double and
triple column formats.

exanmple.

before using the .CD 3 line.

e oo ke o ok o o 2ok ok ke 3o ke ok o ok ok ok

THE EPPECT OF COLUMN DEPINITIONS

Notice that the COLUMN-DEFINITION control
word provides two functions: it defines the
number of columns, then the displacements
of each. If you enter the control word

.cd 1

30 SCRIPT/370 Version 3 User's Guide

after having previously entered .CD 3 0 31
62, SCRIPT output is formatted in one
column, with a displacement of 0. You do
not need to respecify this value; if you
then later want to begin formatting in 3
columns again, you only need to specify

and the displacements of 0, 31, and 62 thaf

uultiplebcbluln Processing

.Sp
.cd 4 5 18 31 44
.fo off '
Apple

Banana

Cantelope

Cherry

Fig

Grapefruit

Pear

Plunm

Watermelon

.cd 10
.Sp

.fo

Now the

This text is shown
characters per line of text.
entered so far.

the alphabetical list, when necessary.

o . T o T e T i Y — — — " — T —————— T — Y — O — T ——_—————————— Y

This text is shown in SCRIPT default format, with 60 characters per line of text.
No control words have been entered so far. '

list is ended. You can see that when you let SCRIPT do the formatting for
you, you can much more easily update the alphabetical list, when necessary.
When SCRIPT processes these lines, the result is:

in SCRIPT default format,
Ho control words have

Apple Cherry Grapefruit
Banana Fig Pear
Cantelope

Now the list is ended. You can see that wvhen you let SCRIPT
do the formatting for you, you can much

with 60
been

Plunm
Watermelon

more easily update

e e o G e . S o G e W - D c— T —— T — - S S ——— — — —— — — o]

Figure 3. Example of SCRIPT Multiple-Column Formatting

.bc on
Columns may be automatically made
"ineligible" for balancing by SCRIPT. If

so, then SCRIPT does not attempt to balance
the columns wvwhen any of the conditions
mentioned above occurs. '

. A column is made vineligihle for balanc-
ing:

1. 1If it vas started with a .CB
(COLUMN-BEGIN) control word.

32 SCRIPT/370 Version 3 User's Guide

2. If it wvas started as the result of a
.KP (KEEP) control word or a .CC
(CONDITIONAL-COLUMN-BEGIN) control
word. Keeps are also caused by some
heading level control words.

3. If a keep has been processed in this
colunmn.

If, however, the new column that is started
after any of the above results in a page
eject, then the coluamn is considered
available for balancing.

Head Levels and Tables of Contents

HEAD LEVEL 3 (.H3):
contents entry and a
table of contents entry is indented two
characters; there are no skips before it.
The topic heading is automatically capital-
ized, but not underscored in the text, with
three skips before and two line spaces
after it.

generates a table of
topic heading. The

HEAD LEVEL 4 (.BY): generates a topic
heading, but no table of contents entry.
The topic heading is automatically under-
scored, but not capitalized, with three
skips before and two line spaces after it.

HEAD LEVEL 5
heading, but

(.BH5): generates a topic
no table of contents entry.
The topic heading is automatically under-
scored and capitalized, with one skip
before it. There are no spaces after it; a
level 5 heading is concatenated with the
text that follows.

The heading introducing each of the
heading 1levels in this description are
generated with the .H5 control wvord.

HEAD LEVEL 6 (.H6): generates a topic
heading, but no table of contents entry.
The topic heading is automatically under-

scored, but not capitalized, with one skip
before it. There are no spaces after it; a
level 6 heading is concatenated with the
text that follows.

The function of a keep is
the topic headings generated with these
control words. The current coluan must
have enough room available to 'contain the
topic heading, the spaces after it, and two
additional lines. If there is not enough
room, a column eject is performed.

provided for

- SPACING AND PAGE EJECTS

SCRIPT control of heading 1levels takes
advantage of conditional spacing capabili-
ties. Thus, while a .H2 control word is
generally followed by two spaces, these
spaces are not generated if a .H2 is
immediately followed by spaces or skips
(such as might be generated by another .Hn
control word, for example, .H3). This
eliminates multiple spacing when headings
are used without intervening text.

The .H1 control word causes a page eject
only if SCRIPT is not already at the top of
a page. There are some instances when you
will want to precede a .H1 with a page
eject control word:

e When you want to assign the page a

specific page number (for example, with
a .PA 1 control word).

34 SCRIPT/370 Version 3 User's Guide

e When you want an odd
(.OP or .EP).

or even page eject

CHANGING HEADING LEVEL DEFINITIONS

If any of the default characteristics for
particular heading levels do not satisfy
your requirements, you can change them with
the .DH (DEPINE-HEAD-LEVEL) control word.
Or, you can use the .DH control word to
change the definition of a head level only
temporarily. The .DH control word accepts
keyvord parameters that describe head level
characteristics. For example, SPAF is a
keyword that you use when you want to
change the number of 1line spaces automati-
cally generated following a heading; SKBF
indicates hovw many lines to skip before the
heading. The line

.dh 3 spaf 1 skbf 2

changes the number of line spaces generated
after each .H3 control word from 2 to 1 and
the number of skips generated in front of
the heading from 3 to 2. To. restore the
default settings, enter

.dh 3
Characteristics you set or change with
the .DH control word remain in effect until
you reset then.

Heading level characteristics are also

changed with you use the control word
.ez on

to initialize EasySCRIPT GML tags.

IHE TABLE OF CORTENTS

When SCRIPT processes a heading 1level
control word that requires a table of
contents entry, it writes a line into a

file called IKSUT2 SCRIPT. The information
that is written into this file includes:

e The text of the topic heading.

e The page number>of the page on which the
topic heading appears.

that was in
heading was

e The revision code character
effect when the topic
processed.)

e The head 1level definition that was in
effect when the topic heading was
generated. Even if that head level is
redefined later, this table of contents

Head Levels and Tables of Contents

e Specify a formatting control for a text
line passed with the control word (for
example ", US line" or ",CR line"),.

Since the table of contents is in a
special format, the results of any control

36 SCRIPT/370 Version 3 User's Guide

vords that attempt to modify the format are
unpredictable. You =may wvant, hovever, to
provide additional spaces between headings,
or to force column or page ejects where
appropriate.

Combining SCRIPT Files

masterfile. If each unit of information is
in a separate file, then when you want to
move or remove information, you need only
to change the position of the .INM control

word in the masterfile, or to delete it.

In addition, small files may be easily
shared by several masterfiles. Bach
nasterfile may imbed the small file where
appropriate. Thus, you do not need to keep
duplicate copies of similar information in
different places.

Third, you should keep in wmind that
vhile there may be a limit to the number of
records that can be contained in a single
disk file, there is no restriction on the
number of files that SCRIPT can ' process.
Also, using the CMS Bditor, many different
people can wvork on pieces of the same
document simultaneously.

For convenience in updating and tracking
SCRIPT files, it is recommended that you
use one file as the masterfile for a SCRIPT
document. This file can contain the
formatting controls for page size, depth,
column definitions, and so on, that are to
be in effect for the entire document. The
remainder of the masterfile may contain
only the .IM control words that imbed the
rest of the files.

When you are proofreading SCRIPT output
files that contain many .imbed files, you
can use the NUMBER option of the SCRIPT
comnand. When you use this option, SCRIPT
prints, next to each output line, the
filename of the file that is currently
being processed, and the relative record
number of the last input line SCRIPT had
read wvhen the output -line was formatted.
This feature also makes it very easy to
update and correct your SCRIPT files.

If your document is in multiple-column
format, you may need to specify a numeric
parameter with the NUMBER option, such as

script mymaster (print nhlber(z)

If you do not specify a numeric parameter,
SCRIPT leaves 16 blanks between the file-
name and the text; in multiple-column
formats, there may not be enough room on
the paper to accommodate this many blanks.

option of the SCRIPT

The UNFORMAT
command recognizes the IMBED and APPEND
control words. When these control words

are processed and SCRIPT is not formatting
output, the contents of the imbedded or
appended file are written into the format-
ted output. That is, the IMBED and APPEND
control words are actually processed,
vhereas a11 other SCRIPT control words are
not. .

38 SCRIPT/370 Version 3 User's Guide

TUS) control words are

There is a special kind of imbed file that
you can create with the .DI (DELAY-IMBED)
control word. This control word allows you
to enter input lines into a special SCRIPT
file named IKSUT1, . which is the delayed
imbed file. When you are finished entering
lines into the IKSUT1 file, SCRIPT contin-
ues = processing text. As soon. as a _page
eject occurs (either naturally or because
of a control wvword that causes a page
eject), the IKSUT1 file is imbedded. For

example, the following sequence shows how
you nmight delay the inclusion of a few
lines of text until the next page eject

occurred:

.41 on;.ce on
Ak koK ok
*READ CAREFULLY *
Aok ok ok kR ok ok ok Rk ok
.ce off

.41 off

When SCRIPT encounters a .DI ON control
word, it begins accumulating text in the
IKSUT1 file; it does not process the lines
at this time, except to 1look for ".DI OFF"
beginning in column 1. After the
control word is found, SCRIPT continues
processing output with the next line in the
file. As soon as a page eject occurs, the
delayed text is imbedded: and processed
before SCRIPT continues with the next input
line in the file. ,

See Pigure 4 for an example of the .DI
control word. Notice that a numeric
parameter is used with the .DI control
vord, instead of the ON and OFF operands.
r1gure 4 ditself has been formatted using
the .DI control wvord.

SAVING PILE STATUS

The .SA (SAVE-STATUS) and .RE- (RESTORE-STA-
useful with delayed
These control words save SCRIPT
such things as. indents,

lengths, and so on, and
then restore them. Why would you want to
do this? Delayed imbeds, 1like any imbed
files, are processed as if they are a part
of the original input file. With a delayed
imbed, though, you cannot be sure what
values are going to be in effect when the
delayed file is actually imbedded.

imbeds.
settings for
formatting, line

For example, the left margin may be at
column one when the .DI control word is
first read, but a .IN control word may have
been processed before the end of the page
vas reached. If you do not want the

«DI OFF

Combining SCRIPT Files

entirely, regardless of whether the current
file is an imbed file or not. When you use
the QUIT control vord, processing termi-
nates after SCRIPT prints the remainder of
the current page (and thus any bottonm
titles in effect) and after SCRIPT closes
all open files. In contrast, QUICK-QUIT
causes immediate termination of processing,
without a final page eject. Thus, some
formatted text on the last page might never
have been printed.

SCRIPT provides a profile capability (like

a CMS PROFILE BXEC) via the imbed function.

If you have a file named PROFILE SCRIPT on
any of your accessed disks, then it is
automatically imbedded before any other
input text in the primary input £file when
you issue the SCRIPT command. SCRIPT uses

40 SCRIPT/370 Version 3 User's Guide

the standard CMS disk search order to
locate the PROFILE SCRIPT. If there is no
PROFILE SCRIPT, no error condition results;
SCRIPT just begins processing the primary
input file.

PROFILE SCRIPT to

You can use the

contain:

e Prequently used set symbols or wmacro
definitions

e Standard formatting controls or titling

control words that you

use for all of
your files '

If you do not want the PROFILE SCRIPT
imbedded when you SCRIPT a file, use the
NOPROF option of the SCRIPT command:

script test (noprof

This command option suppresses SCRIPT's

search for a PROFILE SCRIPT.

Automatic Pormatting and Page Composition

on the terminal. You can <circumvent this
proofreading problem in some cases by
making the translation conditional, using
the .IF control word.

.if SYSOUT eq PRINT .tr * af

This control word line results in output
translation of asterisks (*) only if output
is going to the printer. Por details on
how this works, see the discussion of the
«IF control word in Section 3.

This technique is also useful for
hyphens, since the special hyphen (X*BF')
that aligns with corner symbols is
non-printable on a terminal, so you cannot
see them. Thus, if you use

.if SYSOUT eq PRINT .tr - bf

you won't have this problem.
try to remember

(You should
to translate the hyphen
back to its normal state for text, since
the X'BF' hyphen does not align properly
vhen used for inter-word hyphenation.)

DBAWING BOXES

At last! SCRIPT has automated the process
of drawing boxes around illustrations or
text, and of formatting charts with hori-
zontal and vertical lines. The control
word that does it all is .BX (BOX), which
you use in three steps:

1. Define the columns that you want to
contain vertical rules, for exanmple,

.bx 1 10 20 30
This control word initializes an

overlay structure for subsequent text
and formats and prints a box top:

v L L) L}

2. Each time you want a horizontal 1line
‘across a box, use the control word

.bx

lines are drawn
intersections at the vertical

with no operands. The
with
rules:

o |
L]

ol

[N 'l
L L]

3. When you want to finish

a box, use the
control word

.bx off
This terminates the overlay structure

and draws a bottoam line, again with the

42 SCRIPT/370 Version 3 User's Guide

correct intersections:

[1 [4

That's how the structure is provided. What
happens to your text? After a box is
started, SCRIPT processes and formats
output lines as usual. Then, after each
line is completely formatted and ready to
print, SCRIPT overlays it with the current
box structure. : '

Note, however, that if a column that has
been defined as a vertical column already
has a data character im it, it is not
overlaid with a vertical bar.

Let's look at some examples of drawing
boxes.
«bx 1 10 43
«in 23.cl1 41
.tb 10
.of 8

Iten1(TAB) This is the first
item in a normal-looking
offset list.

.bx

.0of 8

Second (TAB) This is the
second itenm

of a
normal-looking offset list.
.bx off
.of 0 ’
When these input lines are processed, the

result is:

iThis is the first item of a
{normal-looking offset 1list.
L

Itenm1

Second iThis is the second item of a
lnornal—looking offset list.

i ;

(o o o o= oy
e v ame ahe - —

Notice how the overlay structure comple-
ments the formatted text. By using the .IN
and .CL control words, the left and right
text wmargins are shifted two characters
each vay.
columns defined

Notice, also, that the

on the .BX control line are the exact'
column positionms. Contrast this with the
setting of the .TB ccntrol word (.TB 10,

remember, results in spaces through column
10, with text beginning in column 17).
This means you can use the same numbers for
the .BX control word as for the .TB control
word, and tab over to the column where the
vertical bar will be.

The special corners and intersections
that SCRIPT uses for format boxes are
compound symbols made of corner characters.
Since these characters are not available on

Automatic Pormatting and Page Composition

3. Delayed keeps are always printed in the
next column, even if there is enough
roomr for it in the current column.

When you want SCRIPT to do a keep, use
the .KP (KEEP) control word to delimit the
input that you want to keep together, for
example:

+kp on

These text lines are all
part of a keep.

kp off

You should always mark the end of a keep
with the .KP OFF control word. If you do
not, SCRIPT considers the keep ended when a
full column of text has accumulated, or
vhen certain control words that are not
alloved in a keep are encountered, for
example .Pl or .CB.

You can also end a keep by beginning
another keep, for example:

«kp on

These two lines

must be kept together
.kp on

These two lines

must be kept together.
"+<kp on

Floating and delayed keeps are especial-
ly convenient when you have SCRIPT illus-
trations or tables in text, or when you
want to leave blocks of text open for other
kinds of artwork. These 1lines are used to
create the floating keep that appears at
the top of the next column:

-kp delay
.ce on

- - - - —— - - ——— - -

- - - —— - - - - - - -

.sk

.ce off

-kp off
If the control word .KP DBLAY in this
example is changed to .KP FLOAT, then the

figure is printed as it is processed in the
input file, if there 'are at least four
lines remaining in the column when the keep
is processed.

Using Keeps
Keeps are very useful for formatting text
and illustrations, but you must be aware of

tvo things if you are to use keeps
properly.

44 SCRIPT/370 Version 3 User's Guide

- - - - = - - - -

First, keeps do not cause breaks. If
SCRIPT formats part of a line before
encountering a .KP control word, it saves
the 1line until the end of the keep is
reached, then continues processing. This
is convenient for many kinds of keeps,
footnotes, for exanmple. However, it can
result in the last line of a paragraph that
precedes a keep getting printed following
the text that is within the keep. To avoid
this, be sure that you cause a break before
beginning the keep:

end of paragraph.
.br;.kp on
This line begins the new paragraph.

,kp.off

Many control words cause breaks, remem-
ber, so that if you have used a SPACE or
SKIP before the keep, or an INDENT or
OFFSET control word, you do not need to use
the BREAK control word.

A second important thing to remember
wvhen you use keeps is that there are
control words that are disallowed in keeps,
among them the .CD (COLUMN-DEFINITION)
control word (and the .SC and .MC control
words, which also change column defini-
tions). This means that you cannot, while
processing multiple columns, use a keep to
process a single-column illustration.

If SCRIPT encounters a disallowved
control word while processing a keep, it
terainates the keep. If you want to
perform the function of a keep with an
illustration that changes the column
definition, you can use the .DI

(DELAY-IMBED) control word, which is
similar to a delayed keep. When you use a
delayed imbed, the text of the "imbed" is

always printed at the top of the next page.
The DELAY-IMBED control word is described
under "Combining SCRIPT Files" earlier in
this section. PFor complete details, see
the .DI control word format in Section 3.

FOOTNOTES AND HEADNOTES

and headnotes are two

Footnotes ‘ special
kinds of keep. Footpotes provide an
automatic way of formatting footnotes to

appear at the bottom of a column. SCRIPT
does the calculation necessary to decide
how many lines of text it can print in this
column, so you do not have to decide where

Automatic Formatting ‘and Page Composition

‘When SCRIPT ‘is formatting double
columns, the revision character is placed
within the gutter provided between coluamns,
so that the second column is not shifted
over. However, you must provide for the
two characters used by .RC when you define
more than two columns using the .CD control
vord. ' '

If you have many .RC control words in a

46 ‘SCRIPT/370 Version 3 User's Guide

file, but you do not want them to print,
you can change the control word that
initializes them to a null (blank) charac-
ter:

.rc 1
After this control line is processed,

revision code 1 is considered a blank.

Symbol Processing

considers "“gname," an undefined symbol, and
performs no substitution, even if there had
béen a previous set symbol in the form

.Se name = something

COMPOUBRD SYMBOLS

When substituting symbol names, SCRIPT
perforas as many levels of substitution as
necessary. Each input 1lime is scanned
repeatedly until all symbols are substitut-
ed. This allows you to enter compound
symbol = expressions. For example, if the
following symbols have been set:

.se x = 1
.se type1l
.Se type2

first
second

then the line
This is the &type&x try.
results in:
This is the first try.
For an additional example of compound

symbol expressions, see "Symbols for the
System Date and Time" below.

UNDEFINED SYMBOLS

When SCRIPT does not perform substitution

on symbols beginning with "&" as in the
case of any undefined symbol, or if "“sub-
stitute mode" (controlled by the .SU

control word) is set to OFF, the unresolved
symbol remains in the file and is printed
on output as it appears in the input file.

If you are familiar with the CMS EXEC
processor, you might expect undefined
symbols to be removed from a line. This is
not true of SCRIPT symbols. The undefined
symbols appear in your output, so you can
see thenm.

In some cases, symnbols may not be set

until after the appearance of the substitu-
tion form, as in references to page numbers
that occur later in the file. 1In this
case, -SCRIPT considers the. symbol to be
undefined and cannot perform substitution.
There is, however, a SCRIPT command option
that causes SCRIPT to read through an
entire file twice: once to read the set
symbols, and the second time to perform
substitutlon, format, and print the docu-
ment. This is the TWOPASS option:

48 SCRIPT/370 Version 3 User's Guide

script myfile (twopass

When SCRIPT processes the input file MYFILE
SCRIPT, it reads the input twice; on the
first pass, it reads and sets symbols, and
on the second pass it performs substitution
while it formats output lines. The TWOPASS
option is also required. if you want to
generate an automatic table of contents to
appear at the front of a document. . Auto-
matic tables of contents were described
under "Head Levels and Tables of Contents"
earlier in this section.

UNSETTING SYMBOLS

in a
syabol

If you do not want to use a symbol
file anymore, you can cancel the
using the .SE line:

«se symbolname off

Thereafter, the symbol name is treated by

SCRIPT as an undefined symbol.

INHIBITING SUBSTITUTION

When you
uses expressions

are creating an input file that
that contain literal
ampersands, you may, as a precaution, want
to turn substitution off while SCRIPT
processes the input. To do this, use the
.SU (SUBSTITUTE-MODE) control word:

.su off
&0 through &9 are spec1a1 symbols.

Now, when SCRIPT processes this line, - it
does not attempt to substitute values, if
any, for the symbols &0 and 9. To restore
symbol substitution, use the control word:

«SU Onh

There are several groups of reserved symbol
names that are automatically initialized
and recognized by SCRIPT. The first group
consists of eight symbols. that you can use
to obtain the current syster values for the
date and time. The second group contain
values of SCRIPT control word settings. A
third group of symbols, &0 through 9, are
used in a special way by SCRIPT macros and
by the IMBED and APPEND control words.

symbol Processing

These symbols allow you to conditionally

change some SCRIPT processing values.
Consider the following example:

+.se in = &$in

«if &in = 0 &in = 1

.bx &in &$cl

.in +2

001 -2

text...

text.l‘

.bx off
L 1
| The .BX control word begins a box |
| structure - using the current asargins, |
| vhatever they are. The .IN and .CL |
| control words shift the margins so that |
| text is centered within the box. After |
| the text is processed, the original |
| values are restored. |
[% J

As another example, consider the situa-

tion in which you want to 1leave a blank

page with only a figure caption at the
botton. The file may be printed within
different masterfiles requiring different
page lengths:

.paj.cmn leave page for a figure
.se lines = §$lc - 1 ‘
.Sp &lines a

Figure x. Sample Output

You will f£find many convenient uses for
these special symbols, which are especially
useful in writing SCRIPT macros.

THE &$SRET SPECIAL SYMBOL

Another special syabol, &$RRET, contains the
return code from the last CMS command that
vas executed with - the SYSTEM-COMMAND (.SY)
control word. Initially, &$RET is 0.

&0 THROUGH &9

The special symbols &0 through €9 are set
vhenever a .IM (IMBED) or .AP (APPEND)
control word is processed, or vhenever a
SCRIPT macro is invoked. Thus, during the
processing of a long input file, these

symbols may be set and reset many times.

The symbols &0 through &9 are considered
undefined until they are explicitly set, or
used. Since the symbol &0 contains the
number of tokens passed on a .INM or .AP
control word, it is reset vhenever you use
either of these control words.

50 SCRIPT/370 Version 3 User's Guide

ATTRIBUTE SYMBOL PREFIXES

SCRIPT provides, in addition to the
reserved . symbols discussed above, tvo
attribute prefixes that you can use to test
other symbols. These are E' and L°'.

E' verifies the existence of a symbol.
That is, it tells you whether or not there
is a definition active for a symbol name.
When you use the E' prefix, a string may be
substituted with either 1 or 0, depending
on vwhether or not the symbol has been
defined. For example, if the following
symbol has been set:

«Se test = on
the line

The result is &E'6test..
is substituted as:

The result is 1.
If the symbol named "test" had not been
set, the value of EE'&test would be 0. If
a string is not a defined symbol name, as
in

&EB'czechoslovakia
then the result is also 0.

L' can be used to test the 1length of a

symbol (or any token, for that nmatter).
For example, after the lines:

.se test = 'This is a test.!
.se length = El'¢test

the value of "length" is 15.
named "test® had not been
"length" would have a value of 5.

If the symbol
set, then

Neither &B' or 6L' can be used to test
compound symbols. The result of

GL'6AEB

is always 4, regardless of whether §&A and
6B are defined symbols, and regardless of
their lengths.

SOBE THINGS YOU CAN DO WITH SET SYMBOLS

There is virtually no limit to the uses for
set syabols, or symbolic names, in SCRIPT
files. As you become familiar with SCRIPT,
and are at ease using it, you will find
many applications for symbol processing.
Some techniques which you might want to use
are shown below.

Symbol Processing

e To rearrange illustrations, update the
.SE numbering schenme. You should not
have to manually change the figure
captions or references in the body of
your text. These numbers are automati-
cally substituted with their new values

by SCRIPT. (You must, of course, remove
references to figures that you have
deleted.)

CONDITIONAL PROCESSING WITH IF AND GOTO

The symbolic capability of SCRIPT allows
you to assign values to symbolic nanmes.
The high-level IF/GOTO capability provides
a wvay of testing symbol values during
SCRIPT processing, and to indicate how
processing should continue, based on the
results of the test.

The SCRIPT control words that provide
this function are .IFP, .60 (GOTO), and
“..." (SET-LABEL). A sample sequence might
look like the following:

.if &type = 1 .go bypass

«s.bypass

In the above example, all the control words
and text between the .IF and the ...
control word (vhich sets the label
"bypass") are skipped if the symbol ®“Etype®
has a value of 1. The conditions that you
can test for and the codes you can use are:

Code Meaning

eq or = equals

ne or == is not equal to

gt or > is greater than

1t or < is less than :

ge or >= is greater than or equal

to
le or <= is less than or equal to
The target of a .IF control word does

not have to be a .GO control word, for
example:

«if &SYSHOUR >= 12 .im pa
.if &SYSHOUR < 12 .im anm

In this example, a different file is
imbedded (either PM SCRIPT or AM SCRIPT)
based on whether the time is before or
after 12 noon.

Conditional processing vith the .IF
control word can be especially convenient
vhen one file is included as an imbed in
several different masterfiles. You can
provide for slight differences among the

52 SCRIPT/370 Version 3 User's Guide

‘The second of these lines causes

files by setting the same symbol to a
different value in each masterfile, and
using that symbol to determine how proces-
sing is done in the imbed file.

USING SYMBOLS TO INVOKE SCRIPT CONTROL
WORDS

You can use the .SE control word to define
high-level macro-like "tags." These tags
may contain sequences of control words that
you frequently use together.

For example, if you are creating a
document that has several different format-
ting requirements, and you need to switch
from a two-column format to a single-column
format, to a three-column format, and so
on, the existing control words for multi-
Ple-column formatting do not provide enough
function to allow this kind of switching
back and forth. Bach of the regquired
formats may require a column definition
(.CD control word) and a column length (.CL
control word) specification.

Since each symbol consists of at least
tvo control vwords, then you must use the
control word separator within the symbol,
so that wvhen the symbol is invoked, both
control words are processed:

.se 1col = *',cd 1 0;.c1 72¢
.S8e 2col = ',cd 2 0 46;.c1l 43¢
.se 3col = *.,cd 3 5 25 45;.cl 15°

Notice what happens, however, when these
«.SE control words are processed: since the
semicolon is the default control word
separator, the first .SE control word is
broken up as:

.se 1col = *,cd 10
.cl 72¢

an error
in SCRIPT processing. In order to prevent
this, you must change the control word
separator symbol.

Changing the Control Word Separator

Bach time a control word line ig processed,
SCRIPT divides it into two pieces, the part
before the first control word separator,
and the remainder, which 1is saved for
later. Thus, a line like:

.CW ?3.5¢ B = '3 ,BR;'?.cvw

is processed as follows:

- index for

Symbol Processing

vord allows a syabol value to be delimited
with apostrophes. In a COPY file, it's
done with a nonblank ending character.

If this
library named SCRIPT MACLIB, then you can
issue the following SCRIPT command to
process a file that uses the syambol EB:

script test (lib (script

If you do not use the LIB option, then the
symbol B is an undefined symbol.

The default filename for the symbol
library is GHL., If your MACLIB file has
this name, then you can omit the filename
on the SCRIPT coamand 1line (but you must
still specify LIB, 8o that SCRIPT knows
that it has to search a library).

An array symbol is a special form of the
set symbol that allows you to assign many
values to the same syabol name and, on
output, refer to all the values by refer-
ring only to the symbol name. An array
symbol may be set with a control word in
the form:

.Se name() = symbol-value

vhere the parentheses indicate that this is
an element of an array and ‘symbol-value!
is any expression that may 1legally appear
on a SET-SYMBOL control word line.

When SCRIPT encounters the array symbol
value in the form:

Sname(*)

“gname(*) " is substituted with the values
of all the currently defined array
elements, in the order in vwhich they were
indexed, and formatted with commas and
blanks separating the individual elements.

For example, if you are creating an
a document, you could use array
symbols on the pages you want to reference.
If the line .

.se list() =%

appears in a number of places in a docu-

ment, then the expression
best sellers G&list (*)

may result in the line
best sellers 10, 12, 20, 42

54 SCRIPT/370 Version 3 User's Guide

COPY file is in the macro

If, on expansion of an array symbol, the
output line becomes too 1long, the first
piece is used on one line, and the overflow
is printed on the next.

CONTROLLING ARRAY ELBMENTS

Bach element in an array has a number
associated with it. In the example used
above, 10 is the first element because it
is the first one encountered; 12 is the
second element; and so on.

You can explicitly name the array
element you wish to set, by including a
number within the parentheses:

.8¢ list (1) =6

The above line sets element number 1 of the
array that will be substituted with the
symbol £list(*). When this symbol is used,
this particular entry will be listed first,
even if it is not the first one set.

This may be convenient for setting
primary index entries, that you want listed
in front of secondary entries. Here's
another example:

.se name(1) = 1
.Se name(47) =
.Se name (25) =
.Se name(2) = 4§
.se name(3) =5

2
3

then the expression
Sname (¥*)

would result in "gname(*) " being substitut-
ed as follows:

1, 4, 5, 3, 2

In other words, SCRIPT inserts the array
element values in ascending element index
order, not in the order in which they were
defined. Note that in this example there
vere several available but undefined
element numbers in between those that were

defined. On final array substitution, any
undefined elements in an array are ignored
on output. v

Element Zero

Bvery array syabol has an element
represented by the expression

‘Zero,

8name (0)

Element zero has two functioms.

INTERACTIVE SCRIPT PROCESSING

When you use SCRIPT, you do not have to
have all of your input text in final form
vhen you issue the SCRIPT command. The
previous discussion, "Syabol Processing",
explained how SCRIPT can test and manipu-
late variable syambols.. There are several
methods you can use to communicate with
SCRIPT to change or test variable symbols
just prior to or during SCRIPT command
processing. :

There are three control words that cause
SCRIPT to interrupt processing, issue a
virtual machine read to your terminal, and
allow you to enter a line or lines of input
or data.

e The .RD (READ-TERMINAL) control word
accepts data 1lines at a typewriter
terminal during SCRIPT outpat. This
control word is wuseful if you are
creating form letters and want to enter

names, addresses, or other kinds of
variable information directly at the
terminal.

e The .TE (TERMINAL-INPUT) control word

accepts input 1lines of data or control

words and processes them as they are
entered.
e The .RV (READ-VARIABLE) control word

allows you to assign a value to a symbol
name during SCRIPT processing by reading
it from the terminal.

The last two of these,
enhanced by the control word .TY (TYPE-ON-
TERMINAL), which displays a 1line at the
terminal during SCRIPT processing. (The
line is not included in the printer or disk
output file.) You can use the .TY control
word to display prompting messages for the
«TE and .RV control words.

.TE and .RV, are

The .TE control word rseveral

operands. You can specify

accepts

.te on

so that SCRIPT continues reading input from
the terminal until you type in

.te off

Then, SCRIPT processing continues with the
next 1line in the file. You can enter
SCRIPT control words or text (which SCRIPT
formats according to the formatting
controls in effect).

56 SCRIPT/370 Version 3 User's Guide

with the control words .QU

If you specify a numeric parameter with
the .TE control word, such as

.te U
then SCRIPT reads that number of lines
before it continues processing.

You can also terminate terminal input
\ (QUIT), .QQ
.BF (END-OF-FILE). When
«QU-or .QQ is encountered, SCRIPT termi-
nates processing; the .EF control word
indicates the end of the current file.
(The .TE control word is essentially an
imbed, where the "file" imbedded is your
keyboaradl) : : :

(QUICK-QUIT), or

all three of
and format
number of

The following example uses
these control words to process
the same file an indefinite
times.

«ssStart

.im heading

.ty Enter NAME and ADDRESS (3 lines)
.te 3

.im letter

.ty Any more?

.LV answver

.if .&ansvwer eq .yes .go start

The lines between the 1label ...start and
the .IF control word are processed an
indefinite number of times. As long as you
continue to enter "yes" when prompted with
the message "Any more?", SCRIPT loops back
to the beginning of the file, prompts you
for another name and address, and contin-
ues.

Notice how the .RV control word results
in the setting of the symbol name. After a
word is entered in response to the .RV
control word, it is as if you had used the
«SE control word:

.Se answer = value

vhere "answer" was the name specified on
the RV control line, and "value" is the

word (or expression) you enter from the
terminal.
Once you have set a symbol in this

manner, you can use the symbol "€answer" as
you would any other set symbol. 1In the
above example, a period is concatenated
vith the symbol name, so that if a null
line is entered in response to the .RYV
control word, the .IF line does not cause
an error message.

Like many other high level languages,
SCRIPT offers a macro capability, which
allows you to define your own control words
that are combinations of existing control
vords.

You can define macros with the .DM
(DEFINE-MACRO) control vorad. In order for
your 'SCRIPT macros to be processed by
SCRIPT, you rust use the .MS (MACRO-SUBSTI-
TUTION) control word:

RS On

Since SCRIPT macros are invoked as if they
were control words, if you try to invoke a
SCRIPT macro when you have not used the
above control line, the macro is treated as
an invalid control word.

HOW MACROS ARE DEFINED

When you define a SCRIPT macro, you must
assign a name for it and then specify the
input 1lines that are to be substituted
wvhenever the macro is called. Some SCRIPT
control words can be duplicated by macros.
For example, the .PP control word could be
defined as a macro as follows:

.dm pp /.sk/.il 3/6%

The control word components of the macro
definition must be separated by any unique

delimiter; a diagonal (/) is used most
frequently. The final delimiter may be
omitted. '

The special symbol &% represents %the

line," which is the
macro for formatting.

line passed to the
Thus, when the line

.pPp On second thought,

is processed, &* has a value of "On second
thought,". '

WHAT TO NAME YOUR MACRO

The macro name does not have to be two
characters in length. It can be up to 10
characters, and may contain special charac-
ters. The name may be the same as the two
letter name of a control word, but it may
not be the same as the 1long name of a

58 SCRIPT/370 Version 3 User's Guide

control word or any equivalent. In other
words, a macro called "BR" will be invoked
instead of the BREAK control word, but a
macro called "BREAK"™ will not. This is
because SCRIPT tries to find a two-letter
equivalent for any long control word before
looking it up as a macro or a control word.
If the input 1line says ".BREAK," SCRIPT
recognizes the word and changes it to
".BR". ‘Thus, the thing called *"BR", not

the thing called "BREAK", is performed
vhenever either .BR or .BREAK is encoun-
tered. If you name your macro BREAK, it

can never be invoked because SCRIPT will
think you wvant the .BR control word when
you try to invoke it.

SPRCIAL SYMBOLS FOR MACROS

The .DM control word also recognizes the
special syambols §0 and &1 through &9, which
are assigned values when a pacro is
processed. €0 represents the number of
tokens (words) that are entered in the line
(&%) . &1 is the first token, &2 the
second, and so on. Thus, if a macro is
called with the control line

.process fileb 10 filea no

then the following values are set:

Symbol Value
&* fileb 10 filea no
€0 4
&1 fileb
&2 10
&3 filea
&4 no
£5-69 £5-69 (undefined)

Bote: The APPEND and IMBED control words
accept tokens that are passed to imbedded
files using the symbols &1 through §&9; &0
is set to the number of tokens passed.
These are the same symbols as those used in
macro calls; therefore symbols set by the
IMBED or APPEND control words are canceled
by macro calls, and vice versa.

The symbols &1 through &9, if not set,
are considered undefined by SCRIPT when it
scans the line. Therefore if you create a
macro as follows:

.dm ofs /.sk/.of &1

EasySCRIPT is a system generation option of
SCRIPT!. The BasySCRIPT GML processor
provides five SCRIPT formatting shortcuts

that take advantage of SCRIPT to offer an
elegantly simple way to format most docu-
ments. EasySCRIPT tags can be freely

SCRIPT control
Using these shortcuts, you can:

intermixed - with standard
words.

1. Produce numbered or bulleted 1lists
automatically.

2. Automatically format headings and a
table of contents. And, if you want,
you can have EasySCRIPT number your
headings using the Dewvey decimal
numbering system. Then, when you add
or delete information, the numbering
is changed for you.

3. Format text in paragraphs aligned with
the current indent level of a list or
heading section.

EasySCRIPT functions
the .EZ control word.

may be invoked using
The control word

«€Z On

enables the BasySCRIPT GML tags.

EASYSCRIPT TAGS

There are five BasySCRIPT tags. Each tag
provides two different sets of functions
depending upon whether it is capitalized or
not. The rule is that the capitalized
version provides MORE function.

The five basic tags are:

1. §&Hx -- Inserts a Dewey-decimal
numbered heading of level x where x is
1, 2, 3, 4, 5, or 6.

without the
numbers, type
command in

To create documents
Dewey-decimal heading
the 'h' in the heading
lowercase.

1For this reason, if your SCRIPT module was

generated without EasySCRIPT, the .E2
control word is treated as an invalid
control word.

60 SCRIPT/370 Version 3 User's Guide

2. &P -- start a new major paragraph. A
major paragraph resets the indentation

to zero and produces the necessary
spacing.
To wmaintain the current indentation
for a minor paragraph, type the
paragraph command with a lowercase
tpt
p'.

3. §&Nx -- Imnserts a numbered item of

level x where x is 1, 2, 3, or 4.

If you do not want items nuabered,
enter the tag with a lowercase *n'. A
list is itemized at <the 1level of
indentation desired.

4. &B ~-- Inserts a bulleted item (one
that begins with a e) under the
current paragraph or numbered ites.

Sub-bullets (items that are introduced
with hyphens) wmay be entered under
bulleted items by typing the bullet
tag with a lowercase 'b!'.

5. &toc -- Generates a table of contents.

As you can see, all five EasySCRIPT tags
begin with an ampersand (€). A tag may be
connected to the line that follows with a
period or with one or more blanks:

&6TAG.line
is the same as:
&TAG line

These tags are enabled by the .EZ ON
control word, but even if .EZ ON has not
been processed, all of these functions can
be invoked as operands. of the .EZ control
word. For exanmple,

.ez H2 line

is valid if only EasySCRIPT was selected
vhen the SCRIPT program was generated. If
the .EZ ON control word has been processed,
the same function can be invoked with the
expression:

&6H2 line

EasySCRIPT

1.0 7THIS IS

[
e
L]
g
o
it=

A level one heading, when printed:
1. Begins a new page and is right
justified if it falls on an odd-
numbered page.

2. 1Is typed all uppercase and
underscored.

3.. Is folloved by five spaces and the
text or a triple space and another
heading.

4. The heading above is entered as
- follows:

&H1 THIS IS A LEVEL ONE HEADING

1.1 THIS IS A LEVEL THO HEADING

A level two heading, when printed:
1. Has a triple space above it.

2. 1Is typed all uppercase and
underscored.

3. Is followed by a double space and
the text or a triple space and
another heading. ‘

4. The heading above is entered as
follows:

€H2 This Is a Level Two Heading

1.1.1 THIS IS A LEVEL THREE HEADING

A level three heéding, when printed:

1. Has a triple space above it.

2. 1Is printed in uppercase letters.

3. 1Is followed by a double space and

the text or a triple space and
another heading.

(™ o e G — T s T o T Y o S — S — T ——aa— W c— —— —_gamy D g . — ———— T — T —————— T — O o S Gmee T e — s T ow e

4. The heading above 1is entered as
followus:

§H3 This Is a Level Three Heading

1.1.1.1 This Is A Level F

A level four heading, when printed:
1. Has a triple space above it.
2. 1Is underscored.

3. 1Is followed by a double space and
the text or a triple space and
another heading.

4., The heading above is entered as
follows:

EH4 This Is a Level Four Heading

THIS IS A LEVEL FIVE HEADING: A 1level
five heading, when printed, bhas a single
space above it and is typed in uppercase
without underscoring fcllowed by the text
on the same line as is shown here.

The heading above is entered as
follows:

&6H5 This Is a Level Five Heading:
A level five heading, when...
followed by text on the...

This Is a Level Six Heading: A level six
heading has a single space above it and
is typed in uppercase and lowercase and
underscored followed by the text on the

same line as is shown here.

The heading above is entered as
follows:

6H6 This Is a Level Six Heading:
A level six heading...
by the text on the same...

Figure 5. Sample EasySCRIPT Heading Formats

62 SCRIPT/370 Version 3 User's Guide

BasySCRIPT

b.

This is item two of a second level
numbered itesm. enough to show
format.

This is item three of a first level
numbered itenm.

This is a minor paragraph placed
underneath the item and it shows how
the indent is maintained underneath
the iten.

Q.

This is another item one of a
second level numbered itenm.

This is a minor paragraph placed
underneath a level two numbered
item to illustrate how the inden-
tion is maintained.

e We can put Dbulleted items
under any level of indention.

The item above was entered as
follows:

&B We can put bulleted
items...

e Here is another bullet.

- And, of course there is
always a sub-bullet!

The item above was entered
as follows:

&b And, of course...

1) This is item one of a third
level numbered itenm.

The item above was entered as
follows:

&€N3 This is item one of a
third...

2) This is item two of a third
level numbered itenm. This
added sentence shows how
longer items are formatted.

a) This is item one of a
fourth level numbered
iten.

The item above was entered
as follows:

&84 This is ite one of a
fourtho e e ’

° Here is a bulleted

64 SCRIPT/370 Version 3 User's Guide

item under the fourth
level of numbered
iten.

Minor paragraphs here?
Certainly! And ve
manage to maintain the
indentions and not
foul up any counting!

. As many bullets as
necessary to do the
job.

- Sub-bullets, too.

- There is so much
indented now that
little space is
left for text.

b) This is item two of a
fourth level numbered
iten.

3) And wve can go back to level
three.

b. Or level two.

A ainor paragraph tag maintains
‘any existing indention as shown
here.

4. Or level one.

Un-numbered 1lists can be formatted using
the *&ENx' tag with a lowercase 'n!'.
Follovwing are some examples of un-numbered
lists:

This is item one of a 1level ' one
indention. '
This is item two of a 1level one
indention. ' s :

This is item three.

This is item four.

This is item one of a level two
indention.

This is item two of a 1level two
indention.

This is item three.

This is item four.

This is item one. of a level
three indention. :
This is item two of a 1level
three indention.

The SCRIPT hyphenation facility is a systea
generation option of SCRIPT!. It consists
of an algorithmic hyphenation program, an
exception dictionary, and a special editor
for the dictionary. :

When you want SCRIPT to use hyphenation
vhen formatting .output lines, use the .HY
(RYPHENATE) control word:

<hy on

To cancel hyphenation, use the control

word
<hy off

To suppress hyphenation at the end of a
paragraph, use the control word:

.hy sup
This causes hyphenationkto be interrupted

until the next break occurs; then hyphena-
tion is automatically resumed.

HOW THE

o]
1]
]
]
et
it
B
[o»
i3
(=]

=0

a

(=}

0

=

th

When SCRIPT is formatting a line -and the
next word does not fit in the current line,
SCRIPT tries to hyphenate <the word if at
least four spaces remain on the current

line.
To find out where the wvword should be
hyphenated, SCRIPT:

e Searches the exception dictionary, if
there is one, to see if there is an
entry for the word. The hyphenation
exception dictionary is discussed below.

e If the word is not in an exception
dictionary, SCRIPT uses a special
algorithm to determine the best hyphena-
tion point (such that the longest piece
of the word remains on the current
line) . '

i1For this reason, if your SCRIPT module is

generated without hyphenation, the .HY
control word is treated as an invalid
control word.

66 SCRIPT/370 Version 3 User's Guide

ALTERING THE HYPHENATOR'S CHARACTERISTICS

If you vant more or less frequent hyphena-
tion, you can change the default character-
istics of the hyphenator. There are two
internal values kept by the hyphenator:
THRESH, which is the hyphenation threshold
(the =minimum number of blank characters
that must remain on the line before SCRIPT
attempts to hyphenate the next word); and
MINPT, which is the miniaum hyphenation
point (the smallest acceptable hyphenation
point for the next word) .

The default values are 7 for THRESH and
4 for MIKPT. To change them, use the SET
operand of the .HY control word:

.hy set thresh 6
<hy on

After these control words are encountered,
then there must be at least six blanks left
on the line before SCRIPT tries to hyphen-
ate the next word.

You should keep in mind that using
hyphenation with SCRIPT requires overhead
in processing time; the larger the thres-
hold value that you use, the less hyphena-
tion is done, so processing time may be
improved.

HYPHENATING SINGLE WORDS

Regardless of whether SCRIPT is
automatic hyphenation or not, there may be
occasions when you would like a word to be
hyphenated if it occurs at the end of a
lipe. The .HW (HYPHENATE-WORD) control
vord allows you to specify that you want a
word hyphenated, if necessary, and to
specify how it should be hyphenated.

using

This may be convenient for long words
that are normally hyphenated, or for words
that may occasionally need hyphenation, for
example:

Guinevere's

.hw lighter--than--air
laughter was heard

+hw through-out

the kingdom.

When this 1line is
the hyphens supplied

processed, SCRIPT uses
as hyphenation points

Automatic Hyphenation

to jump all over the place. If you insert
a wortd that is already in the dictionary,
the nev one will be put on the line next to
the old one. You may then go up or down
oie and delete one of the two. The FIND
subcosmand ignores hyphens, so you can £ind
any word no matter how it is hyphenated.

HYPEDIT does not have as many subcom-

mands as the regular editor. If you try to
use one that is not allovwed, you will get a

68 SCRIPT/370 Version 3 User's Guide

?HYPEDIT: message. . About the only one you
vill wiss is the CHANGE subcommand.
Because of the encoding that must be done
on eéach word, no changes are persitted once
the word has been entered. To change an
entry, you have to delete the current one
and insert the new one. The basic subcom-
mands, INPUT, QUIT, SAVE, UP, DOWN, DELETE,
and FILE, work just the same way as in the
standard CMS EDIT command.

The following are examples of valid SCRIPT command lines:

script test (print page(10) adjust(4))
script resume nowait quiet

You may truncate the name of any of the options to the minimum length
that is not ambiguous. If you use a truncation that is ambiguous,
SCRIPT uses the first option it finds that fits. The options are listed
below in the order in which they are scanned, sc you can tell from this

list vhich option would be.used if you gave an ambiguous name, such as
L) LN : :

The options may be given in any order; if two conflicting options are
entered, the last one processed takes effect.

ADJUST

The format of the ADJUST option is:
ADJUST [(nn[)]]

This option causes output to be shifted over "nn" spaces. The number
may be one or two characters long; if no number is given, 30 is assumed.
(If the defaults are used for page dimensions and the output is printed
on standard 14-inch wide paper, shifting the ocutput 30 spaces to the
right causes it to be centered.) The right parenthesis is required only
if more options follow. . :

CENTER

The format of the CENTER option is
CENTER [(an[)]]

CENTER is another name for ADJUST. The ADJUST and CENTER options are
identical.

CONTINUE
The CONTINUE option causes processing to continue after an error condi-
tion has occurred, and an error message has been displayed. Severe
errors and terminal errors cause SCRIPT to terminate even if CONTINUE is
specified. o : : .

EILE

The FILE option causes formatted SCRIPT output to be written into a disk
file. The output file is named "$filename SCRIPT", where filename
consists of the first seven characters of the filename given on the
command ‘line. If $filename SCRIPT already exists, it is replaced; no
message is issued to tell you that the old one is being erased.

The filemode of this file is An, where n is the same as the mode
nusber of the primary SCRIPT input file. If there is no read/vrite
A-disk when the FILE option is used, SCRIPT terminates processing.

The output may be in either printer or typewriter format, depending
upon whether the PRINT option was specified. This means that if you do
not specify the PRINT option when you specify the FILE option, then the
file will be in typewriter format by default.

70 SCRIPT/370 Version 3 User's Guide

SCRIPT Command Options

BRINZ -

The PRINT optlon specxfles that -output is to be formatted in printer
forlat, one of the two basic SCRIPT output formats. If the FILE option
is not specified, the PRINT option also causes the output to be directed
to the offline printer. (If FPILE is specified, PRINT merely controls
the output format; the destination is a disk file.) C

ZERM

The TERM option specifies that output is to be formatted in typewriter
format, one of the two basic SCRIPT output formats., If the PILE option
is not specified, the TERM option also causes the output to be directed
to the terminal. (If FILE is specified, TERM merely controls the output
format; the destination of the output is a disk file.) TERM is the
default mode of operation. S . '

PAGE

The PAGE option allows you to selectively print pages of forlatted
SCRIPT output. The PAGB option has several formats; these are:

e SCRIPT fn'PAGB (frpage topage
“frpage" indicates the page number of the first page you want printed
and "topage" indicates the page number of the 1last page you want
printed. '

e SCRIPT fn PAGE (frpage ONLY
prints only the page specified as frpage.

e SCRIPT fn PAGE (frpage
SCRIPT fn PAGE (frpage *

either of the above commands print SCRIPT output from the page
specified to the end of the file. frpage may also be specified as an
asterisk (*). This means that printing should begin with the current
page, whatever the page number is.

e SCRIPT fn PAGE (PROMPT
tells SCRIPT that you want to specify several pages or page ranges.
SCRIPT prompts you to enter a page range, and you can enter any of
the frpage/topage combinations shown above.

The page ranges must be entered in the order in wvhich the pages
appear in SCRIPT output, for example, ,

script myfile (page 6 1

is valid if, following the page numbered 6, there is a control word
.pa 1

that numbers the next éage 1.

When you have specified the PAGBibptioh, SCRIPT continues proipting
you until the end of the file is reached or until you enter a null linpe
in response to a prompting message. If there is no page with the number
you have given, or SCRIPT has already passed the page with that number,

SCRIPT may reach the end of processing without printing anything. There
is no error condition.

72 SCRIPT/370 Version 3 User's Guide

SCRIPT Command Options

SYSVAR
The format of the SYSVAR option is:
SYSVAR (n val n val ... [)]

This option allows you to set special symbols from the command line.
Each "n val" pair causes the symbol "ESYSVARN" to be set to the value
“val", ®n" gmay be any single number or letter, and "val" may be any
combination of letters and numbers up to eight characters long, but
without any imbedded blanks or parentheses. Since these values are part
of a CMS command line, they will be converted to uppercase letters.

The maximum number of SYSVAR pairs is 1limited only by the length of the
command line you can enter.

INOPASS

The TWOPASS option causes two passes to be made through the input files;
both passes process all the control words, but output occurs only on the
second pass. If this option is not in effect, SCRIPT formats and
outputs everything in one pass. Two passes are required if a symbol
value is needed earlier in the book than it is set. Usually, the
requirement for two passes results from having a table of contents at
the front of a book. A first pass through the book is then needed so
that SCRIPT can find out what page numbers to use for all the table of
contents entries. Since two passes take twice as long as one pass, it
is good practice to put your table of contents at the end of your book;
those pages can always be moved to the front of the document before it

is used. '

The TWOPASS option may also be effective for correcting SCRIPT files
that may ‘contain errors. Since no output is performed on the first
pass, You can locate and correct SCRIPT errors before any actual output
is printed.

74 SCRIPT/370 Version 3 User's Guigde

eve QSBT-LlBBL

ves (SBT-LABEL)

The SET-LABEL control word marks a line of
your SCRIPT file so that that line may be
referred to in a .GOTO control wvword. The
format of the ... control vord is:

{ ... | 2label [line]
yh

e o o

where:
label is a name of up to eight characters
that can be used to refer to this

line of your SCRIPT file.

line is the active part of this input
line. The first nomblank character
after the label 1is treated as the
beginning of the line; it may there-
fore be a control word, but a text
line associated with a 1label may not
begin with blanks. If the input line
has a label only and no active line,
then the next line to be processed is
the one following the labeled line.

Usage Notes

1. When the
tered,

«e. control word is encoun-
SCRIPT saves the information
necessary to enable it to find this
line again if a GOTO control word is
encountered. Any valid SCRIPT dinput
line may follow the label, or the label
alone may occupy this 1line of the
SCRIPT file.

2., Use of 1labels and the .GO (GOTO)
control word is restricted to one input

file. That is, when a new file is
imbedded or appended, a newv set of
labels is started for that file.
SCRIPT can only branch to a label
within the same input file.

3. Every label in a particular file must

be unique. If two identical labels are

found in the same file, an error
message is generated.

4. The storage area where SCRIPT saves
label information is large enough for

approximately 120 1labels. If another
SET-LABEL control word is encountered
after this storage area is full, an
error message is generated. Labels are
kept in the table as 1long as the
associated file is open., When a file

76 SCRIPT/370 Version 3 User's Guide

is closed, its labels are removed from
the table, and that space is available
for more labels. A file is closed when
the real end is reached or when an
APPEND control word is processed, but
not when an end-of-file is simulated by
the ,.EP (BND-OF-FILE) control worgd,
unless you specify the CLOSE operand.

5. The 1label/GOTO function can be rela-
tively inefficient. You should use it
sparingly in situations where it is the
best way to achieve the required

results. When going to a label that is
later in the input file, it is wmost
efficient when the 1label is not far
from the GOTO; when going to a label
that is earlier in the file, it is most

efficient wvhen the label is near the
beginning.

6. A space is not required after the
control word itself, if the short foram
is used. (This is the only control word
where this 1is true.) To set a label
called "“HBERE", either "... HERE" or
",..HERE" may be used.

7. The ... for a label must begin in
coluan 1.
Example

Suppose you had a file called REPORT1 that
contained a ‘summary of activity for Janu-
ary, another file, REPORT2, for February,
REPORT3 for March, and so forth. Now, if
you wanted to create a year-to-date report
by imbedding all the report files up to
last month's report, you could use this
sequence of SCRIPT control words:

.se ctr = 1

«ssloop .im reportéctr

.se ctr = &ctr+1

.if &ctr 1t ESYSMONTH .go loop

The first time the IMBED (.im) is
processed, the value of the symbol "Ectr"
is 1, so the filename "reportéctr" becomes
nreport1." The next control word adds one
to the value of the symbol; it is now 2.
If the month is later than March (month
03), then the value of the counter is less
than the month number, and the loop is
processed again. This time the filename
"reportéctr" becomes "report2." The loop
continues until the counter is equal to the
current month number.

3638 3t

-

«BC «BALANCE-COLUMNS

or by a HEAD-LEVEL control word or a
keep that causes an eject to a new
column. : :

4. 1If a page eject occurs while processing

multiple columns, this does not mark
the current column ineligible for
balancing. A column eject that changes

the current column from the last column
of a page to the f£first column of the
next page is the same as a page eject.
Unlike intra-page column ejects, it
does not mark the old current column as
ineligible for balancing.

Use the BOTTOM-MARGIN control word to
specify the nuamber of lines to be skipped
at the bottom of output pages, overriding
the initial value of six. The format of
the .BM control word is:

. BM

- ——— ———
b——_———q
————
| +
([N
[S ——'
e e - . a——— o

where:

=

specifies the number of lines to be
skipped at the bottom of output pages.
n must be large enough to accommodate
the footing margin (.FM) and the footing
space (.FS), both of which are allocated
from the bottom margin area. If +n or
"=-n is specified, the current value of
the bottom wmargin is incremented or
decremented. If no value is specified
for n, the default value of 6 is used.

Usage Notes

1. The value set by the .BM control word
applies on the current page and all

subsequent pages until another .BM is
encountered. If there is not enough
room left on the current page .for the

new bottom margin, the new value does

not take effect until the next page.
2. The value given may not be so 1large
that the top margin plus the bottom
margin £fill the entire page. An error
message is issued if you try to set the
bottom margin to more than the page
length minus the top margin. If you

78 SCRIPT/370 Version 3 User's Guide

intend to increase the bottom margin so
that you can increase the footing
margin or the footing space beyond what
the 0ld bottom margin would allow, be
sure to do it in that order. The rule
the bottoma margin before

the footing margin or footing space,
but decrease the footing margin or

footing space before the bottom margin.

3. This control word acts as a break. It
is not alloved in a keep.
A3

.BR (BREAK)

Use the BREAK control word to ensure that
the next input 1line is not concatenated
with the previous 1line or 1lines. The
format of the .BR control word is:

1. The .BR control word is necessary only

wvhen SCRIPT is concatenating input
lines; it causes the preceding line to
be typed as a short 1line, if it is

shorter than the current coluamn length.

2. Many other control words have the
effect of a break. No BREAK control
word is necessary when one of these is

present.

3. 1A leading blank or tab on an input line
has the effect of a break.

4. The .BR control word can ensure that
some other control words are not
effective too early or too late, for
example:

.br;,tr $ 40

may be used to prevent the translation
from being effective on
text line, and:

.tr § $;.br
may be used to make sure the tranmnsla-
tion does not affect the next line.
Example
Heading:

.br
Pirst line of paragraph

« BX +BOX

r ~T %
i | f :] |
i «BX | vl v2 [eoa[vn]] | |
| (|OFF ((
| | L 4 |
[AL " |
where:

vl - vn are the positions at which you

OFF

(=

sa

t.

2.
3.

5

80

want to place vertical rules in
output text. This format of the
control word initializes the box
and draws a horizontal line, with
vertical descenders at the columns
indicated. Subsequently, entering
the .BX control - word with no
operands causes SCRIPT to print a
horizontal line with intersections
at the columns indicated.

causes SCRIPT to finish drawving
the box, by printing a horizontal

line with vertical ascenders at
the coluans in effect.
ge Notes
The .BX control word describes an

overlay structure for subsequent text
that is processed by SCRIPT. After the
.BX v1 v2... line 1is processed, SCRIPT

continues formatting output 1lines as
usual. However, after a line is
completely formatted and before it is

printed, SCRIPT places vertical bars in
the columns indicated by v1, v2, and so
on, unless a column is already occupied
by a data character. In this case,
SCRIPT does not place a vertical bar in
tlhe coluan.

The .BX control word causes a break.

There are two sets of characters used
in drawing boxes. If the output is in
"typewriter" format, boxes are formed
with dashes (-), vertical bars (|), and
plus signs (#). If the output is in
"printer" format, special box drawing
characters available in the TN charac-
ter set are used. :

A .BX control word with different
columns specified may be used while a
box is being drawn. When this happens,
vertical ascenders are put in for all
the 0ld columns and vertical descenders
are used for all the new columns. The
vertical rules are then placed in all

subsegquent output 1lines in the hnew
columns designated.
The column specification for the .BX

control vord uses a different rule than
is used elsevwhere in SCRIPT. In

SCRIPT/370 Version 3 User's Guide

control words like .IN,
numbers in .the control. -word represent
not columns but displacements. The
SCRIPT control word .TB 5 means that a
tab character should be expanded to
enough blanks to £fill up through column
5; the

.TB’ QCD' the

next word starts in -column 6.
In the .BX control word, .BX.5 means to
put vertical rules in column 5. Thus,
you can use the same. numbers for a .TB
control word as for a .BX control word,
and the vertical bar will be placed in
the column just before the beginning of
the word following a tab. Further, you
can define a box that is to be the full
column width symbolically with the
following control word: '

.bx 1 &$cl
because the number represents. the
actual column vwhere the vertical rules
should be placed. ‘
Example

There is a SCRIPT file called MARYHADA
SCRIPT that looks like this:

Mary had a little lamb,

Whose fleece was white as snow,
And everywhere that Mary went,
The lamb was sure to go.

The folloﬁing.input sequence c¢ould be used

to center this material in a box that is
the same width as the -current column
length:

«bx 1 &$cl

«Ce on

.im maryhada

«ce off

+bx off .
The result:
- A e . : _ .
| Mary had a little lamb, |
| Whose fleece was white as snow, |
| And everywhere that Mary went, |
[The lamb was sure to go. I
L L 5 g
33
+CB (COLUMN-BEGIN)

The COLUMN-BEGIN control word causes subse-
quent text to start a ney column of output.
The format of the .CB control word is:

.CD «COLUMN-DEFINITION

The displacements of the columns do not
control how wide the columns are to be;
you must set the column lenth (using
the .CL control word) to control this.
If the current column length is greater
than the number of positions between
columns, there is no error; SCRIPT
simply overlays part of the first
column with the second. (It would be

. possible to define all columns to begin
in the same position. If you did this,
an entire column would be overlayed
with the text of a later column.)

The gutter between columns is obtained
by defining the column 1length to a
value 1less than the distance between
column starting positioms.

2. If you specify fewer displacements than
the number of columns, and had previ-
ously specified displacenments on
another .CD control word, those values
remain in effect for any columns not
respecified. Whenever a .CD control
word is used, there must be available
(either on the control line or previ-
ously specified) displacements for each
column. If youispecify .CD n without
specifying any displacements, the
arbitrary values 0, 46, 92, 0, 0, 0, O,
0, 0 are used.

3. If you use several different column

formats in a document you can create

symbolic names (with the .SE control
word) or macros (with the .DM control
word) to establish column definitionms,
column lengths, and so on. If you use

a single one-column format and a single

multiple-column format, you can switch

back and forth using the .SC

(SINGLE-COLUMN-MODE) and .MC (MULTICO-

LUMN-MODE) control words.

4. This control word is not allowed in a

keep.
Example
This book has some parts formatted in two
columns and some parts done in a single
column. In either case, the first column
starts in the leftmost position. The first
definition of the columns for this book

looks like this:
.cd 2 0 46

This control word specifies that there are
to be two columns, the first starting in
position 1 (displacement 0), and the second
in position 47 (displacement 46). Now, to
switch to single column mode, this control
word is sufficient:

.cd 1

82 SCRIPT/370 Version 3 User's Guide

And to switch back to two column mode:
.cd 2
The displacements, 0 and 46, remain in

effect until you change then.
H3x

Use the CENTER control word to center
output lines between the wmargins. The
format of the .CE control word is:

L L 1
(I e 1 |
{ .CB | |line| {
(| (|oN | |
| I 10FF | |
| I tn | |
| I I |
| | ¢t 4 |
L 4 J
uhere:

line is the line that is to be centered.

ON specifies that subsequent text 1lines
are to be centered.

OFF terminates centering mode if it was
ON, or if n has been specified and has
not been exhausted.

n specifies the number of 1lines to be
centered. If omitted, 1 is assumed.

If .CEn 1is specified when .CE ON is
in effect, centering is turned off
when n lines have been centered, or

when .CE OFF is encountered.

Usage Notes

1. The 1line(s) are centered starting at
the current left margin (including
indent and offset values in effect):
leading blanks are considered part of
the line's 1length. When centering is
in effect, no formatting is done on the
line. That is, the line is centered as
it stands, and it is not filled from
other input 1lines or justified. If a
tab character appears in the line to be
centered, the tab is resolved before
the line is centered.

2. This control word acts as a break.
3. If the 1line to be centered is longer

than the current column length, it is
truncated, and the excess. is used on a

«CH +COMMENT

useful when attempting to locate a
specific region of the file during
editing.

2. If you want an entire line to be
ignored, and not scanned for control
word separators, you can use another

form of comment. Any 1line that begins
with ",*®" 4ig ignored. n,%% . is not
considered to be a control word, but
.Cll "is. N

3. The .CM control word can be used in
conjunction with the .IF comntrol word
to enable or disable strings of control
vords. For an example of how to do
this, see the discussion of the .IF
control word.

«Cl Remember to change the date.

The line above is seen when examining an
unformatted listing of the SCRIPT file, and
it reminds you to update the date used in
the text.

.11

.CO (CONCATENATE~MODE)

———— il e e S S e e

Use the CONCATENATE-MODE control word to
cancel or restore concatenation of input
lines and truncation at the current column

length. The format of the .CO control word
is:

L] L] 1)
| I A {
| «CO | [|ON | {
| | |OFF| |
| v {
L A J
where:

ON restores concatenation of input lines.
ON is the ‘initial setting, as well as
the default value.

OFF cancels concatenation of input lines.

If justification is still in effect,

.CO OFF results in -each line being

padded with blanks to the coluan

length.

Usage Notes

concatenating text,

1. When SCRIPT is
output lines are formed by shifting
words to or from the next input line.

84 SCRIPT/370 Version 3 User's Guide

The resulting line is as close to the
specified column length as possible
without exceeding it or splitting a
word; if no-justify is in effect,
output resembles normal typist output
or the MT/ST. Concatenation is the
normal mode of operation for the SCRIPT
command.

When SCRIPT is not concatenating text,
there is a one-to-one correspondence
between the words on the input and
output lines. If SCRIPT is still
justifying text, each line that is less
than the column length is padded with
blanks to £fill the column.

2. This control word acts as a break.
%33t

.CF (CONDITIONAL=-PAGE=-EJECT)

The CONDITIONAL-PAGE-EJECT control word
causes a page eject to occur if fewer than
the specified number of lines remain in the
current coluamnl!. The format of the .CP
control word is:

v

| .CP | n |

[R A " |

where:

n is the number of lines that must remain
on the current page for additional lines
to be processed without a page eject.
If it is omitted, the control word is
ignored.

Usage Hotes |

1. The .CP control word is especially

useful (1) before an illustration, to

guarantee that sufficient space remains
on the current page to accommodate its
length, and (2) preceding a section
heading to eliminate the possibility of
a heading occurring as the last line of

a page.

2. This control word is not allowed in a
keep.

1If you are using multiple column proces-

is encountered when there
are fewer than the specified number of
lines remaining in the column, a page
eject occurs, even if this is not the last
cclumn on the page.

sing, and a .CP

+.CSs «CONDITIONAL-SECTION

+CS 1 on

256

«.cs 1 off

«CS 2 on

1000

.cs 2 off .

entries in a MACLIB file.

Since only conditional section code 2 is to
be included, the generated output 1line is
“In this version of the system there can
only be 1000 entries in a MACLIB file".

.33 1

The CONTROL-WORD-SEPARATOR control word
allows you to change the symbol used to
separate multiple control words on a single
line. The default control word separator
symbol is the semicolon (;) character. The
format of the .CW control word is:

[-
.
Q
=
/]

character to be used as
vord separator" syambol.
Any character may be used. If the
character 's' is omitted, no character
is assigned as the control word separa-
tor, and therefore you cannot have more
than one control word on a line.

s specifies the
the "control

Usage Notes

1. When the CONTROL-WORD-SEPARATOR control
word is processed, the default control
word separator (;) is reset. It may be
necessary to change the control word
separator symbol if it is inconvenient
to type the default symbol, or if the
default symbol is used as part of a
control word operand (such as part of a
symbol specification).

2. If a symbol value begins with the
control word separator, the rest of the
symbol value is treated as though it
occupied the first position of the
line.

3. Control word separators are recognized
on a .CA (COMMENT) line, but not on a
" %" line.

4. The following control words must begin

in column 1 and may not be placed after
a control word separator:

86 SCRIPT/370 Version 3 User's Guide

.Cs n off
.di off
.11 off
«sslabel

When SCRIPT is ignoring a conditional
section, preparing a delay imbed,
reading literal lines, or searching for
a label no control word processing is
done. Bach input record is checked in
column 1 for the presence of the
control word that ends the special
processing mode.
vords

5. Control that accept text data

(for example, .US or .CE), should not
contain the current control word
separator.

Examples

1. Simple change:

.C¥W ,
.sp 2,.0f 5,This section discusses ...

The above line is equivalent to the lines:
«Sp 2
.of 5
This section discusses ...

2. Temporary cancelation to get the separa-
tor character into a symbol value:

.c'

.se 2col = *';.cd 2 0 46;.cl 43;°

.se 1col = *'3.cd 1;.cl 89;¢*

.C¥W 3
In the sequence above, the control word
separator is temporarily canceled so that
the regular separator (;) can be used as

part of the .SE (SET-SYMBOL) control line.
Since the symbols 2col and 1col contain
multiple control words, they can now be
used instead of the actual control words
involved. Since the control words are in a
symbol that begins with the control word
separator, they can be recognized as
control words even if the symbol is encoun-
tered in the middle of a line. Since the
symbols end with control word separators,
the effective next line can be concatenated
to the symbol name. With the symbols 2col
and 1col set as shown, the line:

This is a line.&2col.Now start 2 columns.
Has the same effect as the sequence:
This is a line.
.cd 2 0 46

.cl 43
Now start 2 coluans.

3¢
D
1%¢

.DI .DELAY-IMBED

Usage HNotes

1. The DELAY-IMBED control word is espe-
cially useful for positioning diagrams
and tables. The next n lines of the
current SCRIPT file are saved in a
special temporary file called IKSUTI1
SCRIPT. When the top of the next
output page is reached, this temporary
file is imbedded and processed by
SCRIPT. After the inclusion of the
saved lines, normal processing resumes.

2. This control word acts as a break.

3. An automatic page eject is not
performed at the end of the inclusion.
If you want SCRIPT to resume normal
processing on a new page, you should
end the delayed section with a .PA
control wvord.

4. The .DI OFP control
column 1,

vord must begin in
not after a control wvord

separator. When SCRIPT is processing a
delay-imbed it is not processing inmput
lines except to 1look for .DI OFF in
column 1.

Examples

1. To delay the inclusion of one line:
.di .pa

At the end of the current page, a blank
page, except for top and bottom titles, is
generated. Output resumes on the page
after the blank page.

2. To include
next page:

a figure at the top of the

.d4i 3
.Sp 2
.im figure5
«Sp 5

The current page is processed as if the .DI
and the three following 1lines had not
existed. At the top of the next page, the
three lines are processed. This results in
spacing two lines, imbedding the SCRIPT
file named FIGURES, followed by spacing
five more 1lines. If there is sufficient
room remaining on the page, normal SCRIPT
output resumes immediately.

3.3

potapa

-DM (DEFINE-HACRO)

Use the DEFINE-MACRO control word to
establish macro definitions for @ sequences
of SCRIPT control words. SCRIPT macros are

88 SCRIPT/370 Version 3 User's Guide

invoked by preceding them . with periods, as
SCRIPT control words. Ko macro substitu-
tion is performed unless the - MS
(MACRO-SUBSTITUTION) control word has been

entered. The format of the .DM control
vord is: :

r T 1
| | r) {
1 .DM | name |/linel/.../linen{/]l| |
| | Ix . | |
(| |OFF | |
| | L 4 |
i L J
¥here:

name is the symbolic name 7you want to

assign to the macro, so that you can
invoke it with the control line:

.name
maximum of 10

It may contain a
nonblank characters.

/ is any delimiting character, used to
separate the 1lines in the macro.
The final delimiter may be omitted.
line is any SCRIPT control word 1line or
line of data that you want to
include in the macro definition. It
may contain syambolic names, or any
of the special macro variables &%,
or &1 through &9 (see Usage Note 1).

x indicates that you want the current
value of a macro assigned to the
symbol &x. x may be any alphameric
character.

OFF cancels a macro definition.

Usage Notes
1. The following symbols have
meanings when used to define
macros with the .DM control word:

special
SCRIPT

€*; is the 1line passed to the macro
when it is invoked. Thus, if the macro
defined with the control line:

.dm typit /.ty **¥%/.ty E%/.ty **%
.is invoked withithe line

.typit Hello!
then the syambol &% haé the value

"Hello!®. The processing of this macro
results in the lines:

.EB «EVEN-PAGE-BOTTOM-TITLE

-EB (EVEN-PAGE-BOTTOM-TITLE)

e e e e e . e e e S i 2 e o i st e S

The EVEN-PAGE~BOTTOM-TITLE control word
saves a specified title line in ' a storage
buffer for possible future use. This title

may be used at the bottom of the current
page, if it is even-numbered, and each
subsequent even-numbered output page. The
format of the .EB control word is:

{i BB 1| [(n] /parti/part2/part3/ ‘l
1 L "
where:

n is the number of the bottom title

line to be set. The number may be
from 1 to 6, and if it is omitted, 1
is assumed. The six possible title
lines are the same for top titles and
bottom titles. Bottoa titles are
numbered from bottom to top; top
titles are numbered from top to
bottonm. Therefore, "even bottom
title 1" sets the same storage buffer
as "even top title 6.m See the
discussion of the .PFS (FOOTING-SPACE)
control word for information on how
to allocate -space on your output page
for bottom titles.

part1 is the portion
left justified.

of the title to be

part2 is the portion of the title to be
centered between the left and right
margins.

part3 is the portion of the title to be
right justified..

/ is any character that does not appear

in part1, part2, or part3.

1. Titles may be printed at the bottom of

the current page, if it is even-num-
bered, and each subsequent even-num-
bered output page, if space has been

allocated for it using the .PS control
vword. The specific location of the
bottom titles on the page is controlled
by the .BM (BOTTOM-MARGIN) and .FM
(FOOTING-MARGIN) control words; the
number of bottom titles to be used on
each page is controlled by the .FS
control word. Any even title may be
changed by including another .BT or .EB
control word later in the SCRIPT file.

2. This control
producing a

word is very useful for
manuscript that is to be

90 SCRIPT/370 Version 3 User's Guide

printed in book style using both sides
of a page of paper. By convention, when
the book is opened, the even-numbered
page is on the 1left. This distinction
is important if, for -example, it is
desired to print the page number always
on the outer edge of the page, which is
on the left for even-numbered pages and
on the right for odd-numbered pages.

-BEF (END-OF-FILE)

The END-OF-FILE control vord simulates the
end of the current file. The format of the
.EP control wvord is:

v L} L
I <EF | [CLOSE] |
[i J
¥here:

CLOSE tells SCRIPT not to hold your place

in the current file, but to close
it, so that the next time the file
is imbedded, SCRIPT begins proces-
sing at the top of the file, not at
the line following the .EF control

word.

(=]
(7]

age Notes

-t
.

The END-OP-FILE control word causes an
end of file condition to be simulated
on the current input file. If the
current input file is not an imbedded
file (see the IMBED control word), all
processing is terminated. If the
current input file has been imbedded,
the .EF control word causes input
processing to continue in the outer
file. In this latter case, SCRIPT
remembers the position of the .EP
control word; if the file is imbedded
again, then SCRIPT begins reading at
the line following the EF control word
instead of the beginning of the file
(unless the CLOSE operand is used).

2. The .EF control vword, in conjunction
with the IMBED, APPEND, and OQUIT
control words, provides an easy and
flexible mechanisa for producing
tables, as demonstrated in the example
below. :

In this example, a tahie is generated using
two files. One file contains a single line

-EP + EVEN-PAGE~-EJECT

This allows you to have your output
only on even-numbered pages, while
leaving odd-numbered pages blank for

artwork to be added 1later. The .EP ON
mode is canceled by either .EP OFF, .OP
ON, or .OP QFF.

2. This control word acts as a break It is
not allowed in a keep.

Exaaple

.ep

The rest of the current page is skipped.
The page on which text resumes printing is
even-numbered even if it is necessary to
generate an
between.

pet 23

«BET (EVEN-PAGE-TOP-TITLE)

The EVEN-PAGE-TOP-TITLE control
a specified title line in a storage buffer
for possible future use. This title may be
used at the top of all subsequent even-num-
bered output pages. The format of the .EP
control word is:;

word saves

. —

.BT i [n] /part1/part2/part3/ 1

n is the number of the top title line
to be set for even-numbered pages.
The number may be from 1 to 6, and if
it is omitted, 1 is assumed. The six
possible title lines are the same for
top titles and bottom titles. Bottom
titles are numbered from bottom to
top; top titles are numbered from top
to bottonm. Therefore, "even top
title 1" sets the same storage buffer
as even bottom title 6. See the
discussion of the .HS (HEADING-SPACE)
~control word for information on how
to allocate space on your output page
for top titles.

title to be

part1 is the portion of the

left justified.

part2 is the portion of the title to be

centered between the left and right
margins.
part3 is the portion of the title to be

right justified.

92 SCRIPT/370 Version 3 User's Guide

empty odd-numbered page in-

/ is any character that does not appear
in part1, part2, or part3.

Usage Notes

1. Titles may be printed at the top of
each subsequent even-numbered output
page, if space has been allocated for
them using the .HS control word. The
specific location of the top titles on
the page is controlled by the .THM
(TOP-MARGIN) and .HM (HEADING-MARGIN)
control words; the number of top titles
to be used on each page is controlled
by the .HS control word. Any even
title may be changed by including
another .ET or a «TT (TOP-TITLE)
control word later in the SCRIPT file.

1%
Lol
et

.BZ (BASISCRIPT)

o e o i S i S

Use the BasySCRIPT control word to initial-
ize the GML tags used by the BEBasySCRIPT

processor. This control word is valid only
if the SCRIPT module has been generated
with the EasySCRIPT facility. The format
of the .EZ control word is:
1] L] . N 1
| «BZ | { ON [lastDeweyl]} |
| | { OFF } |
| i { tagval 1line } |
L 4 - e rane-n -d
¥here:
ON initializes the EasySCRIPT tags that
provide the EasySCRIPT numbering,

paragraphing, and heading functions.

OFF cancels the EasySCRIPT tags, so that
they are not recognized by SCRIPT.

tagval is an EasySCRIPT tag without the
preceding ampersand (6). You can
call out an EasySCRIPT tag without
having set EasySCRIPT on by using
the .EZ tagval control word.

line is an input line of data.

lastDewey
is the Dewey decimal number . of the
last heading that would have been
used. - EasySCRIPT uses this number
to set the counter it wuses for
numbered headings. If not speci-
fied, 0.0.0.0 is assumed. If you

specify &xref, RasySCRIPT resumes
numbering where it left off when .EZ
" OPF was last processed.

«FN «FOOTNOTE

-EN (EQOINOIE)

Use the FOOTNOTE control word to set aside

up to ten lines! of formatted output text
to be positioned at the bottom of the
current column, if possible, or at the
bottom of the next column. The format of
this control word is:

r T !
| .FN | {ON } |
| | (OFF} |
L d J
where:

ON nmarks the beginning of the material in
the footnote.

OFF marks the end of the footnote material.

1. FOOTNOTE ON starts a footnote. A1l
lines until the subsequent FOOTNOTE OFF
control are put in the footnote. I1f
.PN OFF is encountered when no footnote
is in process, it is ignored. If the
maximum number of 1lines is exceeded,
the footnote is ended Just as though a
.FN OFF control word had been encoun-
tered, and a warning message is typed.
The rest of the material is treated as
ordinary text. . (The real .FN OFF
control word |is ignored, since no
footnote is then in process.)

3. The first footnote in a column is
automatically started with a three line
package consisting of two spaces and
then a 15-character cutoff rule. The
cutoff rule is composed of hyphens (-),
but you may translate them to another
character if you wish. WNote that the
material in the footnote is translated
according to the translations in effect
at the time the footnote is formatted,
not when it is actually printed.

4. The .PN control word does not act as a
break. The footnote is considered to
fit in this column if the number of
lines left is sufficient to accommodate
the footnote itself, the three 1line
cutoff package, and one more line for
the callout. (In other words, there
must be four more lines than the size
of the footnote left in this column.)

1You may have more than one footnote in a
column, provided that each one occupies no
more than ten formatted lines.

94 SCRIPT/370 Version 3 User's Guide

To ensure that your footnote and the
callout appear in the same column, put
the footnote itself before the callout.

Since the footnote does not cause a
break, the sentence containing the
callout may be interrupted for the

footnote itself without disrupting the
formatted output.

S. The FOOTNOTE control word uses the same
routines as the KEEP control word, so a
keep and a footnote may not be in
process at the same time.2 A footnote
in process is terminated by any disal-
lowed control word or by a control word
that starts a new keep, footnote, or
headnote.

6. A footnote does not have any automatic
offset. You must include an OFFSET
(.OF) control word if you want the
footnote offset. I1f an indent or
offset is in effect when you begin a
footnote, you should cancel and restore
it within the footnote.

The first footnote in this section was done
with the following sequence:

«if SYSOUT eq PRINT .tr 1 b1
Use the FOOTNOTE control word
to set aside

.fn on

.of 1

1You may have more than one footnote
in a column, provided that
each one occupies no more than
ten formatted 1lines.

.0of 0

.fn off

up to ten lines1 of

formatted output text...

.tr 1 1

Notice that the callout to the footnote was

placed after the actual footnote. Now, if
the footnote did not f£it in the current
column, a column eject wvould be done

immediately, and the callout would still be
in the same column as the footnote to which
it refers.

HEx
2For this reason, the same control words
that are disallowed in a keep are also

disallowed in a footnote.

.FS +~POOTING=SPACE

setting the bottom titles
///77) because SCRIPT does not have to
process any titles to determine that
noneé are wanted.

to null (.BT

If you want three running bottom titles in
your document, you could use the following
sequence: ' ‘

.bt 3 /Chapter U4//8/
bt 2 /777) ;
.bt 1 $$ESYSMONTH./6SYSYEAR.$$

At this point, only bottoa title 1, the one
nearest the bottom of the page, is used on
formatted output pages because the default
footing space of 1 is still in effect. Now
that the three title lines have been saved,
the following control word causes SCRIPT to
print all three:

.fs 3
11]

.60 (60T0)

The GOTO control word causes SCRIPT to jump
to another part of the SCRIPT input file.
The format of the .GO control word is:

(-

«GO i label

¥here:

label is the name of a line that ‘has been

set elsewhere in this SCRIPT file
using the ",.,." (SET-LABEL) control
vord.

Usage Notes

vword to branch to
SCRIPT file. 1If

1. Use the GOTO control
another place in your
the 1label designated@ on the GOTO
control word is not defined elsewhere
in the file, an error message is
generated.

2. This control word does not cause an
automatic break. The input . 1line
preceding the GOTO control and the line
at the label designated in the GOTO
control - word are processed as though
they were two sequential lines from the
SCRIPT file.

96 SCRIPT/370 Version 3 User's Guide

‘Suppose

3. BEvery GOTO control word must refer to a
label that has been defined with the
«ss control word; but you may have more
than one GOTO referring to the same
label.

4., 60T0 is particularly useful when

performed conditionally as the subject

of an IF statement. See the discussion

of the .IF control word.

Example

a SCRIPT file that was
designed to recognize the variable SYSVARS
(see "Section 2. The SCRIPT Command"). In
this example, if SYSVARS5 is set to SMALL,
you want SCRIPT to format the output at 36
lines per page and U2 characters per line.
Othervise, the default values of 66 lines
per page and 60 characters per line are to
be used. This could be done with the
following control words:

you had

.if ESYSVARS ne SMALL .go default

.pl 36
+11 42
«e.default
(etc.)
13
-HO = .H6 (HEAD-LEVEL-N)

The control words .HO through .H6 automati-

cally format topic headings in SCRIPT
output. The definition of a particular
head level may also result in an entry in

the table of contents for that heading.
The format of the .Hn control word is:

= Y - 1

| <«Hn | [text] l

s [T § N . N 3

Where:

n is the number of the head level from 0
to 6.

text is the data to be formatted as a
subject .head and optionally placed in
the table of contents.

Usage Notes

1. The .Hn control words provide several
automated functions for you. They can
provide a topic heading that is under-
scored or capitalized with a specified
number of skips before it and 1line
spaces after it. They can cause the

. BN « HEADING-MARGIN

Usage Notes

1. The heading line is placed a specified
number of 1lines above the top margin.
If no .HM (HEADING-MARGIN) control word

is included in the file, the default
value is 2.
The heading margin specified must

alvays be small enough so that it plus
the heading space can be accommodated
within the current top margin.

- 2. This control word acts as a break.

.hm 3

Three lines are left between the
lines and the first line of text. If the
default top margin of 6 is in effect, the
last top title is printed two 1lines from
the top of the page, followed by three more
blank lines (the heading margin), and then
the text.

333t

heading

.HN (HEADRNROTE)

Use the HEADNOTE control word when you want
to set aside up to ten lines of formatted
output text to be positioned at the top of
the next page and all subsequent pages
until canceled. The format of the .HN
control word is:

v AL Ll
| .HN | {ON } |
I | {OFF } |
i | {CANCEL}]
L d 3
Where:

ON tells SCRIPT to start putting

formatted text in a headnote.

OFF marks the end of the material to go

in the headnote. If .HN OFF is
encountered when no headnote is in
process, it is ignored.

CANCEL clears the active headnote so that

it will no longer print at the top
of the text area of every output

page.

98 SCRIPT/370 Version 3 User's Guide

b=

sage Notes

« The .HN ON control word starts a
headnote. All 1lines until the subse-
quent .HN OFF are put in the headnote.
If the waximum number of 1lines is
exceeded, the headnote is ended just as
though a .HN OFF control word had been
encountered, and a warning message is
displayed. The rest of the material is
treated as ordinary text. (The real
.BN OFF is ignored, since no headnote
is then in process.) The headnote is
placed at the top of each subsequent
page until canceled with a .HN CANCEL
control word.

-

2. The maximum size of each headnote is 10
lines. If the material in the headnote
occupies more than 10 formatted output
lines, the headnote is terminated, and
a warning message is displayed.

3. The HEADNOTE control vword does not

cause a break.

4. The BEADNOTE control word uses the same
routines as the KEEP control word, so a
keep and a headnote may not be in
process at the same time. A headnote
in process is terminated by any disal-
loved control word or by a control word
that starts a new keep, footnote, or
headnote.

5. Fldating and
processed before
of a new page.

delayed keeps are
headnotes at the top

«BS (HEADING-SPACE)

The HEADING-SPACE control word allocates
space from the top margin area for headings
or titles. The format of the .HS control

word is:

r T]
| Il ¢ A |
I .88 | | n | |
(i 1+ | |
| I t-n| |
| (I A | |
{ I v |
i ' J
vhere:

n is the number of lines of top title you
wvant on each subsequent output page.
This nuaber may be from 0 to 6. If no
number is given, 1 is assumed. If +n or
-n is specified, the current value for

. HY «HYPHENATE

off. This <control word is valid - only if
the SCRIPT module has been generated with

the hyphenation facility. The format of

the .HY control word is:

r L

I JHY | {ON {filename] } }
| | {OFF } |
| | {sup } |
(| {SET {THRESH} n } {
| I { {MINPT] }]
L. ' d
¥here:

ON begins automatic hyphenatlon of

SCRIPT output lines.

filename is the name of an optional
exception dictionary to be
searched before the standard
SCRIPT XDICT is searched (see
Usage Note 2).

OFF causes hyphenation to be turned
off.
SuUp causes hyphenation to be

suppressed until the next space.
If hyphenation is off, then SUP
does nothing, but if it is on,
then SUP turns it off temporari-
ly. It automatically turns on
again the next time a line space
is generated (as a result of .SP,
«SK, head-level control words, or
a page eject). This allows you
to suppress hyphenation at the
end of a paragraph without having
to turn it off and then on
explicitly.

SET . indicates that you are going to
override the default hypenation
values, THRESH and MINPT.

THRESH n is a positive number indicating
the hyphenation +threshold. When
SCRIPT is formatting a 1line, at
least n spaces must remain before
SCRIPT attempts hyphenation. The
ipitial value of THRESH is 7.

MIKPT n is a positive number indicating
the minimum hyphenation you want
to allow. The initial value of
MINPT is 4, which means that the
first hyphenation point in a word
must be at least four characters
beyond the beginning. of the word.

1. When SCRIPT is formatting text, and the

next word does not fit on the 1line,

100 SCRIPT/370 Version 3 User's Guide

The
line
form

SCRIPT ordinarily moves the word onto
the next output line. When hyphenation
is in effect, SCRIPT attempts to break
the word into two pieces: the longest
piece that can fit on the line, and the
remainder. If there are at least
“THRESH" spaces left on the 1line, the
word is examined by the hyphenator,
which returns a number that is 1less
than the number of remaining spaces.
If this number is greater than MINPT,®
SCRIPT breaks the word after that
number of letters.

The exception dictionary is a file
called SCRIPT IDICT. This file
contains words that may be incorrectly
hyphenated by the algorithm that
decides where to hyphenate words. When
hyphenation is ON, and a word does not
fit in the current line, this exception
dictionary is searched for that word;
if no wmatch is found, the algorithmic
hyphenator is used.

You may specify the name of a private
exception dictionary that is to be
searched before the SCRIPT XDICT. To
create or modify an exception diction-
ary, you must use the HYPEDIT command,
which is described under "Automatic
Hyphenation" in Section 1.

(IE)

IF control word allows a SCRIPT input
to be processed conditionally. The
at of the .IF control word is:

(o — o — -

IF {comp1 test comp?2 targ}

{ SYSPAGE test {EVEN} targ}
{ {oop } }

{sysoor test {PRINT} targ}
{ { TERM }

o e s s e ——— -
A ad
e e v w— — — — — o

comp

test

1 is any word or number of eight or
fewer characters to be used as the
first comparand. This comparand
may be the value of a set symbol.

2 is any word or number of eight or
fewer characters to be used as the
second comparand. It too may be
the value of a set symbol.

is a one or two character code that

.Ir .Ir

the .CW control word is not processed, and
the remaining line is treated as a comment.
If the condition is true, the .CW is
processed, and the newv control word separa-
tor is recognized to allov the remaining
line to be broken up into four active
control words.

4. If there is a possibility that one of

the comparands may be a null symbol,
another trick should be used:

-if X6answer eq Xyes (do this)
Now, if the symbol "ansver" is null, the

line will become:

.if X eq Xyes (do this)
Othervise, if you had not included the Xs,
a null symbol could shift the fields over
like this:

.if egq yes (do this)

- and "yes"™ is not a recognized condition.
Note that the symbol is null only if so set

by the .SE or .RV control words. In
SCRIPT, a symbol that has not been set is
not null, as is true of an BXEC file in
CHS. The only exceptions to this are the
special syambols €0 through §9.

Bxx

«IL (INDERT-LINE)

Use the INDENT-LINE control vword to indent
the next 1line only a specified number of

characters. The format of the .IL control

word is:

 § Ll 1

| t r {

I «IL | | n.| |

| { (+n | LB

I I {-n | |

| | |

L. 4 ']

where:

n specifies the number of characters to
shift the next line from the current
margin. +n specifies that text is
shifted to the right, and -n shifts

text to the left.

Usage Notes

1. The .IL control word provides a way to

indent only the next output line. The
line is shifted to the right or the

102 SCRIPT/370 Version 3 User's Guide

left of the current wmargin (which
includes any indent or offset values in
effect).

2. This control word acts as a break.

3. The .IL control word and the .UN
(UNDENT) control word are opposites;
thus, the control wvords UN 5 and .IL -5
are equivalent.

4. The .IL control word may be useful for
beginning new paragraphs. -

5. When successive .IL and .UN control
vords are encountered without interven-
ing text, or wvhen positive or negative
incresents are specified for IL
control words entered without interven-
ing text, the indent amount is modified
accordingly. Thus the lines

il 4
.il +6

result in the next 1line being indented
10 characters.

Example
.i1 3
This 1line is preceded by the control

word INDENT-LINE 3.

IMBED control word to insert the
contents of a specified file into the
current file. Processing continues as
though the material in the imbedded file
were part of the current file. The format
of the .IM control word is:

Use the

[4 Y
i -IN |
L

A

filename [tokeni1 ... token9]]
3

where:

filename specifies the filename of the file
to be copied into the output. The
filetype of the file a=must be
SCRIPT.
tokens are positional values that may be
passed to the imbedded file. The
first token (word) Dbecomes the
value of the symbol &1, the second
token becomes the value of the
symbol &2, and so forth. The

«JU «JUSTIFY-MODE

-JU (JUSIIFY

Use the JUSTIFY-MODE control word to cancel
or resume right justification of output

}ines. The format of the .JU control word
is:

LB L] L]
l T |
| .JU0 | |ON | |
i | |OFF| |
| | ¢ 4 |
[A) |
Where:

ON restores right justification of output
lines. If neither ON nor OFF is
specified, ON is assumed.

OFF cancels justification of output lines.
If concatenation is still in effect,
.JU OFF results in ragged right
output.

1. When SCRIPT is justifying output, lines
are padded with extra blanks . to the
length of the column. If SCRIPT is
also concatenating text, the concatena-

tion process .occurs before Jjustifica-
tidn.
When Jjustification is stopped, but

SCRIPT is still concatenating text,
lines are formed that approach the
current column length but are not

forced to the exact length. The

resulting lines resemble the output
usually produced by a typist or an
MT/ST (Magnetic Tape/Selectric Type-
writer).

2. Justification may also be canceled by
the .FO OFF (FORMAT-MODE) control word.
The .FO OFF control word also cancels
concatenation.

3. This control word acts as a break.

Example

1. «Ju off

These lines are being concatenated by
SCRIPT, but no blanks are added to fill the
lines to the column length.

2. .Jju

file is
margin on

Output from this point om in the
padded to produce an even right

104 SCRIPT/370 Version 3 User's Guide

the output page, as long as the input lines
do not exceed the column length.
3343

+KE (KEEPR)

The KEEP control word allows you to desig-

nate blocks of text that must be kept
together without being separated by a
column eject or a page eject. The format
of the .KP control word is:

r T — 1
{ KPP | {ON } |
| | {FLOAT} i
| | {DELAY} |
| | {OFF } |
1 'S i J
where:

ON starts a regular keep. A regular

keep is put in this coluan if it will
fit, and otherwise an immediate
coluan eject is done. It is similar
to a conditional column eject, except
that when you use .CC you tell SCRIPT

must remain in
a keep you tell

the column,

SCRIPT how much input data must fit
in the column.
FLOAT starts a floating keep. A floating

keep is put in this column if it will
fit; otherwise it goes at the top of
the next column. Text following the

floating keep is formatted into the
rest of this coluan.
DELAY starts a delayed keep. A delayed

keep is always printed at the top of
the next column, even if there is
room for it in this column.

OFF marks the end of a regular, floating,
or delayed keep.

Usage Notes

1. The KEEP control word delimits blocks
of text that must be kept together. A
keep is started with .KP ON, .KP FLOAT,
or .KP DELAY. It is ended with .KP
OFF, starting a new keep, footnote, or
headnote, or when a disallowed control
word is encountered. Any control word
that changes the pumber of 1lines that
vwere left in the column before the keep
is disallowed while a keep is in

process. These are: .BM, .CB, .CC .CD,
.Cp, .EP, .MC, .OP, .PA, .PL, .PN, .SC,
and .TC. Some head level control words

LI «LITERAL

Example
If a text line must begin with a period:

.1i

ceess Male essses Female (check one)
The 1lipne ",,... Male, etc." starts in
column 1. Ordinarily, SCRIPT would attempt
to interpret that line as a control word
which would result in an error condition.
The LITERAL control word inhibits inter-
preting the line as a control word.

.3.3.1

.LL (LINE-LENGTH)

e e ——————

The LINE-LENGTH control word specifies the
character width of top and bottom titles.

It also changes the value of the column
length, which governs the width of text
lines, if the 1latter has never been set
explicitly. The format of the .LL control
word is:
r T .
| | |
I «LL | | n | |
| | l+n | |
| I I-n | |
| I 160 | {
| | ¢ 4 (
L 'l Jd
¥here:
n specifies an output 1line length not
greater than 132 characters. If no

value is specified for n, the default
value of 60 is used.

Usage Notes

1. The LINE-LENGTH control word sets the
total length for output 1lines from the
left margin to the right margin. The
.LL value governs the length of title
lines. Text lines are always governed
by the .CL (COLUMN-LENGTH) control
word, but if the column 1length has
never been explicitly set, it has the
same value as the line length. See the
discussion of the .CL control word.

2. This,control word acts as a break.
3383 . :

106 SCRIPT/370 Version 3 User's Guide

- (DOUBLE-SPACE-MODE)

+LS (LIBE-SPACING)

Use the LINE-SPACING control word to
specify multiple-spacing of output text
lines. This control word is a generaliza-
tion of the .SS (SINGLE-SPACE-MODE) and .DS
control words. The
format of the .1LS control worad is:

¥ L} 1]

{ LS | n |

L ' J

where:

n specifies the number of blank lines to
be inserted after each standard text
line.

Usage Notes
1. This control vword acts as a break.

is identical to
control word is
When line spacing
+SK (SKIP-LINES) and

2. The .SS control word
.LS 0, and the .DS
identical to .LS 1.
is in effect, the

.SP (SPACE-LINES) control words act
like multiple blank 1lines +to which
additional blank lines are inserted.

For example, if the line spacing amount
is 2 (triple-spacing), them .SP or .SK
would result in three blank lines, .SP
2 results in six blank lines, and so
on. However, if the .SP or .SK control
word indicates "absolute" spaces, then
the space count is not multiplied.

3. This control word overrides previous
.LS, .SS, and .DS control words.

Subsequent output 1is "triple-spaced" such

that each text 1line is separated by two
blank lines.

3.3

.MC (MULTICOLUMN-MODE)

The MULTICOLUMN-MODE control word restores
multiple column processing after it has

.0B - ODD-PAGE~BOTTOM-TITLE

2. This control word acts as a break.

Use the OFFSET control word to indent all
but the first line of a block of text. The
format of the .OF control word is:

«.OF

,____.._._“_.
e e = o]
- ————
|+
eEey
| S |
e . -y o

n specifies the number of spaces to be
indented after the next 1line is format-
ted. If omitted, 0 is assumed, and
indention reverts to the original margin
setting. If you use +n or -n, the
current offset value is incremented or
decremented the specified amount, and a
new offset is started.

1. An OFFSET control word does not take

effect until after the next line is
formatted. The indention remains in
effect until a .IN (INDENT) control

word or another OFFSET control word is

encountered.

The .OF control may be used within a
section which is also indented with the

.IN control. Note that .IN settings
take precedence over .OF, however, and
any .IN request causes a previous

offset to be cleared.

If you want to start a new section with
the same offset as the previous
section, you need only repeat the .OF n
request.

2. This control word acts as a break.
and the .ON

used to
the left

3. The .IL (INDENT-LINE)
(UNDENT) control words can be
shift only the next lines to
or right of the current margin.

4. Tabs should be used whenever possible
to format numbered or bulleted lists,
to ensure that the first text word on
the line is even with subsequent offset
lines. The items in this "Usage Notes"

108 SCRIPT/370 Version 3 User's Guide

section are created using a tab setting
of 4 and an offset of 4.

Examples
1. starting an offset:
.of 10
The 1line immediately following the .OF
control word is printed at the
current left margin. Al1ll 1lines
thereafter (until the next indent
or offset request) are indented
ten spaces from the current
margin setting. These tvo
examples vere processed with
OFFSET control words in the
positions shown.

2. Ending an offset:
.of

The effect of any previous .0OF request is

canceled, and all output after the next
line continues at the current 1left margin
setting.

31

.OP (QDD-PAGE-EJECT)

Use the ODD-PAGE-EJECT control word to

cause either one or two page ejects, such
that the new page is odd-numbered regard-
less of whether the current page is odd- or
even-numbered. The format of the .OP
control word is:

L] L] L]

| Il r |

«OP		ON	
	[OFF	
	v 4		

[T A J

¥here:

ON specifies that subsequent text is to
be printed only on. odd-numbered
pages. Even-numbered pages are left
blank, except for top and bottom
titles, if any.

OFF resumes processing so that text
appears on even- and odd-numbered
pages.

.PA « PAGE-BJECT

L) i]
I [" I
i PA | | n | |
| t t +n | |
I i | -n| |
I (I I & A | |
I I ¢ J |
L i] J
where:

-]

séecifies the paée number of the next

page. If n is not specified, sequen-
tial page numbering is assumed (that
is, the next page number is one

greater than the current page number).

+n specifies that the next page should

have a number that is equal to - the
norsal next sequential page number
plus n.

-n specifies that the
have a page number that is equal to
the next sequential page number minus
n. If subtracting n from the next
page number yields a negative number,
an error message is typed, and the
control word is ignored.

next page should

Usage Notes

1. Whenever a PAGE-BJECT control word is
encountered, the rest of the current
page is skipped after printing any text
lines accumulated thus far. Output
advances to the next page,
printing any current bottom titles.
The currently active top titles are

inserted, and formatting resumes with
the line following the .PA control
word. If you use the STOP option of

the SCRIPT command, SCRIPT waits for
you to enter a null 1line (with the
Return "or Enter key) before starting
the new page.

2. This control word acts as a break. It
is not allowed in a keep.

3. If you want to add to or change the top
titles to appear on the new page, the
title control words must be processed
before the .PA control word. This also
applies to any control words that
change the format of the top titles,
including line length control words.

- Any ‘bottom title control words that

appear before the .PA control word take
effect on the current page.

110 SCRIPT/370 Version 3 User's Guide

after.

Examples
1. To start the next sequential page:

QPa

The rest of the current page is skipped.
The top titles and page number are put in
the top margin of the next page, and output
resumes.

2. To repeat a page number:
.Pa -1

The new page will have the same page number
as the preceding page. The calculation is
done after establishing the next sequential
page number.

3363t

.PL (PAGE-LENGTH)

The PAGE-LENGTH control word specifies the
length of output pages in lines. The value
specified overrides the standard page
length of 66 lines. The format of the .PL
control word is:

v L L}
| | Y S | |
{ «PL | | n | |
{ I (+n | |
	-n	
I 166		
	L	
[% A J
¥where:
n specifies the length of output pages
in lines. If no value is specified
for n, the default value of 66 is

used. This number should be the same
as the physical number of print lines.
on each page of paper being used.
However, when formatting in printer
format, it may be different, as
explained below.

1. The PAGE-LENGTH control word allows
varying paper sizes to be used for
output. This is the correct size of
standard typewriter paper for terminals
typing six lines per inch. Page length
may be changed anywhere in a file, with
the change effective on the page on
wvhich the control word is encountered,
if possible, or on the next page.

<PN « PAGE-NUMBERING-MODE

2. The .PN OFF and .PN OFFNO control words
suppress the default top title WPAGE
&." If you use the top or bottom title
control words and include an &, only
the page number and not the text is

suppressed.
3. The .PN OFF effect can also be accom-
plished by redefining the +top title

vithout any page nuamber symbol,
setting the heading space to zero.

or by

4, If both FRAC and ROMAN are in effect,
the page number that is printed
consists of only the fractional portion

of the number in lovercase roman
_bumerals. If ROMAN is in effect, no
prefixes (as specified with .PN PREF)

are printead.

5. Table of contents entries generated by
the .Hn (HEAD-LEVEL-n) control words or
the .PT (PUT-TABLE-OF-CONTENTS) control
words show the page numbers in the same
format they appear on the page, that
is, if a prefix is used, ‘it is shown in
the table of contents; if roman numbers
are in effect, the contents entry has a
roman numeral, and so on.

Examples
1. .pn off

The internal page count continues to be
incremented for each page printed.

2. .pn offno

No page numbers appear on SCRIPT output,
and the internal page count remains at its

current setting without further
incrementing.
3. +«pPn oOn
Page numbering on SCRIPT output resumes

using the current internal page count; this
count is incremented for each page printed.

4. .pn roman

The page number in the title at the bottom
of this page appears as a roman nuseral.
Notice that the page number also appears as
a roman numeral in the table of contents in
the front of the book.

The control word
.pn arabic

restores arabic¢ numbering on the next page.
EuE

¢xii SCRIPT/370 Version 3 User's Guide

-PP (BARAGRAPH-STARI)

Use the PARAGRAPH-START control word to
start a newv paragraph. The format of the
.PP control word is: . .

| " T - T
{ .PP | [1line] |
L 1]
where:
line is the' text that begins a new para-
graph. If line is omitted, the text
from the next input 1line after the
.PP control word .begins the new
paragraph.
Usage Notes
. When the .PP control word is encoun-
tered, a break occurs, a skip is

generated, and the next line of text is
indented three characters to the right
of the current margin. The .PP control

word is equivalent to the control
words:

.sk]

<11 +3

If these values are . not satisfactory
for your paragraph formatting, you can
redefine the .PP control word as a
SCRIPT macro.

.pp This line begins with

This «PP control
vword.
33 3%

line begins with a

-PS (PAGE-NUMBER-SYMBOL)

The PAGE-NUMBER-SYMBOL control word allows
you to change the special page number
symbol used in top and bottom title control
words. The default page number symbol is
the ampersand (&) character. The format of
the .PS control word is:

fo. e =)
L]
-]
W
—
/]
taad
e

-00 «QUICK-QUIT

1. Since SCRIPT does not perform a final
page eject after encountering the
QUICK-QUIT control word, some output
that has been formatted may never be
displayed.

2. The .QQ control word is useful when you
are using the .TE (TERMINAL-INPUT)
control word to enter lines from the
terminal, and you want to terminate
processing quickly.

3. When the .Q0 control word is processed,
SCRIPT terminates processing without
closing files.

(QUIT)

QUIT causes processing to terminate with a
final page eject. The format of the .QU
control word is:

.
©
(=]

1. The QUIT control word causes the output
form to be advanced to the top of the
next page and processing is then
terminated immediately.

2. The .QU control word will cause termi-
nation no matter where or when it is
encountered, including within imbedded
files (see the .IM control word). All
open SCRIPT files are closed before
processing terminates.

The REVISION-CODE control word allows you

to designate a revision code marker to be
printed along the left hand margin. The
format of the .RC control word is:

r L] B
| | r 1 |
il -.RC | n |s | |
| | |ON | |
| | | OFF | l
[| |ON/OFF | |
| 1 L 4 |
L 'R o)
114 SCRIPT/370 Version 3 User's Guide

vhere:

n specifies the revision code number
from 1 to 9.

s specifies the revision code syabol

to be printed along the left hand
margin. It may be any single
character, including the blank. If.
not specified, a blank character is

assured.

OR signifies the .beginning of text to
be wmarked with the code character
associated with RC n.

OFF signifies the end of text to be
marked with the code associated with
RC n.

ON/OFF signifies that the next input line

1.

should be
on output.

marked with the RC n code

The REVISION-CODE control word has two
functions: (1) to define a revision
code symbol and (2) to activate the
revision code. You may have up to 9
revision codes defined at any time, and
each revision code may be assigned a
different symbol. The operands ON and
OFF activate and deactivate the actual
revision code marking, respectively.
The operand ON/OFF has the effect of
turning ON revision code n for one line
only, the line that is next printed
after the .RC n ON/OFF is processed.

By assigning different symbols to

different revision code numbers,
including the blank, it is possible to
selectively print specific revision
code markers or differentiate between
various levels of revision.

Since the .RC control word does not

cause an automatic break, revision code

markings may be turned on and off
within a paragraph or even a sentence
without disrupting normal SCRIPT
formatting. An explicit .BR control
word may be necessary under certain
circumstances.

In order to provide space for the
marker along the 1left hand margin,

SCRIPT indents the output an additional
amount. Whenever any nonblank revision
code is defined, all output is indented

an additional two spaces, even if the
revision code has not been turned on.
Therefore, you should define all your

revision code symbols at the beginning
of your SCRIPT file so that all the
output is indented the same amount

<RI «RIGHT-ADJUST

+BRI (RIGHI-ADJUST)

Use the RIGHT-ADJUST control word to
position an output line flush with the
right margin. The format of the .RI

control word is:

L 3 L] 3
{ I) |
I «RI | |line| i
A I 108 | |
| | |OFF |} |
| I 1o | |
{ I I R {
| [4 |
L . 3
where:

line is the line to be right-adjusted.
ON begins right adjusting of text lines.
OFF stops right adjusting of text lines if

.RI ON is in effect, or if n was given
and has not been exhausted.

n is the number of subsequent input
lines to be right adjusted. If no
number is given, 1 is assumed. If .RI
n is specified when .RI ON is in
effect, right-adjust mode is turned

off when n lines have been formatted,
or when .RI OFF is encountered.

1. When the 1line is right-adjusted,
leading blanks are considered part of
the 1line's 1length. When a 1line is
right-adjusted, no formatting is done.
That is, the line is justified as it
stands, and it is not filled from other
input lines.

2. This control word acts as a break.

3. If the line to be right-adjusted is
longer than the current column length,
it is truncated, and the excess is used
on a second line. However, this second
line is not right-adjusted unless the
number of lines to be adjusted is large
enough to include it.

4. The .RI control word is a variant of

the .CE (CENTER) control word. If

either of these 'control words is
processed, the other is canceled.

116 SCRIPT/370 Version 3 User's Guide

-the terminal.

Example
Tl 3
These three lines are
right-adjusted,
as you can see.
%3t

The READ-VARIABLE control word is just like
the .SE (SET-SYMBOL) control word, except
that the value of the symbol is read from

The format of the .RY
control word is: :

RV 'synbolnane |

- ——
e wa o

where:

symbolname is the name of the symbol to be
set. It may be any name that
would be allowable on the left
hand side of the equal sign in a
.SE control word.

Usage Rotes

1. When the .RV control word is encoun-
tered, a VM READ is issued so that a
line may be read from your terminal.

This 1line is' used as the right hand
side of the equal sign to set the value
of the symbol named in the .RV control
vord. Any expression that would be
allowvable as the value in a .SE control
word is allowable here. If no name is
given on the .RV control word, it is
ignored, and no line is read from the
terminal.

2. The .RV control word does not cause an
automatic break.

3. No message 1is displayed before the
terminal is unlocked to accept the
input 1line. You may use the .TY
(TYPE-ON-TERMINAL) control word to
issue a prompting message before the
.RV control word issues its tersminal
read.

A symbol called "name" could be set with

the following control word:

.Se name = *'John Doe!

. SC +«SINGLE-COLUMN-MODE

characters on each line governed by the
line length instead of the column
length. If no multiple column mode is
in effect wvhen this control word is
processed, the only thing it aight
change is the active column length, if
you had set one different than the line

length.
2. This control word is not allowed in a
. keep.)
344
-SE (SEI-SIMBOL)
The SET-SYMBOL control word allows you to
define and assign values to symbols or
arrays of symbols. Using the SET-SYMBOL

control word, you can give a symbolic name
to a page number, a word, or even a string
of SCRIPT control words. The format of the
«SE control word is:

c
symbol-name | = {symbol-value}|
[N S : 3
| OFF |
L 4

QSE

(o o = ——
L p—

where:

symbol-name
is the name you want to
symbolic value to be
during SCRIPT processing.

assign a
substituted

symbol-value
assigns a value to the symbol-name; it
may be a character string or arithmet-
ic expression.

& assigns the symbol-name a value equal
to the current page number.

OFF unsets the symbol symbol-name so that,
as far as SCRIPT is concerned, it was
never set.

Symbol Names

A symbol
of 10
contain any
characters:

name may be any character string
characters or less, but may not
of the following special

+
* /|
(O

118 SCRIPT/370 Version 3 User's Guide

During SCRIPT processing, a symbol name
is recognized when it is preceded by an
ampersand (6) and followed by a blank or a
period:

&symbol-name

If the symbol name appears of the

following forsas:

in any

syrbol-nanme ()
syabol-naere (n)
syabol-nare (6symbol)

it is an array symbol. See "Symbol Proces-
sing" in Section 1 for details.

If a symbol-value is set to a character
string that contains any embedded blanks or
any special characters, it must be enclosed
in single quotes. For example,

.se dog cat
.se end = '.qu!
.Se sentence = 'This is a sentence.

are all valid character strings. If you
want a character string to contain a single
quote ('), you must enter two of them, for
example

.se title = 'Mrs. O'!'Grady''s Cat!

If symbol value is an arithmetic expres-
sion, it must be in the form:

[op0] n1 op1 n2 op2 n3 op3 n4...
vhere:
op0 is a unary + or - sign.

op1, op2, op3
are arithmetic operators:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

ni, n2, n3 ...
are any valid integers. The integers
may have been assigned their values as
a result of a symbol substitution
(including the page number symbol).

For example,
.Se nextpage = & + 1
.se current = -100
.se addit = ¤t + 25
.Se answer = 15 - 42

are all valid arithmetic expressions.

.SP

«SPACE-LINES

indicates conditional spaces. No
spaces are denerated -if the next
control word processed is another .SP,
a .SK, a .PA, or a control word (like
a .Hn) or macro whose first action is
one of these functions.

1. This control word acts as a break.

2. If a page eject occurs while SCRIPT is
processing a .SP control word, remain-
ing blank lines are inserted after the
top titles on the following page. If.
you do not want spaces to appear at the
top of the page, use the «SK
(SKIP-LINES) control word.

3. 1If double- or line-spacing is in
effect, the number of blank 1lines
generated is multiplied by the 1line
spacing amount, unless absolute spacing
is specified.

3

-SS (SINGLE-SPACE-MODE)

~Use the SINGLE-SPACE-MODE control word to
cancel a previous .DS (DOUBLE-SPACE-MODE)
or .LS (LINE-SPACING) control word, and to
resume single-spacing of output. The
format of the .SS control word is:

) 1

| «SS | |

L. | 4

1. This conttol word acts as a break.

2. Output following the SINGLE-SPACE-MODE
control word is single spaced. Since
this is the normal output format, .SS
is needed only to cancel a previous .DS
or .LS control word.

8.1

.SU (SUBSTITUTE-SYMBOL)

Use the SUBSTITUTE-SYMBOL control word to

cause SCRIPT to stop substitution of

defined set symbols or to restore substitu-

tion.

is:

120

The format of the .SU control word

SCRIPT/370 Version 3 User's Guide

r T Y
| I S) 1
.SU		line	
1 ION			
	{OFF		
i I in			
[I O			
i It 4 |
L A ¥
¥where:

line is a line

containing symbolic expres-
sions that you want SCRIPT to substi-

tute with values previously set.
Symbols may be set via the .SE, .RV,
.IM, or .AP control words, or by a
macro call.

OoN turns on an open ended substitution
mode. ON is the initial setting.

OFF turns off substitution mode if it was
ON, or if n was given and not yet
exhausted.

n specifies the number of following
lines to be scanned for set symbols to
be substituted. If omitted, 1 1is
assumed.

Usage Notes

1. The SUBSTITUTE-SYMBOL control word

causes a specified number of the

followving input lines, control words as
well as text, to be scanned for defined
set symbols. If the argument ON is in
effect, every 1line up to a subsequent
«SU OFF will be scanned. Substitution
ON is the default mode of operation,
but it is reset to OFF with .SU OFF;
with .SU n, after n 1lines have been
read; or with ".SU line" after the line
is scanned.

Multiple scans are performed over the
input line until no further set symbol
substitution is necessary.

The substitution of set
increase or decrease the 1length of the
text line. If the line's 1length
reduces to zero, it becomes a '"null
line." A null line causes a break. If
the line's 1length expands so that it
exceeds 240 characters, an error
condition occurs if a single variable
substitution caused the line overflow.

symbols mnmay

The TWOPASS option .may Tresult in
defining symbols during pass1 which can
be used for substitution during pass2
even though these symbols are defined
physically 1later in the SCRIPT file.
Under rare circumstances, the substitu-

.TB «TAB-SETTING

Examples

1. .tb 10 20 */30 40

Tab positions are interpreted as columns

10, 20, and 30. If a tab character is
processed between positions 20 and 30 of a
line, the positions from the current
position up through and including position
30 are filled with asterisks (*) instead of
blanks. The next character goes in posi-
tion 31. For example,

(TAB) text (TAB) text (TAB) text

results in:

text text*kkkkktext

2. .tb

Tab positions revert to default values of
5, 10, 15, etc.

%33

-IC (IABLE

The TABLE-OF-CONTENTS control word causes
the automatically generated table of
contents to be imbedded and printed.

Entries may be placed in the table of
contents by head 1level control control
words (.HO through .H6) and by the .PT

(PUT-TABLE-OF-CONTENTS) control word. The
format of the .TC control word is:

e Ll i |

{ .TC | [n [name]] |

L A J

where:

n is the number of pages'to be reserved
for the table of contents. If omit-
ted, 1 is assumed. This operand is

meaningful when the table of contents
is at the front of the document, and
the TWOPASS option is wused to process
it‘

name is an optional line to be used on the

table of contents. If no name is
given, the word CONTENTS is wused. A
pseudo head-level 1 is generated at

the top of the table of contents using
the name given or the word CONTENTS.

1. When .TC is encountered,
level 1 is processed.
a page eject is done

a pseudo head
This means that
if not already at

122 SCRIPT/370 Version 3 User's Guide

the +top of a page, but no entry is
- placed in the table of contents for the
head. 111 table of contents entries
that have been saved in the utility
- file IKSUT2 are then formatted and
printed. The entries come from the
head level control words whose defini-
tions call for table of contents
entries. By default, the control words
.H0 through .H3 cause these entries.
The table of contents is formatted
according to the line and page dimen-
sions in effect at the time the .TC
control word is encountered, not those
in effect when the head 1level was
processed. Each line in the table has
the revision code and the page number
that was in effect when the head level
was processed.

When the table of contents is complete-
ly formatted, the utility file IKSUT2
is erased. Another page eject is done,
and the new page is numbered as though
sequential page numbering had occurred
and the table of contents had occupied
exactly n pages. If the table takes
other than n pages, there will be
either a gap or an overlap in pagina-
tionm.

2. This control word acts as a break. It
is not allowed in a keep.

Example
See the table of contents of this book for
an example of an automatically generated
table of contents. HNote the treatment of
heads too long to fit on one line with the
page number.

xEx

-IE (IERMINAL-INPUT)

Use the TERMINAL-INPUT control word when
you want to enter text or control 1lines
during the processing of the input file.
The format of the .TE control word is:

(o o — e — =)
| I
[N
(. S
e ave - - — o o

TR «TRANSLATE~CHARACTER

«IR (TRANSLATE-CHARACTIER)

The TRANSLATE-CHARACTER control word allows
you to specify the output representation of
each character in the source text. The
format of the .TR control word is:

| § il 1
! IR | [s t] |
L A J
Where:

s 1is a source character under considera-

tion. It may be a single character or a
2-character hexadecimal code.

t is the intended output representation of
the source character. It may be a
single character or a 2-character
hexadecimal code.

1. After formatting of an input source
line has been completed and immediately
before actual output, each character of
the output line may be translated to a
different output code. The TRANSLATE
CHARACTER control word is primarily of
use whea the final output device uses a
different character set than wvwas used
to create the source SCRIPT file.

2. The text associated with title lines is
translated under control of the trans-
lations in effect at the time that the
title control word was processed. If
you change the translations after the
title has been saved for future use, it
is too late to affect that title.

3. Since control words are only processed
internally, they are never translated.
However, = text data associated with a
control word (such as title data) can
be translated.

4. Translate character specifications

remain in effect until explicitly respe-

5. A .TR control word
causes the tramslation table to be
reinitialized and all previously
specified translations to be reset.

with no operands

6. The UPCASE command option has the same
effect as the 26 TRANSLATE CHARACTER
control words: ".tr a Aj;.tr b B ...
s.tr z 7%,

124 SCRIPT/370 Version 3 User's Guide

7. BY using the .IF, .Cs, or .TE control
words, you may specify different output
character sets for different runs with
different output devices.

8. The .TR control word does not
break. If you have a section
that has translation characters in
effect, followed by a .TR to reset the
translations, the last line of the text
ray not yet have been printed. 1In this
case, that last line is not translated.

cause a
of text

The hexadecimal codes for each printable
character on a TN print train is shown in
Figure 7.

0123456789 ABCDETF

T)
00 | | 00
10 | | 10
20 | | 20
30 | | 30
40 | £ . < (+] | 4o
50 | & 1 $*) ; ~| 50
60 | - / % _>7 | 60
70 | c:#@v=9 1 70
80 | abcdefghi { < ¢+ 4| 80
90 | Jklmnopgr }od+e | 9
A0 | " 9s tuvweuxyz Cr[2| 20
BO { 0 1.2 3 45 67 809 44 1+%-1 BO
co | ABCDEPFGHI | CO
Do | JKLMNOPQR | DO
EO | STUOVWIXYZ | EO
FO | 01234567889 | FO
L 4
0123456789 2ABCDETF

Figure 7. TN Translate Table.

Examples

1. «tr 0 bOs;.tr 1 b1; ...3.tr 9 b9

This causes the characters 0, 1, ..., 9 to

print as their corresponding superscript

character if the output device is a printer
equipped with the TN train. For example,
the formula: :

X2+4Y2=23

prints as

X24Y2=23
2. .tr 40 ?
This causes all blanks in the file to be

typed as questions marks (?) on output.
xxx

.TY «TYPE-ON-TERMNINAL

document. driven messages when the
formatted output is going to a printer
‘or to a disk file.

.ty Do you want 2 column output?
.LV answer
.if x8answer ne xyes .go by2col

.cd 2 0 46
.cl 43
«s«by2col
344
.UC (UNDERSCORE-CAPITALIZE)

The UNDERSCORE~-CAPITALIZE control word
automatically underscores and capitalizes
an input 1line. The format of the .UC
control word is: '

L e L i

{ .UC | text |

[N L J

where:

text is the 1line to be capitalized and
underscored.

Usage Notes

1. Use the UNDERSCORE-CAPITALIZE control
word whenever you have a line of data
that is to be formatted in capital
letters and underscored. This control
word is a combination of the .UP
(UPPERCASE) and the .US (UNDERSCORE)
control words.

2. The .UC control word does not cause an

automatic break; single words in a
sentence may be underscored and capi-
talized.

Example

This sentence has
.uc one
word processed by .UC.

results in

This sentence —has ONE
by .UC.
3%

word processed

126 SCRIPT/370 Version 3 User's Guide

.UD (UNDERSCORE-DEFINITION)

Use the UNDERSCORE-DEFINITION control word
to specify which characters should be
underscored whenever automatic underscoring
is dome. The format of the .UD control

word is:

L v 1
| Il r ¢ A) !
| 0D | | ION | s1 s2 .. s9§ |
| I | |OFFE| | |
| | bt 4 1 i
[N L J
Vhere:

ON specifies that the following characters
are to be underscored.

OFF specifies that the following characters
are not to be underscored.

s is either a single character or a
2-character hexadecimal code represent-
ing a character that is defined for
underscoring (ON) or not underscoring

1. When a 1line is automatically under-
scored, certain characters are left not
underscored. The control words that
cause underscoring are .0S (UNDER-
SCORE), .UC (UNDERSCORE-CAPITALIZE),
and any .Hn (HEAD-LEVEL-n) control word
whose current definition calls for it.
Using the .UD control word, you can
override the defaults and cause any
character to be underscored (ON) or not
underscored (OFF). If you do not give
any options with the control word, but
put ".0D" alone, the default values are
restored.

word does not cause a

2. This control

break.

3. The maximum number of arguments on the
.UD line is ten. If you want to change
more than nine characters, you must do
it with more than one .UD control word.
(ON or OFF plus nine more arguments.)
Bach .UD control word only changes the
characters specified, and leaves the
rest of the characters unchanged.

4., The following characters are not
- underscored by default:

/

 .UP .UPPERCASE

2. The .UP control word does not cause an
automatic break. Single words in a
sentence may be capitalized.

Example
This sentence has
.up one
capitalized word.

results in

This
word.

sentence has ONE capitalized

This control word automatically underscores
an input line. The format of this control

vord 1is:

v L]
I <08 (| text |
1 L d
where:

text is the line. to be underscored.

128 SCRIPT/370 Version 3 User's Guide

Usage Notes

1. It is a good idea not to have too much
data underscored when the output is in
typevriter format. In this format,
each underscored character 1is actually
three characters: underscore, back-
space, character. Thus, the output
line may be too long if there are many
underscored characters in it.

2. The UNDERSCORE control word does - not
cause a break. Single words in a
sentence may be underscored.

3. Special characters, such as punctuation
marks, blanks, and tabs are not usually
underscored. If you need to underscore
these characters, or if you want to
suppress underscoring of certain
characters, use the .UD (UNDERSCORE-DE-
FINITION) control word.

Example

This sentence has
.us one
underscored word. -

results in

This sentence has one underscored
word.

Messages

VABNING MESSAGES

Warning messages indicate that some diffi-
culties were encountered during SCRIPT
processing. These difficulties did not
prevent the command from continuing proces-
sing, but it might not yield the desired

results. See "Message Descriptions®" for
the actual warning messages that SCRIPT
issues.

These messages are issued when you have not
supplied the conditions required by SCRIPT
to execute. Error situations ordinarily
cause SCRIPT processing to terminate, but
if the CONTINUE option of the SCRIPT
corxmand is in effect, processing continues
after the error message is issued.
However, the erroneous condition may have
caused irremedial degradation that will
later result in an error condition too
severe to allow continuation. See "Message

130 SCRIPT/370 Version 3 User's Guide

Descriptions®" for the actual error messages
that SCRIPT issues.

SEYERE EBROR MESSAGES

These messages are issued when an error
occurs that is too severe for processing to

continue. Processing terminates after the
message is issued, even if the CONTINUE
option is in effect. Some severe error
conditions result from having continued
after an Brror message was issued. See
"Message Descriptions® for the actual

severe error messages that SCRIPT issues.

ERMINAL ERROR MESSAGES

Terminal error messages are issued for very
serious and unexpected errors. See "Mes-
sage Descriptions® for the actual terminal
error messages that SCRIPT issues.

Messages

IKSO10E:

IKs011s:

IKSO012E:

IKSO013E:

IKS014W:

IKSO15E:

IKSO16E:

IKS017s:

IKS018s:

IKSO19W:

IKs020s:

UNDENT>INDENT.

The execution of a .IN, .IL, .UN, or .OF control word would
cause the left margin to move to the left of character position
1.

Return Code = 12

NO READ/WRITE DISK SPACE AVAILABLE FOR OUTPUT OR UTILITY FILE.
SCRIPT must have a read/write A-disk available to write the
special files IKSUT1 (for delayed imbed files) IKSUT2 (for the
table of contents generated by HEAD-LEVEL-n control words), or
for the $filename SCRIPT created when you use the FILE option
of the SCRIPT command. :

Return Code = 40

HEADING MARGIN+HEADING SPACE>TOP MARGIN.

The heading space and the heading margin are part of the top
margin; the top margin must be large enough to accommodate the
other two. See Figure 2 to see the relationship.

Return Code = 12

FOOTING MARGIN+FOOTING SPACE>BOTTOM MARGIN.

The footing space and the footing margin are part of the bottom
margin; the bottom margin must be large enough to accommodate
the other two. See Figure 2 to see the relationship.

Return Code = 12

READ-ONLY SYMBOL MAY KOT BE SET.

An attempt was made to change one of the read-only symbols that
SCRIPT assigns values internally ($CL, $LL, $PL, and so on).
The values represented by these symbols may be changed using
the appropriate control word. Often, there is other processing
that must be performed before the value itself is changed.
Return Code = 4

+.RC MODE WAS ON OR OFF ALREADY.

A .RC n ON was encountered while rewvision code n was already
on, or a .RC n OFF was encountered while revision code n wvas
either already off or stacked by an inner .RC ON. (See .RC)
Return Code = 12 : :

INVALID .RC TERMINATION - NUMBER CURRENTLY ON.

An attempt was made to redefine a revision code character while
that revision code was active (ON).

Return Code = 12

EXCESSIVE OR NEGATIVE SPACE COUNT GENERATED.

SCRIPT has calculated that it should space a negative number of
lines. This shouldn't happen unless the CONRTINUE option has
allowed processing to continue after an illegal page length,
top margin or the like has been set.

Return Code = 40

I/0 ERROR OR DEVICE ERROR.

An error message should have been issued by CMS or CP to
describe the error condition.

Return Code = 100

MESSAGE NOT ASSIGNED.
Return Code = #

CORRECT FORM IS: "SCRIPT FILENAME (OPTIONS)"; TYPE "SCRIPT 7%
FOR MORE INFORMATION.

A filename was not specified in the SCRIPT command.

Return Code = 24

132 SCRIPT/370 Version 3 User's Guide

Messages

" IKSO31E:

UNDEFINED SYMBOL USED AS INDEX OF .SE (SET-SYMBOL) ON LEFT OF
EQUAL SIGN.

A syesbol name of the form sylbol1(8$ynb612) was used in a .SE

- IKS032E:

IKSO033E:

IKSO34E:

IKSO035E:

IKSO036E:

IKS037s:

IKS038E:

(SET-SYMBOL) or .RV (READ-VARIABLE) control word when symbol2
was an undefined symbol nanme.
Return Code = 12

INVALID (NON-DECIMAL) NUMBER USED AS INDEX OF .SE (SET-SYMBOL)
ON LEFT OF EQUAL SIGK.

A symbol name of the form symboli1(n) or symboll(ésymbol2) was
used in a .SE (SET-SYMBOL) or .RV (READ-VARIABLE) control word
when n or the value of symbol2 was not a valid decimal number.
Return Code = 12 ‘

INVALID (NON-DECIMAL) NUMBER ENCOUNTERED IN EXPRESSION ON RIGHT
SIDE OF .SET.

The symbol value given for a .SE (SET-SYMBOL) or .RV (READ-VAR-
IABLE) control word was an arithmetic expression that included
a term that was not a valid decimal number. This error can
result from attempting to set a symbol to a character string
such as FIFTY-FIVE, vhere SCRIPT interprets the hyphen as a
minus sign. In this case, use single quotes around the charac-
ter string (*FIFTY-FIVE').

Return Code = 12

UNDEFINED SYMBOL ENCOUNTERED IN EXPRESSION ON RIGHT SIDE OF
+«SET.

The symbol value given for a .SE (SET-SYMBOL) or .RV (READ-VAR-
IABLE) control word was an arithmetic expression that included
a symbolic term, when the symbol for that term was undefined.
Return Code = 12

A TOKEN LONGER THAN 16 CHARACTERS ENCOUNTERED IN .SET.

A token of more than 16 characters has been encountered in a
.SE (SET-SYMBOL) or .RV (READ-VARIABLE) control word 1line. A
token may not be more than 16 characters unless it is part of a
character string delimited by single quotes. If it is in
quotes (on the right-hand side of the equal sign), the string
may be as long as 255 characters.

Return Code = 12

MORE THAN 10 TOKENS ENCOUNTERED IN .SET. .

A maximum of 10 tokens (symbols, punctuation, numbers) is
allowed in a .SE (SET-SYMBOL) or .RV (READ-VARIABLE) control
word line. For example, the line ".se ALPHA = BETA * 2 - GAMMA
+ 13" has exactly 10 tokens.

Return Code = 12

INFINITE LOOP OCCURRED AS A RESULT OF RECURSIVE .SE (SET-SYM-
BOL) SUBSTITUTION.

Symbol substitution was attempted on an input line where every
time a symbol value was substituted, the value contained
another symbol name. .

Return Code = 12

SUBSTITUTION FOR .SE (SET-SYMBOL) CAUSES LINE TO EXCEED MAXIMUM
LENGTH. _ ,

Symbol substitution was attempted on an input line when substi-
tuting the symbols on the line would make the line longer than
240 characters.

Return Code = 12

134 SCRIPT/370 Version 3 User's Guide

Messages

IKSO47w:

IKSOu48s:

IKS049S:

IKS050s:

IKSO51E:

IKS052W:

IKS053W:

IKSO54E:

IKS055T:

KEBP TERMINATED BECAUSE TOO MANY LINES. .

The maximum number of lines in a keep is the .same. as the number
of text 1lines that can fit :in a current column.. : In general,
this number is the page length minus the top margin minus the
bottom margin. The maximum number of 1lines in a footnote or a

.headnote is 10. If the maximum is exceeded, SCRIPT continues

processing, after ending the keep, footnote, or headnote; but
input lines after this are not part of the keep. Note that the
maxiBsus tuut pas been exceeaea 1S - the number of formatted
output lines, not the number of input lines.
Return Code = § :

LABEL KOT FOUND. L ' e
A GOTO control word was encountered that refers to a nonexis-
tent label. :

Return Code = 12

UNABLE TO ALLOCATE BUFFER SPACE.

There is not enough available storage for processing labels, or
to maintain the save/restore or imbed stack. You may redefine
your virtual storage size using the CP DEFINE STORAGE command.
(See the VYM/370: CP Conmand Reference .for General Users)
Return Code = 104 ,

TOO MANY LABELS - NO ROOM IH BUFFER.)

The label storage table is large enough for about - 120 active
labels. A ... (SET-LABEL) control wvword has been encountered
when the table is already full.

Return Code = 40

DUPLICATE LABEL FOUND.

A ... (SET-LABEL) control word was encountered that spe01f1es a
label name that has already been set for this f11e..

Return Code = 12 ;

MESSAGE NOT ASSIGNED.
Return Code = 4

LABELS NOT ALLOWED DURING TERHINAL INPUT. . : :

A ... (SET-LABEL) or GOTO control word was entered from the
terminal during terminal input mode. In this mode, the termi-
nal keyboard is a simulated input file, except that it is
meaningless to assign labels to the resulting 1nput lines.
Return Code = §

INVALID KEYWORD FOR CONDITION ON .IF.

An .IF control word was encountered and the condition test was
not Tecognized. Conditions such as ‘"eq" and "<=" are recog-
nized. This condition can happen if the first comparand on the
.IF control word is a null symbol because the tokens are then
shifted over. See the .IF control word notes.

Return Code = 12 -

UNABLE TO ALLOCATE LINK STORAGE. .

Link storage is the area SCRIPT uses for formatting the text.
Without this storage area, SCRIPT can do nothing.. Redefine
your virtual storage size with the CP DEFINE STORAGE command.
(See the ¥M/370 CP Command Reference for General Users)

- Return Code = 104

136 SCRIPT/370 Version 3 User's Guide

Installation Procedure

If a file named. SCRIPT HODULvareviously existed on your A-disk, it is

replaced.

To verify the correct installation of SCRIPT, proceed to Step 3.

Issue theICO|lands:

" tape rewind

tape fsf
tape load

You should recéi'g-the message:

LOADING...
IKSGEND
IKSPRT
IKSSEM
IKSSIO
IKSECW
IKSCOL
IKSSYM
IKSINT
IKSBOX
IKSERR
‘IKSEDC
IKSHYP
IKSEND
IKSEZS
IKSEDI
SAMPLE

EXEC
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

- TBXT

TEXT
TEXT
TEXT
TEXT

c1
Al
A1
Al
A1l
Al
Al
Al
A1l
Al
A1l
Al
Al
Al
Al

SCRIPT A1

A1l the files you need to generate the SCRIPT module are now loaded onto

your A-disk.

To generate the SCRIPT module, enter the command:

iksgend

If you want your
capabilities, you ¢

command line.

If

you do not enter a

it needs.

SCRIPT module to include EasySCRIPT or hyphenation
an enter the keywords WHYPM, WEZSY, or "ALL" on the
you don't vant either, enter the keyword "NONE". If
ny keywords, IKSGEND prompts you for the information

When the IKSGEND EXEC begins execution, it first checks to see if a
file named SCRIPT MODULE A2 already exists. If it does, it issues the

message:

' SCRIPT MODULR A2' EXISTS

Otherwise, the message

' SCRIPT MODULE A2' DOBS NOT EXIST

This check ensures

destroyed.

that an existing SCRIPT module is not inadvertently

IKSGEND also checks for the existence of a file named SCRIPT MODOLD
A1. It issues one of the following messages: - ‘ -

140 SCRIPT/370 Version 3 User's Guide

Installation Procedure

Error Conditions

If any errors occur during the loading process, the following messages
are issued: : : ST 2.

***x JKSGEND LOAD ERROR. v a
*%% MAKE SURE ALL SCRIPT TEXT FILES ARE AVAILABLE.

You should check that all the files on the SCRIPT distribution tape were

properly 1loaded onto .a read/write disk before the IKSGEND EXEC was
invoked. Then reexecute the IKSGEND EXRC.

Generate the HYPEDIT Module
If you chose to generate your SCRIPT module with hyphenation, you should
now generate the HYPEDIT module. HYPRDIT is a special editor which must
be used to create the hyphenation exception dictionary. To generate
HYPEDIT, issue the commands

load iksedi
gennod hypedit

STEP 3. VERIFY CORRECT INSTALLATION OF THE SCRIPT MODULE

You should now execute the saaple problem supplied on the distribution
tape to ensure that the SCRIPT module is correctly functioning. This
file is named SAMPLE SCRIPT.

If you followed the instructions in Step 20 of the installation
procedure, you must now issue the command:
tape load sample script
to load the SAMPLE SCRIPT file onto your A-disk.
If you followed the instructions in Step 2B of the installation
procedure, the SAMPLE SCRIPT has already been loaded. '

,To” execute the sample problem with the results appearing on the
terminal, issue the command:

script sample (twopass
You should receive the SCRIPT version identification message:
SCRIPT/370 VERSION 3, LEVEL n - mm/dd/yy
If you are using a>typeutiter terminal, you should also receive the
message:
IKS101R: ADJUST PAPER; THEN PRESS RETURN:
The sample problem asks you some gquestions Lefore beginning actual

output, so you may want to wait to insert fresh paper, if you wish.

If you want the output from the sample problem to be output on the
system printer, issue the SCRIPT command as follows: '

142 SCRIPT/370 Version 3 User's Guide

Sample Problem Output

SAMPLE PROBLEM FOR SCRIPT/370 VERSION 3

144 SCRIPT/370:-Version 3 .User's Guide

Sample Problem Output

146

PLANNING TO USE SCRIPT

SCRIPT is a simple text processing program, but it is also a
text processing language. While wmany users only take
advantage of a small number of the SCRIPT language
processing capabilities, you may want to consider using some
of the techniques suggested below, as you plan for the
growth and development of a SCRIPT shop.?

STANDARDIZED FORMAIS

In general, vhile you may be using SCRIPT for a variety of
documentation purposes, you will probably settle on a small
number of basic formats. There are two basic ways that you
can make the standardization process easier:

1. Create setup files, with the control words necessary to
provide for particular formats. Then use the IMBED
control word (.IM) to imbed this file in each document
that you produce. A sample setup file to describe
multiple-column formatting might 1look like the
following:

«pl 84

.bm 8;.tm 8

.CW

.se 1col='.cd 1;.cl 89¢

.Se 2col='.cd 1 0 46;.c1 43¢
.11 89

«CW 3

2. Define high-level GML tags that describe formatting
structures. These tags may be defined imn symbol
libraries (filetypes of MACLIB) whose use is requested
by the SCRIPT command option LIB. For example, a
memnber named NUM may be defined in the library OURLIB
MACLIB whose contents are:

$«SK 2;.0F 5p
To use the tag &num in a SCRIPT file, you must invoke

1These techniques are not formally recommended or tested by
IBM, but represent practical considerations based on the
experiences of a variety of users.

Sample Problem 3

SCRIPT/370 Version 3 User's Guide

Sample Probleam Output

148

THEN BEGIN CREATING/EDITING THE FILE -

SEND

GREAD VARS &FN

EDIT &FN SCRIPT

-LOOP &TYPE ENTER FILENAME OF NEXT FILE:

STYPE PRESS NULL LINE TO QUIT EDITING SBSSION

SREAD VARS &FN

EIF .S5FN BQ . GEXIT

EDIT 6FN SCRIPT

‘660TO0 -LOOP

As users become more comfortable with the system, you can

begin to introduce newer concepts. .The SCRIPT/370 Version 3 ..
User!'s Guide is organized along these lines: -if you “follow. .
the presentation of topics as they are presented (according,.
to your specific needs), you may find it easier.. - .

PILE AND NINIDISK BEQUIBEMENTS

Your data base may be arranged on a minidisk = basis: files
pertaining to a particular document might be on a single
minidisk, files belonging to another document on another
minidisk, and so on. BRach SCRIPT user might or =might not
have a personal ID to use for private files (or practicing),v
and to use when many people are cooperating on working on
the same document.

Oftentimes, as in the case of setup files that describe
standards, many users will need access to the same files.
This can be most easily accomplished by placing all common
files :on a single wminidisk, - and providing all other
minidisks with LINK directory statements so that these files
are automatically accessed (with the help of an ACCESS
connand in: the PROPILB EXEC) . R .

In cases uhere ‘a large docunent uses files fron several/
other minidisks, you may find it advisable to place the CP
and CMS commands necessary to link to and access these disks
directly-in the SCRIPT file, using the .SY (SYSTEM-COMMAND)
control word. After imbedding the particular file, use.the
CMS RELEASE command to. release the - file directorles froa
storage (CMS may. need this storage. later).

MAINTAINING SCRIPT XDICT

If you are using SCRIPT's automatic 'hyphénation
capabilities, then one file that should be placed on the
common disk 1is the SCRIPT XDICT, the exception .dictionary

Sample Problem -5

SCRIPT/370 Version 3. User's Guide

Sample Problem Input

.¥ .et /Sample Problem Output///;.ot ///Saeple Problem Output/
.Sy set blip off

.if x&check = xtwo .go start

.ty Welcome to the Sample Problem for SCRIPT/370, Version 3

.ty Is your SCRIPT module generated with EasySCRIPT? (Respond yes or no):

«LV 2

.ty Is your SCRIPT module generated with Hyphenation? (Respond yes or no):

<V hy
.ty Okay, now we're going to eject a page and begin output...

.ty The CMS BLIP function has been turned off to protect your output...

«s.Start
.pn off
.if SYSOUT eq PRINT .tt ////
.pa 1
.Sp 25
.dm centerit /.ce/.up &%/
.BS on :
.centerit Sample Problem for SCRIPT/370 Version 3
.pa _
-pn on;.pn roman ;
.if SYSOUT eq PRINT .ob ///Contents &/
.1f SYSOUT eq PRINT .eb $¢ SCRIPT/370 Version 3$$$
.tc
.ms Off
.pn arabic :
.if SYSOUT eq TERM .tt /Sample Problem//Page &/
-pa
.h1 Planning to Use SCRIPT
.if SYSQUT eq PRINT .ob ///Sample Problem &/
SCRIPT is a simple text processing program, but it is also
a text processing language.
While many users only take advantage of a small number of the
SCRIPT language processing capabilities, you may want to
consider using some of the techniques suggested below,
as you plan for the growth and development of a SCRIPT
.fn on
.if SYSOUT eq PRINT .tr * b1
.of 1
*These techniques are not formally recommended or tested by IBH,
but represent practical considerations based on the experiences
of a variety of users.
.of 0 ‘
<fn off
shop.*
.bri.tr
.h2 Standardized Pormats
In general, while you may be using SCRIPT for a variety of
documentation purposes, you will probably settle on a small number
of basic formats.
There are two basic ways that you can make the standardization
process easier:
.sk3;.tb 5;.0f 5
1. Create setup files, with the control words necessary to
provide for particular formats.

150 SCRIPT/370 Version 3 User's Guide

Sample Problem Input

PAGE 3

of training in the use of the CMS Editor, CHMS command language,
and so on.

.pp You may bypass the problems of teaching CMS and CP comnands imnedlately
by providing new users with EXEC procedures that call the editor
recursively, spool the printer, and so on.

Here's an example of an EXEC named EDIT:

.sk;.in +5;.fo off;.su off

&CONTROL OFF

&IF EINDEX EQ 0 &GOTO -DO

&IF SINDEX = 1 EDIT &1 SCRIPT

&IF EINDEX GT 1 EDIT &1 &2 &3 &4 &5 €6 &7

SEXIT

-DO &BEGTYPE

ENTER THE FILENAME (1 TO 8 CHARACTERS):

THEN BEGIN CREATING/EDITING THE FILE

EEND

&READ VARS &FN

EDIT &FN SCRIPT .

-LOOP &§TYPE ENTER FILENAHE OF NEXT FILE:

E§TYPE PRESS NULL LINE TO QUIT EDITING SESSION

&READ VARS &FN '

&IF .EFN EQ . SEXIT

EDIT &FN SCRIPT

£GOTO -LOOP

.in -5;.f0 onj;.su on

-Pp As users become more comfortable with the system, you can
begin to introduce newer concepts.

The

«uS SCRIPT/370 Version 3 User's Guide

is organized along these lines:

if you follow the presentation of topics as they are presented
(according to your specific needs), you may find it easier.

.h2 File and Minidisk Requirements A e N

Your data base may be arranged on a minidisk tasis: files
pertaining to a particular document might be on a 51ngle minidisk,
files belonging to another document on another minidisk, and so on.
Each SCRIPT user might or might not have a personal ID to use for
private files (or practicing), and to use when many people are
cooperating on worklng on the same document.

.pp Oftentimes, as in the case of setup files that describe standards,,
many users will need access to the same files.~

This can be most easily accomplished by placing all common files
on a single minidisk, and providing all other minidisks with LINK
directory statements so that these files are automatically accessed
(with the help of an ACCESS command in the PROFILE EXEC).

.Pp In cases where a large document uses files from

several other minidisks, you may find it advisable to

place the CP and CMS commands necessary to link to and access these
disks directly in the SCRIPT file, using the .SY (SYSTEM~-COMMAND)
control word.

After imbedding the particular file, use the CHMS BELEASE conland
to release the file directories from storage (CMS may need this
storage later). : .
.if x&hy ne xyes .go nohy

152 SCRIPT/370 Version 3 User's Guide .

r —
{Control Word
L

L L v v v L]

| Operand Pormat | Function |{Page |Break |Default Value|
t + + { + t |
|l.co (CONCA- | ON|OFPF {Causes output lines to be | 84 | Yes | ON |
| TENATE- | | formed by concatenating | | } |
i MODE) | | input lines. | | | I
BT	B EECE D B			
.cp (CONDI-	n	Causes a page eject if	84	No L
TIONAL-		fewer than n lines remain		{
PAGE~ I { on the page.				
! BJECT)			(1.	
I	o '	. ! D A		
l].cs (CONDI-	n ON	OFF	Allows conditional inclu-	85
[} TIONAL-	INCLUDE	IGNORE	sion of input in the	T B
{ SECTION)		formatted output.		[1
	R Lo :			[
l.cw (CONTROL-	s	Specifies the chapacter	86	No }
WORD-		used for separation of	A	{
{ SEPARATOR)		control words on a single		{ 1
		input line.		
[{			{ 1	
{.dh (DEFINE-	n options	Changes the characteris-	87	No
HEAD-	:	tics associated with the	[
1 LEVEL)		heading levels.		
[(((1			
.di (DELAY-	n	ON	OFF	line
IMBED)		portion of the input file		
		until the next page eject)
		occurs.	{	
		: o ‘		
.dm (DEFINE- .	name /line...	Creates a macro definition	88	No
MACRO) .	name x { using SCRIPT control	i		
{ name OFF	words, text lines, and		{	
	} special symbols.			A
	[: :	A	1	
.ds (DOUBLE-	.	Specifies that subsequent	89	Yes
SPACE- [formatted output will be			
MODE) 4	double spaced.			{
: 1 ,	:			
PAGE~-		line for the kottom of]		
BOTTOM-		the current page, if it		{ I
TITLE)		is even-numbered, and allj		
{		subsequent even-numbered		N
		pages. -	(I (
l 8	- , :	{		
.ef (END-OF-	CLOSE {Simulates an end-of-file	90	No	
1 FILE)	I condition. :			
	o I	(
.ep (EVEN-	ON	OFF	Causes one or two page	91
1 PAGE-		ejects such that the next	i	A
1 EJECT)		page is even-numbered; or		
	.	prints text only on even-	e	
		numbered pages. ‘		
	S , - l i	i		
{.et (EVEN-	l D /eee/oea/eos/	Specifies a title line for	92	No
1 PAGE-TOP-	.	the top of each subse-		
1 TITLE)		quent even-numbered page.		
-	:			
l.e2	ON lastDevey	Invokes the EBasySCRIPT GML	92	No
(EASYSCRIPT)	OFF	tags to provide auto-		
	tagval line	matic fornatt1ng~9f		
i 1 | SCRIPT files. | | | |
[N i L L L J

Figure 8. SCRIPT COntrol Hord Sumnary (Part 2 of. 7)

156 SCRIPT/370 Version 3 User's Guide

Control Word i

Operand Format

Function

Page

Break ;Default Value

—

.il (INDENT-
LINE)

L]
o
-

(IMBED)

.
e
-

(INDENT)

.
[N
=

(JUSTIFY-
MODE)

.
»
Ly -]

(KEEP)

.
[
%

(LITERAL)

L)
ot
[

(LINRE-
LENGTH)

.
[
0

(LINE-
SPACING)

.
-
Q

(MULTI-
COLUMN-
MODE)

(MACRO-
SUBSTI-
TUTION)

(ODD-
PAGE-
BOTTOM-
TITLE)

L]
o
o

L]
o
h

|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
{
(
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
(
lI
(OFFSET) |
(
|

o e S e S G —— —— m T — ——— S G T — T —— —— T ——— S —— —— — — —— o— —— T —— — O —— S ow— - —— a—— G — T ——— -~

A

nj+n{-n

filename tokens

ON|OFF

ON|OFF
FLOAT|DELAY

njON|OFF|line

nj+n|-n
n
ON|OFF

n /o-o/o.o/.-o/

n|+nj-n

e -

.{Indents only the next line

| the specified number of
| characters.

Ll
|
d
L]
|
i
:
|Inserts a file of text {
| and/or control words into|
{ the one being processed |
| by the SCRIPT command. |
|
§
|
(
|
|
|
|
|

|

|Specifies the number of

| spaces subsequent text is
| to be indented.

|
|Causes right justifica-
| tion of output.

| ‘ :
|{Ensures that formatted

| text lines remain in the |
| same column when printed.|

| .

|Insures that input lines
| are read as text lines b
| SCRIPT.

|

|{Specifies the number of
| characters, including
| blanks, in each subse-
| quent line. .

|

| Specifies the number of
| blank lines to be insert-|
| ed after each subsequent |
| output text line. |
{ . : |
|Causes SCRIPT to revert to]
| to formatting in multiple}
| columns after single-

| column processing.

I ’ .
|Causes SCRIPT to begin

| making automatic macro
| calls, or cancels macro
| calls.

|

|

| Specifies a title line for|
{ the bottom of the current|
| page, if it is odd num- |
| bered, and all subsequent|
| odd-numbered pages.

|

|Provides a technique for
| indenting all but the

| first line of a section.

|
|
Yl
|
1
|
{
|
|
|
|

102

102

103

104

104

105

106

106

106

107.

107

108

e e o o . T — — — —— —— — —— —— — — ——— — T — - — T o— — — - — . — O — T —— — — " —— - —— ——— T —————— —— — s "=

Yes 0

No

Yes

Yes ON

No

No

60

Yes

Yes

Yes

No

No

Yes

(e e o . ———— —— — —— ———_—— ———— — — — g ——— — ———— —— ——— — ——— ——————————— ——]

Figure 8. SCRIPT Control Word Summary (Part U4 of 7)

158 SCRIPT/370 Version 3 User's Guide

e o avm o e ST . R aee . TR e G e S e S G G G T G S wn CUT Gme NP mme TAE mam G e T Gee TEP Gwn S G S G T mm G e G e — G - o o -

|COntrol Word" I Operand Pornat | anction {page |Break |Defau1t Valuer
¢ + s - -+ | g { 1
|.re (RESTORE-| B IRestores status:of SCRIPT | 115 | No | |
| STATUS) | | variables' frow-a push { | | [}
} | - | down- stack created ‘by 1 i | |
| | 28 savz-snrus. e i | | I
1 | : | : | | | I
{.ri (RIGHT- | n|ON|OFF|line |Causes 11nes to be prlntedl 116 | Yes | 1 |
| ADJUST | e © | “flush with the right- B R B |)
: : e nargin. : : | I

: : ‘ | |
{.rv (READ- | name : " |Allows you to enter a: { 116 | No i 3
| VARIABLE) | o o | value for a symbol name | 1 ' | |
| | | fron the terlxnaI.’ ~ { | | |
(I [‘ { | | I
l.sa (SAVE- | |Saves the’ status of SCRIPT{ 117 | No | |
| STATUS) | | variables. | | | I
| S | I | - | I
|.sc (SINGLE- | " jCauses SCRIPT to ‘revert to] 117 | Yes | |
i COLUMN- | | formatting text into a | | | |
| MODE) | | 51ng1e coluln. | | I 1
I . i | : 1 - o o
|.se (SET- | symbol=value | Defines and assigns values| 118 | No- " | |
{ SYMBOL) | & | to symbolic names, inter-| . ¥ {
| { OFF | facing with the macro I | |
| ¥ ' | capahillties of SCRIPT. | | I |
| | ‘ i ’I | | | -t
.sk (SKIP- i n A c jspecifies the nuuber of	119	Yes	1
LINES)	; { blank lines to insert		[
§	before the next line, {	(
{		unless it is at the top	{
&	{ of a- coluln. Lo l]	
	: I o		(¥
l.sp (SPACE-	n A c	Specifies the numbdber of	119
{ LINES)	{ blank lines to be inser-		
:	O ted before the next out-		
I	'} put 11ne. ‘		
3			
J.ss (SINGLE-		Specifies that subseguent	120
] SPACE- (“-	formatted output will be	
MODE)		single spaced. i { {	
	’ o	.	
.su (SUBSTI-	n	ON{OPF	line jControls whether SCRIPT
I TUTE- J	symbol names with their		
SYMBOL)		previously-assigned	[
		values.	
	' o o L	IR	A
j.sy (SYSTEM-	commandline "	BExecutes ‘the specified	121 { No
COMMAND)	: { CP or CMS command during		R
§	SCRIPT processing.		
I i		{ (_	
{.tb (TAB-	nnnoDNeos ‘	Specifies the logical	121 { Yes
SETTING)	£/n £/n £/n...	tabs used when the docu-	{ (S L l
		ment is printed or typed	
[}	by SCRIPT/370. '		
o I B L I I I o			
-tc (TABLE-	n name	Imbeds the IKSUT2 file, '	122
i OF~-		which consists of table	
CONTENTS)		entries made with the	
		«.PT control word and the	
		heading control words.	{
L. A 4L L A 4 [}

Figure 8. SCRIPT Control Word Summary (Part 6 of 7)

160 SCRIPT/370 Version 3 User's Guide

CONTROL WORD COMPATIBILITY

¥
|Control

L L}

| Changes l
| Word | |
t + - : . - - 2|
| «AP {Tokens passed to an appended file (61 through §9) are reset by macro calls.}|
| {60 contains the number of tokens passed. |
| | ~ , o
| +BC |Nev operands ON and OFF restore and cancel column balancing. E
| (. |
| .BM |Now uses the default value, 6, if no number is specified. The bottom margin|
| jcan now also be specified as a positive or negative increment to the current]
l -jvalue. C . _ o |
| | |
| <BX |BOX (New/3) i
| | » |
| -CD | You can now define up to 9 displacements for columns, even if you specify only|
| {1 column at this time. The remaining displacements are used when you later|
| {increase the number of columns with a .CD n. [
| | - |
| .CE | Now accepts a data line as a parameter. I
| | |
{ .CL | Now uses the default. value, 0, if no number is specified. The column length|
[{can now also be specified as a positive or negative increment to the current|
| jvalue. {
	.
.CO	New operands, ON and OFF, restore and cancel concatenation.
{ .DH	DEFINE-HEAD-LEVEL (New/2)
.DM	DEFINE-MACRO (New/3) 1
	' /
-EF {New operand, CLOSE, causes SCRIPT to. close the file, so that if it is imbedded	
{again, SCRIPT begins reading at the top of the file, not at the line following	
	the .EF. .
<EP	The ON operand allows you to specify printing only on even-numbered pages.
{The OFF operand restores printing on all output pages.	
-EZ	EASYSCRIPT (New/3)
o ‘ '	
-FI	Obsolete. Use .FO.
	I
.FO	{New operands, ON and OFF, allow you to restore and cancel formatting, includ-
	ing concatenation and justification.
.FM	RBow uses the default value, 2, if no number is specified. The footing margin
{can now also be specified as a positive or negative increment to the current	
{value.	
	(
FN	FOOTNOTE (Rew/2)
{	
«.FS	Now uses the default value, 1, if no number is specified. The footing space
jcan now also be specified as a positive or negative increment to the current	
	value.
l	‘
FT	Obsolete. Use bottom title (.BT, .EB, .OB) control words.
{	
{ .GO	GOTO (New/2) (
-.HE jObsolete. Use top title (.TT, .ET, .0T) control words.	
L A ']

Figure 9. SCRIPT Control Word Compatibility (Part 1 of 3)

164 SCRIPT/370 Version 3 User's Guide

L L{

|Control | i
| Word i Changes l
I + i
l I |
| PN |(Has new operands: (1) FRAC and NORM, to initiate fractional page numbering and|
| |restore normal numbering (2) PREF, to specify a character string prefix forj
{ |all page numbers. |
| | I (
| PP |PARAGRAPH-START (New/2) [
| | i
| .PT {PUT~-TABLE-OF~-CONTENTS (New/3) |
| | : |
| Q0 |QUICK-QUIT (New/2) |
I | |
| <RI {Now accepts a data line as a parameter. i
<RV	READ-VARIABLE (New/2)
{ .SC	SINGLE-COLUMN-MODE (New/2)
.SE	The OFF operand allows you to cancel a symbol value. You can now use. twol
	s1ngle quote marks to achieve a single quote within a symbol value. {
eee ISBT LABEL (Rew/2)	
{	
«SK	SKIP-LINES (New/2)
(;
.SP	New operands, A (for absolute spacing) and C (for conditional spacing).
	:
.SU	The initial value has been changed to ON.
-SY	SYSTEM-COMMANRD (New/2)
l i	
.IC	TABLE-OF-CONTERTS (New/2)
	"
-.TH	Now uses the default value, 6, if no number is specified. The top margin can)
Inow also be specified as a positive or negative increment to the «current	
	value.
(:	
«IT	No change; however, you can now dget a single top title to print on page 1.
.UC	UNDERSCORE-CAPITALIZE (New/2)
I	
{ .UD	UNDERSCORE-DEFINITION (New/2)
-UN	An undent can now also be specified as a positive or negative increment to the
	current value.
i	
.UP	UPPERCASE (New/2) [
l	
.US	UNDERSCORE (New/2)
L A 3

Figure 9. SCRIPT Control Word Compatibility (Part 3 of 3)

166 SCRIPT/370 Version 3 User's Guide

«CD control word 81
using 30
«CE control iword 82
using 20
CENTER control word (see .CE control word)
CENTER option of SCRIPT command 70
centering
SCRIPT output 70
text 20 ‘
changing
format of page number in top and bottom
titles 11
head level definitions 34
SCRIPT default formatting 15
top and bottom margins 24
top and bottom titles 26
width of output lines 24
character translation done by SCRIPT 41
characters
for translation 124
valid in set symbols 118
.CL control word 83
using 30
closing files 90
.CM control word 83
using 23
CMS commands, executing during SCRIPT
processing 57
CMS commands valid with .SY control word
121 :
«CO control word 84
using 16
column definitions
effect on column balancing 31
using to specify displacements of output
30 ‘

column ejects 31
conditional 43
control words that cause 81
column length
relationship to line length 30
specifying 30
column one, entering literal periods 22
COLUMN-BEGIN control uord (see .CB control
word)
COLUMN-DEFINITION control word
control word) .
COLUMN-LENGTH control word (see .CL
control word)
columns, ineligible for balancing 32
combining SCRIPT files 37
COMMENT control word (see .CM control
wvord) :
comments, in SCRIPT files 23
compatibility
of SCRIPT/370 with earlier versions
command options 167
control words 164
compound symbols 48
CONCATENRATE-MODE control word
control word) -
concatenation 13
suspending and restoring 16
conditional
column ejects 43
page ejects 43
SCRIPT processing, with .IF and .Go 52
sections 85

(see .CD

(see .CO

170 SCRIPT/370 Version 3 User's Guide

skips 119
spaces 14
spacing for artwork or boxes 50
translation of output characters ' 42
CORDITIONAL-COLUMN-BEGIN control word (see
«CC control word)
CONDITIONAL-PAGE-EJECT control word (see
.CP control word)
CONDITIONAL-SECTION control word
control word)
CONTINUE option of SCRIPT command 70
control word separator 22
changing to define symbol names 52
control words
conpatlbillty with earlier versions
164
defaults and initial settings 75
entering more than one on a line 22
examples 10
for multiple column forlattlng 30
how to specify 10
not alloved in keeps °~ 104
recognizing in the middle of a line 53
summary 155
tips for entering 21
values saved by .SA control word 117
when to use 1"
CONTROL-WORD-SEPARATOR control word
«CW control word) v
CP commands, executing during SCRIPT
processing 57
.CP control word 84
using 43
cross-references 47
in BasySCRIPT files 63
«CS control word 85
example with .EF 91
how handled:- in unformatted output - 73
«CW control word 86
using 22
for defining symbol names to control
~word values 52

(see .Cs

(see

D
date and time, printing in a SCRIPT file
49
debugging SCRIPT 71
default
control word settings, definition 75
formatting 13 -
overriding 15
head level characteristics 33
changing 34
used by EasySCRIPT 62
page layout used by SCRIPT 25
paper size assumed by SCRIPT 24
tab settings used by SCRIPT 19
DEFINE-HEAD-LEVEL control word (see .DH
control word) :
DEFINE-MACRO control vord
word)
defining
characters to underscore - 126
multiple columns 81
delayed imbeds 38
delayed keeps 44

(see .DM control

H .
head levels 33
default- characteristics 33
summary 96
HEADING-MARGIN control word
control word)
headings, printing at the top of every
page, headnotes 45
HEADING-SPACE control word (gee .HS
control word)
HEAD-LEVEL-n control word

(see .HM

(see .Hn control

word) .
HEADNOTE control word (see .HN control
word)

headnotes 45
example 99
rules 98
hints, for entering SCRIPT control words
21
.HM control word 97
using 27
«Hn control word 96

using 33
«HN control word 98
using 45

.HS control word 98
using 29
.HW control word 99
using 66
«HY control word 99
using 66
HYPEDIT command 67 - ’
installing during SCRIPT generation
U2
HYPHENATE control word
word)
HYPHENATE-WORD control word
control word)
hyphenation 66
of single words 66
values, how to set 66
hyphens, used for drawing lines 42

(see .HY control

(see .HW

I
.IF control word 100
used for conditional tramslation of
output characters: 42
using with .GO control word 52
IKSGEND EXEC procedure 140
IKSUT1 SCRIPT 38
IKSUT2 SCRIPT 33
description of entries 35
«IL control word 102
using 17
illustrations
drawing boxes 42
numbering 51
.IM control word 102
how handled in unformatted output 73
using 37
IMBED control word
imbeds 37
automatic imbed of PROFILB SCRIPT 40
delayed 38
.IN control word 103
using 16

(see .Iu control word)

172 SCRIPT/370 Version 3 User's Guide

INDENT control word
indenting 16
a single line 17 ;
all but the next output line 17
and offsetting text 18 .
INDENT-LINE control word (see .IL control
vord)
indexes, creating with array sylbols LY}
initial settings, for SCRIPT control words
75
input lines, entering from terminal 122
installation of SCRIPT 139
verifying 142 :
introduction, to SCRIPT 9
invoking, SCRIPT 10

(see .IN control word)

Jd
«.JU control word 104
using 16
Justification 13
suspending and restoring 16
JUSTIFY-MODE control word (see .JU control
vord)

K
KEEP control word (see .KP control word)
keeping text together 43
keeps
delayed 44
effect on coluan balancing 32
floating 43
placement of set symbols in 118
regular 43
rules 104
«KP control word (see also keeps)
«KP control word 104
effect on column halanc1nq 32
using a4

L
L' function 50
labels in a SCRIPT file, rules 76
length, of symbol, testing 50
levels, heading (see head levels)
LI control word 105

using 22
LIB option of SCRIPT command 1

using 54
line length

changing 24

relationship to column length 30
LINE-LENGTH control word (see .LL control
word)
LINE-SPACING control word
word)
listing, SCRIPT output without formatting
73
lists .
formatting in multiple columns 31
formatting with EasySCRIPT® 63
formatting with offsets 17
using tabs to create 20

(seée .LS control

PAGE-NUMBERING-MODE control word
control word)
PAGE-NUMBER-SYMBOL control vord
control word)
pages, printing specific pages during
‘SCRIPT processing 72
paper, sizing SCRIPT output for 24
paragraphs
causing breaks 13
creatxng with the .IL control word 17
in BasySCRIPT 63 ;
with .PP control word 112
with a SCRIPT macro 58
PARAGRAPH-START control word (see .PP
control word)
parameters, for control words 10
period
entering in coluamn 1 22 i
SCRIPT putting extra blank after 21
used to terminate symbol names 47
periods, identify control words with 10
«PL control word 110
using 24
PN control word m
using 28
.PP control word 112
causing breaks 13
prefixes, specifying for page numbering
28
PRINT option of SCRIPT command 72
effect on FILE option 70
printing
current date and time in SCRIPT output
49
only on even-numbered pages 91
only on odd-numbered pages 108
SCRIPT output on a printer that does not
have lowercase characters 73
specific pages of SCRIPT output 72
table of contents 35
PROFILE SCRIPT 40
suppressing automatic imbed of 71
prompting messages
issued by SCRIPT command, suppressing
71
issuing with .TY control word 125
«PS control word 12
using 27
+PT control word 113
using 35
PUT-TABLE-OF-CONTENTS control word
«PT control word)
putting lines in the table of contents
113

(see .PN

(see .PS

(see

Q
.00 control word 113
using 39
when entering terminal input 56
«QU control word 114 :
using 39
vhen entering terminal input 56
QUICK-QUIT control word (see .QQ comtrol
word) '
QUIET option of SCRIPT command 73
QUIT control word (see .QU control vord)

174 SCRIPT/370 Version 3 User's Guide

R . .
«RC control word 114
using 45
«RD control word 115
using 56
-RE control word 115
using 38
reading lines at the terminal 115

READ-TERMINAL control word (see .RD
control word)
READ-VARIABLE control word (see .RV

control word)
record format, of SCRIPT files 69
response messages, meahing 129

RESTORE-STATUS control word (see .RE
control word) '
restrictions
control words that must appear in coluan
1 86 '

on using .PT control word 35
return codes
from SCRIPT command, meanings 129
from system command, testing 50
revision codes 45
rules 114
REVISION-CODE control word
control word)
<RI control word 116
using 20
RIGHT-ADJUST control word
word)
right-adjusting, output lines 20
roman numerals for page numbering 28
running heads and feet (see top and bottom

(see .BC

(see .RI control

titles)

<RV control word 116
using 56

S

«SA control word 117
using 38
sample problenm 144

SAVE-STATUS control word (see .SA control

word)

+«SC control worad 117
using 31

SCRIPT

command 10
examples 1"
options 69
control word values, reserved symbols
for 49
control vords 10
suamary 155
error messages 129
message descriptions 131
features 9
filetype 69
invoking 10
macros 58
optional features 11
output
centering on paper 70
controlling 70

TERM option of SCRIPT command 72
terminal, error messages, meaning ' 130
TERMINAL-INPUT control word (see .TE
control word) . :
terminating, SCRIPT processing 39 :
text, entering in column 1 for SCRIPT input
21
text processing prograls 9
time and date, prlnting in a SCRIPT file
49
titles, for the top and bottom of every
output page 26
.TM control word 123
using 24
tokens
used by .AP control word 77
used by .IM control word 102
used by SCRIPT macros 88
top and bottor titles
canceling 26
how to specify 26
multiple 28
specifying page number in 27
top titles 26
even pages 92
how to get on page one = 27
odd pages 109 .
placement of 97
spaces for 98

TOP-MARGIN control word (see .TM control -

word) .
TOP-TITLE control word (see .TT control
word) :

+«TR control vord 124)
necessity for using .BR before or after
78
using 41
translate table 124
- TRANSLATE~CHARACTER control word
- control word)
translating
conditionally with the .IF control word
42
lowercase characters to uppercase for
output 73
special characters in SCRIPT 41
truncating, SCRIPT command options 70
«TT control word 125 :
using 26
TWOPASS option of SCRIPT command 7w
vhen to use 35 ~
«TY control word 125
TYPE-ON-TERMINAL control word
control word)
typewriter terminals, behavior of tabs 19
typing, lines at the terminal 125

(see .TR

(see .TY

176 SCRIPT/370 Version 3 User's Guide

1) e
.UC control word 126
using 21 : k
.UD control word 126
«UN control word 127
using 17 Lo
UNDERT control word (see .UN control word)
UNDBRSCORE control word (see .US“control
word) : '
UNDERSCORE-CAPITALIZE control.word ' (see
.UC control word) .) R
UNDERSCORE-DEFINITION control word (see
.UD control word) o
underscoring
first character of input 11ne for
proofreading 71
output lines 21
and capitalizing 21 : o
UNFORMAT option of SCRIPT command 73
how SCRIPT handles the .IM'and AP
control words 38 :
unformatted output 73
«UP control word 127
using © 21
UPCASE option of SCRIPT command 73
uppercase characters
entering control words in 10
letting SCRIPT capitalize 21
UPPERCASE control word (see .UP control
word) i o ‘
.US control uord 128
using 21 :
uses, for SCRIPT 9

v
verifying correct installation of SCRIPT
142
version identification of SCRIPT 10
suppressing 73

]
varning messages, meaning 130

X S :
XDICT filetype, used by the hyphenator 67

SH20-1857-0

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International)

0-/S81-0ZHS "V'S'N Ut palulld 3pIng s,185M) g UOISIBA 0LE/LdIHOS

SH20-1857-0

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts, ,
programmers, and operators of IBM systems. Your comments on the other side of this o
form will be carefully reviewed by the persons responsible for writing and publishing

this material. All comments and suggestions become the property of IBM.

Fold Fold
First Class
Permit 40
Armonk
New York}
L]
|
Business Reply Mail |
No postage stamp necessay if mailed in the U.S.A. I—
I
]
Postage will be paid by: I
T
International Business Machines Corporation I—
1133 Westchester Avenue ——
White Plains, New York 10604
lains, New Y 6 —

Att: Technical Publications/Industry — Dept. 825

..

Fold Fold

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(International) .

0-LG8L-0ZHS °V'S'N Ul palulld 8pIND s;1asny ¢ UOISIOA 0LE/LdIHIS

