
Systems

GC24-5140-0
File No. 8370-30

DOSjVSE
Macro Reference

--..- ------ ------- -"--- -.. ---- - - -----_ .. -----_. -

Preface

This publication contains quick reference informa­
tion on the data management and system control
macros for the experienced programmer and systems
support personnel. For the most part, restrictions
and programming details have been omitted in order
to provide rapid access to the information in this
pub~~~ation. If the information included herein is
not sufficient for your purposes, refer to the books in
the following publications list.

DOS/VSE Data Management Concepts, GC24-5138

DOS/VSE System Management Guide, GC33-5371

OS/VS - DOS/VSE - VM/370Assembler
Language, GC33-4010

Introduction to DOS/ VSE, GC33-5370

DOS/VSE System Control Statements, GC33-5376

DOS/VSE Serviceability Aids and Debugging
Procedures, GC33-5380

This publication is divided into five chapters. The
first chapter contains a list of the macros described
later in the book showing their formats and listing
the operands permitted for each. The list also con­
tains a succinct description of each macro's function
and the number of the page where the detailed de-

First Edition (February 1979)

scription of the macro may be found. The macros
are listed in alphabetical order within the chapter,
which serves as an index for the remainder of the
book.

Chapter 2 contains an explanation of the macro
notation used in this book.

Chapter 3 contains the descriptions of the declara­
tive macros; Chapter 4 contains the imperative mac­
ros; Chapter 5 contains the system control macros.
These chapters describe the macros in detail. With
the following exceptions, the macros are arranged in
alphabetic order within each chapter:

• The logic module generation (XXMOD) macros
follow the DTFxx macros with which each is
associated; for instance, PRMOD follows imme­
diately after DTFPR.

• The line type macros, DFR and DLINT, follow
immediately after DTFDR and DRMOD, with
which they are associated.

il,"'II1111};

This edition GC24-5140-0, applies to the IBM Disk Operating System/Virtual Storage
Extended, DOS/VSE, (Program Number 5745-020) and VSE/ Advanced Functions (Program
Number 5746-XE8), and to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems, consult the latest edition of
IBM System/370 Bibliography, GC20-0001 for the editions that are applicable and current.

Publications are not stocked at the address given below; request for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications. Dept.
G60, PO Box 6, Endicott, New York, U.S.A. 13760. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may. of course, continue to use the information you supply,

© Copyright Interna'tional Business Machines Corporation 1979

Chapter 1: Data Management and System Control Macro Formats

Name Operation

[name] ATTACH

[name] CALL

[name] CANCEL

[name] CCB

[name] CDLOAD

[name] CDMOD

[name] CHAP

[name] CHECK

[name] CHKPT

[name] {CLOSEj
CLOSER}

[name] CNTRL

[name] COMRG

[name] {DAMODj
DAMODV}

[name] DEQ

[name] DETACH

Operands Use Page No.

{entrypointj(S,entrypoint)j(rl)} Initiates a subtask 5-1
,SAVE= {saveareaj(S,savearea)j(r2)}
[,ECB= {ecbnctmej(S,ecbname)j(r3)}]
[,ABSA VE= {saveareaj(S,savearea)j(r4)}]
[,MFG= {areaj(S,area)j(r5)}]

{entrypointj(l5)} Passes control to a specified entry point in another program ... 5-2
[,(parameterlist)]

[ALL] Terminates a task or sub-task 5-2

SYSnnn Defines an IOCS command control block4-1
,command-list-name
[,X'nnnn']
[,senseaddress]

{phasenamej (I)}
[,PAGE=YES]

Loads a specified phase into the partition GETVIS area 5-3

[CONTROL=YES] Defines a logic module for a card reader file 3-6
[,CRDERR=RETRY]
[,CTLCHR= {ASAjYES}]
[,DEVICE=nnnn]
[,FUNC= {RjPjljRPjRWjRPWjPW}]
[,IOAREA2=YES]
[,RDONLY=YES]
[,RECFORM= {FIXUNBjVARUNBjUNDEF}]
[,SEPASMB= YES]
[,TYPEFLE= {INPUTjOUTPUTjCMBND}]
[,WORKA= YES]

{filenamej(l)}
[,control-addrj(O)]

SYSnnn
, {restart-addrj(rl)}
[,end-addrj,(r2)]
[,tpointerj(r3)]
[,dpointerj(r4)]
[,filenamej(r5)]

{filename lj(rl)}
[,filename2j,(r2)] ...

{filenamej(l)}
,code
[,nl][,n2]

[REG=nn]

[AFTER= YES]
[,ERREXT= YES]
[,FEOVD= YES]
[,HOLD=YES]
[,IDLOC=YES]
[,RDONL Y = YES]
[,RECFORM =xxxxxx]
[,REL TRK= YES
[,RPS=SVA]
[,SEPASMB= YES]

{rcbnamej(O) }

[SAVE= {saveareaj(I)}]

Lowers the priority of the issuing subtask 5-3

Prevents processing until 1/0 data transfer is complete 4-5

Records the status of your program for later restarting 5-3

Deactivates a file 4-8

Provides non-data device commands 4-8

Places the partition's communication
region address in register nn. 5-4

Defines a logic module for a direct access file 3-15

Releases an ENQ'ed resource 5-4

Terminates (normally) a subtask, •................ 5-5

Chapter 1: Data Management and System Control Macro Formats 1-1

Name Operation Operands Use Page No.

[name] DFR FONT=xxxx Defines attributes common to a group ofline types 3-25
[,REJECT= YES]
[,ERASE=YES]
[,CHRSET=n]
[,EDCHAR=(x, ...)]
[,BCH=n]
[,BCHSER=n]
[,NATNHP= YES]

r ... "",,,l DIMOD n(\ADt:;A"_Vt:;~l
t"-'''-J l.&'-'ilo. .. :'-I "'-&...,.,IJ'J Defines a iogic moduie for a device-independent me 3-20

[,RDONL Y = YES]
[,RPS=SVA]
[,SEPASMB= YES]
[,TRC=YES]
[,TYPEFLE= {OUTPUTIINPUT}]

[name] DISEN {filename! (I)} Stops feeding documents through ~Y1ICR Oi OCR devices A '" ...• 't-lV

[name] DLINT LFR=nn,LINBEG=nn Describes line types, fields in the line 3-27
[,IMAGE=YES]
[,NOSCAN=(n,n)]
[,FLDn=(n,n,NCRIT,xxx)]
[,EDITn=(xxxxxx,EDCHAR)]
[,FREND= YES]

[name] DRMOD [DEVICE=3886] Defines logic modules for a 3886 file 3-24
[,RDONLY=YES]
[,SEPASMB= YES]
[,SETDEV=YES]

[name] DSPLY {filenamel(l)} Displays document field on 1287 display scope4-10
,(r2),(r3)

[name] DTFCD DEV ADDR=SYSxxx Defines a card or 3881 file 3-1
,IOAREA=xxxxxxxx
[,ASOCFLE=xxxxxxx]
[,BLKSIZE=nnn]
[,CONTROL= YES]
[,CRDERR=RETRY]
[,CTLCHR=xxx]
[,DEVICE=nnnn]
[,EOFADDR=xxxxxxxx]
[,ERROPT=xxxxxx]
[,FUNC=xxx]
[,IOAREA2=xxxxxxx]
[,IOREG=(nn)]
[,MODE=xx]
[,MODNAME=xxxxxxxx]
[,OUBLKSZ=nn]
[,RDONLY=YES]
[,RECFORM=xxxxxx]
[,RECSIZE=(nn)]
[,SEPASMB= YES]
[,SSELECT=n]
[,TYPEFLE=xxxxxx]
[,WORKA=YES]

[name] DTFCN DEV ADDR=SYSxxx Defines a console file 3-8
,IOAREA I =xxxxxxxx
[,BLKSIZE=nnn]
[,INPSIZE=nnn]
[,MODNAME=xxxxxxx]
[,RECFORM =xxxxxx]
[,RECSIZE=(nn)]
[, TYPEFLE=xxxxxx]
[,WORKA=YES]

[name] DTFDA BLKSIZE=nnnn Defines a direct access file 3-10
,DEVICE=nnnn
,ERRBYTE=xxxxxxxx
,IOAREA I =xxxxxxxx

1-2 DOSjVSE Macro Reference

Name Operation Operands Use Page No.
,SEEKADR=xxxxxxxx
, TYPEFLE=xxxxxx
[,AFTER=YES]
[,CONTROL= YES]
[,DEV ADDR=SYSnnn]
[,ERREXT= YES]
[,FEOVD=YES]
[,HOLD=YES]
[,DSKXTNT=n]
[,ID LOC=xxxxxxxx]
[,KEY ARG=xxxxxxx]
[,KEYLEN=nnn]
[,LABADDR=xxxxxxxx]
[,MODNAME=xxxxxxx]
[,RDONL Y=YES]
[,READID=YES]
[,READKEY=YES]
[,RECFORM=xxxxxx]
[,RECSIZE=(nn)]
[,REL TYPE=xxx]
[,SEPASMB= YES]
[,SRCHM=YES]
[,TRLBL=YES]
[,VERIFY = YES]
[,WRITEID= YES]
[,WRITEKY = YES]
[,XTNTXIT=xxxxxxxx]

[name] DTFDI DEV ADDR=SYSxxx Defines a device-independent file 3-17
,IOAREA 1 =xxxxxxxx
[,CISIZE=n]
[,EOF ADDR=xxxxxxxx]
[,ERROPT=xxxxxxxx]
[,FBA=YES]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]
[,MODNAME=xxxxxxxx]
[,RDONL Y = YES]
[,RECSIZE=nnn]
[,SEPASMB= YES]
[,TRC=YES]
[, WLRERR=xxxxxxxx]

[name] DTFDR DEV ADDR=SYSxxx Defines a 3886 OCR file 3-21
,FRN AME=xxxxxxxx
,FRSIZE=nn
,EXITIND=xxxxxxxx
,IOAREA1=xxxxxxxx
,HEADER=xxxxxxxx
,EOF ADDR=xxxxxxxx
,COREXIT=xxxxxxxx
[,DEVICE=3886]
[,RDONLY=YES]
[,MODNAME=xxxxxxx]
[,BLKSIZE=nnn]
[,SEPASMB= YES]
[,SETDEV = YES]

Chapter 1: Data Management and System Control Macro Formats 1-3

Name Operation Operands Use Page No.

[name] DTFDU EOF ADDR=xxxxxxxx Defines a diskette file 3-29
,I 0 AREA I = xxxxxxxx
,RECSIZE=nnn
[,CMDCHN=nn]
[,DEV ADDR=SYSxxx]
[,0 EVI CE=3540]
[,ERREXT= YES]
[,ERROPT=xxxxxxxx]
[,FEED=xxx]
[,FILESEC= YES]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]
[,MODNAME=xxxxxxxx]
[,RDONLY=YES]
[,sEPASMB= YES]
[,TYPEFLE=xxxxxx]
[,VOLSEQ=YES]
[,WORKA=YES]
[,WRTPROT=YES]

[name] DTFIS DSKXTNT=n Defines a indexed-sequential file 3-34
,IOROUT=xxxxxx
,KEYLEN =nnn
,NRECDS=nnn
,RECFORM=xxxxxx
,RECSIZE=nnnn
[,CYLOFL=nn]
[,DEVICE=nnnn]
[,ERREXT= YES]
[,HINDEX=nnnn]
[,HOLD=YES]
[,INDAREA=xxxxxxxx]
[,INDSKIP= YES]
[,INDSIZE=nnnnn]
[,IOAREAL=xxxxxxxx]
[,IOAREAR =xxxxxxxx]
[,IOAREAS=xxxxxxxx]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]

[name] DTFMR DEV ADDR=SYSnnn Defines a MICR/OCR file 3-44
,IOAREA I =xxxxxxxx
[,ADDAREA=nnn]
[,ADDRESS=DUAL]
[,BUFFERS=nnn]
[,ERROPT=xxxxxxxx]
[,EXT ADDR=xxxxxxxx]
[,IOREG=(nn)]
[,MODNAME=xxxxxxxx]
[,RECSIZE=nnn]
[,SECADDR=SYSnnn]
[,SEPASMB= YES]
[,SORTMDE=xxx]

[name] DTFMT BLKSIZE=nnnnn Defines a magnetic tape file 3-46
,DEV ADDR=SYSxxx
,EOFADDR=xxxxxxxx
,FILABL=xxxx
,IOAREAI=xxxxxxx
[,ASCII= YES]
[,BUFOFF=nn)
[,CKPTREC=YES)
[,ERREXT=YES]
[,ERROPT=xxxxxxxx]
[,HDRINFO= YES]
[,IOAREA2=xxxxxxxx)
[,IOREG=(nn)]
[,LABADDR=xxxxxxxx]

1-4 DOS/VSE Macro Reference

Name Operation Operands Use Page No.
[,LENCHK=YES]
[,MODNAME=xxxxxxxx]
[,NOTEPNT=xxxxxx]
[,RDONL Y = YES]
[,READ=xxxxxxx]
[,RECFORM =xxxxxx]
[,RECSIZE=nnnn]
[,REWIND=xxxxxx]
[,SEPASMB= YES]
[,TPMARK=[YESINO]
[, TYPEFLE=xxxxxx]
[,VARBLD=(nn)]
[, WLRERR=xxxxxxxx]
[,WORKA=YES]

[name] DTFOR COREXIT=xxxxxxxx Defines a 1287 or 1288 optical reader file 3-53
,DEV ADDR=SYSnnn
,EOF ADDR=xxxxxxxx
,IOAREA1=xxxxxxxx
[,BLKF AC=nn]
[,BLKSIZE=nn]
[,CONTROL= YES]
[,DEVICE=xxxxx]
[,HEADER= YES]
[,HPRMTY = YES]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]
[,MODNAME=xxxxxxxx]
[,RECFORM =xxxxxx]
[,RECSIZE=(nn)]
[,SEPASMB= YES]
[,WORKA=YES]

[name] DTFPH TYPEFLE=xxxxxx Defines a Physical IOCS file 3-58
[,ASCII=YES]
[,CISIZE=n]
[,CCW ADDR=xxxxxxxx]
[,DEVICE=xxxx]
[,DEV ADDR=SYSxxx]
[,HDRINFO= YES]
[,LABADDR=xxxxxxxx]
[,MOUNTED=xxxxxx]
[,XTNTXIT=xxxxxxxx]

[name] DTFPR DEV ADDR=SYSxxx Defines a printer file 3-61
,IOAREA1=xxxxxxxx
[,ASOCFLE=xxxxxxxx]
[,BLKSIZE=nnn]
[,CONTROL= YES]
[,CTLCHR=xxx]
[,DEVICE=nnn]
[,ERROPT=xxxxxxxx]
[,FUNC=xxxx]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]
[,MODNAME=xxxxxxxx]
[,PRINTOV = YES]
[,RDONL Y = YES]
[,RECFORM=xxxxxx]
[,RECSIZE=(nn)]
[,SEPASMB= YES]
[,STLlST= YES]
[,TRC=YES]
[,UCS=xxx]
[,WORKA=YES]

Chapter 1: Data Management and System Control Macro Formats \-5

Name Operation

[name] DTFPT

[name] DTFSD

(name] DUMOD

[name] DUMP

[name] ENDFL

[name] ENQ

[name] EO]

[name] ERET

[name] ESETL

[name] EXCP

[name] EXIT

Operands

BLKSIZE=n
,DEV ADDR=SYSnnn
,IOAREA 1 =xxxxxxxx
[,EOF ADDR=xxxxxxxx]
[,DELCHAR=X'nn']
[,DEVICE=nnnn]
[,EORCHAR=X'nn']
[,ERROPT=xxxxxxxx]
[,FSCAN =xxxxxxxx]
[,FTRANS=xxxxxxxx]
[,IOAREA2=xxxxxxxx]
[,IOREG=(nn)]
[,LSCAN =xxxxxxxx]
[,LTRANS=xxxxxxxx]
[,MODNAME=xxxxxxxx]
r nV1H J{'i;:7=nl L'-· _&....1 .&.&J

[,RECFORM=xxxxxx]
[,RECSIZE-(nn)]
[,SCAN=xxxxxxxx]
[,SEPASMB=YES]
[,TRANS=xxxxxxxx]
[,WLRERR=xxxxxxxx]

BLKSIZE=nnnn
,EOF ADDR=xxxxxxxx
,IOAREA l=xxxxxxxx
[,CISIZE=nnnn]
[,CONTROL=YES]
[,DELETFL=NO]
[,DEV ADDR=SYSnnn]
[,DEVICE=nnnn]
[,ERREXT= YES]
[,ERROPT=xxxxxxxx]
[,FEOVD= YES]
[,HOLD= YES]
[,I OAREA2=xxxxxxxx]
(,IOREG=(nn)]
[,LABADDR=xxxxxxxx]
[,MODNAME=xxxxxxxx]
[,N OTEPNT=xxxxxxx]
[,PWRITE= YES]
[,RDONL Y=YES]
[,RECFORM=xxxxxx]

ERREXT=YES
,ERROPT=YES
{,RDONLY=YES}
{,sEPASMB= YES}

{filenamel(O)}

{rcbnamel(O) }

{SKIPIIGNOREIRETRY}

{filenamel(I)}

{blocknamel(I)}
[,REAL]

{PCiITIOC;ABIMRITT}

1-6 DOS/VSE Macro Reference

Use Page No.

Defines a paper tape file 3-67

Defines a sequential DASD file 3-73

Defines a logic module for a diskette file 3-33

Produces a hexadecimal dump 5-5

Ends the mode initiated by SETFL A-1O

Protects a resource 5-6

Ends a job step or subtask 5-6

Returns control from your error-processing
routine to 10CS 4~ 10

Ends sequential mode initiated by SETL4-10

Request PIOCS to start an I/O operation 4-11

Returns control from your interrupt-checking routine 5-6

Name Operation

[name] FCEPGOUT

[name] FEOV

[name] FEOVD

[name] FETCH

Operands

{ {listnamel(I)} Ibeginaddr,endaddrl
[beginaddr ,endaddr]}

{filenamel(l)}

{filenamel(l)}

{phasenamel(S,addr)l(I)}
[,entrypointl(S,entrypointl(O)]
[,LIST= {listnamel(S,listname)l(rl)}]
[,SYS=YES]
[,DE=YES]
[,MFG= {areal(S,area)l(r2)}]

[name] FREE {filenamel(l)}

[name] FREEVIS [ADDRESS= {namell(l)}]
(,LENGTH= {name21(O)} 1
[,SVA=YES]

[name] GENDTL [ADDR= {namell(S,namel)l(rl)}]
[,NAME= {name21(S,name2)I(r2)}]
[,CONTROL= @.lS}]
[,LOCKOPT= U.l2}]
[,KEEP= lliQIYES}]
[,OWNER= {TASKIPARTITION}]
[,LENGTH= lliQIYES}]

[name] GENIORB [ADDRESS= {namell(S,namel)I(l)}]
[,LENGTH=fieldlength]
,CCW= {name21(S,name2)I(r2)}
, {DEVICE=SYSxxxl
LOGUNIT= {name31
(S,name3)I(r3)} }
[,FIXLIST= {name41(S,name4)I(r4)}]
[,FIXFLAG=(optionll, ...)]
[,IOFLAG=(option21, ...)]
[,ERREXT= {name51(S,name5)I(r5)}]
[,ECB= {name61(S,name6)I(r6)}]

[name] GENL phasenamel,phasename2, ...
[{,ADDRESS= {areal(S,area)l(rl)}
,LENGTH=number}]
[{,ADDRESS= {DYNIDYNAMIC
[,ERREXT= {addrl(S,addr)l(r2)}]}]

[name] GET {filenamel(l)}
[,worknamel,(O)]

[name] GETIME [STANDARDIBINARYITU]
[,LOCALIGMT]
[,MFG= {areal(S,area)l(r)}]

[name] GETVIS [ADDRESS= {namell(I)}]
[,LENGTH= {name21(O)}]
[,PAGE=YES]
[,POOL= YES]
[,SVA=YES]

[name] 10RB DSECT=YES
or
CCW=name I,DEVICE=SYSxxx
[,ECB=name2]
[,FIXLIST=name3]
[,FIXFLAG=(option 11, ...)]
[,IOFLAG=(option 21, ...)]

Use Page No.

Forces an area to be paged out 5-7

Forces end-of-volume for magnetic tape file 4-11

Forces end-of-volume for DASD file4-11

Loads a phase; transfers control to it 5-8

Makes available to other tasks a previously held
track or CI ... 5-8

Releases blocks of virtual storage previously obtained
by a G ETVIS .. 5-9

Generates a DTL (Define The Lock) control block at
executed time .. 5-9

Generates an I/O Request Block at execution time 4-12

Generates a local directory list in the partition 5-9

Obtains the next sequential logical record from
an input file .. .4-12

Obtains the time of day 5-10

Obtains a block of virtual storage from a G ETVIS area 5-10

Generates an I/O Request Block at assembly time 4-13

[name] ISMOD [CORDATA=YES] Defines a logic module for an indexed sequential file 3-41
[,CORINDX=YES]
[,ERREXT=YES]
[,HOLD=YES]
[,IOAREA2=YES]
,IOROUT=LOADIADDIRETRVEIADDRTR

Chapter 1: Data Management and System Control Macro Formats 1-7

Name Operation

[name] JDUMP

[name] LBRET

[name] LFCB

[name] LITE

[name] LOAD

[name] MRMOD

[name] MTMOD

[name] MVCOM

[name] NOTE

[name] {OPENI
OPENR}

[name] ORMOD

[name] PAGEIN

Operands Use Page No.

[,RDONLY=YES]
[,RECFORM=FlXUNBIFIXBLKIBOTH]
[,RPS=SVA]
[,SEPASMB=YES]
[,TYPEFLE=RANDOMISEQNTLIRANSEQ]

{I1213}

S YSxxx,phasename
[,NULMSG]
[,FORMS=xxxx]
[,LPI=nJ

{filenamel(l)}
[,light-switchesl,(O)]

{phasenamel(S,address)l(I)}
[,loadpointl(S,loadpoint)I(O)]
[,LlST= {listnamel(S,listname)l(rl)]
[,SYS=YES]
[,DE=YES]
[,TXT=NO]
[,MFG= {area l(S,area)l(r2)} J

Produces a hexadecimal dump; teminates the main
or subtask .. 5-11

Returns control to IOCS after label-processing 4-14

Loads the forms control buffer 5-12

Lights pocket lamps on 1419 or 12754-15

Loads specified phase; returns control to calling phase 5-13

»),:,·,·:·,·,:,.:,;:·,.·:::t,:':if

[ADDRESS= {SINGLEIDUAL}]
[,BUFFERS=nnn]
[,SEPASMB=YES]

Defines a logic module for a MICR or OCR file 3-45

[ASCII= YES] Defines a logic module for a magnetic tape file 3-51
[,CKPTREC= YES]
[,ERREXT=YES]
[,ERROPT=YES]
[,NOTEPNT= {YESIPOINTS}]
[,RDONLY=YES]
[,READ= {FORWARDIBACK}]
[,RECFORM= {FIXUNB/FIXBLKIV ARUNBI

VARBLKISPNBLKISPNUNBIUNDEF}]

to, length, {froml(O)}

{filenamel(l)}

Modifies communication region 5-15

Obtains identification for a physical record or logical block .. .4-15

{filenamell(rl)} Activates a file4-15
[,filename21,(r2)], ...

[BLKFAC=YES] Defines a logic module for a 1287 or 1288 optical reader file .. 3-57
[,CONTROL=YES]
,DEVICE= {1287DI1287T}
(,lOAREA2=YES]
[,RECFORM= {FIXUNBIFIXBLK:UNDEF}]
[,SEPASMB=YES]
[,WORKA=YESj

{{listnamel(I)} Ibeginaddr.endaddrl
[.beginaddr.endaddr] }

[.ECB= {ecbname (O)} 1

Brings specified areas into real storage 5-16

1-8 DOS/VS E Macro Reference

Name Operation Operands Use Page No.

[name] PDUMP {,addressl(rl)}, {address21(r2)} Produces snapshot hexadecimal dump;
[,MFG= {areal(S,area)l(r3)}] processing continues at next instruction 5-16

[name] PFlX {{listnamel(l)} Ibeginaddr,endaddr Brings pages into real storage; fixes them 5-17
[,beginaddr,endaddr], ... }

[name] PFREE {{listnamel(I)} lbeginaddr,endaddr Decrements a page's PFlX counter by 1 5-17
[,beginaddr,endaddr], ... }

[name] POINTR {filenamel(l)} Repositions a file to a specified record 4-16
, {addressl(O)}

[name] POINTS {filenamel(l)} Repositions a file to its begining 4-16

[name] POINTW {filenamel(l)} Repositions a file to a specified record 4-16
, {addressl(O)}

[name] POST {ecbnamel(l)} Posts an ECB to a waiting task from the wait state 5-18
[,SAVE= {saveareal(O)}]

[name] PRMOD [CONTROL= YES] Defines a logic module for a printer file 3-65
[,CTLCHR=YES]
[,DEVICE=xxxxx]
(,ERROPT= YES]
(,FUNC=xxxxxx]
(,IOAREA2=YES]
(,PRINTOV = YES]
(,RDONLY=YES]
(,RECFORM =xxxxxx]
(,SEPASMB= YES]
(,STLIST= YES]
(,TRC=YES]
(,WORK=YES]

(name] PRTOV {filename I (I)}, {9112} Specifies printer action when carriage overflow occurs 4-17
(,routinenamel ,(0)]

(name] PTMOD [DEVICE=nnnn] Defines a logic module for a paper tape file 3-71
(,RECFORM=xxxxxx]
(,SCAN=YES]
(SEPASMB= YES]
[,TRANS=YES]

[name] PUT {filenamel(I)} Moves (outputs) a logical record to I/O device4-17
[, worknamel ,(0)]
[,STLSP= {controlfieldl(r)} 1
(,STLSK= {controlfieldl(r)}]

(name] PUTR {filenamel(I)} Sends message to operator's console, requiring a reply 4-18
(, {workname11(O)}
, {workname21(2)} 1

[name1 RCB Generates a Resource Control Block 5-18

(name] RDLINE {filenamel(l)} Reads a 1287 journal tape line in correction mode 4-18

(name] READ {filenamel(l)} Transfers data from an input file to an area in
{,KEYI,IDI,MRI virtual storage ... 4-19
,OR, {namel(r)} I
,DR, {namel(r)lnn,nn} I
,SQ, {areal(O)} [,lengthl,(r)I,Sn

[name] REALAD {addressl(l)} Returns a real storage address corresponding to a
virtual address ... 5-18

[name] RELEASE (SYSnnn,SYSnnn, ...) Releases programmer logical units 5-19
[,savearea]

[name] RELPAG {{listnamel(I)} Ibeginaddr,endaddr Releases specified storage areas 5-19
[,beginaddr,endaddr1,···}

[name] RELSE {filenamel(l)} Skip the remaining records in a block4-19

{name] RESCN {filename I (l) } Rescans a field on an OCR document " 4-19
,(rl),(r2)
,{nln,nl1

[name] RETURN (rl (,r2]) Restores registers, returns control to calling program 5-20

Chapter 1: Data Management and System Control Macro Formats 1-9

Name Operation Operands Use Page No.

[name] RUNMODE Returns mode information 5-20

[name] SAVE (r1 [,r2]) Saves registers in savearea 5-20

[name] SDMOD [CONTROL=YESj Defines a logic module for a sequential DASD file 3-79
[,ERREXT= YES]
[,ERROPT= YES]
[,FEOVD=YES]
[,HOLD=YES]
[,NOTEPNT= {POINTR WIYES} 1
[,RDONL Y = YES]
[,RECFORM= {SPNUMBISPNBLK}]
[,RPS=SVA]
[,SEPASMB=YES]
[,TRUNCS=YES]
[,UPDA TE= YES]

[name] SECTVAL [DDKR= {namel(O)}] Calculates the sector value for a CKD disk file record 4-20
[,D V CTYP=name2]

[name] SEOV filename Forces end-of-volume for a system file on tape 4-20

[name] SETDEV {filenamel(l)} Changes 3886 format records 4-20
, {phasenamel(r)}

[name] SETFL {filename I (O)} Sets file-load mode in ISAM 4-21

[name] SETIME {timervaluel(I)} Sets interval to specified value 5-21
,[tecbnamel(r)][,PREC]

[name] SETL {filenamel(r)} Sets sequential retrieval mode in ISAM 4-21
, {id-namel(r)!

KEYI BOFIG KEY}

[name] SETPFA [entryaddrl(O)] Makes or breaks a linkage to a page fault appendage routine .. 5-21

[name] SETT {timervaluel< I)} Sets the task timer to the specified value 5-21

[name] STXIT {ABIITjPCjOCjTT Makes or breaks linkage from supervisor
[, {rtnaddrl(O)} to your interrupt processing routine 5-22

, {saveareal(I)}
[,OPTION= {DUMPINODUMP}]]

[name] TECB Generates a timer event control block 5-24

[name] TESTT [CANCEL] Tests time elapsed from task timer set by SETT 5-25

[name] TPIN Deactivates partitions 5-25

[name] TPOUT Reactivates partitions 5-25

[name] TRUNC {filename 1(1)} Writes a short block of records 4-21

[name] TTIMER [CANCEL] Tests time elapsed from interval timer set by SETIME 5-26

[name] VIRTAD {addressl(I)} Returns virtual address corresponding to real address 5-26

[name] WAIT {blocknamel(I)} PIOCS waits for an I/O operation to be
completed before continuing 4-22

[name] WAIT {ecbnamel(I)} Sets a task into a wait state until an ECB is posted 5-26

[name] WAITF {filenamel(I)} [,filename21,(r2)],... LIOCS waits for an I/O operation to be
completed before continuing 4-22

[name] WAITM {ecbl,ecb2, ... llistnamel(I)} Sets programs or tasks into wait state until ECBs
are posted .. 5-27

[name] WRITE {filenamel(I)} Transfers a record from virtual storage to an output file 4-22
{, {SQIUPDATE}, {areal(O)} [,lengthl,(r)]i
,KEYI,IDI,AFTER[,EOF]I
,NEWKEYI,RZERO}

[name] XECBTAB TYPE= {DEFINE!DELETEICHECKI Defines or changes a cross-partition event control block 5-27
RESETIDELET ALL}

,XEC B=xecbname

1-10 DOS/VSE Macro Reference

Name Operation

[name] XPOST

[name] XW AIT

Operands Use Page No.

[,XECBADR= {xecbfieldl(S,xecbfield)l(rl)}]
[,ACCESS= {XPOSTIXW AIT}]
[,MFG= {areal(S,area)l(r2)}]

XECB= {xecbnamel(I)}
,POINTREG=(14)

XECB= {xecbnamel(I)}
,POINTREG=(14)

Posts a specified XECB 5-28

Waits for a specified XECB to be posted 5-29

Chapter 1: Data Management and System Control Macro Formats 1-11

1-12 DOS/VSE Macro Reference

Macro Fields
Macros, like assembler statements, have a name
field, operation field, and operand field. Comments
can also be included as in assembler statements,
although certain macros require a comment to be
preceeded by a comma if the macro is issued with­
out an operand. These macros are; CANCEL,

DETACH, FREEVIS, GETIME, GETVIS, TESTF, and
TTIMER.

The name field in a macro may contain a symbol­
ic name. Some macros (for example, CCB, TECB, or
DTFxx) require a name.

The operation field must contain the mnemonic
operation code of the macro.

The operands in the operand field must be written
in either positional, keyword, or mixed formats.

Positional Operands

In this format, the parameter values must be in the
exact order shown in the individual macro discus­
sion. Each operand, except the last, must be fol­
lowed by a comma, and no embedded blanks are
allowed. If an operand is to be omitted in the macro
and following operands are included, a comma must
be inserted to indicate the omission. No commas
need to be included after the last operand. Column
72 must contain a continuation punch (any non­
blank character) if the operands fill the operand
field and overflow onto another line.

F or example, GET uses the positional format. A
GET for a file named CD FILE using WORK as a work
area is written:

GET CDFILE, WORK

Keyword Operands

An operand written in keyword format has this
form, for example:

LABADDR=MYLABELS

where LABADDR is the keyword. MYLABELS is the
specification, and LABADDR=MYLABELS is the com­
plete operand.

The keyword operands in the macro may appear
in any order, and any that are not required may be
omitted. Different keyword operands may be writ­
ten in the same statement, each followed by a com­
ma except for the last operand of the macro.

Chapter 2: Macro Notation

Mixed Format
The operand list contains both positional and key­
word operands. The keyword operands can be writ­
ten in any order, but they must be written to the
right of any positional operands in the macro.

F or additional information on coding macro
statements, see OS/VS -DOS/VSE- VM/370 Assem­
bler Language, as listed in the Preface.

Notational Conventions
The following conventions are used in this book to
illustrate the format of macros:

1. Uppercase letters and punctuation marks
(except as described in these conventions) rep­
resent information that must be coded exactly
as shown.

2. Lowercase letters and terms represent informa­
tion which you must supply. More specifically,
an n indicates a decimal number, an r indicates
a decimal register number, and an x indicates
an alphameric character.

3. Information contained within brackets [] repre­
sents an optional parameter that can be includ­
ed or omitted, depending on the requirements
of the program.

4. Stacked options contained within brackets rep­
resent alternatives, one of which can be chosen
for example:

[
name J
label
address

A name-field symbol
in this assembly, or
an operand of an
EXTRN statement,
or * (the location
counter).

5. Stacked options contained within braces {}
represent alternatives, one of which must be
chosen.

6. Items 4 and 5 above may also be shown be­
tween brackets and braces, respectively, on one
line, that is, unstacked. In that case, the options
are separated by OR symbols (I). Examples of
this notation are

{phasename\(l)} [,entrypoint\,(O)]

7. An ellipsis (a series of three periods) indicates
that a variable number of items may be includ­
ed.

8. filename Example of a symbol appearing in
the name field of a DTF macro.

Chapter 2: Macro Notation 2-1

9. n Self-derming value, such as 3,
X'04', (15),B'010'.

10. length Absolute expression, as defmed in
OS/VS-DOS/VSE- VM/ 370 As­
sembler Language, as listed in the
Preface.

11. {AlBIC} Underlined elements represent an
assumed value in the event an ope­
rand is omitted.

12. (r) Ordinary register notation. Any
register except 0 or 1 to be specified
in parentheses.

13. (0)1(1) Special register notation (ordinary
register notation can be used).

Register Notation
Certain operands can be specified in either of two
ways:

1. You may specify the operand directly which
results in code that, for example, cannot be exe­
cuted in the SV A because it is not reentrant.

2. You may load the address of the value into a
register before issuing the macro. This way the
generated code is reentrant and may be execut­
ed in the sv A. When using register notation,
the register should contain only the specific
address and high order bits should be set to O.

When the macro is assembled, instructions are
generated to pass the information contained in the
specified register to IOCS or to the supervisor. For
example, if an operand is written as (8), and if the
corresponding parameter is to be passed to the su­
pervisor in register 0, the macro expansion contains
the instruction LR 0,8. This is an example of ordi­
nary register notation.

You can save both storage and execution time by
using what is known as special register notation. In
this method, the operand is shown in the format
description of the macro as either (0) or (1), for ex­
ample. This notation is special because the use of
registers 0 and 1 is allowed only for the indicated
purpose.

If special register notation is indicated by (0) or
(I) in a macro format description and you use ordi­
nary register notation, the macro expansion will
contain an extra LR instruction.

The format description for each macro shows
whether special register notation can be used, and
for which operands. The following example indi­
cates that the filename operand can be written as (1)
and the workname operand as (0):

2-2 DOS/VSE Macro Reference

GET {filenamel(1)} [worknamel,(O)]

If either of these special register notations is used,
your program must load the designated parameter
register before executing the macro expansion. Or­
dinary register notation can also be used.

Operands in (s,address) Notation
Certain system control macros (for instance,
ATTACH, GENIORB, GENL, LOAD) allow three nota­
tions for an operand:

I. Register notation, as described in the preceding
paragraph.

2. Notation as a relocatable expression which, in
the macro expansion, results in an A-type ad­
dress constant.

3. Notation in the form (s,address). In the macro
expansion, an explicit address (that is: an as­
sembler instruction address in base­
displacement form) is generated. Address can
be specified either as a relocatable expression
--for example: (S,RELOC), or as two absolute
expressions, the first of which represents the
displacement and the second, the base register
--for example: (s,512(12».

You should consider using this notation if your
program is to be reenterable. In a reenterable pro­
gram, macro operands often refer to fields in dy­
namic storage. The (s,address) format offers an
alternative to register notation: if two or more of
such operands have to be provided for one macro,
there is no need for loading addresses into that many
registers.

Declarative Macro Statements
The operands of the DTFxx and the logic module
generation macros are written in assembler format
statements. The first statement is the header and the
continuations following are the detail statements.
The header contains:

• The symbolic name of the file in the name field.
In a DTF, the symbolic file name may have as
many as seven characters. The file name may
also be required on standard label job control
statements and in certain macros as operands; it
must be the same as that used in the DTF head­
er. For a logic module, the name may not be
required.

• The mnemonic operation code of the macro in
the operation field.

• Keyword operands in the operand field, as re­
quired.

• A continuation character in column 72, if re­
quired.

Note: Avoid using 11 as the first two letters when defming sym­
bols as they may conflict with IOCS symbols beginning with 11.
Avoid symbols that are identical to a filename plus a single char­
acter suffix because IOCS generates symbols by concatenating
the filename with an additional character. For the filename
RECIN, for example, IOCS generates the symbols RECINS,
RECINI, etc.

The details follow the header and may be ar­
ranged in any convenient order. Each continuation
line must begin in column 16. If more than one ope-

rand is written on a detail line, they must be separat­
ed by a comma only. Except for the final detail line,
there must be a comma immediately following each
operand and have a continuation character in col­
umn 72. You may include a comment on a header
or a detail line if there is room between a space fol­
lowing the last operand on a line and column 72.

Chapter 2: Macro Notation 2-3

2-4 DOS/VSE Macro Reference

DTFCDMacro
This macro defines a file for a card reader.

Applies to

Input Output

x x

x x

x x

x x

x x

x

x

x x

x

x x

x x

x x

x x

x x

x x

M = Mandatory
O=Optional

Combined

x

x

x

x

x

x

x

x

M DEVADDR = SYSxxx

M 10AREA 1 =xxxxxxxx

0 ASOCFLE = xxxxxxx

0 BLKSIZE=nnn

0 CONTROL= YES

0 CRDERR = RETRY

0 CTLCHR=xxx

0 DEVICE=nnnn

0 EOFADDR = xxxxxxxx

0 ERROPT =xxxxxx

0 FUNC=xxx

0 IOAREA2 = xxxxxxx

0 10REG=(nn)

0 MODE=xx

0 MODNAME=xxxXxxxx

Figure 3-1. DTFCD macro operands (Part 1 of2).

Chapter 3: Declarative Macros

Symbolic unit for reader-punch used for this file

Name of first I/O area, or separate input area if
TYPEFLE=CMBND and IOAREA2 are specified.

Name for FUNC=RP, RW, RPW, PW

Length of one I/O area, in bytes. If omitted, 160 is assumed
for a column binary on the 2560,3504,3505, or 3525; 96 is
assumed for the 2596 or 5424/5425, otherwise 80 is as-
sumed.

CNTRL macro used for this file. Omit CTLCHR for this file.
Does not apply to 2501.

RETRY if punching error is detected. Applies to 2520 and
2540 only.

(YES or ASA). Data records have control character. YES for
S/370 character set; ASA for American National Standards
Institute character set. Omit if TYPEFLE=CMBND. Omit CON-
TROL for this file.

(1442,2501,2520,2540, 2560P, 2560S, 2596,3504,3505,
3525, 5425P, or 5425S). If omitted, 2540 is assumed. Speci-
fy 5425P /S for 5424/ 5425(P IS).

Name of your end-of-file routine.

IGNORE, SKIP, or name. Applies to 2560, 3504, 3505, 3525
and 5424/5425 only.

R, P, I, RP, RW, RPW, PW. Applies to 2560, 3525, and
5424/5425 only.

Name of second I/O area, or separate output area if
TYPEFLE=CMBND. Not allowed if FUNC=RP, RW, RPW, or
PW. Not allowed for output file if ERROPT =IGNORE.

Register number, if two I/O areas used and GET or PUT does
not specify a work area. Omit WORKA.

(E or C) for 2560. (E, C, 0, R, EO, ER, CO, CR) for 3504 and
3505. (E, C, R, ER, CR) for 3535. If omitted, E is assumed.

Name of CDMOD logic module for this DTF. If omitted, 10CS
generates standard name.

Chapter 3: Declarative Macros 3-1

Applies to

Input Output

x x

x x

x

x x

x x

x x

x x

M = Mandatory
O=Optional

Combined

x

x

x

x

x

x

0 OUBLKSZ=nn

0 RDONLY=YES

0 RECFORM =xxxxxx

0 RECSIZE =(nn)

0 SEPASMB=YES

0 SSELECT=n

0 TYPEFLE = xxx xxx

0 WORKA=YES

Figure 3-1. DTFCD macro operands (Part 2 of 2).

Length of IOAREA2 if TYPEFLE=CMBND. If OUBLKSZ omit-

ted, length specified by BLKSIZE is assumed for IOAREA2.

Generates a read-only module. Requires a module save area

for each task using the module.

(FIXUNB, UNDEF, or VARUNB). If omitted, FIXUNB is as-

sumed. Input or combined files always FIXUNB.

Register number if RECFORM=UNDEF. General registers

2-12, written in parentheses.

DTFCD is to be assembled separately.

(1 or 2) for 1442, 2520, 2596, 3504, or 3525. (1, 2, or 3) for

2540. (1, 2, 3, 4, or 5) for 2560. (1, 2, 3, or 4) for

5424/5425. Stacker-select character.

(INPUT, OUTPUT, or CMBND) If omitted INPUT assumed.

CMBND may be specified for 1442N1 , 2520B1 , or 2540

punch-feed-read only.

GET or PUT specifies work area. Omit IOREG. Not allowed for

output file if ERROPT =IGNORE.

filename specification in ASOCFLE = operand of
Code in FUNC= operand

read DTFCD punch DTFCD print DTFPR

FUNC=PW filename of print DTFPR filename of punch DTFCD

FUNC=RP filename of punch filename of read DTFCD
DTFCD

FUNC=RPW filename of punch filename of print DTFPR filename of read DTFCD
DTFCD

FUNC=RW filename of print DTFPR filename of read DTFCD

Examples:
11. If FUNC=PW is specified,

a. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD and

b. Specify the filename of the punch DTFCD in the ASOCFLE operand of the print DTFPR.

2. If FUNC=RPW is specified,

a. specify the filename of the punch DTFCD in the ASOCFLE operand of the read DTFCD, and

b. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD, and

c. specify the filename of the read DTFCD in the ASOCFLE operand of the print DTFPR.

Figure 3-2. ASOCFLE operand usage with print associated files.

ASOCFLE=filename: This operand is used to­
gether with the FUNC operand to define associated
files for the 2560, 3525, or 5424/5425. (For a de­
scription of associated files see the DOS/ VSE Ma­
cro User's Guide, as listed in the Preface.) ASOCFLE

specifies the filename of associated read, punch, or
print files, and enables macro sequence checking by

3-2 DOS/VSE Macro Reference

the logic module of each associated file. One filen­
ame is required per DTF for associated files.

BLKSIZE=n: Enter the length of the I/O area
(IOAREA1). If the record format is variable or unde­
fined, enter the length of the largest record. If the
operand FUNC=I is specified for the 2560 or 3525,
the length specified for BLKSIZE must be 80 data

bytes if CTLCHR=YES or if ASA is not specified, or 81
if CTLCHR=YES or if ASA is specified.

CONTROL=YES: This operand is specified if a
CNTRL macro is to be issued for a file. If this ope­
rand is specified, CTLCHR must be omitted. The
CNTRL macro cannot be used for an input file with
two I/O areas (that is, when the IOAREA2 operand is
specified).

This operand must not be specified for an input
file used in association with a punch file (when the
operand FUNC=RP or RPW is specified) on the 2560,
3525, or 5424/5425; in this case, however, this ope­
rand can be specified in the DTFCD for the associat­
ed punch file.

CRDERR=RETRY: This operand applies to card
output on the 2520 or f540. It specifies the opera­
tion to be performed if an error is detected. From
this specification, 10CS generates a retry routine and
a save area for the card punch record.

If a punching error occurs, it is usually ignored
and operation continues. The error card is stacked
in stacker PI (punch), while correct cards are stacked
in the stacker you select. If the CRDERR=RETRY

operand is included and an error condition occurs,
10CS also notifies the operator and then enters the
wait state. The operator can either terminate the
job, ignore the error, or instruct 10CS to repunch the
card.

CTLCHR= {ASAIYES}: This operand is required
if first-character control is to be used on an output
file. ASA denotes the American National Standards
Institute, Inc. character set. YES denotes the EBCDIC

character set. Appendix A of DOS/VSE Macro
User's Guide contains a complete list of codes. This
entry does not apply to combined files. If this ope­
rand is specified, CONTROL must be omitted.

DEV ADDR= {SYSIPTISYSPCHISYSRDRI
SYSnnn}:

This operand specifies the symbolic unit to be asso­
ciated with a file. The symbolic unit represents an
actual I/O device address and is used in the ASSGN

job control statement to assign the actual I/O device
address to the file.

SYSIPT, SYSPCH, or SYSRDR must not be specified:

• for the 2596
• for the 3881
• for 1442,2520, or 2540 combined files

(TYPEFLE=CMBND)

• for 2560, 3525, or 5424/5425 associated files
(FUNC=RP, RW, RPW, or pw)

• if the operand FUNC=I is specified
• if the MODE operand is specified with the C,O,

or R parameters.

DEVICE= {2 54011442125011252012560PI
2560S125961350413505135251
5425P15425S13881} :

This operand specifies the I/O device associated with
a file. The "P" and "s" included with the "2560"
and "5425" parameters specify primary or second­
ary input hoppers. Specify 5425p/s for 5424p/s.

Note: Modifications to the double buffering concept in LIOCS
provide for increased throughput for SYSIPT or SYSRDR files
on 2501 card readers attached to a S/370-115-2, S/370-125-0, or
S/370-125-2. If you specify DEVICE=2501 together with
DEVADDR=SYSIPT\SYSRDR and IOAREA2=name, this will
lead to the generation of a second CCB with its CCW pointing to
the second I/O area.

EOFADDR=name: This entry must be included
for input and combined files and specifies the sym­
bolic name of your end-of-file routine. 10CS auto­
matically branches to this routine on an end-of-file
condition. In your routine you can perform any
operations required for the end of the file (you gen­
erally issue a CLOSE instruction for the file).

10CS detects end-of-file conditions in the card
reader by recognizing the characters /* punched in
card columns 1 and 2 (column 3 must be blank). If
the system logical units SYSIPT and SYSRDR are as­
signed to a 5424/5425, 10CS requires that the /*
card, indicating end-of-file, be followed by a blank
card. An error condition results if cards are allowed
to run out without a /* trailer card (and without a
/ & card to indicate end-of-job).

ERROPT= {IGNOREISKIPlname}: This ope­
rand specifies the error exit option used for an input
or output file on a 2560, 3504, 3505, 3525, or
5424/5425. Either IGNORE, SKIP, or the symbolic
name of an error routine can be specified for input
files. Only IGNORE can be specified for output files.
This operand must be omitted when using 2560 or
5424/5425 associated output files. The functions of
these parameters are described below.

IGNORE indicates that the error is to be ignored.
The address of the record in error is put in register 1
and made available for processing. For output files,
byte 3, bit 3 of the CCB is also set on (see Figure 4-2);
you can check this bit and take the appropriate ac­
tion to recover from the error. Only one I/O area
and no work area is permitted for output files.
When IGNORE is specified for an input file associat­
ed with a punch file (FUNC=RP or RPW) and an error
occurs, a PUT for the card in error must nevertheless
be given for the punch file.

Chapter 3: Declarative Macros 3-3

SKIP indicates that the record in error is not to be
made available for processing. The next card is read
and processing continues.

If name is specified, 10CS branches to your rou­
tine when an error occurs, where you may perform
whatever actions you desire. Register 1 contains the
address of the record in error, and register 14 con­
tains the return address. GET macros must not be
issued in the error routine for cards in the same de­
vice (or in the same card path for the 2560 or
5424/5425). If the file is an associated file, PUT mac­
ros must not be issued in the error routine for cards
in the same device (for the 2560 or 5424/ 5425 this
applies io cards in either card path). If any other
10CS macros are issued in the routine, register 14
must be saved. If the operand RDONLY=YES is spec­
ified, register 13 must also be saved. At the end of
your routine, return to 10CS by branching to the
address in register 14. If the input file is associated
with an output file (FUNC=RP, RPW, or RW), no
punching or printing must be done for the card in
error. 10CS continues processing by reading the next
card.

Note: When ERROPT is specified for an input file and an error
occurs, there is a danger that the /* end-of-file card may be lost.
This is because 10CS, after taking the action for the card in error
specified by the ERROPT operand, returns to normal processing
by reading the next card which is assumed to be a data card. If
this card is in fact an end-of-file card, the end-of-file condition
cannot be recognized.

FUNC= {RIPIIIRPIRWIRPWIPW}: This operand
specifies the type of file to be processed by the 2560,
3525, or 5424/5425. R indicates read, P indicates
punch, and W indicates print.

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces­
sary to achieve this. The information printed will be
the same as the information punched, in contrast to
FUNC=PW, where any relation between the informa­
tion printed and the information punched is deter­
mined by your program. When FUNC=I is specified
the file can have only one I/O area.

RP, RW, RPW, and PW are used, together with the
ASOCFLE operand, to specify associated files; when
one of these parameters is specified for one file, it
must also be specified for the associated file(s). Each
of the associated files can have only one I/O area.

IOAREAl=name This operand specifies the name
of the input or output area used for this file.

If issued for a combined file, this operand speci­
fies the input area. If IOAREA2 is not specified, the
area specified in this operand is used for both input
and output.

3---4 DOS/VSE Macro Reference

IOAREA2=name: This operand specifies the name
of a second I/O area. If the file is a combined file
and the operand is specified, the designated area is
an output area.

If this operand is specified for the 3881, the
IOREG operand must also be specified.

This operand must not be specified if. for the
FUNC operand, any of the parameters I, RP, RPW, RW,

or PW is specified or if, for an output file,
ERROPT=IGNORE is specified.

IOREG=(r): If work areas are not used but two
input or output areas are, this operand specifies the
register (any of 2 through 12) in which IOCS puts the
address of the record. For output files, IOCS puts the
address where the user can build a record. This ope­
rand cannot be used for combined files.

This operand must be specified for the 3881 if the
IOAREA2 operand is specified.

MODE= mICIOIRIEOIERICOICR}: This ope­
rand specifies the mode used to process an input or
output file for a 2560, 3504, 3505, or 3525. E indi­
cates normal EBCDIC mode; C indicates column bi­
nary mode; 0 indicates optical mark read (OMR)

mode; R indicates read column eliminate mode. E is
also assumed if only 0 or R is specified.

For the 2560, only E and C are valid entries.

Valid entries for the 3504 and 3505 are E, C, 0, R,

EO, ER, CO, and CR. Valid entries for the 3525 are E,

C, R, ER, and CR. If 0 or R is specified (with or with­
out E or c), a format descriptor card defining the
card columns to be read, or eliminated, must be
provided. See OMR considerations in the DOS/VSE
Macro User's Guide, as listed in the Preface, for in­
structions on how to write this card as well as on
how to code and process OMR data.

Only E is valid for SYSIPT, SYSPCH, or SYSRDR. 0

and R (with or without E or c) cannot be specified
for output files. E is assumed if the MODE operand is
omitted.

MODNAME=name: This operand is used to speci­
fy the name of the logic module that will be used
with the DTF table to process the file. If the logic
module is assembled with the program, MODNAME

must specify the same name as the CDMOD macro.

If this operand is omitted, standard names are
generated for calling the logic module. If two DTF

macros call for different functions that can be han­
dled by a single module, only one module is called.

OUBLKSZ=n: This operand is used in conjunction
with IOAREA2, but only for a combined file. Enter
the maximum number of characters to be transfer-
red at one time. If this entry is not included and
IOAREA2 is specified, the same length as defined by
BLKSIZE is assumed.

RDONL Y = YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. (In the case of double buffering support
for the 2501 Card Reader, the save area must be 76
bytes to include the second CCB generated.) Each
task should have its own uniquely defined save area.
Each time an imperative macro (except OPEN or
OPENR) is issued, register 13 must contain the ad­
dress of the save area associated with that task. The
fact that the save areas are unique for each task
makes the module reentrant (that is, capable of be­
ing used concurrently by several tasks).

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your program must provide
another save area. One save area is used for the
normal I/O operations, and the second for I/O opera­
tions in the ERROPT routine. Before returning to the
module that entered the ERROPT routine, register 13
must contain the save area address originally speci­
fied for the task.

If this operand is omitted, the module generated
is not reenterable, and no save area is required.

RECFORM= {FIXUNB\VARUNB\UNDEF}:
This operand specifies the record format of the file:
fixed length, variable length, or undefined. If the
record format is fixed unblocked (FIXUNB,) this ope­
rand may be omitted. This operand must specify
FIXUNB if you also specified one of the following:

TYPEFLE=INPUT
TYPEFLE=CMBND,
FUNC=I
DEVICE=3881.

RECSIZE=(r) F or undefined records, this operand
specifies the register (one of 2 through 12) that con­
tains the length of the output record. You must load
the length of each record into the specified register
before you issue the PUT macro for the record.

SEPASMB=YES: Include this operand only if the
DTFCD is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

SSELECT=n: This operand specifies the valid
stacker-select character for a file. If this entry is not
specified, cards are selected into NR (normal read) or
NP (normal punch) stackers. For the 5424/5425,
cards from hopper 1 are placed in stacker 1 and
cards from hopper 2 are placed in stacker 5 (or 4).

This operand must not be specified for combined
files, for files on the 3881, for 2560,3525, or
5424/5425 read files associated with punch files
(FUNC=RP or FUNC=RPW); in this case the
SSELECT=n operand may be specified for the associ­
ated output file. For further information, see
"CNTRL Macro."

Note: When this operand is used with a device other than a 1442
or 2596, the program ignores CONTROL=YES with input files.

TYPEFLE= {INPU1.\OUTPUT\CMBND}: This
operand specifies whether a file is input, output, or
combined. A combined file can be specified for a
1442 or 2520 or for a 2540 with the punch-feed-read
feature. TYPEFLE=CMBND is applicable if both GETs
and PUTS are issued for the same card file.

Only TYPEFLE=INPUT can be specified for the
3881. If OUTPUT or CMBND is specified, the DTF
defaults to DEVICE=2540 and a non-executable
CDMOD logic module is produced. The MNOTE
"Improper device. 2540 assumed." is then printed at
assembly time. If the operand is omitted, INPUT is
assumed.

WORKA=YES: Ifl/o records are processed in
work areas instead of in the I/O areas, specify this
operand. You must set up the work area in storage.
The address of the work area, or a general-purpose
register which contains the address, must be speci­
fied in each GET and PUT macro.

If ERROPT=IGNORE is specified for an output file
or ifDEVICE=3881, WORKA=YES must not be speci­
fied.

Chapter 3: Declarative Macros 3-5

CDMODMacro
Listed here are the operands you can specify for
CDMOD. The first card contains CDMOD in the oper­
ation field and may contain a module name in the
name field.

CONTROL=YES: Include this operand if the
CNTRL macro is used with the modu1e and its associ­
ated DTFs. The module also processes files for which
the CNTRL macro is not used.

If this operand is specified, the CTLCHR operand
must not be specified. This operand cannot be speci­
fied if IOAREA2 is used for an input file.

This operand must not be specified for an input
file used in association with a punch file (when the
operand FUNC=RP or RPW is specified) on the 2560,
3525, or 5424/5425; in this case, however, this ope­
rand can be specified in the DTFCD and CDMOD for
the associated punch file.

CRDERR=RETRY: Include this operand if error
retry routines for the 2540 and 2520 punch­
equipment check are included in the module.
Whenever this operand is specified, any DTF used
with the module must also specify the same operand.
This operand does not apply to an input or a com­
bined file.

CTLCHR= {ASAIYES}: Include this operand if
first character stacker select control is used. Any
DTF to be used with this module must have the same
operand. If CTLCHR is included, CONTROL must not
be specified. This operand does not apply to a com­
bined file or to an input file.

DEVICE= (2540 114421250112520!2560P!
2560S125961350413505135251
5425PI5425S\3881} :

Include this operand to specify the I/O device used
by the module. The "P" and "s" included with the
"2560" and "5425" parameters specify primary or
secondary input hoppers; regardless of which is
specified, however, the module generated will han­
dle DTFs specifying either hopper. Specify 5425p/s
for 5424p IS.

Any DTF to be used with this module must have
the same operand (except asjust noted concerning
the 'p' and's' specification for the 2560 or 5425).

FUNC= {RIPIIIRPIRWIRPWIPW} This operand
specifies the type of file to be processed by the 2560,
3525, or 5424/5425. Any DTF used with the module
must have the same operand. R indicates read, P
indicates punch, and W indicates print.

3-6 DOSjVSE Macro Reference

When FUNC=I is specified, the file will be both
punched and interpreted; no associated file is neces­
sary to achieve this.

RP, R W, RPW, and PW specify associated files;
when one of these parameters is specified for one
file, it must also be specified for the associated
file(s). Associated files can have only one I/O area
each.

IOAREA2=YES: Include this operand if a second
I/O area is used. Any DTF used with the module
must also include the IOAREA2 operand. This ope­
rand is not required for combined files. This ope­
rand is not valid for associated files.

RDONLY=YES: This operand causes a read-only
module to be generated. Whenever this operand is
specified, any DTF used with the module must have
the same operand.

RECFORM= {FIXUNBIV ARUNBIUNDEF}:
This operand specifies the record format: fixed­
length, variable-length, or undefined. Any DTF used
with the module must have the same operand. If
TYPEFLE=INPUT, TYPEFLE=CMBND, or FUNC=I, this
operand must be FIXUNB. For the 3881, only
RECFORM=FIXUNB is valid. If this operand is omit­
ted for the 3881, 10CS assumes RECFORM=FIXUNB.

SEP ASMB= YES: Include this operand only if the
module is assembled separately. This causes a
CATALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and defines the module name as an ENTRY
point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem­
bled with the DTF and the problem program and no
CA T ALR card is punched.

TYPEFLE= {INPUTIOUTPUTICMBND}: This
operand generates a module for either an input,
output, or combined file. Any DTF used with the
module must have the same operand. For the 3881,
only TYPEFLE=INPUT is valid. If the operand is
omitted, INPUT is assumed.

WORKA=YES: This operand must be included if
records are to be processed in work areas instead of
in I/O areas. Any DTF used with the module must
have the same operand. This operand is not valid
for the 3881.

Standard CDMOD Names
Each name begins with a 3-character prefix (uc)
and continues with a 5-character field corresponding

to the options permitted in the generation of the
module.

CDMOD name = IJCabcde

a = F RECFORM=FIXUNB (always for INPUT, CMBND,
or FUNC=I files)

b

c =

d

e =

V RECFORM=VARUNB

U RECFORM=UNDEF

A CTLCHR=ASA (not specified ifCMBND)

Y CTLCHR=YES

C CONTROL= YES

Z CTLCHR or CONTROL not specified

B RDONLY=YES and TYPEFLE=CMBND

C TYPEFLE=CMBND

H RDONLY=YES and TYPEFLE=INPUT

TYPEFLE=INPUT

N RDONLY=YESandTYPEFLE=OUTPUT

0 TYPEFLE=OUTPUT

Z WORKA and IOAREA2 not specified

W WORKA=YES

I IOAREA2=YES

B WORKA and IOAREA2

Z WORKA=YES not specified (CMBND file only)

0 DEVICE=2540, 3881

1 DEVICE=1442,2596

2 DEVICE=2520

3 DEVICE=250l

4 DEVICE=2540 and CRDER

5 DEVICE=2520 and CRDERR

6 DEVICE=3505 or 3504

7 DEVICE=3525 and FUNC=RjP or omitted

8 DEVICE=2560 and FUNC=RjP or omitted

9 DEVICE=5425 and FUNC=RjP or omitted

A DEVICE=3525 and FUNC=RP

B DEVICE=3525 and FUNC=RW

C DEVICE=3525 and FUNC=PW

D DEVICE=3525 and FUNC=I

E DEVICE=3525 and FUNC=RPW

F DEVICE=2560 and FUNC=RP

G DEVICE=2560 and FUNC=RW

H DEVICE=2560 and FUNC=PW

DEVICE=2560 and FUNC=!

J DEVICE=2560 and FUNC=RPW

K DEVICE=5425 and FUNC=RP

L DEVICE=5425 and FUNC=RW

M DEVICE=5425 and FUNC=PW

N DEVICE=5425 anq FUNC=I

o DEVICE=5425 and FUNC=RPW

Subset/Superset eDMOD Names
Figure 3-3 shows the sub setting and supersetting
allowed for CDMOD names. All but one of the par­
ameters are exclusive (that is, do not allow superset­
ting). A module name specifying C (CONTROL) in
the b location is a superset of a plodule name speci­
fying Z (no CONTROL or CTLCHR). A module with
the name IJCFCIWO is a superset of a module with
the name IJCFZIWO.

I J C * * * * *
F A B B 0
V Y C I 1
U + H W 2

C I Z 3
Z N

0
4
5
6
7
8
9
A
B
C

M
N
o

+ Subsettingjsupersetting permitted.

* No subsettingjsupersetting permitted.

Figure 3-3. Subsetting and supersetting of CDMOD names.

Chapter 3: Declarative Macros 3-7

DTFCNMacro
DTFCN defines an input or output file that is processed on a 3210 or 3215 console printer-keyboard, or a
display operator console. DTFCN provides GET/PUT logic as well as PUTR logic for a file.

M DEVADDR = SYSxxx Symbolic unit for the console used for this file.

M 10AREA 1 =xxxxxxxx Name of I/O area-

0 BLKSIZE=nnn Length in bytes of I/O area (for PUTR macro usage, length of output part of !/O
area). If RECFORM=UNDEF, max. is 256. If omitted, 80 is assumed.

0 INPSIZE = nnn Length in bytes for input part of I/O area for PUTR macro usage.

0 MODNAME = xxxxxxx Logic module name for this DTF. If omitted, 10CS generates a standard name. The
logic module is generated as part of the DTF.

0 RECFORM = xxxxxx (FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

0 RECS!ZE =(nn) Register number if RECFORM=UNDEF. General registers 2-12, written in parenthes-
es.

0 TYPEFLE = xxxxxx (INPUT, OUTPUT, or CMBND). INPUT processes both input and output. CMBND
must be specified for PUTR macro usage. If omitted, INPUT is assumed.

0 WORKA=YES GET or PUT specifies work area.

M = Mandatory
O=Optional

Figure 3-4. DTFCN macro operands.

BLKSIZE=n: This operand specifies the length of
the I/O area; if the PUTR macro is used
(TYPEFLE=CMBND is specified), this operand speci­
fies the length of the output part of the I/O area. For
the undefined record format, BLKSIZE must be as
large as the largest record to be processed. The
length must not exceed 256 characters.

If the console buffering option is specified at sys­
tem generation time and the device is assigned to
SYSLOG, physical 10CS can increase throughput for
each actual output record not exceeding 80 charac­
ters. This increase in throughput results from start­
ing the output I/O command and returning to the
program before output completion. Regardless of
whether or not output records are buffered (queued
on an VO completion basis), they are always printed
or displayed in a first-in-first-out (FIFO) order.

DEVADDR= {SYSLOGISYSnnn}: This operand
specifies the symbolic unit associated with the file.
In a multiprogramming environment,
DEV ADDR=SYSLOG must be specified to obtain par­
tition identification prefixes (BG, FI, F2, F3, and F4)

for message identification.

DEV ADDR=SYSLOG must be specified if your
DTFCN macro includes TYPEFLE=CMBND.

INPSIZE=n: This operand specifies the length of
the input part of the I/O area for PUTR macro usage.

IOAREAl=name: This operand specifies the name
of the I/O area used by the file. For PUTR macro
usage, the first part of the I/O area is used for output

3-8 DOS/VSE Macro Reference

and the second part is used for input. The lengths of
these parts are specified by the BLKSIZE and INPSIZE

operands respectively. The I/O area is not cleared
before or after a message is printed, or when a mes­
sage is canceled and reentered on the console.

MODNAME=name: This operand specifies the
name of the logic module generated by this DTFCN

macro. If this entry is omitted, standard module
names are generated for the logic module.

A module name must be given when two phases
(each containing a DTFCN macro) are link -edited
into the same program. Under such conditions,
omission of this operand results in unreso1ved ad­
dress constants.

RECFORM= {FIXUNBIUNDEF}: This operand
specifies the record format of the file: fixed length or
undefined. FIXUNB must be specified if
TYPEFLE=CMBND is specified. FIXUNB is assumed if
the RECFORM operand is omitted.

RECSIZE=(r): For undefined records, this ope­
rand is required for output files and is optional for
input files. It specifies a general register (2 to 12)
that contains the length of the record. On output,
you must load the length of each record into the
specified register before you issue a PUT macro. If
specified for input files, 10CS provides the length of
the record transferred to storage.

TYPEFLE= {INPUTIOUTPUTICMBND}: This
operand specifies a file as input, output, or com­
bined. If INPUT is specified, code is generated for
both input and output files. If OUTPUT is specified,
code is provided for output files only.

CMBND must be specified if you use the PUTR

macro. CMBND specifies that coding be generated
for both input and output files; in addition, coding is
generated to allow usage of the PUTR macro to en-

sure that messages requiring operator action are not
deleted from the console. When CMBND is specified,
DEVADDR=SYSLOG must also be specified.

WORKA=YES: This operand indicates that a
work area is used with the file. A GET or PUT macro
moves the record to or from the work area. A PUTR

macro moves the record from and to the work area.

Chapter 3: Declarative Macros 3-9

DTFDAMacro
The DTFDA macro defines a file for Direct Access Method (DAM) processing.

Applies to

Input Output

x x

x x

X x

x x

x x

x x

x

x x

x x

x x

x

x

x x

x x

x x

x x

x x

x x

x x

x

x

x x

x x

x x

x x

x x

x

x

x x

x x

x x

M = Mandatory
O=Optional

M

I M

M

M

M

M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 3-5. DTFDA macro.

BLKSIZE=nnnn Length of one I/O area, in bytes

DEVICE = nnnn I s:~.~;~ z.~~ 4~~~~~'13~~~3~~50). If omitted, 2311 is assumed. Specify any
U\',,1I'1,,(;, IVI a. vvvv- I I VI ..

ERRBYTE = xxxxxxxx Name of 2-byte field for error/status codes supplied by 10CS

10AREA 1 =xxxxxxxx Name of I/O area

SEEKADR = xxxxxxxx Name of track-reference field

TYPEFLE = xxxxxx (INPUT or OUTPUT)
I\~T~n_v""C'
r\l lL.n-J[;."';) 'v"v'RiTE fiiename, AFTER or WRiTE fiiename, RZERO macro is used for this

file

CONTROL=YES CNTRL macro is used for this file

OEVADDR = SYSnnn Symbolic unit required only when no extent statement is provided

ERREXT=YES Nondata transfer errors are to be indicated in ERRBYTE

FEOVD=YES Support for sequential disk end of volume records is desired

HOLD=YES Employ the track hold function

OSKXTNT=n Indicates the number (n) of extents for a relative 10

IDLOC = xxxxxxxx Name of field in which 10CS stores the 10 of a record

KEY ARG = xxxxxxx Name of key field if READ filename,KEY; or WRITE filename,KEY; or WRITE
filename,AFTER is used for this file

KEYLEN=nnn Number of bytes in record key if keys are to be processed. If omitted, IOCS
assumes zero (no key)

LABAODR = xxxxxxxx Name of your routine to check/write user labels

MOONAME =xxxxxxxx Name of DAMOO logic module for this OTF. If omitted, IOCS generates
standard name

RDONLY=YES Generates a read-only module. Requires a module save area for each task
using the module

REAOID=YES READ filename, 10 macro is used for this file

REAOKEY = YES READ filename, KEY macro is used for this file

RECFORM = xxxxxx (FIXUNB, SPNUNB, VARUNB, or UNOEF). If omitted, FIXUNB is assumed

RECSIZE=(nn) Register number if RECFORM=UNOEF

REL TYPE = xxx (DEC or HEX). Indicates decimal or hexadecimal relative addressing

SEPASMB=YES OTFOA is to be assembled separately

SRCHM=YES Search multiple tracks, if record reference is by key

TRLBL=YES Process trailer labels, LABAOOR must be specified

VERIFY=YES Check disk records after they are written.

WRITEID= YES WRITE filename, 10 macro is used for this file

WRITEKY = YES WRITE filename, KEY macro is used for this file

XTNTXIT = xxxxxxxx Name of your routine to process extent information

AFTER=YES: This operand must be included if
any records (or an additional record) are written in a
file by a formatting WRITE (count, key, and data)
following the last record previously written on a
track. The remainder of the track is erased. That is,
whenever either of the macros

WRITE filename,AFTER
WRITE filename,RZERO

is used in a program, this operand is required.

BLKSIZE=n: This operand indicates the size of
the I/O area by specifying the maximum number of

3-10 DOSI.VSE Macro Reference

characters that are transferred to or from the area at
anyone time. When undefined, variable length or
spanned records are read or written, the area must
be large enough to accommodate the largest record.

For details on how to compute n, see DOS/VSE
Macro User's Guide, as listed in the Preface.

10CS uses this specification to construct the count
field of the ccw for reading or writing records.

CONTROL=YES: Include this operand if a
CNTRL macro is issued for this file. The CNTRL ma­
cro for seeking on a disk allows you to specify a
track address on which access movement should
begin for the next READ or WRITE macro. While the
arm is moving, you may process data and/or request
I/O operations on other devices.

DEV ADDR=SYSnnn: This operand must specify
the symbolic unit (sysnnn) associated with a file if
the symbolic unit is not provided via an EXTENT job
control statement. If such a unit is provided, its
specification overrides the DEV AD DR parameter.
This specification, or symbolic unit, represents an
actual I/O address and is used in the ASSGN job con­
trol statement to assign the actual I/O device address
to the file.

Note: EXTENT job control statements provided for DAM must
be supplied in ascendLTlg order, and the symbolic units for multi­
volume files must be assigned in consecutive order.

DEVICE= GlllI2314133301334013350}: This
operand specifies the device on which the file is lo­
cated. If this operand is omitted, 2311 is assumed.

F or devices supported by DOS/VSE and not in­
cluded in the above operand specification, specify
device codes as listed in Figure 3-6.

Note: DAM does not permit the use of different size data mo­
dules (on a 3340) for a multivolume file.

DSKXTNT=n: This operand indicates the maxi­
mum number of extents (up to 256) that are speci­
fied for a file. When this operand is used together

with FIXUNB, v ARUNB, or UNDEF specified in the
RECFORM operand, it indicates that a rela.:ve ID is
used in the SEEKADR and IDLOC locations. If
DSKXTNT=n is omitted, a physical ID is assumed in
the SEEKADR and IDLOC locations.

If RECFORM=SPNUNB is specified, DSKXTNT is
required. If relative addressing is used, the REL TYPE
operand must also be specified.

ERRBYTE=name: This operand is required for
10CS to supply indications of exceptional conditions
to your program. The name of a 2-byte field (in
which 10CS can store the error-condition or status
codes) is entered.

ERREXT=YES: This operand enables unrecovera­
ble I/O errors (occurring before a data transfer takes
place) to be indicated to your program. This error
information is indicated in the bytes named in the
ERRBYTE operand and is available after the W AITF
macro has been issued.

FEOVD= YES: This operand is specified ifcode is
generated to handle end-of-volume records. It
should be specified only when reading a file which
was built using DTFSD and the FEOVD macro.

HOLD= YES: This operand can be specified only if
the track hold function is

• specified at system generation time,
• included in the DAMOD macro, and
• used when the file is referenced.

IDLOC=name: This operand is included if you
want 10CS to supply the ID of a record after each
READ or WRITE (ID or KEY) is completed. Specify
the name of a record reference field in which 10CS is
to store the ID. W AITF should be used before refer­
encing this field. Do not specify the same field for
IDLOC and SEEKADR.

DEVICE = Device in use
specification

2311 2314 2319 3330-1,2* 3330-11** 3340, 35MB 3340, 70MB 3350

Default x x x

2311 x x x

2314 x x x x

3330 x x x

3340 x x x x

3350 x x

* Also 3350 in 3330-1 compatibility mode.
* * Also 3350 in 3330-11 compatibility mode.

Figure 3-6. DEVICE= specifications for DTFDA.

Chapter 3: Declarative Macros 3-11

IOAREAl=name: This operand must be included
to specify the name of the input/output area used
for the file. 10CS routines transfer records to or from
this area. The specified name must be the same as
the name used in the DS instruction that reserves this
area of storage.

KEY ARG=name: This operand must be included
if records are identified by key; that is; if either of
the macros

READ filename,KEY
WRITE filename,KEY

is used in a program, this entry and the correspond­
ing KEYLEN operand are required. KEY ARG speci­
fies the name of the key fieid in which you supply
the record key to 10CS.

The KEY ARG operand is required for formatting
WRITE (WRITE filename,AFTER) operations for files
containing keys if RECFORM=VARUNB or SPNUNB. It
is required also when the macro

READ filename,ID
is specified and if KEYLEN is not zero. When record
reference is by key, 10CS uses this specification at
assembly time to construct the data address field of
the ccw for search commands.

KEYLEN =n: This operand must be included if
record reference is by key or if keys are read or writ­
ten. It specifies the number of bytes in each key. All
keys must be the same length. If this operand is
omitted, 10CS assumes a key length of zero.

If there are keys recorded on DASD and this entry
is absent, a WRITE ID or READ ID writes or reads the
data portion of the record.

When record reference is by key, 10CS uses this
specification to construct the count field of the CCW
for this file. 10CS also uses this in conjunction with
IOAREAl to determine where the data field in the 1/0

area is located.

LABADDR=name: You may require one or more
user labels in addition to the standard file label. If
so, you must include your own routine to check, or
write, the labels. The name of such a routine is spec­
ified in this operand. 10CS branches to this routine
after it has processed the standard label.

MODNAME=name: This operand specifies the
name of the logic module that is used with the DTF
table to process the file. If the logic module is as­
sembled with the program, MODNAME must specify
the same name as the DAMOD macro. If this entry is
omitted, standard names are generated for calling
the logic module. If two DTF macros call for differ­
ent functions that can be handled by a single mo­
dule, only one module is called.

3-12 DOS/VSE Macro Reference

RDONLY=YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. Each task should have its own uniquely
defined save area. Each time an imperative macro
(except OPEN, OPENR, or LBRET) is issued, register 13
must contain the address of the save area associated
with the task. The fact that the save areas are uni-
que for each task makes the module reentrant, that
is, capable of being used concurrently by several
tasks.

READID=YES: This operand must be included if,
in your program, the macro READ filename, ID is
used.

READ KEY = YES: This operand must be included
if, in your program, the macro READ filename,KEY is
used.

RECFORM= {FIXUNBISPNUNBIUNDEFI
VARUNB}:I

This operand specifies the type of records in the
input or output file. The specifications are:
FIXUNB

For fixed-length records. All records are con­
sidered unblocked. If you want blocked re­
cords, you must provide your own blocking
and deblocking.

SPNUNB
For spanned records. This specification is for
unblocked variable-length logical records of
less than 32,768 bytes per record.

UNDEF
F or undefined records. This specification is
required only if the records are of undefined
format.

VARUNB
For variable-length records. This specification
is for unblocked variable-length records.

For a defmition of record formats see DOS/VSE
Data Management Concepts, as listed in the Preface.

RECSIZE=(r): This operand must be included if
undefmed records are specified (RECFORM=UNDEF).
It specifies the number of the general-purpose regis­
ter (any of2 through 12) that contains the length of
each individual input or output record.

Whenever an undefined record is read, 10CS sup­
plies the length of the data area for that record in the
specified register.

When an undefined record is written, you must
load the length of the data area of the record (in
bytes) into this register, before you issue the WRITE

macro for the record. IOCS adds the length of the
key when required.

When records are written (AFTER specified in the
WRITE macro), IOCS uses the length to construct the
count area written on DASD. IOCS adds the length of
both the count and the key when required.

REL TYPE= {DEC\HEX}: This operand specifies
whether the zoned decimal (DEC) or hexadecimal
(HEX) form of the relative ID is to be used. When
FIXUNB, '! ARUNB, or UNDEF is specified in the
RECFORM operand, REL TYPE should be supplied
only if the DSKXTNT operand (relative ID) is speci­
fied. If omitted, a hexadecimal relative ID is as­
sumed. However, if DSKXTNT is also omitted, a
physical ID is assumed in the SEEKADR and IDLOC
addresses.

If RECFORM=SPNUNB is specified, the REL TYPE
operand is required when relative addressing is
used. If REL TYPE is omitted, a physical ID is as­
sumed in the SEEKADR and IDLOC addresses.

SEEKADR=name: This operand must be included
to specify the name of your track -reference field. In
this field, you store the track location of the particu­
lar record read or written. IOCS refers to this field to
determine which volume and which track contains
the desired record. Whenever records are to be lo­
cated by searching for a specified ID, the track­
reference field must also contain the number of the
record on the track.

SEPASMB=YES: Include this operand only if the
DTFDA will be assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

SRCHM=YES: If records are identified by key,
this operand may be included to cause IOCS to
search multiple tracks for each specified record. The
macros

READ filename,KEY
WRITE filename,KEY

cause IOCS to search the track specified in the track­
reference field and all following tracks in the cylin­
der, until the record is found or the end of the cylin­
der is reached. If the file ends before the end of the
cylinder and the record is not found, the search con­
tinues into the next file, if any, on the cylinder. EOC,
instead ofNRF, is indicated. Without SRCHM=YES,
each search is confined to the specified track.

TRLBL=YES: This operand, if specified with the
LABADDR operand, indicates that user standard
trailer labels are to be read or written following the
user standard header labels on the user label track.
Both operands must be specified for trailer label
processing. For more information on processing
labels, see "Label Processing" in DOS/ VSE Macro
User's Guide, as listed in the Preface.

TYPEFLE= {INPUT\OUTPUT}: This operand
must be included to indicate how standard volume
and file labels are to be processed. INPUT indicates
that standard labels are to be read; OUTPUT indi­
cates that standard labels are to be written.

This entry is always required.

VERIFY = YES This operand is included if you
want to check the parity of disk records after they
are written. If this operand is omitted, any records
written on a disk are not verified.

WRITEID=YES: This operand must be included
if the DASD storage location for writing any output
record or updating an input file is specified by a
record ID (identifier); that is, whenever the macro

WRITE filename,ID
is used in the program, this operand is required.

WRITEKY = YES: This operand must be included
if the DASD location for writing any output record or
updating an input file is specified by record key, that
is, whenever

WRITE filename, KEY
is used.

XTNTXIT=name: This operand is included if you
want to process label extent information. It specifies
the name of your extent exit routine. During an
OPEN, IOCS branches to your routine after each spec­
ified extent is checked. Upon entering your routine,
IOCS stores, in register 1, the address of a 14-byte
field that contains the label extent information (in
binary form) retrieved from the label information
cylinder. If user labels are present, the user label
track is returned as a separate extent and the lower
limit of the first normal extent is increased by one
track. The format of this field is shown in Figure
3-7. Return to IOCS by use of the LBRET macro.
Registers 2 through 13 are available in the XTNTXIT
routine. Within the routine you cannot issue a ma­
cro that calls a transient routine (such as OPEN,
OPENR, CLOSE, CLOSER, DUMP, PDUMP, CANCEL,
CHKPT, etc.).

Chapter 3: Declarative Macros 3-13

Bytes

o

2-5

6-9

10-11

Contents

Extent type code (as specified in the extent I
statement) I

Number of extent (as determined by the I

extent card sequence)

Lower limit of the extent (cchh)

Upper limit of the extent (cchh)

Symbolic unit number (in hexadecimal for-
rn~t\

I ~·~;'used
Figure 3-7 Label extent information field

3-14 DOS/VSE Macro Reference

DAMOD or DAMODV Macro

Operation Operand Remarks

DAMODlor AFTER=YES When WRITE with the operand AFTER or RZERO is used
DAMODV2

Must be in- ERREXT=YES Required if non-data-transfer error conditions are to be indicated in the ERRBYTE status bits

cluded FEOVD=YES Required if support for sequential disk end-of-volume records is desired

HOLD=YES Required if the track hold function is to be used

IDLOC=YES Required if IDLOC specified in DTFDA

RDONLY=YES Required if a read only module is to be generated

RECFORM= Describes record format
{FIXUNB 1

\

UNDEF1
\

VARUNB2\

SPNUNB21
RELTRK=YES Required if the module is to process relative identifiers along with physical identifiers

RPS=SVA To assemble RPS logic modules

SEPASMB=YES If the module is assembled separately

I . DAMOD is for fixed length unblocked and undefined records.
2 . DAMODV is for variable length and spanned unblocked records.

Figure 3-8. DAMOD macro.

AFTER=YES: This operand generates a logic mo­
dule that can perform a formating WRITE (count,
key, and data). It performs the functions required
by WRITE filename,AFTER; and WRITE
filename,RZERO. The module also processes any
files in which the AFTER operand is not specified in
the DTF.

HOLD=YES: This operand is specified if the track
hold function is

• specified at system generation time, and
• included in the DTFDA macro, and
• used when the file is referenced.

For more information see the DTFDA HOLD ope­
rand.

ERREXT=YES: Include this operand ifunrecov­
erable I/O errors (occurring before a data transfer
takes place) are to be indicated to your program in
the bytes named in the DTF ERRBYTE operand.

FEOVD=YES: This operand is specified if coding
is to handle end-of-volume records. It should be
specified only if you are reading a file built using
DTFSD and the FEOVD macro.

IDLOC= YES: This operand generates a logic mo­
dule that returns record identifier (ID) information
to you. The module also processes any files in which
the IDLOC operand is not specified in the DTF.

RDONLY=YES: This operand causes a read-only

module to be generated. Whenever this operand is
specified, any DTF used with the module must have
the same operand.

RECFORM= {FIXUNB\SPNUNB\UNDEF\
VARUNB}:

If UNDEF is specified, the logic module generated
can handle both unblocked fixed-length and unde­
fined records. If the operand is omitted or if FIXUNB
is specified, the logic module generated can handle
only fixed-length unblocked records. If SPNUNB is
specified, the module can handle both format v
(variable length) and spanned format records. If
V ARUNB is specified, the module can handle only
format v records.

REL TRK= YES: This operand generates a logic
module that can process with both physical and
relative identifiers. If the operand is omitted, the
module can process only with physical identifiers.

RPS=SV A: This operand causes the RPS logic mo­
dules to be assembled.

SEP ASMB= YES: Include this operand only if the
module will be assembled separately. This causes a
CAT ALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and the module name to be defined as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the module is
being assembled with the problem program and no
CA T ALR card is punched.

Chapter 3: Declarative Macros 3-15

Standard DAMOD Names
Each name begins with a 3-character prefix (IJI) and
continues with a 5-character field corresponding to
the options permitted in the generation of the mo­
dule.

DAMOD name = IJIabcde

a = F RECFORM=FIXUNB
B RECFORM=UNDEF (handies both UNDEF and

FIXUNB)
S RECFORM=SPNUNB
V RECFORM=VARUNB

b A AFTER=YES,RPS=SVA omitted
W AFTER=YES, RPS=SVA
Z neither is specified

c = E IDLOC=YES and FEOVD=YES
I IDLOC=YES
R FEOVD=YES
Z neither is specified

d H ERREXT= YES and REL TRK= YES
P ERREXT= YES
R RELTRK=YES
Z neither is specified

e = W HOLD=YES and RDONL Y=YES
X HOLD=YES
Y RDONLY=YES
Z neither is specified

3-16 DOS/VSE Macro Reference

Subset/Superset DAMOn Names
Figure 3-9 shows the subsetting and supersetting
allowed for DAMOD names. Five parameters allow
supersetting. For example, the module IJIBAIZZ is a
superset of the module with the name IJIF AZZZ.

+ + + + +
I J I B A E H X

F Z I P Z
+ Z Z +
S + + w
V E H y

R R
Z Z

I + Subsetting/supefsetting permitted.

Figure 3-9. Subsetting and supersetting ofDAMOD names.

Notes:

1. The module IJIBAEHW will cause assembly error message
IPKI54 TOO MANY ENTRY SYMBOLS
The valid entry points for this module total more than 100,
which is the maximum for assembler language. Specify less
parameters for DAMOD if you can. Otherwise, you must
assemble your own module for your program.

2. Your program can have only one DAMOD for fixed un­
blocked or undefined records and/or only one DAMOD for
variable unblocked or spanned unblocked records; other­
wise, duplicate name flagging occurs during assembly time.

DTFDIMacro
The DTFDI macro provides device independence for system logical units.

M DEVADDR = SYSxxx (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System logical unit.

M IOAREA1 =xxxxxxxx Name of first I/O area.

0 CISIZE=n Size of FBA DASD control interval.

0 EOF ADDR = xxx xxx xx Name of your end-of-file routine.

0 ERROPT =xxxxxxxx (IGNORE, SKIP, or name of your error routine). Prevents termination on errors.

0 FBA=YES Specifies a Fixed Block Architecture device.

0 IOAREA2 = xxxxxxxx If two I/O areas are used, name of second area.

0 10REG=(r) Register number. If omitted and 2 I/O areas are used, register 2 is assumed. General
registers 2-12, written in parentheses.

0 MODNAME=xxxxxxxx DIMOD name for this DTF. If omitted, 10CS generates a standard name. Ignored with
FBA DASD or 3800 advanced printer buffering.

0 RDONLY=YES Generates a read-only module. Requires a module save area for each task using the
module.

0 RECSIZE=nnn Number of characters in record. Assumed values: 121 (SYSLST), 81 (SYSPCH), 80
(otherwise).

0 SEPASMB=YES DTFDI to be assembled separately.

0 TRC=YES For 3800, output data lines include table reference character.

0 WLRERR = xxxxxxxx Name of your wronq lenqth record routine.

M = Mandatory
o = Optional

Figure 3-10. DTFDI macro operands.

DEV ADDR= {SYSIPT\SYSLST\SYSPCH\
SYSRDR}:

This operand must specify the symbolic unit associ­
ated with this system file. Only the system names
shown above may be specified. The logical device
SYSLST must not be assigned to the 2560 or
5424/5425.

IOAREAl=name: This operand must specify the
name of the input or output area used with the file.
The input and/or output routines transfer records to
or from this area.

If the DTFDI macro is used to define a printer file,
or a card file to be processed on a 2540, 2560, 3525,
or 5424/5425, the first byte of the output area must
contain a control character.

CISIZE=n: This operand specifies the FBA control
interval size. The value n must be an integral multi­
ple of the FBA logical block size and, if greater than
8K, must be a multiple of 2K. The maximum value is
32768 (32K), except when assigned to SYSLST or
SYSPCH, when the maximum is 30720 (30K).

If FBA= YES is specified, and CISIZE is omitted,
CISIZE=O is assumed. Control interval size may be
overridden for an output file at execution time by
specifying the CISIZE parameter of the DLBL control
statement. For an input file, the CISIZE value in the
format-l label is used.

EOFADDR=name: This operand specifies the
name of your end-of-file routine. It is required only
if SYSIPT or SYSRDR is specified.

IOCS branches to this routine when it detects an
end-of-file condition. In this routine, you can per­
form any operations necessary for the end-of-file
condition (you generally issue the CLOSE or CLOSER

macro).

IOCS detects the end-of-file condition by recog­
nizing the characters /* in positions I and 2 of the
record for cards, a tapemark for tape, and end-of­
file record for disk. If the system logical units
SYSIPT and SYSRDR are assigned to a 5424/5425,
IOCS requires that the /* card, indicating end-of-file,
be followed by a blank card. An error condition
results if the records are allowed to run out without
a /* card (and without a /& card, ifend-of-job).
IOCS detects the end-of-file condition on diskette
units by recognizing that end-of-data has been
reached on the current volume and that there are no
more volumes available.

ERROPT= {IGNORE\SKIP\name}: This ope­
rand does not apply to output files. For output files
for most devices, the job is automatically terminated
after IOCS has attempted to retry writing the record;
for 2560 or 5424/5425 output files, normal error
recovery procedures are followed.

Chapter 3: Declarative Macros 3-17

This operand applies to wrong-length records if
WLRERR is omitted. If both ERROPT and WLRERR
are omitted and wrong-length records occur, 10CS
ignores the error.

ERR OPT specifies the function to be performed for
an error block. If an error is detected when reading
a magnetic tape, or a disk or a diskette volume, 10CS
attempts to recover from the error. If the error is not
corrected, the job is terminated uniess this operand
is included to specify other procedures to be taken.
The three specifications are described below.

IGNORE

SKIP

name

indicates that the error condition is to be ig­
nored. The address of the error record is made
available to you for processing (see CCB
Macro).

indicates that the error block is not to be made
available for processing. The next record is
read and processing continues.

indicates that 10CS is to branch to your routine
when an error occurs, where you may perform
whatever functions are desired or simply note
the error condition. The address of the error
record is supplied in register I. The contents of
the 10REG register may vary and should not be
used for error records. Also, you must not is­
sue any GET instructions in your error routine.
If you use any other 10CS macros, you must
save the contents of register 14. If
RDONL Y = YES is specified, or if the file is as­
signed to an FBA device, you must also save the
contents of register 13. At the end of the error
routine, return to 10CS by branching to the
address in register 14. The next record is then
made available for processing.

FHA= YES: Specifies a Fixed Block Architecture
device. Ifused, MODNAME specification is ignored
and an IBM-supplied module is used.

IOAREA2=name: Two input or output areas can
be allotted for a file to permit overlapped GET or
PUT processing. If this operand is included, it speci­
fies the name of the second I/O area.

IOREG=(r): When two I/O areas are used, this
operand specifies the general purpose register (any
of2 through 12) that points to the address of the
next record. For input files, it points to the logical
record available for processing. For output files, it
points to the address of the area where you can build
a record. If omitted, and two I/O areas are used,
register 2 is assumed.

3-18 DOS/VSE Macro Reference

MODNAME=name: This operand may be used to
specify the name of the logic module used with the
DTF table to process the file. If the logic module
(DIMOD) is assembled with the program, the
MODNAME parameter in this DTF must specify the
same name as the DIMOD macro.

If this entry is omitted, standard names are gener­
ated for calling the logic module. If two different
DTF macros call for different functions that can be
handled by a single module, only one standard­
named module is called.

RDONLY=YES: This operand is specified if the
DTF is to be used with a read-oniy moduie. Each
time a read-only module is entered, register 13 must
contain the address of a 72-byte doubleword-aligned
save area. Each task should have its own uniquely
defined save area, and each time an imperative ma­
cro (except OPEN, OPENR or LBRET) is issued, register
13 must contain the address of the save area associ­
ated with that task. The fact that the save areas are
unique for each task makes the module reentrant
(that is, capable of being used concurrently by sever­
al tasks).

If an ERROPT or WLRERR routine issues I/O mac­
ros using the same read-only module that caused
control to pass to either error routine, the program
must provide another save area. One save area is
used for the initial I/O operations, and the second for
I/O operations in the ERROPT or WLRERR routine.
Before returning to the module that entered the er­
ror routine, register 13 must he set to the save area
address originally specified for the task.

If the operand is omitted, the module generated is
not reenterable and no save area need be estab­
lished.

RECSIZE=n: This operand specifies the length of
the record. For input fiies (SYSIPT and SYSRDR), the
maximum allowable record size is 80 bytes. For
output files, RECSIZE must include one byte for con­
trol characters. The maximum length specification
is 121 for SYSLST and 81 for SYSPCH.

For disk files, 121 must be specified for SYSLST,
and 81 for SYSPCH to assure device independence.
For printers and punches, DIMOD assumes a
S/370-type control character if the character is not a
valid ASA character. The program checks ASA con­
trol characters before S/370-type control characters.
Therefore, if it is a valid ASA control character (even
though it may also be a S/37o-type control character),
it is used as an ASA control character. Otherwise, it
is used as a S/370-type control character.

Control character codes are listed in DOS/VSE
Macro User's Guide; note, however:

• 2520 stacker selection codes must be used for
the 1442.

• 2540 stacker selection 3 must not be used if
device independence is to be maintained.

If this operand is omitted, the following is assumed:
80 bytes for SYSIPT.
80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

The use of assumed values for the RECSIZE ope­
rand assures device independence. For disk and
diskette files, the assumed values are required to
assure device independence.

SEP ASMB= YES: Include this operand only if the
DTFDI will be assembled separately. This causes a
CATALR card with the filename to be punched ahead
of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CATALR card is punched.

TRC=YES: This operand applies to the IBM 3800
Printing Subsystem. TRC= YES specifies that a table
reference character is included as the first byte of
each output data line (following the optional print
control character). The printer uses the table refer­
ence character (0, 1,2, or 3) to select the character
arrangement table corresponding to the order in
which the table names have been specified with the
CHARS parameter on the SETPRT job control state­
ment (or SETDRT macro instruction).

If the device allocated is not a printer and
TRC=YES is specified, the table reference character is
treated as data when a PUT is issued. If the device is
a non-3800 printer, the table reference character is
removed and not printed.

WLRERR=name: This operand applies only to
input files on devices other than diskette units. It
specifies the name of your routine to which IOCS

branches if a wrong-length record is read on a tape
or disk device.

Chapter 3: Declarative Macros 3-19

DIMODMacro
Listed here are the operands you can specify for
DIMOD. The header card contains DIMOD in the
operation field and may contain a module name in
the name field. If the module is omitted, 10CS gener­
ates a standard module name.

IOAREA2=YES: Include this operand if a second
I/O area is needed. A module with this operand can
be used with DTFDIS specifying either one or two I/O
areas. If the operand is omitted or is invalid, one I/O
area is assumed.

RDONLY=YES: This operand causes a read only
module to be generated. Whenever this operand is
specifed, any DTF used with the module must have
the same operand.

RPS=SVA: This operand causes the RPS logic mo­
dules to be assembled.

SEPASMB=YES: Include this operand only if the
module is assembled separately. This causes a
CATALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and dermed the module name as an ENTRY
point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem­
bled with the DTF and the problem program and no
CAT ALR card is punched.

TRC=YES: Include this operand to specify wheth­
er the module is to test the table reference character
indicator in the DTFDI or ignore that indicator. If
TRC=YES is specified, the generated module can
process output files with table reference characters
and those without. If the TRC operand is specified,
TYPEFLE=INPUT must not be specified.

TYPEFLE= {OUTPUT\INPUT}: Include this
operand to specify whether the module is to process
input or output files. If OUTPUT is specified, the
generated module can process both input and output
files.

3-20 DOS/VSE Macro Reference

Standard DIMOD Names

Each name begins with a 3-character prefix (IJJ)
followed by a 5-character field corresponding to the

options permitted in the generation of the module.

DIMOD name = UJabcde

a = F

b C RPS=SY A is not specified
Y RPS=SYA

c = B TYPEFLE=OUTPUT (both input and output)
I TYPEFLE=INPUT

d IOAREA2= YES
Z IO,..tREA2=YES is not sPecified

e = C RDONLY=YES
D RDONL Y = YES is not specified

Subset/Superset DIMOD Names

Figure 3-11 illustrates the sub setting and superset­
ting allowed for DIMOD names. All of the operands
except TRC= YES allow subsetting. A module name
specifying B is a superset of the module specifying I:
for example. IJJFFCBID is a superset of the module
IJJFCIID.

The IBM-supplied preassembled logic modules do
not have TRC=YES. The system programmer can
reassemble them with TRC=YES to support 3800
table reference characters. Although the code that is
generated for a module assembled with TRC= YES is
different from the code that is generated for a mo­
dule with TRC=NO, the module name is the same. If
some, but not all DIMOD logic modules are reassem­
bled this way, it may interfere with subsetting or
supersetting.

+ + *
I J J FeB I C

I Z D

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

Figure 3-11. Subsetting and supersetting of DIMOD names.

DTFDRMacro
You must use the DTFDR macro to defme each 3886 ftle in your program.

M DEVADDR = SYSxxx Symbolic unit assigned to 3886 optical character reader.

M FRNAME=xxxxxxxx Phase name of format record to be loaded upon file opening.

M FRSIZE=nn Number of bytes to be reserved in DTF expansion for format records.

M EXITIND = xxxxxxxx Name of completion code return area.

M IOAREA 1 =xxxxxxxx Name of file input area.

M HEADER = xxxxxxxx Name of area for header record from 3886.

M EO FAD DR = xxxxxxxx Address of your end-of-file routine.

M COR EXIT = xxxxxxxx Name of your error condition routine.

0 DEVICE = 3886 If omitted, 3886 is assumed.

0 RDONlY=YES If DTF is to be used with read-only module.

0 MODNAME=xxxxxxx Name of DRMODxx logic module for this DTF. If omitted, IOCS generates standard
name.

0 BlKSIZE=nnn length of area named by IOAREA 1. If omitted, the maximum length of 130 is assumed.

0 SEPASMB =YES If DTFDR is to be assembled separately.

0 SETDEV=YES If SETDEV macro is issued in your program to load a different format record into the

M = Mandatory
O=Otional

Figure 3-12. DTFDR macro operands.

3886.

DEV ADDR=SYSnnn: Specifies the symbolic unit
to be associated with the logical ftle. The symbolic
unit (sysnnn) is associated with an actual I/O device
through the job control ASSGN statement.

FRNAME=phasename: Specifies the phase name
of the format record to be loaded when the fue is
opened.

FRSIZE=number: Specifies the number of bytes to
be reserved in the DTF expansion for format records.
The number must equal at least the size of the larg-
est DFR macro expansion and its associated DLINT
macro expansions, plus four. This size is printed in
the ninth and tenth bytes of the DFR macro expan­
sion.

If you use the SETDEV macro in your program to
change format records, you can reduce the library
retrieval time by specifying a size large enough to
contain all the frequently used format records. The
area should then be equal to the sum of the format
record sizes, plus four bytes for each format record.
When the SETDEV macro is issued, the format record
is loaded into this area from the core image library if
it is not already present in the area.

EXITIND=name: Specifies the symbolic name of
the I-byte area in which the completion code is re­
turned to the COREXIT routine for error handling
from an I/O operation.
The completion codes are:

Code
Dec Hex
240 X'FO'

241 X'F1'

242

243

244

249

X'F2'

X'F3'

X'F4'

X'F9'

Meaning

No errors occurred. (This code should
not be present when the COREXIT routine
receives control.)

Line mark station timing mark check
error.

Nonrecovery error. Do not issue the
eNTRl macro to eject the document from
the machine. Have the operator remove
the document.

Incomplete scan.

Line mark station timing mark check and
equipment check.

Permanent error.

Note: If any of these errors occur while the file is being opened,
the COREXIT routine does not receive control and the job is
canceled.

IOAREAl=name: Specifies the symbolic name of
the input area to be used for the ftle. The area must
be as large as the size specifted in the BLKSIZE par­
ameter. If BLKSIZE is not specifted, the input area
must be 130 bytes.

HEADER=name: Specifies the symbolic name of
the 20-byte area to receive the header record from
the 3886.

EOF ADDR=name: Specifies the symbolic address
of your end-of-file routine. LIOCS branches to this
routine whenever end offue is detected on the 3886.

Chapter 3: Declarative Macros 3-21

COREXIT=name: Provides the symbolic name of
your error correction routine. LIOCS branches to this
routine whenever an error is indicated in the
EXITIND byte.

You can attempt to recover from various errors
that occur on the 3886 through the COREXIT routine
you provide. Your COREXIT routine receives control
whenever one of the following conditions occurs:

: Incomplete scan
• Line mark station timing mark check error
• N onrecovery error
• Permanent error

Note: If any of these errors occur while the file is being opened,
the COREXIT routine does not receive control and the job is
canceled.

Figure 3-13 describes normal functions for the
COREXIT routine for the various error conditions
and provides the exits that must be taken from the
COREXIT routine.

Error messages are provided to describe errors to
the operator during program execution.

DEVICE=3886: Indicates that 3886 is the 1/0 de­
vice for this file. This operand may be omitted.

RDONLY=YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. Each DTF should have its own uniquely
dermed save area.

Each time an imperative macro (except OPEN or
OPENR) is issued using a particular DTF, register 13
must contain the address of the save area associated
with that DTF. The fact that the save areas are uni­
que or different for each task makes the module

Error Normal COREXIT Function

X'F2' Eliminate the data that has been read from this docu-
ment and prepare to read the next input document
(See Note 1).

reentrant (that is, capable of being used concurrent­
ly by several tasks).

If a COREXIT routine issues I/O macros using the
same read-only module that caused control to pass
to either error routine, your program must provide
another save area. One save area is used for the
normal I/O operations, and the second for 1/0 opera­
tions in the COREXIT routine. Before returning to
the module that entered the COREXIT routine, regis­
ter 13 must contain the save area address originally
specified for that DTF.

If this operand is omitted, the module generated
is not reenterable, and no save area is required.

MODNAME=name: This operand may be used to
specify the name of the logic module used with the
DTF table to process the file. If the logic module
(DRMOD) is assembled with the program, the
MODNAME parameter in this DTF must specify the
same name as the DRMOD macro.

If this entry is omitted, standard names are gener­
ated for calling the logic module. If two different
DTF macros call for different functions that can be
handled by a single module, only one standard­
named module is called.

BLKSIZE=nnn: Specifies the length of the area
named by the 10AREAl keyword. The length of the
area must be equal to the length of the longest re­
cord to be passed from the 3886.

If this operand is omitted, the maximum length of
130 is assumed.

Note: DOS/VSE LIOCS does not allow you to block records
read from the 3886.

SEP ASMB= YES: Specifies that the DTF will be
assembled separately. If this operand is specified, a
CA TALR card with the filename is punched before

Exit to

Routine in your program to read the next document.

X'F4' or Do whatever processing is necessary before the job is Your end-of-job routine.
X'F9' canceled. (See Note 1).

X'F1 ' Do any processing that may be required. The docu- Branch to the address in register 14 to return to the in-
ment may have been read incorrectly; you may want to struction following the macro causing the error.
delete all data records from the document (see Note
2).

X'F3' Rescan the line using another format record or using Branch to the address in register 1 4 to return to the in-
image processing and editing the record in your pro- struction following the macro causing the error.
gram (see Note 2).

Note 1: If in your COREXIT routine, you issue an I/O macro to the 3886 and an error occurs during that operation, control is
returned to the beginning of the COREXIT routine. You must take precautions in the COREXIT routine to prevent looping in this
situation. If no errors occur, control returns to the instruction following the 1/0 macro.
Note 2: If, in your COREXIT routine, you issue an 1/0 macro to the 3886, control always returns to the instruction following the
macro. You should then check the completion code to determine the outcome of the operation.

Figure 3-13. COREXIT routine functions.

3-22 DOS/VSE Macro Reference

the deck and the filename is defined as an ENTRY

point for the assembly.
SETDEV=YES: Specifies that the SETDEV macro
is issued in your program to load a different format
record into the 3886.

Chapter 3: Declarative Macros 3-23

DR MOD Macro
Listed here are the operands you can specify for
DRMOD. The first card contains DRMOD in the oper­
ation field and may contain a module name in the
name field.

DEVICE=3886: Specifies that the 3886 is the input
device. This operand may be omitted.

SEPASMB=YES: Must be specified if the I/O
module is assembled separately. This entry causes a
CATALR card to be punched preceding the module.

RDONLY=YES: This operand generates a read
only module. RDONL Y=YES must also be specified
in the DTF. For additional programming require­
ments concerning this operand, see the DTFDR
RDONL Y operand.

3-24 DOS/VSE Macro Reference

SETDEV=YES: Is specified if the SETDEV macro
may be used when processing a file with this I/O
module. IfsETDEV=YES is specified in the DRMOD
macro but not in the DTFDR macro, the SETDEV
macro cannot be used when processing that ftIe.

Standard DRMOD Names
Each name consists of eight characters. They are:
IJMZxxDO. The futh and sixth characters are varia-

bles as follows:
• If SETDEV=YES is specified, the fifth character

is s; otherwise it is z.

• IfRDONLY=YES is specified, the sixth character
is R; otherwise it is z.

Note: Subsetting/supersetting is allowed with the SETDEV
keyword, but not with the RDONL Y keyword.

DFRMacro
The DFR macro defmes attributes common to a group of line types.

M FONT=xxxx Default font for all codes described by format record.

0 REJECT=x Replacement character for any reject character in the data record read by the 3886. If
omitted, X'3F' is assumed.

0 ERASE=YES Group and character erase symbols are to be recognized. If omitted, NO is assumed.

0 CHRSET=n Specifies recognizing character (see Figure 3-15). If omitted, 0 is assumed.

0 EDCHAR =(x, ..) Characters that may be deleted from any field that is read. If omitted, no character
deletion occurs.

0 BCH=n Batch numbering is to be oreformed by 3886. If soecified BCHSER is invalid.

0 BCHSER=n Both batch and serial numbering are to be performed. If specified, BCH is invalid.

0 NATNHP=YES European Numeric Hand Printing (ENHP) characters 1 and 7 are used. If omitted, NO is
assumed, indicating that Numeric Hand Printing (NHP) character 1 + 7 are used.

M = Mandatory
O=Optional

Figure 3-14. DFR macro operands.

FONT =code: Specifies the default font for all
fields described by the format record. The default
font is used to read a field unless another font is
specified for an individual field through the DLINT

macro. This is the only required operand in the DFR

macro. The valid codes and the fonts they represent
are:

NUMA Numeric OCR-A font
ANAl Alphameric OCR-A font (mode I)
ANA2 Alphameric OCR-A font (mode 2)
NUMB Numeric OCR-B font (mode 3)
ANBI Alphameric OCR-B font
NHPI Numeric hand printing (normal mode)
NHP2 Numeric hand printing (verify mode)
GOTH Gothic font
MRKA Mark OCR-A font
MRKB Mark OCR-B font

For a description of these fonts, see the appropri­
ate IBM 3886 device manuals.

REJECT = character: Indicates the character that
is to be substituted in the data record for any reject
character read by the device. If this operand is omit-

ted, X'3F' is assumed. Reject characters are charac­
ters that are not recognizable by the device.

Note: This note applies to the keywords REJECT and ED­
CHAR. Aphostrophes enclosing the character are optional for all
characters except special characters used in macro operands. For
a description of these characters, see OS/VS-DOS/VSE- VM/370
Assembler Language, as listed in the Preface.

ERASE = {YESINO}: Specifies whether group
and character erase symbols are to be recognized as
valid symbols. If this operand is not specified, NO is
assumed. For more information on group and char­
acter erase symbols, see the appropriate IBM 3886
device manuals.

CHRSET = {OI112131415}: Specifies which one of
the options in Figure 3-15 is to be used for recogniz­
ing characters. If this operand is not entered, 0 is
assumed.

Chapter 3: Declarative Macros 3-25

OCR-A OCR-B

Numeric Numeric Alphameric
Mode Alphameric Modes Mode Mode

Highspeed Mode 1 Hexa- Format
Printers or (Highspeed) ~~/~:'~"i+A. \ I ~~~~~~~:~~~~ters I decimal Record

Typewriters PI'!!"!te!') "'--'. Cedes ,. , , "'I. J"'G"'IILC'I~ \,ouut:

$ $ $ $ $ 58 00

-l. -l. -l. £ £ 58 01

¥ ¥ ¥ '!f. '!f. 58 02
N N N 78

$ $ $ $ $ 58 03

A A Jt 58
i ~ ~ 78
e e 0 7C 04

$ $ $ U Note 58

A A ~ 78

~ ~ tj 7C

0 0 FO 05

Note: In OCR-A font the U is coded as a zero and should be used only in
alphabetic fields.

Figure 3-15. Character set option list.

EDCHAR = (x, ...): Specifies up to six characters
that may be deleted from any field that is read. The
EDCHAR parameter in the EDITn keyword of the
DLINT macro controls this function for individual
fields. If this operand is omitted, no character dele­
tion is performed. See the note under the REJECT
operand discussion for characters that must be speci­
fied in quotes. For example, to specify the charac­
ters &, >, and), you would code
EDCHAR=('&', '>', ')').

BCH = {11213}: Indicates that batch numbering is
to performed by the 3886. Specifying 1,2, or 3 indi­
cates that documents routed to a stacker are to be
batch numbered. Specifying 1 indicates stacker A, 2
indicates stacker B, 3 indicates both stackers. If this
operand is specified, the BCHSER operand is invalid.
If neither BCH nor BCHSER are entered, no batch
numbering is performed. This operand is valid only
if the serial numbering feature is installed on the
3886. For more information on batch numbering,
see the appropriate IBM 3886 device manuals.

3-26 DOS/VSE Macro Reference

RCHSER = {11213}: Indicates that both batch and
serial numbering are to be performed by the 3886.
Specifying 1, 2, or 3 indicates that documents routed
to a stacker are to be batch and serial numbered.
Specifying 1 indicates stacker A, 2 indicates stacker
B, 3 indicates both stackers. If this operand is speci­
fied, the BCH operand is invalid. If neither BCH nor
BCHSER is specified, batch and serial numbering are
not performed. This operand is valid only if the
serial numbering feature is installed on the 3886.
For more information on batch and serial number­
ing, see the appropriate IBM 3886 device manuals.

NATNHP = {YESINO}: Specifies which of the
numeric hand printing character set options are used
for the numbers 1 and 7. YES indicates that the Eu­
ropean Numeric Hand Printing (ENHP) characters 1
and 7 are used; NO indicates the Numeric Hand
Printing (NHP) characters 1 and 7 are used. If this
operand is not entered, NO is assumed.

DLINTMacro
The DLiNT macro describes one line type in a format group and the individual fields in the line.

M LFR=nn Line format record for the line.

M LlNBEG=nn Specifies beoinnino of a line.

0 IMAGE=YES Data record is to be in image mode. If omitted, NO (standard mode) is assumed.

0 NOSCAN =(n,n) Indicates an area on the document line that is to be ignored by the 3886.

0 FLDn =(n,n,NCRIT,xxx) Describes a field in a line. n in the FLD keyword may be from 1 to 14; if specified, a
corresponding EDITn keyword must follow each FLDn keyword.

0 EDITn =(xxxxxx,EDCHAR) Specifies editing functions to be performed on the data by 3886. A corresponding FLDn
keyword must precede each EDITn keyword.

0 FREND=YES Indicates last DLiNT macro for the format record. If omitted, NO is assumed meaning that

M = Mandatory
O=Optional

Figure 3-16. DLiNT macro operands.

Line Information Entries

further DLiNT macros follow.

LFR=number This operand is required. It specifies
the line format record number for the line. The dec­
imal number specified must be in the range of 0
through 63.

The line format record describes the format of
one type of line; the line format record number is
used to identify the line format record. This number
is specified in the READ macro when you read a line
of data from a document.

LINBEG=number: This operand is required. It
specifies the beginning of a line. The beginning
position is the distance, measured in units of 0.1 inch
(2.54 mm), from the left edge of the document to the
left boundary of the first field. The limiting range of
this position is 4 to 85.

IMAGE= {YES\~: This operand specifies
whether the data record should be in standard mode
(IMAGE=NO), or image mode (IMAGE=YES). If this
operand is not specified, IMAGE=NO is assumed.

NOSCAN=(field-end, ...): Specifies an area on the
document line that is to be ignored by the 3886. The
parameter field-end is a decimal number indicating
the distance, measured in units of 0.1 inch (2.54
mm), from the left edge of the document to the right
end of the NOSCAN field. The field immediately to
the left of the NOSCAN field must end with an ad­
dress delimiter rather than a character delimiter.

Field Information Entries

FLDn=({ address-delimiter\ character-delimiter}
,(field-Iengthll, {NCRIT\font-code\
NCRIT,font-code})):

Describes each of the fields in a line. The n suffix is
a number from 1 through 14 and the parameters are
the same for keywords FLDI through FLDI4. The
following rules apply when specifying these key­
words:

• Fields may be described in any order in the
macro.

• Each EDITn parameter must follow its associat­
ed FLDn parameter.

• The n suffix need not be 1 for the first field in
the line; however, the n suffix must increase for
each field from left to right on the document
line.

address-delimiter is a decimal number that speci­
fies the distance, measured in units of 0.1 inch (2.54
mm), from the left edge of the document to the right
end of the field being defmed. The last field in a line
must end with an address delimiter.

character delimiter specifies the character that
indicates the end of a field. The character delimiter
is not considered part of the data; it is not included
in the data record nor used in determining the
length of the field.

Apostrophes enclosing the characters are optional
for all characters except 0 through 9, and the special
characters used in macro operands. For these char­
acters, the apostrophes are required. For a descrip­
tion of these characters, see OSjVS-DOSjVSE­
VMj370 Assembler Language, as listed in the Pre­
face.

If a field ends with a character delimiter, the next
field must be read using a font from the same font
group. The font groups are:

• NPH1, NPH2, GOTH
• ANAl, ANA2, NUMA, MRKA
• NUMB,MRKB
• ANBI

Chapter 3: Declarative Macros 3-27

field-length is a decimal number specifying the
length of the field in the edited record. The length
specified cannot be less than I or more than 127. If
IMAGE=NO is specified, this parameter is required; if
IMAGE= YES is specified, this parameter is invalid.
The length specified in this parameter refers to the
length of the field after any EDITn options have been
performed. The sum of the field lengths for a line
cannot be greater than 130.

N CRIT indicates that this is not a critical field. If
this parameter is omitted, the field is assumed to be
critical.

font-code specifies a font for this field, different
from the font specified in the DFR macro. If this
parameter is not specified, the font specified in the
DFR macro is used for the field. For information
about the valid codes, see the DFR macro descrip­
tion.

EDITn=({codeIEDCHARlcode,EDCHAR}):
Describes the editing functions to be performed on
the data by the 3886.

The parameters are the same for keywords EDIT I
through EDITI4. There must be a FLDn keyword
corresponding with each EDITn keyword you
specify. If an EDITn keyword is specified, a code,
EDCHAR, or both must be specified. When image
mode is used, the EDITn keywords are invalid.

When the editing functions are completed and
the field is greater than the specified length, the field
is truncated from the right and the wrong length
field indicator is set on in the header record. If only
blanks are truncated, the wrong length field indica­
tor is not set.

3-28 DOS/VSE Macro Reference

code specifies the blanks to be removed and the
fill characters to be added to the field, if any. The
valid codes and their meanings are:

Code
HLBLOF

ALBLOF

Meaning
All high- and low-order blanks are removed, the
data is left justified, and the field is padded with
blanks on the right (see Note).

All blanks are removed from the data, the data is
left-justified. and the field i!'; padded w!th blanks
on the right.

NOBLOF No blanks are removed, the data is left-justified,
and the field is padded on the right with blanks.

HLBHIF All high- and low-order blanks are removed, the
data is right-justified, and the field is padded to
the left with EBCDIC zeros (X'FO') (see Note).

ALBHIF AI! blanks are removed, the data is right­
justified, and the field is padded with EBCDIC
zeros (X'FO') on the left.

ALBNOF All blanks are removed; the data must be equal
in length to the field length specified. No pad­
ding is done.

Note: Two consecutive embedded blanks is the maximum num­
ber sent.

If the EDITn keyword is omitted or if EDITn is
specified and the code is omitted, ALBLOF is as­
sumed.

EDCHAR indicates that the characters specified in
the EDCHAR keyword of the DFR macro are to be
deleted from the field. If this parameter is omitted,
the characters are not deleted.

FREND= {YESI!iQ}: Indicates whether this is the
last DLINT macro for the format record. NO indi­
cates that more DLINT macros follow; YES indicates
that this is the last one. If this operand is omitted,
NO is assumed.

DTFDUMacro
The DTFDU macro defines sequential (consecutive) processing for a file contained on a diskette.

Applies to

Input Output

x

x x

x x

x x

x x

x x

x x

x x

x x

x

x x

x x

x x

x x

x x

x x

x

x

x x

x

M = Mandatory
O=Optional

M EOFADDR = xxxxxxxx

M IOAREA1 =xxxxxxxx

M RECSIZE=nnn

0 CMDCHN=nn

0 DEVADDR = SYSxxx

0 DEVICE=3540

0 ERREXT=YES

0 ERROPT =xxxxxxxx

0 FEED=xxx

0 FILESEC = YES

0 IOAREA2 = xxxxxxxx

0 10REG=(nn)

0 MODNAME=xxxxxxxx

0 RDONLY=YES

0 SEPASMB = YES

0 TYPEFLE = xxx xxx

0 VERIFY=YES

0 VOLSEQ=YES

0 WORKA=YES

0 WRTPROT = YES

Figure 3-17. DTFDU macro operands.

CMDCHN=nn: This operand is specified to indi­
cate the number of Read/Write ccws to be com­
mand chained. Valid entries are 1,2, 13, or 26; 1 is
assumed if this operand is omitted. For each ccw
specified by this operand, one record is processed
(for example, if you code CMDCHN= 13, 13 records
are command chained and are processed - read or
written - as a group). For entries of2, 13, or 26,

Name of your end-of-file routine. (Required for input only).

Name of first I/O area.

Length of one record in bytes.

Number of read/write CCWs (records) to be

command-chained.

Symbolic unit, required only when not provided on an EXTENT

statement.

Must be 3540. If omitted, 3540 is assumed.

Indicates additional errors and ERET desired. Specify

ERROPT.

IGNORE, or SKiP, or name of error routine.

YES means feed at end-of-file. NO means no feed, YES

assumed if omitted.

YES means create file secure.

Name of second I/O area, if two areas are used.

Register number. General register 2 to 1 2 in parentheses.

Omit WORKA.

Name of DUMODFx logic module for this DTF. If omitted, IOCS

generates standard name.

Generates a read-only module. Requires a module save area

for each task using the module.

DTFDU is to be assembled separately.

INPUT or OUTPUT. If omitted INPUT is assumed.

3741/3742 input is verified.

YES means OPEN is to check sequencing of mUlti-volume files.

GET or PUT specifies work area. Omit IOREG.

File will be created with Write-Protect on (cannot be

overwritten) .

either the IOREG operand or the WORKA operand
must be specified.

DEV ADDR=SYSxxx: This operand specifies the
symbolic unit (Sysxxx) associated with the file if an
EXTENT job control statement is not provided. An
EXTENT statement is not required for single-volume
input files. If an EXTENT statement is provided, its
specification overrides any DEY ADDR specification.

Chapter 3: Declarative Macros 3-29

SYSxxx represents an actual I/O device address, and
is used in the ASSGN job control statement to assign
the actual I/O device address to this file.

DEVICE=3540: This operand specifies that the file
to be processed is on the 3540. This operand may be
omitted.

EOF ADDR=name: This operand specifies the
symbolic name of your end-of-file routine. 10CS
automatically branches to this routine on an end-of­
file condition. You can perform any operations re­
quired for the end-of-file in this routine (you will
generally issue the CLOSE or CLOSER macro).

ERREXT=YES: This operand enables your
ERR OPT routine to return to DUMODFx with the
ERET macro. It also enables permanent errors to be
indicated to your program. For ERREXT facilities,
the EROPT operand must be specified. However, to
take full advantage of this option, use the
ERROPT=name operand.

ERROPT= {IGNOREISKIPlname}: Specify this
operand if you do not want a job to be terminated
when a permanent error cannot be corrected in the
diskette error routine. If attempts to reread a chain
of records are unsuccessful, the job is terminated
unless the ERROPT entry is included. Either IGNORE,
SKIP, or the name of an error routine can be speci­
fied. The functions of these parameters are de­
scribed below.
IGNORE

SKIP

name

The error condition is ignored. The records are
made available for processing. On output, the
error condition is ignored and the records are
considered written correctly.

No records in the error chain are made avail­
able for processing. The next chain of records
is read from the diskette, and processing con­
tinues with the first record of that chain. On
output, the SKIP option is the same as the
IGNORE option.

IOCS branches to your error routine named by
this parameter regardless of whether or not
ERREXT=YES is specified. In this routine you
can process or make note of the error condition
as desired.

If ERR EXT is not specified, register 1 contains the
address of the first record in the error chain. When
processing in the ERROPT routine, reference records
in the error chain by referring to the address sup­
plied in register 1. The contents of the 10REG regis­
ter or work area are variable and should not be used

3-30 DOS/VSE Macro Reference

to process error records. Also, GET macros must not
be issued for records in the error chain. If any other
10CS macros (excluding ERET if ERREXT=YES) are
used in this routine, the contents of register 13 (with
RDONL y) and 14 must be saved and restored after
their use. At the end of the routine, return control to
10CS by branching to the address in register 14. For
a read error, IOCS skips that error chain of records,
and makes the first record of the next chain avail­
able for processing in the main program.

If ERREXT is specified, register 1 contains the
address of a two part parameter list containing the
4-byte DTFDU address and the 4-byte address of the
first record in thc error chain. Register 14 contains
the return address. Processing is similar to that de­
scribed above except for addressing the records in
error.

At the end of its processing, the routine returns to
LlOCS by issuing the ERET macro.

F or an input file, the program:
• skips the error chain and reads the next chain

with an ERET SKIP,
• ignores the error with an ERET IGNORE,
• it makes another attempt to read the error

chain with an ERET RETRY.
For an output file the only acceptable parameters

are IGNORE or name, and the program
• ignores the error condition with ERET IGNORE

or ERET SKIP,
• attempts to write the error chain with an ERET

RETR Y. Bad spot control records (1, 2, 13, or 26
records depending on the CMDCHN specifica­
tion) are written at the current diskette address,
and the write chain is retried in the next 1, 2,
13, or 26 (depending on the CMDCHN specifica­
tion) sectors on the disk.

The DTFDU error options are shown in Figure 3-18.

To Terminate the job, specify nothing;

Skip the error record specify ERROPT = SKIP'

Ignore the error record, specify
ERROPT=IGNORE;

Process the error record, specify ERROPT==name;

after processing the record, to leave the error-processing
routine and

Skip the (input) record, execute ERET SKIP;

Ignore the record, execute ERET IGNORE;

Retry reading or writing the re- execute ERET RETRY.
cord.

Figlue 3-18. DTFDU error options.

FEED= {YESINO}': If YES is specified and 10CS
detects an end-of-file condition, the diskette being
processed is fed to the stacker and a new diskette is
fed to the disk drive (providing another diskette is

still in the hopper). If NO is specified, the diskette is
left mounted for the next job. If the operand is omit­
ted, YES is assumed.

FILESEC=YES: This operand applies to output
only. On output it causes OPEN or OPENR to set the
security flag in the file label. For subsequent input,
the security flag causes an operator message to be
written. The operator must then reply in order to
make the file available to be read.

Note: When this operand is used with WRTPROT=YES, the
reuse of the diskette is prevented.

IOAREAl=name: This operand specifies the sym­
bolic name of the I/O area used by the file. 10CS
either reads or writes records using this area. Note
that you should provide an I/O area equal in size to
the result obtained from multiplying the RECSIZE
entry by the CMDCHN entry.

IOAREA2=name: If two I/O areas are used by GET
or PUT, this operand is specified. You should pro­
vide an I/O area equal in size to the result obtained
from multiplying the RECSIZE entry by the CMDCHN
entry.

IOREG=(r): This operand specifies the general
purpose register (one of2 to 12) in which 10CS puts
the address of the logical record that is available for
processing. At OPEN or OPENR time, for output files,
IOCS puts the address of the area where the user can
build a record in this register. The same register can
be used for two or more files in the same program, if
desired. If this is done, the problem program must
store the address supplied by 10CS for each record.
If this operand is specified, omit the WORKA ope­
rand.

This operand must be specified if the CMDCHN
factor is 2 or higher and records are processed in one
I/O area, or if two I/O areas are used and records are
processed in both I/O areas.

MODNAME=name: This operand specifies the
name of the logic module which is to process the file.
If the logic module is assembled with the program,
MODNAME must specify the same name as the
DUMODFx macro. If this operand is omitted, stan­
dard names are generated for calling the logic mo­
dule. If two DTF macros call for different functions
that can be handled by a single module, only one
module is called.

RDONLY=YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte double-word aligned

save area. Each task should have its own uniquely
defined save area. When an imperative macro
(except OPEN, OPENR) is issued, register 13 must
contain the address of the save area associated with
the task. The fact that the save areas are unique for
each task makes the module reentrant (that is, capa­
ble of being used concurrently by several tasks).

If an ERROPT routine issues I/O macros using the
same read-only module that caused control to pass
to the error routine, your problem program must
provide another save area. One save area is used for
the normal I/O operations, and the second for
input/output operations in the ERROPT routine.
Before returning to the module that entered the
ERROPT routine, register 13 must be set to the save
area address originally specified for that DTF.

If this operand is omitted, the generated module
is not reentrant and no save area need be estab­
lished.

RECSIZE=nnn: This operand specifies (in bytes)
the length of each record in the input/output area (1
to 128 bytes).

SEPASMB=YES: Include this operand only if the
DTFDU is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an entry point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CATALR card is punched.

TYPEFLE= {INPUTIOUTPUT}: This operand
indicates whether the file is an input or output file.

VERIFY=YES: This operand specifies that the
input on a 3741/3742 must be verified before proc­
essing may continue. IfVERIFY=YES is not specified,
it is assumed that the input need not be verified. If
VERIFY=YES is specified and the input is not veri­
fied, the job is canceled and message 4n571 is issued.
If the operand is specified for an output file, it will
be ignored.

VOLSEQ=YES: This operand is only valid on
input. If specified, it causes OPEN or OPENR to en­
sure that the volume sequence numbers of a multi­
volume file are in ascending and sequential order.
However, if the volume sequence number of the first
volume processed is blank, no volume sequence
checking is done.

WORKA=YES: If I/O records are processed or
built in work areas instead of in the I/O areas, speci­
fy this operand. You must set up the work area in

Chapter 3: Declarative Macros 3-31

storage. The address of the work area, or a general
register containing the address, must be specified in
each GET or PUT macro. For a GET or PUT macro,
IOCS moves the record to or from the specified work
area.

When this operand is specified, the IOREG ope­
rand must be omitted.

3-32 DOS/VSE Macro Reference

WRTPROT=YES: This operand indicates that an
output file will be created with Write-Protect
(meaning that the file cannot be overwritten). For
3540 support, this has no effect on subsequent input
processing of the file.

Note: When this operand is used with FILESEC= YES, the reuse
of the diskette is prevented.

DUMODFx Macro
Two categories of file characteristics are dermed for
diskette unit module generation macros:

• DUMODFI - Diskette Unit MODule, Fixed
length records, Input file.

• DUMODFO - Diskette Unit MODule, Fixed
length records, Output file.

The macro operation and the keyword operands
derme the characteristics of the module.

A module name can be contained in the name
field of this macro. The macro operation is con­
tained in the operation field, either DUMODFI (for
input) or DUMODFO (for output).

ERREXT=YES: Include this operand ifperma­
nent errors are returned to a problem program
ERROPT routine or if the ERET macro is used with
the DTF and module. The ERROPT operand must be
specified for this module.

ERROPT=YES: This operand applies to both
DUMODFx macros. This operand is included if the
module handles any of the error options for an error
chain. Logic is generated to handle any of the three
options (IGNORE, SKIP, or name) regardless of which
option is specified in the DTF. This module also
processes any DTF in which the ERROPT operand is
not specified.

If this operand is not included, your program is
canceled whenever a permanent error is encoun­
tered.

RDONL Y = YES: This operand causes a read-only
module to be generated. If this operand is specified,
any DTF used with this module must have the same
operand.

SEP ASMB= YES: Include this operand only if the
logic module will be assembled separately. This
causes a CATALR card with the module name

(standard or user-specified) to be punched ahead of
the object deck, and defines the module name to be
defined as an ENTRY point in the assembly. If the
operand is omitted, the assembler assumes that the
logic module is being assembled with the problem
program and no CATALR is punched.

Standard DUMOD Names
Each name begins with a 3-character prefix (UN)
and continues with a 5-character field corresponding
to the options permitted in the generation of the
module, as shown below.

DUMODFx name = UNabcde

a = D

b I DUMODFI
o DUMODFO

c = C ERROPT=YES and ERREXT=YES
E ERROPT=YES
Z neither is specified

d Z

e = Y RDONLY=YES
Z RDONL Y not specified

Subset/Superset DUMOD Names
Figure 3-19 illustrates the sub setting and superset­
ting allowed for DUMOD names.

* + * *
I J N DIe Z Y

o E Z
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

Figure 3-19. Subsetting and supersetting of DUMOD names.

Chapter 3: Declarative Macros 3-33

DTFISMacro
The DTFIS macro defmes a DASD file for the Indexed Sequential Access Method.

Applies to

Ran. Seq.
Rtvl. Rtvl.

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x

x

M = Mandatory
O=Optional

Load

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 3-20. DTFIS macro.

Add

x M DSKXTNT=n

x M IOROUT = xxxxxx

x M KEYLEN=nnn

x M NRECDS=nnn

x M RECFORM = xxxxxx

x M RECSIZE=nnnn

x 0 CYLOFL=nn

x 0 DEVICE=nnnn

x 0 ERREXT=YES

x 0 HINDEX=nnnn

x 0 HOLD=YES

x 0 INDAREA = xxxxxxxx

x 0 INDSKIP = YES

x 0 INDSIZE=nnnnn

x 0 IOAREAL = xxxxxxxx

0 IOAREAR = xxxxxxxx

0 IOAREAS = xxxxxxxx

0 IOAREA2 = xxxxxxxx

0 IOREG=(nn)

x 0 10SIZE = nnnn

0 KEY ARG = xxxxxxxx

x 0 KEYLOC = nnnn

x 0 MODNAME =xxxxxxxx

X 0 MSTiND=YES

x 0 RDONLY=YES

x 0 SEPASMB=YES

0 TYPEFLE = xxxxxx

x 0 VERIFY=YES

x 0 WORKL = xxxxxxxx

0 WORKR =xxxxxxxx

0 WORKS=YES

CYLOFL=n: This operand must be included if
cylinder overflow areas are reserved for a file. Do
not include this entry if no overflow areas are re­
served.

3-34 DOS/VSE Macro Reference

Maximum number of extents specified for this file

(LOAD, ADD, RETRVE, or ADDRTR)

Number of bytes in record key (maximum is 255)

Number of records in a block. Specify for blocked records
only' if unblocked 1 is assumed.

(FIXUNB or FIXBLK)

Number of characters in logical record.

Number of tracks for each cylinder overflow area. Maxi-
mum = 8 for 2311, 18 for 2314 , 17 for 3330 and 3333,
10 for 3340

(2311, 2314, 3330, 3340). If omitted, 2311 is assumed.

Non data-transfer error returns and ERET desired.

(2311, 2314, 3330, 3340). Unit containing highest level
index. If omitted, 2311 is assumed.

Track hold function is desired

Symbolic name of cylinder index area

Index skip feature is to be used

Number of bytes required for the cylinder index area

Name of I/O area

Name of second I/O area

Register number. Omit if WORKA or WORKS is specified

Bytes alloted to IOAREAL

Name of key field in storage, for random retrieval or se-
quential retrieval starting by key

Number of high-order position of key field within record, if
RECFORM = FIXBLK

Name of ISMOD logic module for this DTF. If omitted, IOCS
generates standard name

Master index used.

Generates a read-only module. Requires a module save
area for each task using the module.

DTFIS is to be assembled separately.

(RANDOM, SEQNTL, or RANSEQ)

Check disk records after they are written.

Name of work area for loading or adding to the file.

Name of work area for random retrieval. Omit IOREG

GET or PUT specifies work area

When a file is loaded or when records are added,
this operand is requIred to reserve the areas for cyl­
inder overflow. It specifies the number of tracks to
be reserved on each cylinder. The maximum num-

ber of tracks that can be reserved on each cylinder
is:

for 2311
for 2314, or 2319
for 3330 or 3333
for 3340

8
18
17
10

DEVICE= @l1123141333013340}: This ope­
rand specifies the unit that contains the prime data
area or overflow areas for the logical file. For ISAM

the prime data area must be on the same device
type, and for a 3340 on the same model of data mo­
dule.

For devices supported by DOSjVSE and not in­
cluded in the above operand specification, specify
device codes as listed in Figure 3-2l.

DSKXTNT=n: This operand must be included to
specify the maximum number of extents for this file.
The number must include all the data area extents if
more than one DASD area is used for the data re­
cords, and all the index area and independent over­
flow area extents that are specified by EXTENT job
control statements. Thus the minimum number
specified by this entry is 2: one extent for one prime
data area, and one for a cylinder index. Each area
assigned to an ISAM file is considered an extent.

Note: Master and cylinder indexes are treated as one area. When
there is one master index extent, one cylinder index extent, and
one prime data area extent, DSKXTNT=2 could be specified.

ERREXT=YES: This operand is required for IOCS

to supply your program with detailed information
about unrecoverable I/O errors occurring before a
data transfer takes place, and for your program to be
able to use the ERET imperative macro to return to
IOCS specifying an action to be taken for an error
condition.

Some error information is available for testing by
your program after each imperative macro is execut­
ed, even if ERREXT=YES is not specified, by refer­
encing fieldflienameC. Filename is the same name
as that specified in the DTF header entry for the file.
One or more of the bits in the filenamec byte may

DEVICE = Device in use

be set to 1 by IOCS. The meaning of the bits varies
depending on which parameter was specified in the
IOROUT operand; Figure 3-22 shows the meaning if
IOROUT=ADD, RETRVE, or ADDRTR was specified;
Figure 3-23 shows the meaning if IOROUT=LOAD

was specified.

If ERREXT=YES is not specified, IOCS returns the
address of the DTF table in register 1, as well as any
data-transfer error information in filenamec, after
each imperative macro is executed; non-data­
transfer error information is not given. After testing
filenamec, return to IOCS by issuing any imperative
macro except ERET; no special action is taken by
IOCS to correct or check an error.

If ERREXT=YES is specified, IOCS returns the ad­
dress of an ERREXT parameter list in register 1 after
each imperative macro is executed, and information
about both data-transfer and non-data-transfer er­
rors in filenamec. The format of the ERREXT par­
ameter list is shown in Figure 3-25. After testing
filenamec and finding an error, return to IOCS by
using the ERET imperative macro; IOCS takes the
action indicated by the ERET operand. If HOLD=YES

(and ERREXT=YES), ERET must be used to return to
IOCS to free any held track.

In your program, you should check byte 16, bit 7
of the DTF for a blocksize compatibility error when
adding to, or extending a file. If the blocksize of
your program is not equal to the blocksize of the
previously built file, this bit will be set to 1.

HINDEX= @l1123141333013340}: This entry
specifies the unit containing the highest index.

For devices supported by DOSjVSE and not in­
cluded in the above operand specification, specify
device codes as listed in Figure 3-24.

Placing the highest index on a separate unit is
recommended only if that unit is physically separate
from the unites) holding the track indexes and the
data of the file, and if it has its own access mecha­
nism.

specification
2311 2314 2319 3330-1,2* 3340, 35MB 3340, 70MB

Default x

2311 x

2314 x x

3330

3340

• Also 3350 in 3330-1 compatibility mode.

Figure 3-21. DEVICE= specifications for DTFIS.

x

x x

Chapter 3: Declarative Macros 3-35

Bit Cause Explanation

a DASD error An uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length recorC! A wrong length record has been detected during an I/O operation.

2 End of file The EOF condition has been encountered during execution of the sequential retrieval
function.

3 No record found The record to be retrieved has not been found in the file. This applies to Random (RANSEQ)
and to SETl in SEQNTl (RANSEQ) when KEY is specified, or after GKEY.

A lBegai iD specified The iD specified to the SETl in SEQNTl (RANSEO) is outside the prime file limits. ...
5 Duolicate record The record to be added to the file has a duolicate record kev of another record in the file.

6 Overflow area full An overflow area in a cylinder is full, and no independent overflow area has been specified;
or an independent overflow area is full, and the addition cannot be made. You should assign
an independent overflow area or extend the limit.

7 Overflow The record being processed in one of the retrieval functions (RANDOM/SEONTl) is an
overflow record.

Figure 3-22. FilenameC - status or condition code byte iflOROUT=ADD, RETRVE, or ADDRTR

Bit Cause Explanation

a DASD error An uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/O operation.

2 Prime area full The next to the last track of the prime data area has been filled during the load or extension

of the file. You should issue the ENDFl macro, then do a load extend on the file with new

extents given.

3 Cylinder index area full The cylinder index area is not large enough to contain all entries needed to index each

cylinder specified for the prime data area. This condition can occur during the execution of

the SETFl. You must extend the upper limit of the cylinder index by using a new extent

card.

4 Master index full The master index area is not large enough to contain a" the entries needed to index each

track of the cylinder index. This condition can occur during SETFl. You must extend the

upper limit, if you are creating the file, by using an extent card. Or, you must reorganize the

file and assign a larger area.

5 Duplicate record The record being loaded is a duplicate of the previous record.

6 Sequence check The record being loaded is not in the sequential order required for loading.

7 Prime data area over- There is not enough space in the prime data area to write an EOF record. This condition can ,
flow occur during the execution of the ENDFl macro.

Figure 3-23. FilenameC - status or condition code byte iflOROUT=LOAD.

HOLD=YES: This operand provides for the track
hold option for both data and index records. If the
HOLD operand is omitted, the track hold function is
not performed. Because track hold cannot be per­
formed on a LOAD file, HOLD=YES cannot be speci­
fied when IOROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program
must issue the ERET macro to return to the ISAM

module to free any held tracks.

INDAREA=name: This operand specifies the
name of the area assigned to the cylinder index. If
specified, all or part of the cylinder index resides in

3-36 DOS/VSE Macro Reference

virtual storage thereby increasing throughput. If this
operand is included, INDSIZE must be included.

If the area assigned to INDAREA is large enough
for all the index entries to be read into virtual stor­
age at one time and the index skip feature (INDSKIP)

is not specified, no presorting of records need be
done. If the area assigned to INDAREA is not large
enough, the records processed should be presorted to
fully utilize the resident cylinder index.

INDSKIP=YES: When cylinder index entries re­
side in virtual storage, this operand specifies the
index skip feature. This feature allows ISAM to skip
any index entries preceding those needed to process

HINDEX = Device in use
specification

2311 2314 2319 3330-1,2* 3340,35MB 3340,70MB

Default x

2311 x

2314 x x

3330 x

3340

* Also 3350 in 3330-1 compatibility mode.

Figure 3-24. HINDEX= specifications for DTFIS.

Bytes Bits Contents

0-3 -- DTF address

4-7 - Virtual storage address of the record in er-
ror

8-15 - DASD address (mbbcchhr) of the error
where m is the extent sequence number
and r is a record number which can be in-
accurate if a read error occurred during a
read of the highest level index.

16 Record identification:
1 Data record
2 Track index record
3 Cylinder index record

Master index record

Type of operation:
4 Not used
5 Not used
6 Read
7 Write

17 - Command code of failing CCW

Figure 3-25. ERREXT parameter list.

a given key. If the index skip operand is omitted, the
cylinder indexes are processed sequentially.

This operand may be specified only with the
INDAREA and INDSIZE operands and increases
throughput only when:

• The records are presorted.
• The allocated virtual storage is insufficient for

storing all of the cylinder index.
• One or more large segments of the file are not

referenced.

INDSIZE=n: This operand specifies the length (in
bytes) of the index area assigned in virtual storage to
the cylinder index by INDAREA. The minimum you
can specify is:

n=(m+ 3)(keylength+6)

where

m = the number of entries to be read into virtual
storage at a time.

3 = the number of dummy entries
6 = a pointer to the cylinder

x x

If m is set equal to the number of prime data
cylinders+ I, the entire cylinder index is read into
virtual storage at one time. The maximum value for
n = 32767.

The resident index facility is suppressed if this
operand is omitted, the minimum requirement is not
met at assembly time, or an unrecoverable read er­
ror is encountered while reading the index.

IOAREAL=name: This operand must be included
when a file is created (loaded) or when records are
added to a file. It specifies the name of the output
area used for loading or adding records to the file.
The specified name must be the same as the name
used in the DS instruction that reserves the area of
storage. The ISAM routines construct the contents of
this area and transfer records to DASD.

This output area must be large enough to contain
the count, key, and data areas of records. Further­
more, the data-area portion must provide enough
space for the sequence-link field of overflow records
whenever records are added to a file (see Figure
3-26).

If IOAREAL is increased to permit the reading and
writing of more than one physical record on DASD at
a time, the IOSIZE operand must be included when
records are added to the file. In this case, the
IOREAL area must be at least as large as the number
of bytes specified in the IOSIZE operand.

When simultaneously building two ISAM files
using two DTFS, do not use a common IOAREAL.

Also, do not use a common area for IOAREAL,

IOAREAR, and IOAREAS in multiple DTFS.

IOAREAR=name: This operand must be included
whenever records are processed in random order. It
specifies the name of the input/output area for ran­
dom retrieval (and updating). The specified name
must be the same as that used in the DS instruction
that reserves this area of storage.

The I/O area must be large enough to contain the
data area for records. Furthermore, the data-area

Chapter 3: Declarative Macros 3-37

OUTPUT AREA REQUIREMENTS (IN BYTES)
FUNCTION

Count Key Sequence Link Data

Load Unblocked Records 8 Key Length - Record Length

Load Blocked Records 8 Key Length - Record Length x Blocking Factor

Add Unblocked Records 8 Key Length 10 Record Length
--0·

8 Key Length - Record Length x Blocking Factor
Add Blocked Records OR*

8 Key Length 10 I Record Length

* Wh ichever I s Larger

Figure 3-26. Output area requirements for loading or adding records to a file by ISAM.

I/O AREA REQUIREMENTS (IN BYTES)

FUNCTION
Count Key Sequence Link Data

Retrieve Unblocked Records - Key Length for sequential 10 Record Length
unblocked records

- -- - Record Length (including keys) x
Blocking Factor

Retrieve Blocked Records OR*
- -- 10 I Record Length

* Whichever Is Larger

Figure 3-27. I/O area requirements for random or sequential retrieval by ISAM.

portion must provide enough space for the
sequence-link field of overflow records (see Figure
3-27).

IOAREAS=name: This operand must be included
whenever records are processed in sequential order
by key. It specifies the name of the input/output
area used for sequential retrieval (and updating).
The specified name must be the same as that used in
the os instruction that reserves this area of storage.

This I/O area must be large enough to contain the
key and data areas of unblocked records and the
data area for blocked records. Furthermore, the
data-area portion must provide enough space for the
sequence-link field of overflow records (see Figure
3-27).

IOAREA2=name: This operand permits overlap­
ping of I/O with indexed sequential processing for
either the load (creation) or sequential retrieval
functions. Specify the name of an I/O area to be
used when loading or sequentially retrieving re­
cords. The I/O area must be at least the length of the
area specified by either the lOA REAL operand for the
load function or the 10AREAS operand for the se­
quential retrieval function. If the operand is omit-

3-38 DOS/VSE \1acro Reference

ted, one I/O area is assumed. If TYPEFLE=RANSEQ,

this operand must not be specified.

IOREG=(r): This operand must be included when­
ever records are retrieved and processed directly in
the I/O area. It specifies the register that ISAM uses
to indicate which individual record is available for
processing. ISAM puts the address of the current
record in the designated register (any of 2 through
12) each time a READ, WRITE, GET, or PUT is execut­
ed.

IOROUT= {LOADIADDIRETRVEIADDRTR}:
This entry must be included to specify the type of
function to be performed. The parameters have the
following meanings:

LOAD

ADD

To build a logical file on a DASD or to extent a
file beyond the highest record presently in a
file.

To insert new records into a file.

RETRVE

To retrieve records from a file for either ran­
dom or sequential processing and/or updating

ADDRTR

To both insert new records into a file (ADD)

and retrieve records for processing and/or up­
dating (RTR).

IOSIZE=n: This operand specifies the (decimal)
number of bytes in the virtual-storage area assigned
for the add function using IOAREAL. The number n
can be computed using the following formula:

n = m(keylength+blocksize+40)+24

where m is the maximum number of physical re­
cords that can be read into virtual storage at one
time; 40 is the sum of 8 for the count field and 32 for
an ISAM ccw; 24 is another ISAM CCW. The number
n must be at least equal to

(keylength+blocksize+ 74)

This formula accounts for a needed sequence link
field for unblocked records or short blocks (see Fig­
ure 3-26 and Figure 3-27).

If the operand is omitted, or if the minimum re­
quirement is not met, no increase in throughput is
realized.

The number n should not exceed the track capac­
ity because throughput cannot be increased by spec­
ifying a number larger than the capacity of a track.

KEY ARG=name: This operand must be included
for random READ/WRITE operations and sequential
retrieval initiated by key. It specifies the symbolic
name of the key field in which you must supply the
record key to ISAM.

KEYLEN=n: This operand must be included to
specify the number of bytes in the record key.

KEYLOC=n: This operand must always be speci­
fied if RECFORM=FIXBLK. It supplies ISAM with the
high-order position of the key field within the data
record. That is, if the key is recorded in positions
21-25 of each record in the file, this operand should
specify 21.

ISAM uses this specification to locate (by key) a
specified record within a block. The key area of a
block of records contains the key of the highest re­
cord in the block. To search for any other records,
IS AM locates the proper block and then examines the
key field within each record in the block.

MODNAME=name: This operand may be used to
specify the name of the logic module used with the
DTF table to process the file. If the logic module is
assembled with the program, the MODNAME in the
DTF must specify the same name as the ISMOD ma­
cro. If this entry is omitted, standard names are

generated for calling the logic module. If two DTF

macros call for different functions that can be han­
dled by a single module, only one module is called.

MSTIND=YES: This operand is included when­
ever a master index is used or is to be built for a file.
The location of the master index is specified by an
EXTENT job control statement.

NRECDS=n: This operand specifies the number of
logical records in a block (called the blocking fac-
tor). It is required only if RECFORM=FIXBLK. For
FIXBLK, n must be > 1; for FIXUNB, n must be = 1.

RDONL Y = YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. Each task should have its own uniquely
defined save area. Register 13 must contain the ad­
dress of the save area associated with the task each
time an imperative macro (except OPEN, OPENR,

LBRET, SETL, or SETFL) is issued. The fact that the
save areas are unique for each task makes the mo­
dule reentrant (that is, capable of being used concur­
rently by several tasks).

RECFORM= {FIXUNBIFIXBLK}: This operand
specifies whether records are blocked or unblocked.
FIXUNB is used for unblocked records, and FIXBLK

for blocked records. If FIXBLK is specified, the key
of the highest record in the block becomes the key
for the block and must be recorded in the key area.

The specification that is included when the logi­
cal file is loaded onto a DASD must also be included
whenever the file is processed.

Records in the overflow area(s) are always un­
blocked, but this has no effect on this operand.
RECFORM refers to records in the prime data area
only.

RECSIZE=n: This operand must be included to
specify the number of characters in the data area of
each individua~ record. This operand should specify
the same number for additions and retrieval as indi­
cated when the file was created.

SEPASMB= YES: Include this operand only if the
DTFIS is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

Chapter 3: Declarative Macros 3-39

TYPEFLE= {RANDOMISEQNTLIRANSEQ}:
This operand must be included when
IOROUT=RETRVE or IOROUT=ADDRTR. The ope­
rand specifies the type(s) of processing performed by
your program for the file.

RANDOM

is used for random processing. Records are
retrieved in random order specified by key.

SEQNTL

is used for sequential processing. Your pro­
gram specifies the first record retrieved, and
thereafter ISAM retrieves records in sequential
order by key. The first record is specified by
key, ID, or the beginning of the logical file see
"SETL Macro".

RAN SEQ

is used if both random and sequential process­
ing are to be performed for the same file. If
RAN SEQ is specified, the IOAREA2 operand
must not be specified.

TYPEFLE is not required for loading or adding
functions.

VERIFY = YES: Use this operand if you want to
check the parity of disk records after they are writ­
ten. If this operand is omitted, any records written
on a disk are not verified.

WORKL=name: This operand must be included
whenever a file is created (loaded) or records are
added to a file. It specifies the name of the work
area in which you must supply the data records to
ISAM for loading or adding to the file. The specified
name must be the same as the name used in the DS

instruction that reserves this area of storage.

This work area must provide space for one logical
record when a file is created (for blocked records:
data; for unblocked records: key and data).

The original contents of WORKL are changed due
to record shifting in the ADD function.

3--40 DOS/VSE Macro Reference

WORKR=name: When records are processed in
random order, this operand must be included if the
individual records are to be processed in a work area
rather than in the I/O area. It specifies the name of
the work area. This name must be the same as the
name used in the DS instruction that reserves this
area of storage. This area must provide space for
one logical record (data area). When this entry is
included and a READ (or WRITE) macro is executed,
ISAM moves the individual record to (or from) this
area.

WORKS=YES: When records are processed in
sequential order, this operand must be inciuded if
the individual records are processed in work areas
rather than in the I/O area. Each GET and PUT ma­
cro must specify the name of the work area to or
from which IS AM is to move the record. When proc­
essing unblocked records, the area must be large
enough for one record (data area) and the record
key (key area). For blocked records, the area must
be large enough for one logical record (data area)
only. The work area requirements are as shown in
Figure 3-28.

Unblocked Blocked Records
Records

load (KL + Dl) or 1 0 • DL or 10·

ADD (KL + DL) or 10· DL or (Kl + 1 0)·

Random Retrieve DL DL

Sequential Re- KL + DL DL
trieve

K=KEY, D=Data, L=Length
• Whichever is greater

Figure 3-28. Work area requirements.

ISMODMacro

Operand Remarks

ERREXT=YESI Required if non-data-transfer error con-
ditions or ERET are desired.

CORDAT A = YES Required to add records using the DTF
10SIZE operand.

CORINDX = YES2 Required to add or retrieve records with
the cylinder index entries in virtual stor-
age.

HOLD=YES Specifies the track hold option.

IOAREA2 = YES Required if two I/O areas are to be
used.

10ROUT= Specifies function to be performed.
{LOAD\
ADD\
RETRVE2 \

ADDRTR}

RDONLY=YESI Required if a read-only module is to be
generated.

RECFORM= Describes file. Required if 10ROUT
{FIXUNB\ specifies ADD or ADDRTR. If lOR OUT
FIXBLK\ specifies LOAD or RETRVE, BOTH is
BOTHI} assumed.

RPS=SVA To assemble RPS logic modules.

SEPASMB=YES If the module is assembled separately.

TYPEFLE= Required if 10ROUT specifies RETRV or
{RANDOM \ ADDRTR.
SEONTL\
RANSEO)

I Value assumed if RPS=SVA specified.
2 Value assumed if RPS=SVA and 10ROUTE=ADD or
RETRVE specified.

Figure 3-29. Operands of the ISMOD macro.

Note: If an ISMOD module precedes an assembler language
USING statement or follows your program, registers 2-12 remain
unrestricted even at assembly time. However, if the ISMOD
module lies within your program, you should issue the same
USING statement (as that which was issued before the ISMOD
module) directly following the module. This action is necessary
because the ISMOD module uses registers 1,2, and 3 as base
registers, and the ISMOD CORDATA module uses registers 1,2,
3, and 5 as base registers. Each time either module is assembled,
these registers are dropped.

CORINDX=YES: Include this operand to gener­
ate a module that can process DTFIS files (add or
random retrieve functions) with or without the cyl­
inder index entries resident in virtual storage. If
omitted, the module generated cannot process the
resident cylinder index entries.

If an unrecoverable I/O error occurs while read­
ing indexes into virtual storage, the program will not
use the resident cylinder index entries.

CORDATA=YES: Include this operand if the mo-

dule is to add records to files with the 10SIZE DTFIS
operand. If this operand is included, the IOSIZE ope­
rand is required in the DTF. If you omit the
CORDATA=YES operand, you will not have an in­
crease in throughput when adding records to a file.

ERREXT=YES: Include this operand if the ERET
macro is to be used with this module or if non-data­
transfer error conditions are returned in filenamec.
If HOLD=YES and ERREXT=YES, your program must
issue the ERET macro to return to the ISAM module
to free any held tracks. See the DTF ERREXT and
HOLD operands.

HOLD=YES: This operand provides for the track
hold option for both data and index records. If the
HOLD operand is omitted, the track hold function is
not performed.

Because track hold cannot be performed on a
LOAD file, HOLD=YES cannot be specified when
10ROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program
must issue the ERET macro to return to the ISAM
module to free any held tracks.

IOAREA2=YES: Include this operand if a second
I/O area is to be used - that is, if IOAREA2 is speci­
fied in any of the DTFS linked to the logic module.
The operand is only valid for load or sequential
retrieval functions. The module can process DTFs
with one or two I/O areas specified. This operand
must not be specified if TYPEFLE=RANSEQ is speci­
fied.

IOROUT= {LOAD\ADDIRETRVE\ADDRTR}:
This operand specifies the type of module required
to perform a given function.

LOAD

ADD

generates a module for creating or extending a
file.

generates a module for adding new records to
an existing file.

RETRVE
generates a module to retrieve, either random­
ly or sequentially, records from a file.

ADDRTR
generates a module that combines the features
of the ADD and RETRVE modules. This module
also processes any file in which only ADD or
RETRVE is specified in the IOROUT operand of
the DTF, and in which the TYPEFLE operand
contains the corresponding parameter (or a
subset of it).

Chapter 3: Declarative Macros 3-41

RDONL Y = YES: This operand causes a read-only
module to be generated. Whenever this operand is
specified, any DTF used with the module must have
the same operand.

RECFORM= {FIXUNBIFIXBLKIBOTH}: This
operand generates a module that creates, adds to, or
processes an unblocked (FIXUNB) or blocked
(FIXBLK) file. If BOTH is specified, a moduie is gen­
erated to process both unblocked and blocked files,
and the DTF may specify either FIXUNB or FIXBLK in
the RECFORM operand. The RECFORM operand is
required only when IOROUT specifies ADD or
ADDRTR. If IOROUT specifies LOAD or RETRVE, a
module that handles fixed-length blocked and un­
blocked files is generated, and the operand is not
required.

RPS=SVA This operand causes the RPS logic mo­
dules to be assembled.

SEPASMB=YES: Include this operand only if the
module is assembled separately. This causes a
CAT ALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and defines the module name as an ENTRY
point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem­
bled with the DTF and the problem program and no
CAT ALR card is punched.

TYPEFLE= {RANDOMI SEQNTLIRANSEQ}:
This operand is required when IOROUT specifies
RETRVE or ADDRTR. RANDOM generates a module
that includes only random retrieval capabilities.
SEQNTL generates a module that includes only se­
quential retrieval capabilities. RANSEQ generates a
module that includes random and sequential capa­
bilities. It also processes any file in which the
TYPEFLE operand specifies either RANDOM or
SEQNTL. If TYPEFLE=RANSEQ, IOAREA2=YES must
not be specified.

When all operands are omitted, the ISMOD mo­
dule can only process files where IOROUT=RETRVE,
TYPEFLE=RANSEQ, CORINDX, CORDATA, HOLD, and
RDONL Yare not specified. The name of that module
is IJHZRBZZ.

Standard ISMOD Names
Each name begins with a 3-character prefIX (IJH)
and continues with a 5-character field corresponding
to the options permitted in the generation of the
module.

ISMOD name = DHabcde

3-42 DOS/VSE Macro Reference

a = A RECFORM=BOTH, IOROUT=ADD or ADDRTR
B RECFORM=FIXBLK, IOROUT=ADD or

ADDRTR
U RECFORM=FIXUNB, IOROUT=ADD or

ADDRTR
Z RECFORM is not specified. (IOROUT=LOAD or

RETRVE)
b A IOROUT=ADDRTR

IOROUT=ADD
L IOROUT=LOAD
R IOROUT=RETRVE
V IOROUT=ADDRTR, RPS=SVA
X IOROUT=LOAD, RPS=SVA

c = B TYPEFLE=RANSEQ
G IOAREA2= YES, TYPEFLE=SEQNTL or

IOROUT=LOAD
R TYPEFLE=RANDOM
S TYPEFLE=SEQNTL
Z neither is specified (lOROUT=LOAD or ADD)

d B CORINDX=YES and HOLD=YES
C CORINDX= YES
0 HOLD=YES
Z neither is specified

e = F CORDATA=YES, ERREXT=YES, RDONLY=YES
G CORDATA=YES and ERREXT=YES
0 CORDATA=YES and RDONLY=YES
P CORDATA= YES
S ERREXT= YES and RDONL Y = YES
T ERREXT=YES
Y RDONLY=YES
Z neither is specified

Subset/Superset ISMOD Names
Figure 3-30 shows the subsetting and supersetting
allowed for ISMOD names. Five parameters allow
supersetting. For example, the module IJHBABZZ is
a superset of the module IJHBASZZ.

+ + + + +
I J H A A B B F

B I R 0 0
z + + + +
+ ABC S
A R S Z Y
U * + +
Z L G G

S P
+ +
G T
Z Z

+ Subsetting/supersetting permitted.
* No subsetting/su~ersetting permitted.

Figure 3-30. Subsetting and supersetting of ISMOD names.

If two or more modules with the same entry point
are included, the linkage editor message 21431,

(invalid duplication of entry point label) is generat­
ed. (Occasionally these entry points are not obvious
when using the preceding chart, but the module can
perform the indicated functions.) This message can
usually be supressed by including a superset mo­
dule. However, modules with and without prime
data in main storage or modules with
TYPEFLE=RANDOM and IOAREA2=YES cannot be
combined. Therefore, you should take either of the
following actions:

1. Specify prime data in core for each ADD type
DTF in your program. In this case, superset mo­
dules are generated.

2. Specify the MODNAME operand in the DTF, and
include an ISMOD of that name. The DTF then
generates only the specified module.

Chapter 3: Declarative Macros 3-43

DTFMRMacro
DTFMR defmes an input file processed on a 1255, 1259, or 1419 magnetic character reader, or a 1270 or 1275
optical character reader/sorter.

M DEVADDR = SYSnnn S~mbolic unit assigned to the magnetic character reader.

M 10AREA 1 = xxx xxx xx Name of the document buffer area.

0 ADDAREA = nnn I Additional document buffer area (ADDAREA+RECSIZE=250). If omitted, no area is
~1I,,"nA u.ltV"Cu.

0 ADDRESS = DUAL Must be included only if the device is a 1419 or 1275 with a dual address adapter.

0 BUFFERS=nnn Specifies the number of buffers needed. If omitted 25 is assumed.

0 ERR OPT == xxxxxxxx Name of your error routine. Required only if the CHECK macro is used.

0 EXTADDR = xxxxxxxx Name of your stacker selection routine. Required only if SORTMDE=ON.

0 If"\Dt::~_/~~\
''-'IIL...'-A-\IIIIJ Pointer register number. if omitted, register 2 is assumed. General registers 2-12,

written in parentheses.

0 MODNAME =xxxxxxxx Name of your I/O module. Required only if a nonstandard module is referenced.

0 RECSIZE=nnn Specifies the maximum record length. If omitted, 80 is assumed.

0 SECADDR =SYSnnn Specifies secondary symbolic unit assigned to (dual address) 1275 or 1419. Required
only if LITE macro is used.

0 SEPASMB=YES Required only if the DTF is assembled separately; otherwise it should be omitted.

0 SORTMDE=xxx ON - 1255/1259/1270 or program sort mode used; OFF - 1419/1275 sort mode used.

M = Mandatory
0= Optional

Figure 3-31. DTFMR macro operands.

If omitted, ON is assumed.

ADDAREA=n: This operand must be included
only if an additional buffer work area is needed.
The parameter n specifies the number of additional
bytes you desire in each buffer. The sum of the
ADDAREA and RECSIZE specifications must not ex­
ceed 250. This area can be used as a work area
and/or output area and is reset to binary zeros when
the next GET or READ for the file is executed.

ADDRESS=DUAL: This operand must be includ­
ed only if the 1419 or 1275 contains the dual address
adapter. If the single address adapter is used, this
operand must be omitted.

BUFFERS= ~In}: This operand is included to
specify the number of buffers in the document buff­
er area. The limits for n are 12 and 254. 25 is as­
sumed if this operand is omitted.

DEVADDR=SYSnnn: This operand is required
and specifies the symbolic unit to be associated with
the file. The symbolic unit represents an actual I/O
device address used in the ASSGN job control state­
ment to assign the actual I/O device address to the
file.

ERROPT=name: This operand may be included
only if the CHECK macro is used. The name parame­
ter specifies the name of the routine that the CHECK

3-44 DOS/VSE Macro Reference

macro branches to if any error condition is posted in
byte 0, bits 2 to 4 (and bit 5, if no control address is
specified in the CHECK macro) of the buffer status
indicators. It is your responsibility to exit from this
routine (see the "CHECK Macro".)

EXT ADDR=name: This operand specifies the
name of your stacker selection routine to which con­
trol is given when an external interrupt is encoun­
tered while reading and sorting the documents inter­
nally. This operand may be omitted only when you
specify SORTMDE=OFF.

IOAREAl=name: This operand is required and
specifies the name of the document buffer area that
will be used by the file. Figure 4-3 shows the format
of the document buffer area.

IOREG= {(~)I(r)}: This operand specifies the
general-purpose register (one of2 to 12) that the
10CS routines and your routines use to indicate
which individual document buffer is available for
processing. 10CS puts the address of the current doc­
ument buffer in the specified register each time a
GET or READ is issued. Register 2 is assumed if this
operand is omitted.

The same register may be specified in the IOREG

entry for two or more files in the same program, if

desired. In this case, your program may need to
store the address supplied by IOCS for each record.

MODNAME=name: This operand specifies the
name of the logic module generated by MRMOD. If
the operand is omitted, IOCS generates the standard
system module name.

RECSIZE= @Qln}: This operand specifies the
actua11ength of the data portion of the buffer. The
record size specified must be the size of the largest
record processed. If this operand is omitted, a re­
cord size of 80 is assumed. The sum of the
ADDAREA and RECSIZE specifications must not ex­
ceed 250.

SECADDR=SYSnnn: This operand specifies the
symbolic unit to be associated with the secondary
control unit address if the 1419 or 1275 with the dual
address adapter and LITE macro are utilized. The
operand should be omitted if the pocket LITE macro
is not b~ing used.

SEPASMB=YES: Include this operand only if the
DTFMR is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CATALR card is punched.

SORTMDE= {Q!iIOFF}: This operand specifies
the method of sorting done on the 1419.
SORTMDE=ON indicates that the program sort mode
is being used. SORTMDE=OFF indicates that sorting

is under control of the magnetic character reader. If
the operand is omitted, the program sort mode is
assumed.

MRMODMacro
The first card contains MRMOD in the operation field
and may contain a module name in the name field.
If a module name is omitted, the following standard
module name is generated by IOCS:

IJU {~}ZZZZ

(S = single address adapter, and D = dual address
adapter).

The operands you can specify for MRMOD are
discussed below.

ADDRESS= {SINGLEIDUAL}: Required only if
the dual address adapter is used for the 1419 or
1275. If the operand is omitted, the single address
adapter is assumed by the assembler.

BUFFERS=nnn: A numeric value (nnn) equal to
the corresponding value specified in the DTFMR

macro.

SEP ASMB= YES: Include this operand only if the
module is assembled separately. This causes a
CATALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and the module name to be defmed as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the module is
being assembled with the DTF and the problem pro­
gram and no CATALR card is punched.

Chapter 3: Declarative Macros 3-45

D TFMT Macro
A DTFMT macro is included for each EBCDIC or ASCII magnetic tape input or output file that is to be processed .

Applies to

InDut Output

x x

x x

A

X X

x x

x x

x x

x

x x

x x

x x

x x

x x

x x

x

x x

x x

x

x x

x

I
x

x x

x x

x

x x

x

x

x x

M = Mandatory
O=Optional

I

Work

x M

x M

A
I . .

IVI

x M

M

0

0

0

x 0

x 0

x 0

0

0

0

0

x 0

x 0

x 0

x 0

x 0

I
0

x 0

x 0

0

x 0

0

0

0

Figure 3-32. DTFMT Macro Operands.

3-46 DOS/VSE Macro Reference

..
BLKSIZE=nnnnn Length of one I/O area in bytes (maximum = 32,767).

DEVADDR = SYSxxx Symbolic unit for tape drive used for this file.

EOFADDR=xxxxxxxx Name of your end-ot-file routine .

FILABL = xxxx (NO, STD, or NSTD). If NSTD specified, include LABADDR. If
omitted NO is assumed.

lOA REA 1 = xxxxxxxx Name of first I/O area.

ASCII=YES ASCII file processing is required.

BUFOFF=f!f! Length of block prefix if ASCH=YES.

CKPTREC = YES Checkpoint records are interspersed with input data records.
10CS bypasses checkpoint records.

ERREXT=YES Additional errors and ERET are desired.

ERROPT = xxxxxxxx (IGNORE, SKIP, or name of error routine). Prevents job termi-
nation on error records.

HDRINFO = YES Print header label information if FILABL=STD.

IOAREA2 = xxxxxxxx If two I/O areas are used the name of the second area.

IOREG=(nn) Register number. Use only if GET or PUT does not specify a
work area or if two I/O areas are used. Omit WORKA. General
registers 2-1 2, written in parentheses.

LABADDR = xxxxxxxx Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are processed.

LENCHK=YES Length check of physical records if ASCII = YES and
BUFOFF=4.

MODNAM E = xxxxxxxx Name of MTMOD logic module for this DTF. If omitted, 10CS
generates standard name.

NOTEPNT = xxxxxx (YES or POINTS). YES if NOTE, POINTW, POINTR, or POINTS
macro used. POINTS if only POINTS macro used.

RDONLY=YES Generate read-only module. Requires a module save area for
each task using the module.

READ = xxxxxxx (FORWARD or BACK). If omitted, FORWARD assumed.

RECFORM =xxxxxx (FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK, or
UNDEF). For work files use FIXUNB or UNDEF. If omitted,
FIXUNB is assumed.

I RECSIZE=nnnn Ilf RECFORM=FiX8LK, number of characters in record. if
RECFORM=UNDEF, general registers 2-12, written in par-
entheses. Not required for other records.

REWIND = xxxxxx (UNLOAD or NORWD). Unload on CLOSE or end-Of-volume, or
prevent rewinding. If omitted, rewind only.

SEPASMB=YES DTFMT is to be assembled separately.

TPMARK= {YESINO} Causes IOCS to write or to omit a tapemark ahead of data
records if FILABL=NSTD or NO is specified.

TYPEFLE = xxx xxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed.

VARBLD =(nn) Register number, if RECFORM=VARBLK and records are build
in the output area. General registers 2-12, written in par-
entheses.

WLRERR = xxxxxxxx Name of wrong-length-record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG.

I

ASCII= YES: This operand specifies that process­
ing of ASCII tapes is required. If this operand is
omitted, EBCDIC processing is assumed. ASCII=YES
is not permitted for work files.

BLKSIZE=nnnnn: Enter the length of the I/O area ..
If the record format is variable or undefined, enter
the length of the largest block of records. If a READ
or WRITE macro specifies a length greater than n for
work files, the record to be read or written will be
truncated to fit in the I/O area. The maximum block
size is 32,767 bytes. The minimum size of a physical
tape record (gap to gap) is 12 bytes. A record of
eleven bytes or less is treated as noise.

F or output processing of variable records, the
minimum physical record length is 18 bytes. If less
than 18 bytes are specified for variable blocked or
variable unblocked records, BLKSIZE= 18 is assumed.

F or output processing of spanned records, the
minimum physical record length is 18 bytes. If
SPNBLK or SPNUNB and TYPEFLE=OUTPUT are speci­
fied in the DTFMT and the BLKSIZE is invalid or less
than 18 bytes, an MNOTE is generated and
BLKSIZE= 18 is assumed.

F or ASCII tapes, the BLKSIZE includes the length
of any block prefix or padding characters present. If
ASCII=YES and BLKSIZE is less than 18 bytes (for
fixed-length records only) or greater than 2048
bytes, an MNOTE is generated because this length
violates the limits specified by American National
Standards Institute, Inc.

BUFOFF= {Q\n}: This operand indicates the
length of the block prefix. Enter the length of the
block prefix if processing of the block prefix is re­
quired. This operand can only be included when
ASCII=YES is specified. The contents of this field are
not passed on to you.

n can have the following values:

Value Condition

0-99 If TYPEFLE=INPUT

o IF TYPEFLE = OUTPUT

4 If TYPEFLE=OUTPUT and RECFORM=VARUNB or
VARBLK. In this case, the program automatically
inserts the physical record length in the block

prefix.

CKPTREC= YES: This operand is necessary if an
input tape has checkpoint records interspersed
among the data records. 10CS bypasses any check­
point records encountered. This operand must not
be included when ASCII=YES.

DEV ADDR= {SYSRDR\SYSIPT\SYSPCH\
SYSnnn\SYSLST} :

This operand specifies the symbolic unit to be asso­
ciated with the file. An ASSGN job control statement
assigns an actual channel and unit number to the
unit. The ASSGN job control statement contains the
same symbolic name as DEV ADDR. When processing
ASCII tapes, you must specify a programmer logical
unit (sysnnn).

EOF ADDR=name: This operand specifies the
name of your end-of-file routine. 10CS automatical­
ly branches to this routine on an end-of-file condi­
tion. This entry must be specified for input and
work files.

In your routine, you can perform any operations
required for the end of file (generally you issue the
CLOSE macro for the file). 10CS detects end-of-file
conditions in magnetic tape input by reading a tape­
mark and EOF when standard labels are specified. If
standard labels are not specified, 10CS assumes an
end-of-file condition when the tapemark is read, if
the unit is assigned to SYSRDR or SYSIPT when a /*
is read. You must determine, in your routine, that
this actually is the end of the file.

ERREXT=YES: This operand enables your
ERROPT or WLRERR routine to return to MTMOD by
means of the ERET (error return) macro. It also ena­
bles nonrecoverable I/O errors occurring before data
transfer takes place to be indicated to your program.
To take full advantage of this option, the
ERROPT=name operand must be specified.

ERROPT= {IGNORE\SKIP\name}: This ope­
rand specifies functions to be performed when an
error block is encountered. Either IGNORE, SKIP, or
the symbolic name of an error routine can be speci­
fied. The functions of these specifications are:

IGNORE

SKIP

The error condition is completely ignored, and
the records are made available for processing.
When reading spanned records, the entire
spanned record or a block of spanned records
is returned to the user rather than just the one
physical record in which the error occurred.

On output, the error is ignored and the physi­
cal record containing the error is treated as a
valid record. The remainder, if any, of the
spanned record segments are written, if possi­
ble.

No records in the error block are made avail­
able for processing. The next block is read
from tape, and processing continues with the
first record of that block. The error block is
included in the block count. When reading

Chapter 3: Declarative Macros 3-47

name

spanned records, the entire spanned record or
a block of spanned records is skipped rather
than just one physical record.

On output, the error is ignored and the physi­
cal record containing the error is treated as a
valid record. The remainder, if any, of the
spanned record segments are written.

10CS branches to your error routine named by
this parameter regardless of whether
ERREXT= YES is specified. In this routine, you
can process or make note of the error condition
as desired.

The ERR OPT operand applies to wrong-length
records if the WLRERR operand is not included. If
both ERR OPT and WLRERR are omitted and wrong­
length records occur, 10CS assumes the IGNORE op­
tion.

Note: For ASCII tapes, the pointer to the block in error indicates
the first logical record following the block prefix.

FILABL= lli9.ISTDINSTD}: This operand speci­
fies what type of labels are to be processed. STD
indicates standard labels, NO indicates no labels, and
NSTD indicates nonstandard labels. You must fur­
nish a routine to check or create the nonstandard
labels by using your own I/O area and an EXCP ma­
cro to read or write the labels. The entry point of
this routine is the operand of LABADDR.

The specification FILABL=NSTD is not permitted
for ASCII files (that is, when ASCII=YES). Labels and
tape data are assumed to be in the same mode.

HDRINFO= YES: This operand, if specified with
FILABL=STD, causes 10CS to print standard header
label information (fields 3-10) on SYSLOG each time
a file with standard labels is opened. It also prints
the filename, logical unit, and device address each
time an end-of-volume condition is detected. Both
FILABL=STD and HDRINFO=YES must be specified
for header label information to be printed.

IOAREAl=name: This operand specifies the name
of the I/O area. When variable-length records are
processed, the size of the I/O area must include four
bytes for the block size. This operand does not ap-
ply to work files.

IOAREA2=name: This operand specifies the name
of a second I/O area. When variable-length records
are processed, the size of the I/O area must include
four bytes for the blocksize. This operand does not
apply to work files.

3-48 DOS/VSE Macro Reference

IOREG=(r): This operand specifies the register in
which 10CS places the address of the logical record
that is available for processing if:

• two input or output areas are used.
• blocked input or output records are processed

in the I/O area.
• variable unblocked records are read.
• undefined records are read backwards.
• neither BUFOFF=O nor WORKA=YES is specified

for ASCII files.

For output files, 10CS places, in the specified reg­
ister, the address of the area where you can build a
record. Any of registers 2 to 12 may be specified.

This operand cannot be used ifwORKA=YES.

LABADDR=name: Enter the symbolic name of
your routine to process user-standard or nonstan­
dard labels.

For ASCII tapes, this operand may be used only
for writing and checking user standard labels that
conform to American National Standards Institute,
Inc., standards. You must process these labels in
EBCDIC. Nonstandard user labels are not permitted.

LENCHK=YES: This operand applies only to
ASCII tape input if BUFOFF=4 and
RECFORM=VARUNB or VARBLK. It must be included
if the block length (specified in the block prefix) is
to be checked against the physical record length. If
the two lengths do not match, the action taken is the
same as described under the WLRERR operand, but
the WLR bit (byte 5, bit I) in the DTF is not set.

MODNAME=name: This operand specifies the
name of the logic module used with the DTF table to
process the file. If the logic module is assembled
with the program, this operand must specify the
same name as the MODNAME operand of the MTMOD
macro. If this operand is omitted, standard names
are generated for calling the logic module. If two
DTF macros call for different functions that can be
handled by a single module, only one module is
called. For example, if one DTF specifies
READ=FORWARD and another specifies
READ=BACK, only one logic module capable of han­
dling both functions is called.

NOTEPNT= {POINTSIYES}: If the parameter
YES is specified, the NOTE, POINTW, POINTR, or
POINTS macros can be issued for a tape work file. If
POINTS is specified, only POINTS macros can be is­
sued for tape work files. The NOTEPNT operand
must not be specified for ASCII tape files because
ASCII work files are not supported by DOS/VSE.

RDONLY=YES: This operand is specified if the
DTF is used with a read-only module.

READ= {FORWARD\BACK}: This operand speci­
fies the direction in which the tape is read. If
READ=BACK is specified and a wrong-length record
smaller than the I/O area is encountered, the record
is read into the I/O area right-justified.

RECFORM= {FIXUNB\FIXBLK\V ARUNB\
V ARBLK\ SPNBLK\ SPNUNB\
UNDEF}:

This operand specifies the type of EBCDIC or ASCII
records in the input or output file. Enter one of the
following parameters:

FIXUNB For fIxed-length unblocked records
FIXBLK
VARUNB
VARBLK
SPNBLK

SPNUNB

UNDEF

For fIxed-length blocked records
For variable-length unblocked records
For variable-length blocked records
For spanned variable-length blocked records
(EBCDIC only)
For spanned variable-length unblocked records
(EBCDIC only)
F or undefIned records

Work files may use only FIXUNB or UNDEF.

RECSIZE= {n\(r)} For fixed-length blocked re­
cords, RECSIZE is required. It specifies the number
of characters in each record.

When processing spanned records, you must
specify RECslzE=(r) where r is a register that con­
tains the length of each record.

F or undefined records, this entry is required for
output files but is optional for input files. It specifies
a general register (any of 2 to 12) that contains the
length of the record. On output, you must load the
length of each record into the register before you
issue a PUT macro. Spanned-record output requires
a minimum record length of 18 bytes. A physical
record less than 18 bytes is padded with binary zeros
to complete the 18-byte requirement. This applies to
both blocked and unblocked records. If specified for
input, 10CS provides the length of the record trans­
ferred to virtual storage.

REWIND= {UNLOAD\NORWD}: If this specifi­
cation is not included, tapes are automatically re­
wound to load point, but not unloaded, on an OPEN
or OPENR or a CLOSE or CLOSER macro or on an
end-of-volume condition. If other operations are
desired for a tape input or output file, specify:

UNLOAD
to rewind the tape on an OPEN (or OPENR) and
to rewind and unload on a CLOSE (or CLOSER)
or on an end-of-volume condition.

NORWD
to prevent rewinding the tape at any time.
This option positions the read/write head be­
tween the two tapemarks that indicate the end­
of-file condition.

SEPASMB=YES: Include this operand only if the
DTFMT is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

TPMARK= {YES\NO}: A tapemark is normally
written for an output file if nonstandard labels are
specified (FILABL= NSTD). If no tape mark is desired,
TPMARK=NO should be specified. IfTPMARK=NO is
specified together with FILABL=STD, the former
specification is ignored. If FILABL=NO is specified or
the FILABL operand is omitted, TPMARK=YES must
be specified for 10CS to write a tape mark ahead of
the first data record.

TYPEFLE= {INPUT\OUTPUT\WORK}: Use
this operand to indicate whether the file is used for
input or output. If INPUT is specified, the GET macro
is used. If 0 UTPUT is specified, the PUT macro is
used. If WORK is specified, the READ/WRITE,

. NOTE/POINTx, and CHECK macros are used.

The specification of WORK in this operand is not
permitted for ASCII files.

V ARBLD=(r): This entry is required whenever
variable-length blocked records are built directly in
the output area (no work area is specified). It speci­
fies the number (r) of a general-purpose register
(any of2 to 12) that always contains the length of
the available space remaining in the output area.

10CS calculates the space still available in the
output area,and supplies it to you in the v ARBLD
register after the PUT macro is issued for a variable­
length record. You can then compare the length of
the next variable-length record with the available
space to determine whether the record will fit in the
remaining area. This check must be made before the
record is built. If the record does not fit, issue a
TRUNC macro to transfer the completed block of
records to the tape. The current record is then built
as the first record of the next block.

WLRERR=name: This operand applies only to
tape input files. It specifies the name of your routine
to receive control if a wrong-length record is read. If

Chapter 3: Declarative Macros 3-49

the WLRERR entry is omitted but a wrong-length
record is detected by 10CS, one of the following con­
ditions results:

• If the ERROPT entry is included for this file, the
wrong-length record is treated as an error
block, and handled according to your specifica­
tions for an error (IGNORE, SKIP, or name of
error routine).

• If the ERROPT entry is not included, 10CS as­
sumes the IGNORE option of ERR OPT.

3-50 DOS/VSE Macro Reference

WORKA=YES: Ifl/o records are processed in
work areas instead of in the I/O areas, specify this
operand. You must set up the work areas in virtual
storage, The symbolic address of the work area, or a
general-purpose register containing the address,
must be specified in each GET or PUT. Omit 10REG
if this operand is included. WORKA= YES is required
for spanned record processing.

MTMODMacro
Listed here are the operands you can specify for
MTMOD. The first card contains MTMOD in the oper­
ation field and may contain a module name in the
name field.

ASCII=YES: Include the operand if processing
ASCII input or output files is required. This entry is
not permitted for work files. If omitted, EBCDIC file
processing is assumed.

CKPTREC=YES: Include this operand ifinput
tapes processed by the module contain checkpoint
records interspersed among the data records. The
module also processes tapes that do not have check­
point records; that is, those whose DTFs do not speci­
fy CKPTREC= YES.

This entry is not needed for work files, and is not
valid for ASCII files.

ERREXT=YES: Include this operand if additional
I/O errors are to be indicated and! or the ERET ma-
cro is used with this DTF and module. ERROPT=YES
should be specified in this module for work files, but
is not needed for input or output files.

ERROPT=YES: Include this operand if the mo­
dule is to handle any of the error options for an er­
ror block. Code is generated to handle any of the
three options (IGNORE, SKIP, or name). The module
also processes any files in which the ERROPT ope­
rand is not specified in the DTF. This entry is needed
for work files, but it is not needed for input or out­
put files.

NOTEPNT= {YESIPOINTS}: This operand ap­
plies only to work files (EBCDIC only).

Include this operand if NOTE/POINTx logic is used
with the module. If YES is specified, the module
processes any NOTE, POINTR, POINTW, or POINTS
macro. If POINTS is specified, only the POINTS ma­
cro is processed.

Modules specifying either one of the two options
also process work files for which the NOTE/POINTx
operand is not specified in the DTF. Modules speci­
fying YES also process work files specifying only
POINTS.

RDONLY=YES: This operand causes a read-only
module to be generated. Whenever this operand is
specified, any DTF used with the module must have
the same operand.

Each time a read-only module is entered, register
13 must contain the address of a 72-byte
doubleword-aligned save area. Each task should

have its own uniquely defined save area and each
time an imperative macro (except an OPEN, OPENR,
or LBRET) is issued, register 13 must contain the
address of the save area associated with the task.
The fact that the save areas are unique for each task
makes the module reentrant (that is, capable of be­
ing used concurrently by several tasks).

If the operand is omitted, the module generated is
not reenterable and no save area is required.

READ= {FORW ARDIBACK}: This operand gen­
erates a module that reads tape files forward or
backward. If forward is specified, only code to read
tape forward is generated. Any DTF used with the
module must not specify BACK in the READ parame­
ter statement.

If the parameter is BACK, code to read tape both
forward and backward is generated, and any DTF
used with the module may specify either FORWARD
or BACK as its READ parameter. READ=BACK does
not handle multi-volume files.

This entry is not needed for work files.

RECFORM= {FIXUNBIFIXBLKIV ARUNBI
VARBLKISPNBLKISPNUNBI
UNDEF}:

This operand generates an input/output module
that processes either EBCDIC or ASCII fixed.;.length,
variable-length, or undefmed records.

If FIXUNB or FIXBLK is specified, a module is
generated that allows processing of both fixed-length
blocked and fixed-length unblocked records. Simi­
larly, ifvARUNB/SPNUNB or VARBLK/SPNBLK is
specified, a module is generated that allows process­
ing of both types of variable and spanned records.
ASCII files are not permitted in spanned record for­
mat.

If UNDEF is specified, a module for processing
undefmed record types is generated. Any DTF used
with the module must specify the same ·record for­
mat type as the module. For example, if the module
specifies RECFORM=FlXUNB, either
RECFORM=FlXUNB or RECFORM=FIXBLK may be
specified in the DTF.

This operand is not needed for work files.

If this operand is omitted, the module generated
will allow processing of both fixed-length blocked
and fixed-length unblocked records.

SEP ASMB= YES: Include this operand only if the
module is assembled separately. This causes a
CATALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and the module to be defmed as an ENTRY

Chapter 3: Declarative Macros 3-51

point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem­
bled with the DTF and the problem program and no
CA T ALR card is punched.

TYPEFLE= {OUTPUTIINPUTIWORK}: This
operand generates a module that processes either
GET/PUT macros or READ/WRITE, NOTE/POINTx and
CHECK macros for work files (EBCDIC only). If the
parameter of the operand specifies WORK, code to
process work files is generated. Otherwise, a module
to handle both input and output files is assumed.
'Only DTFS for work files may be used with work file
modules. Only DTFS for input or output files may be
llsed with an input/output module.

Note: INPUT and OUTPUT have the same table format and
logic modules.

WORKA=YES: This operand is to be included if
records are to be processed in work areas instead of
I/O areas for the GET/PUT macros. This operand
must be included if spanned records are processed.
The module also processes files that do not use a
work area. This entry is not needed for work files.

Standard MTMOD Names
Each name begins with a 3-character prefix (UF) and
continues with a 5-character field containing the
options permitted in module generation. In MTMOD
there are two module classes: the module class for
handling GET/PUT functions and the module class
for handling READ/WRITE, NOTE/POINTx, and
CHECK functions (work files). Modules handling
fixed-length (F and x) and undefined (U and N) re­
cords are mutually exclusive of each other and of all
forms of the module that process variable-length
records (v, R, and s).

Name list for GET/PUT type modules:

MTMOD name = UFabcde

a = F RECFORM=FIXUNB (or FIXBLK) (EBCDIC
mode)

b

X RECFORM=FIXUNB (or FIXBLK) (ASCII mode)

V RECFORM=VARUNB (or VARBLK) (EBCDIC
mode)

R RECFORM=VARUNB (or VARBLK) (ASCII mode)

S RECFORM=SPNUNB (or SPNBLK) (spanned re­
cords)

U RECFORM=UNDEF (EBCDIC mode)

N RECFORM=UNDEF (ASCII mode)

B READ=BACK
Z READ=FORWARD, or if READ is not specified

3-52 DOS/VSE Macro Reference

c = C CKPTREC= YES

Z CKPTREC= YES is not specified

d W WORKA=YES

Z WORKA=YES is not specified

e = M ERREXT=YES and RDONLY=YES
N ERREXT=YES

Y RDONLY=YES

Z ERREXT and RDONL Y not specified

Name list for work file type modules
(TYPEFLE= WORK):

MTMOD name = UFabcde

a = W

b E ERROPT= YES

Z ERROPT is not specified

c = N NOTEPNT=YES
S NOTEPNT=POINTS

Z NOTEPNT is not specified

d Z always

e = M ERREXT= YES and RDONL Y = YES

N ERREXT=YES
Y RDONLY=YES

Z ERREXT and RDONL Y not specified

Subset/Superset MTMOD Names
The charts in Figure 3-33 illustrate the sub setting

and supersetting allowed for MTMOD names. Four
of the GET/PUT parameters allow subsetting. For
example, the module name UFFBCWZ is a superset of
UFFBZWZ specifying fixed-length records.

For GET/PUT Type Modules:

* + + + +
I J F F B C W M

N Z Z Z Y
R +
U N
X Z
+
S
V

For Workfile Type Modules:

+ + +
I J F W E N Z M

Z S y
Z +

N
Z

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

Figure 3-33. Subsetting and supersetting of MTMOD names.

DTFORMacro
DTFOR is used to define an input file to be processed on a 1287 optical reader or 1288 optical page reader. The
macro is not used for the 3881 optical mark reader; for the 3881, use the DTFCD macro.

Applies to

1287T 12870

x x

x x

x x

x x

x

x x

x x

x x

x x

x

x

x

x x

x x

x x

x x

x

M = Mandatory
O=Optional

1288

x M

x M

x M

x M

0

x 0

x 0

x 0

0

x 0

0

0

x 0

x 0

x 0

x 0

0

Figure 3-34. DTFOR macro options.

COREXIT = xxxxxxxx

DEVADDR=SYSnnn

EOFADDR = xxxxxxxx

10AREA 1 =xxxxxxxx

BLKFAC=nn

BLKSIZE=nn

CONTROL=YES

DEVICE=xxxxx

HEADER=YES

HPRMTY=YES

IOAREA2 =xxxxxxxx

10REG=(nn)

MODNAM E = xxxxxxxx

RECFORM = xxxxxx

RECSIZE =(nn)

SEPASMB=YES

WORKA=YES

BLKFAC=n: Undefinedjournal tape records are
processed with greater throughput speeds when this
operand is included. This is accomplished by read­
ing groups of lines as blocked records. When unde­
fmed records are processed, BLKFAC specifies the
blocking factor (n) that determines the number of
lines read (through ccw chaining) as a block of data
by one physical read. Deblocking is accomplished
automatically by 10CS when the GET macro is used.
The BLKF AC parameter is not used with
RECFORM=FIXBLK, because the blocking factor is
determined from the BLKSIZE and RECSIZE parame­
ters. If the operand is included for FIXBLK, FIXUNB,

or document processing, the operand is noted (in an
MNOTE) and ignored.

BLKSIZE= ~In}: This operand indicates the
size of the input area specified by 10AREAl. For
journal tape processing, BLKSIZE specifies the maxi­
mum number of characters that can be transferred
to the area at anyone time.

,
Name of your correction routine

Symbolic unit assigned to the optical reader

Name of your end-of-file routine

Name of first input area

If RECFORM = UNDEF in journal tape mode

Length of I/O area(s). If omitted, 38 is assumed.

If CNTRL macro is to be used for this file

(1287D or 1287T). For 1288, specify 1287D. If omitted,
1287D is assumed.

If a header record is to be read from the optical reader key-
board by OPEN, OPENR

If hopper empty condition is to be returned.

If two input areas are used, name of second input area.

Register number if 2 input areas or UNDEF records are to be
used. If omitted, register 2 is assumed. General registers
2-1 2, written in parentheses.

Name of DTF's logic module. If omitted, IOCS generates a
standard name.

(FIXBLK, FIXUNB, or UNDEF). If omitted, FIXUNB is assumed.

Register number containing record size, if RECFORM=UNDEF.
If omitted, register 3 is assumed.

If the DTFOR is to be assembled separately.

If records are to be processed in a work area. Omit IOREG.

When undefined journal tape records are read,
the area must be large enough to accommodate the
longest record to be read if the BLKFAC parameter is
not specified. If the BLKF AC parameter is specified,
the BLKSIZE value must be determined by multiply­
ing the maximum length that must be accommodat­
ed for an undefined record by the blocking factor
desired. A BLKSIZE value smaller than this results in
truncated data.

If two input areas are used for journal tape proc­
essing (IOAREAl and IOAREA2), the size specified in
this entry is the size of each I/O area.

CONTROL=YES: This entry must be included if
a CNTRL macro is issued for a file. A CNTRL macro
issues orders to the optical reader to perform nonda­
ta operations such as line marking, stacker selecting,
document incrementing, etc.

Chapter 3: Declarative Macros 3-53

COREXIT=name: COREXIT provides an exit to
your error correction routine for the 1287 or 1288.
After a GET, WAITF, or CNTRL macro is executed (to
increment or eject and/or stacker select a docu­
ment), an error condition causes an error correction
routine to be entered with an error indication pro­
vided in filename+80. The byte at filename+80
contains the following codes indicating the condi­
tions that occurred during the last line or field read.
The byte should also be tested after issuing the opti­
cal reader macros DSPLY, RESCN, RDLNE, CNTRL

READKB, and CNTRL MARK. More than one error
condition may be present.

Code
Dec Hex

X'01'

2 X'02'

4 X'04'

8 X'08'

16 X'10'

32 X'20'

64 X'40'

Meaning

A data check has occurred. Five read
attempts for journal tape processing or
three read attempts for document proc­
essing were made.

The operator corrected one or more char­
acters from the keyboard (1287T) or a
hopper empty condition (see
HPRMTY=YES operand) has occurred
(12870).

A wrong-length record condition has
occurred (for journal tapes, five read at­
tempts were made; for documents, three
read attempts were made). Not applicable
for undefined records.

An equipment check resulted in an incom­
plete read (ten read attempts were made
for journal tapes or three for documents).

If an equipment check occurs on the first
character in the record, when processing
unpefined journal tape records, the
RECSIZE register contains zero, and the
10REG (if used) points to the rightmost
position of the record in the I/O area.
You should test the RECSIZE register be­
fore moving records from the work area
or the I/O area.

A nonrecoverable error occurred.

For the 1288, ieading in unformatted
mode, the end-of-page (EOP) condition
has been detected. Normally, on an EOP
indication, the problem program ejects
and stacker selects the document.

After issuing one of the macros CNTRl
ESO, CNTRl SSO, CNTRl EJO in your
COR EXIT routine, a late stacker selection
condition occurred.

For the 1287, a stacker select was given
after the allotted elapsed time and the
document was put in the reject pocket.

The 12870 scanner was unable to locate
the reference mark (for journal tapes, ten
read attempts were made; for documents,
three read attempts were made).

The byte filename+80 can be interrogated to
determine the reason for entering the error correc­
tion routine. Choice of action in your error correc­
tion routine is determined by the particular applica-
tion.

3-54 DOS/VSE Macro Reference

If you issue I/O macros to any device other than
the 1287 and/or 1288 in the COREXIT routine, you
must save registers 0, 1, 14, and 15 upon entering the
routine, and restore these registers before exiting.
Furthermore, if I/O macros (other than the GET,

WAITF, and/or READ, which cannot be used in
COREXIT) are issued to the 1287 and/or 1288 in this
routine, you must also save and later restore regis­
ters 14 and 15 before exiting. All exits from
COREXIT should be to the address specified in regis­
ter 14. This provides a return to the point from
which the branch to COREXIT occurred. If the com­
mand chain bit is on in the READ CCW for which the
error occurred, 10CS completes the chain upon re­
turn from the COREXIT routine.

Note: Do not issue a GET, READ, OPEN, or WAITF macro to
the 1287 or 1288 in the error correction routine. Do not process
records in the error correction routine. The record that caused the
exit to the error routine is available for processing upon return to
the mainline program. Any processing included in the error
routine would be duplicated after return to the mainline program.

When processing journal tapes, a nonrecovery
error (torn tape, tape jam, etc.) normally requires
that the tape be completely reprocessed. In this case,
your routine must not branch to the address in regis­
ter 14 from the COREXIT routine or a program loop
will occur. Following an unrecoverable error:

• the optical reader file must be closed.
• the condition causing the nonrecovery must be

cleared.
• the file must be reopened before processing can

continue.

If a nonrecoverable error occurs while processing
documents (indicating that a jam occurred during a
document incrementation operation, or a scanner
control failure has occurred, or an end-of-page con­
dition, etc.), the document should be removed either
manually or by non process runout. In such cases,
your program should branch to read the next docu­
ment.

If the 1287 or 1288 scanner is unable to locate the
document reference mark, the document cannot be
processed. In this case, the document must be eject­
ed and stacker selected before attempting to read the
following document or a program loop will result.

Whenever a nonrecoverable error occurs, your
COREXIT routine must not branch to the address in
register 14 to return to IOCS. Instead, the routine
should ignore any output resulting from the docu­
ment.

Eight binary error counters are used to accumu­
late totals of certain 1287 and 1288 error conditions.
Each of these counters occupies four bytes, starting
at filename+48. Filename is the name specified in
the DTF header entry. The error counters are:

Counter and
Address

1 filename + 48

2 filename+52

3 filename+56

4 filename+60

5 filename + 64

6 filename + 68

7 filename+ 72

8filename+ 76

Contents

Equipment check (see Note, below).

Equipment check uncorrectable after
ten read attempts for journal tapes or
three read attempts for documents
(see Note, below).

Wrong-length records (not applicable
for undefined records).

Wrong-length records uncorrectable
after five read attempts for journal
tapes or three read attempts for docu­
ments (not applicable for undefined
records).

Keyboard corrections (journal tape
only).

Journal tape lines (including retried
lines) or document fields (including re­
tried fields) in which data checks are
present.

Lines marked (journal tape only).

Count of total lines read from journal
tape or the number of CCW chains ex­
ecuting during document processing.

Note: Counters 1 and 2 apply to equipment checks that result
from incomplete reads or from the inability of the 1287 or 1288
scanner to locate a reference mark (when processing documents
only).

All the previous counters contain binary zeros at
the start of each job step. You may list the contents
of these counters for analysis at end of file, or at end
of job, or you may ignore the counters. The binary
contents of the counters should be converted to a
printable format.

DEVADDR=SYSnnn: This operand specifies the
logical unit (sysnnn) to be associated with the file.
The logical unit represents an actual I/O device ad­
dress used in the ASSGN job control statement to
assign the actual I/O device address to this file.

DEVICE= {1 28 7DI1287T}: This operand speci­
fies the I/O device associated with this file. 1287D
specifies a 1287 or 1288 document file. 1287T speci­
fies a 1287 journal tape file.

From this specification, 10CS sets up the device­
dependent routines for this file. For document proc­
essing you must code the CCws.

If this operand is omitted, 1287D is assumed.

EOF ADDR=name: This operand specifies the
name of your end-of-file routine. 10CS automatical­
ly branches to this routine on an end-of-file condi­
tion.

When reading data from documents, you can
recognize an end-of-file condition by pressing the
end-of-file key on the console when the hopper is
empty. When processing journal tapes on a 1287,

you can detect an end-of-file by pressing the end-of­
file key after the end of the tape is sensed.

When 10CS detects an end-of-fi1e condition, it
branches to your routine specified by EOF ADDR.
You must determine whether the current roll is the
last roll to be processed when handling journal
tapes. Regardless of the situation, the tape file must
be closed for each roll within your EOF routine. If
the current roll is not the last, OPEN (or OPENR) must
be issued. The OPEN (or OPENR) macro allows head­
er (identifying) information to be entered at the
reader keyboard and read by the processor when
using logical 10CS.

The same procedure can be used for 1287 proc­
essing of mUltiple journal tape rolls, as well as the
method described under "OPEN (or OPENR) Macro"
in the section "Imperative Macros".

HEADER=YES: This operand cannot be used for
1288 files. This operand is required if the operator is
to key in header (identifying) information from the
1287 keyboard. The OPEN (or OPENR) routine reads
the header information only when this entry is pre­
sent. If the entry is not included, OPEN (or OPENR)
assumes no header information is to be read. The
header record size can be as large as the BLKSIZE
entry and is read into the high-order positions of
10AREAl.

HPRMTY=YES: This operand is included if you
want to be informed of the hopper empty condition.
This condition occurs when a READ is issued and no
document is present, and is recognized at W AITF
time. When a hopper empty condition is detected,
your COREXIT routine is entered with X'02' stored in
filename + 80.

This operand should be used when processing
documents in the time-dependent mode of opera­
tion, which allows complete overlapping of process­
ing with reading. See the appropriate IBM 1287 de­
vice manuals for processing details. With this me­
thod of processing, specifying HPRMTY = YES allows
you to check for a hopper empty condition in your
COREXIT routine. You can then select into the prop­
er hopper the previously ejected document before
return from COREXIT (via register 14).

IOAREAl=name: This operand is included to
specify the name of the input area used by the file.
When opening a file and before each journal tape
input operation to this area, the designated area is
set to binary zeros and the input routines then trans­
fer records to this area. For document processing,
the area is cleared only when the file is opened.

Chapter 3: Declarative Macros 3-55

IOAREA2=name: A second input area can be al­
lotted only for a journal tape file. This permits an
overlap of data transfer and processing operations.
The specified second I/O area is set to binary zeros
before each input operation to this area occurs.

IOREG= {(~)I(r)}: This operand specifies a
general-purpose register (anyone of2 to 12) that the
input routines use to indicate the beginning of re­
cords for a journal tape file. The same register may
be specified in the IOREG operand for two or more
files in the same program, if desired. In this case,
your program may need to store the address sup­
plied by 10CS for each record. Whenever this entry
is included for a file, the DTFOR entry WORKA must
be omitted, and the GET macro must not specify a
work area.

A read by an optical reader is accomplished by a
backward scan. This places the rightmost character
in the record in the rightmost position in the I/O area
and subsequent characters in sequence from right to
left. The register defined by 10REG indicates the
leftmost position of the record.

MODNAME=name: This operand may be used to
specify the name of the logic module used with the
DTF table to process the file. If the logic module
(ORMOD) is assembled with the program, the
MODNAME parameter in this DTF must specify the
same name as the ORMOD macro.

If this entry is omitted, standard names are gener­
ated for calling the logic module. If two different
DTF macros call for different functions that can be
handled by a single module, only one standard­
named module is called.

RECFORM= {FIXUNBIFIXBLKIUNDEF}:
This operand specifies the type of records in an opti­
cal reader file. One of the following may be speci­
fied:

FIXUNB For ftxed-Iength unblocked records.

FIXBLK For ftxed-blocked records in journal tape mode.

UND EF For undeftned records.

RECSIZE= nl {(})I(r)}: For fixed-length un-

3-56 DOS/VSE Macro Reference

blocked records, this operand should be omitted and
no register is assumed.

For fixed-length blocked records (journal tape
mode), this operand must be included to specify the
number, n, of characters in an individual record.
The input routines use this number to deblock re­
cords, and to check the length of input records. If
this operand is omitted, an MNOTE is flagged in ine
macro assembly and fixed-length unblocked records
are assumed.

F or undefined journal tape records, this entry
specifies the number (r) of the generaJ.-purpose reg­
ister in which IOCS provides the length of each input
record. For undefined document records, RECSIZE

contains only the length of the last field of a docu­
ment read by the ccw chain that you supply. Any
one of registers 2 through 12 may be specified, but if
the operand is omitted, register 3 is assumed.

Note: When processing undefmed records in document mode,
you gain complete usage of the register normally used in the
RECSIZE operand. You can do this by ensuring that the
suppress-length-indication (SLI) flag is always on when process­
ing undeftned records.

SEP ASMB= YES: Include this operand only if the
DTFOR will be assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

WORKA=YES: Input records (journal tape only)
can be processed in work areas instead of in the in­
put areas. If this is planned, the operand
WORKA=YES must be specified, and you must set up
the work area in storage. The symbolic name of the
work area, or a general-purpose register containing
the address of the work area, must be specified in
each GET macro. When GET is issued, 10CS left­
justifies the record in the specified work area.
Whenever this operand is included for a file, the
DTFOR 10REG operand must be omitted.

ORMODMacro
Listed here are the operands you can specify for
ORMOD. The first card contains ORMOD in the oper­
ation field and may contain a module name in the
name field.

Note: ORMOD is not used for the 3881 Optical Mark Reader.
The 3881 uses CDMOD.

BLKFAC=YES: Include this operand if
RECFORM=UNDEF and groups of undefined journal
tape records are to be processed as blocks of data.
(See the DTFOR BLKFAC=n operand.) The DTFOR
used with this module must also include
RECFORM=UNDEF and BLKF AC=n.

CONTROL=YES: Include this operand ifcNTRL
macros are to be used with the associated DTFs. The
module also processes files that do not use the
CNTRL macro.

DEVICE= {1287D\1287T}: This operand must be
included to specify the I/O device associated with
this file. 1287D specifies a 1287 or 1288 document
fue. 1287T specifies a 1287 journal tape file.

IOAREA2=YES: Include this operand (journal
tape only) if a second I/O area is used. The DTFOR
used with this module must also include the
IOAREA2 parameter.

RECFORM= {FIXUNB\FIXBLK\UNDEF}:
This operand generates a module that processes the
specified record format. Any DTF used with the
module must have the same operand.

SEPASMB=YES: Include this operand only if the
module is assembled separately. This causes a
CAT ALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and the module name to be defmed as an
ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the ORMOD
macro is being assembled with the DTF and the
problem program and no CATALR card is punched.

WORKA=YES: Include this operand (journal tape
only) if records are to be processed in work areas
instead of in I/O areas. Any DTF used with the mo­
dule must have the same operand.

Standard ORMOD Names
Each name begins with a 3-character prefix (I1M)
followed by a 5-character field corresponding to the
options permitted in the generation of the module.

ORMOD name = I1Mabcde

a = F RECFORM=FIXUNB
X RECFORM=FIXBLK
U RECFORM=UNDEF
D RECFORM=UNDEF and BLKFAC=YES

b C CONTROL=YES
Z CONTROL=YES is not specified

c = I IOAREA2=YES
W WORKA=YES
B both are specified
Z neither is specified

d T device is in tape mode
D device is in document mode

e = Z always

Subset/Superset ORMOD Names
Figure 3-35 shows the sub setting and supersetting

allowed for ORMOD names. One of the parameters
allows subsetting. For example, the module
I1MFCITZ is a superset of the module I1MFZITZ.

* + * *
I J M DeB D Z

F ZIT
U W
x Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

Figure 3-35. Subsetting and supersetting of OR MOD names.

Chapter 3: Declarative Macros 3-57

DTFPHMacro
When physical 10CS macros (EXCP, WAIT, etc.) are used in a program, DASD, diskette, or tape files with
standard labels need to be defined by the DTFPH macro (DTFXX macro for a tIle handled by physical 10CS).
DTFPH must also be used for a checkpoint file on a disk.

M TYPEFLE = xxxxxx (INPUT or OUTPUT). Specifies type of file.

0 ASCII=YES ASCII file processing is required.

0 CiSiZE=n For Fixed Block Architecture DASD, Control Interval size.
0 CCWADDR = xxxxxxxx If CCB is generated by DTFPH is to be used.
0 DEVICE=xxxx (TAPE, FBA, 2311, 2314,3330,3340,3350,3540). If omitted, TAPE is assumed.
0 DEVADDR = SYSxxx Symbolic unit required only when not provided on an EXTENT statement.
0 HDRINFO=YES Print header label information.

0 LABADDR = xxxxxxxx Routine to check or build user standard labels.
0 MOUNTED=xxxxxx (ALL or SINGLE). Required for DASD files only; for diskette files, specify SINGLE.
0 XTNTXIT = xxxxxxxx If EXTENT statements are to be processed. DASD only.

M=Mandatory
O=Optional

Figure 3-36. DTFPH macro.

Figure 3-37 shows which of the DTFPH entries can or
must be coded to define a checkpoint file on disk.

Operand Optional Required
CCWADDR = name x
CISIZE=n x
DEVADDR = SYSnnn x
DEVICE=2311, 2314, 3330, x 3340,3350,3540, FBA
LABADDR = name x
MOUNTED=SINGLE x
TYPEFLE = OUTPUT x

Figure 3-37. Operands to define a checkpoint file on disk.

ASCII=YES: This operand is required to process
ASCII tape fiies. If this operand is omitted, EBCDIC
processing is assumed.

CCW ADDR=name: This operand allows you to
use the CCB generated within the first 16 bytes of the
DTFPH table. CCW ADDR specifies the symbolic name
of the first ccw used with the CCB generated within
the DTFPH macro. This name must be the same as
the name specified in the assembler CCW statement
that constructs the CCW.

If this operand is omitted, the location counter
value of the CCB-CCW table address constant is sub­
stituted for the ccw address.

CISIZE=n: This operand specifies the FBA Control
Interval size. The value n must be an integral multi­
ple of the FBA logical block size and, if greater than
8K, must be a multiple of 2K. The maximum value is

3-58 DOS/VSE Macro Reference

32768 (32K) except when assigned to SYSLST or
SYSPCH, when the maximum is 30720 (30K).

If DEVICE=FBA is specified, and CISIZE is omitted,
CISIZE=O is assumed. Control Interval size may be
overridden for an output file at execution time by
specifying the CISIZE parameter of the DLBL job
control statement. For an input file, the CISIZE value
in the format-l label is used.

DEVICE= {TAPEIFBAI2311 1231413330133401
335013540} :

If the file is contained on DASD or diskette, enter the
proper identification.

T APE applies to 8809 and any 2400j3400-series
tape unit, and is the only valid entry in this operand
for ASCII files.

FBA applies to 3310 and 3370.

For devices supported by DOS/VSE and not in­
cluded in the above operand specification, specify
device codes as listed in Figure 3-38.

DEV ADDR=SYSxxx: This operand must specify
the symbolic unit (Sysxxx) associated with the file if
a symbolic unit is not provided via an EXTENT job
control statement. If a symbolic unit is provided, its
specification overrides a DEV ADDR specification.
This specification, or symbolic unit, represents an
actual I/O address, and is used in the ASSGN job
control statement to assign the actual I/O device
address to this file.

If SYSLST or SYSPCH are used as output tape units
and alternate tape switching is desired upon detect-

DEVICE = Device in use

specification 2311 2314 2319 3330-1,2* 3330-11** 3340, 35MB 3340, 70MB 3350 TAPE 3310,3370

TAPE

2311 x

2314 x x

3330 x

3340

3350

FBA

* Also 3350 in 3330-1 compatibility mode.
* * Also 3350 in 3330-11 compatibility mode.

Figure 3-38. DEVICE= specifications for DTFPH.

ing a reflective spot, the SEOV macro must be used
(see "SEOV Macro"). When processing ASCII tape
files, the only valid specification is a programmer
logical unit (that is, sysnnn).

HDRINFO= YES: This operand causes IOCS to
print standard header label information (fields 3-10)
on SYSLOG each time a file with standard labels is
opened. Likewise, the filename, symbolic unit, and
device address are printed each time an end-of­
volume condition is detected. IfHDRINFO=YES is
omitted, no header or end-of-volume information is
printed.

x

x

x

x

x

LABADDR=name: This operand does not apply to
diskette input/output units.

You may require one or more DASD or tape labels
in addition to the standard file labels. If so, you
must include your own routine to check (on input)
or build (on output) your label(s). Specify the sym­
bolic name of your routine in this operand. IOCS
branches to this routine after the standard label is
processed.

LABADDR may be included to specify a routine
for your header or trailer labels as follows:

• DASD input or output: header labels only.
• Tape input or output: header and trailer labels.

Thus, if LABADDR is specified, your header labels
can be processed for an input/output DASD or tape
file, and your trailer labels can be built for a tape
output flie. Physical IOCS reads input labels and
makes them available to you for checking, and
writes output labels after they are built. This is simi­
lar to the funct~ons performed by logical IOCS.

If physical IOCS macros are used for a tape file, an
OPEN must be issued for the new volume. This caus-

x

x x

x x

x x

x x x x

x x

x

es IOCS to check the HDRI label and provides for
your checking of user standard labels, if any.

When physical IOCS macros are used and DTFPH
is specified for standard tape label processing, FEOV
must not be issued for an input file.

MOUNTED= {ALLISINGLE} This operand does
not apply to diskette input/output units.

This operand must be included to specify how
many extents (areas) of the file are available for
processing when the file is initially opened. This
operand must not be specified for tape.

ALL is specified if all extents are available for
processing. When a file is opened, IOCS checks all
labels on each disk pack and makes available all
extents specified by your control statements. Only
one OPEN or OPENR is required for the file. ALL
should be specified whenever you plan to process
records in a manner similar to the direct access me­
thod. In any case, you must supply an LBLTYP state­
ment.

After an OPEN or OPENR is performed, you must
be aware that the symbolic unit address of the first
volume containing the file is in bytes 30 and 31 of
the DTFPH table rather than in the CCB. Therefore,
place this symbolic address into bytes 6 and 7 of the
associated CCB before you issue an EXCP against this
CCB in your program.

SINGLE is specified if only the first extent on the
first volume is available for processing. SINGLE
should be specified when you plan to process re­
cords ~ sequential order. IOCS checks the labels on
the first pack and makes the first extent specified by
your control cards available for processing. You
must keep track of the extents and issue a subse-

Chapter 3: Declarative Macros 3-59

quent OPEN or OPENR whenever another extent is
required for processing. You will find the informa­
tion in the DTFPH table helpful in keeping track of
the extents. The DTFPH table contains:

Bytes Contents

0-15 CCB (symbolic unit has been initialized in the
CCB).

54-57 Extent uppai :imits (cchh).

58-59 Seek address. For a disk it must be zero.

60-63 Extent lower limit (cchh).

On each OPEN or OPENR after the first, IOCS

makes available the next extent specified by the
control cards. When you issue a CLOSE or CLOSER
for an output file, the volume on which you are cur­
rently writing records is indicated, in the file label,
as the last volume for the file.

TYPEFLE= {INPUTIOUTPUT}: This operand
must be included to specify the type of file: input or
output.

XTNTXIT=name: This operand does not apply to
diskette input/output units.

This entry is included if you want to process label
extent information. It specifies the symbolic name
of your extent routine. The DTFPH operand
MOUNTED=ALL must also be specified for the file.

Whenever XTNTXIT is included, IOCS branches to
your routine during the initial OPEN for the file. It

3-60 DOS/VSE Macro Reference

branches after each specified extent is completely
checked and after conflicts, if any, have been re­
solved.

When your routine receives control, register I
contains the address of a 14-byte area from which
you can retrieve label extent information (in binary
form). The layout of this area is shown in Figure
3-39.

Return to IOCS by using the LBRET macro.

I~~es I Contents

12 Contains zero.
13 Not used.

Figure 3-39. Layout ofXTNTXIT information area.

DTFPRMacro
DTFPR is used to define an output file for a printer.

M DEVADDR = SYSxxx

M IOAREA 1 = xxxxxxxx

0 ASOCFlE = xxxxxxxx

0 BLKSIZE = nnn

0 CONTROl=YES

0 CTlCHR=xxx

0 DEVICE=nnn

0 ERROPT = xxxxxxxx

0 FUNC=xxxx

0 IOAREA2 = xxxxxxxx

0 IOREG=(nn)

0 MODNAM E = xxxxxxxx

0 PRINTOV = YES

0 RDONlY=YES

0 RECFORM =xxxxxx

0 RECSIZE=(nn)

0 SEPASMB=YES

0 STlIST=YES

0 TRC=YES

0 UCS=xxx

0 WORKA=YES

M = Mandatory
O=Optional

Symbolic unit for the printer used for this file.

Name for the first output area.

Name of the associated file for FUNC = RW, RPW, PW.

length of one output area, in bytes. If omitted, 121 is assumed for 1403, 1443, 3203 or
3211; 136 is assumed for 3800 without TRC (or 137 with TRC): 64 is assumed for 2560
or 3525; 96 is assumed for 5203 or 5424/5425. 1

CNTRl macro used for this file. Omit CTlCHR for this file. Not allowed for 2560 or
5424/5425.

(YES or ASA). Data records have control character. YES for S/370 character set; ASA
for American National Standards Institute character set. Omit CONTROL for this file. Not
allowed for 2560 or 5424/5425.

(1403, 1443, 2560P, 2560S, 3203, 3211,3525,3800,5203. Specify 5425P or 5425S
for 5424/5425 (P or S). Specify PRT1 for 3203-4,3203-5,3211, or 3289-4. If omitted,
1403 is assumed. I

RETRY or the name of your error routine for 3211. IGNORE for 3525. Not allowed for
other devices. 1

(W, RW, RPW, PW) for 2560 or 5424/5425. (W[T], RW[T], RPW[T], PW[T] for 3525.

If two output areas are used, name of second area.

Register number, if two output areas used and PUT does not specify a work area. Omit
WORKA.

Name of PRMOD logic module for this DTF. If omitted, IOCS generates standard name.
Not needed with 3800 advanced printer buffering.

PRTOV macro used for this file. Not allowed for 2560 or 5424/5425.

Generate a read-only module. Requires a module save area for each task using the
module.

(FIXUNB, VARUNB, or UNDEF). If omitted, FIXUNB is assumed.

Register number if RECFORM = UNDEF.

DTFPR is to be assembled separately.

1403 selective tape listing feature is to be used.

For 3800, output data lines include table reference character.

(ON) process data checks. (OFF) ignores data checks. Only for printers with the UCS
feature, 3211, or 3800. If omitted, OFF is assumed. I

PUT specifies work area. Omit IOREG.

1 3211 remarks apply also to 321 I-compatible printers (that is, with a device type code ofPRT1).

Figure 3-40. DTFPR macro operands.

ASOCFLE=filename: This operand is used to­
gether with the FUNC operand to define associated
files for the 2560, 3525, or 5424/5425. (For a de­
scription of associated files see DOS/VSE Data
Management Concepts, as listed in the Preface.)
ASOCFLE specifies the filename of an associated read
and/ or punch file, and enables macro sequence

checking by the logic module of each associated file.
One filename is required per DTF for associated
files.

Figure 3-41 defines the filename specified by the
ASOCFLE·operand for each of the associated DTFs.

Chapter 3: Declarative Macros 3-61

filename specification in ASOCFLE = operand of
Code in FUNC = operand

read DTFCD punch DTFCD print DTFPR

FUNC=RPW filename of punch DTFCD filename of print DTFPR filename of read DTFCD

FUNC=PW filename of print DTFPR filename of punch DTFCD

FUNC=RW filename of print DTFPR filename of read DTFCD --
Exampies:
1 . If FUNC=PW is specified,

a. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD and

b. Specify the filename of the punch DTFCD in the ASOCFLE operand of the print DTFPR.

2. If FUNC=RPW is specified,
a. specify the filename of the punch DTFCD in thp. ASOCFLE operand ot the read DTFCD, and

b. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD, and

c. specify the filename of the read DTFCD in the ASOCFLE operand of the print DTFPR.

Figure 3-41. ASOCFLE operand usage with print associated files.

BLKSIZE=nnn: This operand specifies the length
of IOAREA 1. The maximum values which may be
specified in this operand and the lengths assumed
when it is omitted are given for the different devices
in Figure 3-42.

CONTROL=YES: This operand is specified if the
CNTRL macro will be issued for the file. If this ope­
rand is specified, omit CTLCHR. This operand is not
allowed for the 2560 or 5424/5425.

CTLCHR= {YES/ASA}: This operand is specified
if first -character control is used. The parameter ASA

specifies the American National Standards Institute,
Inc. character set. The entry CTLCHR=YES specifies
the S/370 character set. If this parameter is specified,
omit CONTROL. This operand must not be specified
for the 2560 or 5424/5425.

If CTLCHR=ASA is specified for the 3525, the +
character is not ailowed. To print on the first line of
a card, you must issue either a space 1 command or
a skip to channell command. For 3525 print associ­
ated files, you must issue a space 1 command to
print on the first line of a card.

DEV ADDR= {SYSLOG/SYSLST/SYSnnn}:
This operand specifies the symbolic unit to be asso­
ciated with the printer. SYSLOG and SYSLST must
not be specified for the 2245, 2560, 3525, or
5424/5425.

3-62 DOS/VSE \1acro Reference

Devices Maximum length (in Length assumed (in
bytes) which can be bytes) 2

specified I

1403-1, -4 100 121

1403-6, -7 120 121

1403-2, -3, -
132 121

I.

2.

3.

5, -8, -9

1443 144 121

2560 384 64

3203 132 121

3203-4, -5 132 121

3211 150 121

3289-4 132 121

3525 64 64

3800 204 (without TRC)3 1 36 (without TRC)3

5203 132 96

5424/5425 128 96

RECFORM is FIXUNB or UNDEF and operand
CTLCHR is not specified.

The parameter BLKSIZE = n is omitted.

For a 3800, the maximum length is 205 if TRC=YES
is used, and the assumed length is 137.

Notes:

• IfCTRCHR=YES/ASA is specified, add 1 byte to the
maximum length which can be specified

• If RECFORM=VARUNB is specified add 4 bytes to the
maximum value which can be specified.

• For the 2245, ifRECFORM=VARUNB and
CTLCHR=YES/ASA are specified, the maximum block­
size is 805 bytes.

Figure 3-42. Maximum and assumed lengths for the IOAREA I.

I

DEVICE= {1 40 31144312560PI2560S132031
1321113525138001520315425PI
5425SIPRTl} :

This operand specifies which device is used for the
file. The "p" and "s" included with the "2560" and
"5425" parameters specify primary or secondary
input hoppers. Specify 5425p/s for 5424(p/s).
"PRTl" refers to a 3211 or 321 I-compatible printer.
If this operand is omitted, 1403 is assumed.

ERROPT= {RETRYIIGNORElname}: This ope­
rand specifies the action to be taken in the case of an
equipment check error. The functions of the param­
eters are described below.

RETRY can be specified only for a PRTI printer.
RETRY indicates that if an equipment check with
command retry is encountered, the command is
retried once. If the retry is unsuccessful a message is
issued and the job canceled.

IGNORE can be specified only for the 3525.
IGNORE indicates that the error is to be ignored. The
address of the record in error is put in register 1 and
made available for processing. Byte 3, bit 3 of the
CCB is also set on (see Figure 4-2); you can check
this bit and take the appropriate action to recover
from the error. IGNORE must not be specified for
files with two I/O areas or a work area.

ERROPT=name can be specified only for a 3211-
compatible printer. It indicates that if an equipment
check with command retry is encountered, the com­
mand is retried once. If the retry is unsuccessful a
message is issued and the job canceled. With other
types of errors (for these see the CCB, Figure 4-2) an
error message is issued, error information is placed
in the CCB, and control is given to your error rou­
tine, where you may perform whatever actions are
desired. If any 10CS macros are issued in the rou­
tine, register 14 must be saved; if the operand
RDONL Y = YES is specified, register 13 must also be
saved. To continue processing at the end of the rou­
tine, return to 10CS by branching to the address in
register 14.

FUNC= {W(TIIRW(TIIRPW(TIIPW(Tl}: This
operand specifies the type of file to be processed by
the 2560, 3525, or 5424/5425. W indicates print, R
indicates read, P indicates punch, and T (for the 3525
only) indicates an optional 2-line printer.

RW[T], RPW[T], and PW[T] are used,together with
the ASOCFLE operand, to specify associated files;
when one of these parameters, other than T, is speci­
fied for a printer file it must also be specified for the
associated file(s). Note: Do not use T for associated
files; it is valid only for printer files.

If a 2-line printer is not specified for the 3525,
multi-line print is assumed. T is ignored if CONTROL
or CTLCHR is specified.

IOAREAl=name: This operand specifies the name
of the output area.

IOAREA2=name: This operand specifies the name
of a second output area.

IOREG=(r): If two output areas and no work areas
are used, this operand specifies the register into
which 10CS will place the address of the area where
you can build a record. For (r) specify one of the
registers 2 to 12.

MODNAME=name: This operand may be used to
specify the name of the logic module that is used
with the DTF table to process the file. If the logic
module is assembled with the program, MODNAME
must specify the same name as the PRMOD macro. If
this operand is omitted, standard names are generat­
ed for calling the logic module. If two DTF macros
call for different functions that can be handled by a
single module, only one module is called.

PRINTOV=YES: This operand is specified if the
PRTOV macro is included in your program. This
operand is not allowed for the 2560 or 5424/5425.

RDONL Y = YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. Each task requires its own uniquely de­
fmed save area. Each time an imperative macro
(except OPEN or OPENR) is issued, register 13 must
contain the address of the save area associated with
the task. The fact that the save areas are unique for
each task makes the module reentrant (that is, capa­
ble of being used concurrently by several tasks).

If an ERROPT routine issues I/O macros which use
the same read-only module that caused control to
pass to either error routine, your program must pro­
vide another save area. One save area is used for the
normal I/O, and the second for I/O operations in the
ERROPT routine. Before returning to the module
that entered the ERROPT routine, register 13 must be
set to the save area address originally specified for
the task.

If this operand is omitted, the module generated
is not reenterable and no save area need be estab­
lished.

Chapter 3: Declarative Macros 3-63

RECFORM= {FIXUNBIUNDEFIVARUNB}:
The operand RECFORM=FIXUNB is specified when­
ever the record format is fixed. When the record
format is FIXUNB, this entry may be omitted.

The entry RECFORM=UNDEF is specified when­
ever the record format is undefined. If the output is
variable and unblocked, enter VARUNB.

RECSiZE=(r): This operand s'pecifies the general
register (anyone of2 to 12) that will contain the
length of an output record of undefined format. The
length of each record must be loaded into the regis­
ter before issuing the PUT macro-

SEPASMB=YES: Include this operand only if the
DTFPR will be assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

STLIST=YES: Include this operand if the selec­
tive tape listing feature (1403 only) is used. If this
entry is specified, the CONTROL, CTLCHR, and
PRINTOV entries are not valid and will be ignored if
specified. If this operand is specified, RECFORM

must have the parameter FIXUNB.

TRC=YES: This operand applies to the 3800 Print­
ing Subsystem; DEVICE=3800 should be specified.

3-64 DOS/VSE Macro Reference

TRC= YES specifies that a table reference character is
included as the first byte of each output data line
(fo11owing the optional print control character). The
printer uses the table reference character to select
the character arrangement table corresponding to
the order in which the table names have been speci­
fied with the CHAR parameter on the SETPRT job
control statement (or SETPRT macro instruction).

If a printer other than a 3800 is specified on the
DEVICE parameter, any table reference character
sent to that printer is treated as data.

UCS= {OFFION}: For a printer with the universal
character set feaiure, or for a 3800 Printing Subsys­
tem, this operand determines whether data checks
occurring in case of unprintable characters are indi­
cated to the operator or printed as blanks. The entry
is especially useful if you are using first-character
forms control and have modules that cannot process
the CNTRL macro.

ON Data checks are processed with an operator
indication.

OFF Data checks are ignored and blanks are print­
ed for the unprintable character.

WORKA=YES: Ifoutput records are processed in
work areas instead of in the I/O areas, specify this
operand. You must set up the work area in storage.
The address of the work area, or a general-purpose
register which contains the address, must be speci­
fied in each PUT macro.

PRMOD Macro:
Listed here are the operands you can specify for
PRMOD. The first card contains PRMOD in the opera­
tion field and may contain a module name in the
name field.

If advanced printer buffering is used on your
3800 Printer Subsystem, the PRMOD macro is not
needed.

CONTROL=YES: Include this operand ifcNTRL
macros are used with the associated DTFS. The mo­
dule also processes files that do not use the CNTRL
macro. If CONTROL is specified, the CTLCHR ope­
rand must not be specified.

The CONTROL operand is not allowed for the
2560 or 5424/5425.

CTLCHR= {YESIASA}: Include this operand if
first-character carriage co.ntrol is used. Any DTF
used with the module must have the same operand.
If CTLCHR is specified, CONTROL must not be speci­
fied.

CTLCHR must not be specified for the 2560 or
5424/5425.

If CTLCHR=ASA is specified for the 3525, the +
character is not allowed. For 3525 print (not associ­
ated) files, you must issue either a space 1 command
or skip to channel 1 command to print on the first
line of a card. For 3525 print associated files, you
must issue a space I command to print on the first
line of a card.

IfCTLCHR=ASA and RDONLY=YES are specified
in a multitasking environment where more than one
DTFPR uses the same module, overprinting may oc­
cur.

DEVICE= {14031144312560P12560SI
32031321113525138001520315425PI
5425SIPRTl} :

This operand specifies which device is used for the
file. The "p" and "s" included with the "2560" and
"5425" parameters specify primary or secondary
input hoppers; regardless of which is specified, how­
ever, the module generated will handle DTFs speci­
fying either hopp~r. Specify 5425p/s for 5424p/s.

Any DTF to be used with this module must have
the same operand (except as just noted concerning
the "p" and "s" specification for the 2560 or
5424/5425).

ERROPT=YES: This operand must be specified if
ERROPT=name is specified in a DTFPR that is to be
used with the module. (ERRoPT=name is applicable
to a 3211-compatible printer only.) IfERROPT is not

specified in the DTFPR, or ifERROPT=RETRY (3211)
or ERROPT=IGNORE (3525) is specified,
ERROPT=YES must be omitted.

FUNC= {W(TIIRW(TIIRPW(TIIPW(TJ}: This
operand specifies the type of file to be processed by
the 2560, 3525, or 5424/5425. Any DTF used with
the module must include the same operand. W indi­
cates print, R indicates read, P indicates punch, and
T (for the 3525 only) indicates an optional2-line
printer.

R W[T], RPW[T], and PW[T] are used to specify as­
sociated files; when one of these parameters is speci­
fied for a printer file it must also be specified for the
associated file(s).

If a 2-line printer is not specified for the 3525,
multi-line print is assumed. T is ignored if CONTROL
or CTLCHR is specified.

IOAREA2=YES Include this operand if a second
I/O area is used. Any DTF used with the module
must also include the IOAREA2 operand.

PRINTOV=YES Include this operand ifpRTOV
macros are used with the associated DTFs. The mo­
dule also processes any files that do not use the
PRTOV macro.

This operand is not allowed for the 2560 or
5424/5425.

RDONLY=YES: This operand causes a read-only
module to be generated. Whenever this operand is
specified, any DTF used with the module must have
the same operand.

RECFORM= {FIXUNBIVARUNBIUNDEF}:
This operand causes a module to be generated that
processes the specified record format: fued-Iength,
variable-length, or undefined. Any DTF used with
the module must include the same operand.

SEP ASMB= YES: Include this operand only if the
module is assembled separately. This causes a
CATALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and dermes the module name as an ENTRY
point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem­
bled with the DTF and the problem program and no
CAT ALR card is punched.

STLIST=YES: Include this operand if the selec­
tive tape listing feature (1403 only) is used. If this
entry is specified, the CONTROL, CTLCHR, and
PRINTOV entries are not valid, and are ignored if

Chapter 3: Declarative Macros 3-65

supplied. If this operand is specified, RECFORM
must specify FIXUNB.

TRC=YES: Include this operand to specify wheth­
er the module is to test the TRC bit in the DTFPR or
iqnore that bit. IfTRC=YES is specified, the generat­
ed module can process output files with table refer­
ence characters and those without.

WORKA=YES: Include this operand if records are
processed in work areas instead of in I/O areas. Any
DTF used with the module must have the same ope­
rand.

Standard PRMOD Names
Each name begins with a 3-character prefix (IJD)
followed by a 5-character field corresponding to the
options permitted in the generation of the module.

PRMOD name = UDabcde

a = F RECFORM=FIXUNB
V RECFORM=VARUNB
U RECFORM=UNDEF

b A CTLCHR=ASA
Y CTLCHR=YES
C CONTROL= YES
S STLIST=YES
Z none of these is specified
T DEVICE=3525 with 2-1ine printer
U DEVICE=2560
V DEVICE=5425

c = B ERROPT=YES and PRINTOV=YES
P PRINTOV=YES, DEVICE is not 3525, and ERROPT

is not specified
PRINTOV=YES, DEVICE=3525, and FUNC=W[T]
or omitted

F PRINTOV=YES, DEVICE=3525, and
FUNC=RW[TI

C PRINTOV=YES, DEVICE=3525, and
FUNC=PW[T]

D PRINTOV=YES, DEVICE=3525, and
FUNC=RPW[TJ

Z neither PRINTOV nor ERR OPT is specified, and
DEVICE is not a 3525

0 PRINTOV=YES not specified, DEVICE=3525, and
FUNC=W[TJ or omitted

R PRINTOV=YES not specified, DEVICE=3525, and
FUNC=RW[T]

S PRINTOV=YES not specified, DEVICE=3525, and
FUNC=PW[T]

T PRINTOV=YES not specified, DEVICE=3525, and
FUNC=RPW[T]

E ERROPT=YES and PRINTOV=YES is not specified
U FUNC=W or omitted and DEVICE=2560 or 5425
V FUNC=RW and DEVICE=2560 or 5425

3-66 DOS/VSE Macro Reference

d

W FUNC=PW and DEVICE=2560 or 5425
X FUNC=RPW and DEVICE=2560 or 5425

IOAREA2=YES
Z IOAREA2=YES is not specified

e = V RDONLY=YES and WORKA=YES
W WORKA=YES
Y RDONLY=YES
Z neither is specified

Subset/Superset PRMOD Names
Figure 3-43 shows the subsetting and supersetting
allowed for PRMOD names. Two of the operands
allow subsetting. For example, the module name
IJDFCPIW is a superset of the module names
IJDFCZIW and IJDFZZIW. No subsetting or superset­
ting of PRMOD names is allowed for the 2560 or
5424/5425.

The IBM-supplies preassembled logic modules do
not have TRC=YES. The system programmer can
reassemble them with TRC= YES to support 3800
table reference characters. Although the code that is
generated for a module assembled with TRC= YES is
different from the code that is generated for a mo­
dule with TRC=NO, the module name is the same. If
some, but not all PRMOD logic modules are reassem­
bled this way, it may interfere with subsetting or
supersetting.

* * * * *
I J D F A U I V

V Y V Z W
U S W Y

T X Z
U +
v p

+ z
c +
Z I

0
+
F
R

+
+
c
s
+
D
T
+
B
E

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

Figure 3-43. Subsetting and supersetting of PRMOD names.

D TFPT Macro
A DTF entry is included for every paper tape input or output file that is processed by the program. The
characteristics of a paper tape file are given in the DOS/ VSE Macro User's Guide, as listed in the Preface.

ADDlies to

Input Output

x x

x x

x x

x

x

x x

x

x x

x

x

x x

x x

x

x

x x

x x

x x

x x

x

x x

x x

x

M = Mandatory
O=Optional

M

M

M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BLKSIZE=n

DEVADDR = SYSnnn

10AREA 1 =xxxxxxxx

EOFADDR = xxxxxxxx

DELCHAR=X'nn'

DEVICE=nnnn

EORCHAR=X'nn'

ERROPT = xxxxxxxx

FSCAN = xxxxxxxx

FTRANS = xxxxxxxx

IOAREA2 = xxxxxxxx

10REG=(nn)

LSCAN = xxxxxxxx

L TRANS = xxxxxxxx

MODNAME =xxxxxxxx

OVBLKSZ=n

RECFORM =xxxxxx

RECSIZE =(nn)

SCAN = xxxxxxxx

SEPASMB=YES

TRANS = xxxxxxxx

WLRERR = xxxxxxxx

Figure 3-44. DTFPT macro operands.

BLKSIZE=n: This operand specifies the length of
the input or output area. The maximum block size is
32,767 bytes.

DELCHAR=X'nn': This operand specifies the
configuration of the delete character and must be
used for output files only, that is, when DEVICE=1018
is specified. The constant X'nn' consists of two hexa­
decimal digits. The delete character is used in the
error recovery procedure, and you must specify the
correct configuration in accordance with the number
of tracks of the output tape, as follows:

x' IF' for five tracks.
X'3F' for six tracks.
X'7F' for seven tracks.
X'FF' for eight tracks.

Length of your I/O areas.

Symbolic unit to be associated with this file.

Name of first I/O area.

Name of your end-of-file routine.

Delete character.

(2671, 1017, 1018). If omitted, 2671 is assumed.

End-of-record character. (For RECFORM = UNDEF).

(IGNORE, SKIP, or error routine name). Prevents job termina-
tion on error records.

(For shifted codes). Name of your scan table used to select
figure groups.

(For shifted codes). Symbolic address of your figure shift
translate table.

Name of second I/O area.

Used with two I/O areas. Register (2-12) containing current
record address.

(For shifted codes). Name of your scan table used to select
letter groups.

(For shifted codes). Name of your letter shift translate table.

For module names other than standard.

Used if I/O records are compressed or expanded.

(FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

Register containing the record length.

Name of your scan table for shift or delete character.

DTF is assembled separately.

Name of your table for code translation.

Name of wrong-length-record error routine.

Note: The delete character is required only if the 1018 has the
error correction feature.

DEV ADDR=SYSnnn: This operand specifies the
logical unit (sysnnn) associated with this file. An
actual channel and unit are assigned to the unit by
an ASSGN job control statement. The ASSGN state­
ment contains the same symbolic name as
DEVADDR.

DEVICE= {2 6 711101711018}: This operand is
required only to specify the paper tape I/O device. If
this entry is omitted, 2671 is assumed.

EOF ADDR=name: This operand specifies the
name of your end-of-file routine. IOCS automatical-

Chapter 3: Declarative Macros 3-67

ly branches to this routine on an end-of-file condi­
tion if the end-of-file switch is set on. The routine
can execute any operation required for the end-of­
file, issue the CLOSE or CLOSER macro for the file, or
return to 10CS by branching to the address in regis­
ter 14. In the latter case, 10CS reads in the next re­
cord. The end-of-file condition cannot occur on the
1018.

EORCHAR=X'nn': This operand specifies the
user-defined end-of-record (EOR) character, where
nn is two hexadecimal digits. It must be used for
output files with undefined record format only. 10CS
writes this character after the last character of the
undefined record.

ERROPT= {IGNOREISKIPlname}: This ope­
rand is specified if you do not want a job terminated
when the standard recovery procedure cannot re­
cover from a read or write error. If the ERROPT en­
try is omitted and a read or write error occurs, 10CS
terminates the job.

For input files, IGNORE allows 10CS to handle the
record as if no errors were detected. If SKIP is speci­
fied, 10CS skips the record in error and reads the
next record.

For output files with shifted codes, ERROPT can­
not be specified. For un shifted codes, the options
ERROPT=IGNORE and ERROPT=name can be speci­
fied. IGNORE allows 10CS to handle the record as if
no errors were detected.

The ERROPT=SKIP option is ignored and causes
10CS to terminate the job.

If two I/O areas are used, the CLOSE or CLOSER
macro checks the last record, and the option
ERROPT=name is treated as option
ERROPT=IGNORE.

For name, specify the symbolic address of your
error routine that will process errors. On an error
condition, 10CS reads or writes the complete record,
including the error character(s), and then branches
to the error routine. At the end of the error routine,
return to 10CS by branching to the address in regis­
ter 14. The next record is then read or written. You
must not issue any GET or PUT macros for records in
the error block. If the error routine contains any
other 10CS macros, the contents of register 14 must
be saved and restored.

FSCAN=name: This operand must be included for
every output file using a shifted code. Omit this
operand for an input file. The operand specifies the
name of a scan table in your program used to select
groups of figures. This table must conform to the

3-68 DOS/VSE Macro Reference

specifications of the machine instruction TRT. The
entry in the table for each letter character must be
the letter shift character, and all other entries must
be hexadecimal zero. Any deviation from this re­
sults in incorrect translation.

FTRANS=name: This operand must be included
for every input file using a shifted code and is not
permitted for output files. It specifies_ the name of a
figure shift table in your program. This table must
conform to the specifications of the machine instruc­
tion TR.

IOAREAl=name: This operand specifies the name
of an input or output area.

IOAREA2=name: This operand specifies the name
of a second input or output area. When this operand
is specified, 10CS overlaps the I/O operation in one
area with the processing of the record in the other.

IOREG=(r): This operand must be included if two
input or output areas are used. For input, it specifies
the register into which 10CS puts the address of the
logical record available for processing. For output,
it specifies the register that contains the address of
the area in which your program can build a record.
Any register from 2 to 12 may be specified.

LSCAN=name: This operand must be included for
every output file using a shifted code and is not per­
mitted for input files. It specifies the name of a scan
table in your program used to select groups of let-
ters. This table must conform to the specifications of
the machine instruction TRT. The entry in the table
for each figure character must be the figure shift
character, and all other entries must be hexadecimal
zero. Any deviation from this results in incorrect
translation.

L TRANS=name: This operand must be included
for every input file using a shifted code and is not
permitted for output files. It specifies the name of a
letter shift table in your program. This table must
conform to the specifications of the machine instruc­
tion TR.

MODNAME=name: This operand specifies the
name of the logic module used with the DTF table to
process the file. If the logic module is assembled
with the program, the MODNAME operand in this
DTF must specify the same name as the PTMOD ma­
cro. If the operand is omitted, 10CS generates stan­
dard names for calling the logic module.

OVBLKSZ=n: For input files, this operand speci­
fies the number of characters to be read (before
translation and compression) to produce the number
of characters specified in the BLKSIZE entry.
OVBLKSZ is used only when SCAN=name and
RECFORM=FIXUNB are both specified. If OVBLKSZ is
omitted, IOCS assumes that the number of characters
to be read is equal to the number specified in the
BLKSIZE entry. The maximum value is 32,767 bytes.

F or output files, OVBLKSZ specifies the number of
characters indicated in the BLKSIZE entry, plus the
number of shift characters to be inserted. If the size
of OVBLKSZ is large enough to allow the insertion of
all the shift characters required to build the output
record, a single WRITE operation results from a PUT
macro. On the other hand, if the size of OVBLKSZ
(which must be at least one position larger than
BLKSIZE) does not permit the insertion of all the
shift characters, several WRITE operations result
from a PUT macro. OVBLKSZ is used only when
LSCAN and FSCAN are specified with the FIXUNB
format. If OVBLKSZ is specified with UNDEF format,
it is ignored.

RECFORM= {FIXUNBIUNDEF}: This operand
specifies the record format for the file. Specifyei­
ther format for shifted or unshifted codes. If the
record format is FIXUNB, this entry may be omitted.

RECSIZE=(r): This operand specifies the number
of a register (anyone of 2 to 12) that contains the
length of the input or output record. This entry is
optional for input files. If present, IOCS loads the
length of each record read into the specified register.
If input files contain shift codes or other characters
requiring deletion, IOCS loads the compressed record
length into the specified register.

F or output files, this entry must be included for
undefmed records. Before translation, your program
must load each record length into the designated
register before issuing the PUT macro for the record.

SCAN =name: This operand must be included for
all input files using shifted codes. It may also be
included if you wish to delete certain characters
from each record. The SCAN entry specifies the sym­
bolic name of a table provided by your program.
This table must conform to the specifications of the
machine instruction TRT. It must contain nonzero
entries for all delete characters and, where appropri­
ate, for the figure and letter shift characters.

The table entry for the figure shift character must
be X'04'; for the letter shift character, the entry must
be X'08'; delete entries must be X'OC'. All other entries

in the table must be X'OO'. Otherwise, incorrect trans­
lation results and a program check may occur.

The table must be large enough to hold the maxi­
mum value of coding for the tape being processed;
that is, 255 bytes for 8-track tape. This prohibits
erroneous coding on the tape from causing a scan
function beyond the limits of the scan table.

SEPASMB=YES: Include this operand only if the
DTFPT is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CATALR card is punched.

TRANS=name: The TRANS operand specifies the
symbolic name of a table provided within your pro­
gram. This table must conform to the specifications
of the machine instruction TR. For input files, in­
clude this entry if a nonshifted code is to be translat­
ed into internal system code. Omit the FTRANS and
L TRANS entries if this entry is present. If none of
these three entries is present, no translation takes
place. For output files, include this entry if the inter­
nal system code is translated into a shifted or non­
shifted code, depending on whether the FSCAN and
LSCAN entries are present or omitted.

WLRERR=name: This operand applies only to
paper tape input files when RECFORM=UNDEF is
specified.

When IOCS fmds a wrong-length record, it
branches to the symbolic name specified in the
WLRERR entry. If this entry is omitted and the
ERROPT entry is included, IOCS considers the error
uncorrectable and uses the ERROPT option specified.
Absence of both ERROPT and WLRERR entries causes
the wrong-length record to be accepted as a normal
record. Wrong-length checking is not performed for
fixed-length records because a fixed number of char­
acters is read in each time. IOCS detects overlength
undefined records when the incoming record fills
the input area. The input area must, therefore, be at
least one position longer than the longest record
anticipated.

At the end of the WLRERR routine, return to IOCS
by branching to the address in register 14. The next
IOCS read operation will normally cause the remain­
der of the overlength, undefined record to be read.
If any other IOCS macros are included in the record­
length error routine, the contents of register 14 must
be saved and restored.

Chapter 3: Declarative Macros 3-69

Note: A wrong-length condition appears during the first read
operation on a 1017 if the combined length of the tape leader and
the first record is greater than the length of the longest record
anticipated (the length specified in BLKSIZE)-

3-70 DOS/VSE Macro Reference

PTMODMacro
Listed here are the operands you can specify for PTMOD; Figure 3-45 shows the only possible combination of
these operands and describes the resultant modules.

Operand *
Resulting Module

DEVICE= RECFORM= SCAN = TRANS=

2671 * * FIXUNB * * Does not handle translation or shift or delete characters

2671 * * FIXUNB * * YES Handles translation of unshifted codes, but not delete charac-
ters

2671 * * FIXUNB * * YES Handles shift and delete characters for records of fixed un-

2671 * * FIXUNB * * YES
blocked format

2671 * * UNDEF YES Handles shift and delete characters for records of undefined
format

1017 FIXUNB * * Does not handle translation or shift or delete characters

1017 FIXUNB * * YES Handles translation of unshifted codes, but no delete charac-
ters

1017 FIXUNB * * YES Handles shift and delete characters for records of fixed un-
blocked format

1017 UNDEF YES Handles shift and delete characters for records of undefined
format

1018 FIXUNB * * YES Handles translation of unshifted codes, if specified in DTFPT,

1018 FIXUNB * *
for records of fixed unblocked format

1018 UNDEF Handles translation of unshifted codes, if specified in DTFPT,

1018 UNDEF YES
for records of undefined format

1018 FIXUNB * * YES Handles shift characters for records of fixed unblocked format

1018 UNDEF YES Handles shift characters for records of undefined format

* In all cases, SEPASMB=YES may either be specified or omitted

* * Specified explicitly or by default

Figure 3-45. PTMOD operand combinations.

DEVICE= {2 6 711101711018}: Required only to
specify an I/O device other than 2671 used by the
module. Any DTF used with the module must have
the same operand. 2671 is assumed if this operand is
omitted.

RECFORM= {FIXUNBIUNDEF}: Required
only if the operand SCAN = YES is present. If records
of undefined format using the SCAN option are
translated, specify the UNDEF parameter. If records
of fixed unblocked format are translated, the
FIXUNB parameter may be specified or omitted.

SCAN=YES: Required for records containing shift
characters and/or characters that are automatically
deleted by 10CS.

SEPASMB=YES: Include this operand only if the
module is assembled separately. This causes a
CAT ALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and defines the module name as an ENTRY

point in the assembly. If the operand is omitted, the
assembler assumes that the module is being assem-

bled with the DTF and the problem program and no
CAT ALR card is punched.

TRANS= YES: Required only if records using an
unshifted code are translated and if the operand
SCAN = YES is not specified.

Standard PTMOD Names
Each name begins with a 3-character prefix (UE)

and continues with a 5-character field corresponding
to the options permitted in the generation of the
module.

PTMOD name =UEabcde

a = S SCAN=YES
Z SCAN = YES is not specified

b T TRANS=YES (SCAN=YES is not specified)

Z TRANS=YES is not specified

c = F RECFORM=FIXUNB, and SCAN=YES
U RECFORM=UNDEF, and SCAN=YES

Z SCAN=YES is not specified, and/or DEVICE= 1018

d DEVICE=1017

2 DEVICE=1018

Chapter 3: Declarative Macros 3-71

Z DEVICE=267I, or if this entry is omitted

e = Z always

Subset/Superset PTMOD Names
Figure 3-46 shows the PTMOD names. No subsetting
or supersetting is allowed.

3-72 DOS/VSE Macro Reference

* * * *
I J E Z Z Z Z Z

Z T Z Z
S Z F Z
S Z U Z
Z Z Z 1
Z T Z 1
S Z F 1
S Z U 1
S Z Z 2
Z T Z. 2

* No subsetting/supersetting, permitted.

Figure 3-46. Subsetting and supersetting of PTMOD names.

DTFSDMacro
The DTFSD macro defines sequential (consecutive) processing for a file contained on a DASD. Only IBM

standard label formats are processed.

Applies to

Input Output

x x

x

x x

x x

x x

x x

x x

x x

x x

x x

x

x x

x x

x x

x x

x

x x

x x

M = Mandatory
O=Optional

Work

x

x

x

x

x

x

x

x.

x

x

x

x

x

x

x

M BLKSIZE = nnnn

M EOF AD DR = xxxxxxxx

M/O IOAREA1 =xxxxxxxx

0 CISIZE=nnnnn

0 CONTROL=YES

0 DELETFL=NO

0 DEVADDR=SYSnnn

0 DEVICE=nnnn

0 ERREXT=YES

0 ERROPT =xxxxxxxx

0 FEOVD=YES

0 HOLD=YES

0 IOAREA2 =xxxxxxxx

0 10REG=(nn)

0 LABADDR =xxxxxxxx

0 MODNAME=xxxxxxxx

0 NOTEPNT = xxxxxxx

0 PWRITE=YES

0 RDONLY=YES

0 RECFORM = xxxxxx

Figure 3-47. DTFSD macro operands (Part 10f2).

Length of one I/O area, in bytes

Name of your end-of-file routine

Name of first I/O area. Optional for some files in Control Inter-
val format.

Size of FBA Control Interval. If omitted and DEVICE=FBA,
default is O.

CNTRL macro is used for this file

CLOSE, CLOSER macro is not to delete format-1 and format-3
labels for work file

Symbolic unit required only when not provided on an EXTENT
statement

(2311, 2314, 3330, 3340, 3350,~. Specify any device for
a 3330-11 or 3350. Specify FBA for 3310 or 3370. If omitted,
2311 is assumed.

Additional error and ERET are desired. Specify ERROPT also

(IGNORE, SKIP, or name of error routine). Prevents job termi-
nation on error records. Do not use SKIP for output files

Forced end of volume for disk is desired

Employ the track hold function

If two I/O areas are used, name of second area

Register number. Use only if GET or PUT does not specify
work area or if two I/O areas are used. Omit WORKA

Name of your routine to check/write user-standard labels

Name of SDMODxx logic module for this DTF. If omitted, 10CS
generates standard name. Ignored if DEVICE=FBA is speci-
fied.

(YES or POINTRW). YES if NOTE/POINTR/POINTW /POINTS
used. POINTRW if only NOTE/POINTR/POINTW used

For FBA files only, specify for a physical write of each logical
block.

Generates a read-only module. Requires a module save area
for each task using the module

(FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK, or
UNDEF). For work files use FIXUNB or UNDEF. If omitted,
FIXUNB is assumed

Chapter 3: Declarative Macros 3-73

Applies to

Input I Output I Work

X
I x

x x

x x

x x

x

x

x

x

x x

M = Mandatory
O=Optional

x

x

x

I

I 0 I RECSIZE =nnnnn

0 SEPASMB=YES

0 TRUNCS=YES

0 TYPEFLE = xxxxxx

0 UPDATE=YES

0 VARBLD=(nn)

0 VERIFY=YES

0 WLRERR = xxxxxxxx

0 WORKA=YES

Figure 3-47. DTFSD macro operands (Part 20f2).

BLKSIZE=n: Enter the length of the I/O area. If
the record format is variable or undefined, enter the
length of the I/O area needed for the largest block of
records.

F or output files, the first 8 bytes of the I/O area
(whose address is specified in the 10AREAl operand)
must be allotted for 10CS to construct a count field.

The BLKSIZE parameter on the DLBL statement
overrides the DTFSD BLKSIZE specification if the
device assigned is a 3330-11 or 3350, and if
RECFORM=xxxBLK. For an output file, the records are
blocked according to the size specified by the appro­
priate BLKSIZE parameter (from the DLBL statement
ifit was specified; otherwise from the DTFSD). For
an input file, the BLKSIZE specification must match
the format of the data as it resides on the disk.

To use the DLBL BLKSIZE parameter, your pro­
gram must:

• Run on a system with RPS support sysgened.
The logic module must be in the SV A, or there
must be enough space available in the SVA to
load the logic module.

• Have GETVIS space for an RPS DTF extension
and new buffers.

• Specify DTFSD RECFORM=xxxBLK.

If there is no RPS support, if the file is not on a
3330-11 or 3350, if the GETVIS fails, or if the file is
not a blocked data file, the job is canceled. For
blocked files with fixed length records~ BLKSIZE

3-74 DOS/VSE Macro Reference

i

Ilf RECFORM=FIXBLK. number of characters in record. If

RECFORM=SPNUNB. SPNBLK. or UNDEF. register number.

Not required for other records

DTFSD is to be assembled separately.

RECFORM = F!XBLK or TRUNC macro used for this me

(INPUT OUTPUT or WORK). If omitted INPUT is assumed

Input file or work file is to be updated

Register number if RECFORM=VARBLK and records are built

in the output area. Omit if WORKA = YES
,.~

Check disk records after they are written.

Name of your wrong-length-record routine

GET or PUT specifies work area. Omit IOREG. Required for

RECFORM = SPNUNB or SPNBLK.

must be a multiple of RECSIZE or the job will be
canceled.

When DEVICE=FBA, or if CISIZE=n is specified,
BLKSIZE determines logical block size. For FBA
DASD, maximum value is 32761 (that is, seven bytes
less than maximum CISIZE). The BLKSIZE value for
output files must include eight bytes for a count area
to provide compatibility between FBA and CKD
DASD.

CISIZE=n: This operand specifies the control in­
terval size for an FBA device assigned to a non­
system file logical unit. If assigned to a system file
(SYSRDR, SYSIPT, SYSLST, or SYSPCH), the operand is
ignored. The value n must be a multiple of the FBA
block size and, if greater than 8K, must be a multiple
of 2K. The maximum value is 32768 (32K) except
when assigned to SYSLST or SYSPCH, when the maxi­
mum is 30720 (30K).

If DEVICE=FBA is specified, and CISIZE is omitted,
CISIZE=O is assumed. Control Interval size may be
overridden for an output file at execution time by
specifying the CISIZE parameter on the DLBL control
statement. For an input file, the CISIZE value in the
format-l label is used.

CONTROL=YES: This operand is specified if a
CNTRL macro is to be issued for the file. A ccw is
generated for control commands. For an FBA file,
this operand is ignored.

DELETFL=NO: Specify this operand if the CLOSE
or CLOSER macro is not to delete the format-l and
format-3 label for a work file. The operand applies
to work files only.

DEV ADDR=SYSnnn: This operand must specify
the symbolic unit associated with the file if an extent
is not provided. A job control EXTENT statement is
not required for single-volume input files. If an
EXTENT statement is provided, its specification over­
rides any DEV ADDR specification. SYSnnn represents
an actual I/O address, and is used in the ASSGN job
control statement to assign the actual I/O device
address to this file.

DEVICE= {llJJ.J2314133301
3340133501FBA} :

This operand is included to specify the device on
which the file is located. If no device is specified,
2311 is assumed. If an FBA device is ASSGNed to the
file, DEVICE= is ignored.

For devices supported by DOS/VSE and not in­
cluded in the above operand specification, specify
device codes as listed in Figure 3-48.

EOF ADDR=name: This operand specifies the
name of your end-of-file routine. IOCS automatically
branches to this routine on an end-of-file condition.
In this routine, you can perform any operations re­
quired at end of file (you generally issue the CLOSE
or CLOSER macro).

ERREXT= YES: This operand enables your
ERROPT or WLRERR routine to return to SDMOD by
means of the ERET macro. It also enables unrecover­
able I/O errors (such as "record not found") occur­
ing before a data transfer takes place to be indicated
to your program. For ERREXT facilities, the ERROPT
operand must be specified. To take full advantage
of this option, code the ERROPT=name parameter.

ERREXT=YES is assumed ifDEVICE=FBA is speci­
fied, or if an FBA device is ASSGNed to the file.

ERROPT= {IGNOREISKIPlname}: This ope­
rand is specified if a job is not to be terminated
when a read or write error cannot be corrected in the
disk error routines. The disk error routines normally
retry failing I/O operations several times before con­
sidering the error unrecoverable. Once the error is
considered unrecoverable, the job is terminated un­
less the ERROPT operand is specified. The functions
of the parameters are explained below.

IGNORE

SKIP

The error condition is ignored. The records are
made available for processing. When reading
spanned records, the whole spanned record or
block of spanned records is returned, rather
than just the one physical record in which the
error occurred.

On output, the physical record or control inter­
val in which the error occurred is ignored as if
it were written correctly. If possible, any re­
maining spanned record segments are written.

No records in the error block or control inter­
val are made available for processing. The next
block or control interval is read from the disk,
and processing continues with the first record
of that block. When reading spanned records,
the whole spanned record or block of spanned
records is skipped, rather than just one physi­
cal record.

On an UPDA TE= YES file, the physical record or
control interval in which the error occurred is
ignored as if it were written correctly. If possi­
ble, any remaining spanned record segments
are written.

DEVICE = Device to be ASSGNed
specification

2311 2314 2319 3330-1.2* 3330-11 * * 3340. 35MB 3340 70MB 3350 3310 3370

Default x x x x

2311 x x x x

2314 x x x x x

3330 x x x x

3340 x x x x x

3350 x x x

FBA x

* Also 3350 in 3330-1 compatibility mode.
* * Also 3350 in 3330-11 compatibility mode.

Figure 3-48. DEVICE= specifications for DTFSD.

Chapter 3: Declarative Macros 3-75

name
10CS branches to your error routine named by
this parameter. In this routine you can process
or make note of the error condition as desired.

FEOVD= YES: This operand is specified if a forced
end of volume for disk feature is desired. It forces
the end-of-volume condition before physical end of
volume occurs. When the FEOVD macro is issued,
the current volume is closed, and I/O processing
continues on the next volume.

HOLD=YES: This operand may be specified only
if the track hold function was specified at system
generation time and if it is employed when a data
file or a work file is referenced for updating.

IOAREAl=name: This operand specifies the sym­
bolic name of the I/O area used by the file. 10CS
either reads or writes records using this area. If
DEVICE=FBA is specified, this operand is not manda­
tory. It is ignored ifwORKA=YES is specified. It is
optional for input files if 10REG=(r) is specified. It is
also optional for output files with fixed length re­
cords without truncation if 10REG=(r) is specified,
but is required for all other FBA files.

For variable-length or undefined records, this
area must be large enough to contain the largest
block or record.

IOAREA2=name: If two I/O areas are used by GET
or PUT, this operand is specified. When variable
length records are processed, the size of the I/O area
must include four bytes for the block size. For out­
put files, the I/O area must include eight bytes to
build a count field.

IOREG=(r): This operand specifies the general
purpose register (any of2 to 12) in which 10CS puts
the address of the logical record that is available for
processing. At OPEN time, for output files, 10CS puts
into the register specified the address of the area
where you can build a record. The same register
may be used for two or more files in the same pro­
gram, if desired. If this is done, the program must
store the address supplied by 10CS for each record.

This operand must be specified if blocked input
or output records are processed in one I/O area, or if
two I/O areas are used and the records are processed
in both I/O areas.

For an FBA file, if 10AREA(S) are not specified, the
register specified by 10REG will point directly to
data in the control interval buffer.

LABADDR=name: Specifies the name of the rou-

3-76 DOS/VSE Macro Reference

tine in which you process your own labels.

MODNAME=name: This operand may be used to
specify the name of the logic module that will be
used with the DTF table to process the file. If the
logic module is assembled with the program,
MODNAME must specify the same name as the
SDMODxX macro.

This operand is ignored if DEVICE=FBA is speci­
fied. If this operand is omitted for other than FBA
files, standard names are generated for calling the
logic module. If two DTF macros call for different
functions that can be handled by a single module,
only one module is called.

NOTEPNT= {POINTRWIYES}: The parameter
POINTRW is specified if a NOTE, POINTR, or POINTW
macro is issued for the file. If the parameter YES is
specified, NOTE, POINTR, POINTW, and POINTS mac­
ros may be issued for the file.

PWRITE= YES: This operand is specified if for­
matting output operations (PUT for data files or
WRITE SQ for work files) are to cause a physical
write for each logical block. If omitted, the physical
write takes place only when the control interval
buffer is full.

RDONLY=YES: This operand is specified if the
DTF is used with a read-only module. Each time a
read-only module is entered, register 13 must con­
tain the address of a 72-byte doubleword-aligned
save area. Each task should have its own uniquely
defined save area. When an imperative macro
(except OPEN, OPENR, or LBRET) is issued, register 13
must contain the address of the save area associated
with the task. The fact that the save areas are unique
for each task makes the module reentrant (that is,
capable of being used concurrently by several tasks).

If an ERROPT or WLRERR routine issues I/O mac­
ros using the same read-only module that caused
control to pass to either error routine, your program
must provide another save area. One save area is
used for the normal I/O operations, and the second
for I/O in the ERROPT or WLRERR routine. Before
returning to the module that entered the error rou­
tine, register 13 must be set to the save area address
originally specified for the task.

As all control interval format logic modules are
reentrant and read-only, this operand is ignored if
DEVICE=FBA is specified. As the control interval
format and RPS logic modules support DTFs with
either read-only or non-read-only modules, no save
area need be established.

If the operand is omitted for other than FBA files,
the module generated is not reenterable and no save
area need be established.

RECFORM= {FIXUNBIFIXBLKIV ARUNBI
V ARBLKISPNUNBISPNBLKI
UNDEF}:

This operand specifies the type of records for input
or output. Enter one of the following parameters:

FIXUNB For fixed-length unblocked records
FIXBLK
VARUNB
VARBLK
SPNUNB
SPNBLK
UNDEF

For fixed-length blocked records
For variable-length unblocked records
For variable-length blocked records
For spanned variable-length unblocked records
For spanned variable-length blocked records
F or undefined records

If RECFORM=SPNUNB or RECFORM=SPNBLK is speci­
fied and RECslzE=(r) is not specified, an assembler
diagnostic (MNOTE) is issued, and register 2 is as­
sumed. IfWORKA=YES is omitted, an MNOTE is is­
sued and WORKA=YES is assumed. IfRECFORM is
omitted, FIXUNB is assumed.

RECSIZE= {nl(r)}: For fixed-length blocked re­
cords, RECSIZE is required. It specifies the number
of characters in each record.

Register notation must be used when processing
spanned or undefined records. When processing
undefined records and variable-length spanned re­
cords, RECSIZE is required for output files and is
optional for input files. The operand is invalid for
work files. It specifies a general register (anyone of
2 to 12) that contains the length of the record. On
output, you must load the length of each record into
the designated register before issuing a PUT macro.
If specified for input, IOCS provides the length of the
record transferred to virtual storage.

SEP ASMB= YES: Include this operand only if the
DTFSD is assembled separately. This causes a
CAT ALR card with the filename to be punched ahead
of the object deck and the filename to be defined as
an ENTRY point 'in the assembly. If the operand is
omitted, the assembler assumes that the DTF is being
assembled with the problem program and no
CAT ALR card is punched.

TRUNCS=YES: This operand is specified if
FIXBLK DASD files contain short blocks embedded
within an input file or if the input file was created
with a module that specified TRUNCS. This entry is
also specified if the TRUNC macro is issued for a
FIXBLK output file.

TYPEFLE= {INPUTIOUTPUTIWORK}: Use

this operand to indicate whether the file is an input
or output file. If WORK is specified, a work file is to
be used. If INPUT or OUTPUT is specified, the GET or
PUT macros, respectively, can be used. If WORK is
specified, the READ and WRITE, NOTE and POINTx,
and CHECK macros can be used.

UPDA TE= YES: This operand must be included if
the DASD input or work file is updated - that is, if
disk records are read, processed, and then re-written
in the same disk record locations from which they
were read. CLOSE writes any remaining records in
sequence onto the disk.

This operand is invalid for a file on an FBA DASD
assigned to a system logical unit (SYSRDR, SYSIPT,
SYSLST, or SYSPCH). If a PUT is attempted to an
input file, the job will be terminated.

V ARBLD=(r): Whenever variable-length blocked
records are built directly in the output area (no work
area specified), this entry must be included. It speci­
fies the number (r) of a general-purpose register
(anyone of 2 to 12), which will always contain the
length of the available space remaining in the output
area.

IOCS calculates the space still available in the
output area, and supplies it to you in the designated
register after the PUT macro is issued for a variable­
length record. You then compare the length of your
next variable-length record with the available space
to determine if the record fits in the area. This check
must be made before the record is built. If the record
does not fit, issue a TRUNC macro to transfer the
completed block of records to the file. Then, the
present record is built at the beginning of the output
area in the next block.

VERIFY=YES: This operand is included if you
want to check the parity of disk records after they
are written. If this operand is omitted, any records
written on a disk are not verified.

WLRERR=name: This operand applies only to
disk input files. It does not apply to undefined re­
cords. WLRERR specifies the symbolic name of your
routine to receive control if a wrong-length record is
read.

If the WLRERR operand is omitted but a wrong­
length record is detected by IOCS, one of the follow­
ing conditions results:

• If the ERROPT entry is included for this file, the
wrong-length record is treated as an error block
and handled according to your specifications
for an error (IGNORE, SKIP, or name of error
routine).

Chapter 3: Declarative Macros 3-77

• If the ERROPT entry is not included, the error is
ignored.

Undefined records are not checked for incorrect
record length. The record is truncated when the
BLKSIZE specification is exceeded.

WORKA= YES: If I/O records are processed, or
built, in work areas instead of in the I/O areas, speci-

3-78 DOS/VSE Macro Reference

fy this operand. You must set up the work area in
storage. The address of the work area, or a general­
purpose register which contains the address. must be
specified in each GET or PUT macro. For a ~ET or
PUT macro, 10CS moves the record to, or from, the
specified work area. WORKA=YES is required for
SPNUNB and SPNBLK. When this operand is specified
for a file, the 10REG operand must be omitted.

SDMODxx Macro
Sequential DASD files on FBA devices do not need
SDMODxx logic module macros to be specified for
them because preassembled re-entrant logic modules
are loaded into the SV A at IPL time and are available
to all partitions, as needed, for FBA support. These
modules are functional subsets. An SDMODxx mo­
dule associated with a problem program is ignored if
the file is assigned to an FBA device.

Sequential DASD module generation macros dif­
fer from other 10CS module generation macros. The
file characteristics are separated into ten categories,
and each category has a unique macro associated
with it (see Figure 3-49).

Macro Module Generated

SDMODFI Sequential DASD Module, Fixed-length
records l , Input file

SDMODFO Sequential DASD Module, Fixed-length
records l , Output file

SDMODFU Sequential DASD Module, Fixed-length
records I Update file

SDMODVI Sequential DASD Module, Variable-
length records (including spanned
records)2, Input file

SDMODVO Sequential DASD Module, Variable-
length records (including spanned
records)2, Output file

SDMODVU Sequential DASD Module, Variable-
length records (including spanned
records)2, Update file

SDMODUI Sequential DASD Module, Undefined
records3, Input file

SDMODUO Sequential DASD Module, Undefined
records3, Output file

SDMODUU Sequential DASD Module, Undefined
records3 Update file

SDMODW Sequential DASD Module, Work file4

I RECFORM=FIXUNB or FIXBLK in DTFSD
2RECFORM=VARUNB,VARBLK,SPNUNB,orSPNBLK

in DTFSD

3 RECFORM=UNDEF in DTFSD

4 RECFORM=FIXUNB or UNDEF in DTFSD

Figure 3-49. SDMOD macros.

The macro operation code and the keyword ope­
rands define the characteristics of the module. Mo­
dules for a specific file can thus be generated more
quickly than if there were ~mly one macro. A mo­
dule name may be contained in the name field of the
macro. The macro operation code is contained in the
operation field (SDMODFI, for example). The ope­
rands are contained in the operand field. The ope­
rands for the ten macros are summarized in Figure
3-50 and explained below.

The control interval format logic lodules assume
the value YES for all the following operands except
RECFORM (where SPNBLK is assumed) and RPS.

CONTROL= YES: This operand is specified if a
CNTRL macro is issued for the file. This entry applies
to all SDMODxx macros. The module also processes
any DTF in which the CONTROL parameter is not
specified.

ERREXT=YES: Include this operand ifnon-data­
transfer errors are returned to an ERROPT routine in
your program or if the ERET macro is used with the
DTF and module. If ERREXT is specified, ERROPT
must also be specified.

ERROPT=YES: This operand applies to all
SDMODxx macros. It is included if the module han­
dles any of the error options for an error block. Log­
ic is generated to handle any of the three options
(IGNORE, SKIP, or name) regardless of which option
is specified in the DTF. The module also processes
any DTF in which the ERROPT operand is not speci­
fied.

If this operand is not included, your program is
canceled whenever any unrecoverable error except a
wrong-length record error (which LIOCS ignores) is
encountered.

FEOVD= YES: This operand is specified if the
forced end of volume for disk feature is desired. It
allows the program to force an end of volume condi­
tion before physical end of volume occurs. When the
FEOVD macro is issued, the current volume is closed,
and I/O processing continues on the next volume.

HOLD=YES: This operand applies only to update
files (SDMODFU, SDMODVU, and SDMODUU) and
work files (SDMODW). The operand is included if the
track hold function is employed. Any DTF used with
the module must have the same operand.

NOTEPNT= {POINTRWIYES}: This operand
applies to SDMODW (work files) only. It is included
if any NOTE, POINTR, POINTS, or POINTW macros are
used within the module. If the operand specifies
POINTRW, logic to handle only NOTE, POINTR, and
POINTW is generated.

If YES is specified, the routines to handle NOTE,
POINTR, POINTS, and POINTW are generated and any
files that specify NOTEPNT=POINTRW in the DTF are
processed.

RDONL Y = YES: This operand causes a read-only
module to be generated. Whenever this operand is

Chapter 3: Declarative Macros 3-79

!

I Operand Required ~ Comments

CONTROl=YES If the CNTRl macro is to be issued for the file. I Applies to all SDMODs. I
If the module returns non-data-transfer errors or is : Applies to all SDMODs.

I
ERREXT=YES I

used with the ERET macro. I I

ERROPT=YES If the module is to handle error options for an er- Applies to all SDMODs.
ror block.

FEOVD=YES If the FEOVD macro is to be issued for the file. Applies to all SDMODs except
SDMODW.

HOLD=YES If the tiack hold hmciiofi is to be ernpioyt:lu. Appiies to update and work fiie iogic
modules.

NOTEPNT = {POINTRWIYES} If NOTE, POINTR, POINTS, or POINTW macros This parameter applies to SDMODW
are to be issued for the file. only. The operand POINTRW generates

logic for NOTE, POINTR, and POINTW.
The operand YES generates logic for all
macros.

RDONlY=YES If a read-only module is to be generated. Applies to all SDMODs.

RECFORM = {SPNUNBISPNBlK} If unblocked or blocked spanned records are to be Applies to SDMODVI, SDMODVO, and
processed. SDMODVU only.

RPS=SVA If RPS support is desired. To assemble the RPS logic modules.

SEPASMB=YES If the module is assembled separately from the Applies to all SDMODs.
DTF.

TRUNCS=YES If the TRUNC macro is to be issued for the file. Applies to all SDMODs for fixed-length
Assumed for output files consisting of variable- records.
length blocked records.

UPDATE=YES If SDMODW is to process the WRITE UPDATE Applies to SDMODW only.
macro.

Figure 3-50. SDMODxx operands.

specified, any DTF used with the module must have
the same operand.

RECFORM= {SPNUNBISPNBLK}: This ope­
rand is required only for SDMODVI (input files),
SDMODVO (output files), and SDMODVU (update
files) ifRECFORM=SPNUNB or SPNBLK is specified in
the DTF macro. If RECFORM is specified incorrectly,
an assembler diagnostic (MNOTE) is issued, and the
module generation is terminated.

This operand is ignored if specified for v ARBLK
input or update files. It must be specified if any
FIXBLK DASD files (processed by the module) con­
tain short blocks embedded within them, if the input
file was created with a module that specified
TRUNCS, or if the DTF was specified with
RECFORM=UNDEF. The module cannot process any
DTF for fixed-length records in which the TRUNCS
operand is not specified.

RPS=SVA: This operand causes the RPS logic mo­
dules to be assembled. When this operand is used,
only superset modules are generated.

SEP ASMB= YES: Include this operand only if the
module is assembled separately. This causes a
CA T ALR card with the module name (standard or
user-specified) to be punched ahead of the object
deck and the module name to be defined as an
ENTRY point in the assembly. If the operand is omit­
ted, the assembler assumes that the module is being
assembled with the DTF and the problem program
and no CAT ALR card is punched.

TRUNCS=YES: This operand applies to all
SDMOD macros for fixed-length records. It generates
a logic module which can handle the TRUNC macro.
This operand is assumed for v ARBLK output files.

3-80 DOS/VSE Macro Reference

UPDA TE= YES: This operand applies to the
SDMoDwonly. It is assumed for SDMODFU,
SDMODUU, and SDMODVU and generates a logic
module which can handle the WRITE UPDATE macro
with work files.

Standard SDMOD Names
Each name begins with a 3-character prefix (IJG)
and continues with of a 5-character field corre­
sponding to the options permitted in the generation
of the module. •

In SDMOD there are two module classes:

• Those which handle GET/PUT functions
• Those which handle READ/WRITE,

NOTE/POINTx, and CHECK functions (work
files).

Name List for GET/PUT Type Modules

SDMODxx name = I1Gabcde

a = C SDMODFx specifies HOLD=YES

F SDMODFx does not specify HOLD=YES

R SDMODUx specifies HOLD=YES
U SDMODUx does not specify HOLD=YES

P SDMODVx specifies HOLD=YES and
RECFORM=SPNBKISPNUNB

Q SDMODVx does not specify HOLD=YES and speci-
fies RECFORM=SPNBLKISPNUNB

S SDMODVx specifies HOLD=YES

V SDMODVx does not specify HOLD=YES

b U SDMODxU

I SDMODxl

0 SDMODxO

W SDMODxl, RPS=SV A
X SDMODxO, RPS=SV A

Y SDITODxU, RPS=SV A

c = C ERROPT=YES and ERREXT=YES, RPS=SVA

E ERROPT=YES

Z neither is specified

d M TRUNCS=YES and FEOVD=YES (see Note 1 be-
low)

T TRUNCS=YES (see Note 1 below), RPS=SVA

W FEOVD=YES (see Note 2 below), RPS=SVA

Z neither is specified (see Note 2 below)

e = B CONTROL=YES and RDONLY=YES, RPS=SVA

C CONTROL=YES

Y RDONL Y = YES

Z neither is specified

Notes:

1. Generated only for SDMODFx.
2. If generated for SDMODVO, TRUNC logic is available.

N arne List for W orkfile Type Modules
(TYPEFLE=WORK)

SDMODxx name = I1Gabcde

a = T HOLD=YES

b

W HOLD=YES not specified

C ERROPT=YESandERREXT=YES

E ERROPT=YES

Z neither is specified

c N NOTEPNT= YES

R NOTEPNT=POINTRW

Z NOTEPNT is not specified

d C CONTROL=YES

Z CONTROL=YES is not specified

e T RDONL Y = YES and UPDA TE= YES

U UPDATE=YES

Y RDONLY=YES

Z neither is specified

Subset/Superset SDMOD Names
Figure 3-51 illustrates the subsetting and superset­
ting allowed for SDMOD names. For the GET/PUT

type modules, four parameters allow supersetting.
For example, in the GET/PUT type module, the mo­
dule IJGFUETC is a superset of a module with the
name of IJGFUZTZ.

For GET/PUT Type Modules:

+ * + + +
I J G C U C M B

F I E T y

+ 0 z + +
R W W C
U X Z Z
+ y
P
Q
V

+
P
S
V

For Workfile Type Modules:

+ + + + +
I J G T C N C T

W E R Z Y
Z Z +

U
Z

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

Figure 3-51. Sub setting and supersetting of SDMOD names.

Chapter 3: Declarative Macros 3-81

3-82 DOS/VSE Macro Reference

CCBMacro
Name Operation

blockname CCB

Operand

SYSnnn,command-list-name
(,X'nnnn'][,senseaddress]

A CCB (command control block) macro must be
specified in your program for each I/O device con­
trolled by physical 10CS macros. The CCB (see Fig­
ure 4-1) is necessary to communicate information to
physical 10CS so that it can perform desired opera­
tions (for example, notifying your program of print­
er channel 9). The CCB also receives status intorma­
tion after an operation and makes this available to
your program. You should ensure proper boundary
alignment of the CCB if this is necessary for your
program.

Not~: In some applications, it may be preferable to use an 10RB
(I/O Request Block) in place of a CCB. Do this by specifying
either an 10RB or GENIORB macro.

blockname: The CCB macro must be given a
symbolic name (blockname). This name can be used
as the operand in the EXCP and WAIT macros which
refer to the CCB.

SYSnnn: This operand specifies the symbolic unit
for the actual I/O unit with which this CCB is associ­
ated. The actual I/O unit can be assigned to the sym-

Chapter 4: Imperative Macros

bolic unit by an ASSGN job control statement.

command-list-name: This operand specifies the
symbolic name of the first ccw used with a CCB.

This name must be the same as the name specified
in the assembler ccw statement that constructs the
ccw.

X'nnnn': A hexadecimal value used to set the CCB

user option bits. Column 5 of Figure 4-2 gives the
value used to set a user option bit 'on'. If more than
one bit must be set, the sum of the values is used.

sense address: This operand, when supplied,
indicates user error recovery (see Figure 4-2, byte 2,
bit 7) and generates a ccw for reading sense inform­
ation as the last field of the CCB. The name field
(sense address) of the area that you supply must
have a length attribute assigned of at least one byte.
Physical 10CS uses this length attribute in the ccw to
determine the number of bytes of sense information
you desire.

CCB Format

From the above specifications, the macro sets up an
area of either 16 bytes or 24 bytes. For the layout of
this area and its contents see Figure 4-1.

Chapter 4: Imperative Macros 4-1

Bytes

a
reserved CCW address •

8

oPtional sense CCW

16

After a record has been transferred, 10CS places the
residual count from the CSW into these two bytes. By
subtracting the residual count from the original count in
the CCW, your program can determine the length of the
transferred record. The field is set to zero for negative
values.

2 Used for transmission of information between physical
10CS and your program. For detailed information on the
use and purpose of the individual bits in this field, see
Figure 4-2. Your program can test any of the bits in this
field using the mask given in the last column of Figure
4-2. Your program may test more than one bit by the
hexadecimal sum of the test values.

All bits are set to 0 when your program is assembled
unless the X'nnnn' operand is sepcified. If this operand is
specified, it is assembled into these two bytes. When your
program is being executed, each bit may be set to 1 by
your program (to request certain functions or specific
feedback information) or by physical 10CS (as a result of
having detected a particular condition). Any bits that can
be turned on by physical 10CS during program execution
are reset to zero by PIOCS the next time an EXCP macro
is executed against the same CCB.

3 Byte 4 is set to X'OO' whenever an EXCP macro is issued
against the CCB. For non-teleprocessing devices, a
program-controlled interruption (PCI) is ignored.

The meaning of the bits in these two bytes is as follows:

Byte 4:

o = attention

1 = status modifier
2 ~ contro! unit end
3 = busy
4 = channel end
5 = device end
6 = unit check
7 = unit exception

Byte 5:

o = program-controlled
interruption

1 = incorrect length
2 = piogiam check
3 = protection check
4 = channel data check
5 = channel control check
6 = interface control check
7 = chaining check

If bit 5 of CCB byte 2 is set to 1 and device end results as
a separate interrupt, device end will be posted.

Figure 4-1. Layout and contents of Command Control Block (CCB).

4-2 DOS/VSE Macro Reference

4 Contents of byte 6:

X'Ou' = original CCB
X'2u' = translated CCB
X'4u' = BTAM-ES request against original CCB
X'6u' = BTAM-ES request against translated CCB
X'Su' = user-transiated CCB in virtual partition

Note:, if u = 0: the address in byte 7 refers to a sys­
tem logical unit.
if u = 1: the address in byte 7 referes to a pro­
grammer logical unit

Contents of byte 7:
Hexadecimal representation of SYSnnn as follows:

SYSRDR = 00
SYSIPT = 01
SYSPCH = 02
SYSLST = 03
SYSLOG = 04
SYSLNK = 05
SYSRES = 06
SYSSLB = 07
SYSRLB = 08
SYSUSE = 09
SYSREC = OA
SYSCLB = OB
SYSVIS = OC
SYSCAT = OD

SYSOOO = 00
SYS001 = 01
SYS002 = 02

•

•
SYS240=FO

5 Address of CCW (or of the first of a chain of CCWs) asso­
ciated with the CCB:

This is a real address if CCB byte 6 = X'2u', X'6u', or
X'8u'.

This is a virtual address if CCB byte 6 = X'Ou' or X'4u'.

6 Either of the following:
The CCW addiess contained iii the CS'vV at channei-end

interrupt for the I/O operation involving the CCB; or
the address of the associated channel appendage
routine if CCB byte 12 contains X'40'.

7 Bytes 16 to 23 are provided only if the sense operand
was specified in the CCB macro. They accommodate
the CCW for returning sense information to your
program.

Condition Indicated On Values for
Mask for Test

Byte Bit
Third Ope-

Under Mask
1 (ON) o (OFF) rand in CCB

Instruction Macro

2 0 Traffic Bit (WAIT) I/O Completed. Normally I/O requested X'80'
set at Channel End. Set at and not complet-
Device End if bit 5 is on. ed.

1 End of File on System Input /* or /& on SYSRDR or X'40'
SYSIPT. Byte 4, Unit ex-
ception Bit is also on.

3211 UCB Parity Check (line Yes No
complete)8

2 Unrecoverable I/O Error I/O error passed back due No program or X'20'
to program option or opera- operator option
tor option. error was passed

back.

3 1 Accept Unrecoverable I/O Error Return to user after physi- Operator Option: X'1000' X'10'
(Bit 2 is ON) cal 10CS attempts to cor- Dependent on the

rect I/O error.2 Error

4 1 Return: Operator Options: Operator Options: X'0800' X'08'
DASD data checks, 3540 data Ignore, Retry, or Cancel. Retry or Cancel.
checks,
2671 data checks, 1017/1018 Ignore or Cancel. Cancel.
data checks.

5424/5425 not ready. Return to user.
Indicate action type messages for
DOC

51 Post at Device End. Specify this Device End condition is Device End condi- X'0400' X'04'
bit to be set on for a 2560 or posted: that is, byte 2, bit 0 tions are not post~
5424/5425. and byte 3, bits 2 and 6 set ed. Traffic bit is

at Device End. Also byte 4, set at Channel
bit 5 is set. End.

6 1 Return: Uncorrectable tape read Return to user; after physi- Operator Option: X'0200' X'02'
data check (2400 series or 3420); cal 10CS attempts to cor- Ignore or Cancel
1018, 2560 data check, 2520 or rect 3211 8, tape, or DASD for tapes, paper
2540 punch equipment check; error; when 1 01 8 or 2560 tape punch
2560,5424/5425 read, punch, data check4; when 2560 or (1018), card
print data, and print clutch equip- 5424/5425 equipment punches other
ment checks; 3881 equipment check; when 3504, 3505, than 2560 and
check;3504,3505,or3525pe~ 3525 permanent error (byte 5424/5425. Re-
manent errors; DASD read or read 3, bit 3 is also on).4,8 try or Cancel for
verify data check; 3211 passback DASD, 2560, or
requested; 3895 error codes re- 5424/5425.
quested. (Data checks on count
not retained)8

71 User Error Routine User handles error A physical 10CS X'0100 X'01 '
recovery.3 error routine is

used unless the
CCB sense ad-
dress operand is
specified. The
latter requires
user error re-
covery.

Figure 4-2. Conditions indicated by CCB bytes 2 and 3 (Part I of3).

Chapter 4: Imperative Macros 4-3

Condition Indicated On Values for I
~------:;~~-----'--"';"":':---'----------11 Th' dOl Mask for Test

Byte

3 o

Bit

Data check in DASD count field.
Permanent error for 3330, 3340,
or 3350.

Data check - 1287 or 1288.

MICR - SCU not operational.
~t')11 D ... in" rho;.. l.onlti_r-n _ ..
VL.. I I •• ", .. "'II_V'" \'-''-tU1tJlll''--'ll\

check).7,8

3540 special record transferred.

1 (ON) 0 (OFF)

Yes-Byte 3, bit 3 is off;
Byte 2, bit 2 is on.

Yes

Yes

Yes

Yes

No

No

I~~
I'IV

No

DASD Track overrun. Yes No

No

No

1017 broken tape. Yes

Keyboard correction 1287 in Jour- Yes
nal Tape Mode

3211 print quality error
(equipment check)8.

MICR intervention required.

2 End of DASD Cylinder.

3

4

Hopper Empty 1287/1288 Docu­
ment Mode.

MICR -
1255/1259/1270/1275/1419,
disengage.

1275/14190, I/O error in exter­
nal interrupt routine.

3211/2245 line position error.5.8

Tape read data check (2400 se­
ries); 2520, 2540 or 3881 equip­
ment check; any DASD data
check.

1017, 1018 data check.

1287, 1288 equipment check.

2560, 3203, 5203, 5424/5425
read, punch, print data, and print
clutch equipment checks.
3504,3505, 3525 permanent er­
rors.

3211 data check/print check.8

3540 data check.

Nonrecovery Questionable Condi­
tion.

5' No record found condition (retry
on 2311, 2314, 2319, 3330,
3340, or 3350).

Yes

Yes

Yes

Yes

No

No

No

Document feeding stopped. No

Channel data check or Bus­
out check.

Yes No

Operation was unsuccess- No
ful. Byte 2, bit 2 is also on.
Byte 3, bit 0 is off.

Yes No

Yes No

Byte 2, bit 6 is also on. No

Byte 2, bit 6 is also on. No

Yes

Yes

Card: unusual command
sequence. For DASD, no
record found. 1287, 1288
document jam or torn tape.
3211 UCB parity check
(command retry).

5424/5425 not ready.

No

No

Retry command if no record Set the nonrecov-
found condition occurs ery questionable
(disk). condition bit on

and return to
user.

Figure 4-2. Conditions indicated by CCB bytes 2 and 3 (Part 2 of 3).

4-4 DOS/VSE Macro Reference

I Ir pe- I I rand in CCB i Under Mask
Macro ! Instruction I

X'80'

X'40'

X'20'

X'10'

X'08'

X'0004' X'04'

Condition Indicated On Values for
Mask for Test

Byte Bit
Third Ope-

Under Mask
1 (ON) o (OFF) rand in CCB

Instruction Macro

3 6 Verify error for DASD or Carriage Yes. (Set on when Channel No X'02'
Channel 9 overflow. 9 is reached only if Byte 2,

bit 5 is on).

1287 document mode: late stack- Yes No
er select.

1288 End-of-Page (EOP). Yes No

71 Command Chain Retry. Specify Retry begins at last CCW Retry begins at X'0001 ' X'01 '
this bit to be set on if command executed.6 first CCW or
chaining is used for a 2560 or channel program.
5424/5425.

Notes:

User Option Bits. Set in CCB macro. Physical IOCS sets the other bits off at EXCP time and on when the specified condition
occurs.

2 I/O program check, command reject, or tape equipment check always terminates the program.
3 You may not handle Channel Control Checks and Interface Control Checks. The occurence of a channel data check, unit check, or

channel chaining check cause byte 2, bit X'20' of the CCB to turn on, and completion of posting and dequeuing to occur. I/O
program and protection checks always cause program termination. Incorrect length and unit exceptl~n are treated as normal
conditions (posted with completion). Also, you must request device end posting (CCB byte 2, bit X'04') in order to obtain errors
after channel end.

4 Error correction feature for 1018 is not supported by physical IOCS. When a 1018 data check occurs and CCB byte 2, bit X'02' is on,
control returns directly to you with CCB byte 3, bit X'lO' turned on.

5 A line position error on the 3211 can occur as a result of an equipment check, data check, or FCB parity check.
6 If an error occurs, physical IOCS updates the CCW address in bytes 9 through 11 of the CCB that is used for the pertinent I/O

operation and is queued to the channel queue.
7 A deleted or bad spot record has been read on a 3540 diskette. CCW chain broken, after CCW reads special record.
8 3211 remarks apply also to 321 I-compatible printers (that is, with device type code ofPRTl). 3895 error codes are returned in CCB

byte 8. Refer to the 3895 Document Reader/Inscriber manuals for information on these error codes.

Figure 4-2. Conditions indicated by CCB bytes 2 and 3 (Part 3 of3).

CHECK Macro
Name Operation

[name] CHECK

Operand

{filenamej(I)}
[,control-addressj,(O)]

The CHECK macro prevents processing until data
transfer on an I/O operation is complete. It must be
issued either after a READ or WRITE macro is issued
to a work file, or after a READ is issued to a MICR

file.

Because of differences in the way that IOCS posts
CCB transmission information bits in the DTFs, you
should always issue a CHECK macro to ensure that
data transfer is complete before testing these bits. If
the data transfer is completed without an error or
other exceptional condition, CHECK returns control
to the next sequential instruction. If an error condi­
tion is encountered, control is transferred to the
ERROPT address. If ERROPT is not specified, process­
ing continues at the next instruction. If end-of-file is
encountered, control transfers to the EOF ADDR ad­
dress.

filename I (1): The operand specifies the name of

the file associated with the record to be checked or,
if register notation is used, the register containing a
pointer to the field that contains this name. This
name is the same as that specified for the DTFXX

header entry for the file.

Issuing a CHECK macro after a READ on a MICR

device allows you to query the MICR document buff­
er (see Figure 4-3) and to specify the control-address
operand:

control-address I (0): indicates the address to
which control passes when a buffer is waiting for
data or when the file is closed. If register notation is
used, the specified register must point to a field that
contains this address.

The CHECK macro determines whether the MICR

document buffer contains data ready for processing,
is waiting for data, contains a special nondata status,
or the file (filename) is closed. If the buffer has data
ready for processing, control passes to the next se­
quential instruction. If the buffer is waiting for data,
or the file is closed, control passes to the address
specified for control address, if present. If the buffer
contains a special nondata status, control passes to
the ERROPT routine for you to examine the posted
error conditions before determining your action.
(See byte 0, bits 2, 3, and 4, of the document buffer).

Chapter 4: Imperative Macros 4-5

Return from the ERROPT routine to the next sequen­
tial instruction via a branch on register 14, or to the
control address in register O.

If the buffer is waiting for data, or if the file is
closed, and the control address is not present, con­
trol is given to you at your ERROPT address specified
in the DTFMR macro.

If an error, a closed file, or a waiting condition
occurs (with no control-address specified) and no
ERROPT address is present, control is given to you at
the next sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of
the buffer is set to 1. If the file was closed, byte 0,
bits 5 and 6 of the buffer are set to 1.

MICR Document Buffer
Buffer Status Indicators

Byte Bit Comment -----1 0 0 The document is ready for processing (you need never test this bit).

i Unrecoverable stacker select error, but all document data is present. You may continue to issue
GETs and READs.

2 Unrecoverable I/O error. An operator I/O error message is issued. The file is inoperative and must
be closed.

3 Unit Exception. You requested disengage and all follow-up documents are processed. The LITE
macro may be issued, and the next GET or READ engages the device for continued reading.

4 Intervention required or disengage failure. This buffer contains no data. The next GET or READ
continues normal processing. This indicator allows your program to give the operator information
necessary to select pockets for documents not properly selected and to determine unread docu-
ments.

15 The program issued a READ, no document is ready for processing, byte 0, bits 0 to 2 are off, or the
file is closed (byte 0, bit 6 is on). The CHECK macro interrogates this bit.

Note: You must test bits 1 through 4 and take appropriate action. Any data from a buffer should not
be processed if bits 2, 3, or 4 are on.

6 The program has issued a GET or READ and the file is closed. Bit 5 is also on.

7 Reserved.

1 0 Your stacker selection routine turns this bit on to indicate that batch numbering update (1419 only)
is to be performed in conjunction with the stacker selection for this document. The document is
imprinted with the updated batch number unless a late stacker selection occurs (byte 3, bit 2).

1-7 Reserved.

Note: If bits 6 or 7 (byte 2) are on, bit 0 is ignored by the external interrupt routine. With the 1419
(dual address) only, batch numbering update cannot be performed with the stacker selection of
auto-selected documents.

2" 0 For 1419 or 1275 (dual address) only. An auto-select condition occurred after the termination of a
READ but before a stacker select command. The document is auto-selected into the reject pocket.

1-3 Reserved.
4 Data check occured while reading. You should interrogate byte 3 to determine the error fields.

I I 5 I Overrun occurred while reading. Byte 3 should be interrogated to determine the error fields.
Overruns cause short length data fields. When the 1419 or 1275 is enabled for fixed-length data
fields, bit 4 is set.

6-7 The specific meanings of bits 6 and 7 depend on the device type, the model, and the Engineering
Change level of the MICR reader; but if either bit is on, the document(s) concerned is (are) auto-
selected into the reject pocket.

1. 1412 or 1270: Bit 6 on indicates that a late read condition occurred. Bit 7 on indicates
that a document spacing error occurred. (Unique to the 1270: both the current document and
the previous document are auto-selected into the reject pocket when this bit is on. This
previous document reject cannot be detected by 10CS, and byte 5 of its document buffer does
not reflect that the reject pocket was selected).

2. 1275 and 1419 (single address) without engineering change #125358: Bit 6 indicates
that either a late read condition or a document spacing error occurred. Bit 7 indicates a
document spacing error for the current document.

3. 1255, 1259, 1275, and 1419 (single or dual address) with engineering change
#125358: Bit 6 indicates that an auto-select condition occurred while reading a document. The
bit is set at the termination of the READ command before the stacker select routine receives I control. Bit 7 is always zero.

Figure 4-3. MICR document buffer format (Part 1 of 2)

4-6 DOS/VSE Macro Reference

Buffer Status Indicator (Continued)

Byte Bit Comment

3* 0 Field 6 valid. * *

1 Field 7 valid. * *

2 A late stacker selection (unit check late stacker select on the stacker select command). The
document is auto-selected into the reject pocket.

3 Amount field valid (or field 1 valid). * *
4 Process control field valid (or field 2 valid). * *

5 Account number field valid (or field 3 valid). * *

6 Transit field valid (or field 4 valid). * *

7 Serial number field valid (or field 5 valid). * *

Notes:

1. For the 1 270, bits 3-7 are set to zero when the fields are read without error.

2. For the 1255, 1259, 1275, and 1419, bits 3-7 are set on when each respective field, including
bracket symbols, is read without error. This applies to bits 0, 1, and 3-7 on the 1259 and 1419
model 32.

3. For the 1255, 1259, 1275, and 1419, unread fields contain zero bits. Errors are indicated
when an overrun or data check condition occurs while reading the data field.

* Byte 2 (bits 4,5,6, and 7) and byte 3 contain MICR sense information.

* * Only for the 1259 model 34 or 1419 model 32. Bits 0 and 1 are not used for other models.

4 Inserted pocket code determination by your stacker select routine. Whenever byte 0, bits 2, 3, or 4
are on, this byte is X'OO' because no document was read and your stacker selection routine was not
entered. Whenever auto-selection occurs, this value is ignored. A no-op (X'03') is issued to the
device, and a reject pocket value (X'CF') is placed in byte 5. The pocket codes are (byte 2, bit 6 or
7 on):

Pocket A - X'AF' * Pocket 5 - X'5F'
Pocket B - X'BF' * * Pocket 6 - X'6F' Except 1270
Pocket 0 - X'OF' Pocket 7 - X '7F' models 1 and 3
Pocket 1 - X'1 F' Pocket 8 - X'8F'
Pocket 2 - X'2F' Pocket 9 - X'9F'
Pocket 3 - X'3F' Reject
Pocket 4 - X'4F' Pocket - X'CF'

5 The actual pocket selected for the document. The contents are normally the same as that in byte 4.

Note:
1. X'CF' is inserted whenever auto-selection occurs (byte 2, bit 6; byte 2, bit 7; byte 2, bit 0; or

byte 3, bit 2). These conditions may result from late READ commands, errant document
spacing, or late stacker selection.

a. Start I/O for stacker selection is unsuccessful (byte 0, bit 1).
b. An I/O error occurs (for example, invalid pocket code) on the 1419 (dual address)

secondary control unit when selecting this document.

Additional User Work Areas

This additional buffer area can be used as a work area and/or output area. Its size is determined by the DTFMR ADDAREA
operand. The only size restriction is that this area, plus the 6-byte status indicators and data portion must not exceed 256
bytes. This area may be omitted.

Document Data Area

The document data area immediately follows your work area. The data is right-adjusted in the document data area. The length
of this data area is determined by the DTFMR RECSIZE operand.

* 1275,1419, and 1270 models 2 and 4 only.

* * 1275 and 1419 only.

Figure 4-3. MICR document buffer format (Part 2 of2)

Chapter 4: Imperative Macros 4-7

CLOSE and CLOSER Macros
The CLOSE or CLOSER macro is used to deactivate
previously opened files; they end the association
bet ween a logical fue declared in a program and a
specific physical file on an I/O device.

A file may generally be closed at any time, with
the following exceptions;

• Console files need not be closed; the CLOSE(R)

macro is invalid for files defined by means of
the DTFCN.

• Files assigned to an FBA device may not be
closed in an ERR OPT routine.

Files (such as on an FBA device) that use control
interval format must be closed in order to ensure
that data in the control interval buffer be physically
written on the FBA device.

No further commands can be issued to the closed
file until it is reopened.

The format of the CLOSE macro is

Name Operation

[name] {CLOSEI
CLOSER}

Operand

{filename II(rl)}
[,filename21(r2)] ...

The format of the CLOSER macro is the same except
that you code CLOSER instead of CLOSE in the opera­
tion field.

When CLOSER is specified, the symbolic address
constants that CLOSER generates from the parameter
list 4re self-relocating. When CLOSE is specified, the
symbolic address constants are not self-relocating.

To write the most efficient code in a multipro­
gramming environment it is recommended that
CLOSER be used.

Enter the symbolic name of the file (assigned in
the DTF header entry) in the operand field. A maxi­
mum of 16 files may be closed by one macro by en­
tering additional filename parameters as operands.
Alternatively, you can load the address of the file­
name in a register and specify the register using or­
dinary register notation. The high-order 8 bits of
this register must be zeros. For CLOSER, the address
of filename may be preloaded into any of the regis­
ters 2 through 15. For CLOSE, the address offilen­
ame may be preloaded into register 0 or any of the
registers 2 through 15.

Notes:

1. If you use register notation, we recommend that you follow

4-8 DOS/VSE Macro Reference

the practice of using only registers 2 through 12.
2. If CLOSE or CLOSER is issued to an unopened tape input

file, the option specified in the DTF rewind option is per­
formed. If CLOSE or CLOSER is issued to an unopened
tape output file, no tapemark or labels are written.

CNTRLMacro
Name Operation Operand

[name] CNTRL {filenamel(l)} ,code[,n 1][,n2]

_ The CNTRL (control) macro provides commands for
magnetic tape units, card devices, printers, DASDs,
and optical readers. (Note that if the device is an
FBA DASD, the CNTRL macro is treated as a no-op or
null operation.) Commands apply to physical non­
data operations of a unit and are specific to the unit
involved. They specify such functions as rewinding
tape, card stacker selection, and line spacing on a
printer. For optical readers, commands specify
marking error lines, correcting a line for journal
tapes, document stacker selecting, or ejecting and
incrementing documents. The CNTRL macro does
not wait for completion of the command before re­
turning control to you, except when certain mne­
monic codes are specified for optical readers.

CNTRL usually requires two or three parameters.
The first parameter must be the name of the file
specified in the DTF header entry. It can be specified
as a symbol or in register notation.

The second parameter is the mnemonic code for
the command to be performed. This must be one of
a set of predetermined codes (see Figure 4-4).

The third parameter, nl, is required whenever a
number is needed for stacker selection, immediate

....Qrinter carriage contrru.: or for line or page marking>
on the 3886. The fourth parameter, n2, applies to
delayed spacing or skipping or to timing mark check
on the 3886. In the case of a printer file, the parame­
ters n I and n2 may be required.

The CNTRL macro must not be used for printer or
punch files if the data records contain control char­
acters and the entry CTLCHR is included in the file
definition.

Whenever CNTRL is issued in your program, the
DTF CONTROL operand must be included (except for
DTFMT and DTFDR) and CTLCHR must be omitted.
If control characters are used when CONTROL is
specified, the control characters are ignored and
treated as data.

IBM Unit Mnemonic Code n 1 n2

2400,3410,3420 Series Magnetic Tape Units REW

RUN

ERG

WTM

-BSR

BSF

BSL

FSR

FSF

FSL

1442,2520 Card Read Punch SS 1
2 i

E

2540 Card Read Punch PS 1
3504, 3505 Card Readers 2
3525 Card Punch 3

2560 Multi - Function Card Machine SS 1
2
3
4
5

2596 Card Read Punch SS 1
2

5424/5425 Multi - Function Card Unit SS 1
2
3
4

See Note

1403, 1443,3203, PRT1, 3800, 5203 Printers SP c
3525 Card Punch with Print Feature 1 SK c

1403, 5203 Printers with Universa I Character UCS ON
Set Feature or 3203, PRT1, or 3800 Printers 1 OFF

PRT1 Printer 1 FOLD

UNFOLD

2311,2314,2319,3330,3333,3340,3344 SEEK
DASD2

3881 Optical Mark Reader PS 1
2

1287 OPtical Reader MARK

READKB

EJD

SSD 1
2
3
4

ESD 1-4

INC

1288 Optical Page Reader ESD 1
3

INC

3886 OPtical Character Reader DMK name (r)
number

LMK name (r)
number,
number

ESP 1
2

c = An Integer that Indicates Immediate Printer Control (before printing).

d = An Integer that Indicates a Delayed Printer Control.

d

d

name (r)
number

1 Note: PRT1 refers to 3211-compatible printers (that is, with a device type of PRT1).

2 Note: Th is includes the 3350 operating in 3330 compatibility mode.

Figure 4-4. CNTRL macro command codes

Command

Rewind Tape

Rewind and Unload Tape

Erase Gap (Writes Blank Tape)

Write Tapemark

Backspace to Interrecord Gap

Backspace to Tapemark

Backspace Logical Record

Forward Space to Interrecord Gap

Forward Space to Tapemark

Forward Space Logical Record

Select Stacker 1 or 2

Eject to Stacker 1 (1442 only)

Select Stacker 1, 2, or 3 (For 3504, 3505, and 3525, 3 Defaults
to Stacker 2)

Select Stacker 1, 2, 3, 4, or 5

Select Stacker 1 for Read, or Stacker 3 for Punch
Select Stacker 2 for Read, or Stacker 4 for Punch

Select Stacker 1, 2, 3, or 4

Carriage Space 1, 2, or 3 lines

Skip to Channel c and/or d (For 3525, a Skip to Channel 1 is
Valid Only for Print Only Files)

Data Checks are Processed with an Operator Indication
Date Checks are ignored and Blanks are Printed

Print Upper Case Characters for any Byte with Equivalent Bits 2-7

Print Character Equivalents of any EBCDIC Byte

Seek to Address

Select Stacker 1 or 2

Mark Error Line in Tape Mode

Read 1287 Keyboard in Tape Mode

Eject Document

Select Stacker A, B, Reject, or Alternate Stacking Mode

Eject Document and Select Stacker

Increment Document at Read Station

Select Stacker A
Reject Stacker (R)

Increment Document at Read Station

Page mark the document when it is stacker selected as specified in
parameter n l'

Line mark the document when it is stacker selected as specified in
parameter n 1.

Eject and stacker select the current document to stacker A or B.
Perform line mark station timing mark check as indicated in
parameter n2'

Chapter 4: Imperative Macros 4-9

DISENMacro

Name Operation Operand

[name] DISEN {filenamel(l)}

This macro stops the feeding of documents through
the magnetic character reader or optical
reader/sorter. The program proceeds to the next
sequential instruction without waiting for the disen­
gagement to complete. You should continue to issue
GETS or READS until the unit exception bit (byte 0,
bit 3), of the buffer status indicators is set on (see
Figure 4-3).

The only required operand specifies the name of
the file to be disengaged. This name is the same as
that specified for the DTFMR header entry for the
file. The operand can be specified either as a symbol
or in register notation.

DSPLYMacro
Name Operation Operand

[name] DSPL Y {filename I (I)} ,(r2),(r3)

The DSPL Y macro displays the document field on
the 1287 display scope: A complete field may be
keyboard-entered if a 1287 read error makes this
type of correction necessary. An unreadable charac­
ter may be replaced by the reject character either by
the operator (if processing in the on-line correction
mode) or by the device (if processing in the off-line
correction mode). You may then use the DSPL Y

macro to display the field in error.

DSPLY always requires three parameters. The first
parameter is the symbolic name specified in the
DTFOR header entry for the 1287 file. The second
parameter specifies a general-purpose register (any
from 2 to 12) into which the problem program
places the address of the load format ccw giving the
document coordinates for the field to be displayed.
When the DSPL Y macro is used in the COREXIT rou­
tine, the address of the load format ccw can be ob­
tained by subtracting 8 from the 3-byte address that
is right-justified in the fullword location beginning
at filename+32. (The high-order fourth byte of this
full word should be ignored.) If the DSPL Y macro is
not used in the COREXIT routine, you must deter­
mine the load format ccw address. The third par­
ameter specifies a general-purpose register (2 .
through 12) into which you place the address of the
load format ccw giving the coordinates of the refer­
ence mark associated with the displayed field.

4-10 DOSjVSE Macro Reference

ENDFLMacro
Name Operation Operand

[name] ENDFL {filenamel(O)}

The ENDFL (end file load mode) macro ends the
mode initiated by the SETFL macro, The name of
the file to be loaded is the only parameter required,
and is the same as the name specified in the DTFIS

header entry for the file. The filename can be speci­
fied either as a symbol or in register notation. Regis­
ter notation is necessary if your program is to be
self-relocating. The ENDFL macro must be issued
only after a SETFL and before a CLOSE or CLOSER.

The ENDFL macro performs an operation similar
to CLOSE or CLOSER for a blocked file. It writes the
last block of data records, if necessary, and then
writes an end-of-file record after the last data re­
cord. Also, it writes any index entries that are need­
ed followed by dummy index entries for the unused
portion of the prime data extent.

ERETMacro
Name Operation Operand

[name] ERET {SKIPIIGNOREIRETR Y}

This macro enables your program's ERROPT or
WLRERR routine to return to IOCS and specify an
action to be taken. The macro applies only to DTFIS,

DTFMT, DTFSD and DTFDU files with the ERREXT

operand specified.

The SKIP operand passes control back to the logic
module to skip the block of records or control inter­
val in error and process the next one. For disk or
diskette output, an ERET SKIP is treated as an ERET

IGNORE.

The IGNORE operand passes control back to the
module to ignore the error and continue processing.

The RETRY operand causes the module to retry
the operation that resulted in the error. With
MTMOD for any error or with SDMOD wrong-length
record errors, RETRY cancels the job with an invalid
SVC message.

ESETLMacro
Name Operation Operand

[name] ESETL {filenamel(I)}

The ESETL (end set limit) macro ends the sequential
mode initiated by the SETL macro. For filename;

specify the same name as was specified in the DTFIS
header entry. The name can be specified as a sym­
bol or in register notation. If the records are
blocked, ESETL writes the last block back if a PUT
was issued. Register notation is necessary if your
program is to be self-relocating.

Note: If ADDRTR and/or RANSEQ are specified in the same
DTF, ESETL should be issued before issuing a READ or
WRITE; another SETL can be issued to restart sequential retriev­
al. Sequential processing must always be terminated by issuing
an ESETL macro.

EXCPMacro
N arne Operation

[name] EXCP

Operand

{blocknamel (I)}
[,REAL]

The EXCP (execute channel program) macro re­
quests physical 10CS to start an input/output opera­
tion for a particular I/O device.

Physical 10CS determines the device from the CCB
or 10RB control block specified by blockname. Phys­
ical 10CS places the block in a queue of such blocks
and returns control to the problem program. Physi­
cal 10CS causes the channel program to be executed
as soon as the channel and device are available. I/O
interruptions are used to process I/O completion and
to start I/O for requests if the channel or device was
busy at the time the EXCP was executed.

blockname: is the virtual address of the control
block established for the device. It can be given as a
symbol or in register notation.

REAL: indicates that the addresses in the CCWs
and the address in the control block pointing to the
first CCW have already been translated into real ad­
dresses; the operand causes the DOS/VSE CCW trans­
lation routine to be skipped. (For a program run­
ning in real mode, the operand is ignored.)

In your program, the EXCP macro with the REAL
operand must be preceded by the PFIX macro that
causes DOS/VSE (1) to page in those program pages
which contain the pertinent control block, channel
program, I/O areas, and IDA (indirect address) words
(if used) and (2) to fix these pages in their page
frames.

Notes:

1. If the I/O area being used crosses page boundaries, the data
address in the appropriate CCW(s) must point to the
required ind.irect data address words within your program;
in addition, bit 37 (the IDA bit) of these CCWs must be set
to 1.

2. A channel program has to start with:

- a long seek command in the case of a CKD DASD.

- a define extent command in the case of an FBA DASD.

The data chaining and, in S/370 mode, also the IDA bit
must be set to zero.

FEOVMacro

Name Operation Operand

[name] FEOV {filenamel(l)}

The FEOV (force end-of-volume) macro is used for
files on magnetic tape (programmer logical units
only) to force an end-of-volume condition before
sensing a reflective marker. This indicates that proc­
essing of records on one volume is considered fin­
ished, but that more records for the same logical file
are to be read from, or written on, a following vol­
ume. For system units, see "SEOV Macro".

The name of the file is the only parameter re­
quired. The name can be specified either as a sym­
bol or in register notation.

When physical 10CS macros are used and DTFPH
is specified for standard label processing, FEOV may
be issued for output files only. In this case, FEOV
writes a tapemark, the standard trailer label, and
any user~standard trailer labels if DTFPH LABADDR
is specified. When the new volume is mounted and
ready for writing, 10CS writes the standard header
label and user-standard labels, if any.

FEOVDMacro

Name Operation Operand

[name] FEOVD {filenamel(l)}

The FEOVD (force end-of-volume for disk) macro is
used for either input or output files to force an end­
of-volume condition before it actually occurs. This
indicates that processing of records on one volume is
finished, but that more records for the same logical
file are to be read from, or written on, the following
volume. If extents are not available on the new vol­
ume, or if the format-l label is posted as the last
volume of the file, control is passed to the EOF ad­
dress specified in the DTF.

The name of the file is the only required operand.
The name can be specified either symbolically or in
register notation.

Chapter 4: Imperative Macros 4-11

GENIORB Macro
Name Operation Operand

[name] GENIORB [ADDRESS= {namel/(S,namel)/(l)}]
[,LEN G TH = fieldlength]
,CCW= {name21(S,name2)I(r2)}
, {DEVICE=SYSxxxl
LOGUNIT= {name31(S,name3)1 (r3)}}
[,FIXLIST= {name41(S,name4)1 (r4)} J
[,FIXFLAG=(optionll, ...)]
[,IOFLAG=(option21, ...)]
[,ERREXIT= {nameSI(S,nameS)1 (rS)}]
[,ECB= {name61(S,name6)I(r6)}]

The GENIORB .mal:IO generaies an IORB
(Input/Output Request Block). The block is gener­
ated at the time of program execution. For the lay­
out and contents of an IORB, see Figure 4-5. The
10RB is an alternative to the CCB; instead of speci­
fying a CCB in the EXCP macro, the address of an
IORB is given. If used in a program that is to be exe­
cuted under DOS/VSE operating in ECPS:VSE mode,
the 10RB allows for the specification of areas to be
page-fixed for the I/O operation. Such areas include
the IORB and the channel programs themselves and
all input/output areas. Specifying those areas frees
the DOS/VSE page-fiXing routines from having to
scan the channel programs to determine which areas
are to be fixed.

The GENIORB does not provide for SENSE CCWs.
GENIORB and CCB may be used interchangeably~
depending on the required functions.

In s/370 mode, the GENIORB macro is accepted,
but a fixlist, if specified, is not used.

After execution of the macro,
register I contains the address of the IORB, and
register 15 contains the return code from an
implicit UETVIS.

For a detailed display in your assembly, showing
the IORB fields and their meaning, issue the IORB
macro, with the (only) operand DSECT=YES.

ADDRESS= {namell(S,namel)I(l)}: Ifspeci­
fied, this operand gives the name of the area in
which the IORB is to be generated. The ADDRESS
operand can be specified only together with the
LENGTH operand.

Omitting the ADDRESS operand indicates that the
required area is to be obtained thru an implicit
GETVIS issued by DOS/VSE.

LENGTH=field length: This operand gives the
length of the field provided for 10RB generation.
The value must be given as a selfdefining term. If
this operand is omitted a default value equal to the

4-12 DOS/VSE Macro Reference

length of the IORB will be used; however, the assem­
bler issues an MNOTE. If the ADDRESS operand is
omitted, LENGTH will not be used.

ccw= {name21(S,name2)I(r2)}: This operand
gives the name of the first ccw used with the IORB.
The name must be the same as the name specified in
the assembler ccw statement that builds the ccw.

DEVICE=SYSxxx: This operand specifies the
symbolic unit for the actual I/O unit with which the
10RB is associated.

LOGUNIT= {name31(S,name3)I(r3)}: This ope­
rand describes the device in logical unit format. It
points to a halfword with the same format as a logi­
cal unit number (bytes 6 and 7) in a CCB; see Figure
4-1 provided in context with the discussion of the
CCB macro.

For a description of the FIXLIST, FIXFLAG, and
10FLAG operands, refer to the IORB macro.

ERREXIT= {nameSI(S,nameS)I(rS)}: ERREXIT is
the address of a routine to be executed should
DOS/VSE be unable to obtain the required virtual
storage. If the ERREXIT operand is omitted, failure
to obtain virtual storage causes DOS/VSE to cancel
the program (task).

ECB= {name61(S,name6)I(r6)}: This operand
specifies the address of the ECB to be posted when
I/O is complete. For a more detailed description of
the ECB operand, refer to the IORB macro.

GET Macro
Name Operation Operand

[name] GET {filenamel(l)}
[,worknamel,(O)]

GET makes the next sequential logical record from
an input file available for processing in either an
input area or in a specified work area. It is used for
any input file in the system, and for any type of re­
cord: blocked or unblocked, fixed or variable
length, and undefined.

If GET is used with a file containing checkpoint
records, the checkpoint records are bypassed auto­
matically.

filename: This operand is required. The parame­
ter value must be the same as specified in the header
entry of the DTF macro for the file from which the
record is to be retrieved. The filename can be speci-

fied as a symbol or in either special or ordinary reg­
ister notation. The latter is necessary to make your
programs self-relocating.

workname: This is an optional parameter speci­
fying the work area name or a register (in either
special or ordinary register notation) containing the
address of the work area. The work area address
should never be preloaded into register 1. This par­
ameter is used if records are to be processed in a
work area which you define yourself (for example,
using a DS instruction). If the operand is specified,
all GETs for the named file must use a register or a
workname. Using the second operand causes GET to
move each individual record from the input area to
a work area. The workname parameter is not valid
for the 3881. You also cannot specify the WORKA
operand in the DTFCD for the 3881.

In conjunction with optical reader input, this
macro can be used only to retrieve records from a
journal tape on a 1287.

IORBMacro
Name Operation

[name] 10RB

Operand

DSECT=YES
or
CCW=namell,DEVICE =SYSxxx,
[,FIXLIST=name2]
[,FIXFLAG=(optionll, ...)]
[,IOFLAG=(option21, ...)]
[,ECB=name3]

The 10RB macro generates an 10RB (Input/Output
Request Block). The block is generated when your
program is being assembled. For the layout and
contents of an 10RB, see Figure 4-5.

The 10RB is an alternative to the CCB: instead of
specifying a CCB in the EXCP macro, the address of
an 10RB is given. If used in a program that is to be
executed under DOS/VSE operating in ECPS:VSE
mode, the 10RB macro allows for the specification of
areas to be page-fixed for the I/O operation. Such
areas include the 10RB and the channel programs
themselves and all input! output areas. Specifying
those areas frees the DOS/VSE page-fixing routines
from having to scan the channel programs to deter­
mine which areas are to be fixed.

The 10RB does not provide for SENSE CCWs. 10RB
and CCB may be used interchangeably, depending
on the required functions.

In s/37o-mode the 10RB is accepted, but the speci­
fied fixlist (see the discussion of operand
FlxLIsT=name2, below) is not used.

CCW=namel: This operand give the name of the
first ccw used with the 10RB. This name must be
the same as the name specified in the assembler ccw
statement that builds the ccw.

DEVICE=SYSxxx: This operand specifies the
symbolic unit for the actual I/O unit with which this
10RB is associated.

FIXLIST=name2: This operand specifies the
address of the first of two or more fixlist parts or of
the only fixlist part. In ECPS:VSE mode, the FIXLIST
operand is required unless FIXFLAG=FIXED is speci­
fied. Each fixlist part consists of one or more 8-byte
entries plus an end or chaining indicator as shown in
Figure 4-6.

Bytes
o

8

16

Residual
count

I

I

I

*
Transmission
information

I

reserved

I

f I
*

CSW reserved
status bits

I

CCWaddress
from CSW

I

reserved

I I . I I

24

* Same as for a CCB (see Figure 4-1)

Figure 4-5. Layout and contents of the I/O Request Block
(IORB)

I

0\ \ 1
\ \

\ \ , \

\
\

\

,------

begin address

l end indicator =F X'OO' or' X'01'

Figure 4-6. Layout of fixlist

4 5

address of next
fixlist part

Chapter 4: Imperative Macros 4-13

7

In a fixlist entry, begin address and end address
are the addresses of the first and the last byte of an
area which has to be fixed for the I/O request (begin
address:::; end address; entries with begin address >

end address will be ignored). Each entry describes a
storage area that is accessed by the channel during
the I/O request; that is, an area containing the chan­
nel program, an input/output area, or the 10RB.

Duplicate entries and entries describing overlap­
ping storage areas are allowed. As a result, certain
areas may be covered more than once by the fixlist.
The system will compress the fixlist so that each
page to be fixed for the channel program is covered

FIXFLAG=(COMPRESSED) indicates that this service is
not desired.

FIXFLAG=(optionll, ...): This operand specifies a
list of options which apply to the I/O fixing proce­
dure.

The options you can specify are:

COMPRESSED to indicate that the system does not
have to compress the fixlist. Use
this option if the fixlist is already
compressed, that is: each page to be
fixed for the I/O request is covered
only once by the fix list.

FIXED to indicate that all areas which
should be fixed for the I/O opera­
tion have already been fixed by the
user, there is no fix list. In S/370

mode, this specification is ignored.

IOFLAG=(option21, ...): A list of options may be
specified which apply to I/O interrupt handling:

POSTDE to indicate that device end is to be post­
ed.

POSTERR to indicate that an unrecoverable I/O

error is to be accepted.

SKIPERP to indicate that error recovery by the
system is to be skipped.

ECB=name3: This operand specifies the address of
the ECB to be posted when I/O is complete. The
traffic bit (byte 2, bit 0) of the ECB must have been
cleared before issuing the EXCP macro. The ECB

operand must be specified if a fixlist is used.

Note: If FIXFLAG=FIXED is specified, the ECB must have
been PFIXed.

DSECT= YES: If the operand is specified, it should
be the only one. Any other parameters specified in
the macro are ignored and an appropriate MNOTE is
generated by the assembler.

4-14 DOS/VSE \1acro Reference

Specifying DSECT=YES causes the assembler to
display, as a DSECT structure, the IORB and the
meaning of its fields.

LBRETMacro
Name Operation Operand

[name] LBRET

The LBRET macro is issued in your subroutines
when you have completed processing labels and
wish to return control to 10CS. LBRET applies to
subroutines that write or check DASD or magnetic
tape user-standard labels, write or check tape non­
standard labels, or check DASD extents. The ope­
rand used - 1, 2, or 3 - depends on the function to
be performed. The functions and operands are ex­
plained below.

Checking User Standard DASD Labels: IOCS

passes the labels to you one at a time until the maxi­
mum allowable number is read (and updated), or
until you signify you want no more. In the label
routine, use LBRET 3 if you want 10CS to update
(rewrite) the label just read and pass you the next
label. Use LBRET 2 if you simply want 10CS to read
and pass the next label. If an end-of-file record is
read when LBRET 2 or LBRET 3 is used, label check­
ing is automatically ended. If you want to eliminate
the checking of one or more remaining labels, use
LBRET 1.

Writing User Standard DASD Labels: Build
the labels one at a time and use LBRET to return to
IOCS, which writes the labels. Use LBRET 2 if you
want control returned to you after IOCS writes the
label. If, however, 10CS determines that the maxi­
mum number of labels has already been written,
label processing is terminated. Use LBRET 1 if you
wish to stop writing labels before the maximum
number of labels is written.

Checking User Standard Tape Labels: 10CS

reads and passes the labels to you one at a time until
a tapemark is read, or until you indicate that you do
not want any more labels. Use LBRET 2 if you want
to process the next label. If 10CS reads a tapemark,
label processing is automatically terminated. Use
LBRET I if you want to bypass any remaining labels.

Writing User Standard Tape Labels: Build the
labels one at a time and return to 10CS, which writes
the labels. When LBRET 2 is used, IOCS returns con­
trol to you (at the address specified in LABADDR)

after writing the label. Use LBRET I to terminate the
label set.

Writing or Checking Nonstandard Tape Labels:
You must process all your nonstandard labels at
once. Use LBRET 2 after all label processing is com­
pleted and you want to return control to 10CS.

LITE Macro
N arne Operation Operand

[name] LITE {filenamel(I)}
[,light -switches I ,(0)]

This macro lights any combination of pocket lights
on a 1419 magnetic character reader or 1275 optical
reader/sorter. Before using the LITE macro, the
DISEN macro must be issued to disengage the device.
Processing of the documents should be continued
until the unit exception bit (byte 0, bit 3) of the doc­
ument buffer status indicators is set on (see Figure
4-3). When this bit is on, the follow-up documents
have been processed, the MICR reader has been di­
sengaged, and the pocket LITE macro can be issued.

The first operand is the name of the file; this
name is the same as that specified for the DTFMR
header entry for the file. The second operand indi­
cates a 2-byte area containing the pocket light
switches. Both operands can be given either as a
symbol or in register notation.

The bit configuration for the pocket light switch
area is shown in Figure 4-7. The pocket lights that
are turned on should have their indicator bits set to
1. If an error occurs during the execution of the
pocket lighting I/O commands, bit 7 in byte 1 is set
to 1. This error condition normally indicates that
the pocket light operation was unsuccessful.

NOTE Macro
Name Operation Operand

[name] NOTE {filenamel(l)}

The NOTE macro obtains identification for a physi­
cal record or logical block that is read or written
during processing. At least one READ or WRITE op­
eration should be successfully completed by means

Bits 0 1 2 3 4 5 6

Pocket Lights A B 0 1 2 3 4

of the CHECK macro before issuing the NOTE macro.
To NOTE a desired record successfully, the POINTR,
POINTS, or POINTW macros must not be issued be­
tween CHECK and NOTE.

For magnetic tape, the last record read or written
in the specified file is identified by the number of
physical records read or written from the load point.
The physical record number is returned in binary in
the three low-order bytes of register 1. The high­
order byte contains binary zero.

For CKD DASD, the binary number returned in
register 1 is in the form cchr, where

cc = cylinder number,
h = track number,
r = record number within the track.

Register 0 contains the unused space remaining
on the track following the end of the identified re­
cord.

) .. __ . -

~_/ For FBA devices, register 1 contains an address
(~ relative to the begining of the file in the form cccb,
\ where ccc is the relative number of the currentcon­

trol interval (origin 0), and b is the relative block
number within the current CI (origin 1). Register 0
contains the length of the longest logical block that
could completely fit in the CI following the NOTEd
logical block.

'----~

7
5

You must provide a four- or six-byte field and
store in it the record identification and the remain­
ing capacity so that it can be used later by a POINTR
or POINTW macro to find the NOTEd record again.
The two-byte track or CI capacity remaining is need­
ed only when a WRITE SQ is to follow the POINTR or
POINTW.

OPEN and OPENR Macros
The OPEN or OPENR macro activates all files.

When OPENR is specified, the symbolic address
constants that OPENR generates from the parameter
list are self-relocating. When OPEN is specified, the
symbolic address constants are not self-relocating.
The format of the OPEN macro is

Name Operation

[name] OPEN

8 9 A
6 7 8

Operand

{filename 11(rl)}
[,filename21,(r2)] ...

B C D E
9 Reserved

F
Error indicator

bit

Figure 4-7. Bit configuration for pocket light switch area of the 1419

Chapter 4: Imperative Macros 4-15

The format of the OPENR macro is the same except
that you code OPENR instead of OPEN in the opera­
tion field.

Enter the symbolic name of the file (DTF file­
name) to be opened in the operand field. A maxi­
mum of 16 files may be opened with one OPEN or
OPENR by entering the filenames as additional ope­
rands,

Self-relocating programs using LlOCS must use
OPENR to activate all files, including console files. In
addition to activating files for processing, OPENR
relocates all address constants within the DTF tables
(zero constants are relocated only when they consti­
tute module address).

To write the most efficient code in a multipro­
gramming environment it is recommended that
OPENR be used.

POINTR Macro
Name Operation Operand

[name] POINTR {filename I (I)}
, {addressl(O)}

The POINTR macro repositions the file specified by
filename to the record identified by previouly issu­
ing a NOTE macro. The filename may be expressed
either as a symbol or in register notation.

addressl (0): specifies a virtual storage location in
which is stored either a four-byte record identifier or
a four-byte record identifier plus a two-byte track or
CI capacity. The four- or six-byte number must be
in the form obtained from the NOTE macro. The
two-byte track or CI capacity is required only when
a WRITE SQ is to be issued following the POINTR.

If a READ follows the POINTR, the NOTEd record
is the record read.

For magnetic tape, a WRITE must not follow a
POINTR.

For DASD, if a WRITE UPDATE follows the
POINTR, the NOTEd record is written (or overwrit­
ten). If a WRITE SQ follows the POINTR, the record
after the NOTEd record is written (or overwritten)
and, on CKD DASD, the remainder of the track is
erased (overwritten with zeros). On FBA devices, the
remainder of the CI is erased (overwritten with ze­
ros) and an SEOF is written (the following CI is also
overwritten with zeros).

POINTS Macro
The POINTS macro repositions a file to its beginning.

4-16 DOS/VSE Macro Reference

Name Operation Operand

[name] POINTS {filename;(l)}

For a tape file, the tape is rewound. If the file con­
tains any header labels, they are bypassed, and the
tape is positioned to the first record following the
iabei set.

F or disk, the file is repositioned to the lower limit
of the first extent. A POINTS should not be followed
by a WRITE UPDATE. If a POINTS is followed by a
WRITE sQ, the first record in the file is overwritten.
For CKD DASD, the remainder of the track is then
erased (overwritten with zeros). For FBA devices, the
remainder of the CI is erased (overwritten with ze­
ros) and an SEOF is written (the following CI is also
overwritten with zeros).

POINTW Macro
Name Operation Operand

[name] POINTW {filenamel(l)}
, {addressl(O)}

The POINTW macro repositions the file specified by
filename to the record following the record identi­
fied by previously issuing a NOTE macro. The file­
name may be expressed either as a symbol or in
register notation.

addressl (0): specifies a virtual storage location in
which is stored either a four-byte record identifier or
a four-byte record identifier plus a two-byte track or
CI capacity. The four- or six-byte number must be
in the form obtained from the NOTE macro. The
two-byte track or CI capacity is required only when
a WRITE SQ is to be issued following the POINTW.

If a READ follows the POINTW, the record after
the NOTEd record is read.

For DASD, if a WRITE UPDATE follows the
POINTW, the record after the NOTEd record is written
(or overwritten). If a WRITE SQ follows the POINTW,
the record after the NOTEd record is written (or over­
written) and, on CKD DASD, the remainder of the
track is erased (overwritten with zeros). On FBA
devices, the remainder of the CI is erased
(overwritten with zeros) and an SEOF is written (the
following CI is also overwritten with zeros).

PRTOV Macro
Name Operation

[name] PRTOV

Operand

{filenamel(l)}, {9112}
[,routine-name I ,(0)]

The PRTOV (printer overflow) macro is used with a
printer file to specify the operation to be performed
when a carriage overflow condition occurs. To use
this macro, the PRINTOV = YES operand must be in­
cluded in the OTFPR or OTFSR.

PR TOV requires either two or three parameters.
The first parameter must be the filename, written
either as a symbol or in register notation. The sec­
ond parameter must specify the number of the car­
riage control channel (9 or 12) used to indicate the
overflow. When an overflow condition occurs, 10CS
restores the printer carriage to the first printing line
on the form (channell), and normal printing contin­
ues.

The third parameter is required if you prefer to
branch to your own routine on an overflow condi­
tion, rather than skipping directly to channell. It
specifies the name of the routine, as a symbol or in
register notation. However, the name should never
be preloaded into register 1.

If you specify the third parameter, 10CS does not
restore the carriage to channell.

PUT Macro
Name Operation Operand

[name] PUT {filename I (I)}
[,worknamel,(O)]
,STLSP= {controlfieldl(r)}
,STLSK= {controlfieldl(r)}

PUT writes, prints, or punches logical records which
are built directly in the output area or in a specified
work area. PUT can be used for any sequential out­
put file defined by a DTF macro, and for any type of
record: blocked or unblocked, fixed or variable
length, and undefined. It operates much the same as
GET but in reverse. It is issued after a record has
been built.

filename: This operand is required. The parame­
ter value must be the same as specified in the header
entry of the OTF for the file being built. The ope­
rand can be specified as a symbol or in either special
or ordinary register notation. Use register notation
if your program is to be self-relocating.

workname: An optional parameter specifying the
work area name or a register (in either special or
ordinary register notation) containing the address of
the work area. The work area address should never
be preloaded into register 1. This parameter is used
if records are built in a work area which you derme
yourself (for example, using a os instruction). If the
operand is specified, all PUTs to the named file must
use a register or a workname. Using the second ope­
rand causes PUT to move each record from the work
area to the output area.

Individual records for a logical file may be built
in the same work area or in different work areas.
Each PUT macro specifies the work area where the
completed record was built. However, only one
work area can be specified in anyone PUT macro.

Whenever a PUT macro transfers an output data
record from an output area (or work area) to an 1/0

device, the data remains in the area until it is either
cleared or replaced by other data. 10CS does not
clear the area. Therefore, if you plan to build anoth­
er record whose data does not use every position of
the output area or work area, you must clear that
area before you build the record. If this is not done,
the new record will contain interspersed characters
from the preceding record.

STLSP=control field: This optional operand
specifies a control byte that allows for spacing while
using the "selective tape listing feature on the 1403
printer. To use this feature, the operand STLST=YES
must be specified in the DTFPR. Up to 8 paper tapes
may be independently spaced. The control byte is
set up like any other data byte in virtual storage.
You can also use ordinary register notation to pro­
vide the address of the control byte. Registers 2
through 12 are available without restriction. You
determine the spacing (which occurs after printing)
by setting on the bits corresponding to the tapes you
want to space. The correspondence between control
byte bits and tapes is as follows:

Control byte bits 0 I 2 3 4 5 6 7

Tape position 8 7 6 5 4 3 2 1

The tape position 1 is the leftmost tape on the selec­
tive tape listing device.

Note: Double-width tapes must be controlled by both bits of the
control field.

STLSK=control field: This optional operand
specifies a control byte that allows for skipping
while using the selective tape listing feature on the
1403 printer. To use this feature, the operand
STLlST=YES must be specified in the OTFPR. Up to 8

Chapter 4: Imperative Macros 4-17

paper tapes may be independently skipped. The
control byte is set up like any other data byte in
virtual storage. You can also use ordinary register
notation to provide the address of the control byte.
Registers 2 through 12 are available without restric­
tion. You determine the skipping (which occurs
after printing) by setting on the bits corresponding
to the tapes you want to skip. The correspondence
between control byte bits and tapes is shown in the
figure under "STLSP=control field", above.

PUTRMacro

Name Oru>r,;atinn -r---

[name] PUTR {filename I (I)}
[, {worknamell(O)},
{workname21(2)}]

The PUTR (PUT with reply) macro is used for the
display operator console, to issue a message to the
operator which requires operator action and which
will not be deleted from the display screen until the
operator has issued a reply.

You may also use PUTR with the 3210 or 3215
console printer-keyboard, in which case PUTR func­
tions the same as PUT followed by GET for these
devices, but provides the message non-deletion code
for the display operator console. Use of PUTR for
the 3210 or 3215 is therefore recommended for com­
patibility if your program may at some time be run
on the display operator console instead of the 3210
or 3215.

Use PUTR for fixed unblocked records (messages).
Issue PUTR after a record has been built.

filename: This operand is required. The parame­
ter value must be the same as specified in the header
entry of the DTFCN for the file being built. The fi­
lename can be specified as a symbol or in either
special or ordinary register notation. The latter is
necessary to make your programs self-relocating.

workname 11 (0): An optional parameter specifying
the output work area name or a register (in either
special or ordinary register notation) containing the
address of the output work area. The work area
address should never be preloaded into registers 1 or
2. This parameter is used if records are built in a
work area which you define yourself (for example,
using a DS instruction). The length of the work area
is defined by the BLKSIZE parameter of the DTFCN
macro. Ifworknamel is specified. workname2 must
also be specified.

4-18 DOS/VSE Macro Reference

workname21(2): An optional parameter specifying
the input work area name or a register (in either
special or ordinary register notation) containing the
address of the input work area. The work area ad­
dress should never be preloaded into registers 0 or 1.
This parameter is used if records are built in a work
area which you define yourself (for example, using a
DS instruction). The length of the work area is de­
fined by the INPSIZE parameter of the DTFCN macro.
If workname2 is specified, workname 1 must also be
specified.

RDLNE Macro

Name Operation Operand

[name] RDLNE {filenamel(l)}

The RDLNE macro provides selective on-line correc­
tion when processing journal tapes on the 1287 opti­
cal reader. This macro reads a line in the on-line
correction mode while processing in the off-line
correction mode. RDLNE should be used in the
COREXIT routine only, or else the line following the
one in error will be read in on-line correction mode.

If the 1287 cannot read a character, IOCS first
resets the input area to binary zeros and then retries
the line containing the character that could not be
read. If the read is unsuccessful, you are informed
of this condition via your error correction routine
(specified in DTFOR COREXIT). The RDLNE macro
may then be issued to cause another attempt to read
the line. If the character in the line still cannot be
read, the character is displayed on the 1287 display
scope. The operator keys in the correct character, if
possible. If the operator cannot readily identify the
defective character, he may enter the reject charac­
ter in the error line. This condition is posted in
filename+80 for your examination. Wrong-length
records and incomplete read conditions are also
posted in filename+80.

This macro requires only one parameter, the sym­
bolic name of the 1287 file from which the record is
to be retrieved. This name is the same as that speci­
fied in the DTFOR header entry for the file.

READ Macro
Name Operation Operand

[name] READ {filename I (I)}
{,SQ, {areal (O)} [,lengthl,(r)IS]I
,KEYI
,OR, {name I (r)} I
,IDI
,DR, {name I (r) Inumber,number} I
,MR}

The READ macro transfers a record or part of a re­
cord from an input file to an area in virtual storage.

filename I (1): Specifies the name of the file from
which the record is to be read. The name is the same
as that specified in the DTF header entry.

SQ: Required for sequential files.

areal (0): The name of the input area used by a
sequential file.

length I (r) I S: Used only for sequential files of
undefined format (RECFORM=UNDEF). Specifies the
actual number of bytes to be read, or the register
where the number is to be found. S specifies that the
entire record is to be read.

KEY: For ISAM, KEY is required. For DAM, speci­
fies that the record reference is to be by record key
(control information in the key area of the DASD

record).

OR: Signifies that the file is for a 1287 or 1288
optical character reader.

namel (r): Specifies the ccw list address to be
used to read a document from the 1287 or 1288.

ID: For DAM, specifies that the reference is to be
by ID (identifier in the count area of the record).

DR: Indicates a 3886 Optical Character Reader is
the input device.

The third parameter specifies the line number to
be read and the format record for the line in one of
three ways:

• namel (r) provides the symbolic address of a
2-byte hexadecimal field containing the line
number in the first byte and the format record
number in the second byte.

• (r) provides the number of the register that
contains the address of the two-byte hexadeci­
mal field.

• number,number provides the decimal line num­
ber to be read (any number from 1 through 33),
followed by the format record number used to
reaad the line (0-63).

MR: signifies that the file is for a magnetic ink
character reader (MICR).

RELSEMacro
Name Operation Operand

[name] RELSE {filenamel(l)}

The RELSE (release) macro is used with blocked
input records read from a DASD device, or with
blocked spanned records read from, or updated on,
a DASD device. This macro is also used with blocked
input records read from magnetic tape.

The macro allows you to skip the remaining re­
cords in a block and continue processing with the
first record of the next block when the next GET

macro is issued. When used with blocked spanned
records, RELSE makes the next GET skip to the first
segment of the next record.

The symbolic name of the file, specified in the
DTF header entry, is the only parameter required for
this macro. It can be specified as a symbol or in
register notation.

RESCNMacro
Name Operation Operand

[name] RESCN {filenamel(l)}
,(rl),(r2),[n 1][,n2]

The RESCN macro selectively rereads a field on a
document if one or more defective characters make
this type of operation necessary. The field is always
right-justified into the area (normally within
IOAREA1) that was originally intended for this field
as specified in the ccw. The macro first resets this
area to binary zeros.

Note: For the 1287 models 3 and 4 and the 1288, this macro can
only be used with READ BACKWARD commands. If used with
READ FORWARD commands, the input area is not cleared.
When 1288 unformatted fields are read, the RESCN macro
should not be used.

The first parameter, filename, specifies the sym­
bolic name of the 1287D file as specified in the
DTFOR header entry for the file.

The second parameter, rl, specifies a general­
purpose register from 2 to 12 into which the pro­
gram places the address of the load format ccw.

Chapter 4: Imperative Macros 4-19

The third parameter, r2, specifies a general­
purpose register from 2 to 12 into which the pro­
gram places the address of the load format ccw for
reading the reference mark.

The previous three parameters are always re­
quired, and result in one attempted reread for the
field.

the number of attempts (one to nine allowed) to
reread the unreadable field. If this parameter is
omitted, one is assumed.

The fifth parameter, n2, indicates one more re­
read which forces on-line correction of any unreada­
ble character(s) by individually projecting the un­
readable character(s) on the 1287 display scope.

The operator must key in a correction (or reject)
character(s). This operand cannot be used for 1288
processing.

SECTV AL Macro
Name Operation Operand

[name] SECTV AL [DDKR= {name 11(0)}]
[,DVCTYP=name2]

The SECTVAL macro calculates the sector value of
the address of the requested record on the track of a
disk storage device when RPS is used. The macro
returns this value in register O.

The sector value is calculated from data length,
key length, and record number information. Values
are calculated for fixed or variable length and for
keyed and non-keyed records.

DDKR= {namell(O)}: The information needed to
calculate the sector value should be specified in the
4-byte field at namel, or in the specified register. If
no operand is specified, register 0 is the default and
should contain the necessary information. The four
bytes of information have the format DDKR, where

00= a 2-byte field which specifies:
• for fixed length records, the data length of each

record, or
• for variable length records, the number of bytes

used on the track, excluding standard RO length
up to the current record. Bit 0 of the first byte
must be set on.

K= a I-byte field indicating the key length:
• for fixed length records, the actual key length

must be specified;
• for variable length records, any non-zero value

is sufficient to indicate the presence of keys.

Note: For non-keyed records the value should be O.

4-20 DOS/VSE r-.1acro Reference

R= a I-byte record number field which specifies
the number of the record of which the sector
value is being requested.

DVCTYP=name2: The device type code is speci­
fied at name2. If no operand is specified, it is as­
sumed that byte 0 of register 1 contains the code.
The following device type codes (which are the same
as the device type codes generated in the DTF) are
valid for:

IBM 3330, models 1 and 2: X'04'

IBM 3330, model 11: X'05'

IBM 3340: X'08', X'09', or X'OA'

IBM 3350: X'OT

The calculated sector value is returned in register
O. If any errors are detected in calculating the sector
value, a no-operation sector value (X'FF') is returned.

SEOVMacro
Name Operation Operand

[name] SEOV filename

The SEOV (system end-of-volume) macro must only
be used with physical IOCS to automatically switch
volumes if SYSLST or SYSPCH are assigned to a tape
output file. SEOV writes a tape mark, rewinds and
unloads the tape, and checks for an alternate tape. If
none is found, a message is issued to the operator
who can mount a new tape on the same drive and
continue. If an alternate unit is assigned, the macro
fetches the alternate switching routine to promote
the alternate unit, opens the new tape, and makes it
ready for processing. When using this macro, you
must check for the end-of-volume condition in the
CCB.

SETDEV Macro
Name Operation Operand

[name] SETDEV {filenamel(l)}

, {phasenamel(r)}

The SETDEV macro changes format records during
execution of the program. When the new format
record has been loaded into the 3886, control returns
to the next sequential instruction in your program.
If the operation is not successful, the completion
code is posted at EXlTIND and control is passed to
the COREXIT routine, or the job is canceled. If you
issue the SETDEV macro and no documents remain
to be processed and the end-of-file key has been

pressed on the device, control is passed to the end­
of-file routine.

The first parameter, filename, specifies the same
name as that used in the DTFDR header entry. Reg­
ister notation must be used if your program is to be
self-relocating.

The second parameter specifies the name of the
format record to be loaded, phasename; or indicates
the register containing the address of an 8-byte area
that contains the phasename.

SETFLMacro
Name Operation Operand

[name] SETFL {filename\(O)}

The SETFL (set file load mode) macro causes ISAM to
set up the file so that the load or extension function
can be performed. This macro must be issued when­
ever the file is loaded or extended.

When loading a file, SETFL preformats the last
track of each track index. When extending a file,
SETFL preformats only the last track of the lastJrack
index plus each new track index for the extension of
the file. This allows prime data on a shared track to
be referenced even though no track indexes exist on
the shared track.

The name of the file loaded is the only parameter
required for this macro and is the same as that speci­
fied in the DTFIS header entry for the file. It can be
specified as a symbol or in register notation. Regis­
ter notation is necessary if your program is to be
self-relocating.

SETLMacro
Name Operation Operand

[name] SETL {filename \ (r)}
, {id-name\(r)\KEY\BOF\
GKEY}

The SETL (set limits) macro initiates the mode for
sequential retrieval and initializes ISAM to begin
retrieval at the specified starting address. The first
operand (filename) specifies the same name as that
used in the DTFIS header entry, as a symbol or in
register notation. Register notation is necessary if
your program is to be self-relocating.

The second operand specifies where processing is
to begin.

If you are processing by the record ID, the ope­
rand id-name or (r) specifies the symbolic name of

the 8-byte field in which you supply the starting (or
lowest) reference for ISAM use. This field contains
the information shown in Figure 4-8.

If processing begins with a key you supply, the
second operand is KEY. The key is supplied in the
field specified by the DTFIS KEY ARG operand. If the
specified key is not present in the file, an indication
is given at filenamec.

BOF specifies that retrieval is to start at the begin­
ning of the logical file.

Selected groups of records within a file contain­
ing identical characters or data in the first locations
of each key can be selected by specifying GKEY
(generic key) as the second operand. G KEY allows
processing to begin at the first record (or key) within
the desired group. You must supply a key that iden­
tifies the significant (high order) bytes of the re­
quired group of keys. The remainder (or insignifi­
cant) bytes of the key must be padded with blanks,
binary zeros, or bytes lower in collating sequence
than any of the insignificant bytes in the first key of
the group to be processed. For example, a GKEY
specification of D6420000 would permit processing to
begin at the first record (or key) containing
D642xxxx, regardless of the characters represented by
the x's. Your program must determine when the
generic group is completed. Otherwise, ISAM contin­
ues through the remainder of the file.

Note: If the search key is greater than the highest key on the file,
the filename status byte is set to X'IO' (no record found).

The ESETL (end set limit) macro should be issued
before issuing a READ or WRITE if ADDRTR and/or
RANDSEQ are specified in the same DTF. Another
SETL can be issued to restart sequential retrieval.
Sequential processing must always be terminated by
issuing an ESETL macro.

TRUNCMacro
Name Operation Operand

[name] TRUNC {filename \ (1)}

The TRUNC (truncate) macro is used with blocked
output records written on DASD or magnetic tape. It
allows you to wri~e a short block of records. Blocks
do not include padding. Thus, the TRUNC macro
can be used for a function similar to that of the
RELSE macro for input records. That is, when the
end of a category of records is reached, the last
block can be written and the new category can be
started at the beginning of a new block.

Note that if DEVICE=FBA is specified on the DTF,
TRUNC will not necessarily cause a physical write to
the FBA DASD unless PWRITE is also specified.

Chapter 4: Imperative Macros 4-21

Byte Identifier Contents in Hexadecimal Information

0 m 02-F5 Number of the extent in which the starting record is located

1-2 bb 0000 (disk) Always zero for disk

3-4 cc Cylinder number for disk:
0000-00C7 (2311, 2314, 2319) for 2311, 2314, 2319: 0-199
0000-0193 (3330, 3333) for 3330,3333: 0-403
0000-0158 (3348 model 35) for 3340 with 3348 model 35: 0-347
0000-0287 (3348 model 70) for 3340 with 3348 model 70: 0-695

5-6 LL 0000-0009 (23; i) Head position for disk 1111

0000-0013 (2314, 2319)
0000-0012(3330,3333)
0000-0008 (3340)

7 r 01-FF Record location

Figure 4-R. Field supplied for SETL processirrg by record ID

The symbolic name of the file, specified in the
DTF header entry, is the only parameter required in
this macro.

WAIT Macro
Name Operation Operand

[name] WAIT {blockname!(l)}

Issue this macro whenever your program requires
that an I/O operation (started by an EXCP macro) be
completed before execution of the program contin­
ues. For example, transferring data (a physical re­
cord) to virtual storage must be completed before
data can be added or moved to another area of vir­
tual storage, or otherwise processed. When WAIT is
executed in a batched job environment, processing is
suspended until the traffic bit (byte 2, bit 0) of the
related CCB or 10RB is turned on. Then, processing
automatically continues and the data can be proc­
essed. In a multiprogramming environment, the
supervisor gives control to another program until the
traffic bit is set on.

The blockname (specified as a symbol or in regis­
ter notation) of the CCB or 10RB established for the
I/O device is the only operand required. This is also
the same name as that specified in the EXCP macro
for the device.

WAITFMacro
Name Operation Operand

[name] WAITF {filenamel!(rl)}
[,filename2!,(r2)] ...

The W AITF macro is issued to ensure that the trans­
fer of a record is complete. It is valid for both DAM

and ISAM, but for SAM only with MICR and OCR

4-22 DOS/VSE Macro Reference

devices. Filename is the same as that used in the
DTF header entry, and may be specified either as a
symbol or in register notation. Note that mUltiple
filenames are valid only when using SAM to read
MICR records.

The WAITF macro is issued after any READ or
WRITE for a file and before the succeeding READ or
WRITE for the same file. If the I/O operation is not
completed when W AITF is issued, the active partition
is placed in a wait state until the data transfer is
completed. This allows processing of programs in
other partitions while waiting for completion. When
data transfer is complete, and ifno errors were en­
countered, processing continues with the next se­
quential instruction. If an error is encountered, con­
trol passes to the error-handling routine provided for
in the DTF.

If, however, you are using the multiple filename
format of the W AITF macro while using MICR re­
cords, and if any of the files have records or errors
ready to be processed, control remains in the parti­
tion and processing continues with the instruction
following the WAITF.

WRITE Macro
N arne Operation Operand

[name] WRITE {filename! (I)}
{, {SQ!UPDATE}, {area!(O)} I

[,length!,(r)]!
,KEYI
,ID!
,AFTER[,EOF]I
,NEWKEYI
,RZERO}

The WRITE macro transfers a record from virtual
storage to an output file.

filename\(l): Filename specifies the same name as
that used in the DTF header entry. Register notation
must be used if your program is to be self-relocating.

SQ\UPDATE: For sequential files, specify SQ for
magnetic files, or for disk work files for a formatting
write (count, key, and data). Specify UPDATE for a
non-formatting write (data only).

area\(O): For sequential files, specifies the name,
as a symbol or in register notation, of the output
area used by the file.

length\(r): Specifies the actual number of bytes to
be written on a sequential file. Is used only for re­
cords of undefined format (RECFORM=UNDEF).

KEY: For indexed sequential files, specify KEY for
random updating. For direct access files, specify
KEY to write in a location determined by the record
key (control information in the key area of the re­
cords).

ID: For DA files, specify ID to write in a location
determined by the record identifier in the count area
of the records.

AFTER: For DA files, specify AFTER to write a
record after the last record written, regardless of key
or identifier.

EOF: Optional: applies only to the WRITE ... AFTER

form of the macro. Specify to write an end-of-file on
a track after the last record on the track.

NEW KEY: For indexed sequential files only;
specify NEWKEY to write a new (not updated) record
in the file. When loading or extending the file, pre­
ceed the WRITE filename, NEWKEY with a SETFL
macro and follow it with an ENDFL macro. When
adding a record after sequential retrieval, issue an
ESETL macro before writing the record.

RZERO: For DA files, specify RZERO to reset the
capacity record of a track to its maximum value and
erase the track after record zero.

Chapter 4: Imperative Macros 4-23

4-24 DOS/VSE Macro Reference

Chapter 5: System Control Macros

A TT A CH Macro
Name Operation

[name] ATTACH

Operand

{entrypointl(S,entrypoint)l(r I)}
,SA VE= {saveareal(S,savearea)l(r2)}

[,ECB= {ecbnamel(S,ecbname)l(r3)}]

[,ABSAVE= {saveareal(S,savearea)l(r4)}]
[,MFG= {areal(S,area)l(r5)}]

A subtask can be intitiated only by issuing the
ATTACH macro within the main task. The part of
the subtask containing the entry point must be in
storage before the subtask can be successfully atta­
ched.

If register notation is used in any of the macro
operands, register 0 and 1 should not be specified.

entrypoint \(S,entrypoint)\(rl): The operand
specifies the entrypoint of the subtask.

SA VE=(savearea\(S, savearea)\(r2): The ope­
rand must provid~ the address of the save area for
the subtask. The save area is 96 or 128 bytes in
length depending upon whether or not the supervi­
sor provides floating-point support (for S/370 mode,
FP=YES must have been specified in the CONFG gen­
eration macro).

If an interrupt occurs while the sub task is in con­
trol, the system saves in this save area the subtask's
interrupt status information, general purpose regis­
ters, and (depending on floating-point support) the
floating-point registers (see Figure 5-1).

Before issuing the ATTACH macro, provide a sub­
task name in the first eight bytes of the save area.
The name is used to identify the subtask in the event
of a possible abnormal termination condition.

ECB= {ecbname\(S,ecbname)\(r3)}: The operand
must be specified if other tasks can be affected by
this subtask's termination, or if the ENQ and DEQ

macro are used within the subtask. This parameter
is the name of the subtask's event control block
(ECB), and is a fullword dermed within your pro­
gram. The ECB may be any 4-byte (or larger) field
where in byte 2, bit 0 is the termination indicator
and bit 1 is the abnormal indicator. The remaining
bits of the four bytes are reserved. At the time a
subtask is attached, bits 0 and 1 of byte 2 are set to O.
When a subtask terminates, the supervisor sets byte
2, bit 0 of the ECB to 1. In addition, byte 2, bit 1 is
set to 1 when the subtask terminates abnormally;
that is, if task termination is not the result of issuing

Save area without floating-point option:

Byte Byte

interrupt status
0 15

16 31

32 registers 47
9 through 8

48 63

64 79

used by DOS/VSE
80 95

Save area with floating-point option

Byte Byte 8 Byte

subtask name
0 15

16 31

32 registers 47
9 through 8

48 63

64 79

floating-
95 80

point
96 111

112 127

Figure 5-1. Subtask save area.

the CANCEL, DETACH, DUMP, or EOJ macros.

ABSA VE= {savearea\(S,savearea)\(r4)}: Specify
this operand only if the subtask is to use the main
task abnormal termination routine (see STXIT ma­
cro), that is, if it does not provide an abnormal ter­
mination routine of its own. Your program can have
separate subtask STXIT AB routines with or without a
main task STXIT AB routine, or it can have neither.
The parameter specified in this operand must be the

Chapter 5: System Control Macros 5 - I

address of a 72-byte (doubleword-aligned) STXIT

save area for the subtask. When an abnormal termi­
nation occurs, the supervisor saved the old PSW and
general registers 0 through 15 in this area before the
exit is taken.

MFG= {areal(S,area)l(r5)}: The operand is re­
quired if the program which issues the ATTACH ma­
cro is to be reenterable. It specifies the address of a
64-byte dynamic storage area, that is, storage which
your program obtained through a GETVIS macro.
This area is required for system use during execu­
tion of the macro.

If the ATTACH macro successfully initiates a sub­
task, the subtask is given higher priority than the
main task, and control passes to the subtask. Regis­
ter 1 of the subtask contains the address of the main
task save area, and the contents of the main task
registers 2 through 15 remain as they were prior to
issuing the ATTACH; they are also passed to the ap­
propriate fields in the subtask save area. The ad­
dress in register 1 can be used as the second operand
of a POST macro later in the job iftask-to-task com­
munication is desired. Upon return from a success­
ful ATTACH, the main task register 0 contains the
address of the byte immediately following the sub­
task save area, as determined by the supervisor.
Register 0 therefore can be tested to ascertain
whether the supervisor contains the floating-point
option.

The maximum possible number of sub tasks is
determined by subtracting the number of partitions
from the number 15. For example, the maximum
possible number of subtasks is 13 for a 2-partition
system or 10 for a 5-partition system. In the event
that the maximum possible number of sub tasks is
already attached, any attempt to attach another sub­
task will be unsuccessful. In this case, the main task
will keep control and register 1 (main task) will con­
tain the address of an ECB within the supervisor that
will be posted when the system can initiate another
subtask. Register 1 will also have the bit 0 on to aid
the main task in testing for an unsuccessful ATTACH.

Note: If your program uses VSAM files, you should provide a
STXIT AB and PC macro and issue a CLOSE or TCLOSE for
the files before canceling the subtask.

CALL Macro

The format of the CALL macro is:

Name Operation Operand

[name] CALL {entrypoint!(IS)}
[,(parameterlist)]

5 - 2 DOS/VSE Macro Reference

The CALL macro passes control from one program to
a specified entry point in another program.

entrypointl(l5): specifies the entry point to which
control is passed. If the symbolic name of an entry
point is specified, an instruction

L 15,=V(entrypoint)

is generated as part of the macro expansion. The
linkage editor makes the called program part of the
calling program phase. The symbolic name must be
either the name of a control section (CSECT) or an
assembler language ENTRY statement operand in the
called program. Control is given to the called pro­
gram at this address. The called program resides in
storage throughout execution of the calling program.
This wastes storage if the called program is not
needed throughout execution of the calling program.

If register 15 is specified, the entrypoint address
must have been loaded into that register. Control is
given to the called program at the address in register
15. Specifying register 15 preceded by a LOAD ma­
cro is most useful when the same program is called
many times during execution of the calling program,
but is not needed in storage throughout execution of
the calling program.

parameterlist: specifies one or more addresses
(relocatable or absolute expressions) to be passed to
the called program. Terms in the address must not
be indexed. The addresses must be written in a sub­
list, with each address separated from the next by a
comma. As part of the macro expansion, a parame­
ter list is generated. It consists of a fullword for each
address. Each fullword is aligned on a fullword
boundary and contains the address to be passed in
its three low-order bytes. The high-order bit in the
last fullword is set to 1. When the called program is
entered, register 1 (the parameter list register) con­
tains the address of the parameter list.

CANCEL Macro
Name Operation Operand

[name] CANCEL [ALL]

Issuing the CANCEL macro in a subtask abnormally
terminates the subtask without branching to any
abnormal termination routine. A CANCEL ALL ma­
cro issued in a subtask, or a CANCEL issued in the
main task, abnormally terminates all processing in
the partition (job). Job termination in multitasking
causes all abnormal termination exits (via STXIT AB)

to be taken for each task except the one that issued
the CANCEL macro. Once these exits are taken, the
job is terminated. Upon task termination, system

messages (using the first eight bytes of each subtask
save area) are issued to identify each subtask termi­
nated.

If the CANCEL macro is issued without an ope­
rand, the macro must not contain a comment unless
the comment begins with a comma. If CANCEL ALL

is issued, the macro may include a comment.

If the DUMP option was specified, and SYSLST is
assigned, a system dump will occur

• if a CANCEL ALL macro is issued by a su btask,
or

• if a CANCEL macro is issued by a main task
with subtasks attached.

CDLOAD Macro
N arne Operation

[name] CD LOAD

Operand

{phasenamel(l)}

[,PAGE= lliQIYES}]
[,RETPNF= lliQIYES}]

The CD LOAD macro loads the phase specified in the
first parameter from the core image library into the
partition GETVIS area. The phase is loaded only if it
is not yet in either the partition GETVIS area or the
SV A. CDLOAD returns control to the phase which
issued the macro.

The CDLOAD macro must not be used for a phase
that has been linked as a member of an overlay
structure. Instead, use the LOAD macro without
specifying a load address.

If a phase is to be loaded, CDLOAD determines the
size of the phase, acquires the appropriate amount
of GETVIS storage, and loads the phase into that
storage.

After successfully loading the phase or if loading
is not required (because the phase is already in the
partition GETVIS area or in the SVA), registers con­
tain values as follows:

register 0: the load address,
register 1: the entry point,
register 14: the length of the phase.

phasename: For phasename, specify the name of
the required phase. If register notation is used, the
register must contain the address of an 8-byte field
that holds the phase name as an alphameric charac­
ter string.

Page= lliQIYES}: If you want to have the phase
loaded on a page boundary, specify PAGE=YES.

RETPNF= lliQIYES}: determines whether the

issuing phase is canceled if the phase to be loaded
does not exist in the core image library. With
RETPNF=YES, the phase is not canceled; instead,
control is returned to the issuing phase with the ap­
propriate return code.

Return Codes in Register 15
After execution of the macro, register 15 contains
one of the following return codes:

o CDLOAD completed successfully.
4 The size of the partition's GETVIS area is OK.

8 The length of requested GETVIS storage is nega­
tive.

12 No more storage is available in the GETVIS

area.
16 The partition CDLOAD directory (also known as

anchor table) is full.
20 The phase does not exist in the core image li­

brary (this return code occurs only with
RETPNF=YES).

32 A hardware (storage) failure occured in the
requested real partition G ETVIS area.

CHAP Macro
Name Operation Operand

[name] CHAP

The CHAP macro lowers the priority of the issuing
subtask. This issuing subtask now becomes the sub­
task with the lowest priority of all the subtasks with­
in the partition.

A CHAP macro issued by the main task is ignored.

The supervisor must have been generated with
multitasking support, otherwise the task issuing the
CHAP macro will be canceled.

CHKPTMacro
Name Operation Operand

[name] CHKPT SYSnn, {restart-addressl(rl)}
[,end-addressl,(r2)]

[,tpointerl,(r3)]
[,dpointerl,(r4)]
[,filenamel,(r5)]

The CHKPT macro is used to record the status of
your program so that the program, should its execu­
tion be terminated before it has completed process­
ing, may be restarted using job control. Theparti­
tion in which the program is to be restarted must
start at the same location as when the program was
checkpointed, and its end address must not be lower
than the end address at checkpoint time. If the

Chapter 5: System Control Macros 5 - 3

CHKPT macro is successfully executed, control is
returned with the checkpoint number in unpacked
decimal format in register O. If it is unsuccessful and
the checkpoint has not been taken, register 0 con­
tains zero and the reason is printed on SYSLOG.

Note: If a program using routines in the SV A is being check­
pointed, you must make sure that SV A routines occupy the same
locations on restart, should a restart become necessary.

Special register notation cannot be used with any
of the CHKPT macro operands.

All VSAM files should be closed before the CHKPT

macro is issued.

SYSnnn: Specifies the logical unit on which the
checkpoint information is to be stored. It must be an
EBCDIC magnetic tape or a disk pack.

restart addressl(rl): Specifies a symbolic name of
the instruction (or register containing the address) at
which execution is to restart if processing must be
continued later.

end addressl(r2): A symbolic name assigned to (or
register containing the address of) the uppermost
byte of the program area required for restart. This
address must be higher than the highest address of
storage occupied by any phase loaded into the parti­
tion. The address should be a multiple of 2K. If the
address is not a multiple of 2K, it is rounded to the
next 2K boundary. If this operand is omitted, all
storage allocated to the partition (other than the
GETVIS area) is checkpointed.

The specified end address is ignored if any
GETVIS was executed in the partition. (Note that
GETVTS storage may have been requested by includ­
ed IBM routines). In this case again, all storage allo-
cated to the partition is checkpointed.

tpointerl(r3): Address of an 8-byte field containing
2 V -type address contants used in repositioning mag­
netic tape at restart time. The address may be a
symbolic address or contained in a register. For
details, see the section "Repositioning Magnetic
Tape" in the DOS/ VSE Macro User's Guide.

dpointerl(r4): Address of a DASD operator verifica­
tion table, used to allow the operator to verify DASD

volume serial numbers at restart time. May be a
symbolic address or contained in a register.

filenamel(r5): The name of the associated DTFPH;

used only for checkpoint records on disk.

5 - 4 DOS/VSE Macro Reference

COMRGMacro
Name Operation Operand

[name] COMRG [REG = r]

The COMRG macro places the address of the com­
munication region of the partition from which the
macro is issued into the specified register. If the
operand is omitted, register I is assumed.

DEQMacro
Name Operation Operand

[name] DEQ {rcbnamel(O)}

A task releases a resource -by issuing the DEQ macro.
If other tasks are enqueued on the same ReB, the

DEQ macro frees from their wait condition all other
tasks that were waiting for that resource. In such
cases, the highest priority task either obtains or
maintains controL A task that attempts to dequeue a
resource that was not enqueued or that was en­
queued by another task is abnormally terminated.
Dequeuing under these two conditions within an
abnormal termination routine results in a null oper­
ation instruction.

rcbnamel(O): The operand is the same as that in
the ENQ macro and specifies the address of the RCB.

DETACH Macro
Name Operation Operand

[name] DETACH [SAVE= {savearea\(l)}]

The DETACH macro terminates execution of a task.
A subtask is normally terminated by issuing a
DETACH macro, and no operand is required in this
case. The main task can also terminate a subtask it
initiated by issuing the DETACH macro with an ope­
rand. The operand provides the address of the save
area specified in the A TT ACH macro for the subtask
to be terminated. If the main task issues the DETACH

macro without specifying an operand, all programs
in the partition are terminated abnormally. The
DETACH macro sets byte 2, bit 0 of the ECB to I (if
specified in the ATTACH macro) to indicate normal
termination. All tasks waiting on this ECB are taken
out of the wait state, and the highest priority task
obtains controL
Note: If your program uses VSAM files, ensure that these files
are closed before you issue this macro.

DUMP Macro
N arne Operation Operand

[name] DUMP

This macro provides a hexadecimal dump of the
following:

Chapter 5: System Control Macros 5 - 5

• The contents of the entire supervisor area and
the used part of the system GETVIS area, or of
some supervisor control blocks only (see Note
below).

• The contents of the partition that issued the
macro.

• The contents of the registers.

Note: The dump includes the contents of some supervisor control
biock.:s ulliy, rather than the eutice ~upefvisoI area if, the
STDOPT job control command specifies DUMP=PART or NO,
or if a job control statement j jOPTION PARTDUMP or NO­
DUMP is submitted.

In addition, the macro causes the job step to be ter­
minated if DUMP was issued by the main (or only)
task of the program. If DUMP was issued by a sub­
task, the macro causes that subtask to be detached
without terminating the main task in the partition.

The dump provided by the macro is always di­
rected to SYSLST , which must be opened if disk or
tape; if SYSLST is a tape, that tape must be posi­
tioned as desired.

If DUMP is issued by ajob running in real mode,
the storage contents of the partition are dumped
only up to the limit as determined by the SIZE par­
ameter of the EXEC job control statement, plus the
storage obtained dynamically through the GETVIS

macro. If SIZE was not specified, the entire partition
will be dumped. If DUMP is issued by a program
running in virtual mode, the entire partition is
dumped.

ENQMacro
Name Operation Operand

[name] ENQ {rcbnamel(O) }

A task protects a resource by issuing an ENQ

(enqueue) macro. When the RCB, (identified by the
rcbname) is enqueued, the task requesting the re­
source is either queued and executed, or if the re­
quested resource is held by another task, is placed in
a wait condition. When the task holding that re­
source completes, that task issues the DEQ (dequeue)
macro. All other tasks that are then waiting for the
dequeued resource are freed from their wait condi­
tion, and the highest priority task either obtains or
maintains control.

If a task is terminated without dequeuing its
queued resources, any task subsequently trying to
enqueue that resource is abnormally terminated. If
a task issues two ENQS without an intervening DEQ

for the same resource, the task is canceled. Also, any
task that does not control a resource but attempts to
dequeue that resource is terminated, unless DEQ

appears in the abnormal termination routine. If DEQ

5 - 6 DOSjVSE Macro Reference

appears in the abnormal termination routine, it is
ignored.

Although the main task does not require the pro­
gram to set up an intertask communication ECB to
enqueue and dequeue, every subtask using that fa­
cility must have the ECB operand in the ATTACH

macro, and that ECB must not be used for any other
purpose. Also, a resource can be protected only
within the partition containing the ECB.

EOJMacro
Name Operation Operand

[name] EOJ

Issue the EOJ macro in the main task or in the only
program within a partition, to inform the system
that the job step is finished. If a subtask issues an
EOJ, the subtask is detached and the remainder of
the partition continues. If the main task issues EOJ,

all abnormal termination exits (via STXIT AB) are
taken for the subtasks still attached.

EXIT Macro
Name Operation Operand

[name] EXIT {PqITloqABITTIMR}

The EXIT macro is used to return control from your
exit control or MR routine to the instruction in your
interrupted program immediately after the instruc­
tion where the interruption occurred. For AB, con­
trol is returned to the instruction following the EXIT

AB macro. Your routine is specified in the STXIT

macro for MR, in the DTFMR macro. The operands
have the following meanings:

PC Exit from your program check routine.

IT Exit from your interval timer routine.

oc Exit from your routine which handles the op­
erator attention interrupt.

AB Exit from your abnormal task termination
routine of your main task.

TT Exit from your task timer routine.

MR Exit from your stacker selection routine (MICR

document processing) to the the supervisor.

The EXIT macro should be issued only in the cor­
responding (PC, IT, OC, AB, TT, MR) routine; a pro­
gram check may occur if this rule is not observed.

Detailed information on the save area and the
interrupt status is given in DOS/VSE Serviceability
Aids and Debugging Procedures,.

For PC, IT, OC, and TT, the interrupt status inform­
ation and registers are restored from the save area;
thus, the save area contents are not over-written.

For AB, the cancel condition and ABEND indica­
tion of the affected task are reset. The EXIT AB ma­
cro may be used only in main tasks. In a subtask., it
would result in an illegal Svc. You have to make
sure that the abnormal termination condition has
been cleared up by your abnormal task termination
routine before using the EXIT AB macro.

FCEPGOUT Macro
You can code the macro in either of the following
two formats:

Name Operation Operand

[name] FCEPGOUT beginaddr,endaddr
[beginaddr,endaddr] ...

[name] FCEPGOUT {listnamel(l)}

The FCEPGOUT macro causes a specific area in real
storage to be paged-out at the next page fault. This
request is ignored if the specified area does not con­
tain a full page. This can happen up to an area size
of 4K minus 2 bytes (see Figure 5-2).

First byte of page n

Starting address of specified
area Oength=4k-2 bytes)

End address of specified area

Last byte of page n + 1

Figure 5-2. Worst case of an area not containing one full page.

5-2

beginaddr: Points to the first location of the area to
be paged out.

endaddr: Points to the last location of the area to be
paged out.

Iistnamel(I): Is the symbolic name of a list of con­
secutive 8-byte entries as shown below.

I X'OO' I address constant I length minus 1

o 4

where:
address constant = Address of the first byte of the

area to be paged out.
length = A binary constant indicating

the length of the area to be
paged out.

A non-zero byte following an entry indicates the end
of the list. Register notation may also be used.

Exceptional Conditions
The program is running in real mode.

The page(s) referenced by the macro is (are)
outside of the requesting partition.

A page handling request is pending for the refer-
enced page(s).

The page(s) is (are) not in real storage.

The page(s) is (are) fixed.

For those pages the FCEPGOUT request will be
ignored.

The supervisor was not generated with
PAGEIN=n in the SUPVR macro (in this case the pro­
gram is canceled).

Return Codes in Register 15 ° All specified pages have been forced for page­
out or the request has been ignored because the
issuing program is running in real mode.

2 The begin address is greater than the end ad­
dress, or a negative length has been found.

4 At least one of the requested pages does not
belong to the partition in which the issuing pro­
gram is running. The FCEPGOUT request has
only been executed for those pages which be­
long to the partition of the issuing program.

8 a. At least one of the requested pages is tempo­
rarily fixed (via ccw-translation) and/or
pFIXed. The FCEPGOUT request has only been
executed for the unfixed pages.
b. A page handling request (page fault, tempo­
rary fix, PFIX) for at least one of the requested
page is pending (caused by asynchronous proc­
essing within a partition). The FCEPGOUT re­
quest has not been executed for those pages
which are involved in a page handling request.

16 List of areas that are to be paged out is not
completely in the requesting program's parti­
tion. The request is ignored.

Any combination of return codes 0, 2, 4, and 8 is
possible.

Chapter 5: System Control Macros 5 - 7

FETCH Macro
Name Operation Operand

[name] FETCH {phasenamel(S,address)1 (I)}

[,entrypointl(S,entrypoint)1 (0)]

[,LlST= {listnamel(S,listname)1 (r)}]
[,SYS=YES]
[,DE=YES]
[,MFG= {areal(S,area)I (r2)}]

The FETCH macro loads and gives control to the
phase specified in the first parameter from the core
image library if this phase is not in the sv A. If the
phase is in the SV A, it is not loaded into the partition,
but control is given to the phase. For information on
how to load phases into the SV A and how to write
SV A -eligible (reenterable) phases see DOS / VSE
System Management Guide.

phasenamel(S,address)l(l): For phasename speci­
fy the name of the required phase.

If DE=YES is not specified, the address as speci­
fied in (s, address) or as loaded into a register points
to an 8-byte field that contains the phase name. If
DE=YES, the operand has a different meaning; refer
to the discussion of the DE operand.

entrypointl(S,entrypoint)I(O): Control is passed
to the address specified by the entrypoint parameter.
If this parameter is not specified or invalid, control
is passed to the entrypoint determined at link-edit
time.

If entrypoint is given in register notation, register
1 must not be used. You preload the register with
the entrypoint address.

With s-type notation, the entrypoint is derived
from base register and displacement, e.g. (S, offset
(reg». If instead, a symbolic name is used for entry­
point, the macro expansion results in a V -type ad­
dress constant. The entrypoint does not have to be
identified by an EXTRN statement.

LIST= {listnamel(S,listname)l(rl)}: For list­
name specify the name of your local directory list
generated in the partition by the GENL macro.
When this operand is included, the system scans the
local directory list for the required phasename be­
fore it initiates a search for this phase name in the
pertinent core image library directory.

SYS=YES: IfSYS=YES is specified, the system
scans the system directory list (SDL) in the SVA and
the system core image library before the private core
image library (if a private CIL is assigned at all). If

5 - 8 DOS/VSE Macro Reference

nothing is specified, the private CIL takes prece­
dence.

DE=YES: This operand is useful if your program
frequently fetches one specific phase. DE=YES is
invalid if LIST is specified.

DE=YES indicates that your program contains a
34-byte field where you have placed a single directo­
ry entry like those generated by the GENL macro. If
this directory entry is active the directory scan
mechanism is bypassed; if not, the entry will be
fuled in by the supervisor after which it is active.

If the first operand is written as phasename
(instead of s-type or register notation) a directory
entry will be generated within the macro expansion.
The generated directory entry will contain the pha­
sename in the first 8 bytes. If you specify DE= YES
and if you use (s, address) or register notation for
the first operand, you must set aside the 34-byte
field yourself and point to it via this operand. The
directory entry must contain the phase name in the
first 8 bytes (left-justified and padded with blanks)
and X'OB' at displacement X'OB'.

MFG= {areal(S,area)l(r2)}: The operand MFG is
required if the program which issues the FETCH ma­
cro is to be reenterable. It specifies the address of a
64-byte dynamic storage area, that is, storage which
your program obtained through a GETVIS macro.
This area is required for system use during execu­
tion of the macro.

FREE Macro
Name Operation Operand

[name] FREE {filenamel(l)}

The FREE macro, used in conjunction with the
HOLD=YES option of a DTFxx macro, frees a portion
of a DASD device that is being held under DASD re­
cord (track) protection. On a CKD device, that pro­
tected portion is a track; on an FBA device, it is an
integral number of contiguous FBA blocks. On an
FBA device, the FREE macro is treated as a null oper­
ation; all holding and freeing of FBA block ranges is
performed implicitly by LlOCS.

The same track (or blocks) can be held more than
once without an intervening FREE if the hold re­
quests are from the same task. The same number of
FREEs must be issued before the track (or block) is
completely freed. However, a task is terminated if
more than 16 hold requests are recorded without an
intervening FREE, or if a FREE is issued to a file that
does not have a hold request for that track (or
block). For situations that require the use of the

FREE macro, refer to DOSjVSE Macro User's
Guide, as listed in the Preface.

{fiienamel(I)}: This operand is the same as the
name specified in the DTF header entry.

FREE VIS Macro
Name Operation Operand

[name] FREEVIS [ADDRESS= {namell(l)}]
[,LENGTH= {name21(O)}]
[,SVA=YES]

The FREEVIS macro releases a block (or blocks) of
virtual storage that was obtained by the GETVIS ma­
cro.

If you code the macro without any operand,
DOSjVSE assumes that the start address of the block
to be released is contained in register 1 and that the
length of this block was placed into register o. If the
macro is issued without an operand, the macro must
not ~ontain a comment unless the comment begins
with a comma.

ADDRESS= {namell(I)}: The start address of
the virtual storage block to be released in the GETVIS
area may be specified either in a 4-byte field ad­
dressed by namel or in a register.

LENGTH= {name21(O)}: The length of the virtual
storage block to be released may be specified in a
4-byte field addressed by name2 or in a register.
The length is specified in number of bytes. The
smallest unit of virtual storage that can be released
by FREEVIS is (a) 128 bytes if the GETVIS area is part
of a partition or (b) 512 bytes if the G ETVIS area is
part of the sv A. If the specified length is not a multi­
ple of 128 or 512, respectively, it is rounded to the
next higher integral multiple of 128 or 512.

SVA=YES: SVA=YES can be specified only in a
program that is executed with storage protection key
zero. If SV A= YES is specified, DOS/VSE tries to fmd
the block that is to be released in the sv A, otherwise
in the pertinent partition.

Return Codes in Register 15
o FREEVIS completed successfully
4 The size of the partition GETVIS area is OK.

8 The specified length is smaller than zero.
12 The specified address is not within the GETVIS

area or the address is not (a) a multiple of 128
bytes if the GETVIS area is part of a partition, or
(b) a multiple of 512 bytes if the GETVIS area is
in the SVA.

16 The specified storage block to be released
(ADDRESS+LENGTH) exceeds the GETVIS area.

GENLMacro
Name Operation Operand

[name] GENL phasenamel,phasename2, ...

[{,ADDRESS= {areal(S,area)l(rl)}

,LENGTH=number}]

[{,ADDRESS= {DYNIDYNAMIC
[,ERREXIT= {addr I (S,addr) I (r2)}]}]

Chapter 5: System Control Macros 5 - 9

The GENL macro generates a local directory in the
partition. It saves access time if you load the same
phases more than once in the course of program
execution.

phasenamel,phasename2, ... : Specify, for these
parameters, the names of phases, for which entries
in a local directory list are to be built. The list will
be generated in aiphameric sequence. You may
specify up to 200 phase names.

ADDRESS=specification,LENGTH=number:
If the ADDRESS operand is omitted, the assembler
builds a 34-byte entry within the maCiO expansion
for each of the specified phases and inserts the perti­
nent phase name in the entry. The rest of the entry
is filled in by the supervisor when the phase is called
by a FETCH or LOAD macro, with the LIST option for
the first time. When, subsequently, the phase is
called again, the entry is active.

Coding ADDRESS in conjunction with LENGTH

indicates that the directory is to be built, during
execution, at a location within your program whose
address is given by the ADDRESS operand.

LENGTH gives the length of the field provided for
the generation of the directory. If LENGTH is too
short the assembler issues an MNOTE.

ADDRESS=DYN,ERREXIT=specification:
Coding ADDRESS=DYNAMIC (a short form,
ADDRESS=DYN, is allowed) directs the system to
acquire, through a GETVIS, as much dynamic storage
as needed. Note that in this case the contents of
registers 0, 1, 14, and 15 will be over-written by exe­
cution of the macro.

ERREXIT is the address of a routine to be executed
should the implicit GETVIS fail. If the ERREXIT ope­
rand is omitted, an unsuccessful GETVIS will cause
the task to be canceled.

GETIME Macro
N arne Operation Operand

[name] GETIME [STANDARDIBINARYITV]

[,LOCALI,GMT]

[,MFG= {areal(S,area)l(r)}]

The GETIME macro obtains the time-of-day at any
time during program execution, provided the time of
day option was specified at system generation. (If
the time of day option was not specified at system
generation, issuing GETIME only obtains zeros in­
stead of a valid time.)

5 - to DOS/VSE Macro Reference

STANDARD and LOCAL are assumed if no ope­
rands are given. If the macro is issued without an
operand, the macro must not contain a comment
unless the comment begins with a comma.

As long as no DATE job control statement is sup­
plied, the calendar date and the system date in the
communication region are updated every time
GETIME is issued. Those dates are therefore accurate
at any given moment. However, when the job
stream contains a DATE job control statement, only
the system date in the communication region is up­
dated when GETIME is used; the calendar date is not
changed in that case.

If STANDARD is specified, the time-of-day is re­
turned in register 1 as a packed decimal number of
the form hhmmss, where hh is hours, mm is minutes,
and ss is seconds, with the sign in the low-order half­
byte. The time-of-day may be stored and unpacked
or edited.

If BINARY is specified, the time-of-day is returned
in register 1 as a binary integer in seconds.

If TV is specified, the time-of-day is returned in
register 1 as a binary integer in units of 1/300 sec­
onds.

LOCALIGMT: Specify LOCAL to obtain the local
time or GMT if, in your program, you want to use
Greenwich Mean Time.

MFG= {areal(S,area)l(r)}: The MFG operand is
required if the program is to be reenterable and if
option STANDARD applies (with options BINARY or
TV, reentrancy is preserved in any case). It specifies
the address of a 64-byte dynamic storage area, that
is: storage which your program obtained through a
GETVIS macro. This area is required for system use
during execution of the macro.

GET VIS Macro
Name Operation Operand

[name] GETVIS [ADDRESS= {name11(1)}]
[,LENGTH= {name21(O)}]

[,PAGE=YES]

[,POOL=YES]

[,SVA=YES]

The GETVIS macro retrieves a block of virtual stor­
age from the GETVIS area of your partition or of the
sv A. If you code the macro without any operand,
DOSjVSE assumes that the length of the desired vir­
tual storage area is contained in register 0 and re­
turns the start address of the area it retrieved for you
in register 1. If the macro is issued without an ope-

rand, the macro must not contain a comment unless
the comment begins with a comma.

ADDRESS= {namel\(I)}: The start address of
the requested virtual storage area is returned by the
system either in the 4-byte field specified as a sym­
bol by name I or in the specified register. (Register
15 must not be used because it contains the return
code.) The returned address is valid only if the re­
turn code in register 15 is zero. If the operand is
omitted, the address is returned in register 1 only.

LENGTH= {name2\(O)}: The length of the re­
quested storage block may be specified either in the
4-byte field (specified as a symbol by name2) or in
the specified register. The length is specified in
number of bytes. The smallest unit that can be re­
quested by GETVIS is (a) 128 bytes if the GETVIS area
is part of a partition or (b) 512 bytes if the GETVIS
area is part of the sv A. If the specified length is not
a multiple of 128 or 512, respectively, it is rounded
to the next higher multiple of 128 or 512. If the ope­
rand is omitted, the system assumes that you have
specified the length in register O.

PAGE=YES: If you want the requested storage
area to start on a page boundary, specify PAGE=YES.
This may reduce the number of page faults.

POOL=YES: IfpoOL=YES is specified, GETVIS
starts searching for the requested virtual storage area
at the address specified in register 1. In this case, it
is your responsibility to provide a valid address in
register 1.

SV A= YES: SV A= YES can be specified only in a
program that is executed with storage protection key
zero. If SVA=YES is specified, DOS/VSE retrieves the
desired block of virtual storage from the sv A. Other­
wise, DOS/VSE retrieves the block from the pertinent
partition.

Return Codes in Register 15
o GETVIS completed successfully.
4 The size of the partition GETVIS area is OK.

8 The specified length is negative.
12 No more virtual storage is available in the

GETVIS area.
32 A hardware (storage) failure occured in the

requested real partition G ETVIS area.

JDUMPMacro
Name Operation Operand

[name] JDUMP

This macro provides a hexadecimal dump of the
following:

• The contents of either the entire supervisor area
and the used part of the system GETVIS area, or
of some supervisor control blocks only (see
Note below).

• The contents of the partition that issued the
macro.

• The contents of the registers.

Note: The dump includes the contents of some supervisor control
blocks only, rather than the entire supervisor area, if the
STDOPT job control command specifies DUMP=PART or NO,
or ifajob control statement //OPTION PARTDUMP or NO­
DUMP is submitted.

In addition, the macro causes the job to be termi­
nated if JDUMP was issued by the main (or only) task
of the program. If JDUMP was issued by a subtask,
the macro causes that subtask to be detached with­
out terminating the program in the partition.

The dump provided by the macro is always di­
rected to SYSLST; SYSLST, if disk or tape, must be
opened; if SYSLST is a tape, that tape must be posi­
tioned as desired.

If JDUMP is issued by a job running in real mode,
the storage contents of the partition are dumped
only up to the limit as determined by the SIZE par­
ameter of the EXEC job control statement, plus the
storage obtained dynamically through the GETVIS
macro. If SIZE was not specified, the entire partition
will be dumped.

If JDUMP is issued by a program running in virtu­
al mode, the entire partition is dumped.

Chapter 5: System Control Macros 5 - 11

LFCBMacro
N arne Operation

[name] LFCB

Operand

SYSxxx,phasename
[,NULMSG]
[,FORMS=xxxx][,LPI=n]

The macro can be used to load the forms control
buffer (FCB) of a printer dynamically. That printer
must not be an IBM 3800 Printing Subsystem; the
macro is ignored on an IBM 3800. An FCB whose
contents have been changed by means of this macro
retains the changed contents until one of the follow­
ing occurs:

• another LFCB macro is issued for the printer;
• an LFCB command is issued for the printer;
• the SYSBUFLD program is executed to reload

the printer's FCB;
• IPL is performed for the system.

The macro, when executed, generates messages to
request operator action (such as changing forms),
whenever manual action is required, and to inform
the operator that the FCB of the specified printer has
been reloaded.

5 - 12 DOS/VSE Macro Reference

Note: If SYSLOG is assigned to a printer, the results of an FCB
load operation initiated by an LFCB macro are unpredictable.

SYSxxx: The name of the logical unit associated
with the printer whose FCB is to be loaded.

You can specify one of the following:

• SYSLST,
• SYSLOG, or
• a programmer logical unit (sysnnn) assigned to

a printer owned by the partition in which the
program is being executed.

phasename: The name by which the phase contain­
ing the applicable FCB image is cataloged in the core
image library. For information on the contents and
format of an FCB image, see the section "System
Buffer Load (SYSBUFLD)" in DOSjVSE System
Control Statements.

NULMSG: This operand specifies that the 80-
character verification message, which is normally
printed following the FCB load operation, is to be
suppressed. This operand, if given, must be speci­
fied immediately after phasename.

If this operand is specified, the system continues
normal processing immediately after the FCB load
operation has been completed, and the operator
cannot verify that the proper forms are placed on
the printer.

If the operand is omitted, the system prints the
last 80 characters of the phase identified by phasen­
arne, and causes an additional skip to channell.

FORMS=xxxx: This operand specifies the type of
forms to be used on the printer whose FCB is being
reloaded. For xxxx, a string of up to four alphamer-
ic characters can be specified. The specified form
number is included in a message to the operator.

LPI=n: This operand, which should not be given
for a PRTI-printer (with a device type code OfPRTl),
specifies the desired number of lines per inch. For n,
you can specify either 6 or 8.

If the macro is issued for a PRTI-printer and the
specified spacing disagrees with the spacing code in
the new buffer image, the system does not execute
the FCB load operation and sets the appropriate re­
turn code in register 15.

If the macro is issued for a non-PRTI-printer. the
system includes the operand in a message to the
operator.

Return Codes in Register 15
Successful completion of the FCB load operation is
indicated to the problem program by a return code
ofO. Note, however, that for an IBM 3800, register
15 contains 0, although the macro was not executed.
If the operation fails, register 15 contains one of the
return codes listed below; in this case the FCB retains
its original contents. The return codes are:
Return Code Meaning
Dec Hex

4 X'04' The assigned printer is a PRT1-printer,
and the LPI operand specified in the ma-
cro disagrees with the FCB image.

8 X'08' No LUB is available for the specified
logical unit.

12 X'OC' The specified logical unit has not been
assigned or is currently unassigned.

16 X'10' The specified logical unit is assigned to a
device without an FCB.

20 X'14' The printer assigned to the specified
logical unit is down.

24 X'18' The specified FCB image phase has not
been found.

28 X'1C' The specified FCB image phase is invalid
for the printer assigned to the specified
logical unit.

By testing register 15, you can determine in your
program whether or not the operation has failed. If
the operation has failed, you can either terminate
the job step or continue processing. Should you
decide to continue processing, then the system by­
passes the execution of the LFCB macro.

LOAD Macro
N arne Operation

[name] LOAD

Operand

{phasenamel (S,address) I(I)}
[,loadpointl (S,loadpoint)1 (0)]

[,LIST= {listnamel(S,listname)l(rl)}]
[,SYS=YES]
[,DE=YES]
[,TXT=NO]
[,MFG= {areal(S,area)I (r2)}]

The LOAD macro loads the phase specified in the
first parameter from the core image library (if this
phase is not in the SVA) and returns control to the
calling phase. After execution of the macro, the
entry-point address of the called phase is returned to
you in register 1. For a non-relocatable phase, this
address is the entry-point determined at link-edit
time. For a relocatable phase, the entry point is ad­
justed by the relocation factor. If the phase is in the
SV A, it is not loaded; the entry point address in the
SVA, however, is returned in register 1.

phasename\(S,address)\(I): For phasename speci­
fy the name of the required phase.

If DE=YES is not specified, the address as speci­
fied in (s, address) or as loaded into a register points
to an 8-byte field that contains the phase name. If
DE=YES, the operand has a different meaning; refer
to the discussion of the DE operand.

loadpoint\(S,loadpoint)\(O): Ifloadpoint is pro­
vided the load-point address specified to the linkage
editor is overridden, and the phase is loaded at the
specified address. The address used must be outside
the supervisor area. When an overriding address is
given, the entry-point address is relocated and re­
turned in register 1. An overriding load point ad­
dress must not be specified for a phase that had been
linked as a member of an overlay structure.

If the phase is non-relocatable, none of the other
addresses in the phase are relocated; if the phase is
relocatable, however, the entry point and address
constants are updated with the relocation factor.

If loadpoint is given in register notation, the reg­
ister used must not be register 1. Preload the register
with the loadpoint address.

With (s, ...) notation, the loadpoint address is de­
rived from base register and displacement as assem­
bled for loadpoint in the (s,loadpoint) specification.

LIST= {listname\(S,listname)\(rl)}: For list­
name specify the name of your local directory list
generated in the partition by the GENL macro.
When this operand is included, the system scans the
local directory list for the name of the required
phase before it initiates a search for this phase name
in the pertinent core image library directory.

SYS=YES: IfSYS=YES is specified, the system
scans the system directory list (SDL) in the SVA and
the system core image library before the private core
image library (if a private CIL is assigned at all). If
nothing is specified, the private CIL takes prece­
dence.

DE=YES: This operand is useful if your program
frequently loads one specific phase. DE=YES is in­
valid if LIST is specified.

DE=YES indicates that your program contains a
34-byte field where you have placed a single directo­
ry entry like those generated by the GENL macro. If
this directory entry is active the directory scan
mechanism is bypassed; if not, the entry will be
filled in by the supervisor and then becomes active.

If the first' operand is written as phasename
(instead of s-type or register notation) a directory
entry will be generated within the macro expansion.

Chapter 5: System Control Macros 5 - 13

The generated directory entry will contain the pha­
sename in the fir~t 8 bytes.

If you use (s,address) or register notation for the
first operand you must set aside the 34-byte field
yourself and point to it via this operand. The direc­
tory entry must contain the phase name in the first 8
bytes (left-justified and padded with blanks) and
X'OB' at displacement X'OB'.

TXT=NO: The specification TXT=NO (with
LlST=listname or DE= YES) is useful if a phase is
loaded more than once in the course of your pro­
gram. It causes a search for the directory entry with­
out transfer of the contents (or text) of the phase
itself and it indicates in the directory entry if and
where the phase was found. This can be used to
accomplish either of the following:

1. The directory entry can be filled in from the
core image library for later FETCH/LOAD calls
without the overhead of text transfer.

2. You can establish whether a given phase is
present in a core image library or the SV A since
register 0 contains the address of the directory
entry and byte 16 of the directory entry appears
as:

X'06' if the phase is not found
X'12' if the phase is in the SVA
X'OA' if the phase is in the private CIL.

Note: Test for these conditions by means of a Test Under Mask
(TM) instruction, not a Compare instruction.

MFG= {areal(S,area)l(r2)}: The operand MFG is
required if the program which issues the LOAD ma­
cro is to be reenterable. It specifies the address of a
64-byte dynamic storage area, that is, storage which
your program obtained through a GETVIS macro.
This area is required for system use during execu­
tion of the macro.

5 - \4 DOS;VSE Macro Reference

MVCOMMacro
Name Operation Operand

[name] MVCOM to,length, {from\(O)}

The MVCOM macro modifies the content of bytes 12
through 23 of the communication region of the par­
tition from which the macro is issued. This area is
commonly referred to as the user area.

Chapter 5: System Control Macros 5 - 15

The following example shows how to move three
bytes from the symbolic location DATA into bytes 16
through 18 of the communication region:

MVCOM 16,3,DATA

to: specifies the address (relative to the first byte of
the region) of the first communication region byte
+_ 1..~ ~;I;r.<>;1
LV U'" .LJ..lVUUJ."'U.

length: represents the number of bytes (1 to 12) to
be inserted.

froml(O): represents the address (either as a symbol
or in register notation) of the bytes to be inserted.

PAGEIN Macro
You can code the macro in either of the following
two formats:

Name Operation

[name] PAGEIN

[name] PAGEIN

Operand

beginaddr,endaddr
[,beginaddr,endaddr] ...
[,ECB= {ecbnamel(O)}]

{listnamel(I)}
[,ECB= {ecbnamel(O)}]

The PAGEIN macro causes specific areas to be
brought into real storage before their contents are
needed by the requesting program. If the requested
area is already in real storage the attached page
frame will get low priority for the next page-outs.
This function, however, does not include any fixing,
so that it cannot determine whether all areas re­
quested will still be in real storage when the entire
request has been completed.

beginaddr: Points to the first byte of the area to be
paged in.

endaddr: Points to the last byte of the area to be
paged in.

listnamel(l): Is the name of a list of consecutive
8-byte entries as shown below.

I X'OO' I address constant I length minus I

o 4 7

where:

5 - 16 DOS/VSE Macro Reference

address constant = Address of the first byte of the
area to be paged in.

length = A binary constant indicating
the length of the area to be
paged in.

A non-zero byte following an entry indicates the end
of the list.

ECB=ecbnamel(O): Specifies the name of the ECB,
a fullword defined by your program, which is to be
posted when the operation is complete. An invalid
ECB address causes the task to be canceled.

Return Information
The return information can be obtained from the
ECB, byte 2. The meaning of these bits is shown
below.
Bit Meaning if bit is one:

o

2

PAGEIN request is finished.

The page table is full, the request cannot be queued
at this time for further handling; the request is ig­
nored, bit 0 is set.

One or more of the requested pages are outside the
requesting program's partition; PAGEIN is not per­
formed for these pages.

3 At least one negative length has been detected in the
area specifications; PAGEIN is not performed for
these areas.

4 List of areas that are to be paged in is not completely
in the requesting program's partition; the request is
ignored, bit 0 is set.

5 Paging activity is too high in the system, no perfor­
mance improvement is possible.

6-7 Reserved

Any combination of the return bits in the ECB is
possible.

Use the WAIT macro with the ecqname as operand
for completion of the PAGEIN macro, before the bits
in byte 2 of the ECB. are tested.

PDUMPMacro
Name Operation

[name] PDUMP

Operand

{address ll(r I)} , {address21(r2)}
[,MFG= {areal(S,area)l(r3)}]

This macro provides a hexadecimal dump of the
general registers and of the virtual storage area con­
tained between the two address expressions
(addressl and address2). The contents of registers 0
and 1 are over-written, but the CPU status is re­
ta~ned. Thus, PDUMP furnishes a dynamic dump
(snapshot) useful for program checkout. Processing
continues with your next instruction.

The dump is always directed to SYSLST with 121-
byte records. The first byte is an ASA control charac­
ter. When SYSLST is a disk drive, you must issue an
OPEN or OPENR macro to any DTF assigned to
SYSLST after each PDUMP that is executed. The
OPEN or OPENR macro updates the disk address
maintained in the DTF table to agree with the ad­
dress where the PDUMP output ends. If the OPEN or
OPENR is not issued, the address is not updated, and
the program is canceled when the next PUT is issued.

If non~addressable areas were included in the
range OfPDUMP, a message will be printed to indi­
cate this.

{addressl\(rl)}, {address2\(r2)}: One or both of
the addresses can be specified in register notation. If
address2 is not greater than address 1, or address 1 is
greater than the highest address in the allocated
virtual storage, the macro results in no operation. If
the value in address2 is greater than the end of the
allocated virtual storage area, the virtual storage
between addressl and the end of the allocated virtu­
al storage is dumped.

MFG= {area\(S,area)\(r3)}: The MFG operand is
required if the program which issues the PDUMP is to
be reenterable. It specifies the address of a 64-byte
dynamic storage area, that is, storage which you
obtained by GETVIS macro; this area is needed by
the system during execution of the macro.

PFIX Macro
You can code the macro in either of the following
two formats:

Name Operation Operand

[name] PFIX

[name] PFIX

beginaddr,endaddr
[,beginaddr ,endaddr] ...

{listnamel(I)}

The PFIX macro causes specific pages to be brought
into real storage and fixed in their page frames until
they are released at some later time. The maximum
number of pages that may be fixed at anyone time
is specified via the ALLOCR command. Each time a
page is flXed a counter for that page is incremented.
This counter may never exceed 255 for any page.

beginaddr: Points to the first byte of the area to be
flXed.

endaddr: Points to the last byte of the area to be
fixed.

Iistname\(1): Is the name of a list of consecutive
8-byte entries as shown below.

I x'oo' I address constant \ length minus 1

o 4 7

where:

address constant

length

Address of the first byte of
the area to be flXed.

A binary constant indicat­
ing the length of the area to
be fixed.

A non-zero byte following an entry indicates the
end of the list. Register notation may be used.

Exceptional Conditions
If a PFIX causes the count of flXes for a page to ex­
ceed 255, the task issuing the PFIX is canceled.

If it is not possible to fix all pages requested,
then none will be fixed.

If PFIX is issued in a program running in real
mode, it is ignored and register 15 contains O.

Return codes in Register 15
o if the pages were successfully fixed.
4 if the number of pages to be fixed for one re­

quest exceeds the number of PFIxable page
frames; in order for this PFIX request to be satis­
fied, more PFIxable storage must be allocated
through the ALLOCR command.

8 if not enough page frames are available in the
partition because of previous PFlxes or current
system resource usage; this PFIX request could,
however, be satisfied at another time without
reallocating PFlxable storage.

12 if one of the specified addresses was invalid.

PFREEMacro
You can code the macro in either of the following
two formats:

Name Operation Operand

[name] PFREE beginaddr,endaddr
[, beginaddr ,endaddr] ...

[name] PFREE {listnamel(l)}

Chapter 5: System Control Macros 5 - 17

Each page in the virtual address area is assigned a
'PFIX counter'. If a page is not fIxed - that is, if it is
subject to normal page management - the counter is
O. Whenever a page is ftxed by using a PFIX macro
its counter is increased by one. All pages whose
counters are greater than 0 remain fIxed in real stor­
age.

The PFREE macro decrements the counter of a
specifIed page by 1. If a PFREE is issued for a page
whose counter is 0, that PFREE is ignored since the
page has already been freed.

If your supervisor was generated with VM= YES (in
the SUPVR generation macro), execution of the ma­
cro results in a null operation; the return code is set
to zero.

beginaddr: Points to the first byte of the area to be
freed.

endaddr: Points to the last byte of the area to be
freed.

Iistnamel(I): Is the symbolic name of a list of con­
secutive 8-byte entries as shown below.

I x'oo' I address constant I length minus 1

o 4 7

where:

address constant Address of the fIrst byte of
the area to be fiXed.

length A binary constant indicat­
ing the length of the area to
be fIxed.

A non-zero byte following an entry indicates the
end of the list.

Exceptional Conditions
If PFREE is issued by a program running in real
mode, the macro is ignored.

Return codes in Register 15
o if the pages were successfully freed.

12 if one of the addresses specifIed was invalid.

POST Macro
Name Operation Operand

[name] POST {ecbnamel(I)}
[,SA VE= {saveareal(O)}]

This macro provides intertask communication by
posting an ECB (it turns on byte 2, bit 0). A POST

5 - 18 DOS/VSE Macro Reference

issued to an ECB removes a task waiting for the ECB
from the wait state.

ecbnamel(1): Provides the address of the ECB that
is to be posted.

SA VE= {saveareal(O)}: This operand may be
used for taking a specifIc waiting subtask out of the
wait state. The operand causes DOS/VSE to locate
the save area whose address is specifIed in the ope­
rand and to take only the sub task associated with
this save area out of the wait state. This task nor­
mally is waiting for the specified ECB to be posted.

Although time is saved by specifying this ope­
rand, other tasks waiting for this ECB are not taken
out of the wait state for this event by this issuance of
the POST macro. This does not guarantee that they
will stay in the wait state until another POST is is­
sued. On the contrary, other events could cause the
other tasks to be dispatched. For this reason the
POST macro should not be used with the SAVE ope­
rand to control subtask operation unless separate
ECB's are used. Otherwise, it should be used only to
save time. When a POST is issued without the SAVE
operand, all tasks waiting for the ECB are taken out
of the wait state, and the highest priority task re­
gains control.

RCBMacro

Name Operation Operand

[name] RCB

The RCB macro generates an 8-byte word-aligned
resource control block (RCB); this block allows you
to protect a user-defIned resource if the ENQ macro
is issued before (and the DEQ macro is issued after)
each use of the resource. The format of the RCB and
its use is shown below.

Bytes Purpose of bits

o

1-3

4

5-7

All bits are set to 1 to indicate that the resource
has been placed in a priority queue by the ENQ
macro.
Reserved
If bit 0 = 1 : Another task is waiting to use the
resource.
Bits 1 -7: Reserved.

ECB address of current resource owner.

REALAD Macro
Name Operation Operand

[name] REALAD {addressl(I)}

In Sj370 mode, the REAL AD macro returns the real
address corresponding to a specified virtual address.
If issued in ECPS: VSE mode, the macro returns the
specified virtual address.

address\(l): Is the virtual address to be converted.
It can be specified as a symbol or in register nota­
tion.

Register 0 returns the address corresponding to
the specified virtual address if and only if the virtual
address points to a PFIxed page, otherwise register 0
contains O. Thus, the macro can be used to test if a
page is pFIxed.

Note: The pages of a partition running in real mode are treated
as if they were fixed.

RELEASE Macro
Name Operation Operand

[name] RELEASE (SYSnnn[,SYSnnn] ...)
[,savearea]

RELEASE specifies the names of programmer logical
units to be released. RELEASE may be used only for
units used within a given partition.

The operand SYSnnn specifies the programmer
logical unit that is to be released. Up to 16 units
may be specified in a list, which must be enclosell h_

parentheses.

All the units specified are checked by the assem­
bler to assure that no system logical units are re­
quested for release. If system logical units are speci­
fied, an MNOTE is issued and such units are ignored.
Before any release is attempted, a check is made for
ownership of the unit. If the requesting partition
does not own the unit, or if the unit is already un­
assigned, the request is ignored.

savearea: Is the name of an 8-byte word-aligned
area where registers 0 and 1 are saved for your pro­
gram. If the operand is not provided, the contents of
registers 0 and 1 are over-written.

The macro expansion includes a unit table and
loads the table's address into register O. If the sa­
vearea operand is specified, the macro expansion
saves registers 0 and 1.

If there is no permanent assignment, the device is
unassigned. If the device is at permanent assign­
ment level, no action is taken on the unit.

Recommendation: You should inform the system
operator via a message that the assignment was re­
leased.

RELP A G Macro
You can code the macro in either of the following
two formats:

Name Operation Operand

[name] RELPAG beginaddr,endaddr
[, beginaddr ,endaddr] ...

[name] RELPAG {listname\(l)}

The RELPAG macro causes the contents of one or
more storage areas to be released. If the affected
areas are in real storage when the RELPAG macro is
executed, their contents are not saved but are over­
written when the associated page frames are .needed
to satisfy pending page frame requests.

After the RELPAG macro has been executed for an
area and a location in that area is referenced again
during the current program execution, the related
page is attached to a page frame which contains all
zeros.

The storage area is released only if it contains at
least one full page. You can be sure of this only if
the specified area is 4K minus 1 byte, or bigger (see
Figure 5-5).

First byte of page n

Starting address of specified
area (length=4k-2 bytes)

2k~~~~~
2k~~~~~

End address of specified area

Last byte of page n+1

Figure 5-5. Worst case of an area not containing one full page.

beginaddr: Points to the first byte of the area to be
released.

endaddr: Points to the last byte of the area to be
released.

Iistname\(1): Is the symbolic name of a list of con­
secutive 8-byte entries as shown below.

I X'OO' I address constant I length minus I

o 4 7

where:

Chapter 5: System Control Macros ') - 19

address constant = Address of the first byte of the
area to be released.

length = A binary constant indicating
the length of the area to be re­
leased.

A non-zero byte following an entry indicates the end
of the list.

Register notation may be used.

Exceptional Conditions
• The program is running in real mode.
• The area is, fully or partially, outside of the

virtual partition of the requesting program.
• A page handling request is pending for the ref­

erenced page(s).
• The page(s) is (are) fixed. For these pages, the

RELPAG request will be ignored.

• The supervisor was not generated with
PAGEIN=n in the SUPVR macro (in this case the
program will be canceled).

Return Codes in Register 15
o All referenced pages have been released or the

request has been ignored because the request­
ing program is running in real mode.

2 The begin address is greater than the end ad­
dress, or a negative length has been found.

4 The area, fully or partially, does not belong to
the partition where the issuing program is run­
ning. The release request has only been execut­
ed for those pages which belong to the partition
of the issuing program.

8 a. At least one of the requested pages is tempo­
rarily fixed (via ccw-translation) and/or
PFIxed. The release request has only been exe­
cuted for the unfixed pages.
b. A page handling request (page fault, tempo­
rary fix, PFIX) for at least one of the requested
pages is pending (caused by asynchronous
processing within a partition). The release re­
quest has not been executed for those pages
which are involved in a page handling request.

16 List of areas that are to be released is not com­
pletely in the requesting program's partition.
The request is ignored.

Any combination of the return codes 2, 4, and 8 is
possible.

RETURN Macro

Name Operation Operand

[name] RETURN (rl[,r2])

5 - 20 DOS/VSE Macro Reference

The RETURN macro restores the registers whose
contents were saved and returns control to the call­
ing program.

The operands r 1 ,r2 specify the range of the regis­
ters to be reloaded from the save area of the pro­
gram that receives control. The operands are written
as self-defining values. When inserted in an LM
machine instruction, the operands cause the desired
registers in the range from 14 through 12 (14, 15,0
through 12) to be restored from words 4 through 18
of the save area. If r2 is omitted, only the register
specified by rl is restored. To access this save area,
register 13 must contain the save area address.
Therefore, the address of the save area should be
loaded into register 13 before execution of the
RETURN macro.

RUNMODE Macro
Name Operation Operand

[name] RUNMODE

The RUNMODE macro returns the following inform­
ation to the program issuing it:

• Register 1 contains 0 if the issuing program is
running in virtual mode.

• Register 1 contains 4 if the issuing program is
running in real mode.

No operand is required for this macro.

SAVEMacro
Name Operation Operand

[name] SAVE (rl [,r2])

The SAVE macro stores the contents of specified
registers in the save area provided by the calling
program.

The operands r 1 ,r2 specify the range of the regis­
ters to be stored in the save area of the calling pro­
gram. The address of this area is passed to the pro­
gram in register 13. The operands are written as
self-defining values so that they cause desired regis­
ters in the range of 14 through 12 (14, 15,0 through
12) to be stored when inserted in an STM assembler
instruction.

Registers 14 and 15, if specified, are saved in
words 4 and 5 of the save area. Registers 0 through
12 are saved in words 6 through 18 of the save area.
The contents of a given register are always stored in
a particular word in the save area. For example,
register 3 is always saved in word 9 even if register 2
is not saved.

If r2 is omitted, only the register specified by r 1 is
saved.

SET/ME Macro
Name Operation Operand

[name] SETIME {timervaluel(I)} ,[tecbnamel(r)][,PREC]

The SETIME macro sets the interval timer to the
spe~ified value.

timervaluel(l): The amount of time for the inter­
val. This value can be specified either as an abso­
lute expression or in register notation. If register
notation is used, the pertinent register must contain
the time value.

The largest allowable value is 55,924 seconds -
equivalent to 15 hours, 32 minutes, 4 seconds - if
PREC is omitted, and 8,388,607 - equivalent to 7
hours, 46 minutes, 2 seconds (approximately) - if
PREC is specified. The positional operand PREC indi­
cates that the timer value is expressed in units of
1/300 of a second. When PREC is omitted, the timer
value is in seconds.

tecbnamel(r): Specifies the name (address ifregis­
ter notation is used) of a timer event control block
(TECB) which must have been defined previously in
your program by a TECB macro. If you use register
notation, register 0 and 1 must not be used. After
having executed the SETIME macro, the system re­
turns the TECB address in register 1.

When a program is restarted from a checkpoint,
any timer interval set by a SETIME macro is not res­
tarted.

The SETIME macro must not be used within an
abnormal termination exit routine.

The setting of a time interval can be utilized in
one of two ways. In the first method, the program
sets up linkage to an interval timer exit routine by
issuing the STXIT IT macro. When the time interval
specified in SETIME elapses, control is given to that
routine (if a routine is not supplied to the supervisor
by the time of the interruption, the interruption is
ignored). When using SETIME in this way, the
tecbname operand must not be specified.

In the second method, specifying the tecbname
operand causes a TECB to be posted when the time
interval has elapsed: bit 0 of byte 2 in the TECB is set
to 1. This event bit is set to 0 when SETIME is issued.
A task may be waiting for the TECB to be posted by
having issued the WAIT or W AITM macro.

SETPFA Macro
Name Operation Operand

[name] SETPFA {entry address I (O)}

The SETPF A macro either establishes or terminates
linkage to a page fault appendage routine that is to
be entered each time a page fault occurs or is com­
pleted. Y ou will find more information on how to
write such a routine in Appendix F of the DOS / VSE
Macro User's Guide, as listed in the Preface.

entry address I (0): If an entry address is specified,
execution of the macro establishes linkage to the
appendage routine. The routine at that address will
be entered every time a page fault in the associated
task occurs or is satisfied. The routine to be entered
and all areas referenced by the routine must be fixed
in real storage using the PFIX macro before SETPF A
is issued. The entry address may be specified as a
symbol or in register notation.

If SETPF A is issued without an operand, the link­
age to the page fault appendage is terminated. Each
issuance ofSETPFA supersedes all previous SETPFA'S
for that task.

A page fault appendage is called only when a
page fault occurs in the task owning the appendage.
If a page fault occurs while a supervisor service rou­
tine is working for the owning task, the appendage is
not called. The same may apply to an IBM-supplied
component such as ACF iVT AME.

SETTMacro
Name Operation Operand

[name] SETT {timervaluel(l)}

The SETT macro sets the task timer to the value, in
milliseconds, specified in the operand. The largest
allowable value is 21474836 milliseconds. A register
can be specified, and if it is, that register must con­
tain the number of milliseconds in binary. You can
use the SETT macro only if your supervisor was gen­
erated with TTIME=partition-ID specified in the
FOPT generation macro.

The SETT macro can be issued only by the main
task of the partition owning the task timer. If it is
issued by a program running in a partition not own­
ing the task timer, the program is canceled and an
error message indicating illegal svc is printed.

Chapter 5: System Control Macros 5 - 21

SETT must not be used within an abnormal termi­
nation exit routine.

The time interval is decremented only while the
task is executing. When the specified time interval
has elapsed, the task timer routine supplied in the
STXIT TT macro is entered.

If a routine is not supplied to the supervisor by
the time of the interruption, the interrupt is ignored.
When a program is restarted from a checkpoint,
timer intervals set by a SETT macro are not restarted.

STXITMacro

To establish linkage:

[name] STXIT

To terminate linkage:

[name] STXIT

~- - -.-I
~t""'lilUU

{ABIITIPqOqTT}
, {rtnaddrl(O)}, {saveareal(l)}
[,OPTION= {DUMPINODUMP}]

{ABIITIPqOqTT}

The STXIT (set exit) macro establishes· or terminates
linkage from the supervisor to an exit routine of
your program for handling the specified condition.
Linkage must be established before an interrupt
occurs. Use the EXIT macro to return from these
routines.

When restarting a program from a checkpoint,
any STXIT linkages established prior to the check­
point are destroyed.

If, in an exit routine, you are issuing I/O
request(s) requiring the same logic module as your
main routine, you must generate a read-only module
by specifying RDONL Y=YES in the DTF and in the
logic module. Both the main routine and the exit
routine require a save area or their own. Detailed
information on the save area and interrupt status is
given in DOS/VSE Serviceability Aids and Debug­
ging Procedures.

AD: An abnormal task termination routine is en­
tered if a job or task is terminated for some reason
other than a CANCEL, DETACH, DUMP, or EOJ macro
being issued by the task itself. Upon entry to the
task's abnormal termination routine,

• termination messages and a partition dump are
produced, depending on selected options (see
the OPTION operand below).

• bit 1 of byte 2 in the task's attachment ECB is
posted (if an ECB was specified in the A IT ACH

macro).
• register 0 contains the abnormal termination

code in its low order byte (see Figure 5-6).

5 - 22 DOS/VSE Macro Reference

• register I points to the task's abnormal­
termination save area, which contains the inter­
rupt status information and the contents of reg­
isters 0 through 15 at the time of abnormal ter­
mination.

The abnormal termination routine can then ex­
amine this data and take whatever action is neces-

Macros which might be used in this routine are,
for instance, POST and CLOSE. However, if an ab­
normal termination condition occurs within an ab­
normal termination routine, the job or task is abnor­
mally termLllated without regard to an abnormal
termination exit. Thus, your program's abnormal
termination routine should avoid macros such as
ENQ, CHKPT, and any I/O macros which may cause
an abnormal termination.

After the appropriate action is taken, your abnor­
mal termination routine should end with a CANCEL,

DETACH, DUMP, or EOJ macro.

If your routine issues the DUMP macro, the system
produces a storage map of the partition even if job
control option NODUMP was specified. For the parti­
tion, SYSLST may be assigned to a 3211 printer. If, in
addition, indexing was used before your abnormal
termination routine received control, a certain num­
ber of characters on every line of the printed dump
may be lost, unless you reload the printer's FCB

(forms control buffer) by issuing an LFCB macro
before you issue the DUMP macro. The FCB image
to be loaded in this case must not have an indexing
byte.

If the CANCEL macro is issued in the main task,
the entire partition is terminated with every subtask
abnormal termination exit taken in order of priority.

If the system was generated with the multitasking
option, each task may require its own abnormal
termination routine. A main task can attach a sub­
task with an ABSA VE operand. This assumes the
subtask will use the main task's abnormal termina­
tion routine. However, the subtask may override
this specification by issuing its own STXIT AB macro.

If an abnormal termination condition occurs and
linkage has not been established to an abnormal
termination routine, processing in the partition is
abnormally terminated. However, if the abnormal
termination condition occurs in a subtask without
exit linkage, only the subtask is terminated.

When subtasks are detached or canceled, associ­
ated time intervals and exit linkages are cleared.

IT: An interval timer interruption routine is entered
when the specified interval elapses. If the program

Hexadecimal Specific abnormal termination code meaning
representation

00 Default value for all cases other than those listed below

OF Invalid FBA DASD address for SYSFIL

10 Normal EOJ

11 No channel program translation for unsupported device

12 Insufficient buffer space for channel program translation

13 CCW with count greater than 32K

14 Page pool too small

15 Page fault in disabled program (not a supervisor routine)

16 Page fault in MICR stacker select or page fault appendage routine

17 Main task issued a CANCEL macro with subtask still attached

18 Main task issued a DUMP macro with subtask still attached

19 Operator replied cancel as the result of an I/O error message

1A An I/O error has occurred (see interrupt status information)

1B Channel failure

1C CANCEL ALL macro issued in another task

10 Main task terminated with subtask still attached

1E A DEQ macro was issued for a resource but tasks previously requesting a resource cannot be found
because their save areas (containing register 0) were modified

1F CPU failure

20 A program check occurred

21 An invalid SVC was issued by the problem program or macro

22 Phase not found in the core image library

23 CANCEL macro issued

24 Canceled due to an operator request

25 Invalid virtual storage address given <outside partition)

26 SYSxxx not assigned (unassigned LUB code)

27 Undefined logical unit

28 Reserved

29 Reserved

2A I/O error on page data set

2B I/O error during fetch from private core image library

2C Page fault appendage routine passed illegal parameter to supervisor

20 Program cannot be executed/restarted due to a fai1ing storage block

2E Invalid resource request (possible deadlock)

2F More than 255 PFIX requests for one page

30 Read past a / & statement

31 I/O error queue overflow during system error recovery procedure

32 Invalid DASD address

33 No long seek on a DASD

35 Job control open failure

36 Page fault in I/O appendage routine

38 Wrong privately translated CCW

39 Reserved

40 ACF/VTAME error, invalid condition

41 ACF/VTAM~ error, invalid condition

42 Invalid extent information violates DASD file protection

FF Unrecognized cancel code

Figure 5-6. Abnormal termination codes.

Chapter 5: System Control Macros 5 - 23

issuing the STXIT macro instruction is a ACF IVf AME
application program, the interruption exit will not
be taken while ACF /VT AME is processing any request
on behalf of the application program. The exit will
be taken when ACF /VT AME has completed the
program's request.

An interval timer interruption is ignored if no exit
linkage has been established.

If an interval timer interrupt occurs while an in­
terval timer exit routine is still processing, the han­
dling of the interrupt is delayed. When processing
ends with EXIT IT, the IT exit routine is entered again
to process the new IT interrupt. (This can enly ec=
cur if a short time interval was issued in your exit
routine).

oc: An operator communication interruption rou­
tine is entered when you press the request key on the
console and type the MSG command. In case of mul­
titasking, only the main task can process this condi­
tion.

An operator communication interruption is ig­
nored if no exit linkage has been established.

pc: A program check interruption routine is en­
tered when a program check occurs. If a program
check occurs in a routine being executed from the
logical transient area, the job containing the routine
is abnormally terminated.

A program check interruption routine can be
shared by more than one task within a partition. To
accomplish this, issue the STXIT macro in each sub­
task with the same routine address but with separate
save areas. To successfully share the same PC rou­
tine, the routine must be reenterable, that is, it must
be capable of being used concurrently by two or
more tasks. (The specified exit is not taken if the
program check occurs while ACF IVT AME is process­
ing a request issued by the program.)

If a program check condition occurs in a main
task without exit linkage, processing in the partition
is terminated. However, if this same condition oc­
curs in a subtask, only the subtask is terminated.

TT: Linkage to a task timer interruption routine
can be established only ifTTIME=partition-ID was
specified in the FOPT macro for supervisor assembly.

A task timer interruption routine is entered when
the time interval specified in the SETT macro has
elapsed. The STXIT (and EXIT) TT macro can be
issued only by the main task of the partition owning
the task timer. Ifit is issued by a program running
in a partition not owning the task timer, the program

5 - 24 DOS/VSE Macro Reference

is canceled and an error message indicating illegal
svc is printed.

A task timer interruption is ignored if no exit
linkage has been established. A task timer interrupt
is ignored if it occurs while a task timer exit routine
is still processing. (This can happen only if a short
time interval was issued in your exit routine).

rtnaddr: Entry point address of the routine that
processes the condition described in the first ope­
rand. Your exit routine may be located anywhere in
the program.

savearea: Address of a 72-byte area in which the
supervisor stores the old interrupt status information
and general registers 0 through 15, in that order.
Your program must have a separate save area for
each routine that is included.

OPTION= {DUMPINODUMP}: This operand
can be used only when setting up linkage (STXIT AB)
to an abnormal termination exit routine. It deter­
mines whether termination messages and a dump
will be issued upon entry to the routine.

If the OPTION operand is omitted or if
OPTION=DUMP is specified, termination messages
are issued upon enry to the abnormal termination
routine. In addition, a partition dump is produced
unless the job control option NO DUMP is active.

If OPTION=NODUMP is specified, neither a termi­
nation message nor a dump is produced. However,
if the abnormal termination routine terminates ab­
normally, termination messages and the dump are
given regardless of the OPTION specification in the
STXIT macro.

If your routine ends with a DUMP macro and the
STXIT macro was specified without
OPTION=NODUMP, you will obtain two dumps.

Figure 5-7 shows what happens when one of the
five conditions occurs while an STXIT routine is be­
ing processed within a particular partition.

TECBMacro
Name Operation Operand

[name] TECB

The TECB macro generates a timer event control
block which can be referred to by the symbol you
specify in the name field. This block contains an
event bit that indicates when the time interval speci­
fied in SETIME has elapsed. The format of this block
is as follows:

Byte Purpose of bits
0-1 Reserved
2 0: If 0 =

If 1 =

1-7: Reserved
3 Reserved

TESTTMacro

time specified in SETIME has not
elapsed.
time specified in SETIME has
elapsed.

Name Operation Operand

[name] TESTT [CANCEL]

The TESTT macro can be used only if
TTIME=partition ID was specified in the FOPT gener­
ation macro for supervisor assembly.

The TESTT macro is used to test the amount of
time that has elapsed from a task timer interval set
by an associated SETT. The TESTT macro returns the
time remaining in the interval, expressed in hun­
dredths of milliseconds in binary, in register O.

If CANCEL is specified, the remaining time of the
interval is canceled, and the task timer exit routine is

Routine being Condition Occurring

Processed AB IT OC PC TT

AB C 0 I C 0

IT S E H H H

OC S H I H H

PC S H H T H

TT S H H H I

C Job canceled immediately without entering AB routine
again.

o Interrupt is delayed and the TT or IT exit routine is en­
tered after the EXIT AB macro is issued. If no EXIT AB is
issued, the interrupt is ignored.

E Handling of new timer interrupt delayed until execution
of EXIT IT for original interrupt.

H Condition honored. When processing of new routine
completes, control returns to interrupted routine.

I Condition ignored.

S Execution of the routine being processed is suspended,
and control transfers to the AB routine.

T Job abnormally terminated. If AB routine is present, its
exit is taken. Otherwise, a system abnormal termination
occurs.

Notes:

1. If an operator communication interruption routine or a
program check interruption routine is in process when a
timer interrupt occurs, your timer routine will be processed;
when it completes, control returns to interrupted routine.

2. If a task is using a logical transient routine when a timer
interrupt occurs, your timer routine is not entered until the
logical transient routine is released.

Figure 5-7. Effect of an AB, IT, OC, PC, or TT interrupt while
an STXIT routine is being executed.

not entered. If the macro is issued without an ope­
rand, the macro must not contain a comment unless
the comment begins with a comma.

The TESTT macro can be issued only by the main
task of the partition owning the task timer. If it is
issued by a program running in a partition not own­
ing the task timer, the program is canceled and an
error message indicating illegal svc is printed.

TPINMacro
Name Operation Operand

[name] TPIN

The TPIN macro is available primarily for the tele­
communication applications that require immediate
system response. The macro causes one or more
partitions (other than the one issuing the macro) to
be deactivated. The number of partitions that can
be deactivated is specified in the TPBAL command.
The partitions to be deactivated are the ones with
the lowest priorities. This request is ignored in each
of the following cases:

• The operator has not made TP balancing active
by means of the TPBAL command.

• None of the partitions specified in the TPBAL
command contains a program running in virtu­
almode.

• The only partition that could be affected by TP
balancing is the partition that issued the TPIN
request.

• There is no paging in the system.

The TPIN macro must always be used in conjunc­
tion with the TPOUT macro. The operand field is
ignored.

TPO UT Macro
Name Operation Operand

[name] TPOUT

The TPOUT macro causes DOS/VSE to reactivate par­
titions that had been deactivated by the TPIN macro.

Failure to issue the TPOUT macro can cause con­
siderable and unnecessary performance degradation
in the batch partition(s). The operand field is ig­
nored.

If your supervisor was generated with VM=YES (in
the SUPVR generation macro), execution of the ma­
cro results in a null operation.

Chapter 5: System Control Macros 5 - 25

TTIMER Macro
N arne Operation Operand

[name] TTl MER [CANCEL]

The TTIMER macro is used to test how much time
has elapsed of an interval which was set in the same
task by the associated SETIME macro. The TTIMER
macro returns the time remaining of the interval,
expressed in hundredths of seconds in binary, in
register o.

If CANCEL is specified, the time interval set in
that task is canceied. As a resuit of the TTIMER
CANCEL macro, the interval timer interruption rou­
tine of the task (to which linkage may have been
extablished by an STXIT IT macro) does not receive
control. If the associated SETIME macro specified
the same name of a TECB, that TECB'S event bit is set
on. If the macro is issued without an operand, the
macro must not contain a comment unless the com­
ment begins with a comma.

5 - 26 DOS/VSE Macro Reference

ViR TAD Macro
Name Operation Operand

[name] VIRTAD {addressl(I)}

In S/370 mode, the VIRTAD macro returns the virtual
address corresponding to a specified real address.

addressl(l): Is the real storage address to be con­
verted. It can be given as a symbol or in register
notation.

In ECPS:VSE mode, only a virtual address can be
specified as input. The macro returns that same
address. Register 0 returns the virtual address only
if:

• for S/370 mode, the specified real address points
to a page frame that contains a PFIxed page,

• for ECPS: VSE mode, the specified virtual address
points to a PFIxed page.

Otherwise register 0 contains o. Thus, the macro can
be used to test if a page is pFIxed.

Note: The pages of a program running in real mode are consid­
ered to be fixed.

WAIT Macro
Name Operation Operand

[name] WAIT {echnamel(l)}

With the WAIT macro a task sets itself into the wait
state until the specified event control block (ECB) is
posted (bit 0 of byte 2 turned on). Each task of the
system can wait on any ECB within the same parti­
tion. Do not use the WAIT macro for waiting on a
telecommunication ECB, an RCB, or a CCB other than
one that is associated with an I/O operation started
in the same task.

When aWAIT macro is processed in a multipro­
gramming or multitasking environment, control is
given to the supervisor, which makes the CPU avail­
able to another task in the same or another partition.

One example of an ECB to be posted is the timer
event control block (TECB) specified in the SETIME
macro. The task issuing the WAIT remains in the
wait state until the timer interval has elapsed (event
bit in the TECB turned on).

WAITMMacro
N arne Operation Operand

[name] WAITM {ecb l,ecb2, ... \listname\(I)}

The WAITM macro enables your program or task to
wait for one of a number of events to occur. Control
returns to the task when at least one of the ECBs
specified in the W AITM macro is posted.

The operand provides the addresses of the ECBS
to be waited upon. The names of ecb 1, ecb2 ... are
assumed when at least two operands are supplied. A
maximum of 16 names can be coded. If one operand
is supplied, it is assumed to be the name (listname)
of a list of consecutive full-word addresses that point
to the ECBS to be waited upon. The first byte follow­
ing the last address in the list must be nonzero to
indicate the end of the list.

When control returns to a waiting task, register 1
points to the posted ECB (byte 2, bit 0 set on). Any
fullword can be used as ECB if bit 0 of byte 2 of that
word indicates a completed event. Examples of
these blocks are CCBS and TECBS. However, a task
never regains control if it is waiting for a CCB to be
posted by another task's I/O completion. A MICR
CCB gets posted only when the device stops, not
when a record is read. Furthermore, telecommuni­
cation ECBs and all RCBs must not be waited for

. because their format does not satisfy aWAIT or a
WAITM (that is, bit 0 of byte 2 would not be posted).

XECBTAB Macro
Name Operation Operand

[name] XECBT AB TYPE= {DEFINE\DELETE\
CHECK\RESET\DELETALL}

,XECB=xecbname
[,XECBADR= {xecbfield\

(S,xecbfield)\(r I)}]

[,ACCESS= {XPOST\XW AIT}]
[,MFG= {area\(S,area)\(r2)}]

You can use the XECBTAB macro only ifxECB=YES
was specified in the FOPT generation macro for su­
pervisor assembly. The XECBTAB macro can be used
(1) to define, for the specified cross-partition event
control block (XECB), an entry in the supervisor's
XECB table, (2) to delete such an entry, (3) to check
for the presence of an entry, or (4) to reset an entry.

An XECB for which an entry has been defined to the
DOS/VSE supervisor can be referred to by XPOST and
xw AIT macros; an XECB can be referred to also by a
WAIT or W AITM macro if the task issuing the macro
has previously dermed the XECB (with
ACCESS=XW AIT).

TYPE= {DEFINEIDELETEICHECKI
RESETIDELETALL}

The operand specifies the type of operation to be
performed:

DEFINE causes a new XECB table entry to be de­
fined to the supervisor.

DELETE causes an entry to be deleted from the
supervisor's XECB table. TYPE=DELETE can be speci­
fied only for an XECB for which an entry has been
defined previously in the same program.

CHECK causes DOS/VSE to check whether or not
an entry for a specific XECB has been defined al­
ready. If that entry is present, specifying CHECK
causes the address of both the XECB and the associ­
ated XECB table entry to be returned.

RESET causes DOS/VSE to clear the information in
the supervisor XECB table that indicates which task
communicates with the program having defined the
XECB. TYPE=RESET can be specified only for an
XECB for which an entry has been previously defined
in the same program.

After RESET, any task can attempt to establish a
new connection with the owner. With
ACCESS=XPOST, however, if the task currently con­
nected to the XECB is issuing an xw AIT macro (at the
time of RESET), this task will probably establish con­
nection again, nullifying the RESET operation .

DELETALL performs three actions:

• Causes all entries in the XECB table that were
defined previously by the issuing task to be de­
leted.

• Breaks the communication between any XECB
owner and the issuing task (that is, clears the
information in the XECB table that indicates
that the issuing task communicates with the
XECB owner).

• Post all tasks as ready-to-run that are waiting
for an XPOST by the issuing task. If these tasks
are xw AITing on the XECB, they will get a re­
turn code of X'08'.

Note: If TYPE=DELETALL is specified, the XECB and AC­
CESS operands must not be specified. XECBT AB with
TYPE=DELETALL specified does not provide a return code; all
registers remain unchanged.

XECB=xecbname: specifies the name of the XECB.
If the XECBADR operand is not present, xecbname is

Chapter 5: System Control Macros 5 - 27

the symbolic address of the 4-byte (or larger) XECB

field. If, however, XECBADR is specified, xecbname
is the name by which the control block is known
between partitions; the symbolic address of the con­
trol block field is given by XECBADR.

The XECB field must be defined in your program,
except when TYPE=CHECK is specified: in that case,
the XECB field may be defined in another program.

XECBADR= {xecbfieldl(S,xecbfield)l(rl)}:
XECBADR is used only if TYPE=DEFINE is specified.
It provides the symbolic address of the 4-byte (or
larger) field that is to be used as XECB.

ACCESS= {XPOSTIXW AIT}: This operand can
be used together with TYPE=DEFINE to specify
whether the program will be allowed to post the
XECB or wait for another program to do the posting.

XPOST is assumed if the operand is omitted. It
specifies that the program will be allowed to post the
XECB. Specifying XPOST implies that only one other
active task is allowed to issue an xw AIT macro
against the XECB.

xw AIT specifies that the program will be allowed
to wait for one other task to post the XECB.

MFG= {areal(S,area)l(r2)}: The MFG operand is
req uired if the program that issues the XECBT AB

macro is to be reenterable. The operand specifies
the address of a 64-byte storage area, that is, storage
which your program obtains by a GETVIS macro.
This area is needed for use by the system during
execution of the macro.

The MFG operand is only useful in conjunction
with XECBADDR coded in either of the two notations
(s,xecbfield) or (rl).

Feedback Information

Figure 5-8 shows the return codes that are supplied
by DOS/VSE in register 15. The illustration also indi­
cates whether or not DOS/VSE returns the addresses
of the pertinent XECB and the associated table entry
in registers 1 and 14, respectively.

5 - 28 DOS/VSE Macro Reference

I DEFINE
Ix'OO'
IXECB

IX'04'
IXECB named

Ix'OS' ~
I The XECB ta- I

named is is already in the ble is full * *
stored in the table **
table *

DELETE XECB XECB named The issuing
I named is re- I was not found program did
moved from ** not define the
the table ** XECB **

CHECK XECB XECB named N/A
named was was not found
found in the **
table *

RESET XECB XECB named The issuing
named com- was not found program did
munication ** not define the
bytes cleared XECB **
**

* Register 1 contains the address of the XECB and register
14 contains the address of the table entry.

** Registers I and 14 are set to zero.

Figure 5-8. XECBT AB feedback information.

XPOSTMacro
Name Operation

(name] XPOST

Operand

XECB= {xecbnamej(I)},
POINTRG=(l4)

You can use the XPOST macro only if XECB= YES was
specified in the FOPT generation macro for supervi­
sor assembly.

The XPOST macro provides for cross-partition
communication by posting the specified XECB (the
macro sets bit 0 of byte 2 to 1). An XPOST macro
issued against an XECB causes the task waiting for
this XECB to be removed from the wait state (the
waiting task may have issued an XWAIT, WAIT or
W AITM with a previously defined XECB). This task
may have been activated in the same or in another
partition.

If the XPOST macro is used in a main-line loop,
the macro should be preceded by a test which en­
sures that the other partition's task waiting for the
event that is being posted must receive control and
execute the function for which this event is a prere­
quisite.

To perform this test, a second XECB needs to be
defined. This XECB allows the originally waiting
task in its main-line loop to post completion of its
function as an event for which the originally posting
task must wait.

Resetting bit 0 of byte 2 of the XECB is a user re­
sponsibility.

Once a task has issued an XPOST macro for an
XECB (with ACCESS=XWAIT), no other task can issue.
an XPOST for this XECB, until the connection is end­
ed.

XECB= {xecbnamel(l)}: specifies the name of the
XECB to be posted. The name you specify must be
the same as the one used to define the XECB. If reg­
ister notation is used, the specified register must
point to an 8-byte character field that contains the
XECB name left-justified and padded with blanks.
Do not specify 14 or 15 if you choose to use ordinary
register notation.

POINTRG=(14): specifies the register that points
to the XECB table entry associated with the named
XECB. Do not specify register 1 or 15 if you choose
to use ordinary register notation.

To obtain the address of the associated XECB ta­
ble entry, issue earlier in the program an XECBTAB

macro for the same XECB and with TYPE=CHECK or
TYPE=DEFINE specified. When DOSjVSE executes
the XECBT AB macro, the system returns, in register
14, the address of the pertinent XECB table entry.
Figure 5-9, which shows a coding example for the
use of the XWAIT macro, applies to the XPOST macro
accordingly.

Note that if the POINTRG register contains 0 (or
any invalid value), all entries in the XECB table are
searched to determine the correct address; no error is
indicated.

Return Codes
When DOSjVSE returns control to the issuing task,
register 15 contains one of the following return
codes:

Return Code

X'OO'

X'04'

X'OD'

X'OE'

Meaning

Successful completion. The named XECB
has been posted.

The named XECB has no associated table
entry in the XECB table.

The XECB referred to in the XPOST ma­
cro was defined with ACCESS=XPOST
specified in the XECBT AB macro, but the
task that issued the XPOST macro does
not own this XECB.

The XECB referred to in the XPOST ma­
cro was defined with ACCESS = XWAIT
specified in the XECBT AB macro and ei­
ther (1) the task that issued the XPOST
macro also defined the XECB or (2) the
XECB has been posted previously during
the same execution by another task.

Note: Following the execution of an XPOST macro. register 1
and 14 are set to zero.

XWAITMacro
Name Operation Operand

[name] XWAIT XECB={xecbnamel(l)},

POINTRG=(14)

You can use the xw AIT macro only if XECB= YES was
specified in the FOPT macro for supervisor assembly.

The xw AIT macro enables the issuing task to wait
for an XECB to be posted by another task that is exe­
cuting in the same or in another partition. Control
returns to the issuing task when the XECB is posted
or if DOSjVSE detects an error condition.

Once a task has issued an xw AIT macro for an
XECB (with ACCESS=XPOST) to be posted, no other
task can issue an xw AIT for this XECB, until the con­
nection is ended.

XECB= {xecbnameI (l)} : specifies the name of the
XECB, which may be defined in the same or another
program. The name you specify must be the same as
the one used to define the XECB. If register notation
is used, the specified register must point to an 8-byte
field that contains the name of the XECB left-
justified and padded with blanks. Do not specify
register 14 or 15 if you choose to use ordinary regis­
ter notation.

POINTRG=(14): specifies the register that points
to the XECB table entry associated with the named
XECB. Do not specify register 1 'or 15 if you choose
to use ordinary register notation.

To obtain the address of the associated XECB ta­
ble entry, issue earlier in the program an XECBT AB

macro for the same XECB and with the TYPE=CHECK

or TYPE=DEFINE specified. When DOSjVSE executes
the XECBT AB macro, the system returns, in register
14, the address of the pertinent XECB table entry.
Figure 5-9 shows a coding example for the use of the
xw AIT macro; in that example, the required contin­
uation character is not shown. The example assumes
that the XECB was defined by a program executing
in another partition by (source) instructions as fol­
lows:

MYECB

XECBTAB

DC

TYPE=DEFINE,

XECB=MYECB

F'O'

Chapter 5: System Control Macros 5 - 29

XECBTAB TYPE=CHECK,
XECB=MYECB

LTR 15,15
BNZ ERROR
LA 1 ,XECBNAME
XWAIT XECB=(1),

POINTRG=(14)

XECBNAME DC CL8'MYECB

Figure 5-9. Coding example showing the use ofXECBTAB with
TYPE=CHECK and of XW AlT.

Note that if the POINTRG register contains 0 (or
any invalid value), all XECBs are searched to deter­
mine the correct address; no error is indicated.

5 - 30 DOS/VSE Macro Reference

Return Codes

When DOS/VSE returns control to the issuing task,
register 15 contains one of the following return
codes:
Return code

X'OO'

X'04'

X'08'

X'OO'

X'OE'

Meaning

Successful completion. The named XECB
has been posted.

The named XECB has no associated tab!e
entry in the XECB table.

The other task using this XECB has bro­
ken communication without issuing an
XPOST.

The XECB referred to in the XWAIT macro
was defined with ACCESS=XWAIT speci­
fied in the XECBTAB macro, but the task
that issued the XWAIT macro does not
own this XECB.

The XECB referred to in the XWAIT macro
was defined with ACCESS=XPOST spec­
ified in the XECBT AB macro and either
(1) the task that issued the XWAIT macro
also defined the XECB or (2) the task did
not define the XECB, but another task is
already waiting for the XECB to be
posted.

Note: Following the execution of an XW AIT macro, registers 1
and 14 are set to zero.

Chapter 5: System Control Macros 5 - 31

DOS/VSE
Macro Reference
GC24-5140-0

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may· be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for assistance
in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

Does the publication meet your needs?

Did you find the material:

Easy to read and understand?

Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced -knowledge of the subject?

To learn about operating procedures?

Your comments:

Yes

o

o
o
o
o
o

o
o
o

No

o

o
o
o
o
o

As an instructor in class?

As a student in class?

As a reference manual?

If you would like a reply, please supply your name and address on the reverse side of
this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

o
o
o

READER'S
COMMENT
FORM

GC24-5140-0

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and Tape I
... ,

II " I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

... 1

Fold Fold

If you would like a reply, please print:

Your Name _____________________________ _

Company Name ________________ Department _______ _

Street Address _____________________ _
City ___ _

State _____________ Zip Code ____________ _

IBM Branch Office serving you _____________________________________ _ -------- ---------.. ------ - --------------- _ .. -
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains. N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

o
o
(J)

...........

<
(J)
m
~
!l)
(")
~ o
JJ
CD -CD .., ,
CD
z
o
(J)
c.v
--..r
o
I

c.v
8

GC24-5140-0

--...- -
-~--- ~--- -.. -...-.-- - -------_ -
-~-.-®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. V. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

CJ
o
C/)

............

<
C/)
m
s::
III
(') ..,
o
:0
CD -CD ..,
CD

~
CD
z
o
C/)
w
-..,J
o
I

W
8
""0
~.
:J -CD
c..
:J

C
en
):.

(j)
()
I\)

~
I

01
~

~
o
I

o

	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	replyA
	replyB
	xBack

