
GC33-5371-7
File No. 5370/54300-34

DOSNSE
Systems System Management Guide

--- ----- -=- -=-= -= .=-- ---=~~ - - - ---
~~-===----- ----_.-

Eighth Edition (February, 1979)

This is a major revision of, and obsoletes, GC33-5371-6 and TNL GN33-9227. This edition
applies to the IBM Disk Operating System/Virtual Storage Extended, DOS/VSE, and to all sub­
sequent versions and releases until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the information herein; before usmg this pUblication in
connection with operation of IBM systems, consult the latest IBM System/370
Bibliography, GC~I, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.
A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Laboratory, Publications Department,
Schoenaicher Strasse 220, 0-7030 Boeblingen, Germany. IBM may use or distribute any
of the information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975,
1976, 1977, 1979

Summary of Amendments

Edition GC33-5371-7 documents:

• New processor support
4331 and 4341
3031

• New device support
3310 and 3370 Direct Access Storage Devices
PRTI printers (3289 Model 4 and 3203-5)
5424 MFCU

• Improved installation aid
Maintain System History Program (MSHP)

• Improved supervisor functions
Pageable supervisor options
Deletion of obsolete supervisor options
Improved method for loading SV A

• Extension of label information area

• Common EREP for DOS/VSE and OS/VS

• VSE/ Advanced Functions
Asynchronous operator communication
Up to seven partitions
Partition balancing
Library device independence
Implicit linkage editor invocation
Switchable fast CCW translation
Fast B- and C-transient fetch
User label area definition by means of the DLA command
User job-to-job communication by means of the JOBCOM macro
Automated system initialization
Removal of LBL TYP statement
Improved access control
Alternate dump files
Use of up to 15 extents for page data set

With DOS/VSE the following programming support has been removed:

• QT AM support

• Support of the System/370 Model 20 Emulator on System/370

• Support of the IBM 2321 Data Cell

• Support of the IBM 2495 Tape Cartridge Reader

This manual has been completely reorganized and rewritten. Changes are
therefore not marked by vertical bars in the left margin.

TIllS MANUAL ..•

. .. is a guide to using the functions available with the system control
programming (SCP) support of the mM Disk Operating System/Virtual
Storage Extended (DOS/VSE) in its specified operating environment: with
VSE/ Advanced Functions installed. In addition, the manual provides guide
information for using significantly improved or extended functions that have
been of VSE/ Advanced Functions. Such information : ! ..• ·.1..••.............• ;•.......•...•••........•...... : •.. .• Unless specifically

stated, all .. iDiormatIon . applies to ·bOth the specified environment
and the SCP only (without VSE/ Advanced Functions) environment.

Note: In this publication, DOS/VSE refers to the specified operating
environment.

SCP support of OOS/VSE is discussed on a conceptual and functional
level. System management refers not only to the way DOS/VSE is
organized, but also to the way the user can efficiently manage the SCP
facilities at his disposal. This manual, therefore, does more than describe
the functions and interaction of the control programs that constitute the
SCP. It also describes how you - as a system planner, systems programmer,
or applications programmer - can use DOS/VSE to your best advantage.

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to DOS/VSE.

This book is not a guide to data management; instead, a separate
manual is provided for this purpose, called the DOS/VSE Data
Management Concepts.

After reading this manual and the above mentioned manuals, you
should be able to turn directly to the DOS/VSE library of reference
manuals in order to work with your operating system. A reference manual
is organized so that you can easily retrieve specific information on the
formats of the control statements, macro instructions, labels, and messages,
which you deal with daily.

This manual is divided into four chapters:

Chapter, 1: DOS/VSE Overview provides conceptual information on
multiprogramming, virtual storage and multitasking.

Chapter 2: Planning the System gives planning information for system
generation.

Chapter 3: Using the System provides information on how to use the
system, in particular on the use of the IPL, job control, linkage editor,
and librarian programs.

Chapter 4: Using the FaciHties and Options of DOS/VSE provides guidance
information on how to use facilities and options of DOS/VSE; for
example, writing IPL and job control user exit routines, checkpointing
and restarting a program, or designing programs for virtual mode
execution.

For reference purposes the organization of the system residence disk file
(SYSRES) is shown in Appendix A.

The following mM manuals are referred to in the text of this manual:

DOS/VSE Data Management Concepts GC24-5138

DOS/VSE Macro User's Guide GC24-5139

DOS/VSE Macros Reference GC24-5140

Guide to the DOS/VSE Assembler GC33-4024

DOS/VSE mM 3800 Printing Subsystem Programmer's Guide GC26-39oo

Introduction to DOS/VSE .. GC33-5370

DOS/VSE Tape Labels GC33-5374

DOS/VSE DASD Labels GC33-5375

DOS/VSE System Control Statements GC33-5376

DOS/VSE System Generation GC33-5377

OOS/VSE Operating Procedures. .. GC33-5378

OOS/VSE Messages .. GC33-5379

DOS/VSE Serviceability Aids and Debugging Procedures GC33-5380

DOS/VSE System Utilities. .. GC33-5381

DOS/VSE OL TEP .. GC33-5383

DOS/VSE Maintain System History Program (MSHP) User's Guide GC33-6060

Data Security under DOS/VSE* GC33-6077

* available 2nd Quarter 1979

Table of Contents

Chapter 1: DOS/VSE Overview 1.1

Multiprogramming .. 1.1
Partitions .. 1.2

Partition Priorities 1. 3
Storage Protection 1. 3

Device Considerations Under Multiprogramming 1.3
Virtual Storage .. 1.4

Virtual Storage in DOS/VSE 1.5
Storage Management 1.8
Relating Virtual Storage to Locations in Processor Storage 1.9

Virtual Storage Implementation under DOS/VSE 1.13
Division of Address Space 1.14
Processor Storage Utilization ' . 1.17
Executing Programs in VIrtual and Real Mode 1.17
Storage Allocation 1.18

Multitasking .. 1.25
Two Types of Multitasking 1.26

Cross-Partition Event Control . 1.26

Chapter 2: Planning the System 2.1

System Generation Procedure . 2.1
Handling the Distribution System , .. 2.1

Planning the Libraries ... 2.2
Purpose and Contents of the Libraries . 2.3

Core Image Library 2.3
Re1ocatab1e Library 2.4
Source Statement Library 2.4
Procedure Library 2.5
Private Libraries .. 2.5

Choosing the Libraries for an Installation 2.6
Re1ocatab1e and Source Statement Libraries . 2.6
Procedure Library 2.7

Determining the Location of the Libraries 2.7
Planning the Size and Contents of the Libraries2.11

System and Workfiles ... 2.12
Page Data Set ... 2.12
Recorder File .2.13
Hard Copy File ... 2.13

I~:.~~t:r~i: __ l(:~ill:[ii*~~ililill:~i!ijl[:;i:~iiliiii:[*~i.lill.ij:iiil*iiij::~iliii.i'rilil¥l:i!
Workfiles ... 2.14

Label Information Area .. 2.15
Planning for Compiling in More Than One Partition 2.16

Tailoring the Supervisor .2.17
Storage Management Options 2.18

Virtual Storage Size2.18
The Shared Virtual Area 2.18
Defining the Number of Pa..."titions 2.21
Defining Partition Priorities .2.22
Defining the Page Data Set 2.23
Improving the Paging Mechanism 2.24

Library Options .. 2.24
Extended Support for the Procedure Library 2.24
Second Level Directory for Core Image Libraries2.25

Telecommunication .. 2.25
BT AM-ES Support 2.26

Job Accounting ... 2.28
Timer Services ... 2.28

Time-of-Day Clock .. 2.29

Interval Timer .. 2.29
Task Timer .. 2.29

Interval Timer Exit .2.31
Program Check Exit .2.31
Abnormal Termination Exit 2.32
Operator Communications Exit 2.32
Task Timer Exit ... 2.32
Page Fault Handling Overlap Exit 2.33

Disk Options .. 2.33
System Files on Disk or Diskette 2.33
DASD File Protection 2.34
Track Hold Option 2.34
Rotational Position Sensing 2.35

I/O Options ... 2.38
Channel Queue ... 2.38
Supervisor Buffers for I/O Processing 2.39
Error Queue ... 2.41

Reliability / Availability/Serviceability2.41
Recovery Management Support 2.42

Defining the System Configuration2.43
Central Processing Unit 2.43
Display Operator Console Support 2.44
I/O Devices .. 2.44
Emulators " 2.45

Chapter 3: Using the System . 3.1

Starting the System ... 3.1
Initial Program Loading (IPL) 3.2

Establishing the Communications Device for IPL 3.3
IPL Commands ... 3.3
Automatic Functions of IPL 3.7
IPL Communication Device List 3.7

Building the SDL and Loading the SVA 3.9
Automatic SV A Loading . 3.9
User Options for the SVA .. 3.9

Creating the System Recorder File 3.11
Creating the Hard Copy File 3.14
User-Defined Processing after IPL 3.14
Entering RDE Data ... 3.14
Allocating Address Space to the Partitions . 3.15
AllOC;ltiIlg Processor Storage to the Partitions 3.16
Im1tlating tiolreg:rOUlnd Partitions 3.17

LJ"'HUUlf<, a Job ... 3.25
Job Streams ., ... 3.28
Relating Files to your Program 3.29

Symbolic I/O Assignment 3.30
Logical Units ... 3.32
Types of Device Assignments 3.34
Device Assignments in a Multiprogramming System 3.35
Additional Assignment Considerations 3.38

Processing of File Labels 3.39
Label Information for Files on Diskette Devices 3.43
Label Information for Files on Direct Access Devices 3.44
Label Information for Files on Magnetic Tape 3.47
Storing Label Information 3.48

Tape and Print Operations 3.51
Controlling Magnetic Tape 3.51
Controlling Printed Output 3.51

Executing a Program ... 3.53
Assembling/Compiling, Link-Editing, and Executing a Program 3.53
Defining Options for Program Execution 3.58
Communicating with Problem Programs via Job Control 3.59

Executing in Virtual or Real Mode 3.59
Dynamic Allocation of Storage 3.61

System Files on Tape, Disk or Diskette 3.63
System Files on Tape 3.64
System Files on Disk 3.65
System Files on Diskette 3.68
Interrupting SYSIN Job Streams on Disk, Diskette, or Tape 3.69
Record Formats of System Files 3.70

Using Cataloged Procedures 3.70
Retrieving Cataloged Procedures 3.70

Temporarily Modifying Cataloged Procedures .3.71
Several Job Steps in one Procedure 3.74
Modifying Multistep Procedures . 3.75
SYSIPT Data in Cataloged Procedures 3.76
Partition-Related Cataloged Procedures 3.77
Use of Cataloged Procedures by the Operator 3.78

Linking Programs .. 3.79
Structure of a Program 3.80

Source Modules ... 3.80
Object Modules ... 3.81
Program Phases ... 3.82

The Three Basic Applications of the Linkage Editor 3.82
Cataloging Phases into the Core Image Library 3.83
Link-Edit and Execute 3.83
Assemble (or Compile), Link-Edit, and Execute 3.84

Processing Requirements for the Linkage Editor 3.86
Symbolic Units Required 3.86

Preparing Input for the Linkage Editor 3.87
Assigning a Name to a Program Phase 3.87
Defining a Load Address for a Phase 3.89
Building Phases from Object Modules with the INCLUDE Statement 3.91
Linkage Editor Storage Requirements 3.91

The AUTOLINK Feature 3.92
Reserving Storage for Label Processing 3.93
Specifying Linkage Editor Aids for Problem Determination or Prevention 3.94

Clearing the Unused Portion of the Core Image Library 3.94
Obtaining a Storage Map 3.94
Terminating an Erroneous Job 3.95

Designing an Overlay Program 3.95
Relating Control Sections to Phases 3.95
Using FETCH and LOAD Macros 3.97

Examples of Linkage Editor Applications 3.97
Catalog to the System Core Image Library Example 3.98
Catalog to a Private Core Image Library Example 3.100
Link-Edit and Execute Example 3.101
Compile and Execute Example 3.103

Using the Libraries .. 3.105
The Librarian Programs " . " ... 3.106

Maintaining the Libraries 3.108
Organizing the Libraries 3.122
Using the Service Functions of the Librarian 3.128

Creating and Working with Private Libraries 3.132
Private Library Creation 3.132
Using Private Libraries 3.135

Chapter 4: Using the Facilities and Options of DOS/VSE 4.1

User-Written Program-Exit Routines 4.1
Writing an IPL User Exit Routine . 4.1
Writing a Job Control User Exit Routine . 4.3

Writing a Job Accounting Interface Routine 4.7
Job Accounting Information . 4.7
Programming Considerations 4.8
Tailoring the Program . 4.9

Checkpointing "Facility ... 4.13
Restarting a Program from a Checkpoint4.13

DASD Switching under DOS/VSE 4.14
Designing Programs for Virtual Mode Execution4.16

Programming Hints for Reducing Page Faults4.16
General Hints for Reducing the Working Set4.17

Using Virtual Storage Macros4.19
Fixing Pages in Processor Storage .4.19
Indicating the Execution Mode of a Program 4.21

Influencing the Paging Mechanism4.21
Balancing Telecommunication Activity4.21

Coding for the Shared Virtual Area 4.22

Appendix A: System Layout on Disk A.I

IPL Records ... A.I
System Volume Label .. A.I
User Volume Label .. A.I
System Directory ... A.I
Library Directories and Libraries A.I
Label Information Area A.I

Glossary. .. 5.1

Index 6.1

List of Figures

Chapter 1: DOS/VSE Overview
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13

Figure 1-14
Figure 1-15
Figure 1-16
Figure 1-17

The Partitions of a DOS/VSE .. 1.2
Assigning Different Physical Devices to the Same Logical Units 1.4
Virtual Storage and Processor Storage 1.6
Storage Management Concept - DOS/VSE 1.7
Running a Program in Virtual Storage 1.9
Loading Program Pages into Page Frames 1.11
Storing Pages on the Page Data Set (pageouts) 1.12
Managing the Page Pool 1.13
Supervisor Area in Virtual Storage Address Space 1.14
Partition Distribution in a Four Partition System 1.15
Shared Virtual Area in a Four Partition System 1.16
Supervisor Routines - Fixed and Pageable 1.17
Address Space for 200K Bytes of Virtual Storage and 512K Bytes
of Processor Storage 1.19
Supervisor Location in Both ECPS:VSE and 370 Mode 1.19
A 4-Partition System in ECPS:VSEand316 Mode 1.21
Executing in Real Mode 1.23
A 4-Partition System in ECPS:VSE and 370 Mode with the
GETVIS Areas 1.24

Chapter 2: Planning the System
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

Figure 2-8

The Relative Location of the Four System Libraries 2.8
Alternative Locations of the Libraries 2.9
Example of Library Organization2.10
Layout of the Shared Virtual Area .2.19
System Directory List .2.20
User Program Running in Virtual Storage without RPS Support 2.37
User Program Running in Virtual Storage using RPS Versions of
Logic Module and Channel Program 2.37
Channel Queue Table 2.39

Chapter 3: Using the System

Figure 3-3 Example for the Creation of the SYSREC File and for Loading

Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13

Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28

User Phases in the SV A 3.13

.... , , , , , , ': W ~~[i W~Hn:Jl!l ~,i~i iF 3,2) ,1

Example of A Job Stream 3.28
Example of Symbolic I/O Assignment 3.31
Possible Device Assignments 3.36
Device Assignments Required for an Assembly 3.37
File Label Processing .3.41
Summary of Label Option Functions 3.50
Job Control Statements to Assemble, Link-Edit, and Execute
a Program in one Job 3.54
Submitting Input Data on SYSIPT 3.55
System Operation oi an Assembie, Link-Edit and Execute Job 3.57
Storage Layout of a Partition with Default GETVIS Area 3.61
Storage Layout of a Partition after the SIZE Command is given 3.62
Program Execution with the SIZE Parameter 3.63
Creation ofSYSIN on Tape 3.65
Processing System Input and Output Files on Disk 3.67
Interrupting a Job Stream on Disk 3.69
Example of Modifying a Three-Step Procedure 3.76
Stages of Program Development 3.80
Record Types of an Object Module 3.81
A Job Stream to Catalog a Program into the Core Image Library ... 3.84
A Job Stream to Link-Edit a Program for Immediate Execution 3.85
A Job Stream to Assemble, Link-Edit and Execute 3.86
Naming Multiphase Programs 3.88

Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32

Figure 3-33

Figure 3-34
Figure 3-35
Figure 3-36

Figure 3-37

Overlay Tree Structure 3.96
Link-Editing an Overlay Program 3.97
Or~ani7.ation of the Directories and Ubraries 0n SYSRES 3.106
Summary of Librarian Programs, Their Functions, and Real Mode
Requirements 3.107
Assembling and Cataloging to the Relocatable Library in the Same
Job .. 3.110
Example of Deleting and Condensing 3.116
Disk Space available for System Libraries 3.119
Symbolic Unit Names and Filenames Required to Create
Private Libraries 3.133
Library Status Report for SYSRES on an FBA Device 3.137

Chapter 4: Using the Facilities and Options of DOS/VSE
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

Summary of Program Exit Conditions 4.1
IPL User Exit Example . 4.3
Job Control User Exit Example 4.5
Job Accounting Table 4.8
Job Accounting Routine Example4.11
Example of a RESTART Job4.14
PFIX and PFREE Example4.20
Example of Conventions for SV A Coding 4.23

Appendix A: System Layout on Disk
Figure A-I
Figure A-2

System Residence Organization on CKD Devices A.2
System Residence Organization on FBA Devices A.3

Chapter 1: DOS/VSE Overview

Multiprogramming

DOS/VSE is a combination of programs that interact with user-written
programs running on a System/370 or mM 3031 or on a 4300 Processor.
A reference to System/370 implies, in this manual, a reference to the mM
3031. When installed on an 4300 Processor, DOS/VSE may run in either
370 mode or ECPS:VSE mode. DOS/VSE installed on a System/370 runs
in 370 mode only.

This chapter expands on the conceptual information contained in
Introduction to DOS/VSE about the following topics:

• Multiprogramming

• Virtual storage

• Multitasking

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processing unit
(CPU) and the relatively slower speed of the I/O devices, and improves the
overall throughput of the system.

When a single executing program requests an I/O operation, it may not
be able to continue processing until the I/O request has been satisfied.
During this time, the CPU is idle. With multiprogramming, when one
program stops processing, the CPU is put at the disposal of another
program.

A program is said to be in control of the system when its instructions
are being executed by the CPU. A program can voluntarily yield control of
the CPU, or control can be withdrawn from it. Programs that share the use
of the CPU in multiprogramming do not have an equal claim on the CPU.
Instead, one program is given a greater priority than another.

When a program must wait for an event to occur before it can continue
processing, it yields control of the CPU. DOS/VSE then passes control to a
program of lower priority. Conversely, DOS/VSE withdraws control from a
program whenever a program with higher priority is ready to resume
processing. This generally happens when the I/O operation for which the
program has been waiting is completed.

Multiprogramming, therefore, allows the I/O operations of one program
to be overlapped by the processing of other programs. When a program has
to wait for the completion of an I/O operation, DOS/VSE sets the
program in the wait state and selects another program for execution on the
basis of its priority and readiness to run. This process, called task selection,
is performed by the supervisor program of OOS/VSE. The supervisor is
always resident in storage and controls many functions of DOS/VSE. The

Chapter 1: DOS/VSE Overview 1.1

Partitions

supervisor is discussed in detail in the section Tailoring the Supervisor in
Chapter 2, Planning the System.

Efficient use of the system relates not only to the degree of CPU activity
but also to storage management. Storage is allocated to partitions to
accommodate the programs that will be executed in them. At times, only a
portion of the partition is used by the program being executed. Some
programs require a large partition. DOS/VSE automatically balances the
storage demands made by programs by making processor storage not being
used by one program available to a program in another partition as
required.

The number of partitions supported equals the number of problem
programs that can be executed concurrently within the system. There is
always support for one background (BG) partition and one foreground (FI)
partition. Optionally, support for up to three additional foreground
partitions (F2 through F4) can be requested if you operate in an SCP only

environment, i, ' ' ';;i;i'~~;,e;/;:!/ ~':,'iii/i ';hLn'; ;:;n:]!
num .. configUration is a supervisor

generation option, and as such is described in the section Tailoring the
Supervisor in Chapter 2, Planning the System.

Storage
available
to problem
programs

Background

Foreground-3

Foreground-2

Foreground-1

FJgUI'e 1-1. The Partitions of a DOS/VSE

The background partition differs from the foreground partitions in the
following respects:

• The backgroun«i partition is automatically activated by IPL. A
foreground partition must be activated via the BATCH or START
operator command. (The BATCH and START operator commands are
discussed in detail in DOS IVSE Operating Procedures.)

1.2 DOS/VSE System Management Guide

Partition Priorities

Storage Protec~

• Certain ffiM-supplied programs can be executed only in the background
partition. These programs are CORGZ (the merge into SYSRES
functions), and MAINT (except deleting, renaming and condensing
functions for a private core image library). Refer to the section Using
the Libraries in Chapter 3, Using the System.

• Link editing a program to the system core image library can be done
only in the background partition.

During supervisor generation, priorities are established for each partition
defined in the system. The default priorities are (from low to high): BG,

F4, F3, F2, Fl.· .

During processing the operator can display the partition priorities and
change them dynamically by issuing the PRTY command. This can be used
to accelerate the execution of a given program. However, the priorities
should be reset to the installation standards as soon as possible to handle
the normal flow of jobs through the system.

Changing priorities while jobs are being executed should be done with
special care if the licensed program VSE/POWER or teleprocessing, which
normally run in a high-priority partition, are active in the system.

Storage protection, which is standard on all System/370 and 4300
processOr models, ensures that the instructions and data of one program in
a given partition do not interfere with those of another program in another
partition.

Device COIISiderations U1Uler MlIltiprogra""";,,g

Generally, the same physical I/O device (or extent of a direct access or
diskette device) may not be used concurrently by programs being executed
in different partitions. Exceptions to this are:

• The device or extents assigned to the system logical units:

SYSRES

SYSREC

SYSLOG

SYSCAT

for system residence

for the recording of system information such as console
messages and hardware statistics

for system-operator communication

for use with VSE/VSAM, a licensed DOS/VSE access
method.

Chapter 1: DOS/VSE Overview 1.3

Virtual Storage

These devices (extents) are considered to belong to the system as a
whole, rather than to individual partitions. (A description of these
system logical units is contained in the section Symbolic I/O Assignment
in Chapter 3, Using the System).

• The page data set.

• Private libraries which may be shared for read-only operations (for
more information refer to Using Private Libraries in Chapter 3, Using
the System).

• A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see Track Hold Option in Chapter 2, Planning the
System for information on protection when updating a file concurrently
by separate tasks).

IT, for example, you wish to link-edit programs in different partitions
concurrently, different physical devices or extents (except.for SYSRES and
SYSLOG) must be assigned for~each partition to all logical units used by
the linkage editor program. Figure 1-2 shows an example of the device
assignments in order to link -edit in two partitions concurrently.

Logical Unit, F1 "'Partition BG Partition

SYSIN X'18l' X'OOC'
SYSlST X'182' X'OOE'
SYSlOG X'OlF X'OlF
SYSlNK X'13l' X'132'
SYSOOl X'13l' X'132'
SYSClB X'130' -
SYSRES X'130' X'130'

FJgUI'e 1-2. ARgning Different Physical Devices to the Same Logical Units

In this case, the output on SYSLST in FI is written on a tape. A listing of
this output can be obtained by printing the tape after the job is completed.
IT VSE/POWER is used, the listing could be automatically obtained
whenever a printer becomes available.

The objective of the virtual storage concept is to achieve greater
throughput. Multiprogramming, for example, increases throughput by
sharing CPU time between two or more partitions. Virtual storage enables
you to improve real (processor) storage utilization.

In the previous multiprogramming discussion the statement is made that
"Multiprogramming . . . allows the concurrent execution of more than one
program ... ". Note that concurrent does not mean simultaneous. Even in
the multiprogramming environment, when two or more programs are
executing in storage, the CPU (Central Processing Unit) can execute only
one instruction at a time. Hence, the space in storage used by all other
instructions, data areas etc. is temporarily not needed. All that must be in
storage at anyone point in time is the instruction (and its associated data
areas) that is being executed. The Virtual Storage concept exploits this fact.

1.4 DOS/VSE System Management Guide

Vil1llal Storage in DOS/VSE

Through a combination of hardware design and programming support,
DOS/VSE has an address space, called virtual storage, that can extend to
the maximum allowed by the system's addressing scheme, which is
16,777,216 bytes (16M bytes).

How much of the maximum address space (16 M bytes) will be used in
a particular system depends on a number of factors: the size of the
computer's processor storage, the amount of disk storage available, the
number of partitions, their sizes, and the characteristics of the installation's
programs and operating environment.

Chapter 1: DOS/VSE Overview 1.5

Virtual Storage
OK,~--------------------~

address
space < Your Programs

max.=16M-l bytes

It is in the address space that proarams conceptually no.

Figure 1-3. Virtual Storage and Processor Storage

Processor Storage
OKr----------------------

----------------------~nK

Your programs are conceptually loaded and run in address space. See
Figure 1-3. Of course, each instruction of a program must be in processor
storage when the instruction is executed, and so must the data this
instruction manipulates. The other instructions and data of that program in
virtual storage need not be in processor storage at that same moment; they
can reside on auxiliary storage until needed. The file used for this purpose
is called the page data set.

It would be inefficient, however, to bring every instruction and its
associated data into processor storage individually. Virtual storage is
manipulated in sections called pages; the size of a page in DOS/VSE is 2K
bytes. Processor storage is also divided into 2K byte sections; these are
called page frames. Page frames accommodate pages of a program during
execution.

The resident routines of the DOS/VSE supervisor occupy tlte low
address page frames, while the remaining page frames are available for the
execution of processing programs and the pageable routines of the
supervisor. These remaining page frames are collectively called the page
pool.

When a program is loaded from the core image library into virtual
storage, all its pages are brought into page frames of the page pool. If there

1.6 DOS/VSE System Management Guide

Core
Image
Library

are not enough page frames available to contain all the pages of a program,
DOS lYSE writes the contents of some page frames to the page data set.
Set: Figure 1-4.

Page
Data
Set

-----,
I
I

e
I
I
I ... _____ .L __________ ~ "

PROGX X X X X X X -----r-----e--1/

I
I
I
I
I
I
I L ______________ ...J

Virtuai Storage

J

X

X

X

X

X

X

r---Z ,X .. , '
"~\X\ '-----\ X' , ,

\ \ -_--I' \ ,X,

X

X

X

X

X

X

, ,
~\X;
~I.

X

X

X

X

X

X

'x' I I , ,
,'X I

i '/

X

X

X

X

X

X

Processor Storage

X

X

X

X

X

X

X

X

X

X

X

X

A program named PROGX (A) is "conceptuaDy" loaded into virtual storage (8). DOS/VSE
f"JDds page frames in the page pool of processor storage (C). When there are not enough
page frames to accomodate aD of PROGX, DOS/VSE stores the contents of some page
frames on the page data set (0). 1be remaining pages of the program caD then be loaded.

Figure 1-4. Storage Management Concept - DOS/VSE

Chapter 1: DOS/VSE Overview 1.7

> Page
Pool

Storage Management

The following discussion amplifies the concept of DOS/VSE storage
management shown in Figure 1-4.

When programs are loaded for execution they may be loaded in
non-contiguous page frames of processor storage. DOS/VSE knows what
processor storage locations pages of a given program occupy. H the
program should cancel, due to an error, the listing produced by DOS/VSE
reflects the virtual addresses where the program was conceptually running.
In Figure 1-5, a 16K-byte program named INVEN, is conceptually loaded
at the virtual storage location 1024K. As shown, DOS/VSE selected eight
page frames of processor storage which are not contiguous. H the program
were to end abnormally, and a listing representing storage was produced
(on SYSLST), the INVEN program would be shown as occupying addresses
1024K through 1040K minus 1.

All of the information pertaining to the virtual storage and page frames
is maintained within the system in a series of tables. It is through these
tables that the virtual storage exists. Entries in these tables reflect the
current status of a given page of virtual storage.

1.8 DOS/VSE System Management Guide

Virtual Storage

1024KI-------------.... ---------------
Page Pool of 128 K

INVEN (16K)

1040K-1 , , , , , , , , ,
\
\ ,

\
\ ,

\ , , ,
\

\
\ ,

\ , , , ,
\

\ , ,

I f

I I

I I

I

I

Processor Storage

8 page frames are occupied by the 16K program
INVEN.

Figure 1-5. Running a Program. in Virtual Storage

Relating Virtual Storage to Locations in Processor Storage

Since the system does not anticipate where in processor storage a page will
be loaded, the virtual addresses must be translated into real addresses when
required for execution. The address translation is performed by a
combination of the system hardware and DOS/VSE.

If an entire program fits in processor storage, none of the program's
pages will be placed on the page data set.

Chapter 1: DOS/VSE Overview 1.9

In the example shown in Figure 1-5, no page of INVEN will be paged
out as long as the demand on processor storage does not exceed the
number of available page frames.

H a second program were to be executed (mUltiprogramming) and this
program together with INVEN were larger in size than the number of
frames available in the page pool, DOS/VSE would store as many pages as
necessary on the page data set to keep both programs running.

In Figure 1-6 a program called PAYROLL is being executed as well as
INVEN. PAYROLL is a IISK program. As the page pool in this example
is only 12SK, the total demand (INVEN + PAYROLL) of 134K exceeds
the processor storage resource by 6K or three page frames.

The program PAYROLL will not start executing until all of its pages
have been loaded into processor storage. After having loaded 112K of
program PAYROLL, DOS/VSE must make three page frames available for
that program. It does this by selecting the three least recently used (LRU)
pages and storing them on the page data set. See Figure 1-7. Once the
pages have been saved on the page data set the page frames are available
for the last three pages of the program PAYROLL. See Figure I-S.

1.10 DOS/VSE System Management Guide

OK
Virtua I Storage

1024K

INVEN (16K)

1060K

PAYROLL (118K)

I P I p I

1040K-

p I
1178K-

Page Pool of 128K

I P P P I

P P I P P

P P P P P

I P P P I

P P P I P

P I P P P

P P P P P

P P P P P

Processor Storage

I = a page of program INVEN

P =a page of program Payroll

P

P

P

P

P

P

P

P

3 pages of PA YRO LL not yet loaded

FJgUre 1-6. Loading Program Pages into Page Frames

P P

I P

P P

P P

P P

P P

P P

P P

Chapter 1: DOS/VSE Overview 1.11

Virtual Storage

1024K

INVEN (16K)

1060K

PAYROLL (118K)

I P I
p

1040K-

I p
I

1178K-1
.......

.......................
.....

p p p p p p p

p p p p p

p p p p p p

p p p p p p

p p p p p p p

p p p p p p p

Processor Storage

I = a page of INVEN

P =a page of Payroll
3 pages of INVEN have been paged out to the
page data set making room for the 3 remaining
pages of PAYROLL.

Figure 1-7. Storing Pages on the Page Data Set (pageouts)

1.12 DOS/VSE System Management Guide

p

p

p

p

p

p

p

p

Virtual Storage
o Kr-----------------------

Page
Data
Set

1024Kr-----------------------~--------------
Page Pool of 128K

~--~------- ~-----------

p p p
INVEN (16K)

p p
1040K-

p p p p p p p p

1060Kr---------------------~ p p p p p p

PAYROLL (118K)

1178K-1
'

'
.........

........ ,

p p p p p p

p p p p p p

p p p p p p p

p p p p p p p

Processor Storage

I = a page of INVEN

P =a page of PA YRO LL
The last 3 pages of PAYROLL are loaded and
execution begins.

p

p

p

p

During execution, whenever a required instruction or some data is not present in processor
storage, execution is interrupted by a so-called page fault. DOS/VSE mR then read the
required page into processor storage.

FJgUre 1-8. Managing the Page Pool

Virtual Storage Implementation under DOS/VSE

Under DOS/VSE you may generate a system that will execute on 4300 or
/370 hardware. Using the 4300 hardware, your DOS/VSE System may be
generated to run in either ECPS:VSE mode or 370 mode. DOS/VSE on
the System/370 hardware may only run in 370 mode.

Chapter 1: DOS/VSE Overview 1.13

Division of Address Space

The generated supervisor in 370 mode is functionally the same, whether
the hardware is System/370 or a 4300 processor.

The concepts of virtual storage are the same in both modes of
execution; however, the implementation differs slightly.

This section discusses: virtual storage, processor storage, and program
execution (with and without paging). The implementation of most of these
items is the same in both modes. The differences and figures showing the
different execution modes (ECPS:VSE or 370) are at the end of this
section.

As stated earlier, all programs, including the supervisor, run in an address
space called virtual storage. this address space is divided into areas: for the
supervisor, the partitions, a shared virtual area (SVA).

Supenfior Area. The address space reserved for the supervisor is the low
addresses of your virtual storage. The supervisor area begins at location OK
and extends up to the size of your generated supervisor (see Figure 1-9).

Virtual Storage
OK----------------------------~

Resident Supervisor Routines

Pageable Supervisor Routines

Resident Supervisor Routines

~--------------------------~nK
Address
space

Figure 1-9. Supenisor Area in V'o1uaI Storage Address Space

Partitions. The virtual storage contains the areas which are used by the
DOS/VSE partitions. Programs will execute from these areas. The number
of partitions is determined at system generation. See Chapter 2, Planning
the System. The distribution of the partitions in the address space follows

1.14 DOS/VSE System Management Guide

the default partition priority scheme, that is the lower priority partitions
have the lower addresses. The sequence is always BO, F4, F3, F2, Fl for a
five partition system.

Figure 1-10 shows the layout of virtual storage for a 4-partition
DOS/VSE system. In this figure each partition is 200K in size.

Virtual Storage

512K

BG Partition

712K

F3 Partition

Address
912K space

F2 Partition

1112K

F 1 Partition

FJgUre 1-10. Partition Distribution in a Four-Partition System

The Shared Virtual Area (SV A). The SV A occupies the address space
immediately following the partitions, see Figure 1-11. Certain frequently
used programs are loaded into the sV A. Such programs (or parts of
programs), which are relocatable and reenterable, are available for
concurrent use by programs executing in any partition. Additional

Chapter 1: DOS/VSE Overview 1.15

information on the use of the SV A is contained in this guide where
appropriate.

Address
space

512K

712K

912K

1112K

1312K

Virtual Storage

~ -

BG

F3

F2

Fl

Shared Virtual Area

Figure 1-11. Shared Virtual Area in a Four Partition System

1.16 DOS!VSE System Management Guide

Processor Storage Utilization

Under DOS/VSE processor storage is used as follows:

• For the accommodation of the resident supervisor routines.

• For the loading and execution of the page able supervisor routines.

• For the loading and execution of programs.

As shown in Figure 1-12, all page frames of processor storage not needed
for the resident supervisor routines are available to the page pool. It is
from this page pool that DOS/VSE selects page frames for pages of
executing programs (including the pageable routines of the supervisor).

Virtual Storage Processor Storage

R-es-ident S-tl-perv-i-s-ef R-e-ut-ines Resident Supervisor Routi-nes

Pageable Routines of Supervisor

Resident Supervisor Routines

S S S

1 Resident Supervisor Routines

S S S S

S

>

S = pages of pageable supervisor routines

Figure 1-12. Supervisor Routines - FIXed and Pageable

Executing Programs in Virtual and Real Mode

All programs when executing are conceptually running in the address space
associated with a partition. DOS lYSE selects page frames from the page
pool for pages of the executing programs. The execution can be in one of
two modes:

Page
Pool

Chapter 1: DOS/VSE Overview 1.17

Storage Allocation

Execution in Virtual Mode: The page frames occupied by pages of programs
running in virtual mode continue to be part of the page pool. DOS/VSE
will manage the processor storage placing some pages on the page data set,
when necessary, and retrieving those pages as required. Programs in virtual
mode are pageable.

Execution in Real Mode: The page frames occupied by pages of programs
running in real mode are taken out of the page pool for the duration of that
program's execution; the page frames will not be selected by DOS/VSE for
another program of higher priority; the program is fixed in processor
storage and is non-pageable.

To have a program executed in real mode, an amount of processor
storage must be allocated to the partition in which that program is to run.
The allocated processor storage remains part of the page pool until real
mode execution begins. Under DOS/VSE certain programs - such as those
with critical time dependencies - may have to run in real mode. A partition
may execute in only one mode at a given point in time; for example, the
BG partition can not initiate both real and virtual execution at the same
time.

From a storage management point of view, only minor differences exist in
virtual and processor storage utilization techniques between ECPS:VSE and
370 mode. These differences are indicated as the following topics are being
discussed:

• Address space layout
Partition allocation

• Processor storage allocation for real mode execution
• Dynamic storage areas.

Address Space Layout. In ECPS:VSE mode, the virtual storage is one area
whose size is determined at Initial Microprogram Load (IML).

In 370 mode, the virtual storage is logically divided into two areas: real
address space and virtual address space, see Figure 1-13. The virtual
address space is defined when the supervisor is assembled. The size of the
real address space is determined at the time of Initial Program Load (IPL);
it is equal to the amount of processor storage installed. The supervisor
resides in the low addresses of your virtual storage. In 370 mode, this is in
the real address area. See Figure 1-14.

1.18 DOS/VSE System Management Guide

ECPS: VSE-Mode 37G-Mode
OK~-----------------------.

Real Address Space

512K~--------------------~

The Address Space

Virtua I Address Space

~48K-=====================~
Virtua I Storage Virtual Storage

Figure 1-13. Address Space for 2048K. Bytes of Virtual Storage and 512K.
Bytes of Processor Storage

ECPS: VSE-Mode
OK~----------------------~

96K

The
Address ~
Space

Supervisor

OK

96K

512K

370-Mode

Supervisor

)

>

2048K U ____________ ~ 2048K~I--------------------~I,)
Virtual Storage Virtual Storage

961{ as sapenisor size is an arbitrary ..alber, somewhere above the sapenisor size.

Figure 1-14. Supenisor Location in Both ECPS:VSE and 370 Mode

Chapter 1:· DOS/VSE Overview 1.19

Real
Address
SpaCe

Virtual
Address
Space

Partition Allocation. Only the number of partitions but not their sizes are
defined when the supervisor is assembled. IPL allocates all of the address
space available for the partitions to the Background (BG). After IPL, you
allocate the foreground (FG) partition sizes. See Chapter 3, Using the
System.

Figure 1-15 shows the layout of a 4-partition system after IPL and
allocation, respectively, has taken place.

1.20 DOS/VSE System Management Guide

OK

96K

ECPS:VSE-Mode 370-Mode
OK

Supervisor Supervisor

96K

BG

512K

712K

F3

912K

F2

1112!(

Fl

1312K

BG

F3

F2

Fl

>

~

Real
Address
Space

Virtual
Address
Space

SVA SVA

2048K
Virtual Storage Virtual Storage

Figure 1-15 assmnes a virtual storage size of 20481{ and a processor storage size of 512K..
The supervisor wiD OCCUpy. the low address 961{ of this system.

In ECPS:VSE mode, the address space from the end of the s.msor to the begilDng of the
Foreground 3 ~ belongs t~ the BG partition (6161{).

In 370 mode the BG partition's. address space starts at the beginning of the virtual address
space (512K). The real a.w.ress space is the address space from Wbicb. ~ rQDDing in

real mode are executed~

Figure 1-15. A 4-PartitiOD System in ECPS:VSE and 370 Mode

Processor Storage AUoeatiOD for Real Mode Execution. A specific number of
page frames of proCessor storage may be allocated to any of the partitions
for real mode execution~ The allocation may be d()ne at any time with the
ALLOCR coIIHIiand,.

Chapter 1: DOS/VSE Overview 1.21

Submitting

ALLOCR BG=20K, F1=24K

for example, causes the following:

• In ECPS:VSE mode:

• In 370 mode:

DOS/VSE notes that 10 page frames and 12
page frames of processor storage are available
to partitions background and foreground 1,
respectively, for real mode execution.

DOS/VSE allocates 20K and 24K of real
address space to partitions background and
foreground 1, respectively. In addition, when
real mode execution takes place, the processor
storage addresses used by DOS/VSE are the
same as the addresses within the allocated real
address space.

With the above ALLOCR command the largest program that can be
executed real in the two partitions are 20K in BG and 24K in Fl.

When not occupied by a program running in real mode, the page
frames allocated to a partition are part of the page pool.

When a program running in real mode does not require all the allocated
page frames, the unused page frames may be made available to the page
pool by specifying the amount of storage required by the program in the
SIZE operand of the EXEC job control statement for the program. In
order to execute a program in real mode an EXEC statement with the
REAL parameter must be used. For more details on the EXEC statement
see Chapter 3, Using the System.

Figure 1-16 shows the results of the above discussed ALLOCR
command with a 20K-program REALRUN executing in the BG partition in
real mode.

1.22 DOS/VSE System Management Guide

ECPS:VSE-Mode
OK-----------------------------,

80K ------- Supervisor------

96K _1-------------------1

REALRUN (20K)

BG

Virtual Storage Processor Storage

370-Mode
OK~--------------------------~

80K ------- Supervisor-------

96K~--------------------------~}
REALRUN(20~ BG

116K

130K
Allocated to F 1 s s

s s

Virtua I Storage Processor Storage

R = pages of REA LR UN in processor storage

S = pages of supervisor pageable routines in storage

Tbe shaded portions of processor storage are not part of the page pool at tbis time. Tbe
illustration assumes a supermor with 10K resident routines and 16K pageable routines. Tbe
program REALRUN is 10K in size and is executing in real mode in the BG partition. Note
that in ECPS:VSE mode tbe page frames are selected randomly from the page pool, while in
370 mode the page fnDes o~d by REALRUN have tbe same processor storage
addresses as the pages that are occupied by REALRUN within virtual storage. Tbe aIocation
for Fl bas not affected the page pool.

FJgUI'e 1-16. Executing in Real Mode

Chapter 1: DOS/VSE Overview 1.23

Fixing Pages in PrOCes§Ol' Storage. The allocated page frames are used not
only for programs running in real mode, but may also be used for programs
running in virtual mode.

Some programs that run in virtual mode contain instructions or data
that must be in processor storage when needed and therefore cannot
tolerate paging. The pages containing such code or data can be fixed via the
PFIX macro instruction, and freed immediately after use via the PFREE
macro instruction. The licensed program VSE/POWER is an example of an
mM program that uses PFIX/PFREE macros.

When pages of a program running in a given partition are fixed in
response to the PFIX macro, they are fixed in the page frames allocated to
the partition. IT a PFIX macro is issued and enough storage is not allocated,
the pages are not fixed, and a completion code indicating this is returned to
the program.

Fixing pages in processor storage means that, in a niultiprogramming
environment, fewer page frames are available to other programs running in
virtual mode, potentially degrading total system performance. When
channel programs with large I/O areas are involved, the initial size of the
page pool may be too small. Consider this effect carefully before allowing
the use of the PFIX macro at your installation.

Dynamic Storage Areas. Under DOS/VSE there is a requirement for certain
system functions to acquire virtual storage dynamically during program
execution. An area called GETVIS area is used for this purpose. Each
partition has its own partition GETVIS area, the SVA includes the system
GETVIS area. The GETVIS areas occupy the high address space associated
with each partition and the SV A. Figure 1-17 shows the virtual storage
layout in ECPS:VSE and 370 mode with the GETVIS areas included. For
further information on the size and use of GETVIS areas see Chapter 3,
Using the System.

1.24 DOS/VSE System Management Guide

OK

96K

ECPS: VSE-Mode 370-Mode

Supervisor
OK

1

Supervisor n
96KI----~11

I
~

BG

512K

BG

1------------------- -------------------GETVIS Area BG GETVIS Area BG
712K

F3 F3

-------------------- ~-------------------
GETVIS Area F3

912K
GETVIS Area F3

F2 F2

-------------------- ~-----------------
GETVIS Area F2

1112K
GETVIS Area F2

Fl Fl

-------------------- -------------------
GETVIS Area Fl

1312K
GETVIS Area F1

SVA SVA

r.------------------- ~------------------

System GETVIS System G ETVIS

2048K
Virtua I Storage Virtual Storage

Figure 1-17. A 4-Partition System in ECPS:VSE and 370 Mode with the
GETVIS Areas

~

Real
Address
Space

Virtual
Address
Space

Multitasking

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate partitions
within a single computer system. Multitasking can be regarded as an
extension of multiprogramming in that it provides the ability to execute
more than one program concurrently in a single partition. In simple terms,
therefore, multitasking can be regarded as multiprogramming within one
partition.

Chapter 1: DOS/VSE Overview 1.25

Two Types of Multitasking

Some installations using former versions of DOS, employed multitasking
to run more than three programs in a 3-partition system. The additional
partitions that DOS/VSE provides serve the same purpose. However,
running programs concurrently in separate partitions usually requires less
preparation than running programs concurrently in the same partition.

Programs (or parts of a program) that are executed concurrently in a given
partition are called tasks. A distinction is drawn between the main task in a
partition and one or more subtasks in the same partition. The main task is
that program (or program part) which is initiated by job control. The
subtasks are programs (or program parts) that are initiated by the main task
through the use of the ATTACH macro in an assembler language routine.

A subtask executed in a given partition may be (1) logically
independent, or (2) logically dependent.

In the first case, the main task monitors the execution of the subtasks,
treating them as independent programs. Such subtasks may be coded in any
programming language. This type of multitasking is sometimes called
multiprogramming within a partition. It is a suitable technique to use, for
example, for concurrent execution of more programs than partitions are
available.

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
coded in assembler language to allow the use of the task
intercommunication macros. They can share code (in particular, an access
method or subroutines), provided that it is of a read-only nature (that is,
that the code or subroutines are not modified during execution). This
technique is complex and can best be understood after studying the first
type of multitasking.

Cross-Partition Event Control

Highly complex applications may have a need for communication between
programs executing in separate partitions. For example, two such programs
may need to perform operations on a common file, and the operations may
require actual communication between the two programs.

Through cross-partition event control macros, one partition can delay
the execution of part of a program until another partition signals the
completion of a critical event. This allows synchronized multiprogramming
in separate partitions - thus protecting programs against inadvertent
destruction of each other - while at the same time providing for any
necessary communication between them. mM licensed programs require
this support in certain complex applications. One example is the licensed
program VSE/POWER generated with SPOOL = YES. For details about
cross-partition event control, see the manual DOS/VSE Macro Reference.

1.26 DOS/VSE System Management Guide

Chapter 2: Planning the System

After a brief description of the system generation procedure in general, this
chapter discusses in greater detail three major considerations during system
generation, namely:

• Planning the libraries (planning the contents, the location and size of
the libraries).

• Planning the system files and workfiles.

• Tailoring the supervisor (adding functions to those of the basic
supervisor) .

Because of the nature of this information, this chapter primarily addresses
programmers who are responsible for planning the system.

System Generation Procedure

Proper and detailed planning is essential for efficient system generation and
minimizes the need to modify the system after it is generated. You may
want to contact your ffiM marketing representative to set up a system
generation planning meeting. ffiM field engineering should be invited to
attend the meeting to discuss the procedure to install the nonlicensed SCP
(system control programs). Generating a system includes:

• Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. You must consider the size of the system core image
library and other system and private libraries.

• Planning the location and size of system and workfiles. This entails
determining, what system files are required, how large they must be and
where they shall be placed. Additionally workfile space needed to
assemble the supervisor and to link-edit and catalog the components
selected to the system core image library must be reserved.

• Planning the options and estimating the approximate size of the
supervisor. This entails selecting from the programming services
provided by ffiM, those options you wish to include in the supervisor,
and estimating the cost of these services in terms of bytes of storage.

Har.dling the ~.strib"tior. System

To install the DOS/VSE SCP, you work with the ffiM-supplied distribution
medium (normally a magnetic tape), which is composed of four system
libraries

core image
relocatable
source statement
procedure

and a system history file.

Chapter 2: Planning the System 2.1

Planning the Libraries

Unless you decide to operate in an SCP only environment, your system
generation approach should be as follows:

1. Restore the SCP and also the supplied history file to disk. (This step
does not apply if you receive the ffiM supplied code on disk.)

3. Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. These are described in detail in the
section Tailoring the Supervisor.

4. Delete from the libraries any components you do not require and then
condense to free library space.

S. Assemble or compile and/or link -edit programs - both your own and
ffiM's - and catalog them into the appropriate libraries.

After you deleted any of the supplied components, you must update your
history file by running the service program MSHP (Maintain System
History Program). The usage of MSHP is described in DOSjVSE Maintain
System History Program (MSHP) User's Guide.

Having determined what elements are to be contained in the system
libraries, you may wish to retain additional elements in private libraries and
therefore want to create private core image, relocatable, or source statement
libraries. These choices are discussed in the section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix. A: System
Layout on Disk.

After establishing your SYSRES file and the history file, you should
copy those onto tape or disk for backup purposes. The utility programs
Backup/Restore System and Fast Copy Disk, which are provided for this
purpose, are described in DOSjVSE System Utilities.

For complete details on how to perform a system generation procedure
refer to DOSjVSE System Generation.

The components of DOS/VSE are shipped in four system libraries: the core
image library, the relocatable library, the source statement library, and the
procedure library. Most programs and procedures developed and used by
your installation will also be stored in these libraries. In addition to the
system libraries, DOS/VSE supports private libraries which you may use to
either substitute for or supplement the corresponding system libraries.

2.2 DOS/VSE System Management Guide

Planning the size, contents, and location of these libraries according to
the needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:

• No disk space is wasted by components not required in your
installation.

• The libraries are large enough to allow for future additions.

• The libraries are accessed by the system with maximwil efficiency.

Following a brief description of the purpose and contents of the individual
libraries, this section discusses the major considerations involved in tailoring
the libraries to the needs of your installation:

•

•

•

Which libraries are required.

How many disk drives are available and where on these devices should
the individual libraries be placed.

How large should each of the libraries be and what should they contain.

Note that this section is intended to give only general guidance for planning
the libraries. More details. about DASD space requirements for the libraries
are contained in DOS/VSE System Generation. How to change the size of
a library, how to insert elements into or delete elements from a library, and
how to create private libraries is described in Chapter 3, Using the System.

Purpose and Contents of the Libraries

Core Image Library

The following is a brief summary of the purpose and contents of the
DOS/VSE system and private libraries.

In order to be executed, all programs must be link-edited into phases and
placed in the core image library (CIL). mM supplies the DOS/VSE system
control program (SCP) components pre-linked and cataloged in the CIL. A
complete list of the supplied SCP components is shipped with the program
directory documentation which accompanies your DOS/VSE SCPo Prior to
receiving your DOS/VSE, consult DOS/VSE System Generation and the
applicable VSE/ Advanced Functions publication for a listing of the
DOS/VSE components.

mM also supplies cataloged distribution supervisors. Assembler source
statements used to generate these supervisors are shown as part of the
Memorandum to Users and are contained in the source statement library.

The entries in the CIL directory of phases are sorted in alphanumeric
sequence. The phases themselves are cataloged in the next available space
in the library.

You have to decide which of the mM supplied SCP phases to retain in
the CIL. To delete unwanted SCP components, use the delete procedures
contained in the procedure library. See DOS/VSE System Generation for a
list of these procedures.

Chapter 2: Planning the System 2.3

Relocatable Library

Source Statement Library

Besides mM SCP components you may add to the CIL your own
application programs such as your payroll or accounts receivable programs,
program packages obtained from mM (for example, licensed programs), or
program packages from other sources. If you wish to include such programs
in the CIL, you must catalog them yourself. For information on how to do
so, refer to the description of the linkage-editor in Chapter 3, Using the
System.

The relocatable library as shipped by mM uses a considerable amount of
DASD space. The library contains:

• SCP component object modules

• Compiler logical input/output control system (LIOCS) modules

SCP Object Modules. These modules make up unlinked code of the
executable SCP component phases in the CIL. The modules have been
link -edited and cataloged into the elL you receive. These modules are
provided in the relocatable library for maintenance purposes only.

CompHer LIOCS Modules. The LIOCS modules needed by the various
compilers are cataloged in the relocatable library. There are different
modules for each device type and access method. Some modules can be
used by more than one compiler. For a complete list of the LIOCS module
names and device applicability, see DOS/VSE System Generation.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source
statements that are used by more than one program, and then include these
statements in your source program by specifying a COpy (assembler,
DOS/VS RPG II, and COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those
macros supplied by mM as well as any others which you may have written
and cataloged yourself. When you issue a macro instruction in your
program, the corresponding macro definition is retrieved from the source
statement library and included in your program according to the parameters
you specified.

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a I-letter prefix added to the book
name. Letters A through I and the letters P, Rand Z are reserved for
sublibraries containing system components. You can use all other letters,
the digits 0 through 9, and the special characters $, &, and #, to define
your own sublibraries.

2.4 DOS/VSE System Management Guide

Procedure Library

Private Libraries

Frequently-used sets of control statements can be cataloged into the

~~=~::s~~::~o~~t e!~iljrli\.j·lii •• irr~~~~~r~~taloged
statements and/or SYSIPT data. Included VSE/POWER JECL statements
will be treated as DOS lYSE comment statements. If extended procedure
support was included during supervisor generation (by specifying the
SYSFIL option) you can also catalog procedures containing data that is to
be read from SYSIPT under control of the device-independent sequential
IOCS, by your program or by mM-supplied service programs and language
translators. SYSIPT in-line data can be, for example, the control statements
processed by the librarian or the sort/merge program. Cataloged procedures
are retrieved from the procedure library by a special form of the EXEC job
control statement.

The procedures shipped in the procedure library are provided as system
installation aids. They include:

• library-member-delete and module-link procedures

• MSHP history file update procedures

standard label definition procedures

Delete and Link Procedures. The delete procedures are provided to assist
you in tailoring your libraries. A complete list of the delete procedures is
provided in the manual DOS/VSE System Generation. Once your system is
installed these procedures themselves can be deleted.

The link procedures are provided to link-edit SCP modules contained in
the relocatable library to the core image library. These procedures are
provided for system-service purposes (the SCP's have been link-edited prior
to your receiving the system).

MSHP History File Update Procedures. If you have installed a component
without the use of MSHP (Maintain System History Program) there is no
entry in the history file for that component. This can occur if, for example,
you have a DOS/VS Release 34.0 or earlier with a licensed program, such
as DOS/VS COBOL, running under it. The MSHP history file update
procedures may be used to create a history file entry for the component, in
this example DOS/VS COBOL. Now, you may use MSHP for subsequent
modification (updates, maintenance etc.) of that component. For more
details on the use of the program MSHP see DOS/VSE Maintain System
History Program (MSHP) User's Guide.

Standa!'d L4!ool Procedures. These procedures are discussed in section Label
Information Area in this chapter. A complete listing showing the contents
of the procedures is included in the Program Directory Document shipped
to all recipients of DOS lYSE.

Private libraries can be defined for the core image, relocatable, and source
statement libraries. The procedure library is supported as a system library

Chapter 2: Planning the System 2.5

only. Private libraries are created by using the program CORGZ and have
the same format as the system libraries.

You may establish private relocatable or source statement libraries
either to supplement or to replace the system libraries on the SYSRES file,
thereby extending the space available to the system core image library.
Conversely, you may reduce the size of the system core image library by
cataloging selected programs in a private core image library.

Private libraries are also useful in a testing environment where you may
keep working copies of your programs intact on a system library while you
test modifications of the same programs on a private library. Private
libraries thus add a great deal of flexibility to your system.

You may define as many private core image, relocatable, and source
statement libraries as desired, each serving a particular purpose. For
instance, having a separate core image library for each partition, each on a
separate disk drive, would reduce disk arm movement on the SYSRES
volume, which means faster access to the libraries.

When you define the private core image library extent (associated with
the logical name SYSCLB) it can reside on any disk volume that is
supported by DOS/VSE. Multiple private core image libraries can reside on
one volume or they can be created on separate volumes. They can be
created on the same volume as SYSRES, but this is not recommended
unless the access level is low. SYSCLB can be assigned only permanently
(not temporarily).

In an SCP only environment, private relocatable (SYSRLB) and private
source statement (SYSSLB) libraries are restricted to the same device type
as the SYSRES device; the private core image can be on a device
type different from that of the SYSRES file.

Choosing the Libraries lor all Instalilltioll

In an operational DOS/VSE, all SCP components must reside in the system
core image library. Therefore, a system core image library must be present
in every DOS/VSE installation. Which of the other libraries you need
depends largely on the type and amount of work to be done and the
resources available at your installation.

Relocatable and Source Statement Libraries

Although these libraries are optional, few installations can operate
efficiently without them. H, for example, you work with a PL/I compiler
and you need to have the PL/I resident library routines on-line at all times,
these routines must be in the relocatable library. (The only - and very
inefficient - alternative would be to include the physical card decks for
such modules in-line with the linkage editor input.) Similarly, when you
assemble programs that use mM-supplied macros, the corresponding macro
definitions must be present in the source statement library.

2.6 DOS/VSE System Management Guide

Procedure Library

The same advantages as those gained by having ffiM-supplied modules
in a library can of course be obtained if you store your own object modules
or source statement books in a relocatable or source statement library. The
more information you have on-line in a library the less card handling is
required and the more efficient your system will operate. Because the disk
space available to the libraries is limited, you may prefer to reduce the
number of SCP components in the relocatable and source statement
libraries to a minimum to allow for sufficient space for the core image
library. If additional disk drives are available, the space problem can be
solved by creating private libraries.

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, there would be one or more sets of job
control statements which the programmer prepared and tested when the
program was first run. These sets of job control statements can be
cataloged as cataloged procedures in the procedure library; then, to retrieve
a set, only one statement is reqUired. This minimizes repetitive operator
handling (which often includes the replacement of defective cards or
reinsertion of diskettes) and reduces machine time and errors.

A cataloged procedure is exactly the same as what is described above
as a fixed set of job control statements. But the individual procedure is no
longer collected by the operator and selected manually for use; instead, it is
cataloged and retrieved through a special form of the EXEC job control
statement. Cataloged procedures can be modified as they are retrieved from
the library.

The use of cataloged procedures is discussed in Chapter 3, Using the
System.

Determining the Location 0/ the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 2-1). Although it is theoretically
possible to have private libraries on the system pack, outside the SYSRES
extent, this is not recommended because it involves increased movement of
the disk arm.

Chapter 2: Planning the System 2.7

Note: For details on SYSRES refer to
Appendix A: System Layout on Disk.

• end of SYSRES extent

FJgUl"e 2-1. The Relative Location of the Four System Libraries

H you have additional disk drives, you can define private core image,
relocatable, and/or source statement libraries on the extra volumes. Private
relocatable and private source statement volumes must be of the

iiiip::v~~ !,~~~ge Iib£~::~ "" ~~~~y disk device iype

supported by DOS/VSE. The system relocatable and system source
statement libraries can be removed from SYSRES and established as private
libraries; the system core image library, however, must always be present on
SYSRES. It can be supplemented but not replaced by a private core image
library. The procedure library is supported only as a system library; you
cannot create a private procedure library.

Figure 2-2 shows two examples of how you can organize the libraries in
a system with three disk drives. Any other combination of libraries on the
available devices is possible.

The examples in Figure 2-2 are to demonstrate that you can distribute
your private libraries among the available devices as you may see fit,
provided you observe the existing restrictions regarding device types. A
more practical example of how you can organize your libraries is given in
Figure 2-3. The example assumes a system with three disk drives, but it is
also applicable if you have only two drives or more than three. The
organization of the libraries in this example is especially useful when you
need large amounts of data on-line during execution.

2.8 DOS/VSE System Management Guide

SYSRLB

SYSSLB

If a private relocatable library and a private source statement library are to replace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSRES file would appear exactly as shown in Figure 2-1.

SYSCLB

A private core image library can only be used to supplement the system core image library, which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated.

FJgUI'e 2-2. Alternative Locations of the Libraries

Chapter 2: Planning the System 2.9

D Compiling - Assembling - Link-Editing

Drive X'190' Drive X'191' Di'ive X'192'

The system cOre image library (CI Ll contains only those programs required for execution-time·
processing. The compilers, assemblers, and the linkage editor are kept in the private core
image library (PCI L).

EI Processing

Drive X'190' Drive X'191' Drive X'192'

For execution-time processing, the private libraries are no longer required and can be replaced
by a data volume. Thus, maximum possible space is allowed for processing data.

CI L system core image iibrary
PL procedure library
PCIL private core image library
PR L private relocatable. library
PSSL private source statement library

Figure 2-3. Example of Library Organization

2.10 DOS/VSE System Management Guide

Planning the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by means
of the librarian programs), you should try to anticipate future space
requirenients and, if possible, provide this space. Such detailed planning can
eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
just one disk pack. Careful planning of the private libraries will save you
additional work because you cannot easily redefine the extents of a private
library once it has been created. To change the size of a private library you
must create a new private library and copy the contents of the old library
into it.

Consider the following factors before deciding on the contents and size
of the libraries:

• The average size of a program iti-your installation.

• The number of programs you want on-line.

• The amount of space available.

The core iImige library, for example, is the library in which you normally
keep most of your programs. (Otherwise, each program must be submitted
to the linkage editor and placed in the core image library temporarily before
it can be executed.) Therefore, ensure that your core image library is large
enough to accommodate all programs that must be on-line; this includes
your own programs as well as ffiM-supplied components.

Special considerations apply when you work With an on-line private
core image library:

• Phases whose names start with $ could be in a private core image
library, but it is more efficient to keep them in the system core image
library. When a $ phase is required, DOS/VSE first searches the
system core image library and then, if it does not find the phase,
searches the assigned private core image library.

• For all other phases (not beginning with $), first the private and then
the system: core image library is searched; thus, if you work with a
private core image library, search time is reduced for these phases
cataloged in the private core image library.

The system relOcatable and source statement libraries initially contain more
(ffiM-suppiied) members than you normally use for daily operation. By
deieting from your system libraries those members which you do not need
daily you are creating operational libraries. This reduces the disk space
requirement of the SYSRES extent. In planning the contents and size of an
operational relocatable library, determine which of the ffiM-supplied
modules can be deleted and how much space you need to store your own
object modules on-line.

With one disk pack available for system files, you may prefer to
maintain only enough free space in the relocatable library of the operational
pack to contain the modules for the largest component in the system. This

Chapter 2: Planning the System 2.11

System and Workflles

Page Data Set

small relocatable library permits temporary insertion of any component in
relocatable format. The component can then be immediately link-edited into
the core image library and deleted from the relocatable library.

Similar considerations apply to an operational source statement library.
Determine which of the ffiM-supplied components you need on-line, which
should be transferred to a backup volume for future extensions of your
system, and which can be deleted entirely.

If you intend to use the procedure library, you should allocate sufficient
space for it on the SYSRES file during system generation. In estimating the
amount of space required, consider the number of' . . b
control statements and SYSIPT data records (source modules, utility control
statements, etc.) you expect to store in the procedure library.

After you have determined the space requirements for your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the disk space required for each library.
These formulas are contained in DOS/VSE System Generation.

The contents of the libraries are identified in the Memorandum to Users
(shipped with the distributed DOS/VSE system). The storage requirements
(sizes) for these components and macro definitions are identified in the
section for each component.

The SYSRES file is only one of the system files that must be planned. The
location of the other system and workfiles and their sizes deserves some
thought. The system files besides SYSRES are:

Page data set

Recorder file (SYSREC)

Hard copy file (SYSREC)

History file (SYSREC)

If you have the licensed program VSE/POWER installed, the page data set
should not be placed on the same drive as the VSE/POWER data files if
this can be avoided. You should attempt to place the page data set on a
pack that has relatively low activity yet is on-line all the time. Normal data
files are not conducive to this approach as you probably do not want to
leave these files on-line when they are not needed. In many cases the best
place for the page data set is on the same pack that contains the SYSRES
file. A user with only two disk drives should place the page data set on the
pack that contains SYSRES. For information on the size of the page data
set see Defining the Page Data Set in this chapter.

2.12 DOS/VSE System Management Guide

Recorder File

Hard Copy File

ITlStory File

The recorder file contains recovery management support statistics provided
primarily for mM service personnel to analyze the performance of your
system. The information collected is related, for example, to:

• I/O errors

• CPU errors

• IPL reason codes

The system logical name used for the recorder file is SYSREC. The file
name is USYSRC. The SYSREC file must be defined as a disk extent on a
DASD type that is supported by DOS/VSE as SYSRES.

The recorder file is created immediately after the first IPL for your
DOS/VSE with the SET RF=CREATE command. The file is opened by
the first occurrence of a / / JOB statement after IPL. No / / JOB statement
may be submitted prior to the SET RF=CREATE command. See Starting
the System in Chapter 3, Using the System.

The hard copy file, a disk extent, must be on the same device as the
recorder file SYSREC. The system logical name is SYSREC and the file
name is USYSCN.

The hard copy file contains all of the messages displayed on the display
operator console (DOC). These messages can be retrieved on SYSLOG by
using the operator redisplay (D) command, or on SYSLST by using
program PRINTLOG. The hard copy file is created immediately after the
first IPL with the SET HC=CREATE command. The file is opened by the
occurrence of the first / / JOB statement after IPL. See Starting the System
in Chapter 3, Using the System.

Each system needs a history file containing information about the
components of the system and the fixes applied to those components. The
history file is used by MSHP (Maintain System History Program) for the
recording of information about your installed components. When
DOS/VSE is shipped to you, a history file is also shipped. This file reflects
the change level of the supplied DOS/VSE SCP components. An
up-to-date history file eases maintenance of your system.

The history file is a disk extent and must be on the same device as the
recorder and hard copy files. The system logical name is SYSREC and the
file name is USYSHF.

For information on installing the supplied history file consult
DOS/VSE System Generation. How MSHP uses the history fue is
described in DOS/VSE Maintain System History Program (MSHP) User's
Guide. You should also consult DOS/VSE System Utilities for information
on BACKUP/RESTORE and those programs' relationship with the history
file.

Chapter 2: Planning the System 2.13

Workfiles

Workfiles are temporary files that are used by a program during the
execution of a given application. User-written programs as well as
ffiM-supplied programs can use workfiles. Workfiles used by your own
programs must be defined, created, and named individually by you. They
are not discussed here.

System workfiles are used in compiling (assembling) source statements
and preparing input for the linkage editor. System workfile naming uses the
following conventions:

Symbolic Name

SYSLNK
SYSOOl
SYS002
SYS003
SYS004
3YSOOS
SYS006

Fde Name

USYSLN
USYSOl
USYS02
USYS03
USYS04
USYSOS
USYS06

2.14 DOS/VSE System Management Guide

For example, the assembler requires three workfiles to translate source
input and one workfile (SYSLNK) to prepare linkage editor input.

The workfiles are defined via / / DLBL and / / EXTENT statements.
They are opened and created when needed.

Listed below are the symbolic device requirements for the Assembler,
DOS/VS COBOL, and DOS/VS RPG IT, the language translators, most
frequently used under DOS/VSE.

SYSLNK SYS001 SYS002 SYS003 SYS004 SYS005 SYS006

Assembler L M M M

DOS/VS
COBOL L M M M M 0 0

DOS/VS
RPGIT L M M

Label Information Area

M = Mandatory
0 Optional
L = Required when link -editing

The size requirements of these files vary. Refer to DOS/VSE System
Generation which gives the formulas for calculating the size requirements of
the assembler and linkage editor workfiles. DOS/VS COBOL and DOS/VS
RPG IT workfile sizes are described in their respective installation guides.

To compile and link in two or more partitions simultaneously you will
need a set of workfiles for each partition in which you plan to compile and
link programs. A method for handling this situation is given in section
Label Information Area which follows.

The label information area is part of the SYSRES file and follows the last
library in SYSRES. If SYSRES is an FBA device, the label information area
comprises 200 blocks. For CKD devices the area is two cylinders. (For the
3340 disk, it is 3 cylinders and for the 3350 it is 1 cylinder).

For FBA devices, but not for CKD devices, you may change the size of
the label information area using the RESTORE program. See DOS/VSE
System Utilities for details on this program.

Chapter 2: Planning the System 2.15

Usage of the label information area is described in Chapter 3, Using
the System.

Entries in the label information area point DOS/VSE to the appropriate
files on a given disk pack. mM provides standard label procedures in the
procedure library for placing standard label information into the label
information area for the following files:

Yde Name

USYSRS
USYSRC
USYSHC
USYSHF
USYSLN
USYSOI
USYS02
USYS03
USYS04
USYSIN*

Yde-ID

DOS.SYSRES.FILE
DOS/VS.RECORDER.FILE
DOS/VS.HARDCOPY.FILE
DOS/VS.HISTORY.FILE
DOS/VS.SYSLNK.FILE
DOS/VS.WORK-FILE.l
DOS/VS.WORK-FILE.2
DOS/VS.WORK-FILE.3
DOS/VS.WORK-FILE.4
DTTEPTF

* SYSIN labels for diskette cardless system.

Symbolic Name

SYSRES
SYSREC
SYSREC
SYSREC
SYSLNK
SYSOOI
SYS002
SYS003
SYS004
SYSIN

The label information assumes you have taken the default library allocations
when you restored your system from tape to disk. If you use different
library allocations or if your page data set size is larger than the default,
prepare your own label information and execute your own
/ / OPTION STDLABEL run. If you wish to add standard label
information, run the supplied standard label procedure(s) (or your own)
and supply also the new entries.

The Memorandum to Users shipped with DOS/VSE lists the standard
label procedure names and the contents of those procedures.

Planning for Compiling in More Than One Partition

Once the standard label area contains label information for the workfiles
you can now assign the symbolic names (SYSnnn) to some physical drive
and start compiling. Initially there is only one set of / / DLBL and
/ / EXTENT statements for each workfile (USYSOl, USYS02, etc.), so you
cannot run compiles simultaneously in two different partitions.

The DOS/VSE open routines always look for the label information in
the label storage area in the following sequence:

1. partition userlabel area

2. partition standard label area

3. system standard label area

To cause each partition to have its own set of workfiles, place the necessary
label information in the partition standard label area associated with that
partition.

The job control program will write label information to the partition
standard label area of the partition in which job control is running when it
encounters the / / OPTION P ARSTD statement.

2.16 DOS/VSE System Management Guide

Tailoring the Supervisor

(a) II OPTION PARSTD
II DLBL IJSYS01,'BG-WORKFILE-1' ,O,SD
II EXTENT SYS001,,1,O,12,12
II DLBL IJSYS02,'BG-WORKFILE-2' ,O,SD
II EXTENT SYS002,,1,O,24,12
II DLBL IJSYSLN,'BG-SYSLNK' ,O,SD
II EXTENT SYSLNK,,1,O,36,12

(b) II OPTION PARSTD
II DLBL IJSYS01,'F2-WORKFILE-1',O,SD
II EXTENT SYS001,,1,O,48,12
II DLBL IJSYS02,'F2-WORKFILE-2' ,O,SD
II EXTENT SYS002,,1,O,60,12
II DLBL IJSYSLN,'F2-SYSLNK' ,O,SD
II EXTENT SYSLNK,,1,O,72,12
II DLBL IJSYSCL,'PCIL-FOR-F2',O
II EXTENT SYSCLB,,1,O,84,24

Job streams (a) and (b) above, when run in the BG and F2 partitions with
appropriate ASSGN statements, will enable simultaneous use of the
DOS/VS RPG IT compil~r in both p_artiti()ns. When running the compiler in
either partition, the OPEN routines will search for file names USYS01,
USYS02, USYSLN. In the BG partition the compiler will use cylinder 1
through cylinder 3 of a 3340, and in the F2 partition cylinders 4 through 6.

Note: Label information for a private core image library (PCIL) has
been provided in job stream (b). To link edit in a foreground
partition a PCIL must be permanently assigned. See Creating
and Working with Private Libraries in Chapter 3, Using the
System for information on creating private libraries.

The ffiM-shipped DOS/VSE includes three supervisors, one of which is
used during system gener~tion. Part of your system generation procedure is
to plan and assemble your tailored supervisor. You may generate a system
to run either in ECPS:V~E or 370 mode for the 4300 processor, or in 370
mode for the System /370 CPUs.

This section describes the optional and required parameters of the
DOS/VSE generation macros in a topical sequence; that is, such that
related options are presented together regardless of the macros in which
they are contained. For the exact formats of these macros, refer to
DOS/VSE System Generation. This section discusses, in addition, the
advantages or necessity of specifying the support for the various features in
the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add functions that require
supervisor options by including their requirements in your supervisor
generation macros. This allows you to upgrade your installation without
having to regenerate your supervisor. In your library planning, you should
include space for modules or components that will be required by a planned
future configuration or functional upgrades. The storage cost of additional
supervisor options ma,y be estimated by conslilting section Storage
Requirements in DOS/VSE System Generation.

Chapter 2: Planning the System 2.17

Storage MalUlgement Options

Virtual Storage Size

The Shared Virtual Area.

This section describes those supervisor options that relate to

• The size of virtual storage (applies to 370 mode only)

• The number of partitions and their priorities

• The layout of the page data set

• Facilities for improving the paging mechanism

The method of defining virtual storage is different for ECPS:VSE mode and
370 mode.

ECPS:VSEMode Virtual Storage Def"mition •.
In ECPS:VSEmooe, the default value for the total size of your virtual
stQrage is 16M (16,777,216) bytes. the operator may change this value at
IML (Initial Microprogram Load). For details about IML on a 4300
processor, see the Operator's Library Procedures manual provided by mM
for the pertinent processor model. The value is used by DOS/VSE to
4~termine tl1e size of the page data set. How to define the page data set is
discussed later.

370 Mode Virtual Stonge Def"lDition.
In 370 mode, virtual storage is composed of virtual address space and real
address space. You specify the size of the virtual address space in the
VSIZE operand of the VST AB generation macro. The size of the real
address space is determined automatically when you execute the Initial
Program Load (IPL) program. The value you specify for VSIZE is equal to
the sum of the virtual address space allocated to the defined partitions and
the size of the shared virtual· area.

The value specified for VSIZE cannot be changed without a new
supervisor generation. The maximum size of virtual storage is 16M
(16,777,216) bytes. The maximum value you can specify for VSIZE is 16M
minus the size of the real address space. The value you specify for VSIZE
must be equal to or greater than 704K bytes (the minimum for a two
partition system).

The value you specify for VSIZE is used by DOS/VSE to determine
the size of the page data set. Refer to Defining the Page Data Set later in
this section.

The shared virtual area (SVA) is divided into subareas as follows; a system
directory list (SDL), an area for phases, a system GETVIS area (see Figure
2-4).

You cannot define the SV A size at the time of supervisor generation;
DOS lYSE determines the size during IPL at which time you may allocate
additional space. Because the SV A space shortens the amount of virtual

2.18 DOS/VSE System Management Guide

storage that is left to the partitions, you should take the SV A and its size
into your planning considerations.

Virt-I.Ja~

Storage <

I Supervisor

System Directory List
~-------------------

Resident, Reenterable
Relocatable Phases

~-------------------

System GETVIS Area

FJgUre 2-4. Layout of the Shared Virtual Area

I

...

> SVA

The System Directory Ust. The system directory list (SDL) contains copies
of selected entries of the system core image library directory. This provides
fast retrieval of frequently used phases. (These phases may be resident in
the SVA or in the system core iinage library.) Having SDL entries avoids
searching the system core image directory (on disk) for each phase load
request. Figure 2-5 shows the SDL and its relationship to the system core
image library.

Chapter 2: Planning the System 2.19

/
/

/
I /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ I

/ /
/ /

/ /
/ /

/ /
/ /

Virtual Storage

SOL

Reenterable, Relocatable Phases SVA

System GETVIS Area

(/
PHASEB I J .oL.-...a..-P_HA_S_E_X __ ~~

PHASEA

PHASEB

PHASEX

,
" ,.

/

" ,.
" ,

/ ,.

,. " " /

/

"

,.
"

" ,.

The system directory list (SOL), built by OOSIVSE, provides for fast locating of frequently used phases either in the SVA
or in the system core image library.

The SOL entries point directly to a phase's location on disk.

The SO L entries are copies of selected Core I mage Library Directory entries.

Figure 2-5. System Directory List

2.20 DOS/VSE System Management Guide

The SV A Phase Area. The SV A phase area always contains DOS/VSE
system phases; the area may, in addition, contain mM licensed program
phases and user-written phases.

Phases that are in the SV A may be used concurrently by more than one
partition if the phases are reenterable and relocatable. Having phases Ll1 the
SV A speeds processing by:

• eliminating loading from a core image library - When a phase is
resident in the SV A, it does not have to be loaded from the library for
each execution. This saves the disk I/O of a directory search.
Additionally, even if the phase was paged out to the page data set,
time is saved as paging is generally faster than loading from a core
image library.

• reducing processor storage demands - If the phase is being shared
between two or more partitions, the impact on the page pool is less
than if two or more copies of the phase were loaded into storage.

The System GETVIS Area. The system GETVIS area is used by DOS/VSE
to dynamically acquire virtual storage for its own use.

An example of the GETVIS area use is the initialization of the SDAID
program. The SDAID program normally requires approximately lOOK of
system GETVIS space when it is being initialized. For more details on the
SDAID program see DOS /VSE Serviceability Aids and Debugging
Procedures.

Size of the SV A. At IPL, based upon the chosen supervisor options,
DOS/VSE calculates the SV A size. The supervisor options and their cost in
SVA space are shown in the manual DOS/VSE System Generation.
Additional space requirements for installed licensed programs such as
VSE/VSAM or DOS/VS SORT/MERGE are also automatically calculated
by DOS/VSE at IPL. The space requirements for each licensed program
are shown in the appropriate licensed program documentation. To support
user-written programs in the SV A you must indicate the required SV A
space. The parameters SDL, PSIZE and GETVIS of the IPL command SV A
are used to increase the SV A size beyond the DOS/VSE defaults.

The loading of certain phases into the SV A, and the creation of SDL
entries for them occur automatically at IPL. For information on how to
increase the size of the SV A as well as loading items not automatically
included by DOS/VSE, see the section Starting the System in Chapter 3,
Using the System.

Denning the Number of Partitions

In the NPARTS parameter of the SUPVR generation macro, you define the
maximum number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require. Assume
you want to run concurrently the following types of programs:

Chapter 2: Planning the System 2.21

Denning Partition Priorities

• Test cases (assemble/compile, link-edit, and execute)

• Daily application programs

• A spooling program, such as VSE/POWER

Teleprocessing application program.

For this case, you should generate a system with four to five partitions,
depending on the volume of application program processing. If, for
example, your system includes the licensed program ACF /VT AM, at least
two partitions must be specified: one for ACF/VTAM and one for your
VT AM application programs.

Because you cannot alter the NP ARTS specification unless you
regenerate the supervisor, it may be advantageous to specify more partitions
than you see an immediate need for.

A processing priority is associated with each partition in a
multiprogramming system. If you do not specify processing priorities during
system generation, DOS/VSE establishes them by default following the
concept indicated by the examples given below.

H you specify

NPARTS=2
NPARTS=3
NPARTS=4

The default processing is
(from low to high)

BG-FI
BG - F2 - FI
BG - F3 - F2 - FI

In most cases, there will be no need to select another priority sequence;
however, the PRTY parameter in the FOPT generation macro is provided
for this purpose. In the PRTY parameter you can specify the partition
identifiers in any desired sequence, and thus select another priority
sequence.

The operator can display and modify the priorities established during
supervisor generation at any time during processing with the PR TY
command. He may want to do this in order to accelerate the execution of a
given job.

2.22 DOS/VSE System Management Guide

DerIDing the Page Data Set

The page data set, a sequentially organized set of records on a direct access
device, is required to accommodate paged-out pages of programs that are
being executed in virtual mode. The size of the page data set depends on
the amount of page able address space.

You define the page data set through the IPL command DPD. This
command is discussed in section IPL commands in Chapter 3, Using the
System. other items, the channel and unit number
of the

the extent.

The page data set can reside on any disk device that is supported by
DOS/VSE as a system residence device .

. ;.;; DOS!VSEcalculates th~·~pp~~lilnit address according to the
amount ··pageable storage defined for your system. The usage of disk
space is shown below:

Disk Device Type Pages per Cylinder

2314 60
3330 114
3340 36
3350 240
FBA see note

Note: Four FBA blocks contain one page of virtual storage; hence a 2M
byte system (2048K) requires 4096 FBA blocks (2048K + 2K x 4
blocks).

In ECPS:VSE mode, the virtual storage size to be mapped on the page
data set, is a function of the hardware. The default system size is 16M
bytes (16,384K). The default may be altered during Initial Microprogram
Load (IML) to: 2048K, 4096K or 8192K. How to perform IML is
described in the mM provided Operator's Library Procedures manual for
your central processor. If disk space is a concern, you Inight consider
reducing the virtual storage size. For example, a 16M (16,384K) system
requires 32,768 FHA blocks whereas a 4M (4096K) system requires 8192
FBA blocks.

In 370 mode, DOS/VSE uses the value specified in the VSIZE
parameter of the VST AB macro to calculate the disk space requirements. If
your supervisor includes page able routines, DOS/VSE reserves space on the
page data set for these routines.

Chapter 2: Planning the System 2.23

Improving the Paging Mechanism

Library Options

The page handling is controlled by the page management routines of the
supervisor. You can, however, influence the paging mechanism in order to
reduce the number of page faults, to minimize the page I/O activity, and to
control the page traffic within a specific partition. You can do this by
means of three macros: RELPAG, FCEPGOUT, and PAGEIN.

RELPAG (Release Page). This macro informs the page management
routines that the contents of one or more pages is no longer required and
need not be saved on the page data set when the page frames occupied by
these pages are claimed for use by other pages. This saves unnecessary page
I/O.

FCEPGOUT (Force Page-out). The macro informs the page management
routines that one or more pages will not be needed until a later stage of
processing, and that they should be given highest page-out priority. This
prevents page-out of other pages which, should they be paged-out, might be
needed again immediately after being written onto the page data set.

PAGEIN. This macro requests one or more pages to be paged-in in
advance, so that page faults can be avoided when the specified pages are
needed in processor storage. If the specified pages are already in processor
storage when the macro is issued, they are given lowest priority for
page-out.

If you anticipate the use of one or more of the above macros in any of
your programs, specify PAGEIN=n in the SUPVR generation macro. This
generates the support for the three macros. The value of n must be 1 or
greater. It specifies the number of page-in requests that can be queued if
more than one P AGEIN macro is issued concurrently in the system.

You may generate support for special applications in the procedure library
and for reserved supervisor space to achieve better fetching performance.
These options are described below.

Extended Support for the Procedure Library

Normally, cataloged procedures can consist of job control statements or
linkage editor control statements or both. However, with the extended
support, cataloged procedures can include data that is to be read from
SYSIPT. Such data may be, for instance, utility control statements to be
processed by a utility program.

To include the extended support for the procedure library, specify the
SYSFIL parameter in the FOPT generation macro, which is discussed in the
section Disk Options in this chapter.

More information on the procedure library is contained in the section
Planning the Libraries.

2.24 DOS/VSE System Management Guide

Second Level Directory for Core Image Ubraries

Telecommunication

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence.

An index of the directory entries is kept in the supervisor in a second
level directory (SLD). The SLD speeds the retrieval of phases froin the
system core image library. You may specify the number of entries the SLD
will contain through the SLD parameter of the FOPT generation macro.
The value specified depends on the type of disk device that contains the
system core image library:

For CKD devices - the number of directory tracks.
For FBA devices - the number of directory blocks.

There is a PSLD parameter in the FOPT macro which specifies the number
of entries for a private second level directory (PSLD) for the private core
image libraries. You have one PSLD for each partition specified in
NP-AR'f-S in the SUPVR generation macro. You should specify a PSLD
value that accommodates for your largest private core image library; the
size of each PSLD will be based on one specification in the FOPT macro.

DOS/VSE provides facilities for telecommunication, the interchange of data
between an application in the system and terminals connected via
telecommunication lines. These facilities provide the ability to define such
lines for supervisor assembly and to specify one or more access methods for
input/ output services between an application and terminals.

Teleprocessing devices (terminals) are normally attached to the CPU
through transmission control units or communications controllers. The
control unit must be defined via the IPL command ADD. In some cases
there is a direct local attachment.

The access methods, defined in the TP parameter of the SUPVR
generation macro, are the licensed programs:

• Advanced Communication Function/VT AM (ACF /VT AM)

• Basic Telecommunication Access Method - Extended Support
(BTAM-ES)

Supervisor support for BTAM-ES is standard, also the support for TP
balancing (teleprocessing balancing).

For detailed information on generating and using a teleprocessing access
method, refer to the appropriate teleprocessing publications. Teleprocessing
users should also pay particular attention to section I/O Options later in
this chapter and read section Balancing Telecommunication in Chapter 4,
Using the Facilities and Options of DOS/VSE.

Chapter 2: Planning the System 2.25

BT AM-ES Support

ACF /VT AM Support

Applications using BTAM-ES can execute in either virtual or real mode. If
you have used BT AM under DOS or DOS/VS in the past, you have to
reassemble and catalog BTMOD before submitting your applications to
DOS/VSE for execution. If BTMOD and the application program were
assembled together, the application program must also be reassembled and
re-linkedited.

ACF/VTAM executes in virtual mode in its own partition. When VTAM is
specified, RMS support (370 models 115 and 125 only) is automatically
generated.

As ACF /VT AM uses the PFIX macro, processor storage page frames
must be allocated to the partition in which ACF/VTAM is to run. A
separate partition is required for VT AM application programs. For
information on installing this licensed program refer to the ACF /VT AM
documentation.

Interactive Computing and Control

The licensed program VSE/Interactive Computing and Control Facility
(VSE/ICCF) offers interactive time shared computing and control services
to terminal users.

VSE/ICCF provides a collection of tools for

• Online library maintenance

• Context editing and text manipulation

• Development and execution of interactive problem programs

• Job entry

• Monitoring of time-shared job processing.

VSE/ICCF runs in a DOS/VSE partition. Support for VSE/ICCF is
generated in the supervisor by specifying ICCF=YES in the SUPVR
generation macro.

2.26 DOS/VSE System Management Guide

Chapter 2: Planning the System 2.27

ASCII Support

Job Accounting

Timer Services

In addition to processing EBCDIC files, DOS/VSE can process magnetic
tape files written in ASCII (American National Standard Code for
Information Interchange), a 128-character, 7-bit code. The high-order bit in
the 8-bit environment is zero. ASCII tape files may be either unlabeled or
labeled according to the specifications of the American National Standards
Institute, Inc. (ANSI).

ASCII tape files may be processed in any partition. Input files
containing ASCII data are translated to EBCDIC as records are read into
the I/O area. Output files described as ASCII are translated from EBCDIC
to ASCII just prior to writing the records. No user translation tables or
instructions are required.

If your DOS/VSE is required to process ASCII files, specify
ASCII= YES in the SUPVR generation macro.

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applications, etc.

When this option is selected (JA=YES in the FOPT generation macro),
job accounting tables are built in the supervisor to accumulate accounting
information. One DOS/VSE job accounting table is maintained per
partition. The format of these tables and information on how to write a
DOS/VSE job accounting routine is given in Chapter 4, Using the
Facilities and Options of DOS/VSE.

To utilize this job accounting information, you must write a routine to
store or print the desired portions of the table. This routine must be
cataloged in the core image library under the name $JOBACCT.

If the user I/O routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

If the licensed program VSE/POWER job accounting is desired,
support for the job accounting interface is required. No user-written data
collection routine is then necessary. Refer to the VSE/POWER
documentation.

The following timer services are available to DOS/VSE users:

• Time-of -day clock
• Interval timer
• Task Timer

2.28 DOS/VSE System Management Guide

Time-of-Day Clock

Interval Timer

Task. TIDIer

The time-of-day clock is a standard hardware feature, while the task timer
and the interval timer require other hardware features (the clock
comparator and the CPU timer) which are standard on all System/370 and
4300 processors, except the 370 models 135 and 145. Utilization of these
timer services in DOS/VSE is briefly discussed below. Except for the task
timer, the timer services are automatically provided in DOS/VSE. Support
for the task timer is a supervisor generation option.

The time-of-day (TOD) clock provides a consistent measure of elapsed time
suitable for time-of -day indication.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of -day to be stored in
general register 1. A description of the use of the GETIME macro
instruction is given in DOS/VSE Macro User's Guide.

The time-of -day and the date are automatically included with each
/ / JOB and / & job control statement that is printed on SYSLST or
SYSLOG.

The ZONE parameter in the FOPT macro is associated with the TOD
support. In the ZONE parameter you indicate the difference between
Greenwich mean time (GMT) and local time in hours and minutes. If the
local time to be specified is GMT, the ZONE parameter can be omitted.

During the IPL procedure, if IPL is performed from SYSLOG, a
message is printed on the operator console to inform the operator of the
status of the date, clock, and zone. If necessary, the operator can correct
this information in the SET command.

The interval timer can be used by programs (main tasks or subtasks or
both) that need to schedule certain processing based on discrete time
intervals. If a problem program is written with the appropriate macros and
routines, the interval timer causes an external interrupt when the time limit
established by the program has elapsed.

Several problem program macros relate to interval timer support. For
information about using these macros, refer to DOS/VSE Macro User's
Guide.

The task timer can be used by the main task of the partition owning the
task timer to escape from processing and enter an exit routine after a
specified period of time. This discrete time interval is decremented only
when the main task is executing. If support for the task timer is included in
the supervisor, and the owning partition's main task is written with the
appropriate macro instructions and routines, the specified task timer routine
is entered when the time interval has elapsed.

Chapter 2: Planning the System 2.29

Console BUffering

To include support for the task timer in the supervisor, specify the
TTIME parameter in the FOPT generation macro.

H an exit routine is not specified in the STXIT IT macro, the interrupt
is ignored. The SETI macro is used to set the time interval, and that
interval can be tested or canceled by means of the TESTI macro. The
EXIT TI macro is used to return control from a task timer exit routine.

In an installation with a relatively slow console device, the entire system
can be held up while messages are being issued to the operator. Console
buffering support builds a queue of output messages and returns control
immediately to the partition requesting the output. The messages are then
written as soon as the console becomes available.

Console buffering is useful in two cases:

• when your console device is a 3210/3215 printer keyboard, or

• when your console is a display operator console and a printer is used to
produce a hard copy of messages while they are displayed on the
screen.

In an installation without such printers, a performance improvement cannot
be obtained by requesting console buffering support. On the contrary,
console buffering may in that case even work to your disadvantage: certain
DOS/VSE tasks such as error recovery routines issue high priority
messages. H your console is a display operator console, and a DASD rather
than a printer is used as a hard copy file, then, depending on the size of
your console buffer, messages may be issued to the screen in such rapid
succession that a message like INTERVENTION REQUIRED ... can easily
be overlooked by the operator.

Support for console buffering is indicated by the CBF=n parameter in
the FOPT generation macro (where n is the number of I/O requests to be
buffered). H you decide to use console buffering, at least one buffer should
be specified for each partition or task issuing messages so that buffers are
available and the task can continue processing while the message is being
printed. Two per partition is recommended. Console buffering is not split
per partition, but used by the whole system.

2.30 DOS/VSE System Management Guide

User Exit Routines

Interval Tmer Exit

Program Check Exit

If required, the supervisor can permit user routines to gain control when
any of the following types of events occurs:

• Interval Timer Interrupt (IT)
• Program Check Interrupt (PC)
• Abnormal Termination (AB)
• Operator Communication Interrupt (OC)
• Task Timer Interrupt (TT)
• Page Fault Handling Overlap (PHO)

Both the supervisor and the problem program that contains the user routine
must have the proper code to establish an interface.

The problem program that wants to utilize the options must contain
code to set up the interface. For the first five events, code can be generated
by the STXIT macro. For the last event, code is generated by the SETPFA
macrj)~ ThiS-codeis- assembled -in the -main-line of a pr-Oblem p-r-ogram.

Short descriptions of the support for each of the types of user exit
routines follow, indicating the associated problem program macros. For
information on how multitasking affects this support and what happens if
multiple events coincide, refer to DOS/VSE Macro User's Guide. Some
high-level languages offer similar facilities, for details of which see the
appropriate programmer's guide.

Suppose you want to take a checkpoint on a job at a certain time after it
has started. Code the STXIT to set up the interface of your user-exit
routine with the supervisor; use the SETIME macro to set a time interval.
When that interval elapses, an interval timer interrupt occurs and control is
given to your user routine. The user routine need not be entered
immediately. For instance, if the user routine is in the background partition,
and a foreground partition is active, the user routine will not be entered
until the background partition becomes active.

To find out the time remaining in an interval, a program can issue the
TTIMER macro instruction. The supervisor then loads this value in general
register O. This macro can also be used to cancel the remaining time in the
interval.

Programs can establish linkage from the supervisor to a user program-check
exit routine by coding an STXIT macro. If a program check occurs within
the program, the supervisor gives control to the user routine instead of
discontinuing the program. The user routine can analyze the program check
and choose to ignore, to correct, or to accept it.

If the check is ignored, control can be given back to the supervisor by
executing an EXIT PC macro; if the user routine can correct the error

Chapter 2: Planning the System 2.31

Abnormal Termination Exit

Operator Communications Exit

Task Timer Exit

condition, the routine can request via the EXIT macro that processing of
the main line program continue.

H the problem cannot be resolved, the program check is accepted as
valid. The user routine can then terminate further processing of the program
by issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can be
especially advantageous when using LIOCS. In that case, I/O housekeeping
such as closing files and freeing tracks can be performed before termination
of the job or task.

Programs can establish linkage from the supervisor to an abnormal
termination exit routine by issuing an STXIT AB macro.

The macro allows a user routine to get control from the supervisor
before an abnormal end-of-job condition discontinues the processing of the
program. The user routine normally ends with one of the termination
macros (CANCEL, DUMP, JDUMP or EOJ) to terminate the problem
program and to return control to the supervisor, rather than by initiating
the continuation of the problem program.

DOS/VSE allows problem programs to provide a routine for handling
external interrupts from the operator. This support is useful in a number of
applications, for example:

• A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE XXX on unit xxx and press
the interrupt key.

In telecommunication, the OC exit allows the operator to start and stop
activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run sheets with explicit instructions
may be required to ensure understanding between programmer and
operator.

The external interrupt that links to an OC user exit routine is caused by
pressing the request key and, when the attention routine identifier AR
appears, replying MSG followed by the partition identifier (such as BG or
F2).

Task timer support is included in the supervisor by the TTIME parameter
of the FOPT generation macro. This parameter also identifies the partition
owning the task timer. Only the main task in the owning partition can
utilize the task timer.

The time interval is specified in the SETI macro and is decremented
only when the main task is executing. The exit routine specified in the

2.32 DOS/VSE System Management Guide

STXIT 'IT macro is entered when the interval has elapsed, provided linkage
between that routine and the supervisor has already been established, at
that point of program execution.

To find out the time remaining in an interval, the task can issue a
TES'IT macro. This causes the time remaining in the interval to be
returned in register O. The task can aiso issue a TESTT CANCEL to
cancel the remaining interval time. In this case the exit routine is not
entered.

Page Fault Handling Overlap Exit

Disk Options

System Fdes on Disk or Diskette

A user routine can continue processing during the time a page fault is being
handled by the system, provided this page fault occurs in the same task and
not in a supervisor routine invoked by this task. This support is of interest
only for programs executed in virtual mode and making use of
user-developed subtasking rather than ffiM-supplied multitasking.

Such programs may issue the SETPF A macro instruction to establish
linkage from the page management routines in the supervisor to a user
routine, called the page fault appendage routine. The usage of the SETPF A
macro is described in DOSjVSE Macro User's Guide.

Options are provided for some DASD devices. These options are:

• System files on disk (or diskette)
• DASD file protection
• Track hold
• Rotational position sensing

The system logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH can be
assigned to a disk or diskette device. When a system logical unit is assigned
to a disk, it must have only one extent.

For example, you may want to catalog the output from a language
translator to the relocatable library. During the language translation step,
SYSPCH could be assigned to a disk extent. The resultant object module
would then be cataloged via the librarian program MAINT by assigning
SYSIPT to the same disk extent.

Support for system files on disk or diskette is specified in the SYSFIL
parameter of the FOPT generation macro.

The SYSFIL option is required to implement extended support for the
procedure library. This means that cataloged procedures may contain in-line
SYSIPT data. The sets of control statements that can be cataloged into the
procedure library are, therefore, not limited to job control or linkage editor
control statements. (See also Library Options earlier in this chapter.)

Chapter 2: Planning the System 2.33

DASD Fde Protection

Track Hold Option

For systems without magnetic tapes, the SYSFIL option is required in
order to install mM programs and apply program maintenance, which, in
this case, must be distributed on disk packs in SYSIN format.

This feature is provided to prevent user programs, which utilize DAM or
user-written channel programs for writing onto DASD, from writing data
outside of the limits of the DASD file currently being accessed. This might
happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT generation macro.

DASDFP gives protection on the basis of programmer logical units. If
two DASD files are open in the same partition and use the same
programmer logical unit, the DASDFP option does not give any protection
to either of the two files.

If you are using physical IOCS, you must use the DTFPH macro to
define the file. The file must be opened using the OPEN or OPENR macro,
and each channel program must commence with a long seek (X'07')
command, and contain no chained long seeks.

Specifying DASDFP does not prevent file contention between
partitions, or within partitions if the same symbolic unit is used. Thus, more
than one partition may access the same file at the same time and may even
attempt to update the same record simultaneously. The track hold option
(TRKHLD) is provided to solve this problem. Note, however, that all
DASD writes (DAM and others) will be checked for being within the
file-protect range.

Note that, for CKD devices, no protection is given to partially allocated
cylinders; files to be protected should begin and end on cylinder
boundaries.

The track hold option is used to ensure that, while data in a DASD file is
being modified by one task, no other task in the system can access that
data. The facility is available to all DOS/VSE disk access methods,
including VSE/VSAM (and also ISAM Interface, except the LOAD
function).

The track hold option can be selected by specifying the TRKHLD
parameter in the FOPT generation macro.

Additionally, user programs must invoke the track hold feature. For the
track hold feature to be effective all programs accessing the same file must
request its use.

The track hold feature is requested in the DTF of the user program by
specifying HOLD = YES. For VSE/VSAM files the track hold feature is

2.34 DOS/VSE System Management Guide

Rotational Position Sensing

specified at the time the file is defined via the SHARE OPTION 4
parameter .

. For FBA devices, the track hold facility protects the range of blocks
which contains the accessed data. For eKD devices, the facility protects the
track that contains the data being accessed.

Deadlock occurs if one task is waiting for a DASD area held by a
second task and the second task is waiting for a DASD area held by the
first. This can be prevented by establishing the convention that every task
must be programmed so that it will not attempt to hold more than one
DASD area at a time. Deadlock may also occur if the maximum number of
DASD areas demanded to be held by all tasks combined exceeds the
niaximum specified in the TRKHLD parameter.

Rotational Position Sensing (RPS) is a feature on all mM eKD disk
storage devices except 2311,2314, and 2319; it is optionally available on
mM 3340. It provides the ability to overlap positioning operations on one
device with service requests for other devices on a block multiplexer
channel (or its equivalent on System/370 Model 115 or 125).

DOS/VSE makes use of the feature if you specify RPS=YES in the
FOPT generation macro. However, you should not request RPS support if
you use the 23xx emulator on a Model 115 or 125.

Better channel utilization can increase system throughput, especially in
large multiprogramming systems with heavy concurrent I/O activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device on this channel can be accessed until the
data has been transferred. With block multiplexer channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on a track requires adding RPS
eews to the direct access storage device channel programs. DOS/VSE
system control and service programs that support RPS, dynamically build
these eews during program execution provided that the supervisor is
generated with RPS support and that the direct access storage device has
the feature.

RPS support for DOS/VSE is provided in all access methods which
support RPS DASD devices and in the DOS/VSE system control and
service programs where the implementation benefits total system
performance. Implementation of RPS support in DOS/VSE utilizes virtual
storage to enable you to use RPS to avoid recompiling or relink-editing
your problem programs. The partition GETVIS area is used to generate an
extension to the DTF, and the shared virtual area is used to hold the RPS
phases which are used in lieu of the logic modules of LIOeS.

Efficient use of RPS depends on each channel program's ability to free
that channel so that it can service requests for other devices. Programs
using DOS/VSE DASD LIOeS access methods will have RPS channel

Chapter 2: Planning the System 2.35

programs built by the access method. Programs using PIOCS for DASD
access have to be recoded to include Set Sector CCWs and to establish
arguments for the CCWs. If this is not done, these programs will destroy
the effectiveness of RPS by monopolizing the channel.

The RPS phases are loaded into the SV A by IPL if you have specified
RPS= YES in the FOPT generation macro.

Figure 2-6 shows the organization of a user's program running in virtual
storage without RPS support.

Figure 2-7 shows how, with RPS support, this organization will be
modified when the pertinent file is opened to put the DTF extension in the
partition GETVIS area. The pointers to the RPS phases which are used in
lieu of the logic module and channel program will be put into the DTF
while the non-RPS logic module and channel program addresses will be
saved in the DTF extension. The DTF extension will be freed and the
pointers restored to their original values when the file is closed.

DASD File Support for 3330-11 and 3350. Sequential or direct-access files
can be created and accessed on the 3330-11 and 3350 disk devices in the
same way as on other mM DASDs if the pertinent program has so been
written. However, to access these devices from programs that were written
to create and access sequential and direct-access files on other mM DASD
types (such as 2314 or 3330-1), do one of the following without
recompiling or reassembling your programs:

• Specify RPS= YES in the FOPT generation macro for supervisor
assembly. With RPS support, DOS/VSE is able to access the 3330-11
or 3350 even if the original program specified a different device.

• If you have DOS/VSE or Release 34 of DOS/VS installed, relink your
programs. This makes them capable of accessing the 3330-11 or 3350.
The sequential disk and direct access logic modules are able to handle
all CKD disk types.

2.36 DOS/VSE System Management Guide

T
USER PROGRAM

DTF I
NON-RPS CCW STRiNG +

NON-RPS LOG IC MODULE +
r----------------
NON-RPS CHANNEL PROGRAM

NON-RPS

LOGIC MODULE

r-----------------

}

Partition
VIRTUAL STORAGE GETVIS

area

~------------------------~

FIgUre 2-6. User Program R.unning in Vutual Storage without RPS Support

w
(!)
«
a:
o
I­en
...J
«
::::>
I­
a:
:;

USE R PROG RAM

DTF

RPS CCWSTRING
RPS LOGIC MODULE

NON-RPS CHANNEL PROGRAM

(not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF

but available to other DTF)

~----------------

NON-RPS CCW STRING
NON-RPS LOGIC MODULE j ------------

DTF EXTENSION

~~~~~A~NE=-PROGR~j-
Partition 

> GETVIS 
area 

FIgUre 2-7. User Program Running in Virtual Storage using RPS Versions of 
Logic Module and Channel Program 

Chapter 2: Planning the System 2.37 



1/0 Options 

Channel Queue 

The channel queue (CHANQ) is used by DOS/VSE to schedule I/O 
operations. DOS/VSE builds an entry in the channel queue whenever a 
request is made for an I/O operation and the entry remains in the queue 
until the operation has completed. Thus, at any point in time, the queue 
consists of entries for I/O operations in progress and I/O operations 
waiting for initiation. Whenever an I/O event completes, the queue is 
examined to see if another entry exists for the channel, and if so, the 
operation is initiated. The number of channel queue entries to be reserved 
in the supervisor can be specified in the CHANQ parameter of the lOT AB 
macro. 

The number of occupied entries in the channel queue depends on the 
activity in the system and no accurate formulas for determining the 
optimum size can be given. 

Specifying too small a channel queue will cause performance 
degradation, too large a channel queue value will waste storage space. 

Tasks or programs that request an I/O operation when the channel 
queue is full will be set in the wait state until an entry becomes free. 

To avoid performance degradation it is better initially to specify ample 
channel queue space, and reduce the allotted space later, if desired. Given 
below is a rule-oJ-thumb that you may follow: 

• Specify at least one queue entry for each I/O request that can be 
issued concurrently (open files per job step per partition). 

• Specify one entry for the SYSRES file and one for the page data set. 

• Specify one entry for each task or partition in the system. 

• Specify one entry for each console buffer in the system. 

• If multiple volume files are used on the system, specify one entry for 
each file being accessed at the same time. 

• Add two entries per tape drive. 

• Specify one entry for each teleprocessing line that could solicit input. If 
mM 2260 local or 3270 local video display units are to be supported 
by BT AM-ES, specify one entry for each display. 

• Add five entries to the total for contingencies. 

When the system has been generated, run as many programs as represent 
the heaviest work load; in particular, run any teleprocessing programs. 
Then, before the next IPL, obtain a formatted dump of virtual storage. 

An analysis of the channel queue should show that entries near the 
beginning of the table have been used, whereas those near the end are 
unused. Although the unused entries are normally redundant, a few surplus 
entries should be retained to allow for exceptional cases. If all the entries 

2.38 DOS!VSE System Management Guide 



have been used, then the channel queue was almost certainly too small, and 
a process of experimentation will show the correct size. 

Figure 2-8 shows the channel queue as displayed in a formatted dump. 
Refer to DOS /VSE Serviceability Aids and Debugging Procedures for 
information on obtaining a formatted dump. 

*** CHANN~L QUFur TARLF *** 
FRFF LT 5T P(JPHE~ 02 

A8DR PGS (HAl1\! eCB R.E~ FLr; LUIj 'SI( TRANSMIT FIX F I XL 1ST I NFORMA nON ACCUMULATED C5W 
PTR ADDR I!) NfJ 10 INFORMTN FLG AOOR USFD INTERNALLY INFORMA nON 

0123P4 0) 03 OA6568 30 00 04 30 8BOOOO,)0 00 01~144 00014C7400000000 0000000000000000 
0123D4 01 FF 087D68 20 00 04 20 88000')00 00 01'3168 00014C7400000000 0000000000000000 
0123F4 02 as 0(10:)00 0:: 00 03 50 330000')0 00 000000 0001401COOOOOOOO 000029500C40OC40 
012414 03 01 OC[550 50 00 04 50 880000'10 00 018180 00014C7400000000 0000000000000000 
01;>434 04 00 06A~b8 40 00 04 40 BBOOOO00 00 01B120 00014C7400000000 0000000000000000 
012454 0') 06 000000 

m 
00 FF FF 00000000 00 00001)0 0000000000000000 0000000000000000 

012474 06 07 0001)00 OJ FF FF 0)0000')0 00 ooooao OryOOOOOooooooooo 0000000000000000 
012494 C7 08 OOf)OOO F~ 00 FF FF ()I)OOOc.oo 00 1)000')0 0000000000000000 0000000000000000 
01?4H4 08 09 000000 FF 00 FF FF (10000000 00 000000 0000000000000000 0000000000000000 
0l:?4D4 Oq OA 000)00 FF 00 FF FF 1),)0000,')0 00 000000 0000000000000000 0000000000000000 
O12-.F4 OA 06 000000 FF OC FF FF 000000110 0(') 000000 000000-0000-000000 000-0-0-00000 00 0000 
012')14 O~ ac 000000 FF 00 t:~ FF 0')000000 00 000000 0000000000000000 0000000000000000 
012534 f'C 0D OOGOOO FF 00 FF FF f)')000000 00 000000 0000000000000000 0000000000000000 
012')54 CO OE 00,)000 t:~ 00 I:-F FF 0')000000 00 001)000 0000000000000000 0000000000000000 
012574 (;E OF 000')00 FF 0) FF FF 8·)000001) 00 000000 0000000000000000 0000000000000000 
O12c;Q4 ct: 10 000')00 Fe: 00 FF FF 00000000 00 000000 0000:)00000000000 0000000000000000 
012'5'14 lei 11 000000 FF 00 FF FF 00000000 00 000000 0000000000000000 000000000001)0000 
012<:;D4 11 12 OI)C)'}O FF 0') FF F;:: onoooooo 00 000000 0000000000000000 0000000000000000 
0125F4 12 13 oor~ooo Fe: 00 FF FF ')0000000 00 <)00000 0000000000000000 0000000000000000 
012614 13 F-F 000000 FF 00 F-F FF 000000CO 00 000000 000000000000001)0 0000000000000000 

An unused entry wi II have an F F in this location 

Figure 2-8. Channel Queue Table 

Supervisor Buffers for I/O Processing 

Supervisor buffer space is used for the handling of I/O requests from 
programs that execute in virtual mode. You specify the number of buffers 
via the BUFSIZE parameter of the VST AB generation macro. 

The amount of buffer space required is dependent on the number and 
type of concurrent 110 requests. The number of entries that you specify in 
the channel queue table can be used as a guide. Generally three times the 
number of channel queue table entries will give a sufficient number of 
buffers. If ISAM is the predominant access method used or if you have 
generated RPS support, you should increase the number of buffers by 20%. 

Because your supervisor must end on a 2K boundary, any space 
between the end of the supervisor and the next 2K boundary will be used 
for I/O buffers in addition to the amount you specify in the VSTAB 
generation macro. 

To determine whether or not you specified a sufficient number of 
buffers, use a technique similar to the one suggested for an analysis of the 
channel queue. While running as many programs as represent your heaviest 
work load, issue the DUMP command specifying the begin and end 
addresses of the buffer area in the supervisor; if all blocks have been used, 
then probably too few buffers were specified. 

The use of the buffers is different in ECPS:VSE and 370 mode. 

Chapter 2: Planning the System 2.39 



ECPS:VSE Mode. The buffers are called work blocks, and they have a size 
of 36 bytes each. DOS/VSE uses the work blocks to store information 
about your channel program and the I/O areas for that channel program. 
The information will be used to fix in processor storage your I/O areas, 
channel program and control blocks until the I/O request has been 
satisfied. The information stored is referred to as a fixlist. For example, 
DOS/VSE needs one workblock per I/O request for an FBA type DASD 
and two or more such blocks per I/O request for a CKD type DASD. 

If you are writing your own channel programs it is suggested that you 
use the IORB macro rather than the CCB so that your channel program 
will contain a fixlist; processing will then be faster. For more information 
about these two macros, refer to DOS/VSE Macro Reference. 

370 Mode. In 370 mode the buffers are called copyblocks and have a size 
of 72 bytes each. DOS/VSE uses the copy blocks to keep a copy of your 
channel program and control blocks in the supervisor area. 

Your channel program refers to virtual addresses and these addresses 
must be translated to reflect the processor storage locations that your I/O 
area(s) actually occupy. (The translation is necessary since 370 mode does 
not support relocating channels which can do the address translation.) Once 
your channel program is translated, the I/O area(s) are fixed in processor 
storage and the translated channel program is given to the channel for 
execution. If you have installed the licensed program VSE/VSAM the 
minimum number of buffers you should specify is 40. To execute 
DOS/VSE system utility programs, DOS/VSE needs up to 38 copy blocks. 

Bypassing System Translation of I/O Addresses. In most instances, double 
buffering techniques and an increase in block size can significantly reduce 
the system overhead associated with channel program translation. However, 
in extreme cases, you may wish to perform your own translation of channel 
programs and thereby avoid system CCW translation overhead. Programs 
that might require this are EXCP programs that have very high start I/O 
rates and that repeatedly use the same channel programs. 

DOS/VSE provides support that assists in the translation of channel 
programs. This support allows you to use the VIRT AD and REALAD 
macros as well as the REAL parameter of the EXCP macro. You must 
obtain processor storage by means of the PFIX macro and then translate 
the channel program. For detailed information see DOS/VSE Macro User's 
Guide and DOS/VSE Macro Reference. 

The Fast Translate or Fast Function Option. You may specify 
F ASTTR= YES in the FOPT generation macro. This creates a supervisor 
with fast-function support in ECPS:VSE mode and fast-translate support in 
370 mode. 

The feature works essentially the same way in both ECPS:VSE and 370 
mode. That is, the supervisor buffers used for an I/O request are not 
released when the I/O request is completed. The buffers are saved and the 
referenced I/O areas are fixed in processor storage until the end of job. 
This can speed I/O processing if your program has frequent repetitive I/O 
requests. The overall effect on your DOS/VSE system is subjective, 
however. 

2.40 DOS/VSE System Management Guide 



Error Queue 

The page pool is decreased in size because the I/O areas remain fixed. 
Additionally, more supervisor buffers are required than without this support. 
In ECPS:VSE mode specify, as a rule of thumb, a number of buffers that is 
9 times the number of channel queue entries and in 370 mode 6 times the 
number of channel queue entries. 

If you do not specify enough buffers or the page pool becomes too 
small, the saved buffers and fixed I/O areas are released as required by 
DOS/VSE. 

Specification of FASTTR= YES may cause degradation of performance 
when CICS/VS accesses SAM, ISAM arid DAM files. 

The error queue option is of value to installations using a large number of 
I/O devices, for instance, teleprocessing systems. The ERRQ parameter of 
the FOPT generation macro allows you to specify the number of error 
queue entries within the error recovery block of the supervisor. These 
entries are used to record information on I/O device errors, and this 
information is used by the ERP and RMSR routines. The normal default 
value is five entries, but in ERRQ you can specify up to 25. 

Reliability/A. vail ability / Se",iceability 

DOS/VSE includes routines that analyze and record CPU, channel, and 
device errors and attempt to recover from them. The data is stored on the 
system recorder file (SYSREC). The information obtained from this file 
serves not only as an aid in diagnosing machine errors, but also helps mM 
customer engineers to increase reliability, availability and serviceability 
(RAS) of your system. 

If on-line recovery is impossible, the system may be placed in a hard 
wait state. A message is then issued to the system operator to run either the 
SEREP or EREP program to obtain the diagnostic data. 

On the mM System/370 Models 115 and 125, errors in the CPU and 
natively attached input/output devices (for example, card reader/punch, 
disk and printer) are recorded on the system diskette (see note). This 
hardware error recording is independent of the software routines. The 
recorded hardware statistics may be obtained on the video display unit 
(DOC), on advice of the mM customer engineer, through the LOG 
ANALYSIS displays. Error recovery for channel-attached input/output 
devices for these CPU models requires the use of software routines with 
error recording on SYSREC, known a recovery management support 
(RMS). DOS/VSE Serviceability Aids and Debugging Procedures contains 
more detailed information about the various RAS features discussed below 
in context with a discussion of RMS. 

Chapter 2: Planning the System 2.41 



Recovery Management Support 

Note: IBM System/3 70 Model 158 and the IBM 3031 have a similar 
hardware error recording feature in addition to a software error recording 
facility. 

These routines, referred to as RMS, are standard for all /370 and 4300 
processors except for the System/370. Models 115 and 125. For these 
models, specify the RMS parameter of the SUPVR generation macro to 
obtain the RMS support of your choice. 

If full RMS support is included (RMS= YES is specified or forced for 
models 135 and above), the following RAS facilities are provided: 

• Machine Check Analysis and Recovery 

• Channel Check Handler 

These facilities provide hardware error analysis and attempt recovery. 
Another RAS facility, the Recovery Management Support Recorder 
(RMSR) provides for recording of error and operational statistics on 
SYSREC as follows: 

• Machine Check (CPU) 

• Channel Check 

• Unit check 

• Tape/ disk error statistics by volume 

• MDR (Miscellaneous Data Recorder) 

• IPL information 

• End-of-Day statistics held in main storage 

Device ERP routines are standard for all CPU models. For models 115 and 
125, if full RMS support is not desired, RMSR support for channel attached 
devices, tape units, and TP devices is still included even if you specify 
RMS=NO. Specification of RMS=NO will cause the system to enter a 
hard wait on the occurrence of a hardware failure with no recording on 
SYSREC. However, the system diskette will contain error recordings for 
the CPU and natively attached devices: If your installation plans to use 
DASD switching, RMS= YES must be specified. 

RMSR has several options that may be specified during supervisor 
assembly. These options involve the tape error statistics and error volume 
analysis. 

Tape Error Statistics. As a standard feature the DOS/VSE system gathers 
tape error statistics. This information is accumulated in the PUB2 table for 
each tape unit and stqred in the system recorder file SYSREC. For tapes 
with standard labels the information is accumulated and stored per volume. 
When error statistics are required to enable the monitoring of nonstandard 
or unlabeled tapes, the TEBV parameter of the FOPT generation macro 
gives you two options: the parameter can be specified as IR (individual 

2.42 DOS/VSE System Management Guide 



recording) or as CR (combined recording). IR refers to the accumulation of 
error statistics between two consecutive OPENs on the same tape unit. CR 
refers to the accumulation of error statistics ori the same tape unit until a 
standard labeled tape is opened on that unit or uiltil a ROD command is 
issued. 

Error Volume Analysis. This option ,of RMSR enables you to specify the 
number of temporary read/write errors thatoccur on a tape volume before 
an informatory message is printed on SYSLOG. The threshold value of 
temporary read/write errors is specified in the EV A parameter of the 
FOPT generation macro. 

Defining the System Configuration 

Central Processing Unit 

During supervisor generation you must code various generation macros that 
relate to the central processing unit, to the portability of your system and to 
the I/O devices installed (or planned to be installed). 

In ECPS:VSE mode, there is no need for specifying a CPU model. In 370 
mode, you must specify which central processing unit is to be used. The 
specification is made in the MODEL parameter of the CONFG generation 
macro. 

H you plan to run your generated system on more than one CPU 
model, you may specify any of the models you plan to use. However, you 
must take the following precautions: 

• restrict yourself to one CPU-mode. For example, it is not possible to 
generate a supervisor to be run either on a System/370 or on a 4300 
processor in ECPS:VSE mode. 

• ensure disk support that fits all configurations you plan to use. 

• if you have a display operator console (DOC) installed, this DOC must 
be compatible with the DOC support of your generated supervisor. 
Note that the 3210/3215 printer keyboard is always supported. 
Therefore, if you specify DOC=3277 in the FOPT generation macro, 
for example, your actual console must not be a 125D; it can only be a 
3277 DOC or a 3210/3215 printer keyboard. 

• ensure RMS support, except if you plan to stay with /370 Models 
115/125. For example, if you specify MODEL = 125 and you plan to 
run your supervisor on a Model 138, specify RMS=YES. 

• specify the larger range of channels in the DASDFP parameter, if you 
use DASD file protection. 

Chapter 2: Planning the System 2.43 



Display Operator Console Support 

I/O Devices 

In ECPS:VSE mode, 3277 is the standard operator console support. In 370 
mode, the DOC parameter of the FOPT generation macro determines the 
operator console support in the supervisor. The following discussion 
pertains to 370 mode only. 

If you do not specify the DOC parameter, the following defaults apply: 

MODEL (in CONFG macro) Default 

115, 125 1250 

138, 148, 158, 3031, 4300 (in 370 mode) 3277 

135, 145, 155-11 NO 
(3210/3215 printer 
keyboard support) 

A specification other than the default is not checked or changed to the 
default. For example, MODEL= 158, DOC=NO gives a supervisor that is 
generated for the 158 with console support in 3210/3215 printer keyboard 
mode. 

The supervisor generation macros that relate to the I/O devices attached to 
the CPU are: PIOCS and IOTAB. These macros are discussed below. 

The PIOCS generation macro defines the I/O configuration that is to 
be supported. The associated parameters involve the channel switching and 
disk device support. 

The lOT AB generation macro, in general, defines the area for the 
necessary device tables for the system. The parameters involved refer to: 

• The number of programmer logical units for each partition defined by 
the NPARTS parameter in the SUPVR macro. 

• The number of job information blocks for the system. One is required 
whenever a temporary or alternate assignment is made. 

• The number of DASD devices separate for each mM DASD type 
included in your system configuration. 

• The number of tape devices. 

Other devices like the mM 3800 Printing Subsystem, the mM 3886 
Optical Character Reader, or the mM 3540 Diskette Reader. 

• The number of telecommunication devices (Models 115/125 only). 

• The estimated number of physical I/O devices. 

2.44 DOS/VSE System Management Guide 



Emulators 

Before you can actually use your I/O devices, you must define each unit to 
the system, specifying its characteristics such as channel and unit address, 
device type, its mode (if applicable). You do this via the ADD command at 
the time of Initial Program Load (IPL). 

A supervisor generation macro is not available for t}ljs pu..rpose. 
Nevertheless, because the definition of your I/O devices is likely to remain 
stable over a longer period, you should already at the time of system 
generation give some thought to the sequence of ADD commands you are 
going to use. The total number of ADD commands must not exceed the 
total number of devices specified in the IODEV parameter of the lOT AB 
generation macro. 

Furthermore, physical I/O device addresses must be assigned to logical 
unit names, via the / / ASSGN job control statement or job control 
command (no / I). You cannot make these assignments at the time of 
supervisor generation, even though you may want to have them remain 
unchanged for a longer period of time. 

Definition and assignment of I/O devices is described in sections 
Starting the System and Controlling Jobs within Chapter 3, Using the 
System. 

Through emulation, a program written for execution on a 1400 series 
machine can be executed under DOS/VSE. The emulator program, serving 
as the interface between the user program and the DOS/VSE supervisor, 
runs together with the user program in the same partition. 

Several emulators can be executed concurrently. One exception, 
however, is the Model 125, which cannot execute two 1400-series emulator 
jobs concurrently. To use a 14xx emulator on a Model 125, RPQ SU002 is 
required. 

Tape reading and writing on 1400-series machines can operate with odd 
or even parity checking. If you will be using a 1400-series emulator and 
mixed-parity tape processing, you must specify EU = YES in the SUPVR 
generation macro. 

Prior to executing emulator jobs, you must generate the emulator 
program and catalog it into the core image library. This can be done when 
the system is generated or at a later time. 

For more information about available emulator programs see the 
publication Introduction to DOS /VSE. 

Chapter 2: Planning the System 2.45 



Chapter 3: Using the System 

Starting the System 

This chapter is intended primarily for programmers who are responsible for 
optimum system throughput and for servicing the installation's libraries. The 
topics discussed are: 

Starting the System - describes the initial program load (IPL) procedure. 
It also describes how to create the file required for recording error 
information, how to allocate storage to a partition, and how to start a 
foreground partition. 

Controlling Jobs - describes the required input to the job control 
program, which controls the execution of a job; it includes a brief 
discussion of label processing. 

Linking Programs - -describes -the input t-O the linkage erutm program, 
which links the modules produced by language translators, produces 
executable phases and places them in the core image library. 

Using the Libraries - provides the information on how to alter, copy, and 
inspect the contents of the libraries. It also describes how to allocate space 
to the libraries and how to create private libraries. 

Before a job can be submitted to DOS/VSE for execution, the supervisor 
must be read into processor storage and the job control program must be 
loaded into the background partition. To do this, the operator starts 
DOS/VSE by following the initial program load (IPL) procedure. 

On a 4300 processor the amount of virtual storage available can be 
altered during IML (Initial Microprogram Load) which is done prior to the 
IPL procedure. Refer to section Virtual Storage Size in Chapter 2, 
Planning the System, and also to the Operator's Library Procedures manual 
for the pertinent CPU model. 

This section describes the use of the IPL commands. The exact formats 
of these commands are contained in DOS/VSE System Control Statements 
and DOS/VSE Operating Procedures. This chapter also provides a 
summary of the automatic functions of IPL; descriptions of how to load the 
shared virtual area, and how to create the system recorder file (SYSREC) 
and the hard copy file; a section on the optional user exit routine for 
user=defined processing after IPL; and a section on enter.ng data into 
SYSREC. 

You must perform the IPL procedure each time you have to do one of 
the following: 

• Load a new supervisor (for normal system start-up, for different 
supervisor options, or to recover from a system malfunction. For the 
last, refer to DOS/VSE Serviceability Aids and Debugging Procedures). 

• Modify the shared virtual area size. 

Chapter 3: Using the System 3.1 



Add devices to or delete them from the system configuration. 

• Set or change the time-of -day clock value. 

• Set or change the system's time zone value. 

• Change the channel and unit assignment of the system residence 
(SYSRES), the VSE/VSAM master catalog (SYSCAT), SYSREC, or 
the page data set due to hardware problems with the channel or disk 
drive. 

Create SYSREC (for the first time or because of hardware problems). 

• Replace SYSRES or the page data set because of a hardware problem 
with the pack. 

Initial Program Loading (IPL) 

For IPL, you place the system residence disk pack on a disk drive and set 
the address of that drive in the load unit switches, ready SYSLOG and the 
device containing the page data set and press LOAD on the console (on the 
video display/keyboard console, type in the address of the drive and press 
ENTER). 

Next, DOS/VSE enters the wait state. You now must indicate to 
DOS/VSE the device that is to be used as the operator console (SYSLOG). 
To do so, press the Request key (or END/ENTER) on the selected device. 
This causes an interrupt and automatically transmits the address of this 
device to DOS/VSE. (If you have installed an IPL communication device 
list, DOS/VSE accepts the interrupt only if the address of the device is 
contained in the list). IPL assigns SYSLOG to the device. This assignment 
remains valid until the next IPL. 

At this point, DOS/VSE requests you to specify the supervisor you 
want to be used. You indicate this by one of the following: 

• pressing ENTER or the Request key 

• entering supervisomame[,P I N](,LOG I NOLOG] 

Pressing ENTER or the Request key indicates that the pageable default 
supervisor is to be loaded ($$A$SUPl,P,LOG). 

Specifying P causes the loaded supervisor (default or your own) to have 
certain routines pageable; specifying N causes the loaded supervisor (default 
or your own) to be non-pageable. If, on entering the supervisor name, you 
specify neither P nor N, P will be assumed. 

3.2 DOS/VSE System Management Guide 



By setting the list-option to NOLOG, you can prevent IPL from listing 
the IPL commands on SYSLOG. If you don't specify the list-option, LOG 
will be taken as default; that is, all IPL commands are listed on SYSLOG. 
Invalid commands are always listed. 

IPL now reads the supervisor into low processor storage from the core 
image library. If an irrecoverable error is sensed while reading the 
supervisor, an error message is displayed on SYSLOG; the hard wait status 
is entered and an error code is set in the first four bytes of processor 
storage. The IPL procedure must then be restarted. For more information 
on wait states, refer to DOS/VSE Serviceability Aids and Debugging 
Procedures. 

EstabHsbing the Communications Device for IPL 

IPL Commands 

DOS/VSE again goes into a wait state with all interrupts enabled (see 
Note). At this time you must indicate which device is to be used to 
communicate the IPL commands to the system. The specific manual 
operation you must perform depends on the selected device: 

• If you wish to use the console (SYSLOG), press the Request key on 
the console. (On the video display/keyboard console, you can press the 
Enter key, the Request key, or the Cancel key.) 

• If you wish to use a card reader, ready this card reader. DOS/VSE 
then assigns SYSRDR to this device for the duration of IPL. 

• If you wish to use an mM 3540 Diskette I/O Unit, ready it. 
DOS/VSE assumes that the file IJIPL is part of the diskette and that it 
contains the IPL commands in card image format (unblocked 80 byte 
records). 

Note: Because any interrupt will (on a first-come basis) establish the issuing 
device as the IP L communication device, it is advisable that TP installations 
and terminal-oriented installations with locally attached terminals, (for 
example, IBM 3277) install the IPL-phase $$A$CDLO. (See IPL 
Communication Device List) 

IPL commands serve to set or change various characteristics of your system. 
They operate on the following items: 

I/O configuration ADD and DEL commands 

System date and time SET command 

System disk file assignments DEF and DPD commands 

Shared Virtual Area size SVA command 

ADD and DEL commands should precede all other commands; the SV A 
command is the last command to be submitted. 

Chapter 3: Using the System 3.3 



The ADD Command. Use the ADD command to define all your input and 
output devices to your system. This definition specifies for a device the 
channel and unit address, the device type, the mode (if applicable), and 
whether automatic channel switching is desired. 

Each individual drive of a DASD (of a 3333/3330 or 3310, for 
example) requires an ADD command. Note that if one physical spindle 
contains two or more logical spindles, ADD commands must be issued for 
each of these logical spindles. 

The following requirements should be kept in mind: 

• You can add a device only if sufficient device table space was provided 
via the lOT AB generation macro during supervisor assembly. 

• If DASD file protection was generated in the supervisor and you add a 
CKD DASD, the DASD must conform to the channel range specified in 
the DASDFP parameter of the FOPT generation macro. 

If any of these requirements is not satisfied, you will get an appropriate 
error message. You must then provide space in the control blocks for the 
additional device by: 

• deleting unnecessary devices of the type you want to add and then 
re-issuing the ADD command, or 

• re-assembling the supervisor. 

Note: For an mM 3031 CPU, one service record file 7443 must be 
defined. This allows DOS/VSE to access the system diskette on the 
service support corisole. After having created the system recorder 
(SYSREC) file and encountered the first / / JOB statement, 
DOS/VSE reads machine check frames ·and channel check frames 
from the service record file and writes them onto the SYSREC file. 
Those frame records will be available as input for the 
Environmental Recording Editing and Printing (EREP) program 
when that program is executed. 

The DEL Command. Use the DEL command to drop an I/O device from 
the configuration you had established via ADD commands; this may be 
necessary if, for example, you defined (ADDed) more devices than you had 
allowed yourself in the lOT AB . generation macro, or if you want to correct 
the device type for one of the preceding ADD commands. Because all 
references to the device are removed, any subsequent ASSGN job control 
statement that refers to a deleted device will not be accepted. 

The Set Command. You can use the SET comm_and to set the system date, 
the time-of-day clock, and the system time zone. If you specify a 
time-of-day clock setting, set the time-of-day clock switch to the "enable 
set" position at the exact time specified in the SET command. The SET 
command is required only if the time-of -day clock has not been set. If this 
is the case, a message at IPL will prompt the operator. 

The DEF Command. You use the DEF command to assign the SYSCAT, 
.- ·····:i and SYSREC files. This command is mandatory. 

3.4 DOS/VSE System Management Guide 



The SYSCAT file, the VSAM master catalog, is required if you have 
the licensed program VSE/VSAM installed. If you don't have VSE/VSAM 
installed, specify DEF SYSCAT=UA. SYSREC is the symbolic name used 
for the system recorder file, the hard copy file and the " 
Creation of these files is discussed later in this section. " 

The DEF command must be submitted after any ADD and DEL 
commands and prior to the SV A command. The ASSGN job control 
statement or command is not valid for::;' ••• i'::SYSCAT or SYSREC 
assignments. 

The DPD Command. The DPD command is used to define the disk 
attributes of your page data set. The operands of the command allow you 
to specify 

• 

• 

• 

• 

a device address. 

the beginning address of the disk e~tent. 

the disk volume ID. 

whether or not the page data set should be formatted. 

Because formatting tpe page data set is time-consuming, you should request 
it only if the pack was damaged. The first time you use the page data set, it 
will be formatted automatically. ' '. 

The page data set can re~ide on any DASD supported by DOS/VSE as 
a system residence device. To help ensure better performance, the page 
data set should not reside on a pack that is subject to heavy I/O requests. 

The DPD command is mandatory. It must be submitted after any ADD 
and DEL commands and prior to the SV A command. 

Chapter 3: Using the System 3.5 



1he SV A Command. This command must be the last IPL command 
submitted. The SV A command may be given with or without parameters. 

The command's parameters (SOL, PSIZE, GETVIS) are used to 
increase the SV A size beyond the size set by the DOS/VSE IPL routine. 
They serve to add space for 

• System Directory List (SOL) entries 

• phases that you want to have loaded into the SV A 

• the system GETVIS area. 

H the parameters are not specified during IPL, no user SDL or phase space 
is reserved in the SV A for user phases. An SV A will be allocated which is 
large enough to contain: 

• Phases required for use by OOS/VSE. 

• Phases required for installed licensed programs. 

• The default system GETVIS area. 

• Required SDL entries. 

3.6 DOS/VSE System Management Guide 



Automatic Functions of IPL 

IPL Communication Device List 

performs the following 

• Builds the required control blocks and device tables. 

• In 370 mode, determines the size of the real address space. 

• Unassigns any DASD assignments for devices that are not operational 
at this time (so as to prevent the error recovery routines from trying to 
establish error recording statistics for these devices). 

• Loads the printer-control buffers with the installation defined standard 
buffer images. 

• Initializes the DOS/VSE RMS routines. 

• Loads into the SV A required system phases and licensed program 
phases. 

After IPL completes these operations, the system loader loads the job 
control program into the background partition and places the system in the 
problem program state. The message "READY FOR COMMUNI­
CAnONS" appears on the console immediately after IPL is complete. 

For telecommunication installations and for installations with locally 

Chapter 3: Using the System 3.7 



attached terminals (such as the mM 3277), devices allowed to present an 
interrupt during IPL should be restricted because an unsolicited interrupt 
might interfere with your system start-up procedures. By installing an IPL 
communication device list, you can avoid that a device outside the 
operator's control establishes itself as the device used for submitting IPL 
commands. 

To build a restrictive pool of IPL communication devices, you assemble 
an IPL communication device list (COL) and catalog the list under the 
phasename $$A$COLO in the system core image library. During IPL, 
OOS/VSE loads this phase (if present) into storage. When OOS/VSE 
enters the wait state and an interrupt occurs, the COL can now be searched 
for the address of the device issuing the interrupt. H the address is listed, 
the interrupting device is accepted as an IPL communication device and 
processing continues. H the address is not found, OOS/VSE remains in the 
wait state. Installation of the COL is optional. 

For IPL to be successful, once $$A$COLO is installed, the SYSLOG 
device address must be present in the COL. H you intend to submit IPL 
commands from card reader or diskette, you must enter their addresses in 
the COL as well. To ensure backup in case of hardware errors during IPL, 
consider stand-by devices, such as another card reader, diskette, or even an 
additional SYSLOG device in the COL. 

The COL may have up to eight entries each of which is four bytes 
long: 

I reserved I cc 

Bytes o 2 

where: cc = channel number 
uu = unit number 

luu 
3 

You create the COL by submitting a job that catalogs $$A$COLO into the 
system-core image library. The example in Figure 3-2 creates a COL with 
five entries: 

II JOB CATALOG CDL 
II OPTION CATAL,NODECK 

PHASE $$A$CDLO,+O 
II EXEC ASSEMBLY 
$$A$CDLO CSECT 

DC 

1* 

DC 
DC 
DC 
DC 
END 

I I EXEC LNKEDT 
/& 

XL4'00C' 
XL4'009' 
XL4'01F' 
XL4'OBD' 
XL4'240' 

card reader 
1052 
SYSLOG (DOC) 
3277 
diskette 

Figure 3-2. Example for the Creation of a CDL 

Once phase $$A$COLO has been cataloged, the CDL addresses remain 
effective for subsequent IPLs. However, you may: 

3.8 DOS/VSE System Management Guide 



• Replace the phase by another one, either by assembling and link-editing 
a new phase or by using the DOS/VSE MAINT program to rename an 
already cataloged CDL that has a name other than $$A$CDLO. 

• Override any CDL entry by manual intervention, which is the suggested 
approach should an erroneous CDL be cataloged in the core image 
library. The procedure for manually overriding the CDL is given in 
DOS / VSE Serviceability Aids and Debugging Procedures. 

Building the SDL and Loading the SVA 

Automatic SV A Loading 

User Options for the SV A 

DOS/VSE builds a fresh copy of the SV A at each IPL. It loads phases into 
the SVA from the system core image library. DOS/VSE uses pre-defined 
load lists to fitJ,d the a,pprQPriate pnases. The load lists_ that identify r-equir-ed 
system phases are shipped in the system core image library ready for use at 
IPL. DOS /VSE System Generation contains a listing of the required system 
phases. 

H you install an mM licensed program that includes SV A eligible 
phases, you must catalog a load list for that licensed program. The licensed 
program documentation will describe this procedure and tell you how much 
space in the SV A the loaded phases require. Although DOS/VSE 
automatically allocates sufficient SV A space (by checking the load lists), 
you should know how much virtual storage will remain to be allocated to 
the partitions. (In 370 mode, your specification in the VSIZE parameter or 
the VSTAB generation macro is dependent on this information.) 

BuDding the System Directory List (SOL). Entries in the SDL are copies of 
specific system core image library directory entries. Having entries in the 
SDL speeds up the loading of the corresponding phases. 

At the time of IPL, DOS/VSE builds entries in the SDL for each phase 
that it automatically loads into the SV A. Each of those entries contains a 
pointer to the associated phase in the SV A. 

In order to load user chosen elements into the SV A (phases or SDL entries 
or both) the SV A space must be made large enough to accommodate the 
new entries. Space for user entries may be defined at IPL via the SV A 
command (see The SVA ComJr.ar.d earlier in this section). The SET SDL 
command is available for having DOS/VSE both build an SDL and load 
phases into the SV A. 

You should build SDL entries for certain frequently used DOS/VSE 
phases that are not SV A eligible. DOS/VSE provides a procedure (its name 
is SDL) that you should execute at the time of IPL. For a listing of the 
phases referenced by procedure SDL, refer to DOS/VSE System Generation. 
DOS/VSE does not automatically reserve SV A space for these SDL entries. 
In order to do that, you must define space with the IPL command SV A. 

Chapter 3: Using the System 3.9 



The SET SDL Command. The command used to create SDL entries and to 
load phases in the SV A is the SET SDL job control command. This 
command can be given only in the background (BG) partition. The 
command may be given at any time after IPL. There is no limit to the 
number of times it may be given. 

It is recommended that you create a SET SDL job stream, catalog it as 
a procedure in the procedure library and run that procedure immediately 
after IPL. For compatibility with DOS/VS, SET SDL=CREATE will be 
accepted by DOS/VSE. H the SET SDL job stream is not being entered 
through a procedure, it may be submitted to job control through SYSRDR 
or SYSLOG (depending on the device from which job control is reading). 
This job stream can be entered via the IPL communications device. Figure 
3-3 illustrates such a job stream. 

Following the SET SDL command the input should be in the format 
of: 

name[,SVA] 

where name is any valid phase name and SV A indicates whether or not the 
phase is to be loaded into the SV A. H you specify SV A and the phase is 
SV A eligible, DOS/VSE loads that phase. 

The phases need not be currently cataloged in the core image library 
and, if they are not, DOS/VSE issues a message on SYSLST (or SYSLOG 
if SYSLST is not available). H you subsequently catalog a phase into the 
system core image library under a name listed in the SDL as uncataloged, 
the entry in the SDL is activated. In this case, if the phase is also identified 
in the SDL as eligible for the SV A, it is loaded there immediately after it 
has been link-edited. 

H duplicate phase names are submitted, only the first one is valid. For 
example: 

SET SDL 

/* 

PHASEONE 
PHASEONE, SV A 

If PHASEONE exists in the system core image library, DOS/VSE builds an 
SDL entry. The phase is not loaded into the SV A; DOS/VSE recognizes 
statement PHASEONE, SV A as a duplicate and rejects it. In the above 
situation no message is issued to the operator. H the statements were 
submitted in two separate job streams; 

SET SDL 
PHASEONE 

/* 
SET SDL 

PHASEONE,SV A 
/* 

an error message would be issued saying that an entry already exists in the 
SDL. 

3.10 DOS!VSE System Management Guide 



You will be able to place PHASEONE in the SV A the next time you 
IPL. The SV A (and of course the SDL) is rebuilt at each IPL. 

It is recommended that you run the librarian program DSERV after a 
SET SDL job stream to be certain that all entries have been entered the 
way you wish. Include the DSERV control statement DSPLY SDL. 

Replacing Phases Stored in the SV A. Occasionally, a phase stored in the 
SV A needs to be changed; that is, it must be replaced by an updated 
version. To replace a phase in the SV A, linkedit the updated version of the 
phase to the system core-image library. Immediately after this linkedit 
operation, DOS/VSE loads the updated phase into the SV A. The old 
version of the phase remains in the SV A, but is not addressable. 
Linkediting for inclusion of a phase in the SV A is further discussed in 
Linking Programs in this chapter. 

Creating the System Recorder File 

The DOS/VSE recovery management support requires a disk extent on 
which to record statistical information about machine errors and 
environmental information. This disk extent is caned the system recorder 
file and is identified by the symbolic name SYSREC. The SYSREC file 
must exist before job control encounters the first / / JOB statement after 
IPL. Usually, you create the SYSREC file only after the first IPL following 
a system generation (not aiter each IPL). If the SYSREC file has been 
damaged, however, you must re-IPL and re-create SYSREC. 

If your DOS/VSE is running on an mM 3031, the SYSREC file must 
be evaluated via program IFCEREPI and recreated each time a hardware 
(microcode) change is installed which affects the frame records on the 
3031's Service Record File. For details on IFCEREP1, refer to OS/VS, 
DOS/VSE, VM/370 Environmental Recording Editing and Printing 
(EREP) Program. 

Chapter 3: Using the System 3.11 



On a CKD device the SYSREC file requires a minimum of ten tracks 
(not including an alternate track), and it cannot be a split cylinder file. On 
an FBA device the SYSREC file requires a minimum of 72 blocks of 512 
bytes each. You must define SYSREC as an extent of a permanently online 
ru.slc device that DOS/VSE supports as a system residence device. 

The ffiM 3031 requires additional space on the recorder file to 
accomodate machine check frames and channel check frames (these frames 
are peculiar to the ffiM 3031). On an ffiM 3330, for example, this space 
amounts to approximately 9 tracks. If the SYSREC file resides on an FBA 
device with blocksize of 512 bytes, add 164 blocks. The exact amount of 
additional space needed for the recording of those frames can be calculated 
after the first / / JOB statement has been processed and message '11931 
RECORDER FILE IS XX% FULL' is issued. 

The SYSREC file label information must be included in the standard 
label portion of the label information area on the SYSRES file. Therefore, 
submit a / / OPTION STDLABEL statement when you create the SYSREC 
file. Since the label information you sub~t is written at the beginning of 
the standard label area, which overwrites label information that was present 
there, you must resubmit all the information needed for subsequent 
operation. A more detailed description of preparing standard label 
information is given under section Controlling Jobs later in this chapter. 

Figure 3-3 illustrates a job stream (via SYSLOG) to create the system 
recorder file. The IPL commands are included in the figure to show the 
proper placement of the statements that create the SYSREC file. Be sure 
that you do not submit a / / JOB statement until you have supplied all the 
information applicable to SYSREC. This is because the SYSREC file is 
opened when the first / / JOB statement is encountered. Note that the file 
name IJSYSRC is required in the DLBL job control statement. 

3.12 DOS/VSE System Management Guide 



01301 DATE= .. / .. / .. , CLOCK= .. / .. / •. 
0110A GIVE IPL CONTROL COMMANDS 

ADD .. . 

ADD .. . 

e 

ADD .. . 

SET .. . 
DEF SYSREC=190 

DPD 

SVA 
01201 IPL COMPLETE FOR DOSIVSE REL. nn.n ECLEVEL=01 
BG 1100A READY FOR COMMUNICATIONS 
BG SET SOL 
1S511 ENTER PHASE NAME OR /* 
BG USERONE 
1S511 ENTER PHASE NAME OR /* 
BG USERTWO,SVA 
1S511 ENTER PHASE NAME OR /* 
BG 
BG 
BG 
BG /* 
BG ASSGN 

BG SET RF-CREATE 

BG // OPTION STDLABEL ! 
BG // DLBL IJSYSRC:DOS.SYSTEMRMSR.FILE' ---.... _ Submit with the rest of the 

STDLABEL statements 
BG // EXTENT SYSREC, , , , 1700,43 

BG /* 
BG II JOB FIRST 

Figure 3-3. Example for the Creation of the SYSREC File and for Loading 
User Phases in the SV A 

When the system is to be shut down, you should issue the Record On 
Demand (ROD) command to ensure that no statistical data is lost. For a 
370 Model 115 or 125, the U command of the mode select display, should 
also be issued to save disk usage statistics on the system diskette. These 
commands are not valid for recording statistics on telecommunication 
operation; refer to the appropriate telecommunication guides for more 
information. 

To obtain a listing of the SYSREC file, run the EREP program as 
described in OS/VS, DOS/VSE, VM/370 Environmental Recording 
Editing and Printing (EREP) Program. During execution of the EREP 
program, recording on SYSREC is suppressed. 

Chapter 3: Using the System 3.13 



Creating the Hard Copy File 

On a system that supports a video display/keyboard console, all messages 
displayed on the screen and all information typed in by the operator are 
saved in a file on the device assigned to SYSREC. This file, called the hard 
copy file, can be used to obtain hard (printed) copies of the file whenever 
required. 

You must create the hard copy file after the first IPL procedure and 
before you submit the first / / JOB statement to DOS/VSE. 

The control statements and commands needed to create the hard copy 
file are the same as those shown in Figure 3-3 for the SYSREC file with 
the exception that you specify HC=CREATE in the SET command, and 
the filename DSYSCN in the DLBL job control statement. More 
information about creating and printing the hard copy file is given in 
DOS/VSE Operating Procedures and DOS/VSE System Utilities. 

User-Defined Processing after IPL 

Entering RDE Data 

At large DOS/VSE installations, it may be desirable to perform certain 
processing at the end of an IPL procedure. It may, for instance, be 
important to know who performed the procedure, whether the right system 
pack was mounted, and whether the correct date was entered for the new 
work session. Moreover, if you work with labeled data files it is important 
that they bear the correct creation date, so as to guarantee that data files 
are protected until their expiration date. 

After the IPL procedure has been completed, control can be passed to 
a user exit routine (phase name = $SYSOPEN) that you may include for 
the purpose of checking system security and integrity. This routine is 
entered once after every IPL procedure. The DOS/VSE distribution 
volume contains a dummy phase $SYSOPEN in the system core image 
library. If you do not use the facility, that phase has no effect on your 
system. Conventions for writing this kind of user exit routine, together with 
an example, are contained in the section Writing an IPL User Exit Routine 
in Chapter 4, Using the Facilities and Options of DOS/VSE. 

Standard DOS/VSE support includes the reliability data extractor (RDE), 
and DOS/VSE requests you by a message to SYSLOG to provide a 
2-character IPL reason code when the first / / JOB statement after IPL is 
processed. The system may have been started at the beginning of normal 
operation or restarted because of a machine error, a program error, an 
operator error, etc. In addition, DOS/VSE requests you to supply a 
subsystem identifier, a code which identifies the device type or program 
type that failed. On the basis of these replies job control will build a record 
for SYSREC. 

Before shutting down at the end of the day (or processing period), you 
must ensure that no environmental data is lost, by issuing the ROD 
command. This command also causes the RDE end-of-day record to be 
written on the disk assigned to SYSREC. To obtain a listing of this file, run 

3.14 DOS/VSE System Management Guide 



the EREP program as described in OS/VS, DOS/VSE, VM/370 
Environmental Recording Editing and Printing (EREP) Program. 

RDE information can be very valuable to your operations management. 
By replying with the exact reason code that applies in each case, you are in 
fact ensuring a permanent record of the reason why you had to re-IPL. 

Refer to the DOS/VSE Operating Procedures, for more information on 
the RDE messages and the valid replies to them. 

Allocating Address Space to the Partitions 

For each partition specified in the NPARTS parameter of the SUPVR 
generation macro, address space must be allocated. The address space 
available to the partitions is all of the address space from the end of the 
supervisor area to the beginning of the SV A. The minimum size of that 
address space is SI2K. 

Allocation of address space to a foreground partition must be done 
explicitly. Space not.allocated to a foreground partition belongs to the BG 
partition. IT no allocations are made, for example immediately after IPL, 
then all available address space belongs to the BG partition. In this case, 
the BG partition has the following size: 

ECPS:VSE mode: 

370 mode: 

Virtual storage size (16M default or as specified at 
Initial Microprogram Load) 

minus supervisor size 

minus SV A size; 

Virtual address space size (VSIZE value of VST AB 
macro) 

minus SV A size. 

Through the use of the job control ALLOC command you allocate the 
foreground partitions. Address space allocations are in multiples of 2K. 
The minimum amount of address space that may be allocated to a partition 
(explicitly or implied) for execution in virtual mode is 128K. This 128K size 
includes a minimum partition GETVIS area of 48K. 

IT a foreground partition is defined (via the NPARTS parameter of the 
SUPVR generation macro), but not needed for a while, you can set its size 
to OK by submitting an appropriate ALLOC command. 

During certain periods of processing, the operator can modify the 
allocations to the individual partitions, again by using the ALLOC 
command. Details on the ALLOC command are given in DOS / VSE 
Operating Procedures and in section Starting the System in Chapter 3. 

Chapter 3: Using the System 3.1S 



Allocating Processor Storage to the Partitions 

Processor storage is allocated to the partitions to enable the following: 

• Program execution in real mode. 

• Fixing pages by means of the PFIX/PFREE macros. 

When processor storage is used for running a program in real mode or for 
fixing pages of a program running in virtual mode (for example, 
VSE/POWER), the page pool is reduced by the number of page frames 
required for real mode execution or page fixing, respectively. Because 
reducing the page pool may reduce total system throughput, the use of real 
mode execution and PFIX/PFREE macros should be carefully considered. 

Processor storage is allocated to the partitions via the ALLOCR 
command. For a partition's allocation to be affected the partition identifier 
(BG, F 1, F2, ... ) must be specified. The allocation is made in multiples of 
2K, with 2K being the smallest allocation permissible. Absence of the 
partition identifier means: do not change the current allocation. An 
allocation of 2K allocates one page frame, 20K allocates 10 page frames 
etc. 

Note: In 370 mode, when the ALLOCR command is issued, the 
system delineates real address space as well as allocating 
processor storage frames. In 370 mode, programs executing real 
execute in the real address space. 

The size of a given processor storage allocation for a partition is determined 
either by the largest program you must run in real mode, or by the 
maximum number of pages a program may fix. The number of pages that 
can be fixed by the PFIX macro is limited by the amount of processor 
storage allocated to that partiton. 

Given: ALLOCR BG=20K, F3=10K 
with the above allocation you could PFIX 10 pages in BG (while executing 
in BG) or 5 pages in F3 (while executing in F3). You could not PFIX 15 
pages from one program in either partition without reallocating processor 
storage. 

Page Pool. The page pool is all processor storage beyond the resident 
supervisor routines. When you use the ALLOCR command you are 
potentially reducing the size of the page pool. The page pool is not reduced 
until the processor storage page frames are taken for real mode execution 
or for PFIX use in virtual mode. The minimum page pool size is 24K. H 
you allocate processor storage to partitions you must ensure that at least 
24K remain unallocated. A program running in virtual mode that needs 
more than 6K for its I/O processing requires a corresponding increase of 
the minimum page pool size. 

3.16 DOS/VSE System Management Guide 



Initiating Foreground Partitions 

In order to initiate a foreground partition, at least 128K of virtual 
storage must be allocated to that partition. The allocation is made after IPL 
with the ALLOC job control command. 

Since DOS/VSE automatically determines the size of the SV A at IPL, 
it is recommended that you issue the MAP command prior to any virtual 
storage allocation. The MAP command will display the current allocations 
and you can determine the amount of virtual storage available for allocation 
to the foreground partitions. 

The ALLOC command is both a job control and an attention routine 
command. (The attention routine is loaded when you press the Request key 
on the console keyboard; that routine is in control of the system when AR 
is dlSpiayed on SYSLOG.) When the ALLOC command is given through 
the attention routine it cannot decrease the size of an active partition. The 
initial allocation of foreground partitions decreases the size of the BG 
partition because all available virtual storage is allocated to BG at IPL. 
Since, after IPL, the BG partition is active, the ALLOC command must be 
given through job control. 

Once virtual storage is allocated to the foregound partitions, they may 
be made "active" through the attention routine. Issuing the BATCH or 
START command, specifying a foreground partition, causes DOS/VSE to 
initiate that foreground partition. For example: 

AR BATCH F1 

causes the job control program to be loaded into the virtual storage 
allocated to the F 1 partition. 

Input may now be submitted to the F 1 partition. Submitting jobs is 
described in the following section, Controlling Jobs. 

Chapter 3: Using the System 3.17 



3.18 DOS/VSE System Management Guide 



Chapter 3: Using the System 3.19 



3.20 DOS/VSE System Management Guide 



Chapter 3: Using the System 3.21 



3.22 DOS/VSE System Management Guide 



Chapter 3: Using the System 3.23 



3.24 DOS!VSE System Management Guide 



Controlling Jobs 

De/ining a Job 

Mter DOS/VSE has been successfully started by means of the IPL 
program, the following messages are displayed on the console: 

BG lIOOA READY FOR COMMUNICATIONS 
BG 

This shows that the job control program is in the background partition 
ready to accept input. 

At this poirit, the job control program will accept commands submitted 
through the console (SYSLOG). Job control's normal input source, 
however, is the logical unit SYSRDR. 

Job control reads from SYSRDR if, at this point, you depress the 
ENTER key on the console without entering any commands. Normally, 
SYSRDR is standardly assigned to a card reader or diskette device. 

The unit of work that is submitted to DOS/VSE for execution is called 
a job. A job, and the environment in which it is to run, must be defined to 
the system through job control statements and commands. These job 
control statements and commands are processed by the job control program 
which DOS/VSE loads into storage automatically as required. 

The job control program runs in virtual mode in any partition. It 
performs its functions only between jobs and job steps, and is not present 
in the partition while a problem program is being executed. 

Mter each job control statement or command is read, control can be 
given to a user exit routine for examining and altering the input before it is 
processed by DOS/VSE. For a description of this facility refer to Chapter 
4, Using the Facilities and Options of DOS/VSE. 

The difference between job control statements and commands are not 
discussed here because there is no need for a distinction in this section. 
Whenever applicable, it is simply stated whether the function can be 
performed using statements, commands, or both. The description of the job 
control statements and commands in this section is limited to their use and 
functions; formats and characteristics of statements and commands are 
detailed in DOS/VSE System Control Statements. 

This section describes how to define a job, how to relate files to a 
program, and how to work with cataloged procedures. 

The beginning and end of a job are defined by the JOB and / & 
(end-of -job) statements. 

Chapter 3: Using the System 3.25 



The program to be executed in a job is requested through an EXEC 
statement. The occurance of an EXEC statement is called a job step. Each 
job may consist of one or more job steps. 

You may include as many job steps in a job as you wish. However, it is 
not advisable to execute, in one job, several programs that are completely 
independent of one another because, if one step terminates abnormally, the 
job control program ignores the remaining job steps up to the next / & 
statement. A typical example of related job steps that should form a single 
job are assembling, link-editing, and executing a program, where correct 
execution of one job step depends on successful completion of the 
preceding one. Figure 3-6 shows an example of a multistep job. 

1 II JOB jobname 

2 

3 II EXEC PAYROLL 

3 II EXEC CHEX 

4 1& 

1 Defines the beginning of a job. For jobname, you may specify a name of 
your own choosing. 

2 Additional job control statements if required. 

3 The two job steps. Job control is reloaded into storage at the end of each 
job step, enabling the reading of subsequent job control statements. 

4 At the end of the CHEX program's execution job control is reloaded and 
reads the end of job indicator. 

FJgIU"e 3-6. Control Statements Def"miDg a Job Consisting of Two Job Steps 

Following are some additional details about the job and end-of-job (/ &) 
statements. The EXEC statement is discussed later in this chapter. 

The JOB Statement. The JOB statement indicates the beginning of control 
information for a job. The specified job name is stored in the 
communications region of the corresponding partition and is used, for 
example, by job accounting and to identify listings produced during the 
execution of the job. 

3.26 DOS/VSE System Management Guide 



IT the JOB statement is omitted, DOS/VSE uses NO NAME as the job 
name. IT the JOB statement is without a job name it is rejected by job 
control as an invalid statement. The JOB statement should not be omitted, 
as many DOS/VSE functions assume its presence. IT, for example, the 
operator cancels a job using the attention routine CANCEL command, the 
job control program normally bypasses all statements on SYSRDR until 
encountering a / & . However, if the job in question was submitted without 
a JOB statement, no statements in the job stream are bypassed even though 
job NO NAME was canceled. 

Having JOB statements with specific job names is useful when you 
issue the MAP command in a multiprogramming environment. The MAP 
command displays on SYSLOG the storage allocations for each partition, 
together with the name of a job that is currently active in the corresponding 
partition. 

The JOB statement is always printed in positions 1 through 72 on 
SYSLST and SYSLOG; also, the time of day is printed The JOB statement 
causes a skip to a new page before printing is started on SYSLST. 

The End-of-Job (/ It) Statement. This statement is the last one for each job 
(not job step). It signals the end of the input stream for the job. When job 
control encounters / & on SYSRDR during normal operation, the 
permanent assignment for SYSIPT becomes effective and SYSIPT is 
checked for an end-of-file condition. 

IT the / & statement is omitted, the next JOB statement will cause 
control to be transferred to the end-of-job routine to simulate the / & 
statement, except for abnormal job termination. 

When a job terminates abnormally all statements on SYSRDR are 
bypassed until / &. A JOB statement preceding that / & statement does 
not stop this bypass operation. 

When a / & statement is encountered, the job control program 
performs such operations as the following: 

• Resets all job control options for the partition to standard: either as 
established by the SIDOPT command, or the system default if the 
particular option was not set through a SIDOPT command. 

• Resets all system and programmer logical unit assignments for the 
partition to the permanent assignment established by job control 
commands. Logical unit assignment is discussed under Relating Files to 
Your Program later in this chapter. 

• Modifies the communications region as follows: 

1. Resets the date from the DATE statement to the one specified in 
the SET command during IPL. 

2. Stores the job name NO NAME. 

3. Sets the user area and the UPSI byte to zero. 

• Displays an end-of -job (EOJ) message on SYSLST and SYSLOG with 
the time and duration of the job. 

Chapter 3: Using the System 3.27 



Job Streams 

• Ensures that end-of -file has been reached on SYSIPT. 

• Deletes the temporary labels in the label information area on SYSRES. 
(See Storing Label Information, later in this chapter.) 

• Checks whether the condense limits of any of the libraries have been 
reached (if library maintenance has been done in the job). 

The job control program provides automatic job-to-job transition. In other 
words, an unlimited number of jobs can be submitted to the system in one 
batch, and job control processes one job after the other without requiring 
intervention by the operator. The job or jobs submitted are referred to as a 
job stream (see Figure 3-7 for an example of a payroll jobstream). 

( 1& 

( I I EXEC PAYCHK 

( II PAUSE LOAD PAYCHECKS 
-

( 1* 
~ 

-

~ 

( Time cards 

( I I EXEC PAY RUN 

( I I EXTENT SYSOO 1 
I--

(II DLBL FILEP, 'PAYFILE' 
~ 

( I I ASSGN SYSOO 1 , 160 
I--

( II ASSGN SYSLST,OOE L !--'" 

[~/_I_J_U_B_I_JA_Y_1 __________ ~~ 

FJgUre 3-7. Example of a Job Stream 

When setting up a job stream for a partition, you should bear in mind that 
all jobs will get the priority of that partition. The selection of the jobs for a 
particular partition in a multiprogramming system can help to improve the 
efficiency of your installation. For example, jobs which have a relatively 
low CPU usage and a relatively high rate of I/O activity, and which 
therefore spend most of their time waiting for the completion of I/O 
operations, should run in a high priority partition. Conversely, CPU-bound 
jobs should be in a partition with a lower priority. 

3.28 DOS/VSE System Management Guide 



The operator may interrupt the processing of a job stream in any 
partition to make last-minute changes to one of the jobs or to squeeze in a 
special rush job. He does this by using the PAUSE statement or command. 

A PAUSE statement may be included anywhere among the job control 
statements of a job stream (see Figure 3-7). It becomes effective at the 
point where it was inserted; processing is suspended in the aiiected 
partition, and the operator console is unlocked for input. The PAUSE 
statement can contain instructions to the operator and is always displayed 
on SYSLOG. 

The PAUSE statement may also be helpful when SYSIN is assigned to 
a 5424 or 5425 card reader (neither of which have an end-of-file button). 
Place the / / PAUSE card after the last / & card; this will force control to 
be given to the console-keyboard, which enables the console operator to 
control subsequent system operation. 

A PAUSE command may be entered either through the operator 
console (after pr-essin-g the r-equest k-ey), Of within a joo st-ream t-{}g-et-ber 
with the job control statements for a job. If entered through the console to 
the attention routine, the command must specify the partition that is to 
pause (if the background partition is intended, however, no operand is 
required). After encountering a PAUSE command, DOS/VSE passes 
control to the operator (through the console) into the specified partition, at 
the end of the current job step (which may also be the end of the job). If 
that PAUSE command specifies the EOJ operand, control passes to the 
operator at the end of the current job, regardless of the number of steps 
needed to reach that point. 

Relating Files to You, Program 

Most programs perform some kind of input/output operation (that is, they 
process files) on auxiliary storage devices. Before such files can be 
processed, certain information about them must be provided to DOS/VSE. 
This information includes: 

• The address of the I/O device on whicli each of the files resides. 

• For files on direct access storage devices (DASD), the exact location of 
the file on the storage medium. 

• For files on DASDs, on diskettes, or on labeled magnetic tape, a 
description of the file, called a label, which is used for checking and 
protection purposes. 

The above information, specified in job control statements, is stored in the 
system by the job control program for use by the DOS/VSE data 
management routines. How this is done is described below. 

Chapter 3: Using the System 3.29 



Symbolic I/O Assignment 

Whenever a processing program needs access to a file on auxiliary storage 
the program need not specify an actual device address, but only a symbolic 
name which refers to a logical, rather than physical, unit. Before the 
program is executed that logical unit must be associated with an actual 
device. This is done by DOS/VSE when it executes an ASSGN job control 
statement or command which specifies the symbolic name of the logical unit 
and one of the following: 

• A general device class or specific device type, with or without volume 
serial number. 

• The physical address (channel and unit number) of the I/O device. 

• A list of physical addresses. 

• Another logical unit. 

See Figure 3-8 for an illustration of some of these combinations. 

ASSGN statements may be submitted 
between jobs or job steps. 

3.30 DOS/VSE System Management Guide 



Processing Program 

Job Control 

I/O Device 

DEVADDR=SYS008 
I 
, , 
1 
I , 

// ASSGN SYS008,OOE 

1. The logical unit specified in the processing program (via DTF or CCB or IORB) is 
a print file referred to by the symbolic device name SYSLST. 

2. An ASSGN statement is used to associate SYSLST with the physical address OOE of 
a printer. This information is stored in the system by job control and can be 
accessed when a program is executed. 

FJgUre 3-8. Example of Symbo6c I/O Assignment (Part 1 of 2) 

Chapter 3: Using the System 3.31 



Logical Units 

Processing Program 

DEVADDR=SYS002 

Job Control 

II ASSGN SYS002,(130,131) e 
II ASSGN SYS003,3330,VOL=oooo03 0 
II ASSGN SYS004,TAPE (9 

o Device list - if drive 130 is unassigned SYS002 will be assigned to it, if it is 
assigned DOS/VSE tries 131. 

«9 Device type - DOS/VSE searches for the device type (3330 in this case) 
that is available and has the volume-id 000003. 

(9 Device class - DOS/VSE searches for an available tape device. 

FlgUl"e 3-8. Example of Symbolic I/O Assignment (Part 2 of 2) 

There are two types of logical units: system logical units, primarily used by 
the system control and service programs, and programmer logical units, 
primarily used by the processing programs. The following list shows the 
names, logical units and the 1/ 0 device~ that each of these logical units can 
represent. In the case of disk devices, the logical unit is not assigned to the 
entire volume mounted on the device but only to the referenced extent(s). 
Refer to the section Files on Direct Access Devices for more information on 
disk files. 

3.32 DOS/VSE System Management Guide 



Logical 
unit name 

SYSRDR 

SYSIPT 

SYSPCH 

SYSLST 

SYSLOG 

SYSLNK 

SYSRES 

SYSCLB 

SYSSLB 

SYSRLB 

SYSREC 

SYSCAT 

SYSCTL 

SYSnnn 

Type of I/O device 

Card reader, magnetic tape unit, disk device, or diskette used as 
input unit for job control statements or commands. 

Card reader, magnetic tape unit (single volume), disk, or 
diskette extent used as input unit for programs. 

Card punch, magnetic tape unit, disk, or diskette extent used as 
the unit for punched output. 

Printer, magnetic tape unit, disk, or diskette extent used as the 
unit for printed output. 

Operator console used for communication between the system 
and the operator. 

Disk extent used as input to the linkage editor. 

System residence extent on a disk pack. 

Disk enent used f-era private oor-e imag€ library. 

Disk extent used for a private source statement library. 

Disk extent used for a private relocatable library. 

Disk extent used to store error records collected by the 
recovery management support recorder (RMSR) function. If a 
display operator console (DOC) is installed, messages to or 
from the operator are stored in the hard copy file, a separate 
SYSREC extent so that a hard copy listing of these messages 
can be produced. A third SYSREC extent holds the system 

file. 

Disk extent used to hold the VSAM master catalog. 

Used by DOS/VSE. 

Format for coding programmer logical units which are discussed 
later in this section. 

System Logical Units. All of the above logical unit names, except SYSnnn, 
represent system logical units. Of these system logical units, user-written 
programs may use SYSIPT and SYSRDR for input, SYSLST and SYSPCH 
for output, and SYSLOG for communication with the operator. All other 
system logical units may not be used within user-written programs (or 
EXTENT statements, which are discussed later in this section). 

Two additional symbolic names, SYSIN and SYSOUT, are used under 
certain conditions: 

SYSIN . Can be used if you want to assign SYSRDR and SYSIPT to 
the same card reader pr magnetic tape unit. You should not 
assign SYSRDR and SYSIPT to the same disk or diskette 
extent, assign SYSIN to that extent instead. 

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to 
the same magnetic tape unit. SYSOUT cannot be used to 
assign SYSPCH and SYSLST to disk or diskette because these 
two units must refer to separate extents. 

Chapter 3: Using the System 3.33 



Types of Device Assignments 

SYSIN and SYSOUT are valid only to job control and cannot be referenced 
in a user-written program. Examples for the use of SYSIN and SYSOUT 
are given in the section System Files on Tape, Disk, or Diskette later in this 
chapter. 

Prognunmer Logical Units. Programmer logical units may be assigned to any 
device installed 011 the system used for processing program input and 
output. Each partition has a minimum of 10 programmer logical units 
(SYSOOO-SYS009) and a maximum of 241 (SYSOOO-SYS240). The number 
of programmer logical units is a supervisor generation option. 

Device assignments are either permanent or temporary, depending on the 
time of the assignment and the type of ASSGN statement or command 
used. 

Permanent Device Assignments. A permanent assignment is set up between 
jobs or job steps any time after IPL by the ASSGN job control command 
(no / /) or the / / ASSGN job control statement with the PERM operand. 
It is valid until the next IPL procedure unless superseded by another 
ASSGN job control command. A permanent assignment can be changed for 
the duration of a job or job step by a / / ASSGN statement or by an 
ASSGN command with the TEMP option. 

Temporary Device Assignments. A temporary assignment is established 
either by a / / ASSGN statement or by an ASSGN command with the 
TEMP option. It is valid for a single job only, unless superseded by another 
temporary or permanent assignment. Temporary assignments are reset to 
permanent by 

• a / & or JOB statement, whichever occurs first, or by 

• a RESET job control statement or command. 

Restrictions: The type of device assignment is restricted under certain 
conditions: 

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or 
SYSPCH is assigned to a disk device or diskette, the assignment must 
be permanent. If SYSCLB is assigned, its assignment must also be 
permanent. 

2. If SYSRDR and SYSIPT are to be assigned to the same disk or diskette 
extent, SYSIN should be assigned instead, and this assignment must be 
permanent. 

3. SYSOUT, if used, must be a permanent assignment. 

4. The SYSLOG assignment is restricted when IPL was done from either a 
125D or 3277 device. You may not assign SYSLOG to a 125D if IPL 
was done from a 3277 and vice-versa. 

3.34 DOS/VSE System Management Guide 



Device Assignments in a Multiprogramming System 
. -'-"._----_ .. -. ._- . _ .. -.-, . -.. _" .. _.,-_._--------------------\-

. Each partition hasitsownset~t~ystem 10gi~~~lP!!!§:.1 For example, the BG 
-, partitionhas"a-SYSRDlr;'SYSLST, SYS1PT~ et~~'" as~ do all the other 

generated partitions. As each partition is started, assignments must be made 
for the system logical units. Some assignments need be made only in one 
partition and are valid for all partitions. These are logical units that service 
the system rather than one partition. The page data set (assigned via the 
DPD command) and the following units fall into this category: 

logical name 

SYSLOG 

SYSREC 

SYSCTL 

SYSRES 

SYSCAT 

how assigned 

ASSGN job control command 

DEF IPL command 

automatically assigned by DOS/VSE 

Entering disk address at IPL 

DEF IPL command 

All of the other system logical unit assignments must be made for each 
individual partition. 

E..~h partition also has its own set ~tP.~~N~I!!m~I.!~~£31 ~~ (SYSOOO 
through SYSnon) where non is the number of programmer logical units 
specified for the partition minus 1. 

You must make assignments of the programmer logical units as needed 
by the programs running in each partition. Certain mM supplied programs 
require specific programmer logical unit assignments. For example the 
linkage editor requires SYSOO 1 and the assembler requires SYSOO 1, 
SYSOO2, and SYSOO3. 

Sharing Assignments. Within the same partition, different logical units may 
be assigned to the same physical device. For example: 

II ASSGN SYSLST,OOE 
II ASSGN SYS007,OOE 

Both logical names SYSLST and SYSOO7 are assigned to the device at 
address OOE. 

Normally it is not possible to share physical devices (except DASD) 
between partitions. For example if you have a tape drive assigned to the 
BG partition, but not used by that partition, you must first unassign it in 
BG before attempting to assign it in F2. If, however, you use a spooling 
package, such as the licensed program VSE/POWER, you can share unit 
record devices (card reader, card punch, for example) and diskette between 
partitions (see the licensed program VSE/POWER documentation for more 
details). 

With direct access devices this problem does not exist because each 
extent on a disk can be thought of as a separate device. It is not possible, 
however, to share a diskette between partitions. 

Figure 3-9 illustrates possible device assignments. 

Chapter 3: Using the System 3.35 



6) 
BG I SYSOO5 ·U 191 

F21 SYSOO5 ·U 192 

Fll SYSOO5 ·U 193 

BG SYSOO5 

F2 SYS006 191 

F1 SYS007 

BG SYS005 

BG SYSOO6 280 

BG SYSOO7 

Each partition has its own set of programmer logical units. 

Each assignment must be for a separate extent on the disk for this example to 
be valid. Extents are discussed under Processing of File Labels in this chapter. 

These assignments allow access to the tape volume by three different logical 
unit names. No assignments to this tape are valid from a partition other than 
BG at this ti me. 

FlgUl"e 3-9. Possible Device Assignments 

Figure 3-10 shows the logical units needed for an assembly. The illustration 
shows that the ASSGN statements must always precede the EXEC 
statement of the job step for which they are to be effective. (The device 
assignments for compilers are similar to the device assignments shown in 
this assembler example; any variations are documented in the applicable 
programmer's guides.) 

3.36 DOS/VSE System Management Guide 



SYSRES 

r------, 
I I 

__ l __ ~, : 
... y' 
"-_ ... I 
I ---- I I 
I ~ __ .J 

,..1.--, I 
, \ I 

~------~~ \ ) 
/& , -;' ,-

.~-
Only if the program is to 
be link-edited ~ II EXEC ASSEMBLY 

~ II OPTION .... 

/I ASSGN SYSLNK, .... 
Only if an object deck ~ 
is desired II ASSGN SYSPCH, .... 

1/ ASSGN SYSOO1, .... 

CPU 

SYSPCH 
(Optional) 

r------, 
I I 
.L--J"::-, I 

.... "I 
f----- .. ~ I 
I ~_...J 

.... _L.., I 
/ , I 

I \ ) I '-__ .... 
I 

I 
/ 

£._-

r-----.., 
I I .... __ .J __ .( ..... , I 

f,----- .... r' : 
I ~ __ ...J 

/_1.', I 
I \ I 

\ J 
L_-;' 

I , 
~--

SYSLST 

SYSOO1 
SYSOO2 
SYSOO3 

FtgUre 3-10. Device Assignments Required for an Assembly 

Chapter 3: Using the System 3.37 



Additional Assignment Consideratiom 

The following summarizes the functions of the job control ASSGN 
statement (or command). Also included are statements (commands) that 
can be used with logical unit assignments. 

The ASSGN Statement/Command. The ASSGN statement or command is 
used to connect a logical I/O unit to a general device class, a specific 
device type, a physical device or a list of physical devices, or another logical 
unit. An ASSGN statement or command can also be used: 

• to specify a temporary or permanent assignment. 

• to specify a volume serial number for a tape, disk, or diskette. 

• to specify that a disk is shareable by more than one partition or logical 
unit. 

• to unassign a logical unit to free it for assignment to another partition. 

• to ignore the assignment of a logical unit, that is, program references to 
the logical unit are ignored (useful in testing and certain rerun 
situations) . 

• to specify an alternate tape unit to be used when the capacity of the 
original is reached. 

The assignment routines check the operands of the ASSGN statement/ 
command for the relationship between the physical device, the logical unit, 
the type of assignment (permanent or temporary), etc. The following list 
summarizes the most pertinent items to remember when making 
assignments: 

• Assignments are effective only for the partition in which they are 
issued. 

• Apart from the operator console, no physical device except DASD can 
be assigned to more than one active partition at the same time. 

• All system input and output file assignments to disk or diskette must be 
permanent. 

• SYSIN . must be assigned if both SYSRDR and SYSIPT are to be 
assigned to the same extent. 

• SYSOUT cannot be assigned to disk or diskette; it must be a 
permanent assignment if assigned to tape. 

• SYSLNK must be assigned before issuing the LINK or CAT AL option 
in an OPTION statement; otherwise, the option is ignored and the 
message 'PLEASE ASSIGN SYSLNK' is issued to the operator. 

• Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all 
previous assignments to this tape unit must be permanently unassigried. 
This may be done byusing a DVCDN command as discussed below. 

• The assignment of SYSLOG cannot be changed while a foreground 
partition is active. 

3.38 DOS/VSE System Management Guide 



Processing of File Labels 

• SYSRES, SYSCAT, SYSREC,I ••• and the page data set can 
never be assigned by an ASSGN statement or command. An IPL is 
required to change these assignments. 

The RESET Statementl Command. The RESET statement or command can 
be used to reset temporary assignments of a partition to permanent. With 
one RESET statement or command you can reset 

• all logical units. 

• all system logical units. 

• all programmer logical units. 

• one specific system or programmer logical unit. 

The LISTIO Statement/Command. With the LISTIO statement or command 
you can obtain a listing of the current status of the 110 assignments in your 
system. This may be done for all devices or individual devices as required. 
If the LIS'fI()---oommann is used (no I I), the output goes to SYSLOG, 
otherwise the output is on SYSLST. 

The DVCDN Command. The DVCDN (device down) command informs the 
system that a device is no longer physically available for system operations. 
This command releases all logical assignments to the device. 

wp.en the device becomes available again for system operations, a 
DVCUP (device up) command must be given and new assignments made, 
before the device may be used. 

The DVCUP Command. The DVCUP (device up) command informs the 
system that a device is available for -system operations after it has been 
down. 

As shown above, DOS/VSE relates physical devices to logical names, used 
in programs, via the ASSGN job control statement (or command). Certain 
device types (magnetic tape, disk, and diskette) have removable volumes. It 
is important to ensure that the volume(s) containing the filets) to be 
processed are present on the assigned device(s). Magnetic tape, disk and 
diskette files are identified through file labels which are processed by the 
DOS lYSE data management routines.' Magnetic tape file labels are 
optional, though desirable for reasons of data integrity. Disk and diskette 
file labels are required. 

DOS/VSE writes file labels when a file is created based on label 
information submitted through job control statements. 

To write a file label on magnetic tape, DOS/VSE uses the /1 TLBL 
statement. This label is written by DOS/VSE immediately preceding the 
associated file. 

To write a file label on disk or on diskette, DOS/VSE uses the / / 
DLBL and / / EXTENT statements. The label is written into the volume 
table of contents (VTOC), and a utility program, LVTOC, is available to 

Chapter 3: Using the System 3.39 



list all labels included in this VTOC. Details on the DLBL and EXTENT 
statements are given in DOS/VSE System Control Statements. When a 
labeled file is to be processed, you must submit the required / / TLBL, / / 
DLBL and / / EXTENT statements, so that DOS/VSE can perform the 
desired label checking on your existing file. Figure 3-11 shows the 
relationship of label information that you provide by the above mentioned 
statements to file labels and programs. For a detailed discussion of label 
processing, refer to DOS/VSE DASD Labels and DOS/VSE Tape Labels. 

3.40 DOS/VSE System Management Guide 



/I ASSGN SYS021,281 
IITLBL PAYPMO,'PAY MARCH78' 
II ASSGN SYS011,DISK, VOL=444444 
II DLBL PAYROLL,'MASTER',99/365,SD 
II EXTENT SYS011,1,0,100,50 

Label I nformation Area 

Executing Program 

OPEN PA VROLL,PAVPMO 

The OPEN invokes the DOS/VSE ----------

, , , , , , , , , 

Data Management routines. 

444444 

Master 

Data of File Master 
(50 tracks) 

----------

Label I nformation provided 
by the user is stored by 
DOS/VSE in the label infor­
mation area. 

Data Management Routines 

The Data Management routines search the label information 
for the file names PAYROLL and PAYPMO. 

Once the label information is found, the file I D's MASTER 
and PAY MARCH78 are searched for on the mounted 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

I 
I 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I 
I 

I 
I 

I 
/ 

/ 
/ 

/ 

/ 

Figure 3-11. File Label Processing 

Chapter 3: Using the System 3.41 



The / / TLBL, / / DLBL, and / / EXTENT job control statements may be 
submitted with each execution of a given program that processes labeled 
files. Job control temporarily stores these statements in the label 
information area. A recommended alternative for frequently accessed files 
is to permanently store the label information in the label information area. 
The section Storing Label Information later in this chapter describes how 
to permanently store label information. 

When the program that processes the file is executed, the data 
management routines of DOS/VSE access the label information 

to write the appropriate labels onto the storage volume, and to check 
that no unexpired files are overwritten, if the file is to be created, or 

• if an existing file is to be processed, to check the contents of the label 
information area against the label(s) of the file to ensure, for example 
that the correct volume is mounted. 

The first two parameters of both the / / TLBL and / / DLBL statements 
are the same: 

II TLBL filename,'file-id' 
II DLBL filename,'file-id' 

The file!l~VJ~, is not part of the file label. You code a filename in your 
prograni to 'identify your file. 

• In assembler language it is the DTF (Define The File) name. 

• In DOS/VS RPG n it is the FILENAME. 

• In DOS/VS COBOL it is the name specified in the SELECT clause. 

• In PL/I it is the identifier (with the Fn...E attribute) in the DECLARE 
statement. 

• In FORTRAN it is the file name associated with the data set reference 
number. 

The filename from your program is used as a search argument by the data 
management routines in searching for label information in the label 
information area. Accordingly you must code a matching fIlename in your 
/ / TLBL or / / DLBL statements. 

The file-i4 is part of the [tIe label. After the DLBL or TLBL 
statements are located (based on filename), the file-id is used to: 

• create a label for an output file. 

• locate and check the labels of an input file. 

3.42 DOS/VSE System Management Guide 



Example of label checking: 

II JOB UPDATE 
II ASSGN SYS007,OOC 
II ASSGN SYS008,280 
* PLEASE MOUNT CURRENT ACCOUNTS RECEIVABLE TAPE 
II PAUSE 
II TLBL ACCT,'ACCTS.REC.FILE' 
II EXEC UPDATE 
data cards 
1* 
II MTC REW,SYS008 
II ASSGN SYS010,280 
II ASSGN SYS007,OOE 
II TLBL ARFILE,'ACCTS.REC.FILE' 
II EXEC ARREPO~T 
1& 

The two programs UPDATE and ARREPORT access the same file 
'ACCTS.REC.FILE'. The two programs happen to use different file names 
and different programmer logical units. 

UPDATE opens a file named ACCT on logical unit SYSOO8 and 
ARREPORT opens a file named ARFILE on SYSOI0. In both cases the 
file accessed is ' ACCTS.REC.FILE'. If the two programs had used the 
same file name and programmer logical units, one ASSGN statement and 
one / / TLBL statement permanently stored in the label information area 
would suffice. 

Label Information for Fdes on Diskette Devices 

After you have informed the system, via the ASSGN statement or 
command, on which physical device the file is to reside, you must supply 
the following information to allow the creation and checking of diskette 
labels: 

1. A description of the characteristics of the file. You specify this in the 
DLBL job control statement. 

2. The volume(s) the file is contained on. You specify this in one or more 
EXTENT job control statements. 

The label information you supply in the DLBL job control statement may 
include the following: 

• The name of the file. This name must be identical to the correspOnding 
file name specified in your program. For programs written in assembler 
language, this would be the name of the DTF. 

• An identification of the file. This name is the one contained in the file 
label on the diskette. It is associated with the file name via the DLBL 
statement. 

• The expiration date of the file. 

• The type of access method used to process the file; always coded as 
DU. 

Chapter 3: Using the System 3.43 



A diskette file consists of a data area on one or more volumes; each volume 
contains only one data area for a particular file. For each of these data 
areas, called extents, you must supply the following information on an 
EXTENT job control statement: 

• The symbolic name of the device on which the volume containing the 
file is mounted. 

The serial number of the volume. 

• The type of extent; always coded as 1. 

In the following example, the program CREATE creates a diskette (DU) 
file named SALES that has a file-id of MONTHLY and is to be retained 
for 30 days. The file comprises up to three diskettes. The diskettes have 
the volume serial numbers 111111, 111112, and 111113, and are mounted 
on the drive assigned to the symbolic device named SYSOO5. 

II JOB EXAMPLE 
II ASSGN SYS005,060 
II DLBL SALES,'MONTHLY',30,DU 
II EXTENT SYS005,111111,1 
II EXTENT SYS005,111112,1 
II EXTENT SYS005,111113,1 
II EXEC CREATE 
If:. 

The job control program checks the DLBL and EXTENT statements for 
correctness and stores the supplied information in the label information area 
on SYSRES for the durati6n of the job (see Storing Label Information 
later in this chapter). 

Label Information for Flies on Direct Access Devices 

After you have informed the system, via the ASSGN job control statement 
or command, which volume or physical device you want, you must supply 
the following information to allow the creation and checking of DASD 
labels: 

1. A description of the characteristics of the file. You specify this in the 
DLBL job control statement. 

2. The exact location of the file on the storage medium. You specify this 
in one or more EXTENT job control statements. 

3. For non-sequential DASD files, the amount of storage in the partition 
to be reserved for label processing.!' 

.• You specify 
~n11'1t"1",n.1 statement. . information 

'is needed by the linkage editor, the LBL TYP statement is discussed in 
Linking Programs later in this chapter. 

The label information you supply in the DLBL job control statement may 
!Jtc1ude the following: 

• The name of the file .. This name must be identical to the corresponding 
file name specified in your program. For programs written in assembler 
language this would be the name of the DTF. 

3.44 DOS/VSE System Management Guide 



• An identification of the file which may include generation and version 
numbers of the file. This name is the one contained in the file label on 
the storage device. It is associated with the file name via the DLBL 
statement. 

• The expiration date of the file. 

• The type of access method used to process the file. 

• An indication of whether or not a data secured file is to be created. 

• The blocksize to be used for this file on an mM 3330-11 or 3350 
device. 

• The control interval size (CISIZE) if your file is a sequential disk file 
and resides on an FBA device. 

A DASD file can consist of one or more data areas on one 9r more 
volumes. For each of these data areas, called extents, you must supply the 
following information on an EXTENT job control statement: 

• The symbolic name of the device on which the volume containing the 
file extent is mounted. 

• The serial number of this volume. 

• The type of the extent. An indexed sequential file, for instance, can 
consist of data areas, index areas, and overflow areas. For each of these 
areas an extent must be defined, and its type (data, index, or overflow) 
must be specified. 

• The sequence number of the extent within the file. 

• For CKD devices: 

The number of the track (relative to zero) on which the file extent 
begins. 

The amount of space (in tracks) the file occupies. 

• For FBA devices: 

The block number on which the file extent begins. 

The amount of space (in blocks) the file occupies. 

Examples for Submitting Label Information for DASD Flles. Here are a 
number of examples of how to code the job control statements required to 
create or access the labels for the various types and organizations of DASD 
files. It is helpful if you are familiar with the formats of the DLBL and 
EXTENT job control statements as described in DOS/VSE System Control 
Statements. Detailed information on the possible organizations and access 
methods for DASD files is given in DOS/VSE Data Management Concepts. 

Sequentially Organized Disk Flies (Single Drive, Single Volume). In the 
following example, the program CREATE creates a sequential disk (SD) 
file named SALES that is to be retained until the end of 1979. The file 
comprises one extent of 190 tracks on a CKD device, starting on relative 
track number 1320. The disk pack has the volume serial number 111111 
and is mounted on the drive assigfied to the symbolic device name SYSOO5: 

Chapter 3: Using the System 3.45 



II JOB EXAMPLE 
II ASSGN SYS005,D1SK,VOL=111111,SHR 
II DLBL SALES, 'ANNUAL SALES RECORDS',79/365,SD 
II EXTENT SYS005,111111,1,O,1320,190 
II EXEC CREATE 
1& 

The job control program checks the DLBL and EXTENT statements for 
correctness and stores the supplied information in the label information area 
on SYSRES for the duration of the job or job step. 

SequentiaDy Organized Disk Files (Single Drive, Multivolume). Assume that a 
program.PROGlOO needs a sequential disk file located on three different 
disk packs that are to be moUnted successively on the same device 
(SYSOO5). The file consists of four extents on an FBA device: two on the 
pack with serial number ()()()()20, one on pack 000100, and one on pack 
000006. The following job stream shows the label statements required: 

II JOB SAMLABEL 
II ASSGN SYS005,D1SK,VOL=000020,SHR 

1 II DLBL F1LNAME,'F1LE 1D',99/365,SD 
II EXTENT SYS005,000020,1,O,10,2010 
II EXTENT SYS005,000020,1,1,4000,lS10 
II EXTENT SYSOOS,000100,1,2,64,1300 
II EXTENT SYS005,000006,1,3,SO,636 

2 II EXEC PROG100 
3 1& 

1 Orily one DLBL statement is required. For each extent one EXTENT statement 
must be supplied in the sequence in which the extents are processed. 

2 Logical Ioes in PROG100 opens the first extent using the file name and file ID in 
the DLBL statement, and the logical unit and volume serial number in the first 
EXTENT statement to locate the actual label on the disk pack. After PROG100 has 
processed the first extent, logical IOeS opens the second extent, based on the 
extent sequence number. 

For the third extent, volume serial number 000100 is specified while the volume 
currently mounted on SYSOO5 has the number 000020. The OPEN routine of 
LIOeS notifies the operator of this discrepancy, and the operator can mount the 
correct volume, at which time the OPEN routine regains control. The same is true 
for the fourth extent. 

3 The / & statement causes the label information stored in the label information area 
to be cleared. Thus, if the next job requires the same file, the label statements must 
be resubmitted (see Storing Label Information later in this chapter). 

SequentiaDy Organized oa Files (Multiple Drives). This example has the 
same requirements as the preceding 'Single Drive' example except that the 
three volumes are mounted on three different drives. The required job 
control statements are as follows: 

3.46 DOS/VSE System Management Guide 



II JOB SAMLABEL 
II ASSGN SYS005,DISK,VOL=000020,SHR 
II ASSGN SYS006,DISK,VOL=000100,SHR 
II ASSGN SYS007,DISK,VOL=000006,SHR 

1 II DLBL FILNAME,'FILE ID',99/365,SD 
II EXTENT SYS005,000020,1,O,10,2010 
II EXTENT SYS005,000020,1,1,4000,1510 
II EXTENT SYS006,000100,1,2,64,1300 
II EXTENT SYS007,000006,1,3,50,636 

2 II EXEC PROG100 
1& 

1 All label statements submitted are identical to the 'Single Drive' example except for 
SYSnnn in the EXTENT statements. 

2 Logical IOCS opens each extent in the same way as described in the 'Single Drive' 
example except that processing does not stop for removal and mounting of packs, 
because enough devices are online to contain the file. A combination of this and 
the 'Single Drive' example could be used to reduce handling time without 

excessively increasing the total drive requirements. 

OA Files. The program PROG t61 processes a direct access fite consisting 
of four extents contained on three CKD disk packs. The three packs must 
be ready at the same time. The following job stream shows the label 
statements required to process the file: 

II JOB DALABEL 
II ASSGN SYS005,DISK,VOL=000065,SHR 
II ASSGN SYS006,DISK,VOL=000025,SHR 
II ASSGN SYS007,DISK,VOL=000002,SHR 

1 II DLBL FILNAME,'FILE ID',99/365,DA 
II EXTENT SYS005,000065,1,O,1320,190 
II EXTENT SYS005,000065,1,1,80,740 
II EXTENT SYS006,000025,1,2,50,906 
II EXTENT SYS007,000002,1,3,1275,64 
II EXEC PROG101 
1& 

1 The label statements follow the same pattern as for sequential files (described in the 
preceding examples) except that the DLBL statement must specify DA to indicate 
direct access. 

Label Information for Flies on Magnetic Tape 

Files on magnetic tape can be processed with or without labels. For tape 
files with ffiM standard labels, the label information must be submitted 
through the TLBL job control statement. (A tape file can also have 
standard-user or non-standard labels; for th¢.se labels, n:oj<}l> control 
statemeD;ts are required. ~ore"information on tape labels is given in 
DOS/VSE Data Management Concepts). 

The standard label information submitted in the TLBL statement may 
include the following: 

• The name of the file. This name must be identical to the corresponding 
filename (DTF name) specified in your program. 

• An identification of the file. 

• Creation date for input and expiration date (or retention period) for 
output files. 

Chapter 3: Using the System 3.47 



Storing Label Information 

• The volume serial number of the tape reel that contains the file. 

• For files that extend over more than one volume, the sequence number 
of the volume. 

• For volumes that contain more than one file, sequence number of the file. 

• The version and modification number of the fIle. 

When a program that processes tape files with standard labels is to be 
link-edited, you must supply a LBLTYP job control statement to define the 
amount of storage required in the partition for label processing (see also 

~"'·"'·'·b Plrn{!jranl.\' later inr.Jthisi· ••• 1 
As with DASD files, the label information you supply in the TLBL job 

control statement is checked and stored in the label information area on 
SYSRES (see Storing Label Information, below). 

Job control stores label information in the label information area. The label 
information is stored temporarily (for the duration of one job or job step) 
or permanently. 

As label information is submitted, DOS/VSE acquires a portion of the 
label information area which is referred to as a label subarea. 

The minimum size of a label subarea is one track for a CKD device and 
2K for an FBA device, the maximum size is the entire label information 
area. There are three types of label subareas: 

• partition temporary subarea 

• partition standard subarea 

• system standard subarea 

Label information stored in either of the two types of partition subareas 
may be accessed only from the partition in which the label information was 
originally submitted. Label information stored in the system subarea may 
be accessed from all partitions. The type of subarea used is controlled by 
the following three options of the OPTION job control statement: 

Pt.~ -=.. UlRLABEL causes all DASD, diskette, and tape label information to be 
s.t,ored temporarilx for one job or job step. ~ 
information submitted between job steps overlays the label 
iformation from the former job step. the label -
informatIOn is written to a p.artition temporary subarsa (one 
per partition) and is accessible only by the partition in 
which it was submitted. It is a good idea to include all 
TLBL, DLBL, and EXTENT statements in the first step of 
a job (preceding the / / EXEC statement). If no option is 
specified, or if the OPTION statement is omitted, 
USRLABEL is assumed. 

P ARSTD causes all DASD, diskette, and tape label information to be 
stored permanently for all subsequent jobs. The label 

3.48 DOS/VSE System Management Guide 



information is written to a partition standard subarea (one 
per partition) and is accessible only by the partition in 
which it was submitted. 

STDLABEL causes all DASD, diskette, and tape label information to be 
stored permanently for all subsequent jobs. The label 
information is written to the system standard subarea and 
is accessible by all partitions but can only be submitted in 
the background partitiQ.n. This ensures that the system 
standard label information is not updated simultaneously by 
two partitions. Logical unit numbers contained in the 
submitted label information must not be greater than the 
highest logical unit number specified for background at 
system generation. 

Note: When SYSRES is on an FBA disk device, DOS/VSE blocks 
user-supplied label information before writing that information to 
disk. Therefore, you should terminate your / / OPTION P ARSTD 
Of· I/OP'IlONSTDLABEL job stream witha./ / OPTION 
USRLABEL statement. This ensures that all label information is 
actually written to the label information area as permanent partition 
or system standard labels. Labels in the system standard subarea 
are accessible from other partitions only after they have been 
written completely. The OPTION ,statement with USRLABEL 
specified indicates to DOS/VSE that no further partition or system 
standard labels will follow. The same effect is accomplished by a 
/ & , / / JOB, or / / EXEC statement. 

A partition can have only one temporary and one standard subarea at any 
point in time. As the subareas are variable in size it is possible that disk 
space is not available in the label information area when DOS/VSE 
attempts to write label information. When this occurs a message will be 
displayed on the console stating that the label area is exhausted. To clear a 
subarea (in order to run the current job), you can do one of the following: 

• Submit a / & in another partition to clear that partition's temporary 
subarea. 

• Submit a / / OPTION PARSTD followed by a / & in any partition to 
clear that partition's standard subarea. 

Do not clear the system standard subarea. If you find that the system 
standard subarea is using more disk space than you want, reorganize your 
label information area. For example if you have an application that always 
runs in the same partition (such as the licensed program VSE/POWER) the 
labels for that application should be put on that partition's standard label 
subarea, not the system standard subarea. 

During program execution, the DOS/VSE data management routines 
search the label information area in the following sequence: 

(1) user label information (partition temporary subarea) 

(2) partition standard information (partition standard subarea) 

(3) system standard information (system standard subarea). 

It is important to distinguish between the conditions under which a label 
option remains in effect and the conditions that govern the retention of the 

Chapter 3: Using the System 3.49 



Option in search sequence 

USRLABELI 

PARSTD 

STDLABEL 

label data in the label information area. For example, the label data. 
submitted following an OPTION statement with the P ARSTD option is 
retained for all subsequent jobs until overwritten by another P ARSTD 
option, but the P ARSTD option is canceled at the end of the job or job 
step in which it was specified. This is shown in the summary of label 
options in Figure 3-12. 

Type of label Option in effect Label information For information until retained 

temporary STDLABEL or for one job. The the partition in 
PARSTD is / & statement which the option 
specified. causes the was specified. 

temporary label area 
to be cleared.4 

permanent a) end of job step for all subsequent the partition in 
b) end of job jobs until another which the option 
c) USRLABEL or PARSTD option is was specified. 
STDLABEL is used.1 

specified.5 

permanent a) end of job step for all subsequent all partitions} 
b) end of job jobs until another 
c) USRLABEL or STDLABEL option is 
PARSTD is used.1 

specified. 5 

1 If no option is given or if the OPTION statement is omitted, USRLABEL is assumed. 
1 All label information submitted following a PARSTD or STDLABEL option is written at the beginning of the label area thus 

destroying any previously stored information. Therefore, if you want to add label data for another file, all previously stored 
label information that is to be kept must be resubmitted. 

3 Label information stored with the STDLABEL option is available to all partitions but can be submitted only through the 
background partition. 

4 Additional label information from a subsequent job step will overlay previous label information. 
5 It is recommended that a USRLABEL option be submitted following the PARSTD or STDLABEL job stream when SYSRES 

is on an FBA device. 

FJgUre 3-12. Summary of Label Option Functions 

By permanently storing the label information for a disk file in the label 
information area, DOS/VSE relates that file to the type of the device which 
is assigned to the pertinent logical unit when this file is processed for the 
first time. A later attempt to use this label information for the same file 
(and extent) on a different device type causes DOS/VSE to cancel the job. 
If a different device type has to be used for this file, DOS/VSE requires 
that the label statements be resubmitted and the pertinent logical unit 
assigned to the device of the new type. 

Remember that, when adding to or altering permanently stored label 
information, all of the partition's (or system's) permanently stored label 
information must be resubmitted along with the updates. Stored label 
information may be displayed using program LSERV as follows: 

II JOB 
II EXEC LSERV 
1* 
IF:. 

3.50 DOS/VSE System Management Guide 



Tape and Print Operations 

Controlling Magnetic Tape 

Controlling Printed Output 

The MTC job control statement or command controls certain magnetic tape 
operations, for example, file positioning. Files on magnetic tape are almost 
invariably processed sequentially. This means, for example, that if you have 
five files on one tape reel and you want to process the last one, you have 
to read four files before you can access the one you need. You can, 
however, instruct the job control program to position the tape at a 
particular file. 

The MTC job control statement or command controls operations such 
as: 

• Spacing the tape backward or forward to the required file. 

• Spacing the tape backward or forward a specified number of records. 

• Rewinding the tape to the beginning. 

• Writing a tapemark to indicate the end of a file. 

In the following example, program FROGA creates a labeled tape file 
named RATES on tape volume 222222. At the end of the first job step, an 
MTC job control statement is used to rewind (REW) the tape to the 
beginning of the tape volume so that the newly created file can be 
processed by PROGB. 

II JOB TAPE 
II ASSGN SYS004,TAPE,VOL=222222 
II TLBL RATES,'MASTER',75/365,222222 
II EXEC PROGA 
II MTC REW,SYS004 
II EXEC PROGB 
1& 

Most of the DOS/VSE supported printers use a forms control buffer 
(FCB) to control the length of forms skips. In addition, printers may be 
equipped with the universal character set feature, which is controlled by a 
universal character set buffer (UCB). Examples of printers equipped with 
these buffers are the 3203 and 3211 printers. 

The buffers of these printers must be loaded during or immediately 
after IPL, and they may have to be reloaded later between job steps or, 
occasionally, while a job step using the printer is being executed. 

The following methods for loading the buffers are available: 

Chapter 3: Using the System 3.51 



To load the FCB 

• Automatic loading during IPL 

• Using the SYSBUFLD program between job steps or immediately after 
IPL 

• Using the LFCB command 

• Using the LFCB macro in the problem program 

• Using the FCB parameter in the VSE/POWER * $$ LST statement. 

To load the UCB 

• Automatic loading during IPL (applies to PRT1 and 5203U printers) 

• Using the SYSBUFLD program between job steps or immediately after 
IPL 

• Using the LUCB command 

• Using the UCS command (applies only to a 1403 UCS printer). 

The method of loading the buffers by using the SYSBUFLD program offers 
the advantage that hardly any operator activity is involved; on the other 
hand, loading the buffers by using the LFCB or LUCB command does not 
require the operator to wait for a partition to finish processing. 

When the contents of an FCB or a UCB are replaced by a new buffer 
image, the system uses this new image to control printed output until the 
buffer is reloaded (or until the next IPL). None oLtbe above methods 
provides automatic resetting of the buffer load to the original contents. It 
may be necessary to reset the buffer to the original contents before taking a 
storage dump, to ensure that the dump is printed in the correct format, 
without any part of it being left out. 

Details on how to load the FCB and UCB are contained in DOS/VSE 
System Control Statements. 

The 3800 Printing Subsystem. The 3800 Printing Subsystem is a noimpact, 
high-speed, general-purpose system printer that uses an electrophotographic 
technique with a low-powered laser to print output. It provides more 
features than current impact printers. 

The following methods of controlling the 3800 are available: 

• The SETPRT job control statement ~r command, which allows you to 
set the 3800 with user-specified control values. These values are reset 
at the end of the current job to the installation's default control valu~s 
as specified in the SETDF operator co~and, or to the hardware 
defaults if SETDF is not specified. 

3.52 DOS/VSE System Management Guide 



Executing a Program 

• The SETDF operator command, which allows the operator to set 
and/ or reset default control values for the 3800. A SETDF command 
can set default control values for the following: 

One cha.tacter arrangement table 

The forms control buffer 
,t' 

The copy modification phase 

The paper forms identifier 

The forms overlay name 

Bursting and trimming or continuous forms stacking 

The setting of all hardware defaults with one command. 

• The SETPRT macro instruction, which is generally invoked via the 
preceding statements but can also be used directly by the programmer 
to initialize or dynamically change the setup of the 3800. 

For information on available techniques for controlling the 3800, see 
DosTvSE--JiiM' 3st)'i) printing SubsYstem Programme,.'s Guide. 

After you have properly defined the I/O requirements of your program to 
the system you can instruct job control to prepare your program for 
execution. How this is done and how the supplied information is processed 
is described in the following section. 

Assembling/Compiling, Link-Editing, and Executing a Program 

In DOS/VSE, three processing steps are necessary to obtain results from a 
problem program once the source program has been written: 

1. ASsembly or compiling of the source program into an object module. 
(Object modules are discussed in section Linking Programs later in this 
chapter.) 

2. Link-editing of the object module to form an executable program 
phase. 

3. Execution of the program phase. 

Each of these steps is initiated. by the job control program in response to an 
EXEC job control statement. The EXEC statement must be the last of the 
job control statements submitted for anyone job step. Figure 3-13 shows 
an example of the job control statements needed to asseTnble, Hnk-edit, and 
execute a source program. 

Chapter 3= Using the System 3.53 



II JOB EXECUTE 
1 II OPTION LINK 
2 II EXEC ASSEMBLY 
3 II EXEC LNKEDT 
4 II EXEC 

1& 

1 To link-edit a program, the LINK option must be set ON. 

2 The assembler is fetched from the core image library and starts execution. 

3 The linkage editor is fetched from the core image library and starts execution. 

4 When an EXEC statement without a program name is encountered, the program 
last stored (if stored within the same job) in a core image library by the linkage 
editor is fetched for execution. 

FJgUI'e 3-13. Job Control Statements to ~mble, Link-Edit, and Execute a 
Program in one Job 

Language translators read their input from SYSIPT. H SYSRDR and 
SYSIPT are assigned to the same device, the source statements of your 
program must follow the corresponding EXEC job control statement. In 
this example, the assembler language statements would have to follow the 
// EXEC ASSEMBLY statement. The end of the input data submitted for 
one program must be indicated by a /* (end-of-data) statement. The /* 
statement is not processed by job control; it is read by the logical IOCS 
routines of DOS/VSE. (Note: For an input file on an mM 5424 MFCU, 
the /* card must be followed by a blank card.) The placement of input 
data and the /* statement is shown in Figure 3-14. 

3.54 DOS/VSE System Management Guide 



II JOB INPUT 
II OPTION LINK 
II EXEC ASSEMBLY 

source program 

1* 
II EXEC LNKEDT 
II EXEC 

input data for user program 

1* 
1& 

FIgUre 3-14. Submitting Input Data on SYSIPT 

How the job shown in Figure 3-14 is processed by the system is illustrated 
in Figure 3-15. The numbers to the left of the subsequent paragraphs refer 
to the encircled numbers in that illustration. The inclusion of SYSIPT data 
in job streams in the procedure library is described in the section SYSIPT 
Data in Cataloged Procedures. 

1 Job control reads the JOB statement and stores the job name in the 
supervisor. Other functions of the JOB statement are described under 
Defining a Job, earlier in this chapter. 

2 Job control reads the OPTION statement with the LINK option and 
sets the LINK bit in the supervisor. This indicates 

a) to the assembler, that the assembled object module is to be written 
onto SYSLNK, 

b) to job control that link editing is allowed in this job, 

c) to the linkage editor, that the executable program is to be stored in 
the core image library only temporarily for execution in the same job. 

3 On encountering the / / EXEC ASSEMBLY statement, job control 
transfers control to the supervisor passing it the name of the assembler 
program. 

4 The supervisor loads the assembler into the partition, replacing job 
control. 

5 The assembler reads the source program, assembles it, and stores the 
object module on SYSLNK (not shown). 

6 The assembler transfers control to the supervisor. 

7 The supervisor loads job control into storage, replacing the assembler. 

8 Job control reads the / / EXEC LNKEDT statement, as well as any 
preceding linkage editor statements, and transfers control to the 
supervisor, passing it the name of the linkage editor. 

Chapter 3: Using the System 3.55 



9 The supervisor loads the linkage editor into storage, replacing job 
control. 

10 The linkage editor reads the object module from SYSLNK and 
link-edits it. 

11 The linkage editor stores the executable program in the core image 
library. 

12 The linkage editor transfers control to the supervisor. 

13 The supervisor loads job control into storage. 

14 Job control reads an EXEC statement without a program name and 
transfers control to the supervisor. 

15 The supervisor loads the program last stored in the core image library 
by the linkage editor replacing job control. 

16 The user program is executed. It reads and processes the data from 
SYSIPT and, at end-of -job, returns control to the supervisor. 

17 The supervisor loads job control. 

18 When job control reads the / & statement, it turns off the LINK option 
and replaces the jobname stored in the supervisor by NO NAME. 
Other functions of the / & statement are described under Defining a 
Job, earlier in this chapter. 

3.56 DOS/VSE System Management Guide 



Input on SYSIN CS;erVisor:J Core I mage Library 

I INPUT 

LINKAGE EDITOR 

INPUT I I-

-
.........:L:.;.;IN __ K~I,~ __ -i~IJI. __ -Ml_ EXECUT AB LE USE R 

;:: PROGRAM 

- y ~-----..... ~-) JOB CONTROL 
___ JOB CONTROL --I I INPUT ----v 

I ~I LINK I 
/ / EXEC ----~-I .. - ell:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;) ~ 

EXECUTABLE USER ' 

USER I ~ ____ ...........-

PRO_GRAM r ... INPUT I 

PROG RAM (LiJJ-*-rJ·~'1 "-""" \ 
c;if4"J )\f.. ~ 

t\.. LINK J 
input data ----+-11- I til::::::::::::::::::::::::::::::::::::::::::::::::::: ::;:::::::::::::::::::::::::::::::::::::::::;:::;:::::::::::::::::::{:. -- .' 

r --- JOB CONTRO_L:_ -_ -_ -_ -_-_ -:_ -_ -_ -_-__+_ INONAMEI 

~-----------~~- ~ .. 

--..... - T ra nsfer of data 

~ T.ransfer of control 

_ .. ___ ~) Loading fro~ core image library 

JOB CONTROL 

Figure 3-15. System Operation of an Assemble, Link-Edit and Execute Job 

Executing Cataloged Programs. Programs may be cataloged permanently in 
the core image library after they have been assembled and link-edited. This 
saves assembling and link-editing a program for every run. 

Cataloging into the core image library is done by the linkage editor in 
response to an OPTION job control statement with the CAT AL option (see 
Linking Programs later in this chapter). 

To execute a cataloged program you use an EXEC job control 
statement specifying the name under which the program was cataloged (as 
shown for the assembler and linkage editor in the preceding example). 

Chapter 3: Using the System 3.57 



For example, the following job executes a program that was cataloged 
in the core image library under the name PROGA; data cards are submitted 
on SYSIPT: 

II JOB CAT 

assignment and label 
statements, if required 

II EXEC PROGA 

input data 

1* 
1& 

Denning Options for Program Execution 

In the preceding section, it was shown how the OPTION job control 
statement can be used 

• to specify the type of label information to be stored for a file 
(USRLABEL, PARSTD, STDLABEL options), and 

• to define whether a program is to be link-edited (LINK. option). 

There are a number of additional functions which you can invoke through 
the OPTION job control statement. The most important ones are: 

/ / OPTION LOG 
Logs all job control statements submitted to the system on SYSLST. This 
facilitates diagnosing the job control statements in case of an error. 

/ / OPTION PARTDUMP 
Dumps the contents of the registers, a formatted portion of the supervisor 
area, and the current partition on SYSLST in case of abnormal program 
termination. To obtain the entire supervisor area unformatted, 
/ / OPTION DUMP may be used. 

/ / OPTION DECK 
Puts an object module on SYSPCH. The object module can then be 
combined with other object modules by the linkage editor to form one 
executable program, or it can be used as input to the library maintenance 
program to catalog it into the relocatable library. 

/ / OPTION LIST, USTX, SYM, XREF, ERRS 
Prints various listings produced by the language translators (compilers) on 
SYSLST. These listings include object code, symbol table, cross-reference, 
and error lists which are useful debugging aids during the test period of a 
program. SXREF may be specified instead of XREF to obtain a cross 
reference listing that includes only the referenced labels in the assembled 
program. 

3.58 DOS/VSE System Management Guide 



These (and other) options may be permanently set by using the 
STDOPT command. The specified options become effective after the next 
I & or I I JOB ~tatement. 

Permanent options are valid for all jobs unless overridden by an 
OPTION job control statement. Options specified in an OPTION statement 
remain in effect until (1) a contrary option is read or (2) a JOB or 1& 
~tement is encountered which resets the options to permanent. 

Certain of these options can be suppressed by specifying the prefix NO 
(for example, NOUST, NODUMP). A complete list of the available 
options is given in DOSIVSE Sysu:m Control Statements. 

CommuniCiting with Problem Programs via Job Control 

Via job control a program can be instructed to take a specific path of 
action. This instruction is given by setting program switches which can be 
testea- liy-llie-jjrotileni-program--aflhetime--of program execu{ioli 

These program switches, called UPSI (user program switch indicator), 
can be set "on" (1) or "off" (0). They are set by job control in response 
to the UPSI job control statement. The specific meaning attached to each 
bit in the UPSI byte depends on the design of the program. The statement 

I I UPSI 10000001 

for exaniple, sets bits 0 and 7 of the UPSI byte to 1, and bits 2 through 6 
to zero. A program can inspect these switches and take a 'specific path 
based on their setting. Since the I I JOB statement sets the eight bits of the 
UPSI byte to zero, the I I UPSI statement should follow the I I JOB 
statement. 

UPSI switches might be useful, for example, in an accounting 
application that prepares reports of daily, weekly, and monthly accounts. 

1 Through the program switches, -the application can be instruc.ted as to when 
the daily, weekly, or monthly reports are due. 

For more details on the UPSI statement see DOS IVSE System Control 
Statements. 

Executing in Virtual or Real Mode 

All programs invoked for execution through an EXEC job control 
statement are normally executed in virtual mode. To ron a program in real 
mode, you specify the REAL operand in the EXEC statement. Example: 

- ~ 

II JOB NAME 

I I EXEC PROGA, REAL 
1& 

H, for the above example, job control runs in partition F2, then the 
program PROGA will be loaded and executed in real mode if there is 
sufficient processor storage all~ted to the F2 partition to hold the entire -
program PROGA. -

Chapter 3: Using the System 3.59 



If a program executing in real mode is smaller than the allocated 
processor storage, the unused allocated processor storage should remain part 
of the page pool. Specifying the size of the program in the SIZE operand of 
the EXEC statement accomplishes this. Example: 

II JOB NAME 

II EXEC PROGA,REAL,SIZE=30K 
1& 

If the F2 partition has SOK of processor storage allocated and the program 
PROGA has a size of 30K bytes, the remaining 20K bytes of that partition 
will remain in the page pool. 

If you specify SIZE=AUTO, job control automatically uses the 
information in the program's core image directory entry to calculate the size 
of the program to be loaded. 

Running programs in real mode implies temporarily forfeiting a number 
of page frames in the page pool, which may lead to degradation of system 
throughput. Therefore, real mode execution should be used sparingly. 

With a few exceptions, all mM-supplied and user-written programs can 
be executed under DOS lYSE either in virtual or real mode. These 
exceptions are listed in the following section. 

Programs that Must Run in Real Mode. The mM-supplied program OLTEP 
(On-line Test Executive Program) must be executed in real mode. 

User-written programs must be executed in real mode if they contain 
channel programs for devices· not supported by DOS/VSE. 

User-written programs must be executed in real mode or modified if 
they 

• contain MICR stacker selection routines or other time-dependent code 
for execution of I/O requests. 

• contain channel programs that are modified during command execution. 

• contain I/O appendage routines causing page faults. 

A program may request to obtain additional storage from the partition 
GETVIS area (this area is described in the following section, Dynamic 
Allocation of Storage). During real mode execution, that storage is 
obtained from the unused allocated processor storage. Specifying a SIZE 
value, therefore, allows you to issue GETVIS requests from a program 
running in real mode (contrary to execution in virtual mode, DOS/VSE 
does not provide a default partition GETVIS area for real mode execution). 
For a program that is executed in real mode, allow 16K per open file, and 
allow additional processor storage if double buffering is used or if FBA files 
with large CI-sizes or VSE/VSAM files are opened. For most mM-supplied 
programs that you want to run real, an allowance of 48K for GETVIS 
requests suffices. 

3.60 DOS/VSE System Management Guide 



Dynamic ADocation of Storage 

Note that the FREEVIS macro releases GETVIS space which was 
obtained through a GETVIS macro; that space is again available for 
subsequent GETVIS requests. When issued from a program running in real 
mode, however, the space is not returned to the page pool until the 
execution of the particular job is finished. 

DOS/VSE dynamic storage areas, called GETVIS areas, are part of the 
virtual storage. The system GETVIS area (in the SV A) is discussed in 
Chapter 2, Planning the System. Each partition has an area called the 
partition GETVIS area. These areas occupy the high address space of a 
partition's· virtual storage. The minimum GETVIS area for a partition is 
48K, which is the mM-set default. This default is not applicable to real 
mode execution; in this case, you have to reserve storage yourseH (as 
described in the preceding section). 

The partition GETVIS area is used by certain DOS/VSE system 
components for items such as opening of files, label processing etc. 
Programs using rotational positional sensing (RPS) require 256 to 512 bytes 
in the partition GETVIS area for each open file. This value should be 
added to the minimum system requirement of 48K. 

Programmers 'writing in assembler language may request space from the 
partition GETVIS area via the GETVIS macro. When no longer needed by 
the requesting program, area so acquired can be released by issuing the 
FREEVIS macro. For details about using these macros, refer to the 
publication DOS/VSE Macro User's Guide. 

Figure 3-16 shows the virtual storage layout of a 200K partition with a 
default-size partition GETVIS area. 

Problem 
Program 
Execution 

~-------------

Partition GETVIS Area 

-r-
T 

48K 

i 

200K 

1 
The largest size program that could execute in the shown partition is one that is 
152K. 

Figure 3-16. Storage Layout of a Partition with Default GETVIS Area 

Chapter 3: Using the System 3.61 



You may increase the size of a partition GETVIS area through: 

• the SIZE job control or attention routine command. 

• the SIZE parameter of the job control EXEC statement. 

With the SIZE command, you specify the amount of virtual storage 
available for program execution in a given partition. The balance of that 
partition's allocation is the partition GETVIS area. 

Given SIZE BG= 140K, the result is a storage layout for the partition 
as shown in Figure 3-17. 

Problem 
Program 
Execution 

fo--------------
Partition GETVIS Area 

200K 

T 
60K 

1 
Figure 3-17. Storage Layout of a Partition after the SIZE Command is given 

The boundaries set by the SIZE command are permanent until (1) another 
SIZE command for the same partition or (2) the next IPL. 

You may temporarily alter the partition GETVIS area by using the 
SIZE parameter on the job control EXEC statement. The SIZE parameter 
establishes boundaries in the same way as the SIZE command, except that 
the parameter value holds only for one job step (the EXEC). At the end of 
the job step, the GETVIS size is set to the DOS/VSE default (48K) or the 
amount established by a preceding SIZE command. See Figure 3-18. 

3.62 DOS/VSE System Management Guide 



Given: 

II EXEC PROGX,SIZE=110K 

Permanent T 
GETVrS 5ITK 
Allocation 1 

PROGX 

1--------------

Partition GETVIS Area 

200K 

T 
90K 

1 
When PROGX is finished executing the partition GETVIS area size returns to its 
permanent allocation. 

Figure 3-18. Program Execution with the SIZE Parameter 

With the SIZE parameter you may also specify SIZE=AUTO, in which case 
job control uses the information available in the associated core image 
library directory to determine the amount of storage needed by the program 
and then allocates the remainder of the partition as GETVIS area. 

mM licensed programming support (for example VSE/VSAM) may 
have partition GETVIS requirements beyond 48K bytes. Consult the 
appropriate licensed program documentation to determine the partition 
GETVIS area size requirements. 

System Files 011 Tape, Disk or Diskette 

As mentioned earlier in this chapter, I/O devices (except DASD) cannot be 
assigned to more than one active partition at the same time. This means, for 
instance, that in an installation with only one card reader the input job 
stream on SYSRDR and SYSIPT for one partition must have been 
completely processed by job control and unassigned for that partition 
before job streams can be read by another partition. This also applies 
accordingly to the system output on SYSLST and SYSPCH if only one 
printer and one card punch are available. 

Since this situation can cause a considerable decrease of system 
throughput, DOS/VSE permits storing the input job streams and the system 
output on a direct access device or, if enough tape units are available, on 
magnetic tape. This allows several partitions simultaneously to read system 
input from or to write system output to high-speed devices, thus increasing 

Chapter 3: Using the System 3.63 



System Fdes on Tape 

system throughput and, due to reduced CPU wait time, improving the 
overall performance. 

Note: If system logical units (SYSIPT, SYSLST, SYSPCH, SYSRDR) are to 
be device independent, DTFDI must be used in application programs that refer 
to any of these system logical units. 

The following section describes how to store system input and output on 
high-speed devices and to read and process the job streams from these 
devices. 

The same improvements as those gained by having system files on 
high-speed devices - but far more efficient and easier to use - can be 
achieved by using a spooling program such as VSE/POWER. The spooling 
program stores the job streams on disk, transfers the jobs to the partitions 
for execution, and stores list and punch output on disk before it is finally 
printed or punched. 

If the system input units SYSRDR and SYSIPT are assigned to the same 
magnetic tape unit, they may (but need not) be referred to as SYSIN. H the 
system output units SYSLST and SYSPCH are assigned to the same 
magnetic tape they must be referred to as SYSOUT. The tapes may be 
unlabeled or they may have standard labels. If SYSLST or SYSPCH is 
assigned to a standard label tape and no new label information is supplied, 
the old labels will remain on the tape. SYSIPT assigned to a magnetic tape 
cannot be a multiple-volume file. 

To store the input stream on magnetic tape you must write your own 
program that transfers the job stream to the tape. Assume, in the following 
example, that you have written such a program and cataloged it in the core 
image library under the name CDTOTP; the program CDTOTP uses 
SYSOO4 to read the input job stream, and SYSOO5 for the tape onto which 
the job stream is to be written; the end of input data for CDTOTP is 
indicated by ••. The example in Figure 3-19 shows how to use the program 
CDTOTP to create a combined system input file on tape. 

3.64 DOS/VSE System Management Guide 



System Files on Disk 

II JOB BUILDIN 
1 II ASSGN SYSOO4,OOC 
2 II ASSGN SYSOO5,182 read from SYSRDR 
3 II EXEC CDTOTP 

II JOB A 

16 
II JOB B job stream 

read from SYS004 
16 

4 ** 16 

1 SYSOO4 is assigned to the card reader from which CDTOTP reads the job stream. 

2 SYSOO5 is assigned to the tape which is to receive the job stream. 

3 The CDTOTP program is executed and writes the job stream onto tape. 

4 ** (or any other significant character combination) signals end-of-data to 
CDTOTP 

Figure 3-19. Creation of SYSIN on Tape 

After completion of the job BUILDIN shown in Figure 3-19 you can assign 
SYSIN to the tape containing the job stream; job control will then read and 
process the jobs A and B from the tape just as it would have done from the 
card reader. 

In the same way you can direct the system output on SYSLST and 
SYSPCH to go on magnetic tape and then use your own or an 
mM-supplied program to print or punch the contents of the tape on the 
printer or card punch, respectively. 

System files on disk can be used only if the SYSFll.. parameter was 
specified in the FOPT generation macro during supervisor generation. 
Systf:ms without tape units should specify the SYSFIL parameter to 
facilitate system maintenance. 

When both SYSRDR and SYSIPT are assigned to disk, they must refer 
to the same disk extent, and should be referred to as SYSIN. Since the 
output units SYSLST and SYSPCH have different record lengths, they must 
be assigned to separate disk extents; SYSOUT therefore cannot be used if 
SYSLST and SYSPCH are assigned to disk. Note that only single extent 
system files are supported. 

For system files on disk, you must provide the required label 
information by means of DLBL and EXTENT job control statements. In 
those statements, use the following predefined filenames: 

USYSIN for SYSRDR, SYSIPT, SYSIN 
USYSPH for SYSPCH 
USYSLS for SYSLST 

Chapter 3: Using the System 3.65 



For example, the label information for SYSIN assigned to a disk extent 
could be submitted by the following job control statements: 

II DLBL IJSYSIN,'DISKINFILE' 
II EXTENT SYSIN,DOSRES,1,O,1260,30 

The assignment of a system file to a disk extent must always be permanent, 
and it must follow the DLBL and EXTENT statement. Example: 

II DLBL IJSYSIN,'DISKINFILE' 
II EXTENT SYSIN,DOSRES,1,O,1260,30 

ASSGN SYSIN, 131 

After a system file on disk has been processed, it must be closed by a 
CLOSE job control command (no / /). The second (optional) operand of 
the CLOSE command can be used to unassign a system logical unit or 
reassign it to another device. The following command closes the SYSIN file 
on disk and reassigns SYSIN to the card reader at address OOC: 

CLOSE SYSIN,OOC 

The CLOSE command can either be entered on SYSLOG by the operator 
or it can be included at the end of the job stream on disk. 

H SYSIPT is assigned to a disk extent, the CLOSE command must 
precede the / & . Multiple SYSIPT data files can be read via multiple job 
steps with one / & at the end of the job stream. 

The example in Figure 3-20 shows the job control statements needed to 

1. write a job stream on disk, 

2. execute the job stream from disk and store the print output on disk, 
and 

3. print the output from disk on the printer. 

The example assumes that you have written your own programs to write the 
job stream on disk (CDTODISK) and to list on the printer the print output 
stored on disk (DISKTOPR). 

System Files on fued Block Architecture (FBA) DASD. H an FBA DASD 
has a system logical unit assigned to it, the supervisor SYSFIL support will 
block and deblock system file records into the FBA Control Interval-based 
data format, handle all special conditions, and update the Disk Information 
Block (Dm). This permits existing DTFDI and DTFCP programs to 
process system files on FBA devices without making logic changes to 
handle the FBA blocking. 

Note, however, that the DTFSD SYSFll.. support is limited to 
sequential GET or PUT for fixed unblocked records. (That is, the 
UPDATE = YES parameter is not supported.) 

3.66 DOS/VSE System Management Guide 



® 

(3) 

G) 

® 
(3) 

II JOB STORE 
I I ASSG N SYSOO 1 ,OOC 
II ASSGN SYS006,190 
II DLBL DASDOUT,'DASDOUTFI LE' 
II EXTENT SYS006,DOSRES, 1,0,1260,30 
II EXEC CDTODISK 

JOB A 

1& 
II JOB B 

1& 
CLOSE SYSLST,OOE 
CLOSE SYSIN,OOC 

** 
1& 

II DLBL IJSYSLS,'OUTPR' 
II EXTENT SYSLST,PVRLST, 1,0, 1970,20 
ASSGN SYSLST,191 

II DLBL IJSYSIN,'DASDOUTFILE' 
II EXTENT SYSIN,DOSRES,1,0,1260,30 
ASSGN SYSIN, 190 

II JOB PRINT 
II ASSGN SYS001, 191 
II ASSGN SYS002,OOE 
II DLBL OUTPR 
II EXTENT SYS001 ,PVR LSL, 1,0, 1970,20 
II EXEC DISKTOPR 
1& 

JOB STREAM 
IS EXECUTED 
FROM DISK 

PRINTED 
LISTING 

The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYS0061. The end 
of the job stream is indicated to CDTODISK by * *. 

SYSLST and SYSI N are switched to disk. Job control now reads the job stream from the disk on de\(ice 190. The job stream is 
executed and the print output is stored on the disk on device 191. The CLOSE commands at the end of the job stream will close 
the system files on disk and reassign them to the printer and card reader, respectively. 

The program DISKTOPR reads the print output from disk (SYSOOll and lists it on the printer (SYS002). 

FJgUI'e 3-20. Processing System Input and Output Fi1es on Disk 

Chapter 3: Using the System 3.67 



System Files on Diskette 

System files on diskette can be used only if the SYSFll... parameter was 
specified in the FOPT generation macro during supervisor generation. 

If the system input units SYSRDR and SYSIPT are assigned to a 
diskette extent, they must be referred to as SYSIN. Since the output units 
SYSLST and SYSPCH have different record lengths, they must be assigned 
to separate diskette extents; SYSOUT therefore cannot be used if SYSLST 
and SYSPCH are assigned to diskette. 

For system files on diskette, you must provide the required label 
information by means of DLBL and EXTENT job control statements. In 
those statements, use the following predefined filenames: 

USYSIN for SYSRDR, SYSIPT, SYSIN 
USYSPH for SYSPCH 
USYSLS for SYSLST 

For example, the label information for SYSIN assigned to a diskette extent 
could be submitted by the following job control statements: 

II DLBL IJSYSIN,'DISKETTE'"DU 
II EXTENT SYSIN,DSKETE,1 

The assignment of a systern file to a diskette extent must always be 
permanent, and it must follow the DLBL and EXTENT statement. 

Example: 

II DLBL IJSYSIN,'DISKETTE'"DU 
II EXTENT SYSIN,DSKETE,l 

ASSGN SYSIN,060 

After a system file on diskette has been processed, it must be closed by a 
CLOSE job control command (no / I). The second (optional) operand of 
the CLOSE command can be used to unassign a system logical unit or 
reassign it to another device. The following command closes the SYSIN file 
on diskette and reassigns SYSIN to the card reader at address OOC. 

CLOSE SYSIN,OOC 

The CLOSE command can either be entered on SYSLOG by the operator 
or it can be included at the end of the job stream on diskette. 

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must 
precede the / & . Multiple input data files can be read via multiple job steps 
with one / & at the end of the job stream. 

When job control encounters / & on SYSRDR during normal 
operation, the standard assignment for SYSIPT becomes effective and 
SYSIPT is checked for an end-of-file condition. If the standard assignments 
for SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced 
to the next /. statement. 

3.68 DOS/VSE System Management Guide 



Interrupting SYSIN Job Streams on Disk, Diskette, or Tape 

After a SYSIN or SYSRDR job stream has been prepared on tape, diskette, 
or· disk, it may be necessary to interrupt the normal schedule to execute a 
rush job. To do this, press the Request key on the operator console and 
enter a PAUSE command with the EOl operand causing the corresponding 
partition to suspend processing at the end of the current job. At this point 
you can make a temporary assignment for SYSIN to a card reader to 
execute the rush job. At the end of this job, processing of the job stream 
on disk, diskette, or tape will resume at the point of interruption. This is 
illustrated in Figure 3-21. Starting an urgent job that uses a cataloged 
procedure by means of a single EXEC statement is discussed in the section 
Partition-Related Cataloged Procedures later in this chapter. 

CD 
® 
® 
@) 

® 

® 

Card Reader Disk Extent Operator Console 

/I OLBL IJSYSIN, .. . 
/lEXT-ENT SYSiN; ... . 
ASSGN SYSIN,191 /I JOB A 

/& 
/I JOB B 

/& 
1& 

® 
Press REQUEST key and 
enter PAUSE xx, EOJ 
where xx is the 10 of 
the partition 

/I ASSG N S YS I N,OOC 

/I JOB 0 ~L-"'&-_ CLOSE SYSIN,OOC 

/& 
1/ JOB E 

/& 

SYSI N is assigned to disk and processing of the jobstream on disk begins. 

While job B is being executed a PAUSE command is entered at the operator console. 

At the end of job B control comes to the operator who can now enter a temporary assign­
ment for SYSI N to the card reader. 

The job RUSH is read and processed from the card reader. Note that the temporary 
assignment of SYSIN is not reset by the IIJOB RUSH statement but is retained to end of 
the job. 

The /& statement resets the temporary assignment of SYSIN to permanent (190) and 
the next job in the stream on disk is read and executed. 

The CLOSE command closes the system file on disk and reassigns ::sYSIN to the card 
reader to process jobs 0 and E. 

Figure 3-21. Interrupting a Job Stream on D_ 

Chapter 3: Using the System 3.69 



Record Formats of System Flies 

SYSLST records are i 21 characters and SYSPCH records 81 characters in 
length. From SYSRDR and SYSIPT, job control accepts either 80- or 
81-character records. 

The first character of the SYSLST and SYSPCH records is assumed to 
be an ASA carriage control or stacker selection character. SYSIPT, 
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys, 
and record lengths are the same as stated above. (For CKD devices the 
records are unblocked; for FBA devices, DOS/VSE automatically blocks 
records into the FBA format and also deblocks them.) 

Using Cataloged Procedures 

Retrieving Cataloged Procedures 

This section describes how to retrieve a cataloged procedure from the 
procedure library and how to temporarily modify the contents of a 
cataloged procedure. How a procedure is cataloged in the procedure library 
is discussed in Using the Libraries later in this chapter. 

Note: The procedure library should not be updated in a running 
multiprogramming system. 

To retrieve a cataloged procedure from the procedure library you use the 
PROC parameter in the EXEC job control statement, specifying the name 
of the cataloged procedure. Assume that a program called PAYROLL uses 
the following job control statements (in addition to the / / JOB and / & 
statements) and that these statements have been cataloged in the procedure 
library under the name PAY. 

II ASSGN SYS017,SYSRDR 
II ASSGN SYS018,SYSPCH 
II ASSGN SYS019,OOE 
II ASSGN SYS020,TAPE 
II ASSGN SYS021,DISK,VOL=111111 
II TLBL TAPFLE,'FILE-IN' 
II DLBL DSKFLE,'FILE-OUT' ,99/365,SD 
II EXTENT SYS021,111111,1,O,200,400 
II EXEC PAYROLL 

If the program PAYROLL is to be executed, the programmer or operator 
would simply prepare the following job control statements: 

II JOB USER1 
II EXEC PROC=PAY 
16 

When the job control program starts reading the job control statements in 
the input stream on SYSRDR and finds the EXEC statement, it knows by 
the operand PROC that a cataloged procedure is to be inserted. It takes the 
name of the procedure to be used (PAY) and retrieves the procedure with 
that name from the procedure library. At this point SYSRDR is temporarily 

3.70 DOS/VSE System Management Guide 



assigned to the procedure library. Job control reads and processes the job 
control statements in its normal fashion. The statement 

/ / EXEC PAYROLL 

causes the program PAYROLL to be loaded and given control. When 
execution of PAYROLL is complete, the job control program reads the 
next statement from the procedure library and, in this example, would find 
an end of procedure indicator (/ +). The end of procedure indicator returns 
the SYSRDR assignment to its permanent device, where the job control 
program finds the / & statement and performs end-of-job processing as 
usual. 

Note: The listing of job control statements on SYSLOG and/or SYSLST will 
show the message EOP PAY at the end of the inserted procedure. 

Temporarily Modifying Cataloged Proced"res 

The preceding example is the simplest case of the use of cataloged 
procedures. It will work as long as the requirements of the program do not 
change. 

It may happen, however, that some of the statements in a cataloged 
procedure must be modified for a specific run of a program. For example, 
the printer normally used (OOE in the preceding example) may be 
temporarily unavailable and a different printer must be assigned. It does not 
make much sense to delete the old procedure and to catalog a new one 
because the old procedure will be needed again as soon as the normal 
printer becomes operational again. 

Likewise, it may be necessary to add or remove certain statements to or 
from a cataloged procedure for a specific run of a program. You may wish, for 
example, to process a different copy of the file FILE-OUT (see the preceding 
example). You must therefore temporarily suppress the corresponding DLBL 
and EXTENT statements in the cataloged procedure and replace them by 
statements that identify the file you want to process instead. 

For cases like this, DOS/VSE permits one or more statements in a 
cataloged procedure to be 

• temporarily modified (thus, overriding what was present). 

• temporarily suppressed (deleted) without modifying them. 

• temporarily incorporated at desired locations in a cataloged procedure. 

You can request temporary modification of statements in a cataloged 
procedure by supplying the corresponding modifier statements in the input 
stream. 

Since normally not all statements need be modified, you must establish 
an exact correspondence between the statement to be modified and the 
modifier statement by giving them the same symbolic name. This symbolic 
name may have from one to seven characters, and must be specified in 
columns 73 through 79 of both statements. 

- ... ,--.,..,.....'''~., .. ,.~ ............ ,~-..,.,.,.., .. , ... ....--,."'' ., .. =-'""""' .......... .-.....-~ 

Chapter 3: Using the System 3.71 



Note: An unnamed statement cannot be modified. Therefore, to be able to 
modify any statement in a cataloged procedure for any usage of the procedure 
you should name each statement when cataloging. Moreover, the modifier 
statements must be in the sequence in which modification is to be performed on 
the cataloged statements. The JOB statement cannot be modified; also, job 
control continuation statements cannot be overriden. 

A single character in column 80 of the modifier statement specifies which 
function is to be performed: 

A - indicates that the statement is to be inserted after the statement in the 
cataloged procedure that has the same name. 

B - indicates that the statement is to be inserted before the statement in 
the cataloged procedure that has the same name. 

D - indicates that the statement in the cataloged procedure that has the 
same name is to be deleted. 

Any other character or a blank in column 80 of the modifier statement 
indicates that the statement is to replace (override) the statement in the 
cataloged procedure that has the same name. 

If the LOG function is active (by having issued the LOG job control 
command), statements to be deleted are printed, with a D in column 80, on 
the console, but not 'executed'. 

In addition to naming the statements and indicating the function to be 
performed, you must inform the job control program that it has to carry out 
a procedure modification. This is done 

(1) by specifying an additional parameter (OV for overriding) in the EXEC 
statement that calls the procedure, and 

(2) by using the statement / / OVEND to indicate the end of the modifier 
statements. 

Placement of the / / OVEND statement is as follows: 

• directly behind the last modifier statement or, 

• if the last modifier statement overwrites a / / EXEC statement and is 
followed by data input, between the /* and the / &. 

The following examples show how you can temporarily modify a cataloged 
procedure. 

Assume that a procedure named PROC5 for the program PAYROLL 
contains the following statements: 

3.72 DOS/VSE System Management Guide 



II ASSGN SYS017,SYSRDR 
II ASSGN SYS018,SYSPCH 
II ASSGN SYS019,SYSLST 
II ASSGN SYS020,181 
II ASSGN SYS021,DISK,VOL=111111,SHR 
II TLBL TAPFLE,'FILE-IN' 
II DLBL DSKFLE,'FILE-OUT' 
II EXTENT SYS021,111111,1,O,200,200 
II EXEC PAYROLL 
1+ 

73--79 
PAYOOl 
PAY002 
PAY003 
PAY004 
PAY005 
PAY006 
PAY007 
PAY008 
PAY009 

Assume further that the programmer wants to use tape unit 183 instead of 
181. The input stream on SYSRDR, in this case, would have to be as 
follows: 

II JOB USER 
II EXEC PROC=PROC5,OV 
II ASSGN SYS020,183 
II OVEND 
1& 

73--80 

PAY004R 

The form of the EXEC statement in the input stream indicates that (1) the 
procedure PROC5 is to be used and (2) this procedure is to be modified in 
some way. The first three procedure statements are processed without 
change. The procedure statement named P A YOOO4 is replaced by the 
corresponding statement in the input stream. (As any character other than 
A, B, or D specifies override, an R was used to indicate this.) The 
remaining procedure statements are again processed without change. 

As another example, assume that the program PAYROLL is to use file 
FILE-OUT1 instead of FILE-OUT and that this file resides on two extents 
of· a disk pack that has the volume serial number 111112. The input stream 
might then look as follows: 

II JOB USER 
II EXEC PROC=PROC5,OV 
II ASSGN SYS021,DISK,VOL=111112,SHR 
II DLBL DSKFLE,'FILE-OUT1' 
II EXTENT SYS021,111112,1,O,100,200 
II EXTENT SYS021,111112,1,1,500,200 
II OVEND 
1& 

Co1.73--80 

PAY0005R 
PAY0007R 
PAY0008R 
PAY0008A 

Processing would be as follows: The JOB statement and all procedure 
statements up to the statement named P A YOOO4 are processed without 
modification. The procedure statements labeled P A YOOO5, P A YOO07, and 
PA YOOO8 are replaced by the corresponding statements in the input stream. 
The second EXTENT statement in the input stream has the character A in 
column 80, which indicates that the statement is to be inserted after the 
(replaced) statement named P A YOOO8. The procedure statement named 
P A YOOO9 is processed without modification. 

The possibility of modification as described above makes the use of 
cataloged procedures more flexible. Often, however, it is simpler and more 
economical to have different procedures for the same program than to have 
a single procedure and modify it. 

Chapter 3: Using the System 3.73 



SYSIPT data in a cataloged procedure cannot be overridden by the 
procedure override facility. 

Several Job Steps in one Procedure 

A cataloged procedure may contain more than one EXEC statement, that 
is, it may contain control statements for more than one job step (within the 
same job). However, as the number of job steps in a procedure increases, 
so does the time required to re-execute the whole procedure after an error 
occurs. 

A program written in assembler language, for instance, requires three 
job steps to assemble, link-edit, and execute the program. For the use of a 
cataloged procedure, your input stream for the entire job (on SYSIN for 
simplicity) would contain the following: 

II JOB USER 
II OPTION LINK 
II EXEC ASSEMBLY 
source deck of program to be assembled 
1* 
II EXEC LNKEDT 
II EXEC 
data for program to be executed 
1* 
1& 

H the OPTION statement and the three EXEC statements were cataloged 
under the name ASDPROC, the input stream could be simplified as shown 
below. 

Procedure ASDPROC Input from SYSIN 

II JOB USER 
II EXEC PROC=ASDPROC [ II OPTION LINK 

~.~ ____ ~r- II EXEC ASSEMBLY 

so~rce statements of [ II 
program to be ~ I I 
assembled 
1* 1+ 

data to be 
processed 

1* 
1& 

EXEC LNKEDT 
EXEC 

(end indicator) 

The same can be done for any number of job steps that logically belong 
together and are frequently executed. A stock control program STOCK, for 
instance, may be run daily to compile statistics that can be used to prepare 
the following lists: 

1. An exception list that shows which items are low in stock. Required 
daily. 

2. A list that shows the sales in currency for a certain item or group of 
items. Required weekly. 

3.74 DOS/VSE System Management Guide 



Modifying Multistep Procedures 

3. A list that shows the sales in -number of units for each item or group of 
items. Required monthly. 

4. An inventory list. Required semi-annually. 

To simplify processing, four procedures may have been cataloged: 

STKPRI - two job steps: the first to execute STOCK, the second to 
prepare list 1. 

STKPR2 - three job steps: the first two are the same as for STKPRl, the 
third to prepare list 2. 

STKPR3 - four job steps: the first three the same as for STKPR2, the 
fourth to prepare list 3. 

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth 
to prepare list 4. 

Which lists are printed after every run of STOCK then depends on what 
cataloged procedure is used. 

Multistep procedures may be modified in the same way as the single-step 
procedure described earlier. However, a number of considerations apply to 
the ordering of the modification statements in the input stream when a 
logical unit used for data input is assigned to the same physical unit as 
SYSRDR. 

• It is advisable to avoid using identical symbolic names for the 
statements in the procedure. 

• The modifier statements must be in the same sequence as the 
statements in the referenced procedure. 

• Modifier statements are normally placed immediately following the 
EXEC PROC=procedure,OV statement. When input data is read by a 
job step (EXEC statement) executed from the procedure, the following 
cautions should be observed: 

1. The first statement following the EXEC PROC=procedure,OV 
must be a modifier statement (see "1" in Figure 3-22). 

2. Modifier statements that take affect after the input data is read are 
placed following the input data except for the first modifier which 
must precede the input data (see "1" and the modifier statement 
ASSGN SYSSLB,UA in Figure 3-22). 

3. An exception to point 2 above is when the input data is processed 
by a job step that itself was modified (see "3" and "4" in Figure 
3-22). In this case the next modifier must follow the data (see 
statement "3" and the modifier ASSGN SYSCLB,UA in Figure 
3-22). 

Figure 3-22 shows an example of modifying the second and third steps of a 
three-step procedure. 

Chapter 3: Using the System 3.75 



8 

0 

In the example given in Figure 3-22, it is assumed that SYSRDR and 
SYSIPT are assigned to the same physical unit. 

SYSIN Input Stream Procedure CAT01 Containing JCL Only 

Column 73-79 Co,umnr-79 
II JOB EXAMPLE 

1 II EXEC PROC=CAT01,OV 
II ASSGN SYSRLB;UA STMT3 1/ EXEC PSERV STMT1 
DSPLY CAT01 

/* ASSGN SYSCLB,130 STMT2 
1/ ASSGN SYSR LB, 130 STMT3 

1/ ASSGN SYSSLB,UA STMT4 1/ ASSGN SYSSLB, 130 STMT4 
,1/ EXEC DSERV,REAL STMT5 1/ EXEC DSERV STMT5 

DSPLY CD,RD,SD 
/* 
ASSGN SYSCLB,UA STMT6 1/ ASSGN SYSSLB,UA STMT6 
II OVEND 1/ EXEC DSERV,REAL STMT7 
DSPLY CD, PO 1+ 

/* 
1& 

o This is the first modifier statement. It refers to the second job step. 

@ This statement provides SYSIPT data for PSERV. 

e This modification overwrites the EXEC statement. 

e This statement provides SYSIPT data for DSERV (STMT5). 

o This statement provides SYSIPT data for DSERV (STMT7). 

Figure 3-22. Example of Modifying a Three-Step Procedure 

SYSIPI' nata in Cataloged Procedures 

In the example shown in Figure 3-22 the librarian service programs PSERV 
and DSERV accessed data from the logical unit SYSIPT. This 'SYSIPT' 
data may be made part of your cataloged procedure if SYSFIL= YES was 
specified in the FOPT generation macro at supervisor assembly. System 
utility, system service programs, and language translators all read their input 
from SYSIPT. 

When you catalog a procedure containing SYSIPT data, the directory 
entry for the procedure indicates this. When you execute such a procedure, 
job control checks to see whether or not it contains SYSIPT data. If it 
does, both SYSRDR and SYSIPT are assigned to the procedure library until 
the end of the procedure. SYSIPT data in a cataloged procedure cannot be 
overriden by the procedure library override facility. 

SYSIPT inline data in procedures may also be any data that is 
processed under control of the device independent IOCS used by your 

3.76 DOS/VSE System Management Guide 



program or ffiM-supplied programs. Normally, though, you would not 
catalog source programs or data for your problem programs in the 
procedure library. 

SYSIPT ~e data in procedures is useful and convenient mainly in the 
case of control information for system utility and service programs. 

A job stream for an initialize disk utility run could, for instance, contain 
the following control statements (the statements are shown in skeleton 
format only): 

I I ASSGN ... 
II EXEC INTDK 
II UID IR,C1,R=(0027003) 
II VTOC STANDARD 
VOL 1111111 
II END 
16 

The job control stat~meJ:lts_ ar~ __ read from SYSRDR, the utility control 
statements are read from SYSIPT. If, however, both the job control and 
utility control statements had been cataloged (for example, under the name 
INITDK), only the following statements would be required on SYSRDR: 

II JOB NAME 
II EXEC PROC=INITDK 
16 

If two or more programs in a procedure read SYSIPT data, the SYSIPT 
data must be handled in a consistent manner, that is, if the SYSIPT data is 
included in the procedure for one job step, it must be included for all job 
steps in that procedure which require SYSIPT data. 

Partition-Related Cataloged Procedures 

Although a given procedure may be executed in any partition, a particular 
job may need a specific set of job control statements, dependent on the 
partition of execution. For example, you may want to run a job to store 
DLBL and EXTENT statements in the partition label subarea for each 
partition (OPTION PARSTD). Since each partition requires a different set 
of label information, you would need a cataloged procedure for each of 
your partitions. Partition-related cataloged procedures then allow you to 
retrieve and execute the appropriate procedure with one version of the 
EXEC statement, no matter which -partition you are running in. One 
benefit of this feature lies in the ease with which unscheduled jobs can be 
started. 

To use the feature, you must fi..rst create separate procedures that 
conform to the specific partitions in your system. Most probably, the 
difference in these procedures will be in the- EXTENT and DLBL 
statements because of the different device and DASD space assignments 
from partition to partition. Next, in order to distinguish between the 
procedures and relate them to the appropriate partitions, the following 
naming convention must be used for cataloging these procedures: 

Chapter 3: Using the System 3.77 



First character of name 
Second character 

Third-eighth characters 

$ 
B for BO partition 
1 for Fl partition, 2 for F2 partition, etc. 
any alphameric character 

In the EXEC statement used to start the job, the first two characters of the 
procedure name must be $$, with the remaining characters identical to the 
last six characters of the cataloged name. 

To continue the previous example, the procedures may be named 
$BPARSTD for the BO partition, $lPARSTD for the Fl partition and so 
on. The statement thus needed to invoke the appropriate procedure is 
/ / EXEC PROC=$$PARSTD. 

Use of Cataloged Procedures by the Operator 

Partition related procedures or procedures for the starting of urgent jobs are 
of great help to the operator. Full details on the use of cataloged 
procedures by the operator are given in DOS/VSE Operating Procedures. 

3.78 DOS/VSE System Management Guide 



I linking Programs 

Prior to execution in storage, all programs must be placed in the core image 
library by the linkage editor. This section describes the role of the linkage 
editor and how you can communicate with it through control statements. 

The name linkage editor appropriately reflects the editing and the 
linking operations that this program performs. The linkage editor prepares a 
program for execution by editing the output of a language translator into 
one or more executable phases. The linkage editor also combines separately 
assembled or compiled program sections or subprograms (called object 
modules) into phases. This process is referred to as linking. 

A program can be link -edited into one or more phases and 

• cataloged permanently, 

• cataloged permanently and executed immediately, or 

• catatoged temporarily and executed immediately. 

When a phase is cataloged permanently into the core image library, the 
linkage editor is no longer required for that phase * , because, the supervisor 
can load it directly from the library in response to an EXEC job control 
statement, or a FETCH or LOAD macro. On the other hand, if the phase 
is cataloged temporarily and executed immediately, the linkage editor is 
required again the next time the phase is to be run. 

Phases are stored either temporarily or permanently, depending on the 
option specified in the OPTION job control statement: 

/ / OPTION LINK 

If the LINK option is specified, the phase is stored temporarily for 
immediate execution in the same job. This phase will be overwritten in the 
core image library by the next phase that is link edited. 

/ / OPTION CATAL 

If the CAT AL option is specified, the phase is stored permanently and can 
be executed any time after the link -edit run. 

Phases produced by the linkage editor while running in a foreground 
partition are cataloged into a private core image library. To catalog a phase 
into the system core image library, the linkage editor must execute in the 
background partition. You may, optionally, use a private core image library 
in the background partition by ensuring that it is assigned during execution 
of the linkage editor. For more information on using private libraries, refer 
to Using the Libraries later :in this chapter. 

*If a phase is non-relocatable and the partition boundaries change so that the cataloged 
program's start and end addresses no longer fall within the partition, the program must 
be link-edited again. 

Chapter 3: Using the System 3.79 



Structure of a Program 

SOURCE MODULE 

Source Statement 
Library 

To understand the functions of the linkage editor, you must understand the 
structure of a program during the various stages of its development. Figure 
3-23 summarizes the three sections that follow, which discuss source 
modules, object modules, and program phases. 

-> Language 
Translator 

OBJECT MODULE 

Relocatable 
Library 

-> Linkage 
Editor 

Core Image 
Library 

A set of source statements, or source mQdule 0), must be processed by a language translator, but can first be 
catalo&ed as a hook (2) into the SOurce statement library. The output of the language translator is called an 
object module (3), which must be processed by the linkage editor, but can first be cataloged as a module (4) 
into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged into the 
core image library temporarily or permanently, and c~_ru.so._~l.o_~c:led into the shared virtual area. 

Figure 3-23. Stages of Program Development 

Source Modules 

After planning the most logical approach to your application, you write a 
set of source statements in a programming language. Your set of source 
statements, called a source module, is processed by a language translator. 
The language translator assembles source modules written in assembler 
language, or it compiles source modules written in a high-level language 
(for instance, COBOL, PL/I, or RPG ll). The language translator 
transforms the source module into an object module, which is in machine 
language. . 

You can either submit your source module directly to the language 
translator for processing, or you can catalog it into a sublibrary of the 
source statement library for processing at a later time by tfle language 
translator. 

3.80 DOS/VSE System Management Guide 



Object Modules 

Source modules are written in one or more control sections (CSECTs). 
Using assembler language the programmer defines the control sections. 
Source modules written in a high-level language have their control sections 
defined by the various compiler options used. 

An object module, the output of a language translator, consists of the 
dictionaries and text of one or more control sections. The dictionaries 
contain the information needed by the linkage editor to modify portions of 
the text for relocation and to resolve cross-references between different 
object modules. The text consists of the actual instructions and data fields 
of the object module. You can either submit your object module directly to 
the linkage editor for processing, or catalog it into the relocatable library 
for later inclusion in a linkage editor job stream. 

For each object module the language translator produces four types of 
records as illustrated and summarized in Figure 3-24. For more information 
about these records see DOS/VSE System Control Statements. 

" e 
Byte 4 

" Contains X'02'. Identifies the record as one of an object module. 

o Indicates the record type and can be one of the following: 

C'ESO' -- External symbol dictionary. Contains symbols defined in this mo­
dule and referred to by one or more other modules and symbols referred to 
in this module but defined in another module. 

C'TXT' - Text. Contains actual code plus control information needed by the 
linkage editor. 

C'RlO' -- Relocation list dictionary. Identifies those portions of the text 
which must be modified when the program is relocated for execution. 

C'ENO' -- End of module. I ndicates the end of a module. The record may 
contain an address where execution is to begin (transfer address) or the length 
of the control section or both. 

Figure 3-24. Record Types of an Object Module 

If you want to change information in a TXT record, you can prepare a 
REP record (user replace record) and submit it with your object module for 
cataloging into the relocatable library or for linkage editor processing. A 
REP record must be submitted between the TXT record it modifies and the 
END record; otherwise, the TXT record is not modified. Usually, you place 
the REP record(s) immediately before the END record. 

Chapter 3: Using the System 3.81 



Program Phases 

The linkage editor produces a program phase from the object module(s) 
you identify in linkage editor control statements. A phase is the functional 
unit (consisting of one or more control sections) that the system loader can 
load into a partition in response to a single EXEC job control statement (or 
a FETCH or a LOAD macro instruction in an assembler language 
program). 

In the PHASE control statement you instruct the linkage editor to 
produce one of three types of phases: relocatable, self -relocating, or 
non-relocatable. 

Relocatable Phases. A phase is relocatable if it can be loaded for execution 
in any partition's address area. The linkage editor produces a relocatable 
phase unless you specify an absolute origin (load) address instead of a 
relative address. However, mM recommends that you always specify a 
relative origin address. An address, in order to be relative, is represented by 
a symbol with or without a displacement; for details see DOS/VSE System 
Control Statements. 

If a relocatable phase is also designed as a reenterable phase, it is 
eligible to be loaded into the shared virtual area (SVA). Phases resident in 
the sV A can be shared concurrently by programs running in either real or 
virtual mode. 

Self-Relocating Phases. Prior to the availability of a loader with the 
relocating capability some users coded self -relocating programs in order to 
gain the advantages of relocatability. If you have to perform maintenance 
on such a program, you must write this program in assembler language 
according to the rules described in DOS/VSE Macro User's Guide. In the 
PHASE control statement you indicate an origin address of +0. The 
program must relocate all its addresses at execution time to correspond with 
the addresses available in the partition where the program is loaded. 

Non-Relocatable Phases. A non-relocatable phase is link-edited to be loaded 
at a specific location (absolute address) associated with a partition. When 
you request execution of a non-relocatable phase in a given partition, the 
starting and ending addresses of the phase must be included within that 
partition. Otherwise, the job is canceled. If you wish to execute a 
non-relocatable phase in more than one partition, you must catalog a 
separate copy of the phase for each partition. 

The Three Basic A.pplications of the Linkage Editor 

The three basic applications of the linkage editor are referred to as: 

• cataloging phases into the core image library 

• link-edit and execute 

• assemble (or compile), link -edit, and execute 

The following sections include a discussion of the system flow during each 
of these applications. 

3.82 DOS/VSE System Management Guide 



Cataloging Phases into the Core Image Library 

Link-Edit and Execute 

When you have an operational program (as an object deck in cards or on 
tape, for example) and you expect to use that program frequently, you 
should catalog it into a Core image library. You can do this in a single job 
step, which is shown in Figure 3-25, and described below. 

Job control copies, onto SYSLNK, the linkage editor control statements 
present on SYSRDR. The INCLUDE statement, without operands, signals 
job control to read any object modules that are to be included from 
SYSIPT. H an ENTRY statement is not encountered before the / / EXEC 
LNKEDT statement, job control writes one on SYSLNK. An ENTRY 
statement signals termination of the input to the linkage editor. 

The linkage editor is loaded mto the partition where the job stream was 
submitted; it uses SYSOOI as a work file. 

Because the CAT AL operand of the OPTION statement was specified, 
the linkage editor places the executab1e program petffianen.tly mto a core 
image library. H a private core image library is assigned to this partition, 
the program is cataloged there; otherwise, (for the background partition) it 
is cataloged into the system core image library. The library descriptor entry 
in the core image directory for cataloged phases is updated. 

H the phase is eligible for the shared virtual area and is indicated as 
SV A eligible in the system directory list, the phase is also loaded into the 
SVA. 

Note: System and work files such as SYSLNK and SYSOO 1 must be defined. 

Cataloging a Supervisor. Supervisors may also be cataloged permanently into 
the core image library as described above. Be sure, when doing this, to 
specify a unique name (eight alphameric characters) for each supervisor. 

You do not always need to catalog a permanent copy of your program into 
the core image library in order to execute the program. For instance, you 
have modified parts of your program and want to test these modifications 
with the entire program. In this case, you can specify the LINK option, 
which requests that the linkage editor place a temporary copy of the 
program into the core image library. Again, the INCLUDE statement 
signals job control to read the following input from SYSIPT. The shaded 
portions of Figure 3-26 illustrate how this job stream differs from Figure 
3-25. 

By specifying an EXEC statement without a program name operand 
after the EXEC LNKEDT statement, the program just link-edited is loaded 
for execution. The space temporarily occupied by this program in the core 
image library is overwritten the next time a program is link-edited. 

Chapter 3: Using the System 3.83 



FJgUI"e 3-25. A Job Stream to Catalog a Program into the Core Image 
Library 

Assemble (or CompHe), Link-Edit, and Execute 

" 

You can also combine the job steps described above with a job step for 
assembly (or compilation) of your source program. This is especially useful 
when you are developing a program. Figure 3-27 shows how your job 
stream should be set up. The shaded portions of the figure illustrate how 
this job stream differs from that shown in Figure 3-26. Linkage editor 
control statements are not required when linking single-phase programs 
temporarily into the core image library. 

You direct the language translator to write the object module directly 
onto SYSLNK by specifying the LINK option at the beginning of the job. 
After the linkage editor processed the input from SYSLNK, your program is 
loaded for execution. 

3.84 DOS/VSE System Management Guide 



/ / JOB TEMP 

The / / EXEC statement (without a program name operand) causes this program to be 
loaded for execution immediately. 

The / / OPTION CATAL statement may also. be used in this job stream. In this 
case, the program that was cataloged (permanently) is executed immediately. When 
/ / OPTION CAT AL is specified a PHASE statement is required. 

FJgUre 3-26. A Job Stream to Unk-Edit a Program for Immediate Execution 

If errors occur in one job step causing an abnormal termination, the 
remaining job steps are ignored. Certain linkage editor errors do not cause 
job step termination. If you do not want to execute the program when 
these errors occur, you may specify ACTION CANCEL after the / / 
OPTION LINK. 

Chapter 3: Using the System 3.85 



/& 

Figure 3-27. A Job Stream to Assemble, Link-Edit, and Execute 

Processing Reqllirements for the Linkage Editor 

Symbolic Units Required 

The linkage editor can be executed in any partition. When the linkage 
editor is executed in a foreground partition, a private core image library 
(SYSCLB) must be uniquely assigned to that partition and phases are 
placed there. When the linkage editor is executed in the background 
partition where no private core image library is assigned, phases are placed 
into the system core image library; phases are placed into a private core 
image library also from the background partition if such a library is 
uniquely assigned to that partition. 

The linkage editor requires the following symbolic units: 

SYSIPT Module input (if any) --

SYSLST Programmer messages and listings (if SYSLST is not assigned, 
no map is printed and programmer messages appear on 
SYSLOG) 

SYSLOG Operator messages 

SYSRDR Control statement input (via job control) 

SYSLNK Input to the linkage editor 

SYSOOI Work file. 

Note that SYSRDR and SYSIPT may contain input for the linkage editor. 
This input is written on SYSLNK by job control. 

H output from the linkage editor is to be placed in a private core image 
library, the following symbolic unit is required: 

3.86 DOS/VSE System Management Guide 



SYSCLB The private core image library. It may be assigned anywhere in 
the job stream but before job control reads the / / EXEC 
LNKEDT statement. 

If object modules from a private relocatable library are to be link-edited, 
the symbolic unit SYSRLB must be assigned. 

Preparing Input for the Linkage Editor 

The input you prepare for the linkage editor consists of job control 
statements, linkage editor control statements, and object modules. Job 
control reads the job control statements and the linkage editor control 
statements from the device assigned to SYSRDR and object modules from 
SYSIPT. The linkage editor control statements and object modules are 
copied onto the disk extent assigned to SYSLNK. 

The linkage editor con~rol statements direct the execution of the linkage 
editor. The statements are: ACTION, ENTRY, INCLUDE, and PHASE. 
A description of how to prepare. these control statements is given on the 
following pages. Here, the various operands of the control statements are 
described under headings that indicate their function. 

AS4iigning a Name to a Program Phase 

Each program phase the linkage editor is to produce should have a name, 
which you specify in the PHASE statement. When a phase is cataloged in 
the core image library, the phase name identifies that phase for subsequent 
retrieval. In other words, the same phase name you supplied in the PHASE 
statement when permanently cataloging the initial or only phase of a 
program must be used as the operand in the EXEC job control statement 
or in a FETCH or a LOAD macro instruction. 

When you catalog a phase with the same name as a phase already 
residing in the core image library, the earlier entry with the same phase 
name is deleted from the core image directory (and, if applicable, the 
system directory list in the SV A) and cannot be accessed again. 

The choice of a phase name has a bearing on retrieval efficiency and 
the subsequent use of the librarian programs. Job control scans the 
directory of the appropriate library for all phases starting with the same 
four characters as the program name specified in the EXEC statement. 

Any phases with the same first four characters of their phase name will 
be classified as a multiph~_,program. When a phase of a multiphase 

~~.'. 

program is fetched, the available address space must be large enough to 
contain the largest of those phases even if that phase is not part of the 
program which is being executed. 

Phase names may be formed only from characters 0-9, A-Z, /, #, $, 
and @. Otherwise, the phase statement is invalid. The names "S", "ALL", 
and "ROOT" are invalid phase names. 

In choosing a name for any multiphase program, make sure that the 
first four characters are the same for all phases of that program but 

Chapter 3: Using the System 3.87 



different from those of other programs. Such names simplify the deleting, 
displaying, punching, merging, and copying of the entire program. Figure 
3-28 summarizes the above reoommendations. 

Note: A phase name "/ /" cannot be placed into the System Directory List via 
the job control command SET SDL. 

PrOgl 

ABCDl 
ABCD2 
ABCD3 
ABCD4 

Different names should be given to each 
multiphase program; each phase of a 

multiphase program should be named 
with the same first four characters. This 

simplifies library maintenance. 

Prog2 

ANNll 
ANN12 
ANN13 
ANN14 
ANN15 

Prog3 

WXYZl 
WXYZ2 
WXYZ3 

WXYZn 

Simplified library maintenance means, for example, that one simple control state­
ment deletes all phases of Progl : 

( DELETC ABCD.ALL 

If the programs had been named: 

Progl 

ABCDl 
ABCD2 
ABCD3 
ABCD4 

Prog2 

ABCD5 
ABCD6 
ABCD7 
ABCD8 
ABCD9 

the statement required to delete Progl would be: 

DELETC ABCD1, ABCD2, ABCD3, ABCD4 

FJgUI'e 3-28. Naming Multiphase Programs 

3.88 DOS/VSE System Management Guide 

Prog3 

ABCD10 
ABCDll 
ABCD12 

ABCDn 



Denning a Load Address for a Phase 

For link-editing, you specify where your program is to be loaded for 
execution. You have several choices. 

A phase can be link -edited to be loaded into and executed from: 

• a specific partition's address area 

• the shared virtual area 

• an absolute address. 

A phase can be link-edited as a relocatable phase, a self-relocating phase, 
or a non-relocatable phase. 

The load address you specify in the PHASE statement determines the 
relocatability status of the link-edited phase: 

• For a phase to be relocatable, specify a symbolic address with or 
without a displacement. 

• For a phase to be non-relocatable, specify an absolute address. 

• For a phase which you wrote to be self-relocating, specify +0. 

Full details on possible load address (also called origin address) 
specifications are given in DOS/VSE System Control Statements. 

Link-Editing for Execution at Any Address. H the linkage editor determines 
that a phase is to be given the relocatable format, it flags the core image 
directory entry for that phase, and inserts the relocation information behind 
the text of the phase in the core image library. 

When a relocatable phase is link-edited, it is ~Jgp.ed a load address 

f',re~~!~e p_~ti0J?-'s !,<!dress area in whi£11"J!!~_!i9~'£~ edit~r ~~~"_ 
e~~WJlte.d~_WJlen executing the phase from the same partition, relocatio:qJs 
r;:~t r~q9!red. (This assumes that virtual storage -'allocations werenot 
cltanged };tween link-editing and executing the phase.) 

Executing the phase from a different partition requires relocation by 
,DOS/VSE. Loading and relocating a phase takes more processing time 

, than just loading. You should attempt to link-edit phases so as to minimize 
the relocation overhead. 

Assuming that you have a program that is executed from partition F2 
most of the time, but occasionally executed in another partition. 
Link-editing the program from the F2' partition would eliminate the 
relocation overhead when the program is executed from the F2 partition. H 
you decide that ali link-editing should be done from one partition (for 
example the BG partition) you may use the linkage editor ACTION control 
statemen!~!2._a.ss.QCiaw.,p~par1itio.ns.... For example: 

ACTION F2 

sp~~ifies that the lin1r~geeditor spould use the current address allocati<?lL~f 
the F2 partition ~_~!~f.!1]i~g tI.te_,pJ!~e's loadpoini"-" m '.' ",. ",q" " ,> 

........ " .'-, .,,- , ...... -"" .. ~'--<""."' .... L ...... ~ .. ·u, 

Link.-~ for Execution in a Speciflc Partition's Address Space. Unless 

Chapter 3: Using the System 3.89 



otherwise specified in the PHASE statement, a pr<?grrunjs link.::edited.to. 
exe~ute in, __ t.b.~ ,same part~tion itt which the linkag{!, edito~J!ID~!i9Il o~w:,~._ In 
37(} mode, whe~-ihe linkage editor isrumrlng in real- ~ode, the program i~ 
link-edited to execute in that partition's virtual address space. 

By using the ACTION statement with one of the partition identifiers 
(BG, F 1, F2, etc.), however, you specify the partition in which the program 
is to be executed. It is necessary to specify a partition identifier only if the 
"run" partition differs from the partition in which the linkage editor is 
being executed. 

Use of the ACTION statement with a foreground partition identifier 
requires that the partition be allocated; if not, the ACTION statement is 
ignored. 

An ACTION statement with a partition identifier is effective only for 
those phases,designated to be loaded at an address relative to the beginning 
of a partition; that is, for those phases with a load address specification in 
the form of a symbol with or without a displacement. 

An example of the use of the ACTION statement follows. Assume that 
three partitions are allocated: background, F2, and Fl. If you are executing 
the linkage editor in the background, the statement PHASE PROGl,S 
causes PROG 1 to have its origin at the beginning of the virtual address 
space of the background partition (plus the BG save area and the BG label 
area). The sequence 

ACTION Fl 
PHASE PROGl,S 

causes PROGI to have its origin at the beginning of the address space of 
the Fl (plus the length of the Fl save area and the Fl label area). 

Link-Editing for Inclusion in the Shared Virtual Area. If a relocatable phase 
is also reenterable, it can be included in the shared virtual area (SV A). 
Phases resident in the SV A can be shared concurrently by more than one 
partition. It is advantageous to include frequently-used phases in the SV A 
because these are then resident when requested for execution (they are not 
reloaded from the core image library). All phases resident in the SV A must 
also be cataloged in the system core image library. 

To indicate that a phase should reside in the SV A, you must specify the 
SV A operand in the PHASE statement when cataloging the phase. This 
operand is ignored if the phase is not relocatable; otherwise, the SV A 
operand is accepted and the phase is said to be SV A-eligible. 

The linkage editor cannot check whether a phase is reenterable; 
however, a protection check can occur when executing a phase from the 
SV A that modifies itself and therefore is not reenterable. Because the SDL 
is sorted prior to the loading of phases into the SV A, the packaging of 
phases to be executed together should be done using the linkage editor. 

Immediately after an SV A-eligible phase is cataloged into the system 
core image library, it is loaded into the SV A if this phase is listed as 
SVA-eligible in the system directory list (SDL). See the section Building 
the SDL and Loading the SVA earlier in this chapter. 

3.90 DOS/VSE System Management Guide 



Link-Editing for Execution at an Absolute Address. .... ll you s~cify an 
absolute address in the PHAS-EJtat.eJmmL..Y.Pur progr~an. be loaded oruy 
a( this address at the time of ~~gram e~~~!l.E0n. Not only must the address 
you specify be within the address range of your installation's virtual storage, 
but also the entire program must be included 'within the boundaries of the 
area allocated to the partition where you request the program to be 
executed. 

In 370 m~e, if you wish to force a phase to be executed in real mode, 
you may link-edit that phase with the absolute address of a given partition's 
real address space. 

Using Self-Relocating Programs. You should identify self-rel~ating 
programs 'by a PHASE statement with an origin POint ~f(+O: ~.-----

'-..~:.--,--/ 

PHASE PROGA,+O 

The linkage editor assumes that the program is loaded at location zero, and 
compuies .. alladdresses accor-dingl¥. The jQQ.~Dtr.ol EXEC fun~tio~ 
recogvj?:~~ .3; .. ~.~~Q,_p);l.~e..~~dr~~_S _ a.nd,. adjusts the' oij~. ~cldress to 
compe~ateJQrthe.current partition boundary save. area and label area. It 
then gives control to the updated entry address of the phase. 

Building Phases from Object Modules with the INCLUDE State~ent 

You indicate which object modules or parts of object modules are to be 
included in a phase by specifying the INCLUDE statement. The format of 
the INCLUDE statement indicates the location of the modules. The object 
modules can be either on the card reader, tape unit, disk or diskette device 
assigned to SYSIPT, or in the relocatable library, or on the disk device 
assigned to SYSLNK. The modules are extracted in the same order as the 
INCLUDE statements are issued. 

Including Modules from SYSIPT. II the object modules you want to include 
in a phase are on the SYSIPT file, specify the IN~LUDE statement without 
operands. Job control copies the data from SYSIPT until it encounters 
end-of-data (/*). 

Including Modules from the Relocatable library. You may want to include in 
a phase object modules or parts of an object module that are cataloged in 
the relocatable library. To include an entire module, specify the module 
name in the INCLUDE statement. To include part of a module, specify the 
name of the module followed by the names of the control section(s) you 
wish to be included. 

Including Parts of Modules from SYSLNK. You do not need an INCLUDE 
statement unless you want to change the sequence of control sections or to 
extract certain control sections from an object module. For either of these 
cases, specify the names of the control sections in an INCLUDE statement. 

Linkage Editor Storage Requirements 

The storage requirements for a link-edit run depend on the number of PHASE 
statements and number of ESD items processed during a link-edit run. 

Chapter 3: Using the System 3.91 



The A UTOUNK Feature 

In a minimum size virtual partition of 128K the linkage editor can 
process for example 10 phases with a total number of 380 unique ESD 
items. 

A unique ESD item is defined as being an occurrence in the control 
dictionary. All symbols that appear in the MAP are unique occurrences. A 
symbol that occurs several tirites in the input stream is normally 
incorporated into a unique ESD item~ However, if the same symbol occurs 
in different phases (for example, control sections), each resolved occurrence 
of the symbol within a different phase is a unique ESD item. 

You can use the following formula for storage estimates: 

56,000 + 40 * x + 20 * y ~ p 

x = number of PHASE statements 

y = total number of unique ESD items 

P = storage available to the partition. 

To execute the linkage editor in real mode requires a 64K allocation of 
processor storage. 

For each phase the automatic library look-up feature (referred to as 
AUTOLINK) collects any external references and attempts to resolve them. 
An external reference is an· ER item in the control dictionary that has not 
been matched with an entry point. AUTOLINK searches the private 
relocatable directory (if assigned) and then the system relocatable directory 
until a cataloged module with the same name as the external reference is 
found (or the end of the directory is reached). If found, the module is 
included in the phase (autolinked). This retrieved module must have an 
entry point matching the external reference in order to resolve its address. 

The following examples show how the AUTOLINK feature works. 

Assuine that the relocatable library contains the following: 

Module Name 

A 
D 
E 
F 

Examples: 

Entry Names 

A,B,C 

External References 

A 
B 
A,C 

In your linkage editor input stream you specify INCLUDE D. A will be 
autolinked (included with module D) because the external reference A is 
also a module name in the relocatable library. 

If you specify INCLUDE E, then A will not be autolinked because the 
external reference B does not relate to a module name. In this case, you 

3.92 DOS/VSE System Management Guide 



must also specify INCLUDE A, so that the external reference B can be 
resolved. No autolink is required. 

H you specify INCLUDE D and INCLUDE E, then A will be 
autolinked by module D and the external reference B in module E can then 
be resolved. 

H you specify INCLUDE F, then module A will be autolinked by the 
reference to A, and the reference to C will also be resolved. 

Suppressing the AUTOLINK Feature. You can suppress the AUTOLINK 
feature in two ways: 

• By specifying NOAUTO in a PHASE statement, AUTOLINK is 
canceled for that phase only. 

• By specifying NOAUTO in the ACTION statement, AUTOLINK is 
canceled for this execution of the linkage editor. By writing a weak 
external reference (WXTRN), AUTOLINK is canceled for one symbol. 

You can do this in assembler language by specifying for example: 

DC A( LABEL) 
WXTRN LABEL 

or 

DC V( LABEL) 
WXTRN LABEL 

For more information, refer to the assembler language publications. 

NOAUTO can be used to force a CSECT into a specific phase within 
an overlay structure. For example, four phases of a program have a V-type 
address constant called PETE, but in the overlay structure you want the 
coding for PETE inciuded only in the third phase. 

PHASE PROGA,*,NOAUTO 
PHASE PROGB,*,NOAUTO 
PHASE PROGC,* 
PHASE PROGD,*,NOAUTO 

cause PETE to be included in PROGC only. 

Reserving Storage for Label Processing 

H you operate in an SCP only environment and your program uses standard 
labeled tape files or nonsequential DASD files (direct access, indexed 
sequential, or D'lFPH 'with all packs mounted), you must ensure that 
storage is reserved for the tape and disk labels. These labels are brought 
into the label save area of the partition containing your program when the 
file is opened. 

You reserve a label save area by specifying the LBL TYP job control 
statement. The amount of storage you specify to be reserved must be large 
enough to contain all the labels of the file with the most extents processed 
by the program. The operand specified in the LBL TYP statement for tape 
files is different from that for DASD files. For their formats, refer to 
DOS/VSE System Control Statements. 

Chapter 3: Using the System 3.93 



The LBL TYP statement is to be submitted immediately before the 
/ / EXEC LNKEDT statement. If your program is self -relocating, however, 
submit the LBL TYP statement immediately before the / / EXEC statement 
for your program. 

The LBL TYP statement is not required if only unlabeled tape files, 
sequential DASD files, or VSAM files, are to be processed. For more 
information on file organizations, refer to the DOS/VSE Data Management 
Concepts. 

Specifying Linkage Editor Aids for Problem Determination or Prevention 

You can specify that the linkage editor aid you in avoiding certain problems 
in your programs or determining what they are. The actions discussed below 
are CLEAR, MAP, and CANCEL, which may be specified as operands of 
the ACTION statement. 

aearing the Unused Portion of the Core Image Library 

Obtaining a Storage Map 

If you used DS (define storage) statements in your source module, it may 
be advantageous to fill these areas with binary zeros when the program is 
link-edited. This eliminates the risk that residual data from a previously 
linked program be loaded with your program when it is executed. Such 
irrelevant data might disrupt your program considerably. By specifying 
CLEAR in the ACTION statement, you request that the unused portion of 
the core image library is to be set to binary zeros. 

Because CLEAR is a time-consuming function, you might want to use 
DC statements instead of DS statements when designing future programs; 
but do use ACTION CLEAR when cataloging a supervisor. 

You can obtain a linkage editor storage map and a listing of linkage editor 
error diagnostics, which assist you in determining the reasons for particular 
errors in your program. If SYSLST is assigned, ACTION MAP is the 
default. You can specify ACTION NOMAP if you are not interested in this 
service of the linkage editor. 

The storage map contains such information as: 

• The lowest and highest addresses that each phase occupies in the 
partition for which it is link-edited. 

• The starting disk address of the phase in the core image library. 

• The names of all control sections and entry points, their load addresses 
and relocation factors. 

3.94 DOS/VSE System Management Guide 



Terminating an Erroneous Job 

• The names of all external references that are unresolved. 

An indication whether the phase is relocatable, non-relocatable, 
self-relocating, or SVA eligible. 

The error diagnostics warn you, for example, if: 

• The ROOT phase has been overlaid. 

• A control section has a length of zero. 

• An address constant could not be resolved. 

A sample storage map, together with a description of how to interpret it, is 
included in DOS/VSE Serviceability Aids and Debugging Procedures. 

If-err-ofsar-e pFes6nt in the input t-O the linkage editor, the output of the 
linkage editor will most likely also be erroneous. If you specify CANCEL in 
the ACTION statement, the entire job is terminated when any of the type 
of errors represented by messages 21001 through 21701 occurs. Refer to 
these messages in DOS /VSE Messages. 

Designing an Overlay Program 

The nature of virtual storage makes it unnecessary to write programs in an 
overlay structure, because virtual partitions can be allocated to 
accommodate very large programs. 

Overlay programs consist of control sections organized in an overlay 
tree structure. An example of an overlay tree structure is shown in Figure 
3-29. This structure does not imply the order of execution, although the 
root phase is normally the first to receive control. 

The manner in which control should pass between control sections is 
discussed in the section Using FETCH and LOAD Macros. 

Relating Control Sections to Phases 

Mter having organized the control sections of your program into an overlay 
tree structure, you must prepare a corresponding set of linkage editor 
control statements. 

Link-edit your complete overlay program in a single job step, and 
conversely, do not include in this job step any phases that are not related to 
the overlay. Otherwise, the linkage editor may not be able to resolve 
external references correctly. 

The PHASE and INCLUDE statements you prepare are critical to 
ensure the overlay tree structure you designed. Figure 3-30 is an example 
of the job stream that ensures the overlay tree structure shown in Figure 
3-29. 

Chapter 3: Using the System 3.95 



Root 
Phase 1 
(6000) 

~A , 
I 
I ... ----, 

Phase 2 : Phase 7 
(5000) , B (6000) ~ ____________ L ____________ • 

Ie. J 
I I 
, I 
• I 
~---- ~----, , 

Phase 3 : Phase 4 Phase 8 I Phase 9 
(5000) I 0 (3000) (3000): K (8000) .. -- ____ L.. ____ _ -. ~ ______ L ______ -, 

, IF! • 

: Phase 5 ~---- Phase 6 : L " M 
I (7000) I G (3000) I 
: E r------.J------1 L ____ , : 

I I I • : i ~----
L____ : H l____ : 

• IN 
I I 

I : L____ L ___ _ 

. The letters A through N represent control sections, which are organized to form nine 
phases in one program. The root phase resides in storage during the entire execution of 
the program. The remaining phases can overlay each other during execution. 

You must guarantee a partition size that is equal to the longest combination of 
phases that can possibly reside in storage together, namely, phases 1, 2, 4, and 5, which 
total 21,000 bytes. If the program had not been organized in an overlay structure, it 
would have required an address space of 46,000 bytes. 

Figure 3-29. Overlay Tree Structure 

3.96 DOS/VSE System Management Guide 



I I JOB OVERLAY 
II OPTION CATAL 

1* 

PHASE PHASE1,ROOT 
INCLUDE , (CSECTA,CSECTB) 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
PHASE 
INCLUDE 
INCLUDE 

PHASE2,* 
, ( CSECTC, CSECTD ) 
PHASE3,* 
, (CSECTE) 
PHASE4,PHASE3 
, ( CSECTF, CSECTG ) 
PHASES, * 
, (CSECTH) 
PHASE6,PHASES 
, (CSECTI ) 
PHASE7,PHASE2 
, (CSECTJ,CSECTK) 
PHASE8,* 
, (CSECTL) 
PHASE9,PHASE8 
, ( CSECTM, CSECTN ) 

PHASE 1 stays in storage during 
execution of the entire program. 
PHASE2 is to be loaded 
immediately behind PHASE1. 
Since PHASE3 needs PHASE2, PHASE3 
is not allowed to overlay PHASE2. 
PHASE4 will occupy the same 
storage-locations as PHASE3. 
PHASES will'be loaded 
immediately behind PHASE4. 
PHASE6 will be loaded at the 
same address as PHASES. 
PHASE7 will be loaded at the 
end of the root phase. 
PHASE8 will be loaded at the 
end of PHASE7. 
PHASE9 will overlay 
PHASE8. 

(Object modules containing CSECTs A through N) 

II LBLTYP 
II EXEC LNKEDT 
Ig 

FJgUI'e 3-30. Link-Editing an Overlay Program 

Using FETCH and LOAD Macros 

During execution, an overlay program communicates with the supervisor to 
request that a subsequent phase be brought into the partition. You include 
FETCH or LOAD macros within your phases for this purpose. 

Use a LOAD macro in a phase that is to remain in control after the 
requested phase is brought into the partition. A phase loaded by the LOAD 
macro must be relocatable. 

Use a FETCH macro if you want the requested phase to gain control 
immediately after it is brought into the partition. If a phase loaded by the 
FETCH macro is relocatable, it will be relocated if necessary. You cannot 
issue a FETCH macro for a self-relocating phase. 

Parameters in FETCH and LOAD allow use of the SDL (system 
directory list) or the LDL (local directory list), thereby reducing fetching 
and loading time. 

DOS/VSE Macro Reference contains details on the format of the 
FETCH and LOAD macros. 

Examples of Linkage Editor Applications 

The linkage editor examples on the following pages illustrate the use of and 
relation between linkage editor and job control statements. After studying 

Chapter 3: Using the System 3.97 



these examples, you should be able to set up a link-edit job for your own 
purposes. 

Catalog to the System Core Image Library Example 

II JOB CATALCIL 
* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY 
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED 
* VIRTUAL AREA, MULTIPLE OBJECT MODULES, 
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES 
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO 
* BE PROCESSED 

1 II ASSGN SYSLNK,190 
2 II OPTION CATAL 
3 PHASE PROGB,*,SVA 
4 INCLUDE 

1* 

1* 

Object deck 

INCLUDE SUBRX 
INCLUDE SUBRY 
INCLUDE 
Object deck 

5 II LBLTYP TAPE 
6 II EXEC LNKEDT 

1& 

Explanation for Catalog to the System Core Image LJbrary. This example 
illustrates the cataloging of a single phase composed of multiple object 
modules. These modules are located in the input stream and the relocatable 
library. Labeled tape files and sequential DASD files are processed when 
the phase is executed. 

Statement 1: The statement is required, unless SYSLNK is permanently 
assigned. H the statement is included, it must precede the OPTION 
statement (Statement 2). 

Statement 2: The OPTION CATAL statement sets the LINK switch, as 
well as the CAT AL switch. H SYSLNK is not assigned, the statement is 
ignored. The linkage editor control statements are not accepted unless the 
OPTION statement is processed. Link-editing and cataloging to the core 
image library is requested. 

Statement 3: Only one PHASE is produced. It is cataloged to the core 
image library and may be retrieved by the name PROGB. Because there is 
only one phase, the origin point * indicates that this phase originates at the 
starting address of the partition plus the length of the partition save area, 
the label area (if any), and the COMMON pool (if any). The SVA 
operand indicates that the phase should be considered SV A-eligible. H the 
phase name PROGB is already entered as SV A-eligible in the system 
directory list, PROGB is loaded into the shared virtual area immediately 
after it is cataloged into the system core image library. (This would not 
occur if PROGB is link-edited with OPTION LINK.) 

Note: COMMON is used by FORTRAN programs to store data shared by 
multiple programs. 

3.98 DOS/VSE System Management Guide 



Statement 4: Four modules make up this phase. The first and last are not 
cataloged in the relocatable library; therefore the object decks must be on 
SYSIPT, and each must be followed by the end-of-data record (/*). 
SUBRX and SUBRY were cataloged previously to the relocatable library by 
those names. Job control puts the uncataloged modules on SYSLNK in 
place of their INCLUDE statements. Job controi copies onto SYSLN"X the 
INCLUDE statements for the cataloged modules. 

Statement 5: The LBL TYP statement, which is required in an SCP only 
environment, has the operand TAPE, rather than NSD, because labeled 
tapes and sequential DASD files are processed when the phase is executed. 
80 bytes are reserved ahead of the actual phase for label information. 
LBL TYP NSD is also satisfactory because it generates a minimum of 104 
bytes, and tapes require only 80. 

Statement 6: The EXEC LNKEDT statement causes DOS/VSE to bring in 
the linkage editor program. SYSLNK now becomes input to the linkage 
editor. It contains: 

PHASE PROGB,*,SVA 
First uncataloged relocatable deck 
INCLUDE SUBRX 
INCLUDE SUBRY 
Second uncataloged relocatable deck 
ENTRY 

The modules are link -edited into one phase so that they occupy contiguous 
addresses in the sequence in which they appear in the input stream. When 
the linkage editing is completed, cataloging to the core image libary occurs 
because of the CAT AL option. 

In addition, the linkage editor prints a status report that reflects the 
usage and available space in the core image library. (This does not occur in 
a LINK situation.) 

The example can be modified to illustrate a catalog-and-execute 
operation by inserting the following statements between the EXEC 
LNKEDT and / & statements: 

• Any job control statements required for execution of PROGB 

• A / / EXEC statement 

• Card reader input for PROGB, if any. 

The example does not include an ENTRY statement. Job control, 
therefore, writes an ENTRY statement on SYSLNK instructing the linkage 
editor that: 

• There is no more input on SYSLNK. 

• The entry point defined in the source program should be the entry 
point of the produced phase. 

Chapter 3: Using the System 3.99 



Catalog to a Private Core Image Library Example 

II JOB CATLCIL 
* LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY 
* LINKAGE EDITOR EXECUTING IN FOREGROUND 
* SINGLE PHASE, ALIGNED ON A PAGE BOUNDARY, MULTIPLE 
* OBJECT MODULES, FOREGROUND PROGRAM 
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES 
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO 
* BE PROCESSED 

1 ASSGN SYSCLB,130 
2 II ASSGN SYSLNK,190 
3 I I OPTION CATAL"?\ 
4 PHASE PROGB~S,PBDY 
5 INCLUDE 

object deck 
1* 

INCLUDE SUBRX 
INCLUDE SUBRY 
INCLUDE 
Object deck 

1* 
6 II LBLTYP TAPE 
7 II EXEC LNKEDT 

1& 

Explanation for Catalog to Private Core Image Library. This example 
illustrates the execution of the linkage editor in a foreground partition; 
therefore the phase is cataloged to a private core image library. The phase 
being cataloged is the same as that in the previous example where the 
linkage editor was executed in the background. 

Statement 1: The label information for SYSCLB must be stored in the label 
information area or, if appropriate, DLBL and EXTENT statements must 
precede the ASSGN SYSCLB command. 

Statements 2 through 7: They are the same as statements 1 through 6 in 
the preceding example (Catalog to the System Core Image Library). 

Just like the preceding example, so can this example be modified to 
illustrate a catalog-and-execute operation. 

3.100 DOS!VSE System Management Guide 



Link-Edit and Execute Example 

II JOB LINKEXEC 
* LINK EDIT AND EXECUTE SINGLE PHASE, SINGLE OBJECT 
* MODULE NOT CATALOGED, BACKGROUND PROGRAM 
* NONSEQUENTIAL DASD & LABELED TAPE FILES TO 
* BE PROCESSED 

1 II. ASSGN SYSLNK,190 
2 II OPTION LINK 
3 PHASE PROGA,* 
4 INCLUDE 

object deck 
1* 

5 II LBLTYP NSD(2) 
6 II EXEC LNKEDT 

7 Any job control statement required for execution 
such as ASSGN or label statements 

8 II EXEC 

1* 
1& 

input data as required 

Explanation for Link-Edit and Execute. This example illustrates the basic 
concept of link-editing and executing by using a single phase that is 
constructed from a single object module contained in punched cards. 
Labeled tape and nonsequential DASD files are to be processed when the 
phase is executed. No more than two extents are used by any DASD file. 

Statement 1: No assignments are necessary because the system units 
required for link-editing are assumed to be permanently assigned. An 
ASSGN for SYSLNK is included to illustrate its position relative to the 
OPTION statement in case an assignm.ent is required. 

Statement 2: The statement indicates that a link-edit operation is to be 
performed. H SYSLNK has not been assigned, the statement is ignored. 
Linkage editor control statements are not accepted unless the OPTION 
statement is processed. Because the option is LINK, and not CAT AL, only 
link-editing will be performed. 

Statement 3: The PHASE statement is copied on SYSLNK. Job control 
checks only the first operand; remaining operands are checked by the 
linkage editor when that program uses SYSLNK as input. 

Only one phase is built by the linkage editor because only one PHASE 
statement is submitted for the entire run. The name of this phase is 
PROGA, as specified in the first operand. The second operand indicates 
the origin point for the phase. Because an * hets been used, the phase 
begins in the next storage location available, with forced doubleword 
alignment. Because this is the first and only phase, it is located at the 
beginning of the partition plus the length of the save area and label area 
(reserved by LBL TYP) plus the length of any area assigned to the 
COMMON pool (as designated by a CM entry in the object module). 

A displacement, either plus or minus, may be used with the *, such as 
* + 1024. This causes the origin point of the phase to be set relative to the 
* by the amount of the displacement. 

Chapter 3: Using the System 3.101 



Statement 4: The INCLUDE statement has no operands so DOS/VSE 
reads the records from SYSIPT and writes them on SYSLNK until SYSIPT 
has an end-of-data (/*) record. The data on SYSIPT is expected to be the 
object module in card image format that is used in this linkage editor 
operation. 

Statement 5: The LBL TYP statement, which is required in an SCP only 
environment, causes job control to compute the number of bytes needed for 
label data in the program that is link -edited. The calculation is saved by job 
control and passed on first to the linkage editor and later to LIOCS. 

Statement 6: On encountering the EXEC LNKEDT statement, job control 
writes an ENTRY statement with no operand on SYSLNK and causes 
DOS/VSE to bring in the linkage editor program. 

Using the data just placed on SYSLNK as input, the linkage editor 
produces executable code. The output is placed in the next available space 
of the core image library (immediately after the last cataloged phase). This 
is true regardless of whether the program is cataloged permanently 
(OPTION CATAL) or temporarily (OPTION LINK). However, if 
OPTION LINK is specified, the temporarily cataloged program is overlayed 
by the next program that is link-edited. A program that is cataloged 
temporarily must be link-edited each time it is used. No ACTION options 
are specified. Therefore, in resolving the external references, the system 
makes use of the AUTOLINK feature. Error diagnostics and a storage map 
are written on SYSLST, assuming that SYSLST is assigned. 

Statement 7: Because the program is not cataloged, it must be executed 
immediately. Any pertinent job control statements are entered at this point. 

Statement 8: An EXEC statement with no program name operand 
indicates that the phase to be executed was just link-edited. Therefore, no 
search of the core image directory for linked phases is required, and 
DOS/VSE brings the program into storage and transfers control to its entry 
point. Because the automatic ENTRY statement is in effect for this 
example, the entry point is the address specified in the program. 

This example can be modified to illustrate the following: 

1. Catalog and execute. To cause this phase to be cataloged permanently, 
change the OPTION statement (2) from LINK to CATAL. 

2. Catalog only. To catalog only, change the OPTION statement (2) 
from LINK to CAT AL and remove all statements following the EXEC 
LNKEDT statement (6) up to the / & statement. 

3. Include object module from relocatable library. The name of the object 
module in the relocatable library must be supplied by an additional 
INCLUDE statement. If the name is RELOCA, the statement is 
INCLUDE RELOCA. This form of the INCLUDE statement is written 
on SYSLNK when it is read by job control. The linkage editor retrieves 
the object module when it encounters the INCLUDE statement because 
it uses SYSLNK for input. 

3.102 DOS/VSE System Management Guide 



Compile and Execute Example 

II JOB COMPEXEC 

* COMPILE OR ~SSEMBLE, LINK EDIT AND EXECUTE 

* SINGLE PHASE, MULTIPLE OBJECT MODULES, BACKGROUND 

* PROGRAM SEQUENTIAL DASD FILES TO BE PROCESSED 

* INPUT TO LINKAGE EDITOR FROM L..~.NGUAGE TAA.NSL..~TOR j 

* RELOCATABLE LIBRARY AND SYSIPT 
1 II ASSGN SYSLNK,190 
2 II OPTION LINK 
3 PHASE PROGA, S 
4 II EXEC FCOBOL 

COBOL source statements 
1* 

5 INCLUDE SUBRX 
INCLUDE 
object module 

1* 
6 ENTRY BEGIN 1 

II EXEC LNKEDT 
7 1\DY jgp control statements required for PROGA 

execution 
II EXEC 

Any input data required for PROGA execution 
1* 
IF:. 

Explanation for Compile and Execute. The language translators provide the 
option of placing their output on SYSLNK. Because the linkage editor uses 
SYSLNK for input, a program can be assembled or compiled, link-edited 
and executed, all in one job. 

All three sources of object module input to the linkage editor are used: 
SYSIPT, the relocatable library, and the output from a language translator. 
It is assumed that the phase is executed in the background partition, and 
that only sequential DASD files or unlabeled tape files are processed. 

Statement 1: The SYSLNK assignment is given to show the position of 
ASSGN statements relative to the OPTION statement. ASSGN statements 
are not required if they are permanent assignments. 

Statement 2: The statement is required. 

Statement 3: The PHASE statement must always precede the relocatable 
modules to which it applies; it is written on SYSLNK first for later use by 
the linkage editor. S is the origin point, that is, the phase originates with 
the first doubleword in the partition plus the length of the partition save 
area and label area, plus the length of the area assigned to the COMMON 
pool (if any). This gives the same effect as * gives for a single phase or the 
first phase of a multiphase link edit run. As with the .;., the S may be used 
with a relocation factor, for example, S+ 1024. 

Statement 4: The appropriate language translator is called (in this case, 
DOS/VS COBOL). The normal rules for compiling are followed; the 
source deck must be on the unit assigned to SYSIPT and the / * defines the 
end of the source data. The output of the language translator is written on 
SYSLNK. 

Chapter 3: Using the System 3.103 



Statement 5: The INCLUDE SUBRX statement is written on SYSLNK. 
The linkage editor retrieves the named module from the relocatable library. 
Because it has no operand, the next INCLUDE statement signifies that the 
relocatable module is on SYSIPT. The data on SYSIPT is copied on 
SYSLNK up to the /* statement. 

Statement 6: The ENTRY statement is written on SYSLNK as the last 
linkage editor control statement. The symbol BEGIN! must be the name of 
a CSECT or a label definition (which occurs in an ENTRY source 
statement) defined in the first or only phase. The address of BEGIN! 
becomes the transfer address for the first or only phase of the program. 
The ENTRY is used to provide a specific entry point rather than to use the 
point specified in the program. 

Statement 7: No LBLTYP statement is required because only sequential 
DASD files are to be processed. 

The rest of the statements follow the same pattern as discussed in the 
Link-Edit and Execute example. The input from SYSLNK to the linkage 
editor is: 

PHASE PROGA,S 
Relocatable module produced by COBOL compilation 
INCLUDE SUBRX 
Relocatable module from SYSIPT 
ENTRY BEGIN 1 

If certain types of errors are detected during compilation of a source 
program, the LINK option is suppressed. Under these circumstances the 
EXEC LNKEDT and EXEC statements are ignored and the message 
'STATEMENT OUT OF SEQUENCE' results. This LINK option 
suppression should be kept in mind if a series of programs is to be compiled 
and cataloged as a single job. Failure of one job step would cause failure of 
all succeeding steps. 

An OPTION LINK cannot be given if OPTION CATAL is in effect. 
The message 'STATEMENT OUT OF SEQUENCE' results. 

3.104 DOS/VSE System Management Guide 



Using the Libraries 

After you have planned the size, contents, and location of the libraries (see 
Chapter 2, Planning the System), you need to know how to allocate space 
to a library, how to create private libraries and how to alter, copy, and 

• inspect the contents of the libraries. All these functions are performed by a 
group of library processing programs, collectively referred to as the 
librarian. 

Associated with each library is a directory that is located at the 
beginning of the space allocated to that library. For each element in a 
libraty, the corresponding directory contains a unique entry describing the 
element. A directory entry contains such information as name, disk address, 
size, load address (core image library only), and version number 
(relocatable, sour~ statement, and procedure libraries only) of the element. 
These directory entries are used by the system to locate elements in and 
retrieve them from a library. 

The begin addresses of the individual system library directories are 
stored in a separate directory, the system directory. At the beginning of 
each directory is a library descriptor. This entry contains information such 
as the address of the next available record, the number of active and 
deleted blocks, and the amount of space allocated to the library. The 
library descriptor entry comprises the first block of each directory on FBA 
devices. On eKD devices, the library descriptor information is in the first 
entry of the core image library directory, and the first five entries of the 
other library directories. 

A core image library normally contains a large number of program 
phases. Thus, searching for a specific phase can become rather time 
consuming. To reduce the search time, the core image library directory 
entries are in alphameric sequence. The second level directory contained in 
the supervisor assists in locating directory entries. This is discussed in 
Second Level Directories for Core Image Libraries in this manual. 

The organization of the directories on SYSRES is shown in Figure 
3-31. A more detailed description of the complete SYSRES organization is 
given in Appendix A: System Layout on Disk. 

Chapter 3: Using the System 3.105 



Core I mage Directory Cataloged Phases 

Li nked Phases 

Core I mage Library 

Re10catable Directory 

Relocatable Library 

Source Statement Directory 

Source Statement Library 

Procedure Directory 

Procedure Library 

_._End of SYSRES 
extent 

Figw'e 3-31. Organization of the Directories and libraries on SYSRES 

This section describes how you can manage and control your libraries with 
the use of the librarian programs. The librarian programs fall into three 
functional groups: maintenance, organization, and service. The functions are 
applicable both to the system and private libraries. Figure 3-32 is a 
summary of the librarian programs, their functions, and the partitions you 
can use for their execution. The figure also lists the storage requirements 
for real mode execution: a value (ALLOCR command) to allocate 
processor storage and a value (SIZE command or SIZE parameter in the 
EXEC statement) to reserve space for the partition GETVIS area. No 
special considerations apply to execution in virtual mode; any librarian 
program will fit into the minimum partition size. 

3.106 DOS/VSE System Management Guide 



GROUP PROGRAM FUNCTIONS PARTITION ALLOCR SIZE 
NAME 

Maintenance MAINT Catalog BG 112K 64K 
Delete BG 
Rename BG (Note 2) 
Condense (Note 1) BG 
Establish Condense Limit BG 
Reallocate (Note 3) BG 
Update for Source Statement BG 
Ubrary 

Organization CORGZ Allocate a new SYSRES Any (Note 4) 122K 74K 
Create private libraries 
Transfer elements between any two 
libraries of the same type 

COPYSERV Compare library contents and Any 68K 20K 
generate input for CORGZ 

Service DSERV Display the contents of the library 68K 20K 
directories (Note 5) 

CSERV Display, punch, or display and 

} 68K 
RSE"RV punch the contents of the Core 20K 
SSERV image, Relocatable, Source 
PSERV statement, or Procedure library Any 

ESERV Convert edited macros to source 112K 64K 
format. Display and/or punch 
converted macros 

Note 1 Refer to the discussion of the condense function for restrictions related to execution of the CONDS function 
of the MAINT program. 

Note 2 This function may be executed in a foreground partition for a private core image library. 
Note 3 Reallocate cannot be used for private libraries. 
Note 4 A MERGE to SYSRES function must be run in BG. 
Note 5 When requesting sorted DSERV output, an allocation (ALLOCR) of 112K together with a specification of 

SIZE=64K in the EXEC statement will improve" the performance. 

FJgUI'e 3-32. Summary of Librarian Programs, Their Functions, and Real Mode Requirements 

You invoke the individual functions of the librarian programs by means of 
librarian control statements. The use of these control statements is 
described and demonstrated by examples in the following section. Their 
formats are contained in DOSjVSE System Control Statements. 

H the extended support for the procedure library (SYSFIL) was 
selected during supervisor generation, the librarian control statements can 
be cataloged into the procedure library. This excludes maintenance 
functions for the procedure library itself and reallocation of library sizes. 

Results may be unpredictable if librarian programs access a library 
while this library is being updated in another partition. Therefore, if a 
private library is assigned to more than one partition, the library should not 
be updated. 

Chapter 3: Using the System 3.107 



Maintaining the Libraries 

The maintenance functions of the librarian greatly facilitate frequent 
opera~ons such as: 

• Cataloging members to the libraries 

• Deleting members from the libraries 

• Condensing the libraries 

• ~stablishing limits for condense 

• Allocating space to the libraries 

• Renaming members of the libraries 

• Ppdating books in the sour~ statement library. 

While a procedure is being execut~d, no maintenance functions can be 
performed against the procedure library. For this reason, programs whose 
running time is relatively long (for example, the licensed program 
VSE/POwER) should not be executed from a procedure. 

The maintenance program is invoked by the job control statement: 

I I EXEC MAl NT 

The functions to be performed are specified in librarian control statements 
which must follow the EXEC MAINT statement on SYSIPT (H SYSIPT is 
assigned to a tape unit, it must be a single file and a single volume). Any 
combination of the maintenance functions can be performed in a single run. 
A sample maintenance job (in skeleton form) is shown below: 

II JOB ANYMAlNT 

assignments, if necessary 

II EXEC MAl NT 

librarian control statements 

1* 
IF:. 

When the / * is processed after completion of the maintenance run, 
DOS/VSE prints (on SYSLST) a status report of the library just updated. 

The symbolic unit assignments required for the individual maintenance 
functions are described in DOS/VSE System Control Statements. The 
examples in this chapter assume that all necessary assignments are 
established as permanent assignments. 

To perform maintenance on a private library, the library must be 
assigned in the partition in which the maintenance program is being 
executed. To access the private libraries, you must assign the following 
symbolic unit names to the device(s) containing the libraries: 

3.108 DOS/VSE System Management Guide 



Private core image library . . . 
Private relocatable library 
Private source statement library . 

. SYSCLB 

. SYSRLB 
. . SYSSLB 

To perform maintenance on system libraries, the corresponding private 
library must be unassigned. 

Cataloging Members into the Libraries. The catalog function adds a module 
to a relocatable library, a book to a source statement library, or a procedure 
to the procedure library. Phases are cataloged to the core image library by 
the linkage editor. 

The catalog control statements specify the name of the member to be 
cataloged and, optionally, a change level number. The control statements 
are: 

Relocatable library . . . 
Source statement library . . . . 
Procedure library . . . . . 

· . CATALR 
· . CATALS 
· . CATALP 

The catalog function implies a delete for members with the same name. 
Therefore, you should rename the existing member prior to cataloging the 
new member that has the s3me name. Then, when the new member has 
been successfully tested, the old member may be deleted. 

When you add to the contents of a library, watch the status of the 
system directory, which ~ printed at the end of the catalog run. If the 
libraries are becoming full, you may wish to condense them or allocate 
more space to them. (Condensing and allocating are described later in this 
section.) 

Cataloging to the ~elocatable Library. To catalog an object module to the 
relocatable library, you must submit the object module on SYSIPT 
immediately behind the CAT ALR control statement. The following job 
catalogs two object modules, named MODI and MOD2, to the relocatable 
library; the object modules were produced by language translators in 
previous jobs: 

II JOB CATREL 
II EXEC MAl NT 

CATALR MOD1 

object module for MOD1 

CATALR MOD2 

object module for MOD2 

1* 
1& 

You may compile or assemble a program and catalog the resulting object 
module in the relocatable library in the same job. In this case, you assign 
SYSPCH, which receives the output of the language translator, to a disk, 
diskette or tape and then use the object module on that device as input to 
the MAINT program. An example using a magnetic tape for SYSPCH is 

Chapter 3: Using the System 3.109 



shown in Figure 3-33. To assign SYSPCH to a disk or diskette, the SYSFll... 
option must have been specified during supervisor generation, and you must 
supply the necessary DLBL and EXTENT job control statements. 

II JOB CATREL 
II OPTION DECK 

1 II ASSGN SYSPCH,180 
II EXEC ASSEMBLY 

2 PUNCH 'CATALR MODULE1 ' 
source module 

3 
1* 

4 II MTC WTM,SYSPCH,2 
5 II MTC REW,SYSPCH 
6 II RESET SYSPCH 
7 II ASSGN SYSIPT,180 
8 II EXEC MAl NT 

1& 
1 A magnetic tape device is assigned to SYSPCH to receive the assembler output. 
2 The assembler will punch a CAT ALR statement on SYSPCH. 
3 The assembler processes the source module and writes the object module onto 

SYSPCH following the CAT ALR statement. 
4 Tapemarks are written on SYSPCH to indicate the end of the object module. 
S The tape is rewound to its load point. 
6 The tape is unassigned as SYSPCH. 
7 The tape is assigned to SYSIPT to serve as input for the MAINT program. 
S MAINT reads the object module from the tape and catalogs it in the relocatable 

library. 

Figure 3-33. Assembling and Cataloging to the Relocatable Library in the 
Same Job 

All modules in the relocatable library that have the first three characters of 
the module name in common are considered to belong to one program. This 
simplifies the control statements to delete, display, punch, merge, and copy an 
entire program. The names of mM-supplied modules in the relocatable library 
begin with the letter I, which should therefore be considered reserved so that 
you can easily distinguish your ,modules from mM's. 

Cataloging to the Source Statement Library. To add a book to the source 
statement library, you use the CAT ALS statement specifying the name of the 
book and the sublibrary to which it belongs. A sublibrary is defined by an 
alphameric character preceding the bookname. For example, the statement 

CATALS L.NEWBOOK 

adds the book NEWBOOK to sublibrary L. Note that-the sublibraries in 
the range from A to I, P, R, and Z are reserved for mM components. 

A -- is the assembler copy sublibrary. It contains books of assembler 
source code and source macro definitions. See DOS/VSE System 
Control Statements for details. 

B is the network definition sublibrary for ACF /VT AM. 

C is the COBOL sublibrary. 

3.110 DOS/VSE System Management Guide 



D -- is the alternate assembler copy sublibrary. It contains non-edited 
macros and copy books for programs that are to be executed in a 
telecommunications network control unit. 

E -- is the assembler macro sublibrary. It contains mM -supplied and 
user-written macro definitions in an edited (partially processed) 
format. See Guide to the DOS/VSE Assembler for details. 

F is the alternate assembler macro sublibrary. mM uses it to 
distribute edited macros for use by programs that are to be 
executed in a telecommunications network control unit. 

P is the PL/I sublibrary. 

R is the RPG IT sublibrary. 

Z contains sample programs supplied by mM. 

The rest of the reserved characters (G, H, I) will be used by mM for 
future additions to the source statement library. You should avoid, wherever 
poSSIble, cataloging to one of tlie reserved suDltbtaties. If you must catalog 
to a sublibrary that is reserved for mM components, ensure that you do not 
Use duplicate names. You can obtain a listing of the contents of each 
sublibrary by means of the SSERV librarian program discussed later in this 
chapter. You can obtain a listing of the book names within each sublibrary 
by means of the DSERV librarian program. 

Users of previous versions of DOS, who have books in a sublibrary 
which is reserved under DOS/VSE can easily transfer this sublibrary from 
the IBM range to the user range by means of the librarian rename 
function of the MAINT program. 

Edited macro definitions that are to be cataloged in the assembler 
sublibrary must be preceded by a MACRO statement and followed by a 
MEND statement. Example: 

II JOB CATMAC 
II EXEC MAINT 

CATALS E. MBOOK 
MACRO 

edited macro definition statements 

1* 
1& 

MEND 

Books other than macro definitions that are to be cataloged must be 
preceded and followed by BKEND statements. Example: 

II JOB CATBOOK 
II EXEC MAINT 

CATALS L. SBOOK 
BKEND 

source statements 

1* 
1& 

BKEND 

Chapter 3: Using the System 3.111 



The BKEND statement can have optional operands specifying that a 
sequence check or a card count be performed on the statements to be 
cataloged, or that the book to be cataloged is in compressed format. H you 
desire these functions when you catalog a macro definition, BKEND 
statements can be included in addition to the MACRO and MEND 
statements. 

Cataloging to the Procedure Library. To catalog a procedure in the 
procedure library you submit a CAT ALP statement specifying the 
procedure name. Rules for the naming of procedures are given in 
DOS/VSE System Control Statements. 

The control statements to be cataloged follow the CAT ALP statement; 
they can be job control or linkage editor control statements or both. The 
end of the control statements to be cataloged must be indicated by an 
end-of -procedure delimiter, which is normally a / +. 

Each control statement cataloged in the procedure library should have a 
unique identity. This identity is required if you want to be able to modify 
the job stream at execution time. Therefore, when cataloging, identify each 
control statement in columns 73-79 (blanks may be embedded). Refer also 
to the section Temporarily Modifying Cataloged Procedures earlier in this 
chapter. 

The following job catalogs the procedure PROCA in the procedure 
library: 

II JOB CATPROC 
II EXEC MAl NT 

CATALP PROCA 

control statements to be cataloged 

1+ END OF PROCEDURE 
1* 
1& 

H your supervisor was generated with the SYSFIL option, you can also 
include inline SYSIPT data in the cataloged procedure. The presence of 
SYSIPT data must be indicated to the MAINT program by the DATA 
parameter of the CAT ALP statement. In addition, you must indicate the 
end of inline data by the /* statement. The following example catalogs a 
procedure consisting of control statements and SYSIPT data: 

3.112 DOS/VSE System Management Guide 



I I JOB CATPROC' 
II EXEC MAINT 

CATALP PROCA,DATA=YES 

control statements 

SYSIPT data 

1* END OF SYSIPT DATA 

control statements 

1+ END OF PROCEDURE 
1* 
1& 

The following restrictions apply when you catalog procedures to the 
procedure library: 

1. A cataloged procedure cannot contain control statements or SYSIPT 
data for more than one job. 

2. H the cataloged control statements include the / / JOB statement you 
must not have a / / JOB statement when you retrieve the procedure 
through the EXEC statement. 

·3. A cataloged procedure must not include either of the following 
statements: 

[II] RESET SYS 
[I I] RESET ALL 

4. A cataloged procedure with DATA=YES must not include any of the 
following statements for SYSIN, SYSRDR, or SYSIPT: 

[I I] ASSGN 
[II] CLOSE 
[I I] RESET 

1& 

5. A cataloged procedure without inline SYSIPT data must not include any 
of the following statements for SYSIN or SYSRDR: 

[I I] ASSGN 
[II] CLOSE 
[I I] RESET 

1& 

6. Cataloged procedures cannot be nested, that is, a cataloged procedure 
cannot contain an EXEC statement that invokes another cataloged 
procedure. 

7. When cataloging a procedure that contains an imbedded / / JOB 
statement, in a partition controlled by VSE/POWER, use * $$ JOB 
and * $$ EOJ statements to define the cataloging job. 

Assigning Change Levels. When you catalog a member in one of the 
libraries, you can assign a change level to the member, which will enable 

Chapter 3: Using the System 3.113 



you to keep track of the current version of your programs. The change 
level is specified in the catalog control statement by a version and a 
modification number. The following statement catalogs version 1, 
modification 3, of module MOD 1 in the relocatable library: 

CATALR MOD1,1.3 

Change levels are stored in the directory entry for the member and can be 
displayed by the librarian service program DSERV. A change level is not 
used by the system for identification purposes, that is, a change level is not 
sufficient to allow two elements having the same name to coexist in a 
library. 

For the source statement library only, you can request verification of 
the change level before a book is updated. This can prevent unintentional 
updating of the wrong version of a book in a particular sublibrary. Specify 
the character C in the CAT ALS statement to request change level 
verification. Example: 

CATALS M.BOOK1,1.1,C 

To update the book you must supply the current change level of the book 
in the update control statement. This change level is then checked against 
the change level in the directory entry and, if they match, the book is 
updated and its change level is increased by one to reflect the new status of 
the book. If you want to overwrite the version and modification numbers of 
a book, supply the new change level information in the END statement of 
the update function. If change level verification is requested for a particular 
book, the letter C will appear in the column headed LEV CHK (level 
check) in the DSERV listing. 

Deleting Members from the Ubnuies. You can delete an unwanted member 
from a library either by cataloging a new member with the same name or 
by means of the delete function of the librarian, using the following control 
statements: 

Core image library . . . . . . DELETC 
Relocatable library . . . . . . DELETR 
Source statement library . . DELETS 
Procedure library . . . . . . DELETP 

To delete individual members from the libraries, you must specify each 
member name in full in the delete control statement. If a group of members 
is to be deleted, however, you can simplify the specification of the control 
statement provided that the recommended naming conventions were used: 

• If all the phases of one program in the core image library were named 
with the same first four characters, you need to specify only these four 
characters to delete the entire program. 

• You can delete all modules in the relocatable library that have the first 
three characters in common by specifying these three characters in one 
delete control statement. 

• Similarly, you can delete an entire sublibrary from the source statement 
library by specifying the sublibrary name. 

Since no special naming conventions apply to the procedure library, each 
cataloged procedure to be deleted must be specified individually. 

3.114 DOS/VSE System Management Guide 



You can also use the delete ALL function to remove all elements of a 
relocatable library, source statement library, procedure library, or private 
core image library. In this case, the system directory information is updated 
to show that all blocks of the library in question are available for cataioging 
programs; no condense operation is required. You cannot delete the entire 
system core image library, but only individual phases or programs. 

The following job deletes (1) all phases whose name begin with PHAS 
from the core image library, (21 modules MODI and MOD2 from the 
relocatable library, (3) sublibrary P from the source statement library, and 
(4) all the elements of the procedure library: 

II JOB DELETE 
II EXEC MAl NT 

DELETC PHAS. ALL 
DELETR MOD1,MOD2 
DELETS P.ALL 
DELETP ALL 

1* , 
1& 

When you request the deletion of a library member, the name of the 
member is removed from the corresponding directory entry. The system is 
then no longer able to recognize the member although it is still physically 
present in the library. The area taken up by such a member can be referred 
to as unavailable free space. To make such space available again for 
cataloging programs, use the condense function of the MAINT program. 
The delete and condense functions are illustrated in Figure 3-34. 

In case an entire component is deleted, the component entry in the 
system history file should also be deleted using the service program MSHP 
(Maintain System History Program). 

When a phase is deleted from the core image . library , it is also flagged 
as not present in the system directory list (if applicable). The shared virtual 
area cannot be condensed; it must be recreated. See Building the SDL and 
Loading the SVA under Starting the System earlier in this chapter. 

Condensing the Libraries. When you delete a member from a library, the 
space occupied by the 'deleted' member is unavailable for cataloging new 
members (see Figure 3-34). To make this space available for <;ataloging, 
you use the condense function of the MAINT program. 

To condense any of the system libraries you use the CONDS control 
statement specifying which of the libraries is (are) to be condensed. The 
following job condenses the core image, relocatable, and source statement 
libraries after the deletion of members from the libraries: 

I I JOB DELCOND' 
II EXEC MAl NT 

1* 
1& 

DELETC PHAS1,PHAS5,PROGA 
DELETR MOD.ALL 
DELETS P.ALL 
DELETP ALL 
CONDS CL,RL,SL 

Chapter 3: Using the System 3.115 



{";\ Assume that phases A, B, and C are cataloged in the 
~ core image library (c.i.L). Each core image directory 

(c.i.d.) entry, which refers to one of these phases, 
points to the beginning disk address of the phase. 

f2\ If phase B is no longer desired in the core image 

\V library, specify (DELETC B I, which deletes the 

name B from the directory. 

0) To make full use of the core image library, eliminate 
3 Of ° the unavailable free spaces by SpeCI ylng 

(CONDS CL I. 

First area available 
for cataloging 

}C.Ld. 

First area available This becomes unavailable free 
for cataloging space - unavailable because 

no other program can be cata­
loged in this area. 

First area available 
for cataloging 

FJgUI'e 3-34. Example of Deleting and Condensing 

3.116 DOS/VSE System Management Guide 



Note that you need not condense a library -- in the above example, the 
procedure library -- if that library is deleted entirely. 

The reallocation function of the MAINT program automatically causes 
the system libraries to be condensed. 

H a condense operation is interrupted by a hardware error or by an 
operator intervention before the next statement is read, the library being 
condensed is unusable and must be rebuilt. Note that the condense program 
shows all the symptoms of a looping program, but should never be canceled 
by the operator. 

There are two methods for condensing libraries that do not use the 
MAINT program. Both methods involve copying only the undeleted library 
members to a new volume. 

• The utility programs BACKUP and RESTORE can be used if your 
installation has magnetic tape drives installed. The BACKUP program 
copies~ libraries to- tape but doosn-~te6py- delet-ed members. The 
RESTbRE program copies the tape volume to a disk recreating your 
libraries. For more details see DOS/VSE System Utilities. 

• The Copy and Reorganize program (CORGZ) copies libraries from one 
disk extent to a different disk extent. Deleted members are not copied. 
See the section Organizing the Libraries later in this chapter for 
information on the CORGZ program. 

Specifying the Condense Limit. You can specify that a message is to be 
delivered to the operator whenever the number of available blocks in a 
library drops below a specified minimum, which is referred to as the 
condense limit. Through the CONDL statement you specify the library or 
libraries and the condense limit(s}. 

Example: 

II JOB CONDSLMT 
II EXEC MAl NT 

CONDL CL=10 
1* 
1& 

In the above example, the CONDL statement specifies that, whenever the 
number of available library blocks falls below 10, a message is to be issued. 

The condense limit should always be less than the number of blocks 
allocated to the library; otherwise this message is given after each 
maintenance function. The MAINT program stores the condense limits in 
the library descriptor, which can be displayed at the end of each librarian 
mairitenance job. H a library has reached a condense limit, this is indicated 
in the status report by a note. 

When Condense Can Be Performed. While the condense function is being 
executed, the library directories do not represent the actual status of the 
library. Thus, if a program in any partition were to attempt to use the 
library in any way, the results would be unpredictable. For this reason, 
various controls are provided to minimize the chances of unpredictable 
results: 

Chapter 3: Using the System 3.117 



• The system core image library and either the system or private 
relocatable and source statement libraries can only be condensed from 
the background partition, and then only if there are no active 
foreground partitions. 

• The procedure library may be condensed from the background partition 
while a foreground partition is active. However, the condense function 
cannot be performed on the procedure library if it is being accessed 
from another partition while a procedure is being executed. 

• A job stream to condense the procedure library cannot be executed 
from a cataloged procedure. 

• A private core image library may be condensed in any partition, 
provided it is exclusively assigned to that partition. 

The CONDL control statement (which sets the condense limits) can be 
submitted with the MAINT program at any time in the background 
partition. 

A partition is inactive if it has never been activated with a START or 
BATCH command or has been deactivated with an UNBATCH command. 

Even if a program such as VSE/POWER is not doing any work, if it is 
resident in a partition, that partition is considered to be active. 

Reallocating the Library Sizes. You can use the reallocation function of the 
MAINT program to 

• increase the size of a system library for further additions. 

• decrease the size of a system library; for example, to provide space for 
expanding other libraries. 

• eliminate a system library if it is replaced by a private library or is no 
longer required. 

• reestablish a system library after it has been eliminated. 

Each library that is reallocated is condensed automatically. You can 
reallocate any combination of the system libraries on SYSRES within a 
single run. You cannot reallocate private libraries. To change the allocation 
of a private library, you must create a new private library using the 
CORGZ program (see Creating and Working with Private Libraries, later 
in this chapter). Tape users may, as an alternative, use the 
BACKUP/RESTORE utilities. H a private library is assigned and you 
attempt to reallocate the corresponding system library, a message is issued 
and the job is canceled. 

The reallocation function of the MAINT program must always be 
executed in the background partition and all foreground partitions must be 
inactive. This ensures that no program can access any library during 
reallocation; otherwise, the results would be most unreliable because the 
final addresses may not have been established and (similar to the condense 
function) because the directory entries do not reflect the actual status of 
the libraries until the end of the reallocation step. 

You invoke the reallocation function through the ALLOC control 
statement. In the operand field, you specify (1) the libraries to be 

3.118 DOS/VSE System Management Guide 



reallocated, (2) the amount of disk space to be allotted to each library, and 
(3) how much of that allotted disk space is to be reserved for the library 
directory. The ALLOC statement can be submitted together with any other 
maintenance control statements. 

Changing the Size of the System Libraries. When you increase the size of 
one library, you must consider the space remaining for the libraries that 
follow. 

Figure 3-35 shows the available disk space by device type. FBA space 
requirements are in number of FBA blocks, all others are shown in number 
of cylinders. 

Label Disk space Device Type VTOC information available area 

CKD: 
2314/2319 1 2 197 

----------

3330/3333 1 2 
Modell 1 2 401 
Modell! 803 

3340 1 3 w/3348 M35 1 3 344 w/3348 M70 692 
3350 1 1 

554 
FBA (see note): 
3310 16 200 125798 
3370 16 200 557782 

Note: FBA space requirements show the default sizes in FBA blocks; the size of the 
VTOC may be changed by an Initialize Disk utility run and that of the label information 
area by a RESTORE utility run. For more information, see DOS/VSE System Utilities. 

Figure 3-35. Disk Space available for System Libraries 

Assume, for example, that the SYSRES library space on a 2314 was 
allocated during system generation as 

ALLOC CL=90( 5) ,RL=40( 2) ,SL=60( 3) ,PL=6( 5) 

An attempt to reallocate only the core image library to 120 cylinders would 
fail, because there is not enough space available for all of the following 
libraries. To avoid this, you must reduce one or more of these libraries to 
compensate for the increase. For example, reduce the combined sizes of the 
relocatable and source statement libraries by 29 cylinders. In this case, the 
ALLOC statement should read: 

ALLOC CL=120(7),RL=30(2),SL=41(3),PL=6(5) 

When you alter the size of the SYSRES file by reallocating libraries, you 
must define the new SYSRES extent by means of DLBL and EXTENT job 
control statements. Note that the SYSRES extent begins with relative track 
1 for a CKD device or physical block 2 for an FBA device. The EXTENT 
job control statement must account for the label information area. 

Chapter 3: Using the System 3.119 



The filename specified in the DLBL statement for the SYSRES file 
must always be USYSRS. The new label information for the SYSRES file is 
stored in the volume table of contents (VTOC) of the SYSRES pack. 

The following example shows the job control statements required to 
reallocate the system libraries as d\scussed above when the SYSRES device 
type is 2314/2319: 

II JOB REORG 
II DLBL IJSYSRS,'DOS/VSE SYSTEM RESIDENCE',99/365 
II EXTENT SYSRES,111111,1,O,OOOl,3979 
II EXEC MAINT 

ALLOC CL=120(7),RL=30(2),SL=41(3),PL=6(5) 
1* 
1& 

For CKD devices, like the 2314 in the above example, allocations are given 
in cylinders for the libraries. Because the SYSRES file begins at cylinder 0 
track 1, the EXTENT statement must take the following into account: 

CL = 120 cylinders x 20 tracks = 2400 

RL = 30 cylinders x 20 tracks = 600 

SL = 41 cylinders x 20 tracks = 820 

PL = 6 cylinders x 20 tracks = 120 

3940 

Label information area (2314/19) 
2 cylinders x 20 40 

3980 

Less cylinder 0, track 0 -1 

3979 

This SYSRES file is comprised of 3979 tracks. 

No special considerations apply for reducing the size of a library except 
that you must also supply the necessary label information for the new 
SYSRES extent. Reducing a library does not cause any gaps, that is, the 
libraries following the one that was reduced are 'moved up' to close the 
gap. H your allocations are too small for the existing library members, the 
job is canceled and an appropriate message is displayed. At this point in 
time, the libraries are still intact. 

Eliminating Libraries. H you have created a private relocatable or source 
statement library containing all the modules or books that you require from 
the corresponding system library, you can use the reallocation function to 
eliminate that system library. You do this by setting the space indications in 
the ALLOC statement to zero. This is only effective, however, if all the 
directory entries have first been cleared by the DELETS or DELETR 
control statements. 

Similarly, you can eliminate the procedure library if it contains no 
active members and you are sure that you do not want to use cataloged 
procedures. 

3.120 DOS/VSE System Management Guide 



The fonowing job eliminates the system relocatable library -- the 
example assumes that the libraries were allocated with CL=80(5), 
RL=40(2), SL=30(3), PL=10(5). The SYSRES device type is assumed to 
be 2314/2319. 

II JOB ELlMNT 
II DLBL IJSYSRS,'DOS/VSE SYSTEM RESIDENCE',99/365 
II EXTENT SYSRES,111111,1,O,0001,3239 
II EXEC MAl NT 

DELETR ALL 
ALLOC RL=O(O),CL=120(7),SL=30(3),PL=10(5) 

1* 
If, 

You cannot eliminate the system core image library because it is required 
for system operation. H you inadvertently specify a zero allocation for the 
system core image library, the job is canceled. 

Once eliminated, the relocatable, source statement, or procedure library 
can be--added-again-t0- -the-- S¥SRES-f-ile-. The- same--oonsiderat-iens- apply-to 
adding a library as to increasing the size of a library. Using the reallocation 
function to add a library does not include adding the actual members of the 
library. Once a library exists you can add members either by cataloging or 
by merging from a private library or another SYSRES. The merge function 
is described in Organizing the Libraries, later in this chapter. 

Renaming Members in the Libraries.. To change the name of a library 
member, use the rename function. In a control statement, you supply the 
existing name and the name to which you want to change it. H the new 
name is identical to a name already cataloged in the library, an error 
message is issued. You must then select a different name and resubmit the 
job. 

When you name a phase in the system core image library that is also 
listed in the system directory list, the old phase name in the SDL is 
invalidated. 

After a valid rename operation, the system recognizes only the new 
name. The version and modification level (change level) is not changed by 
the rename function. 

Each type of library has a unique rename control statement: 

Core image library . . . . 
Relocatable library 
Source statement library . 
Procedure library 

RENAMC 
... RENAMR 

. . RENAMS 

.. RENAMP 

The rename function can be used to establish naming conventions. All 
phases in the core image library that have the first four characters in 
common are considered to belong to one program. All modules in the 
relocatable library that have the first three characters in common are 
considered to belong to one program. Since the names of ffiM-supplied 
relocatable modules begin with the letter I, it is of advantage to avoid this 
first character when naming user modules. Similarly, you should avoid the 
use of the first characters A through I, P, R, and Z when renaming 
sublibraries in the source statement library. These prefixes are reserved for 
ffiM-supplied components. Names for procedures cataloged in the 

Chapter 3: Using the System 3.121 



Organizing the Libraries 

procedure library can consist of any combination of alphanumeric 
characters as long as they adhere to the naming rules for procedure names. 

Renaming a member of a library can be advantageous in a testing 
environment. For instance, after making changes to your source deck, 
rename the previous version residing in the library and catalog the new 
source under the original name. This assures you of backup until your new 
program is in working order, at which time you can delete the old 
(renamed) version(s). 

Updating Books in the Source Statement Library. The update function 
applies only to a source statement library. This function revises one or more 
source statements within a particular book. By using update you can make 
minor changes to a book, without having to catalog an entire new book. 

Besides adding, deleting, or replacing a certain number of source 
statements within a book, the update function allows you to: 

• resequence statements within a book. 

• revise a change level (version and modification) of a book. 

• add or remove the requirement for change level verification. 

• copy an entire book and rename the old book (for backup purposes). 

The UPDATE control statement identifies the update function. This 
statement may also be followed by one or more of these additional 
statements as required: 

ADD To add source statements 
DEL To delete source statements 
REP To replace source statements. 

The END statement indicates the end of updates to the particular book 
specified in the UPDATE control statement. 

H the requirement for change level verification was specified in the 
CAT ALS control statement when a book was cataloged, the version and 
modification level must be specified in the UPDATE control statement that 
refers to this book. This change level must agree with the current change 
level in the directory entry for that book. (Check the DSERV listing for the 
current change level and/or requirement for change level verification. For 
more information on the DSERV program, refer to the section Displaying 
the Directories.) The specification of the version and modification . level in 
the UPDATE statement prevents you from inadvertently making an update 
based on a book with the wrong version and modification. Regardless of 
whether or not the requirement is in effect, the version and modification 
level are incremented by one after each update. H a version and 
modification level is specified in the END statement, this overrides the 
current change level. 

The Copy and Reorganize (CORGZ) program and the Copy Service 
(COPYSERV) program are important tools for establishing and organizing 
your libraries during system generation or any time thereafter. The 

3.122 DOS/VSE System Management Guide 



following discusses these programs, their functions, and their application to 
your library organization requirements. 

Copy and Reorganize Program (CORGZ). The functions of the CORGZ 
program are to: 

• Create a new system residence (SYSRES). 

• Transfer members between any two existing libraries of the same type, 
as follows: 

all members, or 
some members, or 
only those members which do not yet exist in the receiving library. 

• Create private libraries. 

The first two points are described in this section. The creation of private 
libraries is discussed in Creating and Working with Private Libraries, later 
in this-chapter. 

The CORGZ program can be executed in any partition, except for the 
merge function (to copy members) "with SYSRES as the destination, which 
must be executed in the background partition. The program is invoked by 
the statement 

II EXEC CORGZ 

When /* is processed (after completion of the CORGZ program), a status 
report of the library just updated is printed on SYSLST. 

Input and output devices must be of the same disk architecture (CKD 
or FBA). Given, for instance, a CKD device as input, output cannot be an 
FBA devi~. 

The functions to be performed by the CORGZ program are specified in 
a set of librarian control statements, which are discussed below. 

Creating a New System Residence. When system generation is completed, 
you will want a backup SYSRES, which can save you regenerating the 
system from your distribution medium if the operational pack is 
inadvertently destroyed. This backup SYSRES is usually kept on tape (from 
which it can be restored using the RESTORE utility program), but may also 
be kept on a disk of the same device type as the original SYSRES. H the 
backup SYSRES is to be on disk, use the CORGZ program with the 
ALLOC and COPY control statements to define the new SYSRES file and 
copy the entire contents of the original SYSRES file onto it. 

You can also copy the SYSRES file selectively; that is, the new system 
residence will contain only part of the original SYSRES. This may be useful 
in an installation that uses certain components only during specific 
processing periods. For instance, if telecommunication and support for five 
partitions is required only during the prime shift, a different system 
configuration (for instance, no telecommunication and three partitions) 
could be used during the second shift. Therefore, you could copy onto a 
new SYSRES file only those components required for the second shift and 
add any additional components needed to that SYSRES. In this case, you 
must assemble a new supervisor and catalog it into the new SYSRES file. 

Chapter 3: Using the System 3.123 



The effect is a smaller supervisor and smaller libraries on both system 
residence packs which means faster access to library elements and, thus, 
improved overall system performance. 

When you create a new system residence, SYSOO2 must be assigned to 
the device on which the new SYSRES pack resides. The device types of 
SYSOO2 and SYSRES must be identical. Note that the mM 3330-1 and 
3330-11 are of the same device type; the same is true for the mM 3340-35 
MB and 3340-70MB. In addition, you must define the extents of the new 
SYSRES file by means of DLBL and EXTENt job control statements. The 
filename in the DLBL statement must be IJSYSRS. The lower extent limit 
must be relative track 1 for a CKD device or block 2 for an FBA device, 
and the upper extent limit inust include the label information area. 

The information to be copied from the original to the new SYSRES is 
specified in one or more of the following COpy control statements: 

COpy ALL to copy the entire system residence file~ You can use this 
form of the COPY statement only if all four system 
libraries are allocated on the original SYSRES file; 
otherwise, you must use a combination of the following 
COpy statements. 

COPYC 
COPYR 
COPYS 
COPYP 

to copy one or more members, one or more 

groups of members, or all members of the 
Core image, Relocatable, Source statement 
or Procedure library. 

If more than one copy control statement is submitted for several libraries, 
these statements should be grouped per library (for example, first all 
COPYC statements, then all COPYR statements, and so on). A COpy 
ALL or COPYx ALL statement must neither be preceded nor followed by 
any other copy statement for the same library. 

Note: The names of all members copied are printed on SYSLST if you specify 
/ / UPSI10000000. 

The following job creates a backup SYSRES file on a 3330 disk drive. The 
example assumes that the original SYSRES file does not contain a 
procedure library: 

II JOB BACKUP 
II ASSGN SYS002,131 
II DLBL IJSYSRS,'DOS/vSE SYSRES BACKUP',99/36S,SD 
II EXTENT SYS002,111111,1,O,OOOl,2127 
II EXEC CORGZ 

1* 
1& 

ALLOC CL=SO(S),RL=30(S),SL=30(S),PL=O(O) 
COPYC ALL 
COPYR ALL 
COPYS ALL 

Since the 3330 is a CKD device, all space allocations in the ALLOC 
statement are in number of cylinders. The number of tracks in the 
EXTENT statement (2127) is the sum of: the library allocations (110 
cylinders x 19 trks), minus 1 track (cylinder 0, trk 0); plus the label 
information area (2 cylinders x 19 trks). For FBA devices the space 
allocations are given in number of blocks. 

3.124 DOS/VSE System Management Guide 



For each CORGZ run to create a new SYSRES file, an ALLOC 
control statement is required, preceding any COpy statements. If you wish 
to exclude an entire library from being copied, specify a 'zero' allocation 
(for example, RL=O(O». 

Assume that you have a SYSRES file that contains all four system 
libraries and you wan~ to create a second SYSRES file containing only 
selected information from the core image library and the entire relocatable 
library. The following job creates this new SYSRES file (device type FBA 
assumed): 

II JOB SYSRES 
II ASSGN SYS002,131 
II DLBL IJSYSRS,'DOS/vSE SYSRES II',99/365,SD 
II EXTENT SYS002,111111,1,O,0002,12708 
II EXEC CORGZ 

ALLOC CL=7500(75),RL=5000(50),SL=O(O),PL=O(O) 
COPYC PHAS.ALL,PROG.ALL,ABCD.ALL 

1* 
1& 

COPYR ALL 

The EXTENT statement reflects a SYSRES file beginning at block 2 
comprising 12,708 blocks: 12,500 blocks make up the libraries, 200 blocks 
are allocated as the label information area, and the first 8 blocks are to be 
reserved for system information. 

Phases whose names start with a '$' are automatically copied by the 
CORGZ program. This provides you with the essential DOS/VSE 
components listed below: 

• mM supplied supervisor ($$A$SUPn) 

• Initial program load (IPL) 

• All logical and physical transients 

• Job control 

• Linkage editor 

User created elements can also be copied automatically: 

• Phases that you have cataloged with a '$' as the first character (such as 
a tailored supervisor) 

• Partition and system standard labels (cataloged with the P ARSTD and 
STDLABEL options) from the label information area 

Therefore you may execute the CORGZ program without any COpy 
statements, and the above items will be copied automatically onto the new 
SYSRES file. 

Trans/erring Members between Libraries. If you work with more than one 
system residence pack or private library, you may want to transfer members 
from one library to another. You can use the CORGZ program with a 
MERGE statement to transfer the elements. This is especially useful for 

Chapter 3: Using the System 3.125 



system generation when a new version of the system is installed; you can 
then copy the library elements directly from the old version to the new one. 

You use the MERGE control statement to define the characteristics of 
the libraries to be merged and the direction of transfer between the 
libraries. The operands of the MERGE control statement are: 

RES -- For the system libraries on the system residence file. 

NRS -- For the system libraries on a modified or duplicate system residence 
file that is not currently IPLed. 

PRV -- For any private libraries. 

For example, the statement MERGE RES,PRV indicates to the CORGZ 
program that elements are to be transferred from one or more libraries on 
the system residence file to the corresponding private libraries. 

For an SCP only environment, the device types of the input and output 
devices must be the same. Note that the mM 3330-1 and 3330-11 are of 
the same device type; the same is true for the mM 3340-35MB and 
3340-70MB. i ........... . 

The type of library involved and the elements to be transferred are 
specified in COPY statements immediately following the MERGE 
statement. (The COPY statements are the same as those described under 
Creating a New System Residence earlier in this chapter.) 

You must define the extents of the libraries involved in a merge 
operation by DLBL and EXTENT job control statements. The filenames to 
be used and the necessary symbolic unit assignments are described in detail 
in DOS/VSE System Control Statements. 

When the CORGZ program pedorms a merge operation, it does not 
automatically copy the basic system components as it does when a new 
system residence is created (see preceding section). You must specify 
COPYC ALL to transfer the entire core image library or COPY ALL to 
transfer the entire SYSRES extent. 

The job in the following example adds the contents of the core image 
library on a duplicate SYSRES file (NRS) to the elements in a private core 
image library (PRV). Any elements with duplicate names (supervisor, job 
control etc.) are deleted from the receiving library. 

3.126 DOS/VSE System Management Guide 



II ASSGN SYS002,130 
II OLBL IJSYSRS,'OOS/VSE SYSRES II' ,99/365,SO 
II EXTENT SYS002,111111,1,O,0001,2519 
II OLBL IJSYSCL,'PRIVATE CIL' ,99/365,SO 
II EXTENT SYSCLB,222222,1,O,1600,200 

ASSGN SYSCLB,131 
II EXEC CORGZ 

1* 
IF:. 

MERGE NRS,PRV 
COPYC ALL 

Alternatively, for the COPYC, COPYR, COPYS, and COPyP statements, 
the NEW operand can be used to copy only those members that do not 
already exist in the receiving library. However, for COPYC NEW: 

• supervisor phases are never copied, and 

• a number of system phases are always copied. 

:f.ora-list of phasesthat--arealways-copied-see- nOS/VSE System Contcol 
Statements. In addition, when using the NEW operand, ensure that your 
receiving library has sufficient space allocated to accommodate the library 
members that are copied from the other library. 

The job in the following example also adds the phases of the core 
image library on a duplicate SYSRES file (NRS) to the phases in a private 
core image library (PRV). In this example, only nonduplicate elements are 
copied. 

II JOB NRSPRV 
II ASSGN SYS002,130 
II OLBL IJSYSRS,'DOS/VSE SYSRES II' ,99/365,SO 
II EXTENT SYS002,111111,1,O,0001,2519 
II OLBL IJSYSCL,'PRIVATE CIL' ,99/365,SO 
II EXTENT SYSCLB,222222,1,O,1600,200 
ASSGN SYSCLB,131 
II EXEC CORGZ 

1* 
IF:. 

MERGE NRS,PRV 
COPYC NEW 

Copy Service Program (COPYSERV). This program compares library 
directories and, on finding differences in contents, produces corresponding 
COpy statements for use with the CORGZ program. The advantages of 
COPYSERV over the COPY NEW function of a CORGZ MERGE 
operation are: 

• You may alter a generated COpy statement prior to the actual 
MERGE. 

• The space required for the library members to be copied is calculated 
and displayed on SYSLST. 

You may find COPYSERV particularly useful when installing a new 
release. 

The program allows comparison of both system and private libraries. 
The libraries you wish to have compared must be defmed by the 
appropriate ASSGN, DLBL, and EXTENT statements; the new (or target) 
library must be assigned to SYSOO3, with a filename of USYSNR. H private 

Chapter 3: Using the System 3.127 



libraries are involved, it is necessary to provide an additional definition of 
your compare requirements by means of the UPSI statement. 

COPYSERV can be executed in any partition; it is invoked by the 
statement / / EXEC COPYSERV. At the completion of a COPYSERV 
run, you will receive the following types of statements on SYSPCH which 
you can include in a CORGZ job stream: 

II EXEC CORGZ 
MERGE RES! PRV 
COPYC phasename 

1* 
1& 

For ease of correcting the output, you get this output sorted by member 
names. 

COPYSERV, in addition, provides a printout with 

• A listing of the punched output. 

• The number of additional directory entries needed in the new library. 

• The number of additional library blocks needed to accomodate the new 
library. 

For a COPYSERV /CORGZ job stream example in the context of a system 
generation, refer to the System Generation Procedures in DOS/VS.E System 
Generation. 

With the job stream shown below, a comparison between a current and 
a new private source statement library is executed by COPYSERV. 

II JOB COPYSERV 

{
II DLBL IJSYSSL,'OLD.PVT.SOURCE.STMT.LIBRARY' 

1 II EXTENT SYSSLB 
II ASSGN SYSSLB,132 

{
II DLBL IJSYSNR,'NEW.PRV.SOURCE.STMT.LIBRARY' 

2 II EXTENT SYS003 
II ASSGN SYS003,133 

3 II UPSI 00100010 
II EXEC COPYSERV 
1& 

1 Label and assignment statements for the current (or source) library. 

2 Label and assignment statements for the new (or target) library. 

3 Required UPSI setting for comparing two private source statement libraries. 

For more details on the COPYSERV program see DOS/VSE System 
Control Statements. 

Using the Service Functions of the Librarian 

The service functions of the librarian enable you 

• to obtain reports on the contents of your libraries by displaying the 
directories on SYSLST. 

3.128 DOS/VSE System Management Guide 



• to print the contents of your libraries on SYSLST, to punch these 
contents on SYSPCH, or both (in order to transfer the library members 
to a different location or to correct them). 

• to prepare macro definitions in the assembler macro (E) sublibrary for 
update. 

If you use private libraries, the service functions apply only to the assigned 
private libraries; you must unassign your private libraries for the 
corresponding system libraries to be accessed by the service programs. 

Displaying the Directories. Using the directory service program (DSERV), 
you can obtain a listing of the following directories: 

• Core image directory, or the directory entry of a specific phase or 
group of phases in the core image library together with their change 
level, if present 

• System directory list (SDL) 

. • Relocatable directory 

• Source statement directory 

• Procedure directory 

• Status report. Size and level of contents of the assigned private libraries 
and of the system libraries. (This directory is always listed before any 
of the directories is printed.) 

Depending on the control statement used, the entries of a directory can be 
displayed in the order as they appear in the directory (DSPL Y control 
statement) or sorted (DSPLYS control statement). 

Note: The entries in the core image directory are always stored in alphameric 
sequence and therefore displayed in that sequence. 

Within a single job step you can obtain multiple displays of the same 
directory, either sorted or unsorted, by supplying a separate control 
statement for each desired display. Similarly, any number of directories can 
be displayed within one job step, depending on the operands in the control 
statement. The following job produces a sorted listing of all $-phases and 
unsorted listings of the relocatable and source statement libraries: 

II JOB DISPDIR 
II EXEC DSERV 

DSPLYS TD 

1* 
IF:. 

DSPLY RD,SD 

If you specify / / EXEC DSERV without any control statements, a status 
report of all libraries present on SYSRES and all private libraries assigned 
(if any) is printed on SYSLST. 

Displaying and Punching the Contents of the Ubraries. You can use the 
library service programs to obtain a listing, a card deck, or a card image 
copy of the elements in a library. There is a service program for each 
library: 

Chapter 3: Using the System 3.129 



CSERV -- Core image library 
RSERV..:...:. Relocatable library 
SSERV -- Source statement library 
PSERV -- Procedure library. 

You request the library service functions by invoking (with / / EXEC) the 
pertinent service program and one of the following control statements: 

DSPL Y to print entries of a directory or the· members of a library on 
SYSLST. 

PUNCH to punch the members of a library on SYSPCH. 

DSPCH to print and punch the members of a library on SYSLST and 
SYSPCH, respectively. 

DSPL YS to produce a sorted listing of the entries of a directory. 

Each of these statements can specify one or more individual members, one 
or more groups of members, or all members of a library to be printed or 
punched. The following job prints the entire sublibrary P and punches 
phases PHAS 1 and PHAS3 of the core image library: 

II JOB LIBSERV 
II EXEC SSERV 

DSPLY P.ALL 
1* 
II EXEC CSERV 

PUNCH PHAS 1 , PHAS 3 
1* 
IF:. 

The SYSPCH output (in cards or on tape, diskette, or disk) of any service 
program can be used as input for recataloging into the type of library from 
which it was extracted. 

With the PUNCH or DSPCH statements the CSERV program produces 
a Phase statement, naming the output phase, as the first statement on 
SYSPCH. For the same operations the other service programs produce a 
CAT ALR, CAT ALS, CAT ALP statement immediately preceding each 
member on SYSPCH. 

CSERV, RSERV and SSERV SYSPCH output is followed by a /*. 
PSERV SYSPCH output has the end-of-procedure delimiter (default / +) 
following each procedure and a /* following the last output procedure. 
Such output can therefore be submitted as is with a / / EXEC MAINT 
statement for recataloging. 

The SYSPCH output of the CSERV program is suitable as input to the 
linkage editor for recataloging to the core image library. The control 
statement stream would be as follows: 

II JOB RECATAL 
II OPTION CATAL 

INCLUDE 

I I EXEC LNKEDT 
IF:. 

3.130 DOS!VSE System Management Guide 

CSERV output 



The PHASE statement produced by the CSERV program reflects the status 
of the phase when it was fIrSt cataloged (relocatable, self-relocating, 
non-relocatable or SVA elegible). Hyou wish to change the status you 
must change the PHASE statement prior to re-linking. 

Printed output from any of the service programs is useful for debugging 
purposes. For instance, after determining an error from a dump or source 
listing, you implement a change to the RSERV object deck by inserting the 
appropriate REP card(s) directly before the END card and run the MA1NT 
program torecatalog the object module; then to verify that the REP card 
was correct, execute the RSERV program to obtain a listing. An SSERV 
listing may be necessary before a single statement update can be 
performed; after locating the statemen~ in error in the listing, submit an 
UPDATE maintenance run to implement the change in the source statement 
library. 

Preparing Edited Macros for Update. The assembler uses two sublibraries of 
the-sourcestatemeDt-library~ -the-macre--sublibrary (sublibrary El anti the 
copy sublibrary (sublibrary A). All macro defmitions in the assembler 
macro (E) sublibrary have been preprocessed by the assembler; they are 
said to be edited. An edited macro defmition cannot be directly updated; 
instead, the source macro, either in a card deck or in the copy (A) 
sublibrary is updated. Mter the -changed macro has been tested and 
debugged, it must be edited again before it can be recataloged in the macro 
sublibrary. 

H the macro to be updated is not available in source format, you can 
use the ESERV program to convert the edited macro back to source 
format: this is called de~editing. H the output of the ESERV program is to 
be used directly as input to the assembler, you can- specify the GENEND 
control statement to cause the END card and a /* card to be mcluded after 
the last macro. H the output is to be cataloged directly into the copy (A) 
sublibrary, you can specify the GENCATALS control statement. This 
causes a CATALS card to be generated before each macro in the run and a 
/* card after the last macro. H neither the GENEND nor the 
GENCATALS control statement is specified after the / / EXEC ESERV 
statement, GENCATALS is assumed. 

The remainder of the control statements that you can submit to the 
ESERV program are the same as for the other librarian service programs: 
DSPLY, PUNCH, and DSPCH. The following job de-edits the macro 
named MAC1: 

II JOB DEEDIT 
II EXEC ESERV 

GENEND 
PUNCH E.MAC1 

1* 
1& 

The output of the above job is the macro MAC1 in source format on 
SYSPCH. An END card and a /* card is included after the macro. You can 
now update the macro, edit it, and catalog it back into, the E sublibrary of 
the source statement library. 

Chapter 3: Using the System 3.131 



You can de-edit and update a macro in a single run by submitting the 
necessary update control statements. The following job de-edits and updates 
the macro MAC2. !he result will be the updated macro in source format 
on SYSPCH and a listing of the updated macro on SYSLST: 

II JOB EDTUPDTE 
II EXEC ESERV 

GENCATALS 
DSPCH E.MAC2 

/* 
/& 

update control statements 

The update function of the librarian is described in Updating Books in the 
Source Statement Library, earlier in this chapter. Detailed information on 
editing, de-editing, and updating macro definitions is given in Guide to the 
DOS/VSE Assembler. 

Creating and Working wit" Private Libraries 

Private Library Creation 

Private libraries are created and maintained by the system librarian 
programs. Except for the reallocate (ALLOC) function, all librarian 
functions are available for private libraries and performed in the same 
manner as for system libraries. To change the extents of a private library, 
create a new private library and copy the contents of the old library into it. 

The following sections describe how to create private libraries and what 
you must consider when you use private libraries. 

You can create private libraries either during system generation or at any 
time thereafter. Private libraries can reside on the SYSRES pack (outside 
the SYSRES extent) or on separate disk packs. 

Note: H, in an SCP only environment, a private relocatable library or a 
private source statement library resides on a pack different from the 
SYSRES pack,that must be of the same device as the 
SYSRES pack. 

You can define any number of private core image, relocatable, and source 
statement libraries; private procedure libraries are not supported. 

You create private libraries with the CORGZ librarian program. The 
creation of an operational private library involves two stages: 

1. Defining the extents of the library by means of a NEWVOL (new 
volume) control statement. 

2. Transferring information to the library from an existing library by 
means of COPY and/or MERGE control statements. 

3.132 DOS/VSE System Management Guide 



You can execute the two stages either in one job step by one invocation of 
the CORGZ program or in separate job steps. Exception: creation of a 
private core image library requires separate job steps. 

To define the device on which a private library is to be created and the 
disk extents occupied by the library, you must supply a set of ASSGN, 
DLBL, and EXTENT job control statements specifying predetermined 
symbolic unit names and filenames (see Figure 3-36). 

Private Library Symbolic Unit Name Filename 

Core image SYSOO3 IJSYSPC 

Relocatable SYSRLB IJSYSRL 

Source statement SYSSLB IJSYSSL 

FJgUre 3-36. Symbo6c Unit Names and FIlenames Required to Create Private 
Librarie~ 

You can store the label information submitted by DLBL and EXTENT 
statements either temporarily (option USRLABEL) or permanently (option 
PARSTD or STDLABEL). Temporary labels must be resubmitted with 
every job (or job step, if new labels are submitted in an intermediate job 
step) that accesses the corresponding library; permanent labels are valid for 
all subsequent jobs. 

Note: If you catalog additional permanent labels with the STDLABEL or 
PARSTD option you must also resubmit all existing standard labels; otherwise, 
they are lost. 

The following example shows the job control and librarian control 
statements necessary to define the extents of a private relocatable and a 
private source statement library on CKD devices. The NEWVOL control 
statement indicates the type of library to be created and the number of 
cylinders (tracks) to be allocated to each library (directory) and the number 
of tracks to be allocated to each directory. 

II JOB DEFINE 
II ASSGN SYSRLB,191 
II ASSGN SYSSLB,192 
II DLBL IJSYSRL,'Dos/VSE PRIVATE RL',99/365,SD 
II EXTENT SYSRLB,111111,1,O,20,800 
II DLBL IJSYSSL,'Dos/VSE PRIVATE SSL',99/365,SD 
II EXTENT SYSSLB,222222,1,O,500,600 
II EXEC CORGZ 

/* 
16 

NEWVOL RL=40(5),SL=30(5) 

Mter you have defined the extents of the private libraries you can either 
use the merge function of the CORGZ program to transfer members from 
existing libraries or the catalog function of the MAINT program to store 
new members. 

To create a private library and at the same time copy information into 
it from the corresponding system library, you submit a COpy statement 

Chapter 3: Using the System 3.133 



following the NEWVOL statement. To transfer information from an 
existing private library, a MERGE statement must precede the COPY 
statement. The following job creates a private relocatable library and copies 
into it the contents of the system relocatable library and of an existing 
private relocatable library: 

II JOB CREATE 
II ASSGN SYSRLB,191 
II ASSGN SYS001,192 
II DLBL IJSYSRL,'NEW PRIVATE RL',99/365,SD 
II EXTENT SYSRLB,111111,1,O,1700,1200 
II DLBL IJSYSPR,'OLD PRIVATE RL',99/365,SD 
II EXTENT SYS001,222222,1,O,700,400 
II EXEC CORGZ 

1* 
1& 

NEWVOL RL=60(8) 
COPYR ALL 
MERGE PRV,PRV 
COPYR ALL 

Note: To merge from a private relocatable library, you must assign SYSOO 1 to 
the device containing the library and specify the filename IJSYSPR in the 
DLBL statement. The logical unit assignments and filenames required for the 
various merge operations are described in DOS IVSE System Control 
Statements. 

Private Core Image Ubrary Creadon. The organization of a private core 
image library is the same as that of the system core image library. A private 
core image library, however, may start on any track. The space 
requirements must be entered in the NEWVOL statement. 

For example, on a 3330 device, the statement NEWVOL CL=20(5) 
creates a directory of five tracks and a library of 20 cylinders. To create 
this private core image library starting at relative track number 190, you 
submit the following control statements: 

II JOB PCIL 
II ASSGN SYS003,191 
II DLBL IJSYSPC,'DOS/VSE PRIVATE CL',99/365,SD 
II EXTENT SYS003,111111,1,O,0190,380 
II EXEC CORGZ 

1* 
1& 

NEWVOL CL=20(5) 

In the above example, the core image directory resides on cylinder 10 
(tracks 0-4), and the private core image library on cylinders 10-29. 

H you desire to start a private core image library on ttack 1 of cylinder 
o (of a CKD disk) and have it end on a cylinder boundary, the EXTENT 
statement specifies a number of tracks that is one less than in the 
corresponding NEWVOL specification. The EXTENT statement in the 
preceding example then. reads: 

II EXTENT SYS003,111111,1,O,1,379 

Transferring phases from another core image library would require a second 
job step. 

3.134 DOS/VSE System Management Guide 



Using Private Libraries 

To access the private libraries, you must assign the following symbolic unit 
names to the device(s) containing the libraries: 

SYSCLB -- Private core image library 
SYSRLB -- Private relocatable library 
SYSSLB -- Private source statement library 

Note that the symbolic unit name required to create a private core image 
library is SYSOO3; for private relocatable and source statement libraries, the 
symbolic unit names are the same for creation and subsequent access. 

You can assign private relocatable libraries and private source statement 
libraries either temporarily or permanently by an ASSGN command or 
statement; you can assign private core image libraries only by an ASSGN 
command (that is, permanently). 

Unless you have cataloged standard labels for your private relocatable 
and-source Statement libraries, you musf-submiflabelstatements with every 
job that accesses those libraries; the filenames and file identifications in the 
DLBL statements must be identical to those specified when the libraries 
were created. 

A private library must be unassigned if maintenance and service 
functions are to be performed on the corresponding system library because 
the librarian programs assume that the private library is intended whenever 
assigned. Therefore if, by mistake, your private relocatable library is 
assigned when you request changes in the system relocatable library, these 
changes will be performed on the private relocatable library, and you may 
have to rebuild this library, depending on the nature of the changes. The 
only system service programs that can access the system libraries when 
SYSRLB and SYSSLB are assigned are the linkage editor and the CORGZ 
librarian program. 

You can have an unlimited number of private libraries in your system; 
however, no more than one private core image, one private relocatable, and 
one private source statement library can be assigned at one time to the 
same partition. For read access you can also assign a private library to more 
than one partition, but if you want to update a private library, it must be 
assigned to one partition only. 

H you have more than one private library of tlie same type, each must 
be distinguished by a unique file identification in the DLBL statement for 
the library. 

Using Private Core Image Libraries. To create a private core image library, 
the symbolic unit name is SYSOO3 and, in the DLBL statement, filename 
USYSPC must be specified. To access the private core image library, 
symbolic unit name and filename are SYSCLB and USYSCL, respectively. 

The assignment of the private core image library must be permanent, 
via the ASSGN command. UDleSZ you haveJ'ataIogect partition or system 
standard labels for your private core image library, you must submit DLBL 
and EXTENT statements when you assign the library. 

Chapter 3: Using the System 3.135 



.. .. . •• remains accessible 
or steps even if label information was submitted as 

temporary, that is, with option USRLABEL. The library becomes 

inaccessible after an ASSGN command with the UA 2:;=:~:~:~~?~ 

Private core image libraries provide an efficient multiprogramming 
environment. The linkage editor can be executed not only in the 
background but also in a foreground partition to which a private core image 
library is assigned. You can then link-edit a program in any given partition 
to be executed in the same or in a different partition. If the linkage editor is 
executed in more than one partition at the same time, you must assign a 
separate SYSLNK and SYSOOI fIle for each of these partitions. 

A separate private core image library can be defined for each partition. 
Such a private core image library is then said to be dedicated to a given 
partition. Separate versions of the same non-self -relocating program may be 
link-edited for execution in each partition. This is not necessary, however, 
for relocatable phases. 

If you link-edit primarily relocatable phases, private core image libraries 
are nevertheless useful to hold special-purpose programs. This allows, for 
instance, a new version of a program to be tested while the original version 
remains in working order on the system core image library. 

A private core image library should not be assigned to more than one 
partition at the same time if the linkage editor is being executed in one of 
these partitions. If you do this, the linkage editor issues a message and 
terminates abnormally because output from the linkage editor is placed in a 
private core image library only if that library is uniquely assigned to the 
partition in which the linkage editor is executed. 

When fetching or loading a phase, DOS/VSE first searches the private 
core image library, if assigned, and if the phase is not found, continues the 
search in the system core image library. For phases starting with $, 
DOS/VSE first searches the system core image library and then the 
assigned private core image library. This library search sequence should be 
considered when determining names and library residence of programs. 

Using System Libraries as Private Libraries. It may be desirable to use the 
system libraries (excluding the procedure library) as private libraries for 
certain applications. This is a helpful technique when generating your 
system; you could, for example, assign system libraries of a follow-on 
release as private libraries. Note, however, that phases starting with $ 
(which are fetched from the currently IPLed SYSRES) have to be 
compatible with phases without a $-prefix (which are fetched from the 
private core image library). 

In order to use any of the three eligible libraries as a private library you 
must know their begin and end locations on the disk volume. This 

3.136 DOS/VSE System Management Guide 



information is found in the library status report which you can get by 
running the DSERV program. You should note that, when using the system 
core image library as a private library, that library does not begin at the low 
address of the SYSRES extent. For eKD disk devices, although the 
SYSRES extent begins at cylinder 0, track 1, the library begins at cylinder 
0, track 2. For FBA deVices SYSRES begins at block 2, and the library 
begins at block 10. Figure 3-37 is a sample of a status report produced for 
a SYSRES file on an FBA device. 

S TAT U S R E P 0 R T DATF: 06/1~/79 (~M/DC/YYI TIME: 17.30 (HH.MM) DECIMAL NUi'\~ERS 

LIBRARIES ON FIXED STAR-TING "4EXT AVAILABLE- LAST HLOCK BLOCKS BLClCKS SLOCKS PHRIES ACTIVE UQ. 
BLOCK ARCHIT~CTURE AO!)RESS E~TRY & MEMBER ALLOCATED AlLOCATED ACTIVF. DELETED & BLOCKS I::NTRIE-S & 
("'P.o.) DEVICES: (BL:-'CKNOI (BLOCKNO BYTE) (RLOCKNO I AVAILABLE eOND.LIMIT 

SYSRES VOL .SER .SYSRES 
452 210 201 50 2500 831 CORE IMAGE DIRECTORY 10 59 

LI BRARY 211 5565 ~OO'J 7799 531fl 4 2445 (' 

SYSRES VOL.SER.SYSRES 
8017 434 8210 201 R 5239 192 RELOCATABlf DIRECTORY 13010 

II BRARY 8211 9959 16009 7199 1748 (I 6051 e' 

'SYS"'ES VOL .SER .SYS"'ES 
16210 201 2 5246 0 SOURCE-STMI DIRECTORY IS0l0 16011 

LICIRARY 16211 16211 24009 7749 C 0 7199 0 

SYSR~S V~L.SfR.SYSRES 
24011 24210 201 2 5246 (; PROCEDURE DIRECTORY 24010 

lHRARY 24211 24211 32009 7199 0 0 7199 0 

~U"'IBfR ['''' ENTRIES IN SYSTI::~ ~IRECTQRY LIST: 18 
SHARE~ ~IRTUAL AR~A ADCRESSFS (W:X) START: E22BC ~E XT AVA 1 LABLE LGCATION: FA317 ENO: l3FFFF 

Figure 3-37. Library Status Report for SYSRES on an FBA Device 

When accessing a system file as a private library the filename of the DLBL 
statement should reflect the private library name. The file-ID of the DLBL 
statement must be the original file-ID of the SYSRES file. 

The following job stream would be used to merge from a system 
residence into a duplicate system residence whose 20 cylinder relocatable 
library is being used as a private library. (Assume the disk packs are 
3330s). 

II JOB MERGE 
II DLBL IJSYSRL,'DOS.SYSRES.FILE' 
II EXTENT SYSRLB,SYSRES,1,O,570,380 
II ASSGN SYSRLB,161 
II EXEC CORGZ 

1* 
IF:. 

MERGE RES,PRV 
COPYR M001,M002 

The DLBL!EXTENT statements refer to the target library. 
DLBL/EXTENT information describing the IPL SYSRES file is assumed to 
be in the standard label area. 

As another example, you may want to create a backup copy of your 
system core image library as a private library on magnetic tape. The 
following job stream illustrates the use of the Backup System utility to 
achieve that. The system core image library takes up blocks 10 through 
8009 of an FBA device (see the Status Report in Figure 3-37). 

Chapter 3: Using the System 3.137 

It) 

2~ 
69 

4 
n 

1 
0 

1 
0 



II JOB BACKUP 
II ASSGN SYS005,UA 
II DLBL IJSYSHF,'DOS.SYSTEM.HISTORY.FILE' 
II EXTENT SYSREC,,1,0,5339,57 IBM 3330 
II DLBL IJSYSCL, 'DOS.SYSRES.FILE' 
II EXTENT SYS007,,1,0,10,8000 
II ASSGN SYS007,131 SYSRES FILE ON 
II ASSGN SYS006,281,CO FBA BACKUP TAPE 
II EXEC BACKUP 
1* 
1& 

3.138 DOS/VSE System Management Guide 



Chapter 4: Using the Facilities and Options of DOS/VSE 

This chapter discusses ways and means for monitoring certain activities of 
the DOS/VSE. This involves the coding of user programs to be used as IPL 
and job control exit routines and the coding of a job accounting interface 
routine. In addition, this chapter discusses the checkpointing facility, DASD 
switching under DOS/VSE, and designing programs for virtual mode 
execution. The SDAID program which is an effective debugging and 
measurement tool is discussed in DOS/VSE Serviceability Aids and 
Debugging Procedures. 

User-Written Program-Exit Routines 

Ceding--an---exit reu-tine tebeused- when-specificconditions arise -
conditions that can be determined only by the DOS/VSE supervisor­
requires that you issue the STXIT macro in your problem program to 
establish proper linkage to the pertinent exit routine. 

Figure 4-1 is a summary of the supervisor-determined conditions for 
which an exit routine may be coded and the operand to be coded in the 
STXIT macro. 

The STXIT operands and their use are discussed in DOS/VSE Macro 
Reference. 

Condition 
Operand of the 
STXIT Macro 

Abnormal termination of the 
AS 

problem program 

Interval timer external interrupt IT 

Operator communications interrupt OC 

Program check interrupt PC 

Task timer interrupt TT 

Figure 4-1~ Summary of Program Exit Conditions 

A partition's task can link to a task timer exit routine only if the TTIME 
parameter in the FOPT generation macro specified that partition. 

Writing an IPL User Exit Routine 

The IPL Exit allows you to do some processing at the end of IPL and prior 
to execution of the job control program. You may want to check about the 
options of the loaded supervisor, for example whether support for job 
accounting~li"IIII:!:II_ is included. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.1 



Before you start coding your exit routine, take account of any system 
requirements that should be met at the time the routine is to be executed. 
The exit routine and any routines that are called by your routine must be 
present in the system core image library. 

Moreover, your routine must adhere to the following conventions: 

• Register 15 contains the entry point of the routine. 

• Register 14 contains the return address to job control. 

• The format of the phase card must be as follows: 

PHASE $SYSOPEN. 

After IPL, the job control program executes the exit routine as an overlay 
phase; an area of 4K has been reserved for the exit routine. While the 
routine is being executed, the job control program is unable to read any job 
control statements. 

In your exit routine, you may issue SVCs and perform I/O operations 
to SYSLOG and/or SYSRES. To do so, you may only use the EXCP 
macro. Any use of LIOCS or of a DTFPH would obstruct proper execution 
of the job control program. H you code your routine in assembler language, 
use DC instructions instead of DS instructions. 

Phase $SYSOPEN will be executed with a storage protect key of zero. 
H the phase is abnormally terminated, the job control program will be 
loaded for execution. 

Figure 4-2 illustrates a user-written routine that is executed once each 
time the IPL procedure is performed. 

4.2 DOS/VSE System Management Guide 



* THIS PROGRAM CHECKS WHETHER THE INSTALLATION INCLUDES 
* JOB ACCOUNTING SUPPORT. IPL OF A SUPERVISOR WITHOUT 
* THIS SUPPORT IS CONSIDERED AS NOT ALLOWED. 
* A MESSAGE INFORMS THE OPERATOR WHY HE/SHE HAS TO 
* REPEAT IPL. THEN A HARD WAIT IS FORCED. 

BEGIN 

SVCNPSW 
LOGCCB 
LOGCCW 
LOGMSG 

RETURN 
HWCODE 
RO 
R1 
R2 
R 11 
R12 
R13 
R14 

I
R15 

FJgUI'e 4-2. 

START 
USING 
ST 
COMRG 
TM 
BZR 
LA 
EXCP 
WAIT 
L 
ST 
01 
SVC 
EQU 
CCB 
CCW 
DC 

DC 
DC 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
END 

o 
*,R15 
R14,RETURN 
REG=R2 
56( R2 ) , X' 80' 
R14 
R1,LOGCCB 
( 1 ) 
( 1 ) 
R11,HWCODE 
R11,0 
SVCNPSW+ 1 , X ' 02 ' 
7 
96 
SYSLOG,LOGCCW 

SAVE RETURN ADDRESS 

JOB ACCOUNTING SUPPORTED? 
YES, RETURN TO JOB CONTROL 
NO, WRITE MESSAGE TO 
OPERATOR 

LOAD HARD WAIT CODE 
STORE IT IN LOW CORE 
SET ON WAIT BIT 
FORCE HARD WAIT 
LOCATION OF SVC NEW PSW 

X 109' , LOGMSG, X' 20' , L' LOGMSG (column 72) 
C'JOB ACCOUNTING SUPPORT MISSING, RE-IPL C 
CORRECT SUPERVISOR' 
FIOt 
C'NOJA' 
o 
1 
2 
11 
12 
13 
14 
15 
BEGIN 

IPL User Exit Example 

Writing a Job Control User Exit Routine 

It is often desirable to exercise certain control on how a job step is 
executed, thereby enhancing security, serviceability, and reliability. After a 
job control statement (or command) has been read, control can be passed 
to a user exit routine for the purpose of examining and altering the 
statement (or command) before it is processed by job control. 

The DOS/VSE distribution volume contains a dummy phase 
$JOBEX-TT in the system core image libra..ry which is automatically loaded 
into the SVA at IPL. If you do not use the 10b-control-exit facility, it has 
no effect on your system. 

In your routine you are free to modify the operands of the job control 
statement and to add comments. You must not, however, modify the 
operation field of the statement. For example, / / EXEC ffiM can be 
modified to / / EXEC USER; the operation field (EXEC) cannot be 
modified. In your exit routine neither perform any I/O operations nor issue 
any SVCs nor request the system to cancel the job step. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.3 



Link-edit your routine to the system core image library using a PHASE 
statement as follows: 

PHASE $JOBEXIT,S[,NOAUTO],SVA[,PBDY] 

Your routine must be coded reenter*ble; it must be SV A eligible, and it 
must reside in the SV A. The PHASE statement must include the SV A 
parameter. This ensures that when the phase is cataloged it will also be 
loaded into the SV A replacing the dummy phase provided by IBM. 

Phase $JOBEXIT is executed with a storage protection key of zero. 
The code is shared between partitions. 

When your routine receives control, registers contain control 
information as follows: 

Register Number Contents of Register 

0 System identification characters 'SOOS'. 

1 Address of partition communication region. 

2 Address of system communication region. 

3 Address of job control vector table. 

4 Address of buffer that contains the currently processed 
job control statement. 

14 Return address to job control. 

15 Entry point to $JOBEXIT; at completion of the routine it 
contains the return code for job control. 

Prior to returning control to job control, your routine must store a return 
code value into register 15: 

a . zero value 

a non-zero value 

requests job control to continue processing the 
current statement. 

requests job control to process the statement as if 
it were an invalid statement. 

The vector table whose layout is given below shows which job control 
statement is being processed by job control. You must not modify its 
contents. Use it for comparison only. The size of the buffer into which the 
job control statement is loaded (left-justified) is 120 bytes, the first 71 
bytes of which are printed on the console printer. The full length of 120 
bytes is printed on the printer assigned to SYSLST: The / & and 
End-of -job statements are not displayed. 

In the buffer, you may modify the statement up to and including byte 
71, except for the operation field Bytes 72-80 could contain a statement 
identification, such as for procedure overwrites, and therefore should not be 
modified. After having set the return code, your routine should pass control 
back to job control. 

Layout of the vector table: 

Bytes 0 through 6: 

Bytes 7 through 9: 

4.4 DOS/VSE System Management Guide 

Operation field (name of job control statement) 

Internal control information 



Do not attempt to modify the table or modify the operation field in the 
buffer. 

Note: Make sure your exit routine is free of errors that could cause abnormal 
termination in a production environment. 

Figure 4-3 illustrates a job control user exit routine. 

II JOB EXIT ROUTINE 
II OPTION CATAL,NODECK 

PHASE $JOBEXIT,S,NOAUTO,SVA,PBDY 
II EXEC ASSEMBLY 

EJECT 
******************************************************************************** 
* 
* 
* 
* 
* [Ill 
* 
* [Ill 
* 
* 
* 
* 
* 
* 
* 
* 

THIS PROGRAM, PHASE $JOBEXIT, EXAMINES ALL EXEC CONTROL STATEMENTS 
AND EXEC COMMANDS WHETHER THEY WANT TO EXECUTE A PROGRAM NAMED: 
IBM. THIS PROGRAM IS ASSUMED TO BE RESTRICTED FOR GENERAL USE AND 
THE STATEMENT: 
EXEC IBM 
IS CHANGED TO: 
EXEC USER 
MESSAGE, 'PROG. IBM RESTRICTED FOR ALL USERS', IS PLACED INTO 
THE EXEC CARD AND PRINTED ON SYSLOG (IF LOG IS ON) AND SYSLST. 

THE PHASE NAMED USER MUST BE CATALOGED IN THE CIL 

$JOBEXIT IS REENTERABLE AND SVA ELIGIBLE AND MUST BE 
LOADED INTO THE SVA. 

******************************************************************************** 

JOBEXIT 

FJgUre 4-3. 

EJECT 
START 
BALR 
USING 

o 
R12,O 
*,R 12 

ESTABLISH 
ADDRESSABILITY 

Job Control User Exit Example (Part 1 of 2) 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.5 



I 

* 
* 
* 
* 

I: 
I: 
* 
* 
* 
SEARCHE 

EXFOUND 

SEARCHP 

CHECK FOR EXEC STATEMENT 
REG.3 POINTS TO JOB CONTROL VECTOR TABLE 

CLC 
BNE 

EXECNAM,O(R3) 
RETURN 

EXAMINE THE STATEMENT 

IS IT AN EXEC STATEMENT? 
IF NOT RETURN 

REG.4 POINTS TO STATEMENT BUFFER 

L 
L 
SR 

R6,=F'1' 
R7,=F i 67i 
R5,R5 

INCREMENT VALUE FOR SEARCH LOOP 
COUNT MAXIMUM FOR SEARCH LOOP 
CLEAR R5, USED AS INDEXING REG. 

FIND POSITION OF EXEC STATEMENT 

EQU * 
LA R8,O(R5,R4 ) POINT TO INDEXED POSe IN STMNT. 
CLC EXECNAM,O(R8) DETERMINE POSITION OF EXEC 
BE EXFOUND FOUND THE STATEMENT 
BXLE R5,R6,SEARCHE INCREMENT INDEX AND LOOP 
LA R15,8 NO EXEC FOUND, RETURN CODE=8 
BR R14 RETURN TO CALLER 
EQU * 
LA R5,5(R5) SKIP OVER EXEC TO PROGNAME 
EQU * 
LA R8, 0 ( R5, R4 ) POINT TO INDEXED POSe IN STMNT. 
CLC PROGNAM,O(R8) LOOK FOR PROGRAM-NAME IBM 
BE PFOUND PROGRAM-NAME FOUND 
BXLE R5,R6,SEARCHP INCREMENT INDEX AND LOOP 

BUF 

BUF 

B RETURN IF ANY OTHER OR NO PROG.-NAME RETURN 

* 
* PROGRAM-NAME-IBM-FOUND PROCESSING 

* 
PFOUND EQU 

LA 
MVC 

* 
R4,O(R5,R4) POINT TO PROG.-NAME IN BUFFER 
O(L'USERTXT,R4),USERTXT MOVE USERTXT TO BUFFER 

* 
* 
* 
* 

PREVIOUS MVC CHANGED PROGRAM-NAME IBM INTO PROGRAM-NAME USER 
AN ADDITIONAL MESSAGE IS MOVED INTO THE BUFFER 

RETURN EQU 
SR 
BR 

EXECNAM DC 
PROGNAM DC 
USERTXT DC 
R3 EQU 
R4 EQU 
R5 EQU 
R6 EQU 
R7 EQU 
R8 EQU 
R12 EQU 
R14 EQU 
R15 EQU 

END 
1* 
I I EXEC LNKEDT 
IF:. 

* 
R15,R15 RETURN CODE ZERO TO REG.15 
R14 RETURN TO CALLER 
C'EXEC' 
C'IBM' 
C'USER *** PROG. IBM RESTRICTED FOR ALL USERS' 
3 
4 
5 
6 
7 
8 
12 
14 
15 
JOBEXIT 

FJgUI'e 4-3. Job Control User Exit Example (Part 2 of 2) 

4.6 DOS/VSE System Management Guide 



Writing a Job Accounting Interface Routine 

A DOS/VSE supervisor generation option provides job accounting interface 
support for all partitions in the system. At the end of each job step or job, 
accounting information is accumulated in a table for that partition and can 
be processed by a user-written routine. This routine can extract data for 
such purposes as charging system usage and supervising system operation, 
or for planning new applications or changing the system configuration. 

The routine must be relocatable, and it must be SV A eligible. With the 
distribution volume, ffiM provides a dummy phase $JOBACCT as part of 
the system core image library. H you decide to use the job accounting 
facility, you must catalog your routine to the system core image library. At 
IPL, the phase is automatically loaded into the SV A. 

When you catalog your routine, the PHASE statement must include the 
SV A parameter; this causes the phase, after it has been cataloged, to be 
loaded into the SV A replacing the dummy phase provided by ffiM. 

Since the processing of the information is an overhead element, the user 
routine should be efficient and avoid unnecessary reduction or reformatting 
of data. 

H your installation uses VSE/POWER with the job accounting facility 
included, you do not need such a user routine. For more information about 
this facility under VSE/POWER, refer to the documentation for this 
licensed programming support. 

Job Accou"ting 1"1017l1li00" 

When support is generated for basic job accounting, DOS/VSE includes for 
each partition in the system a job accounting table comprising fourteen 
fields. At the end of each job step and job, information is stored in fields 1 
to 14 of the Job Accounting table (see Figure 4-4). 

In addition, DOS/VSE may be requested (at the time of system 
generation) to include the number of SID (Start I/O) instructions issued 
per device for each job step and job. The job accounting table for each 
partition is then extended to contain the additional fields 15 and 16 shown 
in Figure 4-4. 

SIO accounting is performed for the number of devices specified to be 
supported by the facility for each partition. The maximum is 255 and has 
no relation to the number of devices specified for the total DOS/VSE. H 
more devices are accessed than the number specified, SIOs on the excess 
devices will not be counted. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.7 



Programming Considerations 

.. c: £ CD 
E CI c: 
CD CD Contents u ...J «I 

"0 
~ CD 

ii >-u:: is III 

1 0-7 8 Job name. 8-byte character string taken from 
JOB statement. 

2 8- 23 16 User Information. 16 characters of information 
taken from the JOB statement. 

3 24 - 25 2 Partition ID, BG, ... , F2, or F 1. 

4 26 1 Cancel Code. Refer to DOS/VSE Serviceability Aids and 
Debugging Procedures 

5 27 1 Type of Record. S = job step; L = last step of job. 

6 28- 35 8 Date when job step started: mm/dd/yy or dd/mm/yy. 

7 36- 39 4 Job Step Start Time. OhhmmssF, where h hours, 
m minutes, s seconds, F is a sign (in packed 
decimal format!. 

8 40-43 4 Job Step Stop Time (in same format as start time). 

9 44 -47 4 Reserved. 

10 48- 55 8 Phase Name. 8-byte character string taken from the 
EXEC card. 

11 56- 59 4 Real Mode Processi ng: 
Number of fixed pages, multiplied by 2K;equivalent to the 
partition's allocated processor storage minus the portion of 
the partition GETVIS area that was not used up by GETVIS 
requests. 
Virtual Mode Processing: 
Number of pages referenced in the partition, multiplied 
by 2K. 

12 60 - 63 4 CPU Time. 4 binary bytes given in 300ths of a second. 
Time is calculated from exit of the user-written routine 
called during job control to next entry of the routine. 
Time used by the user-written output routine is charged 
to overhead of the next record. 

13 64- 67 4 Overhead Time. 4 binary bytes given in JOOth of a second. 
Includes time taken by functions that cannot be charged 
readily to one partition ~such as attention routine and 
error recovery). System overhead time is distributed to the 
partitions in proportion to the used CPU ti me. 

14 68- 71 4 All Bound Time. 4 binary bytes in JOOth of a second. 
This is the time the system is in the wait state divided by 
the number of partitions running. 

15 72- SIO Tables. Variable number of bytes. Six bytes are 
reserved for each device specified in the JA parameter. 
First two bytes are X'Ocuu', next four are hex count of 
SiCs for job step. Unused entries contain X'10' followed by 
five bytes of zeros. Stacker select commands for MICR 
devices are not counted. Error recovery SIOs are not charged 
to the JOB Accounting Table. Devices are added to the table 
as they are used. 

16 1 Overflow. Normally X'20'. Set to X'30' if more devices are 
used than set by the JA parameter at system generation time. 

Note: The difference between Start and Stop times will not necessarily equal the sum of CPu, 
A.II Bound. and Overhead times. A.II Bound and O'H!rhead times will vary, depending on the 
number of acti'H! partitions and the type of partition activity. CPU time is accurate for each 
partition, but it may not be reproducible. That is, the same job being executed under different 
system conditions (varying number of active partitions, logical transient available, etc.) may 
show differences in CPU time. 

FtgUI"e 4-4. Job Accounting Table 

4.8 DOS/VSE System Management Guide 



Tailoring the Program 

H physical IOCS is used for printing, you must 'space after' to prevent 
overwriting of job control statements. 

For efficiency, an overlay structure should be avoided and the length of 
the program should preferably not exceed one core image library block. 

H the job accounting program is canceled as the result of an error 
condition, the current information cannot be retrieved, the job accounting 
information for the current job step is unreliable. However, provision is 
made that the job aceounting information for any subsequent job steps will 
be correct, provided the cancellation was not caused by an error in the 
$JOBACCT routine itself. H there was an error in the $JOBACCT routine, 
it must be corrected first. 

In order to avoid unintentional cancellation of the job accounting 
program by operator action, the operator should issue the MAP command 
and check the job name for the running partition. H the job name is 'JOB 
ACCT', the job accounting routine is active; the CANCEL command 
should not be issued until the original job name is displayed after another 
MAP command. 

Register Usage. Important data for the user's job acpounting routine are 
passed in the following general registers: 

12 Base address for $JOBACCT 
15 Address of the job accounting table 
11 Length of the job accounting table 
13 Address of the user save area 
14 Return address to job control 

H $JOBACCT uses LIOCS, the contents of general registers 14 and 15 
must be saved (also registers 0 and 1 if necessary) because LIOCS uses 
these registers. 

Save Area for the User's Routine. The address of a save area that can be 
used by the job accounting routine is passed in general register 13. This 
save area is 16 bytes long unless a greater length (up to 1024 bytes for 
saving DTF information for LIOCS) was specified at system generation 
time. However, CCBs and executable CCWs must not be included. 

User's Area for LIOCS Label Processing. H your job accounting routine 
uses LIOCS for processing such items as standard tape labels, DTFDA, or 
DTFPH with MOUNTED = ALL, then an alternative label area must be 
specified at system generation. The length of this label area should 
normally be the number of bytes that would be allocated by a given 
parameter of the LBLTYP statement. For information on determining the 
number of bytes, see DOS/VSE System Cor.tro! Statements. 

The requirements of the program may be simply to record the accounting 
information as part of the SYSLST output for each job step or job, or it 
may be to accumulate information to be used for equitably allocating the 
costs of a computing center. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.9 



H data is to be written out on a disk or tape, the save area can be used 
for communicating between job steps. Such information as the disk address 
for the next record or an indication that tape labels have been successfully 
processed, or even the DTF used to control the output, may be stored in 
the save area. 

Figure 4-5 illustrates a job accounting program that writes records to 
disk without additional processing. 

4.10 DOS/VSE System Management Guide 



JAACT CSECT 
USING 
USING 
LR 
LA 
GETVIS 
LTR 
BNZ 
LA 
STXIT 
LA 
TM 
BO 
BM 

* ,R12 
JASAVE,R13 JOB ACCT SAVE AREA 
R9,R15 SAVE ADDR OF TBL 
RO,JADTFLNG+L'JABSAVE LENGTH FOR GETVIS 
LENGTH=(O) GET SPACE IN PARTITION 
R15,R15 CHECK RETU~~ CODE 
JARET1 NO GETVIS SPACE 
RO,JABROUT AB'ROUTINE 
AB,(0),(1) SET ABNRML TERM EXIT 
R1,L'JABSAVE(R1) UPDATE GETVIS POINTER 
JASTATSW,X'CO' TEST STATUS 
JARET DISK AREA FULL 
JAOPEN SAVE AREA INITIALIZED 

* PERFORM LABEL 
MVC 
OPENR 

PROCESSING AND INITIALIZE SAVE AREA 
0(JADTFLNG,R1 ),JADTF MOVE DTF TO PARTITION 
(R1) OPEN FILE (see Note) 

MVC 
MVC 
MVI 
MVC 

JACCB,0(R1) MOVE CCB TO SAVE AREA 
JASEEK, 58( R 1 ) EXTENT LOWER LIMIT 
JAR, X '01 ' FIRST RECORD 
JAHIGH,JADTF+S4 HIGH EXTENT LIMIT 

* RELOCATE CCWS 
MVC JASKCCW(32),JAMODCCW PUT MOD CCWS IN SVE AREA 

SEEK ADDRESS LA R10,JASEEK 
STCM R10,7,JASKCCW+1 
LA R10,JASRCH 
STCM R10,7,jASRCCW+1 
LA R10,JASRCCW 
STCM R10,7,JATIC+1 
LA Rl0,JASKCCW 
STCM R10,7,JACCB+9 
MVI JASTATSW,X'80' 

* WRITE JOB ACCOUNTING TABLE TO DISK 
JAOPEN STCM R9,7,JADATA+1 

MVC O( 16,R1 ),JACCB 
EXCP ( 1 ) 
WAIT ( 1 ) 

* UPDATE SEEK ADDRESS 

JAHTST 

JARET 

JARET1 

TR 
CLI 
BNE 
TR 
CLI 
BNE 
LH 
LA 
STH 
CLC 
BH 
MVC 
LA 
STCM 
EXCP 
WAIT 
01 
FREEVIS 
STXIT 
BR 

JAR, JARECTAB 
JAR,X'01' 
JARET 
JAHEAD+1(1 ),JAHDTAB 
JAHEAD+1,X'00' 
JAHTST 
R10,JACYL 
R10,1(R10) 
10,JACYL 
JAHIGH,JASRCH 
JARET 
O( 16,R 1 ) ,JACCBL 
R2,JAMSG1 
R2, 7 , 9( R 1 ) 
( 1 ) 
( 1 ) 
JASTATSW,X'40' 
LENGTH=(O) 
AB 
R14 

PUT ADDRESS IN CCW 
SEARCH ADDRESS 
PUT ADDRESS IN CCW 
SEARCH CCW ADDRESS 
PUT ADDRESS IN CCW 
CHANNEL PROGRAM ADDR 
PUT ADDRESS IN CCB 
IND SAVE AREA INIT 

PUT ADDR OF TBL IN CCW 
MOVE CCB TO PARTITION 
WRITE DATA 
WAIT FOR COMPLETION 

RECORD 
NEW TRACK 
NO 
HEAD 
NEW CYLINDER 
NO 
CYLINDER ADDRESS 
INCREMENT BY ONE 
REPLACE IN SEEK ADDR 
BEYOND UPPER LIMIT 
NO 
MOVE CONSOLE CCB TO PARTITION 
ERROR MESSAGE 
PUT ADDRESS IN CCB 
INFORM OPERATOR 
WAIT FOR COMPLETION 
INDICATE DISK FULL 
FREE PARTITION SPACE 
RESET EXIT LINKAGE 
RETURN 

Note:As this example is self relocating, the self-relocating form of the OPEN macro (OPENR) is used; for a routine that will be linked 

relocatable, OPEN may be used instead. 

FJgUre 4-5. Job Accounting Routine Example (Part 1 of 2) 

Chapter 4: Using the Facilities and Options vf DOS/VSE 4.11 



JABROUT LA R1,L'JABSAVE(R1 ) RESTORE ADDR IN GETVIS AREA 
MVC o ( 1 6 , R 1 ), J ACCBL MOVE CONSOLE CCB TO PARTITION 
LA R2,JAMSG2 ERROR MESSAGE 
STCM R2, 7 , 9( R 1 ) PUT ADDRESS IN CCB 
EXCP ( 1 ) INFORM OPERATOR 
WAIT ( 1 ) WAIT FOR COMPLETION 
EOJ 

JAMODCCW CCW X' 07' , * , X' 60' ,6 
CCW X'31',*,X'60',5 
CCW X; 08; , * , X ; 00; , 1 
CCW X'05' ,*,X'20',246 

JACCBL CCB SYSLOG,* 
JABSAVE DS OCL72 
JADTF DTFPH TYPEFLE=INPUT, MEANS CHECK LABELS 

DEVICE=2314, 
MOUNTED=SINGLE 

JADTFLNG EQU *-JADTF 
ORG JADTF 
DC X'OOOOOBOO' SET CCB OPTION BITS 
ORG 

JAMSG1 CCW X'09' ,JAERR1,X'20',L'JAERR1 
JAMSG2 CCW X'09' ,JAERR2,X'20',L'JAERR2 
JAERR1 DC C'JOB ACCOUNTING DISK FULL' 
JAERR2 DC C'JOB ACCOUNTING ROUTINE CANCELED' 
JARECTAB DC X'0002030405060708090AOBOCODOEOF101112131401' 
JAHDTAB DC X'0102030405060708090AOBOCODOEOF1011121300' 
JASAVE DSECT 
JASEEK DS OXL6 SEEK ADDRESS BBCCHH 
JABB DS XL2 BB 
JASRCH DS OXL5 SEARCH ADDRESS CCHHR 
JACYL DS XL2 CC 
JAHEAD DS XL2 HH 
JAR DS X R 
JASTATSW DS X 
JACCB DS XL16 COMMAND CONTROL BLOCK 
JAHIGH DS XL4 HIGH EXTENT LIMIT 

DS XL4 
JASKCCW CCW X'07' ,JASEEK,X'60',6 SEEK CCW 
JASRCCW CCW X'31' ,JASRCH,X'60',5 SEARCH CCW 
JATIC CCW X'08' ,JASRCCW,X'00',1 TIC CCW 
JADATA CCW X'05',*,X'20',246 WRITE DATA ASSUMING 29 
* SIO DEVICES TRACED 
RO EQU 0 
R1 EQU 1 
R2 EQU 2 
R9 EQU 9 
R10 EQU 10 
R11 EQU 11 
R12 EQU 12 
R13 EQU 13 
R14 EQU 14 
R15 EQU 15 

END 

Note: The DSECT labeled JASAVE through JADATA defines the layout of the job accounting user-saye area, which resides within the 
supenisor. The address of this area is passed, in register 13, to your job accounting phase. When generating your supenisor you must 
specify the desired length of this saYe area by substituting a yalue for s, the first operand of the JAUOCS parameter 0/ the FOPT 

macro. If the operand is omitted or if JAUOCS=NO is specified the length of the user saye area is set to 16 bytes by default. 

Figure 4-S. Job AccountiDg Routine Example (part 2 of 2) 

4.12 DOS/VSE System Management Guide 



Checkpointing Facility 

The progress of a program that performs considerable processing in one job 
step should be protected against destruction in case the program is 
canceled. DOS/VSE provides support for taking up to 32,767 checkpoint 
records in a job. Through this facility, information can be preserved at 
regular intervals and in sufficient quantity to allow restarting a program at 
an intermediate point. 

The CHKPT macro (or the corresponding high-level language 
statement) causes DOS/VSE to store the checkpoint record on a magnetic 
tape or disk. For more details about taking checkpoints, refer to . 
DOS/VSE Macro Reference if you use assembler language or to the 
appropriate high-level language manual. 

The RSTRT job control statement restarts the program from the last or 
any specified checkpoint taken before cancelation. 

When a checkpointed program is to be restarted, the partition must 
start at the same location as when the program was checkpointed and its 
end address must not be lower than at that time unless a lower end address 
was specified in the CHKPT macro instruction. Unless the user 
reestablishes all linkages to SV A phases himself, the contents and location 
of the modules in the SV A when restarting must also be the same as when 
the program was checkpointed. The SDL must be identical if the restarted 
program uses a local directory list (for example, one that was generated by 
the assembler language macro GENL). 

H any pages of a virtual mode program were fixed when the checkpoint 
record was taken, then, in 370 mode, the real address area allocation for 
the partition must also start at the same or a lower location and its end 
address must be at least as high as at that time. The pages that were fixed 
are refixed by the supervisor when the program is restarted. 

Restarting a Program from a Checkpoint 

To restart a program from a checkpoint the RSTRT job control statement is 
used. The sequence of job control statements that must be submitted to 
restart a program is as follows: 

1. A JOB statement specifying the jobname used when the checkpoints 
were taken. 

2. ASSGN statements, if necessary, to establish the 110 assignments for 
the program that is to be restarted. 

3. A RSTRT statement specifying 

a) the symbolic name of the tape or disk device on which the 
checkpoint records are stored. 

b) the sequence number of the checkpoint record to be used for 
restart. 

c) for checkpoint records on disk the filename (DTF name) of the 
checkpoint file. 

4. An end-of-job (I &) statement. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.13 



Figure 4-6 shows the sequence of job control statements needed to restart a 
checkpointed program that ended abnormally due to, for example, a power 
failure. Following are the characteristics of the checkpointed program that 
must be considered for restart: 

• The job name specified in the.JOB statement was CHECKP; the same 
name must be used for restart. 

• The checkpoint records were written on magnetic tape; therefore, no 
filename need be specified in the RSTRT statement. 

• The symbolic device name SYSOO6 is used for the checkpoint file. 

• The sequence number of the last checkpoint record written was 0013; 
this or any previous checkpoint record can be used for restart (the 
sequence numbers are printed by DOS/VSE on the SYSLOG device). 

In reconstructing the job stream note that the / / RSTRT statement 
physically and functionally replaces the / / EXEC statement originally used. 

Another important consideration is the repositioning of files on 
magnetic tape or disk. Assembler language users may consult DOS/VSE 
Macro Reference, which discusses the topic in context with using the 
CHKPT macro. High-level language users should consider printing a file 
processing status record for each checkpoint that is taken during the 
execution of a program. This record should indicate the nafoe of the file(s) 
read or written on magnetic tape or disk when DOS/VSE takes the 
checkpoint. 

II JOB CHECKP 
II ASSGN SYS006,380 
II ASSGN 
II ASSGN 
II RSTRT SYS006,0013 
1& 

CHKPT TAPE 

Figure 4-6. Example of a RESTART Job 

DASD Switching under DOS/VSE 

The standard I/O interface between an I/O device and the CPU is a 
channel and a control unit. 

Normally, this interface provides one, and only one, path by which a 
CPU communicates with an I/O device. However, it may be desirable to 
access a device, especially a DASD device, by more than one path. For 
example, a second CPU may be required to back-up the host CPU such 
that should the host CPU become inoperable, the attached DASD devices 
may be switched immediately to (made accessible to) the back-up CPU. 
Multiple CPUs may also need to access the same data base. 

A single CPU may require back-up channels and control units, 
providing alternate paths to the same DASD devices. 

4.14 DOS/VSE System Management Guide 



In order to do this device sharing, the hardware provides a two-level 
switching mechanism that allows you to connect one or mote DASDs either 
dynamically or manually to different I/O paths. This mechanism is known 
as channel switching and string switching. 

Channel Switching. Channel switching provides the switching mechanism at 
the control unit level. The channel switch allows you to connect the control 
unit to up to four channels, which may belong to the same or different 
CPUs thus providing up to four distinct I/O paths. A maximum of two 
channels may connect to one CPU. The connection of any channel can be 
manually enabled or disabled. When enabled, the switch is dynamically 
controlled by the hardware. 

String Switching. In the case of string switching, the switching mechanism is 
at the DASD string level. String switching allows you to connect a string of 
DASDs to two distinct control units, or integrated disk attachments. The 
two I/O paths may be connected to a single or two different CPUs. 

Using DASD Switching. In both types of this hardware-supported switching, 
a desired I/O path may be selected in one of two ways. In the first case, 
connection is made dynamically when an I/O command is issued for a 
device. Provided that the control unit (in channel switching) and the DASD 
string (in string switching) are free for connection, the target DASD device 
can be accessed by the requesting CPU. Once a connection is established 
by one CPU, the other CPU receives device busy status if attempting to 
access a device on the string. 

In the second case, the operator may manually switch the sharable 
devices to the desired CPU (via the Enable/Disable toggle switches). It 
should be noted that in this case an entire string of DASD is disconnected 
from the other CPU. 

H, at your installation, a DASD switching feature is being used, it is 
your responsibility to resolve conflicting CPU references to shared devices 
(or files) and thus ensure data integrity. Following are two ways of 
preventing potential conflicts. 

First, through scheduling of CPU file referencing, ensure that only one 
CPU that is updating the file is connected to the shared DASD. The 
operator needs only to switch the manual control to the updating CPU for 
that period of time. 

Secondly, through scheduling and the use of the operator commands 
DVCUP and DVCDN (as described below), devices may be reserved for 
use by one CPU for a particular period of time. 

An individual device can be excluded from use by a particular CPU by 
entering a DVCDN command for that device via the operator console. The 
other system then has exclusive access to that device. The device can be 
made available again by issuing a DVCUP command for the device. 
However, the other system should then issue a DVCDN command for that 
device. To avoid conflicts, both system operators have to inform each other 
about the status of the reserved devices. It is therefore recommended that a 
job, which requires exclusive access to a file or device, notifies the operator 
when the device has to be reserved, and when it may be released. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.15 



Note that the DVCUP/DVCDN commands reserve the DASD at the 
device level, although the programmer may be interested in reserving only 
one file on that particular device. It is recommended that DVCUP and 
DVCDN commands be entered only via the console. 

Further hardware details on chpnnel or string switching may be found 
in the appropriate DASD hardware manuals, and also in the hardware 
manuals for the mM 370/115, 370/125. 

\\'hen using DASD Switching, in order to iacilitate the diagnosis oi 
hardware failures, the inclusion of Recovery Management Support (RMS) is 
required. For System/370 Models 115 or 125, RMS may be included 
during DOS/VSE system generation by specifying RMS= YES in the 
SUPVR macro. 

Designing Programs for Virtual Mode Execution 

This section describes programming techniques that may improve the 
efficiency of programs that execute in virtual mode. Consider these 
techniques for new programs to be written and old programs to be revised. 
The section also contains information on the use of certain macros that are 
provided especially for virtual storage. Programming conventions for the 
shared virtual area are also discussed. 

Programming Hints lor Reducing Page Faults 

It is definitely worthwhile to spend some extra programming effort for 
tuning virtual-mode programs that are used frequently or that require long 
periods of processing time so that they will cause fewer page faults during 
execution. Page faults generally occur when the size of the virtual-mode 
program exceeds the number of page frames available to it during 
execution. Efforts to reduce the number of page faults occurring in a 
program generally involve techniques for reducing the size of the working 
set of the program. The term working set is one that recurs often in 
discussions of virtual storage systems. 

The working set of a program is comprised of those program pages that 
contain the most frequently used sequences of instructions for a given 
period of time. The working set of a program is not a fixed number of 
pages or instructions of that program; this set changes as the execution of 
the program proceeds. For example, a program doing an internal sort and 
writing a formatted table based on the results of this sort would have two 
completely different basic working sets; one for the sort function and one 
for the write functions. 

What does execute efficiently mean? Essentially, this means that a 
program will not execute appreciably slower than if the entire program were 
in processor storage during its entire execution. 

Although the following section does not tell you how to determine the 
size of the working set, it does provide techniques for reducing its size. 

4.16 DOS/VSE System Management Guide 



General Hints for Reducing the Working Set 

There are three general rules to keep in mind when working toward a 
reduction of a program's working set. The first is locality of reference, that 
is, instructions and data used together should be in storage near each other. 
Second is minimum processor storage. In other words, the amount of 
processor storage necessary for a program to do something should be kept 
as low as possible. Third is validity of reference, that is, references should 
be made only to data which will actually be used. 

The chief means of achieving locality of reference is to make execution 
sequential whenever possible by avoiding excessive branching. 

A program that executes sequentially normally requires a partition 
larger than the same program when it does not execute sequentially. For 
example, the functions of a section of code repeat themselves several times 
throughout the logic of your program. You are tempted to write this code 
once and branch to it whenever necessary, but branching violates the 
principle of locality of reference. Branching may cause more page faults 
than would coding the routine in line each time it is used. Also, it is easier 
for someone else to follow the logic of a program which is written to 
execute sequentially. 

Locality of reference can be achieved only to a limited extent by 
programs written in a high-level language. 

Elements in arrays in FORTRAN or PL/I can be referred to in the 
order in which they appear in storage. In FORTRAN, for example, arrays 
are ordered by columns. The elements of the array DIMENSION (2,2,2) 
are arranged as follows in contiguous virtual storage locations: 

(1,1,1) (2,1,1) 
(1,2,1) (2,2,1) 
(1,1,2) (2,1,2) 
(1,2,2) (2,2,2) 

For array structures of other compilers, refer to the appropriate 
programming language reference manuals. 

A routine which processes all the elements of such an array should 
refer to them in this order. H only certain elements of an array are 
processed, the elements should be arranged in the order in- which they are 
to be processed. H arranging an array in a certain manner causes it to be 
processed advantageously one time, but disadvantageously another time, 
you should consider writing two arrays, even at the cost of additional 
virtual storage. 

In an assembler language program, you should keep frequently used 
data and constants near each other in storage, and near the instructions 
which use them. This contrasts with the traditional practice of having one 
area at the end of the program reserved for all the data areas and 
constants. By the same token, seldom used data should be separated from 
the frequently used data and placed with the routines which use it. 

Avoid, if possible, using chains which must be searched each time a 
data item is required. H chains are unavoidable they should be kept in a 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.17 



compact area of storage. This may result in some wasted (virtual) storage 
but will be better than searches of large areas of storage. 

Another good practice to help reduce paging is to initialize variables 
just before they are to be used. For example in PL/I instead of the 
following: 

use: 

DCL A FIXED INIT (10); 

DO B=1 TO 100; 
A=A+B; 
END; 

DCL A FIXED; 

A=10; 
DO B=1 TO 100; 
A=A+B; 
END; 

In the first method of cod.i:ilg, PL/I initializes the automatic variable at the 
beginning of execution. The second method of coding does not require the 
page containing A to be in processor storage until just before A is used. 

An important help in reducing the amount of processor storage needed 
for execution is to keep codiitg used for errors or other unusual occurrences 
in a separate routine. H, for example, the main routine contains code for 
conditions that occur only 5 % of the time, by moving this error code to a 
separate section of your program, you can reduce the amount of needed 
processor storage for 95 % of the processing. 

Frequently-used subroutines should be loaded near each other. Because 
of their frequent use, these routines tend to be in processor storage almost 
continuously. H they are scattered over several pages, each of these pages 
will need to be in processor storage most of the time, thus increasing the 
size of the working set. By loading these routines near each other, you 
reduce the number of pages required in processor storage at anyone time. 

Subroutines should be designed to do as much processing as possible 
whenever they are called. It is better to duplicate some code from the 
calling routine in the called routine in order to avoid switching back and 
forth between routines. One technique for accomplishing this is to have the 
calling program pass several parameters to the subroutine and make one 
call, rather than passing one parameter at a time and make several calls. 

You should try to keep code that can be modified and code that cannot 
be modified in separate sections of a large program. This will reduce page 
traffic by reducing the number of pages that are changed. Also, try to 
prevent I/O buffets from crossing page boundaries unnecessarily. Check 
the assembler listing and the linkage editor map to determine where 2K 
boundaries occur in your programs. 

4.18 DOS/VSE System Management Guide 



Using YirlJUll Storage Macros 

The macros designed for use by virtual-mode programs, which are discussed 
below, perform the following services: 

• fix. pages in processor storage (PFIX macro) and later free the same 
pages for normal paging (PFREE macro). 

• indicate the mode of execution of a program (RUNMODE macro). 

• influence the paging mechanism in order to reduce the number of page 
faults, to minimize the page I/O activity, and to control the page traffic 
within a specific partition. 

In order to use these macros you must be programming in assembler 
language or, if your program is written in a high-level language, you must 
write an assembler subroutine to make use of them. Refer to DOS/VSE 
Macro Reference for a detailed description of these macros. 

Fixing Pages in Processor Storage 

In DOS/VSE, parts of virtual-mode programs must be 1n processor storage 
only at certain times. These parts include not only the instructions and data 
being processed at anyone moment, but also data areas for use by channel 
programs. Instructions and data are always in processor storage when being 
used. Because of the nature of I/O operations, the data areas for these 
operations could be paged out during the I/O operation if something were 
not done to keep them in processor storage during the entire operation. 
DOS/VSE therefore fixes I/O areas in processor storage for the duration 
of the I/O operation. 

There are other parts of a program, however, which cannot tolerate 
paging, and these parts are not necessarily kept in storage by DOS/VSE. 
For instance, programs that control time-dependent I/O operations cannot 
tolerate paging. A familiar example is a MICR (Magnetic Ink Character 
Reader) stacker select routine. H a page fault were to occur during the 
execution of one of these programs, the results would be unpredictable. A 
page fault in one of these programs can be avoided by fixing the affected 
pages in processor storage, using the PFIX macro. 

The pages that you fix by the PFIX macro are fixed in the processor 
storage allocated to the partition in which the PFIX request is issued. Only 
as many pages may be fixed by a program at anyone time as there are 
page frames allocated to the partition. This is done to prevent a loop in one 
program from fixing all the pages in the system, and to enable other 
programs to issue a PFIX macro concU-rrently. 

The PFIX macro fixes the pages in processor storage, regardless of 
whether these pages are stored in contiguous page frames or not. The 
supervisor keeps a count of the number of times a page has been fixed 
without being freed. A page that is fixed more than once without having 
been freed (via the PFREE macro) is not brought in a second time and 
given another page frame. Instead, the counter for that page is just 
increased by one and the page remains in the same page frame. 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.19 



The PFREE macro does not directly free a page for paging out, but 
each time it is issued, the counter of fixes is reduced by one. As soon as 
the counter for a page reaches zero, the page can be paged out. At the end 
of a job step, all pages that have been fixed during the job step are freed. 

The PFREE macro should be used as soon as possible to make a 
maximum possible number of page frames available to all programs running 
in virtual mode. 

Figure 4-7 is a skeleton example using the PFIX and PFREE macros. 
After the execution of a PFIX macro, a return code is given in register 15. 
The meanings of the return codes are: 

o - The pages were fixed successfully. 

4 - You requested more page frames than the number of PFIXable 
page frames available to the partition. 

8 - Insufficient free page frames were available. 

12 - You specified invalid addresses in your macros. 

Note in the example how the return code can be used to establish a branch 
to parts of the program that handle these specific conditions. 

FIXER 

HERE 

PFIX 
B 
B 
B 
B 
B 
BAL 
PFREE 

ARTN,ARTNEND+2 FIX ARTN IN STORAGE 
*+4(15) BRANCH ACCORDING TO RETURN CODE 
HERE CONTINUE IF OK 
NOPAGES GO TO CANCEL IF PART TOO SMALL 
WAIT GO TO WAIT UNTIL PAGES FREED 
CANCL GO TO CANCEL IF ADDR INVALID 
14,ARTN GO TO ARTN 

ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION 

ARTN (time dependent processing which cannot be 

ARTNEND 

NOPAGES 

CANCL 

WAIT 

END 
OPCCB 
OPCCW 
MSG 

Figure 4-7. 

4.20 DOS/VSE System Management Guide 

paged out during execution) 

BR R14 RETURN 

LA R1,OPCCB 
EXCP ( 1 ) WRITE MESSAGE TO OPERATOR 
WAIT ( 1 ) WAIT FOR COMPLETION 
CANCEL ALL 

(routine to free other pages) 

EOJ 
CCB 
CCW 
DC 
DC 

SYSLOG,OPCCW 
X'09',MSG,X'20' ,61 
CL32'AM CANCELING PLEASE ENLARGE REAL' 
CL29'ADDR AREA AND RESTART THE JOB' 

PFIX and PFREE Example 



Indicating the Execution Mode of a Program 

You may have a program that must do different processing depending upon 
its execution mode. It may be impractical to have two separate programs 
cataloged in the core image library (one program for real mode and another 
program for virtual molle). The RlJNMODE macro can be issued during the 
execution of thff program to inquire which mode of execution is being used. A 
return code is issued to the program in register 1. 

Influencing the Paging Mechanism 

Releasing Pages. With the RELP AG macro, you inform the page 
management routines that the contents of one or more pages is no longer 
required and need not be saved on the page data set. Thus, page frames 
occupied by these released pages can be claimed for use by other pages, 
and page 110 activity is reduced. 

Forcing Page-out. The FCEPGOUT macro is used to inform the page 
management routines that one or more pages will not be needed until a 
later stage of processing. The pages are given the highest page-out priority, 
with the result that other pages, which may be needed immediately, are 
kept in storage. Except when the RELPAG macro is in operation, the 
contents of any pages written out are saved. 

Page-in in Advance. The P AGEIN macro allows you to request that one or 
more pages be read into processor storage in advance, in order to avoid 
page faults when the specified pages are needed in processor storage. If the 
specified pages are already in processor storage when the macro is issued, 
they are given the lowest priority for page-out. 

Balancing Telecommunication Activity 

The use of telecommunication and production processing at the same time 
may, occasionally, result in long or erratic telecommunication response 
times. This may be especially true if you have overcommitted processor 
storage, thus causing excessive paging. The telecommunication application 
may have to compete so strongly for page frames (because of high 
processing activity in the other partitions) that response time increases 
substantially. 

Telecommunication balancing improves response time by trading off 
telecommunication response time against produ~tion partition throughput. 
TP balancing tends to reduce response times, or at least to stabilize them. 

After IPL, TP balancing can be activated by the operator issuing the 
TPBAL command, which specifies the number of partitions that can 
tolerate delayed processing. These will be the lowest priority partitions. The 
TPBAL command is also used to change or display the current setting (for 
more information, see the DOS/VSE Operating Procedures). Once 
activated, the TP balancing function can be invoked by using 
TPIN/TPOUT macros. 

Ch@ter 4: Using the Facilities and Options of DOS/VSE 4.21 



The TPIN macro signals to DOS/VSE that an immediate demand for 
system resources is being made by the telecommunication application, for 
instance, when a message has arrived. After processing is completed, 
TPOUT informs DOS/VSE that the telecommunication application has no 
further processing to do for the time being, and that the system resources 
that were exclusively used for telecommunication should be released. Failure 
to issue the TPOUT macro can cause serious performance degradation in 
production partition throughput. 

The TPIN and TPOUT macros have been made available primarily for 
use in mM licensed telecommunication support (for example, ACF /VT AM 
and CICS/VS). There is no need for these macros to be used in 
user-written application programs that run under control of mM supplied 
telecommunication support. 

Coding lor the Shared Yi11lUl1 Area 

Besides accommodating the system directory list (SDL), and perhaps the 
VSE/VSAM phases with their associated GETVIS work area, the shared 
virtual area (SV A) contains phases that can be used concurrently by more 
than one partition. The SV A phases must be reenterable and reldtatable; 
code that modifies itself will cause a protection check when executed from 
the SV A. This section presents some advice on coding phases to use SV A 
facilities and suggests some standards for base-register usage. 

The basic assumptions for coding an SV A phase are: 

• The reenterable code must not modify any storage within its own 
storage area. Therefore, the code must not contain DTFs, CCBs, or 
other control blocks that are modified during execution. 

• The phase can modify registers only if it saves and restores them for 
each user. 

• A user-specified work area (within the calling partition) must be 
provided for storing registers and for any storage modifications. 

Suggested register conventions: 

• Use register 12 as the base register in both the main routine and the 
reenterable code. 

• Use register 13 as base for the working storage area. It is the 
responsibility of the main routine to provide addressability to the work 
area by loading register 13; the reenterable routine must not modify 
register 13. The easiest way to address the working storage area in the 
reenterable code is by a DSECT that defines the fields of the work area 
and a USING dsectname,13. In this way symbolic addressing can be 
used. 

• Use CALL, SAVE, and RETURN macros. Since register 13 is the base 
register, SAVE (14,12) and RETURN (14,12) result. Use register 
notation for CALL, for example, CALL (15) .... Before issuing the 
CALL, load register 15 with the transfer address. Register 14 will 
always contain the return address. The standard is thus established of 
register 15 for calling and register 14 for returning. 

4.22 DOS/VSE System Management Guide 



MASTER 

* 
* 

SAVE 
WORKAREA 
* 
SWITCH 
TECB 
FIELDA 
FIELDB 

SLAVE 

EXIT 

DATA 1 
DATA2 

WORKAREA 
FIELDC 
FIELDD 

Figure 4-8. 

• Switches, and other areas that may be modified, can be placed in the 
working storage area using base register 13. 

Figure 4-8 illustrates the suggested conventions: MASTER is the main 
routine, SLA VB is the SV A phase. 

CSECT 
BALR 
USING 
LA 
LOAD 

LR 
CALL 

EOJ 
DS 
DS 

DC 
DS 
DS 
DS 
END 

CSECT 
SAVE 
BALR 
USING 
USING 
LM 
MVC 
MVC 
CLI 
BE 
SETlME 
WAIT 

XI 
RETURN 
DC 
DC 
LTORG 
DSECT 
DS 
DS 
END 

12,0 
*,12 
13,SAVE 
SLAVE, WORKAREA CANCELS IF SLAVE NOT IN CIL 

LOADS SLAVE INTO WORKAREA 
IF SLAVE IS NOT IN SVA 

15,1 
(15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA) 

9D 
200D 

XL1 '00' 
CL4 
CL15 
CL11 

(14,12) 
12,0 
*,12 
WORKAREA,6 
2,6,0( 1 ) 
O( 15,4),DATA1 
O( 11 ,5 ) , DATA2 
O( 2 ),X' FF' 
EXIT 
3, ( 3 ) 
(3 ) 

O( 2 ), X' FF' 
(14,12) 
CL15'THIS IS FIELDA' 
CL11'THIS IS FIELDB' 

3D 
3D 

SLAVE IS LOADED HERE 
IF NOT IN SVA 

MUST BE SEPARATE ASSEMBLY 

SETlME ALTERS THE TECB 

Example of Conventions for SV A Coding 

Chapter 4: Using the Facilities and Options of DOS/VSE 4.23 



Appendix A: System Layout on Disk 

IPL Records 

System Yolllme Label 

User Yolllme Label 

System Directory 

Figures A-I and A-2 illustrate how the system residence (SYSRES) file is 
organized. The volume containing the system residence file can be any mM 
DASD device supported by DOS/VSE except a 2311 disk. 

This area contains the initial program load (IPL) bootstrap records, which 
cause the IPL retrieval program to be read from SYSRES and loaded into 
processor storage. For CKD devices the IPL retrieval program is at cylinder 
0, track 1, record 5. For FBA devices it is contained within blocks 3 
through 9. 

The volume label (VOL1 label) contains the address of the volume table of 
contents (VTOC) established when the pack was initialized. (The 
DOS/VSE system utility program Initialize Disk is"provided for this 
purpose). The VTOC must be located outside of the SYSRES extent. 

The user volume label area is provided for any additional standard volume 
labels (VOL2-VOL8 labels). This area can extend from record 4 through 
the end of track 0 on CKD devices or from the end of the system volume 
label to the end of block 1 on FBA devices. 

The SYSRES file starts with the system directory. This directory contains 
the starting addresses of the 4 library directories and the address of the 
label information area. 

Library Directories and Libraries 

Labell"formatio" A.rea 

The purpose of these areas of the SYSRES file is discussed in Chapter 3 of 
this manual. . 

The SYSRES file ends with the, label information area. The purpose of this 
area is described in Chapter 2 of this manual. 

Appendix A: System Layout on Disk A.1 



Component 

IPL Record 
(Phase $$A$I P L1 ) 

IPL Record 

System Volume Label 

User Volume Label 

Record 1 

Record 2 
System Directory 

Record 3 

Record 4 

IPL Records (Phase $$A$PLBK) 

Cata loged Phases 
Core I mage Directory 

Linked Phase 

Core I mage Library Members 

Relocatable Directory 

Relocatable Library Members 

Source Statement Directory 

Source Statement Library Members 

Procedure Directory 

Procedure Library Members 

Label I nformation Area 

* Allocation Dependent on User Requirements 
X = Ending CC of the Preceding Directory 
Y = Ending HH of the Preceding Directory 
Z = Ending CC of the Preceding Library 

Starting Disk Address 

CC HH 

00 00 

00 00 

00 00 

00 00 

00 01 

00 01 

00 01 

00 01 

00 01 

00 02 

X Y+1 

Z+l 00 

X Y+1 

Z+1 00 

X Y+1 

Z+1 00 

X Y+1 

Z+1 00 

Note: Track 0 of cylinder 0 is not part of the SYSRES file. 

R 

1 

2 

3 

4 

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

1 

1 

1 

Figure A-t. System Residence Organization on em Devices 

A.2 DOS/VSE System Management Guide 

Number 
of Tracks R = Required 

(Alloc.) 0= Optional 

R 

R 
1 

R 

0 

R 

R 

1 R 

R 

R 

* R 

* R 

* 0 

* 0 

* 0 

* 0 

* 0 

* 0 

Device 
R dependent 



Component Starting Disk Address 
Block Number 

IPL Records 
0 (Phase $$A$I PLO) 

System Volume Labell 1 

System Directory 2 

IPL Retrieval Program 
3 

(Phase $$A$PLB F) 

Core I mage Directory 10 
Core I mage Library 
Members X+1 

Relocatable Directory Y+1 
Relocatable Library X+1 Members 

Source Statement Directory Y+1 

Source Statement pbrary 
Members X+1 

Procedure Directory Y+1 

Procedure Library Members X+1 

Label I nformation Area Y+1 

* 
X= 
Y= 

Allocation dependent on user requirements 
Last block of preceding directory 
Last block of preceding library 

Number of R=Required 
Blocks O=Optional 

1 R 

1 R 

1 R 

7 R 

* R 

* R 

* D 

It- D 

It- 0 

* 0 

It- 0 

It- D 

200 2 R 

1 Optional user volume labels if written will be in the same block following the 
system volume label. 

2 Using the Restore program you may allocate a label information area different 
than the default size of 200 blocks. 

Note: Blocks 0 and 1 are nat part afthe SYSRES file. 

Figure A-2. System Residence Organization on FDA devices 

Appendix A: System Layout on Disk A.3 



Glossary 

This glossary defines the terms proper to this manual. If you do not find the term you 
are looking for, refer to the IBM Data Processing Glossary, GC20-1699. 

This glossary includes definitions developed by the American National Standards 
Institute (ANSI) and the International Organization for Standardization (ISO). This 
material is reproduced from the American National Dictionary for Information 
Processing, copyright 1977 by the Computer and Business Equipment Manufacturers 
Association, copies of which may be purchased from the American National Standards 
Institute, 1430 Broadway, New York, New York 10018. American National Standard 
Definitions are marked with an asterisk (*). 

access method: A technique for moving data between virtual storage and 
input/output devices. 

access method services: A multifunction service program that defines 
VSAM files and allocates space for them, converts indexed-seqllential files 
to key-sequenced ftIes with indexes, modifies file attributes in the catalog, 
reorganizes ftIes, facilitates data portability between operating systems, 
creates backup copies of files and indexes, helps make inaccessible files 
accessible, and lists the records of the files and catalogs. 

address: (1) An identification, as represented by a name, label, or number, 
for a register, location in storage, or any other data source or destination 
such as the location of a station in a communication network. (2) Loosely, 
any part of an instruction that specifies the location of an operand for the 
instruction. 

address translation: The process of changing the address of an item of 
data or an instruction from its virtual address to its real storage address. 
See also dynamic address translation. 

alternate track: One of a number of tracks set aside on a disk pack for use 
as alternatives to any defective tracks found elsewhere on the disk pack. 

application program: A program written by a user that applies to his own 
work. 

assembler language: A source language that includes symbolic machine 
language statements in which there is a one-to-one correspondence with the 
instruction formats and data formats of the computer. 

attach: (1) To create a task and present it to the supervisor. (2) A macro 
instruction that causes the control program to create a new task and 
indicates the entry point in the program to be given control when the new 
task becomes active. 

auxiliary storage: Data storage other than real storage; for example, 
storage on magnetic tape or disk. Synonymous with external storage, 
secondary storage. 

blocking: Combining two or more logical records into one block. 

blocking factor: The number of logical records combined into one 

Glossary 5.1 



* 

physical record or block. 

book: A group of source statements written in any of the languages 
supported by DOS/VSE and stored in a source statement library. 

buffer: An area of storage that is temporarily reserved for use in 
pedorming an input/output operation, into which data is read or from 
which data is written. Synonymous with I/O area. 

byte: A sequence of eight adjacent binary digits that are operated upon as 
a unit and that constitute the smallest addressable unit of the system. 

card punch: A device to record information in cards by punching holes in 
the cards to represent letters, digits, and special characters. 

card reader: A device which senses and translates into machine code the 
holes in punched cards. 

cardless system: A System/370 Model 115/125 configured without a 
card reader or card punch, but with an mM 3540 Diskette Input/Output 
Unit. 

catalog: To enter a phase, module, book, or procedure into one of the 
system or private libraries. 

central processing unit: A unit of a computer that includes the circuits 
controlling the interpretation and execution of instructions. Abbreviated 
CPU. 

channel: (1) • A path along which signals can be sent, for example, data 
channel, output channel. (2) A hardware device that connects the CPU and 
real storage with the I/O control units. 

channel program translation: In a copy of a channel program, 
replacement, by software, of virtual addresses with real addresses. 

compile: To prepare a machine language program from a computer 
program written in a high-level language by making use of the overall logic 
structure of the program, or generating more than one machine instruction 
for each symbolic statement, or both, as well as pedorming the function of 
an assembler. 

compiler: A program that translates high-level language statements into 
machine language instructions. 

configuration: The group of machines, devices, etc., which make up a data 
processing system. 

control area: A group of control intervals used as a unit for formatting a 
file before adding records to it. Also, in a key-sequenced file, the set of 
control intervals covered by an index record; used by VSAM for 
distributing free space and for placing a low-level index adjacent to its data. 

control interval: (1) A fixed-length area of auxiliary storage space in 
which VSAM stores records and distributes free space, also, in a 
key-sequenced file, the set of records pointed to by an entry in the index 
record. It is the unit of information transmitted to or from auxiliary storage 
by VSAM, independent of blocksize. (2) For an FBA device, the unit of 
data transfer between processor storage and the device. It has the same 
format as a VSAM control interval. In recording data, IOCS maps each 
control interval over an integral number of FBA blocks. 

5.2 DOS/VSE System Management Guide 



control program: A program that is designed to schedule and supervise 
the performance of data processing work by a computing system. 

control registers: A set of registers used for operating system control of 
relocation, priority interruption, program event recording, error recovery, 
and masking operations. 

control section: That part of a program specified by the programmer to 
be a relocatable unit. 

control unit: A device that controls the reading, writing, or display of data 
at one or more input/output devices. 

core image library: A library of phases that have been produced as 
output from link-editing. The phases in the core image library are in a 
format that is executable either directly or after processing by the relocating 
loader in the supervisor. 

count-key-data (CKD) device: A disk storage device storing data in the 
format: count field normally followed by a key field followed by the actual 
data of a record. The count field contains, among others, the address of the 
record in the format CCHHR. (CC = cylinder number, IllI = head or 
track number, R = record number) and the length of the data; the key area 
contains the record's key (search argument). See also fixed block 
architecture (FBA) device. 

CPU busy time: The amount of time devoted by the central processing 
unit to the execution of instructions. 

data file: A collection of related data records organized in a specific 
manner. For example, a payroll file (one record for each employee, 
showing his rate of pay, deductions, etc., or an inventory item, showing the 
cost, selling price, number in stock, etc.). See also file. 

data integrity: See integrity. 

data management: A major function of DOS/VSE that involves 
organizing, storing, locating, retrieving, and maintaining data. 

deblocking: The action of making the first and each subsequent logical 
record of a block available for processing one record at a time. 

default value: The choice among exclusive alternatives made by the 
system when no explicit choice is specified by the user. 

deletion of an I/O Device: Removal of the I/O unit from the supervisor 
configuration tables. 

diagnostic routine: A program that facilitates computer maintenance by 
detection and isolation of malfunctions or mistakes. 

dial-up terminal: A terminal on a switched teleprocessing line. 

direct access: (1) Retrieval or storage of data by a reference to its 
location on a volume, other than relative to the previously retrieved or 
stored data. (2) * Pertaining to the process of obtaining data from, or 
placing data into, storage where the time required for such access is 
independent of the location of the data most recently obtained or placed in 
storage. (3) * Pertaining to a storage device in which the access time is 
effectively independent of the location of the data. Synonymous with 
random access. 

Glossary 5.3 



* 

direct organization: Direct file organization implies that for purposes of 
storage and retrieval there is a direct relationship between the contents of 
the records and their addresses on disk storage. 

directory: An index that is used by the system control and service 
programs to locate one or more sequential blocks of program information 
that are stored on direct access storage. 

diskette: A flexible magnetic-oxide coated disk suitable for data storage 
and retrieval. Data may be stored and retrieved via such devices as the 
mM 3740 Data Entry Unit and the mM 3540 Diskette Input/Output Unit. 
Diskettes are also used to contain microprograms for some central 
processing units. 

disk pack: A direct access storage vol~e containing magnetic disks on 
which data is stored. Disk packs are mounted on a disk storage drive, such 
as the mM 3330 Disk Storage Drive. 

distributed free space: Space reserved within the control intervals of a 
key-sequenced file for inserting new records into the file in key sequence; 
also, whole control intervals reserved in a control area for the same 
purpose. 

dump: (1) To copy the contents of all or part of virtual storage. (2) The 
data resulting from the process as in (1). 

dynamic address translation (OAT): (1) The change of a virtual storage 
address to an address in real storage during execution of an instruction. (2) 
A hardware function that performs the translation. 

entry sequence: 'Qle order in which data records are physically arranged 
in auxiliary storage, without respect to their contents (contrast with key 
sequence). 

entry-sequenced file: A VSAM file whose records are loaded without 
respect to their contents, and whose relative byte addresses cannot change. 
Records are retrieved and stored by addressed access, and new records are 
added to the end of the file. 

error message: The communication that an error has been detected. 

error recovery procedures: Procedures designed to help isolate, and, 
when possible, to recover from errors in equipment. The procedures are 
often used in conjunction with programs that record the statistics of 
machine maHunctions. 

extent: A continuous space on a direct access storage device, occupied by 
or reserved for a particular file. 

file: A collection of related records treated as a unit. For example, one line 
of an invoice may form an item, a complete invoice may form a record, the 
complete set of such records may form a file, the collection of inventory 
control files may form a library, and the libraries used by an organization 
are known as its data bank. 

5.4 DOS/VSE System Management Guide 



• 

• 

• 

• 

FBA: See fixed block architecture (FBA) device. 

FBA block: A unit of data of fixed length on which the FBA architecture 
is based. 

fixed block architecture (FBA) device: A disk storage device storing 
data in blocks of fixed size; these blocks are addressed by block number 
relative to the beginning of the file. 

fixed page: A page in processor storage that is not to be paged out. 

hard copy: A printed copy of machine output in a visually readable form, 
for example, printed reports, listings, documents, and summaries. 

hard wait state: In general, a wait state is the condition of a CPU when 
all operations are suspended. System recovery from a hard wait state 
requires that the user performs a new IPL (initial program load) procedure. 

hardware: Physical equipment, as opposed to the computer program or 
method of use, for example, mechanical, magnetic, electrical, or electronic 
devices. Contrast with software. 

idle time: That part of available time during which the hardware is not 
being used. 

index: (1) • An ordered reference list of the contents of a file or 
document, together with keys or reference notations for identification or 
location of those contents. (2) A table used to locate the records of an 
indexed sequential file. 

indexed-sequential organization: The records of an indexed sequential 
file are arranged in logical sequence by key. Indexes to these keys permit 
direct access to individual records. All or part of the file can be processed 
sequentially. 

Initial Program Load (lPL): The intialization procedure that causes 
DOS/VSE to commence operation. 

integrity: Preservation of data or programs for their intended purpose. 

interface: A shared boundary. An interface might be a hardware 
component to link two devices or it might be a portion of storage or 
registers accessed by two or more computer programs. 

I/O: An abbreviation for input/output. 

ISAM interface program: A set of routines that allow a processing 
program coded to use ISAM to gain access to a VSAM key-sequenced file 
with an index. 

job: (1) • A specified group of tasks prescribed as a unit of work for a 
computer. By extension, a job usually includes all necessary computer 
programs, linkages, files, and instructions to the operating system. (2) A 
collection of related probiem programs, identified in the input stream by a 
JOB statement followed by one or more EXEC statements. 

job accounting interface: A function that accumulates, for each job step, 
accounting information that can be used for charging usage of the system, 
planning new applications, and supervising system operation more efficiently. 

Glossary 5.5 



• 

job control: A program that is called into a partition to prepare each job or 
job step to be run. Some of its functions are to assign 110 devices to certain 
symbolic names, set switches for program use, log (or print) job control 
statements, and fetch the first program phase of each job step. 

job (JOB) statement: The job control statement that identifies the 
beginning of a job. It contains the name of the job. 

job step: The execution of a single processing program. 

K: 1024. 

key: One or more characters associated within an item of data that are 
used to identify it or control its use. 

key sequence: The collating sequence of data records, determined by the 
value of the key field in each of the data records. May be the same as, or 
different from, the entry sequence of the records. 

key-sequenced file: A file whose records are loaded in key sequence and 
controlled by an index. Records are retrieved and stored by keyed access or 
by addressed access, and new records are inserted in the file in key 
sequence by means of distributed free space. Relative byte addresses of 
records can change. 

label: identification record for a tape, diskette, or disk file. 

label information area: Under DOS/VSE, the last portion of the system 
residence file that stores label information read from job control statements 
or commands. 

language translator: A general term for any assembler, compiler, or other 
routine that accepts statements in one language and procedures equivalent 
statements in another language. 

leased facility: A circuit of the public telephone network made available 
for the exclusive use of one subscriber. 

librarian: The set of programs that maintains, services, and organizes the 
system and private libraries. 

library: A collection of files or programs, each element of which has a 
unique name, that are related by some common characteristics. For 
example, all phases in the core image library have been processed by the 
linkage editor. 

linkage editor: A processing program that prepares the output of language 
translators for execution. It combines separately produced object modules; 
resolves symbolic cross references among them, and generates overlay 
structure on request; and ptoduces executable code (a phase) that is ready 
to be fetched or loaded into virtual storage. 

load: (1) • In programming, to enter instructions or data into storage or 
working registers. (2) In DOS/VSE, to bring a program phase from a core 
image library into virtual storage for execution. 

main page pool: The set of all page frames in processor storage not 
assigned to the supervisor or one of the partitions. 

message: See error message, operator message. 

5.6 DOS/VSE System Management Guide 



* 

* 

* 

microprogramming: A method of working of the CPU in which each 
complete instruction starts the execution of a sequence of instructions, 
called microinstructions, which are generally at a more elementary level. 

multiprogramming system: A system that controls more than one 
program simultaneously by interleaving their execution. 

multitasking: The concurrent execution of one main task and one or more 
subtasks in the same partition. 

object code: Output from a compiler or assembler which is suitable for 
processing by the linkage editor to produce executable machine code. 

object module: A module that is the output of an assembler or compiler 
and is input to a linkage editor. 

object program: A fully compiled or assembled program. Contrast with 
source program. 

online: (1) Pertaining to equipment or devices under control of the central 
proeesSirig Uriit. (2)"Pertairiiiig to a user's a6i1ity to interact with a computer. 

operand: (1) * That which is operated upon. An operand is usually 
identified by an address part of an instruction. (2) Information entered with 
a command name to define the data on which a command processor 
operates and to control the execution of the command processor. 

operator command: A statement to the control program, issued via a 
console device, which causes the control program to provide requested 
information, alter normal operations, initiate new operations, or terminate 
existing operations. 

operator message: A message from the operating system or a problem 
program directing the operator to perform a specific function, such as 
mounting a tape reel, or informing him of specific conditions within the 
system, such as an error condition. 

overflow: (1) That portion of the result of an operation that exceeds the 
capacity of the intended unit of storage. (2) Pertaining to the generation of 
overflow as in (1). 

overlay: n. (1) One of the segments, which consists of one or more 
phases, of a program that is so structured that not all of the segments need 
be in virtual storage at anyone time. v. (2) The process of replacing a 
previously retrieved program segment in virtual storage by another segment. 

page: (1) In DOS/VSE, a 2K block of instructions, data or both. (2) To 
transfer instructions, data, or both between processor storage and the page 
data set. 

page data set: An extent in auxiliary storage, in which pages are stored. 

page fault: A program check interruption that occurs when a page that is 
marked not in processor storage is referred to by an active page. 
Synonymous with page translation exception. 

page fixing: Marking a page as nonpageable so that it remains in 
processor storage. 

page frame: A 2K block of processor storage that can contain a page. 

Glossary 5.7 



• 

page in: The process of transferring a page from the page data set to 
processor storage. 

page out: The process of transferring a page from processor storage to the 
page data set. 

page pool: The set of all page frames that may contain pages of programs 
in virtual mode. 

paging: The process of transferring pages between processor storage and 
the page data set. 

parameter: A variable that is given a constant value for a specific purpose 
or process. 

partition: In DOS/VSE, a contiguous area of virtual storage available for 
the execution of programs. 

peripheral equipment: A term used to refer to card devices, magnetic 
tape and disk devices, diskettes, printers, and other eqUipment bearing a 
similar relation to the CPU. 

phase: The smallest complete unit that can be referred to in'the core 
image library. 

POWER: A unit record spooling support available as the IBM licensed program 
VSE/pOWER 

printer: A device that expresses coded characters as hard copy. 

priority: A rank assigned to a partition that determines its precedence in 
receiving CPU time. 

private library: A user-owned library that is separate and distinct from the 
system library. 

private second level directory: The private second level directory is a 
table located in the supervisor containing the highest phase names found on 
the corresponding directory tracks of the private core image library. 

problem determination aid: A program that traces a specified event 
when it occurs during the operation of a program. Abbreviated PDAID. 

problem program: Any program that is executed when the central 
processing unit is in the problem state; that is, any program that does not 
contain privileged instructions. This includes mM-distributed programs, such 
as language translators and service programs, as well as programs written by 
a user. 

processing program: (1) A general term for any program that is not a 
control program. (2) Synonymous with problem program. 

processor storage: The general purpose storage of a computer. Processor 
storage can be accessed directly by the operating registers. Synonymous 
with real storage. 

queue: (1) A waiting line or list formed by items in a system waiting for 
service; for example, tasks to be performed or messages to be transmitted 
in message switching system. (2) To arrange in, or form, a queue. 

5.8 DOS/VSE System Management Guide 



• 

random processing: The treatment of data without respect to its location 
in auxiliary storage, and in an arbitrary sequence governed by the input 
against which it is to be processed. 

real address: The address of a location in real storage. 

real address area: In DOS/VSE, the area of vl_rtual storage where virtual 
addresses are equal to real addresses. 

real mode: In DOS/VSE, the mode of a program that cannot be paged. 

real storage: The storage of a computing system from which the central 
processing unit can directly obtain instructions and data, and to which it 
can directly return results. Synonymous with processor storage. 

reenterable: The attribute of a load module that allows the same copy of 
the load module to be used concurrently by two or more tasks. 

relocatable: The attribute of a set of code whose address constants can be 
modified to compensate for a change in origin. 

relocatable library: A library of relocatable object modules and IOCS 
modules required by various compilers. It allows the user to keep frequently 
used modules available for combination with other modules without 
recompilation. 

restore: To return a data file created previously by a copy operation from 
cards, disk or magnetic tape to disk storage. 

rotational position sensing (RPS): A standard or optional feature of 
most mM disk storage devices. It permits these devices to disconnect from 
a block multiplexer channel (or its equivalent on Model 3115/3125 CPUs) 
during rotational positioning operations, thereby allowing the channel to 
service other devices . 

routine: An ordered set of instructions that may have some general or 
frequent use. 

secondary storage: Same as auxiliary storage. 

second level directory: A table located in the supervisor containing the 
highest phase names found on the corresponding directory tracks of the 
system core image library. 

security: Prevention of access to or use of data or programs without 
authorization. 

sequential organization: Records of a sequential file are arranged in the 
order in which they will be processed. 

service program: A program that assists in the use of a computing 
system, without contributing directly to the control of the system or the 
production of results. 

shared virtual area: An area located in the highest addresses of virtual 
storage. It can contain a system directory list of highly used phases, resident 
programs that can be shared between partitions, and an area for system 
GETVIS support. 

software: A set of programs, concerned with the operation of the 
hardware in a data processing system. 

Glossary 5.9 



* 

source: The statements written by the programmer in any programming 
language with the exception of actual machine language. 

source program: A computer program written in a source language. 
Contrast with object program. 

source statement library: ~ collection of books (such as macro 
definitions) cataloged in the system by the librarian program. 

spanned records: Records of varying length that may be longer than the 
clLrrently used blocksize, and which may therefore be written in one or 
more continuous blocks. A spanned record may occupy more than 1 track 
of a disk device. 

stand-alone dump: A program that displays the contents of the registers 
and part of the real address area and that runs independently and is not 
controlled by DOS/VSE. 

standard label: A fixed-format identification record for a tape, diskette, or 
disk file. Standard labels can be written and processed by DOS/VSE. 

storage protection: An arrangement for preventing access to storage. 

supervisor: A coltlponent of the control program. It consists of routines to 
control the functions of program loading, machine interruptions, external 
interruptions, operator communications and physical IOCS requests and 
interruptions. The supervisor alone operates in the privileged (supervisor) 
state. It coexists in real storage with problem programs. 

switched line: A communication line in which the connection between the 
computer and a remote station is established by dialing. Synonymous with 
dial line. 

system directory list: A list containing directory entries of highly used 
phases and of all phases resident in the shared virtual area. This list is 
contained in the shared virtual area. 

system residence device: The direct access device on which the system 
residence file is located. 

system residence volume: The volume on which the basic system and 
all related supervisor code is located. 

task: A unit of work for the central processing unit from the standpoint of 
the control program. 

teleprocessing: The processing of data that is received from or sent to 
remote locations by way of telecommunication lines. 

terminal: (1) * A point in a system or communication network at which 
data can either enter or leave. (2) Any device capabl~ of sending and 
receiving information over a communication channel. 

throughput: The total volume of work performed by a computing system 
over a given period of time. 

track: The portion of a moving storage medium, such as a tape, 
diskette, or disk, that is accessible to a given reading head position. 

transient area: An area of processor storage used for temporary storage 
of transient routines. 

5.10 DOS/VSE System Management Guide 



UCS: Universal character set. 

unit record: A card containing one complete record; a punched card. 

universal character set: A printer feature that permits the use of a 
variety of character arrays. Abbreviated UCS. 

unrecoverable error: A hardware error which cannot be recovered from 
by the normal retry procedures. 

user label: An identification record for a tape or disk file; the format and 
contents are defined by the user, who must also write the necessary 
processing routines. 

utility program: A problem program designed to perform a routine task, 
such as transcribing data from one storage device to another. 

virtual address: An address that refers to virtual storage and must, 
therefore, be translated into a real storage address when it is used. 

virtual address 8rea-: In DOS/VSE, the area of virtual storage whose 
addresses are greater than the highest address of the real address area. 

virtual mode: In DOS/VSE, the mode of execution of a program which 
may be paged. 

virtual storage: Addressable space that appears to the user as real storage, 
from which instructions and data are mapped into real storage locations. 
The size of virtual storage is limited by the addressing scheme of the 
computing system and by the capacity of the page data set, rather than by 
the actual number of real storage locations. 

virtual storage access method (VSAM): An access method (available as 
the licensed program product VSEjVSAM) for direct or sequential processing of 
fIxed and variable length records on direct access devices; designed for use in a 
virtual storage environment. 

virtual telecommunications access method (VTAM): A set of IBM 
programs (available as the licensed program product ACF/VTAM) that control 
communications between terminals and application programs. 

volume: (1) That portion of a single unit of storage media which is 
accessible to a single read/write mechanism, for example, a 
diskette, a disk pack, or part of a disk storage module. (2) A recording 
medium that is mounted and dismounted as a unit, for example, a reel of 
magnetic tape, a disk pack, or a diskette. 

volume table of contents: A table on a direct access volume or diskette 
that describes each file on the volume. Abbreviated VTOC. 

VSAM access method services: A multifunction utility program that 
defines VSAM files and allocates space for them, converts indexed 
sequential files to key-sequenced files with indexes, facilitates data 
portability between operating systems, creates backup copies of files and 
indexes, helps to make inaccessible files accessible, and lists file and catalog 
entries. 

Glossary 5.11 



VSAM catalog: A key-sequenced file, with an index, containing extensive 
file and volume information that VSAM requires to locate files, to allocate 
and deallocate storage space, to verify the authorization of a program or 
operator to gain access to a file, and to accumulate usage statistics for files. 

VTOC: See volume table of contents. 

work file: A file on an auxiliary storage medium reserved for intermediate 
results during execution of the program. 

working set: Tne set oi pages oi a user's virtuai-mode program that must 
be in processor storage in order to avoid excessive paging. 

5.12 DOS/VSE System Management Guide 



Index 

$$A$CDLO 3.3, 3.8 
$$A$IPLO A.2 
$ $A$IPL 1 A.I 
$$A$PLBF A.2 
$$A$PLBK A.1 
$$A$SUP1 3.2 
$ASIPROC 3.19 
$JOBACCT 2.18,4.7 
$JOBEXIT 4.3 
$phase 2.11, 3.11, 3.136 
$SYSOPEN 3.14,4.2 
/ + statement 3.112 
/ & statement 3.27 

A 
abnormal termination exit 2.32 
access authorization checking 2.26, 3.25 
access control 2.27 
ACF/VTAM support 2.26 
ACTION statement 3.90,3.94 

CANCEL operand 3.95 
CLEAR operand 3.94 
MAP operand 3.94 
NOMAP operand 3.94 

ADD command 2.45 
address space 1.6 

allocating to the partitions 3.15 
division of 1.14 
minimum per partition 3.15 
partitions within 1.14 
real 1.18, 2.18 
shared virtual area (SV A) within 1.15 
virtual 1.18,2.18 

ALLOC (librarian) statement 3.118, 3.125 
ALLOC command 

initiating foreground partitions 3.15, 3.17 
ALLOCR command 1.21,3.16 
alternate dump file(s) 2.14 
ASCn (SUPVR macro) parameter 2.28 
ASCn support 2.28 
ASI (see automated system initialization) 
ASI master procedure 3.18 
ASI IPL procedure 3.20 
ASI JCL procedure 3.21 

example 3.23 
naming conventions 3.18 

ASI stop facility 3.19 
assemble, link-edit, and execute 3.53, 3.84 
assembler copy sublibrary 3.110, 3.131 
assembler macro sublibrary 3.111, 3.131 

ASSGN job control command/ 
statement 3.34, 3.38 

assignment; shari-.ng 3.35 
asynchronous operator communication 2.30 
ASYNOC (FOPT macro) operand 2.30 
ATTACH macro 1.26 
AUTO 

specification in SIZE operand 3.60, 3.63 
AUTOLINK feature 3.92 

example 3.102 
suppressing the 3.93 

automated system initialization 
(ASI) 2.45, 3.2, 3.6, 3.17 
contents of IPL procedures 3.20 
oont-ents of J-CL proredmes 3-.21 
default procedure names 3.18 
implementation reqUirements 3.18 
master procedure 3.18 
procedure library 2.7, 3.18 
stop facility 3.19 

B 
background partition 

initial size 3.15 
balanced partitions 
BATCH command 
BKEND statement 
book 2.4 

1.2 

2.22 
1.2, 3.17 
3.111 

updating in the source statement library 3.122 
BTAM-ES support 2.26 
BTMOD 2.26 
buffers, CCW translation 2.40 
BUFSIZE (VSTAB macro) operand 2.39 

c 
CANCEL (linkage editor option) 3.85,3.95 
CANCEL command 

effects of 3.27 
CANCEL macro 2.32 
CATAL option 3.79 
catalog control statements 3.109 
cataloged procedures 2.5, 3.70 

modifying multistep procedures 3.75 
partition-related 3.77 
retrieval 3.70 
several job steps in 3.74 
SYSIPT data in 3.74, 3.76, 3.112 
temporarily modifying 3.71 
use by operator 3.78 

Index 6.1 



cataloged programs 
invoking 3.57 

cataloging 3.83 
a supervisor 3.83 
assigning change levels 3.113 
members into libraries 3.109 
to the private core image library 3.100 
to the procedure library 3.112 
to the relocatable library 3.109 
to the source statement library 3.110 
to the system core image library 3.98 

CAT ALP statement 3.112 
DATA parameter in 3.112 

CAT ALR statement 3.109 
CATALS statement 3.110,3.114 
CBF (FOPT macro) operand 2.30 
CCW translation 2.40 
CDL (communication device list) 3.8 
central processing unit (CPU) 

control of 1.1 
specifying the model 2.43 

change level verification 3.114 
change levels 3.113 
channel queue (CHANQ) 2.38 
channel queue table 2.39 
channel switching 4.15 
CHANQ (IOTAB macro) operand 2.38 
checkpoint 4.13 
CHKPT macro 4.13 
CLEAR 

operand in ACTION statement 3.94 
CLOSE job control command 3.66, 3.68 
COBOL sublibrary 3.110 
COMMON 

in FORTRAN programs 3.98 
communication region 

modification at end-of-job 3.27 
compile and execute, example 3.103 
compile, link-edit and execute 3.53, 3.84 
compiler LIOCS modules 2.4 
compiling in more than one partition 2.16 
condense limit 

specifying the 3.117 
condensing the libraries 3.115, 3.117 

restrictions 3.118 
CONOL statement 3.117 
CONOS statement 3.115 
CONFG generation macro 

MODEL operand 2.43 
console buffering 2.30 
context editing 2.26 
control section (CSECT) 3.81 

in an overlay structure 3.95 
including for link-edit 3.91 

6.2 DOS/VSE System Management Guide 

controlling jobs 3.25 
controlling magnetic tape 3.51 
controlling printed output 3.51 
copy blocks 2.40 
COPY control statement 3.124, 3.126 

NEW operand 3.127 
COPYSERV librarian program 3.127 
core image library 2.3 

naming conventions for 3.121 
search sequence 2.11 

CORGZ librarian program 2.6 
automatic copying 3.125 
merging libraries 3.126 

cross-partition event control 1.26 
CSECT 3.81 
CSERV program 3.130 

D 
DASD file protection 2.34 
DASD labels 3.44 
DASD switching 4.14 

channel switching 4.15 
string switching 4.15 

DASDFP (FOPT macro) operand 2.34 
de-editing assembler macros 3.131 
DECK option 3.58 
DEF command 2.14, 3.4 
default procedure names under ASI 3.18 
DEL command 3.3 
DELETC statement 
deleting 110 devices 
DELETP statement 
DELETR statement 
DELETS statement 
device assignment 

3.114 
3.4 

3.114 
3.114,3.120 
3.114,3.120 

in a multiprogramming system 3.35 
permanent 3.34 
restrictions 3.34 
temporary 3.34 

device class 
in ASSGN 3.30 

device type for new system residence 3.124 
device types for private libraries 3.132 
device types for MERGE librarian 

function 3.126 
direct access devices 

label information 3.44 
directory 

library A.I, 3.105, 3.129 
system A.1, 3.105 

disk information block (Dm) 3.66 



disk options 2.33 
DASD file protection 2.34 
rotational position sensing (RPS) 2.35 
system files on disk or diskette 2.33 
track hold 2.34 

diskette files 
label information 3.43 

display operator console (DOC) 2.43 
distribution medium 2.1 
distribution supervisors 2.3 
DLA command 2.15, 3.5 
DLBL statement 3.42 
DOC (FOPT macro) operand 2.44 
DOS/VSE 

defining the system configuration 2.43 
distribution medium 2.1 
memorandum to users 2.12 
overview 1.1 
planning 2.1 
system control program (SCP) 2.3 
using the facilities and options of 4.1 

DOSVSDMP program 2.14 
DPD command 2.23, 2.43, 3.5 

use under ASI 3.20 
DPDEXT (IOTAB macro) operand 2.23, 3.5 
DSERV librarian program 3.129 

displaying change levels 3.114 
executing after SET SDL 3.11 
listing of book names 3.111 

DSF (DPD command) parameter 2.43 
DSPCH statement 3.130 
DSPLY statement 3.129 
DSPLYS statement 3.129,3.130 
DTFDI 3.64 
DTFPH macro 2.34 
DTFSD SYSFIL support 3.66 
DTSECT AB macro 2.27 
DUMP macro 2.32 
4ump file, alternate 2.14 
DVCDN command 3.39, 4.15 
DVCUP command 3.39, 4.15 
dynamic allocation of storage 3.61 
dynamic storage areas 1.24 

E 
ECPS:VSE mode 1.1, 1.14 

defining the page data set 2.23 
determining virtual storage size 1.18, 2.18 
initial size of BG partition 3.15 
use of supervisor buffers 2.40 

edited macros 
de-editing 3.131 
preparing for update 3.131 

editing under VSE/ICCF 2.26 
emulator 2.45 
END record 

of an object module 3.81 
END statement 

for ~TNT program 3.122 
end-of-procedure (/+) statement 3.112 
end-of-job (I &) statement 3.27 
ENTRY statement 3.83 
EOJ macro 2.32 
EREP program 3.4, 3.11 

for listing of SYSREC 2.41, 3.13, 3.15 
error queue 2.41 
error volume analysis 2.43 
ERRQ (FOPT macro) operand 2.41 
ERRS option 3.58 
ESERV librarian program 3.131 
EU (SUPVR macro) operand 2.45 
EVA (FOPT) operand 2.43 
EXEC statement 3.26 

REAL operand 1.22, 3.59 
SIZE operand 1.22, 3.60 

executing a program 3.53 
in real mode 1.18, 3.59 
in virtual mode 1.18 

EXIT macro 2.30 
EXTENT job control statement 3.43 

for DASD files 3.45 

F 
fast function 2.40 
fast translate 2.40 
fast B/C-transient fetch 3.11 
FASTFTCH SET SDL procedure 3.11 
FASTTR (FOPT macro) operand 2.40 
FBA device 

size of label information area 3.119 
space available for SYSRES 3.119 

FCB (forms control buffer) 3.51 
FCEPGOUT macro 2.24, 4.21 
FETCH macro 

use of 3.97 
file id 

in DLBL/TLBL statement 3.42 
file labels 3.39 
file name 

for system files on disk 3.65 
in problem program 3.42 
in DLBL/TLBL statement 3.42 

files 
relating to a program 3.29 

fixing pages in processor storage 1.24, 4.19 
fixlist 2.40 

Index 6.3 



FOPT generation macro 
ASYNOC operand 2.30 
ERRQ operand 2.41 
RPS operand 2.35 
CBF operand 2.30 
DASDFP operand 2.34 
DOC operand 2.44 
EVA operand 2.43 
F ASTIR operand 2.40 
JA operand 2.28 
JALIOCS operand 2.28 
PRTY operand 2.22 
PSLD operand 2.25 
RPS operand 2.36 
SEC operand 2.26 
SLD operand 2.25 
SYSFIL operand 2.24, 2.33, 3.65 
TEBVoperand 2.42 
TRKHLD operand 2.34 
TIIME operand 2.30, 2.32, 4.1 
ZONE operand 2.29 

foreground partition 
allocating address space to 3.15 
initiating 1.2, 3.17 
minimum allocation 3.17 
number of 1.2 

forms control buffer (FCB) 3.51 
FREEVIS macro 3.61 

during real mode execution 3.61 

G 
GENEND (librarian) statement 3.131 
GETCATALS (librarian) statement 3.131 
GETIME macro 2.29 
GETVIS (SVA command) parameter 2.21 
GETVIS area 

partition 1.24, 3.61 
system 1.24, 2.21 

GETVIS requests, real mode execution 3.60 
GO parameter of EXEC statement 3.54,3.84 

H 
hard copy file 

creating 2.13, 2.14 
history file 2.1, 2.13 

update procedures 2.5 

6.4 DOS/VSE System Management Guide 

I 
I/O options 2.38 

channel queue 2.38 
error queue 2.41 
supervisor buffers 2.39 

ICCF 2.26 
ICCF (SUPVR macro) operand 2.26 
ID job control statement 3.25 
iFCEREPl program 3.11 
DIPL file 3.3 
INCLUDE statement 3.83, 3.91 
initial microprogram load 

(IML) 1.18, 2.18, 2.23 
initial program load (IPL) 3.2 

automatic 2.45, 3.2, 3.6 
automatic functions of 3.7 
interactive 3.2, 3.17 
user-defined processing after 3.14 

interactive computing and control (ICCF) 2.26 
interactive IPL 3.2, 3.17 
interval timer 2.29, 4.1 
invoking cataloged programs 3.57 
10DEV (lOT AB macro) operand 2.45 
IORB macro 2.40 
10TAB generation macro 2.44, 3.4 

CHANQ operand 2.38 
DPDEXT operand 2.23, 3.5 
10DEV operand 2.45 

IPL commands 3.3 
ADD 3.4 
DEF 2.14, 3.4 
DEL 3.4 
DLA 2.15, 3.5 
DPD 2.23, 2.43, 3.5 
SET 3.4 

IPL communication device list (CDL) 3.7 
IPL communication device, establishing 3.3 
IPL list option 3.2, 3.20 
IPL procedure under ASI 3.20 
IPL records A.l 
IPL user exit routine 4.1 

example 4.3 
register usage 4.2 

J 
JA (FOPT macro) operand 2.28 
JALIOCS (FOPT macro) operand 2.28 
JCL procedure under ASI 3.21 
JDUMP macro 2.32 
JOB statement 3.26 
job 3.25· 



job accounting 2.28 
example 4.11 
programming considerations 4.9 
register usage 4.9 
table 4.8 
user interface routine 4.7 

job control 3.25 
job control user exit routine 4.3 

example 4.5 
register usage 4.4 
vector table 4.4 

job name 3.26 
job step 3.26 
job stream 3.28 
job-to-job communication 3.29 
JOBCOM macro 3.29 

L 
label information 

for direct access files 3.44 
for diskette files 3.43 
for magnetic tape files 3.47 
PARSTD 2.18, 3.48 
STDLABEL 2.16, 3.49 
storing 3.48 
USRLABEL 3.48 

label information area A.1, 2.15, 3.42 
outside of SYSRES file 2.15, 3.5, 3.125 
sequence of search 2.16, 3.49 

label options 3.48 
label save area 3.93 
label subarea 3.48 

clearing of 3.49 
labels 3.39 
language translator 3.80 
LBL TYP job controi statement 3.44, 3.48, 3.93 

example 3.99, 3.102 
LFCB command 3.52 
LFCB macro 3.52 
librarian programs 3.106 

cataloging 3.109 
CORGZ and COPYSERV 3.122 
CSERV 3.130 
ESERV 3.131 
maintenance functions 3.108 
PSERV 3.130 
real mode storage requirements 3.107 
restrictions 3.107 
RSERV 3.130 
service programs 3.128 
SSERV 3.130 

libraries 
cataloging into 3.109 
changing the size of system libraries 3.119 
condensing 3.115, 3.117 
deleting members from 3.114 
determining the location of 2.7 
directories 3.105 
displaying the contents of 3.129 
displaying the directories 3.129 
eliminating 3.120 
examples of deleting and condensing 3.116 
examples of organization 2.9 
maintaining 3.108 
online maintenance 2.26 
operational 2.11 
organizing 3.122 
planning the 2.2 
planning the size and contents of 2.11 
private 2.5, 3.132 
punching the contents of 3.129 
purpose and contents of 2.3 
reallocating the sizes of 3.118 
renaming members 3.121 
service programs 3.128 
sublibrary 2.4, 3.110 
transferring members between 3.125 
using system libraries as private libraries 3.136 
using the 3.105 

library directories 3.105 
library status report 3.129, 3.137 
link edit and execute 3.83 

example 3.101 
LINK option 3.55, 3.79, 3.83, 3.84 

suppression of 3.104 
linkage editor 3.79 

automatic invocation 3.54, 3.84 
examples 3.97 
input to 3.87 
obtaining a storage map 3.94 
processing requirements 3.86 
storage requirements 3.91 
symbolic units required 3.86 

linkage editor control statements 
ACTION 3.90, 3.94 
ENTRY 3.83 
examples 3.98 
INCLUDE 3.83, 3.91 
PHASE 3.82, 3.87 

linking programs 3.79 
LIST linkage editor option 3.58 
LISTIO statement/command 3.39 
LISTX linkage editor option 3.58 

Index 6.5 



load address 3.89 
LOAD macro 3.97 
load lists 3.9 
LOG 3.58 
LOG IPL option 3.2 
logging and reporting for access control 2.27 
logical transients 3.11 
logical I/O unit 3.30 

programmer 3.32, 3.34 
system 3.32, 3.33 

LSERV program 3.50 
LUCB command 3.52 

M 
MACRO statement 3.111 
magnetic tape, positioning 3.51 
magnetic tape files, label information 3.47 
main task 1.26 
MAINT librarian program 3.108 

catalog function 3.109 
condense function 3.115 
delete function 3.114 
reallocate function 3.117 
rename function 3.121 
update function 3.122 
used to catalog ASI procedures 3.18 

maintaining libraries 3.108 
assignment of private libraries 3.108 

MAP 
command 3.17, 3.27 
operand in ACTION statement 3.94 

master procedure under ASI 3.18 
memorandum to users 2.12, 2.16 
MEND statement 3.111 
MERGE statement 3.126 
merging of libraries 3.126 
MICR stacker selection routines 3.60 
mode of execution 1.17 

inquiring via the RUNMODE macro 4.21 
real 1.18, 3.59 
virtual 1.18 

MODEL (CONFG macro) operand 2.43 
MSG command 2.32 
MSHP (Maintain System History 

Program) 2.2, 2.13 
history file update procedures 2.5 
use of 3.115 

MTC statement/command 3.51 
multiphase program names 3.87 
multiple extent page data 

set 2.23, 2.43, 3.5, 3.20 

6.6 DOS/VSE System Management Guide 

multiprogramming 1.1 
device considerations under 1.3 

multitasking 1.25 
types of . 1.26 

N 
naming conventions 

cataloging partition-related procedures 3.78 
phases 3.121 
relocatable library 3.110, 3.121 
source statement library 3.110 

never ending program, under ASI 3.21 
new SYSRES, device type 3.124 
NEWVOL (librarian) statement 3.132 
NOAUTO 

operand in PHASE statement 3.93 
NOFASTfR option 2.41 
NOLOG IPL option 3.2 
NOMAP 

operand in ACTION statement 3.94 
nonpageable 

program 1.18 
supervisor routine 1.17 

nonrelocatable phase 3.82 
NPARTS (SUPVR macro) parameter 2.21 

o 
object module 3.81 

including an 3.91 
OLTEP program 3.60 
online library maintenance 2.26 
operator communication exit 2.32 
operator communication, asynchronous 2.30 
OPTION job control statement 3.48 

CATAL option 3.48 
LINK option 3.55, 3.79 
NOFASTfR option 2.41 

options for program execution 3.58 
organizing the libraries 3.122 
OV parameter in EXEC statement 3.72 
OVEND statement 3.72 
overlay structure 3.95 

p 

relating control sections to phases 3.95 
use of FETCH and LOAD macros 3.97 

page 1.6 
fixing 1.24 
releasing 2.24, 4.21 



page data set 1.6, 2.12 
data secured 2.23 
defining attributes 3.5 
defining extents during ASI 3.20 
defining the 2.23 
formatting of 3.5 
location of 3.5 
multiple extents 2.23, 2.43, 3.5 
size of 2.23 

page fault 1.13 
handling overlap exit 2.33 
reducing occurrence of 4.16 

page frame 1.6 
page out 1.10 

forcing 2.24, 4.21 
page pool 1.6,1.13, 1.17,3.16 

effect of large I/O areas in channel 
J)r-egr-a-IB5 1.24 

minimum size 3.16 
page-in in advance 2.24, 4.21 
pageable 

program 1.18 
supervisor routine 1.17 

PAGEIN (SUPVR macro) operand 2.24 
P AGEIN macro 2.24, 4.21 
paging option 3.2, 3.20 
PARSTD 2.16, 3.48 
PARSTD option, used under ASI 3.21 
P ARTDUMP option 3.58 
partition 1.2 

allocating address space to 3.15 
allocating processor storage to 3.16 
allocation 1.20 
balancing 2.22 
defining the number of 2.21 
displaying current allocation 3.17 
inactive 3.118 
priorities 1.3, 2.22 
selecting one for a particular job 3.28 

partition balancing 2.22 
partition GETVIS area 1.24, 3.61 

changing the size 3.62 
for real mode execution 3.60, 3.107 
Dl1D..11llum size 3.15, 3.61 
use by RPS 2.35 

PAUSE command 3.69 
PAUSE statement 3.29 
permanent (storing of) label information 3.48 
permanent device assignment 3.34 
PFIX macro 1.24, 3.16, 2.40, 4.19 
PFREE macro 1.24, 3.16, 4.19 

phase 3.82 
load-address 3.89 
name of 3.87 
naming conventions 3.121 
non-relocatable 3.82 
reenterable 3.90 
relocatable 3.82, 3.89 
self-relocating 3.82, 3.91 
SVA eligible 3.82, 3.83, 3.90 

PHASE statement 3.82, 3.87 
NOAUTO operand 3.93 
SV A operand 3.90 

phases in the SV A 2.21 
automatic loading at IPL 3.7 
reserving space 3.6 

PIOCS generation macro 2.44 
PL/I sublibrary 3.111 
peftabilit-y of a g@R@fatoo syst-em 2.43 
POWER 3.64 

job accounting 4.7 
priority 

of a partition 1.3 
private core image library 

accessibility 3.136 
assignment 3.135 
creation of 3.134 
dedicated to a partition 3.136 
example of cataloging to 3.100 
filenames 3.135 
organization of 3.134 
using the 3.135 

private libraries 2.5· 
creating and working with 3.132 
device types 2.9, 3.132 
filenames for accessing 3.135 
filenames for creating 3.133 
label information for 3.135 
multiple 3.135 
number of 2.6 
restrictions 2.6 
search sequence 3.136 
symbolic unit names for accessing 3.135 
symbolic unit names for creating 3.133 
using system libraries as 3.136 

private second level directory (PSLD) 2.25 
PROC parameter in EXEC 3.70 
procedure library 2.5, 2.7 

cataloging to 3.112 
caution when updating 3.70 
extended support for 2.24 
renaming procedures in 3.121 
required by ASI 2.7 
restrictions when cataloging to 3.113 

Index 6.7 



retrieving procedures from 3.70 
used for automated system 

initialization 3.6, 3.18 
used for automated IPL 3.6 

processor storage 1.6, 1.17 
allocating 3.16 
allocating for real mode execution 1.21 
fixing pages in 1.24 

program check exit 2.31 
program development, stages 3.80 
program execution 3.53 

mode of 1.17 
real mode 1.18, 3.59 
virtual mode 1.18 

program exit routines 4.1 
programmer logical units 3.34 
programming techniques 

for reducing page faults 4.16 
PRTY (FOPT macro) operand 2.22 
PRTY command 1.3, 2.22 
PSERV program 3.130 
PSIZE (SV A command) parameter 2.21 
PSLD (FOPT macro) operand 2.25 
PUNCH statement 3.130 

R 
RAS 2.41 
real address 1.9 
real address space 1.18, 2.18 

size of 2.18 
real mode execution 1.18, 3.59 

processor storage allocation for 1.21 
programs requiring 3.60 

REAL operand 
in EXCP macro 2.40 
in EXEC statement 1.22, 3.59 

REALAD macro 2.40 
record on demand (ROD) command 3.13,3.14 
recorder file 2.13 

creating 3.11 
label information for 3.12 
minimum size 3.12 

recovery management support (RMS) 2.41 
with DASD switching 4.16 

reenterable phase 3.90 
reliability data extractor (RDE) 3.14 
reliability / availability / serviceability (RAS) 2.41 
relocatable library 2.4 

cataloging to 3.109 
naming conventions for modules 3.110, 3.121 
renaming modules in 3.121 

relocatable phase 3.82, 3.89 
RELPAG macro 2.24, 4.21 

6.8 DOS/VSE System Management Guide 

RENAMe statement 3.121 
renaming members in libraries 3.121 
RENAMP statement 3.121 
RENAMR statement 3.121 
RENAMS statement 3.121 
REP record 3.81 
RESET job control statement/ 

command 3.34, 3.39 
resource profile 2.27 
restarting a program from a checkpoint 4.13 
RLD record 3.81 
RMS 2.42 
RMS (SUPVR macro) operand 2.42 
RMSR 2.42 
ROD command 3.13,3.14 
rotational position sensing (RPS) 2.35 
RPG IT sublibrary 3.111 
RPS 2.35 
RPS (FOPT macro) operand 2.35,2.36 
RSERV program 3.130 
RSTRT job control statement 4.13 
RUNMODE macro 4.21 

s 
SDL (see system directory list) 
SDL (SVA command) parameter 2.21 
SDL procedure 3.9 
SEC (FOPT macro) operand 2.26 
second level directory (SLD) 2.25 
self-relocating phase 3.82, 3.91 
SEREP program 2.41 
SET command 3.4 

example 3.13 
to create system files 2.13 
used during ASI 3.20 

SET SDL command 3.10 
SET SDL procedure 3.10,3.11 
SETDF operator command 3.53 
SETIME macro 2.31 
SETPFA macro 2.33 
SETPRT job control statement/command 3.52 
SETPRT macro 3.53 
SETT macro 2.30, 2.32 
SHARE OPTION 4 2.35 
shared devices 3.35 
shared virtual area" (SV A) 1.15 

coding for 4.22 
layout of 2.18 
loading phases into 3.9 
phases 2.21 
replacing phases in 3.11 
size of 2.18, 2.21 
user options 3.9 

SIO (start I/O) accounting 4.7 



SIZE command 3.62 
used under ASI 3.21 

SIZE operand 1.22, 3.60 
SLD (FOPT macro) operand 2.25 
source module 3.80 
source statement library 2.4 

cataloging to 3.110 
naming conventions 3.110 
updating books in 3.122 

SSERV librarian program 3.130 
use of 3.111 

stages of program development 3.80 
standard label procedures 2.16 
standard labels for system files on tape 3.64 
START command 1.2,3.17 

used under ASI 3.21 
status report (see library status report) 
SID-LABEL 2.16, 3.49 
STDLABEL option, used under ASI 3.21 
STDOPT command 3.27, 3.59 

used under ASI 3.21 
STOP command, used under ASI 3.21 
stop facility under ASI 3.19 
storage allocation 1.18 
storage management 1.8 
storage protection 1.3 
string switching 4.15 
STXIT macro 2.30, 4.1 
sublibrary 3.110 

assembler macro (E) 3.131 
copy (A) 3.131 
naming conventions 2.4 

subtask 1.26 
supervisor generation macros 2.2 

CONFG 2.43 
FOPT 2.30 
10TAB 2.23, 2.38, 3.4 
SUPVR 2.21, 2.24 
VSTAB 2.18 

supervisor 
buffers for I/O processing 2.39 
default 3.2 
name, specifying the 3.2 
nonpageable 1.17, 3.2 
pageable 1.17, 3.2 
routines 1.17 
tailoring the 2.17 

SUPVR generation macro 2.21 
ASCn parameter 2.28 
EU parameter 2.45 
ICCF operand 2.26 
NPARTS parameter 2.21 
PAGEIN operand 2.24 
RMS operand 2.42 
TP parameter 2.25 

SV A (see shared virtual area) 
SVA command 3.6 

GETVIS operand 2.21 
position within IPL commands 3.3 
PSIZE operand 2.21 
SDL operand 2.21 

SVA operand 
in PHASE statement 3.90 
in SET SDL 3.10 

SXREF option 3.58 
SYM option 3.58 
symbolic I/O assignment 3.30 
SYSCAT 1.3, 3.33, 3.39 

assignment of 3.4 
SYSCLB 3.33 
SYSCTL 3.33 
SYSDMP 1.3, 2.14, 3.33 

assignment of 3.4 
SYSFIL (FOPT macro) operand 2.24 
SYSFIL (FOPT macro) operand 2.33 
SYSFIL option 2.5, 2.24, 2.34, 3.65, 3.112 
SYSIN 3.33, 3.38, 3.64, 3.65, 3.68 
SYSIN job streams on disk, diskette or 

tape 3.63 
interrupting 3.69 

SYSIPT 2.33, 3.33, 3.38 
input to language translators 3.54 

SYSIPT data in cataloged 
procedures 3.74, 3.76, 3.112 

SYSLNK 3.33, 3.38 
SYSLOG 1.3, 3.33, 3.38 

assignment of 3.2 
used under ASI 3.20 

SYSLST 3.33, 3.38 
SYSOUT 3.33, 3.38, 3.64, 3.65, 3.68 
SYSPCH 3.33, 3.38 
SYSRDR 3.25, 3.33, 3.38 
SYSREC (see also recorder 

file) 1.3, 2.13, 3.33, 3.39 
assignment of 3.4 

SYSRES (see also system residence 
file) 1.3, 3.33, 3.39 

SYSRLB 3.33 
SYSSLB 3.33 
system core image library 

example of cataloging to 3.98 
system date 3.4 
system directory A.1, 3.105 
system directory list (SDL) 2.19 

building (entries) 3.9 
reserving space 3.6 

system files 
system files on disk 2.33, 3.65 

filenames 3.65 
on FBA devices 3.66 

Index 6.9 



system files on diskette 2.33, 3.68 
filenames 3.68 

system files on tape 3.64 
hard copy file 2.13, 3.14 
history file 2.2, 2.13 
page data set 1.6, 2.12 
record formats 3.70 
recorder file 2.13, 3.11 
system residence (SYSRES) file 2.2, 2.7 

system generation procedure 2.1 
system history file 2.2, 2.13 

update procedures 2.5 
system installation aids 2.5 
system libraries 

relative location on SYSRES pack 2.8 
using as private libraries 3.136 

system logical units 3.33 
SYSCAT 1.3, 3.33, 3.39 
SYSCLB 3.33 
SYSCTL 3.33 
SYSDMP 1.3, 2.14, 3.33 
SYSIN 3.33, 3.38, 3.64, 3.65, 3.68 
SYSIPT 2.33, 3.33, 3.38 
SYSLNK 3.33,3.38 
SYSLOG 1.3,3.33,3.38 
SYSLST 3.33,3.38 
SYSOUT 3.33, 3.38, 3.64, 3.65, 3.68 
SYSPCH 3.33,3.38 
SYSRDR 3.25,3.33,3.38 
SYSREC 1.3, 2.13, 3.33, 3.39 
SYSRES 1.3, 3.33, 3.39 
SYSRLB 3.33 
SYSSLB 3.33 

system portability 2.43 
system residence (SYSRES) file 2.2, 2.7 

copying the 3.123 
creating a new 3.123 
disk space available 3.119 
layout of A.1 

system ~ecurity table 2.27 
system time zone 

setting 3.4 
system volume label A.1 
system GETVIS area 1.24, 2.21 

reserving space for 3.6 
SYSUFLD program 3.52 
SYSOO6, used to access an alternate 

dump file 2.14 

T 
tape error statistics 2.42 
task 1.26 

main 1.26 
subtask 1.26 

6.10 DOS/VSE System Management Guide 

task selection 1.1 
task timer 2.29 

exit 2.32 
TEBV (FOPT macro) operand 2.42 
telecommunication balancing 2.25, 4.21 
telecommunication facilities 2.25 

ACF/VTAM 2.25 
BT AM-ES 2.25 

temporary device assignment 3.34 
temporary label information 3.48 
TESIT macro 2.30, 2.33 
text editing 2.26 
time zone 

setting 3.4 
time-of-day clock 2.29 

setting 3.4 
timer services 2.28 

interval timer 2.29 
task timer 2.29 
time-of-day (TOD) clock 2.29 

timeshared computing 2.26 
TLBL statement 3.42, 3.47 
TP (SUPVR macro) operand 2.25 
TPBAL command 4.21 
TPIN macro 4.21 
TPOUT macro 4.21 
track hold option 2.34 
TRKHOLD (FOPT macro) operand 2.34 
TTIME (FOPT macro) operand 2.30 
TTIME (FOPT macro) operand 4.1 
TTIMER macro 2.31 
TXT record 3.81 

u 
UCB (universal character set buffer) 3.51 
UCS command 3.52 
universal character set buffer (UCB) 3.51 
UPDATE librarian statement 3.122 
UPSI job control statement 3.59 
user exit routines 2.31 

abnormal termination 2.32 
interval timer 2.31 
IPL 4.1 
job accounting 4.7 
job control 4.3 
operator communication 2.32 
page fault handling overlap 2.33 
program check 2.31 
task timer 2.32 



user profile 2.27 
user program switch indicator (UPSI) 3.59 
user-defined processing after IPL 3.14 
USRLABEL 3.48 
utilities, number of copy blocks for 2.40 

v 
VIRTAD macro 2.40 
virtual address space 1.18 
virtual mode execution 1.18 
virtual storage 1.4, 1.16 

macros 4.19 
maximum size 1.5 
relating to locations in processor storage 1.9 
size 2.18 

virtual storage macros 4.19 
FCEPGOUT 2.24, 4.21 
P AGEIN 2.24, 4.21 
PFIX 1.24, 2.40, 3.16, 4.19 
PFREE 1.24, 3.16, 4.19 
RELPAG 2.24,4.21 
RUNMODE 4.21 

volume label 
system A.I 
user A.1 

VSAM master catalog, assignment of 3.5 
VSE/ Advanced Functions, installing 2.2 
VSIZE (VST AB macro) 

operand 2.18, 2.23, 3.15 
VST AB generation macro 2.18 

BUFSIZE operand 2.39 
VSIZE operand 2.18, 23 

VTAM 2.26 

w 
weak external reference 3.93 
work blocks 2.40 
workfiles 2.14 

symbolic device requirements 2.15 
working set 4.16 

techniques for reducing 4.17 

x 
XREF option 

z 
ZONE (FOPT macro) operand 2.29 

23xx emulator 2.35 
3031 processor 1.1, 3.4, 3.11 

space on recorder file 3.12 
3330-11/3350 

DASD file, support for 2.36 
3540 diskette 

as IPL device 3.3 
SYSIPT assigned to 3.68 

370 mode 1.1, 1.14 
defining virtual address space 1.18, 2.1'8 
defining the page data set 2.23 
partition allocation 3.15 
use of supervisor buffers 2.40 

3800 Printing Subsystem 3.52 
4300 processor, modes of execution 1.1, 1.14 
5424 MFCU 3.54 
7443 service record file 3.4 

Index 6.11 



DOS/VSE System Management Guide 

GC33-5371-7 

READER'S 
COMMENT 
FORM 

This sheet is for comments and suggestions about this manual. We would appreciate your 
views, favorable or unfavorable, in order to aid us in improving this publication. This form 
will be sent directly to the author's department. Please include your name and add ress if 
you wish a reply. Contact your IBM branch office for answers to technical questions about 
the system or when requesting additional publications. Thank you. 

Name 

Address 

What is your occupation? 

Your comments* and suggestions: 

* We would especially appreciate your comments on any of the following topics: 

Clarity of the text 
Organization of the text 

Accuracy 
Cross-references 

Index 
Tables 

Illustrations 
Examples 

How did you use this manual? 

As a reference source 

As a classroom text 

As a self-study text 

Appcaran\.:l' 
PnrJtlllg 

Paper 
RlIlding 



GC33-5371-7 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue to use 
the information you supply. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM system 
should be directed to your IBM representative or to the IBM sales office serving your locality. 

Fold 
Fold 

n 
c 
~ 

l> 
r 
o 
Z 
C) 

--I 
I 
Vi 
C 
Z 
m 

•••••••••••••••••••••••••••••••••••••••• $ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM Corporation 
11 33 Westchester Aven ue 
White Plains, N.Y. 10604 

A ttent ion: Department 813 BP 

Fold 

IBM 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. V., U.S.A. 10601 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 



GC33-5371-7 

I==;l( 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N. V., U.S.A. 10601 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	A-01
	A-02
	A-03
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	replyA
	replyB
	xBack

