
REXX Guide

--------- -------- - ---- - - ----------_ .-

Front Cover Pattern: Electronic Sunflower

G

SC33-0478-0
Release 1

D D
REXXGuide

Program Number
GDDM-REXX 5664-336

Release 1

Licensed Program

---------"- ------- - ---- -- ----------_.-

First Edition (January 1987)

This edition applies to Release 1 of the GDDM-REXX IBM licensed program,
program number 5664-336.

"GDDM" stands for "Graphical Data Display Manager"; "REXX" stands for
"Restructured Extended Executor Language."

Changes are made periodically to the information herein; before using this publication,
consult the latest IBM System/370. 30xx. and 4300 Processors Bibliography,
GC20-0001, to learn which editions and technical newsletters are current and
applicable.

References in this publication to 10M products, programs, or services do not imply
that JRM intends to make these available in all countries in whlch IBM operates. Any
reference to an IBM program product in this document is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent
program may be used instead.

Publications are not stocked at the addresses given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
'has been removed, comments may be addressed either to:

International Business Machines Corporation,
Department 6RIH,
180 Kost Road,
Mechanicsburg,
PA 17055,
USA

or to:

IBM United Kingdom Laboratories Limited,
Information Development, Mail Point 095,
Hursley Park,
Winchester, Hampshire, England S021 2JN

IRM may use or distribute whatever information you supply .111 any way it believes
appropriate without incurring any obligation to you.

No part of this book, with the exception of sample programs, may be reproduced in
any form or by any means, including storing in a data processing machlne, without
permission in writing from IBM.

© Copyright International Business Machines Corporation 1987

Preface

What this book is about

This book describes GDDM-REXX, a programming productivity tool that lets GDDM
be used from EXECs written for the VM/System Product Interpreter.

Who this book is for

This book is for users of GDDM-REXX and those who install it.

What you need to know

This book assumes some knowledge of high-Icvcllanguage programming and of CMS.

How to use this book

Introductory information and learning sessions are at the front of the book, installation
and diagnosis information in the middlc, and reference at the back. Turn to the section
you are interested in. Note that for reference information on REXX st.atements and
GDDM calls you will need other books (sec the Bibliography that follows).

Preface iii

GDDM books

Introduction
General Information

GBOF-005S*

Release Guide

GC33-0320

General
Installation and
System Management
for MVS
SC33-0321

Installation and
System Management
forVM
SC33-0323

J nstallation and
System Management
for VSE
SC33-0322

GDDM-GKS
Installation Guide

SC33-0439

Performance Guide

SC33-0324

Messages

SC33-0325

GDDM-GKS Messages

SC33-0496

Diagnosis and Problem
Determination Guide

SC33-0326

iv GDDM-REXX Guide

"Includes the GDDM brochures.
For the General Information manual
only, use order number GC33-0319

Programming User's Guides
Application Guide for Users
Programming Guide

(Two volumes) SC33-0327

SC33-0337 J nteractive Chart Utility
(ICU)

Base Programming SC33-032S
Reference

(Two volumes) Image Symbol Editor

SC33-0332 SC33-0329

GDDM-PGF Vector Symbol Editor
Programming Reference

SC33-0333 SC33-0330

GDDM-AEXX Guide Interactive Map Definition
(GDDM-IMD)

SC33-047S SC33-033S

GDDM-GKS
Programming Guide
and Reference
SC33-0334

Base Programming
Summary (Booklet)

SX33-6053

GDDM-PGF Programming
Summary (Booklet)

SX33-6054

VM/System Product Interpreter books

VM/System Product Interpreter User's Guide, SC24-5238

VM/System Product Interpreter Reference, SC24-5239

VM instaUation and system books

VM/SP Planning Guide and Reference, SC19-6201

VM/SP Operator's Guide, SC19-6202

VM/SP System Programmer's Guide, SC19-6203

VM/SP System Messages and Codes, SC19-6204

VM/SP Installation Guide, SC24-5237

Preface V

Book structure

Part 1: Learning (1 - 37)
gets you started using GDDM-REXX

Part 2: Installation (39 - 46)
describes the installation process

Part 3: Diagnosis (47 - 50)
gives some guidance on diagnosing errors

Part 4: Reference (51 - 74)
contains reference information

Index (75)

Summary of GODM-REXX (inside back cover)

vi GDDM-REXX Guide

Contents

Part t: Le~lI'ning .. I
Introduction to GDDM-REXX 3
Background to GDDM-REXX .. 4

'I'hree-page REXX ,. .. 5
Three-page (:JDI)M .. 8
Three-page GDDM-REXX .. 11

Learn by doing ... 14
Session 1: Running the sample EXECs 15
Session 2: Building your first EXEC 17
Session 3: Using the documentation 19
Session 4: Messages and debugging 22
Session 5: Trying out GDDM-REXX parameters 25

More advanced programming .. 28
Mapping ... 28
Multiple instances of GDDM and GDDM-REXX 31

Hints on using GDDM-REXX 33
Common en'ors .. 35

Part 2: Installation .. 39
Overview of GDDM-REXX installation 40
Step I: Preinstallation planning ,..................... 40
Step 2: Run the installation EXEC 41
Step 3: Create GDDM-REXX discontiguous saved segment 42
Step 4: Test the installation ... 44
Step 5: Provide suitable EXECs for users 44
Step 6: Inform users about GDDM-REXX 45
Postinstallation tasks ... 45
Installation module directory ... 46

Part 3: Diagnosis ... 47

Part 4: Reference ... 51
Summary ... 52
Restrictions and differences .. 53
GDDM call syntax ' 54
I linding syntax from reference sources 59
GDDMREXX command ... 63
GX(:JET subcommand ... 64
(:TXSE'l' subcom.mand .. -65
EH.XMSVAR EXEC .. 66
Error message explanations .. 68
Listing of ERXMODEL EXEC 72

Contents vii

introduction

Part I: Learning

/

Part 1: Learning 1

pari 1: lear:ning

/* REXX EXEC to draw phases of the moon */
Address command 'GOOHREXX INIT' /* initialize GOOM-REXX */
Address gddm /* tell REXX to pass calls to GOOM*/

period :: 29.5306
quarter :: period/4
day:: datel'C')-31421

tdate :: date()
phase :: day//period
rightrad :: 20
leftrad :: 20
inc:: leftrad/lperiod/4)

/* time between new moons */
/* quarter period of rotation */
/* number of days since first new */
/* moon in 1986 (loth January) */
/* today's date in character form */
/* number of days after new moon */
/* radius of right edge of moon */
/* and left edge to be drawn */
/* assume phase changes regularly */

Select /* select shape of moon according */
/* to which quarter we are in */

When phase<quarter then /* first quarter */
leftrad=-(leftrad-Iphase*inc))

Hhen phase<quarter*2 then /* second quarter */
leftrad::l(phase-quarter)*inc)

Hhen phase<quarter*3 then /* third quarter */
righirad::rightrad-(lphase-quarier*2)*inc)

otherwise /* fourth quarter */
rightrad=-llphase-quarter*3l*inc)

End

'GSUHIN 0 100 0 100'
'GSCOL 7'
'GSMOVE 50 30'
'GSAREA I'
'GSELPS 20 .rightrad 90 50 70'
'GSELPS 20 .leftrad 90 50 30'
'GSENOA'
'GSCHAR 40 10 .. tdate'
'ASREAO

Address command 'GOOMREXX TERM'
Exit

2 GDDM-REXX Guide

/* use GO OM to draw moon with two */
/* elliptical arcs, direction */
/* varies depending on the quarter*/
/* set up grid 100 by 100 */
/* color 7 is white */
/* move to start of arc
/* area to shade moon
/* draws right hand edge
/* draws left hand edge
/* end the area
/* write date under moon
/* send result to the terminal

/* close down GOOM-REXX
/* terminate the program

introduction

Introduction to GDDM-REXX

GDDM-REXX lets you usc GDDM in EXECs written for the VM/System Product
Interpreter, using the Restructured Extended Executor Language - REXX. On the
opposite page is a listing of a GDDM-REXX program. The program draws a picture of
the phase of the moon on the day you run it.

J\ look at the program shows you how easy it is to use GDDM-REXX. The REXX
language is easy to code and is uncluttered; it uses high-Ievcllanguage statements such as
SELECT and IF ... TIIEN ... ELSE. REXX also lets you use CMS and CP system
facilities. GDDM calls can be coded using REXX variables or literals as parameters.
REXX programs are interpreted - that means you do not have to go through the chore
of compiling and recompiling the program. You can code and run, then change and run
again until you have your program exactly how you want it. These features let you write
and test your programs quickly.

GDDM-REXX is an IBM licensed program; prerequisites are the VM/System Product
Release 4 or later and GDDMjVM Version 2. If you have installed the GDDM-PGF or
GDDM-GKS licensed program, you will be able to usc them with GDDM-REXX. A
des(~ription of prerequisites is given in the installation section of this manual.

Part 1: Learning 3

part 1: learning

BacI{ground to GDDM-REXX

The diagram below shows the relationship between GDDM, GDDM-REXX, and the
System Product Interpreter, which is the program that interprets programs in the REXX
language.

Program structure,
computation,
access to CMS and CP

System Product
Interpreter
(REXX language)

GDDM­
REXX

Keeps them talking

Full screen
alphanumerics, graphics,
and image

GDDM

1\ brief description of all three follows on the next few pages under the headings
"Three-page REXX," "Three-page GDDM," and "Three-page GDDM-REXX."

If you are new to GDDM and REXX, you may fmd it hard to know which you are
dealing with at any particular point in a program. Here is a brief explanation: GDDM
lets you format graphics and alphanumerics so that the results you want can be shown on
a screen or printed or plotted on paper; REXX is a high-level programming language -
it lets you write a program that contains the GDDM calls and perhaps computes or
generates the information that GDDM will display.

Here is a sequence of statements that shows the principle:

/* series of REXX statements and GO OM calls
x = x+y
'GSLINE .x .y'
'ASREAO .typ .val . count ,
If typ = 1 & val = 3 then

Exit
Else

Call newpic

/* REXX computation statement
/* GOON graphics call
/* GOON output statement
/* REXX conditional statement

/* REXX conditional statement
/* and call

In the example, GDDM calls are in uppercase letters and within quotes, and REXX
statements are in lowercase, with initial capitals on statement names. This is a
convention used in this book for clarity. You may like to use it yourself, Of you may
have a preferred alternative style. However, the impoJtant difference lies in the different
jobs that GDDM and REXX are used for.

4 GDDM-REXX Guide

three-page REXX

Three-page REXX

'I1lis description is for people who already know a high-level language. If you know
nothing of programming you will need more than the information that is here. Full
descriptions of REXX may be found in the VMjSystem Product Interpreter User's Guide,
SC24-5238, and the VM/System Product Interpreter Reference, SC24-5239.

REXX is a powerful programming language that is used in the System Product
Interpreter on the VM system. It is easy to code because it includes high-level language
features such as IF ... TlIEN ... ELSE, SELECT, DO loops and others. It treats data
variables as being typeless, that is, their attributes are detennined dynamically, and so
there is no problem of data declaration or defmition that takes up so much programming
space in many other high-level languages. Another reason why REXX is easy to code is
that it gives easy access to other environments; for example, CMS or CP commands can
be coded directly into REXX programs.

Example of a REXX program: Here is a simple REXX program that shows the powers
of four; four to the power of 0, four to the power of I, and so on:

/* program to show exponentiation */
x=4 /* show the powers of four */
Do i=O to 5 /* 4 to the power of 0 to 5 */

y=x**i /* y = x to the power of i */
Say x 'to the power of' i '=' y /* show result on terminal */

End i /* end of the do loop */
Exit /* end of the program */

The program starts with a comment, as all REXX programs must. (REXX comments
start with a /* and end with a */.) Each statement is on one line with no end marker.
(No end marker is needed when there is only one statement per line.) If two statements
occur on a line, a semicolon is used as a delimiter; if a statement overflows a line, a
eomma is used as a continuation character. The program ends with Exi t. The words in
the Say statement are in single quotes. This program is in uppercase and lowercase
characters, but it need not have been - more of that later.

[{ow programs are held and executed: In CMS, REXX programs are nann ally produced
as files with a filetype of EXEC. They are invoked by typing their name as a conunalld
or by using the EXEC command.

Getting input into REXX: REXX can get hs input from a stream or a stack, from
reading files using the EXECIO command, or from arguments passed to the program.

When using a stack, REXX pulls the input ofT the stack, parses it and moves it .into
variables. This stack can be the terminal. Thus the loop below will get two numbers
from the terminal until STOP is typed.

/* get values until STOP is typed
Do until numberl='STOP' I number2= 'STOP ,

Say 'Type in two numbers'
Pull numberl number2

End

Part 1: Learning 5

part 1: learning

If there is no second number, the variable number2 will have a null value assigned to it;
if you type in more than two numbers, number2 will contain everything after the first.
Tins will only cause a problem if you try to use it in an arithmetic operation like adding.

Arguments to REXX programs: Arguments to a REXX program can be got by use of
the Arg instruction thus:

1* rexx program with two arguments
Arg argl argZ
Say 'The two arguments are ' argl 'and' argZ

You might prefer to use the Pa rse a rg instruction instead; it is more flexible and more
powerful.

The exponentiation example- on the previous page could be improved by the use of
arguments:

1* program to show exponentiation
Ar-g x /* read the argument

If the program was called POWERS you could then type in POWERS 5 to get the
powers of 5 - you would have to remove the assignment x=4.

Submutines andfimction.s: Subroutines are delimited by labels (like adder in the
following example) and Return statements and are called by Call statements.

1* REXX program with two arguments
Call adder 1 2
Exit

adder:
Arg numl num2
Say numl + num2
Return

/* end of mainline code

Notice that the subroutine comes after the Exi t statement that ends the main part of the
EXEC. Subroutines can also be programs held in separate ftles.

You can also write your own functions - subroutines that return values, like this one, to
calculate factorials:

1* example of a recursive internal function
Arg x
Say x'! =' factoriallx)
Exit

factorial: Procedure
Arg n
Ifn=Othen

Return 1
Return factorialln-I) * n

A rrays and stemmed variables: REXX has extended the lngh-levellanguagc idea of
arrays. The extensions are variables with stems. Stemmed variables can have numbered
subscripts which can be accessed in do-loops just like arrays; for example:

Do i = 1 to 10
Say stem.i

End i

6 GDDM-REXX Guide

three-IJage REXX

Notice the suhscript is referenced by a dot (a period) followed by a number.
Multi-dimensional arrays use a repeat of the dot, array. 1. 1 and so on. To give a
value of 6 to every clement of an array usc:

array. =6

Also, the subscripts need not be numbers. array. joe is just as valid as array. 1,
even if joe is a character string. rn addition, the existence of array. 10 docs not mean
there has to be an array. 9.

For a programmer used to other high-level languages, a simple way to look at it is that
RFXX uses the item after the stem as a suffix, which can, but need not, act as a
subscript.

Uppercase and lowe,.case: REXX programs tend to be written in a combination of
uppcrcase and lowercase not unlike English prose. Variables are given the value of their
name in uppercase if they do not have a previously defined value. (That is why if you
type Say hello, the terminal displays HEllO.)

If you want RI\XX to keep something in lowercase you must enclose it in quotes (single
or double):

words='Hello there'

To prevent input from being translated into uppercase you usc Parse pull explicitly
instead of Pull which is short for Parse upper pull.

Quotes and double quotes: REXX g!ves you the choice of two sorts of quotes, single and
double. You don't need to double them up to put a quote in a string (as in some
programming languages) unless the quote is already used as a delimiter:

Say "It's easy to get quotes in a string"
Say 'It"s easy this way, too'

To the newcomer, a REXX program looks full of quotes. Because REXX has no data
declaration or definition, anything may be a variable name and potentially may be
replaced by a value. Por this reason everything that is not a variable, such as a GDDM
call name or a CP or eMS command, is safer if it is included in quotes.

REXX expressions: REX X has a powerful collection of instructions (like Say) and
built-in functions (like date). Any of these can contain expressions, which arc evaluated,
in a manner similar to other programming languages. Any expression that is not a
R EXX instruction Of assignment is treated as a command to be processed by some
external environment.

By default, commands arc passed to CMS for execution. However, you can establish a
different environment for them using the Address instruction. This tells REXX to pass
the command elsewhere, and is the way GDDM-REXX receives GDDM calls. A
command like 'GSLINE 30 40' in a REXX EXEC is passed to GDDM-REXX for
processing by GDDM.

Part 1: Learning 7

part 1: learning

Three-page GDDM

GDDM is a program that lets you show graphics, alphanumerics, and images on a screen
and lets you print or plot the result.

This description gives a very brief overview. It will tell you enough to get started using
GDDM-REXX; for serious GDDM programming you will need to use the other GDDM
manuals.

The GDDM Application Programming Guide is the most useful book if you want to learn
to program with GDDM. You will also need other reference manuals, listed on page 19;
order numbers are on page iv at the front of this book.

Also, the ERXPROTO EXEC, supplied with GDDM-REXX, should help you code
many of the GDDM calls - more about this later.

Input and Output: When a graphics call or an alphanumerics call is executed, the
drawing or writing is done on a conceptual screen held by GDDM. The output is not
sent to the terminal until one of the following input/output calls is executed:

ASREAD
FSFRCE
GSREAD
MSREAD
WSIO

Normal for terminal
For printers and terminal "animation"
Special purpose, interactive graphics
Special purpose, mapping
Special purpose, operator windowing

Alphanumerics: GDDM has two fonns of alphanwnerics: procedural alphanumerics,
which is suitable for small applications, and mapped alphanumerics, which is more
suitable for large menu-based systems like order processing, and provides better
performance.

Procedural alphanumerics lets you define a field that is within an area on the screen, and
give the field an identifying number so you can refer to it again. You can then read data
from or write data into the field. For example:

/* set up values in REXX
id=l /* identifier for field 1

/* starts on row 3 •.. row=3
col=l
depth=l
width=80
type=O
'ASDFLD
'ASCPUT
'ASREAD
'ASCGET

/* .•. in column 1 */
/* 1 row deep */
/* 80 columns wide */
/* takes input and output */

.id .row .col .depth .width . type' /* create the field */
· id 26 "These words are in a field" , /* put words in field */
• typ . val • count' /* send to screen */
· id 80 . inputval' /* put input in inputval */

You can control the color and other attributes of complete fields or of individual
characters within the field. Remember that the words will not appear on the screen until
you use an input/output statement.

Mapped alphanumerics lets you create a template or "map" of the screen which is separate
from the program. The map associates positions on the screen with variable names. You
then put values in the variables, call on the map to draw the screen, and return input into

8 GDDM-REXX Guide

three-page GDDM

the variables. The map is created with a GDDM utility, GDDM Interactive Map
Definition. (GDDM-IMD is a separate licensed program.) The calls involved are:

MSPCRT
MSDFLD
MSPUT
MSGET
MSREAD

Create a mapped page
Define mapped field on .page
Put values on the mapped screen
Get values from the mapped screen
A combination of MSPUT, MSGET, and ASREAD

Graphics: This is produced by calls that draw on a two-dimensional grid. Calls to draw
lines arc given an end point and draw from the current position to the end point. You
can move the current position with GSMOVE, and draw straight lines with GSLINE. The
grid is 100 by 100 unless you change it. The calls below draw a triangle ncar the middle
of the screen. ASREAD sends the drawing to the terminal and waits for you to press an
action key.

1* program to draw a triangle
Address command 'GDDMREXX INIT'
Address gddm
'GSHOVE 50 50'
'GSLINE 70 50'
'GSLINE 70 70'
'GSLINE 50 50'
'ASREAD .typ .val • count ,
Address command 'GDDMREXX TERM'
Exit

1* initialize
1* pass commands to GDDM *1
1* move to point at X=50 Y=50 *1
1* draw line to point X=70 Y=50 *1
1* draw line to point X=70 Y=70 *1
1* draw line to point X=50 Y=50 *1
1* send drawn triangle to screen *1
1* terminate *1
1* stop the program *1

As well as straight lines, there are calls to draw elliptical or circular arcs, and to define
areas. With these it is possible to draw almost anything.

The color and width of the lines are set by attribute calls. For example, you can say that
all lines are to be yellow (color 6) by the call

'GSCOL 6' 1* following graphics in yellow *1

Annotation of pictures is done with graphics text. This lets you write notes on the
picture. For example:

'GSCHAR 50 45 8 "Triangle'" 1* write Triangle. 8 characters *1
1* starting at X=50 Y=45 *1
1* Note use of '"' round strings ~v

Other things you can do with graphics calls are control the grid and the size of the
picture, and divide pictures into segments (repeatable elements like the windows for a
house). Note that the picture will not appear on the screen until you use an input/output
statement such as ASREAD.

Charts andgrapkv: GDDM-PGF, one of the programs in the GDDM family, is for
drawing charts. It provides two methods, the Interactive Chart Utility (ICU) and
Presentation Graphics Routine calls, that let you build your own charts. The ICU can
be used by non-programmers to draw charts. The calls are a programming interlace.
The ICU can be used on its own or can be called from a program. Calling the ICU from
a program can be useful for tasks such as printing or displaying charts whose values are
held in files. GDDM-PGF is a separate licensed program and must be installed before
the charting calls can be used.

Part 1: Learning 9

part 1: learning

Interactive graphics: GDDM has a series of interactive graphics calls that pass a screen
position to the program and allows the picture to be moved or changed from the display
terminal.

Image handling: GDDM handles images by a set of calls that let an image be read in by
a scanner or displayed and have various parts of it saved, isolated, or transformed in
various other ways.

l'J'peface.~ and character sets: You control type faces in GDDM by using symbol sets.
There are two types, vector symbol sets and image symbol sets. Vector sets are used only
in graphics text. Image sets can be used in graphics and alphanumeric text.

GDDM supplies a number of symbol sets that you can use, and two symbol editors to
produce symbols of your own. Here are the GDDM calls to use a Gothic symbol set,
catled ADMUlJGEP, that is supplied by GDDM.

'GSCB 8 8'
'GSCH 3'
'GSlSS 2 "ADMUUGEP" 193'
'GSCS 193'
message = "Dracula Lives"
'GSCHAR 10 50 13 . message ,
'ASREAD .typ .val . count ,

/* make character box large */
/* set mode as vector text, type 3*/
/* load symbol set. call it 193 */
/* say you are using set 193 */
/* set up the message */
/* write the words */
/* send to terminal

Ilomekeeping and Query Calls: GDDM i1l completed by a set of housekeeping and
query calls. The housekeeping calls allow control of how the device behaves at a detailed
level. The query calls let called programs discover the current status. For example, the
current position and the current set of attributes can be queried at the beginning of a
subroutine and restored at the end, thus making the subroutine "safe" to use in any
circumstances. Calls might be:

'GSQCP .oldx . oldy ,
'GSQCOL .oldcol'
'GSQLI'I .oldwid'

/* save current position
/* save current color
/* save current line width

and so on, for the color, line width, and other attributes.

GKS interface: As well as the graphics interface shown above, (iDDM also has an
intelface to GKS, the Graphical Kernel System. This is usable from GDDM-REXX in
the same way as other calls. The calls use the PORTRAN binding names. Note,
however, that GKS calls should not be mixed with GDDM graphics or charting calls.
The GDDM-GKS product must be installed before GKS can be used.

10 GDDM-REXX Guide

three-page GDDM-REXX

Three-page GDDM-REXX

GDDM-REXX is an interface between GDDM and REXX. It al10ws you to freely mix
GDDM calls and REXX instructions. It also contains subcommands to help with things
like tracing and has a powerful syntax that simplifies the coding of complicated
parameters.

Compared to other GDDM interfaces, GDDM-REXX is considerably easier to usc
because of a simplified REXX-like syntax, and because it is interpreted, making building
of a program and debugging much less complicated.

The next page shows how the original sample in the REXX section (on page 5) can be
updated to show full screen output, with values shown in a full screen table and also in a
graph. Typical output is shown below, using a value of 3 for the argument. (Note that
the argument should be restricted to values less than 10.)

Elponullallan

PGlrr If D
P.nr .f I
Pnu If 2
PltU If 3
Pnu .f 4
Pnu ., 5

IDD

100

ppp
123
I 4 I
I • 21
I II 81
I J1 241

Di--r~~~~~~~==~~~~
.00 .50 I • DO 1.50 2. DO 1.50 3. aD 3.50 4. DO 4.50 5. DO

Part 1: Learning 1 1

part 1: learning

/* program to show exponentiation
Arg p /* get the argument p

/* for numbers up to p, Do j=1 to P
Do i=O to 5

k=i+l
y.j.k=j**i

End i
End j

Address command 'GDDMREXX INIT'
Address gddm
id=l
'ASDFLD .id 1 1 1 14 0'

/* for powers from 0 to 5

/* put results in
/* multi-dimensional array y
/* end inner loop
/* end outer loop

/* see note 1
/* see note 2

'ASCPUT • id "Exponentiation" ,
/* see notes 3 and 4
/* set up page heading

Do i=1 to P
id=id+1
j=12+i*6
col=i//7
If col=O then

col=7
'ASDFLD .id
'ASFCOL .id

2 ,j
.col'

1 6 0'

'ASFHLT .id 2'
'ASCPUT .id

End i

Do i=O to 5
id=id+1
j=3+i

. ,
.1

'ASDFLD .id .j 1 1 15 0'
string='Power of' i ':'
'ASCPUT .id .string'

End i

Do j=1 to P
Do i=1 to 6

id=id+l
row=i+2
col=12+j*6
'ASDFLD .id
'ASCPUT ,id

End i
End j

.row .col 1
.y.j. i'

'GSFLD 10 1 22 80'
'CHPLOT.p 6 (0 1 2 3 4 5 6)
'ASREAD •
Address command 'GDDHREXX TERM'
Exit

/* set up column headings
/* increment field id
/* j gives column number
/* remainder function to keep
/* color values between 1 and 7

/* set up fields for column heads */
/* set colors */
/* reverse video
/* put numbers in headings

/* set up side column

*/
*/

*/

/* set up fields for left sides */

/* put words into side fields */

/* now the values in the columns */

/* increment field id */

6 0' /* set up fields for values */
/* put numbers into fields */

/* now show it as a graph */
/* set graphics field for chart */

.y.' /* draw line chart - see note 5 */
/* send to terminal - see note 6 */
/* see note 1
/* end of the program

*/
*/

Points to note when using GjJDM-RBXX

l. A GDDMREXX INIT command must be issued within the EXEC before GDDM is
addressed and any GDDM calls are made. A GDDMREXX TERM command must be
issued before any exit from the EXEC. Because GDDMREXX is a CMS command, it
must be preceded by an Address command instruction unless the interpreter is
already set up to send commands to CMS.

2. An Address gddm instruction must precede the first GDDM call.

12 GDDM-REXX Guide

three-page GDDM-REXX

3. GODM calls should always be in quotes to avoid REXX making changes before the
calls are passed to GOOM. The GDDMREXX command must be in quotes if you use
any of the options with parentheses.

4. Variable names in GDDM calls and GDDM-REXX subcommands must be preceded
by dots.

S. Array parameters can be passed in the following forms:

• Element by element in parentheses. The elements may be either variable names
or values. Por example:

'GSPLNE 3 I.left .xcenter .right) 110 .ycenter 20)'

• As REXX stemmed variables, which are followed by a dot in the parameter
string in the normal REXX manner. For example:

'GSPLNE 3 .xarray •. yarray.'

which is equivalent to:

'GSPLNE 3 l.xarray.1 .xarray.2 .xarray.3) (.yarray.1 .yarray.2 .yarray.3)'

• As names that GDDM-REXX will suffix with 1, 2, 3 and so on; there is more
about this on page 56.

Array parameters are more strictly interpreted in GDDM-REXX than they are in
other programming languages. For example, arrays consisting of f<JUr sets of two
values are treated as two-dimensional in GDDM-REXX although they can be treated
as one-dimensional in other languages. If an array is passed by name, it will be
indexed from clement one irrespective of whether that is the ftrst element, or whether
it exists. More information is in the reference section (see page 56).

6. Some parameters can be replaced by dots, for example, lengths and counts that
GDDM-REXX can calculate for itself, and returned values that a program does not
refer to.

REXX-like tracing: The subcommand' GXSET TRACE ON' will start tracing. Tracing
displays the REXX variable values that are received by GODM-REXX, the values
returned by GDOM-REXX, and the instruction being executed.

Special actiollsfor mapping: Because GDOM-IMD does not deftne data structures in
REXX, GDDM-REXX contains a utility that produces REXX-like data structures from
GDDM-IMD. It also contains subcommands that can be used in the program to move
values from REXX variables into the structure and vice versa. The utjJity is
ERXMSV AR EXEC; the commands arc' GXSET MSADS', to move values into the
structure, and 'GXSET MSVARS', to move values from the structure into variables.

Inside the hack cover of this manual you will ftnd a summary of the rules you need to
follow when programming in GDDM-REXX.

Part 1: Learning 13

part 1: learning

Learn by doing

The best way to learn about GDDM-REXX is by using it at a terminal.

Begin by running the samples of GDDM-REXX that are provided with the product.
Then alter them to explore GDDM, REXX, and some of the special features of
GDDM-REXX.

The following sessions take you through the basics oflearning about GDDM-REXX.
(Advanced programming considerations are discussed later.) 11lC sessions are divided into
two parts; the fU'st part describes the background, and the second part tells you what to
do.

Things to do are marked with a bullet, thus •.

If you have a tenninal on which you can use GDDM-REXX, start using it now. If you
have not yet installed GDDM-REXX, turn to "Part 2: Installation" on page 39.

If GDDM/VM has not been installed into a saved segment, you will need to issue a
GLOBAL TXTLIB ADMRLIB ADMGLIB command for the GDDM libraries before you
use GDDM-REXX. (Other GDDM programs may need other text libraries).

14 GDDM-REXX Guide

sample execs

Session 1: Running the sample EXECs

This session tells you how to run a GDDM-REXX EXEC and shows you some or the
capabilities of GDDM-REXX.

The sample EXECs provided by GDDM-REXX are:

ERXMODEL

ERXPROTO
ERXTRY
ERXMENU

ERXCHART
ERXOPWIN
ERXORDER

A model EXEC structure for users to pick up and change. Shows a
GDDM-REXX picture.
An EXEC that defines the parameters of a specified GDDM call.
An interactive EXEC that lets you try GDDM calls.
A restaurant menu example using GDDM graphics and alphanumerics,
from the (lDDM Application Programming Guide.
An example of calling the Interactive Chart Utility (leU).
A windowing example from the GDDM Application Programming Guide.
An ordering example using mapping.

To run the EXECs, make sure you are linked to the GDDM-REXX disk and to the
disks that contain GDDM. (If you do not understand what that involves, talk to your
system programmer or other local VM expert.)

• Type in the name ERXMODEl. The result will look like the picture below. This is the
model EXEC that you will copy and change as a way of exploring GDDM-REXX. (If
the picture does not appear, see "Uthe session does not work" on page 16.)

• Try the other sample EXECs shown in the list above. The comments at the beginning
of each EXEC tell more about them - you can type ERXTRY 1 or ERXTRY HElP to see
these comments.

Part 1: Learning 15

part 1: learning

• If you do not know GDDM, experiment with ERXTR Y; it lets you type in GDDM
calls and see what they do. Use the menu provided to get a list of calls available on your
system. Some GDDM calls are listed in the description of GDDM in the previous
chapter.

Note that ERXTR Y normally has an open graphics segment in which it builds your
experimental graphics programs. (A graphics segment is a group of graphics primitives
that are handled together by GDDM; their use imposes restrictions on some GDDM
calls.) As a result, if you use GDDM-PGF calls from ERXTRY, you must first issue a
GSSCLS call. When you finish trying GDDM-PGF calls, issue CHTERM followed by
GSUWIN 0 100 0 100 to reestablish the GDDM window, and GSSEG 0 to reopen the
graphics segment. You cannot use GDDM-GKS calls with ERXTRY for similar
reasons. ERXTR Y can use a "log file" in which it places the calls you make; later you
can use this log file with ERXTR Y, or run it as an independent EXEC.

• The ERXPROTO EXEC will help you code GDDM-REXX; you supply the name of
a GDDM call, and ERXPROTO shows the parameters in GDDM-REXX format. It
can be used in eMS, in XEDIT, where it will add the call to the me you are editing, or
in ERXTRY, where you type in the name ofa call and then press PFll. A prototype
statement is printed on the line. For example, if you type in GSCHAR you will get

'GSCHAR float float len3 char.len3'

You can change the values so that the statement reads:

'GSCHAR so 60 12 "Good morning'"

50 is the X coordinate, 60 the Y coordinate, and 12 the number of characters in "Good
moming" - more of the precise meaning of the synta~ later in this chapter.

If the session does not work: First make sure you are linked to the correct disks, and that
you have not made a typing error with the names. If you get error messages when
running the EXECs, check whether there is a file called PROFILE ADMDEFS on any
of the disks you have accessed. Rename it to something else if you can, or create a
PROFILE ADMDEFS file on your A-disk that contains one blank line. (PROFILE
ADMDEFS files control the format of GDDM output and can cause programs to give
unexpected results in certain situations. For more information, refer to the GDDM Guide
for Users.)

If GDDM/VM is not installed into a saved segment, you mustissue a GLOBAL TXTlIB
ADMRLIB ADMGLIB command for the GDDM libraries before you use GDDM-REXX;
check with your system programmer.

Also, it is not a good idea to have an EXEC called GDDMREXX around - it can cause
errors if it is interpreted wrongly.

16 GDDM-REXX Guide

your first exec

Session 2: Building your first EX EC

This session lets you get a feel for GDDM-REXX EXECs by making small alterations to
the ERXMODEL EXEC. Consult the listing of ERXMODEL on page 72 to see which
areas of the EXEC can be changed .

• Copy ERXMODEL EXEC onto your own disk, and give it a name such as MODEL.
Use a command of the form:

COPYFILE ERXMODEL EXEC fm MODEL EXEC A

where fm is the mode of the disk that contains GDDM-REXX.

Edit MODEL EXEC, using a command of the form:

XEDIT MODEL EXEC A

You will fmd the system editor XEDIT convenient for two reasons:

I. You can run the EXEC without leaving the editor, by first saving it and then typing
its name on the command line. (You will need to specify SET IMPCMSCP ON in the
editor.)

2. You can use ERXPROTO to add a model GDDM statement to the file you are
editing, and then substitute values. For example, if you type in ERXPROTO GSCOl,
I GSCOl i ntg I appears in your me, and you can substitute a color number for
intg.

• Experiment with graphics.

Alter the GSCOl from GSCOl 6 to GSCOl 3. This will make the lettering come out
pink.

Comment out Call mysubprog and follow it with GSLINE calls to see the effect of
drawing lines.

Draw a circle (which may be squashed, depending on the width-to-height ratio of your
screen) with the calls:

'GSMOVE 30 40'
'GSARC 50 60 360'

/* move to point on circumference */
/* arc centered at x=50, y=60, */
/* arc angle 360 */

Draw a shaded area by putting I GSAR EA l' before the drawing calls and 'GS ENDA I

after them.

If you have any ADMGDP files on your disks, you can replace the model picture with
another by changing the name ERXMODEl in the GSlOAD call to the name of another
ADMGDF file, after reinstating the Call mysubprog statement.

Add the following code to your MODEL EXEC file, to make random pictures. Now
MODEL will produce a different picture every time you run the program. The part to
change is indicated in the listing on page 72.

Part 1: Learning 1 7

part 1: learning

string=time()
x = substr(string,I,2J
y = substr(string,4,2)
z = substr(string,7,2)
'GSCOL .x'
'GSAREA I'
'GSPFLT • (.y .Z .x .y .x) (.x .y .Z .z .y)'
'GSENDA'

Try other caUs mentioned earlier in this book or in the Graphics Primitives section of the
GDDM Application Programming Guide .

• Experiment with alphanumerics.

Find the ASDFLD and ASCPUT statements. These control the alphanumeric fields that
say Welcome to the world of Change the wording by altering the words in the
ASCPUT statements, and change the location by altering the row positions in the ASDFL D
statements. For example:

'ASCPUT 1 5 "Hello'"

(The I specifies field 1, and the 5 specifies the number of characters in field 1 - a dot
may be coded in place of the 5.)

The fields in the sample allow input, because the last parameter in the ASDFLD call is 0
(unprotected). Therefore you can alter the contents by typing from your terminal and get
the value into a REX X variable with an ASCGET call.

'ASREAD •
'ASCGET 1 20 .inval'

You can then use the variable inval in REXX statements or GO OM calls. The REXX
command Say inval types its value out on the screen.

You will find more about procedural alphanumerics in the GDDM Application
Programming Guide. The sample program ERXMENU, which displays a restaurant
menu, is a GOOM-REXX version of an example in that manual.

18 GDDM-REXX Guide

documentation

Session 3: Using the documentation

This session explains how to use the documentation for GDDM and for REXX, and for
the CMS commands and facilities you will need to use with them.

Refe,.ences alld how to lise them: The table below shows the IBM manuals and other
sources that will help you to code GDDM-REXX correctly.

Refcrcn(~e source

(iJ)J)M

GDJ)M Base Programming Reference

GDDMApplicatiofl Programming Guide

GDDM Base Programming Reference
Summary
GDDM-PGF Programming Reference

GDDM-PGF Programming Reference
Summary
GDDM-GKS Programming Guide and
Reference

Online information for GDDM

REXX

VM/System Product Interpreter User's
Guide
VM/System Product Interpreter
Reference

Online infonnation for REXX

eMS

Online information for CMS

Notes

The definitive reference source for
GDDM/VM calls.
Essential to put calls in context, showing
examples of the calls in use.
A summary of the base calls; contains data on
call syntax, including parameter types.
The definitive reference source for
GDDM-PGF calls.
A summary of the GDDM-PGP calls;
contains data on parameters.
The definitive reference source for
GDDM-GKS calls.

ERXTR Y EXEC lets you try GDDM calls
and see the results (you can also use REXX
statements) .
ERXPROTO EXEC returns the parameters of
GDDM calls as GDDM-REXX statements in
the correct format; it ean be used from CMS,
ERX'[~R Y, or XEDIT.

Guidance on learning to usc REXX.

Definitive reference information for REXX.

HELP REXX command supplies help with
REXX commands; HELP REXX MENU gives
more general help.

HELP is available for all CMS commands.
(You will need these commands to manage
files and to read data from them.)

Other manuals which may be of interest are listed at the front of this book.

Part 1: Learning 19

part 1: learning

Reference manual~ and GDDM caD syntax: The GDDM programming reference
manuals use an abstract syntax to describe the calls, because they are intended for
programmers using GDDM with various languages. When referring to the manuals, keep
in mind that:

1. Parameters are shown in parentheses, with commas between them. Neither the
commas nor the parentheses are used in GDDM-REXX.

2. The descriptions of the parameters have more information about data types than is
required by GDDM-REXX (for example, that they are "short floating point").

3. Array parameters are not described as rigorously as GDDM-REXX requires.
GDDM-REXX pays strict attention to the number of dimensions or rank of arrays.

Here is an example of typical information from the reference manuals and how to
interpret it for GDDM-REXX.

I GSPLNE (count, ay,ya ••• y)

count (specified by user) (fullword integer)
.. , explanation

xarray (specified by user) (array of short floating point number,f)
yarray (specified by user) (array of short floating point numbers)

... explanation

Equivalent information is given by the ERXPROTO EXEC which gives the output:

'GSPLNE cnt! float.cnt! float.cnt!'

There are three parameters in each case, and they are equivalent. Count or cntl means
the number of items in an array. In the reference manual, integer means that the
parameter must be a whole number, and specified by user means that it is a value that
must be passed to GDDM. float. cntl float. cntl in ERXPROTO is equivalent
to the reference manual's xarray yarray. The dots after float show that they are arrays;
the fact that only one cnt follows the dot shows that the array has one dimension. The
word float (equivalent to short floating point in the reference manual) means that any
number can be used; GDDM-REXX does not require a whole number. .

In the reference manuals the phrases specified by user and returned by GDDM are used to
show whether it is a value that is passed to GDDM, or one that is generated by GDDM
and returned. In ERXPROTO, values that are returned by GDDM arc preceded by a
dot, for example I ASREAD • intg . intg . intg'; ASREAD gives infonnation on how
the user returns control to the program (which PF key was pressed, for example). For
returned values, you can pass a variable name if you are interested in the value, or a dot if
you are not.

20 GDDM-REXX Guide

documentation

Examples in Application Programming Guide: The GDDM Application Programming
Guide contains example programs which are the normal starting point for learning about
a particular aspect of GDDM. Many of these examples are in PL/I. To transform these
into GDDM-REXX, you should:

1. Remove the parentheses and commas from the GDDM calis, and the semicolons if
there is only one statement per line.

2. Remove the DCL statements, substituting assignment statements where the DCL
contains INIT.

3. Remove the FSINIT and FSTERM calls. You will need to supply GDDMREXX INIT
and TERM commands.

4. Remove the %INCLUDE statements and other statements that are PL/I-only, taking
care with PL/I labels and array handling.

llere is an example:

PL/I

A:PROC OPTIONS (MAIN);
CALL FSINIT;

DCl X.Y;
DCl Z INIT (3);
X=lO; Y=lO;
CAll GSlINE(X.Y);
CAll GSlINE(20.Z);
~INClUDE ADMUPINA;
CAll FSTERM;

GDDM-REXX equivalent

/* REXX comment */
Address command 'GDDMREXX INIT'
Address gddm
/* remove simple DCl */
z=3
x=lO; y=lO
'GSLINE .x . y'
'GSLINE 20 .z'
/* remove */
Address command 'GDDMREXX TERM'

• Compare the listing of a number of calls in the GDDM Base Programming Reference
with those given by the sample ERXPROTO EXEC. If you use the ERXTR Y EXEC
you can type in the call name and press PFll for the syntax, or you can use the menu.

• Compare the sample ERXMENU EXEC with the same program in the GDDM
Application Programming Guide. Look in the index under "alphanumerics, procedural,"
as a secondary heading "menu example." These are essentially the same programs, one in
GDDM-REXX and the other in PL/1.

• Try converting some or all of a PL/I example in the GDDM Application Programming
Guide to GDDM-REXX. Note that if you want a REXX expression to be evaluated,
you must code it outside the quotes that normally surround a GDDM call. For example:

'GSLINE' x-S.O y+S.O

Part I: Learning 21

part 1: learning

Session 4: Messages and debugging

This session tells you how to recognize and avoid errors. It also describes how to use
REXX and GDDM-REXX tracing to detect bugs that are not obvious.

Me.5sages: When you arc using GDDM-REXX you can get four types of message.

ERX ••.

+++Error ...

ADM •••

DMS •••

These come from GDDM-REXX itself; they are caused by things
such as giving the wrong number of parameters, or making a typing
error in a GDDM call. They are listed on page 70.
These come from REX X and are caused by things such as getting
quotes in the wrong place, or operating on uninitialized variables.
These come from GDDM and are normally caused by passing
incorrect values to GDDM. Sec the GDDM Messages manuaL
These arc caused either by leaving the comment off the top so that
the EXEC is not interprcted by REXX, or by CMS commands issued
in REXX.

Notc that some messages are affected by the CIl commands SET EMSG and SET IMSG.

Quotes: Getting quotes in the wrong place or omitting them is a common cause of error
with GDDM-REXX. We suggest that you always put GDDM calls in single quotes, and
put double quotes around character strings within the calls. GDDM calls will frequently
work without quotes, but leaving them out can lead to errors. A particular trap is passing
negative numbers which are taken by REXX to be subtraction operations. Another
possible source of error is using the name of a GDDM call as a REXX variable.

/)ots and omitting them: Getting dots in the wrong place is another common error.
REXX docs not allow dots before variable names, except in call statements.

In GDDM calls, leaving out a dot before a variable name will give an error message, if
the call is enclosed in quotes. If the call is not in quotes, the value of the REXX variable
will be passed (which is probably what you want).

Another source of errors is putting a dot before a numeric value in a GDDM call.
'GSLINE .500 .y' for example, is an easy mistake to make if you arc changing a
variable like. x for a value, say five hundred. .500 is then treated as one-half and the
results may surprise you.

J)isappear'ing messages: GDDM clears the screen when it opens the device. This may
prevcnt you reading error messages caused by previous GDDM calls or REXX
statements. To avoid this for GDDM error messages, place an FSFRCE call immediately
aftcr Address gddm. (This call should be removed when the program has been
debugged.) For REXX error messages use a statement that will request input from the
terminal such as Parse pull dummy.

Tracing: Tracing is available in both REXX and GDDM-REXX. You can usc either
or both. Tracing is also available within GDDM itself; this is described in the GDDM
Diagnosis and Problem Determination Guide; however, REXX and GDDM-REXX
tracing should suffice for normal program debugging.

22 GDDM-REXX Guide

debugging

llere is an example of how to turn on REXX tracing for interactive tracing of results:

Trace ?r
x = x + y
'GSlINE' x Y

To stop tracing type Trace off at any stage. You can also enable REXX tracing by
the command SET EXECTRAC ON - see the VMjSystem Product Interpreter Reference
manual for details.

GDDM-REXX tracing is started with the command

'SXSET TRACE ON'

and ended with

'SXSET TRACE OFF'

Always use the quotes to be safe. I fere is an example of some typical output:

Stat(.~mellt Resulting trace output

'FS~DEV . (. a . b . c . d I ' ERXOOOO I Var set: a = 11111
ERXOOOO I Var set: b = 11211

ERXOOOO I Var set: c = "32"
ERXOOOO I Var set: d = "SO"
ERXOOOO I "fSQDEV I.a .b .c .dl n

s='A STRING variable'
'gschap .. s'

ERXOOOO I Var fetch: s = "A STRING variable"
ERXOOOO I "gschap . .s"

There is more detailed information about tracing in "Part 3: Diagnosis" on page 47 .

• Make deliberate mistakes to get an understanding of what happens. Create a very
simple EXEC of the form:

/* error test exec
Address command 'SDDMREXX INIT'
Address gddn
'FSFRCE'
'SSCOl 6'
'SSLINE 20 20'
'ASREAD .typ .val . count ,
Address command 'SDDMREXX TERM'
Exit

I. Remove a quote from one end of a GDDM call. You will get a REXX message
either about unmatched quotes, or about a phrase being too long. Note that the line
number of the trouble is given at the start of the message.

2. Add an extra parameter to a GSLINE call. You will get a GDDM-REXX message
(starting "ERX") listing the call and giving the error.

3. Insert a GDDM call with incorrect parameters such as 'GSCOL -500'. This will
give you an error message from GDDM, which begins with "ADM".

4. Add a blank or other line at the start of the EXEC. The EXEC is then processed by
the CMS EXEC handler and will give a series of eMS messages (typically INVALID
CHARACTER IN MODULE NAME.)

Part 1: Learning 23

part 1: learning

If you try these changes on the model EXEC (ERXMODEL), you will fmd that the
messages give the li.ne number where the error occurred. This is because of the following
code, which you may want to include in your own programs:

1* at start
Signal on error 1* intercept. non-zero return

1* codes from SDDM-REXX

error: 1* after exit of mainline exec *1
grc=rc
'GXGET LASTMSS .g_msg'
Say 'Line:' sigl '-' sourceline(siglJ
Say 'Non-zero return code from SDDM-REXX call: ' grc
Say g_msg
Address command 'SDDMREXX TERM' 1* Terminate SDDM-REXX *1
Exit 99

• Try trace using the ERXMODEL EXEC.

You can start interactive REXX tracing of results with the statement:

Trace 1r

Place it at the start of the EXEC.

Start and end GDDM-REXX tracing thus:

'SXSET TRACE ON'

'SXSET TRACE OFF'

1* do NOT omi t the quotes *1
1* must come after SDDMREXX INIT *1
1* and ADDRESS SDDM *1

1* do NOT omit the quotes *1

Place the GXSET subcommand after GDDM-REXX is initialized and GDDM is
addressed; otherwise it will not be recognized.

24 GODM-REXX Guide

parameters

Session 5: Trying out GDDM-REXX parameters

This session will help you understand GDDM-REXX parameter handling so that you
can code your [~XECs efficiently. You will need to refer to the description of parameter
syntax in "GDDM call syntax" on page 54.

The ad~'antaKes ofGDDM-NEXX parameters: There are three main things about
GDDM-REXX parameters that make them easy to usc. They are:

I. Not having to supply lengths and counts for strings and arrays of values passed to
GDDM - you can use dots instead.

2. Being able to use dots for returned values you do not care about.
3. Being able to handle array parameters by listing them element by element in the call.

l'otentitll problem.~ with GDDM-NEXX parameters: GDDM-REXX parameters can
cause problems because of the power and complexity of some GDDM calls. If you code
parameters incorrectly, particularly array parameters, GDDM-REXX will normally give
you an error message. Sometimes, however, it may interpret them in unexpected ways,
without giving an error message.

I Icre are the most likely messages caused by getting a parameter wrong in a
GDDM-REXX call.

ERX0002 E Too few parameters
ERX0003 E Too many parameters: ' •••.•.•.
ERX0004 E Invalid parameter type: ' ..•••••. '
ERX0005 E Invalid integer value: ' .••...•. '
ERX0006 E Invalid real value: ' •••••••• '
ERX0008 E Parameter rank too large: ' •••••.•. '
ERX0009 E Invalid parameter syntax: ' ••.••... '
ERXOOII H REXX variable had no value: ' .••.•.•. '
ERXOOl3 E Variable name required for return parameter: ' .••.•...
ERXOOl8 E Right parenthesis missing
ERX0020 E Ending string delimiter missing

If you get unexpected results, try tracing. Put I GXSET TRACE ON I before the call that is
giving trouble, and I GXSET TRACE OFF I after it.

The trace will show the values GDDM-REXX got, and the values it sent on to GDDM.
You ean use ERXPROTO to see what parameters are required by a particular call.

• To experiment with omitting parameters, use the interactive ERXTR Y EXEC. These
examples will work:

'GSCHAR 50 50 • "Hello'"

'ASDFLD 1 10 17 1 20 2'
'ASCPUT 1 . "Hello"'

Jfyou omit the length from ASCGET, you will get an error message. GDDM requires
that lengths of returned values must be specified, so they cannot be omitted for returned
values. So this is wrong:

'ASCGET 1 .• var'

Part 1: Learning 25

paJ1 1: learning

You can experiment with omitting returned values in the same way. Prom ERXTRY,
try the call

'FSQDEV 4 (.•. r .c)'

and then the REXX statement

Say 'rows on screen are' r 'columns on screen are' c

Handling an"ay parameters: To fmd out about handling arrays, modify a copy of the
model EXEC (ERXMODEL). The important points are:

1. Using stemmed variables:

Try experimenting with any call that takes a one-dimensional array.

procopts.I=IOOO
procopts.2=2
'DSOPEN 9 I * 2 .procopts •. ()'

Then try further calls with two-dimensional arrays (sec also paragraph 4 on page 27).

'ASQFLD 2 3 4 .array.' 1* sets values in array.l.l
1* through array.3.4

2. Enumerating array values within the call:

A good call to usc for coding directly into the parameter string is GSPlNE, which
draws a series of straight lines. Try:

xl=IO
1* cntl float.cotl float.cntl - syntax from ERXPROTO *1
'GSPLNE 3 (.xl 20 30) (40 50 60)'

If you specify an explicit count value for an array, the array is truncated or expanded
with zeroes to match. Por example:

'GSPLNE 3 (5 6 7 8) (6) ,

is passed to GDDM as

'GSPlNE 3 (5 6 7) (6 0 0)'

3. Replacing dimension information with dots:

Because GDDM-REXX can count the numbers in the parentheses, you can replace
the count with a dot:

'GSPlNE • (. xl 20 30) (40 50 60)'

26 GDDM-REXX Guide

parameters

4. Defining stemmed variables for columns of two-dimensional arrays:

Some GDDM calls require parameters in the form of a two-dimensional array. For
example, ASDFMT allows a number of alphanumeric fields to be defined; the
parameters are a count of the number offields, a count of the numbcr of elements
being defined for each field, and an array 'that contains the element values. This call
defmes two fieJds with five e;:lements provided for each field:

'ASDFMT 2 5 ((1 1 1 80 1) (2 2 1 80 1))'

Many programs need to creat.e a number of similar alphanumeric fields, one below
another. You can use single values for columns in multi-dimensional arrays, as in
this example of ASDFMT, to set up ten fields numbered I to 10 at the top of the
screen:

Do i= 1 to 10
nums.i=i

End i
/* fields count ids
'ASDFHT 10 6 (.nums •
/* Fields 1 to 10 are set up
/* field starts in column 1.
/* and has the field type of

/* set up array with values 1-10 */

row col depth width type */
• nums. 1 1 80 1)'

in rows 1 to 10 respectively. Each */
is one row deep. eighty characters wide */
1 (alphanumeric output. numeric input) */

Array parameters are discussed more fully in the reference section of this book.

Part 1: Learning 27

part 1: learning

More advanced programming

Mapping

This section describes how to use two aspects of GDDM-REXX that differ significantly
from the usage of GDDM with other languages:

1. Mapping using GDDM-IMD
2. Instances and reentrancy.

This section assumes that you are familiar with GDDM Interactive Map Definition, and
that you want to use maps in your EXECs. There is more information on mapping in
the ODDM Application Programming Ouide. You can learn about GDDM-IMD in
GDDM Interactive Map Definition and in the online tutorial that is supplied with the
product.

Because REXX does not have data structures, special provisions have to be made for
mapping in GDDM-REXX. This consists of two subcommands and an EXEC:

GXSET MSADS

GXSET MSV ARS
ERXMSVAR

Subcommand to move data from REXX variables into a
structure that can be used for mapping.
Subcommand to move data back into the REXX variables.
EXEC to create a set of named REXX variables that can be
included in a mapping EXEC.

Producing a GDDM-REXX mapping program involves the following steps. The
illustrations are taken from GDDM- IMD panels or from the sample mapping
ERXORDER EXEC.

1. In GDDM-IMD, create a mapgroup (called mapgrpn) and a map (mapn). Generate
the mapgroup. Your generated mapgroup must contain field nanles; you can specify
any of the programming languages that IMD supports.

FIELD NAMES IN GENERATED MAPGROUP ==> YES

2. Use the ERXMSV AR EXEC (see page 66) to create a REXX data structure:

ERXMSVAR mapgrpn mapn X_

x_ was used in ERXORDER. It is used as a prefix in constructing variable names;
any suitable prefix can be used.

28 GIJOM-REXX Guide

more advanced programming

3. Copy the REXX data structure into your EXEC. The file contairung the structure
will have the filename of your mapgroup and the filetype of GDDMCOPY. Note
that the length of the application data structure, needed by some mapping calls, is
included in the file.

1* GDDH-REXX: output from ERXHSVAR EXEC ••••
1* .••• HAPGROUP: ERXORDD6, HAPNAHE: ERXORDER

X_PROD.1 = "
X_DESC.1 = "
X_COST.1 - "
X_QTY.1 = "
X_DESC.2 = " "

1* length of ADS string

4. Change the values in the application data structure, if you W1U1t initial values in the
map. They arc set to blank by ERXMSVAR. Set up mapping page and fields in
GDDM:

X_desc.1='NUT, IlEX, 4-40
X_desc.Z='BOLT,FLATHEAD, 4-40
'MSPCRT 3 -1 -1 "ERXORDD6'"

'MSDFLD 9 1 1 "ERXORDER'"

1* set some initial values */

/* create mapped page - size */
/* of map taken from mapgroup */
/* create a mapped field */

5. Use GXSET MSADS to collect the data into a variable that can be used in the
mapping calls. GXSET MSADS takes the values in the REXX data structure and
puts them in a character-string variable that will be acceptable to GDDM mapping
calls:

'GXSET HSADS ERXORDD6 ERXORDER .X_ .ads'

6. Use (}DDM mapping calls to display the map and read the input:

'MSPUT 9 0 .. ads'
'ASREAD .at .am .mf'
'HSGET 9 0 .X_aslength .ads'

7. Use GXSET MSVARS to move the data from the mapping call variable into the
REXX variables in the data structure where you can work on them:

'GXSET MSVARS ERXORDD6 ERXORDER .x_ .ads'
If X_qty.1 ~=' 'then •.• /* handle variables

Part 1: Learning 29

part 1: learning

Alternative method: 1be method just shown is the simplest and provides you with a list
of the names you used in the map in your EXEC, but you can do without the
ERXMSVAR EXEC as shown in the sample that follows:

/* alternative way to initialize the REXX data structure

ads=' , /* just define ads variable, so */
/* it will not produce message: */
/* ERXOOll H REXX variable had */

no value: 'ads'

'GXSET MSVARS .mygrp .mymap .X_ .ads' /* initialize all variables in */

X-prod .1='99999999999'

/* map to blanks */

/* set individual values, as
/* required loptionall

'GXSET MSADS .mygrp .mymap .X_ .ads' /* then, initialize the ads */
X_aslength=lengthlads) /* remember length for MSGET *1

/* set up mapped field and other items as previous example *1

'MSPUT 9 O •• ads ,
'ASREAD .at .am .mf'
'MSGET 9 0 .X_aslength .ads'
'GXSET MSVARS .mygrp .mymap .X_ .ads' /* get values placed in REXX *1

1* variables *1

This method requires one less step to produce your mapping program but has the
disadvantage that there is no record of the variable names within your program.

Things to avoid: Mapping needs some care, particularly if you are new to it. Take care
over the following aspects:

1. The name. of your mapgroup - it may not be what you expect. GDDM-IMD
applies a device suffix to the name you first use. You can tell the mapgroup when
you list your fIles by the fact that it has a fIletype of ADMGGMAP.

2. The mapgroup and map names are GDDM tokens, and must be passed to GDDM
in uppercase. Ensure that you do this.

3. The GDDM application data structure (called ads in the example) is set by the
GXSET MSADS subcommand. Do not alter it by REXX assignment statements.

4. The prefix used in the GXSET MSADS and GXSET MSVARS subcommands must be
that used when running the ERXMSV AR EXEC. A void using dots at the end of
the prefix. 'Ibis will make REXX treat the items in the map as stemmed variables,
with potential substitution taking place. X_ is a safer prefix than X. (with a dot).

Experimenting with the samples: GDDM-REXX has three sample items that are related
to mapping. They are:

ERXORDER EXEC
ERXORDD6 ADMGGMAP

ERXORDER ADMIFMT

The sample EXEC.
The mapgroup used by the EXEC. D6 is the suffix
for 32-row by 80-column displays.
The import MSL (map specification library in portable
form).

To experiment with the map, you have to use GDDM-IMD to IMPORT it. Then you
can edit and change the map and the sample EXEC to experiment with mapping.

30 GDDM-REXX Guide

more advanced programming

1. Start GDDM-IMD using a new MSL name: ADMIMD anyname
2. Press ENTER until you get to the directory panel 0.1. Type I in the commands

column on the left (nothing else). Press ENTER for the IMPORT panel where you
fiU in the name ERXORDER. This will import the map.

3. Before you change it, you should rename it. Otherwise the sample will not work
properly if you generate a changed mapgroup. Use R against the group in the
directory panel and choose a suitable name in the new panel.

When you have done this, you can experiment with the new mapgroup and a copy of the
sample ERXORDER EXEC.

Multiple instances of GDDM and GDDM-REXX

You can have multiple instances of GDDM and of GDDM-REXX. This facility can be
used to create programs that run a number of independent applications, each with its own
(~nvironment.

Multiple instances of GDDM and GDDM-REXX can be controlled separately. You can
have multiple instances of GDDM within one instance of GDDM-REXX. You can also
have multiple instances of GDDM-REXX.

In.ftances ()fGDDM: Instances of GDDM are controlled by GDDM-REXX, using the
reentrant interface to GDDM. GDDM-REXX allows simplified access to this by the
GXGET AAB and GXSET AAB subcommands.

An application can jump between instances by using a GXSET AAB subcommand with
the application anchor block (AAB) of the instance. Instances are chained together such
that the default instance is always the first in the chain (and cannot be terminated by
FSTERM). When a new instance is created, it is added to the end of the chain and
becomes the (;urrent instance. If an instance is terminated by an FSTERM call, the chain
is remade, and control returns to the previous instance in the chain.

Part]: Learning 31

part 1: learning

Here is a simple EXEC that demonstrates GDDM instances and lets you move between
them by using the PF keys. The variable v in the ASREAD calls is returned with the
number of a PF key. If you press anything other than PF 1, 2 or 3, you will leave the
EXEC.

/* REXX EXEC to demonstrate multiple instances of GDDM
Address command 'GDDMREXX INIT'
Address gdchn
Do i = 1 to 3 /* set up 3 instances of GDDM

'GSCOL .i' /* draw a colored line
'GSLINE 50 50'
'GXGET AA8 .name.i' /* extract the AA8
'FSINIT' /* start another instance

End i
'GSCHAR 15 50 • "PF1 2 or 3 to select GDDM instance 1. 2. or 3'"
'GSCHAR 15 40 • "Any other PF key to end'"

*/

*/
*/

*/
*/

'ASREAD .a .v /* V gets number of PF key */
Do forever

If a~=1Iv>3 then /* leave if not PF 1, 2, or 3 */

End

Leave
'GXSET AA8 .name.v'
string= 'this one is' v
'GSCHAR 40 50 . .string'
'ASREAD •. v

Address command 'GDDMREXX TERM'
Exit

/* select an instance

/* do forever 'IV

Instances ofGDDM-REXX: Instances of GDDM-REXX are controlled by the
GDDMREXX command. GDDMREXX INIT starts a new instance; GDDMREXX TERM
terminates the latest instance. It is not possible to jump between instances. Only the
latest instance can be used, and when that is terminated the previous one will be activated
- they are on a push-down stack.

You can experiment with instances of GDDM-REXX using the EXEC shown above.
Simply place an outer loop around the whole EXEC. Notice, however, that you must
use an Address command statement before you use a GDDMREXX command.

Te,·mination: Proper termination of instances of both GDDM and GDDM-REXX is
important. All instances of GDDM that are active are properly terminated by a
GDDMREXX TERM command. However, it is important that each instance of
GDDM-REXX is terminated at any possible exit including error and abnormal exits.
Failure to terminate GDDM-REXX can result in storage being used up progressively.
GDDM-REXX is automatically terminated on return to CMS when you get the ready
message; however, if you are working from FILE LIST or a similar program that does not
return to CMS command ready, it is not terminated. If you suspect that you have
multiple instances of GDDM-REXX around, you can terminate them all with the
GDDMREXX TERM (All> command, or check using the NUCXMAP command for
entries starting with ERX, possibly with a preceding blank.

32 GDDM-REXX Guide

hints

Hints on using GDDM-REXX

Protiudng rdiahlc, safe, inllel)l'ntient EXECs

If you are producing EXECs which are to be used widely and thus could be invoked from
either the CMS command line or from within other EXECs, take care with the
initialization and termination of GDDM-RFXX. Some guidelines are:

I. Ensure that matching GDDMREXX INIT and GDDMREXX TERM commands are issued
along every possible path through an EXEC. This includes terminating
GDDM-REXX within any error exit. A method of trapping errors within EXECs is
shown in the listing of ERXMODEI, at the back of this book. Failure to properly
terminate GDDM-REXX may cause a calling EXEC (which was using its own
instance of GDDM-REXX) to continue its task using the incorrect instance.

2. Always use an Address gddm statement prior to any GDDM call or
GDDM-REXX subcommand. The default environment for REXX EXECs is CMS,
so failure to issue Address gddm will cause the calls to be misdirected (probably
resulting in a return code of - 3).

3. Always place GDDM call statements within quotes. This prevents any possible
substitution of values by REXX.

The model EXEC (ERXMODEL) contains a set of recommended statements for use in
initializing (prolog code) and for terminating (epilog code). If you use these, you will
meet aU these guidelines without having to think about them. In addition, ERXMODEL
contains a suggested method of intercepting errors. A listing of ERXMODEL is given on
page 72.

Por your own use you may prefer to have shorter prologs and epilogs than those used in
the sample EXECs. Suggestions for short versions are shown below. They are not
recommended for EXECs that are to be widely used.

Address command 'GDDMREXX INIT' JAddress gddm 1* simple prolog - see *1
1* ERXMODEl for full prolog *1

Address command 'GDDMREXX TERM'JExit rc 1* simple epilog */

You can find out whether GDDM-REXX is already active by using the SUBCOM
command. If it is, you might want to use the existing instance, rather than initializ:ing
your own instance, with the overheads involved. The ERXPROTO EXEC contains such
a test. Try

Address command 'SUBCOM GDDM'
If rc <> 0 then

How to tackle a programming task

/* GDDM not initialized. load it

If you have a particular task to do using GDDM-REXX you should study the GDDM
Application Programming Guide and look at the GDDM-REXX sampks for anything
that is similar. This book provides only a very brief introduction to the facilities of
GDDM.

Part I: Learning 33

part 1: learning

Controlling access to subset mode

GDDM-REXX EXECs should be coded in a way that prevents the user getting into
CMS subset mode by pressing PA2 (the default method of getting into subset mode for
GDDM). This is because further GDDM-REXX EXECs cannot be used in subset
mode when a GDDM-REXX EXEC is suspended. The attempt is diagnosed and an
error message is given.

The DSOPEN call in thesamp!eERXMODEL EXEC will prevent access to CMS subset
from GDDM. So will an entry like this in your PROFILE ADMDEFS file:

DEFAULT PROCOPT=IICMSINTRP,NONE))

It is then possible to test for the use of PA2 after every read, and then go into CMS
subset in a controlled marmer with the calls:

'ASREAD .typ .val . count ,
If typ = 4 & val = 2 then

Address command 'SUBSET'

/* typ=4 means PA key.
/* val=2 is key 2

Using GDJ)M-REXX from eMS subst~t or other programs

*/
*/

If you intend to usc GDDM-REXX EXECs in subset mode, or by calling them from
other programs, you should first load the GDDMREXX command module in the
nucleus. This can be done with the command NUCXlOAD GDDMREXX. The module is
not large and the command can be included in a PROFILE EXEC. The reason you may
need to do this is that the first time you usc GDDM-REXX, it loads the module at
address X'20000' unless that module is already in the nucleus. (GDDMREXX then
loads itself into the nucleus for subsequent use.) This may interfere with the use of that
part of virtual storage by other programs. When you have finished using your
GDDM-REXX EXECs, you can issue the NUCXDROP command to frcc nucleus storage.

Prototyping or ,)roduction applications

GDDM-REXX is interpreted, and this means that performance is not as good as that of
efficient compiled or as scm bled code. However, speed of producing a solution is often as
important as fast execution, and in this respect GDDM-REXX should be better than
other methods of writing applications which usc GDDM. Its neat syntax: and the power
of the REXX language make it perfectly suitable for many applications.

If you are using GDDM-REXX for prototyping you should bear in mind the discussion
of coding styles below.

Coding styles - strict or loose syntax

With GDDM-REXX you have a choice of coding styles. If you are coding your own
private EXECs you can minimi:ze th(: time spent in typing by replacing parameters with
dots and putting array and other values directly into the GDDM calls. In fact you can go
further, and provided you understand REXX's rules, you can sometimes leave out the
quotes around GDDM calls. However, he aware,of the potential difficulties when doing
this; REXX may attempt substitution of values in place of names, and negativc values
may cause REXX to attempt subtraction.

34 GDDM-REXX Guide

hints

If you are producing prototype codc that williatcr be recodcd in another language, all
parameters should be passed by name:

count =3
xarray.l=20J xarray.2=30J xarray.3=40J
yarray.l=40J yarray.2=50J xarray.3=60J
'GSPLNE .count .xarray. .yarray.'

~dnot:

'GSPLNE • 120 30 40) 140 50 60)'

This will minimize the difficultics of conversion. The main remaining problcm will be
producing the data declarations for the target language. See page 21 for guidance on PL/I
equivalents.

Common errors

Parameters blcOfTectly passed: There are several causes for this. Common ones are:

1. Passing arrays with the wrong number of dimensions - for example, passing a scalar
value instead of an array or a one-dimensional array instead of a two-dimensional
array. Arrays which have only one member, or two-dimensional arrays with only one
member in one dimension, frequently cause errors. More about this in "GDDM call
syntax" on page 54.

2. Failure to pass character strings in uppercase. GDDM requires many strings such as
symbol set names, mapgroup names, options for CIISET and other calls to be in
uppercase.

3. Incorrect typing of quotes or dots. All GDDM calls should be included in quotes.
4. Prefix minus signs outside quotes. These can be interpreted as infix minuses, so

either use quotes, or code -32 as 0-32.

Storage is lued liP: When GDDM-REXX EXECs are run from a program sueh as
FII ,ELIST, the instances of GDDM are not cleared if the EXECs do not issue an
Address command I GDDMREXX TERM I command at the end of execution; include the
(All) option if you think this is happening. More about this in "Multiple instances of
GDDM and GDDM-REXX" on page 31.

Unexpected me.uages: Apparently meaningless messages from GDDM can be caused by
having a PROFILE ADMDEFS file on one of your disks that causes GDDM to send
output for the wrong type of device. Set~ also page 16.

Unexpected pictures: If you usc the hi (halt interpretation) immediate command, you
should issue a GDDMREXX TERM command. Otherwise, you may occasionally find that a
picture you had been looking at some time previously reappears on the sereen, or a new
picture, nothing to do with your current activity, appears. This is because GDDM
programs that were suspended become active again and send "old" pictures to the screen.

Part 1: Learning 35

part 1: learning

Numerical data not being recognized: By default, GDDM pads strings with nulls
(character X'OO') when the full length has not been keyed in at the terminal. This stops
REXX recognizing them as numbers, and causes errors. The simplest solution is to use
the ASDFl T call before any of the fields are defined. One of its parameters allows the
nulls to be translated to blanks, which are acceptable to REXX. The code required is:

default_array. = -1
default_array.8 = 1
'ASDFLT 8 . default_array. ,
'ASDFLD etc etc'

1* leave other defaults alone 1-1)*/
/* set parameter 8 nulls to blank */
1* make conversion the default */
/* mus t follow */

An alternative would be to use the REXX STRIP function to remove the nulls, or the
GDDM ASFIN call to convert nulls to blanks.

J)ifficult calls:

ASDFMT (which defines alpha.numerie fields) needs care because its third parameter is a
two-dimensional array. There is a temptation to code it as a one-dimensional array if
only one field is being defined. See the examples in "Parameters that are too shOrt" on
page 57 for further details.

ASGGET (which gets the contents of double-byte character string fields) needs care
because the length parameter is the number of DBCS characters, so twice that number of
bytes are returned.

ASQFlD (which queries the attributes of a field) needs care because the dimensions of the
array it passes depend on the first argument which is called the code. Examples of the
different types of code and calls for them are given below:

1* CODE 0 *1
1* query one field specifying id of field in second argument *1
1* array is one dimensional and returned by GDDM */
'ASQFLD 0 1 3 .onedim.'

1* CODE 1 *1
1* query several fields listing
1* must first be initialized as
twodim.=O
twodim.l.l=1
twodim.2.1=2

ids in column of array - the array *1
it is partially specified by user *1

1* initialize array before sending*1
1* first field to be queried is 1 */
1* second field to be queried is 2*1

'ASQFLD 1 2 3 .twodim. '

1* CODE 3 and 4 */
1* query all fields and have number and values returned in array */
1* array need not be initialized. it is totally returned by GDDM *1
'ASQFLD 3 2 3 . twodim. '

CHTOWR (which draws tower charts) needs a three-dimensional array, the first dimension
of which is one. Here are an example of the syntax from ERXPROTO and examples of
the caU:

'CHTOHR cntl cnt2 cnt3 float.cnt2 float.cnt3 float.cntl.cnt2.cnt3'
'CHTOHR 1 2 3 14 5) 1 6 7 8) (((9 10 11) (12 13 14)))'
'CHTOHR 1 2 3 .onedima. .onedimb. .threedim.'

36 GDDM-REXX Guide

hints

CHXlAB (which lets you specify labels for the X axis on charts) can cause problems to
lIsers used to other languages (similarly CHYlAB, CHXDlB, CHZDlB, CHKEY, CSCHA, and
CSQCHA). In GDDM-REXX, the last parameter is an array of strings of the length
specified. To u!;;e a single string containing all the values is an error. I lere arc an
example of the syntax from ERXPROTO and an example of the call:

'CHXLAB cntl len2 char.cntl.len2 '
'CHXLAB 6 3 ("JAN" "FEB" "MAR" "APR" "MAY" "JUN")'

GSVECM (which draws a series of vectors) has a first arbrument that specifics the number
of rows ill a two-dimensional array that always has three columns. Here arc an example
of the syntax from ERXPROTO and examples of the call:

'GSVECM cntl
'GSVECM 2
'GSVECM 2

fixed.cntl.3'
((1 20 30)(1 40 50))'
.twodim. ' /* twodim is a 2 by 3 arl'ay

Part I: Learning 37

installation

Part 2: Installation

Part 2: Installation 39

part 2: installation

Overview of GDDM-REXXinstallation

This section describes how to instaLl GDDM-REXX; it follows the same style as the
GDDM Installation and System Management/or VM manual, and assumes that you are
familiar with the instaLlation procedure for GDDM/VM. You will need to have a copy
of that manual to refer to while you are following the instructions in this section .

. ,"
Things you need to do are indicated by bullets, thus •.

If you are using INSTPPP there are no special considerations for GDDM-REXX.

Sy.5tem and .mbsystem hardware and software: GDDM-REXX can be used on the same
hardware and software as GDDM/VM (see the GDDM Release Guide for details), except
that you will need to use VM/SP Release 4 or a later release. GDDM/graPHIGS calls
are not supported through GDDM-REXX.

The installation of GDDM-REXX consists of the following steps:

Step I Preinstallation planning:
Check that you have installed GDDMjVM.
Look in the Program Directory for possible updates to this manual.
Determine space requirements and plan use of storage.
Check for prerequisites, known errors, and so on.

Step 2 Mount the tape, and read in and run the installation EXEC.
Step 3 Create GDDM-REXX discontiguous saved segment (DCSS) if required.
Step 4 Test the installation.
Step 5 Provide suitable EXECs for users.
Step 6 Inform your users about GDDM-REXX.

Step 1: Preinstallation planning

This section includes estimating storage requirements, and checking that you arc ready to
install GDDM-REXX.

Storage requirements and capacity planning: You will require sufficient storage on the
disk on which you intend to install GDDM-REXX; we recommend that you use the
same disk for GDDM-REXX that you used for GDDM/VM; if necessary, expand this
disk.

GDDM-REXX occupies approximately 110 4K-byte CMS storage blocks; that is, about
one cylinder of 3380 storage, or 200 FBA storage blocks.

GDDM-REXX itself needs storage in which to reside during execution. The code size of
GDDM-REXX is approximately 40K bytes.

Your EXECs that use GDDM-REXX will nonna11y reside on your A-disk or other disk
storage, and execute in your virtual machine; no special guidance is given for them in this
manual. Space requirements will depend on whatever EXECs you plan to develop Of

use.

40 GDDM-RRXX Guide

installation

• Instructions for I,reinstallation planning:

I. Check that you have a copy of the G[)DM Installation and Sy.rlem Management Jor
VM manual handy. You will need it to check your system requirements for
GDDM/VM, and for other background information.

2. Check that your VM/SP system is at least at Release 4 level.

3. Check that you have installed GDDM/YM Version 2 Release 1 or later; if you have
not yet done this, do it first.

4. Ensure that you have the GDDM-REXX tape available.

5. Check in the GDDM-REXX program directory to see if it contains any corrections
to this manual. They are listed under the heading "Updates to (]J)J)M-REXX
Guide."

6. Check with the Preventive Service Planning (PSI') "bucket" for late information
about installation or necessary fixes. The name of the PSP bucket is given in the
program directory. (Ask your IBM service representative if you do not understand
this.)

7. Check that you have sufficient disk space (sec above) on the disk you will use to
install GDDM-Rr~xx. You might find it convenient to usc the disk that you used
for GDDM/YM.

What IBM supplies: IBM supplies GDDM-REXX and its associated files on tape. The
program number is 5664-336. The tape can be supplied in 6250 or 1600 bpi format or
formatted for 3480 tape cartridge. Feature codes used are 5870 for 1600 bpi format, 5871
for 6250 bpi format, and 5872 for 3480 tape cartridge. All files on tape arc in VMFPLC2
DUMP format. With each tape you are supplied a program directory.

Tape content.~: The tape contains the following files:

File no. 1 15664336 () II 005 program identifier
15664336 installation EX EC

l;ile no. 2 15664336 MEMO for GDDM-RliXX, relevant for installation using
INSTFPP

File no. 3 Sample and utility files
HIe no. 4 Null file
File no. 5 GDDM-REXX object code

Stel) 2: Run the installation EXEC

To install on VM you load an installation EXEC from the distribution tape onto the
installation diRk, and then usc the EXEC to complete the installation.

Part: 2: Installation 41

part 2: installation

• Instructions for running the installation EXEC:

1. Log on to a virtual machine, and access the disk you used for GDDM/VM (you need
a read-only link to this disk, unless it is to be used also for GDDM-REXX, in which
case it must be read/write).

2. Ensure that you do not have any other disks accessed containing previously installed
releases of GDDM. If you have, release them.

3. Mount the distribution tape on virtual tape unit 181 (as described in VM/SP
Operator's Guide).

4. If you are using INSTFPP, refer to the VM/SP Installation Guide for what to do
next.

5. Enter the following commands at the terminal (system responses are shown in italics):

VMFPLC2 REW
R;

VMFPLC2 LOAD ~ ~ filemode
(where filemode is the mode of the disk you are installing on)

LOADING
15664336 011005 filemode
15664336 EXEC filemode
END-OF-FILE OR END-OF-TAPE
R;

6. Execute the installation EXEC with the command: 15664336. You will be
prompted for the filemode of the installation disk, and to enter a letter to select the
default language for error messages. (The distribution tape contains the flIes for all
supported national languages - there is no separate NL tape.)

Stell 3: Create GDDM-REXX discontiguous saved segment

To reduce system overheads you may want to create a saved segment (DCSS) that
contains most of the GDDM-REXX code. You should read the section entitled "Create
GDDM discontiguous saved segments (DCSS)" in the GDDM Installation and System
Management for VM manual to help you decide whether you should create a DCSS for
GDDM-REXX. You may also need to read the VM/SP Planning Guide and Reference
and the VM/SP System Programmer'.~ Guide for further information. Most of the
considerations are the same, and only the differences are noted below:

l'he EXEC that enables you to create a DCSS for GDDM-REXX is called
ERXBLSEG.

The name of the saved segment is ERXRXIIO.

You will need to calculate the starting address of the saved segment, depending on
other saved segments that may be used at the same time as GDDM-REXX. In
particular, do not allow GDDM-REXX to overlap the DCSSs for GDDM/VM, and
other GDDM programs, such as GDDM-PGF or GDDM-GKS.

42 GDDM-REXX Guide

installation

If you decide not to create a DCSS for GDDM-REXX, most of the GDDM-REXX
code will be loaded as a nucleus extension when a user initializes GDDM-REXX (by
issuing the command GDDMREXX INIT). l11is will use approximately 40K bytes of
virtual storage in the user's machine.

The GDDMREXX module can also be loaded manually into the nucleus, especially if it
is likely to interfere with other modules loaded at address X'20000'. If that is likely to be
a problem for your users, you should consider advising them to NUCXlOAD GDDMREXX.
They will need to do this if EXECs are to be run from eMS subset .

• Instructions for creating ness:

If you have decided to create a saved segment, continue as follows:

I. Determine at what address the Dess will start. The address of a Dess must be
higher than the size of any virtual machine that uses it. However, it should not be
unnecessarily high, because that may use extra space in VM tables.

You will require 40K bytes (X' ADOO').

Ensure that the DCSS you create will not overwrite any other saved segment for any
program related to GI>I>M that you are likely to usc with GDDM-REXX.

2. Generate an entry in the DMKSNT system name table, based on that shown in
Figure 1. Usc the starting address and size from the preceding step.

Do not use the information without checking with the system programmer doing the
saved segment generation.

System name table entries for use as model for GDDM-REXX

Do NOT use these figures without checking for overlays

ERXRXIIO NAMESYS SYSNAME=ERXRXIIO,
SYSPGCT=IO,
SYSPGNM=(2637-2646),
SYSHRSG=(66),

SYSVOl=gddmvm,
SYSSTRT=(Ol5,048),
SYSSIZE=I024K, (ignored; you
VSYSRES=IGNORE,
VSYSADR=IGNORE

Name of saved segment
Count of pages in segment
Page numbers used
Number of segment made up
by these pages
Use whatever name
and values are appropriate

can always use this value)

This will define a saved segment of 40K (X'AOOO') bytes
starting at X'A4DOOO' (page 2637).

Figure l. Sample system name table entries for GDDM-REXX

3. Log on to a virtual machine with a privilege class that allows you to use the
SAVESYS command, and with a virtual machine size at least X'20000' bytes larger
than the end of the DCSS. If you use the values in the GDDM-REXX example
shown in Figure 1, you will need a storage size of 10832K (X'A94000').

Part 2: Installation 43

part 2: installation

4. II'L CMS and access the disks on which GDDM/YM and GDDM-REXX have been
installed.

5. Invoke the EXEC: ERXBLSEG.

6. Do NOT delete the original copies of any of the GDDM-REXX materials. They
may be needed for service as described in GDDM Installation and System
Management for VM.

Step 4: Test the installation

When you have installed GDDM-REXX, and built your saved segment (if required), you
should test that the system works satisfactorily. The simplest way of doing this is by
rulming one of the sample EXECs. If GDDM/VM has not been installed into a saved
segment, you will need to issue a GLOBAL TXTLIB ADMRLIB ADMGLIB command for
the GDDM libraries. (Other GDDM programs may need other text libraries.)

• Enter the command ERXMODEL from a terminal that can display graphics. The result is
shown on page 15. Your terminal is not suitable for graphics if you see a message saying
ADM0275 W GRAPHICS CANNOT BE SHOWN.

Step 5: Provide suitable EXECs for users

The EXECs supplied on the installation tape should be sufficient for your users to see
how to develop their own programs.

In addition, you might consider providing them with a simple EXEC that links and
accesses the disks on which you have installed GDDM-REXX and GDDM/VM, and
issues a GLOBAL TXTLIB command if you have not installed a saved segment for
GDDM-REXX.

44 GDDM·REXX Guide

installation

Step 6: Inform users about GDDM-REXX

When you have installed GDDM-REXX, you will want to notify your users. Here is a
model memorandum that you might consider adapting to your own needs.

MEMO to all systcm uscrs

New programming tool available for GDDM programmers.

GDDM-REXX is now available on the system. It provides an interpretive interface
for accessing GDDM functions through REXX EXECs.

You will need a virtual machine of at least bytes to run GDDM-REXX
programs.

GDDM-REXX loads a modulc at address X'20000'; if this causes any problems with
programs you tlse, try issuing the command NUCXLOAD GDDMREXX.

The following IBM manual is available:

GDDM-REXX Guide, order number SC33-0478.

If you encounter any problems running GDDM-REXX EXECs, contact

Postinstallation tasks

You should consult the G D D M Installation and System Management for VM manual for
information. Note that the ADMSERV EXEC can be used to apply corrective service to
GDDM-REXX.

You may need to rename some of the sample files if you changed any of the GDDM
default filetypes when you instalIed GDDM/VM.

ParL 2: Inst.allation 45

part 2: installation

Installation module directory

These are the files that result from the installation of GDDM-REXX:

Text library

Module files (generated by
the installation process;
ERXASTUB is generated
only if a Dess is built)

Module file (for the default
language)

Installation material

Sample material

Utility program

Service file (for use with
ADMSERV EXEC)

46 GDDM-REXX Guide

ERXLIB TXTlIB

ERXASCOM MODULE
ERXASTUB MODULE
ERXTMSGA MODULE
ERXTMSGB MODULE
ERXTMSGH MODULE

ERXTEMSG MODULE

ERXBLSEG EXEC
15664336 EXEC

ERXMODEL ADMGDF
ERXMODEL EXEC
ERXORDD6 ADMGGMAP
ERXORDER ADM1FMT
ERXORDER EXEC

ERXMSVAR EXEC

5664336 DATA

ERXTMSG1 MODULE
ERXTMSGK MODULE
ERXTMSGS MODULE
GDDMREXX MODULE

15664336 MEMO
15664336 011005

ERXCHART EXEC
ERXMENU EXEC
ERXOPW1N EXEC
ERXPROTO EXEC
ERXTRY EXEC

diagnosis

Part 3: Diagnosis

Part 3: Diagnosis 47

IJart 3: diagnosis

Here is some more infotmation you may need if you have a problem that is particularly
troublesome.

GDDM-REXX is a program that n1l1s in the subcommand environment of REXX. Any
command that is not recognized by REX X is passed to the active subcommand
environment. To make GDDM-REXX the active subcommand envirorunent, the
Address gddm instruction is used. Then any symbolic parameters passed are resolved
by GDDM-REXX. GDDM-REXX then passes calls to GDDM.

User EXEC 1. Use REXX Trace
,------------, to follow REXX
/ * comment */

Address GDDM
x=30
y=50

'GSLINE .x .y'

SUBCOM 'GDDM'

GDDM-REXX
subcommand
processor

parameter list
for GDDM:

1. AAB
2. rcp for GSLINE
3. x value
4. y value

Call ADMASP(plist)

GDDM product(s)

interpretation

2. Use GDDM-REXX
'GXSET TRACE ON'
to follow fetch
and set of REXX
variables

3. Trace GDDM calls
using PROFILE
ADMDEFS with
parameter trace.

System Product
Interpreter (REXX)

SUB COM : ' GDDl! '
x: '30'-
y: '50'-

-

EXECCOMM to fetch
and set REXX
variables

Figure 2. Data flow and trace facilities. Control and data flow are illustrated along with
methods of tracing the values scnt betwecn REXX and GOOM.

You may need to consult the VM/System Product Interpreter Reference manual or the
VM/SP System Programmer's Guide for further information about subcommand concepts
and the REXX Address instruction. You should find help with GDDM problems in
the GDDM Diagnosis and Problem Determination Guide.

48 GDDM-REXX Guidc

diagnosis

When you arc trying to find the source of an error, there arc three different types of
tracing that you can use: REXX, GDDM-REXX, and GDDM. Figure 2 shows how
they relate to one another.

Here is a simple REXX EXEC and examplc&. of trace output for it.

/* Example of tracing by REXX, GDDM, and GDDM-REXX

Trace r
Address command 'GDDMREXX INIT'
Address gddm
s='abcde'
x=70
y=60
'GXSET TRACE ON TIME'
'GSCHAR 50 50 5 .s'
'GSMOVE 40 60'
'GSLINE .x .y'
'GXSET TRACE OFF'
'ASREAD ••. '
Address command 'GDDMREXX TERM'
Trace off
Exit

/* start REXX tracing

/* start GDDM-REXX tracing

/* stop GDDM-REXX tracing

/* stop REXX tracing

The REXX and GDDM-REXX traces were spooled to the console using the CP
command SPOOL CONSOL E START. Hcre is part of the output:

4 *-* Address command 'GDDMREXX INIT'
»> "GDDMREXX INIT"

5 *-* Address gddm
6 *-* s='abccle'

»> "abcde"
7 *-* x=70

»> 1170"

8 *-* y=60
»> "60"

9 *-* 'GXSET TRACE ON TIME'

»> "GXSET TRACE ON TIME"
ERXOOOO I TIME STAMP: 09/11/86 14:52:04.743196
ERXOOOO I "GXSET TRACE ON TIME"

10 *-* 'GSCHAR 50 50 5 .s'
»> "GSCHAR 50 50 5 .s"

ERXOOOO I Var fetch: s = "abcde"
ERXOOOO I TIME STAMP: 09/11/86 14:52:06.474704
ERXOOOO I "GSCHAR 50 50 5 .s"

11 *-* 'GSMOVE 40 60'
»> "GSMOVE 40 60"

ERXOOOO I TIME STAMP: 09/11/86 14:52:06.521208
ERXOOOO I "GSMOVE 40 60"

12 *-* 'GSlINE .x .y'
»> "GSlINE.x .y"

ERXOOOO I Var fetch: x = "70"
ERXOOOO I Var fetch: y = "60"
ERXOOOO I TIME STAMP: 09/11/86 14:52:06.562355
ERXOOOO I "GSLINE .x .y"

/* start GDDM-REXX tracing

13 *-* 'GXSET TRACE OFF' /* stop GDDM-REXX tracing

»> "GXSET TRACE OFF"

There is more ahout REXX tracing in the VMjSy.rtem Product Interpreter Reference
manual.

Part 3: Diagnosis 49

part 3: diagnosis

GDDM tracing was specified hy a PROFILE ADMDEPS file containing tlus entry (note
the space at the start):

DEFAULT TRCESTR='IF API THEN PARMSF TIME'

You can find more information on GDDM tracing in the GDDM Diagnosis and Problem
Determination Guide. The GDDM trace went to a file called ADMOOOOI ADMTRACE
AI, part of which is shown below.

/* header and defaults table sections omitted for clarity

00000001 01 CPNIN SPINIT 1 '00050000 'X) - SPI SPECIAL INIT
PTRACE
PTRACE

2 CHAR
2 CHAR

TIME STAMP 11 SEP 1986 14: 52: 04 153524 Seconds)
00000034 01 CPNOUT SPINIT 1 '00050000 'X) - SPI SPECIAL INIT
PTRACE 2 CHAR ---INPUT ONLY PARAMETER-----
TIME STAMP 11 SEP 1986 14:52:04 153524 Seconds)

00000035 01 CPNIN GSCHAR 1 'OCOC0500'Xl - CHARACTER STRING AT
PTRACE 2 FLOAT 50
PTRACE
PTRACE
PTRACE

3 FLOAT 50
4 DIM 5
5 CHAR 'abcde'

TIME STAMP 11 SEP 1986 14:52:04 153524 Seconds)
00000409 01 CPNOUT GSCHAR 1 'OCOC0500'Xl - CHARACTER STRING AT
PTRACE 2 FLOAT ---INPUT ONLY PARAMETER-----
PTRACE
PTRACE

3 FLOAT ---INPUT ONLY PARAMETER-----
4 DIM ---INPUT ONLY PARAMETER-----

PTRACE 5 CHAR ---INPUT ONLY PARAMETER-----
TIME STAMP 11 SEP 1986 14:52:06 (53526 Seconds)

00000410 01 CPNIN GSMOVE ('OCOC0400'Xl - MOVE TO
PTRACE 2 FLOAT 40
PTRACE 3 FLOAT 60
TIME STAMP 11 SEP 1986 14:52:06 (53526 Seconds)
00000413 01 CPNOUT GSMOVE ('OCOC0400'XJ - MOVE TO
PTRACE 2 FLOAT ---INPUT ONLY PARAMETER-----
PTRACE 3 FLOAT ---INPUT ONLY PARAMETER-----
TIME STAMP 11 SEP 1986 14:52:06 (53526 Seconds)

00000414 01 CPNIN GSLINE ('OCOC0401'Xl - LINE TO
PTRACE 2 FLOAT 70
PTRACE 3 FLOAT 60
TIME STAMP 11 SEP 1986 14:52:06 (53526 Secondsl
00000421 01 CPNOUT GSLINE ('OCOC0401'X) - LINE TO
PTRACE
PTRACE

2 FLOAT ---INPUT ONLY PARAMETER-----
3 FLOAT ---INPUT ONLY PARAMETER-----

TIME STAMP 11 SEP 1986 14:52:06 (53526 Seconds)

/* followed by entries for ASREAD and program termination

50 GDDM-REXX Guide

*/

reference

Part 4: Reference

Part 4: Reference 51

part 4: reference

Summary

Statements and
Facilities

GDDM calls

REXX statements

Command

GDDMREXX

Subcommands

GXGETAAD

GXGET COT

GXGET LASTMSG
GXGET MSG
GXGETNAMES

GXGETTRACE

GXSETAAB
GXSET MSADS

GXSET MSG

GXSET MSVARS

GXSETTRACE

Utility EXEC

ERXMSVAR

52 GDDM-REXX Guide

GDDM Base, GDDM-PGF, and GDDM-GKS arc available to
give full screen support for alphanumerics, graphics, image,
mapping, and charting. GDDM-REXX accesses GDDM calls
through the Call Descriptor Table (see the "Call format
descriptor module" appendix in the GDDM Base Programming
Reference, Volume 2). So you can use any of the GDDM calls
for which a request control parameter (RCP) is defined, except
as noted in "Restrictions and differences" on page 53.
REXX language is available through the System Product
Interpreter, and gives high-level language functions and access to
CP and CMS environments.

Loads or terminates GDDM-REXX, or displays version
number in use.

Obtains the address of the currently used Application Anchor
Block (MD). (Used in conjunction with FSINIT and GXSET
AAD.)
Extracts a string of bytes which contains the GDDM call
descriptor table (CDT) entry for a given GDDM call. (This is
in an encoded form.)
Extracts the text of the last error message.
Extracts the current state and level of message display.
Extracts a string containing all the GDDM call names (beware,
there are several hundred).
Extracts the current state of trace control.

Establish the given AAB as current.
In mapping, moves data to the GDDM application data
structure (ADS) from the variables that make up the REXX
application data structure produced by the ERXMSVAR
EXEC.
Enables/disables display of messages at the specified severity
level or higher.
In mapping moves data to the REXX application data structure
from the GDDM application data structure.
Enables/disables statement and variable fetch/set trace.

Creates a REXX application data structure for use with mapped
alphanumerics.

Restrictions and differences

R <'.siridiol1s

No CIIART call

No SPINIT call

Differences

Array parameters

PSI NIT call

FSTERM call

Mapping

Reentrant support

P A2 as escape to
subset

GDDM-REXX
EXECs in subset
mode or invoked from
other programs

summary

Noil'.s

Use the CS ... calls that give an improved programming interface
to the Interactive Chart Utility (ICU). (Sec also the sample
ERXCHART EXEC.)
GDDM-REXX docs not support programs that explicitly use
the GDDM system programmer intelface.

Notes

Array parameters are treated more strictly in GDDM-REXX
than they are in other high-Ievcllanguages. In partieular, arrays
must be multi-dimensional when they describe lists of lists of
values (for example, in the call 'CHBAR 3 2 • ARRAY. ' , the
array must be two-dimensional with three sets of two values).
Take care with calls for which GDDM-REXX requires an array
of strings, where other languages may accept all values
concatenated in one string. Such calls include CHXlAB and
CHYlAB. See "Difficult calls" on page 36 for other cases.

Special action taken. Not needed in normal use; creates a new
instance of GDDM. See "Multiple instances of GDDM and
GDDM-REXX" on page 31.

Special action taken. Not needed in normal use; terminates the
current instance of GDDM. See "Multiple instances of GDDM
and GDDM-REXX" on page 3t.

The ERXMSV AR EXEC, and two subcommands GXSET
MSVARS and GXSET MSADS are provided so that maps created
with GDDM-IMD can be used in REXX EXECs through
GDDM mapping calls.

Reentrant support is provided by means of sllbcommands that
extract and set the anchor block, rather than by a separate set of
reentrant calls. The commands are GXGET AAB and GXSET
AAB.

By default in GDDM PA2 acts as an escape into subset mode.
If CMS subset is entered in this way from a GDDM-REXX
EXEC, it is not possible to use further EXECs that use
GDDM-REXX. See "Producing reliable, safe, independent
EXECs" on page 33 to discover how to give controlled access
to CMS subset.

If you plan to use GDDM-REXX EXECs from eMS subset
mode, or if your GDDM-REXX EXECs are likely to be
invoked from other programs, the GDDM-REXX command
module should be loaded in the nucleus. See "Using
GDDM-REXX from eMS subset or other programs" on
page 34 for further details.

Part 4: Reference 53

pal1 4: reference

GDDM call syntax

In GDDM-REXX, a GDDM call takes the form of the call name followed by a list of
parameters. Parameters are separated by blanks both from the call name and from other
parameters. Parts of the call can be enclosed in either single or double quotes to prevent
processing by REXX.

Methods of passing parameters

Parameters may be REXX variable names or literal values. Using a REXX variable name
is known as calling by name. Using a literal value is known as calling by value. The
methods can be mixed within a single GDDM call. When parameters are passed by
name, they must be preceded by a dot.

'GSLINE .x .y' /* by name */
'GSLINE 10 ZO' /* by value */
'GSLINE .x ZO' /* mixture of name and value */
'ASCPUT • id .length • words , /* by name with character string */
'ASCPUT 1 5 "Hello'" /* by value with character string */

The names passed can be any type of REXX variable; the correct conversion will be
made to the type required by GDDM.

Note that you cannot pass a variable that contains a string of parameters. For example,
you cannot use
parmstring='lO 20'i 'GSLINE .parmstring'.

54 GDDM-REXX Guide

GDDM syntax

Values that can he passed

The values passed can either be integer, floating point, or string. Strings may be of
variable length or of fixed length. Fixed-length strings are sometimes called tokens.
Values allowed are shown in the table.

Type

integer

float

strings
(fixed
length)

strings
(variable
length)

Types of parameters

Values allowed

Range from - 2++31 to 2++31- 1. Floating point and a decimal point are
allowed provided any fractional digits are zero. Take care with negative
values. Include quotes • GSCOl -1' or parentheses if outside quotes
'GSCOl' (-D. Note that the REXX NUMERIC DIGITS instruction has no
effect on the range.
Examples: 1 21 1234 -1

Floating point or decimal notation. Maximum and minimum restricted to
System/370 short floating point form. However, GDDM graphics calls limit
values to a smaller range (absolute values of nonzero parameters in the range
1.0E- 18 to I.OE18).
Examples: 1. 3 le+3 lE-3 1. Oe3

Most are names of GDDM objects and should be coded in uppercase.
GDDM does not recognize the lowercase versions.
Example: ADMUUKSF

Enclosed in double quotes or single quotes. If GDDM calls are in single
quotes (as advised), double quotes should be used. If you want a quote
displayed or printed, use it twice if it is already used as a string delimiter.
Examples: "String" 'string' 'don' 't'

"He said Don·t"

Parameters must be either scalars (a single value) or arrays (a list of values with defined
dimensions).

Passing scalar parameters

When passing by name, assign the value to the variable and use the name preceded by a
dot in the call. When passing by value, include the value in the call; for character strings
enclose the string in double quotes.

x=50.1
y=10
1=16
words="This is a string"
'GSCHAR .x .y .1 • words , /* call by name
'GSCHAR 50.1 10 16 "This is a string'" /* call by value

*/
*/

String or token parameters may be entered without quotes if, and only if, the string
contains none of the special characters: blank, single or double quote, left or right
parenthesis, or the shift-out SO character. In addition, any token or string that begins
with a dot must be enclosed in surrounding quotes.

Part 4: Reference 55

part 4: reference

GDDM-REXX lets you pass a character string that contains DBCS (double-byte
character strings). 'Jbey must be between Shift-out and Shift-in (SO/SI) brackets. (SO
== X'OE' and Sf == X'OJl'.) It is an error if an umnatched SO occurs in a string.

Strings containing these special characters must be enclosed in matching quotes. This is
because they can cause parsing to be interrupted. For example:

s = 'a b c'
'GSCHAR 30 50 5' s

/* string containing blanks */
/* "s" is evaluated - the command */
/* passed to GOOM after evaluation*/
/* is 'GSCHAR 30 50 5 abc' */
/* which has too many parameters */

However, you can safely omit the quotes in some circumstances, like:

'CHXlAB 12 3 (JAN FEB MAR APR HAY JUN JUl AUG SEP OCT NOV DEC)'

Character strings that contain blanks or nBCS characters can be passed "by name"
without the need for any special GDDM-Rf<:XX string delimiters. However, the system
interpreter requires an OPTIONS ETMODE statement before the SO/Sf characters in literal
strings or comment statements.

Passing array parameters

Array parameters can be passed in the following ways:

1. By name using a REXX stemmed variable. The array will be taken from the
member .1 or .1.1 (amI so on).

xarray.l=lOJ xarray.2=20
yarray.l=lO
'GSPlNE 3 .xarray •. yarray.'

/* and so on
/* and so on
/* by name with stemmed variables */
/* Note dot after stemmed name */

2. By name using a prefix. REXX variables of the form prefixl, prefix2, for one
dimension and prefixl.l, prefixl .2 for two dimensions will be looked for and
their values used. The variables with these new names are formed into a list and
passed as an array to GDDM. For example:

varxl=10J varx2=8J varx3=5
'GSPlNE 3 .varx .vary'

is passed to GDDM as

/* and so on

'GSPlNE 3 (.varxl .varx2 .varx3) (.varyl .vary2 .vary3),

3. By name or value enumerated in list between parentheses. For example:

bot=5J mid=25
'GSPlNE 3 (10 20 .bot)(20 .mid 30)'/* by name and value. Each member */

/* enumerated in parentheses */

or, for a two-dinlensional array:

'CMBAR 3 2 «(10 40) (20 50) (30 60))'

56 GDDM-REXX Guide

GDDM syntax

4. By stem or prefix names in parentheses; these represent columns in a
two-dimensional array. For example:

barray.l=lO. carray.l=40
barray.2=20. carray.2=50
barray.3=30} carray.3=60
'CHBAR 3 2 (.barray .. carray.)' /* dimensioned values placed in */

/* parentheses when required */
/* array needs more dimensions */

Note that this works only for columns, not for rows. The listed values to achieve the
same results would be either of these forms:

'CHBAR 3 2 (I .barray.l .carray.l1 (.barray.2 .carray.2) (.barray.3 .carray.3))'

'CHBAR 3 2 1(10 40) (20 50) (30 60))'

Handling of short or long parameters

The method of handling parameters that do not exactly mateh the specifications varies
according to the type of parameters. All mismatches not described below arc treated as
errors.

Pflrameter.~ that are too Jhort

Strings

Too few
array
clements

Too few
array
dimensions

Padded with blanks to the required length. This may be the length
specified in the call or, for tokens, the length specified by GDDM.

Extra members arc generated. When the array is passed by name, the
REXX variables are searched for, and it is an error if they do not exist.
When the array is passed by value, extra values are added as necessary.
They are zero for floating point and integer parameters, and blanks for
strings and tokens.

The item is rescanned to produce the correct number of dimensions. If
the array is passed by name, the necessary suffixed names are generated,
and it is an error if they do not exist.

If the array is passed by value, additional values are generated using the
following rules:

I. If the size of the missing dimension is explicitly given, the list will be
scanned this number of times. If an individual list entry is a value,
that value will be reused. For example:

'ASOFMT 2 . (1 2 3 456)' /* vector used twice

becomes

'ASOFMT 2 6 ((1 2 345 6) (1 2 345 6))'

If it is a name, it is suffixed:

'ASOFttT 1 6 (.f .r 3 4 S 6)'/* extra dimension with suffixes */

is processed as

'ASOFMT 16 ((.fl .r1 3 4 S 6))'

Part 4: Reference 57

part 4: reference

2. If the size of the missing dimension is not explicitly given, that
dimension is defaulted to 1, and the result is a I-by-n array. For
example:

'ASDFMT. (1 2 3 4 5 6)' /* 1-by-6 array generated */

becomes

'ASDFMT 1 6 ((1 2 345 6))'

3. If the list is of two dimensions less than required, the list is scanned
the required number of times to produce, for each of the required
number of rows, the values in the columns. If the entry is a literal
value it is reused. For example:

'ASDFMT 2 6 I' /* rescanning gives 2-by-6 array */

becomes

'ASDFMT 2 6 ((1 1 1 1 1 1) (1 1 1 1 1 1))'

Omission of either size parameter defaults to the value 1.

Parameters that are too long

Strings

Too many
array
elements

Too many
array
dimensions

Omitting parameters

Truncated to the required length, with an error message.

Extra members are ignored.

This is treated as an error and a message is given.

Parameters can be replaced by dots if they are:

1. Returned values that the program is not interested in
2. Lengths that GDDM-REXX can discover from your input
3. Array dimensions that GDDM-REXX can discover from your input.

'ASREAD •
'ASCPUT 1 "Hello" ,
'CHBAR • ((1 2) (3 4)- (5 6))'

/* omit returned values
/* omit length you are passing
/* omit array defining counts

If two or more parameters depend on an omitted length or count value, the rust one from
which the value can be determined is used, and subs.equent parameters are processed with
this "discovered" value.

58 GDDM-REXX Guide

GDDM syntax

Finding syntax from reference sources

The parameter syntax of GDDM calls can be found by use of the sample program
ERXPROTO or in the GDDM programming reference manuals or summaries.

Interdependcnt parameters, array dimcnsiolls, string lengths

Many GDDM calls have interdependent parameters where earlier lengths and counts
describe the lengths of strings and count of elements in arrays. These calls are described
in the GDDM Base Programming Reference:

GSCHARlx,y,length,stringJ

where length is the length of the string; and

GSPLNElcount,xarray,yarray)

where count is the number of elements in each of the two arrays.

Where there is one such dependency, the length is the length of the string, or the count is
the number of elements in the array.

Where there are two dependencies, strings are given in a one-dimensional array of strings
of the given length; numbers are given in a two-dimensional array, with the first count
specifying the number of groups and the second specifying the number of clcments in
each group.

CHXLABlcount,length,textJ

text is an array of count strings each of the number of characters in length.

CHBARlcomponents,count,y-values)

y-values is a two-dimensional array with components rows and count columns.

This is shown explicitly for GDDM/VM and GDDM-PGF in the reference summaries
and for GDDM-GKS in therefcrence manual. 'rhe same information is available from
the ERXPROTO EXEC.

'CHXLAB cntl len2 char.cntl.len2' /* ERXPROTO forms for the two */
'CHBAR cntl cnt2 float.cntl.cnt2' /* calls described above */

Part 4: Reference 59

part 4: reference

Parameter syntax in ERXI)ROTO

ERXPROTO produces output of the following form. (The example is used to show
complete syntax; there is no GDDM call of this type.)

'callname cntl cnt2 len3 .float intg.cntl.cnt2 char.len3 char.8'

cntx These counts are used as array dimensions. The number that follows
them is their position in the string.

lenx These lengths are lengths of character strings. The number that follows
them is their position in the string .

. float The parameter is floating point. The dot that precedes it means that it is
returned by GDDM.

intg
char

The parameter is an integer.
The parameter is a character string .

. cntl.cnt2 These are array dimensions - see below for rules to deduce dimensions
and sizes .

. len3 This is the length of the character string it follows. If the parameter is an
an-ay, it is the length of each string in the array .

. 8 This is a constant value required by GDDM. If it is the last item that
starts with char (as in this case) it is a length, in other cases it is an array
dimension.

I Iere is a set of rules that let you produce valid calls from the ERXPROTO syntax.

1. Look for cnt values that are array dimensions, and calculate the values you will need
for them.

'CHBAR cntl cnt2 float.cntl.cnt2' /* two sets so two dimensions */
/* in example cntl=2,cnt2=3 */

'GSCHAR float float len3 char.len3'/* none .len3 is a length */
'ASREAD .intg .intg .intg' /* none

For a by-name array you would enter values array. I .1 = I 0 to array. 2.3=60
(using the values you needed) and use the parameter . array. (with a closing dot).

2. Look for any array parameters and work out the correct dimensions. Array
parameters are followed by . cnt, for example float. cntl. There is one
dimension for each f()Uowing . cnt. That means one set of brackets for each
following dot if you are listing the array clements in the call.

'CHBAR 2 3 ffn n nl fn n nIl' /* cntl and cnt2, two dimensions */
/* three fcnt21 elements in each */
/* inner parenthesis, two Icntll */
/* sets of inner parentheses. Two */
/* levels of nested parentheses, */
/* one for each count */

'GSCHAR float float len3 char.len3'/* no arrays no action
'ASREAD • intg . intg • intg' /* none

3. Look for the character strings and fill in the length values.

'GSCHAR float float 4 "ABCD'" /* Characters are ABCD -so length */
/* is four

60 GDDM-REXX Guide

GDDM syntax

4. Pill in the float or integer values or variable names. These are integers where the
parameter says intg, any form of number where it says float, and character strings
where it says char.

'CHBAR 2 3 II 3 4 5) 15 6 7)) , /* put in array values
/* ·Jill in values 'GSCHAR 10.5 50 4 "ABCD'"

'ASREAD .type .val . count , /* fill in all values

IJaramdcr syntax in the reference manuals

The reference manuals present GDDM calls using a syntax that has parentheses around
the parameters and commas between them, for example:

GSlOAD (name,countl,opt-array,seg-count,count2,descriptor)

The four following steps will produce calls in the correct syntax for GDDM-REXX:

1. Omit the parentheses around the parameters and replace the commas with blanks:

GSlOAD name count I opt-array seg-count count2 descriptor

2. Use a valid REXX variable name for each parameter, optionally using stcmmcd
variable names for array parameters:

GSlOAD name countl opt_array. seQ_count count2 descriptor

3. Place a period '.' before each parameter name. This indicates that the parameter is to
be passed "by name":

GSlOAD .name .countl . opt_array .. seQ_count .count2 .descriptor

4. Surround the entire statement with single or double quotes (this is to ensure that the
interpreter passes the complete call to GDDM-REXX without attempting
substitution):

'GSlOAD .name .countl . opt_array .. seQ_count .coun-t2 .descriptor'

Now, create REX X assignment statemcnts for all variables which are defined as specified
by user, that is variables that the program passes to GDDM. Place them before the
GDDM call; for example:

name='MYGDF'
count1=2
opt_array. 1=22
opt_array. 2=2
count2=110
'GSlOAD .name .count1

/* name of the ADMGDF file to be loaded */
/* number of elements in opt_array. */
/* starting segment number to be assigned */
/* accommodate to current window size */
/* return up to 110 bytes of descriptor */

• opt_array .• seg_count .count2 • descriptor ,

After the GSlOAD is performt~d, the REXX variables seQ_count and descriptor will
contain the returned by GDDM values.

Part 4: Reference 61

part 4: reference

Rules for deducing the syntax for string and array parameters from the GDDM Base
Programming Reference or GDDM-PGF Programming Reference-manuals are as follows:

1. Look for aqy dependencies between parameters - the parameter names length and
count always show dependencies but they are not the only ones. You must read the
parameter descriptions to be sure.

2. When you have found a dependency, check whether the item it describes is numerical
or a character string.

3. If there is one dependency, it is the number of elements in a one-dimensional array
for numbers, or the length for a character string. '

4. If there is more than one dependency:
For numerical parameters: The number of dependencies specifies the number of
dimensions; the fust item in the list becomes the number of elements in the fust
dimension, the second item becomes the number of elements in the second
dimension, and so on.
l'or string parameters: The number of dependencies is one more than the number of
dimensions of the array. The last dependency is the length of each of the strings in
the array. Prior dependencies specify the number of elements in each dimension.

62 GDDM-REXX Guide

GDDM-REXX syntax

GDDMREXX command

GDDMREXX INIT [([NODCSS] [LANG x] [)]]

Initializes GDDM-REXX.

NOI>CSS

LANG x

Prevents the discontiguous saved segment (DCSS) being loaded, if there
is one. Instead a copy of all of GDDM-REXX is loaded into user
storage. If the DCSS is already in use, NODCSS is rejected with an error
message. To unload the DCSS you must issue the GDDMREXX TERM
command and re-initialize. A DCSS is an area of CMS storage available
to many users.

Loads GDDM-REXX message text in the appropriate language (module
name ERXTMSGx). It has no effect on messages from GDDM or
elsewhere. The meaning of the letters is shown below. Some of them
may not be available in your installation. x is one of the following
letters:
A U.S. English
B Brazilian

H
I

Hangeul
Italian

K
S

Kanji
Spanish

Note that if a double-byte character set language is used for GDDM or
GDDM-REXX languages, we recommend that you operate with GXSET
MSG OFF, and use GDDM to display the error messages that you extract
with GXGET LASTMSG.

GDDMREXX TERM [CALl[)]]

Terminates GDDM·REXX and frees the storage used by it. Note that termination of
GDDM-REXX (and, hence, GDDM) also implicitly occurs at CMS command ready.

ALL Terminates all instances of GDDM·REXX.

GDDMREXX VERSION [(STACKILIFOIFIFO[)]]

Returns the version and release level, product number, date, and copyright notice of the
copy of GDDM·REXX being used. The options allow the use of this command within
REXX EXEC files. If they are omitted, the response is returned to the terminal.

STACK

Ul~O

FlFO

'Ibe information is queued onto the CMS stack behind any items that are
already on the stack.
Last in/first out. The information is pushed onto the CMS stack before
any items that are already on the stack.
First in/first out. Same as STACK.

Part 4: Reference 63

part 4: reference

GXGET subcommand

The GXGET subcommand is used to extract information from GDDM-REXX.

I GXGET AAD .aabtoken

Extracts a token that relates to the current application anchor block (AAB). This can
later be restored by a GXS ET AA B subcommand, which will enable the correct instance of
GDDM. (Used in conjunction with FSINIT and GXSET AAB.)

. aabtoken Variable in which the token relating to the current AAB is returned .
You should not tamper with this token in any way. Sec "Multiple
instances of GDDM and GDDM-REXX" on page 31 for more
information.

GXGET eDT .name .entry

Gives the contents of the GDDM call descriptor table (COT) in a byte string. The CDT
is described in the GDDM Base Programming Reference. The bytes need to be
interpreted - a method of doing this is shown in the sample ERXPROTO EXEC.

.name

. entry

'lllC name of the variable containing the name of the call for which the
COT entry is required. This may be coded as a literal, thus:
'GXGET eDT GSlOAD .gslcdt'
A variable in which the COT byte string will be retumed .

I GXGET LASTMSG .msg

Gives text of the last error.

.msg Variable in which the text of the last error message is put. If there have
been no previous error messages, the string is empty.

GXGET MSG .state .level

Gives current state and level of message handling.

.state

.Ievel

64 GDDM-REXX Guide

Variable in which the state of message handling is returned; its value is
ON or OFF.
Variable in which the level of messages shown will be returned. Values
are:
o (informational) messages and above
4 (waming) messages and above
8 (error) messages and above
12 (severe) messages and above.

GDDM-REXX syntax

GXGET NAMES .namelist

Gives a string cont.aining all the GDDM call names. Note that there are several hundred
calls, aU of which are included.

. namelist The variable into which the list of names is placed .

[GXGET TRACE .state .time

Gives the current state and level of trace.

. state

.time

GXSET subcommand

Variable in which the state of tracing is returned. It may be ON or OFF .
Variable in which the state of trace timing is returned. It may be TIME
or NOTIME.

The GXSET subcommand is used to pass information to GDDM-REXX. Although this
syntax shows variable names, literals may be used instead (except where indicated), as in
'GXSET TRACE ON TIME'.

[GXSET AAD .aabtoken

Establishes the given AAB as current. Used in conjunction with GXGET AAB.

.aabtoken Variable containing the anchor block to be established as current, so that
the associated instance of GDDM will be used. See "Multiple instances
of GDDM and GDDM-REXX" on page 31 for more information.

~XSET MSADS .mapgrp .map .prefix .ads

Moves data to the user's application data structure, which must have been created with
the ERXMSVAR EXEC. Use before output when using mapped alphanumerics.

.mapgroup

.map

.prefix

.ads

Name of the mapgroup that contains the map
Name of the map
The prefix specified in the ERXMSV AR EXEC. This is used as a stem
to give variable names that are suitable for use with REXX. Note that
the dot is required.
The name of the application data structure variable. See "Mapping" on
page 28 for more information.

Part 4: Reference 65

part 4: reference

GXSET MSG .state [.level]

Enables/disables display of messages at specified severity level or higher. l'he default is
that the state is ON with a level of 4, meaning that warning messages and those of a
greater severity are shown .

. state Sets message handling state; it may be ON or OFF .

. Ievel Sets message handling level; it may be:
o echo (display before execution) user statements and display all

messages
4 (warning) messages and above
8 (error) messages and above
12 (severe) messages and above.

GXSET MSVARS .mapgrp .map .prefix .ads

Moves data from the user's application data structure, which was created with the
ERXMSV AR EXEC. Use after input when using mapped alphanumerics.

. mapgrp

. map

.prefix

.ads

Name of the mapgroup that contains the map .
Name of the map .
Prefix specified in the ERXMSV AR EXEC. This is used as a stem to
give variable names suitable for use with REXX. Note that the dot is
required.
Name of the application data structure. See "Mapping" on page 28 for
more information.

GXSET TRACE .state [.time]

Enables/disables statement and variable tracing .

. state ON to start tracing, OFF to end tracing .

. time Optional parameter used with ON. TIME causes a time-stamp record to
be produced with the trace record. NOTIME suppresses time-stamping.

ERXMSV AR EXEC

ERXMSVAR mapgroupname mapname prefix

ERXMSVAR produces initialization statements for REXX variables that are associated
with a mapgroup and map. It produces a CMS file named mapname GDDMCOPY to
include in a mapping program. See "Mapping" on page 28 for more ,information.

66 GDDM-REXX Guide

GDDM-REXX syntax

When GDDM Interactive Map Defmition has been used to define and generate the map
and mapgroup, ERXMSV AR may be executed.

All maps used with GDDM-REXX should be generated with the option to include field
names. In GDDM-IMD panel 3.0 specify:

FIELD NAMES INCLUDED IN GENERATED MAPGROUP ==> YES

Names of the form NO_NAME_l, NO_NAME_2, and so on are assumed if field names are
not included. Tlus is discussed further below.

mapgroupname The name of the generated mapgroup. The mapgroup must have the
ftletype of ADMGGMAP. This is the filetype generated by
GDDM-IMD. If the mapgroupname ends with two dots, GDDM will
supply the last two characters, which indicate the device class.

mapname The name of the map.
prefix The prefix used for the associated REXX variables.

Field naming rules:

1. Field names (including selector and adjunct names) follow the normal GDDM-IMD
rules. The names can be seen in the GDDMCOPY file produced by the
ERXMSVARS EXEC.

Field names and adjunct suffixes are converted into names acceptable to REXX, by
changing hyphens (-) to underscores L). Thus, MY-FIElD becomes MY_FIELD,
and if it has the color selector adjunct COL-SEl, that becomes
MY_FIElD_COL_SEl.

Adjunct suffixes depend on the language you selected when you generated the
mapgroup (see the GDDM Base Programming Reference for details).

2. If you do not use

FIELD NAMES INCLUDED IN GENERATED MAPGROUP ==> YES

GDDM·REXX generates field names as follows:

for fields prefixll "NO_NAME_" II field-number
for adjuncts prefixll"NO_NAME_"llfield-numberiladjund-suffix

where:

prefix
NO_NAME_
field-number

adjunct-suffix

For example:

X_NO_NAHE_3 = II

is as previously described.
is the standard name given to all fields.
is the GDDM-IMD sequence number of the field in the map
(array indexes, if any, are lost).
is the suffix that appears on all adjunct variables. It takes the
PL/I form, using underscores.

X_NO_NAME_ 4 = II II

X_NO_NAHE_ 4_COl_SEl = II II

Part 4: Reference 67

part 4: reference

Sample output: Assuming there were three arrays of fields called PROD, DESC, and
COST (as there arc in the sample map ERXORDER), the command

ERXMSVAR groupl mapl X_

generates:

/* GDDM-REXX: output from ERXMSVAR EXEC: ... 16:41:32 */
/* Initialize structure for MAPGROUP: ERXORDD6 • MAPNAME: ERXORDER */

X_PROD.l = "
X_DESC.l = II

X_COSLI = II

X_QTY.l = II

X_QTY_COL_SEL.l =
X_QTY_COL.l = II II

X_TOLl = II

X_PROD.2 = II

X_TOTAL = II

X_MSG = II

II

X_ASLENGTH=432 /* length of ADS string */

Examples of REXX variable names used for a map without names:

X_NO_NAME_3 = "
X_NO_NAME_4 = "
X_NO_NAME_4_COL_SEL =

Possible pitfalls: If you use a stemmed variable such as stem. do not use the same
variable names in the EXEC that are used as any field names in your maps, as this could
result in unwanted substitutions. For example:

title='Overdue orders'
stem.title=title

results in:

stem.Overdue orders=Overdue orders

The variable in your map stem. ti tl e will not have been altered.

ErrOl" message eXlllanations

When GDDM-REXX detects an error which has severity at or above a specified level, it
issues an error message, preceded by an information message which displays the user
statement.

The severity level is set by the GXSET MSG subcommand or defaults to 4 (warning
messages and those of a higher severity). If you request GDDM-REXX tracing by
issuing the subcommand GXSET TRACE ON, you do not need to use the GXSET MSG
subcommand to see the trace output.

68 GDDM-REXX Guide

Messages take the form:

ERXOOOO I user-statement-text
ERXnnnn s message-text

where:

ERX GDDM-REXX prefix
nnnn message number
s severity character

messages

Other nre,uages: You may also get GDDM, REXX, eMS, or ep messages during the
running of your EXECs.

GDDM messages (explained in ODDM Messages) take the form:

ADMnnnn s message-text

System Product Interpreter (REX X) messages (explained in VM/System Product
Interpreter Reference) take the form:

DMSREXnnn s message-text

where:

DMSREX System Product Interpreter prefix
nnn message number
s severity character

CMS messages (sec VM/SP System Messages and Codes) take the form:

DMSxxxnnn s message-text

where:

DMSxxx eMS prefix
nnn message number
s severity character

lJi,mppearillg nre,5.fage,~: If messages disappear before you have had time to read them
and are replaced with a GDDM screen or an empty screen, put an FSFRCE call
immediately after the Address gddm command. Messages are cleared when GDDM
opens a device, typically at the first ASREAD call. The FSFRCE opens the device bef()f"e
any calls have been made.

Retum codes: GDDM-RIIXX commands, subcommands, and GDDM calls will
produce return codes 10 the user's R EXX program. With the exception of ERXOOO 1,
these return codes are related directly to the severity level indicated in the text of the
message as follows:

REXX return code
("rc" variable)

-3
o
o
.:.
8

12

GDDM-REXX severity character
ill message, and its meaning

(error ERX0001)
(no error found)

I information message
H warning message
E error message
S severe error

Part 4: Reference 69

part 4: reference

ERXOOOO I ' •.•. lIscr statement •.• .'
ERXOOOO I TIME STAMP: ' •••• timing information ••• .'

ERXOOOO I Var feteh: ' .•.. vamame ••• .' - ' ...• value ••. .'
ERXOOOO I Var set: ' •.•• varname ••• .' = ' •••. value ••• .'

Explanation: This message is issued when 'GXSEI' TRACE
ON' has been executed. The user statement form is produced
when a GDDM error occurs, and is normally accompanied by
a message starting ADM. The time stamp form is generated
when 'GXSEr TRACE ON TIME' is specified. "Var fetch"
means that a variable has been fetched from REXX and has
the value shown. ,iVar set" means that a variable has been
given the value shown and passed to REXX.

ERXOOOI E Unknown GDDM function call
Explanation: Follows a REXX message that displays the call.
The call may be a mistyping of a GDDM call. or it may be a
command that should have been passed to another
environment. or it may be an error caused by REXX
substitution. For example. the call 'GSCLP' 1 = 1 will send to
GDDM-REXX the character string '0'. (This is because
concatenation has higher priority than comparison in REXX,
and the comparison between. 'GSCLP I' and '1' yields: '0'.)
It will also occur if you attempt to use the CHART or
SPINIT call.
This message will also occur if you are not using a
disc~ntiguous saved segment (DCSS) for GDDM, and have
not Issued the appropriate GLOBAL TXrLIB command.

ERXOOO2 E Too few parameters
Explanation: The number of parameters in the call is too
small. III particular check that array parameters are correctly
coded. See the summary of calls and description of
parameters in the GDDM Base Programming Rtiference
Summary and the GDDM-PGF Programming Rtiference
Summary.

ERXOOO3 E Too many parameters: ' ••. .'
Explanation: The number of parameters in the call is too
large. I n ~articula.: check that array parameters are correctly
coded. ThIS error IS often caused by a bad parenthesis count.

ERXOO04 E Invalid parameter type: ' ••. .'
Explanation: A string parameter was unquoted and began
with a "(" or ")"; correct it.

ERXOOOS E Invalid integer value: ' .•• .' . .
Explanation: The item passed was not an integer. It could
have been an uninitialized REXX variable, a character string,
or a number that was not an integer.

ERXOOO6 E Invalid real value: ' •• _.'
Explanation: The item passed was not a number. It could
have been an uninitialized REXX variable or a character
string.

ERXOOO7 E Invalid parameter: ' ••• .'
Explanation: In a GXSHr subcommand, the cause could
have been: (I) token parameter longer than eight characters,
F) v~lue coded fo: return parameter (missing the" ."). (3)
mvalld keyword given (too long. misspelled), (4) invalid
subverb (MSG. LASTMSG, etc.), (5) incorrect integer syntax
(6) invalid AAB token (for GXSET AAB). '
In a GXGET subcommand. the cause could have been: (1)
token parameter longer than eight characters. (2) value coded
f~r return parameter (missing the"."). (3) invalid keyword
given (too long, misspelled), (4) invalid subverb (MSG,
LASTMSG, etc.).

ERXOO08 E Parameter rank too large: ' •• _'
Explanation: Array parameter rank (number of dimensions)
greater than that expected. For example, a two-dimensional
array passed when a one-dimensional array was needed.
Either the array was coded with correct syntax. but the rank

70 GDDM-REXX Guide

was too large, or it was coded incorrectly, and GDDM-REXX
interpreted it as having the wrong rank.

ERXOOO9 E Invalid parameter syntax: ' ••• .'
Explanation: Check array parameters for the following: (1)
token e!lcountered at higher than innermost ~ank, (2) too
many fight parentheses. (3) array pre-scan fruled: array began
with right parenthesis. or found "(" when processing values in
a row, or found a value after a")".

ERXOOlbE Mis.. .. ing parameter(s)
Explanation: If the parameter is one that is set by or passed
to GDDM the cause could have been: (1) fewer than
minimum required number of parameters, (2) subverb
missing.

ERxOOll W REXX variable bad no value: ' ••• .'
Explanation: If the variable is in a parameter that will be
passed to GDDM-REXX: (1) For a string parameter,
processing continues with the name being used as the value.
(2) For a numeric parameter. processing continues until the
number conversion fails, producing ERX0005 or ERX0006.
If the variable is in a parameter that will be returned to
REXX, the statement is not executed.

ERx0012 W REXX variable ' .•• .' truncated
Explanation: If the variable is in a parameter that must be
passed to GDDM, the truncated string is passed for a
character string. and the process is stopped for a numerical
parameter. If the variable is in a parameter that has been
returned by GDDM, processing continues. One of the
following has happened: (1) a numeric parameter was longer
than 18 characters, (2) a token parameter was longer than 8
characters, (3) a keyword parameter (e.g. "ON") was longer
than 18 characters, (4) a string parameter was longer than
required by GDDM.

ERxOO13 E Variable name required for return parameter: ''
Explanation: Check for (1) missing returned-by-GDDM
parameter, (2) value .. spe£ified.for returned-by-GDDM
parameter (leading "."missing);

ERXOO14 E Length must be specified for return parameter: ' ••. .'
Explanation: Lengths must be specified for returned
parameters. for example in 'ASCGET id length string'. This
usually occurs when a user has coded a single dot for the
length (indicating omitted length). (A dot coded for the length
of a returned numeric array parameter will be treated as a
length of 1.)

ERXOOt5 S Insufficient free storage
Explanation: This message is issued when any request for
free storage fails. The user may have defined the virtual
machine to be too small to accommodate the data in the
application. A CMS message will precede the ERXOO 15
message:
DMSFRE159T INSUFFICIENT STORAGE AVAILABLE TO
SATISFY DMSFREE REQUEST FROM 'addr'
The req~est is conditional and processing continues, however
the parllcular user request which created the error condition
will not be executed.

ERXOO16 E Return code ' ••• .' from EXECCOMM: ''

ERXOOt6 E Return code ' ••• .' from EXECCOMM: '*"*"****'
Explanation: The return code will normally be 8. indicating a
bad name for a REXX variable. The second insert is the
name in question. If the second insert is all *, then the return
code is from register 15 upon exit from the EXECCOMM call
(EXECCOMM is the means by which nonEXEC progranls
can set or fetch EXEC variables).
Details of other return codes can be found in the'VMISystem
Product Interpreter Reference manual.

ERxOO17 E Unknown GDDM~REXX subcommand
Explanation: Invalid subverb discovered.

EltxOOl8 E Right parenthesis missing
Explanation: An unmatched parentheses in an array
parameter has been found (either a numeric array or a list of
strings).

EIlXOOl9 E Matching SI character not fOllnd in DUCS string
Explanation: SO character found in quoted string parameter,
but end-of-statement encountered before finding matching SI
character.

ERX0020 E Ending string delimiter missing
Explanation: In a string starting with either' or ", the
end-of-statement was encountered before finding the matching
string delimiter.

ERX0098 E Error in descriptor ' ••. .' reason ' ..• .'
Explanation: Part of GO OM's calling mechanism has been
corrupted or unexpectedly changed. This error will occur if
the GDDM CDT changes format, or is somehow destroyed
or altered in storage.
The first substitution is the parameter number of the entry in
the COT. The second is the type of the error:
1 accumulator rank greater than 3
2 invalid parameter type
3 no matching variant found
4 number of accumulators greater than ten
5 number of parameters greater than 32.

EIlX0099 E t)nkllown message nllmber ' ..• .'
Explanation: The GDDM-REXX error handler has been
called with an invalid message number. This is a system or
GDDM error.

ERXOIOO E Invalid parameter: ''
Explanation: The parameter showll in the message is not
recognized by the GDDMREXX command.

EIlXOIOI E Invalid option: ''
Explanation: The option shown in the message is not
recognized by the GDDMREXX command.

ERXOlO2 .1': No function sllccified
Explanation: No function was specified on the
G D IJ M REXX command.

ERXOlO3 W GnfJM-REXX has 1I0t been initialized
Explanation: 'GDDMREXX TERM' or 'GDDMREXX
TERM (ALL)' has been requested, but GDDM-REXX is not
oper ational.

ERX0104 E Returll code '' from ' ••. .'
Explanalion: GDDM-REXX calls some other CMS
commands and fUllctions. The command shown in the
message gave the reported unexpected return code. Refer to
the CMS HELP information for the command in error for
more details about the meaning of the return code. Variants
are:
NUCXLOAU - the error occurred in the NUCXLOAD
command, loading the ERXASCOM nucleus extension.
NtlCEXT the error occurred in the NUCEXT function,
querying the ERXASCOM nucleus extension that has just
been loaded.
NUeXURO(> ._- the error occurred in the NUCXDROP
command, deleting the ERXASCOM nucleus extension.

messages

StJueOM -- the error occurred while defining the GDDM
SUBCOM environment.
ATTN - the error occurred while stacking the result of the
GDDMREXX VERSION command.

ERXOl05 E 'NODess' option is invalid. Dess is already ill
use
Explanation: The NODCSS option has been specified on the
GDDMREXX command, but GDDM-REXX is already
initialized using the DCSS. The request for the NODCSS
option is ignored.

ERXOlO6 S GUDM-REXX DCSS is no 10llger loaded
Explanatiol1: A subcommand has been issued to the GDDM
environment, but the GDDM-REXX DCSS which should
process the subcommand has somehow been unloaded from
the virtual machine.

ERXOlO7 E ERXASCOM must not be called as a command
Explanation: A user has issued ERXASCOM as a command
from the terminal. This is not permitted.

EuxOl08 E GDDM-ImXX could not locate SUBCOM
'GDlJM'
Explanation: 'GDDMREXX TERM' has been issued, and
ERXASCOM nucleus extension exists. However, there is no
matching GDDM SUBCOM and so there is nothing to
terminate.

ERXOl09 S GDDM-REXX is not snpported on this level of
CMS
Explanation: While processing a 'GDDMREXX INIT'
command GDDM-REXX found that the level of CMS on the
system is not VM/CMS SP-4 or later.

I':IlxOl 10 S Recllrsive entry to GUUM-REXX. Request
rejected
Explanation: Entry was made into the GDDM-REXX
nucleus extension program while a GDDM-REXX request is
still outstanding. This would occur, for example, if an
ASREAD was issued, PA2 pressed to go into CMS SUBSET,
and any GDDM-REXX request made.

ERxOlll S NUCXUROP of GDUM-REXX is abollt to
require re-JI'L of CMS
Explanation: The nucleus extension program has been
entered on a service call from CMS NUCXDROP while a
GDDM-REXX request is outstanding. This could occur, for
example, if an ASREAD was issued, PA2 pressed to go into
CMS SURSET, and the CMS NUCXDROI' command
issued. Subsequent return from CMS SUBSEr will find the
support code for GDDM-REXX missing (thUS causing a
program. check).

ERxOl 12 W Invalid langnage selection. Default assumed
Explanation: The language selection option was misspelled or
is not Olle of the supported languages.

ERXOI t3 S Unable to locate language modllie. Command
terminated
Explanation: The GDDMREXX TXrLlB file was either not
available on any accessed disk, or the language module for the
select.ed language was not found within the TXTLlB.

Part 4: Reference 71

part 4: reference

Listing of ERXMODEL EXEC

/**/
/* */
/* 5664-336 GDDM-REXX -*/
/* I C) COPYRIGHT IBM CORP. 1987 */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* PROGRAM NAME: */
/* GDDM-REXX Sample Program - ERXMODEL */
/* */
/* DESCRIPTIVE NAME: */
/* A template for constructing EXECs which will use GDDM-REXX. */
/* */
/* STATUS: VERSION 1 RELEASE 1 */
/* */
/* FUNCTION :*/
/* Display file ERXMODEL ADMGDF with alphanumeric and graphic text */
/* annotation~ real purpose is to show how to code an EXEC which */
/* uses GDDM-REXX. The prolog and epilog sections are recommended */
/* in any EXEC which is to use GDDM-REXXJ sub-procedure EXECs need */
/* only code Address GDDM prior to issuing GDDM-REXX calls */
/* */
/* DEPENDENCIES: */
/* Requires GDDM-REXX. GDDWVM and */
/* files ERXMODEL ADMGDF. ADMUNKSF ADMSYMBL. */
/* RESTRICTIONS: None */
/* ERROR MESSAGES: */
/* 'Unable to load GDDM-REXX' */
/* 'Non-Zero return code from GDDM-REXX call: ' */
/* ENTRY CONDITIONS: */
/* No parameters requiredJ '?' or 'HELP' will display prolog */
/* EXIT CONDITIONS: */
/* Exit with RC=99 for error conditions */
/* CHANGE ACTIVITY: None */
/* */

/**/
signal helpend
HELPEND: hend=sigl-1
Arg parm •

If parm='?' I parm='HELP' then Do
Do i=l to hend

Say sourcelinelil
End

Exit
End

72 GDDM-REXX Guide

/*Display prolog comments

model exec

1**1
1* Suggested prolog for all GDDM-REXX EXECs *1
1* External subroutine EXECs only require Address GDDM at start. *1
1**1
1* 1. REXX requires a leading comment statement *1

1* 2. Install GDDM-REXX (mainline EXECs only):
Address command 'GDDMREXX INIT'
If rc<>O then

Do
Say 'Unable to lr ,d GDDM-REXX'
Exit 99

End

1* 3. Turn REXX's attention to GDDM-REXX for subcommands *1
Address gddm
Signal on error 1* intercept any non-zero ret codes from GDDM-REXX *1

1* 'FSINIT' *1 1* optional, since initialization of GDDM-REXX
1* creates a default instance of GDDM.

*1
*1

1**1
1* End of prolog. Begin your own GDDM-REXX application. *1
1**1
1* sample application begins here .•••. replace with your own *1
Call NOSUBSET 1* ensure PA2 will be returned to us. *1

'FSQDEV 4 (.
rows=rows-3
cols=cols-l

• Rm-IS . Cols " 1* FIND SIZE OF SCREEN *1

'GSFLD 1 1 .rows .cols'
1* define some alphanumeric fields
'ASDFLD 1 'rows+l 'I 1 .cols 0'
'ASFCOL 1 I'
'ASDFLD 2 'rows+2 'I 1 .cols 0'
'ASFCOl 2 I'
'ASDFLD 3 'rows+3 'I 1 .cols 0'
'ASFCOl 3 I'

*1

'ASCPUT
'ASCPUT

1
2

GDDM-REXX Sample Program ERXMODEl'"
Halcome to the world of REXX with GDOM'"

'ASCPUT 3
Call mysubpr'og

GOOM-·REXX 5664-336 (C) IBM Corp 1987'"
1* note: mysubprog must issue Address gddm if it *1
1* is an external EXEC and is to use GDON. *1

1* display same nice graphic characters *1
'GSLSS 2 ADMUHKSF 194'
'GSCS 194'
'GSCM 3'
'GSCB 13 8'
'GSCOL 6'
'GSCHAR 7 85 "GDDM-REXX",
'ASREAD •.• ' 1* force display and wait for any user action *1
1* etc •• • *1
1* end of sample application •••• remove to here. *1

This

is

the

part

to

change

Part 4: Reference 73

part 4: reference

1**1
1* Epilog for all GODH-REXX mainline EXECs: *1
1**1
1* Then, at all exit points from the exec: *1
1* 'FSTERM' *1 1* optional. use only if 'FSINIT' issued above *1
Address command 'GDDHREXX TERH' 1* Terminate GODH-REXX *1
Exit 0
1**1
1* End of epilog. *1
1**1

HYSUBPROG: 1* sample internal sub-procedure
1* Address GDDM not required for internal procedures
1* load a GDF file into the current segment
'GSLOAD ERXHODEL Z (0 Z) • 0 .'
Return

NOSUBSET:
1**1
1* Disables the GDDH default action on PAt. Default *1
1* action is for GDDH to field PAt and go into CMS SUBSET. *1
1* The following DSOPEN proc opts cause PAZ to be returned *1
1* to the application. *1
1**1
procopts.l=lOOO 1* PAl/t protocol *1
procopts.Z=Z 1* get PAt in application *1
'DSOPEN 9 1 * t .procopts-. . ()' 1* Open device *1
'DSUSE 1 9' 1* Use device *1
Return

1**1
1* Error processing - non-zero return from GDDM-REXX call *1
1**1
ERROR:
Grc=rc
'GxGet Lastmsg .G_Hsg'
Say 'Line:' sigl '-' sourceline(sigl)
Say 'Non-zero return code from GDDM-REXX call: ' Grc
Say G_Msg
Address command 'GDDMREXX TERM' 1* Terminate GDDM-REXX
Exit 99

74 GDDM-REXXGuide

Index

Address command 12
alphanumerics 8
application anchor hlock

GXGET subcommand 64
GXSET subcommand 65

applicat.ion dat.a structure
moving data from 66
moving data into 65

array parameters 13, 26, 56
diflerences from other programming languages 53

arrays in REXX 6
ASDFMT, how to code 36
ASGGET, how to code 36
ASQFJ ,D, how to code 36

Brazilian 63
building your first EXEC 17

call descriptor l.ah1e (COT) 52, 64
calling by lIame 54
calling by value 54
eDT (call descriptor tahle) 64
character sets 10
character strings 55
CHART call, rest.rictioll 53
chart.s 9
CIIKEY, how to code 37
CIISET, how to code 35
CIITOWR, how to code 36
C) IXDLB, how to code 37
CHXLAB, how to code 37
CHYLAB, how to code 37
CIIZDLB, how to code 37
eMS subset 34, 53
command

GDDMREXX 63
summary 52

count parameters 59
(':'~CIIA, how to code 37
CSQCHA, how 1.0 code 37

index

data not recognized 36
data structure for mapping, REXX 28
DCSS (discontiguous saved segment) 42, 43, 63

suppressing use of 63
diagnosis 47
differences from other implementations 53
disappearing messages 22, 69
DMKSNT (system name table) 43
doL~, usc of 13, 22
double-byte character strings (DIlCS) 55

English 63
error handling 22
error messages 68
ERXBLSEG 44
ERXCHART IS, 53
ERXMENU 15
ERXMODEL]5
ERXMSVAR 28,66

summary 52
ERXOPWIN 15
ERXORDER 15
ERXPROTO 15,60
ERXRX110 saved segment 42
ERXTRY IS
ETMODE, REXX option 55
EXEC

building your first 17
ERXCHART 15
ERXMENU 15
ERXMODEL 15
ERXMSVAR 66
ERXOPWIN 15
ERXORDER 15
ERXPROTO IS
ERXTRY 15
prototype calls 15
running samples 15
samples 15

exponentiation program 12

facilities, summary 52
FSINIT, restriction 53
FSTERM, restriction 53

Index 75

index

GDDM
call syntax 54
int.roduction 8
prerequisite rc\ease level 3
summary of support 52

GDDM-GKS 3,10
ERXTRY restriction 16

GDDM-IMD
See mapping

GDDM-PGF
ERXTRY restriction 16
prerequisite for charting calls 3

GDDM-REXX
background 4
code size 40
introduction 11
parameters 25
starling to use 14
storage requirements 40

GDDMREXX command 63
INIT 12,33,63
summary 52
TERM 12, 32, 33, 63
VERSION 63

GKS
See GDDM-GKS

Graphical Kernel System
See GDDM-GKS

graphics 9
interactive 10

graphs 9
GSVECM, how to code 37
GXGET subcommand 64

AAB 64
COT 64
LASTMSG 64
MSG 64
NAMES 65
summary 52
TRACE 65

GXSET subcommand 65
AAB 65
MSAOS 29,65
MSG 66
MSV ARS 29, 66
summary 52
TRACE 66

I Iangeul 63
OBCS character strings 55

hints 33

76 GDDM-REXX Guide

image handling 10
input/output 8
installation 40
instances oCGDDM and GDDM-REXX 31
interactive graphics 10
introduction

GODM 8
GDDM-REXX 11
REXX. 5

Italian 63

Kanji 63
o nc.;; eharact.er strings 55

language, specifying 63
learning

building your first EXEC 17
GDDM-REXX parameters 25
handling errors 22
mapping 28
multiple instances 31
running sample EXECS 15

length parameters 59
lowercase 7

mapping 8, 13
dillcrences 53
examples 2R
using REXX variables with 66

messages 22
error 68
last GDDM error 64
query GDDM-REXX error threshhold 64
set. GDDM-REXX error thrcshhold 66
unexpected 35
vanishing before you read them 22, 69

model EXEC J 5, 72
moon EXEC 2
multiple instances ofGDDM and GDDM-REXX 31

names of GDDM calls 65
nucleus extensioll 43
NUCXLOAD GDDMREXX 43

OPTIONS ETMODE 55

parameters 25, 54
array 13, 26, 53, 56
by name 54
by value 54
count.s 59
incorrect 35
int.erdependent. 59
lengths 59
omitted 58
scalar 55
strings 55
synt.ax in manuals 61
tokens 55
values allowed 55

PA2, use of 34, 5.~
PGF

See GDDM-PGF
pictures, unexpected 35
prefixed variahles 56
prerequisit.e programs 40
prohlems 35,47
program order numhers 41
programming style :H
prot.ot.ype calls EX EC 15
protot.ype stat.ement.s 17
prototyping 34

quotes 7, 22, 33

reentrant supporl., dilli)renecs 53
r{'liahle EXECs 33
reqllest control parameter (Rep) 52
resl.riclions 53
return codes fi9

REXX
data structure 28
introduction 5
summary of inst.ructions 52

running sample EXECS 15

safe EXECs 33
sample EXECs 15

ERXCIIART 15
ERXMENU 15
ERXMODEL 15,72
lJRXOPWIN 15
ERXORDER 15
[':I~XPROTO IS
ERXTRY IS
model 72

saved segment (DeSS) 43
scalar parameters 55
servicing 45
sessions for learning

building your first EXEC 17
GDDM-REXX parameters 25
handling errors 22
mapping 28
multiple instances 31
running sample EXECS 15

shift out./shift in characters 55
SO IS I (;haracters 55
Spanish 63
SPINIT call, restriction 53
st.at.ements, summary 52
stemmed variables 6
storage problems 32, 35
st.ring paramet.ers 55
style of programmillg 33
suhcommallds

GXCiET 64
GXSET 65
summary 52

suhset. mode, CI\'1S 34, 53
summary ofGDDM-REXX 52
symbol sets J ()
syst.em name tahle (DMKSNT) 43

tape contents 41
termination 32, 63
token parameters 55
tracing 13, 22, 49

enabling and disabling 66
example of (JDDM 50
example ofGDDI'vl-REXX 49
example 0[' REXX 49
REXX 23

index

Index 77

index

status of 65
Lime stamping 66

type faces 10

U.S. English 63
unexpected messages 35
unexpected pictures 35
uppercase 7
utility EXEC, summary 52

78 GDDM-REXX Guide

values 55
version of GDDM-REXX 63
VM, prerequisite release level 3

I
I
I
I
I

~ I
~ ~ I
~.!! I
~:S

l-s I
" ~ I ~ Q

t: -;; I
2 g. I I~

::::" ~ ~ I
" e: I ~ &
e: ~ I

01
~ ~ I
~ t I
.Q "

~ ~ I
~ i I
I) ~

~ ~ I
a ~ I
~ ~ I
! ~ I til it

~ I
z I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

GDDM-REXX Guide

Order No. SC33-0478-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and
action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your
IBM representative or to the IBM branch office serving your locality.

Number of your latest Technical Newsletter for this publication ...

If you want an acknowledgement, give your name and address below.

Name .. .

Job Title Company

Address

.. Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U~S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
addre~s in the Edition Notice on the back of the title page.)

SC33-0478-0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R1 H,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Fold and tape Please Do Not Staple

==.~=® - - - ------- -. ---- - - -.----------_ ... -

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

-- - - - - - -

summary

Basic structure

A way parameters

/* REXX comment */

Address command 'GDDMREXX INIT'

Address gddm

'GSLINE 50 50'
'GSCHAR 50 45 5 "Words"'

'ASREAD .type .val .count'

If type=1 & val=2 then
Call subprog

Address command 'GDDMREXX TERM'

Exit

onedimx.l=li onedimx.2=2; ...
twodim.l.l=30; twodim.I.2=20;

'GSPLNE 3 .onedimx .. onedimy.'
'GSPLNE 3 (1 2 3) (.top 5 .bot)'

'CHBAR 2 3 .twodim.'
'CHBAR 2 3 «10 20 30) (5 11 17»'

Must start with a comment

Must initialize GDDM-REXX

Must address GDDM before any GDDM calls

Quotes around GDDM calIs to prevent REX X
making alterations
Double quotes around GDDM strings

Dots before variable names in GDDM calls

No dots before variable names in REXX
statements

Address commands and terminate GDDM-REXX
at end

End EXEC with Exi t

Assign array values like this

Use array names like this or list names or values
in parentheses

For two dimensional arrays two sets of
parentheses for list

The dot after the array name can be omitted in the GDDM call. Variable names then take the form ARRAYl.
ARRAY2 and so on. rrwo-dimensional arrays are ARRAYl.l. ARRAYl.2).

Using dots for parameters

'GSCHAR 50 50 . "character string" I You can replace deducible values with dots; the
length of string you pass is omitted

'ASCPUT 1 . .string'

'ASCGET 1 .length .string'

'ASREAD

and again

but NOT when string is returned

Also returned variables of no interest, values from
ASREAD will be ignored

Syntax ofGDDM-REXX commands, subcommands, and utility EXEC

GDDMREXX INIT [([NODCSS] [LANG x] [)]]

GDDMREXX TERM [(ALL[)]]

GDDMREXX VERSION [(STACKILIFOIFIFO[)]]

GXGET AAB .aabtoken

GXGET CDT .name .entry

GXGET LASTMSG .msg

GXGET MSG .state .level

GXGET NAMES .namelist

GXGET TRACE .state .time

GXSET AAB .aabtoken

GXSET MSADS .mapgrp .map .prefix .ads

GXSET MSG .state [.level]

GXSET MSVARS .mapgrp .map .prefix .ads

GXSET TRACE .state [.time]

ERXMSVAR mapgroupname mapname prefix

summary

Page

63

63

63

64

64

64

64

65

65

65

65

66

66

66

66

SC33-0478-0 -
File No. S370/4300/CMS-34

....

-
....

-
.......

.....:

-0
0 -t:!
t:!
a:::
~
t.'j
~
~

0
~ -.... .
~
(l) -"'0 ..,
::s -....
(l)
~
::s -
C w -oJ :>
w
(") -Cio)
Cio)

6 ..,. --l
00
6

-J
5C33-04 78-0(.1

I r ..

-...
----®
:: ---:-~ - - - -----------_ . -

