
INTERCOMM

DBMS

.USERS GUIDE

<~ISOGON.
~ CORPORATION

330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

IPN 112

IPN 127

2nd Printing

SPR 173

3rd Printing

SPR 188

4th Printing

SPR 214

SPR 232

-------- - --,-,-------

SPR 232 12/88

Data Base Management System Users Guide

Publishing History

Date

December 1976

April 1977

June 1977

July 1977

June 1980

August 1980

December 1980

December 1980

June 1983

December 1988

Remarks

This manual corresponds to Intercomm
Release 7.0.

General revisions and updates.

General revisions and updates.

Incorporating IPNs 112 and 127.

Revisions, corresponding to Intercomm
Release 8.0.

Incorporating SPR 173.

Revisions, particularly to Chapter 9,
"Installing IDMS Support."

Incorporating SPR 188.

Preliminary documentation of support
for TOTAL Release 8 under Intercomm
Release 9 (revisions to Chapter 7).

Revisions to Chapter 7, "Installing
TOTAL Support" containing Intercomm
Release 9 updates and Intercomm
Release 10 additions (Automated
Restart).

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

SPR 232 12/88

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system,
executing on the IBM System/370 family of computers and operating under
the control of IBM operating systems (MVS/370, MVS/XA). Intercomrn
monitors the transmission of messages to and from terminals, concurrent
message processing, centralized access to I/O files, and the routine
utility operations of editing input messages and formatting output
messages, as required.

Intercomm Data Base Management System Support is offered as a
Special Feature to the basic Intercomm system. It provides both on­
line and batch application programs with the ability to access data via
the facilities of a particular Data Base Management System (DBMS), and
includes DBMS coordinated checkpoint/restart capabilities to maintain
data integrity in the event of system failure. The following DBMS are
supported:

• ADABAS, a product of Software, A.G.

• DL/l (IMS/DB), a product of IBM Corporation

• TOTAL, a product of Cincom Systems, Inc.

• IDMS, a product of Cullinet Corporation

• Model 204, product of Computer Corporation of America

• System 2000, a product of MRI Systems Corporation

In addition, a Generalized Data Base (GDB) Interface facility is
available to which user routines may be added to support a user-coded
DBMS or a proprietary DBMS not directly supported by Intercomm. Each
DBMS Interface Support is a separate Special Feature.

DBMS Support may be limi ted to certain operating systems.
Consult the DBMS Vendor for possible restrictions.

Multiple DBMS can be concurrently supported by a single Intercomm
if the Intercomm Multiregion Special Feature is utilized.

This document describes the DBMS Interface facility and its
utilization from the application program point of view, and details
implementation techniques for the Intercomrn System Manager.

It is assumed the reader is familiar with the DBMS in use and the
associated documentation supplied by the vendor. Therefore, only DBMS
Interface specifications are given. The reader is referred to the
following list of Intercomrn publications in conjunction with the use of
this document.

iii

SPR 232 12/88

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros.

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Mu1tiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Support Users Guide

Utilities Users Guide

User Contributed Program Description EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

iv

SPR 232 12/88

TABLE OF CONTENTS

Chapter 1 INTRODUCTION 1- 1
1.1 DBMS Interface Overview....... 1-1
1.2 Evolution of Data Base Management Systems 1-4
1.3 DBMS Interface Environment 1-6
1.4 DBMS Interface Components.... 1-9
1.5 Generalized DBMS Interface Facility... 1-10
1.6 Customized DBMS Interfaces 1-11
1.7 DL/I (IMS/DB) Support 1-11
1.8 TOTAL Support 1-12
1.9 System 2000 Support 1-13
1.10 DBMS Interfaces via GDB 1-13
1.11 ADABAS Support 1-14
1.12 IDMS Support 1-14
1.13 Model 204 Support 1-15

Chapter 2 SERVICING DATA BASE USER REQUESTS 2-1
2.1 General .. 2-1
2.2 Startup Processing............ 2-1
2.3 User Region DBMS Request Processing......... 2-5
2.3.1 Intercomm Subsystem DBMS Requests..... 2-5
2.3.2 Batch Program DBMS Requests..... 2-6
2.4 Closedown Processing 2-6
2.4.1 Batch Program Completion.... 2-7
2.4.2 DBMS Region C1osedown 2-7

Chapter 3 MAINTAINING DATA BASE INTEGRITY...... 3-1
3.1 General .. 3-1
3.2 Data Base Failure Conditions.. 3-2
3.2.1 Loss of Data Base(s) 3-2
3.2.2 Failure of Batch Program(s) 3-2
3.2.3 Failure of the On-Line System 3-3
3.2.4 Combination of Failure Conditions.............. 3-7
3.3 Checkpoint Processing 3-8
3.3.1 Checkpoint Logic Flow.... 3-10
3.3.2 Checkpoint Subsystem Logic Flow........... 3-12
3.4 Abend Processing................................. 3-13
3.5 Restart/Recovery Off-Line Utilities.... 3-14
3.6 Restart Processing 3-16

Chapter 4 INSTALLING DBMS SUPPORT--GENERAL REQUIREMENTS. 4-1
4.1 General .. 4-1
4.2 Conditional Assembly Specifications.............. 4-1
4.3 Preparation for Interregion Communication........ 4-2
4.4 Coding the System Parameter List............ 4-5
4.5 Coding Subsystem Control Table Entries........... 4-5
4.6 Preparation for Checkpoint 4-7
4.7 Execution Procedures--Co1d Startup 4-8
4.8 Execution Procedures--Warm Startup.... 4-9
4.9 Execution Procedures--Restart/Recovery 4-9
4.10 Subsystem Design Considerations.... 4-10

v

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

5.10.1
5.11
5.12
5.13
5.14
5.15

Chapter 6
6.1
6.2
6.2.1
6.2.2
6.2.3

6.2.4
6.2.5
6.3
6.3.1
6.4
6.5
6.5.1
6.6

6.6.1
6.7
6.8
6.9

Chapter 7
7.1
7.2
7.2.1
7.2.2
7.2.3

7.2.3.1
7.2.4
7.2.5
7.2.6
7.2.7

SPR 232 12/88

INSTALLING GDB SUPPORT
Introduction
Support Modules
Design of GDB Support Modules
Intercomm SVC Routine (IGC250)
Startup Processing (DBSTART)
Checkpoint Initialization (GDBSTUP)
On-Line Data Base Request Handling (DBINT)
C1osedown of On-Line Region (DBCLOSE)
Abnormal Termination Processing

(DBSTAE, DBMABEND)
Data Base Management System Checkpoint

Requirements
Checkpoint Processing (DBCKPREP, CHCKPTSS)

Conditional Assemblies
Intercomm Region Tables
Intercomm Region Linkedit
Intercomm Region DD Cards
Restart Processing and Data Base Backout Utility .

INSTALLING DL/I SUPPORT
Introduction
Interface Support Modules

The DL/I Interface Table (COBPCBTB)
Startup Processing (STARTDLI, STARTIMS)
On-Line Data Base Request Handling

(TICDLICM, IDLISTRT)
Subtask DL/I Processing (SBTSKDLI)
Checkpoint and Restart/Recovery

SYSGEN of DL/I
PSB and DBD Generation

Conditional Assemblies
Defining DL/I Subsystems to Intercomm

Use of the RESOURCE Enqueuing Facility
Constructing the Intercomm-DL/I Interface

Table (COBPCBTB)
Coding the ICOMPCB Macro

Intercomm Module Linkedit
Execution JCL
Coding On-Line Subsystems

INSTALLING TOTAL SUPPORT
Introduction-
Interface Support Modules

TOTAL File Table (TOTFILE, TOTFLGEN)
TOTAL Startup Routine (TOTSTART)
Normal On-Line Processing (PDATBASE,

TOTINT, DATBAS)
PDATBASE User Exit--USERPDBE

Transaction Termination Processing (DBPURGE) .. .
C1osedown Processing (TOTCLOSE)
Abend Processing (ABTOTEND, STAEEXIT, DBSTAE) ..
Checkpoint Processing (DBCHKDSP, CHCKPTSS,

CHECKPT3)

vi

Page
J

5-1
5-1
5-2
5-4
5-7
5-8

5-10
5-12
5-14

5-15

5-16
5-17
5-17
5-18
5-18
5-19
5-20

6-1
6-1
6-2
6-4
6-4

6-4
6-4

6-4.1
6-5
6-5
6-5
6-6
6-6

6-6
6-6.1

6-7
6-8
6-9

7-1
7-1
7-3
7-3
7-4

7-5
7-6
7-6
7-6 ..J 7-7

7-8

SPR 232 12/88

L Page

7.2.8

7.2.9
7.2.10

7.2.11

7.3
7.4
7.5
7.5.1
7.6
7.7
7.8
7.9
7.9.1
7.10
7.11

Chapter 8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Chapter 9
9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.5
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.7
9.8

Chapter 10

L Chapter 11

On-Line Restart Processing (PMITOTRS,
LOGPROC, DBRSTRT, ATTOTRS) 7-9

Batch Processing (DATBASXT, TOTCHKPT) 7-9
Couple and Uncouple System Control

Commands (CPLUNCSS) 7 -10
Automated TOTAL Restart Processing

(AUTORCVR, CSITA014, TOTAREOF) 7-12
SYSGEN of TOTAL 7 -18
Conditional Assemblies 7-18
Intercomm Region Tables 7-20

TOTFILE Table.................................. 7-21
Intercomm Region Linkedit 7-25
Intercomm Region JCL 7-25
Batch Region Linkedit and JCL 7-26
TOTAL Backout Utility (PMITOTRS) 7-27

Selecting a Checkpoint...... 7-27
On -Line Subsys terns 7 - 29
Batch Application Programs 7-30

INSTALLING ADABAS SUPPORT
Introduction
Interface Support Modules
SYSGEN of the ADABAS MPM
Intercomm Region Linkedit
The ADABAS Region Linkedit
Sample ADABAS Region JCL
Batch Region Linkedit and JCL
Restart/Recovery Procedures
ADABAS Backout Utilities
Coding On-Line Subsystems
Coding Batch Application Programs

8-1
8-1
8-1
8-5
8-8
8-9

8-10
8-10
8-11
8-12
8-13
8-13

INSTALLING IDMS SUPPORT..... 9-1
Introduction 9-1
SYSGEN of IDMS 9 - 3
The Intercomm Region.............. 9-4

Intercomm Region Tables 9-4
Intercomm Region Linkedit 9-5
Intercomm Region JCL 9-5

The IDMS Region 9 - 5
Batch Region(s) 9-5
RestartjRecovery Considerations 9-6

Checkpoints 9 -6
Restart/Recovery 9 - 6
IDMS "Backout-on-the-F1y" 9-6
ABEND Processing -- For Attached IDMS 9-7
ABEND Processing -- For Nonattached IDMS 9-7

Data Base Back-Out Utilities.................. ... 9-7
Coding On-Line Subsystems 9-7

INSTALLING MODEL 204 SUPPORT 10-1

INSTALLING SYSTEM 2000 SUPPORT 11-1

vii

J

SPR 232 12/88

L LIST OF ILLUSTRATIONS

Figure

1-1 Categories of Interface Support 1-3

1-2 Intercomm and DBMS Environment (Single Region
Version of Intercomm) 1-7

2-1 DBMS Interface Routine Summary 2-2

3-1 Intercomm/DBMS Restart and Recovery 3-6

3-2 Checkpoint Processing Flow 3-11

4-1 INTGLOBE Example 4-3

4-2 SETGLOBE Example 4-4

4-3 SPA and SPAEXT Creation 4-6

4-4 Checkpoint Subsystem SCT 4-7

5-1 Interface Modu1es--Intercomm Region 5-3

5-2 Interface Modu1es--DBMS Region 5-4

5-3 The DISPATCH Macro 5-5

5-4 IGC250 Parameters 5-8

5-5 Suggested DBSTART Logic 5-9

5-6 GDBSTUP Logic 5-11

5-7 Intercomm Linkedi t 5-19

5-8 Data Base Backout First Time (Initialization) 5-24

5-9 Data Base Backout Process 5-25

5-10 Data Base Backout Checkpoint Analysis 5-26 .

6-1 Interface Modu1es--Intercomm Load Module 6-2

6-2 Intercomm-DL/I Interface Overview 6-3

6-3 Intercomm Module Linkedit 6-7

ix

SPR 232 12/88

J
Figure Page

7-1 TOTAL Interface Modu1es--Intercomm Region 7-2

7-2 TOTAL Interface Modules--Batch Region 7-3

7-3 Interface Modules for TOTAL Data Base Restoration,
Logging , 7-3

7-4 TOTAL Conditional Assembly Requirements 7-11

7-5 Sample TOTFILE Table Assembly 7-15

7-6 TOTFLGEN Macro Parameters 7-16

7-7 Intercomm Region Linkedit: TOTAL Requirements 7-19

7-8 Intercomm JCL Requirements for TOTAL 7-20

7-9 Assembler Language Intercomm/TOTAL Subsystem 7-25

7-10 Reentrant COBOL Intercomm/TOTAL Subsystem 7-26

8-1 Interface Modu1es--Intercomm Region 8-4

8-2 Interface Modules--Batch Region 8-5 J
9-1 Interface Modules--Intercomm Region 9-2

9-2 Vendor-Supplied Load Module--CSECT--Entry Structure .. 9-2

9-3 Attached IDMS and non-Attached IDMS 9-3

9-4 Intercomm Region Linkedit 9-5

x

1. INTRODUCTION

1.1 DBMS INTERFACE OVERVIEW

In recent years, data processing has undergone a major tech­
nological advancement through the general availability of Data
Base Management Systems (DBMS). These systems now provide a
broad array of services and techniques for the management of
file data items. The resultant benefits are a simplification
of programming requirements, a high level of data structure
independence for the programs, reliability maintenance schemes
and the capability to readily find, interconnect and associ­
ate widely divergent items--in an encompassing set of data
items. Concomitant with the advancement of DBMS technology
has been the need for communications software to permit the
efficient and effective on-line utilization of data base ser­
vices. This on-line facility must also provide for an inte­
gration of communication and transaction-oriented recovery
techniques with reliability. The INTERCOMM DBMS interfaces
provide a powerful, efficient and complete DB/DC environment
that permits high volume access, rapid response time, a broad
array of utility services, simplified application programming
and an integrated restart/recovery.

Many software components are required to effect the operation
of support. Support varies according to the specific DBMS as
to which, if any, components are supplied by Informatics Inc.
and which, if any, components are supplied by the DBMS vendor.
The user is advised to consult the DBMS vendor as to separate
charges that may be applicable for the supplied DBMS inter­
face.

INTERCOMM Data Base Management System (DBMS) interfaces are
provided as an extension to the inherent capabilities of the
INTERCOMM on-line system. Four different categories of DBMS
support exist for the INTERCOMM system:

Generalized Data Base Management System (GDB)
Interface--INT~RCOMM and user-supplied routines
to interface to a user-written (or nonsupported)
DBMS.

Customized Data Base Management System Interface-­
specially developed support for a specific DBMS.
This category applies to DL/I support (no vendor
routines required) and TOTAL support (vendor
routines required).

1-1

Data Base Management System Interface via GDB--vendor
developed support based around the INTERCOMM GDB
support. This category applies to support for ADABAS,
IDMS and Model 204. The DBMS vendor and/or INTERCOMM
supply all interface routines.

Data Base Management System Interface provided
totally by the DBMS Vendor. System 2000 support is
in this category.

Figure 1-1 illustrates these categories of support.
DBMS interface facilities are each a Special Feature
INTERCOMM system, available as separately contracted
products.

INTERCOMM
to the
software

The specific techniques used to accomplish the DB/DC environ­
ment vary according to the specific DBMS. However, all the
techniques provide equivalent capabilities. Generally, these
various interfaces can be visualized as consisting of six
areas of support:

On-line initiation--where a communication path between
INTERCOMM and the DBMS is established, requisite
signing on procedures are performed. Contingency plans
are executed if the communication path cannot be .~
established.,

On-line termination--where an orderly disassociation
is made of the DB/DC environment.

Command processing--where requests for DB services
made by application .programs are executed.

Contingency processing--where a program is executed
in the event of a failure situation in INTERCOMM, or
of its on-line applications (subsystems) and/or the
DBMS software.

Checkpoint- -where a data base/transaction exe-cution
quiesce and equilibrium point is periodically estab­
lished to provide for a common backup point in the
event of catastrophic failure.

Recovery--where a reconstruction of a valid trans­
action and DB environment is accomplished. -

Before presentation of the elements of INTERCOMM DBMS support,
the background against which data base management became an
integral part of. computer operations is briefly given here.
The need for functional simplicity in interfacing a system. , ...
with a multiplicity of DBMS types is reflected in INTERCOMM's ..,

1-2

SPR 188 12/80

INTERCOM>! HL--__ G_D_B_---'H ... _~_~_~_~_in_e_s___'~ User
Supplied

INTERCOMM Customized - Interface

INTERCOMM GDB -

INTERCOMM

, .

I

~
r v~n~~r - - i I DBMS I DL/I

Routines ~ . TOTAL
I
L _____ ..J '------~

INTERCOMM

- and/or
I---

DBMS
Vendor
Routines

Vendor DBMS
Routines

ADABAS
Model 204 -.

System
2000
IDMS

Figure 1-1. Categories of Interface Support

1-3

I

J

interface support capabilities. Therefore, we have provided \
a framework of interface concepts in Sections 2 and 3. Sub- ~
sequent sections of this document further examine these imple­
mentation requirements, collectively where conceptual similarity
of support elements exists, and then separately for implemen­
tation of INTERCOMM support for individual DBMS.

For details on the Data Base Management Systems themselves,
consult the appropriate vendor's reference publications.

1.2 EVOLUTION OF DATA BASE MANAGEMENT SYSTEMS

At one time in the development of computer systems, data base
management was nonexistent. Computer operations and user
requirements had not yet mutually grown so enormous and multi­
faceted as to make centralization of data processing operations
expedient for all users; i.e., a systems approach to all func­
tional aspects. At best, programmers and systems people had
to maintain control over their own data records and data files.
The data was usually accessed on an application-by-application
basis. Data was therefore application-bound. Such individual
applications might have been inventory control, payroll, manu­
facturing~ planning, etc. Since a data structure was designed
specifically for an application, other applications had to
either alter their approach to fit existing data structures ,
or develop their own structures with similar data but disparate ~
format and/or access techniques. Thus, the application pro-
gram logic was subject to the organization of a particular
data record(s) and file(s) or else required reorganization
and programs were generally confined to usage of that data.
Maintaining and updating data was, therefore, no small task.

Early data management was curtailed and generally oriented to
one application principally because access methods themselves
were as yet unsophisticated and based on single key access to
the data. Data management in terms of file management and
disk file organization did not provide the level of data
supervision and application program independence needed as it
was concerned only with the management and control of data
on a file-by-fi1e basis. (This is data management vs. data
base management.)

The outcome of such a state of affairs was redundant and
wasteful allocation of computer and programming resources;
there existed repetitive data, inflexible storage capacity,
a waste of storage space, needless use of computer time and
high app1ication."programmer expenditures in maintenance and
conversion procedures.

1-4

L

The lack of centralized data base informaton also limited the
efficiency of on-line systems. To serve multiple applications
in a real-time environment generally required a multiplicity
of DASD files be mounted for prolonged time periods, a costly
concern. With the emergence of the data base and the data
base management concept, many costly and inefficient methods
are now bypassed, such as redundant information in files,
differing formats of each application file, updating diffi­
culties, tailoring of data to specific physical devices and
the change necessitated in application programs with the
advent of any new data management techniques or devices. To­
day's data base can, therefore, be defined as a nonredundant
assembly of interrelated data items which may be processed
by one or more applications. Furthermore, the access and
control of data information are now in the hands of Data Base
Management Systems.

Today's Data Base Management System may be defined as a system
which will manage virtually an unlimited number of data sets
on an integrated basis and which will allow for entry and
association of each of these data sets with any other data
set in the data base, with provision for maintenance of data
integrity. The objectives of such a system may be summarized
as :-

Centralization and integration of data

Flexibility in the selection, retrieval and
modification of data -

Independent program and data base structure

System security and data integrity

On-line applications in a DB/DC environment must be provided
capabilities consistent with these DBMS objectives. Most
notably, the DC software must carefully concern itself with
security and data integrity. Furthermore, the extensive
data base capabilities provided by a DBMS package are often
achieved at a cost of increased CPU overhead. It is, there­
fore, incumbent upon the DC package to provide efficient
application execution, in particular for a high degree of
overlap between parallel application execution (multithreading)
concurrent with DBMS services.

Therefore, discussion in this document does not investigate
DBMS in particular but rather the facilities for use of DBMS
with the INTERCOMM system to achieve the complete DB/DC en-
vironment. ~.

1-5

To utilize a particular DBMS in a multithreaded environment ~
it is requisite that interface programs ana routines be sup!
plied. Such support of a DBMS should not modify the imple­
mentation procedures as prescribed by the DBMS reference
manuals. Furthermore, all the facilities of the particular
DBMS should be available to the user of any interface facility.
Interface logic should not interfere with that of DBMS oper-
ation. Understandably, the guidelines for generation of an
interface facility and maintenance of data integrity should
be care and simplicity.

1.3 DBMS INTERFACE ENVIRONMENT

The on-line systems environment with INTERCOMM and a Data Base
Management System consists of:

The INTERCOMM region and associated user application
programs requesting access of the data base

The DBMS region controlling all data base access
(in some cases the DBMS may be attached as an
INTERCOMM subtask)

Batch regions requesting access of the data base

All Data Base Management System functions are thus centralized \
and isolated within a region separate from the user (INTERCOMM ~
or batch) jobs. The DBMS region should support concurrent
use of its facilities by each user job, whether these separate
jobs access the same or a different data base(s).

As depicted in Figure 1-2, INTERCOMM DBMS support consists of
interface routines in each of the regions just described to
ac~omplish communication.and control functions between re­
gions. Note that if the INTERCOMM Multiregion Support Facility
(a Special Feature) is in use, multiple INTERCOMM regions may
be accessing the DBMS region. Certain restrictions exist in
this environment, particularly when data base updates are
performed; please refer to the-INTERCOMM Multiregion Facility
Users Guide. The multiregion version is required to support
multiple Data Base Management Systems.

The INTERCOMM system is one of many users of the DBMS, each
of which resides in its own individual region. Thus, the
INTERCOMM region consists of the INTERCOMM monitor along with
all on-line application programs including those which are
using the DBMS for their file access techniques. The other
DBMS users would be batch application programs, each residing
in a separate region. All logic required for the data base
access and control (exclusive' control logic, data base

1-6

OPERATING SYSTEM

INTERCOMM DBMS
INTERFACE

SUBSYSTEMS .4~

0 0
DBMS

....
DBMS INTERFACE

DBMS

BATCH. DBMS PROGRAM INTERFACE

BATCH

Figure 1-2. INTERCOMM and DBMS Environment (Single Region
Version of INTERCOMM)

1-7

logging logic, etc.) is contained in the DBMS region; thus, ~
there is no duplication of code in the user regions. The
only logic required in each user region is the interface logic
for communication of user data base requests to the DBMS
region.

Whenever a data base function is required by either a batch
program or on-line application subsystem, the program in­
volved need only call the interface module existing in its own
region; the request is usually passed on to the DBMS via an
interregion SVC (Supervisor Call). Where a system only per­
forms inquiries to the data base, the required interface
components are simple. Since the data base is not being
altered, the only recovery procedures necessary are those of
a dump/restore facility to be used in the case of total de­
struction of the data base.

For the on-line update environments, a method of maintaining
data base integrity is necessary and is provided through a
combination of INTERCOMM and DBMS checkpoint, logging and
restart capabilities. Whatever the failure condition, e.g.,
destruction of data base, failure of a batch program, etc.,
the DBMS user should be guaranteed the ability to fully re­
construct the data base.

In summary, two types of programs exist in the DBMS· region ~
when utilizing an INTERCOMM DBMS interface facility:

The data base access logic modules for performing
the I/O activity to the data base(s) defined to
the system

The interface logic to user regions which

Coordinates interregion communication

Provides special logic to ensure that con­
current DBMS request processing does not
affect data integrity

Provides for checkpointing

Stacks requests when DBMS processing is
single-threaded

Similarly, two types of programs exist in the user regions:

The user program logic requesting access of the data
base (INTERCOMM application subsystems or standard
batch jobs).

1-8

L

The interface logic to the DBMS region including
interregion communication and, optionally, multi­
threading provisions and recovery provisions.

1.4 DBMS INTERFACE COMPONENTS

The following interface facilities are common to most
INTERCOMM/DBMS environments:

An SVC Routine:

Provides for interregion communication (except when
the DBMS executes in the INTERCOMM region as an
attached subtask).

Initialization Processing Routine:

Contains the initialization logic necessary to
establish communication between INTERCOMM and
the DBMS.

C1osedown Processing Routine:

Contains logic necessary to notify the separately
executing DBMS that the INTERCOMM region is closing
down.

Data Base Service Request Handling - On-Line
Processing Routine, Batch Processing Routine:

Contains logic necessary for communicating data
base access requests from the user region to the
DBMS region.

DBMS Region Multitasking Routine:

Provides capability to service concurrent requests
within the DBMS region.

Data Base Checkpoint and Restart Processing:

Initiation of checkpoint processing is controlled
by the time interval specified in the System Para­
meter List (SPA), activities of which are:

Initialization and continuation of interregion
checkpoint.

Quiescing of data base activity within INTERCOMM
at checkpoint time.

1-9

Abend Processing Routines:

Special logic necessary to retain data integrity if
either INTERCOMM or the DBMS should abnormally ter­
minate.

The following discussion further details the characteristics
of the INTERCOMM interface facility for specific DBMS support
categories.

1.5 GENERALIZED DBMS INTERFACE FACILITY

The INTERCOMM Generalized Data Base Management System Inter­
face (referenced as GDB) consists of a series of programs
which allow data base access from multiple regions or parti­
tions while providing data integrity across program and
system failure.

All but the specific data base logic necessary to provide
any data base access is supplied by GDB in conjunction with
user-supplied interface routines. Most application programs
execute under the control of the INTERCOMM monitor. However,
programs not under INTERCOMM's control (i.e., batch programs)

J

may require concurrent and/or overlapping use of the Data. \.
Base Management System. Therefore, the GDB Interface to a ~
DBMS also includes a provision for utilization of the DBMS
by batch programs as well as on-line INTERCOMM programs.

In this situation where the specific data base logic is not
supplied, all the control programs requisite to the DBMS
interface for effectual use of the DBMS by on-line or batch
programs are supplied by INTERCOMM, whether pertaining to
startup, closedown, or restart/recovery procedures. In a
sense, the INTERCOMM GDB Interface can be said to be the data
base management facility through which users are able to
adapt INTERCOMM to the DBMS requirements of their own appli­
cations. Thus, GDB supplies a simple method of interfacing
a DBMS with INTERCOMM while maintaining data base integrity
with a minimum of programming effort. This is achieved by
supplying the mechanisms to pass control to user-supplied
routines at the following critical points in processing:

At startup, restart, and closedown time of the
multithreaded TP region.

At initiation of a data base request.

At termination of a data base subsystem thread
(normal and abnormal) for control of possible
"lockout" situations.

1-10

L

L

In addition, full message restart processing is supplied to
coordinate with data base recovery.

In the sections following which discuss general oper.ating
logic, reference is made to vendor-supplied modules. In the
case of a user-written or nonsupported DBMS, this term then
implies ~-supplied modules.

1.6 CUSTOMIZED DBMS INTERFACES

Three of the INTERCOMM DBMS interface facilities developed
for vendor-supplied DBMS are not based around the GDB frame­
work. These are:

DL/I (IMS/DB), supplied by IBM

TOTAL 5/6, supplied by Cincom Systems

System 2000, supplied by MRI Systems

1.7 DL/I (IMS/DB) SUPPORT

INTERCOMM and its Data Language/I interface software execute
as an IMS batch job. Users of the DL/I facility may be on­
line INTERCOMM subsystems residing in the INTERCOMM region
or other batch IMS application programs residing in separate
regions. 7he reader is advised to refer to IMS vendor docu­
mentation for implications and possible restrictions when
executing multiple ba~ch IMS regions. The. only logic re­
quired in the on-line region is, simply, the INTERCOMM­
supplied interface logic for communication of user DL/I
data base requests to the DL/I region.

Data Language/I is characterized by application program in­
dependence from access methods, from physical storage organi­
zations and from characteristics of the device upon which the
application data is stored. (This is due to a common symbolic
program linkage and data base descriptions external to the
application program.) Furthermore) DL/I provides sharing of
common data for elimination of redundant storage which can
include physical structuring of data over more than one data
base. DL/I organization is based upon hierarchical structure.
When operating against a DL/I data base, only the data pre­
defined as sensitive is available for use in a particular
application. Each application using the data base can be
sensitive to its·unique subset of data. Where an application
has defined "sensitivity" to a subset of the data within a
data base, modification and addition of nonsensitive data do

1-11

not affect the processing capability of the application. In
addition, any application can be restricted as to types of
data base requests made against its sensitive data. User­
constructed standard IMS blocks define the scope access of
each batch and on-line program. .

From a user design point of view, the INTERCOMM support of
DL/I provides for a high level of flexibility. The INTERCOMM
interface provides for:

Concurrent inquiry request to the same DL/I data
base (single-threading of DB processing subsystems)

Ability of on-line inquiry and/or update programs
to execute concurrently with batch inquiry and/or
update program(s) against the same or different DL/I
data base(s). Considerations are noted in DL/I
Installation, Section 6.

1.8 TOTAL SUPPORT

Support for Cincom Systems' TOTAL System (TOTAL 5/6) is pro-
vided INTERCOMM users through the INTERCOMM/TOTAL Interface
Facility. The TOTAL spectrum of DBMS capabilities includes: \
elimination of reprogramming due to application/data base ex- ~
pansion, elimination of index areas and separate addition
areas (reducing direct access storage requirements) and pro-
vision for direct access of all records. TOTAL systems are
designed and implemented with the real-time concept of oper­
ational versus analytical processing. Operational processing
involves the immediate applicatianof the transaction pool
to all the data base parts, thereby reflecting the current
status of business through inquiry and exception reporting.
Analytical processing is the periodic extraction and reporting
of data to support effective management planning. All the
facilities of TOTAL are secured by the INTERCOMM/TOTAL inter-
face.

Because TOTAL operates at the call level with the host pro­
grams (i.e., COBOL, PL/I or BAL programs) and as a logical
direct access file management program with the operating
system, the user is empowered to readily convert old programs
to a 4ata base app:o~ch. Thus, the.host programming-language
funct10ns are spec1f1ed by the app11cation program.

Two modes of INTERCOMM and TOTAL operation exist. INTERCOMM
and TOTAL 5/6 may operate in the same region (or partition)
as a main task and subtask, respectively. With this method,
the ATTACH option must be SYSGENed. In the alternative mode

1-12

of operation, INTERCOMM and TOTAL reside in two separate
regions (partitions). In this case, TOTAL must be executing
when INTERCOMM is brought up; all communication between the
two tasks is initiated through the use of the interregion
SVC, supplied by TOTAL. Coordinated INTERCOMM/TOTAL support
provides data base integrity and affords restart/recovery
procedures.

When TOTAL is operational in the same region as INTERCOMM or
in a separate region, the facilities of the TOTAL DBMS may
be utilized by one or more batch regions. Off-line programs
may access and update the on-line data base while INTERCOMM
is up; data integrity will still be maintained through the
use of the procedures provided. INTERCOMM's TOTAL support
allows on-line and batch programs to run concurrently while
accessing and updating the same data base.

1.9 SYSTEM 'too 0 SUPPORT

Support for MRI's System 2000 is provided for both the Natural
Language Interface (NLI) and Procedural Language Interface
(PLl}. An MRI-supplied subsystem processes NLI terminal in-
put and routes data base access requests to System 2000. User­
coded application subsystems using PLI require a precompile
function to incorporate the System 2000 interface requests.

System 2000 operates in a separate region from INTERCOMM.
Restart/recovery provisions are included which allow all but
coordinated DBMS and INTERCOMM checkpointing. Therefore, all
restart/recovery processing spans the beginning of on-line
execution until system failure.

1.10 DBMS INTER-FACES VIA GDB

Many INTERCOMM DBMS interfaces have been developed by DBMS
vendors in conjunction with the INTERCOMM development staff.
Such interfaces take advantage of the existing Generalized
Data Base Management System Interface logical structure.
DBMS supported in this fasion are:

ADABAS--a product of Software A.G.

IDMS--a product of Cullinane Corporation

Model 204--a product of Computer Corporation of
America ,>

DBMS 'implemented via GDB offer to the user all the GDB Inter­
face facilities previously described in addition to the salient
features of the individual DBMS as discussed in the following
pages.

1-13

I

SPR 188 12/80

1.11 . ADABAS SUPPORT

ADABAS, a product of Software A.G., is a DBMS utilizing in­
verted file structure. The interface is comprised of
INTERCOMM's Generalized Data Base Management System and a
special INTERCOMM/ADABAS interface program. ADABAS operates
in a separate partition or region and may be utilized by
one or more batch regions while INTERCOMM is operational.
All the functions of ADABAS are available to the INTERCOMM
user. ADABAS in no way changes the standard INTERCOMM en­
vironment; the INTERCOMM implementation of ADABAS requires
no modifications to the standard ADABAS call sequences.
~andard CALL statements, as specified in the ADABAS Refer­
ence Manual, are used for all data base activity against
ADABAS files.

ADABAS itself consists of an operational nucleus which per­
forms the most commonly used ADABAS functions. ADABAS also
includes a number of utilities u?ed for special, infrequently
requested functions such as: loading, scratching, dumping
and reorganizing files.

ADABAS operation can be categorized as follow~:' initial de­
finition and loading, definition modifications, data update,
data query, data read, checkpoint/restart, save/restore and
data base maintenance. All aspects of these data base ser­
vices and the advantages of ADABAS are.' made available via
the INTERCOMM interface.

1.12 IDMS SUPPORT

The Integrated Database Management System (IDMS) is a soft­
ware product marketed by the Cullinane Corporation. A com­
prehensive DB/DC environment is provided for IDMS via
INTERCOMM and Cullinane-provided interface routines. IDMS
is developed on the basis of the standards formulated by the
CODASYL committee. Characterized by a network type file
structure as defined by the CODASYL Data Base Task Group
(DBTG), IDMS makes use of the data management language syntax
defined in the CODASYL 1971 DBTG report.

The INTERCOMM support elements allow IDMS to execute either
in a region separate from INTERCOMM or as a subtask of
INTERCOMM. Full availability of IDMS facilities is provided.
IDMS may be called from one or more batch regions while
INTERCOMM is operational. INTERCOMM support does not modify
IDMS requirements'as specified in the IDMS Database Desi~n
and Definition Gu~de. Intercomm message restarting may e
used in conjunction with the data base) which provides
checkpointing and recovery functions.

1-14

1.13 MODEL 204 SUPPORT

Model 204 is a Data Base Management System that utilizes the
efficiency and comprehensiveness of an inverted file organ­
ization. Operating under IBM's 360/370, Model 204 runs in a
separate region or partition and is usable for application
programs coded in BAL, COBOL or PL/I, either batch or on-line
SUbsystems. Model 204 may be utilized by one or more batch
regions concurrent with INTERCOMM. Model 204's standard
calling sequences are not altered by INTERCOMM support. Inter­
facing between INTERCOMM and Model 204 consists of INTERCOMM's
Generalized Data Base Management System supplemented by an
INTERCOMM/Model 204 Interface.

Simply, Model 204 can access, retrieve and update records in
inverted files stored in a data base. The user is assured the
highest possible level of integrity and security. When Model
204 data base integrity is coordinated with that of INTERCOMM,
the data base is fully recoverable from failure situations in
which it was either physically or logically destroyed.

The inverted file is a collection of records to which access
is directly provided via values of one or more keys. The
functional advantages of the inverted file structure to which
Model 204 adheres are as follows. First, the final structure
allows for extremely rapid access to variable-length, variable­
format records based on the properties of one or many differ­
ent key fields in a file. In fact, all fields can be key
fields if desired.

Additionally, fields may also be of variable length providing
for file compression as well as simple text processing capa­
bility. A Model 204 file can contain a set of over 16 million
variable-length, variable-format records. There is no limit
on the number of key fields per record. No storage space is
taken for fields which do not appear in a given record. The
Model 204 file organization technique assures transparency
and lack of redundancy to the application programs. The
dynamic nature of the Model 204 data base also obviates the
need for reorganization when fields are added or deleted.

Data retrieval, based on Boolean combinations of key field
values, provides desired flexibility in retrieval and modi­
fication of data within the data base. Model 204 files may
be organized and/or accessed in sorted sequence or with
direct access through--a, hash key technique.

Application programs may be written in. COBOL, PL/I, BAL and
FORTRAN. Additionally, Model 204 provides a powerful, easy
to use natural language access. Multiple batch and on-line
applications written in different languages can access the
data base simultaneously.

1-15/1-16

J

2. SERVICING DATA BASE USER REQUESTS

2.1 GENERAL

An INTERCOMM DBMS interface facility performs many functions
in the course of servicing data base user requests, regardless
of the actual DBMS in use. This section provides a concep­
tual description of system operation for establishing com­
munication between the DBMS and user regions. for processing
data base requ~sts from the user regions and for the orderly
closedown procedures of the DBMS and user regions.

In this section, concepts and program names are used which
pertain to the INTERCOMM Generalized DBMS Interface Facility
for convenience and consistency of reference. Reference is
made to "programs;" the actual support routines may be sepa­
rate load modules, entry points within one load module or
CSECTs of a load module. The reader is referred to the in­
dividual sections which describe particular DBMS implementa­
tion for the specific techniques in use for a particular
DBMS.

The relationship of the DBMS interface programs referenced
in this section is illustrated in Figure 2-1. With the
exception of checkpoint processing and restart/recovery
functions (see Section 3), the following discussion provides
the reader with an understanding of the logic involved in
servicing data base requests from user regions. It is assumed
the reader is generally familiar with the functions of the
various INTERCOMM system components, in particular the multi­
tasking Dispatcher.

2.2 STARTUP PROCESSING

Because a DBMS is usually operated as a separate job, it is
activated prior to any jobs which use the DBMS facilities
(unless it is operating as an INTERCOMM subtask). All data
base access takes place from this region. All Job Control
Language (JCL) relative to the data base(s) is placed in the
job stream for this region. All control blocks and buffers
relative to data base activity are defined and included as
part of this region.

Startup processing of the DBMS region initializes the DBMS
for receiving all user access requests. All programs re­
quired to be in core are loaded, data base and/or program
control blocks are loaded or initialized as required and
ABEND exits initialized. These functions are performed by
the INTERCOMM/DBMS facilities and are unique to the INTERCOMM/
DBMS environment as they are functions pertaining to multi­
thread operation and are not performed in a non-INTERCOMM/DBMS
environment.

2-1

INTERCOMM
STARTUP .~I---.~ DBSTART

DISPATCH

DBCHKDSP

(time-oriented
checkpoint
control)

DISPATCH

GDBSTUP

(coordinates
DBMS & ICOM
checkpoints)

INTERCOHM ' USER

DBMS Region
Initialization

DISPATCH I

DBMABEND

(activated by
DBMS region
DBMSTAE routine)

SUBSYSTEM 4~""'~'" SUBSYSTEM ~ ~ DBINT
CONTROLLER

DBMS
Region

4~~----~~~ Request
Processing

..
DRRELEX
OR
DEPURGE

(frees DBMS resources as required)

JNTERCOMM 1<111---1 CLOSEDOWN ~ DBCLOSE

'----._-

INTERCm.1M
STAEEXIT "~I--_"''' DBSTAE

i-- --,.-

..

(notifies DBMS region
that INTERCOMM is
no longer active)

Figure 2-1. DBMS Interface Routine Summary

2-2

A user program accessing data bases often requires description
by a DBMS control block or table as do the areas of the data
base which the program will be using. After the DBMS region
is started, any DBMS control blocks for on-line programs are,
typically, automatically loaded into the DBMS region at
INTERCOMM startup time. Any control tables for INTERCOMM
application subsystems exist in the INTERCOMM region.

The on-line INTERCOMM job may have multiple DBMS control
blocks associated with it such as one control block per mes­
sage processing thread. A batch program has only one associ­
ated control block. When a batch program is started, its
control block is generally loaded dynamically; thus, all
control blocks for all possible batch programs do not con­
stantly reside in core.

As a consequence of activation prior to the starting of user
jobs, the DBMS region must have a way of knowing when a user
region is activated. To provide such communication, the
INTERCOMM interface facility places in its Task Control Block
(TCB) the address of an Event Control Block (ECB) followed
by an identifier of the DBMS region. When either an INTERCOMM
on-line job or any batch job which uses the DBMS is begun,
the startup logic of these jobs searches the TCB chain for
the DBMS region. This search is performed by checking for
the identifier of the region. When the DBMS region is found,
the ECB is posted, thereby indicating to the INTERCOMM/DBMS
interface facility that a new user region is starting. In
identifying itself, the user region supplies a communication
~ath to be used on all service requests from that user region
to the INTERCOMM/DBMS interface facility.

During INTERCOMM startup processing, the basic steps required
to prepare for communication with the Data Base Management
System are performed by the startup program (DBSTART), called
to perform all the initialization logic necessary to establish
communication between INTERCOMM and the DBMS.

After INTERCOMM becomes active, periodic checkpoint proces­
sing is performed by the checkpoint program (DBCHKDSP) which
is dispatched at startup on a time interval specified by the
TCHP operand of the System Parameter List (SPA). (Detailed
discussion in Section 3.)

DBSTART may reside in the INTERCOMM startup overlay region.
The functions that typically are included in DBSTART are as
follows:

The ATTACH is done if the DBMS is to operate as a
subtask of INTERCOMM.

2-3

The.exis~ence of ~he DBMS, if it resides in another . \
regIon, IS determIned. If that region is not oper- ~
ational, some action is performed, such as writing
a messa¥e to the.operator directing him to "bring up"
the regIon. If It cannot be activated and the on-line
system is needed for other than data base access all
subsystems that access data base files are marke~ non­
schedulable but the on-line system may continue to
execute.

A communication path between INTERCOMM and the DBMS
is established. The method typically used is to
establish a pair of ECBs which are alternately posted
and waited on by the two regions. This technique
of interregion communication is typically referred
to as a "software channel." These ECBs must reside
in the INTERCOMM region since the INTERCOMM DISPATCH
macro is used to accomplish the wait and the Dis­
patcher makes address validity checks on all ECBs
being waited on. When notified that INTERCOMM is
operational, the DBMS interface will then trigger
any initialization necessary in the DBMS region (i.e.,
loading control blocks, logging a startup record,
etc.).

At this time, provision is made for a potential .J'
abnormal failure of the DBMS region.· The typical
method is to dispatch in the INTERCOMM region a
small resident program (DBMABEND) which waits on an
ECB to be posted by the DBMS'region's STAEEXIT pro-
gram (DBMSTAE).

If interregion checkpoint synchronization is neces­
sary (for data base integrity) a program for check­
pointing (GDBSTUP) is dispatched in the INTERCOMM
region to initialize interregion checkpoint control.
A DBMS checkpoint workfile may be utilized to en­
sure that INTERCOMM startup will be capable of
determining the necessary coincidental checkpoint
time for the data base restoration process.

The DBMS region, upon receiving a sign-on of INTERCOMM,
makes note of the event on its log to provide the
data base backout program with this information.

If any data sets must be opened for data base access,
this is done via the appropriate call to the vendor­
supplied module. Often, the data sets are identified
by a data file table in the INTERCOMM region.

2-4

2.3 USER REGION DBMS REQUEST PROCESSING

Whenever a request for DBMS services is made by an on-line or
batch user program, the request is passed to the DBMS region
through the interregion communication mechanism. To effect
this communication, a user SVC routine must be included in
the user's operating system (see Section 4 for implementation
particulars). For the on-line INTERCOMM region, many con­
current requests may be outstanding at a given time; for a
batch region, only one request is outstanding at any time.

The DBMS region accepts requests for service as they are
issued by the application program. It is not always possible,
however, to immediately service a request when it is re­
ceived. There are several reasons a DBMS may not be able to
immediately satisfy a request. These reasons include a busy
condition on a single-threaded DMBS, a data conflict lockout
situation and/or a specified limit of the maximum number of
concurrently serviced requests. If the request cannot be
immediately serviced then the DBMS must provide the facility
to queue the request in proper sequence and execute it when
possible.

From the user region viewpoint, all service requests are
handled by the DBMS interface program (DBINT). This inter­
face accepts the call from the user program and, utilizing
an interregion SVC, communicates the request to the DBMS
region. The coding conventions for the user's call are based
on the programming language being used and the parameter re­
quirements of the DBMS. Certairi DBMS supply a precompiler
that will generate appropriate calling sequences. The DBMS
to be supported may require calling different entry points
for each function it is requested to accomplish. In this
case the s ecial entr oint DBINT must still be resent
alt oug t e app11cat10n request may use ot er entry p01nts
additionally or exclusively.

-

Since Data Base Management Systems vary greatly in the man­
ner of their interface with application programs, no further
description of these interface particulars will be attempted
here; each DBMS is described individually in subsequent
sections in this respect.

2.3.1 INTERCOMM Subsystem DBMS Requests

The INTERCOMM region subsystem DBMS request program is a
reentrant progra$ which transfers application data base re­
quests from the ~n-line region to the data base region.
There may be one' or more entry points necessary in this inter­
face program depending on the conventions of the DBMS being

2-5

supported. The entry point names normally coincide with ~
the standard entry point names for the DBMS. Again, a DBMS
precomplier, if used, must generate appropriate calls. Also,
INTERCOMM language-dependent multithreading interface rou-
tines, such as COBREENT, must be utilized where required as
DBMS calls are analogous to INTERCOMM File Handler calls.

The INTERCOMM message processing control routine will call
DBPURGE (if INCLUDEd) at the completion of each message pro­
cessing thread to ensure all DBMS resources are freed, whether
or not the thread terminated normally.

2.3 .. 2 Batch Program DBMS Requests

Batch programs are usually able to run concurrently with
INTERCOMM on-line programs while accessing and updating the
same data base. The DBMS region has the responsibility for
handling the processing of many batch jobs concurrently in­
sofar as core permits. (If the DBMS lacks multithreading
capabilities, it must stack concurrent service requests then
process them serially. Thus, these Data Base Management
Systems provide apparent, not actual, concurrent processing.)
Batch application programs which are inquiry-only, in general,
require no change beyond that required for interregion DB
communication. However, programs which perform updates to
the data base must have the ability to participate in a syn­
chronized checkpoint between INTERCOMM. and DBMS regions.
Each DBMS provides this function in a distinct manner. These
techniques are described individually in subsequent sections
pertinent to specific DB systems.

2.4 CLOSEDOWN PROCESSING

During normal INTERCOMM closedown processing, the DBMS close­
down program (DBCLOSE) is called. This program notifies the
DMBS region that INTERCOMM is ceasing processing, specifying
whether termination is normal or abnormal (i.e., an ABEND).
DBCLOSE includes these functions:

Freeing of any control blocks, if relevant, which
have been used for interfacing with the DBMS.

Detach of the DBMS if executing as a subtask in the
INTERCOMM region.

The nature and extent of processing which must be performed
at closedown greatly depends on the specific DBMS.

2-6

J

J

L

SPR 173 6/80

When the DBMS is notified by DBCLOSE of the on-line job
completion, data bases used by Intercomm on-line programs may be closed
by the DBMS if these data bases are not in concurrent use by a batch
program.

2.4.1 Batch Program Completion

The DBMS region, at notification of a batch job completion,
closes all data bases and, if control blocks are used, purges all those
related to the particular program. In this manner the DBMS region can
handle the processing of many batch jobs concurrently although it may
be limited by available core.

2.4.2 DBMS Region Closedown

The DBMS region will close down only when there are no on-line or
batch users of the fa·cility. Typically, closedown is effected through
a computer operator response to a wrOR. If the DBMS region terminates
abnormally while some user regions are operating, each user region is
notified. No. further use of the DBMS region is possible at this
point. Within the Intercomm region, DBINT will continue to accept
calls for DBMS; however, every such call is completed by providing an
error status indicating the DBMS is no longer operational.

2-7

J

J

L

3. MAINTAINING DATA BASE INTEGRITY

3.1 GENERAL

INTERCOMM DBMS support generally allows on-line and batch pro­
grams to execute concurrently while accessing and updating
the same data base. Use of an INTERCOMM/DBMS interface in­
cludes provision for data base integrity which is maintained
across system and program failures. Restart/recovery pro­
cedures consist of standard DBMS recovery utilities and
INTERCOMM system logic. The INTERCOMM operation basically
consists of logging and checkpoint procedures, INTERCOMM and
DBMS checkpoint synchronization and the INTERCOMM checkpoint
subsystem processing.

The primary technique used to maintain data integrity is to
quiesce all data base updating across all regions at appro­
priate intervals during the day. At each of these intervals
a simultaneous checkpoint is taken of the INTERCOMM, DBMS and
DBMS batch regions. In the event of a failure it is then
ossible to recreate the data base the INTERCOMM re ion and

t e atc 01nt
t1me. aS1ca y, t 1S capa 1 1ty 1S ase on ot systems
Tf[e DBMS" and INTERCOMM) backing up to the last checkpoint
and restarting all processing affecting the data base initiat­
ed since that time by utilizing the log records created by
both systems. All data base update activity completed be­
tween the checkpoint and the failure may be restarted to
bring the files up to the point of failure. Synchronization
of INTERCOMM and the DBMS checkpoint is accomplished by al­
lowing INTERCOMM to initiate all checkpointing for both tasks
while the DBMS and INTERCOMM simultaneously operate. Should
the DBMS lack "data reversal from log" capability, then
INTERCOMM can utilize the last system dump/restore point, re­
processing all transactions subsequent to this point.

For any data base failure, the logic required across that
failure typically consists of either running a standard DBMS
utility or running INTERCOMM/DBMS restart along with a stan­
dard DBMS utility (or utilities). With INTERCOMM DBMS sup­
port, if a data base is lost or destroyed in any manner, the
DBMS user is guaranteed reconstruction. This is accomplished
through a DBMS utility-restore followed by a forward recon­
struction. If a batch DB update user of INTERCOMM itself
fails then the reversal to checkpoint technique is used.

This section will examine these failure conditions, logic
for maintaining data base integrity and the procedures for
checkpoint, abend and restart processing. "

3-1

3.2 DATA BASE FAILURE CONDITIONS

There are four types of data base failure conditions which
could be encountered. These are:

Physical or logical loss of (all or part of) a data
base

Failure of a batch program using the DBMS in update
mode

Failure of the on-line INTERCOMM system using the
DBMS in update mode

Any combination of the other three conditions

In the following discussion, these conditions are examined
and action to rectify each is presented.

3.2.1 Loss of Data Base(s)

The first failure condition includes any situation in which
a data ba~e was either stolen from an installation or partly
or wholly destroyed (e.g., a head crash). Any file structure
which can be updated requires periodic dumping (backup) of
the entire file contents for recovery and/or historical pur­
poses. This might be performed weekly, monthly or on any
scheduled basis determined by" the installation. Recovery of
the data base requires a restore of the data base from the
last backup copy taken.

Since restoration of the data base is only useful for re­
covery purposes up to the time of the most recent backup, a
"restored" data base is not ordinarily up-to-date. Recovery
for information processed against the data base, subsequent
to the last backup, must include a facility capable of re­
applying all updates occurring subsequent to the restore
point. This is usually performed by log after":'"images of up­
dates. These after-images can be applied in a forward chro­
nological sequence to bring a restored data base to a current
condition.

3.2.2 Failure of Batch Program(s)

The second condition mentioned previously is the failure of
a batch program using the DBMS. When this occurs, all up­
dates performed by the batch program must first be reversed.
A utility to eliminate all update records from a specified
time onward must be provided. The specified time may be
chosen from a runoff sheet which indicates all the checkpoint

3-2

times. When the INTERCOMM and the DBMS are running simul­
taneously, checkpoint time is usually determined by a back­
out program.

If the failure is due to a software error in the user's
batch program, recovery is still possible. However, recovery
consists of reversing the data base updates performed by the
batch program. The program error must then be corrected and
the complete job must be rerun using the corrected program.
The reversal of the data base activity accomplished by the
program is performed by the Data Base Backout Utility pro­
gram.

If the DBMS lacks reversal capability, as in System 2000, the
provisions for data base loss conditions must be carried out.

3.2.3 Failure of the On-Line System

The third failure conditon encountered is the failure of the
on-line INTERCOMM system which uses the DBMS and the INTERCOMM
interface. Although more complex, this failure condition is
functionally very similar to that previously given for batch
programs. - The complexity is introduced by the multithreaded
environment existing during execution of the INTERCOMM on-line
system. In essence, many programs are operating in parallel
as INTERCOMM is running. At the time of the failure, one
or more programs may be in the midst of execution. This is
contrary to the batch program failure condition where only
data base activity is being performed by the batch program
following on the time of failure. To handle data base in­
tegrity during on-line system failure, the computer operator
must usually invoke backout of the data base via the DBMS
vendor-supplied backout utility program and then must restart
INTERCOMM. (If the DBMS is still executing, it must be
quiesced.) In restart mode, INTERCOMM will reverse OS and VS
file updates to the point of the last common DBJD~checkpoint.
The execution of the data base backout program should select
the last checkpoint or the operator may check the console
sheet and select any other appropriate time. Since both the
DBMS and INTERCOMM are restoring to the point of the last
valid checkpoint, any data base processing program which up­
dates files must be reprocessed. For this reason, INTERCOMM
restart logic restarts update messages that had previously
been executed subsequent to the checkpoint time as if these
messages had not been processed. Message processing programs
not using' the DBMS or DBMS inquiry programs will not have to
be reprocessed since such programs are in no way atIected by
the recovery logic. All of the processing described is ac­
complished automatically without any user programming required.
(Restart logic treats reprocessing or DBMS updating programs

3-3

identical to OS or VS file updating programs. In fact, DBMS ~
and other file updates can be combined in a single program.
The File Recovery Special Feature is required for OSjVS
file integrity.

A failure situation requ1r1ng message reprocessing in no way
changes standard INTERCOMM procedures for message integrity
and recovery: any message that had not processed prior to the
INTERCOMM on-line system failure or was in process at failure
time will be recovered and processed. The process described
above merely provides additional logic for messages that:

Were processed prior to the failure of system

Use the DBMS or OS or VS files

Update data base files or OS or VS files

Considering the conditions possible after a failure of the
total INTERCOMM on-line system, the various states of pro­
cessing in which a message could exist are:

Message I

Message has been processed prior to failure and
prior to last valid checkpoint.

Message 2

Message had been processed prior to failure but
after the last valid checkpoint.

Message 3

Message was in process of execution during
system failure.

Message 4

Message was received by INTERCOMM prior to
failure but no processing perfor~ed (message
was on an input queue).

Any message in the system at the time of failure must be in
one of these four states. Let us examine the recovery pro­
cess from the viewpoint of the individual message and observe
how INTERCOMM restart generally treats each case.

In the first case' cited, the message would not be recovered
after a failure since all processing had been completed.

3-4

J

I.·.
~

The second type of message (processing completed but subse­
quent to the last valid checkpoint) must be separated into
two distinct categories as follows:

The message is processed by a program that does not
use the DBMS or by a program using the data base in
an inquiry (read-only) mode. In this instance,
INTERCOMM recovery performs the same functions de­
scribed under Message 1 above. A user option allows
the on-line program to indicate to the system during
execution (via its return code) that such a message
is always to be reprocessed. Normally, however, re­
processing its inquiry-only messages would be super­
fluous; therefore, it is avoided.

Alternatively, this message is processed by a program
that accessed the data base in an update mode. In re­
covery mode INTERCOMM would mark this message for re­
processing and place it on the INTERCOMM queue in its
original sequence relative to other messages. Again,
a user option can reverse this standard INTERCOMM
logic by using a special return code from the data base
update subsystem during its normal operation. (One
possible use of this special return code option might
be to inhibit processing of a message which did not
perform any data base updates. That is, the subsystem
is marked in the INTERCOMM SYCTTBL as a data base up­
date program but in execution of this particular mes­
sage no updates were performed.)

The user is cautioned to be careful in using special return
codes to overrride INTERCOMM recovery logic. In all failure
cases, the DBMS will have reversed all updates to checkpoint.
9nly if all updating messages are reprocessed (as would occur
ln standard INTERCOMM recovery logic) will data files be
identical after a failure and full data integrity be assured.

In the third message type (message processing was in progre~s
during system failure), the message is marked for reprocesslng
and placed back on the INTERCOMM queue in its original queuing
sequence relative to other messages. As described for Message
2 above, any data base updates performed by the program pro­
cessing this message prior to the failure are reversed and
backed out of the data base (by the DBMS utilities).

For the fourth message type (the message was on an input
queue at failure time, hence no processing transpired), the
message is merely requeued in its original sequence relative
to other messages.

For a summary of the various processing actions performed by
INTERCOMM recovery relative to messages and to their status
at the time of failure, see Figure 3-1.

3-5

Default
Procedure Option

Return Code
Option

Queue Discard Allowed to
Message Status INfERCQM.f Res tart Message Message Reverse Default

~~ssage processed priol Message not recovered NO YES NO
to failure and prior tc after failure because
last valid checkpoint. processing was

completed.

Message processed prior a. Processed by a pro- NO YES YES
to failure but after gram not using DBMS
last valid checkpoint. or using DBMS in an

inquiry (read-only)
mode.

b. Processed by a pro- YES NO YES
gram that used DBMS
in update mode.

Message in process of Marked for reprocessing YES NO NO
execution during sys- and placed back on
tern failure. INTERCOMvt queue in its

original sequence rel-
tive to other messages.

Message received by Message will be marked YES NO NO
INTERCOMM prior to for processing & placed
failure, but no pro- back on the INI'ERCOM-f
cessing performed on queue in its original
message prior to sequence relative to
failure other messages.

Figure 3-1. INTERCOMM/DBMS Restart and Recovery

The contents of the queues following a recovery is as follows:

Previously completed messages being reprocessed

Messages that were in process at failure time

Messages that were on the queue at failure time

New message traffic arriving after restart

DBMS region data base recovery is always coordinated with
INTERCOMM messag~ recovery. This coordination insures that
the checkpoint used by the DBMS for data base recovery is

3-6

,

L

the same checkpoint as that used by INTERCOMM for message
recovery. DBMS action for failure of the on-line INTERCOMM
system is the same relative to the data base(s) as for fail­
ure of a batch program described earlier. All DBMS data
bases will be restored to their status at the point of the
last valid checkpoint. As previously mentioned, the INTERCOMM
File Recovery Special Feature provides capabilities analogous
to a DBMS to ensure OS and VS file integrity. File Recovery
procedures are integrated with DBMS recovery procedures.

3.2.4 Combinations of Failure Conditions

In any situation encompassing multiple failures of the nature
described earlier, recovery logic is easily defined using
the facilities already discussed. The critical element is
to understand the nature of the recovery mechanisms and to
apply these tools in the appropriate sequence.

As a simple example, assume that a head crash occurs while a
batch program is running. In this situation, recovery would
consist of the application of two utilities already described.
Initially, the data base must be restored to the moment of the
combined failure and this is done by using the loss of data
base logic described. Once the data base has been recovered
to the most recent moment of operation, the situation remain­
ing is the normal case of failure of a batch program.

In a more complicated situation, let·us assume that an OS
failure occurred while a batch program was executing and the
on-line INTERCOMM system operating. When this occurs, the
basis for recovery is the last checkpoint taken of the entire
environment. An INTERCOMMjDBMS interface backout ut!lity
would be used to back out data base updates to the last check­
point. No activity, whether batch or on-line, having affected
the data base(s) after this last valid checkpoint would be
reflected once this recovery has occurred. To ensure proper
reprocessing of any activity in the batch and on-line systems,
both systems must be restarted. In regard to the on-line
INTERCOMM system, a restart of the INTERCOMM job will affect
reprocessing any lost data base activity and continuation of
the on-line activity. The data base backout program brings
the data base back to the last checkpoint;. then, the DBMS
region would be brought up and any batch jobs specified by
that program rerun.

Under the topic "Failure of a Batch Program," it was mentioned
that were the failure due to a program error, all data base
activity would have to be reversed back to the beginning of
the job. With more than one job running concurrently, the

3-7

implication of doing such is that the checkpoint needed for ~
reversal must be one coincidental with totally quiesced
batch updating.

These are the various stages of processing when abnormal
termination occurs, the conditions necessitating such ter­
mination and the logic behind restart and recovery with re­
spect to a data base(s) in an INTERCOMM/DBMS environment,
whether for the operating system or for batch or on-line pro­
grams. The maintenance of data base integrity for the
INTERCOMM/DBMS user is assured by INTERCOMM-provided proce­
dures in conjunction with programs provided by the user or
vendor of a particular DBMS. The operational concepts for
the checkpoint, restart and abend programs are described in
the remainder of this section.

3.3 CHECKPOINT PROCESSING

Maintaining data base integrity is based upon the availability
of the INTERCOMM System Log and an activity log (provided by
the DBMS) _recording data base update activity. Checkpoints
in the INTERCOMM/DBMS environment consist of recording only
pertinent-table data, not a "core" checkpoint in the normal
operating system sense. This section presents a conceptual J-.
description of the checkpoint processing including the tech-
nique used to synchronize the INTERCOMM and DBMS region check­
point. Note again that concepts and program names correspond
to the GDB Interface Facility; refer-to the following DBMS­
dependent sections for specific detail regarding a particular
DBMS.

Synchronous checkpoints of the INTRCOMM and DBMS regions are
performed at the following points in time:

At INTERCOMM startup

At a periodic interval specified by the user in
the INTERCOMM System Parameter List

At Batch Program startup and closedown (for those
batch programs that perform updates)

At INTERCOMM closedown

INTERCOMM will, when operating, initiate all checkpoints
within its region. Under certain circumstances checkpoint
processing can also be initiated from the DBMS region. How­
ever, to maintain data integrity when utilizing INTERCOMM/DBMS

. support, the checkpoint facilities of both must be synchronized.

3-8

j

SPR 188 12/80

This is accomplished by allowing Interconm to initiate all
checkpointing for both tasks while the DBMS and Intercomm
simultaneously operate. The time interval to be used for checkpoint is
spec ifi ed as a system parameter of the Intercomm region. DBMS
checkpoints may also be controlled based on the number of updates when
Interconm is not running. For some DBMS, a checkpoint request may be
initiated via a terminal.

A complication in synchronizing Intercomm and DBMS checkpoints
arises when batch region(s) which update the data base are active at
checkpoint time. This situation necessitates a checkpoint request to
the DBMS region when it is time to perform an Interconm checkpoint.
However, the Interc01llll region may only perform a valid checkpoint when
the DBMS region noti fies it that all batch program update activity has
quiesced. When Interconm is active, it initiates all checkpoint
requests. The DBMS honors such requests at its discretion.

The foIl owi ng programs are involved with checkpoint processing 1n
the Intercomn region:

e DBCHKDSP

Triggered at startup by a time-oriented DISPATCH for the
interval specified by the TCHP parameter of the SPALIST macro
(contains replacement CSECT CHECKPT for that in CHECKPT3)

• DBCKPREP

Dispatched by DBCHKDSP to request acknowledgement that a
checkpoint of the DBMS is possible

• GDBSTUP

Triggered at startup by an event-oriented DISPATCH to wait
for the DBMS region to signal checkpoint preparation
(quiescing of batch programs) is complete

• CHCKPTSS

The checkpoint subsystem which
GDBSTUP, quiesces all data base
takes the INTEROOMM checkpoint

• DBCHKCOM

receives a message from
update subsystems and then

Called by CHCKPTSS to notify the DBMS that Intercomm
checkpoint is complete and request a checkpoint of the data
base region

Checkpoint functions in the DBMS region are in general controlled
by the DBMS logic activated by DBCKPREP and DBCHKOOM.

3-9

I

3.3.1 Checkpoint Logic Flow

The basic flow of checkpoint processing is shown in Figure
3-2. The numbers therein correspond to the followina brief
descriptions of each step within the overall checkpoint pro­
cessing flow.

At INTERCOMM startup time, DBSTART dispatches GDBSTUP.
Via ECEs, GDBSTUP will wait until it receives a signal
which indicates it is time to take an INTERCOr.IM check­
point.

INTERCOMM,. based upon a specified time interval in the
SPA, periodically dispatches DBCHKDSP. On receiving
control, DBCHKDSP dispatches DBCKPREP.

DBCKPREP then sends a "checkpoint prepare" command to
the Data Base Management System.

The Data Base Management Sys1em now interrogates all in­
volved batch regions to determine if it is possible to take
a valid checkpoint (i.e., no active batch update regions).

When all checkpoint criteria have been met the DBMS
calls DBMCHECK which resides within its region.

GDBSTUP is activated by SEXTOECB in the INTERCOM~,I region
being posted with a code of 8, either directly by the
DBMS or by response to the checkpoint prepare command.

GDBSTUP then sends a message to the checkpoint subsystem
and proceeds to wait until all checkpointing is complete.

The checkpoint subsystem quiesces all data base update
subsystems, logs a checkpoint record, takes the INTERCO~M
checkpoint and calls DBCHKCOM.

DBCHKCOM subsequently sends a checkpoint command to the
DBMS. Upon completion of the DBMS, checkpoint SEXTOECB
in the INTERCOMM region is posted with a code of 12.

The Data Base Management System then calls DBMCHECK to
update a checkpoint completion count, i.e., the number of
regions requiring checkpoints and to initiate the data base
region checkpoint. NOTE: DBMCHECK is hypothetically a
program which verifies-fhat all checkpoint criteria have
been met, i.e., batch programs have responded. Dependent
on the data base management system, these functions may
automatically be provided as part of the checkpoint or
checkpoint prepare command.

3-10

J

J

r"

'TJ
1-"

I)q
C
"i
(1)

VI ,
N

()

::r'
(1)

VI

il
DBSTART

I wmr
...... USER
...... STARTUP

ROUTINE
::l
rt

'1j
"i
0
n
(1)
til
til
1-'-
::l

OQ

'Tj
......
0 :;;:

GOISTUP

INTERCOMM
REGION

CiiClPHS
I'j'IJIT5U-IILL
,,~ ~UBSYSTHIS
, tAu.
I SllNCO)l.'1
C11f.Cli'OlliT

r

OICIIKCDM
{1IStIlj

SEND 'CIIECKPT
CONrLnIO~'
COMMA.~D TO
DB~IS

TUIER DRIVEN
(INITIAI,IZED A
STARTUP)

OBClrREP
{'m'I{J

SEND 'WECKPT
PREP~E'
CDMI·I'\' ~D TO
DIlMS

l)ltATT OS EC8-
.1IION PDSHD.
ACTIVATE CIICIPTSS
YIA MESSACE.
I) WIIIT ON ECB·
WIlEN PDSTtD.
ItSClIlD ALL DB UP­
DAH P~OGS , RESU
lUlU fOR CIIEU,
POINT DIS"ATCII

~
DBCIIKDSP

ACCESS
USER

l> DBCKPREP

-1.f~
C'..z

~(' ..,...
Po

:;-4'l>

DBMS REGION

DATA
BASE
MANAGEMENT
LOGIC

DB~ICI!EC"
1) When BATCI!
REGIONS READY
POST GDBSTUF.
2} UPDATE
CHECKPT cml­
PLETION COUNT.
IF ALL DONE,
POST GIlBSl'UP

i

BATCH
REGION

I BATCH I

r

BATCH
REGION

"

B

DBMCHECK, once checkpointing has completed, will also
reactivate GDBSTUP by posting SEXTOECB with a post code
of 12 in the INTERCOMM region. GDBSTUP now logs a check­
point record, marks data base subsystems as schedulable
and redispatches DBCHKDSP on a timer interval.

3.3.2 Checkpoint Subsystem Logic Flow

The following describes the specific actions of the check­
point subsystem, CHCKPTSS.

This program operates as an INTERCOMM subsystem (SSC=Q) and
ensures that all data base updating programs are quiesced by
marking them as nonschedulable and ensuring that current mes­
sages in progress have completed before allowing INTERCOMM
checkpoint to take place. The checkpoint subsystem also
takes the INTERCOMM checkpoints.

J

Upon receiving control, the checkpoint subsystem takes no
action until all message processing for programs updating
DBMS files has been completed. It then uses the following
method to quiesce these programs. There are bits which are
defined in the Subsystem Control Table and indicate whether
or not a subsystem accesses DBMS files and whether or not it
may perform data base updates. To quiesce update processing ,..,J
CHCKPTSS scans through all the SCTs and sets a special "un­
schedulable" bit in all entries having both DBMS file access
and DB update activity bits on. This prevents any new update-
type messages from being started by the Subsystem Controller.

CHCKPTSS then does another scan of all the SCTs. If both the
data base access and update activity bits are on and a mes-
sage is in progress for the subsystem, CHCKPTSS must wait
on an ECB defined in the SPALIST. This ECB is posted by the
subsystem Controller when any message completes for a DBMS
updating program. Until all DBMS updating programs are
quiesced, the checkpoint subsystem will continue to receive
control to scan the SCTs and repeat the above sequence.

CHCKPTSS requests a checkpoint of the DBMS via the module
DBCHKCOM and calls the INTERCOMM checkpoint routine. When
the INTERCOMM checkpoint is taken, the checkpoint subsystem
writes a checkpoint indicator record to INTERLOG. This re­
cord has a message number of zero and contains that time
stamp of the checkpoint just taken in the message text portion
of the record, plus a number of system statistics. To in­
sure that this record is written to the log immediately, the
LSYNCH-YES param&ter should be coded ln the Subsystem Control
Table entry defining this CHCKPTSS.

3-12

The checkpoint subsystem completes processing by turning off
the unschedulable bit it had turned on for update systems when
quiescing activity. It also checks if there are any messages
queued for those subsystems marked unschedulable. If messages
are queued for any resident subsystem which is using the ECB
Wait option, the corresponding ECB is posted to "wake up" the
Subsystem Controller for that program. In addition, the
SPACTIVE ECB is posted to activate the Subsystem Controller
in the event that any new work has been queued for overlay
programs while checkpointing was in progress. (The reschedul­
ing of subsystems is performed by GDBSTUP when using the
GDB. support.)

The checkpoint subsystem performs analogous operations for
file updating programs if the File Recovery Special Feature
is being utilized.

3.4 ABEND PROCESSING

Special processing is necessary to insure data integrity if
either INTERCOMM or the DBMS should abnormally terminate.
When INTERCOMM and the DBMS execute in two seaprate regions,
if either.job goes down, the one remaining must also be shut
down and restart procedures initiated. When either INTERCOMM
or the DBMS abnormally terminates, it is necessary to close
all DBMS data sets. To accomplish this, special procedures
have been incorporated into INTERCOMM's STAEEXIT routine via
the module DBSTAE. The DBMS should have comparable capabil­
ities.

In particular, STAE routine processing is needed to inform
the regions communicating with each other of the abnormal
termination of any of the other regions. There are three
considerations: the- DBMS region, an INTERCOMM region and a
batch region abending. If any of these jobs goes down, the
remaining regions must also be cancelled and restart procedures
initiated to maintain an up-to-date status of the data base.

The following procedures are typically followed. Each time
a new region which is to access the data base is initiated,
it locates the Data Base Management region to inform it of
its presence; At this time, a block with two ECBs is defined
for the new region. One of the ECBs is waited upon by the
application region for notification by the DBMS of an abend
condition; the other ECB should be waited upon by the DBMS
for notification of the application programs abend.

The DBMS interface routine of the INTERCOMM region should
contain an entry point to utilize the STAE routine (DBSTAE).

3-13

If supplied, INTERCmlrl STAEEXIT calls DBSTAE after determining J
that the INTERCO~~ task cannot be reinstated. This provides
the user with the ability to notify the DBMS region that the
I~TERCO~~l task has abended. The DBMS should, UDon receiving
notification of abnormal termination, purge all threads from
I0:TERCOM~r in the process of being serviced.

There are several important ramifications of this purging
activity. First, it is important that any portion of the
data base "locked out" be nmV' freed up. Second, it is very
necessary that the DBMS take no further action in the core
owned by INTERCOMM (such as moving back data or posting)
since the implication of an abend is that INTERCOMM will give
up ownership of the core.

To secure data integrity of the DBMS region abends, there is
a routine (DB~lABEND) wai ting for notification from the DB~,!S
of an abend at all times. This routine, when it receives
control, typically requests the ~perator via a WTOR to in­
dicate whether INTERCOrTh1 processing should continue without
data base subsystems or if the region should be cancelled to
initiate restart procedures. The details of abend processing
for each DBMS may be found in subsequent sections.

DB!vlABEND is dispatched via an ECB by DBSTART when the DB~·rs

Operating in a separate region

Specified in the EXTR parameter of the ATTACH;
i.e., operating as a subtask of INTERCO~!H

is:

A DBMS interface routine may additionally employ a routine
where a check for a particular character string at a parti­
cular location is made at a frequent periodic interval. This
strategy is intended to find failing DBMS user regions that
were unable to execute STAEEXIT at failure time, an unlikely
but possible condition. The need for such additional error
precautions increases if the DBMS has interregion data-moving
code within it. (INTERCOMM's Multiregion Facility uses this
time-driven checking logic.)

3.5 RESTART/RECOVERY OFF-LINE UTILITIES

The INTERCO~W DBMS restart capability is based on backing up
both systems to the last checkpoint and restarting all the
processing which affects the data base initiated since then.

J

With utilization of the utilities discussed here and the
INTERCO~~ provided programs for checkpoint and restart, all
data base and system failure conditions are foreseen. PossibleJ

3-14

data base failures, for which a return to the prefailure
state is prescribed by the restart/recovery procedures here­
in, are simply and effectively handled without extensive pro­
gramming on the user's part.

For the on-line INTERCOMM region, all restart processing is
supplied by the INTERCOMM DBMS Restart facility. The
INTERCOMM/DBMS user must have the following DBMS utility pro­
grams:

A data base dump/restore facility to yield a backup
copy of the data base to be used for recovery when
part or all of the data base is lost.

A data base recovery utility which applies the after­
images from a series of data base log tapes to an old
(restored) copy of a data base. This utility will
be used to bring a data base up-to-date when it has
been lost and the last backup taken is not up-to-date.

A data base backout (reversal) utility to be invoked
when the system has failed during execution of a data
base update program (INTERCOMM or a batch run). This
utility removes any updates done to a data base up
to the last checkpoint time or to the time specified
by the operator.

In line with the ability to back out all updates performed on
given data bases up to a given checkpoint, it is suggested
that the Data Base Backout program make available the follow­
ing options:

The operator may specify a time which will cause this
program to back out all updates to that checkpoint
time.

The program may arbitrarily pick the last valid
checkpoint by reading the data base log backward.

The program should be able to back out to the last
INTERCOMM checkpoint taken.

If an INTERCOMM startup record is placed on the data
base log, it should be recognized as the last valid
on-line checkpoint. This might be done when INTERCOMM
performs the sign-on function to the DBMS. If the
operator has selected a time previous to the INTERCOMM
startup, the program should inform the operator that
INTERCOMM backup is complete and continue to the
checkpoint taken at the indicated time.

3-15

The Data Base Backout program may have the ability \
of not backing out any updates by a specific job ..."
step, if update by job step identity is available
in the data base log records. This facility could
be of assistance to installations using the DBMS
with batch programs that update data bases not being
updated either by on-line system or by other batch
programs. If an INTERCOMM restart must be done
after such a batch data base update job has completed,
the Data Base Backout Utility need not be rerun.

3.6 RESTART PROCESSING

As referenced previously, the INTERCOMM/DBMS restart capa­
bility involves:

Use of backout facility to recover both systems from
the time of a checkpoint (usually the last) until the
failure condition.

A restart of all processing which affected the data
base during this· backup time.

Prior to INTERCOMM restart, the DBMS is first backed out via
the DBMS Backout Utility. Typically, the user may specify \
restoration to other than the last checkpoint by supplying ~
the checkpoint time in the PARM field of the Backout Utility
EXEC card or in response to a WTOR. In any case, the utility
will inform the operator of the checkpoint time to which the
data base was backed out.

In most cases, INTERCOMM restart may be executed concurrently
with the backout utility. During restart processing, INTERCOMM
calls the Restore routine to recreate the subsystem tables as
they existed at the last checkpoint. The INTERCOMM program
LOGPROC is then called to process the· INTERCOMM log.

LOGPROC has the responsibility for selecting mess~ges for re­
start. This is accomplished by reading the log tape backward
until a checkpoint record is encountered. All messages pro­
cessed by programs using the DBMS in update mode will be re­
started unless indicated otherwise by the application. (A
return code of 64(X'40') supplied by a data base processing
program specifies a message should not be recycled at re­
start time. This override option applies only to those mes­
sages which completed since the last checkpoint.) Any mes­
sages which were ~n process at system failure time or were

3-16

on the queues at failure time are restarted under all circum­
stances. The following log codes (character) will be put by
LOGPROC in the message headers of restarted messages:

P = message was completely processed but is being re­
started for DB recreation purposes

R = message was in process at time of system failure

2 = message was on the queue (never started) at time of
failure

NOTE: These log codes appear on INTERLOG as translated
to hexadecimal values X'Ol', X'03', X'02', re­
spectively.

When the last checkpoint message has been located, INTERCOMM
(via the 'ENTER CHECKPOINT TIME' WTOR) requests from the
operator the time to which the DBMS has backed up.

If the checkpoint ID supplied by the operator is not equal
to the last INTERCOMM checkpoint then LOGPROC continues pro­
cessing its log file backwards to the desired checkpoint.
The technique of having LOGPROC immediately proceed to the
first checkpoint before knowing which checkpoint is actually
to be used is for speed purposes. Generally, the last check­
point is always used. Thus, INTERCOMM is usually waiting to
immediately proceed after the DBMS Backout Utility completes.

3-17/3-18
.; ~ I ~

J

J

4. DIST.-ULI\G DB:!S SUPPORT--GE:':ERAL REQUIRF::[\TS

4.1 c;C<ERAL

~his section details srecificaticns required to install the
DB:·IS support \\'hich is COf!lDon to all DP·!S. SKIS support is
considered primarily with preparation of the INTERCO~~: systcc
toe x e cut e inc 0 n j un c t ion \d t haD mr S reg ion. The f 0 110\'.' i n.<;
areas can be generali:ed:

Conditional Assembly Srecifications via SETGLOBE

Preparation for Use of the Interregion SVC

Coding of the System Para~eter List (SPA)

Coding of Sl ilisystem Contiol Table (SCT) Entries

Preparation for Checkpoint (CHEKPTFL)

Execution Procedures--Normal Startup

Execution Frocedures--Restart!Recovery

Subsystem Design Considerations

Ti1e L~TERCmEl linkedi t Hill include DBlI!S interface nodules.
unless the Dm!S is operating as an nnE RCOIIUII subtask or the
DBrfS requires a workfile in the I:'4TERCOlIH region, execution
JeL ror the INTERCOMM Job Step is standard and requires no
aJdi tional consideration for use of the DB}'IS.

Addi tional DB~IS-dependent table considerations, condi tional
assemblies, linkedit and JeL requirements are described in
subsequent sections along with pertinent detail for applica­
tion programming functions.

4.2 CONDITIONAL ASSEMBLY SPECIFICATIONS

Two members of the INTERCOHM Release Library p~rr. SYMREL are
utilized for conditional assembly specifications:

INTGLOBE·defines system globals

SETGLOBE specifies system globals

4-1

These thO nenb:I's control assenbly of the S'·ster.l PG.raIT:cter
list (SPA CSECTi C1Ed SF.\ Extension (SPAEXT [SECT) 8nd I'~any
L,TL.:::.CC:':·; s>'stc" rc:utines. CertJin globals central spE:ci.Eiccl­
tions .Lor OD::S- 'lependent lEodules. n:TGLOBE and SETGLCBE, <1::::

released, are illustrated in Figures 4-1 and 4-2. Certain
of these rlobals also control assemblv of DBMS-dependent
lIlodu12s (Jiscussed in subsequent sect'ions). .

Typical JCL for creating a tailored SETGLOBE for a particular
installation is illustrated here.

IIEXEC LI2E,Q=LIB,NAME=SETGLOBE
IISYSIN DD *
.1 REPL NAME=SETGLOEE
.1 NUMBER NEW 1=00000100,INCR~OOOOOlOO
.1

installation-dependent settings for Data 2~se
Eu"[po rt, Pe so urae ilanagerr!en t, "':4"[tire gi en
Support Fac~lity, DOQ, eta.

4.3 PREPARATION FOR I~TERREGION COMMUNICATION

The following steps must be performed to prepare for inter­
region communication:

Create or identify an available Type I or II user SVC
number. (The choice of type varies wi th DBBS. A
Type I is more efficient and should be used if possible.
Refer to DBMS-dependent sections of this manual.)

Update the member SET GLOBE to specify the SVC number
via &INTSVC SECTC 'nnn'. Update the member SETGLOBE
to s~ecify a VS2 operating system via &VS2 SETB 1.

Reassemble and linkedit the member IGC250 and add it
to the OS/VS nucleus. Linkedit parameters must be:
LIST, LET, DC, REUS.

This SVC is not required under the following conditions:

For TOTAL support, the module IGC2S0 (and the assoc­
iated Type II SVC identified by &INTSVC) is required
on~y if the INTERCOMM region is to coordinate check­
pOInts with batch regions updating the on-line data
base. (See Section 7.)

For ADABAS SUppOTt, interTegion communication is not
accomplished via IGC250 but through Type III SVC
provided Ly Software A. G. (See Section 8.)

4-2

J

GBLB
GBLA
G5LE

GBLB
GBLE
GRl_'2
GoLC
GBLA
GBLC
GBLB

GBLB
GBLB
GBLB
GBLB
GBLB

GBLA
GBLA
GBLA

GBLA

GBLA
GBLB
GELB
GBLB
GBLB

GBLB
GELB
GBLA

GBLB

GBLB
GBL.B
GBUI
GBLB
GUB
GBLB
GBLB
GBLB
GBLB

GBLE
GBLC

, GBLA
GBLB

GBLC
GBLC

GELB
GBLC
GBLC
GBLD
GBLC
GBLC
GBLA

GBL'C
GD~C

GHC
'--_ .. -

f.MULTASK
&LCGP ECL
&SPADT
GEriERAL SYSTE·'·\
&VSSYSH1
£.SYSJ70
&USRHI
&USRLO
f.LOGHlIl-l
CIN-:-SVC
&VS2

O.E~OLETE GLC AL
OBSGU:TE Gi...:J AL
GBSOLETE GL~ t,L

r fA Ti)K E S:
ON IF ~UNNING UNDER VS1 DR VS2
USE OF 1370 INSTRucr:CN SET
HEX UPPER LIMIT FeR USER LOG CO!lES
HEX LOWER LIMIT FOR 0SER LeG CODES
LOG INPUT I~TERVAi...
INTERREGION SVC USED BY INTE~COMM
FOR VS2 PROT

RESOURCE M~~AG~MENT

&RM RESOURCE AUDITING
&R~STATS RM STATISTICS G~THERING.
&RMACCT BUCKET ACCOUNTING SWITCH.
&RMPOOLS SUPPORT USER POOLS.
&RMJNTEG RESCURCE MGMNI CORE INTEGRITY Cc-iO .•
NESSAGE REST~~T/RECOVE~Y:

&FEI'SGHI FROrn END HI VALUE MS3 -'«CTG
&BEMSGHI BACK END HI VALUE M5G AeCTG
&LOSPRCQ LOGPROC Q ELEMENTS VI CNLY
DISPAlCHER:
&NUr~WQES

FILE HANDLER:
&RPTIriTV
&ISAM
&AMIGOS
&VSM1
&VISAM
EDIT UTIliTY:
t:DELChNG
&EDERRS
£'EDER~IAX

['uP7RPT
OUTPUT UTILITY:
£.QTAM
t;TCA~

S!lDQBACK
€.BROAD
&RPIBLE
SALTP.PT
&OUTEXIT
&tCM10UT
&IASYN

DLiI SUPPORT:
SDL!
P~~AX Tt. 51\., WA SR FS
&1-1AXRE :;,~
&PSIR::DU
TOTAL SLJPPOP. T:
&IOTESC
&I07SVC

NUMBER OF WORK QUEUE ELEMENTS

FILE STATISTICS REPORT
ISAM FILES USED
AMIGOS FILES USED
VSA~' FILES USED
ISAM/VSAM CGMPATIBILITY

INTERVAL

REQUIRED

NO CORRECT/CHA~GE FACiLITY USED
NO MAXIMUM FOR Er:T ERRORS SENT
MAXH:UM NUM3ER OF E:lIT E~'I.CRS
(USED ONLY IF &EDERR5=C)
SEND ERRORS ~OR OPT!O~AL PAR~S

FRONT END IS QTAM
FRONT END IS TCAM ONLY
DYNAMIC DATA G'S - AUTO !NPUT
NO BROADCAST GROUP
NO REPORTS TO TAPE
NO ALTERNATE REPORTS
NO USER OUTPUT EXIT
TCAM OUTPUT-ONLY STATIC~S IN USE
TCAM OUTPUT-ONLY 110 DONE BY
A SUBTASK (TCAMASY~)

DLII
OBSOLETE GL03AL
OBSOLETE GLOBAL
OBSOLETE GL03t.L

TOTAL DATA ?ASE DESCRIPTOR
TOTAL SVC NUMBER

INTR RJE TO INFORM OP OF EACH JOB I
OUTPUT CL.<\SS TRA,'~SFORr~A lION FOR CL A !
OUTPUT CLASS TRANSFORMATION FOR CL B
ON IF RJE IS TO AUTe START A RDP
R~ADER NAME TO BE USED

RJE FACILITY:
&RJE\HO
f.R.i[CL5A
f.R.JEr. LSH
f.AUTORJ~
£'cl.D~NAME
&P.:lr..!D
U.ttJI-1J[~~S

RJE RDP. ,SD-('.5','.P2',ETC.l
.JOR THRES~OLD FOR AUTO START

SU:'PCP.T: r'UL TIRI:G! eN
&'~;_;L TReG
~~f:R S v.:

MULTI-REGIO~ SUPPORT RECUESTED
MULr(-R~GIQ~ SU~PORT SVC

~1rJ':El S":' T[:-:~, CEt·:~r). TO:-,:
~~ENTER~ TERMINAL IDENTIFICATION

Figure 4-1. r::TGLOBE Exar:ple

4-3

&MULTASK SETB 1. OBSOLETE, REQUIRED SETTING
&LlGRECL SETA 500 OBSOLETE, REQUIRED SETTING

r.vSSYST~' SETB
&SYS370 SETB
GUSRHI SETC
GUSRLO SETC
&LOGINTM SETA
&lNTSVC SETe
&VS2 SErB

GRM SElF.
£.RMSTATS SEn
GRMACCT SETB
GRMPCOLS SETB
GRMINTEG SETB

GFEMSGHI SETA
GBEMSGHI SETA
&LOGPRCQ SETA.

GENERAL SYSTEM FEATLf\ES:
1. DEFAULT TO VS
cr· 00 I'DT USE /370 INSTRUCTIONS
'6F' llSER LOGCODE - HIGH VALUE
'40' USER LOGCODE - LOW VALUE
3 .3 SEC TO DISP LOGINPUT
'013' DEFAULT INTERCOMM INTER-REG SVC NUM
o >fMUL.T TO NOT VS'2.
RESOURCE MAN~GEMENT
1. RESOURCE MANAGEMENT
1. STATISTICS
1 ACCOUNTING
1 CORE POOLS
o CCRE POOL INTEGRITY CHECI<
MESSAGE RESTART/RECOVERY:
255 MESSAGE ACCOUNTING - HIGH
255 MESSAGE ACCOUNTING - LOW
3.00 VI + ONLY
DISPATCHEP,:

£.NUM\~QES SETA 120 NUMBER OF WORK QUEUE ELEMENTS

f8PTINTV SETA
tISAM SETB
GAMIGOS SErB
tISAM SETB
&VSISl\~l SETB
&VSAr-, SErB
&VSAM SETB

tDELCHNG SETB
&EDER~S SEn
&EDERllAX SETA
c.oPTRPT SETB

tQTAH SHB
GTCAM SETB
&DDo.BACK SETB
&BROAD SETB
GRPTBLE SETB
&ALTRPT SHB
&OUTEXIT SETB
&TCANOUT SETB

FILE HANDLER:
600*300
1
o
(tISAM OR &AMIGOSl
11
o
(&VSAM OR~SISAMl
EDIT UTILITY:

600 SECS = 10 MINS
ISAM FILES USED
AMIGOS FILES NOT USED
AMIGOS REQUIRES ISAM
ISAM/VSAM COMPATIBILITY
VSAM FILES NOT USED
FORCE VSAM IF ISAM/VSAM IS USED

1 I'D CORRECT/CHANGE FACILITY
o SEND NO MJRE THAN &EDERMAX ERRORS/t-1SG
5 MAXIMlJ-' NLMBER OF ERRORS/MESSAGE
o SUPPRESS ERROR MSG IF PARM IS OPTIONAL
OUTPUT UTI LI TY:
o
o
o
o
o
o
1

.0
DLII SUPPORT:

FRONT END IS NOT QTAM
FRONT END I S NOT TCAM-GNL Y
DEFAULT TO NO DDQ AUTO INPUT
BROADCAST GROUPS IN USE
REPORTS TO TAPE IN USE
ALTERNATE REPORTS IN USE
NO USER OUTPUT EXIT

TCAM OUTPUT-ONLY STATIONS NOT USED

£.DLl SETB 1 DL/I IN USE
TOTAL SUPPORT:

&TOTDESC SETC 'XXXXXX'
&TOTSVC SETC 'NUL'

RJE FACILITY:

TOTAL DATA BASE DESCRIPTOR
NO INTERREGION COt-1M NECESSARY

GRJECLSA SETe 'M ' DEFAULT TRANFRMA TION FOR CLASS A
GRJECLSB SETC 'N' DEFAULT TRANSFORI~ATION FOR CLASS!
GRJEWTO SETIt 1. DEFAULT
t:R:DRNAI'lE SETC 'RJERDR ' DEFAULT
&RDRID SETC '.S' DEFAULT
GNUMJOBS SETA 10 DEFAULT

MULTIREGIG~ SUPPORT:
&HRSVC SETC '013' MULTI-REGION SVC NOT PRESENT
tMULTREG SETB :L MULTI-REGICN SUPPORT REQUESTED

MODEL SYSTEMS GENERATOR:
E:.GENTERf.', SETC 'H$$~'

Figure 4-2. SET GLOBE Example

4-4

IDMS (see Section 9).

For Model 204, interregion communication is throuah a
Type IV SVC provided by CCA as of release 3.16. (See
Section 10.)

System 2000 (see Section 11).

4.4 CODING THE SYSTE~f PAR.!VKETFR LIST

The System Parameter List (SPA CSECT) and SPA Extension
(SPAEXT CSECT) are coded via the INTERCO~~-supplied SPALIST
macro, described in detail in the INTERCO[-'rM System 01acros
Manual. Specifications pertinent to DBMS interface are:

CIlKPTL D!=nn

TCHP=nnn

YES

coordinates with CECKPTSS SYCTTBL TCTV va~ue.

specifies estimated checkpoint time interval~
in seconds. DefauZt is 1.20.

TOTATT= :\0 for TOTAL onZy; specifies whether or not
TOTAL is to be attached as an INTERCOMM
subtask. DefauZt is YES.

GE;.JSW=OO permits checkpointing onto CHEKPTFL DD file.

Typical JCL to assemble and l~nkedit is illustrated in
Figure 4-:.

4.5 CODING SUBSYSTEM CONTROL TABLE ENTRIES

In order to inform INTERCO~W that a subsystem accesses a data
base, the Subsystem Control Table (SCT) entry for each such
subsystem must specify whether it performs inquiries only or
data base updates. The SCT is generated via the INTERCOHM­
supplied SYCTTBL macro, documented in detail in the System
Macros Manual. The operand specifying DBMS requirements is:

DBASE= {B~B) where DB signifies inquiry-only access; UDB
signifies updates performed by the subsystem.
No data base access is specified by omitting
this operand.

(TOTAL~ UTOTAL~ DLI~ UDLI~ ADA~ UADA are aZso aZlowable
specification for the DBASE= operand as described in the
System Macros Manual.

Other operands define logging requirements and message restart
requirements. This macro must be coded carefully in conjunc­
tion with study of Sec~ions 3 and 12 in the Operating
Reference Manual (ORM).

4-5

I!SPA EXEC LIBELINK,Q=lIB,NAME=OBS?A,L~OD=DBSPA
//LI3.SYSIN DO *
./ ADD NAME=DBSPA
./ NUMBER NEW1=lOO,INCR=lOO
**SYSTEM PARAMETER LIST
SPA CSECT

SPALIST TCHP=120,
TOTATT=NO,
G EN St~=OO

Chec~point inter~cl
]0 att2c~ed TC~;L

CHEC KPTFL Spec.
Other operands as required

**SUBSYSTEM CONTROL TABLE ENTRIES
SYCTTBL

Entries as required for
. I Pi i E R CO 11M and :£ s e r sub s Y s t e 17' s
SYCTTBL

SYCTTBL

GENINDEX Generate SCi index
END

I/SPAEXT EXEC LIBELINK,Q=LIB,NAME=DBSPAEXT,LMOD=DBSPAEXT
IILIB.SYSIN DO *
.1 ADD NAME=DBSPAEXT
.1 NUMBER NEW1=10Q,INCR=lOO
**SYSTEM PARAMETER LIST EXTENSION
SPAEXT CSECT

SPALIST EXTONLY=YES, Extension only

END

TCHP=120,
TOTATT=NO,

Identical operands
as above

Figure 4-3. SPA and SPAEXT Creation

4-6

J

J

L

If INTERCOMM DBMS Restart/Recovery procedures are to be in­
voked, the checkpoint subsystem, CHCKPTSS, must be defined by
a Subsystem Control Table entry as illustrated in Figure 4-4.

[SYMBOL] SYCTTBL SUBC::aQ ,
SBSP=CHCKPTSS,
LANG=NBAL,
MNCL=:L,
NUMCL=:L,
LSYNCH=YES,
RESTART=f\I),
TCTV=nnn,
OVLY=u,
PRTY=O,
•
•
•

SUBSYSTEM CODE ENTRY POINT

f'.DN-REENTRANT BAL
SINGLE-THREAD
CORE QUEUE

FORCE IMMEDIATE LOG ENTRY
NO RESTART
MAXIMUM TIME OUT
NONRESIDENT OR RESIDENT
HIGHEST PRIORITY

OTHER USER-SPECIFIED PARAMETERS
AS DESIRED

Figure 4-4. Checkpoint Subsystem SCT

The checkpoint subsystem may be resident or nonresident at
the user's option, using the following criteria:

If resident, allows non-update resident or overlay
subsystems to continue processing with ma~jmum con­
currency while update subsystems are quiesced.

If assigned to Overlay Region A, the time to quiesce
update act1v1ty may be m1n1mized. All other Overlay
Region A Subsystems will be inactive during the check­
point processing interval. Generally, no other sub­
system should be included in the same overlay as
CHCKPTSS. Thus, only currently active resident or
any dynamically loaded update subsystems will delay
the checkpoint subsystem, CHCKPTSS.

In other words, the time to quiesce update activity to perform
a checkpoint is dependent upon activity in all subsystems
in core and active at the time checkpoint preparation begins.

4.6 PREPARATION FOR CHECKPOINT

A BDAM data set is, used by the INTERCOMM checkpoint routines
and is required if data base recovery is to be performed.
Checkpoint data, consisting of pertinent table information,
is written to this data set. In addition, an entry is made
at checkpoint time on the INTERCOMM log signifying "check­
point synchronization with a DBMS."

4-7

I

SPR 188 12/80

The checkpoint data set (ddname CHEKPTFL) must be preformatted
prior to execution via the Intercomn off-line utility, CREATEGF. The
minimum all owable specification is 50 blocks of 56 bytes. (A block
size of at lease 200 bytes is recommended.) Please consult the
Operating Reference Manual, to compute the actual number of blocks and
most efficient block size for your installation's use.

The DD statement for CHEKPTFL must be contained in the Intercomm
region JCL. Omission of this DD statement will effectively cause
checkpoint processing to be bypassed. The computer operator will be
notified of this no-checkpointing condition but unless he takes action
the system will continue processing. The user can ensure that a
no-checkpoint situation never occurs by adding code in USRSTRTI which
selects CHEKPTFL and abends on a nonzero return code.

4.7 EXECUTION PROCEDURES--COLD STARTUP

The typical sequence of events for system startup with Intercomm
I am a DBMS executing in separate regions is as follows:

Initiate
.. .. ~

1. the DBMS regioa.

2. Initiate the Interco1ll! ~gion in startup. mode.
- ='Eii.,~. ~ • ~...;~.

-~ i4

3. Initiate any required batch programs.

Should Intercomn be initiated prior to the DBMS region, the
console operator will typically receive a wrOR indicating the DBMS
regi on is not ac ti ve. Three responses are possible:

• Cancel DBMS subsystems (those marked by DBASE in their SCT)
and allow other subsystems to continue operation.

• Abend Intercomm region.

• Retry DBMS startup functions (presumably the operator will
start the DBMS bef ore he responds).

Should a batch program be initiated prior to the DBMS region, a
similar wral may be iss ued with possible replies of ABEND or RETRY.
See Messages and Codes for specific WTORs for each DBMS.

Of course, when the DBMS is attached, initialization of both
Intercomm and the DBMS proceeds concurrently.

4-8

J

J

L
4.S EXECUTIO~ PROCEDURES--WARM STARTUP

An alternative to the foregoing involves a warm startup in
which no file or DB reversal is performed, nor are any mes­
sages reprocessed. However, INTERCOMM will analyze the
previous run's log to recover input and output queued mes­
sages existing at last closedown. The procedures for this
warm start mode are identical to the above excepting that
INTERCO~~ is initiated in restart mode.

4.9 FXPcuTlnN PRnCFnU~ES--RESTART/~ECO'~RY

In the event of an abend condition in either the DBMS,
INTERCOMM or batch region(s) performing DBMS updates, an
INTERCOMM restart must be performed. Restart of the INTERCmll-I
system generally necessitates backing out all data base up­
dates to the time of the last coordinated INTERCO~n~/DBMS
checkpo in t.

The following steps lead to system restart in the event of
INTERCOMM abnormal termination:

A. Terminate batch jobs using the DBMS.

B. Execute the DBMS Backout Utility.

C. Execute INTERCOMM in restart mode.

D. Reinitiate batch processing.

Similarly, if the DBMS terminates abnormally, the following
steps lead to system restart:

A. Close down INTERCOMM (NRCD or IMCD).

B. Terminate batch jobs using the DBMS.

C. Execute the DBMS Backout Utility.

D. Initiate the DBMS region (in some cases, may be done
before C).

E. Execute I~TERCOMM in restart mode.

F. Initiate any further batch processing.

If a batch region performing updates to on-line files ter­
minates abnormally, these same procedures must be followed.
Both the INTERCOMM and DBMS regions must be restarted, fol­
lowing execution of the Data Base Backout Utility.

4-9

4.10 SUBSYSTHI DESIC; CO:JSIDERATIONS

Application subsystems executing under INTERCO~~1 and using a
DB01S must consider the amount of time required for file I/O.
That this is often longer than for standard access methods
should be accounted for when designing the number of I/O
activities required.

Because of the requirements to quiesce all database activity
for checkpoint purposes, care should be exercised in planning
the amount of I/O in anyone program. If I/O in one program
is excessive then, in checkpointing, all other programs re­
main quiesced waiting for this long running update program
to complete. This may cause periodic serious degradations in
response time. Also, pay particular attention to mixing
large inquiry actions in the same program which does updates.
If the SYCTTBL entry indicates update potential then the
checkpoint subsystem will wait out this program regardless
of whether or not it is actually doing updates. Long, sequen­
tial searches through various segments of the data base may
slow down the entire system. Where possible, data base pro­
grams should be designed to be of short duration relative to
other processing in the environment. .

J

If different subsystems use the same data base, they nay be
accessing the same record. Thus, contention will be minimized \
if these subsystems are assigned to different overlay groups. ~
Use of the RESOURCE macro with SYCTTBL macros is another con­
sideration when planning active subsystem concurrency. Although
desirable, this is not required, however, as the system will
protect against concurrent use of the same data base by two or
more subsystems. Subsystems using different data bases may
perform more efficiently when assigned to the same overlay
group. Subs stems that use the CONVERSE feature may only u -
date a data urIng rocesslng 0 t e last message 0 a
conversatIon. e S CT entry or suc a program must specify
DBASE=UDB and CNVREST=YES. This insures that a checkpoint is
not taken during its processing and that the conversation is
restarted from the beginning. If CNVREST=NO is specified, the
conversational program may not do data base updates directly.
It may, however, send a message to another subsystem while
processing the last message of a conversation.

A suggested good programming technique is as follows. The
processing of any input transaction that will be processed
by a number of different subsystems should be designed with
all its update operations centralized in one subsystem. This
will keep application restart logic to a minimum. It will
also not slow cbeckpoint if some programs in this processing
chain do inquiries, even lengthy ones.

4-10

A subsystem can identify messages that are being sent to it
during recovery for INTERCOMM restart via the log code field
(~!SGHLOG) of the incoT'ling message header as follows:

C' 2'

Normal message; not previously processed.

C'P'

Restarted message; being reprocessed for data base
recovery even though message processing had completed
in previous run. Subsystem logic may bypass gener­
ation of response message{s) to termina1s(s).

C'R'

Restarted message; had not completed its processing
in the previous execution. Subsystem logic typically
can not determine the extent of processing completed
in the last run; thus, it is best to generate re­
sponse message(s) to terminal(s) even though they may
be duplicates.

Generally, the subsystems need not be concerned with any
aspect of recovery. They can ignore these log codes and pro­
cess the message as any other. Other subsystem design con­
siderations concerned with message restart/data base recovery
are:

By using a Subsystem Controller return code of 64
(X'40'), the application subsystem specifies to
INTERCOMM that a message processed by a DBMS update
subsystem is never to be restarted. This could be
used when subsystem logic performs only inquiries
even though the SYCTTBL specifies an update subsystem;
some messages processed may not update the data base.
Inadvertent use of this return code can impair data
integrity.

By using a Subsystem Controller return code of 68
(X'44'), an application subsystem specifies to
INTERCOMM that a message processed by a DBMS inquiry­
only subsystem is to be restarted if processed since
the last checkpoint.

4-11/4-12

5. INSTALLING GDB SUPPORT

5.1 INTRODUCTION

The INTERCOMM Generalized Data Base Management System Inter­
face (GDB) consists of a series of programs which supply all
but the specific data base logic necessary to provide an in­
tegrated DB/DC environment. GDB support logic is used to
supply data base access from multiple regions (partitions)
while providing data integrity across program and system -
failure. GDB support is not available for ~WS.

Although most application programs will be run under control
of the INTERCOMM monitor, programs not under INTERCOMM's con­
trol (i.e., batch programs) may require concurrent and/or
overlapping use of the DBMS. Thus, INTERCOMM's interfaces
have been generalized to provide for utilization of the DBMS
by batch programs as well as on-line INTERCOMM programs.

The DBMS in use must meet the following requirements in order
to be supported by the INTERCOMM system:

Ability to operate as a separate task from those
application programs utilizing it. This may be
either as a subtask of INTERCOMM or as a main task
in its own partition or region.

Ability to force out buffers and store all
position-relevant data in control blocks for
possible future use during a restart.

A logging technique must be provided to record
each time an update, insert or delete to the
data base is performed. Before- and after-images
of data base records should be logged when the
data base is altered in any way.

To avoid loss of INTERCOMM updates, as well as
those of batch programs operating concurrently
in separate regions, an exclusive control facility
must be present in the Data Base Management System.

The level of exclusive control at the data base
file or record level is dependent on the design
of the Data Base Management System. Any restric­
tions on the abili ty to exe-cute mul tiple update
programs concurrently will be dependent on the
level~of the lockout which is possible.

5-1

With the above requirements met, the implementation of a num- ~
ber of interface routines to coordinate data base requests
across regions is all that is required of the GDB user.

5.2 SUPPORT MODULES

The INTERCOMM GDB facility consists of the following require­
ments (as summarized in Figures 5-1 and 5-2):

An INTERCOMM-supplied Type II SVC routine (IGC250)
which provides for interregion communication.

User-provided routines called by INTERCOMM to provide
for the following:

Initialization processing (DBSTART)

Closedown processing (DBCLOSE)

Data base request handling (DBINT, DBRELEX,
DBPURGE)

Data base checkpoint processing (DBCKPREP and
DBCHKCOM)

INTERCOMM-supplied routines which provide the fol­
lowing functions:

Initialization and continuation of interregion
checkpoint (GDBSTUP, DBCHKDSP)

Quiescing of data base activity within INTERCOMM
(CHCKPTSS)

Multitasking capability within the DBMS region
(IJKDSP02)

Message restart processing (DBRSTRT, LOGPROC)

Other suggested user-supplied routines:

Abend processing (DBMABEND, DBSTAE, DBMSTAE)

DBMS region checkpoint processing (DBMCHECK)

Batch region checkpoint requests

The previous discussion of conceptual system logic in Sections
2 and 3 relates directly to GDB support. In this section, a

J

brief summary of implementation requirements where apPlicable. ~.
follows recommendations for user routine logic. ~

5-2

The user has the option of providing all interface modules
as CSECTs or entry points in one load module for the INTERCOMM
region and one load module for the DBMS region, or separate
load modules for each of the required functions. The de­
cision is based upon ease of implementation considering the
program structure of the DBMS to be supported.

CSECT or

Function Member
Entry

Residency J>oint

Interregion Type IGC2S0 IGCnnn Nucleus: nnn is the
II SVC Routine user-assigned SVC

number

Startup username DBSTART Startup Overlay
Processing

Data Base Request username DBINT Resident
Handling username DBRELEX Resident

username DBPURGE Resident

Closedown username DBCLOSE Closedown Overlay
Processing

Abend username DBMABEND Resident
Processing username DBSTAE Resident

Checkpoint username* DBCKPREP- Transient Overlay
Processing* CHCKPTSS* CHCKPTSS User-Assigned

username* DBCHKCOM Resident
GDBSTUP* GDBSTUP Resident
DBCHKDSP* DBCHKDSP Resident

Restart DBRSTRT* DBRSTRT Startup Overlay
Processing* LOGPROC* LOGPl\OC Startup Overlay

READBACK1l READ BACK Startup Overlay
IINTPBLO~I INTDBLOK Startup Overlay

* Required only
performed.

for restart when on-line updates

Figure 5-1. Interface Modules INTERCOMM Region

5-3

Function Member CSECT

Startup Processing username username

Data Base Request Handling IJKDSP02 IJKDSP02

Closedown Processing username username

Checkpoint Processin~ username DBMCHECK

Abend Processing (STAE routine' username DBMSTAE

Restart Processing username username

Figure 5-2. Interface Modules---DBMS Region

5.3 DESIGN OF GDB SUPPORT MODULES

The INTERCOMM GDB support provides for user exits at key
points in control of DBMS access from application programs.
The conceptual logic and functional relationship of all pro­
grams involved in DBMS support is presented in Sections 2
and 3.

User-provided interface programs for a-user DBMS should be
designed to include facilities for:

Interregion or intertask communication between the
DBMS and INTERCOMM. The objective of such communi­
cation is a synchronized path between two asynchron­
ously executing programs. This path is normally
called a software channel. One program notifies the
other when it requires attention and then waits to
be recognized. After a request ha~ been passed, the
two activities continue asynchronously processing.
Thus, the software channel usually "waits" until
notification of a completion of one request.

Transfer of data from the DBMS region to the INTERCOMM
(or batch) region.

Multithreaded operation of the DBMS region or at
least a multithreaded interface that can stack re­
quests for serial processing.

Two INTERCOMM-supplied routines may be utilized as service
routines to assist in providing the above facilities: IGC250,

J

J

a Type II SVC routine; and IJKDSP02, a program used in con-\
junction with the standard INTERCOMM Dispatcher (IJKDSPOI) ~
to effect multithreaded operation of the DBMS region.

5-4

Extensive use of the INTERCOMM DISPATCH macro is a require­
ment of the GDB Interface routine programmer. The macro
format is illustrated in Figure 5-3. Please refer to the
INTERCOMM Basic System Macros for further detail on this
and other macros available to the INTERCOMM user. The re­
maining discussions in this section assume understanding
of the DISPATCH macro for task scheduling, waiting for
event completion or performing a tiMe delay.

[symbol] DISPATCH for an execution, event, or timer queue
request:

eriority/over1ay} ,[address1 '
IS' (r)
(r) (0) _

rarameter,
[,EXIT] (r)

(1)
(13) }

[{ ,INTVL= interval }l
,ECB= {(;~~~-:.control-bloCk}

[.LINK= (14)] l' SYS= {~~S}]

['INTRNL={~~S}J

for a cancellation request:

LEXIT ,J CANCEL={wqe-address}
(r)

[, L INK= (14)]

for a termination request:

EXIT r.LINK=(14) 1 .

Figure 5-3. The DISPAT,CH Macro-
(See Basic System Macros)

5-5

--- - ---------------

A typical method of accomplishing interregion communication J.
is to define a pair of ECBs used as a communication channel
between the two regions. Posting of one of the ECBs by the
DBMS region serves to notify INTERCOMM that a DBMS activity
is complete; posting of the second ECB by the INTERCOMM region
indicates to the DBMS region that an INTERCOMM activity is
complete. In this way, synchronization of the two regions can
be accomplished. The ECB channel must be resident in the
INTERCOMM region because the DISPATCH macro will be used to
wait on the ECBs and the Dispatcher (resident in the INTERCOMM
region) allows ECBs only in its own region. The DBMS region
may accomplish wait and post functions for ECBs not in its
region via the interregion SVC routine IGC2S0 or via special
use of IJKDSP02 described below.

Required ECB channels ~or INTERCOMM programs are contained
in the INTERCOMM SPA E;ctension (SEXTOECB, SEXT2ECB) • Any ECB
channels required by user GDB Interface routines might be
defined in the User Extension to the System Parameter List
(USERSPA) or self-contained in interface programs. A user­
defined table might be used for subsystem or thread-related
ECBs when a variable number of channels is required.

Transfer of data from the DBMS region to the INTERCOMM region
(i.e., the results of data base access being moved to an
application program work area) may also be accomplished via J
the program IGC2S0. In this instance, its function is to
allow operation in protect key zero.

Multithreading in the DBMS region may be accomplished by the
use of the DISPATCH macro to perform task scheduling and
control. All DBMS programs must of course be reentrant if
DISPATCH is used to achieve multithreading. All operating
system WAIT operations will be replaced by DISPATCH macros.

To make use of the Dispatcher in a multiregion mode, there
is a special macro which may be issued when the Data Base
Management S?stem region comes up to signal the Dispatcher
that interregion ECB ~aits will be executed.

This special macro is coded as:

I DISPSET OPTION=CROSSREG I
The module IJKDSP02 contains a CSECT' 'EXECWAIT' which is a
replacement for the CSECT of the same name in IJKDSPOI. The
function of IJKDSP02 is to issue an interregion wait via the
interregion Type-II SVC rather than standard OS/VS WAIT.

5-6

L

L

5.4 INTERCOMM SVC ROUTINE (IGC250)

The member IGC250 on PMI.SYMREL is a Type II SVC routine which
provides for interregion communications or general use in
protect key zero. Before it may be used, the following steps
must be taken.

A. The OS SYSGEN must have an available SVC number (Type II).

B. The Global &INTSVC must be set in the member SETGLOBE to
SVC number which is to be assigned to IGC250. For example,
SVC number 247 is available. The following code should
be added to SETGLOBE:

&INTSVC SETC '247'

If operating with VS2, the &VS2 global should be SETB'd
to 1 in SETGLOBE:

&VS2 SETB 1

C. IGC250 should then be assembled. Its CSECT name will be
IGC247 after following the above example. (The released
CSECT name is IGC&INTSVC).

NOTE: (Member SPAEXT must be re-assembled to incorporate
&INTSVC.)

D. A re-linkedit of the OS nucleus must then be done including
this new SVC routine.

This user SVC does the following:

Posts an ECB in another region.

Waits on an ECB in another region.

Gives control to a user-supplied routine which must
execute in protect key O.

The input parameters are described in Figure 5-4.

A parameter list for the user routine may be passed to IGC250
by coding it immediately after the 'INTR' password DC state­
ment. On entry to the user routine Register 0 still points
to'INTR'. The routine which executes must return to the
address in Register 14. Its base is Register 15.

5-7

Register 0: always contains the address of a 4-character password
J

'INTR'

Register 1: must contain one of the following:

BITS 0-7 BITS 8-31

WAIT X' 80' EeB address
routine

X'e!)' EeB list address

POST X'41' indicates a post code is supplied EeB address
routine in the fullword following 'INTR' password.

X'40' indicates no post code is supplied.

user X'QO' routine address
routine

Figure 5-4. IGC250 Parameters

5.5 STARTUP PROCESSING (DBSTART)

The user must supply a module with CSECT name DBSTART to per-
form any initialization processing necessary in the Data Base ~
Management System. This module will be executed when INTERCOMM
is started. This CSECT may reside in the INTERCO~~ startup
overlay region. The functions that typically should be in-
cluded in this program are illustrated in Figure 5-5 and are:

CD

If the Data Base Management System is to operate as
a subtask of INTERCOMM, an attach of the DBMS should
be done.

The existence of the Data Base Management System, if
it resides in another region, should be determined.

A communication path between INTERCOMM and the Data
Base Management System should be established. The
DBMS, upon receiving notice that INTERCO~~ is oper­
ational, should perform any initialization that may
be necessary in its region (i.e., loading control
blocks, logging a startup record on, etc.).

Notification by the Data Base Management System to
INTERCOMM of an abend of the DBMS region should be
provided for at this time.

If interregion checkpoint synchronization is neces:
(data base in~egrity) the routine GDBSTUP must be

5-8

ENTRY

INITIALIZE
COMMUNICATIO~
WITH DBMS REGION.
(DBMS REGION
PERFORMS INITIAL­
IZATION FOR A NEW
USIlR REGION.)

DISPATCH
DBtoIABEND
TO WAIT ON
ECB TO BE
POSTED BY
DBMSTAE

RETURN

ATTACH
DATA

BASE
MANAGER

DISPATCH
GDBSTUP
TO ESTABLISH
CHECKPOINT
COMMUNICATION

MARK
DATA BASE
SUBSYSTEHS
NON-SCHEDULEABLE
(SCTSCHED-O)

(RETURN)

Figure 5-5. Suggested DBSTART Logic. (Encircled numbers
correspond to list on previous page).

5-9

dispatched to initialize interregion checkpoint
control. To accomplish this dispatch, DBSTART
should include code as follows:

NODISP

L
LTR
BZ
DISPATCH
DS

RO,=V(GDBSTUP)
RO,RO
NODISP
IS' t (0), CL) ,SYS=YES
OH

(Register 1 must be specified in the
macro but is not relevant in this
example.)

The Data Base Management System, upon receIvIng a sign-on
of INTERCOMM through DBSTART logic, should make appropriate
notation of INTERCOMM startup on its log. This will provide
the data base backout program with information necessary for
processing.

5.6 CHECKPOINT INITIALIZATION (GDBSTUP)

J

The INTERCOMM-supp1ied resident program GDBSTUP, if included J
in the 1inkedit of INTERCOMM, should be dispatched by the
DBSTART program if restart/recovery procedures are to be
used. This program establishes a path of communication be-
tween itself and the DBMS through the use of a pair of ECBs
in the SPA Extension (SEXT2ECB and SECTOECB). As illustrated
by Figure 5-6, GDBSTUP performs the following functions:

CD

At initialization time GDBSTUP posts SEXT2ECB
signifying it is ready to accept requests and dis­
patches itself waiting on SEXTOECB waiting for a
checkpoint request from the DBMS (the module
DBMCHECK or a similar module).

When a checkpoint request is received, it then
formats a message for the checkpoint subsystem
and queues it via Message Collection.

GDBSTUP waits for an "end checkpoint command" from
the DBMS. When it receives this command (code of
12 posted in SEXTOECB), it sets schedu1ab1e those
subsystem~ previously marked nonschedu1ab1e by the
checkpoin~ subsystem.

5-10

~;;
r-----~

WTO

INCORRECT
POST CODE

WTO
INCORRECT
rOST CODE

NO

POST
SEXT21!CB
TO INDICATE
lCO~1 READY

CLEAR & WAIT
ON SEXTOECB
(DISPATCII)

GET STORAGE
~ FORMAT MSG
FOR (CHCKPTSS)

BALR TO
MSG
COLLECTION

POST
SEXT2ECB
TO
INDICATE
ICO~I READY

CLEAR & WAIT ~3
ON SEXTOECB \V
(DISPATCH)

ACCr:SS ALL SCT
ENTRIES USINC •
UPDATING DR AND
~IAKI; TlII;~1 ALL
SCIlIiDUI.IiAaLIl

~,

DISPATCfI
CflECKI'T3 ON
SPATCIIP TIME
INTERVAL.

~,

Figure 5-6. GDBSTUP Logic. (Encircled numbers corresp~nd
to list on previous page).

5-11

It then resets the timer for the next checkpoint based
on SPALIST parameter TCHP and waits for a checkpoint
request from the DBMS. Note that the first word of
the first save area (accessed via TCBFSA) is used to
locate the SPA. At INTERCOMM startup time, the
V-CON of the SPA is placed in this field. If the
user intended to use that same location, the field
SEXUSER in CSECT SPAEXT has been reserved for use
instead. Label SPAEXTAD (SPA extension address) in
CSECT SPA provides a V-CON for SPAEXT.

5.7 ON-LINE DATA BASE REQUEST HANDLING (DBINT)

The user must provide a reentrant program (with at least one
entry point named DBINT) which will transfer application data
base requests from the on-line region to the data base region.
Depending on the conventions of the DBMS being supported,
this may be the only entry point necessary.

If the normal data base calls are in the form:

CALL DBRQ, (FUNC1, FUNC2, •••• FUNCN)

where:

DBREQ = the single entry'point which is used
for all requests GET, PUT, etc.

FUNCI-FUNCN = the parameters which this entry point
analyzes to determine the action it
is to take.

the entry point DBINT may coincide with the normal entry
point DBREQ. This entry is currently defined in REENTSBS
(see COBOL and PL/I programmers manuals for details) with a
code of 84. Therefore both reentrant COBOL and PL/I programs
may call this program using this code.

The DBMS to be supported may require different entry points
to be called for each function requested of it. In this
case, the entry point DBINT must still be present although
it mayor may not be used by any application request.

The following techniques should be utiliz,ed by the on-line
data base interface:

No WAIT macros should be issued by this program since
this wilT cause all other on-line functions to halt
(i.e., polling of lines, processing of other appli­
cation programs). Instead of WAIT the INTERCOMM
DISPATCH macro must be used. Figure 5-3 describes
the various parameters of this macro.

5-12

J

The DBMS may need to have a unique identifier to dis­
tinguish concurrently processing threads. INTERCOMM
maintains such an identifier, the thread identifi­
cation or thread number.

NOTE: Thread number = 1 to 255
When DB PURGE (optional user exit) is called
a thread is about to end.

It is a one-byte field and may be accessed in the
following manner:~ __________________ ,

L Rx,=V(IJKTHRED)
MVC ID,3(Rx)

where Rx is any general purpose register other than
zero and ID is a one-byte area to receive the thread
identifier.

The subsystem's timeout limit value is specified by
the SYCTTBL macro TCTV parameter. There are two
INTERCOMM macros, DISABLE and ENABLE, which tempo­
rarily deactivate time-out purge processing for a
subsystem. These should be used by the interface to
prevent a subsystem which times out from having its
resources purged (i.e., core) while an I/O is being
performed within the DBMS. The DISABLE should be
issued before the I/O request is made to the Data
Base Management System task to deactivate time-out/
purge processing. The ENABLE should be issued by the
interface after the I/O is posted complete and all
data has been transferred into the INTERCOMM region.
Only after the ENABLE is issued will the thread be
allowed to be purged. This coding technique should
be utilized in conjunction with the DBPURGE exit
routine (see below). These macros are normally for
INTERCOMM use only; contact the SE-on-duty for
assistance in their use.

Since Data Base Management Systems vary greatly in their in­
terface with application programs, no further description of
this interface will be attempted here. Each individual DBMS
must be treated individuall~ based on user requirements.

DBRELEX is conditionally called when a subsystem ends normally
or abnormally. This entry point should be supplied for
purging threads (exclusive control, etc.).

5-13

Alternately, DBPURGE is another entry point available for use. ~
It may be used for releasing exclusive control or purging
threads which may still be marked as active to the Data Base
Management System. The advantage of using this entry point
rather than DBRELEX lies in the ability to utilize the Re-
source Management facility for delaying the purging of a
thread until all outstanding I/O is complete. This entry
point will only be called after any outstanding I/O has com-
pleted or after the ENABLE for the thread has been issued.

DBPURGE receives a two-word parameter list as follows:

DC A(SCT)
DC A(RETCODE)

The first word contains the address of the SCT entry for the
terminating subsystem and the second word contains the full­
word return code which was passed to the Subsystem Controller
by the application subsystem on completion.

Abnormal termination by a subsystem is indicated by one of
the following codes:

X'OOFFFFFF' indicates the appZication program timed-out
F'904' indicates the appZication program program

checked
F'908' indicates the appZication program program

checked

Any other code indicates normal completion of the subsystem.

5.8 CLOSEDOWN OF ON-LINE REGION (DBCLOSE)

A user-supplied program with the entry point DBCLOSE is called
during INTERCOMM closedown processing. This program functions
to notify the DBMS that INTERCOMM is no longer processing.
The functions that should be included are:

The freeing of any control blocks which may be
used for interfacing with the DBMS.

A detach of the DBMS if it is executing in the
same region.

The DBMS, upon receiving notice of INTERCOMM closedown, might
force out all buffers and write a checkpoint (or set an in­
dicator to take a checkpoint as soon as possible) to note the

5-14

J

L fact that INTERCOMM's closedown is complete. Again, most of
the processing which must be performed is greatly dependent
on the design of the DBMS and therefore must be determined
by each individual user.

5.9 ABNORMAL TERMINATION PROCESSING (DBSTAE, DBMABEND)

There is a need for special STAE routine processing since the
multiple regions communicating with each other must be in­
formed of the abnormal termination of any of the regions with
which they are processing. There are three abend conditions
which must be provided for: the DBMS region, an INTERCOMM
region and a batch region abend.

The following procedures are suggested. Each time a new
region which is to access the data base is initiated it must
locate the Data Base Management region to, iri,fDrm it of its
presence. At this time a channel_of two ECBs should be de­
fined by that region. One of the ECBs should be waited upon
by the application region for notification by the DBMS of an
abend condition, the other should be waited upon by the DBMS
for notification of the application program's abend. (Waits
are performed ~y the DISPATCH macro.) The user may supply
an interface routine within the INTERCOMM region with entry
point DBSTAE. If it is supplied, INTERCOMM STAEEXIT will
CALL DBSTAE after it has been determined that the INTERCOMM
task cannot be reinstated. This supplies the user with the
ability to notify the DBMS region that the INTERCOMM task
has abended. The DBMS should, upon receiving notification
of abnormal termination, purge all DBMS services and re­
sources in process for the INTERCOMM region.

The DBMABEND routine in the INTERCOMM region should be dis­
patched at startup time by the DBSTART routine to wait on an
ECB. The ECB will be posted by the DBMSTAE routine in the
DBM region if that region abends. Since it may be posted
at any time, DBMABEND must be resident.

Upon receiving control, DBMABEND should take the following
recommended steps:

Set an indicator to inform DBINT not to try to pro­
cess further data base requests.

Do a WTOR,requesting the operator to reply ABEND,
CONTINUE or WAIT.

5-15

If ABEND is indicated, the program should abend
the INTERCOMM region and restart procedures may then J"
be initiated.

If CONTINUE is indicated all data base subsystems
should be marked nonschedulable and an exit should
be done. INTERCOMM will continue processing non-data
base programs.

If WAIT is indicated, all data base subsystems should
be marked nonschedulable then another WTOR done to
which the operator will reply only after the DBMS
region has been brought up again. As described pre­
viously, this technique should only be used in
inquiry-only systems.

When a reply is received, initialization processing
should be repeated and DB subsystems marked schedul­
able.

5.10 DATA BASE MANAGEMENT SYSTEM CHECKPOINT REQUIREMENTS

The Data Base Management System may initiate checkpoints
. (based on time interval or number of updates) when INTERCOMM
is not running. However, when INTERCOMM is operational it
initiates checkpoints. The DBMS is first notified that a
checkpoint time has been reached when it receives the check­
point prepare command from the INTERCOMM region. Upon
receiving this command the DBMS must determine if a check­
point is now possible. One of the following criteria must be
met:

No batch programs which update on-line data base
files may be running, or

Any batch program which updates on-line data base
files has either not performed any updates as yet or
the batch program has a checkpoint facility which may
be invoked by the DBMS when necessary.

If either of these two conditions are met, the DBMS must do
the following:

Quiesce batch update activity for the duration of
the checkpointing procedures. A suggested action
is to stop accepting any requests from batch programs
except those which will complete an update operation
in process.

5-16

J

SPR 188 12/80

• Respond to the checkpoint prepare command to indicate that a
checkpoi nt coumand would now be accepted. If a checkpoint is
not currently possible (that is, neither of the above two
conditions can be satisfied), the DBMS must set a switch
which will indicate to it that as soon as one of these
conditions can be satisfied (probably when a batch region
closes down), the checkpoint steps previously noted should
then be in i ti ated.

Thus, although Intercoum is initiating the checkpoint (through
the PREPARE), the DBMS controls the checkpoint.

5.10.1 Checkpoint Processing (DBCKPREP, CHCKPTSS)

Intercoum, when operating, will initiate all checkpoints within
its region. Checkpoints are initiated at regular intervals based on a
given time field in the System Parameter List.

The program DBCKPREP is called by DBCHKDSP each time the
checkpoint time interval specified in SPATCHP expires. Its only
function is to send a checkpoint prepare command to the DBMS. (See
Section 5.10, ''Data Base Management System Checkpoint Requirements,"
for the actions which must be taken in the DBMS region.) This program
is only needed periodically; therefore, it may be placed in the
transient overlay region of Intercoum.

The Intercoum-s upplied CHCKPTSS program operates as an Intercomm
subsystem. It ensures that all data base updating programs are
quiesced by marking them as nonschedulable before allowing the
Intercomm checkpoint to take place. After the checkpoint has been
taken, a checkpoint coumand is sent to the residing DBMS. When the
DBMS indicates the checkpoint is complete, SEXTOECB is posted and
GDBSTUP receives control to mark the data base update functions as
schedul abl e.

5.11 CONDITIONAL ASSEMBLIES

As discussed in Section 4, the members INTGLOBE and SETGLOBE
control conditional assembly of the System Parameter Area and SPA
Extension. Globals specified in these members control conditional
assembly for GDB support as follows:

=========-============================- =======~================

Global Module Condition Defined
============================= ========================

&INTSVC IGC250 username for SPA and Interregion SVC Number
SPAEXT CSECTs

&VS2 IGC250 Indicate a VS/2
envi ronmen t

5-17

I

SPR 173 6/80

A change to any global above necessitates reassembly and linkedit
of the associated member.

5.12 INTERCOMM REGION TABLES

In addition to the System Parameter Area, SPA Extension and SCTs
described in Section 4, the only additional table(s) required in the
Interconm region to implement GDB support are user-defined based upon
user DBMS requirements. Typically, such tables would contain subsystem
or thread-dependent control information relating to data base access.

If the DBMS support is to include the ability to initiate a
checkpoint request from a terminal, an entry is required in the Verb
Table to relate the user-defined verb to the checkpoint subsystem
(SSC=Q).

[symbol] BTVERB VERB=CKPT,SSC=Q,EDIT=YES[,SECURE=YES]

EDIT=YES is coded to force the message header VMI to X'OO' for
internal processing. An Edit Control Table entry is not required.
This conmand may only be used for TOTAL Data Base.

5.13 INTERCOMM REGION LINKEDIT

In addition to linkedit requirements for the non-DBMS functions
of the Intercomm regions (Intercomm programs, tables, service routines,
Interconm and user subsystems, etc.), the linkage editior control cards
listed in Figure 5-7 are required in the Intercomm region. ICOMLINK
Data Base parameters are DBASE and DBLIBR.

5-18

J

INCLUDE SYSLIB (dbstart)
INCLUDE SYSLIB (GDBSTUP)
INCLUDE SYSLIB (dbmabend)
INCLUDE SYSLIB (CHCKPTSS) do not INCLUDE if dynamiaally
INCLUDE SYSLIB (dbin t) loaded
INCLUDE SYSLIB (dbclose)
INCLUDE SYSLIB (dbstate)
INCLUDE SYSLIB (DBCHKDSP) aontains CSECT CHECKPT, must
INCLUDE SYSLIB (dbckprep) preaede INCLUDE for CHECKPTJ
INCLUDE SYSLIB (dbchkcom)
INCLUDE SYSLIB (RESTORE3)
INCLUDE SYSLIB (DBRSTRT)
INCLUDE SYSLIB (LOGPROC)
INCLUDE SYSLIB (READBACK,INTDBLOK)

•
•
•

OVERLAY A
INSERT DBSTART
INSERT DBRSTRT
INSERT RESTORE
INSERT LOGPROC
INSERT READBACK
INSERT INTDBLOK

OVERLAY A
INSERT DBCLOSE

Startup Overlay

Closedown Overlay

Figure 5-7. INTERCOMM Linkedit (lowercase letters indicate
user-supplied modules)

5.14 INTERCOMM REGION DD CARDS

If the DBMS is operating in a region separate from INTERCOMM,
all DD cards for GDB data bases are supplied as part of the
JCL for the GDB region. If the DBMS is attached in the
INTERCOMM region, the DD cards required by the DBMS must be
included in the INTERCOMM execute deck. In the single region
environmen~-if both the DBMS and INTERCOMM require _the same
ddnames then the Alias opti"on of the File Handler (see OS and
VS File Recovery Users Guide or Operating Reference Manual)
can be used to alter INTERCOMM's required ddname(s).

Both the INTERCOMM startup and restart decks for the
INTERCOMM/GDB support must include all the usual and neces­
sary JCL to operate, irrespective of GDB as delineated in
the Operating Reference Manual (see Sections 10 and 12 for
complete detail) •. Additionally, the INTERCOMM restart deck
with GDB must contain a DD card defining GDBWKFL. This file
is used for coordinating INTERCOMM synchronized recovery
compatible with the actions taken by the DBMS recovery. The
DD card for GDBWKFL is pictured below.

5-19

IIGDBWKFL DD DSN=GDBWKFL,VOL=SER=XXXXXX,UNIT=SYSDA,
DISP=SHR,DCB=(DSORG=DA,OPTCD=RF)

The data set must be preformatted by the off-line utility
CREATEGF with a blocksize of 300 and a minimum of 2 blocks.
GDBWKFL is also used by the backout utility (see recommended
specifications for writing the Data Base Backout Utility).

5.15 RESTART PROCESSING AND DATA BASE BACKOUT UTILITY

There are three aspects of DB/DC recovery, namely: message
recovery, file recovery and data base recovery. Informatics
Inc. supplies code within INTERCOMM to recover OS/VS files
(the File Recovery Special Feature), to recover messages and
queues and to coordinate DB recovery. The user must supply
the actual DB recovery programs. - Further DB recovery pro­
grams must function compatibly with INTERCOMM's recovery.

The user-supplied DB recovery programs include: a dump/restore
utility, a data base recovery utility and a backout utility.
Only the backout utility need have special coding for
INTERCOMM. The specifications for the backout utility are de­
scribed below.

The Data Base Backout Utility must be able to back out all
updates performed on selected data bases up to a specified
checkpoint. It is suggested that at least some of the fol­
lowing options are available:

A time may be specified by the operator which will
cause this program to back out all updates to the
checkpoint taken at the indicated time.

The backout program may automatically pick the last
checkpoint by reading the data base log backward.

The program should be able to back out to the last
coordinated INTERCOMM/DB checkpoint taken.

If an INTERCOMM startup record is placed on the log
(this might be done when INTERCOMM performs the
sign-on function to the DBMS), it should be recogn­
ized as the first valid on-line checkpoint. If the
operator ~as selected a time previous to the INTERCOMM
startup, the prograT. should inform the operator
INTERCOMM'backup is ,:omplete and continue to the
checkpoint taken at the indicated time.

5-20

J

J

It may have the ability of not backing up any updates
by a specific job step if this information is available
in the data base records. This facility may be use­
ful to installations that are using the DBMS with
batch programs which update data bases that are not
being updated either by the on-line system or by other
batch programs. In this way, if a restart must be
done after a data base update job has completed, it
need not be rerun.

Whichever of the above options is utilized, it is necessary
for the backout utility to identify to INTERCOMM the specific
checkpoint selected. This is accomplished by the backout
utility setting information in the GDBWKFL file which will be
processed in INTERCOMM recovery.

The file GDBWKFL is a BDAM data set consisting of 2 records
(this data set is formatted by CREATEGF) and RBNO will always
be one of the following:

BYTE 0 - X'OO' This is an empty file, or a record in-
dicating the restore finished successfully

X'FF' This record contains the first 250 bytes
of the last record backed out in this run
(or in t he previous run if we are in the
initialization phase of this run) .

BYTES 1 - 3 Unused

BYTES 4 - 7 The time of the checkpoint backed up to in
the last restore run if X'OO' in Byte O.
(If this field is zeroed, a startup record
was reached in the last restore run if
X'OO' in Byte O.

BYTES 8 - 299 The image of the last data base log record
processed if X'FF' in Byte O.

RBNI contains the name(s) of all the step names that have
been reversed in this run. The record has the following
format:

5-21

BYTE 0 The number of step names that are recorded
in this record

1 - 15 First step name to be rerun

32 - etc.

Figures 5-8, 5-9 and 5-10 illustrate suggested program
logic. There is a one-time switch to perform the iniatiali­
zation code. Initialization processing consists of:

Writing a WTOR (~in Figure 5-8) to determine check­
point time to be used.

Writing WTORs (~and (§))to determine step names to
be ignored.

Opening and reading RBNO pf GDBWKFL to determine if
this is the second time this job has been run (system
failure occured during original restore run) or initial
time.

If this is a rerun due to system failure, RBNl of
GDBWKFL will be read. This record will contain a list
of step names that must be rerun after the backout \
has completed. After initialization has been com- ~
pleted, each log record retrieved will be checked for
the following conditions before being reversed against
the data base.

Is the record an after-image or a before-image?

Is it for a job other than any of those desig­
nated as not backoutable?

If initialization processing indicates this is
a r~un of the backout, all log records read
will be ignored until the last record causing
an update is located. This should then cause a
switch to be set so that the backout processing
will result.

Each time a backout is successfully completed
RBNO of GDBWKFL will be rewritten to reflect
this record as the last record processed thus far.

5-22

L The job step name (if this option is required)
should always be compared against those listed
in RBNl of GDBWKFL. If it is a new one, its
name should be entered in the record and written
to the file.

If an actual time is specified by the operator,
each checkpoint record will be examined to check
the time against that input by the operator to
indicate processing has completed. If 'L' or
'L,ICOM' was input, the first appropriate check­
point record found will indicate that processing
has completed.

When data base processing has completed, a message
should be written to the operator specifying
which jobs are to be restarted.

5-23

C A.BEND

Figure 5-8.

STORE THIS
STEPNAME
INTO STEP
BLOCK

PA.CX ,
STORE TIME
REQUEST

r-------.~.-----'----. L ACCEPT
NEW
STIlPNAMTl

Data Base Backout First Time (Initialization)

5-24

~'----"

SAVE R.C.
FRON.
DFSRDBCO

NO

BAL TO
BACK OUT
LOG REC.

SET CHECK
Tum sw
ON

(RETURN)
RC-O

RETURN
RC-O

Figure 5-9. Data Base Backout Process

5-25

SET SW TO
INDICATE
STARTUP
RECORD READ

Figure 5-10.

NO

STORE 0
IN RBNO
TIME FIELD

NO

(RETURN
RC-O

>-"""""'-----\RETURN RC-O

STORE TIME
~---.. IN RBNO

TIME FIELD

Data Base Backout Checkpoint Analysis

5-26

J

IPN:127 6/77

Section 6

INSTALLING DL/I SUPPORT

6.1 INTRODUCTION

The Data Language/I component of the IBM program product
IMS/OB is referred to in this document as DL/I. The Data
Language/I (DL/I) Data Base Management System is supported
by Intercomm to allow application programs running on-line
to use all facilities of OL/l. Intercomm executes as an
IMS batch job.

From a user design point of view, the Intercomm support
of DL/I provides a flexibility which includes the following
capabilities:

• Inquiry requests to the DL/I data base executing
with other Intercomm processing

• Update requests by on-line programs to the DL/I
data base executing concurrently with other Intercomm
processing

• Ability of on-line inquiry or update programs to
execute concurrently with other IMS batch inquiry
update program(s), against the same or different
DL/I data base(s).

NOTE: Intercomm functions as a batch DL/I job.
As such, it may use either the batch DL/I
facility (IMS/DB) or the on-line DL/I facil­
ity (IMS/DC). In the latter case Intercomm
operates as an IMS Bat'ch Message Program.
Depending on the mode of DL/I operation,
concurrent access to the same data base
by Intercomm and other DL/I jobs might require
application logic to serialize access, in
accordance with batch DL/I restrictions.

While all of the above facilities are extended to the
system designer, the Intercomm implementation of DL/I support
requires no modifications to the standard OL/I calling sequence.
Standard DL/I CALL statements as specified in the IBM refer­
ence literature are used for all data base activity against
DL/I files. This compatibility holds for both batch as
well as on-line programs. Throughout anyon-line programs,
standard Intercomm interfaces must be followed. DL/I support
in no way changes the standard Intercomm environment or
interface requirements.

6-1

6.2 INTERFACE SUPPORT MODULES

Before describing installation procedures, this section pre­
sents a brief overview of support modules for the DL/I
Interface as summarized in Figures 6-1 and 6-2.

..

Function Member Csect Residency/Comments

INTERCOMM-DL/I
Interface Table username COBPCBTB Resident

Startup
Processing STARTDLI STARTIMS Startup Overlay

Data Base
Request Handling TICDLICM IDLISTRT Resident

Subtask DL/I
Processing SBTSKDLI SBTSK Resident

Figure 6-1. Interface Modu1es--INTERCOMM Load Module

6-2

J

J

EXEC
PARM
DATA

RUNMODE­
INTERCOMM rJ

EXEC OPTION

\

TRANSACTIOR~--~------------~
J

DFSRRCU
REGION

CONTROr.LER

DFSPCC3~

PROGRAM
CONTROLLER

-1-
STARTIMS

INTERCOMM
STARTUP
ROUTINES

MONITOR
LOGIC

DL/I
INITIALIZATION

Save A (PSB),
PCB Count

INTERCOMM
INTERFACE

ptandard Subsystem Parameters \.. l A(MSG)
• -- - A(SPA)

.-----------, . beSCT) rAIRC)« A(DWS) J

ICOMPCBTB r---------------~ IDLISTRT

r----
DL/I

APPLICATION
SUBSYSTEM

SBTSKDLI

DFSLIOOO

Standard Subsystem Parameters
and

PCB address list

Figure 6-2. INTERCOMM-DL/I Interface Overview

6-3

6.2.1 The DL/I Interface Table (COBPCBTB)

This CSECT is a table created by the user via the ICOMPCB
macro. Its function is to relate an on-line INTERCOMM ap­
plication subsystem to its DL/I PCBs (Program Communication
Blocks) defined within the DL/I PSB (Program Specification
Block) used during on-line execution. Each table entry
contains an application subsystem's code (identical to that
in the subsystem's SYCTTBL macro) followed by its list of
PCB locations within the PSB.

6.2.2 Startup Processing (STARTDLI, STARTIMS)

STARTIMS must be specified as the INTERCOMM load module entry
point at linkedit stage. STARTIMS CSECT receives control'
from DL/I at execution time to begin INTERCOMM initialization.
Its functions are to save the location and count of the PCB
address list for use by INTERCOMM-DL/I interface software and
to forward standard INTERCOMM execution PARM options to the
INTERCOMM startup processing rout~ne, PMISTUP. The location
of the PCB address list and the count of PCBs are stored
into labels PSBSAVE and NUMPCBS, respectively, in IDLISTRT
CSECT. As an IMS batch job, INTERCOMM's execution PARM
options are set by use of RUNMODE DD input.

6.2.3 On-Line Data Base Request Handling (TICDLICM, IDLISTRT) ~
All access to DL/I from on-line subsystems is processed by
IDLISTRT CSECT. IDLISTRT is called by the INTERCOMM Sub-
system Controller prior to passing control to a DL/I appli-
cation subsystem in order to append its PCB parameters to
the standard INTERcor~ subsystem parameters. The PCB param-
eters are those defined for the subsystem within the DL/I
interface table, COBPCBTB. IDLISTRT processing is transparent
to the DL/I application subsystem. The parameter list passed
to DL/I by the subsystem is in standard DL/I format.

6. Z.4 ··Sub"tas.k'-m;/I Processing (SBTSKDLI)

SBTSKDLI module intercepts calls to DL/I entry points by an
application subsystem in order to provide overlapping with
other processing within the INTERCOMM region. Its function
is to subtask the DL/I processing at that point and does so
with INTERCOMM's subtasking facility as described in the
Operating Reference Manual. SBTSKDLI must be resident.

6-4

SPR 188 12/80

Some verS10ns of IMS prohibit subtasking of PL/1 calls. The user
must consult IMS documentation with respect to BMP mode and any
subtasking restrictions. When no subtasking is permitted, SBTSKDLI I
must not be included in the linked it , eliminating overlapping with
non-DL/I processing. The CHANGE control cards in Figure 6-3 should be
removed.

6.2.5 Checkpoint and Restart/Recovery

If an Interco1llD thread or a subsystem thread terminates
abnormally for any reason, then Intercomm message restart will requeue
messages, placing an appropriate log code in the message header as
described in Section 3.6 of this document. However, the current
Interco1llD DL/I support does not provide for DL/I checkpointing nor for I
synchronization of Intercomm restart with the DL/I Backout utility.

6-4.1

J

J

L

6.3 SYSGEN OF DL/I

To create the ilL/I facility at an installation, the user
must have access to the following:

The HIS System Programming '1anual (IBM document)

The IBM PID Tape for the source and load modules of DL/I.

The System Programmin, Hanual describes how to perform an
'IMSGEN' to create BA eH DL/I. The procedures in that manual
must be followed exactly as presented in order to utilize
INTERCOMM's DL/I Interface facility.

6.3.1 PSB and DBD ~eneration

PSB (Program Specification Block) defines PCBs (Program
Communication Blocks) for a given batch IMS job. Both pro­
vide to DL/I software the descriptions of applications and
their accessibility to data bases defined in a related Data
Base Definition (DBD). A particular PSB is selected for a
given job execution via PARM data in execution JCL. The
user must consult IMS DL/I documentation for complete in­
formation and instruction on these control blocks.

NOTE: A language specification is noted in the PSB. The
user should bear in mind that a high-level language
specification in the PSB is downward compatible.
That is, a PSB with a language specification for use
by COBOL applications can be used by Assembler Lan­
guage applications but the reverse is not true.
A further restriction to PSB usage is that PL/I
and non-PL/I applications cannot snare a PSB.

6.4 CONDITIONAL ASSEMBLIES

As discussed in Section 4, the members INTGLOBE and SETGLOBE
control conditional assembly of the System Parameter List
(SPA) and SPA Extension (SPAEXT).

A change to any global necessitates reassembly and linkedit.
Refer to the INTERCOMM Operatin2 Reference Manual (aRM) for
further information on SPA and SPAEXT.

The &DLI global indicates DL/I is being used at the instal4
lation. This global should be set to 1.

6-5

IPN:127 6/77

6.S DEFINING DLII SUBSYSTEMS TO INTERCOMM

Every application subsystem monitored by Intercomm
requires an entry in the Subsystem Control Table (SCT) as
described in the Intercomm Operating Reference Manual.
A subsystem entry is defined via the Intercomm SYCTTBL macro.
For DLII subsystems, the SYCTTBL parameter DBASE must be
coded with DL1 or UDLI for read-only or update activity,
respectively.

6.S.1 Use of the Resource Enqueuing Facility

If a DLII data base is accessed concurrently by more
than one subsystem thread, use of the Resource Enqueuing
Facility may be required in order to protect data base integrity.
This would be the case if any subsystems must maintain sequen­
tial positioning during their processing andlor must perform
data base updates. Subsystem threads which perform inquiries
only and do not need to maintain sequential positioning
may process concurrently without the use of resource enqueuing.

J

The Resource Enqueuing Facility is documented in the Operating
Reference Manual.

6.6 CONSTRUCTING THE INTERCOMM-DL/I INTERFACE TABLE (COBPCBTB) ~
This table, having CSECT COBPCBTB, is constructed by

coding an Intercomm ICOMPCB macro for each on-line DLII
application subsystem executing under Intercomm. Any changes
to the PSB (Program Specification Block) referenced during
Intercomm-DL/I execution must be reflected within COBPCBTB.
Similarly, any subsystem changes incolving its PCB (Program
Communication Block) parameters must be accounted for in
its entry within COBPCBTB.

6-6

IPN:127 6/77

6.6.1 Coding the ICOMPCB Macro

The ICOMPCB macro instruction is used to create COBPCBTB,
the Intercomm-DL/I Interface Table. The purpose of the
PCB Index Table is to provide TICDLICM with the relative
offset into the PSB of all the PCBs used by a subsystem.
The first occurrence of the macro generates a COBPCBTB CSECT
statement.

The form of the ICOMPCB macro instruction is as follows:

(symbol) ICOMPCB SSCH= High Order Subsystem

SSCH=

SSC=

Code
,SSC= Low Order Subsystem

Code
,PCBINDX= (Offset ,[Offset], ...)
[,STOP]

Specifies the high order byte of the subsystem code.
This corresponds to the SUBH operand of the SYCTTBL
macro. This operand must be coded.

Specifies the low order byte of the subsystem code.
This corresponds to the SUBC operand of the SYCTTBL
macro. This operand must be coded.

6-6.1/6-6.2

J

J

.I

PCBINDX=
Specifies a list of offsets into the PSB of
PCBs. The PCB offsets are relative to one.
required operand with no default. Multiple
be enclosed by parentheses.

STOP=

the desired
This is a

offsets must

Coding STOP creates a fullword of X'FF' to signify the
end of the PCB Index Table. This is optional with no
default. If STOP is not coded, the user must follow the
last ICOMPCB macro with PMISTOP macro.

6.7 INTERCOMM MODULE LINKEDIT

The ENTRY statement must specify STARTIMS. In addition to
linkedit requirements for the non-DBMS functions of the
INTERCOMM region (INTERCOMM programs, tables, service rou­
tines, INTERCOMM and user subsystems, etc.), the following
linkage editor control cards are Lequired in the INTERCOMM
region:

ENTRY STARTIMS REPLACES ENTRY PMISTUP
*THE FOLLOWING MEMBERS FOR BOTH INQUIRY AND UPDATE

INCLUDE SYSLIB(TICDLICM)
INCLUDE SYSLIB(COBPCBTB)
INCLUDE SYSLIB(STARTDLI)
INCLUDE SYSLIB(SBTSKDLI)
CHANGE CBLTDLI(SBTSKCBL)
CHANGE ASMTDLI(SBTSKASM)
CHANGE PLITDLI(SBTSKPLI)
INCLUDE SYSLIB(DFSLIOOOJ

Figure 6-3. INTERCOMM Module Linkedit

The following additional revisions must be made to the
linkedit input:

CHANGE DBINT (SBTSKDLI)

INCLUDE SYSLIB(REENTSBS)

6-7

6.8 EXECUTION JCL

The standard INTERCO~~ execution JCL as described in Section 10
in the INTERCOMM Operating Reference Manual provides the base
for these additions and changes:

Additions

All DD statements for the DL/I data base files
referenced during job execution are required.

A DD statement having the ddname RUNMODE is re­
quired. RUNMODE provides standard INTERCOMM
execution PARM data, as described in Section 10
in the Operating Reference Manual. RUN MODE
input is supplied via a SYSIN data stream. It
is in the format nnmode, where nn is the two­
byte binary length of the standard PA~~ data
beginning in position 1, and mode may be STARTUP,
RESTART, etc., followed by additional execution
time PARMs as required. For example:

IIRUNMODE DD *
08TEST,WTO

STEPLIB DD concatenation to standard INTERCOMM
execution procedure JCL of the following data
sets:

For IMS/2.3.l: concatenate in order,
II DD DSN=PMI.MODREL,DISP=SHR
II DD DSN=IMS2.VSRES23l,DISP=SHR

For IMS/VS:
II DD DSN=PMI.MODREL,DISP=SHR
II DD DSN=IMSVS.RESLIB,~ISP=SHR

DDNAME=IMS is required to specify DBD and PSB
libraries,

For IMS/2.3.l:
IIIMS DD DSN=IMS2.DBDLIB,DISP=SHR
II DD DSN=IMS2.PSBLIB,DISP=SHR

For IMS/VS:
IIIMS DD DSN=IMSVS.DBDLIB ,DISP=SHR
II DD DSN=IMSVS.PSBLIB,DISP=SHR

6-8

L

Changes

The EXEC statement must specify PGM=DFSRRCOO, with
PARM=recommend as follows:

For 1MS/2.3.l:
PARM='DL1,1NTCOMM,&PSB'
where 1NTCOMM is the load module name
for INTERCOMM, and &PSB is the PSB name
for the region.

For 1MS/VS:
PARM='DLI,INTCOMM,&PSB'

Consult 1MS literature for description and usage of
other execution parameters.

6.9 CODING ON-LINE SUBSYSTEMS

Reentrancy can be effected across multiple subsystems using
DL/l running under INTERCOMM.

Each subsystem. processing a message is invoked by the
1NTERCOMM monit-or. On entry, both standard 1NTERGOMM and re­
quired DL/1 parameters' are passed to the subsystem. The
parameter list received by each subsystem provides the
INTERCOMM parameters first, followed by the DL/l parameters
(PCBs used by program). The parameter list is of variable
length; however, each program receives the same number of
parameters each time it is entered. The sequence of the
parameter list is as follows:

MSG,SPA,SCT[,RETCD[,DYN-CORE]] [[,PCBNAME[,PCBNAMEJ,---l

where:

MSG = Address of the message

SPA = Address of the SPA

SCT = Address of the SCT entry for this subsystem

RETCD = Address of return code is a high-level language
(present only if language is COBOL or PL/I)

6-9

DYN-CORE = Address of dynamic work area if reentrant
COBOL is used (not present for other
languages)

PCBNAME = Address of a PCB to be used by the subsystem
as specified in COBPCBTB CSECT

Calls to the DL/I region are issued using the same syntax
as ordinary use of batch DL/I. Reentrant ANS COBOL and
PL/I subsystems use the REENTSBS offset code 84 to allow
access to the entry point DBINT:

CALL 'COBREENT' USING CODE-84, standapd DL/I param-eters

6-10

SPR 232 12/88

Chapter 7

INSTALLING TOTAL SUPPORT

7.1 INTRODUCTION

TOTAL 8 (8.0, 8.1 and 8.2) is supported by Intercomm in two modes
of operation. In one mode, Intercomm and TOTAL operate in the same
region or address space as a main task and subtask, respectively. In
the second mode of operation, Intercomm and TOTAL operate in two
separate regions or address spaces. In this case TOTAL must be
executing when Intercomm is brought up, and all communication between
the two regions must be initiated through the use of an interregion SVC
routine supplied by Cincom Systems.

In both modes of operation, the facilities of the TOTAL Data Base
Management System may be utilized by one or more batch region(s).
These off-line programs may access and update the on-line data base
while Intercomm is up and data integrity will still be maintained
through the use of procedures provided by Intercomm and TOTAL.

In addition to the general requirements for DBMS installation
common to all systems as discussed in Chapter 4, the following steps
are required to utilize Intercomm support for TOTAL:

• SYSGEN of TOTAL

• Conditional Assembly of the TOTAL File Table

• Intercomm Region Installation:

- Tables

- Linkedit Considerations

- JCL Considerations

• Batch Region(s) Installation:

- Linkedit Considerations

- JCL Considerations

• Restart/Recovery Procedures

• Data Base Backout Utility

• Coding On-Line Subsystems

• Coding Batch Application Programs

7-1

Chapter 7 SPR 232 12/88 TOTAL

Function Member CSECT (Entry) Residency-Comments
~----=-=-=-----=+--=----==+============----=+==~===========--==== -
Startup Processing TOTSTART

CPLUNCSS

Data Base Request
Handling

Data Base File
Table

Macro

---------------.---
Closedown
Processing

---------------.---
Abend Processing

Checkpoint
Processing**

Restart
Processing**

CSTAMVxx*
TOTINT*
PDATBASE

username
(must have
alias of
TOTFILE if
PMITOTRS
is used)

TOTFLGEN

TOTCLOSE
CPLUNCSS

ABTOTEND

CHCKPTSS

DBCHKDSP
CHECKPT3
TOTCHKPT

DBRSTRT
RESTORE3
LOGPROC
REQONDDQ
AUTORCVR

TOTSTART(DBSTART) Resident.
CPLUNCSS Resident--COPT command.

DATBAS(see note)
TOTINT(see note)
PDATBASE(DBINT)

(DBSTAE)
DB PURGE

TOTFILE

TOTCLOSE(DBCLOSE)
CPLUNCSS

ABTOTEND
ABTOTFIX (ReI 10)
TOTABRTS (ReI 9)

CHCKPTSS

CHECKPT
CHECKPTO
TOTCHKPT

DBRSTRT
RESTORE
LOGPROC

AUTORCVR
(AUTORSTU)
(AUTORCLD)
(AUTORDBR)
(AUTORREQ)

Cincom-supplied.
Cincom-supplied.
Resident-subsystem
interface to TOTAL.
Resident-purge
outstanding TOTAL ENQs.

Resident

Generate TOTFILE
entries.

Resident.
Resident--UNPT command.

Resident-used for
Attach Mode only.

Subsystem with user
assigned residency.
Resident.
Resident.
Resident--used only if
coordination with Batch
Region updates needed.

Resident.
Resident.
Resident.
Resident-serial restart.
Resident--Auto-restart.
Called by STARTUP3.
Called by CLOSDWN3.
Called by DBRSTRT.
Called by REQONDDQ.

* Cincom-supplied Module
** Required Only for Restart/Recoverv Functions

Figure 7-1. TOTAL Interface Modules--Intercomm Region

NOTE: Beginning with TOTAL Release 8, the entry point DATBAS does not
exist in the interface module used with Intercomm: CSTAMVIC
(attach mode), or CSTAMVMT (multi-batch mode). The CSECT TOTINT
in the interface module (not in TOTINT) must be renamed to
DATBAS via a linkedit CHANGE statement.

7-2

J

Chapter 7 SPR 232 12/88 TOTAL

Function Member CSECT Comments

Request DATBASXT* DATBASXT Required in Batch Region
Coordinated only if updates performed
Checkpoint to on-line data base.

------------------ ------------ ------------~---------------------------
* Reauired only for Restart/Recoverv Functions

Figure 7-2. TOTAL Interface Module--Batch Region

Function Member CSECT Comments

Backout Utility PMITOTRS PMITOTRS Reverses updates to TOTAL
to a given checkpoint.

Driver Program ATTOTRS ATTOTRS Attaches TOTAL before
backing out the data base
via PMITOTRS.

CSITA014 CSITA013 TOTEXIT macro-generated.
CSITA014 Manage TOTAL logging for

Automated Restart.
TOTAREOF TOTAREOF Calls ICOMFEOF for valid

EOF on TOTAL log.

Figure 7-3. Interface Modules for TOTAL Data Base Restoration, Logging

7.2 INTERFACE SUPPORT MODULES

Before describing detailed installation procedures, this section
presents a brief description of support modules and their logic for the
Intercomm and TOTAL interface; modules are summarized in Figures 7 -1,
7 - 2 and 7 - 3. Certain modules are required only for data base
restart/recovery functions and need not be considered if only inquiries
are performed by Intercomm subsystems, and if batch programs which
execute concurrently with Intercomm perform no updates against on-line
TOTAL files.

7.2.1 TOTAL File Table (TOTFILE, TOTFLGEN)

The TOTFILE module is a table created by the user via the
Intercomm-supplied TOTFLGEN macro. It supplies the names of all the
TOTAL data sets (both variable entry and m~ster) which the user intends
to access via Intercomm subsystems, and how they are to be accessed
(read only, update, etc.). The data base descriptor name and TOTAL
logging options may also be defined.

7-3

Chapter 7 SPR 232 12/88 TOTAL

7.2.2 TOTAL Startup Routine (TOTSTART)

This module performs all the Intercomm region startup processing
for TOTAL. If present, it is called by STARTUP3 with a parameter list
passing the address of the EXEC card PARM field. The parm field is
checked for a DBMOD-name override for TOTFILE(see Section 7.7).

If TOTAL is to run as a subtask of Intercomm (specified by
TOTATT-YES for the SPALIST macro assembly), TOTSTART attaches TOTAL
using the following parameters:

ATTACH EP-TOTALMT,PARAM-parm-list,ETXR=ABTOTEND,ECB=TOTEND

This provides TOTAL with the information which would normally be
provided to it through the PARM field on the TOTAL EXEC card. The
parm-list is in the TOTFILE table and is defined as:

where:

DC Y(parm-Ien),C'xxxxxx,log-opt,NUL,Y,access'

parm-Ien is the length of the parameter list.

xxxxxx

log-opt

NUL,Y

access

is the data base descriptor name provided by the user
via the TOTFILE table. The name may be overridden by
an EXEC statement PARM option (see Intercomm Region
JCL, Section 7.7).

specifies TOTAL logging options to be used as specified
in TOTFILE via the TOTFLGEN macro (default is NBNN).

indicates the TOTAL cross-region SVC is not used and Y
indicates the environment is MVS.

is the type of data set access (default is RDONLY).

The ATTACH is followed by a Dispatcher wait of 30 seconds to allow
TOTAL to complete its initialization processing.

The remainder of TOTSTART processing is the same for both modes
of operation (separate region or Attach mode). A TOTAL sign-on is
executed. If unsuccessful, a message is issued and TOTAL requests will
not be executed. If the TOTAL data base access is not specified in
TOTFILE as RDONLY (via ALL=READ or by specifying only a READ file
list), and TOTAL executes in another region, a QUIET is issued because
Intercomm must regulate checkpoint times. If logging of any form is
used, a MARKL is then issued.

All TOTAL data sets to be used (as specified in the TOTFILE
Table) will then be opened with an OPENX, OPENV or OPENM (depending on
how the files were defined) via calls to DATBAS (in the Cincom-supplied
interface module).

7-4

J

J

Chapter 7 SPR 232 12/88

If a bad return code is received from any of
message (DB103I) is issued for each failing file name.
processing completes, a WTOR will be issued to the CPU
following form:

TOTAL

these opens, a
Then when open

operator in the

OPEN FAILED FOR nnn TOTAL DATA BASE FILES - REPLY CONT OR CANC

If the operator replies CANC, Intercomm will be aborted (User
abend 2004); otherwise, processing will continue but the failing data
set(s) will not be accessible during this run of Intercomm. However,
if failure was on an OPENX when the ALL parameter is coded on the
TOTFLGEN macro, then no specific file names are provided and the number
in the message is 1 (the actual number of failing files is not
available to Intercomm). Check the file names specified in TOTFILE,
DBMOD gen, and Intercomm JCL against those referenced in the DB103I
message(s). If the reply is CONT, see also Section 7.2.10 - CPLUNCSS.

Finally, TOTCHKPT is conditionally called (at entry TOTCKPT1) to
coordinate batch region checkpointing (see Section 7.2.9).

7.2.3 Normal On-Line Processing (PDATBASE. TOTINT. DATBAS)

All calls to TOTAL from on-line subsystems are to PDATBASE (entry
point DBINT), an Intercomm-supp1ied program included in Intercomm's
1inkedit. The parameter list must be the standard one for TOTAL,
preceded by the address of the input message the application subsystem
is processing. (Only Intercomm calls DATBAS for system functions.)

The resource management thread number (IJKTHRED) is used to
uniquely identify each user within the Intercomm region; it is passed
to TOTAL in register 12. The address of the standard TOTAL parameter
list is placed in register 1 and a call is made to TOTINT (a
Cincom-supp1ied program) which will in turn communicate the request to
TOTAL. Upon return, register 1 is checked for zero. If not zero, the
value in register 1 is the address of an ECB to be waited on by
PDATBASE (via the Intercomm Dispatcher) for completion of the I/O
request.

When register 1 is zero, PDATBASE checks the STATUS field (the
second parameter passed to TOTAL) for the characters HELD or TFUL. A
status of HELD means that the record is being held exclusively by
another user. A status of TFUL means TOTAL's tables are full. The
request will be resubmitted after a short time delay. However, if the
call i ng subsys tem has already timed out, the request is not
resubmitted, but PDATBASE exits so the thread can be purged. Any other
status means the request was satisfied instantaneously, or an error
condition indicated by the STATUS field was discovered, and PDATBASE
returns to the caller.

When the ECB that PDATBASE has been waiting on is posted, another
call is made to TOTINT. The status returned by TOTINT on this call is
checked for HELD or TFUL. The processing described above is followed
for these status codes. To prevent loops or subsystem time-outs,
PDATBASE keeps a count of the number of times it has to resubmit the
call, and after 15 TFUL codes, or after 1001 HELDs, PDATBASE will
change the STATUS field to REPC and return to the caller.

7-5

Chapter 7 SPR 232 12/88 TOTAL

For the TALY$DA system command display of subsystem thread
status, PDATBASE contains logic to set a flag when a subsystem
interfaces to TOTAL. The flag is turned off before PDATBASE returns to
the subsystem. However, if the subsystem should time-out during the
TOTINT call and subsequently become hung (cannot be purged) after a
second wait for the subsystem TCTV time to expire, then the flag is not
reset. A subsystem status of HUNG-DB in the TALY display indicates a
potential problem in accessing the TOTAL data base. If several
subsystem threads are hung accessing TOTAL, then disk access contention
or batch program processing against the same DBMOD-name is often the
cause. Due to the resulting reduc tion in the number of subsys tem
threads able to access TOTAL concurrently, a response time degradation
may occur, requiring Intercomm (and TOTAL) closedown and restart.

In TOTAL Release 8, the DATBAS module has been replaced by an
interface module which the user must construct via linkedit. The name
of this module will be CSTAMVIC or CSTAMVMT depending on the TOTAL
environment. To ensure proper operation of Intercomm/TOTAL, the Csect
TOTINT in this interface module (not in the member TOTINT) must be
renamed to DATBAS via a linkage editor CHANGE statement.

7.2.3.1 PDATBASE User Exit--USERPDBE

After PDATBASE acquires and chains a save area, a user exit whose
Csect name must be USERPDBE is conditionally called. At entry,
register 1 points to the parameter list passed to PDATBASE (DBINT).
Standard linkage conventions mUst be used. The exit may be used to
gather statistics on data base calls (see System Accounting and
Measurement facility in the Operating Reference Manual) or to record
user log entries on data base activity. Note that if the exit may give
up control to the Intercomm Dispatcher, it must be coded as reentrant
(acquire and chain a dynamic save/work area) and subsystem TCTV times
may need to be increased.

7.2.4 Transaction Termination Processing (DBPURGE)

In the load module PDATBASE, there is a DBPURGE entry point which
is called by RMPURGE after the normal or abnormal termination of a
transaction. This Csect issues a DEQUE to TOTAL for that transaction's
thread number via an internal call to PDATBASE. DBPURGE is not called
if the thread has timed out and become 'hung' (see Section 7.2.3).

7.2.5 Closedown Processing (TOTCLOSE)

During Intercomm's normal closedown processing, a call is made to
the Intercomm-supplied program TOTCLOSE at entry DBCLOSE. This routine
issues a sign-off to TOTAL. If checkpointing is used, a coordinated
(with batch region(s)) Intercomm checkpoint is taken, a request for a
QUIET record to be written to the TOTAL log is issued, and then a MARKL
is issued (unless Intercomm has abended).

If TOTAL is executing in a separate region, a FINAL call followed
by a DEQUE call is made to TOTAL. If TOTAL is a sub task of Intercomm,
an ENDTO call is made followed by a DETACH of the subtask.

7-6

J

Chapter 7 SPR 232 12/88 TOTAL

7.2.6 Abend Processing (ABTOTEND, STAEEXIT, DBSTAE)

Special processing is necessary to insure data integrity if
either Intercomm or TOTAL should abnormally terminate.

If TOTAL should end abnormally when running as a sub task of
Intercomm, control will be given by MVS to a resident routine ABTOTEND
(this routine name was supplied in the ETXR parameter of the ATTACH).
This program will mark all subsystems using TOTAL as being
nonschedulable.

The systemwide bit indicating that TOTAL is currently operational
is reset. When this bit is off, PDATBASE will not allow any further
TOTAL request to be initiated and will return a status of DOWN to any
program calling it for a TOTAL function.

A detach of the TOTAL task is then made, followed by a WTOR:

TOTAL DOWN-REPLY CONTINUE OR ABEND OR RESTART

If the operator replies RESTART, TOTAL will be reattached, the
TOTAL startup functions will be reinitiated (see the description of
TOTSTART), and TOTAL programs will be marked as schedulable again. If
this reattach of TOTAL is unsuccessful, then the RESTART option is not
again provided the operator in a subsequent WTOR. The RESTART option
is available only if the data base is used for inquiry alone, because
if the data base is being updated, its status will be unpredictable
when TOTAL is reattached without initiating restart procedures. In an
updating environment, only the CONTINUE (without TOTAL subsystems) or
ABEND options are provided.

When Intercomm and TOTAL are running in two separate regions, if
either task goes down, the one remaining must also be cancelled, and
restart procedures must be initiated to maintain an up-to-date status
of the data base.

To provide for file integrity in the event that Intercomm
abnormally terminates, it is necessary to close all TOTAL data sets.
To accomplish this, Intercomm's STAEEXIT routine calls the entry DBSTAE
in PDATBASE. DBSTAE in turn calls TOTCLOSE to perform TOTAL closedown
functions.

7-7

Chapter 7 SPR. 232 12/88 TOTAL

7.2.7 Checkpoint Processing (DBCHKDSP. CHCKPTSS. CHECKPT3)

To provide data integrity utilizing Intercomm/TOTAL, the
checkpointing facilities of both must be synchronized. This is
accomplished by allowing Intercomm to initiate all checkpointing for
both tasks when TOTAL and Intercomm are operating simultaneously.

The Intercomm data base checkpoint routine (DBCHKDSP) is
triggered periodically on the time interval specified in the SPA. When
the timer "goes off," a message is formatted and directed to the
checkpoint subsystem CHCKPTSS, as discussed in Chapter 3.

With Intercomm TOTAL support, a terminal operator may also enter
a checkpoint request by entering a CKPT verb (transaction-ID) which is
directed to the checkpoint subsystem. An entry is required in the
Intercomm Front End Verb Table (BTVRBTB) which may optionally restrict
this transaction to the control terminal (see Chapter 5).

After CHCKPTSS has ensured that all subsystems that update TOTAL
have quiesced, an Intercomm checkpoint is taken via a call to the
CHECKPTO Csect in CHECKPT3 and is recorded on INTERLOG. The checkpoint
subsystem then forces a TOTAL checkpoint by requesting a QUIET record
to be written to the TOTAL log. The call will be in the following
form:

CALL DATBAS,(QUIET,STAT,COUNT,ENDUP)

where the parameters are defined as follows:

QUIET
STAT

COUNT
ENDUP

DC
DC
DS
DC
DC

C'QUIET'
C'****'
OF
X' 7FFFFFFF'
C'END. I

This will immediately be followed by a MARKL request to record
the time of the checkpoint on the TOTAL log.

The checkpoint subsystem then completes processing by activating
quiesced subsystems as discussed in Chapter 3.

7-8

L

Chapter 7 SPR 232 12/88 TOTAL

7.2.8 On-Line Restart Processing (PMITOTRS. LOGPROC. DBRSTRT. ATTOTRS)

The Intercomm restart facility is based on both systems backing
up to the last coordinated checkpoint and restarting all processing
affecting the data base which was initiated since that time.

TOTAL will be backed up to the last QUIET through the use of
PMITOTRS, a utility program supplied by Intercomm. This off-line
program reads the TOTAL log backwards and restores before-images of all
updates done since the last checkpoint through the use of the TOTAL
command WRITD. (The user may cause back-up to other than the last
checkpoint by supplying the desired checkpoint time in the PARM field
of the EXEC card.) The PMITOTRS program will write the time of the
checkpoint to the operator via a WTO. It will then be the
responsibility of the operator to supply this time to Intercomm in
reply to the ENTER CHECKPOINT TIME REQUEST message produced by DBRSTRT
at restart time unless automated restart processing is used (see
Section 7.2.11). If TOTAL is running as a subtask of Intercomm, then
the driver program, ATTOTRS, must be used to execute PMITOTRS and
attach TOTAL using the entry point TOTALMT.

During startup, Intercomm calls LOGPROC to process the previous
Intercomm log. The LOGPROC program (Intercomm-supplied) has the
responsibility of selectively restarting messages. All messages
processed by programs using TOTAL in update mode will be restarted
unless indicated otherwise by the application subsystem as discussed in
Chapter 3. In order to coordinate checkpoint times used at restart
time, DBRSTRT is dispatched by LOGPROC. It will request from the
operator the time of the QUIET record to which TOTAL was backed up.
When LOGPROC has located the last checkpoint written to the log, it
will verify that the checkpoint time is the same as the time of the
QUIET record to which TOTAL was backed up. If it is not, LOGPROC will
continue selectively restarting messages back to the next previous
checkpoint until both Intercomm and the data base have reversed
activity to the same checkpoint or QUIET record. LOGPROC then calls
the RESTORE routine to recreate the system tables as they existed at
that checkpoint. The PMITOTRS utility may be running at the same time
as the Intercomm restart procedures if TOTAL operates in a separate
region; no TOTAL activity will be started by Intercomm until restart is
completed. If TOTAL is running as a subtask of Intercomm, PMITOTRS
must be executed before Intercomm is brought up.

For implementation of the Intercomm Serial (single-threaded)
Restart facility via REQONDDQ, see the Operating Reference Manual.

7.2.9 Batch Processing (DATBASXT. TOTCHKPT)

Batch programs are able to run concurrently with Intercomm to
access on-line data base files. Application programs which are
inquiry-only require no change. Batch programs which perform updates
to the on-line data base must include one extra module, DATBASXT, in
their linkedit, to provide for checkpoint synchronization with the
Intercomm and TOTAL regions at batch region startup. Also, TOTCHKPT
must be included in the Intercomm region updating the same TOTAL data
base as the batch update region.

7-9

Chapter 7 SPR 232 12/88 TOTAL

DATBASXT is an Intercomm-supplied exit routine which is called by
the TOTAL interface program, DATBAS, each time a call is made to TOTAL.
DATBASXT checks if the TOTAL call being issued is a sign-on request.
If not, no action is taken; if it is, interface with the Intercomm
TOTAL region is established by a series of system-wide enqueues issued
by DATBASXT and TOTCHKPT. If the Intercomm TOTAL interface region is
not executing, a checkpoint is requested from the batch region (QUIET
and MARKL commands) and a message is issued providing the checkpoint
time for eventual TOTAL data base backout in case the batch region
fails. If the Intercomm TOTAL region is up (ENQ test not successful),
then the enqueues are used to tell TOTCHKPT to force a checkpoint from
the Intercomm region. TOTCHKPT tests every 10 seconds whether a batch
region is coming up (TOTAL sign-on in progress). Once the checkpoint
completes, a dequeue from the Intercomm region allows processing in the
batch region to proceed. This checkpoint time now provides a common
point at which all regions updating the same TOTAL data base descriptor
name may be restarted in case of system or region failure.

The rname used for the enqueues issued by TOTCHKPT and DATBASXT
is ICOMTOTI. If several Intercomm regions access different TOTAL data
bases, special versions of these programs with different rnames must be
linked with each appropriate Intercomm and batch region. The rname may
be found at the label ITOT in each program.

TOTCHKPT (entry TOTCKPTl) is called at Intercomm startup by
TOTSTART to initialize coordinated batch checkpointing, and is called
again at Intercomm closedown by TOTCLOSE (entry TOTCKPT2) to suspend
the checkpointing.

Special considerations apply if an Intercomm region using
automated TOTAL restart updates the same DBMOD as a batch region. See
Section 7.2.11.

7.2.10 Couple and Uncouple System Control Commands (CPLUNCSS)

If it is not possible for TOTAL to be running at the time that
Intercomm is started up, communication between Intercomm and TOTAL may
be established at a later time via the COPT (couple) system control
command. If it is desired to take TOTAL down without bringing down
Intercomm, once communication between Intercomm and TOTAL has been
established, then communication may be broken via the UNPT (uncouple)
system control command.

The COPT command causes the Intercomm region processing for TOTAL
(TOTSTART module) to be executed at some time other than Intercomm
startup when it is usually called. The COPT command allows certain
startup parameters to be overridden dynamically via command operands.
Its effect is to allow TOTAL to be started at any time after Intercomm
is started without having to bring Intercomm down. The UNPT (uncouple)
command causes Intercomm to perform closedown processing related only
to TOTAL and then have Intercomm sign off from TOTAL before the time
this is usually done (at Intercomm closedown). In effect, UNPT allows
TOTAL to be brought down without also having to bring down Intercomm.
In addition, a physical close of TOTAL files may be requested.

7-10

J

J

Chapter 7 SPR 232 12/88 TOTAL

where:

where:

The format of the COPT command is as follows:

ALL

DB-yyyyyy

COPT[$ALL][$DB-yyyyyy]@

will cause all data base update subsystems to be
marked scheduleable. If omitted, no DB update
subsystems are marked scheduleable.

overrides the default data base descriptor name coded
in the TOTFILE table or provided on the Intercomm
EXEC statement. Enter six characters (padded on the
right with blanks, if necessary).

The format of the UNPT command is as follows:

CLOSE

UNPT[$CLOSE]@

will cause TOTAL files to be physically closed before
uncoupling. If omitted, no files are closed.

In the above command descriptions, the $ is the system separator
character as defined in the SPA (SPALIST macro, SEP parameter).

To implement the couple and uncouple system control commands, the
following steps must be performed:

• Code Front End Verb Table entries in the copy member USRBTVRB
and reassemble BTVRBTB:

BTVERB VERB-COPT,SSCH-x,SSC-y
BTVERB VERB-UNPT,SSCH-x,SSC-y

• Code a subsystem control table entry in the copy member
USRSCTS for the CPLUNCSS subsystem and reassemble INTSCT:

(name) SYCTTBL LANG-NBAL,SBSP-CPLUNCSS , SUBH=x,SUBC=y,
NUMCL=l,MNCL=l,RESTART-NO, ...

where x and yare the same user assigned subsystem codes as
specified on the BTVERB macros.

• Include the module CPLUNCSS in the Intercomm linkedit as
resident or in an overlay group; or define it as dynamically
loadable.

• The modules TOTS TART and TOTCLOSE must be resident.

7-11

Chapter 7 SPR 232 12/88 TOTAL

7.2.11 Automated TOTAL Restart Processing
(AUTORCVR. CSITA014. TOTAREOF)

Under Intercomm Release 10, a user-supplied automated restart
facility is provided to eliminate operator intervention after abnormal
termination of an Intercomm region executing updates to TOTAL, and
us ing mes sage recovery and the checkpoint and restart processing
described above. This facility uses the same JCL stream for startup
and restart processing and requires the following to be implemented in
the Intercomm region:

• Checkpoint processing: documented in the Operating Reference
Manual, Chapter 9 and above in Section 7.2.7

• Message restart/recovery: ORM, Chapter 9 and Section 7.2.8

• Serial restart: ORM, Chapter 9

• Automated restart by the new module AUTORCVR: ORM, Chapter 9

• Data Base restart via DBRSTRT: Section 7.2.8

• Intercomm log flip/flop data sets (INTERLOG and INTERLOC) and
USERB37E user exit: ORM, Chapters 6 and 9. Note that this
processing is recommended to reduce the restart scanning and
EOF recovery of the Intercomm log. However, one large log
disk data set or even tape data sets may be used, depending
on on-line volume and desired rapidity of the restart process

• DO statements for INTERLOG, STRTUPSW, RESTRTLG, LOGDISK,
CHEKPTFL, serial restart DDQ data sets, and for INTERLOC if
disk log flip/flop is used.

and the following for TOTAL processing:

• Include with the TOTAL load module the provided user exit
CSITA014 to manage all TOTAL region activity (update) logging
as defined for the TOTAL region and via TOTFILE in the
Intercomm region. Note that CSITAOl4 contains the Csect
CSITA013 (generated by a TOTEXIT macro), therefore CSITA014
must be assembled using the TOTAL macro library, and then
included with the TOTAL module in a manner that will override
the default CSITAOl3 Csect within TOTAL.

• DO statements for 5 preallocated single extent TOTAL log data
sets corresponding to the 5 Intercomm checkpoint records and
managed (flip/flopped in wraparound sequence) by CSITA014.
Whenever an on-line Intercomm checkpoint causes a QUIET
record to be written to the log, CSITA014 flips to the next
TOTAL log data set to record the Intercomm requested QUIET
and MARKL. After a flip, the previous log data set is reset
for overwriting in CSITAOl4 when needed. The ddnames must be
TOTLOG01-S, replacing the standard TOTAL log data set.

7-12

J

Chapter 7 SPR 232 12/88 TOTAL

• A catch-all preallocated TOTAL log data set with ddname
TOTLOGRS which is written to by CSITA014 only during off-line
data base backout processing. This prevents overlaying the
checkpoint coordinated TOTAL log data sets (TOTLOGOn) during
backout.

• DD statement for the TOTLOGSW data set (BDAM - one 20-byte
record to record the ddnames of the previous and current
TOTLOGOn data set being used by CSITA014). This file is
created by the AUTORSET utility described in the ORM, Chapter
12, and using the ddname TOTLOGSW (instead of STRTUPSW and
with a different data set name).

In addition, there are two other Intercomm programs to execute
before executing TOTRSEX (PMITOTRS) to back out the TOTAL data base
when a restart is necessary. The first is the LOGMERGE utility (see
ORM, Chapter 12) to merge the most recent (and previous, if not empty)
Intercomm INTERLOG or INTERLOC (if flip/flop used) disk log data set to
the master log data set (DAILYLOG with ddname LOGOUT) to be used as the
RESTRTLG data set during on-line message restart. The second is the
utility TOTAREOF which calls ICOMFEOF (see ORM, Chapter 12) to recover
the EOF for the most recently used TOTAL log data set (TOTLOGOn) as
determined from the TOTLOGSW data record by TOTAREOF.

Following is a sample JCL stream (add STEPLIB DD statements) to
execute the programs required for automated TOTAL restart. Note that
each step (except TOTUNLK) contains a DD statement for the on-line
Automated Restart STRTUPSW data set (see ORM, Chapter 9) which contains
the completion status of the last Intercomm execution: STARTUP if
Intercomm closed down, or RESTART if automated restart processing is
needed. This record also will contain the checkpoint time to which the
TOTAL data base is backed out and which is subsequently retrieved
automatically by DBRSTRT during on-line restart via a call to the
AUTORDBR entry in AUTORCVR.

//jobname JOB
//*

(accounting,data),'programmer.name' ,etc.

//* SAVE THE PRIOR EXECUTION'S INTERLOG(S)
//*
//LOGMERGE EXEC
//INTERLOG DD
//INTERLOC DD
//LOGOUT DD
//STRTUPSW DD
//*

PGM=LOGMERGE
DSN=this.regions.INTERLOG,DISP-SHR
DSN=this.regions.INTERLOC,DISP~SHR

DSN=this.regions.DAILYLOG,DISP-MOD
DSN=this.regions.STRTUPSW,DISP-SHR

//* FORCE AN EOF ON THE APPROPRIATE TOT LOG DATASET
//*
//TOTLFEOF EXEC
//STRTUPSW DD
//TOTLOGSW DD
//TOTLOGOI DD
//TOTLOG02 DD
//TOTLOG03 DD
//TOTLOG04 DD
//TOTLOGOS DD
//*

PGM=TOTAREOF
DSN-this.regions.STRTUPSW,DISP=SHR
DSN-this.regions.TOTLOGSW,DISP=SHR
DSN-this,regions.TOTLOGOl,DISP-SHR
DSN-this.regions.TOTLOG02,DISP-SHR
DSN-this.regions.TOTLOG03,DISP-SHR
DSN=this.regions.TOTLOG04,DISP-SHR
DSN=this.regions.TOTLOGOS,DISP-SHR

7-13

Chapter 7 SPR 232 12/88 TOTAL

//* THIS STEP RECOVERS THE DATABASE TO THE LAST TOTAL CHECKPOINT
//*
//TOTRSEX EXEC
//STRTUPSW' DD
//TOTLOGRS DD
//TOTLOGSW' DD
//TOTLOG01 DD
//TOTLOG02 DD
//TOTLOG03 DD
//TOTLOG04 DD
//TOTLOGOS DD
//CHEKPTFL DD

PGM-TOTRSEX,PARM-'TOTAL,L'
DSN-this.regions.STRTUPSW',DISP-SHR
DSN-this.regions.TOTLOGRS,DISP-SHR
DSN-this.regions.TOTLOGSW',DISP-SHR
DSN-this.regions.TOTLOG01,DISP=SHR
DSN-this.regions.TOTLOG02,DISP=SHR
DSN-this.regions.TOTLOG03,DISP-SHR
DSN=this.regions.TOTLOG04,DISP-SHR
DSN=this.regions.TOTLOGOS,DISP=SHR
DSN-this.regions.CHEKPTFL,

FOR CSITA014

//CTLX
//xxxx
//*

DD
DD

DCB-(DSORG=DA,OPTCD-RF),DISP-OLD
DSN-tota1.CTLX,DISP-SHR
DSN-tota1.database,DISP-SHR

//* THIS STEP DOES A BRUTE FORCE UNLOCK OF THE TOTAL DATA FILES
//* THE ASSUMPTION IS THAT THIS IS SAFE SINCE THE PRIOR STEP SHOULD
//* HAVE REPAIRED ANY DAMAGE TO THEM FROM A PREVIOUS ABEND
//*
//TOTLUNLK EXEC
//CTLX DD
//xxxx DD
//SYSPRINT DD
//SYSIN DD
//*

PGM-UNLOCK
DSN-tota1.CTLX,DISP=SHR
DSN-tota1.database,DISP-SHR
SYSOUT-*

CINCOM PROGRAM

DSN-intercom.CONTROL(UNLKcards),DISP=SHR

//* NOW' W'E GO ONLINE
//*
//INTERCOM EXEC PGM-intercom[,PARM-optiona1]
//INTERLOG DD DSN-*.LOGMERGE.INTERLOG,

DCB-(RECFM=VB,DSORG-PS,OPTCD=C,NCP-16),DISP-SHR
//STRTUPSW' DD DSN-this. regions. STRTUPSW',

DCB-(DSORG-DA,OPTCD=R),DISP=SHR
//RESTRTLG DD DSN-this.regions.DAILYLOG,

DCB-(RECFM-U,BLKSIZE-6233,DSORG-PS),DISP-SHR
//LOGDISK DD UNIT-(DISK"DEFER),SPACE-(3300,(200,100),RLSE),

DCB-(RECFM-F,BLKSIZE-3300,DSORG=DA)
//CHEKPTFL DD DSN-this.regions.CHEKPTFL,

DCB-(DSORG-DA,OPTCD-RF),DISP-oLD
//DEFLTDDQ DD DSN-this.regions.DEFLTDDQ,

DCB-(DSORG-DA,OPTCD-RF),DISP-OLD
//PMIQUE DD DSN-this.regions.PMIQUE,

DCB-(DSORG-DA,OPTCD-RF),DISP-OLD

FOR REQONDDQ

//PMISTOP DD
//INTERLOC DD

//CTLX DD
//TOTLOGSW' DD
/ /TOTLOG01 DD
//TOTLOG02 DD
//TOTLOG03 DD
//TOTLOG04 DD
//TOTLOGOS DD
//xxxx DD

Intercomm and user files

DUMMY ***
DSN-*.LOGMERGE.INTERLOC,

DCB-(RECFM-VB,DSORG-PS,OPTCD-C,NCP-16),DISP-SHR
DSN-total.CTLX,DISP=SHR
DSN-this.regions.TOTLOGSW',DISP=SHR
DSN-this.regions.TOTLOG01,DISP=OLD
DSN-this.regions.TOTLOG02,DISP=OLD
DSN-this.regions.TOTLOG03,DISP=OLD
DSN-this.regions.TOTLOG04,DISP-oLD
DSN=this.regions.TOTLOGOS,DISP-OLD
DSN-total. database, DISP-SHR

7-14

J

J

Chapter 7 SPR 232 12/88 TOTAL

Normal (non-recovery) processing flow:

• LOGMERGE reads STRTUPSW and sees that the restart-mode is
"STARTUP" so it does not use ICOMFEOF. It reads INTERLOG and
INTERLOC, determines their relative sequence based upon the
time-stamps in the Intercomm message header, copies them to
the end of DAILYLOG in the correct order, and then marks
these two logs empty by reseting the EOF pointer in the
DSCB. If either input log is empty, only the other is
copied; if both are empty, no copying is done.

• TOTAREOF and TOTRSEX both note that the restart-mode is
"STARTUP" and return immediately to the operating system.

• TOTUNLK unlocks the TOTAL databases. Since the system is in
"STARTUP" mode this is actually unnecessary as the databases
should already be unlocked. The user may add an earlier step
to make sure that any batch processing that may have occured
while Intercomm was down also completed normally. If this
check is not made, there is a possiblity that the on-line
system would be unaware of a batch ABEND that could have
corrupted the databases.

• Intercomm step brings up the on-line (satellite) region.
STARTUP3 calls AUTORSTU to determine the restart-mode.
AUTORSTU reads STRTUPSW, plugs "STARTUP" into the parameter
field as if it had been coded on the EXEC statement, and then
rewrites the status record with a restart-mode of "RESTART"
in case this job does not terminate normally. The TOTAL
databases are opened by TOT S TART , which generates TOTAL log
entries. CSITA014 begins its task of writing the log data to
the appropriate TOTLOGOn file and updates TOTLOGSW to
indicate the "current" TOTAL log dataset. During on-line
processing, each Intercomm checkpoint is synchronized with a
MARKL record written to the TOTAL log. The preceding QUIET
record triggers CSITA014 to advance to the next TOTLOGOn
dataset and to update TOTLOGSW accordingly. When Intercomm
terminates normally, CLOSDWN3 will call AUTORCLD to update
STRTUPSW to "STARTUP" since no database recovery will be
required in the next execution of this job.

Restart/recovery processing flow with database recovery:

• LOGMERGE reads STRTUPSW and sees that the restart-mode is now
"RESTART". It will then read the first record from INTERLOG
and INTERLOC. The log wi th the higher time-stamp is
determined to be the log that was in use when the earlier
system failure occured. It then loads ICOMFEOF and calls it
with a parameter of the appropriate ddname, and waits for
that program to correctly terminate the most recently used
Intercomm log. Then LOGMERGE copies the two on-line logs in
correct sequence to the end of' DAILYLOG and marks INTERLOG
and INTERLOC empty (as necessary).

• TOTAREOF reads STRTUPSW and sees that the system is in
"RESTART" mode. It then reads TOTLOGSW to obtain the ddname
of the TOTAL log that was in use when the earlier Intercomm
job terminated, and loads and calls ICOMFEOF with the

7-15

Chapter 7 SPR 232 12/88 TOTAL

appropriate parameter to insure a good EOF on the most
recently used TOTLOGOn file.

• TOTRSEX now does the database recovery. ATTOTRS reads
STRTUPSW and, based upon the "RESTART" indication, then
attaches TOTALMT and calls PMITOTRS. (If attached TOTAL is
not used, PMITOTRS checks the restart-mode status from
STRTUPSW.) PMITOTRS reads TOTLOGSW to determine the ddname
of the TOTAL log to use for recovery and searches it to find
the last Intercomm MARKL. If no MARKL was found on that log,
it tries to find one on the previous TOTAL log (as determined
by TOTLOGSW). If no MARKL is found on the previous log
either, PMITOTRS will abend. Sequence checking on the TOTAL
log records is done before before-images are applied, and the
MARKL and QUIET records are validated for the Intercomm
task- id. Once the MARKL is located, PMITOTRS database
recovery logic proceeds with before - images being written to
the database. When the database has been backed out,
PMITOTRS termination logic copies the time from the MARKL
record to STRTUPSW (for DBRSTRT) and rewrites that record.
During this step, CSITA014 logs on the TOTLOGRS data set (if
needed), due to its presence in the step JCL.

• TOTUNLK then unlocks the TOTAL databases since they have been
properly recovered.

• Intercomm now begins to execute. STARTUP 3 calls AUTORSTU,
and that program returns a parameter of "RESTART". DBRSTRT
calls AUTORDBR to obtain the checkpoint time that coincides
with the MARKL that PMITOTRS has backed the TOTAL databases
out to. Single - thread res tart saves all Intercomm
transactions that must be reprocessed on to a DDQ, and then
executes them one at a time to insure that they execute in
the same order as they were originally input. When all of
the messages are reprocessed, REQONDDQ calls AUTORREQ to
advise that the recovery is complete. At this point in time,
the database is fully restored to its status when the system
failure occured, and Intercomm is now ready to acept new
processing.

With this system implemented, the Intercomm Job need only be
resubmitted after an Intercomm abend or a CPU crash; no other operator
control is needed. Due to the implementation of flip/flopped Intercomm
and TOTAL log data sets, their small size greatly reduces the time for
EOF recovery processing, thus speeding up system restart. Restart time
can be further reduced by linkediting ICOMFEOF with both LOGMERGE and
TOTAREOF.

Within this design, the following alternatives are available:

1) TOTAL in a separate region - add DD statements for TOTLOGSW
and TOTLOG01- 5 to the TOTAL region JCL (DISP=SHR) when
CSITA014 is linked with the TOTAL load module, and omit them
from the Intercomm EXEC step JCL. Do not link ATTOTRS with
PMITOTRS when creating the TOTRSEX load module. Omit TOTAL
data set DD statements (except CTLX). Define TOTLOGRS only
for TOTAL region (DISP=SHR).

7-16

J

J

Chapter 7 SPR 232 12/88 TOTAL

2) Standard Intercomm logging without flip/flop omit the
IXFB37 and USERB37E modules from the Intercomm load module;
omit INTERLOC 00 statements (LOGMERGE and INTERCOM steps).
Also omit LOGOUT 00 statement from LOGMERGE (ICOMFEOF
executed against INTERLOG data set when needed), if no merge
required.

3) If INTERLOG and INTERLOC combined are large enough to hold
all the log records for one Intercomm normal execution, they
still must be merged so that determining the concatenation
sequence for RESTRTLG is unnecessary.

4) If multiple TOTAL logging is not used, ICOMFEOF must be
executed against the TOTAL log if a CPU crash occurs, before
submitting the Intercomm JCL. Omit the TOTAREOF step, use
JCL discussed in Section 7.9 for TOTRSEX, omit TOTLOGSW and
TOTLOGOl-5 from INTERCOM step, but keep STRTUPSW in all
steps.

5) If coordinated checkpointing with batch update jobs is used,
use standard TOTAL logging (depending on time across 2
checkpoints) and use a parm override for checkpoint time for
TOTRSEX step (see Section 7.9.1). Intercomm JCL as a PROC
simplifies operator job submission for this case.

6) If multiple TOTAL logging is not used because a complete log
is thought needed to restore the data base from a backup
copy. consider the following:

a) the AUTORSET utility can be used to both reinitialize the
STRTUPSW record to STARTUP and recreate the TOTLOGSW data
set. allowing the restart Intercomm JCL stream to be
brought up in startup-mode despite a previous problem.
If used with the (daily) backup copy of the TOTAL data
base. only the update transactions would need to be
reentered on-line.

b) use the Intercomm LOGINPUT facility (see ORM. Chapter 8)
against the merged Intercomm logs (OAILYLOG) to reprocess
all data base update transactions against the backup
before allowing new on-line transaction processing within
the region (by the update subsystems).

c) modify CSITA014 to unload the third most recently used
TOTAL log to a master log file after a flip is done
(adapt from the Intercomm USERB37E exit for Intercomm
flip/flop logging). Also develop a TOTAL version of
LOGMERGE for the current (after TOTAREOF executes) and
previous TOTAL logs (based on the TOTLOGSW data record).
to merge them to the master log. Be sure that a previous
day's log data is not merged (check log record sequence
numbers) .

7-17 .

Chapter 7 SPR 232 12/88 TOTAL

7.3 SYSGEN OF TOTAL

In addition to standard procedures required to sysgen TOTAL as
described in CINCOM-supplied publications, the following should be
noted:

• If access to the data base from multiple regions (Intercomm
or batch) is desired, use of a Cincom-supplied SVC is
required. The SVC number is supplied via the SETGLOBE global
&TOTSVC for the TOTFILE table assembly and is used only when
not operating TOTAL as an Intercomm subtask. Two Intercomm
regions may not update the same TOTAL DBMOD if checkpointing
and/or automated TOTAL restart is used.

• If TOTAL is to be attached, the TOTAL load module (with entry
point TOTALMT) must be on a library accessible via STEPLIB or
JOBLIB at Intercomm execution time.

•

•

The module TOTINT contains the TOTTABLE which controls the
maximum number of concurrent tasks processed by TOTAL, with a
supplied value of fifteen. Cincom documentation must be
consulted to alter this value. The Intercomm RESOURCE macro
may be used in conjunction with the SYCTTBL macros describing
subsystems which access TOTAL in order to limit the maximum
number of processing threads which may be started through
those application programs (see the Operating Reference
Manual).

The module TOTINT must reside on a library accessible at
Intercomm linkedit time.

• Beginning with TOTAL 8, the module DATBAS has been replaced
by one of two interface modules, depending upon the operating
environment: CSTAMVIC or CSTAMVMT. These modules must be
altered by the user via linkedit; for use with Intercomm, the
Csect TOTINT in the interface module must be renamed DATBAS
via a linkage editor CHANGE statement. This module must then
be linkedited with Intercomm along with TOTINT.

• Ensure all outstanding PTFs for TOTAL modules are applied,
particularly for the interface modules when executing under
MVS/XA.

• Include the supplied CSITA014 user exit with the TOTAL load
module for regions where automated TOTAL restart is
implemented, and allocate the five TOTAL log data sets as
sequential, single extent files (same BLKSIZE, etc. as
usually used for the TOTAL log data set).

7.4 CONDITIONAL ASSEMBLIES

As discussed in Chapter 4, the members INTGLOBE and SETGLOBE
control conditional assembly of the System Parameter Area (SPALIST
macro). Globals specified in • these members also control conditional
assembly for the TOTAL File Table (see Figure 7-4).

7-18

J

Chapter 7 SPR 232 12/88 TOTAL

Module G1oba1(s) Condition Necessitating Reassembly

TOTFILE &TOTDESC TOTAL data base descriptor name. The
setting of &TOTDESC gives the default data
base descriptor. This value may be
overridden at execution time by an EXEC
statement parm option (see Intercomm Region
JCL) or at assembly time by coding the name
for the DBMODNM parameter on the TOTFLGEN
macro.

------------ -------------- --
TOTFILE &TOTSVC Type II SVC number used when TOTAL operates

in a separate region from Intercomm.

Figure 7-4. TOTAL Conditional Assembly Requirements

A change to any global described above necessitates reassembly and
1inkedit of TOTFILE.

The member SETGLOBE on SYMREL contains the following global
default settings:

&TOTDESC
&TOTSVC

SETC
SETC

'xxxxxx'
'NUL'

If any of these default settings are not applicable to your
installation, the correct setting should be assigned in the member
SETGLOBE on SYMLIB before the TOTFILE table is assembled. Note that as
of Intercomm Release 9.0, the global &TOTMOD is obsolete; determination
of execution mode (attached or separate region) is based on coding of
the TOTATT parameter of the specific SPALIST macro module linked into
each Intercomm region.

The functions of these globa1s are:

• &TOTSVC

defines the SVC number assigned to the TOTAL interregion
SVC supplied by Cincom. This global is used only if TOTAL
is not operating as a subtask of Intercomm. For example,
if the TOTAL interregion SVC number is 251, the following
statement must be defined in SETGLOBE:

&TOTSVC SETC '251'

7-19

Chapter 7

•

SPR 232 12/88 TOTAL

&TOTDESC

defines the default TOTAL data base descriptor name for all
Intercomm regions. I t must be set to a six-character
string. This value may be overridden for a specific region
via the TOTFILE table or at Intercomm startup; see Intercomm
Region JCL. For example, if the default name of the TOTAL
data base descriptor is TOTXXX, the following statement is
defined in the member SETGLOBE:

&TOTDESC SETC , TOTXXX'

Note that if this global is not changed, the default data
base descriptor will be XXXXXX.

7.5 Intercomm Region Tables

In addition to the Intercomm table entries and parameter changes
described in Chapter 4, the following table entries affect Intercomm
when TOTAL support is implemented:

• TOTFILE Tab1e--required in every Intercomm on-line region
interfacing to TOTAL in order to define all TOTAL files
accessed by on-line subsystems.

• Front End Verb Tab1e- - (Intercomm control region only if a
Mu1tiregion system used) requires entries if a terminal
operator is to be allowed to enter checkpoint or
couple/uncouple commands. See Chapter 5 and section 7.2.10.

• SPALIST macro assembly member (default module name is
INTSPA)-- the TOTATT parameter indicates to TOTSTART whether
TOTAL is executing as an attached subtask (YES) or in a
separate region (NO). The default is YES. Must be
specifically coded for each region accessing TOTAL.

7-20

J

Chapter 7 SPR 232 12/88 TOTAL

7.5.1 TOTFILE Table

The user must supply the names of all the TOTAL data sets to be
accessed by the on-line system. This is done by providing a TOTFILE
table module. The table is created using one Intercomm-supp1ied
TOTFLGEN macro which also generates the module TOTFILE CSECT and END
statements at assembly time. The format of the TOTFLGEN macro as
provided for Intercomm Release 8 and for downward compatibility under
Intercomm Releases 9 and 10 is:

[blank] TOTFLGEN [VARIENT-(vvvv[, ... ,vvvv])]
[,MASTER-(mmmm[, ... ,mmmm])]

twhere:
vvvv--specifies the name(s) of any TOTAL variable entry data sets
accessed during Intercomm execution.

mmmm--specifies the name(s) of any TOTAL master data sets
accessed during Intercomm execution.

Figure 7-5 illustrates creation of the TOTFILE module on the
library INT . MODUSR for one master data set, MAST, and two variable
entry data sets, VAR1 and VAR2 (Intercomm Release 8 andlor TOTAL 5 or 6
parameters).

II EXEC ASMPCL,Q-USR,LMOD=TOTFILE
IIASM.SYSIN DD *
* THE CSECT TOTFILE WILL BE GENERATED BY THE MACRO TOTFLGEN
* MASTER OR VARIENT MAY BE OMITTED IF NOT APPLICABLE.

TOTFLGEN VARIENT-(VAR1,VAR2),MASTER-MAST

Figure 7-5. Sample TOTFILE Table Assembly

7-21

Chapter 7 SPR 232 12/88 TOTAL

The format of the TOTFLGEN macro under Intercomm Releases 9 and 10 is:

[blank] TOTFLGEN [DSECT~{YES}]

[{NO }]

[, DBMODNM-name]

[, CONTIN-{YES}]
[{NO }]

logging options:

[,LGSONOF-{A}] [, LGMODFN-{A}]
[{U}] [{U}]
[{lin [Un]

[, LGBEFOR-{N}] [, LGAFTER- {A}]
[Oil] [{tl}]

file names (old style) :

[,VARIENT-(dsname[,dsname ...])]
[,MASTER =(dsname[,dsname ...])]

file names (new style) :

[,ALL-{READ}]
[{IUPD}]
[{SUPD}]
[{EUPD}]

[,READ-(dsname[,dsname ...])]
[,IUPD-(dsname[,dsname ...])]
[,SUPD-(dsname[,dsname ...])]
[,EUPD=(dsname[,dsname ...])]

Figure 7-6. TOTFLGEN Macro Parameters

Note: if none of the parameters to define file names are coded, then
TOTSTART bypasses issuing open requests. That is, it is assumed
that the files to be accessed via Intercomm have already been
opened in a previous step (batch job). This option can only be
used for a Central Version of TOTAL. File names must be defined
is using attached TOTAL.

7-22

J

Chapter 7 SPR 232 12/88 TOTAL

DSECT
specifies whether the TOTFILE table or a Dsect of the fields in
the table is being generated. For a Dsect, code YES. The
default is NO.

DBMODNM
may be used to provide a specific six-character Data Base
Descriptor Name for assembly of this table. If not coded, the
defaul t name coded for the &TOTDESC global in Intercomm's
SETGLOBE will be used. This value may be overridden at execution
time as described in section 7.7.

LGAFTER
specifies whether TOTAL logging of after- images of data base
access is to be performed. A specifies yes, while N (default)
specifies no. A must be coded for restart/recovery if on-line
updates are executed.

LGBEFOR
specifies whether TOTAL logging of before- images of data base
access is to be performed. N specifies no, while B (default)
specifies yes. B must be coded if LGAFTER-A is also coded.

LGMODFN
specifies whether and which function executions are to be logged
by TOTAL. A indicates log all functions, U indicates log
functions only if they result in data base updates, while N
(default) specifies do not log any user access functions.

LGSONOF

Note:

MASTER

specifies whether or not TOTAL logging of SINON and SINOF
commands is to be performed. A specifies that all such commands
are to be logged, U specifies that such commands are to be logged
only for tasks signing-on in update mode, while N (default)
specifies no logging of these commands.

logging options must match the LOGGING parameter coded for
the gen of the TOTAL DBMOD or as a TOTAL region startup
execution parameter.

specifies a list of one or more four-character TOTAL file names
to be opened as master data sets via an OPENM command. Code as a
list enclosed in parentheses.

VARIENT

Note:

specifies a list of one or more four-character TOTAL file names
to be opened as variable entry data sets via an OPENV command.
Code as a list enclosed in parentheses.

if VARIENT and/or MASTER is coded, the new file definition
parameters below may not be used. A maximum of 50 files may
be defined for VARIENT and/or MASTER.

7-23

Chapter 7 SPR 232 12/88 TOTAL

ALL

READ

IUPD

SUPD

EUPD

Notes:

allows the user to instruct TOTAL to open (via OPENX) all the
files present in the DBGEN without explicitly naming them and
indicates what type of file activity is to be allowed: READ
(inquiry only), or IUPD (inquiry and update), or SUPD (shared
update), or EUPD (exclusive control update). If ALL is coded,
none of the other file naming parameters may be coded.

specifies a list of one or more four-character TOTAL file names
to be opened via OPENX for inquiry-only (RDONLY) processing.
Updates against these files will be rejected by TOTAL.

specifies a list of one or more four-character TOTAL file names
to be opened via OPENX for inquiry and update processing.

specifies a list of one or more four-character TOTAL file names
to be opened via OPENX for shared update processing.

specifies a list of one or more four-character TOTAL file names
to be opened via OPENX for exclusive update processing.

the above parameters may only be used for access to TOTAL
Release 8 (and upward) file processing. A maximum of 50
files may be defined on each parameter (READ/IUPD/SUPD/EUPD),
unless CONTIN-YES is coded.

CONTIN
specifies whether any of the file list parameters (READ, IUPD,
SUPD, and/or EUPD) is continued on a subsequent TOTFLGEN macro.
If so, specify CONTIN-YES. The last TOTFLGEN macro must have
CONTIN=NO (default) to delimit the list after the file list
parameters are processed.

7-24

J

L

Chapter 7 SPR 232 12/88 TOTAL

7.6 INTERCOMM REGION LINKEDIT

In addition to 1inkedit requirements for the non-DBMS functions
of the Intercomm region (Intercomm programs, tables, service routines,
Intercomm and user subsystems, etc.), the linkage editor control cards
for TOTAL interface modules listed in Figure 7 - 7 are required. (The
ICOMLINK parameters DBASE, DBLIBR and CHKRES may be used.)

The Following Members for both Inquiry and Update
INCLUDE SYSLIB(TOTSTART)
INCLUDE SYSLIB(user-TOTFILE-name)
INCLUDE SYSLIB(PDATBASE)
INCLUDE SYSLIB(USERPDBE) PDATBASE user exit-if coded
INCLUDE SYSLIB(TOTCLOSE)
INCLUDE SYSLIB(ABTOTEND) Only if TOTAL ATTACHed
CHANGE TOTINT(DATBAS)
INCLUDE TOTLIB(interface-module-name) Cincom-supplied (DATBAS entry)
INCLUDE TOTLIB(TOTINT) Cincom-supplied

The Following Members only if Restart/Recovery Performed
INCLUDE SYSLIB(DBCHKDSP) Must precede CHECKPT3
INCLUDE SYSLIB(CHECKPT3)
INCLUDE SYSLIB(DBRSTRT)
INCLUDE SYSLIB(RESTORE3)
INCLUDE SYSLIB(CHCKPTSS) (omit if dynamically loaded)
INCLUDE SYSLIB(LOGPROC,READBACK,INTDBLOK)
INCLUDE SYSLIB(TOTCHKPT) only if batch update/checkpointing
INCLUDE SYSLIB(REQONDDQ) if Serial Restart desired
INCLUDE SYSLIB(USRSEREX) Serial Restart user exit
INCLUDE SYSLIB(AUTORCVR) Automated Restart

Figure 7-7. Intercomm Region Linkedit: TOTAL Requirements

7.7 INTERCOMM REGION JCL

Both the Intercomm startup and restart JCL for Intercomm TOTAL
support must include all DD statements necessary to operate without
utilization of TOTAL. Please refer to the Operating Reference Manual
for complete details.

7-25

Chapter 7 SPR 232 12/88 TOTAL

. 1 In adDdDition to the star;ddard . JfCL fhor TIonTteLrcoCmmTLX' it ~('IsfneTcOeTssLar! to .J.
~nc ude a statement to ~ ent~ y teA. A ~s a
subtask of Intercomm, of course all the TOTAL JCL must then be included
with that for the Intercomm region.) As illustrated in Figure 7-8, all
TOTAL DD statements must follow the IIPMISTOP DD DUMMY statement so
that the TOTAL files are not .processed by the Intercomm File Handler at
startup.

A parameter, DB=xxxxxx (where xxxxxx is a TOTAL data base
descriptor name) may be specified in the PARM field of the EXEC
statement. This will cause the default TOTAL data base descriptor,
coded for the region's TOTFILE table or that named by the SETGLOBE
setting &TOTDESC, to be overridden. For example:

II EXEC PGM-ICOMEXEC , PARM-' STARTUP , DB-TOTLLT'

causes the data base descriptor TOTLLT to be passed to TOTAL.

IIINTERCOMM
IIINTR
IIINTERLOG

IIPMISTOP
IICTLX

JOB
EXEC
DD

DD
DD

PGM-ICOMEXEC, PARM-' STARTUP, [DB-xxxxxx,J ... '
DSN-INTERLOG, etc.
REMAINDER OF DD STATEMENTS DEFINING INTERCOMM
AND USER FILES, etc.

DUMMY delimits Intercomm files
(see TOTAL documentation for format)

(For attached TOTAL, all DD statements defining TOTAL files and
log must follow and a JOBLIB or STEPLIB statement defining the
orolrram 1ibrarv containinlr the TOTAL load module is reguired.)

Figure 7-8. Intercomm JCL Requirements for TOTAL

For additional restart mode JCL, see the Operating Reference Manual.
For coordinated checkpoint processing, a DD statement for the Intercomm
CHEKPTFL file is required, as described in the Operating Reference
Manual. For automated TOTAL restart JCL, see Section 7.2.11.

7.8 BATCH REGION LINKEDIT AND JCL

No special consideration need be made for batch programs using
TOTAL which execute concurrently with on-line Intercomm unless those
programs update the same TOTAL files as Intercomm subsystems. In this
instance, coordination of TOTAL checkpoints for the batch programs and
the Intercomm system must be considered. This is accomplished by
including the Intercomm-supp1ied user exit DATBASXT with each affected
batch region. No additional Intercomm modules (other than the
TOTAL/Intercomm interface module) or JCL are required in the batch
region(s). Review Figure 7-1 for Intercomm region requirements if
updates are performed by batch programs and the Intercomm region.

7-26

J

L

L

Chapter 7 SPR 232 12/88 TOTAL

7.9 TOTAL BACKOUT UTILITY (PMITOTRS)

The Intercomm-supp1ied utility PMITOTRS backs up the TOTAL data
base to a specified checkpoint and runs as a batch job. The checkpoint
to which TOTAL is to be restored is selected by the user and may be any
one of the following:

1) The last checkpoint initiated by Intercomm
2) Any checkpoint whose exact time is known
3) The last checkpoint on the TOTAL log, regardless

of source.

The selection of which checkpoint to use is indicated to PMITOTRS via
EXEC statement PARM options. The following JCL is necessary to run the
job:

// EXEC
//STEPLIB DD
//CTLX DD
//LOGI DD
//CHEKPTFL DD

where:
TOTRSEX

STEPLIB

CTLX
LOGI

CHEKPTFL

tttttttt

PGM-TOTRSEX,PARM-'TOTAL[,{tttttttt}]'
DSN- {L}
(TOTAL control file)
(TOTAL log data set - tape/disk)
(Intercomm checkpoint file)

is a load module consisting of PMITOTRS and CSTAMVMT
with a CHANGE statement as for the on-line 1inkedit.
(DATBAS if not TOTAL 8.)
contains the load modules TOTFILE (member's name or
alias must be TOTFILE) and TOTRSEX.
is the TOTAL Control Data Set.
is the last TOTAL log data set; if the TOTAL log on
tape is not standard label, the DCB BLKSIZE parm must
be coded.
is the Intercomm checkpoint file, containing checkpoint

. records, as described in the Operating Reference
Manual. The file is required only if it is desired to
restore to the last Intercomm-initiated checkpoint.
(See PARM options, below.)
is the checkpoint time (if desired); see below.

7.9.1 Selecting A Checkpoint

To back out the TOTAL data base to the last Intercomm checkpoint,
code the PARM field of the EXEC statement as:

PARM-'TOTAL'

To use this option, the DD statement for CHEKPTFL must be in the JCL.

To select a specific checkpoint time, code the PARM field as:

PARM-'TOTAL,yyyyyyyy'

Where yyyyyyyy is the checkpoint time requested. If this method is
selected, the CHEKPTFL DD statement is not required.

7-27

Chapter 7 SPR 232 12/88 TOTAL

To back out the data base to the last checkpoint (MARKL record) on
the TOTAL log, code the parm field:

PARM-'TOTAL,L'

where L is coded exactly as shown. CHEKPTFL is not required.

PMITOTRS may also run in the same region as TOTAL. In this case
To create the TOTAL is attached by the module ATTOTRS (on INT.MODREL).

executable load module, the following linkedit must be done:

II EXEC LKEDP,Q-USR,LMOD-TOTRSEX
INCLUDE SYSLIB(ATTOTRS)
INCLUDE SYSLIB(PMITOTRS)
CHANGE TOTINT(DATBAS)
INCLUDE DBLIB(CSTAMVIC) (DATBAS if not TOTAL 8)
ENTRY ATTOTRS

IIDBLIB DD DSN-TOTAL-load-library,DISP=SHR

NOTE: The JCL for executing TOTRSEX with TOTAL attached requires,
addi tionally, a JOBLIB or STEPLIB statement referencing the
library on which TOTAL resides, and all DD statements defining
TOTAL files. The TOTFILE table is loaded by PMITOTRS at execution
time and must be in a library defined for STEPLIB.

The following two examples demonstrate how to select the proper
checkpoint time when Intercomm is running simultaneously with a batch
data base update program. The time which is chosen as input to PMITOTRS
is the same time which must be given in reply to the restart WTOR 'ENTER
CHECKPOINT TIME REQUEST'. The reply is given in the form
, nnnnnnnn, nnnnnnnn' where nnnnnnnn is the time chosen in these examples.

Example 1:

Time
checkpoint
routine.
completes.

Console Sheet
INTERCOMM VERSION nn.OO STARTING ...

CHECKPOINT TAKEN AT 01422222
JOB A BEGINNING EXEC
CHECKPOINT TAKEN AT 01433333

CHECKPOINT TAKEN AT 01444444

CHECKPOINT TAKEN AT 01455555
*** SYSTEM FAILURE ***

01433333 is the correct time to restore to, as this was the
initiated by the start of Job A via the DATBASXT exit

The batch job must be executed again after TOTAL backout

7-28

L

Chapter 7

Example 2:

SPR 232 12/88

Console Sheet
INTERCOMM VERSION nn.OO STARTING ...

CHECKPOINT TAKEN AT 01422222

CHECKPOINT TAKEN AT 01433333
JOB A BEGINNING EXEC

(no checkpoint taken)
*** SYSTEM FAILURE ***

Correct time is 0143333, the last Intercomm checkpoint.

7.10 ON-LINE SUBSYSTEMS

TOTAL

On-line and batch programs can concurrently access and update the
same data base. For efficient recovery, certain criteria should be met
by on-line subsystems using TOTAL:

• On-line subsystems which are to do data base updates should
be short- running programs. This aids in bringing the
checkpoint quiesce time down to a minimum. Long-running
programs should only interrogate TOTAL files.

• To request TOTAL data base access, call POATBASE (or entry
OBINT), the Intercomm-supplied interface routine which in
turn passes the request to TOTAL. Only Intercomm system
routines may call OATBAS (entry in CSTAMV ..).

Intercomm itself performs some of the functions which would
normally be done by a batch program. They are:

• Intercomm sign-on to TOTAL at startup time for the entire
task. The TOTAL s ign- on call may not be coded in a
subsystem. Each time a new thread 10 is presented to TOTINT,
a new task is automatically added to TOTAL' s active task
entry list.

• All TOTAL data sets to be used by anyon-line program are
opened at startup time; OPEN calls are not to be made by an
on-line program.

7-29

Chapter 7 SPR 232 12/88 TOTAL

Other subsystem coding and design conventions are:

• The standard TOTAL parameters on the call must always be
preceded by the address of the message being processed.

• If reentrant COBOL is being used, the REENTSBS routine code
to pass to COBREENT is 84 (for DBINT).

• Programs loaded above the MVS/XA l6meg line under Intercomm
Release 10 must call DBINT, or use the DBINT code 84 in
REENTSBS, as applicable to the programming language.

• A DEQUE call should be included in each subsystem before
returning to the Subsystem Controller.

An example of an Assembler Language subsystem for TOTAL use under
Intercomm is provided in Figure 7-9. An example of a reentrant COBOL
subsystem is given in Figure 7-10.

7.11 BATCH APPLICATION PROGRAMS

Coding for batch region application programs executing
concurrently with Intercomm's TOTAL Interface remains the same as for
standard TOTAL operation.

Batch programs which perform data base updates as well as updates
to standard OS/VS files should not do any file processing until the
on-line Intercomm sign-on call to TOTAL has been done. If either job
is restarted, this ensures that both the TOTAL data base and other
files are all in the same condition as when originally started.

Intercomm does not provide res tart capabilities for batch
programs for other than the TOTAL data base; however, a backup of OS/VS
files may be taken before running update programs. In the event of a
restart, these files should be restored before the batch job is rerun.

7-30

J

Chapter 7 SPR 232 12/88

SA CSECT
LINKAGE LEN-WKLEN,PARM-(4),SPA-(12),

BASE-(3) ,MSG=(5) ,GPREQ-REGA
USING MSGHDR,R5
USING WORKSECT,R13

* SET UP CALL PARAMETERS
MVC STAT,ASTK
CALL DBINT,(MSGHDR,READM,STAT,MAST,CONT,SEGLIST,

USERAR,ENDP),VL,MF-(E,LIST)
CLC STAT,ASTK WAS I/O OK
BNE IOERR NO-DO ERR. PROCESSING

* OTHER PROCESSING

* CLOSE PROCESSING
CALL DBINT,(MSGHDR,DEQUE,STAT,ENDP),VL,MF-(E,LIST)

* FREE INPUT MESSAGE

RTNLINK ADDR-(13),LEN=WKLEN,RC-0
MAST DC C'MAST'
ASTK DC C'****'
READM DC C'READM'
ENDP DC C'END.'
DEQUE DC C'DEQUE'
WORKSECT DSECT

LIST
STAT
CONT
SEGLIST
USERAR
WKLEN
MSGHDR

DS
DS
DS
DS
DS
DS
EQU
DSECT

18F
8F
F
CLn
CLn
CLn

*-WORKSECT

COPY MSGHDRC
END

SAVE AREA FOR REGS
LIST AREA FOR TOTAL CALL
TOTAL STATUS FIELD
CONTROL (KEY) HOLD AREA
AREA FOR SEGMENT LIST
READ IN AREA

Figure 7-9. Assembler Language Intercomm/TOTAL Subsystem

TOTAL

@

NOTE: if the Assembler Language program is linked for dynamic loading
above the MVS/XA l6meg line under Intercomm Release 10 (see the
Assembler Language Programmers Guide), the constant parameters
(MAST, READM, ENDP, etc.) passed to DBINT must first be moved to
fields in the dynamic save/work area and use the latter field
names for the calls. 3l-Amode parameters may not be passed to
the 24-Amode DBINT entry in the Intercomm load module.

7-31

Chapter 7

ID DIVISION.

PROGRAM-ID. XXXXX.

ENVIRONMENT DIVISION.

WORKING-STORAGE SECTION.

77 MAST
77 ASTK
77 READM
77 ENDP
77 DEQUE
77 PDATBASE

LINKAGE SECTION.

01 INMSG
02 IN-TEXT

01 SPA
01 SCT
01 ICOM-RETURN
01 DWS

02 CONT
02 SEGLIST
02 USERAR
02 STAT

PIC
PIC
PIC
PIC
PIC
PIC

COpy
PIC
PIC
PIC
PIC
COPY

PIC
PIC
PIC
PIC

SP! 232 12/88

X(4) VALUE 'MAST' .
X(4) VALUE ,****,
X(5) VALUE 'READM' .
X(4) VALUE 'END.' .
X(5) VALUE 'DEQUE' .
S9(4) VALUE +84 COMPo

ICOMINMG.
X(...) .
X(4).
X(4).
S9(7) COMPo
ICOMDWS.

X(...) .
X(...).
X(...).
X(4) .

PROCEDURE DIVISION USING INMSG, SPA, SCT, ICOM-RETURN, DWS.

Process input message and set up areas for TOTAL

MOVE ASTK TO STAT.

TOTAL

CALL 'COBREENT' USING PDATBASE, INMSG, READM, STAT, MAST, CaNT,
SEGLIST, USERAR, ENDP.

Close Processing

NOTE:

CALL 'COBREENT' USING PDATBASE, INMSG, DEQUE, STAT, ENDP.
GOBACK

Figure 7-10. Reentrant COBOL Intercomm/TOTAL Subsystem

If the Intercomm copy member ICOMSBS is copied into the
WORKING-STORAGE SECTION, the entry DBINT (code 84) may be used
instead of PDATBASE. In this case, special 77 level coding of
the PDATBASE code is unnecessary. If the program is linked for
dynamic loading above the MVS/XA l6meg line under Intercomm
Release 10, see the COBOL Programmers Guide for coding
restrictions on passing parameters to routines in the Intercomm
load module.

7-32

L

SPR 173 6/80

Chapter 8

INSTALLING ADABAS SUPPORT

8.1 INTRODUCTION

In addition to the general requirements for DBMS installation
common to all systems, as discussed in Section 5, the following steps
are required to utilize Intercomm support for ADABAS:

• SYSGEN of ADABAS Multi-Programming Module (MPM)
• The Intercomm Region Linkedit Considerations

• The ADABAS Region
Linkedit Considerations
JCL Considerations

• Batch Region(s)
Linkedit Considerations
JCL Considerations

• Restart/Recovery Procedures
• Data Base Backout Utilities
• Coding On-Line Subsystems

•
•

Coding Batch Application Programs
Coding Interface Programs

Before describing detailed installation procedures, this section
presents a brief description of support modules for the ADABAS
interface, summarized in Figures 8-1 and 8-2.

8.2 INTERFACE SUPPORT MODULES

The following is a brief description of the modules necessary
within the Intercomm region to execute with ADABAS:

• ADASVCSO

This is the Type III SVC utilized by ADABAS for interregion
communication.

8-1

DBSTART

This module is called by the INTERCOMM startup
module, STARTUP3. It enqueues upon the INTERCO~1
TCB and dispatches GDBSTUP, if present, for checkpoint
processing.

ADALNISO

This module processes all ADABAS requests issued
within the INTERCOMM region.

DBRELEX

This routine will be called each time a subsystem
terminates normally or abnormally. It will issue a
CLOSE to ADABAS for the thread (based on terminal
ID). This will release ISNs held by ADABAS. It
should not be included if_subsystems are passing
ISNs to other subsystems or if subsequent messages
received by a subsystem are to act upon ISNs re­
trieved via a previous message. DBRELEX is called
only after a "conversational" subsystem (using
CONVERSE) has eithe~ __ program-checked or processed
the last phrase of conversation.

DBCLOSE

This module is called during INTERCOMM closedown and
in STAE processing (via entry point DBSTAE). It
dequeues the INTERCOMM TCB.

GDBSTUP

This module is dispatched to DBSTART. Its function
is to wait for indication from ADABAS that a check­
point prepare (C2) or checkpoint command (C3) has
been processed. It formats and queues a message to
the checkpoint subsystem and is responsible for acti­
vating update subsystems following checkpoint and
triggering the next checkpoint.

DBCHKDSP

This module is dispatched by INTERCOMM startup if
checkpointing is to be done to receive control after
the period of time specified in the TCHP parameter
of the SPALIST. It initiates checkpoint coordination
processing.

8-2

L

CHCKPTSS

This is the checkpoint subsystem which quieces update
subsystems and issues the INTERCOMM checkpoint via
CHECKPT3, writes the checkpoint record and dispatches
a checkpoint routine (DBCHKCOM) to issue the ADABAS
checkpoint.

CHECKPT3

This module checkpoints the INTERCOMM tables.

DBADACHK

This module has two entry points, DBCKPREP and
DBCHKCOM, which issue C2 and C3 commands to ADABAS.

RESTORE 3

This module is called during startup to format the
checkpoint directories and during restart to restore
the INTERCOMM tables to the last checkpoint.

LOGPROC

This module reads the log backwards and restarts all
messages which updated data bases/files since the
last checkpoint.

DBRSTRT

This module is dispatched by LOGPROC to validate that
INTERCO~W and the DBMS have backed out messages and
updates to the same checkpoint. It accomplishes this
through the response the console operator gives to a
PMIWTOR issued.

8-3

CSECT &
Function Member Entrv Points Residency

Interregion Type ADASVCSO ** IGCOOnnn SYSl. SVCLIB
III SVC Routine nnn is SVC #

Startup DBSTART** Resident
Processing

Data Base ADALNISO** ADABAS Resident
Request Handling DBINT

DBRELEX** DBRELEX (Optional)

Closedown DBCLOSE** DBCLOSE Closedown
Processing Overlay

Abend DBCLOSE** DBSTAE Resident
Processing

Checkpoint GDBSTUP* GDBSTUP Resident
Processing DBCHKDSP* CHECKPT Resident

CHCKPTSS* CHCKPTSS Resident/Overlay
CHECKPT3* CHECKPTO Transient "
DBADACHK* DBCKPREP Resident

DBCHKCOM

Restart RESTORE3* Startup Overlay
Processing LOGPROC* LOGPROC Startup Overlay

DBRSTRT* DBRSTRT I Startup Overlay

* INTERCOMM supplied on system release tape.
** DBMS Vendor supplied. The source for these modules resides

on ADABAS.SOURCE.

Figure 8-1. Interface Modules--INTERCOMM Region

NOTE: Those modules listed under checkpoint and restart
should not be included in the INTERCOMM linkedit
if recovery procedures are not being utilized
(i.e., only inquiries to the data base are being
made on-line).

8-4

Function Member
CSECT &

Entry Points Residency

INTERREGION SVC ADASVC50** IGCOOnnn SYSI.SVCLIB
Type III nnn is SVC #
Routine

Data Base ADALNK50** ADABAS Resident
Request
Handling

* INTERCOMM supplied
** Vendor supplied. The source for these modules resides

on ADABAS.SOURCE.

Figure 8-2. Interface Modules--Batch Region

8.3 SYSGEN OF THE ADABAS MPM

The SYSGEN considerations for the use of ADABAS with INTERCOMM
are only concerned with the MPM. The tape distributed by
Software A. G .. :.c:ontains a parti tioned- data set ADABAS. SOURCE.
The member DOCMPM50 on this data set contains all the direc­
tions necessary for generating the MPM for operation with
INTERCOMM. This member may be printed out using the following
JCL:

II
IISYSUTl.
IISYSUT2
IISYSPRINT
IISYSIN

EXEC
DD
DD
DD
DD

PGM=IEBGENER
DSN=ADABAS.SOURCECDOCMPM50),DISP=SHR
SYSOUT=A,DCB=CRECFM=FA,BLKSIZE=80)
SYSOUT=A
DUMMY

The instructions in this member demonstrate how to select the
appropriate options for your installation. The instructions
for the ADABAS MPM which are provided here merely emphasize
those features which are necessary to interface with INTERCOMM.

The following steps must be taken:

Select the appropriate MPM processor of the three
available. If only inquiry processing is necessary
and no checkpoint/restart procedures are to be
utilized, the module ADAMP150 may be used. If syn­
chronized-checkpoint/restart procedures are to be
used currently or in the future, ADAMP250 should be
selected.

8-5

,----------------------------

I
•

SPR 188 12/80

The ADABAS Type 3 SVC must be assembled and linkedited as
specified in DOCMPMSO. This SVC is used only for ADABAS
code. The Intercomm interregion SVC IGC2S0 is not used for
interregion conmunication with ADABAS. (The Intercomm
interregion SVC IGCIOOM may still be required for certain VS
features and for the Multiregion version of Intercomm.)

• The MPM must be linkedited after all appropriate options have
been sel ec ted.

• The appropriate parameters to supply in the MPM/ADABAS region
must be selected. The critical parameters which may be
selected for the MPM execution, with respect to Intercomm,
are the following: Checkpoint (CP), Users (NU), CKPTMIN
(CL), CKPTMAX (CU), TIMEMIN (TL), TIMEMAX (TU) and TIMEOUT
(TO). All these parameters are concerned with the
synchronization of checkpoint and some must be coordinated
with similar parameters within the Intercomm region:

CHECKPOINT

This parameter must be specified as YES (y).

USERS

Must be set to the maximum number of user programs which
may be accessing the data base through ADABAS at a time.
This parameter must be specified for checkpoint.

NOTE: No matter how
subsystems there
one user.

many active Interco1Ill!/ADABAS
are, Intercomm counts as only

CKPTMIN

Must be specified as a decimal integer.
the minimum number of updates which must
before checkpoint synchronization can take

CKPTMAX

This number is
have been done
place.

This must be specified as a decimal integer. When the
number of successful ADABAS updates has reached this
number, checkpoint synChronization will begin if TL
seconds have elapsed.

8-6

To set the
understand the
checkpoint.

SPR 188 12/80

TIMEMIN

Must be specified
synchronization will not
time has elapsed.

TIMEMAX

1n seconds.
be started until

Checkpoint
this much

Must be specified in seconds. Checkpoint
synchronization will begin if this much time has
elapsed and at lease CL number of updates to ADABAS
have been done. (CL=update count lower limit.)

TIMEOUT

Must be specified in seconds. This is the maximum
amount of time that ADABAS will allow checkpoint
synchronization to continue. Non-TP programs which
have received a 05 response code and have not
answered with a C3 (checkpoint command) will be timed
out, that is, they will not be included in the
checkpoi nt.

parameters to efficient values,
communication between Intercomm

it is necessary to
and ADABAS during

1. IntercoDlJl, during startup, dispatches a routine CHECKPT
(DBCHKDSP load module) to receive control in the number of
seconds specified in the TCHP parameter in the SPALIST.

2. When DBCHKDSP receives control, it calls DBCKPREP (load
module DBADACHK).

3. DBCKPREP calls ADABAS with a C2 command. (This requests that
checkpoint synchronization be entered.)

4. ADABAS will res pond to the C2 command from Intercomm only
after the Batch region has quiesced.

5. When ADABAS does res pond wi th a 0 to the C2, GDBSTUP receives
control via an ECB being posted and formats a message to the
checkpoint subsystem (CHCKPTSS).

6. CKCKPTSS quies ces all update subsystems, takes an Intercomm
checkpoint and dispatches DBCHKCOM.

7. DBCHKOOM then sends the C3 command to ADABAS which causes I
that region. to checkpoint. ADABAS will respond with a zero
response code when checkpointing is complete.

8-7

I

I

(

SPR 188 12/80

8. When the checkpoint is complete GDBSTUP becomes active via an
ECB post.

9. GDBSTUP then marks update subsystems schedulable again and
redispatches DBCHKDSP on a tUner interval.

Since the C2 conmand sent to ADABAS by Interconm will not be
posted until the bat ch region has been synchronized, it is necessary to
force batch synchronization prior to Interconm' s issuing of the C2
comnand. It is suggested that CL (update count lower limit) and TL
(time lower limit) be set to zero, so that any C2 received from a batch
region will initiate batch synchronization.

In a TP environment it is desirable for the on-line monitor to
control the initiation of checkpoints. Therefore, TU (tUne upper
limit) should be set to a number of seconds slightly greater than TCHP
so that when Intercomn issues a C2, ADABAS will have already initiated
batch synchronization and will be ready to respond to the Interconm C2
comnand. To preclude the possibility of ADABAS checkpointing when
Interconm is not ready, CU (update count upper limit) should be set to
scme high value. Also, to allow the TP monitor complete control over
the issuing of checkpoints, it is suggested that ADABAS batch update
programs not be aillowed to issue C2 comnands.

The remaining parameter which must be coordinated with Intercotmn
is the TO parameter or the checkpoint tUneout value for ADABAS. This J
value should be greater than the timeout value specified in the SYCTTBL
macro defining CHCKPTSS (TCTV).

8.4 INTERCOMM REGION LINKEDIT

In addition to linkedit requirements for the non-DBM functions of
the Intercomn regions (Intercomn programs, tables, service routines,
Intercomm and user subsystems, etc.) the following linkage editor
control cards are required in the Intercomm region:

INCLUDE
INCLUDE
lNCLUDE
INCLUDE
lNCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

lCOMLIB(DBADACHK)
lCOMLIB (GDB STUP)
I COMLIB(DBCHKDSP)
ICOMLIB(CHECKPT3)
ICOMLIB(RESTORE3)
ICOMLIB(CHCKPTSS)
ADALIB(DBSTART)
ADALIB(ADALNI50)
ADALIB(DBRELEX)
ADALIB(DBCLOSE)

8-8

ICOMLIB and ADALIB are described by the following DD cards:

IIICOMLIB
II
IIADALIB

DD
DD
DD

DSN=PMI.MODLIB,DISP=SHR
DSN=PMI.MODREL,DISP=SHR
DSN=ADABAS.MPMLOAD,DISP=SHR

where ADABAS.MPMLOAD is a PDS containing the ADABAS load
modules.

8.S THE ADABAS REGION LINKEDIT

Assuming all linkedited modules are on the SYSLMOD (ADABAS
MPMLOAD) library:

IN1UDE

OVERLAY
INCLUDE
OVERLAY
INCLUDE
ENTRY
NAME

SYSLMOD(ADAMP050) 1 (ADALOG50)
(ADAXCP50)
(ADANUC)

A
SYSLMOD{ADAMIN50)
A
SYSLMOD(ADAMP250)
ADAMPM
ADAMPMEX (R)

(OPTIONAL)
(OPTIONAL)

will create the executable MPM (ADABAS) module.

8-9

8.6 SAMPLE ADABAS REGION JCL

II
II
IISTEPLIB
II
IISYSODUMP
IIDDASSOR2
IIDDDATAR2
IIDDWORKR2
IIDDSIBA
II
II
IIDDPRINT
IIADALOG
IIADASNAP

EXEC PGM=ADAMPMEX,REGION=200K,TIME=60,
PARM= (' ••• see pa!'m Zist des()!'iption ..• ')
DD DSN=ADABAS.MPMLOAD,DISP=SHR,UNIT=3330,
VOL=SER=XXXXXX
DD SYSOUT=A
DD DSN=ASSO,DISP=OLD,UNIT=3330,VOL=SER=aaaaaa
DD DSN=DATA,DISP=OLD,UNIT=3330,VOL=SER=dddddd
DD DSN=WORK,DISP=OLD,UNIT=3330,VOL=SER=wwwwww
DD LABEL=(,SUL),UNIT=2400-3,VOL=SER=tttttt
DSN=RESTART,DISP=(,KEEP),
DCB=(RECFM=V,BUFNO=1,BLKSIZE=3124)
DD SYSOUT=A,DCB=BLKSIZE=132
DD SYSOUT=A,DCB=BLKSIZE=133(ADALOG REPORT-OPTIONAL)
DD SYSOUT=A (SNAP OF USER BUFFERS ON ERROR -

OPTIONAL)

8.7 BATCH REGION LINKEDIT AND JCL

Assuming the USERLIB (USERLOAD) data set contains USERPROG,
and SYSLMOD(ADALOAD) contains the compiled and linkedited \
ADALNI 50, .."

INCLUDE
INCLUDE
ENTRY
NAME ADAUSER(R)

USERLIB(USERPROG)
SYSLMOD(ADALNK50)
USE RENT

will create an ADABAS batch user module which may be executed
using the following JCL:

IIEXEC
IISTEPLIB
IISYSUDUMP

•
•
•

PGM=ADAUSER,REGION=rrrK
DD DSN=ADALOAD,DISP=SHR,UNIT=3330,VOL=SER=xxxxxx
DD SYSOUT=A

II user DD statements
•
•
•

8-10

8.8 RESTART/RECOVERY PROCEDURES

As stated in Section 3, there are four types of data base
failure conditions requiring recovery procedure. The
INTERCOMM/ADABAS support provides the ability to recover from
all of these failures by, in brief: requiring periodic dumps
of the data bases for backout purposes; logging all ADABAS
updates; and, while in execution, utilizing the following
restart procedures.

In the case of partial or full, logical or physical loss of
a data base, the data base must be restored from the latest
backup tape.

The ADABAS utility ADAFIX performs the dump/restore
functions (see execution instructions under ADAFIX
in the ADABAS Utilities Manual).

Any ADABAS log tapes which are produced subsequent
to the last backup tape should then be used to apply
after-images to the data base.

In all other cases, failure of batch programs, failure of
INTERCOMM, or both, these steps must be executed.

A. Before executing the ADABAS WARMSTART, the ADABAS region,
if still operational, must first be terminated by re­
sponding to the outstanding ADABAS WTOR with ADAEND.

B. If the ADABAS log tape (DDSIBA) has not been properly
closed (as in the case of a hardware or operating system
failure), it will be necessary to run the COpy function
of the ADARES Utility (see execution instructions under
ADARES Copy Function in the ADABAS Utilities Manual) be­
fore WARMSTARTing the data base.

C. In any case the WARMSTART function of the ADARES Utility
should be run restoring the data base to the last pre­
vious sync checkpoint.

D. The ADABAS region must then be brought up again.

E. An INTERCOMM RESTART must then be initiated.

NOTE: ADABAS must be executing before starting INTERCOMM.
During INTERCOMM restart processing, a WTOR to
the console requesting the checkpoint time will
be issued (PMIWTOR ID DB60lR). The operator
should reply with the time specified in the
PMIWTO ID PMIDB5701 immediately preceding the
ADABAS checkpoint notification WTO.

8-11

Example:

Console Sheet

PMIDB5071 CHECKPOINT TAKEN AT 12345678. ALL USERS
PARTICIPATED BLOCK ID (0567). ADABAS SYNCHRONIZED
CHECKPOINT TAKEN -
PMIDB570l CHECKPOINT TAKEN AT 23456789

SYSTEM CRASH

In this case, the system went down in the middle of a
coordinated INTERCm-tVADABAS checkpoint. ADABAS must be
backed out to the sync point at block ID 0567. The correct
response to the WTOR DB60lR is 12345678,12345678. The
checkpoint taken at 23456789 does not have a corresponding
ADABAS checkpoint and therefore cannot be used. Ali ADABAS
batch update programs exeucting at the time of the failure
would have to be restarted from sync point 0567 as well.

F. Any batch update programs which were active at system ter- ,
mination must be restarted from the last synchronized ~
checkpoint.

8.9 ADABAS BACKOUT UTILITIES

The ADABAS utility ADARES performs a number of functions. The
following JCL may be used for a WARMSTART of data base, i.e.,
restoring to a sync point.

II
IISTEPLIB
IISYSUDUMP
IIDDDRUCK
IIDDBACK
II

EXEC
DD
DD
DD
DD

PGM=ADARES,REGION=ttOK,TIME=60·
DSN=ADABAS.LOAD,DISP=SHR,UNIT=3330,VOL=SER=xxxxxx
SYSOUT=A
SYSOUT=A,DCB=BLKSIZE=l32
DSN=RESTART,DISP=OLD,UNIT=2400-3,
VOL=SER=tttttt,LABEL=(,SUL),
DCB=(RECFM=U,LRECL=3620,BLKSIZE=3624)
DSN=ASSO,DISP=OLD,UNIT=3330,VOL=SER=aaaaaa
DSN=DATA,DISP=OLD,UNIT=3330,VOL=SER=dddddd
DSN=WORK,DISP=OLD,UNIT=3330,VOL=SER=wwwwww

II
IIDDASSOR2 DD
IIDDDATAR2 DD
IIDDWORKR2 DD
IIDDKARTE DD
WARMSTART
/*

"

For the additional RESTART functions (COP· :!\CKOUT, REGENER­
ATE, REPAIR), see the ADABAS Utili ties Gu.;. for execution
details.

8-12

L

SPR 173 6/80

8.10 CODING ON-LINE SUBSYSTEMS

Coding on-line subsystems requires no special techniques when
using ADABAS; however, the nature of an on-line system requires unique
design considerations.

In addition to following the general system design criteria in
Section 4, the following ADABAS comnands/procedures must be used with
care:

• The use of a HI command with ADABAS allows an application
program to hold an ISN indefinitely. This comnand should not
be used in an on-line environment since a subsystem may
program-check or time-out after issuing a HI comnand, locking
out all subsequent subsystems to access of that ISN. (If the
subroutine DBRELEX is included in the Intercomn region, a
close will be issued for the terminating thread freeing that
ISN).

• The DBRELEX function of issuing a close to ADABAS at
subsystem termination time safeguards against application
programs inadvertently holding ISNs indefinitely if they
should program-check or time-out after issuing the close to
ADABAS. If this feature is being utilized at an
installation, terminals being utilized for ADABAS functions
must be used only conversationally; that is, no new input may
be sent from a terminal until a response to the previous
message has been received. This is accomplished through the
use of the Front End Conversational Terminals feature for
verbs going to ADABAS subsystems (not to be confused with the
CONVERSE facility). The reason this is necessary is that
ADALNI50 associates a thread with a termina1-ID. If two
messages from the same terminal should process at the same
time, ADALNISO would not be able to distinguish one thread
from the other; therefore, a close might inadvertently be
done for a message in process.

8.11 CODING BATCH APPLICATION PROGRAMS

Batch application programs for ADABAS Checkpoint/Restart requires
the following:

•

•

Issuing an open (OP) command with a
file numbers to be accessed
RB='ACCESS=nnn ••• ,UPDATE=nnn ••• ').

record buffer indicating
and updated (e .g.,

The ability' to respond to
comnand ignored; prepare to
comnand as soon as possible).

a response
checkpoint

code=S (meaning:
by issuing a C3

8-13

Optiena11y, the ability to. issue a C2 (request fer ~
synchrenized checkpeint) and the ability to. handle
a respense cede=4 (tee seen to. request a checkpeint)
- in case the checkpeint "windew" has net been
entered.

The ability to. issue a C3 cemmand (ready to. check­
peint) in respense to. a respense cede=S er a respense
cede=O en a C2 cemmand.

Issue a c1ese (CL) cemmand prier to. termination ef
the batch app1icatien.

8-14

SPR 188 12/80

Chapter 9

INSTALLING IDMS SUPPORT

9.1 INTRODUCTION

The installation considerations described in this chapter apply
to IDMS Release 5.0 and up.

IOMS is a product of the Cullinane Corporation. IIMS product
information and manuals may be obtained from:

Cullinane Corporation
Wellesley Office Park

20 William Street
Wellesley, MA 02181

In addition to the general requirements for DBMS installation
comon to all systems as discussed in Chapter 4, the following items
are required to utilize Intercomm support for IIMS.

• SYSGEN of IDMS

• The Intercomm Region

Tables

Linkedit Considerations

JCL Considerations

• The IDMS Region

Linkedit Considerations

JCL Considerations

• Batch Region(s)

Linkedit Considerations

JCL Considerations

• Restart/Recovery Considerations

• Data Base Back-out Utilities

• Coding On-Line Subsystems

9-1

SPR 188 12/80

Before describing detailed installation procedures, this section .j
presents a brief description of support logic and associated programs
for the IDMS interface, summarized in Figures 9-1 and 9-2.

F====================F=================F================F===============
Function Member CSECT/ENTRY Residency

p======================================p================p===============
Interregion IGCxxx** IGCxxx SYS1.SVCLIB
Type 1 SVC
Routine
~-------------------- ---
Start-up IDMSINTI*** DBS!ART Resident
Processing

--------------------- ---------------- ---------------- ---------------
Data Base IDMSINTI** DBINT Resident

DBRELEX
Request Handling

-------------------------------------- ---------------- ---------------
Closedown IDMSINTI*** DBCLOSE Resident
Processing

--------------------- ----------------
Message Restart LOGPROC*
Processing

LOGPROC
RESTORE

Startup
Overlay

-------------------------------------- ---------------- ---------------
ATTACH IDMSATCM** IDMSATCM Resident
Processing

*Intercomm suppi1ed on the System Release tape
**DBMS Vendor-Supplied. Load and Source library member names are

those suggested by the vendor.
***User generated via DBMS Vendor-Supplied macro of the same name.

Figure 9-1. Interface Modules--Intercomm Region

Intercomm checkpoint processing is not used for IDMS restart as
checkpointing and data base recovery is a function of the data base.

===================== ============= ====================
Load Module Name CSECT Entry

=--======-========== ============= ==============~====:
user-defined IDMSINTI DB INT·

DBRELEX
DBS!ART
DBCLOSE

r------------------- ------------- -------------------
IDMSATCM RHDCATCO IDMSATCM

Figure Q Vel ~-Supplied Load Module--CSECT--Entry Structure

9-2

J

L

SPR 188 12/80

The fo11 owi ng modules are provided on the IIlMS installation Tape
for users who are operating IDMS under Intercomm:

• IDMSINTI

Macro-generated database interface program that accepts calls
from Intercomn subsystems for data base access. This module
requests service from the Central Version by posting, if it
is in the same region, or by issuing the IDMS SVC if the
Central Version is in another region. The Central Version is
an IDMS load module identified by the IDMSINTI macro. This
load module is described in the IDMS Installation Guide.

• IDMSATCM

Interface to the Central Version when IOMS is executing as an
attached task in the Intercomm region.

9.2 SYSGEN OF IDMS

IDMS may run as an attached sub task of Intercomm or as an
independent job in another region. It is also possible to have an
Intercomm with attached IOMS executing concurrently with an independent
IDMS re gi on •

Batch jobs may access the IOMS data base through standard IOMS
supplied interregion communication for either attached IDMS or
independent IOMS, as shown in Figure 9-3.

BATCH INTERCOMM BATCH IOMS INTERCOMM

t
IDMS

I \. ~ r ~ ,-

Region 1 Region 2
. .

Reg10n 1 Reg10n 2
. Reg10n 3

Figure 9-3. Attached IOMS and non-attached IOMS

Using the Intercomn Mul ti region Support Facility (MRS), it is
possible to have an attached IOMS in any or all of the MRS regions and
an optional independent IDMS region.

IDMS INTERCOMM INTERCOMM INTERCOMM
BATCH CONI:ROL SATELLITE SATELLITE
REGION REGION REGION! REGION2

IDMS a IOMS b

9-3

SPR 188 12/80

In, this example,
Sate 11 i te 1 Re gi ons can
their res pecti ve regions.

the BATCH,
each access

Interconm Control, and Interconm
only the IDMS data base within

Interconm Satellite 2 Region can access
When the load module of Satellite Region 2 is
macro will specify the IIMS (Batch, IIMS a,
Satellite Region 2 will conmunicate.

The IDMSINTI macro is used to specify:

only one other IOMS.
prepared, the IDMS INTI
or IIMS b) wi th whi ch

• Whether IDMS is to be attached or execute in a separate
region, and which Central Version to use.

• The DDname of the file containing the Central Version control
information.

• The SVC number used for interregion cOtmnunication (0 if
nonattached) •

• The load module name of the Central Version to be used when
rurming in attached mode.

See IDMS Installation Guide for detailed instructions on coding
th is macro.

9.3 THE INTERCOMM REGION

9.3.1 Intercomm Region Tables

The SPA, SPA Extension, and SCT described in Chapter 4 are
requi red in the Intercoum region to implement IDMS support:

• SPALIST coding: if the IIMS-access subsystems are
dynamically loadable, the value coded for the MAXLOAD
parameter must be very generous and should be coordinated
with the maximum concurrent threads defined for IDMS.

• Subystem Control Table coding:

RESOURCE macro coding can be used to control concurrency and
farce IIMS subsystem enqueues on a cOtmnon resource (IIMS).

SYCTfBL macro TCTV value could be at least 15 minutes to
prevent premature time-outs and allow for concurrent access
to the data base fran other regions. TCTV value can be
coordinated' with DBMS INTWAIT value coded for the Central
Versioo used far the region. Thread concurrency for a
subsystem is controlled by the MNCL parameter. DBASE=DB must
be defined.

9-4

SPR 188 12/80

9.3.2 Intercomm Region Linkedit

Figure 9-4 shows the linkage editor statements required for
installatioo of IDMS modules with Intercomm. These are in addition to
linked it requirements for the non-DBMS functions of the Intercomm
regions (Intercomn programs, tables, service routines, Interconm and
user subsystems, etc.)

*

*
*
*
*
*
*

INCLUDE IDMSLIB(IDMS INTI)

INCLUDE IDMSLIB(IDMSATCM)

INCLUDE SYSLIB(LOGPROC)
INCLUDE SYSLIB(RESTORE3)

OVERLAY A STARTUP OVERLAY
INSERT LOGPROC
INSERT RESTORE3

IDMSTSKT table

ONLY IF ICOM USING
ATTACHED IDMS

OPTIONAL:
IF MESSAGE RESLART
PROCESSING IS TO
BE MADE AVAILABLE

Figure 9-4. Intercomm Region Linkedit

9.3.3 Intercomm Region JCL

The IDMS library must be defined by a STEPLIB Or JOBLIB
statement. If Intercomm is executing with an ATTACHed IDMS, then all
Central Version JCL for the region must also be defined. With an
independent executing IDMS, normal Intercomm JCL is used for the
Intercomm region; only the Central Version control file must be defined.

9.4 THE IDMS REGION

See the IDMS Installation Guide for linkedit and JCL
considerations.

9.5 BATCH REGION(S) -

See the IDMS Installation Guide for linkedit and JCL requirements
f or an IDMS BATCH Region.

9-5

SPR 188 12/80

9.6 RESTART/RECOVERY CONSIDERATIONS

9.6.1 Checkpoints

IntercOtllD checkpoint processing is not used with lOOS. All IDMS
checkpointing is a function of the data base.

9.6.2 Restart/Recovery

The IDMS warm start facility is used in conjunction with the IOMS
journals to autOOlatically reset the IDMS data base.

If IntercOtllD is brought up in RESTART mode messages will be
restarted (if logged and requested via SYCTI'BL RESTART parameter) as
fo 11 ows:

• Completed messages are not processed.

• Messages in process are reprocessed.

• Messages that were queued for processing are requeued for
processing.

For Interconm Restart JCL Requirements see the IntercolIDIl J
Operating Reference Manual (GDBWKFL data set is not used).

9.6.3 IDMS 'Backout-on-the-Fly'

After an IDMS thread of Interconm completes, DBRELEX is called.
If the thread failed to issue a 'FINISH' to IDMS, then DBRELEX will
signal the IDMS to backout any updates made by the thread.

When a bat ch job that is signed on to IDMS termi nates abnormally,
theIr all its updates are automatically backed out by IIJ.IS. If the
Protec ted Update Usage Mode of IDMS is used, then IntercOlDD will be
locked out of the data base at the 'area' level until the batch job
terminates. This will affect on-line response times.

If Shared Update Usage mode is used, then while the batch job is
executing, Intercom will be locked out of the data base at the record
level. However, other records within the 'area' may be updated,
decreasing the impact on on-line response time. (See Section 9.3.1).

9-6

SPR 188 12/80

9.6.4 ABEND Processing--For Attached IDMS

If the IDMS subtask
execution must be stopped,
Intercomm/IDMS job must be
restart is used).

abnormally terminates, then Intercomm
using the NRCD or IMCD c01llllands. The
restarted (in RESTART mode, if message

If the Interco1llll region abends, restart the Interconm job
(RES~RT mode if message restart is used).

9.6.5 ABEND Processing--For Nonattached IDMS

If IDMS abends, it is reconmended to perform the following,
especially if Intercomm subsystems do not requeue failing messages:

1. Bring down Interco1llll (NRCD or IMCD);

2. bring up IUMS;

3. bring up Intercomm (RESTART mode if applicable).

However, traffic to subsystems accessing IDMS may be temporarily
halted via Intercomm control c01llllands (see System Control Commands).

If Interconm abends, bring up Interconm. again (RESTART mode if
applicable). IUMS restart is not necessary.

9.7 DATA BASE BACK-OUT UTILITIES

See IDMS Utilities Manual.

9.8 CODING ON-LINE SUBSYSTEMS

For COBOL and PL/I, the IDMS vendor has supplied a CODASYL
language preprocessor for coding IDMS requests. Reentrant programming
considerations affect placement (in working storage or the linkage
section) of data items and control areas for IDMS interface.

For Assembler Language subsystems, IDMS requests are handled by
IDMS supplied macros. The library containing the macros should be
concatenated after the Interco1llll libraries in the SYSLIB DD statement
for the subsystem assembly.

See the IDMS Programmers Reference Guide for the applicable
language.

9-7

10. INSTALLING MODEL 204 SUPPORT

Model 204 is supported with a combination of INTERCOMM-supplied
programs (the GDB facility) and CCA-supplied programs. Section
5 of this document describes installation procedures for GDB;
it should be reviewed carefully, bearing in mind that the phrase
"user-supplied" or "user program" implies a Model 204 interface
program supplied by CCA.

Detailed installation procedures for Model 204 and the asso­
ciated INTERCOMM interface may be obtained from:

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

10-1/10-2

I
~

11. INSTALLING SYSTEM 2000 SUPPORT

System 2000 is supported by an MRI-supplied subsystem which
processes Natural Language requests entered from a terminal
and MRI-supplied interface routines which process Procedural
Language requests from a user-coded application subsystem.

Detailed installation procedures for System 2000 and the asso­
ciated INTERCOMM interface may be obtained from:

MRI Systems Corporation
P.O. Box 9968
Austin, Texas 78766

11-1/11-2

SPR NO.

232

Title: DBMS Users Guide

Date: 12/88

New or Revised Pages:

Title page, ii-x, Chapter 7

Deleted Pages:

None

Unchanged Backup Pages:

None

SYSTEM
PUBLICATION
REVISION

Product: Intercomm

Subject of Attached Revisions:

Release 9 updates and Release 10.0 additions.

<~ISOGON ~ CORPORATION

