
~INTERCOMM

TABLE FACILITY

~ISOGON
~~ CORPORATION
330 Seventh Avenue • New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Table Facility

Publishing History

August 1993

Remarks

Documenting the
Facility and its
Release 10 only.)

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

new Table
usage. (For

J

L PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 and System/390 family of computers and
operating under the control of IBM Operating Systems (XA and ESA).
Intercomm monitors the transmission of messages to and from terminals,
concurrent message processing, centralized access to I/O files, and the
routine utility operations of editing input messages and formatting
output messages, as required.

This document describes the Table Facility and its usage in
online and in batch mode. The Table Facility may be used to create
user tables in core storage above the 16M line (31-Amode) to use as a
scratch pad area or to hold data records. Tables may be kept and
modified or reused during the life of one Intercomm or batch mode job
execution. They may not be shared across address spaces (regions).

The Table Facility may also be used by Intercomm system programs,
therefore all table entry processing is under control of the Table
Facility to prevent storage destruction.

In conjunction with the use of this document, the reader should
consult the following Intercomm publications:

• Operating Reference Manual
• Basic Systems Macros
• Programmers Guides (COBOL, BAL, PL/1)

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PLl1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

J

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1 . 1 INTRODUCTION
1.2 EXTERNAL DESIGN OVERVIEW
1.3 INTERCOMM SYSTEM INTERFACE
1.4 USER PROGRAM INTERFACE
1.5 DEBUGGING AND ERROR INFORMATION

Chapter 2 TABLE USAGE
2 . 1 GENERAL USAGE
2.2 INTERNAL PROCESSING
2.3 PROGRAM INTERFACE
2.4 TABLE USAGE SCENARIOS

Chapter 3 USER PROGRAM INTERFACE
3.1 OVERVIEW
3 . 2 PARAMETERS
3.3 CALLING TF FUNCTIONS

3.3.1 Building a Table (TABUILD)
3.3.1.1 TABUILD Return Codes

3.3.2 Opening a Table (TABOPEN)
3.3.2.1 TABOPEN Return Codes

3.3.3 Placing an Entry in a Table (TABPUT)
3.3.3.1 TAB PUT Return Codes

3.3.4 Retrieving an Entry from a Table (TABGET)
3.3.4.1 TABGET Return Codes

3.3.5 Sorting a Keyed Table (TABSORT)
3.3.5.1 TABSORT Return Codes

3.3.6 Closing a Table (TABEND)
3.3.6.1 TAB END Return Codes

Chapter 4 INSTALLATION AND SNAPS
4.1 TABLE FACILITY INSTALLATION

4.1.1 Intercomm Linkedit
4.1.2 Subsystem SYCTTBL Definition

Considerations
4.1.3 SPALIST Parameters

4.2 TABLE FACILITY ENTRY PROCESSING SNAPS

Chapter 5 TABLE FACILITY STATISTICS
5.1 STATISTICS OVERVIEW
5.2 CORE USE STATISTICS
5.3 SYSTEM TUNING STATISTICS
5.4 SAM TRACKING OF TABLE FACILITY CALLS
5.5 ONLINE TABLE FACILITY PROCESSING DISPLAYS

Chapter 6 BATCH MODE PROCESSING
6.1 USING THE TABLE FACILITY IN BATCH MODE

Appendix A DEBUGGING TABLE ACCESS PROBLEMS
A.1 INTRODUCTION
A.2 USING THE THREAD RESOURCE DUMP
A.3 USING THE TFCB AREA
A.4 USING THE USER TFCB (TFUB) AREA

Appendix B INTENTIONAL PROGRAM CHECKS
B.1 DESCRIPTION

Index
v

1
1
1
1
2
2

3
3
4
6
7

9
9
9

10
11
12
13
14
15
15
16
18
19
19
20
20

21
21
21

21
22
23

25
25
25
26
27
27

29
29

31
31
31
32
33

37
37

41

LIST OF ILLUSTRATIONS

Figure A-l. TFUB/TFCB Area Layout

Figure A-2. TFUB/TFCB Flag Indicators

vi

34

35

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Table Facility is a table build, management and processing
facility that can be used by application programs running under control
of Intercomm, or in batch mode. Implementation of the Table Facility
is designed to relieve application programs of table handling code.
The user will only need to supply the data entries to be put in a table
along with the unique name to be assigned to the table and the fixed
length of the entries in a specific table. The Table Facility
management and processing software executes in the Intercomm region
below the 16M line, however, all table control blocks and table data
areas will be in storage acquired above the 16M line to relieve program
storage requirements. No data sets or file I/O are required by the
Table Facility.

1.2 EXTERNAL DESIGN OVERVIEW

The Table Facility provides an application program the software
(via callable interfaces) to manage temporary (for the life of one
Intercomm system execution) table creation (building) and access. Each
table will have a unique (program~specified) name and there may be as
many tables as storage constraints above the 16M line under IBM's
MVS/XA or MVS/ESA allow. The maximum size of one table is
approximately 16M. The entry size (up to 32767 bytes) for a specific
table is specified when the table is built, as also (optionally) are
the entry's key offset and size within an entry. If table entries
contain keys, the table may optionally be sorted at program request
before subsequent access. After a table is built, a specific entry in
the table may be randomly accessed via key (if any) or relative entry
number, or entries may be retrieved in sequential or reverse order.
Existing entries may be updated or deleted at program request after the
table is built. Deletion of tables when no longer needed is a program
responsibility, except if an on-line program should program check or
time out while building a table. In the latter cases, Intercomm
application program purge processing will delete a table being built,
or close a table being accessed for update, as needed. However, if the
address space abends or is closed down, MVS will free all table
storage.

1.3 INTERCOMM SYSTEM INTERFACE

The system Table Facility interface consists of one new program
called INTTABLE which contains the entry points for the table
management interface routines to be called by user application
programs. The INTTABLE module executes below the 16M line and handles
all table management and control block processing, including
mode-switching for access to table control blocks (TFCBs) and to build
and process table data areas acquired in storage above the 16M line.
The INTTABLE module also handles Table Facility processing statistics
gathering (see Chapter 5) and optional snaps of table entry activity
(see Chapter 4).

1

Chapter 1 Introduction

Parameters are provided on the system SPALIST macro for the user
to specify (at Table Facility installation) the initial and increment
sizes of the TFCB (Table Facility Control Block) area and of each
table entries area (the default is 4K (4096 bytes - the IBM MVS page
size)), and the system-wide number of the MVS subpool (from 1 to 127)
to use for the table areas (to group them together) if the default of
subpool 0 (zero) is not desired. See Chapter 4.

System statistics processing modules have been updated to print
3l-Amode storage request and usage totals, and to print Table Facility
statistics for tuning the SPALIST parameters. See Chapter 5 for
details.

Relevant system command processing modules have been modified
for Table Facility information display. See Chapter 5 for details.

1.4 USER PROGRAM INTERFACE

A user application program accesses the Table Facility via a
CALL to the desired INTTABLE interface entry point. The entry point
names and usage are given in Chapter 2, along with suggested Table
Facility access scenarios. Detailed descriptions of the called
routines, the parameters to pass, and the return codes, are given in
Chapter 3.

One on-line program thread can concurrently access up to 255
tables. There is no restriction for a batch mode program. See
Chapter 6 for batch mode processing and linkedit.

1.5 DEBUGGING AND ERROR INFORMATION

Where possible, an error return code after a CALL to the Table
Facility is made to indicate programming errors and to prevent program
loops. Should a program check or timeout occur in a program accessing
the Table Facility, Appendix A gives debugging information and
pertinant control block data. Should the Table Facility encounter an
unrecoverable error (usually due to storage overlay), it will force a
program check: error codes issued by the Table Facility and their
causes are given in Appendix B.

2

L

CHAPTER 2

TABLE USAGE

2.1 GENERAL USAGE

Tables can be used by syst~m or user application programs for
temporary scratch pad areas, for ~ser statistics gathering, for record
gathering for subsequent analysis ~nd/or print, or for user tables and
data areas (instead of the user SPA, for example), or to save terminal
work areas. Unique table names (up to 16 bytes in length) are ensured.

Data entries in a table are fixed length. The entry length for a
table is specified when a table is built, and can be from 1 to 32767
bytes. If variable length entries are desired, the program must
process such entries by specifying the actual entry length within the
entry (or in the first halfword of the entry) and padding the unused
remainder of the program entry area with binary zeroes (low-values) or
blanks, as appropriate. The maximum entry size is specified when the
table is built and that maximum si~e is used by INTTABLE for moving the
entry between the table and the caller's entry data area. The program
retrieving the entry must be aw$.re of a variable length entry and
process accordingly.

Entries may have keys from 1 to 256 bytes in length (must be the
same length and in the same place in each entry). The key must be
entirely located within the first 256 bytes of each entry. The key
size and offset is also defined when the table is built. Keyed entries
may be sorted (at program request) for subsequent access by key.
INTTABLE uses the system sort and binary search routines (INTSORT and
BINSRCH) for sorting keyed tables and for locating an entry by key in a
pre-sorted table. Keyed and non-keyed entries within a table may not
be intermixed if the table is to be sorted.

For both keyed and non-keyed tables, entries may be created when
the table is originally built, or may be added (appended) to an
existing table. New entries may not be inserted in a table. Existing
entries may be updated or deleted. For sorted keyed tables, if an
entry is deleted in the middle of the table, or if an update changes
the key area, or if new entries are added, the table is flagged to be
resorted when access ends (table is closed), and further access by key
is prevented until the table is resorted. A user program can, however,
request the resort if further access by key is desired.

Simultaneous access for update (or add or delete) to the same
table from multiple programs (program threads) is not allowed. Shared
program access, for retrieval of entries only, is permitted. The type
of access to an existing table is program-specified when the table is
opened for access. Access for retrieval only may not be changed to
access for update (or add or delete) without first closing the table
(ending build or retrieval access) and then reopening it for update.
Thus, entry integrity is assured.

3

Chapter 2 Table Usage

To update or delete an existing entry, that entry must first be
retrieved for update. Deleted entries in a keyed table are discarded
when the table is resorted. Deleted entries are initialized to X'FF'
(high-values) and are not accessible except by relative entry number
(automatically skipped during sequential retrieval). If the first
entry in a sorted table is deleted, the subsequent entries are shifted
over it, the last entry is then deleted and resorting is not needed.
If the last entry in a table is deleted, it is no longer accessible
(even by entry number) and resorting is not needed.

2.2 INTERNAL PROCESSING

Because tables are in storage above the 16M line, they are
infinitely expandable (up to 16M). When a table is built (first
created), an initial table area is acquired. The size of the initial
area is a multiple of 1K as specified via a SPALIST parameter when the
Table Facility is installed (default is 4K or 4096 bytes). The
increment for expanding a table (multiple of 1K) is also specified on
the SPALIST macro. The maximum size of one table, therefore, is
actually 16M less the increment value. The size of the initial and
increment values must be at least as large as the maximum expected
entry length. When a table entry area is expanded, a new area of
existing size plus the increment size is acquired, the existing
entries are copied to the new area, the old area is freed, then the
new entry is added (in the new area). If entries at the end of a
table are deleted (also if deleted entries exist after a sort), then
any increment(s) is freed if possible. Thus, initial and increment
default sizes are set at 4K to use MVS page sizes. Note that if all
entries in a table are deleted, the entire table area is freed.
Statistics are kept on table storage, table expansions, the largest
table, the maximum number of entries created in a table, and the
average table size, for tuning the SPALIST parameters.

On the first call to build a table (after system startup) an
area of storage above the 16M line will be acquired to hold the Table
Facility Control Blocks (TFCB's). Each control block is 64-bytes in
length and contains information about each table being built or
accessed, such as table name, entry length, key length and offset (if
any), number of entries (incremented as table entries added), address
of the table entry area, size of the table entry area, a pointer to
the last added/valid entry in the table area, internal key of the
program creating or updating the table (for program purge processing -
if needed), and other control flags and fields. The TFCB area is in
system-controlled 31-Amode storage and will be of an initial
(user-specified in the SPA) size which will be automatically expanded
(relocated) as needed. The address of this area is placed in the
System Parameter Area (SPA).

4

L

Chapter 2 Table Usage

When a table is closed with delete, the table entry area is
freed, and the TFCB in the system TFCB area is cleared and put on a
chain of free TFCB's in the area. There is also a chain of 'in-use'
TFCB's to reduce the search time for an existing table name. Each
TFCB has a forward and backward chain pointer to facilitate
rechaining. The base pointers to the 'in use' and 'free' TFCB's are
in the first 64 bytes of the TFCB area (which starts with the tag
TFCB) , along with fields for Table Facility statistics gathering.

While a table is being built, the 3l-Amode storage for it is
under control of the caller's (application program) thread. Thus it
is displayed in an indicative dump, and the address is given in the
thread dump (see Appendix A). Once the table is closed, ownership of
the table area is transfered to the system (Intercomm) so that the
table is not purged and can be accessed later by another program.
However, the program thread that has built the table can close it with
a delete request and the table area is freed. If the program building
the table should program check (terminate abnormally) or time out, the
table is freed during program purge processing. If an application
program has opened a table for update, its exclusive control of the
table (via table name) is freed and the table is closed and kept by
program purge processing if the program has not closed it. Shared
control of a table is also freed and examined for continued validity
on the next open request. This is accomplished via Intercomm internal
enqueue (INTENQ and INTDEQ macros) processing.

5

Chapter 2 Table Usage

2.3 PROGRAM INTERFACE

A user application program (and/or the Intercomm Page Facility)
accesses the Table Facility via a CALL to the desired INTTABLE
interface entry point. A brief description of the interfaces follows:

• TABUILD - build (create) a table with a unique (program-specified)
name and giving the entry length, plus key length and
offset in an entry (if desired).

• TABOPEN - open (for retrieval or update) an existing table, passing
the table name.

• TABPUT - put an entry into a table via add of an entry at the end,
or update/delete of an existing entry previously gotten for
update.

• TABGET - get (sequentially retrieve) an existing table entry
(optionally skip duplicates in a sorted table), or get the
next or a specific entry (optionally for update or delete).
A specific entry may be designated as the first, previous,
next, or last, or first entry with a specific key, or a
relative (to 1) entry number. Note that sequential
retrieval may start at the end and be in reverse order, or
may start after a specific entry is requested.

• TABSORT - sort a previously built or opened (for update) table
containing keyed entries.

• TABEND - close a previously built (by the same program thread) or
opened table and optionally keep or delete it.

While a program is building or accessing a table, it will have in
its dynamic working storage (DWS) a copy of the Table Facility Control
Block (its TFCBarea). This copy is initialized when the program calls
TABUILD or TABOPEN and will contain a last retrieve 'pointer', the
address of the table 'I/O' area in the program's DWS, the table entry
area address, information about the table access being done by the
program, and a 'pointer' to the system TFCB in storage above the 16M
line (to speed access to the TFCB and table area by INTTABLE). If
entries are being added to a new or existing table, the count of
entries will be updated in both the system and program TFCB areas, as
will the table entry area address (if changed) and the last entry
'pointer'. Thus, for debugging in a snap 126, the programmer can use
the TFCB in the program's dynamic working storage to determine the
current table status and activity. To easily find the TFCB area in the
DWS, the area will begin with the table name (16 bytes) followed by the
tag TFCB. Note that the pointers described above are actually ful1word
offsets into the associated area (system TFCB area or table area) from
the address of the area.

This user TFCB area (TFUB) is one of the parameters passed on all
Table Facility calls, along with a TFCW (Table Facility Control Word)
for request options and return codes. The layout of the user TFCB area
is described in Appendix A along with other debugging information.

6

Chapter 2 Table Usage

2.4 TABLE USAGE SCENARIOS

Possible calling sequences for using the Table Facility are
listed below:

a) Program

b) Program

c) Program

d) Program

calls
calls
calls

calls
calls
calls
calls

calls
calls
calls
calls

calls

calls
finds
calls

TABUILD to create a table,
TABPUT for each entry to add to the table,
TABEND to keep table for future access.

TABUILD to create a table with keys,
TAB PUT to add multiple entries to table,
TABSORT to sort created table,
TABEND to keep sorted table for future access.

TABUILD to create a table (with keys),
TAB PUT to add multiple entries to table,
TABSORT to sort created table (optional),
TABGET to sequentially retrieve (sorted)
entries,
TABEND to delete table.

TABUILD to create a table,
return code = 3 (table already exists),
TABOPEN to access table,

calls TAB END to delete existing table then,
follows scenario a, b, or c.

e) Program follows scenario a or b then,
calls COBPUT (MSGCOL) to pass a message with the table

name to another program.

f) Other Program gets table name from passed message,
calls TABOPEN to access table,
calls TAB PUT to add entries and/or,
calls TABGET to retrieve entries,
calls TAB END to keep or delete table.

g) Program calls TABOPEN to access an existing table,
calls TAB PUT to add 1 or more entries at end

or
calls TABGET to get a (specific) entry for update

then
calls TAB PUT to save updated (deleted) entry

Q!:
calls TABGET to retrieve one or more entries without

update/delete,
then

calls TAB END to close and keep table.

In all cases of creating (adding) or updating/deleting entries,
the source of data for the entry (or delete request) may come from an
operator terminal (operator keys data or delete request), or an
existing file or Data Base record. The terminal request/data is passed
to a program in the form of an input message. The message may contain
a (generic) key of a data record or records to add/update/delete in a
table or contain data to use as a basis for creating table entries from

7

Chapter 2 Table Usage

existing data records. Data records must be retrieved by the
application program using standard Intercomm interfaces. Conversely,
an input message may request a program to retrieve (and format for
transmission) a specific table entry, or a group of table entries from
an existing table. Alternatively, an input message may request a
program to create a table, then retrieve the entries (or retrieve
entries from an existing table) for output formatting and printing on a
system printer accessible by Intercomm.

In batch mode, the source of table entries may be
program-generated or may be records from one or more files and/or Data
Bases. Records may be retrieved, put in a table, sorted, and then
printed or used to update a master file.

8

L
CHAPTER 3

USER PROGRAM INTERFACE

3.1 OVERVIEW

A user application program accesses the Table Facility via a CALL
to the desired INTTABLE interface entry point. Parameters to be passed
with the call are listed under each interface routine description and
general return codes are also given. Note that while an Assembler
Language or PL/l program can call the interface routine entry point
directly, an on-line COBOL program must call Intercomm's COBREENT
(reentrant COBOL interface processor) passing as the first parameter
the REENTSBS table routine name (provided in the COBOL copy member
ICOMSBS) for the interface entry point, followed by the interface
routine's parameters as given below. (See COBOL Programmer's Guide).
All parameter areas (except the REENTSBS name) must be located in the
dynamic working storage (save/work area, DSA or DWS) of the calling
program. The addresses (labels) of these areas are passed on the CALL.

Note that each table entry is fixed in length - if an actual
entry is smaller than the specified (at BUILD) length, low-order blank
(spaces) or binary zero (low-values) padding must be provided by the
caller. The first two bytes of the entry may contain the actual entry
length (if variable) for application program usage. An entry may not
have X'FF' (high-values) as the first 256 bytes (or as the entire entry
if less than 256 bytes in length). X'FF' is used as a deleted entry
indicator (entry may be inadvertently deleted).

3.2 PARAMETERS

For all calls, the first two parameters are the same and are:

• TFCBarea - 64 byte fullword-aligned area to contain the user
program's copy (TFUB) of the Table Facility Control Block for
the table being built or accessed. This area is initialized
by the first call for a specific table and modified by all
other calls for that table. If more than one table is
concurrently accessed or built within a program. a unique
TFCBarea must be supplied for each table. The layout of the
TFUB is described in Appendix A. The TFUB may not be
modified by a program after the initial call to TABUILD or
TABOPEN. The TFUB may be reused after a call to TABEND.

• TFCW - a four byte (fullword) area to pass calling request
options in byte 2 (in character form) and to receive a return
code (in character form) in byte 1 (standard Intercomm
application program Facility interface processing). For
As sembler Language callers, the return code in hex
(multiplied by 4) is also returned in register 15 (low order
byte) and may be used for a branch table.

9

Chapter 3 User Program Interface

3.3 CALLING TF FUNCTIONS

For COBOL, the Table Facility service routines are invoked
through calls via the interface routine COBREENT. The REENTSBS codes
for TF functions are:

• TABUILD--36

• TABOPEN--40
• TABPUT---44
• TABGET---48
• TABSORT--52

• TABEND---56

The specific form of the
programming language being used.
languages supported by Intercomm,
routine being called:

CALL statement depends on the
Examples are given below for all
where 'function' is the specific

• Assembler Language:

•

[symbol] CALL function, (TFUB,TFCW[,other parms]),VL,MF=(E,list)

where list is a parm-1ist area in the callers dynamic save/work
area. For Assembler programs executing below the 16M line, the
function address can be pre loaded in register 15 from the SPAEXT
(see Assembler Language Programmer's Guide).

PL/1:
CALL function(TFUB,TFCW[,other parms]);

where function is declared as ENTRY OPTIONS (ASH INTER); or is in
copied member PLIENTRY

or

CALL PMIPL1(function,TFUB,TFCW[,other parms]);

where function is the REENTSBS-offset code label in copy member
PENTRY (see PL/l Programmer's Guide).

• COBOL:
CALL 'COBREENT' USING function,TFUB,TFCW[,other parms].

where function is the REENTSBS-offset code label in copy member
ICOMSBS. For batch mode, use the actual entry point name instead
of COBREENT and omit the function value.

In all cases, 'other parms' are defined as needed for the specific
called entry point as described below.

10

J

L

Chapter 3 User Program Interface

3.3.1 Building a Table (TABUILD)

TABUILD is invoked to create (build) a new table with a unique
(program- spec ified) name. At this time, the application program
defines table characteristics such as its name, the entry length and
optionally the key length and offset. A key length (may be the same as
the entry length if 256 bytes or less) and offset must be given if the
table will be sorted, even if specific access by key is not
anticipated. The parameter list for TABUILD is:

where:

TFUB,TFCW,tab1e-name,entry-1ength[,key-1ength,key-offset]

• TFUB (required) is the address of the 64-byte user TFCBarea
to hold the copy of the new table TFCB initialized by
TABUILD.

• TFCW (required) is the address of the 4-byte (fu11word) user
Table Facility Control Word where byte 2 contains:

blank (or binary zeros/low-values) = no keys used, or
K = each table entry will have a key.

• table -name (required) is the address of a 16-byte area
containing the unique alphanumeric table-name (left justified
with low-order blank padding if needed). This name will be
placed in the first 16 bytes of the intialized TFUB area and
therefore may be prep1aced there for this parameter before
the CALL. The name may not begin with a character zero (0)
(reserved for Intercomm system usage).

• entry-length (required) is the address of a ha1fword (PIC
S9999 COMP.) containing the (maximum) length to be used for
every table entry (length of user program table entry , I/O'
area) . The length can be from 1 to 32767, but may not be
larger than the initial or increment table area sizes defined
on the SPALIST macro for the Table Facility.

• key-length (required if option in TFCW = K) is the address of
a halfword containing length of the area within each table
entry which will contain the entry key. Key-length may be
from 1 to 256 bytes and may be the same as the entry-length
(if 256 bytes or less).

• key-offset (required if key-length given) is the address of a
ha1fword containing the offset (relative to zero) to each key
within each table entry: if the key is at the beginning of
the entry, or is the same length as the entry length, then
the offset is zero. The offset value may be from 0 to 255.
The key must be completely contained within the first 256
bytes of the entry (for sort and search processing).

11

Chapter 3 User Program Interface

3.3.1.1 TABUILD Return Codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABUILD return codes are:

R.C. R15 Meaning
=, ,=

0 00 Request successful, TFCB areas initialized.
1 04 TFCW - invalid option request.
2 08 Table name not valid (not provided) or system not

XA or ESA.
3 12 Table not built - table name exists.
4 16 No core to acquire/expand system TFCB area or to

acquire initial table area.
5 20 Entry-length invalid or not provided.
6 24 Key-length provided but TFCW option not K.
7 28 Key-length missing but TFCW option is K.
8 32 Key-length invalid or greater than entry-length.
9 36 Key-offset invalid or missing.

NOTE: if return code is 3 - use TABOPEN instead (then TABEND with
delete option if program desires to recreate table).

12

J

Chapter 3 User Program Interface

3.3.2 Opening a Table (TABOPEN)

TABOPEN is invoked to open (find) an existing table with the
table name provided on the call, and to set up the user TFCB area
(TFUB) for program access to the named table. A table may be opened
for update to change, add or delete one or more entries and/or to sort
the table (if keyed), or may be opened for (sequential) entry retrieval
only. The parameter list for TABOPEN is:

where:

TFUB,TFCW, table-name

• TFUB (required) is the address of the 64- byte user TFCBarea
to hold the copy of the system TFCB describing the requested
table. The first 16 bytes may be initialized to table-name
(if program has executed TABUILD, TAB PUT ' s , TABEND (keep),
and then wants to access those table entries, the same
TFCBarea may be reused).

• TFCW (required) is the address of the 4-byte (fullword) user
Table Facility Control Word where byte 2 contains:

U entries may be modified/added or table may be sorted
(if needed), or

R entries will only be retrieved, or
N same as R, but skip duplicates if table sorted.

• table-name (required) is the address of the l6-byte area
containing the name of the table to be accessed (may be in
the first 16 bytes of the TFUB), which must be left-justified
with low-order blank padding, if needed.

13

Chapter 3 User Program Interface

3.3.2.1 TABOPEN Return codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABOPEN return codes are:

R.C. R15 Meaning
F=====~=======~===='================:=========='===============================

0

1
2

3

4

5

6

7

8

9

NOTES:

00

04
08

12

16

20

24

28

32

36

Table exists and is available for access, user
TFUB area initialized.
TFCW - invalid option request.
Table name not provided or invalid parameter
list.
Table name found, but table is already being
updated/built by calling program.
Table name found, but table is still being built
by another program (thread) and has not yet been
closed for later access.
Table name found, but table is being accessed for
update by another program which has exclusive
control of the table.
Table name found, but table is being accessed by
other program(s) (not available) when caller's
TFCW option is U.
Table name found, but table has no data entries.
Entries may be added if opened with TFCW option
U, otherwise, TABEND (keep) the table and reopen
it with option U or TAB END (delete) the table and
rebuild it.
Table name found, but an ENQ is in effect for the
name which was not issued by INTTABLE, or table
access count is at maximum (255 threads). Table
cannot be accessed.
Table name not found.

• return codes 1, 2, 3, or 8 = programming error;
• return codes 4, 5, or 6 = program may call Intercomm' s

IJKDELAY to temporarily give up control (allow other
program(s) to finish table access) before retrying TABOPEN
call;

• return code 0 = byte 2 will contain a character:
X - if table has deleted entries (not sorted), or
S - if table is sorted (no duplicates), or
D - if it is sorted and has duplicates, or
the passed option code if none of the above applies;

bytes 3 and 4 will contain the length of a table entry
(program's table entry 'I/O' area length must be at least as
large as this length).

14

Chapter 3 User Program Interface

3.3.3 Placing an Entry in a Table (TABPUT)

TABPUT is invoked to place an entry in a table via add of an
entry to the end of a table (existing or being built) or via
update/delete of an existing entry previously retrieved (via TABGET)
for update; add requires a previous TABUILD or a previous TABOPEN with
option U, update/delete requires a previous TABOPEN with option U. The
parameter list for TAB PUT is:

where:

TFUB,TFCW,entry-area

• TFUB (required) is the address of the 64- byte user TFCBarea
as initialized by a call to TABUILD or TABOPEN for the same
table. This area may not be modified by the user program
between calls.

• TFCW (required) is the address of the 4-byte (fullword) user
Table Facility Control Word where byte 2 contains:

A add entry at end of table, or
U update previously retrieved entry, or
D delete previously retrieved entry.

• entrY-area is the address of the user area containing the
entry to be added/updated/deleted. This parameter may be.
omitted if option=D: in the table data area the entry will be
set to X'FF' (high-values) and cannot later be accessed
(automatically skipped if sequential retrieval), except by
relative entry number (see TABGET). If the deleted entry is
in a sorted table, it will automatically be removed by TAB PUT
if it is the first or last table entry, otherwise the table
is flagged for resort.

3.3.3.1 TABPUT Return Codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABPUT return codes are:

R.C. R15 Meaning
=======F============'======'================='======================== F==-==='

0 00
1 04
2 08

3 12
4 16
5 20

6 24
7 28
8 32

Entry added/updated/deleted.
TFCW - invalid option request.
No previous TABUILD or TABOPEN (invalid
TFCBarea), or invalid parameter list.
Entry-area not passed for option A or U.
No storage to add another entry.
Request = U or D but entry not previously
retrieved for update.
Request = A/U/D but TABOPEN not for update/add.
Request = U or D but table still in BUILD status.
All table entries deleted (program should call
TABEND with delete, or create (add) new entries).

15

Chapter 3 User Program Interface

3.3.4 Retrieving an Entry from a Table (TABGET)

TABGET is invoked to get (sequentially retrieve) an existing
table entry (optionally skip duplicates if table sorted) or to get the
next/specific entry (optionally for update or delete). A specific
entry may be designated as first, previous, next, last, or the first
entry with a specific key, or a relative entry number (relative to 1)
may be requested. The parameter list for TABGET is:

where:

TFUB,TFCW,entry-area[,{key-area }]
{entry-number}

• TFUB (required) is the address of the 64-byte user TFCBarea
as initialized by a call to TABUILD or TABOPEN for the same
table. This area may not be modified by the user program
between calls.

• TFCW (required) is the address of the 4-byte (fullword) user
Table Facility Control Word where the following options may
be used depending on the desired retrieval type:
byte 2:

R = retrieve first/next entry even if next entry has
a duplicate key (skip next entry if duplicate key
in sorted table opened with option N).

N retrieve next entry (skip next entry if duplicate
key in sorted table and retrieve next
non-duplicate entry).

U retrieve next/specific entry for update or
delete.

S retrieve specific entry (no update/delete).
byte 3 (if option in byte 2 is U or S):

K = retrieve specific entry with provided key (first
entry with key if duplicates) - presorted table
only.

R retrieve specific entry with provided entry
number (even if entry flagged for deletion).

F retrieve first valid entry.
L retrieve last valid entry (even if duplicate).
P retrieve previous entry (even if duplicate key,

unless table opened with option N).
N retrieve next entry (default) even if duplicate

key, unless table opened with option N.

NOTES: the user TFUB contains a 'pointer' to the last
retrieved entry, which is used as a base for next or
previous retrieval. To start or restart retrieval at
a specific point, use option S (or U) in byte 2 and
the desired starting point option (except N) in byte
3. To then continue previous entry retrieval, option
SP (or UP) in bytes 2 and 3 must be used. However,
to then continue next entry retrieval, option R or N
(in byte 2) or UN (in bytes 2 and 3) may be used.

16

L

Chapter 3 User Program Interface

If option R or N is used (in byte 2), INTTABLE places
an N in byte 3 for internal processing (may be
ignored by the program). However, if no previous
access to the table has been made by the program
since a TABSORT or TABOPEN for the table, INTTABLE
places an F in byte 3.

If a program has built a table and put entries in it
and then desires to retrieve the entries, option SF
or SL must be used on the first TABGET call to
initiate retrieval from the beginning or end of the
table. Otherwise a return code of 6 for the TABGET
call will result if option R or N used in byte 2
(trying to retrieve beyond table end).

Duplicate entries are tested for only in presorted
tables.

Once a keyed entry has been updated with a key
change, then the table cannot be accessed by key
until it has been resorted (see Return Code 1):
either call TABSORT before the next keyed access, or
call TABEND (automatically resorted), then reopen the
table. Sequential or entry-number access may be used
for other entries without resorting.

• entry-area (required) is the address of the user ' I/O' area
to contain the retrieved entry (if found/available). The
size of this area must be of the maximum entry length defined
when the table was built (see NOTES under TABOPEN return
codes).

• key-area is the address of the user area containing the key
of the specific entry to be retrieved from a sorted table if
option SK or UK was used.

• entry-number is the address of a fullword containing the
number (relative to 1) of the entry to be retrieved if option
SR or UR is used. For example, to retrieve the sixth entry
in the table, place a 6 in the fullword (binary value).

17

Chapter 3 User Program Interface

3.3.4.1 TABGET Return Codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABGET return codes are:

R.C. R15 Meaning
F===~= ======~========================,===================,==========~====~== =,

0 00

1 04

2 08

3 12
4 16

5 20

6 24

7 28

8 32

9 36

Requested/next entry successfully retrieved (in
user entry-area).
TFCW - invalid option request or request
combination, or K request in TFCW byte 3 invalid
(no keys or table not sorted or needs resorting).
No previous TABUILD or TABOPEN (invalid
TFCBarea), or invalid parameter list vs. options.
No entry-area provided.
Option byte 2 = U or S and option byte 3 = K or R
but no key area or entry-number provided.
Request = U but TABOPEN not for update or still
in TABUILD mode.
Entry not found: relative number invalid or
beyond table end (option SR or UR); or key not
found (option SK or UK); or beyond end of table
for 'next' entry request.
Entry not found, request was P (previous), but
last GET retrieved first valid entry.
Entry not found, request was L (last), but
previous GET retrieved last valid entry.
Table has no entries (all deleted).

NOTE: Byte 4 will be used for special information codes when the return
code is 0, as follows:

D option byte 2 = R, key of entry returned from sorted
table is a duplicate of previous entry.

X option byte 2 = U or S and option byte 3 = R but specific
entry returned is a previously deleted entry (contains
high values).

R same entry as previously requested (preceding TABGET
call) returned if option byte 2 = U or S and byte 3 = K
or R.

L = last valid entry in table returned.
F = first valid entry in table returned.

The default is a blank if none of the above applies (SPACE or
X'40').

18

L

Chapter 3 User Program Interface

3.3.5 Sorting a Keyed Table (TABSORT)

TABSORT is invoked to sort a previously built or opened (by the
program) table based on the user-defined (at BUILD) key area in the
table entries. A previously opened table should have been opened with
option U (for exclusive control). If it was not, TABSORT attempts to
acquire exclusive control, but if it cannot, then the request is
rejected (see TABSORT Return Codes). The parameter list for TABSORT
is:

where:

TFUB,TFCW

• TFUB (required) is the address of the 64-byte user TFCBarea
as initialized by a call to TABUILD or TABOPEN for the table
to be sorted.

• TFCW (required) is the address of the 4-byte (fullword) user
Table Facility Control Word. No options are used.

3.3.5.1 TABSORT Return Codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABSORT return codes are:

R.C. R15 Meaning
====

0 00 Table sorted.
1 04 (TFCW - not applicable).
2 08 Invalid TFCBarea (table not previously built 01

successfully opened) or invalid parameter list.
3 12 No key (length/offset) defined when tablE

originally built.
4 16 Table not available for sort - other program(s)

accessing table (table not opened with option U).
5 20 Table has no entries (nothing to sort or al

deleted).

NOTE: Byte 2 of the TFCW will contain a character D if duplicates found
while sorting.

19

Chapter 3 User Program Interface

3.3.6 Closing a Table (TABEND)

TABEND is invoked to close a table previously built or opened and
to specify whether to keep it or delete it - keep implies that the
table will be accessed subsequently by the same or other program(s),
while delete requests system TFCB clean up and freeing of table entry
area storage; in either case, the program's TFCBarea flags will reflect
the closed status of the table (see Appendix A). The parameter list
for TAB END is:

where:

TFUB,TFCW

• TFUB (required) is the address of the 64-byte user TFCBarea
as initialized by a previous call to TABUILD or TABOPEN for
the table to be closed.

• TFCW (required) is the address of the 4-byte (fullword) user
Table Facility Control Word where byte 2 contains:

K = keep table for later access, or
D = delete table and clean up control blocks.

3.3.6.1 TAB END Return Codes

The return code is in character in byte 1 of the TFCW (and in
binary and multiplied by 4 in register 15 for Assembler Language
callers). TABEND return codes are:

R.C. R15 Meaning
=, == f='

0 00 Table closed as requested.
1 04 TFCW - invalid option request.
2 08 Invalid TFCBarea or invalid parameter list.
3 12 Table already closed (previous TAB END for table

name requested).
4 16 Table cannot be deleted because other program(s)

still accessing it.

NOTE: if option is K and the table has keys and is flagged for resort
(due to entry add or delete, or key change update by caller),
then the table is automatically resorted by TABEND processing,
and the flag is turned off. Deleted entries will also be removed
if the table is resorted (see TABPUT).

20

L

Chapter 4

INSTALLATION AND SNAPS

4.1 TABLE FACILITY INSTALLATION

Installation of the Table Facility requires only two steps, as
follows:

• Linkedit of INTTABLE with other system programs.

• Definition of Table Facility SPALIST parameters.

There are no files or JCL statements used by the Table Facility.

4.1.1 Intercomm Linkedit

Ensure that INTTABLE is included in the resident portion of the
Intercomm load module. Also ensure that the following system modules
used by INTTABLE are included: PMINQDEQ, INTSORT and BINSRCH (for
sorted tables with keys), RMPURGE (program cleanup/purge processing)
and TDUMP (Thread Resource Dump processing), FDITCB (application thread
control block processing - examined by RMPURGE), and STRTSTOP (disable
Table Facility snaps at startup - see Section 4.2).

Also ensure that the version of MANAGER included in the linkedit
has been assembled with the &RM global in SETGLOBE set to l, to
generate RCB table processing to track INTTABLE acquired storage areas
and to ensure correct processing of STORAGE, STORFREE, and PASS macro
requests for 3l-Amode core.

Note that INTTABLE, INTSORT and BINSRCH are serially reusable
(use a local save area), and that INTSORT and BINSRCH may be called in
either 24-Amode or 3l-Amode to process tables located below or above
the 16M line.

4.1.2 Subsystem SYCTTBL Definition Considerations

The TCTV timeout value should be generous for subsystems which
use file or Data Base I/O to build a table, or which request a table
sort either directly (calls TABSORT) or indirectly (table resorted at
TABEND with keep after an entry changed or added).

21

Chapter 4 Installation and Snaps

4.1.3 SPALIST Parameters

The following parameters on the SPALIST macro (which generates
the SPA and SPAEXT Csects) may be specified in the SPA member included
in the Intercomm region linkedit where the Table Facility is used.
Initially, the defaults may be used and then modified as Table
Facility usage increases. Statistics for tuning these parameters are
described in Chapter 5. These parameters may not be dynamically
modified while Intercomm is executing. The SPALIST macro parameters
are:

.TFCBINT - define the size (in K) of the initial system area to hold
Table Facility TFCBs (which are each 64 bytes in length), and
the TFCB control area (first 64 bytes). Each lK will hold 16
TFCBs. The default is 4 (4K or 4096 bytes which holds 63
TFCBs plus the control area) .

• TFCBADD - define the size in K of the TFCB area increment to acquire to
hold additional TFCBs. Note that a TFCB area is reused after
a table is deleted. Expansion of the TFCB area is called a
TFCB area relocation. A relocation count statistic is kept
and may be used to ultimately define the optimum size for
TFCBINT to eliminate relocation processing overhead. The
default for TFCBADD is 4 (4K) .

• TABINT - define the size in K of the initial table entry area to J'"
acquire for each table when it is built (created). The
minimum must be large enough to hold the largest table entry
to be created. The default is 4 (4K or 4096 bytes) .

• TABADD - define the size in K of the table area to acquire to expand a
table entry area for a table (if needed to add more
entries) . The minimum and default are the same as for
TABINT .

• TABSP - specify the MVS subpoo1 number, from 1 to 127, to be used to
acquire all Table Facility 31-Amode storage (above the 16M
line). The default is subpoo1 O.

After adding/changing the SPALIST parameters, reassemble the SPA member
and re1inkedit it with the Intercomm load module.

22

Chapter 4 Installation and Snaps

4.2 TABLE FACILITY ENTRY PROCESSING SNAPS

Table Facility snaps of entry processing (calls to TAB PUT and/or
TABGET) are available for testing table access processing. Under
Intercomm, table snaps are deactivated at startup and are dynamically
controlled via the STRT and STOP commands. The parameter option is
TABSNAP. To start system-wide snaps of table processing, use the
following command:

STRT$TABSNAP

Henceforth, all calls to TABPUT or TABGET by all programs (system and
user) using the Table Facility will result in individual snaps being
written to the SNAPDD data set. Table entry processing snaps may
subsequently be deactivated via the following command:

STOP$TABSNAP

Snap-ids are 130 for TABGET snaps and 131 for TAB PUT snaps.

Areas snapped are:

• SAVE AREA TRACE - calling sequence trace

• TF Snap Control Block giving the thread's processing request
input message terminal-id (TID), the processing subsystem's
codes (SS CODE), the Table processing MODE (BUILD or OPEN),
the Table Facility entry CALL (GET or PUT) and the TFCW
option(s) passed for the call. For example:

TID SS CODE MODE
TEST2 E3C6.TF OPEN

CALL TFCW
GET SR

This area will always be boundary-aligned in the snap for
searching on TID or SS CODE through a group of snaps.

• System TFCB - 64-byte Table Facility Control Block for table
being accessed, as modified (if needed) after processing the
call. The table name is in the (aligned) first 16 bytes.

• User TFCB - user 64-byte TFUB area passed for the call after
modification for processing the call. The table name is in
the first 16 bytes, followed by the 'TFCB' identifier.

• User Entry Area - containing the entry retrieved from the
table, or put (updated/added) into the table. This area is
omitted if not passed for a delete request on a TAB PUT call.

The layout of the TFCB and TFUB is described in Appendix A. If the call
was to PUT for a delete, the snap is taken before delete processed.

To use Table Facility snaps, ensure STRTSTOP and PMISNAPl are
included in the Intercomm linkedit, and that the SNAPDD data set is
defined (see Operating Reference Manual).

See Chapter 6 for batch mode processing with Table Facility snaps.

23

L

Chapter 5

TABLE FACILITY STATISTICS

5.1 STATISTICS OVERVIEW

Statistics on Table Facility processing are gathered by INTTABLE
and stored in the TFCB control area (first 64 bytes) of the TFCB area.
Statistics include total tables built, current number of tables (TFCBs
in use), current and maximum table entry area space acquired, total
table area expansions and TFCB area relocations, average table size,
the largest single table area size and the maximum entries created in
one table. These statistics are provided (printed) in the System
Tuning Statistics.

Additionally, Core Use Statistics processing tracks 3l-Amode
storage requests and usage. The user may track Table Facility calls
via SAM (System Accounting and Measurement) processing. Some
statistics may be dynamically displayed via the TALY$SU command, and
Table Facility control blocks and table areas may be dynamically
displayed via the SCTL command. Thread dumps also list storage
acquired by INTTABLE and give the subpool number and full 3l-Amode
address (see Appendix A).

5.2 CORE USE STATISTICS

Under the general heading Core Use Statistics, in addition to
statistics for 24-Amode core requests, statistics are reported for
3l-Amode requests (via LOC=ANY parameter on STORAGE macro) . For the
line starting '3l-AMODE CORE:', the STORAGES ISSUED value is cumulative
to the point of printing the statistics (since system startup). The
DOUBLE WORDS NOW IN USE is the current value while HIGH THIS RUN (on
the same line) is the maximum concurrent doublewords in use since
system startup. Note that these statistics may include system and/or
user requests for 3l-Amode storage other than via the Table Facility.

See the Operating Reference Manual for further details on Core
Use Statistics which are periodically printed by RMTRACE on the SMLOG
(SYSOUT) data set.

25

Chapter 5 Table Facility Statistics

5.3 SYSTEM TUNING STATISTICS

After the first call to the Table Facility, the system tuning
statistics module INTSTS (if included in the linkedit) will produce
Table Facility processing statistics on its STSLOG (SYSOUT) data set
(if defined in the execution JCL - see Operating Reference Manual).
Under the TABLE FACILITY STATISTICS heading, the following data is
given:

For the TFCB area:

eTFCBINT -
eTFCBADD -
eCURRENT AREA -
eRELOCATIONS -
ell TABLES -

value coded for TFCBINT on the SPALIST macro.
value coded for TFCBADD on the SPALIST macro.
current size of the TFCB area.
cumulative total TFCB area relocations.
current number of defined tables (includes tables being
built, but not yet closed; does not include previously
deleted tables).

For the Table Entry Areas:

eTABINT -
eTABADD -
eCURRENT AREA -
eEXPANSIONS -
et/ BUILT -
eMAX TABLES -

value coded for TABINT on the SPALIST macro.
value coded for TABADD on the SPALIST macro.
current total space acquired for table entry areas.
total expansions of table areas (cumulative).
total created tables (cumulative).
maximum concurrent defined tables at any time during
this system execution.

eMAX AREA - maximum concurrent table area space acquired at any
time during this system execution.

eAVERAGE SIZE - current average table size (CURRENT AREA divided by 11
TABLES).

eMAX ENTRIES - maximum entries created in one table at any time during
this system execution (checked when table closed
(TABEND called), even if deleted).

eMAX TAB SZ - largest table created at any time during this system
execution (checked when table closed (TABEND called),
even if only built, then deleted (not kept».

Note that the AVERAGE SIZE statistic may not be realistic for user
tables if the Intercomm Page Facility (or other system facility) is
also using the Table Facility.

To reduce the number of RELOCATIONS, increase the TFCBINT value.
To reduce the number of EXPANSIONS, increase the TABINT value.

26

Chapter 5 Table Facility Statistics

5.4 SAM TRACKING OF TABLE FACILITY CALLS

Under the System Accounting and Measurement Facility (SAM) for
tracking on-line application program (subsystem) activity and resource
usage, the following tracking parameters ('buckets') may be specified
via the MAPACCT macro in the user-coded SAMTABLE:

.TABUILDS - accumulate count of calls to TABUILD

.TABOPENS - accumulate count of calls to TABOPEN

.TABPUTS - accumulate count of calls to TAB PUT

.TABGETS - accumulate count of calls to TABGET

.TABSORTS - accumulate count of calls to TABSORT
• TABENDS - accumulate count of calls to TABEND .

SAM statistics are gathered for each subsystem for which SAM=YES
(default) is defined on its SYCTTBL macro on a thread by thread
(message) basis. Bucket accumulators may be combined. Based on SAM
statistics for specific sybsystems using the Table Facility, the number
of calls made vs. the expected number for the subsystem processing path
may be checked for processing efficiency, or for system resource usage
activity and accounting. Note that reported Table Facility calls may
include system usage of the Table Facility, such as via the Page
Facility. See the Operating Reference Manual for SAM usage,
installation and reporting.

5.5 ONLINE TABLE FACILITY PROCESSING DISPLAYS

The TALY$SU command display (see System Control Commands) gives
the following information on Table Facility processing:

.TOTAL TABLES - current number of defined tables (same as # TABLES
on STS statistics report) .

• TABLE CORE IN USE - current total space acquired for table entry

.TFCB RELOCATIONS -
areas.
cumulative total TFCB
RELOCATIONS on STS
Chapter 4 (SPALIST
parameters).

area relocations (same as
statistics report) see
macro TFCBINT and TFCBADD

The SCTL command (see System Control Commands) can be used to
dynamically display or print Thread Resource Dumps of system or user
resources (see Appendix A), or to find the address of the system TFCB
area, or to display or print (as snaps) the system TFCB area or a user
table. See Appendix A for locating the addresses of these areas.

27

Chapter 6

BATCH MODE PROCESSING

6.1 USING THE TABLE FACILITY IN BATCH MODE

In batch mode, the Table Facility can be used as a scratch pad
area, or to store condensed versions of data records to produce batch
reports, or to store and then sort update records to process against a
file or Data Base, for example.

The Table Facility may be accessed by batch user application
programs if the following linkedit is used:

INCLUDE SYSLIB(user-program)
INCLUDE SYSLIB(INTTABLE)
INCLUDE SYSLIB(PMINQDEQ)
INCLUDE SYSLIB(BATCHPAK)

user application program
Table Facility program
INTENQ/DEQ program
Intercomm psuedo entry points

Note that BATCHPAK has entry points to process common Intercomm macro
requests including STORAGE and STORFREE requests. The STORAGE entry
point also supports 3l-Amode storage requests (LOC=ANY parameter) and
the STORFREE entry point will free 24-Amode and 3l-Amode storage,
depending on area address. Therefore, INTTABLE in batch mode (when
linked with BATCHPAK) will acquire TFCB and table area core in 3l-Amode
as in on-line processing. PMINQDEQ must be included before BATCHPAK.

BATCHPAK also contains SPA and SPAEXT Csects which contain the
default values for TFCBINT, TFCBADD, TABINT, TABADD and TABSP (see
Chapter 4). If a larger value than the default (4K) for TABADD and
TABINT is desired, the on-line SPA module (or a specially coded
version) should be included before BATCHPAK (to override the Csects in
BATCHPAK) . Coding of TABSP as other than 0 (default) is ignored (not
supported by BATCHPAK).

If the created table(s) will have keys and sorting of a table and
access by key is desired, also include INTSORT and BINSRCH in the
linkedit (before BATCHPAK).

If snaps (see Chapter 4) of table access activity is desired,
include PMISNAPl in the linkedit, and define the SNAPDD data set for
snap output in the JCL. Also, it will be necessary to OPEN the snap
data set for output. The following Assembler Language statements are
needed:

EXTERN PMISNAP
OPEN (PMISNAP,(OUTPUT»

If the user application program is written in COBOL or PL/1, it will be
necessary to code an Assembler 'top hat' program to open the snap data
set (include before the user application program and call the user
program from it - do not forget to chain save areas). If the user
table processing program is written in Assembler Language, production
of snaps may be dynamically controlled via the SSSTART and SSSTOP
macros with TYPE=TABSNAP (see Basic System Macros).

29

Chapter 6 Batch Mode Processing

Other Intercomm on-line facilities that may be used in batch mode
include:

File Handler - see Operating Reference Manual
Store/Fetch - see Store/Fetch Facility
DDQ - see Dynamic Data Queuing Facility

Of course, standard data set and/or Data Base access may be used (see
vendor manuals).

30

L
Appendix A

DEBUGGING TABLE ACCESS PROBLEMS

A.l INTRODUCTION

To validate table entry access, snaps may be used as described in
Chapter 4. If a program check or timeout occurs in an application
program using the Table Facility, then table usage information depends
on whether the application is building a table or has opened it for
retrieval and/or update. That is, if a program is building a table,
the table entry area storage belongs to the program thread and will be
snapped as a resource owned by the thread in an indicative dump (note
that it will have a 4-byte or 3l-Amode address). Whereas, if the
program has opened an existing table for access, that table's storage
belongs to the system and will not be snapped in an indicative dump.
In a full region dump, all table areas and the TFCB area will be
snapped in the subpool storage area near the back of the dump. Because
they are in 3l-Amode core (3l-bit addresses), they should be easy to
locate. The TFCB area is identified with the name TFCB in the first 4
bytes.

A.2 USING THE THREAD RESOURCE DUMP

Thread Resource Dumps are produced in the on-line system to list
resources owned by all currently assigned thread numbers (for message
processing) and for the system thread. They are produced after a
program check or timeout, after a system abend, or if an application
thread has not freed all resources acquired by the thread (such as
closing a table) before returning to the system. Resources (CORE,
FILE, NQ, etc.) are listed in reverse order of acquisition, that is,
the most recently acquired resource is listed first. Under resources
listed for the system thread (thread 0), CORE acquired by INTTABLE
describes table areas, except that one of the areas (usually the first
acquired) is the TFCB area. If a very small (less than 1024 bytes)
area is listed as acquired by INTTABLE, it will be the saved (for
reuse) snap header area (if table snaps were activated).

The thread that had a program check, timeout, or unfreed
resources, is the owner of the FILE resource SMLOG (SYSOUT data set to
which the thread dump is written), as its first resource. CORE
resources owned by INTTABLE under the application thread are for table
areas of tables being built by the thread - one for each table. There
will also be an NQ resource for every table (name on the right) being
accessed by the thread for which TABEND has not been called. If it is
NQ(OWNER) , then the thread has exclusive control of the table, and is
either building the table or has opened it for update. If it is
NQ(SHARE), then the thread has opened the table for retrieval only.

An enqueue is issued on the table name when TABUILD or TABOPEN is
called and a dequeue is issued when TABEND is called (the NQ resource
is freed). There is no enqueue timeout. Therefore, if more than one
program (thread) needs access to a table, the second may time out
waiting to access the table (see TABOPEN return codes). It is not put

31

Appendix A Debugging Table Access Problems

in an NQ(WAIT) state by INTTABLE, but may put itself into a timed delay
loop waiting to access the table. Check for NQ resources for tables
owned by other threads to resolve this problem. Then determine why the
owner thread has tied up the table - perhaps TAB END should be called as
soon as the program has finished with the table, rather than just
before returning to the system.

A.3 USING THE TFCB AREA

As stated above, the TFCB area containing Table Facility Control
Blocks is easily identified in 31-Amode storage by the literal TFCB in
its first 4 bytes. The address of the area is placed in the SPAEXT in
the field labeled SEXTFCBP at offset X' 16C' (see the SPAEXT Dsect).
The first 64 bytes of the area is a header area for statistics
gathering. The second and third fullwords of the header contain the
offsets (from the TFCB area address) to the free TFCB chain and to the
'in use' (for existing tables) TFCB chain, respectively. All TFCBs in
the area are on one or the other chain, the last in a chain contains a
forward pointer of zero (binary zeros). All TFCBs within a chain are
forward and back chained. Each chain is a 'push-down' stack.

Each TFCB on the ' in use' chain starts with the 16-byte table
name. The next 2 fullwords in every TFCB contain the back and forward
chain offsets (from the TFCB area address to the next TFCB)
respectively. The TFCB with a back chain of zero is the first on the
chain. A TFCB on a free chain may have a table name from an earlier
usage or may have zeros in the name area (never used). If both chain
offsets are zero in a TFCB, that TFCB is the only one on the chain.
The next word following the 2 offset fullwords is the address of the
table area for the named table. If the address is zero but there is a
table name, then the TFCB is probably on the free chain (TABEND called
to delete the table and free the TFCB). However, the address could be
zero on an 'in use' TFCB if entries were placed in the table, then all
entries were subsequently deleted (causing the table area to be
freed) . In the latter case, the next 2 fullwords, which normally
contain the length of the table area and the number of entries in the
table, would also be zero. These 2 words are not zeroed when a deleted
table is placed on the free chain. Other fields in the TFCB are
described in the TFUB/TFCB layout given in the next section (Figure
A-i). Note that there are 2 flag bytes for table access status, and
that one of the flags indicates if a TFCB is on the free chain. If the
flag is on, this verifies the free status of the TFCB (see Figure A-2).

Whenever a new table is to be built, or an existing table is
opened for shared or update access, the TFCB for the table is placed at
the head of the 'in use' chain (rechained) by TABUILD/TABOPEN
processing. The physical TFCB is not moved. Thus, in a small TFCB
area, a TFCB for a specific table name (if alphanumeric names used) may
be easily found by scanning the literals on the right side of the
dump. In a large TFCB area, a table being currently accessed may be
found by down-chaining (adding each forward offset to the TFCB area
address) along the 'in use' chain from the TFCB header area.

32

Appendix A Debugging Table Access Problems

A.4 USING THE USER TFCB (TFUB) AREA

The user TFUB is initialized when TABUILD or TABOPEN is called.
Most fields in the TFUB have the same values (usage) as in the system
TFCB except for several fields unique to user processing. For example,
instead of a chain field, the first word following the table name
contains the identifier literal TFCB. Thus a TFUB is easily found in
the users dynamic working storage area. The second word following the
16-byte name area contains the address of the user's table entry 'I/O'
area in the user's dynamic working storage passed on the most recent
call to TABPUT or TABGET or binary zeros if not yet called. The third
word following the name also contains the address of the 31-Amode table
entry area as in the TFCB. Use this address to find the table entry
area in a full dump or to find it in an indicative dump if the table is
being built, and to validate the data in the named table.

Note that if a program is accessing more than one table, a unique
TFUB area for each table must be used, and that the same area must be
used on each CALL for the associated table name. INTTABLE validates
that the TFUB is legitimate for a call to TABPUT or TABGET, but cannot
tell if it is the TFUB for another table also being accessed by the
same thread before moving an entry between the user entry area and a
table. It will use the entry length stored in the associated TFCB and
may move too much (causing a storage overlay and potential program
check), or too little (causing an invalid entry), if the wrong TFUB is
used for the CALL.

The layout of the 64-byte user TFUB and system TFCB is given in
Figure A-l, and of the flag byte values in Figure A-2.

The system COpy. member INTTABDS contains the Dsects describing
the TFCB header, TFCB and TFUB.

All fields in the TFUB and TFCB except the table name contain
hexadecimal values. The table name is a character field, but may
contain hex values depending on how the user constructed the name.

33

Appendix A Debugging Table Access Problems

TFUB TFCB
Name Length Description Description Length Name

f:"
NAME 16 Table name Table name 16 NAME

TAG 4 'TFCB' literal Back chain offset/ 4 PREV
o if first

REC 4 User DWS entry area Forward chain offset/ 4 NEXT
address/O o if last

DATA 4 Table area address/O Table area address/ 4 DATA
o if freed

DTSZ 4 Table area length/O Table area length/O 4 DTSZ

ENUM 4 Total table entries/ Total table entries/O 4 ENUM
o if no entries

ELEN 2 Entry length Entry length 2 ELEN

KLEN 1 Key length minus 1/0 Key length minus 1/0 1 KLEN

KOFF 1 Offset to key in Offset to key in 1 KOFF
entry/O entry/O

READ 4 Offset to last entry (reserved) 4 READ
retrieved from
table/O

ENDE 4 Offset to last valid Offset to last valid 4 ENDE
table entry (0 if 1 entry
or no entries)

TFCB 4 Offset to associated Address of associated 4 DWS
system TFCB in TFCB TFUB if in build or
area update mode

UKEY 6 Caller's unique key Unique key of table 6 UKEY
for purge processing builder or last

open for update

FLGl 1 Flag Byte 1 Flag Byte 1 1 FLGl

FLG2 1 Flag Byte 2 Flag Byte 2 1 FLG2

4 (reserved) (reserved) 4 -

Figure A-l TFUB/TFCB Area Layout

34

Appendix A Debugging Table Access Problems

The flag bytes have the following settings if the associated
bit is on (set to binary 1):

FLG1
F'================-================='=-='===='=='=========='==-=======--===-~===-=

X'80'
X'40'
X'20'

X'10'

X'08'
X'04'
X'02'
X'Ol'

FLG2
F==='

X'80'

X'40'
X'20'
X'10'

X'OS'
X'04'
X'02'

X'Ol'

Table closed (with keep) by builder.
Table is in build mode (being built).
Table has been opened.
(If on in the TFCB, but not in the TFUB, TABOPEN was for
shared access.)

Table opened for update (exclusive control).

Table has been sorted.
Sorted table has duplicate keys.
Sorted table needs resorting.
Table entries have keys (if KLEN is 0, then the actual

key length is 1).

Middle entry in table deleted (skip on retrieval, delete
after resort).

TFCB is for a Page Facility terminal.
Page Facility Control Table TFCB.
Enqueue in effect for table name.

TFCB was used, now on free chain.
(reserved).
TFUB only - Table opened with option N - automatically
skip duplicates in keyed table.

TFUB only - last call to TABGET was for update (set off
on next call to TABGET/PUT/SORT).

Figure A-2 TFUB/TFCB Flag Indicators

35

==-=

Appendix B

INTENTIONAL PROGRAM CHECKS

B.1 DESCRIPTION

If an unrecoverable error (should not occur) is encountered by
1NTTABLE, it will force a SOC1 program check via the ISK (hex 09)
instruction. The ISK operands used are given in the on-line PROGRAM
CHECK message (MP001I) - see Messages and Codes. In a dump, the ISK
code 2,0, for example, would be printed as hex 0920. The ISK codes and
reason description are listed below. Furthur clarification is provided
in Appendix A.

CODE

2,0

2,1

2,2

2,3

2,4

3,0

4,0

5,0

5,1

CAUSE

TABOPEN called with Page Facility Master Table name, but its
TFCB offset stored in SPAEXT (in field SEXPFCBO) does not
point to correct TFCB. Note that the offset is divided by 64
before being stored.

TABOPEN called with table name found on 'in use' chain, but
free chain flag is on.

TABOPEN called and no NQ is in effect for the table name, yet
the TFCB flag settings show the table being accessed in build
or update mode (requires exclusive NQ). Possibly caused by
RMPURGE not in 1inkedit, or correct version (to free tables)
not in 1inkedit.

TABOPEN called and correct TFCB found, but it contains
invalid data: offset to last valid table entry greater than
number of entries in table.

TABOPEN called and correct TFCB found, but it contains
invalid data: number of entries in table greater than offset
to last valid entry.

TAB PUT called and processing mode of table is build or
update, however, NQ in effect for table is not for exclusive
control.

TAB GET called and processing mode of table is build or
update, however, NQ in effect for table is for shared control
(not allowed).

TABGET, TABPUT or TABSORT called and user TFUB is valid,
however no NQ for the table was issued by INTTABLE, or it has
been incorrectly cancelled.

TABGET, TAB PUT or TABSORT called and user TFUB is valid,
however NQ issued by INTTABLE no longer in effect for the
table: cannot be accessed by caller.

37

'.

·.'

~.; .. ,

.......... ,
--.~ ..,.:. .

? .:" ._' .
.it '1 ~-,_ •

. -' ..

Assembler Language
--and Batch Mode snaps

9,10
29

9 --CALL return codes

Batch Mode
BATCHPAK module
BINSRCH module

COBOL
COBREENT module
Core Use Statistics

Data Bases
--and Batch Mode
--and Table Facility

1,2,29-30
29

3,21,29

9,10,29
9

25

29,30
7,8

Data entries. See Entries and
Tab1es--entries.

Debugging
--and a snap 126
--and table snaps

31-35
6

23
DWS. See Dynamic Working Storage.
Dynamic Data Queuing (DDQ)
Dynamic Storage Area (DSA)
Dynamic Working Storage (DWS)

30
9

--and parameter areas
- -and TF.CB copy (TFUB)

9
6,33

Entries (in a table)
--adding of
--deleted-indicator
--deleted-after sort
--deleting of

--and access to

3
3,6,15

9

--and table resort

4,15,20
3-4,6,15
4,15,16
4,15,20

6,14,16-18,19
13,16

3
3,33

1,3,11,16,17,19
3,9,11

to 1,16,17
1,3,6,16-17

1,3

--duplicates
--skipping of

--insertion of
--integrity of
- -keys of
--length of
--relative number access
--retrieval of
--size of
--sorting of
--source of data for
- -updating of
--variable length of

Entry data area (user)
- -and snaps

FDITCB module
File Handler (Intercomm)

3,6
7-8,29

3-4,6,15,33
3,9

3,33
23

21
30

41

ICOMSBS copy member
IJKDELAY module
Indicative dumps
INTDEQ macro .
INTENQ macro
INTSORT module
INTTABDS Dsect
INTTABLE module

--and Batch Mode
--described
--and entry data area
--and entry keys

9,10
14

5,31,33
5
5

3,21,29,38,39
33

--intentional program check by

29
1

3,33
3

37-39
9-10 --interface entry points

--internal processing
--linkedit of
- -reusability of
--snaps issued by
--statistics processing
--and TABGET processing
--and TABPUT processing

4-5
21
21
23

25-27
17,33

33
--and thread resource dumps 31-32

33
37
38
37

--and TFUB validation
--unrecoverable error processing

INTTCB macro
ISK instruction
ITCB Dsect

JCL

38

21

Keyed tables. See Tab1es--keyed.
Keys (of table entries)

--changing of
3

17
--for entry retrieval
--length of
--offset to (in entry)
--specifying
--and table sorting

Linkedit
LOC parameter (STORAGE)

MANAGER module
MAPACCT macro
MVS

Page Facility
PASS macro
PENTRY copy member
PLIENTRY copy member
PL/1
PMINQDEQ module
PMISNAP1 module

16-17
3,11
3,11
6,11

19

21
25,29

21
27

1,2,4,22

6,26,27,37
21
10
10

9,10,29
21,29
23,29

RCB table
REENTSBS table

--codes for CALLs
Relative entry number
RMPURGE module

. RMTRACE module

SAM parameter (SYCTTBL)
SAM statistics
SAMTABLE module
SCTL (system command)
SEXPFCBO field (SPAEXT)
SEXTFCBP field (SPAEXT)
SMLOG data set
SNAPDD data set

21
9

10
1,16,17

21,37
25

27
25,27

27
25,27

37
32
25

--opening of (in Batch Mode)
23,29

29
Snaps

--of table processing
--126 (after program check)

23
6

23
23

--130 (TABGET)
--131 (TABPUT)

SPA Csect/member
--and Batch Mode
--and Table Facility
--and TFCB area
--user SPA

SPAEXT Csect
SPALIST macro

--and entry length
--parameters for
--and table expansion
--and table sizes
--and tuning

SSSTART macro
SSSTOP macro
STOP (system command)
STORAGE macro
Store/Fetch Facility
STORFREE macro
STRT (system command)
STRTSTOP module
STSLOG data set
SYCTTBL macro

29
22

4
3

22,29,32,37

11
2,22,26

4
4

4,22,26
29
29
23

21,29
30

21,29
23
21
26

21,27
System Accounting and Measurement.

See SAM statistics.
System Tuning Statistics 25-26

TABADD parameter (SPALIST)
TABEND entry pOint

--described
--parameters

22,26,29

6,20
20

INDEX

42

--and program timeouts
- -return codes ,', ...
--and TCTV timeout va+~e, .. '.'
- -and TFCB chains ,,"
--and thread reso~ll<;e d~ps, .'
--usage

'-,: -. " .. -.. ~

32
20
21
32
31

7
TABGET entry point

- -described
--and entry data.

> 1.-,·,~6,16-17
area .. '.' ,,).17,33

--and INTTABLK _ '. ,_ : ~J rj, " 17
--parameters .(p"~. t -: 16-17

"r ~ 18
.", ,> te"

_ ~: ,.::'!:;. . 23
- -return codes".:..
--snaps

'- -TFCW-returned data., ~ f;;:d/' 18
, --u.sage '': ,", .--:. . 7

TABINT parameter
Table Facility

(SPALIST1 1~,~2, 26,29

--access to . :~~ 2,6-8
- -and Batch Mo,de.J ., . 8,29-30
- -calling sequences . , 7
--CALLs to .. p ,." 6-20
--control blocks for 32-35
- - de bugg ing .. . _ 2 , 31- 35
- -described .Ci., 1,3
--enqueues issued by,.~. ~ 5,31-32
--error information" 2,37-39
--external design '::" .. " 1
--installation of r:.[~~'~ 2,21-22
--parameters passed to 'sg' 9,10
--snap control bJ~~):~ 23
--snaps issued by ·t~~ ~ ... 1"j. ,'::.. 23
--statistics " ." 25-27
--storage used by <:~'~'; 22,25-27
--system interface J' 1-2
--tuning, '." ~,4,22,26
--usage of, ~ _ "':~;~.~.:.' 3-8
- -usage display .~.. ,:,;:. 27
--user interface .",.:.2,9-20

Table Facility Control Block.
See TFCB and TFUB. ~",.: . .l _ ,:...

Table Facility Control Word o(}'FCW)
--described __ ·s

--return codes in
--and snaps
--TABEND options
--TABGET options
--and Table Facility calls
--TABOPEN options
--TABPUT options
--TABSORT options
--TABUILD options

9
9

23
20
16

6,9
13
15
19
11

Tables
--access testing
- -adding '1:'0' '

--address of
- -areas-rib. snaps'
--and Batch Mode
- -building of
--closing of

23
3,6,15

32,33
31

8,29
1,3,6

3,6
--concurrent access to 3,5
--control of (by thread) 5,31-32
--creation of ~ 1
--defining characteristics of 11
- -deletion of 1,5,_6,22; 32
--enqueue processing for 5,32
--entries in 1,3;22',26,32

. -See algo- Entries.', r"
--expansion of 4-5,22
--initial size of
--internal processirtg of

22
4

3,6,29 --keyed
--maximum size of
--names of
--naming restriction
--number of
- -offsets into! ;;>~
--opening of
--overview
--ownership of
- -purge of -,
--random access to';"-
--resorting of
--searching of
--size of :cf '

--snaps of
--sorting of
--statistics on
--status of
--subpoo1 (MVS) number

. :-: . : r {
--updating of
_ -usage " VI • c

--usage scenarios
--and variable length

TABOPEN entry point
--described
--and mode for snaps
--parameters
--return codes
--and TFCB chains
--TFCW-returned data

('. 1,4,26

!.

·3 , 6 , 11 , 13 , 32
11

1,26,27
6

3,6
1,3

5,31-32
1,5,37

1,16
3,15,20

3
1,2,26,32

23,29,31
1,3,6,19,29

4,25-27
33-35

for
2,22,25,29

3-5,6,15-17
3-8

7
entries 3

--and TFUB initialization

6,13
23
13
14
32
14
33

--and thread resource dumps
--usage

31-32
7

43

TABPUT entry point
--and deleted entries
- -described
--and entry data area
--parameters
--return codes
--snaps
--usage

TABSORT entry point
--described
--parameters
--return codes
--and TABGET processing
--and TCTV timeout value
--TFCW-returned data
--usage

TABSP parameter (SPALIST)
TABBUILD entry point

- -described
--and mode for snaps
--parameters
--return codes
--and TFCB chains
--and TFUB initialization

15
6,15

15,33
15
15
23

7

6,19
19
19
17
21
19

7
22,29

--and thread resource dumps

6,11
23
11
12
32
33
31

--usage
TALY (system command)
TCTV parameter (SYCTTBL)
TFCB

--area address
--area expansion
--area indentifier
--area relocation
--area size
--chains of
--cleanup of
--control area
--described
--flag indicators
--first in area
--initial area
--layout of
--parameter area

7
25,27

21

27,32
4,22,26

31,32
22,26,27

2,22,26
5,32

20,32
22,25,32

1,4,6,9,32
35

5,32
4,22

34
9

of 6,32
4,22

23,31
5,22,32

6,9

--pointer to system version
--size of
--and snaps
--and table deletion
--user copy of

See also TFUB.
TFCBADD parameter (SPALIST)
TFCBarea. See TFCB and TFUB.
TFCBINT parameter (SPALIST)

22,26,27

22,26,27,29

TFCW. See Table Facility Control Word.
TFUB (user TFCB)

--described
--fields in
--finding in the DWS
--flag indicators
--initialization of
--layout of
--parameter area
--in snaps

Thread (resource) dumps
Time outs (of programs)

Variable length entries

6,9,33
33,34

6,33
35

9,11,13,33
34

9
23

5,25,27,31
31-32

3,9

X'FF'--as deleted entry indicator/
value 4,9,15

3l-Amode
--and Batch Mode storage
--and BINSRCH
--and core usage
--and INTSORT
--and INTTABLE
--and program check snaps
--and Table Facility areas
--and TFCB area
--thread control of

29
21

2,21,25
21

1,29
31

22,31-33
4,22,32

5

44

