
UTILITIES USERS GUIDE

L @ISOGON
330 Seventh Avenue . New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

IPN 021

IPN 026

IPN 031

IPN 042

2nd pri nting

IPN 045

IPN 057

3rd Pri nting

IPN 068

4th Printing

IPN 079

Utilities Users Guide

Publishing History

Date

September 1973

December 1973

January 1974

February 1974

April 1974

April 1974

April 1974

July 1974

July 1974

August 1974

September 1974

December 1974

Remarks

This manual corresponds to Intercotml
Release 6.0.

Errata and general updates.

Errata and general updates.

Errata.

Genera 1 upda te s .

Incorporating IPNs 021, 026, 031 and
042.

Release 6.1 updates.

Errata.

Errata.

General updates.

Incorporating IPN 068.

Release 6.2 updates.

5th Printing July 1975 Incorporating IPN 079.

IPN 093 April 1976 Release 7.0 updates.

6th Printing April 1976 Incorporating IPN 093.

IPN 135 September 1978

SPR 174 June 1980

Release 8.0 updates and general
revisions.

Revisions.

7th Print;nl7 AlI{Mut 1 QRO Tncornoratin2 SPR 174.

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written premission of
lsogon Corporation is prohibited.

J

SPR 174 6/80

PREFACE

Intercomm is a state-of-the-art te leprocess ing monitor system of
SDA, operating under the control of IBM 360/370 Operating Systems (MFT,
MVT, VS). Intercomm monitors the transmission of mes- sages from
terminals, concurrent message processing, centralized access to I/O
files, and the routine utility operations of editing input mes- sages
and formatting output messages, as required.

This document provides a general introduction to and a detailed
specification for use of the Intercomm System Utilities. The Edit and
Output Utilities provide both terminal and format independence to an
application program (message processing subsystem) executing under
Intercomm control. The Change/Display utilities provide predefined
transactions for entry at a terminal to perform file inquiry and file
maintenance. The utilities are generalized; each installation codes
tables using Intercomm macros to specify the precise use of the utility
for their applications.

This document is intended for both system and application pro­
grammers. The following prerequisite Intercomm publications support
the material contained herein:

• Concepts and Facilities

• COBOL Programmers Guide

• PL/l Programmers Guide

• Assembler Language Programmers Guide

A User Review Form is included at the back of this manual. We
welcome recommendations, suggestions and reactions to this or any
Intercomm publication.

3

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PLl1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

J

IPN 135 9/78

TABLE OF CONTENTS

INTERCOMM Publications ...
PREFACE ..
TABLE OF CONTENTS ..
LIST OF ILLUSTRATIONS ..
INTRODUCTION ...
THE EDIT UTILITY

General Description
Input Format Options

Keyword Format Positional Format
Positional by Line Format
Positional Within Keyword Input •••••••••••••••
Video Display Terminals With Screen Formatting Edit Processing
Edit Components
Edit Control Routine Logic
Edit Subroutines

Data Formats After Editing ••••••
Fixed Format ••••••••••
Variable Format

Edit Tables ••••••••••••• ~ ••••••.
The Edit Control Table (ECT)
Creating and Maintaining the
The Pad Character Table

Sample Table Entries
Edit Error Analysis ••••••

Status Bytes •••••••••
Standard Error Messages

ECT

.................
Coding Edit Subroutines

SUBSYSTEM INTERFACE TO THE EDIT UTILITY
THE OUTPUT UTILITY

General Description
Message Formats Processed by Output
Output Processing

Output Components
Output Subsystem Logic .•....
Control Terminal Messages ..•.•..

Creation and Maintenance of Tables Used by Output
Output Format Table (OFT)
Device Table
Station Table

5

2

3

5

7.2

7.4

10
10
11
11
15
15
16
17
17
17
18
20
22
22
23
24
24
27
29
30
37
37.1
38
38

39.2

40
40
41
43
43
44
47
47
47
49
49

IPN 135 9/78

Broadcast Tab 1e ••......•........•...........•......•.
Alternate Format Table .•..........•.....•.•.......•..
Format/Terminal Table•..............
Batch Report Table•..•...•.

Sample Tab Ie Entries .••....•..•....•••••....••.••.....•..
Error Messages from Output ..•.......••..•.....•••..•..••.
Ot! t pu t User Ex it .. .

SUBSYSTEM INTERFACE TO THE OUTPUT UTILITY .•.••....••..•..•..•••
Output Message Header ••....••••.•••••••••••••.••••.••••••
Message Text Formats for Output Utility .•.•......••.•....
Bu ilding Message Text •..•..•...•.••....•••••.•..•••••...•

Pre formatted Text
Formatting Required, Variable Text •••••••••••.•.•••••
Variable Character Text (COBOL or PL/l only) •••••.•..
Variable Binary Text (COBOL, PL/l, Assembler) ••••..•.
Formatting Required, Fixed Field Text ..••••••.••..•••

MtIlti-Segmented Messages
Segmented Message Output Terminal Assignment (DVASN) •..•.

49
49
52
53
54
59
59

60
60
60.1
60.3
60.3
60.3
60.6
60.7
60.8
60.10
60.13

THE CHANGE/DI SPLAY UTILITY ••••••••••••••••••••••••••••••••••••• 61
General Description 61
Terminal Input Message Formats .•••••..•••••••••.•••••.••• 63

DSPL Verb•..................... 63
CllN'G Verb •.••.•••••••••••••••.••••••••••••••••••••••• 64

Record Formats ... 66
CHANGE/DISPLAY Processing ••••••••••••.•.•.••....•••••..•• 67

Common Processing for CHNG and DSPL Verbs •..••••..••• 67
Processing of Fixed Format Messages from

Application Programs 68
Creating a Message for the Output Utility •..••••••••• 69
Update Process ing 69

CHANGE /01 SPLAY Table s •••••.••••••••••••••• "............... 70
Edit Control Table Entries ••••.••••••..•••••••••••••• 71
The File Table 73
Format Description Records ••••••.•.•••.•.••.••••••.•. 74
Change Tab Ie ... 76
Key Table•.................................... 77
Pattern Table :........ 77

Sample Table Entries 78
User Ex its .••.••..•..••••..•••••••••••.•••••.••.•••••.••• 83

Coding Key Conversion Subroutines.................... 83
CHANGE User Ex it. 83

CHANGE/DISPLAY Error Messages ••..•.•...•....••........•.• 84

DISK RESIDENT TABLES FOR THE UTILITIES ••...•..•..•....•.•.•.... 85
Genera 1 Considerations ..••.....•.•.••.....••.....••.•.... 85
The File Load Program ••••...•••...•..•••...•••.•..••••.•• 87
Loading ECT Entries
Loading OFT Entries
Loading FOR Entries

to Disk
to Disk
to Disk

·
·
·

6

87
89
90

IPN 13S 9/78

TERMINAL-DEPENDENT CONSIDERATIONS
Introduction
The IBM 3270

·
·

Inpu t r1e,ssage Formats
Bypassing the Edit Utility .•••••...•••••••..•••••.••.
Using the Edit Utility-Unformatted Input •...••••••...
Using the Edit Utility-Formatted Input ••••..•.••••

"Attent ion" Se lec tor Pen Input •..•....••....•.•.•.•.••.••
Ou.tput Message Fortnats .•••••••.•••••.•••••••..•.•••••.•••
Bypassing Formatting by the Output Utility ••.••.•••••...•
Using the Output Utility-Minimal User Modifications ••••.•
Using the Output Utility-Extended Facilities

for the 3270 ·
Generating a Format Screen
Filling in a Screen Format (Unprotected Data) ••••••.•
Modifying a Screen Format .••....••••.....••••••.••.•.
Adding to an Existing OFT Dynamically ••••...••••••.•.

Teletype Dataspeed 40/1 and 2
APPENDIX A: INTERCOMM TABLES FOR THE UTILITIES
APPENDIX B: MACROS FOR EDIT UTILITY TABLES

VERB Macro ·
PARM Macro
VERBGEN Macro
PMIELINE Macro
PADD Macro

·
....................................... "
· ·

APPENDIX C: MACROS FOR OUTPUT UTILITY TABLES
REPORT Macro ·
LINE Macro · .. . ITEM Macro
PMIALTRN Macro ·

APPENDIX D: MACROS FOR CHANGE/DISPLAY UTILITY TABLES
FDHDR Macro · .. . · .. . FDETL Macro
GENFTBLE Macro ·
PATRN Macro · .. .

7/7.1

92
92
93
93
94
94
96
99
99

100
100

100
100
101
103
108
108.1

A-1

B-1
B-1
B-3
B-S
B-6
B-7

C-1
C-l
c-4
C-6
C-10

D-l
D-l
D-3
D-8
D-9

IPN 135 9/78

LIST OF ILLUSTRATIONS
J

Figure

1 Edit Format Options.................................. 12

2 Func tiona 1 Components a f Ed it ••.•...•.•••..•••••..•.• 18

3 Edit Control Routine Logic 20

4 Intercomm Edit Subroutines 21

5 Edit Control Table Structure......................... 25

6 VERB Macro and Message Formats .••.•••••••.•.••••••.•. 25

7 Keyword Input, ECT, Fixed Format Result •••••.••.••... 31

8 Keyword Input, ECT, Variable Format Result •.••••..... 32

9 Positional Input, EeT, Variable Format Result •..••••• 33

10 Positional oy Line Input, ECT, Fixed Format Result ..• 34

11 Positional Within Keyword Input, ECT,
Variable Result...................................... 3S

12 Verb Oo.1y Result•.............. 36

12-1 Edit Processing of Non-Required Fields 39.2

12-2 Edit Return Codes (Assembler Language) 39.3

12-3 Editing an Input Message ..•....••.....•••.•.......... 39.4

13 Output Format Options •.....•.•.•..•••.•.....••.•..... 42

14 Ou t pu t Pro c e s sing Lo g i c ..•......•.•.......•.......... 45

15 Output Format Table Structure........................ 48

16 Full Message Formatting with Non-Repetitive Lines ...• 55

17 Full Message Formatting with Repetitive Lines•... 56

18 Full Message Formatt ing--Hulti-Segmented 57

18-1 Message Header Fields Used by the Output Utility 60.1

18-2 Message Header Specifications--Single Segment
Messages ... 60.2

7.2

IPN 135 9/78

Figure ' Page

18-3

18-4

18-5

18-6

18-7

18-8

18-9

18-10

18-11

18-12

18-13

19

20

21

22

23

24

Sample Display Layout Showing Typical Item Code
Numbers of Variable Data Items .•.••••••••••.•..••••••

Sample Preformatted Output Message•...•....•.

Sample Output Format Table Coding (OFT#00099) •...•..•

Illustration of Variable Character Message Format ••••

Illustration of Variable Character Message
Showing OFTif} Fie Id •............•.....................

Sample Variable Character Format Output Message •.....

Illustration of Variable Binary Message Format •••••••

Fixed Field Message Illustration

60.3

60.4

60.5

60.6

60.6

60.7

60.7

Showing Prefix Field .•.....•••••.••....••••••••.••••. 60.8

Sample Fixed Format Output Message •••••••••.••••••••• 60.9

Sample Format Description Record Coding
(DESOOOO) and Change Table Entry .••••••••••.••••••••• 60.10

Message Header Specifications--Mu1ti-Segment Message. 60.11

Functional Components of CHANGE/DISPLAy ••.••••••••••• 62

Record Formats Supported by CHANGE/DISPLAy •..••.••••• 66

ISAM File Record, No Repetitive Group 79

BDAM File Record, No Repetitive Group 80

ISAM File Record, Repetitive Group ••••••••••••••••••• 81

Intersubsystem Fixed Format Message ••...••••••••••••• 82

25 Summary Requirements for Disk-Resident
Tab Ie Entries .. 86

26 3270 Input Message Format-Unformatted Screen •.••••••• 95

27 3270 Input Message Format-Formatted Screen •••.•..•... 95

28 3270 EDIT Example-Formatted Screen .•••••••.•••••••••• 97

29 Sample 3270 Screen Generation •..•••••.••••..•..•••••• 102

30 Filling in a 3270 Screen Format...................... 106

7.3

J

J

IPN 135 9/78

Introduction

The INTERCOMM System Utilities (EDIT, OUTPUT, CHANGE/DISPLAY)
are optional system components provided to simplify applica­
tion program design and coding logic. The Utilities are
table-driven; their actual operation is specified by user­
coded tables generated via INTERCOMM macro instructions. A
general description of each utility follows:

THE EDIT UTILITY is used to prepare messages from on-line
terminals for processing by the individual application pro­
grams. It handles the overall processing of the incoming
message, (e.g., stripping of T/P related control characters)
and, in addition, edits and places the individual para­
meters in the message into a predefined format. The module
is driven by the EDIT Control Table (one table entry related
to each independent message to be processed by the module)
which defines the characteristics of each input message, the
related editing function to be performed, and the format of
the corresponding output (edited) message for either COBOL,
PL/I,FORTRAN or SAL message processing subsystems.

THE OUTPUT UTILITY is designed to provide simplified generation
and revision of output formats to telecommunication devices
without impact to the individual application subsystems. Each
application program may use the module to generate its term­
inal display formats or hard copy reports by passing to OUT­
PUT the data fields that vary from message to message. The
OUTPUT module will in turn:

•

•

•

•

Select the format to be used based upon table specifica­
tions;

Locate the application variable data to go into the
format;

Format the output message based on an device dependent
constraints such as line-ending sequences, and line and
buffer size.
Insert the necessary T/P control characters related to
the transmission of the message; and

Output the actual message(s) to the Telecommunications
module for transmission to the designated terminal.

THE DISPLAY and CHANGE UTILITY are intended to allow a remote
terminal operator to display an individual file record (for
BDAM, ISAM or VSAM files) in a fixed character format on his
terminal, and then in turn to modify selected fields within
the file record that he had just displayed. The module,
similar to EDIT and OUTPUT, is totally table-driven. There
is no program modification required for any fixed format file

7.4/8

J

IPN:093 4/76

records. The only item required by the user for the display
of record data (b inary, hexadecimal or charact"er) is the
Format Description Table entries defining the characteristics
of the individual file records.

Choice of which Utilities are in use at INTERCOMM execution
time is a matter of using INCLUDE control cards for the
individual modules in the INTERCOMM link-edit. The EDIT
Utility operates as a system service routine and is CALLed
whenever EDITing functions are required. CHANGE/DISPLAY and
OUTPUT operate as message processing subsystems and hence are
scheduled for execution by the INTERCOMM monitor. Terminal
input transactions for CHANGE/DISPLAY are queued, scheduled,
and processed automatically by the standard INTERCOMM facili­
ties. Application subsystems (and INTERCOMM modules as well)
create and queue messages to be processed by the OUTPUT Utility
via standard INTERCOMM service routines.

There is one set of operational tables in the production en­
vironment. Hence, the INTERCOMM System Manager has the final
responsibility for controlling the tables used at execution
time. This person (or persons) must ensure the accuracy of
all new table entries created by application personnel and
may specify which particular table entries may be core or disk
resident considering system throughput and response time
requirements.

Certain manufacturer's terminals have hardware operating
features necessitating special coding conventions for the
EDIT and/or OUTPUT Utility Tables. These terminals and the
procedures for defining their use with the Utilities are
described in a separate section.

All tables for the Utilities are summarized in Appendix A,
Appendices B, C, D contain table-oriented macro coding
specifications.

9

THE EDIT UTILITY

GENERAL DESCRIPTION

The EDIT Utility is provided with INTERCOMM to relieve the
user's application program from terminal and format dependent
considerations. All messages entering the computer from remote
terminals have three standard characteristics which make all
application programs unnecessarily complex. They are as
follows:

1. Teleprocessing control characters are embedded
throughout the message.

2. In many cases, the terminal operator need not enter
all fields in a message. Application program logic
is required to determine which fields were entered in
each input message.

3. If the operator enters fields in error, application
program logic is required to handle these errors
by analyzing them and then either rejecting the
total message or accepting the message while omit­
ting processing of the erroneous parameters.

The EDIT Utility provides an interface under which the applica­
tion programmer need not be greatly aware of these problems.

The EDIT Control Module, in conjunction with standard INTERCOMM
supplied subroutines and optional user-supplied EDIT subroutines,
provides field-by-field editing of all fields input by the
remote terminal operator. The entire input message is edited
and formatted as specified by the user in the EDIT Control
Table. Errors relating to invalid fields supplied by the
terminal operator are diagnosed by the Editing modules and,
when appropriate, error messages are sent to the terminal
operator.

Every transaction entered from a remote location is identified
by a 4-character transaction identifier (verb). Editing of an
incoming message is performed when specified by the Verb Defini­
tion in the INTERCOMM BTAM Front-End Verb Table or based upon
low-value (X'~~') in the Verb/Message Identifier (VMI) in the
message header. The EDIT Utility is activated when:

Message processing is to be initiated by a subsystem
coded in a high level language. The INTERCOMM language
interface module CALLS the EDIT Utility. (A subsystem
receives only successfully EDITed messages.)

A BAL subsystem CALLs the EDIT utility directly. (The
BAL subsystem logic defines recovery from unsuccessful
EDITing.)

10

J

The INTERCOMM BTAM Front-End CALLs the EDIT Utiliity.
(Messages not successfully EDIT'ed are not queued for
message processing.)

Messages created by one subsystem and queued for processing
by another subsystem may be EDIT'ed if desired by setting the
message header VMI to low-value (X'~~') and creating message
text in a valid format for EDIT.

Figure 1 illustrates the options for input message formats,
and EDITed results.

INPUT FORMAT OPTIONS

The EDIT Utility can accept input from a remote terminal in
either of four formats called the Keyword Format, the Posi­
tional Format, the Positional by line Format, and the Posi­
tional Within Keyword Format.

Each mode of input has advantages that the user should weigh
in determining which format to use for each transaction input
to INTERCOMM subsystems. Note that it is NOT mandatory for
subsystems (application programs) executing under INTERCOMM
to use the EDIT Utility; this Utility can be completely by­
passed for any given transaction type. Any mixture of input
modes may be used for different transaction types. For example,
assuming an installation that has 5 different transaction t~es,
the possibilities are that: 2 transaction types are not edited
at all; I transaction type is entered in Keyword Format; 2
transaction types are entered in Positional Format.

In this section, the conventions for input message formats
are denoted by:

o the field separator character defined in the installa­
tion's system parameter list (SPA).

~ the new line, carriage return, or carriage return/line
feed sequence of the terminal.

o the End of Message sequence of the terminal (EOT, EOB,
ETX, ENTER, etc.).

In general D and 6 are interchangeable.

Keyword Format

When data is to be supplied in the Keyword format, the mes­
sage is entered in the following manner:

11

SUBSYSTEM

VERB+character text

~-l

~eader j intersubsy~tem text I
"'--.. - ~--l-~ _________ ""'----_J~

NO

/
header
VMI=X'~~' VERB+keyword or positional text

header
VMI=X'nn'

Figure 1.

header
VMI=X'FF'

-------··1 terminal or intersubsystem

EDIT
UTILITY

-fixed or variable format
fields

SUBSYSTEM

EDIT Format Options

12

mes s. age text _____ --------:--.~
I

J

TRNS /:)..
CUS JOHN R. WILLIAMS, JR. ~
ADR 727 E. 43rd st. A
Cis WEST HEMPSTEAD L.I. ~
ACT 7432710 t:::.
DBT $27.42 l:l.
CRD $1.27 l:l.
END 0

(Verb or transaction identifier)
(customer name)
(customer address)
(customer address)
(customer account number)
(debi t amount)
(credit amount)

The four character verb is the first field of each message.
Each data element in the message is identified by a unique
three character field identification. The field identifica­
tion is immediately followed by the data for that field.
(Any number of separating blanks can be inserted between
the field ID and the actual data; these blanks are eliminated
by the EDIT Utility.) The field ID (or keyword) must be
unique within anyone transaction type; it may be reused in
other transaction types. For example, the letters CUS may
be used in all transaction types that require a customer name
to be entered.

For data elements that can be entered more than once in a
particular input message, the terminal operator simply enters
the given keyword more than once in the message; each use of
the keyword is followed by the appropriate data. Thus, in
the example above, if it were possible to have three debit
amounts, the data entered would be as follows:

DBT $27.42 ~
DBT $ 7.93 ~
DBT $ 8.47 ~

(debit amount #1)
(debit amount #2)
(debit amount #3)

The terminal operator must be taught the proper keywords to
use on input. Any field not applicable on the current entry
can be omitted by not entering that keyword (and data) in
the message. In addition, the fields may be input in any
order.

An additional advantage of the keyword format is the capa­
bility of using the CANCEL and CORRECT options. The CANCEL
option is intended to give a remote terminal operator the
ability to cancel a message that has already been entered
if it is determined that something is wrong with the fields
entered. (This is particularly useful when using unbuffered
devices where each character entered is transmitted imme­
diately.) If an error is realized before the End of Message
sequence (0) has been entered, the remote terminal operator
can type the following:

13

END ~
CANCEL ~
END 0

The EDIT Utility will then cancel the message when it is called
upon to Edit this transaction. (The use of CANCEL is only ap­
plicable if the transaction is to be Edited by the EDIT
Utility.)

The CORRECT option is used in similar circumstances when the
remote terminal operator wishes to correct one or more f~elds
previously entered, rather than cancel the entire message.
Suppose that the following message had been typed:

I TRNS ~
CUS JOHN R. WILLIAMS, JR. ~
ADR 727 E. 43 ST. ~
Cis WEST HEMPSTEAD, L.I. ~
ACT 7432710 ~
DBT $27.42 ~
DBT $ 7.93 ~
DBT $ 8.47 ~
CRD $1.27 A
END 1::1
CORRECT A
ACT 7432794 A
DBT (2, 9.74) A
END 0

The EDIT Utility will reformat this message as if it had been
entered in the following form:

TRNS 1::1
CUS JOHN R. WILLIAMS A
ADR 727 E. 43 ST. A
Cis WEST HEMPSTEAD L.I. A
ACT 7432794 A
DBT $27.42 A
DBT $ 9.741::1
DBT $ 8.47 A
CRD $ 1.27 1::1
END 0

(corrected field)

(corrected field)

14

J

J

IPN 135 9/78

The first field entered after END and CORRECT was a correction to the
customer account number; only the corrected number is recognized by Edit and
given to the application program. The second field entered is a correction
to the debit amount which in our example is a repetitive field. Thus it is
nece ss ary to spec ify wh ich deb it amount is to be correc ted. 'TIl is loS

indicated by using the following form:

kkk (n,data)

where:

kkk is the keyword to CORRECT;
n, is the occurence number of the keyword;
data is the corrected data to replace the original data entered.

The data entered in the example above corrects the second data field
identified by the keyword DBT.

Positional Format

When entering data in the positional format, only data fields are
entered; no field identifications are used by the remote terminal operator.
The data fields are seperated by the system-wide field separator character
(0). The example given in the section describing the keyword format would
be entered in the following manner using positional format:

TRNS 0 JOHN R. WILLIAMS 0 727 E. 43rd St. 0 WEST HEMPSTEAD L.1. D.
7432791 0 $27.42 0 $1. 27 0

As the example illustrates, the transaction identification (verb) is
also required in this format. Every possible field for the particular
message type must either be supplied by the terminal operator or indicated by
the insertion of an extra separator character to indicate the absence of the
fie 1d.

Blanks may be present within a data field (as 1.n the name entered
above); however, the first character of a data field may not be blank.

Positional by Line Format

The operator may also be instructed to enter positional data fields in
a predefined line sequence, in which case separator characters are not
required for omitted fields trailing at the end of each line. For example:

TRNS D.
JOHN R. WILLIAMS
7432710 D.
$27.42 D.
$ 1. 27 0

o 727 E. 43rd ST. 0 WEST HEMPSTEAD, L.1. D.
(account number)

15

(Debit fie1d(s) line)
(Credit fie1d(s) line)

The number of debit and credit fields is limited by the
line w1dth of the terminal.

Positional Within Keyword Input from a Remote Terminal

Positional Within Keyword Terminal Input combines the ad­
vantages of Keyword input and Positional input. The field
identifications (Keywords) are followed by corresponding
positional data items. Within any Positional Within Key­
word Line, only data is entered; no individual field iden­
tifiers (Keywords) are used by the remote terminal operator.
Note, however, that each keyword defines a new line format
and all fields defined on a particular positional Within
Keyword Line must be given in the respective sequence within
that line.

When data is to be entered by the remote terminal operator
in positional Within Keyword format, the message is entered
in the following manner:

TRNS .6.
eus JOHN R. WILLIAMS 0 7432710 .6. (name, acct #)
ADR 727 E. 43rd ST.O WEST HEMPSTEAD, L.I..6. (address)
INF $27.420$1.270 (debit, credit)

The four character Verb, as always, is the first data field.
In Positional Within Keyword Format, the Keyword Identifier
does not have specific fields associated with it. Instead,
it is associated with a line of positional data. The
keywords and the corresponding lines of positional data
may be entered in any order. The data within any line,_
however, is positional and therefore must be entered in the
predefined order for that line.

The data fields within the Positional Within Keyword Line
are separated by the system separator character (D). Every
possible field within a particular Positional Within Keyword
Line must either be supplied by the terminal operator or
marked by insertion of an extra separator character to in­
dicate the absence of the field. Any omitted fields at the
end of a line do not need separator characters to define their
absence. The end of line sequence (~) defines the absence of
trailing fields that have been omitted. If, in the above ex­
ample, in the INF line, it was desired to only enter a credit
amount, that line could be entered as follows:

16

J

J

IPN: 079 12/31/74

INFD$27.42 ~

Video Display Terminals With Screen Formatting

Certain Video Display Terminals have the facility to display
"format" screens for the operator's convenience.

: TRN S :
CUSTOMER NAME

: •••••••••••••••••.••..•••..•• • : ADDRESS

:••...•....... : ACCOUNT NUMBER
· . ·
· . ·

For example:

DEBITS
CREDITS

where colons (or some other terminal dependent character)
delimit those screen positions where an operator may enter
data. Only the data within colons is transmitted as an input
message.

In some instances the terminal itself will generate a tab
character (or other terminal dependent character) at the
end of each "formatted field" entered by the operator. In
this instance, the tab character may be defined as the separ­
ator character (D) for the installation and the incoming mes­
sage would correspond to standard Positional input to the
EDIT Utility:

TRNS 0 NAME 0 ADDRESS 0 DEBIT (S) 0 CREDIT (S) 0

However, special consideration must be given to the hardware
operating considerations of each terminal type to ensure that
this standard format is maintained.

See the" section "Terminal Dependent Considerations" for these
devices which the EDIT Utility treats in a special fashion due
to their hardware characteristics.

EDIT PROCESSING

Edit Components

The Edit utility consists of a major EDIT Control routine,
specific EDIT Subroutines (INTERCOMM and user-supplied), and

17

an Edit Control Table (ECT) generated by INTERCOMM macros,
and a Pad Character Table. Figure 2 depicts the functional
components of the EDIT Utility.

EDIT CONTROL
TABLE
(ECT)

PAD
CHARACTER

TABLE

EDIT
CONTROL
ROUTINE

Figure 2. Functional Components of EDIT

INTERCOMM
EDIT

SUBROUTINES

OPTIONAL
USER-CODED

EDIT
SUBROUTINES

The EDIT Control Routine provides total input message analysis,
controls the calling of the individual EDIT subroutines based
on the actual message and specifications in the EDIT Control
Table, and produces the EDITed message.

The individual EDIT Subroutines called by the EDIT routine J
provide a field-by-field edit of the data items supplied by the
remote terminal operator. The interface between the main EDIT
Routine and any EDIT Subroutine is a standard CALL statement.
The user's individual EDIT Subroutines, coded for special
functions, can be written in either Basic Assembler Language
(BAL) or any of the higher level languages, (COBOL, FORTRAN,

P L/ I) •

The EDIT Control Table contains one entry for each incoming
verb to be edited specifying general characteristics of the
message, and detail requirements for field editing. Table
entries may be core or disk resident.

The Pad Character Table defines pad (fill) characters to be
used when edited fields are less than the length requirement
of the EDIT Control Table.

Edit Control Routine Logic

When CALLed, the EDIT Control Routine (hereafter referred to
as EDIT) is passed the address of the message input from the
terminal. The verb in the message text is utilized to locate
the specific EDIT Control Table (ECT) entry. EDIT logic then
proceeds as illustrated in figure 3:

1. EDIT acquires a new area of core for the edited
result.

18

J

2 •

3 •

4.

EDIT copies the input message header to the edited
result.
The Verb/Message Identifier (VMI) in the message
header is set to a one-byte value according to the
ECT specification, effectively replacing the VERB.
An individual data field is isolated, and EDIT finds
the entry in the EDIT Control Table describing the
field to be edited. From the table, EDIT determines
which EDIT Subroutine is to do the edit checking
and/or conversion of the data supplied; the EDIT
Subroutine is then called. Upon return from the
subroutine, the length of the edited data is com­
pared to the length specified in the ECT for this
field. If they are equal, no action is requ~rea.
If the edited data length is larger, it is truncated
on either the left or- right as specified by the ECT
(if truncation is allowed). If truncation is not
allowed, the data item is rejected. If the edited
data length is less than the maximum length for this
field and the field is always to be given a fixed
length (as specified by the ECT), the field is padded
with the appropriate pad character from the Pad
Character Table based on the EDIT Subroutine used.
If the field is numeric, the field is padded on the
left; otherwise it is padded on the right. If the
field is not fixed length, the data is not padded
at all.

5. The next field in the input message is then isolated
and is processed as described above. Processing
continues until all fields of the input message have
been EDITed.

The EDIT Control Routine strips the following field
definition characters during the course of editing:

The system separator character (0), as de­
fined in the System Parameter List (SPA);
New line characters (~);

Carriage Return or combined Carriage Return/
Line Feed (~);

End of Text, End of Message, End of Block,
or End of Transmission (0);

All ~ther device control characters not translated or
otherwise suppressed by the front end translation table
for a particular device will be treated as text within
a field.

6. When all input fields have been processed, EDIT
adjusts the length field in the message header to
reflect the actual length of the edited result, frees
the remainder of storage not used and frees the
original incoming message.

EDIT considers its processing successful if no required fields
(as defined by the ECT) were omitted or given in error. The
EDITed result is returned to the CALLing program as an address

19

in its original parameter list. Non-required fields not
edited successfully are indicated by high-values (X'FF') in
the appropriate field location in the EDITed result.

EDIT returns error messages to the originating terminal (via
the Output Utility) for each required field omitted or in
error. The CALLing program is notified of EDIT's rejection of
the incoming message by a zero address in its original para­
meter list. The storage occupied by the EDITed result is
freed. Similarly, if the transaction type (verb) entered is
not defined in the EDIT Control Table, a zero returned as the
address of the edited message indicates an unsuccessful EDIT.

EDIT
SUB ROUTINES

EDITED Result Area

Figure 3. EDIT Control Routine Logic

EDIT Subroutines

The EDIT Subroutines supplied by INTERCOMM provide for basic
editing capabilities necessary for any installation. They do
numeric checking, convert data to packed decimal, convert data
to binary, etc. In addition, there are unique routines for
use in INTERCOMM applications. For example, one EDIT Sub­
routine validates an input field to check for valid terminal
identification for the Output Utility.

The EDIT Subroutines are identified by number (nnn), where the
subroutine entry point is coded as EDITnnn. EDIT Subroutines
000 thru 020 are reserved for INTERCOMM routines, 021 thru 255
may be utilized as identifiers of user specified EDIT Sub­
routines.

Each field in the incoming message is edited by one subroutine
indicated in the EDIT Control Table entry by number. INTERCOMM­
supplied subroutines are described in figure 4. The routine
numbers in figure 4 are values to be given on the PARM macro
as the EDIT Subroutine number (see Macros Manual). Techniques
for coding user-supplied EDIT subroutines are described later
in this section.

20

J

I Routine
Number Description

0 Determines the length of a character field and
places actual data into the output area for
the field.

1 Determines the Le:1gth of a character field"
checks for valid numeric data, packs the data,
and puts the packed data into the output field.
Maximum length edited data can be is 15 bytes.

2 Acts like Routine 1, but converts data fields
to binary. Maximum length edited data can be
is 4 bytes.

3 Acts like Routine 1, for dollar amount fields,
stripping dollar sign and decimal point and
converting to packed decimal. ,

4 Reserved for future use.

5 Converts YES or NO fields. YES is converted to
a Character Ii NO is converted to Character o .

6 Validates that a terminal identification given
as a character data field is contained in the

~

OUTPUT Utility Station Table.

7 Acts like Routine ~ for numeric chalfacter data
which is to remain as unpa~ked data.

8 Acts like Routine 1 for dollar amount fields,
stripping dollar sign and decima.l point and con-
verting to binary data. (Maximum length edited
data can be is 4 bytes.)

9-20 Reserved for future use. I
Figure 4. INTERCOMM Edit Subroutines

21

DATA FORMATS AFTER EDITING

Once all fields of the input message have been edited success- \
fully, a message formatted by the EDIT Control Routine is ready ~
for processing by an INTERCOMM subsystem. The definition of
required format results from EDIT processing is contained in
the EDIT Control Table entry for each transaction type (verb)
Thus, each transaction type can result in only one format.
Different transaction types may result in different formats
after EDITing.

Fixed Format

When called upon to produce data in a fixed format, the result
of EDITing consists of data fields in a predefined sequence
with each EDITed field a predefined fixed length. The user
specifies the sequence of fields in the EDIT Control Table.
Graphically, the message appears as:

Standard
42 byte Header

Field 1
data

Field 2
data

Field 3
data

The data given in the example earlier in this Section might be
presented in the following format to the application program:

INTERCOMM MESSAGE HEADER JOHN R. WILLIAMS JR.

727 E. 43rd ST. fWEST HEMPSTEAD L.LI 00174132171 OS

02 I 74 I 2S 00 79 3S 00 84 7S I 00 I 12 I 7S I

All fields have been formatted and edited as specified in the
EDIT Control Table (Notice numeric fields were edited to
packed decimal with S representing the sign character). It is
important to note that regardless of the form of input supplied
by the remote terminal operator, the field lengths and start­
ing positions of each field in the message will be fixed for
each EDITed message passed to the application program for
processing.

If a data item was not supplied on input from the remote
terminal, the pad character defined for the EDIT Subroutine
which edited the field is used as a fill character for the
entire field. This can be used as a basis for checking if a
given field was omitted on input. If the data item was sup­
plied erroneously on input, the field will be filled in with

22

J

high values (X'FF' in each byte of the field). This is only
meaningful, of course, if the data item was specified as not
required since if a required field is given in error the mes­
sage is rejected by the EDIT Routine.

Variable Format

When using the variable format of presenting data to an
application program, EDIT selects each field from the in­
coming message and places it in the message being produced
with a 2 or 3-byte prefix based upon ECT specifications as
follows:

42 L Edited L Edited L
Byte I E Field 1 I E field 2 I E

°IEdited
Clfield n

Header C N data C N data --- C N # data

where

IC is the Item Code (defined by the ECT) to identify the
field.

LEN is the length of the data field (plus one if OC#
exists)

OC# is the occurence number for repetitive fields.

The data elements in the message produced are in the order
entered by the operator. Application program logic is re­
quired to scan the message to locate particular data fields.
In the example given in section B, the data would be pre­
sented in the following form:

INTERCOMM MESSAGE HEADER JOHN R. WILLIAMS, JR.

02 OF 727 E. 43rd ST. 03 13 I WEST HEMPSTEAD L. I. I 04 I
05 00 74 32 71 OS 05 04 01 02 I 74 2S 05 I 04\

02 00 79 3S 05 04 03 00 84 7S 06 02 12 I 7S I

It should be noted that the same item code (05) is used for
all of the debit amount fields given, the first time assign­
ing an occurrence number of 01, the second time an occurrence
number of 02, and the third time an occurrence of 03. Notice
that the length field includes the length of the occurrence
number byte for repetitive fields. Note also that in the
variable format, the user has the option of always passing

23

IPN:093 4/76

the data with a fixed length, padding where necessary (as was
done for the second and third debit amount fields above) or
of passing only the data supplied with no unnecessary padding
(as was done for the credit amount field).

Variable format result of EDITing allows an application program
to access a string of Status Bytes showing which fields
appeared in the incoming message. Status Bytes and their for­
mat are discussed later in this Section under the topic "Edit
Error Analysis."

EDIT TABLES

The EDIT Control Table

The EDIT module is driven by the EDIT Control Table (ECT).
This table contains all information about each message neces­
sary to perform editing.

The ECT resides in core, in a separate CSECT labelled
VERBTBL. (The address of the EDIT Control Table appears
in the System Parameter List.) The ECT contains actual EDITing
specifications or optionally may contain pointers to disk­
resident entries. In general, frequently processed transac-
tion types (verbs) utilize core-resident entries for fast J'
retrieval of EDIT specifications; transactions with low
volume utilize disk-resident entries.

The EDIT Control Table is a variable length table, and is
created and maintained by the user. The following INTERCOMM
macros are used to create the ECT:

VERBGEN is a macro which must precede the table entries
if any VERB macros contain the RBN= parameter to signify
actual table entry is disk resident. (If no ECT entries
are to be on disk, VERBGEN is omitted.)

VERB is the macro defining general editing specifications
(the transaction id or actual 4-character verb, input
format, edit result format, etc.)

PARM is the macro defining specific edit requirements
for each data field (edit subroutine number, required
~ield, truncation, maximum length, etc.)

PMIELIN is the macro delimiting positional data fields
by line.

PMISTOP is the macro signifying end of the ECT.

Coding specifications for these macros are described in detail
in Appendix B. Figure 5 illustrates the general structure
of the EDIT Control Table.

24

VERBTBL CSECT ;

VERBGEN
VRBl VERB FIRST VERB

PARM FIRST PARAMETER FOR VRBl

PARM (N) th PARAMETER FOR VRBl
VRB2 VERB SECOND VERB

PARM FIRST PARAMETER FOR VRB2
PARM SECOND PARAMETER
PMIELIN END OF POSITIONAL LINE

PARM (N) th PARAMETER FOR VRB2
VRB3 VERB RBN=l VERB POINTER FOR DISK

RESIDENT ENTRY

VRBN VERB (N) th VERB

PARM (N) th PARAMETER FOR
(N)th VERB

PMISTOP
END

Figure 5 • EDIT Control Table Structure

Each individual table entry consists of one VERB macro and one
or more PARM macros. Figure 6 illustrates allowable combina­
tions of formats and VERB macro operand coding required.

INPUT EDITED -- VERB MACRO OPERANDS
FORMAT FORMAT FIX- KEY- LINE-

Keyword Fixed YES YES NO

Variable NO YES NO

positional Fixed YES NO NO

Variable NO NO NO

Positional Fixed YES NO YES
By-Line

Variable NO NO YES

positional Fixed YES YES YES
Within
Keyword Variable NO YES YES

Figure 6. VERB Macro and Message Formats

25

There is a distinct relationship between the order of the
PARM macros and the VERB specifications for input message
formats and resultant edited message formats.

The relationship between the PARM macros and message formats
is as follows:

For Keyword Input Format: No correlation exists between
the order of the description of the fields in the EDIT
Control Table via PARM macros and the order in which the
actual data is entered.

For Positional Input Format: The order in which the fields
are entered by the remote terminal operator must correspond
exactly to the order in which the fields are~cribed by
PARM macros in the EDIT Control Table.

For Fixed Format EDIT Result: The order in which fields
are sequenced in the edited result corresponds to the
order of the PARM macros. If a message field appears on
the input message more than the maximum number of times,
specified by the PARM macro fields, the extra fields are
rejected. The application programmer using fixed format
editing must know the format of the EDIT Control Table;
the position of a data field in the edited message is
completely controlled by the coding of the EDIT Control
Table when using fixed format.

For Variable Format EDIT Result: There is no correlati6n
between the order of the PARM macros in the Edit Con­
trol Table and the data presented to the application when
using variable format. The data fields appear in the
order entered in the input message.

Thus, the ordering of the PARM macros in the EDIT Control
Table has the following implications:

1. If Keyword Format input is being used, the order
of the PARM macros in the table is used only to
define the order in which the data is to be ar­
ranged for the application program when fixed
format results are specified.

2. If Positional Format input is being used, the
order of the PARM macros in the table defines
both the order in which the data fields are entered
on the input device and also the order in which
the data is to be arranged for the application
program.

26

3. For positional by Line Input Format, the allocation
of fields to a line is defined by the PMIELIN macro
(coded after each set of PARM macros which define
a line) and hence the order of the PARM macros
defines the order in which the operator may enter
data.

4. For positional Within Keyword Format: No cor­
relation exists between the order of the description
of the parameters in the Edit Control Table and
the order in which the keyword lines are entered.
However, for the positional data within any given
line, the order in which the fields are entered by
the remote terminal operator must correspond exactly
to the order in which the PARM macros are sequenced
for each keyword.

Creating and Maintaining the ECT

All INTERCOMM messages processed by the EDIT Utility share the
same EDIT Control Table (both core and disk resident). Hence,
maintenance of this table in the production (live) version
of INTERCOMM should be the responsibility of the INTERCOMM
System Manager.

There is one entry in the ECT for each verb to be edited.
Core resident table entries are added to an existing ECT.
Disk resident table entries are also contained in the core
resident ECT to allow calculation of the actual disk resident
entry length. The entire disk resident entry should be coded
as though it were to be core resident; and is actually as­
sembled as part of the resident table. After assembly, only
the generation of the VERB macro remains in the resident
table to specify the location of the disk table entry. The
VERB and PARM macros for a disk resident table entry are
assembled a second time to create a separate load module
to be retrieved from disk when required. The Section
"Disk Resident Tables for the Utilities" details procedures
for loading disk table entries. For example, an ECT with
core and disk resident entries might be:

27

VERBTBL CSECT
* DISK RESIDENT ENTRIES INCLUDED

VERBGEN

* TRNB ECT ENTRY IN CORE
TRNB VERB TRNB,3,256,2,KEY=NO

PARM NUM,1,1,8~1~~~~111 CUST. NUMBER
PARM AMT,2,1,8,1~~~~111 DEBIT AMOUNT

* TRNS ECT ENTRY ON DISK
TRNS VERB TRNS,1,256,2,RBN=1

PARM CST,1,~,3~,1~~~~111 CUST.NAME
PARM ADR,2,~,3~,1~~~~111 CUST.ADDR.

* TRNA ECT ENTRY ON DISK
TRNA VERB TRNA,2,256,3,KEY=NO,LINE=YES,FIX=NO,

RBN=2
PARM CST,1,~,3~,1~~~~111 CUST.NAME
PMIELIN END OF lip LINE
PARM ONM,2,1,8,1~~~~111 OLD CUST. NUMBER

* END OF TABLE
PARM

PMISTOP
END

NNM,3,1,8,1~~~~111 NEW CUST. NUMBE R

The resident table CSECT name must be VERBTBL. The disk resi­
dent entries are each contained in a block (RBN) of the BDAM
dataset with ddname VRB~~~. ~

The ECT is searched sequentially; frequently accessed entries
should appear in the beginning of the table. Since the disk
resident table entries are assembled separately (without
CSECT, PMISTOP and END macros), they may be maintained as
members of symbolic libraries and COPYed into the resident
CSECT for assembly; for example

VERBTBL CSECT
VERBGEN

* CORE RESIDENT ENTRIES FOLLOW
TRNB VERB

TRNC

PARM
PARM

VERB
PARM

* COPY EACH INDIVIDUAL DISK RESIDENT ENTRY
COpy TRNSTBL
COpy
PMISTOP
END

28

TRNATBL

IPN:045 4/30/74

The Pad Character Table

The Pad Character Table supplies the EDIT Control Routine with
the character to be used for padding with each EDIT Subroutine.

The Pad Character Table is a resident CSECT named PADDTBLE.
Each entry in the table is two bytes long. The first byte
contains the number of the EDIT Subroutine with which the pad
character is associated. The second byte contains the actual
pad character. These entries are coded using the PADD macro or
hexadecimal constants. The table must end with a PMISTOP macro.

If no pad character is supplied for a particular EDIT Subroutine
a default of blank (X I 40 t) I is assumed. A pad character of
X'OC', X'OD', or X'OF' will pad a packed field with binary
zeros, but when no data is supplied fpi the field EDIT will
insert a sign in the rightmost byte (i.e., fill the field with
a packed zero).

The following entries appear in the pad table as supplied in
the INTERCOMM release:

TITLE '*** PMI-INTERCOMM *** PADD TABLE'
PADDTBLE CSECT

PADD O,BLANK ROUTINE 0 - ALPHANUMERIC
PADD 1,OF ROUTINE 1 - PACKED
PADD 2,BZER ROUTINE 2 - BINARY
PADD 3,OF ROUTINE 3 - PACKED DOLLAR
PADD 5,BZER ROUTINE 5 - NO
PADD 6,BZER ROUTINE 6 - TPU
PADD 7,FO ROUTINE 7 - NUMERIC CHAR
PADD 8,BZER ROUTINE 8 - BINARY DOLLAR
PMISTOP
END

In the following sample Pad Character Table, a pad character of
blank has been assigned to EDIT Subroutine 21 and a pad char­
acter of asterisk has been assigned to EDIT Subroutine 22.

PADDTBLE CSECT

PADD
PADD

PMISTOP
END

} standard INTERCOMM
entries

2l,BLANK
22,5C

29

SAMPLE TABLE ENTRIES

The examples in this section are included to assist the user ~
in understanding the table entries specifying different options
for input message formats and resulting EDIT data formats.

The examples illustrate:

Keyword Input, Fixed Format Result (Figure 7)

Keyword Input, Variable Format Result (Figure 8)

Positional Input, Variable Format Result (Figure 9)

positional by Line Input, Fixed Format Result (Figure 10)

Positional Within Keyword Input, Fixed Result (Figure 11)

Verb only Result (Figure 12)

Each example illustrates input from terminal, ECT entry,
EDITed result.

30

J

Message Input at Terminal:

PRCOA
PO# 174321 fl
PRD 74 SORA
QTY 12.6-
UNT DOZ l:l.
PRD 863PL A
QTY l~~A
AGN X71A
END 0

Message received by EDIT:

VMI
header ~~ PRC06pO# 1743216 PRD 74S0RA

EDIT Control Table entry:

PRCO VERB PRCO,~A,256,11,FIX=YES

PARM PO#,~1,~1,~15,1~~~~111
PARM PRD,~2,~~,~~5,1~~~1111,REPT=3

PARM QTy,~3,~2,~~4,1~~~1111,REPT=3

PARM UNT,~4,~~,~~3,~~~~1111,REPT=3

PARM AGN ,fJ 5 ,fJfJ ,fJfJ 3 ,1/JfJfJfJlll

EDITed result:

VMI
header ~A

I F8F6F3D7D3 I 4~4~4~4~4~ I ~~~~;3~~C I ~~~~~~64 I ~~~~~~~~

I C4D6E9 I 49'4~4~ I 4~4~4~ E7F7Fl

Figure 7. Keyword Input - Fixed Format Result.

31

I Message

IPN:057 7/1/74

Input at terminal:

PRCO~
poi 174321 ~
PRD 745QR A
QTY 12 A
UNT OOZ I:::t.
PRO 863PL A
QTY 1~~~
AGN X71A
END 0

Message received by EDIT:

[header ~~ I PRCO~PO# l74321~PRD 74SQR~QTY 12~ UNT DOZL}.\

t PRD 863PLAQTY l~~~AGN X7l~ENDOI

EDIT Control Table Entry:

PRCO VERB PRCO/~A,26S,S

PARM PARM PO#,~l,~l,~lS,l~~~~~ll
PARM PRD/~2/~~/~~5/l~~~1111
PARM QTy,~3,~2,~~4/l~~~1~11
PARM UNT,~4/~~,~~3,~~~~1111
PARM AGN,~5,~~/~~3/l~~~~111

EDITed Result:

I header ~A I ~ll ~4 I ~17432lF I ~2 I ~61 ~l I ,F7F4FS08D9 I
I ~3 I ~2 i f3l i f;JC I @4 I @4 I @l I C4D6E9 I @2 I @6 I @2 I F8F6F3D7D3

f33 I f32 I ~2 I 64 I ~5 I ~3 I E7F7Fl I

Figure 8. Key Word Input - Variable Format Result.

32

J

J

J

IPN: 079 12/31/74

Message Input From Terminal:

INVC 0 l,e1KR3 0 1,0 CJ 150 CJ 500

Message Received by EDIT:

j header ~~ I INVCOl~KR3C11~Ol50D5001

EDIT Control Table Entry:

INVC VERB INVC,~B,256,7,KEY=NO

PARM ITN,,eIl,~~,~~5,l~~~~ll1

EDIT Result:

PARM ADD,~2,~2,~~4,~~~~1~11,REPT=3

PARM DEL,~3,~2,~~4,~,eI~~1~ll,REPT=3

header OS I 01 05 FIF~D2D9F3 I 02 I 05 I 01 I ~,0~~~~~A I
02 05 I 02 I f3f6~¢:¢~)ijF I 03 I 05' 011 ~JO~f6~~32 I

Figure 9. positional Input - Variable Format Result.

33

Message Input from Terminal:

INVC 0 1~KR3~
l~ [J 156
50

Message Received by EDIT:

I header ~~ I INVC C 1~KR3 6l~ 0 15.6. 50 I

EDIT Control Table Entry:

INVC VERB
PARM
PMIELIN
PARM
PMIELIN
PARM

ED.IT Result:

INVC,~B,256,7,FIX=YES,KEY=NO,LINE=YES

ITN,~1,~~,~~5,1~~~~111

DEL,~3,~2,~~4j~~~~1111,REPT=3

, header ~B I FlF~D2D9F 3 I ~~~J3~~~A I ~~~~~~~F I ~~~~~fHJ~ I

10~~~~@~5 I ~¥1~~~~~~ I ~~~~~~~~ I

Figure 10. Positional by Line Input - Fixed Format Result.

34

J

J

J

Message Input from Terminal:

TRNA /j.

CUS PETER JONES 0 10 ALLEN ST D NY, NY ~
INF 176-42400$73.950

Message Received by EDIT:

I header ~~ I TRNA.6.CUS PETER JONESOIO ALLEN STCl Ny,NY6.~

INF 176-424r::ItJ$73.950

EDIT Control Table Entry:

VERB TRNA,Cl,256,8,KEY=YES,LINE=YES,FIX=YES
PARM CUS,~~,~,~,~~~~~~~~ (CUS is a keyword)
PARM NAM,~1,~,25,~~~~~11~

PARM STR,~2,~,2~,~~~~~11~
PARM C/S,~3,~,25,~~~~~11~
PMIELIN
PARM INF,~~,~,~,~~~~~~~~ (INF is a keyword)
"PARM ACT,~4,23,7,~~~~~11~

PARM DEB,~5,24,7,~~~~~11~
PARM CDT,~6,25,7,~~~~011~

"EDIT Resul t:

J header CIIC'PETER JONES~~~~~~~~~~~~~~' IC'lO ALLEN ST~~~~~~~~~'I

I C'Ny,NY~~~~~~~~~~~~~~~~~~~~'IFIF7F6FFF4F2F41~~~~~~0~0~~000 I

I ~~~0~~0~~7395S I

Figure 11. positional within Keyword Input - Fixed Result.

35

IPN:042 4/1/74

An input transaction can be defined in the Edit Control
Table with the parm parameter of the VERB macro equal to ~.

In this case, the edited message will consist of Header
only. The 4-character input verb is indicated by the VMI
value in the header. (No data may be entered at the
terminal for this type of transaction.)

EDIT Control Table Entry:

VERB CUST,1,256,~,FIX=YES

EDIT Result:

header ~l

VMI

Figure 12. VERB only RESULT.

36

J

J

J

IPN 135 9/78

EDIT ERROR ANALYSIS

Edit analyzes the results of editing by each individual
subroutine and takes the following actions:

• REQUIRED Fields

For errors and omissions of fields defined as REQUIRED in the
PARM edit flags, error messages are sent back to the
originator indicating the parm-name of the erring or missing
field; all remaining fields are checked; non-Assembler
subsystems will not receive any message to process.

• NOT REQUIRED Fields-Errors

For errors in fields defined as NOT REQUIRED:

1. Error messages are not sent to the
(unless Edit is reassembled with the
to 1 in SETGLOBE. Refer to the
Manual, Section 8, for details.)

originating terminal
global &EDDERS SETBd
Operating Reference

2. For variable format Edit result, a string of status bytes
included in the message text indicates field(s) 1n
error. The field will not appear in the output message.
If the field is a repeatable field, the "number of
occurrences" in status byte B for the field does not
include a count for the erred field.

3. For fixed format Edit result, the corresponding output
field will contain hexadecimals X'FF' (high value).

• NOT REQUIRED Fields-omissions

Omissions of fields defined as NOT REQUIRED:

1. For variable format Edit result, the status bytes for the
omitted item code will indicate parameter not supplied.

2. For fixed format Edit result, the field corresponding to
the omitted item will contain the specified pad
characters. If there is no pad character defined, it
will contain blanks (X'40').

37

J

J

J

IPN 135 9/78

Status Bytes (Variable Results only)

In addition to returning the edited message to the CALLing
program, Edit returns (as part of the edited message) status indicators
for each field which was or could have been supplied for the message
when using the variable format result of editing (two bytes per PARM
macro). Edit puts the address of the string of status bytes in the
third word of the original parameter list passed to Edit. The status
bytes physically appear in the edited message text, identified by an
Item Code of X'FF'.

There are 2n+l status bytes where n is the number of different
parameters which can be given for the message. The first byte
represents a status indicator byte for the entire message (currently
not in use). The next 2n bytes represent two bytes for each PARM macro.

where:

The status byte string is formatted as:

FF is the item code indicating status byte string

nn indicates the length of the status bytes string if there are
less than 127 parameters. Otherwise, this length is not used

r ~s the reserved byte

status byte A indicates:
Bit 0 - Parameter supplied
Bit 1 - Reserved
Bit 2 - Reserved
Bit 3 - Unused
Bit 4 - Parameter given but in error
Bit 5 - Unused
Bit 6 - Unused
Bit 7 - Reserved

Status byte B represents the number of times the parameter was
given in the message (always one for non-repetitive parameters;
otherwise it can be any number).

37.1

IPN 135 9/78

Standard Error Messages ~

Error messages reflecting problems encountered during editing of
required fields are generated by the Edit Utility and queued for
processing by the Output Utility. The messages are formatted according
to Output Format Table entries. Each field found in error will cause
an error message to be returned to the originating terminal.

Each error message explicitly defines the reason for rejecting
the input data, for example:

or:

NON-NUMERIC CHARACTER GIVEN ON xxx PARAMETER FOR xxxx VERB.
ALL CHARACTERS SHOULD BE NUMERIC:-
MESSAGE NO. FROM TPU ---

REQUIRED PARAMETER ~ WAS OMITTED (OR GIVEN IN ERROR) ON
THE xxxx VERB.
MESSAGE NO. FROM TPU ---

For a precise listing of Edit Utility error messages, see the
Intercomm Messages and Codes.

CODING EDIT SUBROUTINES

Each installation can write up to 235 user-edit subroutines, as
needed, to perform application-oriented editing of fields coming into
the system from remote terminals. These Edit subroutines are CALLed in
a standard manner with the parameter list described below. The Edit
subroutine can be written in Assembler, COBOL, or PL/1. (A sample edit
subroutine coded in COBOL is illustrated below.) Since the subroutine
is passed only actual field data, the problem of teleprocessing control
characters need not be considered.

The edit subroutines must have entry points named EDITxxx, where
xxx may be any number from 021 to 255. It is inportant to note that
edit subroutines may be generalized. For example, EDIT021 can be used
to edit any number of transactions types by coding 21 as the subroutine
number in the appropriate PARM macro of the Edit Control Table (ECT).

Note that the SPA CSECT must be reassembled to reflect the number
of Edit subroutines in use (SPALIST macro, EDITRTN parameter). See
Section 8 of the Operating Reference Manual for details.

The edit subroutine logic may be used to construct an error
message to the input terminal and queue it for the Output Utility.
However, in order to build an output message, the edit subroutine must
have access to the original input message header. Register 9 on input
to the edit subroutine points to a location which contains the address
of the input message being processed, and consequently may be used to
locate the input message header.

38

J

J

~

IPN 135 9/78

The parameter list passed to an edit subroutine is as follows:

1- Address of the unedited data field

2. Address of the System Parameter list (SPA)

3. Address of a one-word field containing the length of the
unedited data

4. Address of the field in which the edited data LS to be placed
(field is maximum of 255 characters in length)

5. Address of a one-word field to place the length of the edited
data

6. Address of the status bytes for this parameter

7. Address of the fullword return code field

The return code field is used to indicate whether or not a field
has passed its edit. If the field edit is not successful, the edit
subroutine should place a non-zero value (binary) in return code field,
and turn on bit 4 of the first status byte. A zero return code
indicates successful edit.

The following restrictions apply to edit subroutines coded in
COBOL or PL/1:

1. The subroutine may not give up control (no CALLs to COBREENT
or PMIPLl).

2. A COBOL-coded subroutine is not a subsystem; hence no
"dynamic work space" is available-.-

3. The subroutine must reside Ln Intercomm's transient
subroutine overlay region.

38.1

J

J

IPN 135 9/78

The following is a sample edit subroutine coded in COBOL:

ID DIVIS ION.
PROGRAM-ID. EDIT 204.
AUTHOR. PROGRAMMING METHODS.
DATE-COMPILED.
REMARKS. INTERCOMM EDIT OF ONE-BYTE FIELD FOR A, C OR D.

ENVIRONMENT DIVISION.
DATA DIVIS ION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 IN-FIELD
01 SPA
01 IN-LENGTH
01 OUT-FIELD
01 OUT-LENGTH
01 STATUS-BYTES
01 RC

. PROCEDURE DIVIS ION

PIC X.
PIC X.
PIC s9(7)
PIC X.
PIC S9(4)
PIC S9(7)
PIC S9(7)

USING IN-FIELD, SPA, IN-LENGTH, OUT-FIELD,
OUT-LENGTH, STATUS-BYTES, RC.

MOVE +0 TO STATUS-BYTES.
IF IN-LENGTH NOT = + 1

GO TO ERROR-EXIT.
IF IN-FIELD = 'A' OR 'c' OR 'D'

MOVE IN-FIELD TO OUT-FIELD
ELSE GO TO ERROR-EXIT.

VALID-EXIT
MOVE +1 TO OUT-LENGTH
MOVE +0 to RC.
GOBACK.

ERROR-EXIT.
ADD +2048 TO STATUS-BYTES.
MOVE +1 TO RC.
GOBACK.

39/39.1

COMP SYNC.

COMPo
COMPo
Compo

IPN:093 4/76

SUBSYSTEM INTERFACE TO
THE EDIT UTILITY

Whether or not Editing is required for a message type is indicated
in the Front-End Verb Table (BTVERB macro). EDIT is CALLed by
INTERCOMM (if required) for high-level language subsystems. A
A BAL subsystem CALLs the Edit Utility directly via a standard
OS CALL statement. The message text to be edited may be in one
of the basic formats:

Positional - data items in a pre-defined sequence
Keyword - data items in any sequence, each data item being

prefaced by a 3 character identifier
Positional Within Keyword - positional data items within

Keyword line

Editing proceeds field-by-field based upon the user-specified
Edit Control Table. Data fields may be edited by INTERCOMM or
user-coded Edit Subroutines. The result of processing by EDIT
is a message with a standard 42-byte message header and data
fields in one of the two basic formats:

Fixed Format: each edited field is of fixed length in a
predefined sequence.

Variable Format: each edited field may vary in length and
position in the edited result. Each edited field
is prefixed with a one-byte identification code,
one-byte length, and ~ossibly a one-byte occur­
rence number for fields defined as repetitive in
the ECT.

The EDIT Utility considers a message successfully edited if
there are no required fields (as specified by the ECT) in error
or omitted. Non-required fields omitted or in error are handled
differently depending on the result format that EDIT is creat­
ing. Figure 12-1 details EDIT logic for the combinations of
cases. In any event, EDIT frees the storage occupied by the
unedited messages.

, . - ". -- -
Field Type Fixed Format Result Variable Format

Non-Required Field appears in edited Field does not appear
Field Omitted result, filled with pad in edited result

character associated
with Edit Subroutine

Non-Required Field appears in edited Field does not appear
Field in result filled with in edited result, the
Error X'FF's status byte A assoc-

iated with the field
is set to X' ¢8' .

is

Figure 12-1 EDIT's processing of non-required fields omitted or
in error.

39.2

J

J

IPN 135 9/78

In the case of unsuccessful editing, Edit sends error message(s)
to the originating terminal for each required field omitted or in
error. If none of the required fields are omitted or in error, it
remains the responsibility of the application program to analyze the
edited result and perform recovery logic for any non-required fields in
error. A conversational design approach might be used to control an
interactive dialog with the terminal to input new data for fields
origina 11y entered in error. Alternative 1y, the subsystem may return
to the Subsystem Controller and the operator is responsible for
entering the entire message again.

The Edit Utility is CALLed by an Assembler Language subsystem as
follows:

[SYmboiJ CALL EDITCTRL,(input-message,spa,O),VL,MF=(E,list)

where:

input-message

spa

°
list

is the address of the unedited message

is the address of the System Parameter List

reserves a third word ~n the parameter list for
use by the Edit utility

is the address of the parameter list for this CALL

On return from the Edit Utility, register 15 contains a return
code (binary value) indicating the results of editing as illustrated in
Figure 12-2. A zero return code indicates the message was ed ited
successfully. The address of the successfully edited message ~s

returned ~n the first word of the parameter list. For a non-zero
return code, a zero address also indicates the input message was not
successfully edited.

===

Meaning
===

° No errors or omissions of required fields

4 Transaction type (verb) not found in Edit Control Table (ECT).

8 Insufficient storage to carry out the Edit function

12 Message cancelled by remote terminal operator using CANCEL
option

16 Message cancelled because required parameters were omitted or
in error.

20 Unable to find end of keyword or more than 256 item codes

Figure 12-2. Edit Utility Return Codes

39.3

IPN:093 4/76

Figure 12-3 illustrates BAL program logic for EDITing an input
message:

LINKAGE - - -,MSG=(RS),SPA=(R3),- --

TEST CLI MSGHVMI,X'~~' EDIT REQUIRED?
BNE OKAY NO

EDIT CALL EDITCTRL, ((RS), (R3),) ,VL,MF= (E,LIST)
LTR R15,R1S
BZ GOOD
RTNLINK - - -,RC=4 UNSUCCESSFUL

GOOD L RS,LIST EDITED MESSAGE ADDRESS
OKAY EQU *

Figure 12-3 J EDITING an Input Message.

39.4

THE OUTPUT UTILITY

GENERAL DESCRIPTION

The OUTPUT utility provides simplified generation (and sub­
sequent revision) of output formats to telecommunication
devices; the complications of teleprocessing I/O coding are
transparent to the individual COBOL, FORTRAN, PL/l or BAL
application modules. Each application subsystem can create
messages to be processed by the Output Utility containing
only data fields ~o be inserted into a predefined format
described by a table entry accessed by the Output Utility.
OUTPUT will in turn perform the following:

1. Locate the actual format specification table entry.
2. Decide what data will go where in the format.
3. Format the output message(s) based on any device

dependent constraints such as line or buffer
size and line ending sequences.

4. Insert the necessary T/P control characters re­
lated to the transmission of the message.

5. Put the actual message(s), to the Telecommunica­
tions Interface Module (Front-End) for transmis­
sion to the designated terminal.

Additionally, Output will verify the operational status for
each destination terminal and, if required, select'an alter­
nate terminal if specified.

The Output Utility executes as an INTERCOMM subsystem (mes­
sage processing program) scheduled by the Subsystem Controller.
It may be defined as a r~sident subsystem or as a subsystem
residing in an overlay region or dynamically loaded as re­
quired. OUTPUT is a reentrant BAL Subsystem; concurrent
message processing is defined by its Subsyst~m Control Table
(SCT) entry.

Messages for transmission to terminals are created by applica­
tion programs and queued for processing via INTERCOMM service
routines. Hence, responsibility for terminal output is
independent and asynchronous to application program message
processing.

The actual functions of the Output Utility for a particular
installation are specified by coding table entries using INTER­
COMM macros. Format specification table entries may be core or
disk resident at the User's option.

40

IPN:093 4/76

MESSAGE FORMATS PROCESSED BY OUTPUT

Application programs preparing messages to be processed by the
OUTPUT Utility have a choice of message text formats as
follows:

Preformatted: The application program prepares a charac­
ter string of message text ready for transmission to the
terminal. Any terminal dependent control characters are
the application programmer's responsibility. The OUTPUT
Utility will perform Station Table checking to verify the
terminal's availability, and assign an alternate terminal
if required and defined.

Variable Character Text Data for Formatting: The applica­
tion program prepares message text as a series of charac­
ter data fields for insertion into a format described by
an Output Format Table Entry. Each data field in the mes­
sage text is prefixed by 2 or 3 one-byte binary values as
follows:

L
E
N data or data

where IC is item (or identification) code for the field
LEN is length
OC# is occurrence number for repetitive fields.

The Output Format Table number (OFT#) is the first data
item, in a variable message, following the message header.
Data item code number 255 is reserved for the OFT# and is
expected as a half-word binary value.

Segmented Messages: The application program prepares and
queues a series of messages of the Variable Character
Text Data for Formatting type. This extension of the
formatting capabilities of OUTPUT allows sequential trans­
mission of several messages in varying formats to a par­
ticular terminal. This facility may be used to control
uninterrupted transmission of "pages" of a multi-page
report to one destination terminal.

Control Terminal Messages: The OUTPUT Utility may be
instructed to prefix particular error messages with a
line of identifying information.

Each message type is identified by control fields in the
INTERCOMM message header. Application programs may also
prepare messages with Fixed Format Text, Formatting Re­
quired which are converted by the Change/Display to the
Variable Text Format for the OUTPUT Utility. Figure 13
illustrates Format options.

41

header
VMI=X'57'

Figure 13.

SUBSYSTEM

preformatted text -- -- -...J_,. __ --~ -
fixed formatted text header

VMI=X'72' '-------...1------ - ___ --~ -
~F .

r--_ ----1
I prefix
(conversion I
Ivia COBPUT I

I (COBOL, I
I PL!I) I 1---'1-- --,

CHANGE!
DISPLAY

.... 1 ___ ---_ __ -
header variable character text,
VMI=X'5~' formatting required

L-_____ -.l ___ -----........ - - ___ -

."

...

.. OUTPUT

-

header text for transmission to terminal
-, -......." ,

FRONT
END

Format Options for messages to OUTPUT.

42

J

J

J

OUTPUT PROCESSING

OUTPUT Components

The OUTPUT Utility is customized for a particular installation
by coding the following tables using INTERCOMM macros:

Output Format Table (OFT): one entry for each format
required for conversion of messages from application sub­
systems to terminal-dependent formats. This Table is also
used to define INTERCOMM error messages in generalized
formats. Table entries may be core or disk resident
depending on frequency of use.

Station Table: one entry for each terminal. This table
is used by OUTPUT to determine status of the device for
which a message is intended. The table is used to deter­
mine if an alternate device is defined, and to select the
appropriate alternate device if the destination terminal
is not operational. If alternate devices are not defined,
Front-End logic is used to queue messages for non-opera­
tional terminals or select a Front-End defined alternate
device.

Device Table: one entry for each terminal type defining
hardware characteristics (line length, buffer size, etc.)
and transmission control characters required (end-of-line,
end of transmission, etc.).

The Output Format Table, Station Table, and Device Table are
required, the following tables specify optional facilities of
OUTPUT:

Broadcast Table: defines groups of terminals with one
Broadcast group name, allowing a message processed by
OUTPUT with destination terminal identified (via MSGHTID
in the message header) as a broadcast group to be routed
to several different terminals. OUTPUT creates a separate
message for each terminal in the Broadcast Group.

Alternate Format Table: Optionally specifies alternate
Output Format Table entries to be utilized for those
instances where an alternate terminal is selected as the
destination terminal.

Batch Report Table: Indicates messages created by specific
Output Format Table Entries are to be written to a se­
quential disk data set and subsequently printed off-line
by an INTERCOMM batch utility program. This feature is
designed for multi-page output reports, and is also help­
ful in Test Mode for analyzing usability of Output formats
before actual terminals are installed.

43

Format/Terminal Table: Specifies that particular Output
Formats are to be directed to a particular terminal,
regardless of the destination terminal specified by the
message header.

OUTPUT Subsystem Logic

The OUTPUT Utility provides for simplified generation (and
revision) of output formats to telecommunication devices;
i.e. terminal and/or format independence for application
subsystems. The individual application programmer determines
only data necessary in the format and generates that appro­
priate data in the message text to be processed by OUTPUT.
The application program's logic then queues its message for
the OUTPUT Utility; OUTPUT executes as an INTERCOMM Subsystem.
To process a message, OUTPUT performs the following steps, as
illustrated by figure 14.

1. Determine if formatting is required. If not, do
steps 4 and 7 only.

2. Locate the Output Format Table specification within
message text.

3. Locate the OFT entry (core or disk-resident).
4. Verify the destination terminal (perhaps select

alternate device).
5. Obtain storage for the formatted message and prepare

the header.
6.

7 .

Format the output message using both the cor­
responding Output Format Table and Variable
Character Text data supplied in the message passed
to the OUTPUT Module from an application program.
Pass the message to the Front-End for transmission.

Errors encountered during the processing of messages are re­
ported by messages to the Control Terminal and/or OS Console.

Based on the Output Format Number specified in the message
text being processed, OUTPUT searches the Output Format Table
for the entry in core corresponding to the requested number.
If the table entry is not found in the core-resident table,
the Format Number is used as an RBM (relative block number)
to access the Disk-resident Output Format Table entries.

The Station Table is then searched comparing the destination
terminal identification specified in the message header
(MSGHTID) until the correct terminal description is found.
Once located, the STATION Table entry indicates the terminal's
availability and alternate terminal identification.

If the destination terminal is available, OUTPUT proceeds.

If the destination terminal is not available, OUTPUT
repeats its logic based upon the alternate terminal.

If no alternate is specified, OUTPUT proceeds (Front­
End logic must store and forward messages for non­
operational terminals).

44

J

Message into OUTPUT:

VMI I OFT# variable text data, formatting required I
~header_

8 G)

OFT

text

OUTPUT
UTILITY

r

o

STATION TABLE

DEVICE TABLE

_-------1

L header I text for transmission to terminal I

o ~, ..
L--________ --+ ____ ---1 Message passed to Front End

Figure 14. OUTPUT Processing Logic

45

The Station Table and Output Format Table are then compared
to further verify the terminal's ability to receive the mes­
sage being processed.

Once a terminal is selected, the type of I/O device is ob­
tained from the Station Table and is used to index the Device
Table to find the line length for this device. Based on the
line length and the estimate of the number of lines for this
format, OUTPUT obtains storage for creation of a message for
transmission. The OFT entry is then used to produce the re­
quired format.

Each line format in the Output Format Table positions data
items identified by item code. The program processes the
item codes in the OFT one at a time. An item code of 255
indicates that data to be inserted in the line being prepared
comes from the OFT itself (i.e., constants, titles, etc.)
rather than from the application program's variable character
text data. In this case, the data from the table entry is
moved into the output line being prepared.

Output processes each specified line format individually.
When a given line format is complete, OUTPUT goes on to pro­
duce the next line format. A line format may be specified as
repetitive, in which case the format is repeated in the mes­
sage being produced until no further data for that line is
found in the incoming message. OUTPUT then proceeds to the
next line format.

An item code other than 255 (or item codes reserved for
terminal-dependent use), indicates that the data is to be
inserted into the format from the message generated by
the application program, where each text field is prefixed
by Item Code and Length. The indicated item code in the
OFT is located in the message developed by the application
program, and OUTPUT moves the data into the line being pre­
pared for transmission. If the line format being pro­
cessed is a repetitive one, OUTPUT searches for Item Code,
Length, Occurrence Number prefixes. The program assigns an
Occurrence Number of one (1) to the first line prepared.
After this line is finished, the same line format is re­
used, this time with an Occurrence Number of two (2). This
process continues until no additional Item Codes are found
in the incoming message text for this line format.

If the data found in the incoming message has a length greater
than the field size allocated to this item in the line, OUTPUT
saves the rest of the data and generates an overflow line
(multiple overflows can occur).

The above procedure is followed for every item code in the
table for each line. At the end of each line produced for
the report, the appropriate control characters (carriage
return/line feed or new line) are inserted to force a skip
to the next line based on the device type. When all line

46

J

J

formats have been completely processed, OUTPUT passes the
complete message to the appropriate Front-End Interface
Module.

CONTROL TERMINAL MESSAGES

In order to output error messages to the supervisory control
terminal, the individual programs prepare messages for OUTPUT
as if they were normal output messages. However, since it is
important to transmit these messages very quickly, and it is
possible that the queue for the OUTPUT Module might be very
large, there is a separate Subsystem Control Table (SCT)
entry for messages destined to go to the system supervisory
terminal through OUTPUT.

The subsystem code for this portion of the OUTPUT Module is
in the System Parameter List in the field names SPAIDCNT.
(The INTERCOMM default code is C'N'). This subsystem code
should be placed in the MSGHRSC field of the message header.
The sending application module should place the control
termi~al ID into the MSGHTID field of the message header.
The message format type should be X'50' (placed in the MSGHVMI
field of the message header). Following the header should
be the item codes and data for all variable items to be put
into the message. In addition, the error message number
corresponding to the OFT# is identified by the item code 255
(X'FF') field in the message text.

If the format mask in the Output Format Table indicates that
the message being output is an error (i.e., mask of X'8~¢¢),
OUTPUT automatically adds a prefix line to the message con­
sisting of the sending subsystem code followed by the for~at
number (converted to character form).

CREATION AND MAINTENANCE OF TABLES USED BY OUTPUT

The following pages describe the seven major tables used by
the OUTPUT Module and how to create them. These are:

1. Output Format Table (OFT).
2. Device Table.
3. Station Table.
4. Broadcast Table
5. Alternate Format Table
6. Format/Terminal Table.
7. Batch Report Table.

Output Format Table

The OUTPUT Utility's formatting functions are specified by
the Output Format Table (OFT). This table contains all in­
formation required to position titles, column headings,
special terminal dependent control characters, and to locate

47

IPN:093 4/76

and position variable data fields in a message being processed
into a predefined field.

The OFT is core-resident, in a separate CSECT labelled PMIRCNTB.
The address of the Output Format Table appears in the System
Parameter List. Infrequently used OFT entries may be disk
resident and dynamically loaded as required. The Table is an
open ended CSECT, and is created and maintained by the user.
The end of the table is indicated by four (4) bytes of hexa­
decimal 'FF' (generated by a PMISTOP macro).

The following INTERCOMM macros are used to create the OFT:

REPORT: a macro which defines general format specifica­
tions (format number, number of line formats, etc.)

LINE: a macro which signifies generation of a format line
and its characteristics (i.e., repetitive or not,
constants for page overflow, etc.)

ITEM: a macro which defines constants or variable data
item codes indicating the message being processed will
be searched for data to position within the output format.
ITEM specifies exact positioning details for each data
field. Items referenced in the OFT but not appearing
in the message processed will not appear in output.
Items appearing in the message but not referenced in the
OFT will not appear in output.

Coding specifications for all macros are described in detail
in Appendix C. Figure 15 illustrates general structure of the
Output Format Table.

PMIRCNTB CSECT
REPl REPORT

REPn

LINE
ITEM
ITEM

LINE
ITEM

REPORT

PMISTOP
END

Figure 15. OUTPUT Format Table Structure.

48

IPN:093 4/76

To add a new report to the table, just code the header and
detail information for the new report (see REPORT, LINE, and
ITEM macros) and insert the report in between the last report
presently in the Table and the PMISTOP macro. Then reassemble
and relinkedit and the new report is part of INTERCOMM. Pro­
cedures for loading table entries on disk are discussed in a
subsequent section of this manual.

The OFT entry itself may be used to insert non-standard TP
Control characters; however, this procedure may cause some OFT
entries to be terminal dependent and should be used with
caution. If TP control characters are to be included in an
OFT entry for a buffered device, and if those control charac­
ters are not to count as part of the buffer length, they must
be assigned an item code of 254 in the appropriate ITEM
macro.

Certain terminals have· been assigned exclusive use of other
item codes; see the section "Terminal-Dependent Considera­
tions".

Device Table

The Device Table is a core-resident CSECT named PMIDEVTB
which specifies terminal dependent characteristics for each
device in use at an installation. The Device Table is a
system-oriented table, and as such is described in the
Operating Reference Manual.

Station Table

The Station Table is a core-resident CSECT named PMISTATB
which describes each terminal in the installation network.
The terminal "logical name" (5 characters) is specified in
this table, as well as an optional alternate terminal.
The Station Table is a system-oriented table, and as such is
described in the Operating Reference Manual.

The Broadcast Table

The Broadcast Table is a core-resident CSECT named BROADCST.
Each entry in the table defines a group of terminals which
can be referenced by a single broadcast group name (5 char­
acters). The Broadcast Table is a system-oriented table,
and as such is described in the Operating Reference Manual.

Alternate Format Table

The Alternate Format Table is core resident in a CSECT named
PMIALTRP. The table is created and maintained by the user.
Individual entries in the Table are created by the use of the
PMIALTRN macro. The end of the Table must be indicated by the
PMISTOP macro. The location in core of the PMIALTRP CSECT is
pointed to by a V-type constant in the OUTPUT Module.

49

Station Table

The Station Table is core resident in a CSECT named PMISTATB.
The Table is created and maintained by the user. Individual
entries in the Table are created by use of the STATION macro
(one for each terminal location). The end of the Table must
be indicated by 4 bytes of hexadecimal IFF', generated by the
PMISTOP macro. The loaati@n in ~ore of the PMISTAB CSECT is
pointed to be a V-type address constant in the field SPASTATB
of the System Par~meter List.

The Station Table effectively creates 5-character "logical"
names for each terminal in the system. The STATION Table
Structure is as follows:

PMISTATB CSECT
STATION TPUS=n, ..••
STATION
STATION
STATION
STATION

PMISTOP
END

Note that the number of station macros is defined by the first
STATION macro, which generates a prefix to the table entries.
In order to add a new terminal to the system, the Station
Table must be modified by adding a STATION macro entry, and
updating the first STATION macro to reflect the number of
STATION macros in the table.

Broadcast Table

The Broadcast Table is core resident in a CSECT named BROADCST.
The Table is created and maintained by the user. Each entry
in the Broadcast:Table represents one broadcast group. The
end of this Tabel must be indicated by four bytes of hexadeci­
mal IFFI, generated by the PMISTOP macro. The location in
core of the BRQADCST CSECT is pointed to by a V-type address
constant in the OUTPUT Module.

The Broadcast Table is defined by the BCGROUP macro. The Broad­
cast group name (5 bytes) is followed by a specification of the
terminals within the group. A message destined for a broadcast
group (MSGHTID in the header) will cause a message to be passed
to the Front-End for each terminal in the group.

50

J

J

J

In the following sample Broadcast Table, two broadcast-groups
are defined.

BROADCST
*BROADCAST GROUP

BCGROUP

CSECT
GGG~l
GROUP=GGG~l,

TERMS=(NYC~l,NYCO~

*BROADCAST GROUP GGG~2
BCGROUP GROUP=GGG~~

TERMS=(LAX~1,LAX~2,LAX~3)

PMISTOP
END

To add a new terminal to a broadcast group, simply insert
the terminal-ID within the current group (preferably behind
a terminal of the same device type). To add a new broadcast
group to the Table, simply insert the new group behind the
last group and prior to the PMISTOP macro. In either case,
the CSECT must be reassembled and relinkedited.

Alternate Format Table

The Alternate Format Table is core resident in a CSECT named
PMIALTRP. The table is created and maintained by the user.
Individual entries in the Table are created by the use of the
PMIALTRN macro. The end of the Table must be indicated by the
PMISTOP macro. The location in core of the PMIALTRP CSECT is
pointed to by a V-type address constant in the OUTPUT Module.

51

IPN:093 4/76

The following example shows how to code an Alternate Fo=mat
Table:

*
*
ALTl
ALT2
ALT3

Macro

PMIALTRN
PMIALTRN
PMIALTRN
PMISTOP
END

Primary OFT, device type, (alternate OFT,
device type, ...)
l~~,l, (l~l,2)

2~~,2, (2~l,l,2~2,3,2~3,5)

3~~,4, (3~l,2,3~2,l)

The CSECT statement is generated automatically by the first
PMIALTRN macro. To add a new entry to the table, code the
PMIALTRN macro and insert it after the last entry in the table.
Then reassemble and relinkedit the CSECT. The OUTPUT module
then provides the ability to create different format layouts
for the same message going to different device types through
the use of the Alternate Format Table. The OFT number speci­
fied by the user application program in the message is the
primary format number. If the terminal which is to receive the
message is a different device type than the main device type
as specified in the Alternate Format Table, then OUTPUT will
use the table to find an alternate format which is suitable
for the terminal. The output message will be formatted ac­
cording to the appropriate OFT entry.

The Alternate Format Table is optional. Any combination of
alternate formats is acceptable. If no Alternat Format Table
is included, or if there is no entry for the specified format
number, or no detail entry for the terminal device type, the
primary OFT entry specified in the message being processed is
used.

Format/Terminal Table

The Format/Terminal Table is used to associate a particular
format with a'given terminal only. Any OFT included in the
table will generate a message to be sent to the terminal asso­
ciated with i~ in the table, regardless Of the destination
terminal specified in the message header.

This table is constructed as a CSECT named PMIRPTAB. The
CSECT is coded with BAL constants, and must end with a
PMISTOP macro.

The following code outlines the construction of a Format/Term­
inal Table:

52

J

J

IPN:068 8/1/74

PMIRPTAB CSECT
* REQUIRED PREFIX CONSTANTS

BEGTAB

* OFTSI TO

* OFT52 TO

ENDTAB

Batch Report Table

DC X ',0,0,01 ,
DC
EQU
NYC02
DC
DC
NYC03
DC
DC

PMISTOP
END

AL2(ENDTAB-BEGTAB)

*
ONLY
HL2'5l'
C'NYC02'
ONLY
HL2'S2'
C'NYC03'

Any report number entered in the Batch Report Table will be
intercepted by the OUTPUT Module and written to a local se­
quential data set for off-line printing. This sequential data
set must be given a ddname of RPT,0,0,0 and must be defined ap­
propriately to the system (i.e., a DD card must be in the job
stream) as a variable length (blocked or unblocked) output
sequential data set.

The table consists of a string of 2 byte OFT numbers. These
are placed in a CSECT name REPTAPE. The module must end with
a PMISTOP macro.

The following code outlines the construction of this table:

REPTAPE CSECT
DC
DC
DC

PMISTOP
END

H'Sl'
H'75'
H' 93'

The INTERCOMM Utility, PRT1403, described in the Operating
Reference Manual, may be used to print the sequential dataset
produced.

53

SAMPLE TABLE ENTRIES

The examples in this section are included to assist the user
in understanding the OFT entry options for Output Utility pro­
cessing.

The examples are:

Full messages, formatting only non-repetitive lines
(Figure 16)

Full message, formatting with repetitive lines (Figure 17)

Segmented message formatting (Figure 18)

Each example illustrates input to the Output Utility, OFT
entry, OUTPUT formatted result.

54

J

J

J

IPN: 079 12/31/74

i:essage from Application Program:

I

Output Format Table Entry:

OFT#52 REPORT
LINE
ITEM

LINE
LINE
ITEM
ITEM
ITEM
ITEM
LINE
LINE
ITEM
ITEM
ITEM
ITEM
LINE
LINE
ITEM
ITEM

NUM=52,LINES=7
NUM=l,ITEMS=l
CCDE=255,FROM=5,TO=26,DATA='PARTS INVENTORY
REPORT'
NUM=2, ITEMS=.0
NUM=3,ITEMS=4
CODE=255,FROM=1,TO=12,DATA='PART NUMBER:'
CODE=l.0,FROM=15,TO=18
CODE=255,FROM=2~,TO=29,DATA='INVENTORY'

CODE=2.0,FROM=31,TO=35
NUM=4', ITEMS=.0
NUM=5,ITEMS=4
CODE=255,FROM=1,TO=12,DATA='DESCRIPTION:'
CODE=3.0,FROM=15,TO=29
CODE=255,FROM=31,TO=35,DATA='COST:'
CODE=4.0,FROM=37,TO=41
NUM=6 , I TEMS=.0
NUM=7,ITEMS=2
CODE=255,FROM=1,TO=15,DATA='RE-ORDER POINT:'
CODE=5~,FROM=17,TO=18

Result of Output Formatting:

®

PARTS INVENTORY REPORT

PART NUMBER: @
DESCRIPTION: Q8V

INVENTORY: @
COST: @

RE-ORDER POINT:_"<::@_O+ ___________ _

indicates data item filled in from text of message pro­
cessed by output.

Figure 16. Full Message Formatting with non-repetitive Lines.

55

IPN:057 7/1/74

Message from Application Program:

1 header, 5..01 FFI,02I,0,0, 33132 ,,0A ,@137 ,,08 ,@IIE ,..08 ,,01,@ 1

1 14 ,,0D ,,01,(20)1 5D ,..08,..01 ,(93)llE ,..08 ,..02 ,(30),14 ,fJD ,fJ2,(2O) , -
I 5 D , ..0 8 , fJ 2 '@' ..0 7 , ..0 C ill ..0 8 , ..0 7 (8) I

Output Format Table Entry:

OFT,05l REPORT
LINE
ITEM
LINE
LINE
ITEM
ITEM
ITEM
ITEM
LINE
LINE
ITEM
ITEM

ITEM
LINE
LINE
ITEM
ITEM
ITEM
LINE
LINE
ITEM
ITEM
ITEM

NUM=5l,LINES=9
NUM=l,ITEMS=l
CODE=255,FROM=l,0,TO=2l,DATA='SALES REPORT'
NUM=2, ITEMS=,0
NUM=3,ITEMS=4,REPET=6
CODE=255,FROM=l,TO=8,DATA='DIVISION'
CODE=5,0,FROM=l,0,TO=l9
CODE=255,FROM=22,TO=25,DATA='DATE'
CODE=55,FROM=27,TO=33
NUM=4,ITEMS=,0
NUM=5, ITEMS=3
CODE=255, FROM=l, TO=l',0, DATA=' SALESMAN' J S NAME'
CODE=255,FROM=l4,TO=25,
DATA='TOTAL DOLLAR SALES'
CODE=255,FROM=28,TO=33,DATA='PCT OFQUOTA'
NUM=6,ITEMS=,0
NUM=7,ITEMS=3,REPET=8
CODE=3,0,FROM=1,TO=l,0
CODE=2,0,FROM=l4,TO=25
CODE=93,FROM=28,TO=34
NUM=8,ITEMS=,0
NUM=9,ITEMS=3,REPET=6
CODE=255,FROM=l,TO=6,DATA='TOTALS'
CODE=7,FROM=l4,TO=25
CODE=8,FROM=28,TO=34

Result of Output Formatting:

SALES REPORT

DIVISION

SALESMAN'S
NAME

TOTALS

(sO)
0 ..

DATE

TOTAL DOLLAR
SALES

PCT OF
QUOTA

®

GY indicates data item filled in from text of message pro­
cessed by output.

Figure 17. Full Message Formatting with Repetitive Lines.

56

J

J

IPN: 079 12/31/74

DATE: §
EMPLOYEE NAME

@

EMPLOYEE HOURLY WAGE REPORT Jl

HOURLY WAGE

@ }

First
Segment
VMI=51

TOTAL NOo EMPL: ~
n indicates data item

by OUTPUT.

Intervening
Segments
VMI=52
This Segment
may be repeated
n times

AVG HOURLY RATE:i!!} Last Segment
VMI=53

filled in from text ot message passed

Multi-Segment Message from Application Program:

First Se
VMI

header,51

Figure 18. Full Message Formatting - Multi-Segmented Message.
(part 1 of 2)

57

IPN:079 12/31/74

Output Format Table Entry:

OFT#54

OFT#55

REPORT
LINE
ITEM

LINE
LINE
ITEM
ITEM
LINE
LINE
ITEM
ITEM
LINE
LINE
ITEM
ITEM
LINE

REPORT
LINE
ITEM
ITEM
ITEM
ITEM

NUM=54,LINES=8
NUM=1,ITEMS=1,REPET=5
CODE=255,FROM=5,TO=31,DATA='EMPLOYEE
WAGE REPORT'
NUM=2,ITEMS=~,REPET=5

NUM=3,ITEMS=2,REPET=5
CODE=255,FROM=1,TO=4,DATA='DATE'
CODE=6~,FROM=6,TO=13

NUM=4,ITEMS=~,REPET=5

NUM=5,ITEMS=2,REPET=5
CODE=255,FROM=3,TO=15,DATA='EMPLOYEE
CODE=255,FROM=5~,TO=61,DATA='HOURLY

NUM=6,ITEMS=~,REPET=5

NUM=7,ITEMS=2,REPET=1
CODE=7~, FROM=3, TO=27
CODE=8~,FROM=55,TO=58

NUM=8,ITEMS=~,REPET=1

NUM=55,LINES=1

HOURLY

NAME'
WAGE'

NUM=1,ITEMS=4,REPET=6
CODE=255,FROM=1,TO=14,DATA='TOTAL NO. EMPL'
CODE=75,FROM=16,TO=2~

CODE=255,FROM=5~,TO=64,DATA='AVG HOURLY RATE'
CODE=85,~ROM=66,TO=7~

Figure 18. Full Message Formatting - Multi-Segmented Message.
(part 2 of 2)

58

J

IPN 135 9/78

ERROR MESSAGES FROM OUTPUT

Error messages reflecting problems encountered during message
processing by the Output Utility are generated and queued for
subsequent processing via the Output Utility. The messages are
formatted according to OFT entries. Each error message is pre fixed
with identifying information:

SEQ NO
SSC
RSC
TID

(Sequence Number of message in error)
(Sending Subsystem Code)
(Receiving Subsystem Code)
(Destination Terminal of message in error)

Each error message explic it 1y de fines the reason for rejecting
the message being processed, for example:

"THE FROM IS GREATER THAN THE TO FIELD"

"REPORT NUMBER NOT IN MESSAGE"

"RCTnnnn IDT FOUND" (OFT entry missing for nnnnn)

See Messages and Codes for a prec ise listing of Output Utility
error messages.

OUTPUT USER EXIT

An optional user-coded exit, USROTEDT, is available in PMIOUTPT.
If coded, control is passed to USROTEDT after a message has been queued
for output. Options and coding techniques are documented in Section 8
of the Operating Reference Manual.

59

IPN:093 4/76

SUBSYSTEM INTERFACE TO
THE OUTPUT UTILITY

The OUTPUT Utility subsystem processes messages destined for
terminals operating under control of INTERCOMM. It is respon­
sible for completing any device-dependent formatting require­
ments in a message before passing it to the TP Interface for
eventual transmission to the terminal device. It also checks
the operational status of destination terminals. Should it
find a destination terminal not operational, it will redirect
messages to an alternate terminal, if an alternate terminal
has been named in the Station Table entry for that particular
destination terminal; otherwise the front-end will intercept a
message to a non-operational terminal and queue it in the
output queue assigned to that terminal to await its avail­
ability.

The OUTPUT Utility also may perform report and display format­
ting based upon specifications in the Output Format Table.
This includes columnizing, titling, and positioning variable
data. A message sent from an application subsystem to the
OUTPUT Utility need consist of variable data characters only.
Constants and spacing characters are generated from the table
specifications and therefore are not necessary within the mes­
sage itself.

J

The OUTPUT Utility will also facilitate the preparation of
reports containing several different message formats, for J
example, a title page, detail pages, and a summary page. In
this instance, an application subsystem creates multiple mes-
sage segments where each segment may require formatting with
a different Output Format Table entry. These message segments
are sent one by one to the OUTPUT Utility, and it in turn will
assure that all message segments are transmitted in the proper
sequence and that no other messages are sent to the terminal
until after the final segment has been sent. Multi-segment
messages are discussed in a separate section of this chapter.

To use the OUTPUT utility, a subsystem creates a message header
and text and directs the message to the OUTPUT Utility. This
is accomplished in a COBOL or PL/I subsystem by CALLing the
INTERCOMM system program COBPPT, in a BAL subsystem by CALLing
the INTERCOMM system program MSGCOL.

OUTPUT MESSAGE HEADER

The message header may be created by copying the input message
header to the output message header area and adjusting the
fields shown in Figure 18-1.

60

J

IPN:093 4/76

Field Name Content

MSGHLEN Messase lensth:
42 plus the number of bytes of output
message text.

MSGHRSCH, Receivins subs;istem codes:
MSGHRSC The appropriate subsystem code (see

figure 31) depending on the format
of the message text.

MSGHSSCH, Sending subs:istem codes:
MSGHSSC The code of the application sUbsystem

(found in the receiving subsystem code
fields of the input header) .

MSGHTID Terminal Identification:
The 5-character name of the destination
terminal. This field contains the name
of the terminal originating the input
message and need only be changed when
sending a message to a different ter-
minal, or to a broadcast group.

MSGHVMI Verb,messaS1e identifier:
The indicator defining the format of
the message text (see figure 31) .

Figure 18-1. Message header fields used by the OUTPUT Utility.

MESSAGE TEXT FORMATS FOR OUTPUT UTILITY

The OUTPUT Utility processes various output message formats
in various ways as distinguishable from fields in the message
header. The simplest is the preformatted message which requires
no format processing. Formattable message types include two
forms of variable field messages, those using character item
and length codes (COBOL and PL/l) and those using binary codes
(Assembler, COBOL, PL/l). There is also a fixed field formatting
capability that uses the CHANGE/DISPLAY Utility.

Except for preformatted messages, all other formats can be either
single-segment messages or multi-segment message groups. Figure
18-2 shows the message header fields describing the various
message formats for single segment messages. Multi-segment
messages are discussed separately (see Figure 18-13).

60.1

IPN:093 4/76

MESSAGE HEADER FIELDS* CHANGE/
OUTPUT MESSAGE DISPLAY
TEXT FORMAT MSGHRSCH MSGHRSC MSGHVMI TEXT PREFIX

BYTE 9

Preformatted - x'~HJ' C'U' X'S7' N/A
(Device-Dependent) or

C'P'

Formatting Required, X'00' C'U' X'S0' N/A
Variable Text - or or
Character Format C'0' C'0'
(COBOL and PL/l only)

Formatting Required, C'U' C'U' X'S0' N/A
Variable Text -
Binary Format
(COBOL and PL/1)

Formatting Required, X'fJfJ' C'U' X'SfJ' N/A
Variable Text -
Binary Format
(Assembler Language)

Formatting Required, X'fJfJ' C'H' X'72' C'fJ'
Fixed Text or

C'S'

*Note that whenever a character value is allowed for MSGHRSCH
or MSGHVMI, it is the high-level language queuing routine
COB PUT which performs conversion of the character va1ue(s)
to the hexadecimal va1ue(s) expected by the Output Utility.
Therefore, assembler subsystems must always use the hexa-
decimal va1ue(s).

Figure 18-2. Message Header Specifications - Single Segment
Messages.

60.2

J

J

J

IPN:093 4/76

SALES SUMMARY REPORT

MONTH ENDING XX/XX/XX CD
DIVISION XXX @
BRANCH TOTAL

@
% OF QUOTA

XXX 0 $Xxx.xx xx @
xxx $Xxx.xx xx

" " "
" " "
" " "
" " "

xxx $Xxx.xx xx

DIVISION TOTAL $XXXX.XX @ XXX @

Figure 18-3. Sample display layout, showing typical item code
numbers of variable data items.

BUILDING MESSAGE TEXT

Figure 18-3 depicts a sample screen or report layout showing the
item code numbers assigned to the variable data fields. This
layout corresponds to the sample format table and the sample
output messages used in illustrating the various message types.

Preformatted Text

The message text consists of both text and device control
characters ready for transmission to the terminal. All spacing
and other format considerations (titles, column headings, etc.)
are included in the message text. The OUTPUT Utility simply
passes the message to the TP Interface. Figure 18-4 shows
a sample pre-formatted message to generate a display or print­
out conforming to the layout depicted in Figure 18-3.

Formatting Required, Variable Text

The message text consists of a string of data items to be in­
serted into a final message structure defined in a numbered
Output Format Table (OFT). ITEM entries in the designated
table define the position and content of all titles, headings,
footings, etc., and the positioning specifications for text
fields contained in the message. Figure 18-5 depicts the
associated Output Format Table Entry where the REPORT, LINE and
ITEM macros describe the display format and assigned data item
code numbers shown in Figure 18-3.

60.3

IPN:093 4/76

r-----------------------~H~E~A~D==E~R--------------I----------------~~--------~~ TEXT ...
I RSCH=X'~~',RSC-C'U' ,VMI=X'57' I SALES SUMMARY:\,

r---------7RE~P~O~R~T~'&r~A------------------~~

,-~~~~~~~r.MLO-N-T-H-E-N~D~IN~G~X-X-/-X-X-/-X-X---A-----------~~
DIVISION XXXA~ BRANCH TOTAL

, OF QUOTA

~~-------~~------------~~~ / XXX $XXX.XX XX& r V
iRepea ting\\'

, Detail' XXX $XXX.XX
Lines

l /' XXX
t""
~

$XXX.XX

DIVISION TOTAL $XXXX.XX XXX.&. EOT

A=New line X'15'

- - -

Figure 18-4. Sample pre-formatted output message.

Data items in the message text consist of an item code number,
data field length count, and text field. Data items having
the same item code number may appear more than once ina mes­
sage. The brace in Figure 18-5 illustrates how in this case,
a LINE entry in the designated OFT indicates that all ITEM
code numbers within the domain of that prototype line are
to be REPETitive. Whenever data items containing these so
designated item code numbers appear in a message, an occurrence
number must also appear within the corresponding text field
immediately preceding the actual text. Data items defined
in the OFT as repetitive require this occurrence number in the
data field even if for some reason the data item itself were
never to appear more than once in a message.

The first data item in a variable message to the OUTPUT Utility
should designate the OFT# to be used for formatting the message.
Data item code number 255 is reserved for this use, and the
OFT# is expected as a halfword binary value. Otherwise, data
items may appear in any convenient sequence, because correspond-
ing ITEM entries in the Output Format Table control the field ~

60.4

RPT ~tltl9.9

Figure 18-5.

IPN:093 4/76

REPORT
LINE
ITEM

LINE
LINE
ITEM

ITEM
LINE
ITEM

ITEM
LINE
LINE
ITEM

ITEM

ITEM

rUE} ITEM
ITEM
ITEM
LINE
LINE
ITEM

ITEM
ITEM

NUM=99,LINES=9
NUM=l,ITEMS=l
CODE=255,DATA='SALES

SUMMARY REPORT',
FROM=lO,TO=29

NUM=2,ITEMS=tI
NUM=3,ITEMS=2
CODE=255,DATA='MONTH

ENDING', FROM=l,
TO=12

CODE=6,FROM=15,TO=22
NUM=4,ITEMS=2
CODE=255,DATA='DIVISION' ,

FROM=1,TO=8
CODE=17,FROM=1~,TO=12
NUM=5,ITEMS=.0
NUM=6,IrEMS=3
CODE=255,DATA='BRANCH',

FROM=l, TO= 6
CODE=255,DATA='TOTAL' ,

FROM=ltl,TO=15
CODE=255,DATA=" OF

QUOTA' , FROM=19,
TO=28

NUM=7,ITEMS=3JREPET-ij
CODE=5,FROM=1,TO-3
CODE=1~,FROM=l.0,TO=16

CODE=15,FROM=19,TO=2~

NUM=8,ITEMS=.o
NUM=9,ITEMS=3
CODE-255,FROM=1,TO-14,

DATA='DIVISION TOTAL'
CODE=18,FROM=1"TO=17
CODE=19,FROM=19,TO=2l

Sample Output Format Table Coding (OFT #~~~99l.

location and sequencing in the output message. Hence, application
subsystems require no modification when screen or report format
changes are required. Also several different application sub­
systems may utilize various common OFT's. When doing this, the
application programmer must be aware of the item code numbers
assigned to each text field defined in the OFT's to be used.

There are two forms of variable text messages; character and
binary. The variable character message format varies from the
variable binary message format in that the binary message for­
mat utilizes 8-bit binary item code numbers, data field length
counts, and occurrence numbers, while the character format uses
3-character integer fields instead, along with a special N or R
repetition character to indicate whether or not an occurrence
number is to be expected within the text field. The OUTPUT
Utility, however, accepts only the one-byte binary format, and
it is the COBPUT high level language queuing routine that
converts the 3-character values to one-byte values and eliminates
the repetition character.

60.5

IPN:093 4/76

Variable Character Text (COBOL or PL/l only)

As shown in Figure 18-6, each data item consists of a 3-integer
item code number, 3-integer data field length count, and data
field. The data field is further broken down to include a
repetition character, and if the field is repetitive, an oc­
currence or line number. Figure 18-2 indicates the applicable
message header codes for this message format.

headerl N /text

IC#:
LEN:

@ :

oct :

IC# LEN @

R I i text
IC# LEN @ OC#

3-byte integer Item Code (PIC '999');
3-byte integer LENgth (length of data plus 1
for N or plus 4 for Rand OC#);

l-byte repetition character 'R' or 'N' to
indicate Repetitive or Not;

3-byte integer Occurrence number.

Figure 18-6. Illustration of variable character message format.

As shown in figure 18-7, the first data item in a variable char­
acter message to the OUTPUT Utility should consist of:

1. Item code of 255;
2. Length (003);
3. N;
4. Fixed binary (15) Output Format Table entry

number (OFT#).

42-byte header I F2 F5 F5 I F~ F,0 F3 D5 I Pyj 63 da ta items ••. 1

Figure 18-7.

Item Code Length Format
255 3 N 99

Illustration of variable character message showing
OFT# field.

Figure 18-8 shows a sample variable character format message to
generate a formatted message conforming to the layout depicted in
Figure 18-3. Remember that the data items may appear in any
sequence convenient to the programmer; they need not be grouped
or sequenced as shown.

60.6

J

IPN:093 4/76

HEADER
RSCH=X' ~,RSC=C'U' VMI=X'50'

Heading Data

Repeating
Detail

Data

Footing Data XXXX.XX

IC# = Item Code defined in output
LEN = Length of data.

@ = N indicates Non-repetitive
R indicates Repetitive data

oft = Output Format Table number.

format table

data items,
items.

OC# - Occurrence number for Repetitive items.

entry.

Figure lS-S. Sample variable character format output message.

Variable Binary Text (COBOL, PL/l, Assembler)

As shown in Figure lS-9, each data item consists of a one-byte
binary item code number, a one-byte binary data field length
count, and data field. In the case of repetitive data items,
the data field contains a one-byte binary occurrence number
immediately preceding the text. Figure lS-2 indicates the
applicable message header codes for this message format. As
with variable character text, one of the data items in the
message text must be item code:255, length:2, data:OFT#.

l header 01 I 04 I text J6A I .08 I .01 I t ex t ..•
I OC#

IC# LEN DATA IC# LEN DATA

Figure 18-9. Illustration of variable binary message format.

60.7

IPN:093 4/76

Formatting Required, Fixed Field Text

The message text consists of adjacent fixed length text fields ~
similar to the layout of a logical record in a data set. The
fields may be character, binary, or packed decimal. The mes-
sage is operated upon by the CHANGE/DISPLAY Utility to convert it
to a variable binary format message as described above. A
Format Description Record must be created for this fixed format
in order for the CHANGE/DISPLAY Utility to build a corresponding
item code, length and data, variable binary format message and
pass it on to the OUTPUT utility.

The message text is prefixed by 12 characters:

1-8:

9:

1 to 8 alphanumeric characters, left adjusted.
The Change Table will be searched for a match
on this field to find the appropriate Format
Description Record.

~ if this data is to become a single segment
message for OUTPUT.

l~-l2: OFT number to override FDR default value.

Figure 18-10 illustrates the fixed field message format. The
length field in the header must include the length of the pre­
fix. Figure 18-2 indicates the applicable message header codes
for this message format.

I 42-b;lte header I FRMTRECl~~73 I FIELDAFIELDBETC. I
I PREFIX I DATA I

FRMTRECI The Fixed Format Name associated
with the Format Description Record as
listed in the Change Table.

~ Indicates a single segment message.

~73 The Output Format Table entry
number (to override RPTNO in FDHDR) .

Figure 18-10. Fixed field message illustration showing
prefix field.

Figure 18-11 shows a sample fixed field message to generate a
formatted message conforming to the layout depicted in Figure 18-3.

60.8

J

IPN:093 4/76

HEADER
RSCH=X'QQ' ,RSCH=C'H' ,VMI=X'72'

Heading
Data

Footing
Data

Repeating
Detail

Data

TEXT
I XXXXXX

date

1 XXXXXX
total

t XXX XXXXX
br total

• XXX XXXXX
br total

t XXX XXXXX
br total

TEXT-PREFIX
FO RMN AME 0bl:>b

XX I
div

xx i ,

xxI)
%

XXI i ,

xxi

Figure 18-:: 11. Sam~:le fixed format output me ssage.

The first eight characters of the 12-character text-prefix
identifies the name of the Format Description Record in which
each of the individual text fields is defined. This includes
defining every item code, length, and data type. It is
used by the CHANGE Utility in converting the fixed format
text fields to variable binary format data items for the OUT­
PUT Utility. The remaining characters indicate the message
segment number and overriding Output Format Table entry
number (OFT#), if any.

Notice in Figure 18-11 that the repeating detail data appears
at the end of the message, instead of between the heading and
footing lines. This is because the CHANGE Utility requires
that all repeating data items must appear as a group at the
end of the message or record to be converted for the OUTPUT
Utility. Figure 18-11 shows the sample Format Description
Record (FDR) and Change Table entry needed by the CHANGE
Utility to convert the sample fixed format message shown in
Figure 18-11.

60.9

DES~~~~l
FORMNAME

DATE
DIVISION
DVTOTDOL
DVTOTPCN
BRNCHNUM

BRNCHTOT

BRNCHQTA

Figure lS-12.

CSECT
FDHDR

FDETL
FDETL
FDETL
FDETL
FDETL

FDETL

FDETL

END

DC

DC

IPN:093 4/76

NAME=FORMNAME,RPTNO=99,FIELDS=7,
REPSZ=l4
OFSET=~,LEN=8,CODE=6,NAME=DATEX

OFSET=8,LEN=3,CODE=17,NAME=DIVSN
OFSET=ll,LEN=S,CODE=18,NAME=TOTDL
OFSET-l9,LEN=3,CODE=19,NAME=TOTPC
OFSET=22,LEN=4,CODE=S,NAME=BRNCH,
FLD=REPET
OFSET=26,LEN=7,CODE=1~,NAME=BTOTX,

FLD=REPET
OFSET=33,LEN=3,CODE=lS,NAME=BQTAX,
FLD=REPET

CL8'FORMNAME' NAME corresponding
to DES~flI~il1

A(~} RBN ~ on DES~~~=
DES~~~~l

Sample Format Description Record Coding
(DES~~~~l) and Change Table Entry.

MULTI-SEGMENTED MESSAGES

When a subsystem produces a report with many different detail
lines, it may be constructed as a mUlti-segment message. It
requires formatting and can be either variable character or
fixed length text. A multi-segment message, then, consists
of two or more logically related INTERCOMM messages (header
followed by text) directed to a single terminal without inter­
reuption.

The responsibility of the OUTPUT Utility here is more complex.
It must provide formatting of each segment of a message trans­
mitted to a single terminal under exclusive control and upon
completion of transmission, release the terminal exclusive use
status. Again to determine the message format OUTPUT analyzes
the MSGHRSCH, MSGHRSC and MSGHVMI fields of the message header.
Each message segment has its own 42-byte message header. The
contents of the fields to be adjusted by the application sub­
system are diagrammed in Figure l8~l3. Since an OFT# is
specified for each segment of the message, the text formatting
can be controlled by different OFT entries.

60.10

IPN:093 4/76

I ,
I MESSAGE HEADER FIELDS* OUTPUT MESSAGE I CHANGE/ ,

TEXT FORMAT HSGHRSCH MSGHRSC MSGHVHI DISPLAY
(see note I TEXT
below) BYTE

Variable Text - x'i00' C'V' X'Sl' or C'l'
Character Format or X'S2' or C' 2'
(COBOL and PL/l) C'iO' X' S 3' or C'3'

X'SC' or C'4'

Variable Text - C'V' C'V' X'Sl'
Binary Format X'S2'
(COBOL and PL/l) X'S3'

X'SC'

Variable Text - x'00' C'V' X'5l'
Binary Format X'S2'
(Assembler) X'S3'

X'SC'

Fixed Text C'H' C'H' X'72'
or

C'S'

*Character values for MSGHRSCH or MSGHVMI are converted by
COBPUT to the expected hexadecimal values. Assembler sub­
systems must use the hexadecimal values.

PREFIX
9

N/A

N/A

N/A

C'l'
C' 2'
C' 3'
C ' 4 '

The VHI value of Change/Display Prefix Byte 9 indicates seg­
ment type:

X'5l'/C'l' indicates header segment and causes the OUTPUT
Utility to select only non-REPETitive items, as coded in
the corresponding OFT, from the message text;

X'52'/C'2' indicates intermediate segment and selects only
REPETitive items from the message text; and

X'5C'/C'4' indicates intermediate segment and selects only
non-REPETitive items fron the message text.

X'53'/C'3' indicates final segment and selects only non­
REPETitive items from the message text.

Figure 18-13. Message Header Specifications - MUlti-segment
Hessage.

60.11

IPN:093 4/76

The OUTPUT Utility accomplishes the processing of a multi­
segment message in conjunction with the DVASN service routine.

When the COBPUT queuing routine first recognizes a multi­
segment message for OUTPUT (VMI=X'Sl'), the INTERCOMM system
program DVASN is called to assign the destination terminal
named in the message header to a "multi-segmented-message­
transmission-in-progress" condition. Once this assignment
is made, the OUTPUT Utility will accept only intermediate
segments (VMI=X'S2' or X'SC') for that device until a final
message segment (VMI=X'S3') for that service is processed.
For this reason, the COBPUT routine requires that the name of
the field containing the binary OFT# in the first message of a
multi-segment message group be named in the otherwise optional
third parameter, OFT#.

A BA~- application subsystem must CALL the DVASN subroutine to
obtain exclusive use of a terminal for a variable character
text multi-segment message, before queuing the message for
transmission to OUTPUT via MSGCOL. DVASN will assign the
destination terminal indicated in the message header, to a
"multi-segmented-message-transmission-in-progress" condition.

When Fixed Format Text is used, the CHANGE/DISPLAY Utility
assumes responsibility for the CALL to the DVASN routine to
"assign" the terminal for the duration of segmented message
transmission. The CALL to COBPUT, then, is made with only
two parameters as usual.

60.12

J

J

IPN:093 4/76

SEGMENTED MESSAGE OUTPUT TERMINAL ASSIGNMENT (DVASN)

The DVASN message processing service routine has been referenced
previously in this text in conjunction with the OUTPUT Utility.
DVASN is called by a subsystem to obtain exclusive use of a
terminal for the purpose of transmitting a multi-segment message
without interruption. The DVASN subroutine must be CALLed before
queuing the first segment of a multi-segment message via MSGCOL
for formatting by OUTPUT.

The coding format for calling DVASN is:

[symbol] CALL DVASN, (cmp,spa,term,oft,ret), MF=(E,list)

Where:

cmp is the address of a field containing the
number of the company or division being
serviced. (2 byte, binary).

spa is the address of the System Parameter List.
term is the address of a field containing

character MSGHTID destination terminal
name field in the message header.

oft is the address of a field containing the OFT
number of the format about to be started.
(2 byte, binary).

ret is the address of a five byte field in
which to return the terminal ID (CCCNN)

As a result of this call, DVASN will locate and assign a
t2rminal to the subsystem and designate it as a "multi­
segmented-message-transmission-in-progress" condition in
its respective entry in OUTPUT's Station Table. This action
thus prevents other messages from being transmitted to the
designated terminal until its busy status is freed by OUTPUT.

60.13

J

J

IPN:045 4/30/74

THE CHANGE/DISPLAY UTILITY

GENERAL DESCRIPTION

The CHANGE/DISPLAY utility provides predefined transactions
to access on-line files from remote locations. A terminal
operator can trigger the retrieval of one record at a time
from a user file. Allor part of the information accessed
may be displayed back on the remote device (DSPL verb).
DISPLAY data will appear in character format according to an
Output Utility OFT. Alternatively, one or more of the data
fields in an accessed record can be altered (CHNG verb). The
~e,co-rd ,as CHANGEd ist~e'n-W--r--r'ften -:-b-a-ck to the user file.

For the processing of CHNG and DSPL verbs, .CHANGE/DISPLAY sup­
ports BDAM, ISAM, and VSAM files. In each case, records
must be in fixed format. BDAM files are accessed by relative
block number (RBN) i ISAM files are accessed by key. VSAM
files are accessed by key, via the File Handler logic for VSAM
compatibility with ISAM. Individual fields within a record may
contain binary, packed, or character data.

Terminal input transactions are entered in key word format,
and processed by the EDIT Utility. A file ddname and a key
(or RBN) are entered, and the specified record is retrieved.
If DSPL was entered, the data accessed is formatted as a mes­
sage for the OUTPUT Utility. In addition to file ddname and
key, a CHNG transaction specifies fields to be altered. Re­
placement data is indicated for each field entered. The
record in core is altered as specified and then rewritten.
A message designating completion of processing, successful
or unsuccessful is formatted for OUTPUT in this case.

The CHANGE/DISPLAY Utility also processes fixed format data
passed from an application subsystem. (No user data base is
accessed in this case.) Such intersubsystem messages are
reformatted as new messages for the OUTPUT utility. This
application program technique is referred to as Fixed Format
Text, Formatting Required in the section "Using the Output
Utility" in the Programmer's Guides. The application pro­
grammer is not concerned with item code/length prefixes for
data fields; thus the potential for program errors is reduced.
The text of such an intersubsystem message simulates a fixed­
format file record. Processing bypasses access of a user
file,and continues as though a DSPL transaction had been
entered.

The CHANGE/DISPLAY utility is entirely table driven. The
following table entries (illustrated in Figure 19) are re­
quired:

61

CHNG} Verbs described in Front-end Verb Table
DSPL

Input Trans

'Ipattern
Table

I
Key Table
(BDAM
only)

File

INTERSUBSYSTEM

Fixed
Format
Message

Figure 19. Functional Components of CHANGE/DISPLAY.

62

J

output Msg.

J

1. Entries for CHNG and DSPL in the Front-End Verb Table.
2. Entries for CHNG and DSPL in the EDIT Control Table.
3. Entries in the File Table for each on-line file to be

accessed.
4. A Format Description Record (FDR), a disk resident

table entry for each user file to processed; and/or
each format of intersubsystem message to be processed
for OUTPUT.

5. An Output Format Table entry for each display format
to be produced.

6. A Change Table entry for each format of intersubsystem
message to be processed for OUTPUT.

7. A Key Table entry for each user-coded key editing
routine.

8. A Pattern Table entry for each editing pattern speci­
fied in the Format Description Records.

Some installations may not wish to exercise all CHANGE/DISPLAY
options. In such cases, not all" of the above table entries
are required. For instance, CHNG transactions may not be de­
sired; CHNG entries would then be omitted from the Front-End
Verb Table and the EDIT Control Table. Another installation
might not wish to process intersubsystem messages for OUTPUT;
in such cases, the FDR and Change Table would be omitted. In
other words, the table entries supplied will determine which
CHANGE/DISPLAY options are availa~le.

CHANGE/DISPLAY executes as an INTERCOMM subsystem and may be
defined as resident, overlay region, or dynamically loaded.

TERMINAL INPUT MESSAGE FORMATS

For a DISPLAY transaction, a DSPL verb is entered at the
terminal. For a CHANGE transaction, a CHNG verb is entered.
The explicit formats of these verbs are detailed below.

DSPL Verb

DSPL A (Display verb)
FLN xxxxxxxx A (File ddname)
KEY XXXX ••••••••• 6. (Key or record to be displayed)
RPT XXX I::l (Output format number)
END 0 (End of message)

The file name entered following FLN must:

1. Be defined to INTERCOMM by a DD card in the execution
JCL.

2. Correspond to an entry in the File Table.
3 . Be defined'by a Format Description Record.

63

Data entered following KEY will be one of the following:

1. Actual key for an ISAM file.
2. Relative block number (RBN) for a BDAM file.

The EDIT utility passes these keyword fields through Edit Sub­
routine~: field length is determined; no conversion of the
data. CHANGE/DISPLAY will pass the key field through its own
edit processing.

The RPT parameter is optional. If included, the number sup­
plied will override the default OFT number in the FDR. This
option might be used to allow certain terminals to display more
information than others. For instance, a customer file might
contain names, addresses, and credit information. All terminals
in the system are to have access to names and addresses. Only
terminals in the credit office are to have access to credit in­
formation. The standard OFT number specified in the FDR would
format only name and address for OUTPUT. Operators of credit­
office terminals would be told an overriding number to enter.
This second OFT number would format name, address, and credit
information for OUTPUT. Of course, every format number .
(whether from FDR or RPT data) must correspond to an entry in
the Output Format Table.

CHNG Verb

To update a record, the following transaction is keyed in at
the remote location:

CHNGA
FLN xxxxxxxx A
KEY xxxx A
FDN XXXXX A
SKY xxxx A
VRY xxxx .•.. A
DTA xxxx A

END 0

(Change verb)
(F ile ddname)
(Key of record to change)
(Name of field to change)
,(Secondary key)
(Verify data)
(Change data)

(End of message)

The FLN and KEY parameters are subject to the same restric­
tions as are the corresponding DSPL parameters.

In the FDN parameter, the operator enters a field identifier
of up to five characters, indicating the name of the field to
be changed.

The SKY parameter is optional. It is used to supply a second­
ary key for use in searching groups of repetitive fields to
locate a particular field to CHANGE. When the SKY data matches
the repetitive field group secondary key, the associated FDN
is CHANGEd.

64

The VRY parameter should conta~n the data actually in this
field in the record. The FDR kay specify that verification
is optional; in such a case, the parameter may be omitted from
input. If VRY is entered, CHANGE/DISPLAY will verify the
existing data before proceeding.

Actual replacement data is entered following the DTA key­
word. (Both DTA and VRY data are edited in accordanc e with
FDR specifications; only after editing are they applied
against the actual file record.) For VRY and DTA, the user
may wish to enter blanks from the terminal. However, blanks
will be eliminated from the message during processing. If
verification of a blank field is desired, the operator should
enter:

VRY PMIBLNK

To blank out an existing character field, enter:

DTA PMIBLNK

The parameters FDN, VRY, and DTA are repetitive. Thus, as
many fields in a record as desired can be altered via one
CHNG transaction. Note, however, that there are special con­
siderations when SKY or VRY parameters are omitted. EDIT,
in processing the transaction, will assign occurrence numbers
to repetitive input items. The first appearance of a repeti­
tive item will be assigned occurrence number 1; the second, 2;
and so forth. CHANGE/DISPLAY requires identical occurrence
numbers for corresponding FDN, SKY, VRY, and DTA parameters.
VRY or SKY may be omitted for one FDN entry but included in
a subsequent one. In such a case, correspondence of occur­
rence numbers would be lost; to overcome this difficulty, a
special input configuration is provided. To force an out-of­
sequence occurrence number, the following may be entered:

VRY(n,data) or SKY (n,secondary key)
where n is the desired occurrence number. This facility is
illustrated in the following CHNG transaction:

CHNG 6.
FLN FILEA D-
KEY 25 D-
FDN ADDR 6- (occurrence 1)
DTA 475 BROADWAY 6-
FDN CITY D- (occurrence 2)
VRY (2, NEWARK) 6. (force occurrence of 2)
DTA NEW YORK 6.
FDN CREDT 6. (occurrence 3)
SKY (3, TYPE A) D- (force occurrence of 3)
VRY (3,5~!l!l!l) t::. (force occurrence of 3)
DTA l~~~!l!l t::.
FDN MANGR 6- (occurrence 4)
DTA PMIBLNK 6 (blank out MANGR fie ld)
END 0

65

IPN:045 4/30/74

RECORD FORMATS

Record formats processed by CHANGE/DISPLAY refer to either
actual data records on a user BDAM or ISAM file or "pseudo
records" representing fixed format fields of message text
from an application subsystem to be converted to the appro­
priate "variable character text, formatting required" for
the OUTPUT Utility. In either case the following conven­
tions are required:

1. records are fixed length
2. each data field may be unique in character, packed

decimal, or binary form, or
3. the record may consist of a fixed number of unique

header fields followed by a variable number of
repetitive groups of fields. If the number of
repetitive groups is not maximum for the record,
the trailing portion contains high-value (X'FF')
fill.

Figure 20 illustrates record formats; note that intersubsystem
messages also include an additional 54 bytes prefixed to the
record format illustrated for the standard 42 byte INTERCOMM
message header plus 12 bytes of information required for CHANGE/
DISPLAY processing.

No Repetitive fields in Record:

I fieldl I field2 I field3 I - - - - - - (fieldn)j

Repetitive Fields in Record:

fieldl I field2 I field3 field4al field5a I field6a I field4b£
header portion repetitive group

(optional)

ifieldSb field6b I field4c! fieldSc/ field6c I FFFFFFFFF 1
hi-value fill

Figure 20. Record Formats supported by CHANGE/DISPLAY

For ISAM files, the key will be converted according to the
field type specification in the FDR. If a key consists of
several fields, they must be entered in the same order as the
FDR description of key fields. Thus, an ISAM key might con­
sist of:

1. A two byte alphanumeric field.
2. A four byte binary field.
3. A three byte numeric field.
4. A six byte packed field.

Assume that a particular key on the file appeared as follows:

66

IPN:093 4/76

~l Cl F0 F0 FS
1 2 3 4

The corresponding field descriptions in the FDR must appear
in the identical sequence. To display a record with the above
key, an operator would enter:

DSPL 6
FLN ddname 6
KEY AA/l/5/35 6
END 0

The RBN for a BDAM file, of course, would not be defined in
the FDR. The supplied key is simply converted to binary, unless
the user supplies a conversion routine. The (/) slash character
must be part of the key supplied to CHANGE/DISPLAY and therefore
cannot be used as the Edit Separator Character~

CHANGE/DISPLAY PROCESSING

All messages for CHANGE/DISPLAY enter the module at the same
point. A check is made to determine whether the message is a
CHNG or DSPL verb. If it is, the processing described under
"Common Processing for CHNG and DSPL Verbs" is performed.
Otherwise, the processing described under "Processing of
Fixed Format Messages for OUTPUT" is performed.

Common Processing for CHNG and DSPL Verbs

The first program step for a CHNG or DSPL verb is a CALL to
EDIT. The EDIT Control module is driven by the entries in
the EDIT Control Table. If EDIT rejects the incoming mes­
sage, the sending terminal is notified and processing is
discontinued.

Next, the File Table is searched for the file name entered
at the terminal. If no entry is found, the remote location
is notified and processing is terminated. If there is a file
table entry, it will contain:

1. Record number of Format Description Record (FDR) for
this file. (The FDR describes the detail character­
istics of every data field in the file record.)

2. Type of user file to be accessed (BDAM or ISAM).
3. Amount of dynamic core required for retrieval of one

block from the user file.

The FDR is next retrieved from disk. This is accomplished
via the File Handler; a BDAM READ is issued with an RBN based
on the record number in the File Table. An I/O error or record­
not-found condition will generate an error message and process­
ing will be terminated.

67

t

IPN:042 4/1/74

The file ddname given as input is now compared to that appearing
in the FDR. A not equal condition indicates an error in either
the File Table or the FDR'i processing is terminated.

The FDR is now checked to determine that editing is required
on the incoming key. Standard editing options are:

Editing of key elements based on FDR detail specifications
(ISAM keys).

Conversion of entered data to binary (EDAM REN's). The
user also has the option of supplying his own EDAM key
editing routine.

The edited key is returned to CHANGE/DISPLAY.

The next step is to retrieve the User File record specified
by the input message. The amount of storage indicated in the
File Table is obtained. The type of file is checked, and an
appropriate CALL to the File Handler is issued. An I/O error
or record-not-found condition will produce a message and
cause termination of CHANGE/DISPLAY processing.

If a record is retrieved successfully, a check is made whether
DSPL or CHUG WAS ENTERED. From this point on, processing
differs. If DSPL, the action described under "Creating a
Display Message" is taken. If CHNG, the action described
under "Update Processing for CHNG" is taken.

Processing of Fixed Format Messages From Application Programs

Intersubsystem messages with fixed format text to be processed
for OUTPUT bypass the CALL to EDIT, as identified by VMI of
x'72' in the message header. The 12-byte CHANGE DISPLAY prefix
provides information required to convert the fixed format text
to the appropriate message for the OUTPUT utility.

The message format, then is:

14~ b te INTERCOMM header

refer to Figure 20

bytes 1-8: Format identifier
byte 9:segmented message identifier

(see Figure 24)
bytes 10-12 Output Format Table Number

The Change Table contains a record number of an FDR corresponding
to this particular message format as identified by the format
identifier. The table itself consists of a series of associated
identifiers and FDR record numbers.

The FDR is next retrieved, as it would have been for a DSPL
or CHNG transaction. The "file name" in this FDR will actually
be the identifier supplied in the intersubsystem message; no'
user file is accessed. From this point on, processing contin­
uses as it would for a DSPL verb. This procedure is described
immediately below.

68

J

J

Creating a Message for the OUTPUT Utility

At this point, CHANGE/DISPLAY has a fixed-format record in
core. This may be either an actual file record or data sent
from an application subsystem. There is also a Format Hescrip­
tion Record in core that describes the fixed format record.
The FDR indicates how each data field in the record is to be
edited for OUTPUT.

For either a DSPL verb or an intersubsystem message, core
for a message for OUTPUT is obtained. In this area, the user
file record (or data from an intersubsystem message) is for­
matted. This processing follows:

1. A Message Header for OUTPUT is constructed.
2. An OFT number (item code 255 in message for OUTPUT)

is assigned. This number is specified by the FDR,
unless a substitute number has been indicated with
a DSPL verb via the optional RPT parameter. Or, for
intersubsystem messages, overriding report numbers
appear in the message prior to· the actual data to
be displayed; in this case, blank or zero indicates
that the ~DR OFT number is to be used.

3. Data fields are now proces~ed one at a time in the
following manner:
a) Binary and packed fields are converted to

character.
b) Editing specified in the FDR is performed

(dollar, date, etc.).
c) Necessary padding or truncation (if allowed

by FDR) is effected.
d) Item code and length is prefixed to the data

item.
e) For repetitive fields, an occurrence number is

also prefixed to the data.
f) If invalid data is found in any field being

edited, the output field will contain the word
"INVALID".

4. The new message is queued, via Message Collection,
for OUTPUT.

·5. Standard INTERCOMM housekeeping (i.e., freeing core,
RELEASE of files, etc.) is performed. CHANGE/DISPLAY
then returns to the Subsystem Controller.

Update Processing

If the incoming message has been a CHNG verb, the following
steps would be taken at this point:

1. FDR detail description for first field to be altered
is located. This search compares field identifiers
from the input message with those coded in the FDR.
A no-match generates an error message~ Steps 2

69

2.

IPN:093 4/76

through 4 will be performed only if verify data is
supplied. The FOR specifies whether verification is
required. If it is required, failure to provide
verify data will cause an error. If it is not re­
quired, steps 2 through 4 are taken only if the VRY
keyword was entered for this field.
Verify data of the input message is translated to the
format indicated for this field in the FOR.

3. Translated verify data is compared to the field in
the file record.

4. If (3) compares not equal, "VERIFY REJECT" message is
sent and processing terminates.

5. Change data is translated to the format specified in
the FOR detail segment.

6. Translated change data is placed in the file record,
overlaying existing data.

7. A check is made to determine whether more data fields
are to be changed. If so, processing repeats from
(I) above.

8. When all change fields have been processed:
a) A test is made to determine whether a User Change

Exit has been included in the system. (Details
below.) If so, control is passed to it.

b) The record is updated via the File Handler.
9. A message stating whether the change had been suc­

cessful or not is formatted for OUTPUT. Required

J

housekeeping is performed. Return to the S~psystem Con- \
troller is effected. ~

CHANGE/DISPLAY TABLES

Tables for the CHANGE/DISPLAY Utilities are generated via
INTERCOMM macros. The table entries required for CHANGE/
DISPLAY processing are:

Entries for CHNG and DSPL in Front-End Verb Table: Omis­
sion of either entry will effectively prevent processing
of the omitted verb.

Entries for CHNG and DSPL in the EDIT Control Table:
Omission of either entry will prevent EOIT processing of
the transaction type. If verb is left out of the Front­
End Verb Table, leave it out here as well. The coding
of ECT entries for OSPL and CHNG is detailed later.

Entry in File Table for each on-line file to be accessed:
In addition to entries for CHANGE/DISPLAY user files,
there must be an entry for the Format Description File
itself; and an entry for the Output Format Table File, if
any output Format Table entries reside on disk; and an
entry for the EDIT Control Table File, if any ECT entries
reside on Disk. Construction of the File Table is dis­
cussed fully below.

70

Format Description Record (on disk) for: Each user file
to-be processed by CHANGE/DISPLAY, and/or each format of
intersubsystem message to be processed for OUTPUT. The
method of constructing individual FDR's and of loading
them onto disk is described later.

Output Format Table Entries: For each message to be
produced by CHANGE/DISPLAY, there must be an entry in
the Output Format Table. In other words, there must be
an OFT entry for each format number specified in the FDR's;
and/or each format number to be entered as a RPT para­
meter of a DSPL verb; and/or each format number to be
specified in a fixed format message for OUTPUT. par­
ticular note should be made of the following facts:
1. CHANGE/DISPLAY will create a message for OUTPUT

containing every data item from the processed
record. When item codes supplied in the message
to OUTPUT are not found in the OFT entry, they will
be ignored. Hence, the design of the OFT will de­
termine what portion of the supplied data is to
be displayed.

2. Records with repetitive field groups will be for­
matted for OUTPUT with occurrence numbers corres­
ponding to the sequential position of each re­
petitive item. To output such items, repetitive
lines must be defined in the OFT entry.

Change Table entry: for each fixed format message to be
processed for OUTPUT. Creation of this table is fully
documented later in this text.

Key Table entry: for each user-coded key editing routine.
Specifications for construction of this table are included
in the discussion below.

Pattern Table entry: for each editing pattern specified
in the Format Description Records. This table is described
below.

Edit Control Table Entries

If the DSPL verb is to be used, the following entry must appear
in the EDIT Control Table:

DSPL VERB
PARM
PARM
PARM

DSPL,7l,256,3
FLN,~l,~~,~~8,1~~~~lll
KEy,~2,~~,255,1~~~~~ll
RPT,~3,~2,~~2,~~~~~lll

Note should be taken of the following characteristics of the
DSPL entry in the ECT:

71

IPN:079 12/31/74

The VMI code (2nd parameter of VERB macro) must be 71.
After EDIT has been CALLed, this VMI will be the only tag J'
identifying the message. (Note that CHNG has a VMI of 7~,
a fixed format message for OUTPUT has a VMI of 72. Choices
of program paths within the CHANGE/DISPLAY utility are
based on tests of the VMI.)

The FLN and KEY parameters are passed through EDIT sub­
routine~. This subroutine will assign item code and
length but will not perform any conversion of incoming
data. Note that a fixed length of 8 is forced for the
FLN field. (Bit 5 of the bit string of the PARM macro is
on.) Search of the File Table will be based on the 8 char­
acter file ddname returned from EDIT. A file ddname of
less than 8 characters will be padded on the right with
blanks. Conversion of data supplied with KEY will be
done within CHANGE/DISPLAY. A fixed length is not forced
for KE Y . (B it 5 0 fbi t s t r in g is 0 f f .)

The RPT parameters must be indicated as optional. (Bit fJ
of the bit string is off.) This incoming paramter is
passed through EDIT subroutine 2 :·(if RPT is entered). Sub­
routine 2 will convert the supplied parameter to binary;
a length of 2 is forced. Thus, EDIT puts the format
number, if supplied, into the form required for the
message to OUTPUT.

Truncation is not allowed for any of the incoming para­
lneters.. (Bits-6-and 7 are both on in the bit string.)

Item codes 1, 2, and 3 must be assigned, respectively,
to the FLN, KEY and RPT parameters. (Do not code a 255
for RPT: CHANGE/DISPLAY expects a 3 and will replace
it with 255 when building the message for OUTPUT.)

If the CHNG verb is to be used, the following entry must appear
in the EDIT Control Table:

CHNG VERB
PARM
PARM
PARM
PARM
PARM
PARM

CHNG,7fJ,256,6
FLN,fJl,~~,fJ~8,1~~fJ~111
KEy,~2,fJfJ,255,1~fJfJ~~11

FDN,~3,~fJ,fJfJ5,1~fJfJllll

SKY,fJ4,fJ~,255,~fJfJfJlfJll
DTA,fJ5,~~,255,1~~fJl~11

VRY,fJ6,fJ~,255,fJ~~fJlfJll

The following characteristics of the ECT entry for CHNG should
be noted carefully:

The VMI code must be 7fJ.

72

J

IPN:093 4/76

The FLN and KEY parameters are identical to the cor­
responding parameters for DSPL. Comments on these para­
meters following the DSPL verb ECT apply here as well.

FDN and DTA are required (bit ~ of the bit string is on);
SKY and VRY are optional (bit ~ of the bit string is off).
Note, however, that VRY will be logically required if so
flagged in the FDR. FDN, SKY, DTA, and VRY must all be
tagged as repetitive. (Bit 4 of the bit string is on.)
FDN must be forced to a fixed length of 5. (Bit 5 is on.)
The search of FDR detail segments will be based on the data
entered following this keyword.

Truncation is not allowed for any of the incoming para­
meters.

All parameters are passed through EDIT subroutine ~.

DTA, VRY, and SKY information will be converted later
by CHANGE/DISPLAY. This conversion will be based on the
description of the particular field in the FDR. Normally,
the above ECT entries would be included during the initial
installation of INTERCOMM. In some cases, the CHANGE/
DISPLAY utility may be added to an existing installation.

The File Table

The File Table must contain an entry for each user file to be
accessed by CHANGE/DISPLAY. It must also contain an entry for
the Format Description File (DES~~~). (Creation of Format
Description Records is discussed later in this section.) In
addition, the Output Format Table may have some or all of its
entries on disk (file ddname RCT~~~). Similarly, the EDIT
Control Table may have all or some of its entries on disk
(file ddname VRB~~~). Loading Utility Table Entries on Disk
is detailed in a later section. These files, if included in
the system, must also have entries in the File Table.

User files that will not require CHANGE/DISPLAY processing
should not be included in the File Table. Every data set
referenced in the File Table must, of course, have a cor­
responding DD card in the execute deck.

The File Table is constructed by coding GENFTBLE macros. See
Appendix D. One GENFTBLE macro must be coded for each file
to be included in the table. The macros are contained in a
CSECT named PMIFILET. Following the last GENFTBLE macro, a
PMISTOP macro must be coded. The general structure of the
File Table is:

PMIFILET CSECT
ENTRY PMIFILTB

PMIFILTB EQU *
GENFTBLE
GENFTBLE

PMISTOP
END

73

IPN:093 4/76

The complete File Table, then would look as follows:

PMIFILET

PMIFILTB

CSECT
ENTRY
EQU
GENFTBLE
GENFTBLE
GENFTBLE
GENFTBLE

PMIFILTB
*
FNAME=DES¢¢¢,BLKSizE=75~,TYPE=BDAM
FNAME=RCT¢¢¢,BLKSIZE=I~~~,~YPE=BDAM
FNAME=VRB¢¢¢,BLKSIZE=75¢,TYPE=BDAM
FNAME=USERFILT,BLKSIZE=xxxx,TYPE=ISAM,
DESNUM=7

* BLKSIZE FOR DES~¢¢,RCT¢¢¢,VRB~~¢ CORRESPONDS TO INTERCOMM
* RELEASE SPECIFICATIONS. USER MUST CHANGE FOR LARGER TABLE
* ENTRIES. INSERT ADDITIONAL ENTRIES FOR USER FILES HERE.
*

PMISTOP
END

For a user file, TYPE= may be either BDAM'or ISAM. FNAME=,
of course, is the ddname of the user file. The DESNUM= para­
meter contains the record number of the FDR for this user
file.

Format Description Records

J

Each file to be accessed by the CHANGE/DISPLAY utility must '.
be described by a Format Description Record. Each format of ~

intersubsystem message to be processed for OUTPUT must also
be described by an FDR. Format Description Records are as-
sembled and then loaded on to the Format Description File
(DES¢¢¢). Retrieval of an FDR from this file is based on
the record number supplied in the File Table or Change Table.
The FDR defines exactly how CHANGE/DISPLAY is to edit and pro­
cess each field in a record.

The individual FDR consists of a header portion followed by
detail segments. The header portion supplies information rele­
vant to all records on the file. Each detail segment de­
scribes a particular data field within a record. The header
portion is generated by an FDHDR macro instruction; detail
segments are generated by FDETL macros. (These macro instruc­
tions are described in detail in Appendix D; examples of their
use are included below.)

CHANGE/DISPLAY allows one group of repetitive fields to be
included at the end of a record being processed. When CHNG
transactions are entered for repetitive fields, each field
must be identified by a secondary key. The entire length of
the repetitive portion is indicated in the FDR header
portion; each field in the repetitive group is defined by
one FDETL macro. That item which is the secondary key must
~so flagged in the detail segment of the FDR. (on CHNG
transactions, the information entered with the SKY Parameter
will be used to search the repetitive portion of the record.)

74

A record format as follows would be described by one FDHDR
macro and seven FDETL macros.

Certain fields may require editing other than simple conversion
to character format for transmission to the terminal. Describ­
ing editing for DISPLAY is accomplished by specifications in
the FDETL macro; for example:

A field has been defined by the following FDETL macro:

FDETL NAME=FLD~1,OFSET=~,FRMAT=PACK,LEN=8,CODE=1,
PADD=LEFT,PDCHR=BLANK,EDIT=NUM

Actual data on the file is:

56 78 91 23 6F

Output at the terminal would be formatted as follows:

~~~~~~4,567,891,236 (pad with blanks on left) 

If padding had not been specified, data at the terminal 
would appear as follows: 

4,567,891,236~~~~~~ (default pad with blanks on right) 

Note that in either case the displayed length is 19 bytes. 

If editing is requested on a character field, the field must 
be the maximum length as defined, ~ padded with blanks. 
Blank padding will lead to invalid data for packing. The 
edited length of data items must be considered in the OFT 
positioning specifications. The following table shows the 
edited length of data items after processing by CHANGE/ 
DISPLAY. To use the table: 

1. Look at the FRMAT column for the type of data on the 
file. 

2. Look at the row in that column with the length of the 
field to be displayed 

3. Scan across to the correct EDIT column to find the 
displayed length of the field. 

75 



Le~ = (IN FDR) LENGTH OF DISPLAYED FIELD 

FRr"AT = BIN FRt"-AT = PJ\CK FRr,'AT = CHAR EOIT=DOLLAR EDIT=mm EDIT=DATE 
1 1 4 1 8 , 2 -4 2 8 

1 --z 3 --s- 3 8 
4 6 5 8 

2 j 5 7 6 8 
-6 9 7 8 

4 7 TIT 9 N.A. 
3 8 11 10 N.A. ,- 9 TI 11 N.A. 
4 10 14 13 N.I\. 

6 Tl Ts- 14 N.A. 
12 17 15 N • .n,. 

7 13 18 - 17 N.A. 
14 19 18 N.A. 

a 15 21 19 N.A. 
N.A. 22 21 N.A. 

--g -," N.A. 23 22 N.I\. 
N.A. 2-5 23 N.A. 

rn 1l.J\. -zo 25 N.A. 
H.A. 27 26 N.A. 

n r'I.li. • -zg- Z7 N.A. 
H.A. 30 29 N.A. 

12 N.A. 31 30 N.A. 
H.A. 33 31 N.A. 

13 If.A. J4 33 N.A. 
N.A. 35 34 N.A. 

14 N.A. 37 35 N.A. 
H.A. 38 37 N.A. 

15 N.A. jg 38 N.A. 
H.A. 41 39 N.A. 

16 N.A. -4Z 41 N.A. 

Change Table 

The Change Table associates identifiers of fixed format mes­
sages for OUTPUT with Format Description Records. It must 
be built as a separated CSECT named CHNGTB. Entries are two 
lines each, the first line is a DC of CL8 containing the 
format identifier. The second line is a DC containing the 
RBN of the FDR to be accessed. The following sample shows a 
table containing 3 entries. 

CHNGTB CSECT 
DC CL8'MSGDSPL' 
DC A (6) 
DC CL8'MSGDSP2' 
DC A(l) 
DC CL8'REPORTC' 
DC A (2) 
PMISTOP 
END 

76 

J 

J 

J 



IPN:093 4/76 

The message identified by the name MSGDSPL will be processed 
using the FDR at RBN 6 on the DES~~~ file. The message 
MSGDSP2 will be formatted for OUTPUT in accordance with the 
FDR at RBN 1. Message REPORTC will be processed using FDR 
at RBN 2. 

Key Table 

The Key Table consists of entries associating particular key 
conversion routine numbers with specific addresses. The CSECT 
name must be KEYTABLE. The following example shows a table with 
a single entry for key routine. 11. Entry point for this routine 
is named KEYRTll. The File Description Record specifies the 
key conversion routine for each file. 

KEYTABLE CSECT 
DC 
PMISTOP 
END 

A(ll) ,V(KEYRTll) 

Coding Key Conversion Routines is discussed in a later sec­
tion. 

Pattern Table 

The Pattern Table is resident in a CSECT named PTRNTBLE. It 
is created by coding a series of PATRN macros. (See Appendix D). 
For using EDIT= parameter coded in an FDETL macro (Format 
Description Record detail segment),_~here must be a correspond­
ing entry in the Pattern~able. Following is an example of a 
Pattern Table: 

PTRNTBLE 

* 

CSECT 
PATRN 
PATRN 

PATRN 

NUMBER=DATE,PATTRN=DATE,MAXSIZE=8 
NUMBER=DOLLAR,PATTRN=DOLLAR 
FLOAT=$,MAXSIZE=42 
NUMBER=NUMERIC,PATTRN=NUMERIC 
MAXSIZE=41 

* USER SUPPLIED PATTERNS GO HERE 
* 

PMISTOP 
END 

Any packed or binary fields which the user wishes to convert to 
character format require a user pattern table entry unless 
covered by the PATRN macros in the supplied PTRNTBLE CSECT. 

77 



Sample Table Entries 

The examples in this section are included to assist the user 
in understanding the Table entries specifying record format 
descriptions. 

The examples illustrate: 

ISAM File Record, no repetitive group (Figure 21) 

EDAM File Record, no repetitive group (Figure 22) 

ISAM File Record, repetitive group (Figure 23) 

Intersubsystem Fixed Format message (Figure 24) 

Each example illustrates the record format and associated 
FDR. 

78 

J 



There exists an indexed sequential file with a ddname ISFILE. 
The key to each record in the file is eight characters. The 
record consists of keys to other ISAM records in the file. 

Each record is 24 bytes long and consists of 3 record keys. 
The second key is the key to this record. The format, then, 
is as follows: 

key 2 J key 3 I 

An Output Format Table entry with number 51 will be built to 
display this record. Item codes in this table for the three 
keys will be 1, 2, and 3. The FDR would be coded as fol­
lows: 

FDHDR NAME=ISFILE,FIELDS=3,RPTNO=51 
FDETL NAME=KEY~1,OFSET=~,FRMAT=CHAR,LEN=8,CODE=1, 

PADD=LEFT,PDCHR=BLANK 
FDETL NAME=KEY~2,OFSET=8,FRMAT=CHAR,LEN=8,CODE=2, 

PADD=LEFT,PDCHR=BLANK,KEY=YES 
FDETL NAME=KEY~3,OFSET=16,FRMAT=CHAR,LEN=8,CODE=3, 

PADD=LEFT,PDCHR=BLANK. 

Figure 21. ISAM File Record, no repetitive group. 

79 



There exists a BDAM file with a ddname BDFILE. The file 
contains sales information for each product the company 
manufactures. The record contains: 

Product 
Name 

Current Week Previous Week 
Sales Sales 

Net 
Change 

1516 25~6 35~6 

Current Month 
Sales 
41 5051 

Previous Month 
Sales 

Net 
Change 

6C61 64 

40 

Assuming that an Output Format Table with report number 
52 is to be built, the FDR would be coded as follows: 

FDHDR NAME=BDFILE,FIELDS=7,RPTNO=52,KEYRT=2 
FDETL NAME=PRODT,OFSET=~,FRMAT=CHAR,LEN=16, 

CODE=l,PADD=LEFT,PDCHR=BLANK 
FDETL NAME=CUWIC,OFSET=16,FRMAT=PACK,LEN=1~, 

CODE=2,PADD=LEFT,PDCHR=BLANK 
FDETL NAME=PVWKS,OFSET=26,FRMAT=PACK,LEN=1~, 

CODE=3, PADD=LEFT, PDCHR~BLANK 
FDETL NAME=PERWK,OFSET=36,FRMAT=PACK,LEN=5, 

CODE=4,PADD=LEFT,PDCHR=BLANK 
FDETL NAME=CUMOS,OFSET=41,FRMAT=PACK,LEN=1~, 

CODE=5,PADD=LEFT,PDCHR=BLANK 
FDETL NAME=PVMOS,OFSET=51,FRMAT=PACK,LEN=1~, 

CODE=6,PADD=LEFT,PDCHR=BLANK 
FDETL NAME=PERMO,OFSET=61,FRMAT=PACK,LEN=5, 

CODE=7,PADD=LEFT,PDCHR=BLANK 

Figure 22. BDAM File Record, no repetitive group. 

80 

J 

J 



There exists an ISAM file by the name of MASTER. Records 
contain a key (city) followed by a repetitive group consist­
ing of: 

1. Customer ID (secondary key) 
2. Credit 
3. Debit 

The repetitive group repeats up to 100 times. 
then, looks as follows: 

The record, 

City(key) Cust Credit Debit Cust Credit Debit 
1 1 1 2 2 2 

0 910 1314 2122 29.30 33 34 4 42 49 50 

AS5uming the output report number for this record is 53 and 
that a user key routine numbe'r 11 is required, the FDR 
would be coded as follows: 

FDHDR NAME=MASTER,FIELDS=4,RPTNO=53,KEYRT=11, 
REPSZ=2~ 

FDETL NAME=CITY,OFSET=0,FRMAT=CHAR,LEN=10,cODE=1, 
KEY=YES 

FDETL NAME=CUST,OFSET=1~,FRMAT=BIN,LEN=4,CODE=2, 

FLD=REPET,PADD=LEFT,PDCHR=ZERO,EDIT=NUM, 
SUBKY=YES 

FDETL NAME=CREDT,OFSET=14,FRMAT=PACK,LEN=8,CODE=3, 
FLD=REPET,PADD=LEFT,PDCHR=BLANK,EDIT=DOLL 

FDETL NAME=DEBIT,OFSET=22,FRMAT=PACK,LEN=8,CODE=4 
FLD=REPET,PADD=LEFT,PDCHR=BLANK,EDIT=DOLL 

Figure 23. ISAM File Record, repetitive group. 

81 



rPN: 042 4/1/74 

Fixed Format Message: 

Message Header: 

["i1'!iFn X'~~' C'H' c c c c c X'72' 
MSGHLEN MSGHRSC MSGHTID MSGHVMI 

Message Text: 

I aaaaaaaa til nnn I data fields in fixed format] 

~overriding output format number 
~-----segmented message indicator* 

1-________ format identifier 

Format Description Record: 

FDHDR NAME=aaaaaaaa,FIELDS=x,RPTNO=xx 
FDETL 
FDETL 

description of message text fields 
(no FDETL macros for the 12-byte prefix) 

FDETL 

* The segmented message indicator is used to place the 
appropriate value in the VMI field of the message header 
to be routed to the OUTPUT utility. The correspondence is: 

Segmented 
Message Identifier 

(character) 

~ 
1 
2 

3 
4 

Message Type 

Full Message 
Header Segment 
Detail Segment with 
Repetitive Data 
Final Segment 
Detail-Segment with 
no R~~;~i~lve data 

OUTPUT 
-Message VM:L 

Value 

X, S~ , 
X'Sl' 
X'S2' 

X'S3' 
X' 5C ' 

Figure 24. Intersubsystem Fixed Format Message 

82 

J 



USE~ EXITS FROM CHANGE/DISPLAY 

The CHANGE/DISPLAY module provides two user exits. 
these, the user has the following options: 

Through 

1. To perform special editing on a key supplied via a 
CHNG or DSPL verb with a key conversion routine. 

2. To examine and further alter a record about to be re­
written during processing of a CHNG transaction. 

Coding Key Conversion Routines 

Normal processing of keys by CHANGE/DISPLAY is based on the 
FDR for ISAM keys. BDAM RBN's are simply converted to binary. 
(Note that for normal processing of ISAM Keys, KEYRT= is not 
~oded in the FDHDR macro. For normal processing of BDAM 
RBN's the FDHDR macro should specify KEYRT=2.) 

If key processing other than that just described is desired, 
the user must code his own routine. The numbers assigned to 
these routines must be 5 or greater. This number is coded in 
the KEYRT= parameter of the FDHDR macro; and the key routine 
itself is identified by the Key Table entry described above. 

The CHANGE/DISPLAY subsystem will pass a five word parameter 
list to the user-written routine: 

1 . Address of the key to be manipulated. The first 
byte is the length of the key in binary, followed 
by the kei as entered at the terminal. 

2. Address of SPALIST. 
3. Address where manipulated key value is to be 

placed when routine is finished. Maximum· length 
of manipulated key is 255. 

4. Address of Format Description Record for this 
file. . . 

5. Address of File Table Entry for this file. 

The user must also supply a return code in register (15) to 
indicate whether processing was successful or not. Return 
codas are: 

~ - Successful key processing 

1 - Unsuccessful, no CHANGE/DISPLAY action is taken. 
Instead, an error message is passed to the· terminal. 

CHANGE User Exit (CHNGEXIT) 

The CHANGE User exit allows the user to modify a CHANGEd 
record before the file has been updated. The user must code 
the routine to effect this, and, it must have a CSECT name or 
entry point name of CHNGEXIT. CHANGE will CALL CHNGEXIT if 

83 



such a module is linkedited with INTERCOMM. The parameter 
list passed to CHNGEXIT consists of three words: 

1. Address of edited input message. 
2. Address of system Parameter List. 
3. Address of record that was changed. 

When control returns to the CHANGE subsystem, the record is 
updated. 

CHANGE/DISPLAY ERROR MESSAGES 

Error messages reflecting problems encountered during CHANGE/ 
DISPLAY processing are generated and queued for processing via 
the OUTPUT Utility. The messages are formatted ~ccording to 
OFT entries. Each message contains the input message FLM data 
(ddname) or fixed format name and other identifying information 
to be returned to the originating terminal. 

Each error message explicitly defines the reason for rejecting 
the CHANGE/DISPLAY transaction, for example: 

"NO FDR FOUND FOR FILE (ddname)" 

"KEY WAS NOT DEFINED IN FDR FOR (ddname)" 

"CH~NGE TABLE NOT FOUND OR NO ENTRY IN 
CHANGE TABLE FOR (format name)" 

"A RECORD DOES NOT EXIST WITH THE KEY ___ _ 
ON FILE (ddname)." 

For a precise listing of CHANGE/DISPLAY Utility error messages, 
the OFT entries on the INTERCOMM Release Library should be 
assembled (or printed) by the INTERCOMM System Manager. 

84 

J 



DISK RESIDENT TABLE ENTRIES FOR THE UTILITIES 

GENERAL CONSIDERATIONS 

Table entries for EDIT and OUTPUT are optionally disk resident; 
Format Description Records for CHANGE/DISPLAY are always disk 
resident. The System Manag~r(s) for each INTERCOMM installa­
tion should maintain and control assignment of table entries 
to disk. Individual table entries on disk are maintained by 
the user on symbolic and load module libraries (partitioned 
data sets) and loaded to a BDAM datas~t for retrieval at 
execution time. An INTERCOMM batch utility is used to ac­
complish the file load process. 

Each INTERCOMM Utility uses a separate BDAM dataset for its 
table entries as follows: 

EDIT (ddname;VRB~~~): Each record represents one EDIT 
Control Table (ECT) entry giving specifications for EDIT­
ing one verb. 

OUTPUT (ddname;RCT~~~) Each record represents one 
OUTPUT Format Table (OFT) entry giving specifications 
for formatting one message. INTERCOMM error messages 
generated via OFT entries are disk-resident. 

CHANGE/DISPLAY (ddname;DES~~~): Each record represents 
one Format Description Record (FDR) giving record fiormats 
for data files accessed through CHNG/DSPL verbs or 
record formats for fixed format messages from an 
application subsystem to be converted to variable 
character text and passed to the OUTPUT utility. 

All table entries on disk are fixed length records. 

Each disk resident table is described in the CHANGE/DISPLAY 
File Table (PMIFILET CSECT). Initial table entries for VRB~~~, 
RCT~~~, DES~~~ are provided on the installed INTERCOMM librar­
ies. The maximum blocksize specified by these entries is 750 
bytes. Care must be taken to ensure this table is modified 
if and when an installation's own disk resident table entries 
are longer than this specified value. 

Each of the previous sections of this document have described 
coding conventions for the individual table entries for each 
utility. Figure 25 summarizes coding conventions, naming and 
dataset conventions (detailed later in this section) for each 
Utility. 

85 



IPN:093 4/76 

~ 
CHANGE/ 

EDIT OUTPUT DISPLAY 
REQUIREMENTS: 

ddname of disk VRB~~~ RCT~,0~ DES~~,0 
resident table 
entries in INTER-
COMM execution JCL 

PMIFILET blocksize 75~ 1~(;J~ 75~ 
specification at 
installation time 

Symbolic Table PMI. SYz..1VRB PMI.SYMRCT PMI.SYMDES 
Entry Library 
(created at in-
stallation time) 

Load Module Table PMI.MODVRB PMI.MODRCT PMI.MODDES 
Entry Library 
(created at in-
stallation time) 

Table Entry VRBnnnnn RPTnnnnn DESnnnnn 
Library member 
name convention 

Coding convention VERB macro, REPORT none 
within disk resi- RBN=nnnnn macro, 
dent entry NUM=nnnnn 

VERBTBL PMIRCNTB PMIFILET 
CSECT: CSECT: CSECT: 

Core-resident VERBGEN None GENFTBLE 
table require- macro plus (OFT#-l is macro, 
ments. in-line assem- used for DESNUM=DES~.f3"~7='bn 

bly of disk RCTtiOOrbn) or 
". resident CHNGTB CSECT: 

entries DC A (DES.f3.f3~rbn) 

Figure 25. Summary Requirements for Disk-Resident Table 
Entries. 

86 

J 

J 

J 



IPN: 079 12/31/74 

The File Load Program 

The File Load Program is a generalized batch utility supplied 
with INTERCOMM which transfers members of a Partitioned Data 
set to relative blocks in a BDAM data set. Give~-f6a~ me~ber 
naming conventions are followed, it can be used to convert any 
PDS to BDAM. 

The File Load Program is linkedited and used at INTERCOMM 
installation time to initially load all error messages gene­
rated via OUTPUT Utility OFT entries to disk. The following 
JCL may be used to linkedit: 

II 
IILKED.SYSIN 

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
ENTRY 
NAME 

EXEC LKEDP,Q=LIB,LMOD=PMIEXLD 
DD'* 
SYSLIB(BATCHPAK) 
SYSLIB(PMIDCB) 
SYSLIB(PMIFILET) 
SYSLIB (PMISERC2) 
SYSLIB (IXFABEND) (not required for VI .. I) 
SYSLIB (IJKDSP!U) 
SYSLIB(IXFHND~~) 

SYSLIB(IXFHND~I) 

,SYSLIB (PMILOAD) 
PMILOAD 
PMIEXLD (R) 

At file load execution time, a SYSIN control card specifies 
VRB, RCT, or DES or a user-assigned file identifier to define 
program logic, represented by XXX in the following naming 
conventions. A partitioned data set specified bY'cidname 
XXXLOAD is searched for member names XXXnnnnn. Members are 
loaded sequentially to the BDAM data set specified by a ddname 
XXX~~~ with the RBN being one 'less than nnnnn. Members are 
loaded until a member on the PDS is "not found". Hence, 
member names must ascend sequentially from XXX~~~~1 to XXXnnnnn, 
incremented b~for each new member added to the PDS. 

With INTERCOMM VI.I and subsequent versions, the File Load 
Program has been modified allowing the SYSIN data set to specify 
replacement of one existing BDAM data set table entry or creation 
of the BDAM data set fro~ a g~ven ra~ge of PDg member names re­
gardless of the existence of member names in ascending sequential 
order or not. See "INTERCOMM VI.I Enhancements" at the end of 
this chapter. 

The actual JCL for loading the disk-resident table for each 
of the Utilities is detailed below. Each Utility's table 
entries may be loaded as a separate job step, or the JCL may 
be combined to load all three data S~s (VRB~~~, RCT~¢¢, and 
DES¢~~) in one step. 

87 



Loading ECT Entries to Disk 

1. Create a symbolic library (PMI.SYMVRB} and a load 
module library (PMI.MODVRB) for the EDIT Control 
Table (ECT} entries on disk. These libraries are 
normally allocated and catalogued at INTERCOMM 
installation time. 

2. Add the appropriate ECT to the symbolic library (PMI. 
SYMVRB). On the ADD card, code NAME=VRBXXXXX where 
XXXXX corresponds to the RBN operand of the VERB 
macro for this particular entry. Disk resident 
entries must be named VRB~~~~l to VRBnnnnn, numbered 
sequentially. The following JCL might be used: 

II EXEC LIBE,Q=VRB 
.1 ADD NAME=VRB~~~~l 
*ECT ENTRY TO BE LOADED TO DISK 

VERB - - -,RBN=~l 

1* 

II 
1* 

PARM 

PARM 

Note the absence of CSECT, PMISTOP, and END cards. 
These members might also be COPYed during the assembly 
of the core-resident ECT. The symbolic form of the 
table entry is now VRB~~~~l on PMI.SYMVRB. 

3. Assemble and link-edit the ECT into the load module 
library (PMI.MODVRB). The following JCL might be 
used: 

EXEC ASMPCL,Q=VRB,LMOD=VRB0001,NAME=VRB~~~~1 

Ignore the assembly errors for lack of CSECT and END 
card. The load module form of the table entry is now 
member VRB~~~~l on PMI.MODVRB. 

4. Load all disk-resident ECT's (VRB~~~~l to ~RBnnnnnl 
to the EDIT Control File, ddname=VRB~~~. The follow­
ing JCL might be used: 

II 
IISTEPLIB 
IIVRB~~~ 
II 

EXEC 
DD 
DD 

PGM=PMIEXLD,PARM='NOCHECK' 
DSN=PMI,MODLIB,DISP=SHR 
DSN=VRB~~~,DISP=(NEW,KEEP) , 
SPACE= ( ) , 

II 
II 
IIVRBLOAD 
IISYSPRINT 
IISYSIN 
VRB.el~~ 

1* 

DD 
DD 
DD 

DCB=(DSORG=PS,BLKSIZE=nnn,RECFM=F) , 
UNIT=SYSDA,VOL=SER=nnnnnn 
DSN=PMI.MODVRB,DISP=SHR 
SYSOUT=A 
* 

88 

J 

J 



The members from the partitioned dataset VRBLOAD are 
now blocks on the BDAM dataset VRB~~~, The actual 
RBN is one less than tne number XXXXX described 
above. 

Loading OFT Entries to Disk 

To create the Output Format Table, the following procedures 
must be followed: 

1. Create a symbolic library (PMI.SYMRCT) and a load 
module library (PMI.MODRCT) for the Output Format Table 
(OFT) entries on disk. These libraries are normally 
allocated and catalogued at INTERCOMM installation 
time. 

2. Add the appropriate OFT to the symbolic library 
(PMI.SYMRCT). On the ADD card, code NAME=RPTXXXXX 
where XXXXX corresponds to OFT number for this particu­
lar entry. INTERCOMM error messages generated from 
disk resident OFT entries are contained on PMI.SYMREL 
and PMI.MODREL with member names RPT~~~~l to RPT~~~5~. 
User OFT entries to be loaded to disk must be named 
RPT~~~51 and up, numbered sequentially. The follow­
ing JCL could be used: 

II EXEC 
IILIB.SYSIN DD 
.1 ADD 

LIBE,Q=RCT 

* 
NAME=RPT~~~51 

* OFT NUMBER 51- DISK RESIDENT 
REPORT NUM=51 

1* 

Note the absence of CSECT, PMISTOP, and END cards. 
The symbolic form of the table entry is now RPT~~~51 
on PMI.SYMRCT. 

3. Assemble and linkedit the OFT into the load module 
library (PMI.MODRCT). The following JCL might be 
used: 

II EXEC ASMPCL,Q=RCT,NAME=RPT~~~51,LMOD=RPT~~~51 
1* 

Ignore the assembly errors for lack of CSECT and END 
cards. The load module form of the table entry is now 
member RPT~~~51 on PMI.MODRCT. 

89 



SPR 174 6/80 

4. Load all disk-resident OFT's (RPTOOOOI to RPTnnnnn) to the 
Output Format File, ddname-RCTOOO. The following JCL might 
be used: 

II EXEC PGM=PMIEXLD,PARM='NOCHECK' 
DSN=PMI,MODLIB,DISP=SHR 
DSN=RCTOOO,DISP=(NEW,KEEP),SPACE=( 
DCB=(DSORG=PS,BLKSIZE=nnn,RECFM=F), 
UNIT=SYSDA,VOL=SER=nnnnnn 
DSN=PMI.MODRCT,DISP=SHR 
DSN=PMI.MODREL,DISP=SHR 

I I STEPLIB DD 
IIRCTOOO DD 
II 

) , 

II 
IIRCTLOAD DD 
II DD 
IISYSPRINT DD 
IISYSIN DD 
RCTOOO 

SYSOUT=A 

* 
1* 

The members from the partitioned data set RCTLOAD are now 
blocks in the BDAM dataset RCTOOO. The actual RBN that the 
OFT entry will occupy is one less than the number XXXXX 
(defined above). 

NOTE: To . change the Output Format Table block size from the 
Intercomm release, the following steps should be taken: 

1. The File Table (PMIFILET CSECT) entry created via 
the GENFILE macro for RCTOOO must be changed from 
BLKSIZE-IOOO to BLKSIZE=nnnn, where nnnn is the new 
block size. PMIFILET must be reassembled. 

2. The File Load program (PMIEXLD) must be relinkedited 
to contain the new block size. 

3. Execute the File Load program (PMIEXLD) 1n RCTOOO 
with the JCL shown above. 

Loading FDR Entries to Disk 

To create the Format Description File, the following procedures 
must be followed: 

1. Create a symbolic library (PMI.SYMDES) and a load module 
library (PMI.MODDES) for the Format Description Records. 
These libraries are normally allocated and catalogued at 
Intercomm installation time. 

2. Add the appropriate FDR to the symbolic library 
(PMI. SYMDES) • On the ADD card, code NAME=DESxxxxx where 
xxxxx is one greater than the resulting RBN after the file 

90 

J 

J 



SPR 174 6/80 

load program is executed. The user must relate the 
corresponding ddname and FDR by the DESNUM parameter of the 
GENFTABLE macro for user files, or relate the fixed format 
identifier and FDR by the number indicated in the CHANGE 
table for fixed format message text descriptions. The first 
record should be DESOOOOl; the second, DES00002; etc. No 
number should be skipped. The following JCL can be used: 

II EXEC LIBE,Q=DES 
IILIB.SYSIN DD * 
.1 ADD NAME=DES00001 
* FORMAT DESCRIPTION RECORD 1 
DESOOOOI CSECT 

1* 

FDHDR 
FDETL 
FDETL 
END 

90.1 



J 



1Y;'" 

L 

3. 

The symbolic form of the table entry is now member 
DES~~~~l on the library PMI.SYMDES. 

Assemble and link-edit the FDR into the load module 
library (PMI.MODDES). 

The following JCL might be used: 

II EXEC ASMPCL,NAME=DES~~~~l,LMOD=DES~~~~l, 

Q=DES 

1* 

The load module form of the table entry is now member 
DES"~~l on the library PMI.MODDES. 

4. Load all FDR's (DES~'~~l to DESnnnnn) to the Format 
Description File, ddname=DES~~~. 

The following JCL might be used: 

II EXEC 
IISTEPLIB 
I IDES'~~ 
II 
II 
II 
II 
IIDESLOAD 
IISYSPRINT 
IISYSIN 
DES'~~ 
1* 

PGM=PMIEXLD,PARM='NOCHECK' 
DD DSNAME=PMI.MODLIB,DISP=SHR 
DD DSNAME=PMI. DES~'~, 

DISP= (", KEEP) ,SPACE= (TRK, (1,1) ) i 
UNIT=XXXX,VOL=SER=XXXXXX, 
DCB=(DSORG=PS,BLKSIZE=XXXX, 
RECFM=F) 

DD DSN=PMI.MOODES,DISP=OLD 
DO SYSOUT=A 
DD * 

The members from the partitioned dataset DES LOAD are 
now blocks on the BDAM dataset DES~'~. The actual RBN 
that the FDR will occupy is one LESS than the number 
XXXXX (defined above). 

91 



J 

J 



INTERCOMM VI.l Enhancements 

With INTERCOMM VI.l (April, 1974) and subsequent versions, 
the File Load Program has been modified allowing the SYSIN 
data set to specify replacement of a specific member of the 
partitioned data set ~ loading all members within a specified 
range of member names. 

Example 1: To copy PDS member name XXX00007 to the exist~ 
ing BDAM data set XXX~~~~ the SYSIN data set specifies: 

//SYSIN DD * 
XXX00007 

Example 2: to create the BDAM data set XXX~~~ from PDS 
member names XXXOOOOI to XXX~nnnn irrespective of the 
number of actual members on the PDS. The SYSIN data set 
specifies: 

//SYSIN DO * 
XXXOOO-nnnn 

The File Load ~rogram will copy PDS members in ascending 
sequence to the' BDAM data set XXX~~~ beginning with XXXOOOOI. 
When a Bmember not found D condition arises, the file load 
does not terminate (as was previously the case) but the last 
member-found will be copied to the BDAM data set until the 
next ."member found" occurs, or the "upper limit" member 
XXX~nnnn is encountered. To illustrate, assume members 
RPTOOOOI to RPTOOOSO, RPTOOIOO to RPTOOI06 exist on the 
library PMI.MODRCT. Specification to the File Load Program 
as follows; 

//S'¥SlU DO 11 

RCT.0~.0-0l10 

will cause creation of a BDAM data set-tRCT.0-P'.0l with 110 
RBN's. The member RPTOOOSO will be duplicated in RBN's 49 
to 98 (once as the actual table entry RBN 49, repeated until 
RPTOOIOO is found and loaded to RBN 99). The member RPTOOI06 
will be duplicated in RBN's 105 to 109. 

There is no limit to the number of control cards input via the 
SYSIN data set. Further, given the proper JCL as discussed earlier, 
several BDAM data sets may be updated or recreated in one execution 
of the File Load Program. 

91.1 



TERMINAL DEPENDENT CONSIDERATIONS 

This section provides information pertaining to special con­
siderations for terminals with non-standard operating charac­
teristics. Some of the data covered in this section is as 
follows: 

Special operating features such as function keys, and 
field formatting 

Restrictions which may be peculiar to a specific termi­
nal. 

It is assumed the reader has knowledge of the actual hardware 
operating specifications of each terminal type as described 
by the manufacturer's publications. 

This section may also reference required specifications for 
Front-End Tables as appropriate (also documented in the 
INTERCOMM Operating Reference Manual). 

92 

J 

J 



THE IBM 3270 

All IBM 3270 Display System components are supported by the 
INTERCOMM BTAM Front-End including the following: 

IBM 3271 control unit, models 1 and 2 

IBM 3272 control unit, models 1 and 2 

IBM 3275 display station, models 1 and 2 

IBM 3277 display station, models 1 and 2 

IBM 3284 printer, models 1 and 2 

Selector pen 

Operator identification card reader 

Both the IBM 3270 Remote and the IBM 3270 local display sys­
tems are supported by the INTERCOMM BTAM Front-End. Other 
IBM BISYNC devices are also supported on the same line as 
the IBM 3270 display system. The question of whether or not 
the 3270 display system is local or remote is transparent to 
the application program. 

INPUT Message Formats 

The format of the input to the application (or the EDIT 
Utility) depends on whether or not the user intends to use 
the aid or the cursor address. If the user desires neither, 
he shoul~either code HDR3270=NO or omit this parameter from 
the BTVERB macro used to define his verb in the Front-End 
Verb Table (BTVRBTB). The following is an example of an 
input transaction without a 3270 header. 

INTERCOMM HDR I VERB 0 DATA 

If the user desires either the aid or the cursor address, he 
must code HDR3270=YES in his verb definition (BTVERB macro) 
in the BTVERBTB. The following is an example of an input 
message with the aid and the cursor address header (3270 
header) :--

INTERCOMM HDR I VERBO AIDX ~CURYY.6 DATA ... 

93 



where 

X=the aid byte; yy=the cursor position bytes. If the 
3270 header is desired and the aid is that of an input 
that does not contain a cursor address, a dummy cursor 
address of "home" will be provided. 

The format of DATA depends on whether or not the terminal is 
operating with "formatted" screen capabilities as shown in 
figure 26 and 27. 

Bypassing the Edit Utility 

If the application programmer desires, the input message may 
be processed without the use of the EDIT Utility. Under this 
method, either formatted or unformatted input is acceptable; 
however, all editing must be done by the application program. 
If the input screen is unformatted then VERB and DATA is what 
was entered 6n the screen. If the input screen is formatted 
VERB is the contents of the first "modified" field on the 
screen prefixed by their SBA sequences. In either case, the 
verb may be "locked", or part (or all) of the transaction 
may have come from the table used for program attention keys. 

Using the EDIT Utility - Unformatted Input 

If the input screen is unformatted and the aid and cursor 
position are not d~~sired, the input to the EDIT Utility can 
be of any standard form currently accepted by the EDIT 
Utility (position.-¥!2::b:r keyword-). If it is desired to use the 
3270 in this mode, no additional facilities of edit are 
needed, no existing application programs or tables need be 
changed. The output of the EDIT Utility will be either 
standard form desired (fixed, variable). 

If the input screen is unformatted and the aid or the cursor 
position is desired, the EDIT Control Table VERB definition 
must be modified to accept this additional data as para­
meters of the verb. If the input is keyword, an AID_ parm of 
I byte and a CUR parm of 2 bytes must be defined anywhere 
in the verb definition. 

VERBI VERB 
FARM 
FARM 
FARM 
FARM 
FARM 

VERB,~1,156,5,FIX=YES,KEY=YES 

CUS,~I,~,25,~~~~~~11 
ADR,~2,~,2~,~~~~~~11 
C/S,~3,~,25,~~~~~~11 
AID,~4,~,I,I~~~~111 
CUR,~5,~,2,1~~~~111 

94 

J 



I VERB*DATAl *DATA21 

Unformatted screen 
(e.g., positional) 

Message Input - No Aid or cursor address: 

E 
INTERCOMM HDR VERB*DATA1*DATA2 T 

X 

Message Input - With aid and cursor address: 

IINTERCOMM HDR VERB*AIDX N CURYY N DATA1*DATA2 
L L 

E 
'1' 
X 

Figure 26. 3270 Input Message Format - Unformatted Screen 

OVERBO NAMEOXXX VERB, XXX, YYY fields have modified 
data tags on 

ADDRDyyy 

Formatted screen 

, ' 

Message Input - No aid or cursor address: 

E 
INTER,COMM HDR VERB* SBA seq XXX SBA seq yyy T 

X 

Message Input - With aid and cursor address: 

INTERCOMM HDR VERB* AIDX N CURYY N SBA seq XXX SBA seq 
L L 

Figure 27. 3270 Input Message Format - Formatted Screen 

95 

E 
YYY T 

X 



If the input is positional, an AID parm of 4 bytes and a CUR 
parm of 5 bytes must be defined as the first 2 parms of that 
verb. (If LINE=YES is specified PMIELIN macros must be 
coded) : 

VERB2 VERB 
PARM 
PARM 
PARM 
PARM 
PARM 

VERB,~2,256,5,FIX=YES,KEY=NO 

AID,~4,~,4,1~~~~111 

CUR,~5,~,5,1~~~~111 
CUS,~1,~,25,~~~~~11~ 
ADR,~2,~,2~,~~~~~11~ 
C/S,~3,~,25,~~~~~11~ 

For positional input the letters AID and CUR will be passed 
to the application as data along with the actual aid and 
cursor position. (A special Edit Routine may be written to 
strip this off.) If either PARM is coded with a length of zero, 
that parameter will be omitted from the output of the EDIT 
Utility. 

Using the EDIT Utility - Formatted Input 

A facility has been added to the EDIT Utility to allow the pro­
cessing of 3270 formatted input. With this facility, the screen 
data will be treated as positional data. Instead of a separator 
indicating the position of the field, a buffer address is used. 
It is required that the user code the buffer position of each 
field as the CHAR-ID of that field in the PARM macro when defin­
ing that verb in the EDIT Control Table. (For standard position­
al input, the CHAR-ID is used only for error reporting identifi­
cation. ) 

If the AID or CURSOR address is desired, an AID parm of 4 bytes 
and a CUR parm of 5 bytes must be coded as the first 2 parms of 
that verb. The output from the EDIT utility will be either of 
the standard formats (i.e., fixed, variable). 

Figure 28 shows a formatted screen appearing at the terminal al­
lowing the operator to enter customer name, salary, title, and 
phone #, an input message processed by EDIT, the ECT, and EDIT 
results. 

Alternatively, the user may code PREONLY=YES in the Edit Control 
Table VERB macro. In this case the SBA sequence in the incoming 
message will be replaced by the system separator character. The 
individual data fields will ~ be edited. This technique effects 
conversion of a 3270 formatted input message to standard posi­
tional input as if the message forwarded to the subsystem had 
come from an IBM 2260-type terminal. 

96 

J 

J 



\D 

" 

0 

40 

80 

120 

(' (' r 
Formatted Screen 

1 
01 II 2131415 161718191101tlll211311411511611711811~120121122123124125126127128129130131132133134135136137138139 

I-I 
~ _'I V I E I R IB 11_ J 

1 
I_JN IA 1M ~ 
1--1 
L.JI S IA IL 

'--1 
: II_.JI JI 01 HI N B 

AIRIY [11 0 I 1 I 2 I 50 12 

T I I IT 

DIOIE 

5r l 
I 

r- :-0-11 J 10 IB __ I 

:t; ~ :~J: :} I: I: I: 17161218 bflllllllill 160 L iP\H 10 N I E I 1# 

200 
• I I I I I I I I -I I I I I I 0 I· I I I I I I I I I I I I I 

240 

1
280 

320 r-
360 

__ I I I I I I I I I I I I I I I I I I I I I I I I I I -

400 
• I I I I 1 I I I I I 1-· I I I I I I I I I I I I I I I I I ... 

440 

Figure 28. EDIT example - Formatted Screen (Sheet 1 of 2) 



0.0 
co 

INPUT TO EDIT UTILITY 
Screen position* 

N N S • S 
MSG HEADER VERB * AID X L CUR C2 7C L B ~OF5 JOHN B DOE B ~15F 012525 1 

A A 

IN BTVERB 
HDR3270=YES 

S S 
B r24A WRITER B C2FO 
~~ -~ A 

*A11 SBA addresses really are in buffer address form 

EDIT Control Table Entry: 

VERB VERB 
PARM 
PARM 
PARM 
PARM 
PARM 
PARM 

VERB,01,256,6,FIX=YES,KEY=NO,LINE=NO 
AID,OS,0,4,10000111 
CUR,06,0,S,10000lll 
40F5,01,0,22,lOOOOlll 
C1SF,02,0,6,lOOOOlll 
C24A,03,0,11,10000111 
C2FO,04,O,12,10000111 

RESULT OF EDIT PROCESSING (Input to Application Program): 

MSG HEADER 
01 

JOHN B DOE I 012525 , WRITER I 21,2-383-7628 

Figure 28. EDIT example - Formatted Screen (Sheet 2 of 2) 

l, l, 

212-383-7628 
E 
T 
X 

l, 

H 
't.t 
Z 

o 
W 
I--' 

N 
........ 
I--' 

........ 
~ 

"" 



"ATTENTION" Selector Pen Input 

If the input is generated by an operator touching a selector 
pen "ATTENTION" field, the input buffer will consist of SBA 
sequences only, no data will be sent in from any "modified" 
fields read. Therefore, the user is advised not to define 
data entry fields in any format screen that contains an 
"attention field". (Data entry fields may be defined with 
"selection" fields and "selection" fields may be defined with 
"attention" fields.) 

Since no data is received from the screen, a verb will have 
to be appended to the contents of the input buffer. In order 
for the verb to be appended, either the terminal should be 
"locked" to a verb or data with a verb should be specified in 
the Front-End table entry defined for this AID. 

For all fields read, the EDIT Utility will generate an "X" 
as the data read. In other words, an "attention" screen will 
be processed by the EDIT Utility as though each field read 
contained an "X". In the verb definition in the EDIT Control 
Table each field should be defined as a one byte field. If 
a field is read, the output from the EDIT Utility will have 
an X as the contents of the field. 

If the EDIT Utility is not ~ed, the appended prefix to the 
screen will be followed by only SBA sequences (from the screen) 
and an ETX. 

Output Message Formats 

All messages going to any 3270 must begin with a valid com­
mand (i.e., write: C'l', erase write: C'S', erase all un­
protected: C'?'), a WCC, and an SBA sequence. In addition 
all messages going to a remote 3270 must be prefixed by an 
STX and an ESC. 

The INTERCOMM BTAM front-end will prefix all output messages 
for a given de~ce type (see BDEVICE STCHAR=). The remote 
3270 BDEVICE macro must specify STCHAR=0227 (STX,ESC); the 
local 3270 may omit the STCHAR parameter from the BDEVICE 
macro. 

The INTERCOMM back-end message OFT entries and INTERCOMM BTAM 
front-end messages do not contain any command, WCC or SBA 
sequence. A valid command, WCC and SBA sequence must be 
specified for a given device type (see BDEVICE CTCHAR=). For 
all BTAM front-end messages and for all INTERCOMM back-end 
messages that do ~ contain a valid command, this additional 
information will be taken from the CTCHAR= parameters speci­
fied on the BDEVICE macro and placed at the beginning of the 
message. 

99 



Bypassing Formatting by the OUTPUT Utility 

The application program may build the entire output message 
including the command, wee, SBA sequence and any orders and 
data needed. This message can be sent to OUTPUT using a VMI 
of X'S7'; the OUTPUT Utility will simply forward that mes­
sage to the front-end. 

All messages written to a 3270 display system must contain a 
prefix containing a command sequence and an SBA sequence. As 
previously noted, the INTEReOMM Front-End will optionally pre­
fix all output messages going to a specific device type. 
Using this option it is unnecessary to change either the ap­
plication program or the OUTPUT Format Table. However, all 
messages to the same device type will have the same prefix. 

If the application has OFT entries or messages already opera­
tional and these messages contain characters acceptable to 
the 3270, no program change or table change is necessary. NL 
characters do not function on a 3270 display. To allow NL 
characters in a 3270 screen an additional facility of the OUT­
PUT Utility translates all NL characters to SBA sequences. 

Using the Output Utility - Minimal user modification 

In order to have greater flexibility of type of command and 
SBA sequence, the user may include the prefix in the beginning 
of each output message. In order to utilize Output formatting 
capabilities for 3270 messages without using the additional 
formatting of the OUTPUT Utility, the application may define 
all control bytes in the message and thus eliminate NL charac­
ters. 

Using the Output Utility-Extended Facilities for the 3270 

The User may choose to implement the following OUTPUT Utility 
Features to fully utilize the hardware characteristics of the 
3270. 

Generating a Format Screen or Print Buffer: 

In order to facilitate the use of the format generating features 
of the Output Utility, operands have been added to the REPORT 
and ITEM macros. 

The eOMM and wee operands of the IT~~ macro may be used to de­
fine a command and wee to prefix a specific display. These 
keyword operands must be placed in the first ITEM macro coded; 
causing a command and a wee to be generated in a 254 ITEM. 
(An SBA sequence to address zero will also be generated.) 
Since the command, the wee and the SBA sequence take up S 
positions, the first 'ITEM macro must be coded with an additional 

J 

J 

5 positions in the TO=parameter. J 

100 



IPN:03l 2/1/74 

The ATT operand of the ITEM macro may be used to define a 
field. If this parameter is used, an SF order and an attrib­
ute byte will be generated to precede the item defined. If 
the ATT operand is omitted no SF and ATT byte is generated. 
The SF and the attribute take up 2 positions in the buffer 
used to create the report. Therefore, any ITEM macro that 
specifies the ATT= parameter must be coded with an addition­
al two positions in the TO= parameter. 

In order to fully utilize the features of the IBM 3270; if 
more than 4 contiguous blanks are to be transmitted, or more 
than 4 of the same non-blank characters, the "repeat to 
address" sequence will be generated by the OUTPUT Utility. 
If it is desired to define more than 4 contiguous blanks or 
more than 4 of the same non-blank characters, these positions 
in the OFT should be defined as unique items; a following 
data item starts a new field. Any order that changes the 
current buffer address (SBA,RTA,EVA,TAB) should not be defined 
within data items unless that item is the last item of the 
message and the data begins with an SBA order. 

Any NL orders can be inserted by either the application or 
the OUTPUT Utility. Any Insert Cursor or EM orders should be 
specified in regular data items. Any order that takes up a 
buffer position should be coded as an item code 255 item. 
Any order that does not take up a buffer position should be 
coded as an item code 254 item. If the report is to go to a 
screen (WCC~PRINT) any NL orders will be replaced by an SBA 
sequence by the Output Utility. 

As previously noted, an SBA order to buffer position ZERO 
will be generated by the first ITEM macro. If it is desired 
to have a display start at other than buffer position ZERO, 
specify as many NL characters as needed to position the re­
port at the desired line location. 

Figure 29 illustrates a sample OFT for Screen Generation, 
resulting display at the 3270; and an input message to OUTPUT 
requesting the OFT screen generating entry, and the actual 
message produced by OUTPUT. 

Filling in a Screen Format: 

In order to facilitate the filling in of unprotected items of 
a screen format (already displayed) by an application program, 
a VMI of X'56' has been added to the Output Utility message 
types. With this facility the application program can pass 
to the Output Utility the report number of the screen format 
along with the data to be filled in. The report number and 
the data are passed in the variable format (e.g., IC, LEN, 
DATA). The data items passed are to be displayed in fields 
defined as unprotected. The Output Utility will generate any 
SBA and TABS needed and put an insert cursor order after the 
first tab. Any field shorter than its length on the screen 
will be padded with nulls on the right; any unprotected field 
not passed data will be skipped. 

101 



t-' 
o 
IV 

OUTPUT FORMAT TABLE ENTRY: 

RPT0005I 
RPT5l 
LINEl 

Ll.Nl!;2 

LINE3 

LINE4 

I LINE5 

Figure 29. 

'-' 

CSECT 
REPORT 
LINE 
ITEM 
ITEM 
ITEM 
LINE 
ITEM 
ITEM 
ITEM 
ITEM 
LINE 
ITEM 
ITEM 
ITEM 
LINE 
ITEM 
ITEM 
ITEM 
LINE 
ITEM 
ITEM 
ITEM 

NUM=5I,LINES=5 
NUM=01,ITEMS=3 
CODE-255,FROM=1,TO-6,DATA~~~~,COMM=ERASE,WCC-(RESET,RESTORE) 

CODE=255,FROM=7,TO=12,ATT-(PRO,SKIP,HIGH,MOD) ,DATA-'VERB' 
CODE=255,FROM-l3,TO-15,ATT-(PRO,SKIP) ,DATA='~' 
NUM=2,ITEMS=4,REPET=6 
CODE=255,FROM-6,TO=12,ATT=(PRO,SKIP),DATA='NAME:' 
CODE=255,FROM=13,TO=15,ATT=YES,DATA=(X'13') INSERT CURSOR 
CODE=~l,FROM-16,TO-38 

CODE-255,FROM=39,TO-4l,DATA='~',ATT=(PRO,SKIP) 

NUM=03,ITEMS-3,REPET=6 
CODE=255,FROM=7,TO=15,ATT-(PRO,SKIP) ,DATA-'SALARY:' 
CODE=02,FROM-16,TO-23,ATT=NUM 
CODE-255,FROM=24,TO-26,ATT-(PRO,SKIP) ,DATA='~' 
NUM=04,ITEMS=3,REPET=6 
CODE=255,FROM-7,TO=18,ATT=(PRO,SKIP) ,DATA='JOB TITLE:' 
CODE=03,FROM=19,TO=31,ATT=YES 
CODE=255,FROM=32,TO=34,ATT=(PRO,SKIP) ,DATA='~' 
NUM-05,ITEMS=3,REPET=6 
CODE=255,FROM=7,TO=15,ATT=(PRO,SKIP) ,DATA='PHONE #:' 
CODE=04,FROM=16,TO=29,ATT=YES 
CODE=255,FROM=30,TO=32,ATT=(PRO,SKIP) ,DATA='~' 

Sample 3270 Screen Generation. (Sheet 1 of 3) 

'-' '-' 

H 
'U 
Z 

o 
...... 
~ 

t-' 
IV 

........ 
W 
t-' 

........ 
...... 
~ 



.... 
o 
w 

(' (' 

INPUT TO OUTPUT UTILITY 

~ HEADER I FF020033 

OUTPUT FROM OUTPUT UTILITY (including OUT327~) 

ERASE RESET S S PRO S PRO S I 

WRITE RESTORE B 00 16 F SKIP VERB F SKIP B 40 : 
A HIGH A I 

MOD J - -----

IR S PRO S NO ~Ji S PRO S 
IT 46 16 F SKIP NAME: F BITS 75 16 F SKIP B 80 
IA ON A 

IR S PRO S NUM R S PRO S , 
86 16 101 16 120 IT F SKIP SALARY: F T F SKIP B 

IA A' A 

IR S PRO S NO R S PRO S 
IT 126 16 F SKIP JOB TITLE: F BITS T 149 16 F SKIP B I 
IA A A 

- ------ --- - ..... 

'R S PRO S NO R S PRO E 
I 
IT 166 16 F SKIP PHONE #: F BITS T 188 16 F SKIP T 
IA A X 

.~--

Figure 29. Sample 3270 Screen Generation. (Sheet 2 of 3) 

I 
I 
I 
I 

I 

160 I 
I 
I 

(' 

H 
tU 
Z 

o 
--.J 
1.0 

.... 
N 

......... 
W .... 

......... 
--.J 
ol::> 



~ 

o 
"'" 

.--

0 

40 

80 
t--

120 
I---

160 

200 

240 
-' 
280 

320 

360 
-
400 

440 

DISPLAY AT 3270: 

0 I 2 3 4 S 6 7 a 9 10 11 12 13 14 15 16 17 18 

--I ,-, , V E RBI I 
I -- ,-1 

I._J N A M E : 
1--' 
I I 

1-:-1 '--I 
S A L A R Y .: : t 

'_.J --r, 
I ' 

J 0 B T I T L E 
1--1 

: '-_I 
'--I 

# -1 
I , P H 0 N E : 

'. 

Figure 29. Sample 3270 Sc~een Generation. 

L 

I 
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 

-
!--, . , , .-

1- -, 

' , j- -

j--: 
1_-

'-.-, 
I I .. -

I 
j 
, 

I 

( She e t 3 0 f .3) 

L L 



The command, wee, and SBA sequence will be inserted by the 
Output Utility. The default command for all X'56' VMI output 
messages is a write command. The default wec is restore key­
board and not reset modified data tags. The default SBA 
sequence is an SBA to zero. In order to erase all unprotected 
data and reset modified data tags, when filling in a screen 
format, the ERASE operand may be specified in the REPORT 
macro of the OFT entry. Since an EAU command cannot contain 
data, an erase unprotected to address order will be used 
instead. 

If the application desires other than the default command, 
WCC and SBA sequence (or ERASE=YES), he should send the com­
mand sequence in an item code 251 item, passed to the Output 
Utility in the VMI of X'56' message. The 251 ITEM does not 
get coded in the report. If the data following ITEM COD~51 
in the message text contains 1 byte that byte will become the 
command~ if it contains 2 bytes those bytes will become the 
command, WCC sequence; :if it contains 5 bytes thos e bytes will 
become the command, WCC, SBA sequence. 

If an erase all unprotected (EAU) command is placed in a 251 
item and there is also.a data item passed, an Erase Unprotected 
to Address order will be used to erase the unprotected fields. 

Figure 30 illustrates an existing screen format, a message to 
OUTPUT, and the resulting message to the terminal. 

Modifying Screen Format: 

It may be necessary for the application program to modify 
definition~of fields or field data (other than unprotected) 
in a format already on the screen. 

In order to facilitate this, a special 253 item has been 
added. The 253 item does not get coded in the report. When 
the application program passes the report number to the output 
utility (via a VMI of X'56') he can pass all orders or data 
needed along with a 253 item .. The contents of the item will 
be placed at the end of the output message before the ETX is 
added by the Output Utility. For example: 

Message to OUTPUT: 

INTERCOMM HEADER 56 FF02XXXX 1251 I LN DATA 

IC LN DATA 253 LN DATA 

Message from OUTPUT: 

INTERCOMM HEADER 56 COMMAND I WCC SBA seq I TA~.§.._A~P.~DA.TAJ 

105 

contents of 253 
data 

E 
T 
X 



f-' 
o 
<l' 

,....---

0 
r--' 

.40 

80 

120 

160 

200 

240 

280 

320 

360 

400 

440 

AN EXISTING SCREEN FORMAT 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

, 
V E R B 

1--1 . , __ I 
--

I ,--
N A M E : '--' .. o H N B D 0 E 

,-- --I 5 --, . I IR IT o 1 2 5 ,_ I S A L A '. I .) 2 '--' 
1.--

I 1 
~ I J 0 B I T L E : LJ W R I T E R 

r-I --
I P H 0 N ~ # : 2 1 2 - 3 8 3 - 7 6 2 8 

. 

'Figure 30. Filling in a 3270 Screen Format {Unprotected' Data) 

L L 

I 
28 29 30 31 32 33 34 35 36 37 38 39 

r-I 
II 

1-", 

1 J 
1-:1 
I.J 

-

(Sheet 1 of 2) 

L 



~ 
o 
-...J 

(' 

INPUT TO OUTPUT UTILITY 

I MESSAGE HEADER 56 
VMI 

(' 

JOHN B DOE 

iO-3 ,-o6-TWIliTE!]04 ,OC 212-383- 7628 1 

OUTPUT FROM OUTPUT UTILITY 

S T T T 
WRITE RESTORE B 00 A JOHN B DOE A 012525 A WRITER 

RESET A B B B 
---- ~- -_ ... _---L-_ -----------

T 
A 
B 

Figure 30. Filling in a 3270 Screen Format (Unprotected Data) 

E 
212-383-7628 T 

X 
-- --

(Sheet 2 of 2) 

(' 

H 
'U 
Z 

o 
-...J 
\D 

~ 
N 

"­
W 
~ 

"­
-...J 

"'" 



IPN: 079 12/31/74 

Adding to an Existing OFT Dynamically: 

To modify an existing OFT (more than just data), the applica­
tion passes all necessary orders and data in a special 253 
item, along with other items, in the (VMI of X'56') message. 
(The 253 ITEM does not get coded as an ibem in the report.) 

This special item must begin with an SBA order. The contents 
of the item will be placed at the end of the output message 
before an ETX is added by the OUTPUT Utility. 

INTERCOMM VI.l Enhancements 

With INTERCOMM VI.l (April 1974), a new operand was added to the 
REPORT macro to simplify specification of FROM and TO positions 
of data in ITEM macros. The optional operand DEV=3270 specifies 
that the receiving terminal is an IBM 3270 Model 2 (Remote or 
Local) and that the OUTPUT Utility is to be responsible for 
generating all hardware dependent control characters. Note 
that use of this feature results in terminal-dependent Output 
Format Table entries which must not be referenced when a mes­
sage is destined for a terminal other than the IBM 3270. The 
Output Format Table may contain a combination of entries of 
which some specify the DEV=3270 operand on their REPORT macros. 

If DEV=327~ is specified, the FROM and TO values specified on 
subsequent ITEM macros indicate only those characters in the 
data item which occupy a hardware buffer position. That is, 
the FROM and TO may reference the actual positions in a line 
of 327~ display. Additionally, SBA sequences will be used for 
positioning to the start of a new field. LINE macros may not 
define repetitive lines (REPET=l, 4 or 8 not allowed). 

If DEV=327~ is not specified, the generation of the report will 
be exactly as it was before the DEV= operand was available. 
That is, all characters generated for a given field must be 
reflected in the FROM and TO specification, including characters 
such as SF or IC which do not occupy a 327~ buffer position. 
Positioning to a new field is done by padding with blanks. 

The following table entry illustrates an Output Format Taole 
Coded with the DEV= 3270 operand. 

RPT00060 CSECT 
RPT0060 REPORT NUM=60,LINES-3,DEV=3270 

LINE NUM=1,ITEMS=3 
ITEM CODE=255,FROM=1,TO=5,ATT=(PRO,MOD), 

COMM=WRITE,WCC=RESTORE,DATA='VERB' 
ITEM CODE=255,FROM=6,TO=6,ATT=PRO 
ITEM CODE=Ol,FROM=16,TO=25,ATT=YES 
LINE NUM=2,ITEMS=3 
ITEM CODE=~55,FROM=9,TO=20,ATT=HIGH, 

DATA='3270 LINE'2' 
ITEM CODE=255,FROM=21,TO=21,ATT=PRO 
ITEM CODE=02,FROM=27,TO=42,ATT=YES 
LINE NUM=3,ITEMS=2 
ITEM CODE=3,FROM=42,TO=45,ATT=YES 
ITEM CODE=255,FROM=50,TO=61,ATT=PRO, 

DATA='3270 LINE 3' 
END 

108 

J 

J 



SPR 174 6/80 

Teletype Dataspeed 40/1 and 2 (DS40) 

The Teletype Dataspeed 40 Models 1 and 2 are supported for the 
Edit and Output Utilities, as descirbed below. 

Edit Utility 

If TYPE=DS40 is coded in the DEVICE and STATION macros for the 
DS40 terminal, Edit Utility processing accepts: 

• The Horizontal Tab (HT) X'OS' (required for input from 
formatted screens) 

• The New Line (NL) X'lS' 

as field separator characters in addition to the system separator 
character. When editing positina1 data, an HT followed by a second HT 
or NL, or an NL followed by an HT indicates absence of a field. 
However, an HT following the system separator after a verb assumes 
input from a formatted screen, not absence of the first positional 
field. 

Output Utility 

If DEV=DS40 is coded in the REPORT macro, the corresponding ITEM 
macro ESC parameter allows specification of ESC sequences and other 
control characters for output report formatting. Thus, formatted 
screens with protected and unprotected fields may be defined. 

New Line as a line ending control 
generated in Output Utility processing. 
current protected/unprotected status of the 

character is automatically 
This does not affect the 
screen area. 

Further details on message control characters, terminal 
operation considerations, and format design considerations are 
discussed in the Operating Reference Manual, Section S. 

NOTE: The Teletype Dataspeed 40 Model 4 terminal is IBM 3270 
hardware compatible and is supported under IntercolIDll as 
such. 

Leased 2780 Considerations 

If TYPE=2 (and FIRST=YES) are coded on the DEVICE macro, the 
Output Utility assumes the terminal is a leased 2780. All messages 
processed by the Output Utility will start with 'X022761'. Each line 
will end with X'1F2761' instead of a CRLF value. 

108.1 





I 
L 

IPN :093 4/76 

INTERCOMM TABLES 
FOR THE UTILITIES 

Basic Tables are included on the INTERCOMM release library 
and must be modified for each installation. An asterisk in­
dicates optional tables which may be generated individually 
at each installation according to application program require­
ments. 

TABLE or SYMREL & 

CSECT MODREL 
Name Description Created by Member Name 

BROADCST *OUTPUT Broadcast Table DC's PMIBROAD 

CHNGTB *CHANGE/DISPLAY Table DC's none 
for Fixed Format 
Identifiers 

FDR (s) *Format Description FDHDR, none 
Records FDETL 

macros 

KEYTABLE *CHANGE/DISPLAY Key DC's none 
Conversion Routine 
Table 

PADDTBLE' EDIT Pad Character i>ADD PADDTBLE 
Table macrJ) 

PMIALTRP *OUTPUT Alternate PMIALTRN none 
Format Table macro 

PMIDEVTB OUTPUT Device Table DEVICE PMIDEVTB 
macro 

PMIFILET CHANGE/DISPLAY File GENFTBLE PMIFILET 
Table 

PMIRCNTB CSECT PMIRCNTB 

REPORT, 
OUTPUT Format Table LINE, 

ITEM 
macros 

PMISTOP PMIRCEND 

PMIRPTAB *OUTPUT Format DC's none 
Terminal Table 

A-I 



TABLE or 
CSECT 
Name 

PMISTATB 

PTRNTBLE 

REPTAPE 

VERBTBL 

IPN:093 4/76 

Description 

OUTPUT station Table· 

*CHANGE/DISPLAY Field 
Editing Pattern 
Table 

*OUTPUT Batch Report 
Table 

EDIT Control Table 

A-2 

INTERCOMM TABLES 
FOR THE UTILITIES 

(Continued) 

SYMREL & 

MODREL 
Created by Member Name 

STATION PMISTATB 
macro 

PATRN none 
macro 

DC's none 

VERBGEN, PMIVERBS 
VERB, 
PARM, 
PMIELIN 
macros 

c 

J 

J 



IPN 135 9/78 
VERB VERB 

VERB -- Define Edit Control Table Entry 

The VERB macro is used in conjunction with the PARM, PMIELIN and 
PMISTOP macro instructions to generate an Edit Control Table for 
processing by Interconun's Edit Utility. When used, the VERB macro 
subordinates one or more PARM macros, and if used, one or more PMIELIN 
macros. Each VERB macro instruction defines a unique Edit Control 
Table entry. 

The form of the VERB macro instruction is as follows: 

[symbO~ VERB tr.nsaction-id,hex-id, ( coresize) , 
256 

(~-of-parm-instructions) 

[' FIX=C!~S) ] 
~KEY-{~s}J 
~LINEt!~S)J 
GRBN=vrbOOO-rbn] 

[ PREONLY={ ~~s) ] 

coresize 

FIX= 

specifies the length, in bytes, of storage required after 
editing, for the longest possible message associated with the 
transaction entry being defined. Note that the length of the 
message after editing is equal to the combined length of the 
edited fields plus the message header, and any applicable status 
bytes. Any "coresize" residue is freed. Code as a dec imal 
value, 256 to 4095. The default is 256. 

indicates the kind of format the Edit Utility is to produce. 
Coding YES indicates that the data is to be placed in a fixed 
format. Coding NO indicates that the data is to be placed in a 
variable itemcode/length/data format. The default is NO. 

B-1 



IPN 135 9/78 
VERB VERB 

hex-id 

KEY = 

LINE= 

provides a hexadecimal transaction identification code. Code as 
a hexadecimal value, 1 to FF. A program calling the Edit Utility 
can expec t to have th is code returned in the one byte MSGHVMI 
field of the message header, if the value coded for 
#-of-parm-instructions is non-zero. 

indicates whether the transaction format is keyword or 
positional. Coding YES indicates that it is either wholly in 
keyword transaction format, or in positional-within-keyword 
transaction format. Coding NO indicates that it is wholly in 
positional transaction format. The default is YES. 

indicates whether PMIELIN macros are used within the transaction 
entry being defined. Coding YES indicates that they are used. 
Coding NO indicates that they are not used. The default is NO. 

#-0 f-parm-instruc tions 
specifies the number of PARM instructions associated with the 
transaction entry being defined. Note that this is not 
necessarily the same as the number of PARM instructions actually 
coded. Refer to the PARM macro, REPT parameter. If the hex-id 
operand value is to be moved to MSGHVMI, a non-zero value must be 
specified for #-of-parm-instructions. 

PREONLY= 

RBN= 

indicates whether the message is to be processed only by the 
pre-Edit facility which converts IBM 3270 input (SBA sequences) 
into standard unedited positional format. When coded YES (if 
input is from IBM 3270, with preformated screen), the above 
statement applies. When coded NO the message is edited in the 
usual way. 

provides the relative block number of the VRBOOO file at which 
the corresponding transaction format entry can be located. If 
the entry being defined is to be resident, this parameter is 
meaningless. However, if the entry is to be located within the 
VRBOOO file, then the RBN value should reflect the last five 
digits of the member-name used to place the entry in the file. 
For example, if the member-name is VRB00006, then code RBN=6. 
Code as a decimal value, 1 to 8388607. 

transac tion-id 
provides the unique transaction character code, the verb name, 
for the transaction entry being defined. Code as a fixed length 
character string of four characters. 

B-2 

J 

J 



IPN:093 4/76 
PARM Macro 

PARM-- Define Data Unit 

The PARM macro instruction is used in conjunction with the 
VERB, PMIELIN, and PMISTOP macro instructions. These four 
instructions are employed together to furnish the Edit Control 
Tables required by Intercomm's Edit utility. When employed, 
the PARM macro instruction is subordinated to a VERB macro 
instruction, and in function provides that utility on a data 
unit basis with the information it requires to process it. 

The form of the PARM macro instruction is as follows: 

PARM 

char-id 

char-id,itemcode,editrout-#,max-length, 
edi tflags [REPT= {~epeti tion-#}] 

provides the character symbol to be associated with the 
data unit upon which editing is to be performed. If 
"KEY=NO" has been coded on the associated VERB instruction, 
"char-id" is used by Intercomm only for error reporting 
identification. Code as a fixed length 3-character 
string. If the IBM 3270 pre-formatted screen input is 
being used, the parameter name must be 4 hex digits. 
These identify the parameter by 3270 buffer address. 

itemcode 
provides the numerical identification to be associated 
with the data unit upon which editing is to be performed. 
If "FIX:o:YES" is coded on the associated VERB instruction, 
this identification is used only in processing internal to 
the Edit utility. Code as a decimal value, 0 to 254. 
Note that if the text represented by the PARM instruction 
is to be completely ignored (as might be desired for tem­
plate screens), "itemcode" must be coded as a O. 

editrout-# 
provides the number of the subroutine to be used to per­
form editing upon the data unit. Note that this number 
designates the editing subroutine whose three-digit csect­
name suffix is identical in value i.e. a code of 8 
designates subroutine EDIT008. Code as a decimal value, 
o to 255. 

B-3 



IPN:093 4/76 
PARM Macro 

(Continued) 

max-length 
specifies the maximum permissible length, in bytes, with­
in which the data unit, after editing, is permitted to be 
contained. Note that if "FIX=YES" is coded on the asso­
ciated VERB instruction, "max-length" is always allocated 
regardless of actual data length. Code as a decimal 
value, 0 to 255. 

editflags 

REPT= 

provides specification and procedural information. Code 
as a fixed length bit string of 8 bits whose bit signifi­
cation is as follows: 

Bit 0 

1-3 
4 

5 

6-7 

Code 1 if the data unit is a required item with­
in the transaction format under definition. 
Code 0 if the data unit is not a required item. 
Reserved. Code 000. 
Code 1 if the data unit is permitted to be 
present more than once within a single trans­
action. 
Code 0 if the data unit is not permitted to be 
present more than once. 
Code 1 if, after editing, the data unit is al­
ways to be contained within the length specified 
by the "max-length" parameter. Note that if 
"FIX=YES" is specified on the associated VERB 
macro instruction this bit will default to 1. 
Code 0 if the data unit is permitted to be 
assigned a variable length. 
If a given data unit exceeds the "max-length" 
parameter value these two bits denote the action 
to be taken. 
Code 11 if no truncation is permitted. 
Code 10 if right truncation is permitted. 
Code 01 if left truncation is permitted. 
Code 00 is not meaningful. 

specifies to the macro processor the number of times the 
PARM macro instruction is to be generated. Note that the 
"#-of-'parm'-instructions" parameter on the associated 
VERB macro instruction must include this value. Note also 
that if the VERB instruction specifies "KEY=YES" and 
"FIX=NO", the default must be taken. ~t editflags bit, 
is on, then at least one data unit is required. Code as a 
decimal value, 1 to 100. The default code is 1. 

B-4 

J 



IPN:093 4/76 

VERBGEN Macro 

VERBGEN -- Conditionally Assemble Edit Control Table PARM Macros 

The VERBGEN macro instruction informs the internal pro­
cessor of each PARM macro instruction that it is not to gen­
erate the code for that instruction if it is associated with 
a VERB macro instruction specifying an "RBN=" value. The 
VERBGEN macro instruction is used when creating the core­
resident edit control and is meaningful only when one Or 
more table entries are located within the VRBOOO file~ 

The form of the VERBGEN macro instruction is as follows: 

(blank) VERBGEN (blank) 

B-5 



IPN:093 4/76 

PMIELIN Macro 

PMIELIN -- Designate End of Line (Positional Transaction Format) 

The PMIELIN macro instruction is used in conjunction with 
the VERB, PARM, and PMISTOP macro instructions. These four 
instructions are used together to create edit control tables 
for INTERCOMM's Edit utility. The PMIELIN macro instruction 
is used to delineate a line only when a positional transaction 
format is under definition. The generated code - C'$$$$' -
signifies to the utility the legitimate end of expected data 
for a given input line and functions as a tab setting to which 
a skip is made when an end-of-line character (NL or CR/LF) is 
detected as having signified a permissible premature termina­
tion of that line. 

The form of the PMIELIN macro instruction is as follows: 

(blank) PMIELIN (blank) 

B-6 

J 

J 



IPN:093 4/76 
PAD.D Macro 

PADD -- Define Padding Character 

The PADD macro instruction supplies the EDIT Control 
Routine with the pad character to be used with each EDIT 
subroutine. 

The form of the PADD macro instruction is as follows: 

·PADD edi trout-#, p.a-d':"char . 

editrout-# 
provides the number of the subroutine to be used to perform 
editing upon the data unit. Note that this number designates 
the editing subroutine.whose three-digit csectname suffix 
is identical in value i.e. a code of S designates subroutine 
EDITOOS. Code as a decimal value, 0 to 255. 

pad-char 
specifies the character that is to be generated 
character to be used with each EDIT subroutine. 
permissable codes are BLANK, BZER, ZERO, Char. 
be selected. 

as a pad 
The 

Only one may 

BLANK 

BZER 

ZERO 

char 

, 
specifies that a blank (X 40 is to be generated 
as a pad character. 
specifies that a binary zero (X'OO') is to be 
generated as a pad character. 
specifies that a character zero (C'O') is to be 
generated as a pad character. 
any user specified hexadecimal value. Code as 
a 2 digit hexadecimal value i.e. 3C. 

B-7 



J 

.J 



IPN 135 9/78 
REPORT REPORT 

REPORT -- Identify Reporting Format 

The REPORT macro instruction is used in conjunction with the LINE 
and ITEM macro instructions to define a reporting format for the Output 
Utility. The REPORT macro subordinates one or more LINE macros. Each 
REPORT instruction identifies and defines a unique reporting format 
while the subordinated LINE instructions detail, line by line, the 
contents of that format. 

The form of the REPORT macro instruction is as follows: 

~ymbolJ REPORT NUM=report-number 

OEV= 

[ LINESS {1-o f-line-instruc tion~ ] 

~ MASK= O~~~Sk}J 
IBM 3270 z GTE IS 7800, and OS40 
specifications: 

[ERASE' { ~~} ] 

lDEV=f270~ ] IS7800 
OS40 

OEV=3270 signifies an IBM 3270 Model 2 or a GTE IS7800 operating 
in 3270 mode. If DEV=3270 is specified, the FROM and TO values 
on subsequent ITEM macros include only those control and/or data 
characters which occupy a hardware buffer position. That is, the 
FROM and TO may reference the actual positions in a line of 3270 
display. Additionally, an SBA sequence will be used for 
positioning to the start of a new field (attribute value). The 
LINE macros associated with this REPORT may not specify REPET=1, 
4, or 8. ---

If DEV=3270 is not specified for a 3270, then all characters 
generated for a given field must be reflected in the FROM and TO 
specification, including characters such as SF or Ie which do not 
occupy a 3270 buffer position. Positioning to a new field is 
done by padding with blanks. 

C-l 



IPN 135 9/78 
REPORT REPORT 

DEV=IS7800 signifies that the REPORT is for a GTE IS7800 and that 
it may contain requests for blink, underlined, or inverted 
characters, and double width characters. 

DEV=DS40 signifies a Teletype (Dataspeed) Model 40/1 or 2 
terminal; this specification allows coding of the ESC parameter 
on the ITEM macro. 

ERASE= 
specifies whether or not an ERASE-unprotected-to-address order 
will be generated for messages processed by the Output Utility 
with header field MSGHVMI=X'56'. YES causes the message to 
contain a WRITE command, WCC of restore the key-board and reset 
modified data tags, and the ERASE order. The default is NO. 

LINES= 

MASK= 

specifies the number 
format being de fined. 
de fau 1 t code is 1. 

of LINE macro instructions used in the 
Code as a dec ima 1 va lue, 1 to 255. The 

spec ifies by its bit configuration the terminal recl.pl.ent class 
to which the report belongs. Since all classification is founded 
upon the relation noted below, each STATION macro MASK parameter 
must be co-ordinatively set in conjunction with this REPORT macro 
MASK parameter. The code is to be thought of as a 32 bit string 
written as a one to four hexadecimal character string with all 
codes not four characters being right adjusted then left padded 
with zeros. The following codes should be noted: 

0000 - signifies that the associated report belongs to no 
unique terminal recipient class and is free to be 
received by any terminal within the system. This is 
the default code. 

8000 - represents a class of error reports for which 
Intercomm's OUTPUT Utility will, in addition to 
forwarding the report, construct and attach a 
one-line prefix consisting (if printable) of the low 
order send ing sub system code fo 11 owe d by the report 
number. 

The classification relation is as follows: If the STATION macro 
MASK code is ANDed into the REPORT macro MASK code and the 
latter's code remains unchanged, then the terminal assigned the 
former is considered eligible to receive the report assigned the 
latter. 

C-2 

J 

J 



IPN 135 9/78 
REPORT REPORT 

NUM= 

symbol 

provides the logical number assigned to identify the report being 
defined. Code as a decimal value, 51 to 32767. Codes 1 to 50 
are reserved. 

NOTE: If the reporting format is to be placed on disk V1.a a 
PMILOAD execution then this number must be embedded 
within the five-digit suffix of the format's member 
name. For example report number 62 provided with a 
member name of RPT00062 will be accessed via RBN 62. 

If a label is provided it should not exceed seven characters in 
length. If its length exceeds seven characters, only the first 
seven will be recognized. 

C-3 



IPN:093 4/76 

LINE Macro 

LINE -- Define Line 

The LINE macro instruction is used in conjunction with the 
REPORT and ITEM macro instructions. These three macro instruc­
tions are employed together to define prescribed reporting for­
mats for INTERCOMM's Output utility. When employed, the LINE 
macro instruction subordinates one or more ITEM macro instruc­
tions, and in function claims its domain over all those ITEM 
instructions associated with it. In principle, the LINE in­
struction defines a unique line within the reporting format 
under definition while the subordinated ITEM instructions 
detail segment by s~gment the constitution of that line. 

The form of the LINE macro instruction is as follows: 

~ymbo~ LINE NUM={iine-number} 

NUM= 

:ITEMS= {r-of-'item'-instructionS} 

'RErET={~ine-control-code} 

assignes a logical number to the line. This number must 
be one unit higher in value than that assigned to the 
preceding LINE macro instruction within the reporting 
format under definition. If there are no preceding LINE 
instructions this value must be 1. "line-number" is to 
be coded as a decimal value, 1 to 255. The default code 
is 1. 

ITEMS= 
specifies the number of ITEM macro instructions that are 
to be associated with the LINE macro instruction. The 
default code is 1. Code as a decimal value, 0 to 24. A 
code of 0 will provide one blank line. 

NOTE: The maximum number of coded ITEMs per line is 24 
for 3270 or IS7800 users who have coded DEV=3270 or IS7800 
in the REPORT macro because as many as three ITEMs can be 
generated for each coded ITEM. For all non 3270 users, 
the maximum ITEMs per line is 72. 

C-4 

J 

J 



IPN:093 4/76 
LINE Macro 

REPET= 
provices the line control code for the line under 
definition. The permissable character codes are 
0,1,4,5,6,8. Only one may be selected. 

o - designates a non-repetitive line. 
1 - designates a repetitive line. 
2 - is no longer in use. 
3 - is no longer in use. 
4 - designates a repetitive line and requests that 

the line's constant data is always to be included 
in the report even if nO variable data exists for 
the line. 

5 - designates a non-repetitive line and is to be used 
only with respect to segmented messages. It 
specifies that the line is to be included in the 
report only when a message whose MSGHVMI field is 
X'5l' is received. This does not apply to messages 
whose MSGHVMI field is X'5C'. 

6 - designates a non-repetitive line and requests that 
the line's constant data is always to be included 
in the report even if no variable data exists for 
the line. 

8 - designates a repetitive line and requests that if a 
buffer or screen overflow occurs, the preceeding non~ 
repetitive line(s) already contained within the buffer 
or screen are to be repeated within the subsequent 
buffer or screen. The default code is O. 

Repetitive lines may not be used in a table entry where 
the REPORT macro specifies DEV=3270 ~r IS7800. 

C-5 



IPN 135 9/78 
ITEM ITEM 

ITEM -- Define Line Segment 

The ITEM macro instruction is used in conjunction with the REPORT 
and LINE macro instructions to define reporting formats for Intercomm' s 
Output Utility. The ITEM macro is subordinate to a LINE macro. Its 
primary function is to define a segment of the line and assign a unit 
of text for it. The ITEM instruction directly or indirectly designates 
a set of characters that ultimately become part of the output character 
stream; the ITEM macro instruction may therefore have a secondary 
function of inserting non-texted (for example, device control) 
characters into that stream. Refer particularly to the CODE parameter. 

The forms of the ITEM macro instruction is as follows: 

~ymbo~ ITEM FROM=column,TO=column,CODE=itemcode 

ATT= 

~DATA= ('constant-data' )] 
(con-el,con-el, ••• ) 

IBM 3270 and GTE IS7800 sEecifications: 

[COMM= Gd~~} ] [WCC= e·nn. ~] 
(subparameters) 

[A1T=r nn
• ~] I:~bParameters ) 

GTE IS7800 sEecification: 

GORDER=SC] 

TeletYEe Model 40/1 or 2 sEecification: 

[ESC= {eSC-COde } ] 
(esccode1,esccode2, ••• ,) 

(for IBM 3270 and GTE IS7800 only) 
Use of this parameter causes an IBM 3270 field prefix to be 
generated consisting of a SF order and an attribute byte. If 
DEV=3270 or 157800 has been spec ified on the REPORT macro, the 
FROM and TO parameters on the ITEM macro re fer to the screen 
posLtLons occupied by the attribute byte and the data; if 
DEV=3270 or 157800 has not been specified, then the FROM and TO 
parameters must refer to the relative 3270 buffer addresses 
(re lat i ve to the beg inn ing 0 f the line), inc lud ing the SF, the 
attribute byte and the data. 

C-6 

J 

J 



L 

IPN 135 9/78 
ITEM ITEM 

CODE= 

Designates that an SF order and an attribute byte are to be gen­
erated preceding the DATA item defined. 

X'nn' - specifies hexadecimal attribute byte 

YES indicates the attribute byte is generated for all default 
attributes: unprotected, no autoskip, alphanumeric, nondetec­
tible, nonmodified. 

Subparameters is a keyword list to indicate attributes. 

PRO 
SKIP 
NUM 
PEN 
HIGH 
NON 
MOD 

protected 
autoskip 
numeric 
normal intensity, detectable 
high intensity, detectable 
non-display ,non-print ,non-detectable 
field data tagged as modified 

Additionally, if DEV=IS7800 is specified on the REPORT macro, 
then the following subparameters are allowed: 

BLNK 
INVT 
DW 
ULNE 

blink 
inverted characters 
double width characters 
underline 

The subparameters are not positional. If any subparameter is 
omitted, the default is taken in the corresponding order of the 
YES attributes. All IS7800 subparameters must be specified in 
order to be used. For valid combination of IS7800 ATTs and IBM 
3270 ATTs see the IS7800 manual. If the ATT operand is omitted, 
no SF and ATT bytes are generated. 

spec ifies the numerical identification associated with the set of 
characters that is to be placed in the output stream. This set 
of characters may originate from within the text of the message 
initiating the report, or the reporting format table itself. If 
the set of characters is to be extracted from the message text, 
code the associated user-assigned itemcode, 1 to 249. If, how­
ever, the set of characters is to be extracted from the reporting 
format itself, the code (250 to 255) is to specify the type of 
constant data that is being extracted. 

250-253 - Reserved codes. Code 252 is used by the Page facil­
ity for the page number. 

254 - spec ifies that the constant( s) supplied by the DATA 
parameter are one or more device control characters. 

255 - specifies that the constant(s) supplied by the DATA 
parameter are one or more text characters. 

C-7 



IPN 135 9/78 
ITEM ITEM 

When DEV=3270, codes 250, 251, 253, 254 and 255 require coding of 
either DATA or ATT. For non-3270 devices, codes 254 and 255 require 
the DATA parameter. 

COMM= 

DATA= 

ESC= 

NOTE: The distinction to be made between codes 254 and 255 is 
that the constant data denoted by a 254 code is not 
considered to occupy any space within the device's 
buffer. However, because the FROM and TO parameters must 
always be coded to position characters relative to 
others, a line containing a 254 constant is internally 
expanded by the length of that constant without altering 
the relative positions of the printed text. The FROM and 
TO parameters may there fore spec ify 'column' positions 
not actually available on the device. For example, if, 
on setting up an 80-character line, a 6-letter 
non-constant text unit is to be placed in positions 72 
through 77 and three control characters are then to be 
sent before an asterisk is inserted at position 80, the 
pertinent successive specifications would be as follows: 

(CODE=User-assigned itemcode) - FROM=72,TO=77;then 

(CODE=254) - FROM=78,TO=80;then 

(CODE=255) - FROM=83,TO=83. 

designates a command to prefix the message text created for an 
IBM 3270 terminal. X'nn' specifies the actual command; WRITE 
specifies the Write Command; ERASE specifies the Write Erase 
Command. ERASE is the default. This parameter is used in 
conjunction with the WCC parameter. 

specifies constants to be generated in the output stream. 
Constant-data is coded as a character string. Con-el specifies 
any expression that can be used as an Assembler DC instruction 
operand, such as, DATA=(4XLl'15',C'LINE"S OF DATA'). This 
parameter is meaningful only if a code of 254 or 255 has been 
assigned to the CODE parameter. 

specifies the control character to be prefixed with an escape 
(ESC) character (X'27'), or, a special control character. 

Code as a single code or list of codes. Valid codes are any 
single code valid after an escape character, e.g., H,X,R, etc.; 
or one of the following special codes: 

C-8 

J 

J 



ITEM 

FROM 

Code 
FF 
DC2 
DC4 
BEL 
HT 

SPR 174 6/80 

Meaning 
form-feed 
start print 
stop print 
bell 
horizontal tab 

ITEM 

There is no default code. This parameter has meaning only when 
DEV=DS40 is coded on the corresponding REPORT macro. The 
parameter may be coded alone when CODE=254, or in addition to 
initial value data (CODE=255), or with a data field code number. 
See the Switched Teletype (Dataspeed) Model 40/1-2 support in the 
BTAM Terminal Support Guide, for format design considerations. 

specifies, by character column relative to 1, the location within 
the line of the left-most boundary of the line segment being 
defined, i.e., the position at and from which character insertion 
is to begin. The code, in value, must be equal to or less than 
that assigned to the TO parameter. Code as a decimal value, 1 to 
255. See note under the CODE parameter. 

ORDER=SC 

TO 

WCC 

For GTE IS7800 only. Designates an SC order if an attribute byte 
ATT=X'nn' is specified. Requires DEV=IS7800 to be coded on the 
REPORT macro. (Does not apply if DEV=3270 is coded on the REPORT 
macro. ) 

specifies, by character column relative to 1, the location within 
the line of the right-most boundary of the line segment under 
definition, i.e., the position at which a character can be 
inserted but beyond which no overflow characters are to be 
permitted. 

NOTE: If there is insufficient room to include all data within 
the segment of the line. assigned to it, the Output 
utility will generate a sufficient number of lines of the 
same format to contain it. The code, in value, must be 
equal to or greater than that assigned to the FROM 
parameter. Code as a decimal value, 1 to 255. See note 
under CODE parameter. 

designates a WCC to prefix the message text created for an IBM 
3270 terminal. X'nn' specifies the actual WCC; subparameters are 
(linesize, PRINT, ALARM, RESTORE, RESET) and specify WCC 
options. The subparameters are not positional. If they are 
omitted, a default value is taken. The default value of the 
subparameter is its opposite (that is, default for PRINT is NO 
PRINT) • 

C-9 

t 



SPR 174 6/80 
PMIALTRN PMIALTRN 

PMIALTRN--Specify Alternate Reporting Formats 

The PMIALTRN macro is used to specify to Intercomm's Output 
Utility the alternative reporting formats that are to be employed when 
an alternate destination terminal is a device different in kind from 
the primary destination terminal. 

The form of the PMIALTRN macro is as follows: 

fsymbol} 

format:"'!F 

PMIALTRN format-# devcode,(alt-format-#,alt­
devocde 1,alt-format-#,alt-devcode}, ••• ) 

specifies the reporting format identification for which one or 
more alternative reporting formats are being supplied by the 
"alt-format-#" parameter. Code as a decimal value, 1 to 32767. 
Refer to the REPORT macro, NUM parameter. 

devocde 
specifies the type code of the device directly associated 
the reporting format designated by the format-# parameter. 
as a hexadecimal value, 0 to F. Refer to the DEVICE macro, 
parameter. 

al t- format-IF 

with 
Code 
TYPE 

specifies the identification of an altervative reporting format 
that is to be used in place of format-IF when the destination 
termi nal is a device of the type designated by the immediately 
following "alt-devcode" parameter. Code as a decimal value, 1 to 
32767. 

a1 t-devcode 
specifies the type code of the device to be associated with the 
reporting format designated by the immediately preceding 
"a1 t=format-!F" parameter. Code as a hexadecimal value, 0 to F. 

NOTE: Al ternate report formats cannot be used from terminals 
whose DEVICE macro specify MMV designation (IBM 3270, 
Dataspeed 40, etc.) for the TYPE parameter. 

C-IO 

J 

J 



IPN:093 4/76 

FDHDR Macro 

FDHDR -- Define Change-Display Information Table 

The FDHDR macro instruction is used in conjunction with the 
FDETL macro instruction. These two macro instructions are 
employed together to furnish the tables required by INTER­
COMM's Change and Display utilities. When employed, the 
FDHDR macro instruction subordinates the FDETL macro instruc­
tion, and provides information unique to the data structure 
partially or wholly detailed by its associated set of FDETL 
macros. 

The form of the FDHDR macro instruction is as follows: 

[ symbol] FDHDR NAME= {chngtbl-identifier} , 

NAME= 

ddname 
FIELDS=#-of-'fdetl'-instructions, 

{~umber-i1 J RPTNO=format-number [,KEYRT= 

[,REPSZ= {~Umber-Of-bytes} ] 

provides the unique name that will identify the table 
under generation. This name, coded as a variable length 
character string of 1 to 8 characters, will be either an 
identifier located within the CHNGTB table or a ddname of 
a file. 

FIELDS= 
provides the number of associated FDETL macro instruc­
tions used to detail some or all of the fields within the 
data structure. Code as a decimal value, 1 to 4095. 

RPTNO= 
supplies the format number that will, by default, be used 
to format selectively or otherwise, data found within the 
fields specified within the table under definition. 
"format-number" is to be coded as a decimal value, 51 to 
32767. (Refer to the REPORT macro "NUM=" parameter.) 

D-l 



r 
! 

IPN:093 4/76 

KEYRT= 

FDHDR Macro 

(Continued) 

provides the numerical identification assigned to that 
routine whose function it is to ultimately provide a 
valid key for file data retrieval. If the "NAME=chngtbl­
identifier" prescription is used, this parameter is not 
meaningful. If the table under generation is being ap­
plied to the record format of either a BDAM or ISAM file, 
it is recommended that for BDAM a 2 be coded, and for ISAM 
a 0 be coded. "Number-id" is to be coded as a decimal 
value, 0 to 255. The default code is O. Note that user 
coded routines are numericallY identified via the KEYTABLE 
table. 

REPSZ= 
provides the length, in bytes, of the repetitive substruc­
ture if one is present. Note that the total length of all 
fields described by the associated FDETL macros specifying 
"FLD=REPET" will never exceed the vaLue of this code. 
Code as a decimal value, 0 to 4095. The default code of 0 
signifies that no substructure is present. 

D-2 



IPN:093 4/76 

'FDETL Macro 

FDETL -- Define Data structure Field 

The FDETL macro instruction is used in conjunction with the 
FDHDR macro instruction. These two instructions are employed 
together to furnish the tables required by INTERCOMM's Change 
and Display utilities. When employed, the FDETL macro in~ 

struction is subordinated to a FDHDR macro instruction and 
functions to provide on a field basis, the following five 
classes of information 

specificative information. 
logically associative information. 
data descriptive information. 
procedural information if the data contained within 
the field is to be CHANGE'd. 
procedural information if the data contained within 
the field is to be DISPLAY'ed. 

The form of the FDETL macro instruction is as follows: 

[ symbol] FDETL specificative parameters: 

[OFSET=byte-offset,]LEN.=length, 

[FLD= {HDR } j 
REPET 

logically associative parameters: 

L~~i;:t~~~JI[:~~~~;~t{!~~jJe 
data descriptive parameter: 

[FRMAT= V~~K}J CHAR 

'Change' utility parameters: 

[CHNG= { ;~sB[ VRY= { ~~s D 
cont'inued 

D-3 



IPN:093 

continued 

4/76 
FDETL Macro 
(Con tinued) 

'Change' and 'Display 
parameters: 

[' PADD= {RIGHT} 
LEFT 

,PDeRR= { BLANK} J 
ZERO 

'Display' utility parameters: 

[CHAR= {~~IT}J 
{RIGHT~ [EDIT= l ~:;~ern-id} [TRUNe= LEFT 

DOLLAR 
NUMBER 

OFSET= 

LEN= 

FLD= 

specifies the displacement, in bytes, from data structure 
orgin to the beginning of the field. If, on the assoc­
iated FDHDR macro in~~ruction, the "NAME=ddname" para­
meter description is used, data structure origin will 
be record origin. If "NAME=chngtb=identifier" is used, 
data structure origin will be the first byte immediately 
following the l2-byte control block. If the field is 
embedded within a repetitive substructure "byte-offset" 
is to be measured to the first occurrence of the field. 
Code as a decimal value, a to 32767. This parameter may 
be omitted if the field is contiguous to, and directly 
follows, the field defined by the prior FDETL macro. 

specifies the length, in bytes, of the field under speci­
fication. If "FRMAT=BIN" is specified, code as a decimal 
value within the range 1 to 4. If "FRMAT=PACK", 1 to 16; 
if "FRMAT=CHAR", 1 to 255. 

specifies whether the field is located within the fixed 
portion of the data structure or, if one is used, within 
the repetitive portion of the data structure. Code HDR 
for the fixed portion, REPET for the repetitive portion. 
The default code is HDR. 

NAME= 
provides the character identification for the field. 
Code as a 1 to 5 character string. (Note that this is 
the name that is to be supplied on the FDN keyword of 
INTERCOMM's 'CHNG' transaction.) 

CODE= 
provides the numerical identification for the field. Note 
that uhis itemcode becomes the agent through which data 
contained within the field is ultimately assigned a 

D-4 

J 



KEY= 

IPN:093 4/76 

FDETL Macro 
(Continued) 

location within any report. Code as a decimal value, 
1 to 249. (Refer to the ITEM macro "CODE=" paramet er. ) 

denotes whether or not the field is, in whole or in part, 
the key of a record. If "NAME=chngtbl-identifier" has 
been specified on the associated FDHDR macro instruction, 
this parameter is not meaningful. If "NAME=ddname" has 
instead been specified and the associated file uses an 
embedded key, and if, furthermore, that key incorporates 
the field under consideration, YES must be coded. The 
default code is NO. Note that "FLD=HDR" must also be 
coded. (Note further that the data supplied via the KEY 
keyword of both INTERCOMM's CHNG and DSPL request messages 
will accordingly be wholly or partially compared against 
this field.) 

SUBKY= 
denotes whether or not the fiel.d is, in whole or in part, 
the INTERCOMM subkey of a record. If "NAME-chngtbl-identi­
fier" has been specified on the associated FDHDR macro 
instruction, this parameter is not meaningful. If "NAME= 
ddname" has instead been specified and the associated file's 
record format contains a repetitive substructure, and if, 
furthermore, the INTERCOMM subkey incorporates the field 
under consideration, YES must be coded. The default code 
is NO. Note that "FLD=REPET" must also be coded. (Note 
further that the data supplied via the SKY keyword of 
INTERCOMM's CHNG request message will accordingly be wholly 
or partially compared against this field.) 

FRMAT= 

CHNG= 

VRY= 

describes the kind of data that is to be expected within 
the field. Code BIN for binary data, PACK for packed 
decimal data, or CHAR for character data. The default 
code is CHAR. 

indicates whether or not it is permissable for the field 
to be altered by a CHNG request. Used only by INTERCOMM's 
Change utility, this parameter is meaningful only if 
"NAME=ddname" has been specified on the associated FDHDR 
macro. Code NO if such changing is not permitted. Code 
YES if it is. The default code is YES. 

indicates whether or not the field must be verified before 
it is permitted to be changed. Used only by INTERCOMM's 
Change utility, this parameter, is meaningful only if 
"NAME=ddname" has been specified on the associated FDHDR 
macro. Code NO for verification not required. Code YES 
for verification required. The default code is YES. 

D-5 



PADD= 

IPN:093 4/76 

FDETL Macro 
(Continued) 

provides a request for either left or right padding. The 
absence of this parameter indicates the absence of any re­
quest. In this particular instance the following will oc­
cur: If, after the calculation of the maximum number of 
characters required for the displaying of the whole field 
(a function of field length, data type, and edit charac­
ters), it is found that the data (stripped of leading 
blanks or zeros though including editing characters) 
possesses a lesser length, this lesser length will be the 
data unit considered expected by the outputting format 
through which this field is to be DISPLAy'ed. The 
presence of this parameter with either of the key-codes 
LEFT or RIGHT, indicates the presence of a request. In 
this instance, data of lesser length is expanded to the 
maximu~ length. A code of RIGHT~is regarded as a request 
to first left-justify the data, then pad on the right. A 
code of LEFT is regarded as a request to first right­
justify the data, then pad on the left. Note that the 
"PDCHR=" parameter must be coded to provide the padding 
character. 

PDCHR= 

CHAR= 

EDIT= 

specifies which one of two characters (blank or zero) is 
to be used when the padding function is requested. This 
parameter must be coded if the "PADD=" parameter is used. 
Code BLANK for a blank pad character, ZERO for a zero 
character. 

indicates whether or not editing is to be performed upon 
a character field that is expected to contain solely 
numerical characters. ihis parameter is meaningless un­
less "FRMAT=CHAR"· has been coded. If such editing is 
requested, code EDIT and assign the appropriate "pattern 
number" to the "EDIT=" para~eter; if such editing is not 
requested, code NO. The default code is NO. 

provides the editing pattern identification denoting the 
pattern to be used to edit the data before DISPLAY'ing it. 
The code assigned to this parameter must be identical to 
that assigned to the "NUMBER=" parameter of the PATRN 
macro instruction that supplies the editing pattern. Code 
"pattern-id", DATE, DOLLAR, NUMBER accordingly. The 
default code is NUMBER. 

D-6 

J 

J 



IPN:093 

TRUNe= 

4/76 

FDETL Macro 
(Continued) 

provides a request for either left or right truncation. 
The absence of this parameter indicates the absence of 
any request. The presence of this parameter indicates the 
~resence of a request; however, such will be honored only 
wnen the "MAXSIZE=" parameter on the associated PAT~ 
macro is not zero. Refer to "EDIT=". Data longer than 
the value assigned to "MAXSIZE=" may be truncated either 
on the left or right and truncation will always be to 
"MAXSIZE=". Code RIGHT for right truncation, LEFT for 
left truncation. Note that this parameter applies only 
to data that is to be edited. 

D-7 



IPN:093 4/76 

GENFTBLE Macro 

GENFTBLE -- Define File 

The GENFTBLE macro instruction is used to create the 
PMIFILET table entries that furnish certain INTERCOMM 
subsystems with the file information they require. 

The form of the GENFTBLE macro instruction is as follows: 

[ symbol] GENFTBLE FNAME=ddname, 
TYPE={ BDAM} ,BLKSIZE=blksize 

ISAM 
SAM 

[DESNUM=' des 000' -file-rbn] 

FNAME= 

TYPE= 

provides the ddname of the file under specifications. 
as a character string of 1 to 8 characters in length. 
code not eight characters will be padded on the right 
eight characters. 

Code 
Any 

to 

specifies the type of file under specification. 
of the following symbols: 

Code one 

BDAM - if the file is a BDAM file. 
ISAM - if the file is an ISAM file. 
SAM - if the file is either a BSAM or QSAM file. 

There is no default code. 

BLKSIZE= 
s~ecifies, in bytes, the maximum length of the physical 
blocks of the file under specification. Code as a 
decimal ·value, 1 to 215 _1. 

DESNUM= 
specifies the RBN value of the data structure description 
entry within the DESOOO file that is to be used in the 
CHANGE'in:g and DISPLAY'ing of the file under definition. 
This value is to be one less than the value of the last 
five digits of the member-name used to place the entry 
in the file, e.g., if the member-name is DES00013, code 
DESNUM=12. Code as a decimal value, 0 to 223_ 1 . 

0-8 

J 



IPN:093 4/76 

PATRN Macro 

~ PATRN -- Specify Edit Instruction Pattern 

L 

The PATRN macro instruction is used in conjunction with the 
FDETL macro instruction "EDIT=" parameter. It is employ~d only 
when this parameter is utilized and serves to provide the edit­
ing pattern for the EDIT instruction performed upon all fields 
so associated with it. 

The form of the PATRN macro instruction is as follows: 

symbol PATRN NUMBER: fuser-idJ' 
DATE 

1 DOLLAR 
NUMERIC 

PATTRN= {<user-pattern l} 
DATE 
DOLLAR 
NUMERIC 

[FLOAT= {Character}] 
blank 

CMAXSIZE= {~ield-length}J 

symbol 
code any symbol valid in the Assembler language. 
symbol must be coded. 

NUMBER= 

This 

specifies the identification of the pattern under defini­
tion. If one of the three keywords, DATE, DOLLAR, NUMERIC 
has been specified on the "PATTRN=" parameter, the identi­
cal keyword must be assigned to this parameter. If none 
of these k~ywords have been employed, specify a decimal 
value, 1 to 3, 5 to 7, 9 to 15. Codes 0, 4, and 8 are 
reserved. 

PATTRN= 
specifies the editing pattern under" definition. If a 
standard date, dollar, or numeric pattern i~ desired, code 
DATE, DOLLAR, or NUMERIC accordingly. If a user-written 
pattern is under definition, it must contain a total of 
thirty-one digit-select and significance starter char­
acters and this pattern may be any combination of digit 
select (X'20'), significance starter (X'2l'), field 
separator (X'22'), and message characters. 

D-9 



IPN:093 4/76 

PATRN Macro 
(Continued) 

The standard DATE, DOLLAR, and NUMERIC patterns are as 
follows: 

DATE 

DOLLAR 

NUMERIC 

- X'40',24X'20',X'2l2020',2X'6l2020' 
resulting in the form: MM/DD/YY 

- X'40',X'20206B',8X'2020206B' ,X'20202l4B2020' 
resulting possibly in: 
99,999,999,999,999,999,999,999,999,999.99 

- X'4020' ,9X'6B202020',X'6B20202l' 
resulting possibly in: 
9,999,999,999,999,999,999,999,999,999,999 

Note: A user-written pattern must be enclosed within 
parenthesis. 

FLOAT= 
specifies the character to be inserted in front of the 
data after editing. Code as a single character not en­
closed within quotes. The default code is a blank 
character. 

MAXSIZE= 
specifies, in bytes, the maximum permitted post-edit 
length of a field edited by this pattern when that field's 
associated FDETL macro instruction "TRUNe=" parameter 
specifies either a code of LEFT or RIGHT, i.e., the length 
down to which a field is to be reduced after the editing 
operation has been performed. Code as a decimal value, 
1 to 31. The default code is O. A request for trunca­
tion is meaningless when 0 is specified. 

D-10 


