
Program Product

DAI

Restricted Materials of IBM Corporation
L Y26-3922-0
File No. S370-31

MVS/370
Loader Logic

Data Facility Product 5665-295

Release 1.0

--..- ------ - ------- - ---- - - ------_ ---,-

First Edition (APril 1983)

This edition applies to Release 1.0 of MVS/370 Data Facility
Product. Program Product 5665-295. and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems. consult the latest IBM System/370 and 4300 Processors
Bibliography. GC20-000l. for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be m3de to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This document contains restricted materials of International
Business Machines Corporation. ~ Copyright International
Business Machines Corporation 1972, 1983. All rights reserved.

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

HOW TO USE THIS BOOK

This publication provides information describing the internal
organization and logic of the loader. Other publications which
should be read for an understanding of the loader are:

• MVS/370 Linkage Editor and Loader, GC26-4061

• OS/VS - DOS/VSE - VM/370 Assembler Language, GC33-4010

• Assembler H Version 2 Application Programming: Language
Reference, GC26-4037

You should also refer to the corequisite publication:

• OS/VS2 System Programming Library: Debugging HandbOOK,
Volumes 1 through 3, GC2B-I047 through GC2B-I049

This publication has six sections, an appendix, and a list of
abbreviations and acronyms.

"Introduction" describes the loader as a whole, including its
relationship to the operating system. The major divisions of
the program and the relationship between them are also described
in this section.

"Method of Operation" provides: (a) an overview of, and an
introduction to, the logic of the loader, and (b) detailed
descriptions of specific operations. Included are text and
operation diagrams. The latter emphasize the flow of data
within the loader. The text and diagrams are correlated through
references of two levels. That is, the operation diagram for a
function has an alphameric identification; within the diagram,
specific points of reference have alphabetic labels. The text
that describes the same function refers to the operation diagram
as a whole and to the specific labeled references where
appropriate. For example, the discussion of initialization
refers to operation Diagram Bl. Within" the discussion,
reference (B) refers to point (8) in Diagram 81. Also included
in "Method of Operation" on page 9 are examples of the internal
tables at strategic points in loader processing. Both the
diagrams and the table illustrations are designed as aids to
quick recall.

"Organization of the Loader" describes the organization of the
loader and the control flow within it.

"Microfiche Directory" directs the reader to named areas of code
in the program listing, which is contained on microfiche cards.

"Data Areas" illustrates the layout of tables and control blocks
used by the loader. These layouts may not be essential for an
understanding of the logic of the program, but are essential for
analysis of storage dumps.

"Diagnostic Aids" includes the general register contents at
entry to program components, definitions of the internal error
codes, and a list of serviceability aids available with the
loader.

How to Use this Book iii

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3922-0

"Error Messages, etc." includes input conventions, record
formats, an Error Message/Issuer cross-reference table, and a
description of the compiler/loader interface for passed data
sets.

"List of Abbreviations and Acronyms" lists the abbreviations and
acronyms used in the manual.

If you require more detailed information, see the comments and
coding in the loader program listing.

iv MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

CONTENTS

Introduction •••••••••••
Purpose • .
Functions•
Virtual Storage Requirements
Environment•.
Physical Characteristics
Operational Considerations

Input Module Structure•
External Symbol Dictionary (ESD)
Relocation Dictionary (RLD)

Interrelationship of Control Dictionaries
Loader Options

General Theory of Operation

Method of operation
Steps of the loader Operation

In i t i ali za t ion .•.......
Input Control and Buffer Allocation
Pri mary Input Processi ng .•....
External Symbol Dictionary Processing
Text Record Processing•.
Relocation Dictionary Processing
Address Constant Relocation Processing
Secondary Input Processing
Final Processing
Identifying Loaded Program
End of Loading•

Initialization (HEWLIOCA) ..
Analyzing Control Information
Initializing Virtual Storage ••••
Readying Data Sets ..•..••

Input Control and Buffer Allocation
Buffer Management (HEWBUFFR)

Buffer Deallocation
Buffer Allocation•..••....

Reading Object Module Input from an External Device
Reading Internal Object Module Input •..•
Reading Load Module Input ...•...•..

Primary Input Processing
External Symbol Dictionary (ESD) Processing (HEWLESD)

Preliminary ESD Processing
CESD Searching
No-Match Processing
Match Processing .

Text Record Processing ...•...•
Processing Object Module Text (HEWLTXT)
Processing Preloaded Text (HEWlMOD)
Processing Load Module Text (LMTXT)

Relocation Dictionary (RLD) Processing (HEWLRLD)
Relocating Address Constants (HEWLERTN)
End Processing•..•..

END Card Processing
End-of-Module Processing .•...

Secondary Input Processing (HEWACALL)
Resolving ERs from the Link Pack Area
Resolving ERs from the SYSLIB Data Set

Final Processing for the Loaded Program ..
Assigning Addresses for Common Areas (COMMON) ..
Assigning Addresses for External DSECT Displacements

(PSEUDOR)•••..•
Issui ng Unresolved ER Messages •.....
Checking the Loaded Program's Entry Point

Identifying the Loaded Program
End of Loading•.

Loader Processing Termination
Loader Control Termination

Operation Diagrams • .•
Diagram AI. Overall Loader Operation

Contents

1
1
1
2
3
3
3
4
6
6
6
7
8

9
9
9

10
10
10
10
10
10
11
11
11
11
11
11
12
12
13
14
14
14
15
16
16
17
19
21
22
23
29
32
33
33
34
36
37
39
39
39
40
40
40
41
41

42
43
43
44
44
44
45
46
47

v

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

Diagram A2.
Diagram 81.
Diagram C1.
Diagram 01.
Diagram 02.
Diagram 03.
Diagram 04.

Loader Invocation .•.......•..•
Loader/Scheduler Interface and Initialization
Primary Input Control and Buffer Allocation
Object Module Processing ..•.•....•
Load Module Processing•....
ESD Record Processing (Generalized>
Example of Input ESD Processing of SO-Section

Definition
Diagram 05.

(HEWLESD)
Example of Input ESD of ER-External Reference

Processing
Diagram 06.
Diagram 07.
Diagram 08.
Diagram 09.
Di agram El.

(HEWLESD) .•.....•.
Example of ESD 10 Translation
Object Module Text Processing
Load Module Text Processing
RLD Record Processing .
Secondary Input Processing

Organization of the Loader
Routine Control-Level Tables

Microfiche Directory

Data Areas
HEWLDDEF

Diagnostic Aids ••
Error Code Definitions
Serviceability Aids

APpendix. Error Messages, Etc.
Input Conventions .•....
Input Record Formats .•..........
Compiler/loader Interface for Passed Data Sets
Identify Macro Instruction--Identifying Loaded

List of Abbreviations and Acronyms

Index

vi MVS/370 Loader Logic

. . .
Program

48
49
50
51
52
53

54

55
56
57
58
59
60

61
62

70

73
83

88
90
91

92
93
94

105
109

111

112

J

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

FIGURES

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
~O.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.
59.
60.

Loader Storage Layout • . . . •
Loader Control Logic Flow•.
Object Module and Load Module Structure
Example of an Input Module ...••
Loader Opti ons ..•.......•••..•.
Load Module Storage Allocation for Buffer and DECBs
Freed Areas from Buffer-DECB Allocation
Storage Allocation of Buffers and DECBs for Object
Module Input •..•...•.......•
Object and Load Module Processing Differences
ESD Entry Types and Functions•
Tables Used in the CESD Search .•••...
No-Match Processing Required for Input Entry Types
Storage Allocation •.•......•
Translation Control Table and Translation Table
Overall Relationship of Tables••
Symbol Resolution .•..,
Loading the Text from a Load Module Record
Relocation of Address Constants
BLDL List and Address List
Loader Organization
HEWLOADR--Level 1
HEWLOADR--Level 2
HEWLOADR--Level 3
HEWLOADR--Level 4
Data Area Construction and Usage
Address List
BLDL List •.. . •.•.
CESD Control Table (CMTYPCHN)
CESD Entry
Condensed Symbol Table Entry
Data Event Control Block (DECB)
Extent Chain Entry
IDENTIFY Parameter List .
HEWLDCOM DSECT - Communication Area
HEWLDDEF CSECT .•••.
INITMAIN DSECT Definition
RLD Table Entry ...
Translation Control Table
Translation Table ••
Register Contents at Entry to Routines
Internal Error Code Definitions
Module Map Format Example
Error Message/Issuer Cross-Reference Table ..
SYM Input Record (Card Image)--Ignored by the Loader
ESD Input Record (Card Image) ..••
Text Input Record (Card Image)
RLD Input Record (Card Image)
END Input Record--Type 1 (Card Image)
END Input Record--Type 2 (Card Image) ..••
SYM Record (Load Module)--Ignored by the loader
CESD Record (Load Module)
Scatter/Translation Record--Ignored by the loader
Control Record (Load Module) ...•....•
Relocation Dictionary Record (Load Module)
Control and Relocation Dictionary Record (Load Module)
Record Format of IDRs (load Module)--Ignored by the
Loader
DCB List . ••...
Internal Data Area in Fixed-Length Record Format
Internal Data Area in Variable-length Record Format
MOD Record (Card Image) .•.•....•...

2
4
5
7
8

15
16

17
18
20
23
24
25
28
29
30
35
38
42
61
62
62
64
67
73
74
74
75
76
77
78
79
80
81
84
85
86
86
87
88
90
91
92
94
95
96
97
98
98
99

100
101
102
103
104

105
106
107
108
109

Fi gures vi i

J

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

INTRODUCTION

PURPOSE

FUNCTIONS

This section provides a general description of the loader.
Included are the purpose and functions of the program, its
physical and environmental characteristics, and operational
considerations necessary for its use. Also discussed in this
section is the generalized theory of loading.

The purpose of the loader is to combine input object and load
modules into an executable program in virtual storage. In this,
the loader performs the basic functions of the linkage editor
and program fetch to obtain high-performance loading. (The
loader can be used only when special linkage editor processing,
such as overlaying modules, is not required.)

Use of the loader can provide advantages of increased system
throughput and conservation of auxiliary storage space. System
throughput can be increased through:

• Elimination of scheduler overhead, since loading and
execution occur in a single job step

• Elimination of linkage editor I/O for intermediate and final
output

• Elimination of certain linkage editor functions such as
control statement processing and overlay structuring

• Reduction of time required to read input through improved
buffering techniques

• Reduction of time required for library search through use of
link pack resident modules

• Elimination of time required to read input from an external
device through use of an internal input data area prepared
by a compiler

Auxiliary storage space is conserved through:

• Deferring inclusion of processor library routines until load
time, thus reducing space required for the program. (This
applies to a production environment in which jobs are
selected from a job library.)

• Eliminating space needed for the linkage editor intermediate
and output data sets.

The loader performs the basic logical functions of the linkage
editor and of program fetch. Like the linkage editor, the
loader combines and links the input modules. In addition, the
loader assigns actual machine addresses to the resulting program
and then passes control directly to the program for execution.
In this, the loader functions as program fetch does.

As part of the link-loading procedure, the loader also
automatically deletes duplicate copies of a module and can
include modules from a system library.

Introduction 1

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
lY26-3922-0

VIRTUAL STORAGE REQUIREMENTS

Loader Con- -.r­
trol GETMAINL

loader
Processor
GETMAIN

loader operation requires about 21K bytes of virtual storage. 1 .'\
(This amount does not include the storage for the loaded program ~
and the condensed symbol table.) The storage for loader
operation includes that for loader code (about 14K bytes), for
the data management access methods (about 6K bytes), and for
loader buffers and tables (about 3K bytes). If the access
methods are resident and if the loader code is resident in the
link pack area, part of the loader storage may be allocated from
system storage.

Figure 1 shows an example of loader structure in virtual
storage.

Register save orea for LOAD of Loader (72 bytes)

LOADER (Processing)

~

High
Address

}
-,

Freed after pro­
gram execution

Freed before pro­
gram execution

r- __________ ~~~ynamic!. __________ - i~

Low
Address

Loaded Program

t
Descriptive information about loaded program

LOADER (CONTROL)

OPERATING SYSTEM

CONTROL PROGRAM

>-

-'

Freed after pro­
gram execution

Figure 1. loader Storage layout

1

2 MVS/370 loader Logic

The actual amount required depends on the type of input (for
example, input produced by the PL/I compiler requires a
minimum of 10K bytes for loader tables).

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

ENVIRONMENT

The loader can be used in batch mode or it can also be invoked
under the time sharing option (TSO).

It can be used in one of three ways:

1. As a job step, when the loader is specified on an EXEC job
control statement in the input stream.

2. As a subprogram, via the execution of a LOAD macro
instruction, a LINK macro instruction, or an XCTL macro
instruction.

3. As a subtask, in multitasking systems, via execution of an
ATTACH macro instruction.

Loader operation requires access to a primary input source, the
SYSLIB data set. Input may be from a card reader, magnetic
tape, or a direct access device, or it may be a concatenation of
data sets from different types of devices. Input may also be an
internal input data area prepared by a compiler.

An automatic search of a system library can occur to complete
the input. This requires use of the SYSLIB data set. It is
defined only as a partitioned data set. SYSLIB may also be
concatenated; however, SYSLIB input consists of object modules
only or load modules only.

When the link pack area is available, the loader can include in
the loaded program resident modules listed in the contents
directory entry queue.

The loader uses the SYSLOUT data set for both diagnostic
messages and module maps and the SYSTERM data set for diagnostic
messages only. These data sets may be used in conjunction with
each other or separately.

PHYSICAL CHARACTERISTICS

The loader consists of a control portion and a processing
portion. The control portion handles linkages to and from the
processing portion, which performs the actual program loading,
and to and from the loaded program for its execution. The
relationship between the portions of the loader is illustrated
in Figure 2 on page 4.

The loader consists of two loads: the first is module HEWLCTRL,
the control portion; and the other comprises control sections
HEWLDDEF, HEWLIOCA, HEWLRELO, HEWLIDEN, and HEWLLIBR, which
together perform program loading. Because of the
interrelationships among module functions, the loader is not a
candidate for overlay structuring.

OPERATIONAL CONSIDERATIONS

Loader operation depends on the type of input received and on
user options that may be specified.

The input to the loader may be load modules produced by the
linkage editor and/or object modules produced by the following
language processors: ALGOL, COBOL, FORTRAN, PL/I, RPG, and
Assembler. 2 Input may be from an external device or it may be
one or more internal object modules, that is, a data area that
resides in virtual storage and consists of contiguous object
module records. If input is an internal data area, the object
module records containing the instructions and data of the
program' (text) can be omitted from the data area itself and

2 If the input consists only of load modules, the user must
specify the loaded program's entry point.

Introduction 3

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
lY26-3922-0

HEWLOADR

HEWLDRGO (ALIAS LOADER)
Processing Portion

of Loader

Control Portion of Loader ~
(Performs program loading)

LOAD EP = HEW LOAD

CA LL HEWLOAD ~
RETURN

R'l - program name

DELETE EP ~ HEWLOAD

LOADED PROGRAM
ATTACH-----------+----------------------------~~----------------__,

WAIT
DETACH

RETURN To Coller

RETURN

Figure 2. loader Control logic Flow

replaced by passing a pointer to the text. The loader then
performs its usual functions of relocation and linkage on the
text without having to read or move it.

If the loader is processing an internal data area, input from an
external device cannot be concatenated to it.

INPUT MODULE STRUCTURE

Object modules and load modules have basically the same logical
structure (see Figure 3 on page 5). Each consists of:

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules.

• Text, containing the instructions and data of the program.
If an internal object module is being processed, text
prepared by a compiler may be omitted and replaced by a
pointer to its location.

• End-of-module indication (END statement in object modules;
EOM indicator in load modUles).

4 MVS/370 loader logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983
LY26-3922-0

Linkage Editor Input

Object Module

ESD

TXT

RLD

END

Linkage Editor Output

Load Module

CESD

Control

TXT

EOWVRLD

Figure 3. Object Module and Load Module Structure

The instructions and data of any module may contain s¥mbolic
references to specific areas of code. The symbols may be
defined and referred to in the same module. or may be defined in
one module and referred to in another. Thus, symbolic
references are either internal or external with respect to the
module in which they occur. A symbol that refers to external
code is called an external reference (ER). External and
internal references are made through address constants.

The loader performs its function of changing all address
constants to actual machine addresses by manipulating the input
modules' control dictionaries.

Object modules usuallY contain two control dictionaries: an
external symbol dictionary (ESD) and a relocation dictionary
(RLD). If the module contains no relocatable address constants.
an RLD is not present.

Load modules are a composite of object modules. and, therefore,
contain a composite ESD (CESD). Load modules contain RLDs also,
unless there are no relocatable address constants. General
descriptions of the control dictionaries follow. For detailed
descriptions, see the Appendix.

Introduction 5

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3922-0

External symbol Dictionary (ESD)

The external symbol dictionary contains entries for all external \
symbols defined or referred to within a module. Each entry ~
indicates the symbol and its type and gives its position, if
any, within the module. For example, there is an ESO entry for
each control section, entry point, common area, and external
dummy section. (An external dummy section defines a
displacement within an area, obtained during execution of the
input program via a GETMAIN macro instruction. External DSECTs
are also referred to as pseudo registers.)

Relocation Dictionary (RLD)

The relocation dictionary (RLD) contains at least one entry for
every relocatable address constant (thus, for every external and
internal reference) in a module. An RLD entry identifies an
address constant by indicating both its location within a
control section and the external symbol (in the ESD) whose value
determines the value of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and associated text are related through
a system of numbers known as ESO identifiers (ESO IDs). An ESD
10 is assigned to each external symbol according to its
sequential appearance in an object module. The external symbol
dictionary entries, as created by a compiler or an assembler,
have the same sequential order, so the ESO 10 gives the
dictionary entry number of an external symbol. l (The linkage
editor renumbers the ESD lOs to maintain the ordered
relationship when combining modules into a load module.)

Although the ESD IDs do not appear in the ESO entries, they are
used in label definitions, text items, and RLD entries to refer
to the symbols in the ESD.

In the RLO entries, the ESD lOs are used to show two
relationships between the RLD and ESD entries, as follows:

• The RLD relocation pointer (R pointer) gives the ESD ID for
the symbol referred to by the address constant.

• The RLO position pointer (P pointer) gives the ESO 10 for
the CSECT in which the address constant occurs.

Figure 4 on page 7 illustrates the two cases of RLD pointers.
The text of CSECT A contains two address constants, X and Y. X
refers to a symbol within CSECT A. Therefore, both pointers of
its associated RLO entry give the ESO 10 of CSECT A. The value
field of Y, however, refers to a symbol in a different control
section, CSECT C. Thus, the R pointer of the entry for Y gives
the ESO 10 for CSECT C, the external reference; the P pointer
gives the ESO 10 for CSECT A.

6 MVS/370 Loader Logic

In an object module, an ESO item with type=LD can not have
associated text or dependent address constants (see "ESO
Processing") and so is excluded from the numbering system.

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

LOADER OPTIONS

ESD

Symbol Type Origin Length

CSECT A SD 000 500 ~

CSECT C ER 000 0

~
r

CSECT B SD 500 1000

I
I
I I 000

I T I
I l...

I
X I A (A) I I 300

I yB
I TEXT ITEM OF CSECT A

I
400

I I 500 I, 3 I
I
\ I
- f--------'

TEXT ITEM OF CSECT B

RLD

R p Flog Addre ••

I I F 300

2 I F 400
T

J

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary.
The entry in the ESD for CSECT C results from the reference to CSECT C in the text of CSECT A.
This reference is at location 400. (CSECT B has no relocatable address constants.)

Figure 4. Example of an Input Module

User options may be specified by parameters listed on the EXEC
job control statement 4 or may be passed internally by a program
requesting the loader via LINK, LOAD, ATTACH, or XCTl macro
instruction. s If the options are not user specified, the
defaults provided by the loader are used.

If the options are passed internally, the user can also provide
alternatives for the standard ddnames and for the standard
SYSLIN and SYSlIB DCBs.

4

5
See JCL manual.
See System Programming library: Supervisor Services and
Macro Instructions.

Introduction 7

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983
LY26-3922-0

Parameters

RESINORES

MAPINOMAP

CALLI
NOCALLI
NCAL

LETINOLET

SIZE=

EP=

PRINTI
NOPRINT

TERMI
NOTERM

NAME=

Figure 5 describes the loader options. The parameters used are
listed with the associated options. For some options. there are J
different parameters to specify either the choice or the refusal
of the option. For example. NOCALL signifies that the library .
call option (CALL) is not to be used. (In this case. the third
possible parameter has been retained for compatibility with the
linkage editor option NCAL.) Figure 5 also indicates the
default options.

options Defaults

The loader searches the link pack area queue for RES
resident modules after primary input is complete.
but before the SYSLIB data set is opened.

The loader produces a list of external names and NOMAP
their actual storage addresses.

The loader performs an automatic search of the CALL
SYSLIB data set for unresolved external names.

The loader passes control to the loaded program NOLET
despite the occurrence of a severi ty 2 error
condition during loading.

Specifies the maximum amount of dynamic storage to SIZE=300K
be obtained for loader processing.

Specifies an external name to be used as the entry No
point of the loaded program. default l

The loader attempts to open the SYSLOUT data set PRINT
for diagnostic output.

Error messages are directed to the SYSTERM data NOTERM
set as well as the SYSLOUT data set.

Specifies the name to be used as the name of the GOl
loaded program.

Figure 5. Loader Options

Note to Figure 5:

The loader assigns an entry point to the loaded program if
no name was specified.

GENERAL THEORY OF OPERATION

In processing the input modules. the loader assigns
virtual-storage addresses to the control sections to be included
in the loaded program and resolves external references in the
CSECTs.

Because each input module has an origin that was assigned
independently by a language translator. the order of the
addresses in the input is unpredictable. (Two input modules.
for example. may have the same origin.) The loader assigns an
address to the first control section and then assigns storage
addresses. relative to this origin. to all other CSECTs.

Because cross-references between CSECTs in different modules are
symbolic. they are resolved (translated into machine addresses)
relative to the virtual-storage addresses assigned to the loaded
program.

8 MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-Q

METHOD OF OPERATION

This section describes the logic of the loader. It contains an
introduction that emphasizes the flow of primary data and
control information through tables and buffers. This section
also contains detailed functional descriptions of the loader.

The logic introduction refers to the operation diagrams
associated with a particular function. The detailed functional
descriptions refer, through lettered references, for example,
(A), to a portion of a diagram, to the corresponding steps of a
function as shown in the operation diagrams. (The diagrams
follow the text of this section.)

At the end of this section are illustrations of the internal
loader tables at strategic points in processing (Figure 13 on
page 25). These illustrations stress the changes to data; the
diagrams stress movement of data. Used together, the two sets
of figures offer quick recall.

STEPS OF THE LOADER OPERATION

Initialization

The loader control portion, which acts as an interface with the
supervisor, loads the processing portion of the loader and
passes to it the parameter list received. The system interface
is shown in "Diagram AI. Overall Loader Operation" on page 47
and "Diagram A2. Loader Invocation" on page 48. The loader then
performs loading through the following basic functions:

• Initialization

• Input control and buffer allocation

• Primary input processing

• Secondary input processing

• Final processing

• End of loading

After the processing portion has completed these functions, the
loader control portion passes control to the loaded program for
execution.

The overall flow of data and control during loading is shown in
"Diagram AI. Overall Loader Operation" on page 47.

When the loader begins processing, it performs initialization in
preparation for all subsequent processing. The operations
included in initial processing are:

• Analyzing control information

• Initializing virtual storage

• Initializing DCBs and opening data sets

"Diagram 81. Loader/Scheduler Interface and Initialization" on
page 49 shows initialization processing.

Method of Operation 9

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983
LY26-3922-0

Input Control and Buffer Allocation

The loader reads input and allocates buffers as required for the J ...
current input module. Object modules from SYSLIH (primary input
data set) and from SYSLIB (secondary input data set) are read
into the object module buffers. (However. if input is an
internal data area. buffers are not allocated and the data area
itself is considered one buffer.) Control information from load
modules (including ESD and RLD records) is read into the RLD
buffer. Text from load modules. is read directly into the
loaded program's storage area. "Diagram Cl. Primary Input
Control and Buffer Allocation" on page 50 shows input control
and buffer allocation.

primary Input Processing

The loader performs the following processing for all SYSlIH
modules. (All overlay and scatter control statements from load
modules and SYM records are ignored.) "Diagram 01. Object
Module Processing" on page 51 and "Diagram 02. Load Module
Processing" on page 52 show primary input processing.

External symbol Dictionary Processing

The ESO records from object modules and CESD records from load
modules describe symbols that have been defined for external
use. The loader makes entries for the symbols in the CESD and
also makes entries in the translation table to allow the
translation of the input ESD IDs to CESD addresses. The loader
calculates storage addresses and stores them in the CESD
entries. "Diagram 03. ESD Record Processing (Generalized)" on
page 53 through "Diagram 06. Example of ESD 10 Translation" on
page 56 show external symbol dictionary processing.

Text Record processing

For object modules, the loader translates the 10 of a text
record to the proper CESD entry address. The CESD entry
contains the storage address assigned to the CSECT. When the
loader finds the address for the text, it moves the text from
the object module's buffer to the loaded program's storage. For
load modules, the loader translates the IDs of all CSECTs in a
text record and thus finds their assigned virtual-storage
addresses. The loader reads the record directly into the loaded
program's storage area; CSECTs at the end of the record that are
to be deleted are not read; CSECTs within the record that are to
be deleted are overlaid when the CSECTs that are to be kept are
compressed. "Diagram 07. Object Module Text Processing" on page
57 and "Diagram 08. Load Module Text Processing" on page 58 show
text record processing.

Relocation Dictionary processing

The loader builds its RLD table from information contained in
the RLO records. It processes the RLD records of object modules
from the object module buffer and those of load modules from the
RLO buffer. The loader uses the relocation and position (R and
P) pointers to determine the addresses of the address constants
(adcons) and uses the flag field to determine the method of
address constant rllocation required. "Diagram 09. RLD Record
Processing" on page 59 shows relocation dictionary processing.

Address Constant Relocation processing

When external references in the CESD are resolved, the loader
uses the RLO table entries chained to the CESD entry to relocate \
the related address constants in the loaded text. ~

10 MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

Secondary Input processing

Final processing

If there are unresolved external references after all SYSLIN
input has been processed, the loader tries to resolve them from
system library routines. If RES is specified, the loader first
tri~s to resolve the references from link pack area routines.
When this is possible, the loader uses the addresses of the
referenced routines in the link pack area to resolve the adcons
used to symbolically refer to them. Finally, the loader opens
the SYSLIB data set, if necessary. The loader then loads any
library modules that can be used to resolve ERs in the loaded
program. The modules are located via the BLDL and FIND macro
instructions. The loader processes the modules, depending on
whether they are object or load modules, in the same manner as
it processes primary input. "Diagram El. Secondary Input
Processing" on page 60 shows secondary input processing.

After processing all the input for the loaded program, the
loader performs the following: assigns addresses for the common
areas and for displacements in the external dummy section,
issues messages for unresolved ERs, and determines the address
of the loaded program's entry point.

Identifying Loaded Program

End of Loading

If program loading is successful, the loader issues an IDENTIFY
macro instruction to pass the name of the program to be executed
to the control program. 6 At this time, a condensed symbol table
may also be constructed for use during the program's execution
by the test facilities available under the Time Sharing Option.

Before ending loader processing, the loader performs the
following: writes out the diagnostic message dictionary and any
remaining diagnostic messages, closes data set DCBs, sets up
return information, and frees storage not required for the
loa~ed program.

INITIALIZATION (HEWLIOCA)

When the loader begins processing, it analyzes control
information, performs initialization of main storage and of data
sets, and allocates initial buffers for the data sets. See
"Diagram 81. loader/Scheduler Interface and Initialization" on
page 49.

ANALYZING CONTROL INFORMATION

loader operation depends on the control information, consisting
of the options, ddnames of the data sets, and the data control
block addresses, to be included in loader processing. The
loader uses the information passed by the user or the defaults.
(The defaults are contained in the control section HEWlDDEF.)

(A) To analyze the control information, the loader obtains a
temporary work area, INITMAIN. (See "Data Areas" on page 73 for
the contents of INITMAIN.) The loader saves, in the temporary
work area, the default ddnames and option indicators. An
EXTRACT macro instruction is then issued to determine whether
the loader is currently operating under the Time Sharing Option,
and an indicator is set in INITMAIN. If the processing portion

6 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWlOAD.

Method of Operation 11

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3922-0

of the loader was invoked through the entry point HEWLOAD,
another indicator is set to show that identification of the
loaded program is desired. The loader then scans the user's
options and resets the default indicators in INITMAIN, when
necessary.

If the SIZE option is specified, the associated user's value
replaces the default value. However, if the option is
incorrectly specified, the default value ;s used.

If the EP option is specified, the associated entry point name
is saved in INITMAIN.

If the NAME option is specified, the associated program name is
saved in INITMAIN. Otherwise, the default name **GO is used.

The loader then checks for user-specified ddnames to be used in
specifying data sets. If present, these ddnames also replace
the default names.

Finally, a check is made for the addresses of alternates for the
data control blocks. Both addresses, if specified, must be
24-bit-only addresses; otherwise, they are ignored. A SYSLIN
control block is accepted if it describes an internal data area.
The address of this control block is saved, and an indicator for
an internal SYSLIN data area is set in INITMAIN. (The SYSLIN
control block, which is not a data control block, is described
in "Internal SYSLIN Control Block"under "Compiler/Loader
Interface for Passed Data Sets" in the Appendix.) An alternate
SYSLIB DCB is accepted if it describes a data set that has been
opened. The address of this DCB is also saved and an indicator
for an open library data set is set in IHITMAIN.

INITIALIZING VIRTUAL STORAGE

READYING DATA SETS

(B) Using the GETMAIN macro instruction, the loader obtains the .~
required storage from the supervisor. The request is ~
conditional and variable. The maximum amount requested is that
specified by the SIZE option; the minimum is 2K bytes. If the
supervisor does not return storage, the loader then issues an
unconditional GETMAIN request for the minimum. If 2K bytes of
storage is still unavailable, an 804 or 80A system abend occurs.

If the supervisor returns virtual storage space, the loader
establishes its permanent communication area. (The
communication area is described in "Data Areas" on page 73.)
The loader then moves the information stored in INITMAIN to the
communication area.

Save areas for use during loading are allocated and chained
backward and forward. Finally, the INITMAIH area is returned to
the system via a FREEMAIN macro instruction. The area is then
available for data management functions required for loading.

(C) The loader performs initialization requisite to use of its
data sets. If the TERM option has been specified, space is
reserved for a SYSTERM DCB, two DEeBs, and two buffers. Unless
an internal SYSLIH data set has been passed to the loader, a
SYSLIH DCB must be prepared and opened. Similarly, unless the
HOPRIHT option has been specified, a SYSLOUT DCB must be
prepared and opened.

DeBs for the data sets are constructed using a model DCB
contained in the loader. The ddnames and basic attributes are
placed into the constructed DCBs before the data sets are
opened.

During opening, other data set attributes are checked. These
include record format, record and block sizes, and the number of

12 MVS/370 Loader Logic

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3922-0

buffers to be allocated for the data set. If record and block
sizes are not defined, the loader uses the following defaults:

• For SYSLIN, both values are set to 80.

• For SYSLOUT, both values are normally set to 121. However,
if the loader is operating in time-sharing mode, the record
length of the SYSLOUT data set is set to 81 so output can be
easily directed to a terminal.

Because the loader allocates buffers for its data sets, it does
not require the buffer allocation supplied by the Open routine.
The loader indicates this by setting the DCBBUFNO field in the
DCB to zero. The value that was found in the DCBBUFNO field is
stored in DCBNCP.

The loader determines whether the data sets opened successfully.
If SYSLOUT is open, the loader allocates the number of buffers
and DECBs specified in the DCBNCP field in the DCB. and sets a
flag indicating that the SYSLOUT data set is usable. The
diagnostic output page heading is set up and printed. The
loader then constructs, in the SYSLOUT buffer, a list of the
options used, the amount of virtual storage received for loader
processing, and the entry point and program names, if specified.
After printing this list, the loader prints out any invalid
options received and any errors encountered during the open
procedure. Finally, if the MAP option was chosen, the MAP
heading is constructed and printed.

If the opening of SYSLOUT was not successful, the MAP option
indicator is set off and the storage allocated for the data
set's DCB is released.

Next, the loader determines whether the SYSLIN data set opened
successfully. If an error occurred during opening of SYSLIN,
loading is terminated. If SYSLIN opened properly, the loader
sets the "unlike attributes" indicator in the DCB to signify
that SYSLIN may be a concatenation of data sets with unlike
record formats. The buffers for the first input module are then
allocated as described under "Buffer Allocation" on page 14.

INPUT CONTROL AND BUFFER ALLOCATION

To read input, the loader determines whether the current input
consists of object or load modules and whether it resides on an
external device or in virtual storage. This is indicated by
indicators (CMFLAG3) in the communication area as well as the
record format of the DCB. (The format is undefined (U) for load
modules, fixed (F) for either object modules on an external
device or internal object modules, and variable (V) for internal
object modules.) If the input data set resides on an external
device, buffers are allocated and primed. If the input data set
is an internal data area consisting of internal object modules,
no allocation or priming of buffers occurs and the data area
itself is considered one buffer. In any case, the records are
read and processed until the end of the current data set is
recognized, either through the end-of-concatenation or
end-of-file condition for a data set residing on an external
device. or through the end-of-buffer condition for an internal
data area. 7 (No check for the END card or EOM indication is
made during the reading procedure; the end condition is only
recognized when the record is processed.) When the end of the
current input is reached, the loader checks for additional
SYSLIN input. 8

7

8

End-of-buffer signifies both end-of-file and
end-of-concatenation for an internal data area.
The end-of-concatenation switch is set during the data set
opening if another data set is concatenated to the current
one. If there is no other SYSLIN input, the
end-of-concatenation and end-of-file s~itches are both set
on. They are tested at the end of each module.

Method of Operation 13

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
lY26-3922-0

Another data set in SYSLIH is indicated unless both the
end-of-file and end-of-concatenation switches are on. When the
loader opens a new data set in SYSLIN input, the loader J.
determines the new attributes. This is accomplished by the same .
procedures used during loader initialization for the first input
data set.

BUFFER MANAGEMENT (HEWBUFFR)

Buffer Deallocation

Buffer Allocation

In general, the loader allocates storage individually for DECBs
and buffers. Thus, for a single data set, buffer allocation
actuallY consists of several separate allocations. These
allocations are made from contiguous storage whenever feasible.
All allocations are made from the highest available address in
loader processing storage. When no longer needed, allocated
space is made available for subsequent modules.

If both the current input and the previous input consist of load
modules, the loader uses the same buffer and DECBs. This is
possible because the buffer-DECB requirement for load modules is
constant. Figure 6 on page 15 illustrates the buffer and DECBs
required for reading load modules. If either the current or the
previous data set consists of object modules, the loader frees
(deallocates) the storage used for the previous buffer-DECB
allocation.

A pointer to the first freed area is maintained at CMFRECOR.
(See Figure 7 on page 16.) The first 4 bytes of each freed area
are used to store a pointer to the next freed area in the chain.
The second 4 bytes give the size of the current area. (The size
is always rounded to doubleword value.) See Figure 7 for an
illustration of freed area chaining.

Before chaining an area deallocated from a DECB or a buffer, the .\
loader checks the area's location against the pointers of the ~
other areas in the chain for contiguity. Contiguous freed areas
are combined under a single pointer. For example, in Figure 7,
Freed Area 1 could consist of areas from three separate
deallocations: one of each DECB and one for the buffer.

After freeing any previously used buffers, the loader allocates
DECBs and buffers for the current input module. For object
module input, a DECB is allocated and cleared, and the address
of the DCB is stored in it; then, the related buffer is
allocated and its address stored in the DECB. (The size of the
buffer is obtained from DECBBLKSI; the number, from DCBHCP,
where the value from DCBBUFNO was stored.> The allocation
procedure is repeated until the specified number of buffers has
been allocated. However, after the first time, each DECB is
chained to the one before. The last DECB is chained to the
first. (See Figure 8 on page 17 for an illustration of an
allocation for object module input.) The loader also sets a
pointer to the DECB chain in the communication area at CMRDECPT,
sets the I/O flags to indicate object module input, and saves
the buffer size in the communication area for later
deallocation.

For load module input, the loader allocates the required two
DECBs, clears them, chains them together, and stores the address
of the DCB in them. The required buffer, called the RLD buffer,
is then allocated and its address stored in the first DECB. The
loader stores a pointer to this buffer in the communication area
at CMGETREC, and a pointer to the first DECB in CMRDECPT. (No
buffer is allocated for load module text). The loader reads
load module text directly into the loaded program's storage ~
area. The RLD buffer size is stored in the DECB, and finally ~
the I/O flags are set to indicate load module input.

14 MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

CMRDCBPT

----- -::... - - - - -"
'\

\
\

\
\
\
\

CMRDECPT

Control and RLD record DECB

256

- - - DECDCBAD •
DECAREA • • • • •

CMGETREC

• •
Control and RLD
record buffer

I
256
bytes

Input DCB \
DECDECPT

1 \
\
\

'\

" "-
..... -

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
pointers in the communications area (HEWLDCOM).

Text record DECB

- -- DECDCBAD

DECDECPT

Figure 6. Load Module Storage Allocation for Buffer and DECBs

In allocating buffers and DECBs for load or object module input,
the loader attempts to reuse any storage freed from previous
allocations. The loader examines each entry in the freed area
chain to determine whether the related storage is sufficient for
the current DECB or buffer.

If the area is too small, the next entry is tested. If the size
of an area equals the required size (rounded to doubleword
value), the loader unchains the area and constructs the buffer
or the DECB. If the size of the freed area is greater than that
of the required area, the chain pointer for that area is updated
to show the size and location of the remainder.

If no area in the chain is adequate for the current buffer or
DECB, the loader makes the allocation from its processing
storage not previously allocated (prime storage). If this
allocation requires an area so large that it would exhaust the
table and buffer area, the loading process is terminated, with a
message printed to indicate that available storage was exceeded.

READING OBJECT MODULE INPUT FROM AN EXTERNAL DEVICE

Because of the fixed format of object module records, the loader
can initiate the reading of physical sequential blocks before
they are actually needed for processing. To accomplish this,
the loader primes the buffers after allocating them for object
modules. Priming consists of initiating READ macro instructions
for all buffers except one. When the loader requires the first
record for processing, a READ macro instruction is issued for
the unfilled buffer and a CHECK macro instruction is issued for
the first buffer primed.

At the beginning of processing for a module, the DECB pointer
(CMRDECPT) specifies the DECB associated with the first primed

Method of Operation 15

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

Communications Area (HEWLDCOM)
CMFRECOR

Freed Area 1

Freed Area 2

Low Address TL. _______________________________ ... T
Loader Processing Storage

Figure 7. Freed Areas from Buffer-DECB Allocation

High Address

Note:
304 is the size of
Area 1.
240 is the size of
Area 2.

buffer (see Figure 8.> The pointer to the current logical
record also specifies the beginning of that buffer. As each
record is processed, the loader updates the logical record
pointer to the next record. When all records in the buffer have
been processed, the loader updates the DECB pointer to the one
for the next filled buffer, and issues a READ macro instruction
for the completed buffer. The procedure is repeated until the
end of the module is recognized.

READING INTERNAL OBJECT MODULE INPUT

For internal object modules prepared by a compiler, record
format may be fixed or variable. After initialization of the
data area containing the internal object module records, the
pointer to the current logical record points to the beginning of
the data area. As each new logical record is requested, the
loader updates the pointer to the next record in the data area,
using the DCBRECFM field in the SYSLIH control block to
determine whether fixed- or variable-length records are being
processed. The end of the module is recognized when the length
of the processed records equals the length specified in the
DCBBLKSI field. At this time, the end-of-file and
end-of-concatenation switches are set on.

READING LOAD MODULE INPUT

For load modules, the record format is undefined, but the order
in which record types may be processed is limited. For example,

16 MVS/370 Loader Logic

J

J

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

CMRDCBPT CMRDECPT

I

---- ---..-------- "-... ,
" \ I \\

Input DCB

\ , ,
I
I
I
I
I
I
I
\

\
\
\
\

\
\
\

\

\

,

I

~
-r

--

'\ --

"- ... -

DECB 1

I 320

- DECDCBAD

DECAREA -----

DECDECPT \
../

r DECB 2

I 320

r- -DECDCBAD

DECAREA -----

DECDECPT \

f DECB 3

I 320

--DECDCBAD

DECAREA----

r--DECDECPT

,
~,

"

CMGETREC

Record 4

Buffer 2

Record 1 ...
,,, ... ,,, I-----------j , , ,

, , , ,

etc.

Buffer 3

/ 1------1 t
320
bytes

~
Note: CMRDCBPT, CMRDECPT, and CMGETREC are

located in HEWLDCOM. CMRDECPT points to
the DEClVbuffer being processed. CMGETREC
points to the logical record being processed.

+- 80 bytes----'-

Figure 8. Storage Allocation of Buffers and DECBs for Object Module Input

control records are required before the related text record can
be read. All non text records of load modules are read into the
same buffer. This buffer, the RLD buffer, has the same length
as the maximum length of nontext records processed by the loader
(256 bytes).

The loader allocates a DECB for reading load module text, but no
buffer, because the text is read directly into the loaded
program's assigned area. The loader determines the address to
receive the text during module processing. At the time a text
record is read, the following record is also read, because that
record is always nontext.

PRIMARY INPUT PROCESSING

After determining the current record type, the loader performs
one of the following types of processing for the primary input
(object and/or load modules from the SYSLIN data set):

• External symbol dictionary (ESD) processing

• Text record processing

Method of Operation 17

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

Type of
processing

ESD

Text

RLD

Relocation

End

MOD
(internal
object
modules
only)

• Relocation dictionary (RLD) processing

• Address constant relocation processing

• End processing (including end of module and END card)

• MOD record processing

If an invalid record type is encountered, a diagnostic message
is issued. In addition, if an internal input data area is being
processed, the end-of-concatenation and end-of-file switches are
set on so that no further input will be processed.

Figure 9
modules.
shown in
"Diagram

shows the differences in processing for object and load
Input module processing for object and load modules is

"Diagram Dl. Object Module Processing" on page 51 and
D2. Load Module Processing" on page 52 respectively.

Object Module Load Module

1. Input is an ESD record. 1. Input is a CESD record.

2. The loader performs preliminary 2. The loader performs
processing for NULL, PC, and LO preliminary processing for
entries. SO. LR. PC, and NULL

entries.

The loader processes text from the After processing the entire
object module buffer one ID at a ID/length list, the loader reads
time. load module text di rectly into

the loaded program's storage
area.

No difference. No difference.

No difference. No difference.

The loader processes the END state- The loader performs
ment for each CSECT, and performs end-of-module processing.
end-of-module processing.

The loader determines the origin of Not processed.
the compiler-loaded text for the
module and equates this address
with what would normally be the
loader-assigned address.

Figure 9. Object and Load Module Processing Differences

Load module record types include composite ESD, control, RLD,
control/RLD, text, SYM, IDR and scatter/translation. When the
loader recognizes a SYM, lOR, or scatter/translation record, it
simply ignores that record and requests another control record.
Descriptions of those load module records processed by the
loader follow. (For detailed descriptions, see the record
formats given in the Appendix.)

•

•

9

18 MVS/370 Loader Logic

CESD: Each of these records contains no more than 15 ESD
entries. 9 The first 8 bytes give the following control
information for the entries in that record: (1) the ESD ID
of the first entry, (2) the number of bytes occupied by the
entries, and (3) an indication of whether the CESD entries
contain overlay segment numbers or AMODE and RMOOE data.

Control: These records give control information about the
module text on the following text record. Included are the

The loader can accept a maximum of 1024 ESD entries per
input module.

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

related ESD IDs and the lengths of each control section in
the following text record. and an indication of EOM. when
pertinent. The control records also contain a channel
command word (CCW) with the linkage editor-assigned relativQ
address and total length of the text record. The loader
uses this information to read the text.

• Text: These records contain the control sections with the
instructions and data of the module. A text record can
contain a maximum of 60 control sections.

• RLD: These records contain the RLD entries used to relocate
address con~tants in the preceding text. When the text
contains a large number of relocatable symbols. the related
RLD entries may require several records.

• Control/RLD: These records combine a control and an RLD
record into one physical block. They contain RLD entries
related to a previous text record and the control
information for the following text record.

The object module records, ESD, RLD, TXT, and END. contain
information similar to that described previously. In addition.
an internal object module can contain the MOD record. This
record contains control information about the text of the
module, which has already been loaded by a compiler or other
text-generating processor. This information includes the
virtual storage address of the text. the address of the byte
following the estimated or actual end of the text. and optional
extent information. If a MOD record appears as the first record
of an internal object module, all following text records are
ignored until an END statement has been processed.

EXTERNAL SYMBOL DICTIONARY (ESD) PROCESSING (HEWLESD)

The loader processes the
dictionary (ESD) records
and external addressing.
location in the text for
symbol. 10

input modules' external symbol
to resolve the symbols used in internal

Resolution ensures that each named
the loaded program has a unique

To resolve symbols, the loader builds its composite ESD (CESD)
from individual ESDs and CESDs in the input. The loader's CESD
entries are created as required during processing of the input
entries. See "Data Areas" on page 73 for a detailed description
of CESD entries.

Because of ESD processing. the loader's CESD contains only one
entry for each uniquely named text location, regardless of the
number of input ESD entries containing the symbol for that
location. 11 For a single module. the loader records multiple ESD
entries for a symbol in the translation table. 12 Each entry in
the translation table corresponds to one input ESD entry for a
symbol and contains a pointer to the CESD entry for the symbol.

A translation table entry has the same position in the table as
the identifying number (ESD 10) of the associated ESD entry.
For example. if an input ESD entry has an ESD 10 of three, its
corresponding entry is the third one in the translation table.
Using this relationship, the loader converts input ESD IDs via
the translation table into the appropriate CESD address.

10

11

12

Names for areas of private
section displacements need
treated in a special way.
entries, respectively.

code or for external dummy
not be unique, because they are
These are defined by PC and PR

The only exception involves control sections with identical
names. In this case, two entries, one of which is flagged
"delete," are kept in the CESD.
The loader clears the translation table after processing
each module.

Method of Operation 19

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
l Y26-3922-0

Type

SD (section
definition)

PC (private code)

PC (private code)
marked "delete"

LD (label
definition)

LR (label
reference)

ER (external
reference)

CM (common)

The loader's ESD processing depends on the function of each
input entry. The function of an entry is identified by the type
indication in the entry. Figure 10 on page 20 gives the J.
function specified by each type indication. The table also .
indicates whether a particular type can occur in object and/or
load module external symbol dictionaries.

When the loader creates a CESD entry, it chains it to others
with the same type indication. Then. in processing each new
input entry. the loader determines by searching the chains
whether a CESD entry with the associated symbol already exists.
(The loader only searches those chains for types that could be
related to the current input entry's type.) In certain cases,
special preliminary processing is performed to delay or to
bypass the CESD search.

CESD processing is shown in "Diagram D3. ESD Record Processing
(Generalized)" on page 53 through "Diagram D6. Example of ESD ID
Translation" on page 56.

Function Occurrence Comments

Defines the Object & load -
beginning of a named
CSECT.

Defines the Object & load -
beginning of an
unnamed CSECT.

Defines the load only The delete
beginning of an indication means
unnamed CSECT not to that the associated
be included in the text and RLDs are to
loaded program. For be deleted.
example, a SEGTAB
created by the
linkage editor.

Defines a label by Object only The defined label
giving its location cannot be referenced
relative to the directly because the
beginning of the lD entry has no ESD
CSECT containing the ID. The loader
label. changes the type to

LR in the CESD
entry.

Defines a label by Load only An LR entry contains
giving its location an ESD ID and can.
relative to the therefore, be
beginning of the referenced by an RLD
CSECT containing the entry.
label.

Refers to a symbol Object & load -
not defined in the
same module
containing the
reference.

Defines a common Object & load The area may be
area whose virtual named or unnamed. An
storage address i s unnamed area 1 s
assigned during called "blank
loading. common. "

Figure 10 (Part 1 of 2). ESD Entry Types and Functions

20 MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1912,1983
l Y26-3922-0

Type Funct;on Occurrence Comments

PR (pseudo Defines a Object & load The external DSECT
register) displacement within defines the area

an external dummy obtained by the
section. loaded program via a

GETMAIN macro
instruction.

NUll Indicates that the Object & load Only one entry for
entry is to be NUll is made in the
ignored. loader's CESD.

WX (weak external Defines an external Object & load The loader processes
reference) reference that is a WX entry as an ER

not to be resolved entry with a "weak
by automatic library call" flag.
call.

Figure 10 (Part 2 of 2). ESD Entry Types and Functions

prel;minary ESD Process;ng

When the loader processes load modules, it does not necessarily
receive CESD entries in the same order as the linkage editor
assigned the relative addresses. Therefore, no entries for
symbols that define module text locations are processed until
all entries for the module have been received.

The loader delays the processing by placing on a temporary chain
the CESD entries it constructs for the SD, lR, and PC (not
marked "delete") entries. Before chaining an entry, the loader
places the ID and the segment number in the CESD entry. The
entries are chained in the order of their linkage
editor-assigned addresses.

Besides the preliminary processing for load module location
definitions, the loader also determines whether an input entry
type is NUll, PC, lD, lR, or WX. These entries, in both object
and load modules, are handled as follows:

NULL

PC

The loader does not perform a CESD search for NUll entries,
because these entries have no effect on ESD resolution.
When the first NUll entry for a module is recognized, a
CE5D entry is created. This CESD entry is cleared and
marked "delete." (See the CESD entry description in "Data
Areas" on page 73.) The loader places a pointer to the
entry in the communication area (CMNULCHN) and makes a
translation table entry. (See "Making a Translation Table
Entry" on page 27.) For all following NUll entries,
processing consists only of making a translation table
entry that refers to the CESD entry pointed to by CMNUlCHN.

The loader does not perform a CESD search for PC entries,
because it treats them as unique. For each PC entry, the
loader creates a CESO entry. Processing continues as
described under "Ho-Match Processing" for SO entries.

PC "delete"
The loader treats PC entries that are marked "delete" as
NUlls.

LD and LR
lO and lR entries depend on their related section
definitions (50s). Therefore, before performing the CESO

Method of Operation 21

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3922-0

CESD Searching

wx

search, the loader inserts the CESO entry address for the
SO in the LO or LR entry. The address is obtained by
translating the SO 10 contained in the LO or LR.

If an object module is the input, it is possible (through
physical rearrangement of an object deck) to receive an LO
before the related SO. The SO's CESD entry address cannot
be placed in the LO until the 50's entry is created.
Whenever this occurs, the lO is placed on a temporary lO
chain. At the end of each input ESO record, the temporary
LO chain is processed to determine whether a required SO
has been received. When the SO associated with an lD has
been received, its CESO entry address is placed into the
lO. The loader then searches the CESO for a matching
symbol.

The loader treats WX entries as ER entries that are marked
"weak call." The "weak-call" flag, like the "never-call"
flag, specifies those external references that are not to
be resolved by automatic library call. However, the
following difference arises in match processing: If a WX
entry matches an ER entry in the CESO, the "weak-call" flag
is set off. If an ER entry with a "never-call" flag
matches an ER entry in the CESO, the flag is left on.

In general, an input ESO entry requires resolution processing.
The loader does this by searching the CESO for a matching
symbol. To direct the search, the loader uses two tables.
These are:

• HIERTBlE, which specifies which CESO chains are to be
searched for a particular entry type, and the order in WhiCh. \
the chains are to be searched ~

• CMTYPCHN, which contains the address of the first entry in
each CESO chain

Figure 11 on page 23 shows the relationship between the two
tables.

The loader determines the type of an input ESO entry and begins
to search the first chain specified by HIERTBlE. (If the type
is lO, the loader performs the search as if it were an lR.) The
symbol from the input entry is compared to the symbol in each
chained entry. If no matching symbol is found and end of chain
is recognized, the next chain specified by HIERTBlE is
searched. 13 If no matching symbol is found in any of the
appropriate chains, a CESO entry for the symbol is created and
chained. A translation table entry is also made, if
appropriate. (See "No-Match Processing" on page 23.) If a
matching symbol is found, symbol resolution occurs. (See "Match
Processing" on page 29.)

13 Whenever a new entry on a chain is examined, a pointer to
that entry is stored in the communication area (CMPREVPT).
Should the next entry on the chain be a match, the pointer
at CMPREVPT is used to update the chain.

22 MVS/370 loader logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3922-0

HIERTBLE CMTYPCHN

50 2 0 5 3

LO - - - -

ER 0 2 3 5

LR 2 3 0 5
Input E50
Entry Type

PC - - - -

CM 5 2 0 3

PR 6 - - -

NULL - - - -

50 LO ER LR PC CM PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain
Address Address Address Address Address Address Address Address

o 2 3 4 5 6 7

Notes:

The HIERTBLE entries identify by number the CMTYPCHN entries.
For example, zero (0) in the HIERTBLE refers to the SO chain address in CMTYPCHN.

When more than one type chain can be searched for a symbol,
the order is specified by HIERTBLE. For example, if an input
ESO entry is an SO, the HIERTBLE entry specifies that the ER, SO, CM,
and LR chains are to be searched in that order.

Order of Type Chain --------... ~

Search

Figure 11. Tables Used in the CESD Search

No-Match Processing

When a symbol is received for the first time, the loader
performs processing that depends on the type of the input entry
for the symbol. This always includes the construction of the
CESD entry, which differs by entry type. Except for LD entries,
no-match processing also includes construction of a translation
table entry.

If the user specified the MAP
entry for each symbol (except
for an example of map output.
on the SYSLOUT data set.

option, the loader formats a map
ERs). See Figure 46 on page 96

The loader prints the map entries

Method of Operation 23

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3922-0

Figure 12 summarizes the processing performed for each input
entry type.

Translation
Input Entry CESD Table Map
Type Entry Entry Entry

SD X X X

LD X X

LR X X X

ER X X

CMl X X X

PRl X X X

Figure 12. No-Match Processing Required for Input Entry Types

Note to Figure 12:
1 Because CM and PR entries are assigned addresses during

final processing. they are also mapped at that time.

MAKING A CESD ENTRY: For each input entry type. the loader makes
a CESD entry. A WX entry type is treated as an ER input entry
type with a "weak-call" flag. The loader first obtains the
storage required for the entry (22 bytes). Whenever possible.
the loader uses storage previously allocated for CESD entries
that were later freed. (A CESD entry can be freed as a result
of preliminary ESD or of resolution processing.) The loader J
chains freed entries together. A pointer to the chain resides
in the communication area at CMESDCHN; the pointer is updated as
the freed entries are used.

If there are no freed CESD entries. the loader allocates storage
for the entry from the highest available processing storage.
(See Figure 13 on page 25.) If the space required for the entry
would exceed available storage. the loading process is
terminated with an error message. The loader makes this
determination by comparing the pointer for the beginning of the
loader's tables (CMLOWTBL) to the overflow pointer that is the
highest address used for the loaded program's text (CMLSTTXT).

24 MVS/370 Loader Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
L Y26-3922-0

/CMHITBL

r---~I High Address
Communications area

(HEWLDCOM)

Sove areas
~ ------- -------

Input DCB

Output DCB

DECBs and buffers for output

Initial DECBs and buffers for input

~~~~~~---------~~~~~~-~----------_i 

Additional buffers and DECBs for input 

CMLOWTBL ---+-1----------------1 

t 
CMMODLNG 

CMNXTTXT ----.- -~ 

Direction of table and buffer allocations 

Direction of program growth 

Text already loaded for the current module 
(no "no-length" CSECTs) 

Text already in storage for the program being loaded 

CMBEGADR---4~------------------------------------~ 

Return parameter list area LowAddress_L-_____________________________________________________________________ ~ 

CMMAINPT/ 

Notes: CMBEGADR 
CMHITBL 
CMLOWTBL 
CMLSTTXT 
CMMODLNG 
CMNXTTXT 
CMMAINPT 

= Beginning address of loaded program 
= End address of Loader proceSSing storage below the line 
= Lowest address allocated for buffers and tables 
= Highest address already used for the loaded program-s text 
= Length of text already loaded for the current mOdule_ not Including -nO-length" CSECTs 
= Lowest address used for the current module 
= Beginning address of loaded program space 

Figure 13. storage Allocation 

CMLSTTXT 

Method of Operation 25 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

After obtaining storage for the CESD entry, the loader stores 
descriptive information in the entry. The information stored 
depends on the input entry type. Handling of the various entry . 1L 
types is described below: ~ 

SD 
The loader moves the symbol from the input entry to the 
CESD entry. 

The loader then assigns an address to the defined CSECT by 
adding the length of all previously defined CSECTs for this 
module to the loader-assigned address of the first CSECT in 
the module. (In the communication area, the length of all 
previously defined CSECTs is found at location CMMODLNG; 
the loader-assigned address of the first CSECT, if the 
CSECTs are being passed through text records, is found at 
CMNXTTXT; and the loader-assigned address of the first 
CSECT, if the CSECTs are being pointed to by MOD records, 
is found at location CMCORE1.) For CSECTs pointed to by 
MOD records, the resulting address is stored in the CESD 
entry for the SD as the loader-assigned address of the 
CSECT. For CSECTs passed through text records, however, 
the resulting address is compared to the overflow 
pointer--the beginning address of the loader tables 
(CMLOWTBL). If there is no more unused storage, the 
loading process is terminated with an error message. 
Otherwise, the resulting address is stored in the CESD 
entry for the SD as the loader-assigned address of the 
CSECT. 

Next, the loader clears the CESD flag field, except for the 
entry's type indication, and computes the relocation 
constant. The relocation constant ;s computed by 
subtracting the input address (specified by the input SD 
entry) from the loader-assigned address. The loader stores 
the relocation constant in the CESD entry. 

If the option to specify the entry point name for the ~ 
loaded program ~Jas used, the loader determines whether the ~ 
SO with that name has already been received. If not, the 
loader compares that name to the symbol for the currently 
defined CSECT (the symbol in the CESD entry). If the names 
are the same, the loader-assigned address is stored as the 
entry point address in CMEPADDR. 

For an SO entry, the loader determines whether the CSECT 
length specified in the input entry equals O. If so, the 
loader sets the "no length" indicators in the communication 
area and in the CESD entry itself. If the length is 
positive, it is added to CMMODLNG to calculate the next 
CSECT address. If the MAP indicator is on, the MAP entry 
is made for the SO. 

Finally, the loader puts th~ CESD entry on the SD chain 
pointed to in the CMTYPCHN table. Chaining consists of 
storing the pointer to the last SO entry (found in 
CMTYPCHN) in the current CESD entry's chain pointer. Then 
the address of this entry becomes the current pointer in 
CMTYPCHN. After chaining the entry, a translation table 
entry is made. 

LD or LR 

26 MVS/370 Loader Logic 

The loader processes input LO entries in the same manner as 
input LR entries. The name from the input entry is moved 
to the CESD entry. Then the loader-assigned address for 
the defined label is determined by adding the relocation 
constant (found in the CESO entry for the related SO) to 
the input address of the LD or LR entry. If the 
instructions and data for the module have been passed 
through text records and if the loader-assigned address 
exceeds available storage, the loading process is .J ....... . 
terminated with an error message. Otherwise, the address 
is stored in the CESD entry. 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

eM 

PR 

ER 

The loader sets the type indication in the CESO entry to 
LR. Finally, the relocation constant is computed. This 
value equals the loader-assigned address minus the input 
relative address. The relocation constant also is stored 
in the CESO. If the related SO entry was marked "delete," 
the loader makes an ER entry instead of an LR and sets the 
"delink" flag in the entry to signify that all adcons 
referring to it should be adjusted. 

To make a CM entry, the loader uses two separately obtained 
20-byte areas. The first area obtained is used as an 
extension to the CM entry. In this portion, the loader 
stores the length and the address assigned to the common 
area in the input. Then the loader obtains the second 
20-byte area and stores in it the name for the common area 
and the entry's type indication. (This area is the one 
pointed to by the translation table and the CM chain.) The 
loader clears 3 bytes in the entry to be used as a pointer 
to related ERs and sets a pointer in it to the extended 
portion of the CM entry. Finally, a translation table 
entry is made. 

For a PR entry, the loader moves the information describing 
the external OSECT from the input entry to the CESO entry. 
The 3-byte field to be used as a pointer to the related 
RLDs is cleared, and the entry is chained to the other PR 
entries. (PRs are chained according to their order in the 
input.) For a DSECT displacement definition, a translation 
table entry is also required. 

For an ER entry, the loader moves the name and type from 
the input entry to the CESD entry. If the input ER entry 
is marked "never call," the loader sets the "never-call" 
indication in the CESD entry. If the input ER entry is 
marked "weak call," the loader similarly sets the 
"weak-call" indication. The loader then chains the ER 
entry to the other ERs and makes a translation table entry. 

MAKING A TRANSLATION TABLE ENTRY: The loader uses the 
translation control table to direct building of the translation 
table. 14 The translation control table consists of 32 fullword 
entries beginning at location CMTRCTRL in the communication 
area. Each entry is a pointer to a possible 32-entry extent to 
be allocated for the translation table. The loader allocates 
the extents as required, depending on the number of incoming ESD 
entries. 

The entries of one extent correspond to consecutive ESD IDs in a 
single module. For example, the entries of the first extent 
correspond to ESD IDs from 1 to 31; those of the second extent 
correspond to IDs 32 to 63; and so forth. (Because the initial 
4 bytes are used for indexing purposes, the first extent 
contains only 31 translation table entries.) Thus, the position 
designated for creation of a particular translation table entry 
depends on the ESD ID of the associated input entry. 

Figure 14 shows an illustration of the translation control table 
ann the translation table. 

To make a translation table entry, the loader first determines 
whether the input ID is valid. ("Diagram D6. Example of ESD ID 
Translation" on page 56, reference (A).) If an 10 is not valid, 
an error message is printed and loading continues with the next 
input ESD entry. An 10 is not valid if it is less than 1 or 
greater than 1023. 

14 For each input module, the loader reinitializes the 
translation table. 

Method of Operation 27 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CMTRCTRL 

0 

--....., 1 

0 2 

0 3 

0 

311 0 

- Extent # 1 

1 J 0 

32 

TRAN SLATION CONTROL TABLE 
33 

34 

35 

--

Figure 14. Translation Control Table and Translation Table 

TRANSLATION 
TABLE EXTENTS 

If an 1D is valid, the loader then determines, by examining the 
translation control table, whether the extent for this ID has 
been allocated. If not, the loader allocates an area for 
thirty-two 4-byte entries and stores the beginning address of 
the area in the translation control table entry for this extent. 
The area is allocated from the highest available storage in the 
loader's table and buffer space. If not enough loader 
processing storage remains to make the allocation, loading is 
terminated with an error message. 

After the extent allocation has occurred, the loader clears the 
extent. The loader then calculates the entry address in the 
extent for this rD. The address of the CESD entry related to 
the input entry ID is stored in the translation tabla entry. 

If the CESD entry is an ER, the loader sets the high-order bit 
of the first byte of the translation table entry to 1. (This 
indicates absolute relocation.) 

Figure 15 on page 29 shows the overall relationship of tables 
used in ESD processing. 

28 MVS/370 loader logic 

'-

J 

'-



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
lY26-3922-0 

Translation Control Table 
(CMTRCTRL) 

2 
1------1 

31 
L..-._---I 

Extent I 

32 
1---------1 

63 L..-._---I 

Extent 2 

Three Extents of the 
Translation Table 

95 

.--- -..... 

--

C ESD Control Table 
(CMTYPCHN) 

~---~---~-,-------, 

f-----f""- _ 
1....-______ .... ----...--

Extent 3 

Figure 15. Overall Relationship of Tables 

Hatch processing 

If the loader finds a match for an input symbol during the CESO 
search, the loader performs symbol resolution. Through 
resolution, the loader ensures that each named location within 
the text of the loaded program has a unique symbol. IS Also, all 
references to a named location are set to the correct 
loader-assigned virtual storage address. 

If two named locations have the same symbol, only one of them 
can be retained for the loaded program. The loader determines 
which is retained on the basis of ESO entry type. The general 
rules used in symbol resolution follow. 

If the entry already in the CESO has type: 

IS 

SO, it is always retained. 
LR, it is always retained. 
eM, it is retained, except when the input type is SO. 
ER, it is always changed to the input type. 

This does not refer to PC ANO PR names, which need not be 
unique. 

Method of Operation 29 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
lY26-3922-0 

If two entries have matching symbols and have types that 
indicate they should be retained, the loader retains the first 
entry received. 

Figure 16 gives a summary of symbol resolution. 

Input Type CESD Type Result 

SO ER SD 
SD SO 
CM SO 
lR lR 

eM CM eM 
ER CM 
SD SO 
lR lRl 

lD/lR ER lR 
lR lR 
SO S02 
CM CM2 

ER SO SO 
ER ER 
lR lR 
CM CM 

Figure 16. Symbol Resolution 

Notes to Figure 16: 
1 

2 

Match results in an error. 

Match results in an error if the SD for the lO/lR is not 
marked "delete." 

INPUT ENTRY TYPE IS SD: 

CESD type is ER 
The loader changes the ER entry in the CESO to an SO entry. 
The entry is made as described under "No-Match Processing" 
for an SO entry. This includes: chaining the entry to 
other SDs, updating the cumulative length of the loaded 
program, determining whether this is the loaded program's 
entry point name, mapping the entry, and making a 
translation table entry. If RlDs were chained to the ER 
entry, they are relocated as described under "Relocation 
Processing." Also, the loader takes the entry off the ER 
chain, using the pointer to the previous entry on the chain 
(CMPREVPT). If there are no previous entries, the loader 
sets the ER entry in the type chain table (CMTYPCHH) to O. 

CESD type is SD 

30 MVS/370 loader logic 

If the original SO is not flagged "delete," the loader 
obtains space for another CESD entry and moves the name and 
loader-assigned address of the original entry into the new 
one. The relocation constant is then computed by 
subtracting the input address from the loader-assigned 
address. A "delete" indicator is set to show that text and 
RlDs related to the current input SD should be deleted. If 
the text for the CSECT has been pointed to by a MOO record 
rather than having been passed through text records, the 
text cannot be deleted and, thus, the cumulative module 
length (CMMODLNG) is updated to include this CSECT. 
Finally, the entry is chained to existing SD entries and a 
translation table entry is made. If the original SO is 
flagged "delete," the original entry is used. J 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CESD type is CM 
The loader changes the existing CM entry to an SD. Because 
the extended portion of the CM entry is no long~r needed, 
the loader chains it to the freed CESD entries (pointed to 
by CMESDCHN). First, however, the loader obtains the 
length of the common area from the extended portion. For 
the SD entry, the loader retains the greater between this 
length and the one specified in the input SO. To change 
the CM entry to an SD, the loader performs the same 
processing described above for the SD-ER match. 

CESD type is LR 
The loader sets the "delete" indicator in the CESD entry so 
the text associated with the input SD will not be loaded. 
The relocation constant is updated to reflect the 
difference between the relative address in the input entry 
and the loader-assigned address in the CESD entry. The 
loader makes a translation table entry referring to the 
existing LR entry in the CESD. 

INPUT ENTRY TYPE IS CM: 

CESD type is CM . 
The loader determines the greater of the length in the 
extended portion of the CESD entry and the length specified 
in the input CM. This greater length is retained in the 
CESD entry. The loader stores the new input address in the 
extended portion of the CM entry. A translation table 
entry is also made. 

CESD type is ER 
To change an ER entry to a CM, the loader obtains a 22-byte 
area for the extended portion and chains it to the existing 
entry. The loader stores the type, address, and length 
from the input entry in the extended portion of the CESO 
entry. The CM type indication is set, and the entry is 
unchained from the ERs. The loader chains the entry to the 
other CMs and makes a translation table entry. 

CESD type is SD 
The relocation factor in the CESD entry is updated to 
reflect the CM relative address. and a translation table 
entry is made. 

CESD type is LR 
The loader issues an error message for matching symbols 
with conflicting types. Nevertheless, the relocation 
constant is updated and a translation table entry is made. 

INPUT ENTRY TYPE IS LD OR LR: With one 
entries are processed in the same way. 
because an LD entry has no ESD ID, the 
translation table entry for an LD. 

CESD type is ER 

exception, LD and LR 
The difference is that, 

loader does not make a 

The loader changes the ER entry to an LR. The loader 
assigns a virtual storage address for the symbol by adding 
the relocation constant from the related SO entry to the 
relative address in the input LR. Next, the loader 
calculates the relocation constant by subtracting the input 
address from the loader-assigned address. Both the 
relocation constant and the loader-assigned address are 
stored in the LR entry in the CESD. Any RLOs that were 
chained to the ER entry are relocated. The loader checks 
the LR name for the user-specified entry point and makes a 
MAP entry if mapping is required. Then, the loader takes 
the CESD entry off the ER chain and chains it to the LR 
chain. If the input entry was an LO, no translation table 
entry is made. Otherwise, the loader makes a translation 
table entry. 

CESD type is LR 
If the SO entry pointed to by the LR is not marked 
"delete," the loader issues an error message for matching 

Method of Operation 31 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

symbols with conflicting types. In any case, the loader 
updates the relocation constant in the existing CESD entry. 
The loader makes a translation table entry referring to the 
LR in the CESD if the input entry was an lR from a load 
module. If not, a translation table entry is required. 

CESD type is SD 
Processing is the same as that described above for an 
lD/LR-LR match. 

CESD type is CM 
The loader saves the input address in the extended portion 
of the CM entry. The loader makes a translation table 
entry only if the input entry was an LR from a load module. 
If the SD pointed to by the LR entry is not marked 
"delete," the loader issues an error message for matching 
symbols with conflicting types. 

INPUT ENTRY TYPE IS ER: Whenever the loader makes a translation 
table entry for an input ER, it sets an indicator for later use. 
(The indicator signifies during RLD processing that the 
loader-assigned address is to be used for relocation of any RLDs 
with this ID.) 

CESD type is SD 
The loader makes a translation table entry referring to the 
SD entry. 

CESD type is ER 
If the input ER is marked "never call," the loader also 
sets the "never-call" indicator in the CESD entry. If the 
"delink" indicator is on, the loader sets the indicator 
off. In any case, a translation table entry is made 
referring to the ER entry in the CESD. If either ER is 
marked "weak call," the "weak-call" flag is set off. If 
both ERs are marked "weak call," the flag is left on. 

CESD type is LR 
The loader makes a translation table entry referring to the 
LR entry. 

CESD type is CM 
The loader sets the input address in the extended portion 
of the CM entry to zero, and makes a translation table 
entry referring to the CM entry. 

INPUT ENTRY TYPE IS PR: A PR entry can only be matched to 
another PR entry. When two of these definitions of external 
DSECT displacements have matching symbols, the loader sets the 
existing CESD entry to specify the greater of the two given 
displacement lengths. The loader also determines the most 
restrictive boundary alignment specified in the two PR entries. 
(For example, doubleword alignment is more restrictive than 
fullword.) The PR entry in the CESD is changed, if necessary, 
to specify this alignment. 

TEXT RECORD PROCESSING 

Text record processing consists of loading those CSECTs required 
for the loaded program into their assigned locations. The 
loader determines whether a CSECT is to be retained or deleted 
by examining the CESD entry for that CSECT's ID. The 
translation table is used to obtain the CESD entry. 

The way the loader processes text records depends on whether the 
current input is an object or a load module. If the input is an 
object module, the loader reads all the records for the module, 
including text, into virtual-storage buffer areas and then 
processes each record in turn. For load modules, the loader 
uses the information in the text control records to process the .~ 
text before reading it into its assigned storage. ~ 

32 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

processing object Module Text (HEWLTXT) 

When a text record is recognized during processing of an object 
module, the ID contained in the record is translated into a CESD 
entry address. The loader translates the 10 by first ensuring 
that the 10 is valid and then using the translation control 
table to obtain the corresponding translation table entry. 

The translation procedure is the same as used prior to 
allocating a translation table extent. (See "Making a 
Translation Table Entry.") 

In processing text, the loader considers an ID invalid if no 
translation table entry exists for it. Thus, an ID between the 
allowable limits of 1 and 1023 is invalid if it was not received 
during ESD processing. For any invalid ID, the loader issues an 
error message and then tries to process the next record. 
(Object module text processing is shown in "Diagram D7. Object 
Module Text Processing" on page 57.) 

CA) If a translation table entry does exist for an ID, the 
entry contains the address of the CESD entry for the related 
text. The loader determines whether the CESD entry is marked 
"delete." If it is, the loader skips the text record and tries 
to process the next record. 

(B) If the CESD entry is not marked "delete," the loader sets 
an indicator to show that some text has been received for this 
module. If the "no length" indicator in the CESD entry has been 
set on, an indicator is set in the communication area to show 
that text has been received for a "no length" CSECT. The loader 
then calculates the address for this text in the loaded 
program's virtual-storage area. The address equals the 
displacement of the text from the beginning of the input added 
to the relocation constant contained in the CESD entry. 

(C) Next, the loader checks whether the text would exceed 
available storage by adding the length of the text to the 
assigned virtual-storage address. The resulting end address for 
the text is compared to the overflow pointer--the beginning 
address of the loader tables (CMLOWTBL). If the text would 
overlap, loading is abnormally terminated. 

If there is sufficient unused storage for the text, the loader 
moves the text from the buffer area to the assigned address in 
the loaded program's area. Finally, the loader updates the 
pointer to the highest address used for the loaded program's 
text (CMLSTTXT). 

processing Preloaded Text (HEWLMOD) 

If a SYSLIN data area consisting of internal object modules is 
passed to the loader, one MOD record may be substituted for all 
text records within a module. Upon encountering a MOD record, 
the loader checks that an internal object module is being 
processed, that no ESD records have been received for the 
module, and that some control information is contained in the 
MOD record. If any of these conditions is not met, the record 
is ignored. Otherwise, indicators are set to show that a MOD 
record and text have been received for the module. If the 
origin of the first CSECT is specified, it is saved in the 
communication area at location CMCOREI. Similarly, the address 
of the byte following the estimated or actual end of the text is 
saved at location CMCORE2. 

Extent information, used by the identification routine 
(HEWLIDEN), is saved in chained entries pointed to by location 
CMXLCHN in the communication area. These entries contain the 
address and length of the extent and a pointer to the next entry 
in the chain. The number of extents is saved at location 
CMNUMXS in the communication area. Later, the identification 
routine uses these entries to build a parameter list for the 
IDENTIFY macro instruction. 

Method of Operation 33 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Finally, the address of the first extent is saved as the default 
entry point of the program if the entry point has not previously 
been defined. 

p~oce5sfng Load Module Text (LMTXT) 

The loader uses the text control (or control/RLD) record to 
process load module text. The control record contains an 
ID/length list with an entry for each CSECT in the following 
text record. By processing the IDs consecutively, the loader 
determines which CSECTs from the record are to be retained as 
part of the loaded program. 

Load module text processing is shown in "Diagram D8. Load Module 
Text Processing" on page 58. 

PROCESSING THE ID/LENGTH LIST: The loader obtains each ID in 
turn from the list and attempts to translate each one, via the 
translation control and translation tables, to a CESD entry 
address. If the loader determines during translation that an ID 
is invalid, the loader skips over the record. If there are more 
records in the module, the loader continues processing the 
module. 

If the translation of the ID is successful, the loader checks 
for the "delete" flag in the CESD entry (obtained by the 
translation). If the entry is marked "dalete," the loader adds 
the length from the ID/length list entry to the sum of the 
lengths of any immediately preceding CSECTs to be deleted. 

The accumulated sum is used to truncate the text record when 
CSECTs at the end of the record are to be deleted. Therefore, 
only the sum of those consecutive CSECTs to be deleted at the 
end of the record is used. To accomplish this, the loader 
reinitializes the sum of these lengths to zero whenever a 
following CSECT is to be retained. (CSECTs to be deleted can be 
scattered throughout a text record.) 

If the CESD entry for a text ID is not marked "delete," the 
loader determines whether the current CSECT is the first one to 
be retained from the text record. If it is, the loader saves 
the relative relocation constant from the related CESD entry. 
(After completely processing the ID/length list, the loader uses 
this relocation constant to calculate the proper main storage 
address for reading the text record.) After saving the 
relocation constant, the loader sets an indicator to show that 
at least one CSECT from this record is to be retained and that 
its relocation constant has been saved. (Only one relocation 
constant per control record is used, because the text record is 
read in as a whole.) 

Each time the loader recognizes a CSECT to be retained, it 
updates the pointer to the last address used for text (CMLSTTXT) 
by adding the length of the CSECT to the previous value of 
CMLSTTXT. 

READING THE TEXT: After processing all IDs in the ID/length 
list, the loader prepares to read the text into 
storage--directly into the load program's storage area. The 
loader: 

• Adds the relocation constant and beginning delete length to 
the CCW address from the text control record to obtain the 
loader-assigned address of the text. (See Figure 17 on page 
35.) 

• 

34 MVS/370 Loader Logic 

Subtracts the sum of the lengths of consecutive deleted 
CSECTs at the end of the text record from the text length in 
the control record to obtain the actual read count. 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

1 

Loader- Assigned 
Address of ~ 
CSECT C 

Low Address 

CSECT C 

CSECT B' 

CSECT A' 

CSECT B 

CSECT A 

Loaded Program Text Storage 

High Address 

1 
~ 

CSECT 
A' 

CSECT 
B' 

CSECT 
C 

Input Text Record 

CSECT A' and CSECT B' are to be deleted. 
The text read address is, therefore, the Loader-assigned address of CSECT C. 

During later text processing, the Loader moves CSECT C to its proper location 
over CSECT A' and CSECT B'. 

Figure 17. loading the Text from a load Module Record 

• Adds the read count to the loader-assigned address to 
determine whether sufficient unused storage remains for the 
text. If not, an error message is issued and loading is 
terminated. 

• Determines whether the text record is the last record in the 
module by examining the control record's type. 

If the record is not the last, the loader determines whether any 
CSECTs from the record are to be deleted. If not, the text 
record and the following control record are read. (The control 
record is read into the RlD buffer.) 

If the text record is the last in the module or if any CSECTs 
from the record are to be deleted, the loader reads in only the 
text record. If an end-of-file occurs, the loader terminates 
module-text processing and issues an error message; then the 
loader goes to end-of-module processing. 

CHECKING CSECT STORAGE ADDRESSES: If CSECTs to be deleted were 
scattered among the CSECTs to be retained, the loader deletes 
these scattered CSECTs after the text has been read into 
storage. 

The loader ensures that each CSECT is in the location determined 
during ESD processing. To do this, the loader again translates 
each ID in the ID/length list to obtain the related CESD entry. 

If a CESD entry for an ID is marked "delete," the loader 
continues translating successive IDs until one is not marked 
"delete." The loader determines whether the related CSECT is in 
the correct place by comparing its current address to the 
loader-assigned address found in the CESD entry. If the text is 
correctly placed, the loader continues to translate IDs. 

Method of Operation 35 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

If a CSECT is in the wrong place, the CSECT is moved to the 
loader-assigned address. Before checking the next ID in the J ... 
ID/length list, the address of the current CSECT is updated by 
the length of the current CSECT to get the current address of 
the next CSECT. When all CSECTs are in the correct location, 
the loader continues processing the module with the next record. 

Next, the loader determines whether a control record was read at 
the same time as the text record. If so, the loader continues 
processing the module with that control record. Otherwise, the 
end of the module has been reached, and the loader goes to 
end-of-module processing. 

RELOCATION DICTIONARY (RLD) PROCESSING (HEWLRLD) 

Processing of relocation dictionary records consists of building 
the loader's RLD table from information in the input RLD 
records. RLD record processing is the same for object and load 
module input. (Relocation of adcons is performed as the RLD is 
encountered unless the referenced CSECT is not in virtual 
storage.) 

RLD record processing is shown in "Diagram D9. RLD Record 
Processing" on page 59. 

To build the RLD table, the loader tests the Rand P pointers of 
the entries in an RLD record for validity.16 These pointers 
consist of ESD IDs describing an address constant. The P 
pointer gives the ESD ID of the control section containing the 
address constant; the R pointer gives the ESD ID of the symbol 
referred to by the address constant. 

Because the pointers are IDs, they are valid if translation 
yields the address for the ID to a CESD entry. If an invalid ID 
is received, the loader issues an error message and continues 
RLD record processing with the next entry having different Rand . ~ 
P pointers. ~ 

The loader first translates the P pointer. If the CESD entry 
for that ID is marked "delete," the loader skips all RLD entries 
with the same Rand P pointers. If the CESD entry is not marked 
"delete." the loader checks the validity of the R pointer, 
unless the RLD entry is for a cumulative pseudo register (CXD 
type). 

(A) After ensuring that the RLD pointers are valid, the loader 
makes an RLD table entry for the input entry. (The loader uses 
the storage from a freed RLD entry if possible. Otherwise, 
storage for the entry is obtained from the highest available 
storage.) 

The loader stores, in the RLD table entry, the loader-assigned 
address of the address constant. The address is obtained by 
adding the relocation constant from the CESD entry ideritified by 
the P pointer, to the value found in the address field of the 
input RLD entry. (If the RLD is for a cumulative external DSECT 
displacement, it is chained from location CMCXDPT in the loader 
communication area; the next RLD entry is then processed.) The 
loader moves the flag field from the input entry to the RLD 
table. If the translation table entry indicates that an ER 
entry is referred to by the R pointer, the loader sets an 
indicator in the RLD table for absolute relocation. 

16 

36 MVS/370 Loader Logic 

RLD entries for adcons referring to a cumUlative pseudo 
register are only tested for a valid P pointer, because the 
R pointer is always zero (CXD-type RLD). 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

After completing the RLD table entry, the loader determines 
whether relocation is possible by determining the type of the 
CESD entry. Processing for the CESD entry types is as follows: 

SD, PC, LR 
The loader clears the chain field of 
and relocates the address constant. 
Address Constants.") 

the RLD table entry 
(See "Relocating 

CM, ER created from LR 
The loader delinks the RlD entry. That is, it subtracts 
the input address of the CM or ER from the value in the 
address constant. The RLD entry is then chained to the CM 
or ER entry for later relocation after the loader-assigned 
address is defined. 

PR, ER 
The RLD table entry is chained to the related CESD entry 
when the address for the CESD symbol is assigned. (See 
"Match Processing.") 

(B) After processing an RLD entry, the loader continues 
processing the entries in the RLD record until the end of the 
record is reached. If the Rand P pointers for the next entry 
are the same as for the current entry, the loader does not 
recheck them. for validity. Instead, the RlD table entry is made 
directly. If the pointers for the next entry are different, the 
loader performs the validity check. 

RELOCATING ADDRESS CONSTANTS (HEWLERTN) 

Address constant relocation is the replacement of an address 
constant in the text of the loaded program with the actual 
virtual-storage address. Whenever possible, the loader 
relocates adcons as it encounters their RlD entries. 

The loader processes three types of relocatable address 
constants: 

• A-type constants, used to reference a location in the 
CSECT as the constant 

• V-type constants, used to reference a location in a 
different CSECT 

• Q-type constants, used to reference a displacement in 
external dummy section 

same 

an 

In general, the virtual storage address equivalent of an address 
constant is calculated by combining either the relative or the 
absolute relocation constant with the input value of the address 
constant. l7 The relative relocation constant is the difference 
between the loader-assigned address and the input address of the 
referenced location. The absolute relocation constant is simply 
the loader-assigned virtual-storage address of the referenced 
location. Figure 18 on page 38 relates the types of relocation 
constants and of address constants to the types of relocation. 

17 The loader does not compute the absolute addresses for PRs 
or CMs until all the text has been loaded. 

Method of Operation 37 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Type of Relocation Constant Type of Address Comments 
Relocation Usage Constant 

Absolute Absolute relocation VCsymbol) where Displacements are not valid 
Relocation constant replaces symbol i s not a in v-type address constants. 

adcon value PR in CESD 

Relative Relative relocation ACsymbol) where Addition or subtraction is 
Relocation constant is added symbol is not an sped fi ed by indicators in 

to or subtracted ER or PR in CESD RLD flag field. Also see 
from adcon value comment below for Delinking. 

Relative Absolute relocation ACsymbol) where Addition or subtraction is 
Relocation constant is added symbol is ER in specified by indicators in 

to or subtracted CESD RLD flag field. 
from adcon value 

Pseudo Pseudo register Q( symbol) where -
Register displacement symbol is PR in 
Relocation constant is moved CESD 

in 

Delinking Input address of CM AC symbol) where The relocation of addrQss 
or LR/LD CESD entry symbol is CM or constants pointing to CM 
is subtractQd from ER created frolll CESD entries is a 
value LR/LD combination of (1) delinking 

and subsequent (2) relative 
relocation with the absolute 
relocation constant. 

Figure 18. Relocation of Address Constants 

Note to Figure 18: 

Absolute relocation constant = loader-assigned address 
Relative relocation constant = loader-assigned address minus the 
input address 

When the loader resolvQs a CESD entry (for example, a CESD ER 
matchQd with an SD), it relocatQs all address constants 
rQferring to the name. These arQ pointed to by RLD table 
entriQs chained from the CESD Qntry. The loader processes each 
RLD Qntry in the following way. 

Fir~t, the loader ensures that thQ address constant is not an 
invalid 2-bytQ adcon. (Two-bytQ adcons can only be used to 
define QxtQrnal DSECT displacements.) If the adcon is invalid, 
the loader issues an error message and continues loading the 
program. Otherwise, the loader moves the adcon from thQ tQxt to 
a work area, where it determines the type of relocation 
required. 

If the RLD entry indicates absolute relocation, the loader 
places the absolute relocation constant at the text address. 
The RLD entry is placed on the chain of freed RLD table entries 
(CMRLDCHN), and the next entry on the chain is processed. When 
the end of the RLD chain has been reached, the loader continues 
its processing. 

If the RLD entry indicates relative relocation, the loader also 
determines the type of relocation constant required. If the 
location referenced by the adcon is an external reference, the 
loader uses the absolute relocation constant. Otherwise, the 
loader uses the relative relocation constant. The loader tests 
the RLD entry to determine whether the relocation constant 
should be added to or subtracted from the input value of the 
address constant. After calculating the adcon value, the loader 
moves it back to the text. Finally, the loader frees the RLD 
entry and continues resolution. 

38 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

END PROCESSING 

END Card Processing 

If the RLD entry indicates delinking for a CM entry or for an LR 
entry converted to an ER. the loader subtracts the input address 
of common or of the LR from the value of the adcon. The result 
is a reference to a displacement in the common area or input 
module. When these entries are resolved (that is. CM address 
assigned or ER matched). absolute or relative relocation occurs. 

If the RLD entry indicates a PR reference. the loader performs 
absolute relocation as described above. 

End processing includes END card processing for object module 
CSECTs and end-of-module processing for object and load modules. 

The loader processes object module END cards for the length of 
the CSECT and for loaded program entry point definition. (Also. 
when an END card is recognized. the loader issues messages for 
any remaining LD entries for which no SO entry has been 
received.) In setting the length of the current CSECT. the 
loader determines whether the CSECT is a "no-length" CSECT. If 
it is. the loader uses the larger of the END card length and the 
length specified by the CESD SO entry as the CSECT length. 18 If 
the END card of a "no-length" CSECT does not specify a length 
and text has been received for the CSECT, the loader issues an 
error message. (In this case, the length of the text is used.) 

The loader determines whether the loaded program's entry point 
name or address has already been received. If it has. the 
loader does not process the END card for entry point. If not. 
the loader examines the END card for an 10 to be used for the 
entry point. If an ID is present, the loader sets the entry 
point address to the address specified by the END card. or to 0 
if the END card specifies no ~ddress. The loader translates the 
ID to a CESD entry address and saves the CESD address in 
location CMEPCESD. (If there is no CESD entry for the ID, an 
invalid-ID message is issued.) The loader creates an RLD entry 
for the entry point (at CMEPNAME). This entry is not treated as 
a regular RLD. 

If the END card does not specify an ID but does give a symbolic 
name to be used as the entry point, the loader saves the name at 
location CMEPNAME. If there is an SO or LR entry with that name 
in the CESD. the loader uses the address specified as the 
program entry point address. 

End-of-Hodule processing 

At end of module for a load or object module, the loader 
initializes the next input module for processing. If text has 
been passed through text records, the loader updates the text 
pointers, CMLSTTXT and CMNXTTXT. by the module length or, if no 
length was given, to the address of the last text received 
(rounded to doubleword value). Then, the loader determines 
whether the available storage has been exce€ded. If so, an 
error message is issued, and loading is terminated. Otherwise, 
the loader clears the translation table and the module length 
counter (CMMODLNG). All flags except the END and LIB flags are 
set off. The loader either begins processing another module 
from SYSLIN or. if end of file on SYSLIN is recognized, goes to 
process any secondary input. 

18 A "no-length" CSECT's SD can be matched by a CM entry, which 
defines an area larger than the CSECT. 

Method of Operation 39 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

SECONDARY INPUT PROCESSING (HEWACALL) 

After the loader has processed all primary input, it attempts to ~ 
resolve remaining ERs in the CESD if CALL was specified. If ~ 
there are no remaining ERs, the loader performs final processing 
for the loaded program. (See "Final Processing for the Loaded 
Program.") 

The loader can resolve ERs from the link pack area and/or the 
SYSLIB data set. If the link pack area is available for 
resolution, and the RES option is specified, the loader searches 
the contents directory entry queue for the ERs before attempting 
to resolve them from SYSLIB. 

Secondary input processing is shown in "Diagram El. Secondary 
Input Processing" on page 60. 

RESOLVING ERS FROM THE LINK PACK AREA 

The loader obtains the address of the link pack area directory 
search routine from the communication vector table (CVT). It 
then searches the ER chain for an ER that is not marked "never 
call" or "weak call." (A) When one is found, the name in the ER 
is passed to the LPA directory search routine. If the directory 
search routine does not find a match for the name, the loader 
searches for the next ER that is not marked "never call" or 
"weak call." 

If the directory search routine finds a match for the name, the 
loader puts the entry point in the CESD entry and changes the 
entry's type to SD. The loader then takes the entry off the ER 
chain, puts it on the SD chain, and makes a map entry for the SD 
if MAP is specified. Finally, the loader relocates all RLD 
table entries that are chained to the CESD entry. 

The loader then searches for the next ER that is not marked 
"never call" or "weak call." 

This search is repeated until the entire ER chain has been 
processed. 

If there are still unresolved ERs after resolution from the link 
pack area, the loader performs library call processing. 
Otherwise, the loader performs final processing for the loaded 
program. (See "Final Processing for the Loaded Program.") 

RESOLVING ERS FROM THE SYSLIB DATA SET 

Before resolving ERs from the SYSLIB data set, the loader checks 
whether an open SYSLIB data set has been passed. (The fourth 
entry in the DCB list, which is passed to the loader as a 
parameter, can point to an open SYSLIB DCB.) If an open SYSLIB 
DCB has been passed to the loader, the exit addresses in the 
passed SYSLIB DCB are saved in the communication area and 
replaced by the loader's own exit routine addresses. If a 
SYSLIB DCB has not been passed, a SYSLIB DCB is initialized and 
opened. 19 

(B) Otherwise, the loader constructs two lists used for BLDL 
information in the available storage. The available storage is 
defined by CMLOWTBL (the lowest address used by the loader 
tables and buffers) and CMLSTTXT (the highest address used by 
the loaded program's text). The two lists are the BLDL list and 
an address list. The loader uses the address list to store 
pointers to the ER entries in the CESD for which it constructs 
BLDL entries. The entries in the two lists have a one-to-one 

19 

40 MVS/370 Loader Logic 

If the loader has opened a SYSLIN data set, the loader 
closes it before opening SYSLIB and reuses the DCB for 
SYSLIB. 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
lY26-3922-0 

correspondence relative to the ER entries. Figure 19 on page 42 
shows this relationship. 

Before constructing the lists, the loader determines the maximum 
number of entries possible by dividing the amount of available 
storage by the number of bytes required for an entry in the two 
lists (BlDl list entry size=16, address list entry size=4). 
Then, for each ER that is not marked "never call" or "weak 
call," the loader makes an entry in the BlDl list including the 
name specified by the ER and the address of the ER. 

After building the BLDL list, the loader constructs the address 
list by moving the pointers to the ERs from the BlDl list. This 
preserves the pointers, which are overlaid in the BlDl list 
during BLDL operation. 

Finally, the loader issues the BlDl macro instruction. If an 
I/O error occurs during execution of the BlDl, the loader logs 
the error and performs final processing for the loaded program. 

(C) Otherwise, the loader moves the relative track addresses 
(TTRs) returned in the BlDL list to the associated CESD entries. 
Each CESD entry for which a TTR was returned is marked to 
indicate that it contains an auxiliary storage address. 

The loader issues a FIND macro instruction for each ER entry 
marked "TTR received." The loader processes each module located 
in the same way as it processes primary input modules. 

Because SYSLIB contains only load modules or only object 
modules, processing for each module located is the same. If 
SYSLIB contains object modules, the loader first primes the 
buffers and then performs object module processing. If SYSLIB 
contains load modules, the loader performs load module 
processing. See "Primary Input Processing." 

The loader resolves as many ERs from SYSLIB as possible. It 
then performs final processing for the loaded program. (If 
during processing of one or these modules a program size error 
occurs, the loading procedure is terminated with an error 
message.) 

FINAL PROCESSING FOR THE LOADED PROGRAM 

After all possible ERs have been resolved, the loader performs 
the following for the loaded program: 

• Assigns addresses for common areas 

• Assigns addresses for displacement in the external DSECT 
(pseudo registers) 

• Issues messages for all unresolved ERs 

• Finds the address of the program's entry point 

• Builds a condensed symbol table if the loader is operating 
in time-sharing mode 

• Identifies the loaded program to the system, unless the 
processing portion of the loader was directly invoked by the 
name HEWLOADR 

• Writes out the diagnostic message dictionary 

ASSIGNING ADDRESSES FOR COMMON AREAS (COMMON) 

The loader assigns addresses for the loaded program's common 
areas by processing entries on the CESD eM chain. 

For each CM entry, the loader assigns the next available storage 
address above the text of the loaded program. (The highest text 

Method of Operation 41 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

address before the allocation of a common area is saved in the 
communication area at CMTOPCOD. This allows the loader to J .. 
continue using work space that may be overlapped with common 
areas. The address contained in CMNXTTXT rounded to doubleword 
value is the address used. The loader ensures that there is 
enough available storage for the common area and then updates 
the pointer to available storage by adding the length from the 
current common entry to the CMNXTTXT value. (If there is not 
enough storage, an error message is issued and loading is 
terminated.) Next, if the MAP option was chosen, the common 
area is mapped. Finally, the loader relocates the address 
constants referring to the current "common" definition. (The 
adcons are relocated through processing the RLDs chained from 
the current CESD CM entry.) 

After all the CM entries in the CESD have been processed, the 
loader assigns addresses for external DSECT displacements. 

ASSIGNING ADDRESSES FOR EXTERNAL DSECT DISPLACEMENTS (PSEUDOR) 

ERNAME2 

ERNAME3 

The loader assigns contiguous storage for displacements in the 
loaded program's external DSECT by processing the CESD PR chain. 
(The storage for all DSECTs is obtained via one GETMAIN macro 
instruction, and the individual DSECTs are displacements within 
the area.) 

For each entry on the chain, the loader subtracts the alignment 
factor from hexadecimal "FFFF". The loader adds the difference 
to the location counter for the PRs to obtain the assigned 
address of the current external DSECT. (The location counter is 
o at the beginning of PR processing.) After calculating the 
current address, the loader updates the location counter by 
adding the length of the displacement specified in the CESD PRo 
Then the loader maps the DSECT displacement and relocates all 
address constants referring to it. These are indicated by RLD.\ ..... . 
table entries chained to the PR entry. ~ 

ERNAMEI 

ERNAMEI t CESD entry 
for ERNAMEI 

ERNAME2 t CESD entry 
for ERNAME2 

ERNAME3 t CESD entry 
for ERNAME3 

BLDL List 

• BLDL List and Address List before BLDL 
macro instruction is issued • 

• After execution of the BLDL, the BLDL List. 
contains TTRs for library-resolved ERs. 

+ CESD entry 
for ERNAMEI 

+ CESD entry 
for ERNAME2 

+ CESD entry 
for ERNAME3 

Address Li st 

Figure 19. BLDL List and Address List 

42 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
lY26-3922-0 

After processing all the PR entries, the loader stores the value 
contained in the location counter (the cumulative length of all 
DSECTs) in all locations in the loaded program requesting it. 
These locations are chained from CMCXDPT in the communication 
area. 20 (If NCAl was specified, there is no CXD chain pointer 
in CMCXDPT.) 

ISSUING UNRESOLVED ER MESSAGES 

For all ERs remaining in the CESD that are not marked "weak 
call," the loader issues either error or warning messages. If 
NCAl is specified or if an ER is marked "never call," the loader 
issues a warning message. Otherwise, an error message is 
issued. An error message is also issued if no text was loaded 
for the program. 

CHECKING THE LOADED PROGRAM'S ENTRY POINT 

After the loaded program has been processed, the loader cheCkS 
to determine whether the entry point name and add~ess have been 
received. This is determined by testing the program flag field 
(CMPRMFLG). Processing for the possible conditions is as 
follows: 

• Entry point name and address both received. No further 
entry point processing is required. 

• Only entry point name received. If the entry point name was 
specified by the EP= parameter but no address for the name 
was received, the loader issues an error message. Then, if 
text for the SYSlIN data set was pointed to by MOD records 
instead of being passed through text records, the address of 
the first byte of the first extent described on a MOD record 
is assigned as the entry point. Otherwise, the loader 
assigns the address of the first byte of loader-constructed 
text (found in CMBEGADR) as the entry point. 

• Only entry point address received. If the entry point 
address was received (CMEPADDR), the loader determines 
whether the referenced symbol is an ER. If so, the loader 
assigns the first byte of text as the entry point. 

• Neither entry point nor address received. The loader issues 
an error message and uses the first byte of text as the 
entry point. 

After determining the entry point for the loaded program, the 
loader calculates the pro~ram's total length. The length equals 
the difference between the address of the next available storage 
(CMNXTTXT) and the address of the first byte of text (CMBEGADR) 
added to the lengths of any extents that may be passed through 
MOD records. The loader then prints out the entry point address 
and the total length of the loaded program. 

20 See Assembler language for the use of external DSECTs and 
the CXD statement. 

Method of Operation 43 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

IDENTIFYING THE LOADED PROGRAM 

END OF LOADING 

If program loading is successful, the loader prepares to 
identify the program to the control system. 21 A parameter list 
is constructed to pass the program name, addressing mode, entry 
point address, and extent list information to the IDENTIFY macro 
instruction. (The extent list defines the storage that the 
loaded program occupies.) If storage is not available for this 
parameter list, an error message is issued and loader processing 
is terminated. 

The loader initializes the parameter list with the program name, 
addressing mode, entry point address, and length and address of 
the loader-constructed program (as the first extent). This 
information is found in the communication area. If the loader 
is operating in time-sharing mode, it attempts to build a 
condensed symbol table for use during the program's execution. 
An entry is made in the table for each control section and 
common area in the program. This table becomes the second 
extent of the program, and its address and length are placed in 
the extent list. If there is not enough storage for the entire 
table, it is not built, and the second extent of the program is 
assigned a length of zero. The extent list is then completed 
with the extent information that was passed on MOD records and 
saved in the communication area. 

Finally, the IDENTIFY macro instruction is issued. If 
identification processing is not successful, an error message is 
issued and loader processing is terminated. Otherwise, a flag 
indicating that the program has been identified is set in the 
communication area. 

After all processing for the loaded program is complete, the 
loader processing portion performs termination processing and 
then passes control to the loader control portion. The control 
portion then attempts to execute the loaded program. 

LOADER PROCESSING TERMINATION 

If the SYSLOUT and/or SYSTERM data set was opened, the loader 
prints a diagnostic dictionary describing the errors encountered 
during loading. (As errors occur, the loader sets a flag 
indicating the type of error in the bit map field (CMBITMAP) in 
the communication area.) The loader determines the highest 
error severity indicated and returns it to the caller at 
termination. 

Next the loader ensures that all diagnostic data has been 
written to SYSlOUT and then closes both the output and the 
current input data sets. 22 

The loader then sets up the return parameter list. If the 
processing portion of the loader was invoked through the entry 
point HEWlOAD, the name of the identified program is placed in 
this parameter list. Otherwise, the list contains the virtual 
storage address and size of the loaded program. 

21 This processing is performed only when the processing 
portion of the loader is invoked, either directly or by the 
control portion of the loader, by the name HEWLOAD. 

22 The current input data set is SYSLIB unless no library 
searching was done. The loader closes SYSlIN when it opens 
SYSLIB. However, if a SYSLIB DCB marked open was passed to 
the loader, SYSLIB is not closed. 

44 MVS/370 Loader logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Finally, the loader issues a FREEMAIN macro instruction for all 
its processing storage not assigned to the loaded program or to 
the condensed symbol table. (If the completion code for loading 
is greater than 4, the storage occupied by the loaded program is 
also released, including preloaded text passed through MOD 
records. If the loaded program was identified, the storage it 
occupied is released through the execution of the LOAD and 
DELETE macro instructions.) The loader then returns control to 
the control portion. 

LOADER CONTROL TERMINATION 

Before attempting to execute the loaded program, the loader 
control portion issues a DELETE macro instruction for the 
processing portion. Then, if the condition code for loading is 
not greater than 4, the loader control portion, through the 
execution of an ATTACH macro instruction, passes the user's 
parameter list to the loaded program for its execution. 

After the program's execution, the loader control portion issues 
a DELETE macro instruction for the loaded program, frees its 
processing storage, and returns to the scheduler. 

Method of Operation 45 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3922-0 

OPERATION DIAGRAMS 

LEGEND FOR DIAGRAMS 

The following diagrams show the flow of data through the loader 
and are used with the descriptions given previously in this 
section to give an integrated picture of the loader logic. Each 
diagram has an alphameric identification (for example, AI). 
Within each diagram, specific points of reference have 
alphabetic labels. When the description at the beginning of this 
section discusses a function, it refers to the operation diagram 
as a whole and to the specific labeled references where 
appropriate. For example, the description of initialization 
refers to Diagram Bl. Within the discussion, reference (B) 
refers to point (B) in Diagram Bl. 

The symbols used in the diagrams are shown in the following 
chart. 

~ Main Processing; 

~ P,·imary flow 
---------... ~Subsi diary Processing; 

Secondary Flow 

---------l.~ Data Movement 

46 MVS/370 loader Logic 

Created in Th i s 

Operation or Routine 

- -- - - - - - ~ Data Reference 

Previously Existing or 

Defi ned in Program 



3 
III 
IT 
:r 
0 
0-

0 
-to. 

0 
"0 
III ., 
QI 
IT 

0 
::lI 

.IJo 

...... 

r 

<{ 
::::> 
:;; 
.> 

w 
() 
<{ 

"" 0 
t--
V) 

>-
~ 
::i 
X 
;:) 
<{ 

r 

Notes: 

Control Information 
and Work Area for 

Initialization 

HEWLOADR, HEWLOAD 

CSECT HEWLIOCA 

CSECT HEWLRELO 

CSECT HEWLLlBR 

CSECT HEWLI DEN 

CSECT HEWLDDEF 

1. Module HEWLOADR is deleted after its execution 
and before the loaded program is given control. 

2. Load module text IS read directly into the loaded 
program area. 

3. A hex '80' in the high-order byte of a fullword 
signifies that it is the last field in the parameter list. 

(" 
c;, r-l 
M -<:r ,.. I\) -. 
Ii) 001J1 
;0 1 ,.. ~O-
:x ..00 

I\)() ,.. I\)C .... 13 
o III 

::lI 
C IT 
< 
III () 
;0 0 ,.. ::lI 
r- IT 
r- QI 

r- ::lI 
C IJ1 ,.. 
c;, ., 
III III 
;0 IJ1 

IT 
C ., 
" III () 
;0 IT ,.. II) 
-f 0-
M 
C 3 
Z QI 

IT 
III ., 
QI 
..... 
IJ1 

0 
-to. 

~ 

0:1 
3 

@ 

0 
0 
"0 
'< ., 
10 
:r 
IT 

~ 

0:1 
3 

0 
0 ., 
"0 

... 
'>D 
...... 
I\) ... 
'>D 
00 
VI 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM A2. LOADER INVOCATION 

SYSIN DD 

SYSLI B DD 

SYSLOUT DD 

SYSLIN DD 

LOGO EXEC 
PGM=LOADER 
PARM= 'MAP,LET/X,Y' 

or 
through issuing 0 LOAD, 
XCTL, LINK, or ATTACH 
macro instruction referring 

to HEWLDRGO {program 
name} or to LOADER {alias}. 
Parameters are passed via 
I ist addressed by Reg # 1 

I NOTE 11 ......... _---
HEWLDRGO /' 

......... _---
HEWLOADR 
~- -

SYS 1. LlNKLIB 

The user may invoke the Loader to load a program 
but not pass control to it. In this case, the user 
issues a LOAD and a CALL macro instruction 
referring to HEWLOADR (for loading without 
identification) or to HEWLOAD (for loading with 
identification). 

48 MVS/370 loader Logic 

-
Length of 

t 
Options 

DDnames 
options for 
Loader and 

t 
loaded program 

DCBs 

to 
Diagram B1 

Parameter list 

CSECT HEWLCTRL 

Entry point HEWLDRGO 

VIRTUAL STORAGE 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3922-0 

DIAGRAM Bl. LOADER/SCHEDULER INTERFACE AND INITIALIZATION 

from 5chedu ler 

Notes 

R • I 

LOADER 

SYSI.LlNKLIB 

HEWLCTRL chor1ge< the ie'\gtf, 

of the option li~t received frof'T' 
the scheduler to the length of 
the Loader options on Iy. 

1. HEWLIOCA issues a GETMAIN fOI the size range 

CSECT 
HEWLDDEF 

OECT 
HEWLlO(A 

(SECT 
HE'NLPELO 

(SFCT 
HEWLlISP 

(SECT 
HEWLlDW 

specified by the SIZE parameter (stored in INITRMAX) 
and the value specified by the INITRMIN field. 

2. The ~ize and oddre5~ of the Loader processing area 
are inserted by the GETMAIN SVC hondler. 

3. A DeB is constructed for the output doto set jf 
the PRINT option was chosen. A DeB is olsocons­
tructed for the input dota set if a SYSLIN control 
block, which describes an internal data areO,was 
not possed. A DeB, two DECBs, and two buffers are 
provided for the terminal do to set if the TERM 
option was chosen. 

Builds INITMAIN from 
control information analyzed 

Save area 

Minimum ~Iorog{' 

request size 

GETMAIN lisl 

Option translation 
loble 

1. [stablishes 
HEWLDCOM 

II[~~ ••••• '2. Allocates and 
c he i ns save 

GETMAIN 
(Note 1 i 3. Issues 0 

FR££MAIN for 
the INITMAIN 

Constructs DeBs for data 

See t'Jolf' 2 

8ptions 

Loader Process; 

Loader Communication Area 

sets INoie 3) and allocates output buffers 

Diagram Cl 

Diagram El 

OPEN fa. OPENLIST 
SYSTERM D(B, DECS, 

ond Buffer~ 

""1""" Prime Storage :: 
Low Address I, __________ ---'J 

Method of Operation 49 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

DIAGRAM Cl. PRIMARY INPUT CONTROL AND BUFFER ALLOCATION 

zation or 
primary input 
processing 

R # 10 

attributes in 
input DC B 

Block size 

Record format 

Num ber of bu ffers 

DCB flags 

50 MVS/370 Loader Logic 

./ 

I HEWLDCOM l 
o Ilocate buffers J:I-------~i 
and DECBs 

/' 

~ DECB N 

./ 
./ BUFF ER N (not primed) 

./ -~ -~ 
./ l: l: 

./ Loader Processing Storoge 

HEWLDCOM 

Loader Processi ng Storoge 

Diagram D1 

Prime buffers 

Input Data Set 

Diagram 02 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM D1. OBJECT MODULE PROCESSING 

Input may 
either be from 
an external 
device 

or Input Data Set 

from on interno I SYS LI N 
data area whose control 
block is passed to the 
loader in the DCB list. 

I SYSLI N control block I 

CMGETREC 

HEWLREAD 
reads input 

RECORD 1 

RECORD 2 

RECORD 3 

RECORD 4 

" Object module 
" Buffers or Internal 

" SYS LI N data area 

RETURN 

" " " " 

HEWLEND ~ RETURN 

E 5 D processing; 
HEWLESD 

TXT processing; 
HEWLTXT 

RLD processing; 
HEWLRLD 

END processing; 
HEWLEND 

Method of Operation 51 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM D2. LOAD MODULE PROCESSING 

Input Doto Set 

HEW 
reods input 

I npu t record 
(not text) 

l RLD Buffer -- If first 

HEWLEN~ Return 
~ to caller 

52 MVS/370 Loader Logic 

Prelimi~ary ESD~ 
process I ng 
HEWLESD 

SDprocessin~ 
HEWLESD ~\.V 

inish 

sing 
module 
or return 
to caller 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

DIAGRAM D3. ESD RECORD PROCESSING (GENERALIZED) 

Object Module Buffer or RLD Buffer 

ESD/CESD data 

NAME 

Input 

Do any preliminary 
processing needed. 
Search CESD. 

HEWLESD 

from HEWLODE 
or HEWLRELO 

Information moved 

depends on entry type 

Q) Move input 
information 

No 

SYSLOUT data set 

HEWLMAP 
........ __ ~. make mop 

entry 

make translation lD 

la(b~lelielntlrY"II~~~========~~~IIIIII~~ After processing all input 
entries in data, return 

Translation Tobie extent 

Note: ESD processing differs according to entry type 
and whether resolution is possible. For detailed information, 
refer to "External Symbol Dictionary Processing". The following 
diagrams give some examples of processing for different conditions. 

Method of Operation 53 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM D4. EXAMPLE OF INPUT ESD PROCESSING OF SD-SECTION DEFINITION (HEWLESD) 

The input address is 
u sed to ca leu la te the 
Loader-assigned address 
and the relative relocation. 

CMTYPCHN 

NOMATCH -
Makes a CESD entry, 
chains it and makes 
a translation table 
entry for it. 

MATCHED 
Changes the existing 
ER ta SD, rechains 
the entry and makes 
a translati an table 
entry for the input 
entry referri ng to the 
existing entry 

0f---------l 

2 r-------i 

CE SD entry 

01--_____ -1 

2 
r--------i 

3 

:r 
Translation Table Extent 

Laader-
assigned 
address 

Ono match exists in the GESD (nanresolu1ion processing) 
This example shows processing far an input SD entry when CD a match exists (re,alution procesSing) 

This example returns to the caller 

54 MVS/370 Loader Logic 

Return 
to caller 

Go to 
process 
next ESD 
entry 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

DIAGRAM DS. EXAMPLE OF INPUT ESD OF ER-EXTERNAL REFERENCE PROCESSING (HEWLESD) 

Uses entry's 
type and name 
to search type chains 

CMTYPCHN o o 

2 Note 1. The high bit of 
I-.J...I-----l the first byte is 

set on to show 
CESD entry is 
for ER. 

NOMATCH 
make CESD 
entry I chain 
entry, and 
make transla­
tion table 
entry 

CESD entry for ER 

Go to process 
next ESD 
entry 

MATCHED - }-. 
make translation Go to rocess 
table entry to p 

.• CESD next ESD entry eXisting 
entry 

This example shows processing for an input ER entry when G) no match in the CESD exists (non resolution processing) 

® a match exists (resolution processing) 

Method of Operation 55 



Th;s document conta;ns restr;cted mater;als of IBM. © Copyr;ght IBM Corp. 1972,1983 
lY26-3922-0 

DIAGRAM D6. EXAMPLE OF ESD ID TRANSLATION 

Input CESD entry 
TRANSID 
translates 10 
via tables INAM+I\y 

I Note 1 
Diagram D2 

Notes 

I 
I 
I 
I 
L ____ _ 

1. Input LR entry contains 

the ESD ID for (SECT 
containing NAME. 

2. Only for obiect module 
input, the input LD is 
placed on temporary 

chain. 

o 
I 

T T 
Translation Table Extent 

I 

I 
I 
I 
! 

ThIS example shows prelIminary processIng of an Input LR Translation ensures 
the Input 10 is valid and obtains the CESO address of the related SO. 

56 MVS/370 loader log;c 

/ 
I 

/ 
I 
I 

I 
I 
I 

Return 

to caller 

\ I ESD ..... Return 

'--__ '-----'---.J ID ~ to caller 

CESD Entry for LR (Iemporary) 

J 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM D7. OBJECT MODULE TEXT PROCESSING 

Object Modu Ie Buffer 
Table ond Buffer Area 

I I R # 5 • ESD IDoftext 

• 
T ext Record Displacement R # 6 I ---, in input 

• 
I Length of 

text record 

I 
I 

Input 

J R # 7 

I R # 8 

\ 
\ 

r---------~ 
I 

Address 
for text I ~ 

I 

I 
I 
I 
I 

CMLOWTBL 

Colculate the main 

record 

Text alreody loaded 

I 5 Ar a Looded Program storage e 

Move text to assigned 
address; Update storage 

No pointer if needed 

J.sl •••••••• Return 

HEWERRQR 
to end loading 

Method of Operation 57 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
LY26-3922-0 

DIAGRAM D8. LOAD MODULE TEXT PROCESSING 

RLD Buffer 

I /' I I Lenr,th of 
I D/ ength list I 

CMGETREC ~ 

ID/length list Con tro I record Text record 

Text control or control/RLD record 

Input 
CMLOWTBL 

Input Data Set 

I t~nd of loaded !I program space 

Process entire 
ID/length 
list to determine 
which CSECTs are 
for loaded 

~: 

1. Read text record, unless the record is 
to be skipped; read the following control 
record also, unless the text record is the 
last or CSECTs are to be deleted. 

2. See Figure 19. 

58 MVS/370 Loader Logic 

\. 
\ 

Calculate 

L Read Address\ 
Note 2 

Loaded Program's Storage Area 

Return 

J 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGRAM D9. RLD RECORD PROCESSING 

Reg 7 

Length of RLDs 

Note 1 : 

Note 2: 

Note 3: 

TRANSID -

Translate 
R pointer and 
P pointer to 

CESD addresses 

RLD data in input buffer 
Note 1 

P-pointer 
ESD ID 

R-pointer 
ESD ID 

NAME 

CESD entry 1 

t C ESD entry 1 

C ESD entry 2 

i relocation 
constant 

CESD entry 2 

[ I 

(for address constant) 

Chain RLD 

HEWLERTN-~ 
Relocates address B 
constant 

The input buffer is the RLD buffer (load module) or an object module buffer. t 
The Loader calculates the adcon address using the P-pointer CESD entry's relocation constant and the Adcon and flags from the 
input RLD entry. The flags are inserted in the new RLD entry unless the input RLD is for a CXD PRo 

If the type in the CESD entry for the address constant is PC, SD, or LR relocation is perfonmed. If the type is CM, PR, or ER, the 
RLD entry is chained to the CESD entry. 

Method of Operation 59 



C1' 
C 

3: 
<: 
VI 

" VI 
...... 
C 

r­
o 
III 
a. 
11) ., 
r­
o 
Ul 

o 

~ 

1---------1 

I I 
1 I ,. , 

f%ove entry point address if names match 

'- - - - - ~ - - - - -(Compare names}.---- - - - - - ~ 
I i I 
---------- I 

Contents Directory Entry Queue I 

Try to find current 

HEWACALL ,/ " y., / 1Ii •••••• ~~ALL OPTlO~;.... ___ .... , 

ER name in a (DE Try to resolve 

f,om HEWLIOCA 
Diagram B 1 

Final Processing 

No 

A each ER from the 
Li nk Pack Area 

entry 

IT - T - EIMove each + I 1+2 i .,3 ! 7TTR "'umed 

Address lists (Note 1 ) 

8LDL list 

li brory Data Set 

Mop I Update 
resolved to next 

odcon ER entry 

move TTR 

Member 
NAME4 

No 

Return 

to caller 

library Data Set DCB 

~ 

0 r--I 
H -<::r :.- N-' 
CO) C1'UI 
;Q 1 
:.- Via. 
::z -.00 

NO 
IT! NC .... 13 

CID 
:::J 

en r1" 
IT! 
() 0 
0 0 
Z :::J 
0 r1" 
:.- III 
;Q 
< :::J 

UI 
H 
Z ., 
'U ID 
C UI 
-t r1" ., 
'U 
;Q 0 
0 r1" 
() ID 
IT! a. 
en 
en 3 
H III 
Z r1" 
CO) ID ., 

Return 

to caller III .... 
UI 

0 
-+t 

1-4 
~ 
3: 

@ 

0 
0 

" <c: ., 
Ul 
::r 
r1" 

1-4 
~ 
3: 

0 
0 ., 
" .... 
-.0 ...... 
N 

.... 
-.0 
00 
VI 

l, 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

ORGANIZATION OF THE LOADER 

Figure 20 shows the organization of the loader. The flow of 
control through the first four levels of the processing portion 
of the loader <module HEWlOADR) is listed in the control level 
tables below. 

Load Module 
HEWLDRGO (Alias LOADER) Load Module 

HEWLO D ( A R Alias HEWLOAD) 

HEWLCTRL) HEWLIOCA 

HEWLIOCA 

Initialization, 

( - Input Control, 
Allocation 
Processing 

Loaded 
I 

Program + HEWLLlBR 
(Built by HEWACALL 
HEWLOADR) 

Secondary 
Input and Final 
Processing 
'---

HEWLLlBR 

HEWLODE 

Load Module 
Processing 

HEWLIOCA 

HEWLREAD 

Input Read ing 

HEWLLlBR HEWLRELO 

LMTXT HEWLRLD 

Load Module RLD Record 
Text 
Processing 

Processing 

Note: The CSECT containing the code of a function is noted outside 
-- the functional black. 

Figure 20. Loader Organization 

HEWLIDEN 

HEWLIDEN 

Identification 
of Loaded 

program 

HEWLRELO 

HEWLRELO 

Object Module 
Processing 

HEWLRELO HEWLRELO HEWL RELO 

HEWLESD HEWLTXT HEWLMOD 

ESD Record Object Modu Ie MOD Record 
Processing Text Processing Processing 

Organization of the loader 61 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

ROUTINE CONTROL-LEVEL TABLES 

The routine descriptions within a level are listed 
alphabetically in Figure 21 through Figure 24. 

Routine 

HEWLIOCA 

Purpose 

Initialization, primary 
input control, and 
allocation processing 

Figure 21. HEWLOADR--Level 1 

Routine 

HEWACALL 

HEWBTMAP 

Purpose 

Secondary input and 
final processing 

Processing of error-bit 
map and printing of 
diagnostic dictionary 

Called 
Routines 

HEWLPRNT 

HEWBUFFR 

HEWPRIME 

HEWLRELO 

HEWLODE 

HEWACALL 

HEWLIDEN 

HEWBTMAP 

Called 
Routines 

HEWOPNLB 

COMMON 

HEWLMAP 

HEWLERTN 

HEWERROR 

HEWPRIME 

HEWLRELO 

HEWLODE 

HEWLPRNT 

HEWTERM 

Figure 22 (Part 1 of 2). HEWLOADR--Level 2 

62 MVS/370 Loader Logic 

Calling Conditions 

Called if SYSLOUT data set is 
open 

If more data exists on SYSLIN 

If SYSLIN input is an object 
module 

If SYSLIN input is an object 
module 

If SYSLIN input is a load module 

When all SYSLIN input is 
processed, unless SYSLIN did not 
open 

If the loaded program is to be 
identified to the control program 

Input processing completed 

Calling Conditions 

If ERs cannot be resolved from 
primary input or the LPA 

Always 

If an ER is resolved 

If an ER is resolved 

If an error occurs 

If SYSLIB input is object modules 

If SYSLIB input is object modules 

If SYSLIB input is load modules 

If SYSLOUT is open and messages 
are required 

If the TERM option is specified 
and messages are required 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Routine 

HEWBUFFR 

HEWLIDEN 

HEWLODE 

HEWLPRNT 

HEWLRELO 

HEWPRIME 

Purpose 

Buffer Management 

Identification of the 
loaded program to the 
control program 

Process a load module 

Print output to SYSLOUT 
data set 

Called 
Routines 

FREECORE 

GET CORE 

IDENTER 

IDMIHI 

HEWERROR 

HEWLREAD 

HEWLEHD 

HEWLESD 

HEWLRLD 

LMTXT 

RDCHECK 

WTWRITE 

WTCHECK 

Process an object module HEWLREAD 

Read records into all 
but one buffer before 
HEWLRELO receives 
control 

HEWLEHD 

HEWLESD 

HEWLRLD 

HEWLTXT 

HEWLMOD 

RDREAD 

Figure 22 (Part 2 of 2). HEWLOADR--Level 2 

calling Conditions 

If previous or current (not the 
first) allocation is for object 
module 

If no previously allocated area 
is large enough for current 
request 

Always, unless extents will 
overlap loader work space 

Always, unless extents will 
overlap loader work space 

If an error occurs 

Always 

If end-of-module is indicated 

If CESD record is received 

If RLD record is received 

If TXT record is read in 

If DECD was previously written 

Always 

Always 

Always 

If END card received 

If ESD card received 

If RLD card received 

If TXT card received 

If MOD card received 

Always 

Organization of the Loader 63 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3922-0 

Routine 

COMMON 

FREECORE 

GET CORE 

IDENTER 

IDMINI 

HEWERROR 

HEWlCNVT 

HEWlEND 

HEWlERTN 

HEWlESD 

HEWlMAP 

Purpose 

Assign addresses to 
common areas 

Chain deallocated area 
to free list 

Allocated storage for 
allocation request 

Create entry in extent 
list 

Create a condensed 
symbol table 

Handle error messages, 
severity code 4 errors 

Convert binary quantity 
to hexadecimal 

Process END card, 
reinitialize for next 
module 

Relocate all adcons 
indicated by RlD chain 

Create CESD from input 
ESD/CESD 

Create map entry for 
referenced location in 
loaded program 

Called 
Routines 

PSEUDOR 

HEWlMAP 

HEWlERTN 

none 

HEWERROR 

none 

none 

HEWlPRNT 

HEWTERM 

none 

TRANSID 

HEWERROR 

HEWERROR 

lOADPROC 

CESDSRCH 

TRANSlAT 

CESDENT 

ENTER 

CKECKEP 

MATERSD2 

TRAHSID 

HEWlPRHT 
IEWlCHVT 

Figure 23 (Part 1 of 3). HEWlOADR--level 3 

64 MVS/370 loader logic 

Calling Conditions 

Always 

Always, unless no CM entries were 
received 

Always, unless no CM entries were 
received 

If table overflow occurs 

If SYSlOUT data set is open 

If the TERM option is specified 

If END card specifies entry point 
address 

If error occurs in end card 
processing 

Invalid 2-byte adcon 

If input is a load module 

Input entry is not NUll or 

If NUll entry is made 

PC 

If PC or lR entry is required 

If PC entry is required 

If PC entry is required 

If PC entry is required 

If lD/lR is received 

Always 
Always 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Routine 

HEWLMOD 

HEWLODE 

HEWLPRNT 

HEWLREAD 

HEWLRELO 

HEWLRLD 

HEWLTXT 

HEWOPNLD 

HEWPRIME 

HEWTERM 

Purpose 
Called 
Routines 

Process MOD card, store ALLOCATE 
text origin, length, and 
extent information 

Process a load module 

Print output to SYSLOUT 
data set 

Handle request for data 

HEWLREAD 

HEWLEND 

HEWLESD 

HEWLRLD 

LMTXT 

RDCHECK 

WTWRITE 

WTCHECK 

RDREAD 

RDCHECK 

Process an object module HEWLREAD 

HEWL END 

HEWLESD 

HEWLRLD 

HEWLTXT 

Relocate adcons TRANSID 
indicated by RLD entries ALLOCATE 
received or chain RLDs 
off CESD entry for R 
pointer 

Move object module text 
to correct space 

Open SYSLIB; close 
SYSLIN 

Read records into all 
but one buffer before 
HEWLRELO receives 
control 

Print output to SYSTERM 
data set 

HEWLERTN 

TRANSID 

RELOREAD 

HEWERROR 

HEWBUFFR 

RDREAD 

WTWRITE 

WTCHECK 

Figure 23 (Part 2 of 3). HEWLOADR--Level 3 

Calling Conditions 

If extent information is passed 
on MOD card 

Always 

If end-of-module is indicated 

If ESD record is read in 

If RLD record is read in 

If TXT record is read in 

If DECB was previously written 

Always 

Always 

Always 

Always 

Always 

If END card is received 

IF ESD card is received 

If RLD card is received 

If TXT card is received 

Always 
If no free RLD entry is available 

If relocation is possible or if 
delinking required 

Always 

Always 

If invalid ID received 

Unless SYSLIB was not opened 

Always 

Always 

Always 

Organization of the Loader 65 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
L Y26-3922-0 

Routine 

LMTXT 

RDCHECK 

RDREAD 

WTCHECK 

WTWRITE 

Purpose 

Read load module text 
into main storage 

Check DECB 

Read input using DECB 
information 

Check DECB 

Write output using DECB 
information 

Called 
Routines 

TRANSID 

HEWLREAD 

HEWERROR 

PROCEOM 

none 

none 

none 

none 

Figure 23 (Part 3 of 3). HEWLOADR--Level 3 

66 MVS/370 Loader Logic 

Calling Conditions 

Always 

Unless record is to be skipped 

If text record not received 

Always 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

Routine 

ALLOCATE 

CESDENT 

CESDSRCH 

CHECKEP 

ENTER 

HEWBUFFR 

HEW ERROR 

HEWLCNVT 

HEWLEND 

HEWLERTN 

HEWLESD 

Purpose 
Called 
Routines 

Allocate table extent HEWERROR 

Get CESD entry form free ALLOCATE 
entry list or call 
ALLOCATE to obtain an 
entry 

Search CESD for input MATCHED 
name 

Check CESD entry for 
specified entry point 

Enter information in 
CESD entry for PC or SD 

Buffer management 

Handles error messages. 
severity code 4 errors 

Convert binary quantity 
to hexadecimal 

Process END card. 
reinitialize for next 
module 

Relocate all adcons 
indicated by RLD chain 

Create CESD from input 
ESD/CESD 

NOMATCH 

none 

HEWERROR 

FREECORE 

GET CORE 

HEWLPRNT 

HEWTERM 

none 

TRANSID 

HEWERROR 

HEWERROR 

LOADPROC 

CESDSRCH 

TRANSLAT 

CES"DENT 

ENTER 

CHECKEP 

MATERSD2 

TRANSID 

Figure 24 (Part 1 of 3). HEWlOADR--level 4 

Calling Conditions 

Table overflow 

If name ;s found 

If name is not found 

If program is too large 

If previous or current (not the 
first) allocation request is for 
object module 

If no previously allocated area 
is large enough for current 
request 

If SYSLOUT data set is open 

If END card specifies entry point 
address 

If error occurs in END card 
processing 

Invalid 2-byte adcon; invalid 
3-byte adcon 

If input is a load module 

Input entry is not NULL or PC 

If NULL entry is made 

If PC or LR entry is required 

If PC entry i s required 

If PC entry is required 

If PC entry is required 

If LD/LR is received 

Organization of the Loader 67 



This document contains restricted materials of IBM. Q Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Routine 

HEWLMAP 

HEWLPRtn 

HEWLREAD 

HEWLRLD 

HEWLTXT 

HEWTERM 

LMTXT 

LOADPROC 

MATERSD2 

PROCEOM 

PSEUDOR 

Purpose 

Create map entry for 
referenced location in 
loaded program 

Print output to SYSLOUT 
data set 

Handle request for data 

Called 
Routines 

HEWLPRHT 

HEWLCVHT 

RDCHECK 

WRWRITE 

WTCHECK 

RDREAD 

RDCHECK 

Relocate adcons TRAHSID 
indicated by RLD entries 
received or chain RLDs 
off CESD entry for R 
pointer 

Move object module text 
to correct spaces 

Print output to SYSTERM 
data set 

Read load module text 
into virtual 

Preliminary processing 
for load module CESD 

Test length and request 
map entry 

Go to process 
end-of-module 

Assign displacements to 
pseudo registers 

ALLOCATE 

HEWLERTH 

TRANSID 

RELOREAD 

HEWERROR 

WTWRITE 

WTCHECK 

TRANSID 

HEWLREAD 

HEWERROR 

PROCEOM 

CESDEHT 

CHAINING 

HEWLEND 

HEWLPRNT 

FIHISHUP 

HEWLMAP 

HEWLERTN 

Figure 24 (Part 2 of 3). HEWLOADR--Level 4 

68 MVS/370 Loader Logic 

Calling Conditions 

Always 

Always 

If DECB was previously written 

Always 

Always 

Always 

Always 

Always 

If no free RLD entry is available 

If relocation is possible or if 
delinking is required 

Always 

Always 

If invalid ID is received 

Always 

Always 

Always 

Unless record is to be skipped 

If text record not received 

Always 

If entry type is PC,SD,LR 

Always 

Always 

If displacement is assigned 

Always 

If displacement is assigned 

If displacement is assigned 

J 



~ 

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Routine 

RDCHECK 

RDREAD 

RELOREAD 

TRAHSID 

TRAHSLAT 

WTCHECK 

WTWRITE 

Figure 24 

Called 
Purpose Routines 

Check DECB none 

Read input using DECB none 
information 

Go to HEWLREAD for more HEWLREAD 
input 

Translate input ESD ID ALLOCATE 
to CESO address 

HEWERROR 

Make a translat;on tabla TRAHSIO 
entry 

Check DECB none 

Write output usi ng OECB none 
information 

(Part 3 of 3). HEWLOADR---Level 4 

Calling Conditions 

Always 

If new extent is required 

If table overflow or invalid 10 
occurs 

Unless LD entry 

Organization of the Loader 69 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3922-0 

MICROFICHE DIRECTORY 

Name 

AllOCATE 

CMTRCTRl 

CMTYPCHN 

COMMON 

DECB 

ERCODES 

FINISHUP 

HEWACAll 

HEWBTMAP 

HEWBUFFR 

HEWERROR 

HEWlCNVT 

HEWlCTRl 

HEWlDCOM 

HEWLDDEF 

HEWlENO 

HEWlERTN 

HEl-llESD 

The microfiche directory is designed to help you find named 
areas of code in the program listing, which is contained on 
microfiche cards at your installation. Microfiche cards are 
filed in alphameric order by object module name. If you wish to 
locate a control section, entry point, table, or routine on 
microfiche, find the name in the first column and note the 
associated object module name. You can then find the item on 
microfiche. 

Description Object Module CSECT synopsis 

Allocat ion HEWlDREl HEWlRElO Allocates storage for 
Routine table entries 

Table HEWlDREl HEWlRElO Pointers to 
translation table 
extents 

Table HEWlDREl HEWlRElO Pointers to CESD type 
chains 

label HEWlDLIB HEWlLIBR Assigns addresses to 
common 

DSECT HEWlDIOC HEWLIOCA Model DECB 

DSECT HEWlDIOC HEWLIOCA Error code definitions 
HEWlDREl HEWlRElO 
HEWlDLIB HEWlLIBR 

label HEWlDLIB HEWlLIBR Prints finishing 
messages 

Entry point HEWlDLIB HEWlLIBR Automatic library call 
processing 

Entry point HEWlDLIB HEWlLIBR Diagnostic dictionary 
processing 

Buffer allocation HEWlDIOC HEWLIOCA Buffer and DECB 
routine allocati on routine 

Entry Point HEWlDLIB HEWlLIBR Error log routine 

Entry Point HEWlDREl HEWlRElO Binary-Hex conversion 
routine 

Entry Point and HEWlDCTR HEWlCTRl loader control module 
CSECT 

DSECT HEWlDIOC HEWLIOCA Communication area 
HEWLDLIB HEWLLIBR 
HEWLDREl HEWLRElO 

CSECT HEWLDDEF HEWLDDEF SYSGEN option defaults 

Entry Point HEWlDREl HEWlRElO End processing 

Entry Point HEWLDREl HEWLRElO RlD relocation routine 

Entry Point HEWlOREL HEWlRElO ESO record processing 

70 MVS/370 loader Logic 



This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983 
lY26-3922-0 

Name Description Object Module CSECT synopsis 

HEWLIDEN Entry Point HEWlDIDY HEWLIDEN Builds extent list for 
IDENTIFY and issues 
IDENTIFY 

HEWLIDEN Entry Point and HEWlDIDY HEWLIDEN Identification routine 
CSECT 

HEWLIOCA Entry Point and HEWlDIOC HEWLIOCA Initialization, I/O, 
CSECT control, and 

allocation processing 

HEWlLIBR CSECT HEWlDLIB HEWllIBR Automatic library call 
and load module 
processing 

HEWlMAP Entry Point HEWLDREl HEWLRELO Creates map printout 

HEWLMOD Entry Point HEWLDREl HEWlRElO MOD record processing 

HEWlOAD Entry Point HEWLDIOC HEWLIOCA Entry point for 
loading with 
identification 

HEWLODE Entry Point HEWlDLIB HEWLLIBR Load module processing 

HEWLPRNT Entry Point HEWLDIOC HEWLIOCA Print routine 

HEWLREAD Entry Point HEWlDIOC HEWLIOCA Read routine 

HEWLRElO Entry Point HEWLDREL HEWLRELO Object module 
processor 

HEWLRELO CSECT HEWLDREL HEWLRElO Object module, ESD, 
RLD, and map 
processing 

HEWlRLD Entry Point HEWLDREL HEWLRELO RLD record processing 

HEWLTXT label HEWLDREl HEWlRELO Object module text 
processing 

HEWOPNLB Entry Point HEWLDIOC HEWLIOCA Opens SYSLIB data set 

HEWPRIME Entry Point HEWLDIOC HEWLIOCA Object module buffer 
prime routine 

HEWTERM Entry Point HEWLDIOC HEWLIOCA SYSTERM routine 

IDMINI Label HEWLDIDY HEWLIDEN Constructs MINI-CESD 
for test package if 
TSO is operating 

IHITMAIN DSECT HEWlDIOC HEWLIOCA Initial work area 

LMTXT Label HEWlDLIB HEWLLIBR load module text 
processing 

MODELDCB Label HEWlDIOC HEWLIOCA Model DCB for SYSLIN, 
SYSLIB 

OPENEXIT Entry Point HEWLDIOC HEWlIOCA DCB exit routi ne 

PSEUDOR label HEWlDLIB HEWlLIBR Processes pseudo 
registers 

SYNAD Entry Point HEWLDIOC HEWLIOCA SYNAD routine 

Microfiche Directory 71 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Name Description Object Module CSECT synopsis 

TRANSID Entry Point HEWLDREL HEWLRELO Translates ESD ID to 
CESD address 

72 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DATA AREAS 

Data Area 

Address list 

BLDL list 

CESD control table 
(CMTYPCHH) 

CESD table 

This section provides a detailed description of internal data 
areas used during loader processing. The data areas are 
described in alphabetic order. 

Also included in this section is a summary of data area use and 
construction (Figure 25). 

Buil t By used and/or Modified By 

HEWACALL 1 

HEWACALL 1 

HEWLESD HEWACALL , HEWLESD 

HEWL ESD HEWACAL L. HEWLERTN, HEWLESD, 
HEWLRLD, HEWLTXT, LMTXT 

Condensed symbol table HEWLIDEH TSO test facilities 

Extent chain HEWLMOD HEWLIDEH 

IDENTIFY parameter list HEWLIDEN IDENTIFY macro instruction 

HEWLDCOM HEWLIOCA 2 

INITMAIH HEWLIOCA 1 

RLD table l HEWLRLD HEWACALL, HEWLERTN, HEWLRLD 

Translation table HEWL ESD HEWACALL , HEWLESD, HEWLRLD, 
HEWLTXT, LMTXT, TRANSID 

Figure 25. Data Area Construction and Usage 

Notes to Figure 25: 
1 Built and processed entirely within one routine. 

2 Major communication area throughout loader processing. 

Data Areas 73 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

BLDL List 

Built by Secondary Input Proce"or 

Address List 

Bui It by the Secondary Input Processor 

AI A2 

"---

A3 

C ESD entry address (4 bytes each entry) 

The entries in this list are in one-to-one 
correspondence with the BLDL list entries. 
The Loader stores the address from the BLDL 
entry in the address list before issuing the 
BLDL macro instruction 

Figure 26. Address list 

4-11 12-15 IJ 
~--~----------------~--------~----~ 

Name field (8 bytes) 

Length (2 bytes) 

LL - length of each entry in the BLDL 
list (16 bytes in the Loader) 

liI1m!w (2 byte s) 

I'F - total number of entries in the BLDL li,t 

Figure 27. BlDl list 

74 MVS/370 loader Logic 

(entry FF) 

"" 

Not u sed by the Loader 

CESD oddres;lTTR 
Originally contains the CESD address 
of an ER. (4 byte,) If the name wa, 
found in the SYSLIB directory, BLDL 
replaces the CESD address with TTR. 
(bytes 12- 14) 
TT - relative track number 
R - block number on the track 

each entry 

16 bytes 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CESD Control Table (CMTYPCHN) 
Bui It by the ESD Processor 

CESD type chain pointer (4 bytes each entry) 
The pointers, P O-P7, are listed in the 

following order by type: SD, 
LD, ER, LR, PC, CM, PR, 
NULL 

Note: The CESD control table is defined in the communications 
area (HEWLDCOMl. 

Figure 28. CESD Control Table (CMTYPCHN) 

Data Areas 75 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CESO Table Entry 
Built by the ESO processor 

I 0-3 I 4-11 13-15 I 16-19 I 
L Use depenJs on entry type 

Type LO - ESO 10 for SO; preliminary use only (bytes 18-19) 

Type PR - boundary alignment (byte 16) and length (bytes 18-19) 
Alignments 

7 - doubleword 
3 - fullword 
1 - halfword 
o - byte 

Types SD, PC, LR, eM - relative relocation constant 

Type ER - 0; if ER was created from an LR - input address 

Type eM - address of extended portion of entry 

- Address/displacement field (3 bytes) 
Types SO, PC, LR, CM - Loader- assigned address 

Types CM, PR, ER - address of RLO entry chain (0, if no RLOs) 

Type PR - displacement within OSECT 

Type LO - input address (preliminary use only) 

'----- Flogs/type field (1 byte) F F F F F TTT; FI -5 are flags, TI-3 indicate type 

Secti on defj ni ti on (SO) - XOXOO 000 
Lobel definition (LO) - OXOOO 001 
External reference (ER) - XXXXX 010 

Label reference (LR) 
Private code (PC) 
Common (CM) 
Pseudo regi ster (PR) 

- XOOOO 011 
- 00000 100 
- 00000 101 
- 00000 110 

Fl-"delete", F3-"no length" 
F2-! IlD processed II 
Fl-"delete," Fr"weak call," F3-"BLOLtried," 
F4-"TTR found," Fs- ll never calli! 
Fl-"delete" 

'----- Namefield (8 bytes) 
8 character symbolic name or blanks for blank common 

and private code (unused for extended portion of CM entry) 

'--- Chain address (4 bytes) 

Pointer to next entry on CESD type chain; if end of chain, O. 
(unused for extended portion of CM entry) 

Figure 29. CESD Entry 

76 MVS/370 Loader Logic 

J 

J 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3922-0 

Condensed Symbol Table Entry 

Built by the Identification Processor 

0-7 8 9-11 

Type -

Address - Assigned address of this 
symbol (3 bytes). 

(1 byte) 
Sec tion defin ition 

mmon (CM) 
(SD) xxxxx 000 

xxxxx 101 Co 

5 y mbol - The 8-character exte mal name (8 bytes). 

Figure 30. Condensed Symbol Table Entry 

Data Areas 77 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Data Event Control Block 
Bui It by I/O, Control, and Allocation Processor 

..... l------ ----- ----- Standard DE C B 

I 0-3 I 4-5 I 6-7 I 8-1 I 1 12-15 I 

~I Added by the I 
loader 

16-19 
I 

20-23 J 
L DECDECPT (4 bytes) 

address of next DECB (4 bytes) 

'--- DECIOBPT (4 bytes) 
address of the I/O block 

- DECAREA (4 bytes) 
address of the read/write 
area for the data 

L '"'CSA''' h",,) 
address of the DeB for the read/write dato set 

L - NCCNGT",' "',",: 
length of the data to read/write 

- DECTYPE (2 bytes) 
type of the I/O macro instruction and options 

'--- DECSDECB (4 bytes) 
event control block 

Figure 31. Data Event Control Block (DECB) 

78 MVS/370 Loader Logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3922-Q 

Extent Chain Entry 

Built by the MOD Processor 

, 
0-3 

, 4-7 , 8-11 , 

'L..-----length - length of the extent (4 bytes). 

'------ Address - Address of the extent derived from 
the"1iiOD record (4 bytes). 

L-____ Chain Address - Address of the next entry on the extent 
chain; if end of chain, zero (4 bytes). 

Figura 32. Extent Chain Entry 

Data Area!! 79 



r 
r 

, 

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

IDENTIFY Parameter list 

Built by the Identification Processor 

Address of entry point of program to be identified 

Program name - the 8-character symbolic name 

h 

Length, in bytes, of extent list 

Number of extents described in this list 

Length of extent 1 {Loader-constructed program} 

Length of extent 2 {Condensed symbol table} 

I" ,,, 

Leng th of extent n * 

Address of extent 1 {Loader-constructed program} 

Address of extent 2 {Condensed symbol table} 

. ,L. 

'" '" 

Address of extent n 

~ 

I ~.~------------------------------------4bytes------------------------------------~~ 
*A hex '80' in the high-order byte signifies the last length. 

Extent 
List 

Figure 33. IDENTIFY Parameter List 

80 MVS/370 Loader Logic 

J 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-Q 

Offset 
Decimal Hex Length Symbol 

o 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 
100 
102 
104 
106 
108 
112 
116 
120 
128 
136 
144 
152 
160 
168 
172 
176 

177 

178 

o 
8 
C 
10 
14 
18 
1C 
20 
24 
28 
2C 
30 
34 
38 
3C 
40 
44 
48 
4C 
50 
54 
58 
5C 
60 
64 
66 
68 
6A 
6C 
70 
74 
78 
80 
88 
90 
98 
AO 
A8 
AC 
BO 

Bl 

B2 

8 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
4 
4 
8 
8 
8 
8 
8 
8 
4 
4 
1 

1 

1 

CMXDBLWD 
(CMADCOI'O 
CMFSTSAV 
CMBEGADR 
CMRDCBPT 
CMWDCBPT 
CMTDCBPT 
CMRDECPT 
CMWDECPT 
CMGETREC 
CMPUTREC 
CMTRMREC 
CMNXTTXT 
CMLSTTXT 
CMLOWTBL 
CMHITBL 
CMIOLS T1 
CMIOLST2 
CMIOLST3 
CMCORE1 
CMCORE2 
CMTOPCOD 
CMLIBEOD 
CMLIBSYN 
CMLIBEXL 
CMBLKSIZ 
CMMAXLHE 
CMMAPLIN 
CMWLRECL 
CMMAXLST 
CMMAINPT 
CMMAINSZ 
CMPRNTDD 
CMLINDD 
CMLIBDD 
CMTERMDD 
CMEPNAME 
CMPGMNM 
CMLINDCB 
CMLIBDCB 
CMPRMFLG 
CQRES 
CQMAP 
CQPRINT 
CQLET 
CQCALL 
CQEPNAME 
\;QEPADDR 
CQTERM 
CMIOFLGS 
CQEOCB 
CQEOFB 
CQEOFSB 
CQRECFM 
(CQUNDEF) 
CQFIXED 
CQIGNCR 
CQIOERR 
CMFLAG3 
CQTS 
CQPGMNM 
CQPASLHI 

Description 

Temporary doubleword 
Relocation alignment area 
Pointer to first save area 
Default entry point to module 
Input DCB pointer 
Output DCB pointer 
System DCB pointer 
Input DECB pointer 
Output DECB pointer 
Input logical record pointer 
Output logical record pointer 
System buffer pointer 
Next address to be assigned to a CSECT 
Highest text address assigned to current CSECT 
Lowest address assigned for loader tables 
Highest storage address available to loader 
Open list, DCB pointer #1 
Open list, DCB pointer #2 
Open list, DCB pointer 13 
Corresponds to CMNXTTXT for pre-loaded text 
Corresponds to CMLSTTXT for pre-loaded text 
Highest text address before common allocated 
EODAD error routine pointer for passed SYSLIB 
SYNAD error routine pointer for passed SYSLIB 
Exit list pointer for passed SYSLIB 
Block size of current input object module 
Maximum line count (SYSPRIHT) 
Length of map line 
SYSPRIHT record size 
Maximum length of invalid options list 
Variable conditional GETMAIN address 
Variable conditional GETMAIN size 
Print ddname 
Primary input ddname 
Library ddname 
SYSTERM ddname 
Entry point name 
Program name 
Passed SYSLIN control block pointer 
Passed SYSLIB DCB pointer 
Parameter flags: 
X'OI' RES/NORES 
X'02' MAP/NOMAP 
X'04' PRINT/NOPRINT 
X'08' LET/NOLET 
X'10' CALL/NOCAlL 
X'20' Entry point name defined 
X'40' Entry point address defined 
X'80' TERM/NOTERM 
I/O flags: 
X'OI' End of concatenation 
X'02' End of file 
X'04' End of file significance 
X'08' Input record format (0 is Fixed) 
Separ~te name in allocation for undefined 
X'10' Fixed record format 
X'20' Ignore control record on load module 
X'40' An I/O error has occurred 
Assorted flags: 
X'02' Time-sharing environment 
X'04' Program name passed 
X'08' SYSLIN DCB passed 

Figure 34 (Part 1 of 3). HEWLDCOM DSECT - Communication Area 

Data Areas 81 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Offset 
Decimal Hex Length symbol 

179 

180 
184 
224 
228 
232 
236 
240 
244 
248 
376 
380 
384 
388 
392 
396 
400 
404 
408 
412 
416 

420 
424 
428 
432 
436 
440 
444 
448 
450 
452 
454 
456 
459 

459 

460 

B3 1 

B4 4 
B8 36 
EO 4 
E4 4 
E8 4 
EC 4 
FO 4 
F4 4 
F8 128 
178 4 
17C 4 
180 4 
184 4 
188 4 
18C 4 
190 4 
194 4 
198 4 
19C 4 
lAO 4 

1A4 4 
1A8 4 
lAC 4 
1BO 4 
1B4 4 
1B8 4 
1BC 4 
1CO 2 
1C2 2 
1C4 2 
1C6 2 
1C8 2 
1CA 1 

1CB 1 

ICC 1 

CQPASLIB 
CQINCORE 
CQIDEN 
CMFLAG4 
CQESDS 
CQMOD 
CQNOEX 
CQMINI 
COMVT 
CQCOMMOH 
CQTRMOPH 
CQIDONE 
CMSYSTYP 
CMRSAVE 
CMXLCHN 
CMBITMAP 
CMERLIST 
CMRLDCHN 
CMESDCHN 
CMEPADDR 
CMTRCTRL 
CMBLDLPT 
CMCXDPT 
CMFRECOR 
CMMODLNG 
CMOBJST 
CMTEMPCH 
CMEPCESD 
CMPREVPT 
CMLOAOCH 
CMESOSAV 
CMSDCHN 
(CMTYPCHN) 
CMLDCHN 
CMERCHN 
CMLRCHN 
CMPCCHN 
CMCMCHN 
CMPRCHH 
CMHULCHN 
CMCURRID 
CMUIECHT 
CMBLOLHO 
CMWTBFCT 
CMNUMXS 
CMLIBFLG 
CQKEEPS 
CQDELETE 
CQAUTOC 
CQCESOR 
CQNOTXT 
CQLPASRH 
CQFIRST 
CMRELFLG 
CQESD 
CQHOLNG 

CQDELIHK 
CQLIB 
CQNOEHD 
CQINPUT 
CQENTRY 
CQNOLNTX 
CMSTATUS 
CQPRTOPN 

Description 

X'10' SYSLIB DCB passed 
X'20' Processing incore SYSLIN 
X'40' Entered at IEWLOAD. Identification wanted 
Assorted flags: 
X'Ol' ESDs have been encountered 
X'02' MOD card has been encountered 
X'04' Execution not scheduled 
X'08' Mini-CESD built 
X'10' MVS operating 
X'20' Common received 
X'40' SYSTERM open 
X'80' Identification accomplished 
System type saved by HEWLDLIB 
Register save area used by HEWLDLIB 
Pointer to chain of extents 
Error bit map 
Pointer to errors encountered during open 
Free RLD entry chain (8 bytes/entry) 
Free CESD entry chain (22 bytes/entry) 
Entry point address to loaded program 
Translate control table 
BLOL pointer 
Pointer to CXD addresses 
Free storage chain 
Length of module currently being processed 
Starting point for object module 
Pointer to load chain entry to be freed 
CESD line address of the entry point name 
Previous element in a chain for insert-delete 
Temporary chain for ESDs in a load module 
CESD register save area for HEWLOREL 
Type 0 - Section definition - chain pointer 
Index point for the vector table 
Type 1 - Label definition - chain pointer 
Type 2 - External reference - chain pointer 
Type 3 - Label reference - chain pointer 
Type 4 - Private code - chain pointer 
Type 5 - Common - chain pointer 
Type 6 - Pseudo register - chain pointer 
Type 7 - Null entry - chain pointer 
ESDID counter 
Current line count for SYSPRINT 
Number of BLDL entries 
Horizontal byte count in print record 
Number of extents 
Autocall and load module processor flags: 
X'Ol' Keep some text from this record 
X'02' Delete some text from this record 
X'04' Autocall is in process 
X'08' CESD has been received for load module 
X'10' Text has been received 
X'20' LPA resolution possible 
X'40' First record from load module was CESD 
Relocation and object module processor flags: 
X'Ol' ESD routine is caller to 10 translate rtn 
X'02' Length not yet received from current 
CSECT 
X'04' 
X'08' 
X'10' 
X'20' 
X'40' 
X'80' 
Loader 
X' 01 ' 

Delinking if required for common 
Resolution from SYSLIB in process 
End card has been received 
Input has been received 
RLD is for entry point 
Text received for no-length CSECT 
status flag: 
Print DCB allocated for 

Figure 34 (Part 2 of 3). HEWLDCOM DSECT - Communication Area 

82 MVS/370 Loader Logic 

J 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
L Y26-3922-0 

Offset 
Decimal Hex Length symbol Description 

461 
462 

1CD 
ICE 

I 
1 

CQLIBOPN 
CQABORT 
CQREJOPT 
CQOPHERR 
CQRETURN 
CQMSGSAV 
CQPRTDCB 
CMPRTCTL 
CMOPTECT 

X'02' 
X'04' 
X' 08' 
X' 10' 
X'20' 
X'40' 
X'80' 
Index 
Count 

Library DCB open 
Abort loading 
Invalid options are to be printed 
Errors were encountered during open 
Caller to error rtn must regain control 
Request open exit to save error messages 
Print DCB is open 

for printer carriage control 
of invalid options to be printed 

Figure 34 (Part 3 of 3). HEWLDCOM DSECT - Communication Area 

HEWLDDEF 

Notes to Figure 34: 

1. Symbols in parentheses are equated to preceding symbol. 

2. Locations CMMAINPT through CMFLAG4 are initialized from 
locations INITMADR through IHFLAG4 in IHITMAIH (Figure 36 on 
page 85) by HEWLDIOC. 

3. Locations CMBITMAP through CMOPTECT are initialized to zero 
by HEWLDIOC. 

HEWLDDEF is a static CSECT that defines default options and 
ddnames to be used by the loader. 

During loader execution, the default values are moved to dynamic 
storage (IHITMAIN), where they are modified by the parameter 
list values passed internally. The HEWLDDEF CSECT is described 
in Figure 35 on page 84. 

Data Areas 83 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Dec Hex 
0 0 

alternate DDNAME for 
SYSLOUT 

8 8 

alternate DDNAME for 
SYSLIN 

16 10 

alternate DDNAME for 
SYSLI B 

24 18 

default SIZE value 

28 1C~ __________ _ 

* flags 
32 20~ __________ _ 

'Correspond to CMPRMFLG flags. See Figure 34 

Figure 35. HEWLDDEF CSECT 

84 MVS/370 Loader Logic 

J 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983 
LY26-3922-0 

Offset 
Decimal Hex Length Symbol Description 

o 
72 
76 
80 
88 
96 
104 
112 
120 
128 
132 
136 
138 
139 
140 
144 
148 
152 
156 

160 

164 

176 
188 
192 
200 
456 

o 72 
48 4 
4C 4 
50 8 
58 8 
60 8 
68 8 
70 8 
78 8 
80 4 
84 4 
88 2 
8A 1 
8B 1 
8C 4 
90 4 
94 4 
98 4 
9C 4 

AD 4 

A4 12 

BO 12 
BC 4 
CO 8 
C8 256 
1e8 VL 

IHITSAVE 
IHITMADR 
IHITMSIZ 
IHITPRHT 
IHITLIH 
IHITLIB 
IHITTERM 
IHITHAME 
IHITPGMH 
IHLIHDCB 
IHLIBDCB 
IHITPARM 
IHFLAG3 
IHFLAG4 
IHITSPIE 
IHITSCAH 
IHITOUM 
IHITREJL 
IHITRMIH 

IHITRMAX 

IHITGTML 

IHITEXTR 
IHITEXAD 
IHITDBLW 
IHITRTAB 
IHITREJP 

Initial save area 
Variable conditional GETMAIN storage address 
Variable conditional GETMAIN storage size 
ddname for diagnostic message data set 
ddname for primary input data set 
ddname for autocall library data set 
ddname for SYSTERM data set 
Parameter list entry point name 
Program name 
Address of passed SYSLIN DCB 
Address of passed SYSLIB DCB 
Parameter flags and error flags 
Assorted flags 
Assorted flags 
Pointer to previous SPIE for 'SIZE=' SCAN 
Scan pointer save area for 'SIZE=' SPIE 
Save word for register during size processing 
End of rejected options list 
Minimum size request for variable conditional 
GETMAIN 
Maximum size request for variable conditional 
GETMAIN 
Parameter list area for variable conditional 
GETMAIN 
Parameter list area for Extract 
Address of TCB T50 field from Extract 
Doubleword for parm 'SIZE' conversion 
Translate and test table for option scan 
Rejected options buffer 

Figure 36. INITMAIN DSECT Definition 

Note to Figure 36: 

Locations CMMAINPT through CMFLAG4 in HEWLDCOM (the 
communication area Figure 34 on page 81) are initialized from 
locations IHITMADR through INFLAG4 in INITMAIH. 

Data Areas 85 



-----------

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
lY26-3922-0 

RLD Table Entry 

~3 5-7 

Loader - assigned address of address constant in text (3 bytes) 

Flagfield - FXXXLLST (1 byte) 

FXXX - type of ad con 

xOOO - A-type adcon 
xOOl - V-type ad con 
0010 - displacement pseudo register 
0011 - accumulative pseudo register 

Note: F ~ 1 - use absolute relocation constant for re location 

lL - length of adcon 

01 - two bytes 
10 - three bytes 
11 - four bytes 

5 - direction of relocation 

o - add the relocation constant 
- subtract the relocation constant 

T - not used by the Loader i input value is retained 

'----Address of next entry on this RLD chain. 
o if end of chain. (4 bytes) 

Figure 37. RlD Table Entry 

Translation Control Table 

~ __ r-__ ~ ______ ~ ______ -L ____ ~L/~I ________ ~1_2_3-_1_2_7~ 
Address of extent allocated for the translation 
table. Each entry is initialized to zero (4 bytes) 

Note: This table is defined in the communications area (HEWLDCOM) 
at location CMTRCTRL. 

Figure 38. Translation Control Table 

86 MVS/370 loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Translation Table Entry 

Bui It by the ESD Processor 

1 - 31 

Address of CESD entry (31 bits) 

Flag (1 bit) for CESD entry for ER 
--0 = normal (relative) relocation required 

1 = special (absolute) relocation required 

A translation table extent contains 
32 of these entries. The Loader can allocate 
a maximum of 32 extents. When allocated, 
an extent is initialized to zero. 

Figure 39. Translation Table 

Data Areas 87 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DIAGNOSTIC AIDS 

This section contains information that may be useful in 
diagnosing difficulties with the loader program. Included are: 
register contents at entry to routines (Figure 40), error code 
definitions (Figure 41 on page 90), an example of a module map 
(Figure 42 on page 91), and a list of serviceability aids 
available with the loader. To use this section, refer to 
Figure 20 on page 61 through Figure 24 on page 67 which show the 
logic flow, and Figure 25 on page 73 which shows data area 
usage. 

Note: At the entry point to each module, register 13 contains the save area address 
and register 14 contains the return address. 

Module 

HEWLCTRL 

HEWRELO 

Entry Point 

HEWLRELO 

HEWLESO 

HEWLTXT 

HEWLMOO 

HEWLRLD 

HEWLEHD 

TRANSIO 

HEWLERTN 

HEWLMAP 

HEWlCNVT 

Register Contents 

1 - address of parameter list 

11 - address of communication area 

5 - 10 of first ESO item other than LO 
7 - length of ESO information 
8 - address of ESO information 
11 - address of communication area 

5 - Text 10 
6 - displacement address of text 
7 - length of text 
8 - address of text in object module buffer 
11 - address of communication area 

7 - length of MOD information 
8 - address of MOD information 
11 - address of communication area 

7 - length of RLO information 
8 - address of RLO information 
11 - address of communication area 

5 - ID of entry point (if present) 
6 - address of entry point (if present) 
8 - address of symbolic entry point name (if 

present) 
11 - address of communication area 

5 - ESO 10 to be translated 
11 - address of communication area 

1 starting address of RLD chain 
9 - CESD entry address to be used for relocation 
11 - address of communication area 

9 - address of CESD entry to be mapped 
11 - address of communication area 

1 - binary quantity to be converted 
11 - address of communication area 

Figure 40 (Part 1 of 2). Register Contents at Entry to Routines 

88 MVS/370 loader Logic 

J 

J 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Module 

HEWL LIBR 

HEWLIOCA 

HEWLIDEN 

Entry Point 

HEWLODE 

HEWERROR 

HEWACALL 

HEWBTMAP 

HEWLIOCA 

HEWLOAD 

OPENEXIT 

HEWBUFFR 

HEWlREAD 

HEWOPNlB 

HEWlPRNT 

HEWTERM 

HEWPRIME 

HEWLIDEN 

IDMINI 

Register contents 

11 - address of communication area 
15 - entry point address 

o - error message code 
1 - pointer to qualifying information (if it 

exists) 
11 - address of communication area 
15 - entry point address 

11 - address of communication area 
15 - entry point address 

11 - address of communication area 
15 - entry point address 

1 - address of parameter list 
15 - entry point address 

1 - address of parameter list 
15 - entry point address 

1 - address of DCB 
11 - address of communication area 
12 - base address of HEWLIOCA 

10 - address of DCB 
11 - address of communication area 
15 - entry point address 

For Object and load Modules 

11 - address of communication area 
15 - entry point address 

For Load Modules 

a. read control/RlD record 
o - zero 

b. read text records 
o - length of text record 
1 - address of text 

c. read text and control/RLD 
o - complement of length of text 
1 - address of text 

11 - address of communication area 
15 - entry point address 

11 - address of communication area 
15 - entry point address 

11 - address of communication area 
15 - entry point address 

11 - address of communication area 
15 - entry point address 

11 - address of communication area 

5 - starting address for mini-CESD 
10 - upper limit of storage available 

Figure 40 (Part 2 of 2). Register Contents at Entry to Routines 

Diagnostic Aids 89 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

ERROR CODE DEFINITIONS 

Figure 41 contains the loader error codes listed in the order of , 
their bit positions in the error-bit map. (The codes are also ~ 
listed in DSECT ERCODES in CSECTs HEWLIOCA, HEWLRELO, HEWLLIBR, 

El'l'ol' 
Code 

ERREL01 
ERENrR1 
ERINPT8 
ERINPTlO 
ERINPT2 
ERREL02 
ERINPT4 
ERINPTS 
ERINPT7 
ERINPT9 
ERIHPTl 
ERIHPTll 
ERINPTl2 
ERIHPT3 
EREHTR2 
ERIOUT4 
ERIHPT6 
ERIOUT3 
ERIOUTl 
ERIOUT2 
ERSIZE2 
ERSIZE3 
ERIDEH1 
ERIDEN2 

and HEWLIDEN.) 

Unresolved external reference (NOCALl specified) 
No entry point received 
Card received not an object record 
No END card received 
Invalid length specified 
Unresolved external reference 
Doubly defined ESD 
Invalid 2-byte adcon 
Invalid 10 received 
Invalid record from object module 
Block size is invalid 
Common exceeds size of CSECT with same name 
Invalid 3-byte adcon 
Ho text received 
Entry point received but not matched 
I/O error while searching library directory 
Invalid record from load module 
Unacceptable record format (variable on input) 
ddname cannot be opened 
ddname had synchronous error 
Available storage exceeded 
Too many external names in input module 
Identification failed; duplicate program name 
Identification failed 

Figure 41. Internal Error Code Definitions 

90 MVS/370 Loader Logic 

Sev Message 

1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 

IEW1001 
IEW1l61 
IEW1l41 
IEW1l82 
IEWI082 
IEWI012 
IEWl102 
IEW1112 
IEW1l32 
IEW1l52 
IEWI072 
IEW1232 
IEW1262 
IEWI093 
IEW1l73 
IEWI053 
I EW1l23 
IEWI044 
IEWI024 
IEWI034 
IEW1l94 
IEW1204 
IEW1214 
IEW1224 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Modu Ie fv\op Format 

Mop heading 

(SECTs, entry points 

Common entry 

Pseudo Register 
information 

length of loaded 
program 

Entry of loaded 
program 

Notes: 

Nome Type Ador Name 

Main SD 9000 ENTRY 

SUB2* SD A100 

$ BLANKCOM CM MOO 

IHEQINV PR 00 IHEQERR 

IHfQSLA PR 14 

TOTAL LENGTH 2000 

ENTRY ADDRESS 9050 

Type .Addr Nome Type Addr Nome Type Addr 

LR 9050 ENTRY2 LR 9100 SUB1' SD AOOO 

PR 04 I HEQTIC PR 08 IHEQLWF PR DC IHEQLWO PR 10 

• Name'" denotes a module included from the SYSLIB doto set. 
• Nome ** denotes a module included from the link pock area. 
• Nome'" denotes a module pointed to by a MOD record. 
• The map entries are made as addresses are assigned, so the 

map reFlects the order of ESD entries in the CESD 

Figure 42. Module Map Format Example 

SERVICEABILITY AIDS 

Following are serviceability aids provided in the loader. 

• The control section, HEWLDDEF, contains the loader option 
default values. It is resident in load module HEWLOADR. 

• A storage dump will typically produce information on the 
nature of the error. Register 11 will contain a pointer to 
HEWLDCOM, and register 12 will contain the base register 
associated with the CSECT in control. 

• All nine save areas are forward and backward chained. 
Lower-level save areas will be printed. A hexadecimal "FF" 
in word 4 of the save area indicates that the routine 
represented by the save area has returned control. 

• Input/output control information is contained in the loader 
communication area. This information consists of the DECB 
address, the buffer locations, the block size, the logical 
record length, the blocklng factor, the number of records 
left in the buffer, the address of the current record, and 
the associated switches. See Figure 37 on page 86 for the 
layout of HEWLDCOM. 

• Appropriate diagnostic messages are produced when an error 
has been detected. The message has a speclfic number and, 
where appropriate, lists the data in error. The message 
number and text are listed by HEWLLIBR at the end of 
loading. (Figure 47 on page 97 is a list of these 
messages.) 

• A module map (MAP) is provided to furnlsh information 
concerning the structure and contents of the program. 
Figure 46 on page 96 is an example of a map listing. 

• The loader uses the SYNADAF to obtain lnformatlon regarding 
permanent I/O errors and lists the information on the 
SYSLOUT data set. 

Diagnostic Alds 91 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

APPENDIX. ERROR MESSAGES. ETC. 

Message 
Number 

IEWIOOI 

IEWI012 

IEWI024 

IEWI034 

IEWI044 

IEWI053 

IEWI072 

IEWI082 

IEWI093 

I EWl102 

I EWl112 

IEW1123 

I EW1132 

Message 
Text 

Warning 
(NOCALL 

Error -

Error -

Error -

This appendix contains a list of error messages and the routines 
and CSECTs in which they originate, a list of loader input 
conventions and restrictions, and detailed descriptions of input 
record formats. (The input record formats are the same as for 
the Linkage Editor Programs.) In addition, the compiler/loader 
interface is described for the processing of the data sets 
passed to the loader. 

Figure 43 lists the loader diagnostic messages. Each message 
contains a severity code in the final position of the message 
code. These severity codes are defined as follows: 

o indicates a condition that will not cause an error during 
execution of the loaded program. 

1 indicates a condition that may cause an error during 
execution of the loaded program. 

2 indicates an error that can make execution of the loaded 
program impossible. 

3 indicates an error that will make execution of the loaded 
program impossible. 

4 indicates an unrecoverable error. Such an error causes 
termination of loading. 

Issuer 
Routine Issuer CSECT 

- Unresolved external reference HEWACALL HEWLLIBR 
specified) 

Unresolved external reference HEWACALL HEWL LIBR 

Ddname cannot be opened HEWLIOCA HEWLIOCA 

Ddname had synchronous error SYNAD HEWLIOCA 

Error - Unacceptable record format OPENEXIT HEWLIOCA 
(variable on input) 

Error - I/O error while searching HEWACALL HEWLLIBR 
library directory 

Error - BLKSIZE is invalid OPENEXIT HEWLIOCA 

Error - Invalid length speci fi ed HEWLEND HEWLRELO 

Error - No text received HEWACALL HEWLLIBR 

Error - Doubly defined ESD HEWLESD HEWLRELO 

Error - Invalid 2-byte adcon HEWLRLD HEWLRELO 

Error - Invalid record from load module HEWLODE HEWLLIBR 

Error - Invalid ID received HEWLRLD HEWLRELO 
HEWLTXT HEWLRELO 
HEWLEND HEWLRELO 
TRANSID HEWLRELO 

Figure 43 (Part 1 of 2). Error Message/Issuer Cross-Reference Table 

92 MVS/370 Loader Logic 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Message Message Issuer 
Number Text Routine Issuer CS~CT 

IEW1l41 Warning - Card received not an object HEWLRELO HEWLRELO 
record 

IEW1152 Error - Invalid record from object HEWLRELO HEWLRELO 
module 

IEW1l61 Warning - No entry point received HEWACALL HEWLLIBR 

IEW1l73 Error - Entry point received but not HEWACALL HEWLLIBR 
matched 

IEW1l82 Error - No END card received HEWLRELO HEWLRELO 

IEW1l94 Error - Available storage exceeded HEWBUFFR HEWLIOCA 
HEWLESD HEWLRELO 
HEWL END HEWLRELO 
HEWLTXT HEWLRELO 
HEWACALL HEWLLIBR 
HEWLODE HEWLLIBR 
HEWLIDEN HEWLIDEN 

IEW1204 Error - Too many external names in input TRANS!D HEWLRELO 
module 

IEW1214 Error - Identification fai led - HEWLIDEN HEWLIDEN 
duplicate program name found 

IEW1224 Error - Identification failed HEWLIDEN HEWLIDEN 

IEW1232 Error - Common exceeds size of CSECT MATCHCM HEWLRELO 
with same name 

IEW1262 Error - Invalid 3-byte adcon HEWL ERTN HEWLRELO 

IEW1991 Error - User program has abnormally HEWLCTRL HEWLCTRL 
terminated 

Figure 43 (Part 2 of 2). Error Message/Issuer Cross-Reference Table 

INPUT CONVENTIONS 

Input modules (object or load) to be processed by the loader 
must conform with a number of input conventions: 

• All text records of a control section must follow the ESD 
record containing the SD or PC entry that describes the 
control section. 

• The end of every input module must be marked by an end 
indication (END record in an object module, EOM flag in a 
load module.) 

• Any RLD item must be read after the ESD items to which it 
refers and after the TXT item in which it is positioned. 

• (Applicable only to FORTRAN IV language processing.) Once a 
BLOCK DATA subprogram has been received, any following named 
common referencing it must not specify a longer length. 

• Because each control section is assigned an address as it is 
encountered in the input stream, any control section 
appearing between the ESD for a 'no-length' CSECT and the 
END card for that 'no-length' CSECT .~ill have an erroneous 
address assigned. (A 'no-length' CSECT is a control section 
whose length is defined on the END card.) 

Appendix. Error Messages, Etc. 93 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

• Each record of text and each LD or lR type ESD record must 
refer to an SD or PC entry in the ESD. 

• The position pointers of every RlD record must point to an 
SD or PC entry in the ESD. 

• No lD or lR may have the same name as an SD or CM. 

• The loader accepts TXT records that are out of order within 
a control section. TXT records are accepted even though 
they may overwrite previous text in the same control 
section. The loader does not eliminate any RLD records that 
correspond to overwritten text. 

• During a single execution of the loader, if two or more 
control sections having the same name are read in, the first 
control section is accepted; the subsequent control sections 
are deleted. 

• The loader interprets common (CM) ESD items (blank or with 
the same name) as references to a single control section 
whose length is the maximum length specified in the CM items 
of that name (or blank). No text may be contained in a 
common control section. 

• (Applicable only ~o Assembler language programming.) When 
control sections that were or are part of a separately 
assembled module are to be replaced, A-type address 
constants that refer to a deleted symbol will be incorrectly 
resolved unless the entry name is in the same position 
relative to the origin of the replaced control section. If 
all control sections of a separately assembled module are 
replaced, no restrictions apply. 

• The MOD record must physically precede all ESD records for 
an internal object module and logically replace all text 
records. If a MOD record appears as the first record of an 
internal object module, all succeeding text records are 

J 

ignored until an END statement has been processed. A MOD ~ 

INPUT RECORD FORMATS 

record is ignored if it appears outside an internal object 
module, if it appears after other records have been 
encountered for a module, or if its byte count is zero. 

Figure 44 through Figure 56 on page 105 show input record 
formats. 

SYM Input Record (Card I mage) - Ignored by the Loader 

5-10 13-72 l 73-80 

L Not used 

- TESTRAN data 

'----- Number of bytes of TESTRAN data 

~ Blank 

~12-9-2 (00000010) 

Figure 44. SYM Input Record (Card Image)--Ignored by the loader 

94 MVS/370 loader Logic 

I 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Blank 

ESD 

12-9-2 (0000 0010) 

ESD Data Item 

\-8 

17-72 

ESD Data -- see below 

Blank if all ESD items are LD 

ESD IDENTIFIER of first ESD item (other than LD) 

Blank 

Number of bytes of E SD data 

Zero - if length is on END card. 

Length of control section (if type is: SD, PC, CM) 

Identifier of SD entry for LD or LR 

Blank if type is ER, WX, or 06 for 'never-call' from Pl/I compiler 

length of pseudo-register (PR) 

Alignment Factor (PR) 07 - doubleword alignment 
03 - word alignment 
01 - halfword alignment 
00 - byte alignment 

AMODE/RMODE/RSECT data (SD, PC) 

x X X X 
R 

R 

not used 
RSECT information (ignored) 
RMODE data 

0= 24 
1 =ANY 

A A AMODE data 

00,01=24 
10 31 
II=ANY 

Blank (CD, ER, CM, NULL, WX) 

24·bit ac1cl~~~ (SD, PC, LD) 

Type - Hex (00 SD, 01 lD, 02 ER, 04 PC, 05 c CM, 06 PR, 07 ~ NULL, OA ~ W)(j 

Name-- when type is: SD, LD, lR, ER, CM, PR, WX 

Blank -- when type is: PC or blank CM. 

Figure 45. ESD Input Record (Card Image) 

73-80 

Not used 

Appendix. Error Messages, Etc. 95 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Text Input Record (Card Image) 

I 1 I 2-4 I 5 I 6-8 I 9- 1 a III , 12113, 14 1 15 , 161 17-72 I 73-80 

LNotused 

L-- Text data (machine-language code) 

L-- ESD Identifier of SD for control section of this text 

'-----Blank 
--

'----- Number of bytes of text data 

'----- Blank 

'----- 24-bit address of first byte of text data 

~ Blank 

- TXT 

\.--- 1 - -2 9 2 (0000 0010) 

Figure 46. Text Input Record (Card Image) 

96 MVS/370 Loader Logic 

I 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3922-0 

17-72 

RLD data - see be low 

Number of bytes of RLD doto 

RLD 

12-9-2 (0000 0010) 

Assigned address of address constont 

Flag field -- (TTTTLLSTn) 
--TTTT ~ type 

0000 ~ non-branch 
0001 = branch 
0010 = pseudo register displacement value 
0011 = pseudo register cumulative length 

LL = length of address constant 
01 = 2 bytes 
10 ~ 3 bytes 
11 ~ 4 bytes 

5:;::: Direction of relocation 

0= positive H 
1 ~ negative (-) 

Tn ~ type of next RLD item 
o - next RLD item has a different R or P 

pointer; they are present in the next item. 
= next RLD item has the same Rand P pointers, 

hence they are omitted 

Position pointer (P) - ESDID of SD for control section that contains the address constant 

Relocation pointer (R) - ESDID of CESD entry for the symbol being referred to. Zero (00) if type = PR cumulative length 

Figure 47. RlD Input Record (Card Image) 

73-80 

Not used 

Appendix. Error Messages. Etc. 97 



This document contains restricted materials of IBM. e Copyright IBM Corp. 
LY26-3922-0 

1972,1983 

END Input Record - Type 1 (Card Image) 

1 

1 
1 

2-4 
1 

5 
1 

6-8 
1 

9-14 
1 

15,16 1 17-28 
1 

29-32 
I 

33-80 

L lOR data, ignored by the Loader 

'--- Control section length for control section whose length 
was not specified in SD ESD item. Byte 29 is bi nary 
zero rather than a blank if length is present. 

-Blank 

I 

'--- ESDID of SO item for this control section that contains the entry point address specified in bytes 6 - 8 

-Blank 

- 24-bit address of entry point (optional) 

Blank 

-END 

'--- - - 1 12 9 2 (0000 00 0) 

Figure 48. END Input Record--Type 1 (Card Image) 

J 

END Input Record - Type 2 (Card Image) J 
1~=~1=2=-=4==r=1==~=======5=-=16~------------'1----17-_-24---~1--~-_-2-8--'1,--2-9--3-2--.-1---------------3-3 --8-0--------------;1 

Blank 

- END 

'--- 12-9-2 (0000 0010) 

L lOR data, ignored by the Loader 

'--- Control section length for control section whose length 
was not specified in SO ESO item. Byte 29 is binary 
zero rather than a blank if length IS present. 

Symbolic entry point name (optional) 

Figure 49. END Input Record--Type 2 (Card Image) 

98 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

SYM Record - ( Load Module) 

SYM data and ESD data (ESD type SD, CM and PC items) - (maximum of 240 bytes) 

Count - in bytes, of SYM and ESD data (2 byte,) 

Subtype - specifies information for TESTRAN - (1 byte) 
--- 1 ClOD 0000 - this SYM record contains ESD items (SD, PC or CM) from 

a load module that was not "under test", The test 
option was not specified when it was link edited. 

00000000 - this SYM record is not the above type. 

Identification - specifies this is a SYM record -- 01000000 (1 byte) 

Figure 50. SYM Record <load Module)--Ignored by the loader 

Appendix. Error Messages, Etc. 99 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CESD Record - (load Module) 

L-,r-""'T"...L.r-__ ...L.r-_.....I-r __ ..J..r-________ 8-_2_4_7 _______ ---' Ll _______ up_t O_2_4_0_b_y_te_s_a_f_E_SD_d_at_a ______ .JIJ 
ESD data - for detailed information see below. 

Count - in bytes, of ESD data (2 bytes) 

ESOIO of first ESO item (2 bytes) 

Spore - 2 bytes of binary zeros 

Flag (1 byte) 
OXXX XXXX - byte 12 of CESD data items contains 

segment numbers 
lXXX XXXX - byte 12 of CESD data items contains 

AMODEJRMODE data 

Identification -- 0010 0000 -- (1 byte) 

CE SO Data (load Modu Ie) 

1-8 

10/length - length (3 bytes), when type is: SO, PC, CM or PR 
--- 10 (2 bytes), when type is LR 

Zero (3 bytes). when type is ER, WX, or Null 

Alignment factor (PR) 107 - doubleword 
03 - fullword 
01 - halfword 
00 - byte 

Zero (ER. WX. Null) 
If flag byte (byte 1) indicates CESO data items contain 

segment numbers - segment number (SO. PC, CM, LR) 
If flag byte (byte 1) indicates CESO data items contain AMOOE/RMOOE data-

X X X X not used 

(SO. PC) 

R RSECT information (ignored) 
R RMOOE data 

0=24 
1 =ANY 

A A AMOOE data 
00,01 = 24 

10 = 31 
11 =ANY 

Address - linkageeditor-ossigned address of this symbol. Zero when type is ER, WX, or Null (3 bytes). 

Type - (1 byte) Section definition (SO) XXXXXOOO 
XXXXX011 
XXXXX100 

Lobe I reference (LR) 
Pri vote code (PC) 
Private code marked de lete 
(ENT AB and SEGTAB control sections) 
Common (CM) 
Null 
External reference (ER) 
Weak external reference (W>q 
Pseudo reg ister (PR) 

Symbol - The 8-character external name - Zero when type is Null. 
--- Blanks if blank common or pes other than SEGTABs and ENTABs 

Figure 51. CESD Record (Load Module> 

100 MVS/370 Loader Logic 

XXX1X100 
XXXXX101 
XXXXX111 
XXXXX010 
XXXX1010 
XXXXX110 X's may be 1 or 0 

J 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
lY26-3922-0 

") Up to and including 1020 byte, 

~-----l...-,------~('---------' 
4-1023 

Data - may contain translation table, translation table and scatter tab.le, or scatter table only 

Count - in byte" of data field 

Zero - one byte of binary zero, 

Identification - identifies this as a scatter-translation record - bit configuration is: 0001 0000 

Tran,lation Table 

Padding (2 byte,) - if necessary, to force fullword boundary alignment of 'cotter table. 

Pointer (2 byte,) - to the ,cotter toble entry that contains the address of the control ,ection 
--- containing thi, CESD entry. 

Number of translation table entries ~ number of CESD entries +1. 
Pointer will be zero if its corresponding CESD entry i, not SD, PC, CM, or LR. 

Zero - 2 bytes of binary zeros 

Scatter Table 

Assigned address (3 bytes) - of a control section (SD PC or CM) 

Flags (1 byte) 
X X X X X 

R 

R 

Zero - 4 byte, of binary zero' 

T ran,lation Table a nd Scatter Tobie 

Translation data 

H 

not used 
RSECT Information 

0= not read-only 
1 = read-only 

RMODE data 
0=24 
1 =ANY 

Hierarchy (OS/MVT) 
0= processor storage 
1 = 2361 storage 

l I 

Padding (2 bytes) if nece,sary to align scatter table to a fullword boundary. 

Figure 52. Scatter/Translation Record--Ignored by the loader 

S 
n 

Appendix. Error Messages, Etc. 101 



This document contains restricted materiels of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Control Record - (Load Module) .J 
8-15 Record Length 20 to 256 bytes 

Length of text record and/or length of control section - specifies the length of 
the control section On bytes) to which the text in the following 
record belongs, or the number of bytes of a control section contained L in the following text record (2 bytes) 

CESD entry number - specifies the composite external symbol dictionary entry that 
contains the control section name of the control section of which this text is a 
part (2 bytes) 

Channel Command Word (CCW) - that could be used to read the text record that follows. The data address field 
contains the linkage editor assigned address of the first byte of text in the text record that follows. The 
count field contains the length of the succeeding text record. 

Count - contains 2 bytes of binary zeros. 

Count - in bytes, of the control information (CESD ID, length of control section) following the CCW field. 

Count - 11 byte) of RLD andlor CTLIRLD records following next text record. 

Spare - contains 2 bytes of binary zeros. 

Identification - specifies that this is: 

• A control record - 00000001 

• The control record that precedes the last text record of this overlay segment - OOOOOlDl (EOS) 

• The control record that precedes the last text record of the module - 00001101 (EOM) 
(1 byte) 

F;gure 53. Control Record (Load Module) 

102 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Relocatian Dictionary Recard - (Load /v\odule) 

1-r-J.-,r-_.J.., ___ '-T_...J..-. _____ 8-_15 ______ J...., ________ 1_6_-_25_5 ____ ~< Record length can be between 24 and 256 

RLD Data 

RLD data -- see below 

Spore - contains 8 bytes of binary zeros 

Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes) 

Count - contains two bytes of binary zeros 

Spare - contains three bytes of binary zeros 

Identification - specifies that this is· (1 byte) 
• A relocation dictionary record - 0000 0010 
• The last record of this segment - 0000 0110 
• The last record of the module - 0000 1110 

Address - linkage editor 
assi gned address of 
the address constant 
(3 bytes) 

Flag - (1 byte) When byte format is xxxxLLST, 
specifies miscellaneous information as follows: 
xxxx specifies the type of this RLD item (address constant). 
0000 -- non-branch type in assembler language, DC A (name) 
0001 -- branch type in assembler language, DC V (name) 
0010 -- pseudo register displacement value 
0011 -- pseudo register cumulative displacement value 
1000 and 1001 -- this address constant is not to be relocated because it refers to an unresolved symbol. 
LL specifies the length of the address constant. 
01 -- two bytes 
10 -- three bytes 
11 -- four bytes 
S specifies the direction of relocation. 
0-- positive 
1 -- negative 
T specifies the type of the next following RLD item. 
a -- the following RLD item has a different relocation and/or position pointer. 
1 -- the following RLD item has the some relocation and position pointers as this and therefore contains 

only the flag and address fields. 

Position pointer - contains the entry number of the CESD entry lhat indicates 
which control section holds the address constant (2 bytes). 

Relocation pointer - contains the entry number of the CESD entry that indicates which symbol value 
is to be used in the computation of the address constant's value (2 bytes). 
o if PR cumulative length or if ENTAB CSECT • 

Figure 54. Relocation Dictionary Record (Load Module) 

Appendix. Error Messages, Etc. 103 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Control and Relocation Dictionary Record - (Load Module) 

- Address (3 bytes) 

- ~(1 byte) 

L - Position pointer (2 bytes) 

Relocation pointer (2 bytes) 

'---- Channel Command Word (8 bytes) 

-Count, in bytes, of RLD information (2 bytes) 

~Countf in bytes, of control information following the lost RLD address field. 
* The control information contains the ID and length of control sections in the 

follow i ng text record (2 bytes). 

'--- Count 11 byte) of RLD and/or CTL/RLD records following next text record. 

- Spare 12 bytes) 

'---- IdentificatIOn (1 byte) - specifies that this record i" 
• A control and RLD record - 00000011 - (it is followed by a text record) 
• A control and RLD record that is followed by the last text record of a segment - 00000111 (EOS) 
• A control and RLD record that is followed by the last text record of a module - 0000 1111 (EOM) 

Note: For detai led descriptions of the data fields see Re location Dictionary Record, and Control Record. 

The record length varies from 20 to 256 bytes. 

Figure 55. Control and Relocation Dictionary Record (Load Module) 

104 MVS/370 Loader logic 

section or 
text record 

(2 bytes) 

*CESD entry number 
(2 bytes) 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

CSECT Identification Record - (Load Iv'iodule) 

1L-0~~I,-~IL-__ r2 ____ L-I ______________ 3~-2_5_5 ____________ -JL~ __________________ r_e_co_r_d_le_n_g_th __ 7_to_2_~ __ b_y_te_, ________________ ~ 

L...-_ .... IDR data - (maximum of 253 byte,) 

----. Sub-Type Indicator - (1 byte) - 'pecified type of 
IDR data contained on thi, record (bit, 1-3 re,erved) 

Data ,upplied by IMASPZAP 
Linkage Editor data 
Tran,lator-,uppl i ed data 
U,er (Sy,tem) -,uppl ied data 

(from IDENTIFY function) 

XXXXOOOl 
XXXX0010 
XXXX0100 

XXXX1000 
Indicate, the la,t IDR of thi' load module lXXXXXXX X', may be 1 or 0 

Count, in byte" of IDR data in thi' record, including thi' field (value range 6 to 255). 

Identification - indicate, that this is a CSECT Identification record -- 1000 0000. 

Figure 56. Record Format of IDRs (Load Module)--Ignored by the loader 

COMPILER/LOADER INTERFACE FOR PASSED DATA SETS 

If the loader is to process an internal SYSLIN data area (that 
is, a data area residing in virtual storage and consisting of 
contiguous object module records prepared by a compiler) and/or 
an open SYSLIB data set, the compiler/loader interface described 
here is used. The description includes the format of the DCB 
list, the control block or DCB parameters that must be specified 
for the data area or data set, the format of an internal data 
area consisting of either fixed- or variable-length records, and 
the format of the MOD record. 

Appendix. Error Messages, Etc. 105 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

DeB List 

Pointed to by the fourth entry in the parameter I ist passed to the Loader 

0-1 2-3 4-7 8-11 12-15 16-19 

L SYSLIB DeB - may 
contain the address 
of an open SYSLIB DeB 
(4 bytes). 

'- Zero - 4 bytes of binary zeros. 

- Zero - 4 bytes of binary zeros. 

'- SYSLIN control block - may contain the address of a 
SYSLIN control block which describes an internal 
data area prepared by a compiler (4 bytes). 

- Zero - 2 bytes of binary zeros. 

'- Number of entries following (2 bytes). 

Figure 57. DCB List 

Inte~nal SYSLIN Control Block 

The SYSLIH control block z3 used to describe an internal input 
data area should have the following fields initialized: 

DCBDEVT = 0, to describe an internal data area and to indicate 
that an internal SYSLIH control block was passed. 

DCBRELAD = starting address of the internal object module 
records. 

DCBBLKSI = length of the entire internal data area. 

DCBRECFM = FB, if the internal object module records are in 
fixed-length format. 

VB, if the internal object module records are in 
variable-length format. 

DCBLRECL = length of a logical record if the data set records 
are in fixed-length format. 

J 

J 

23 The control block has the format and content of a SYSLIN ...J' 
data control block, but is not to be considered a data 
control block because there is no data management activity 
in connection with this control block. 

106 MVS/370 Loader Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Open SYSLIB DeB 

The open SYSLIB DCB passed to the loader should have the 
following DCB fields initialized: 

DCBDSORG = PO 

DCBMACRF = R 

DCBNCP = 2 

DCBRECFM = U, if the SYSLIB data set contains load modules. 

F or FB, if the SYSLIB data set contains object 
modules. (In this case, values for the fields 
DCBLRECL and DCBBLKSI should also be specified.) 

DCBBUFHO = 0 

Exit routine addresses may be specified. Before reading SYSLIB, 
the loader overlays these addresses with the addresses of its 
own routines. The loader also restores these addresses before 
returning to the caller. 

If an open SY5LIB DCB is passed to the loader, SYSLIB is not 
closed by the loader. 

(Logical record length = 72) 

1-72 

'-- First record 
of data area 
(This record 
should begin 
on a fullword 
boundary. Its address 
should appear 
in the passed 
SYSLIN control block 
field DCBRELAD.) 

73-144 

• 

'-- Second record 
of data area 

••••••• 
n-n+71 

........ L--r----------~ 
~ 
L.....- Nth record 

of data area 

Figure 58. Internal Data Area in Fixed-Length Record Format 

Appendix. Error Messages, Etc. 107 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3922-0 

Block 
Descriptor 
Word 

Descriptor 
Word 

Descriptor 
Word 

Descriptor 
Word 

No. of 
bytes 

r----,---,---.,r------,---,.--...... ------, ........ r---.,..---r------~ 
L 1 L2 Ln 

~----~~--~~-L_r----------~~~-r--~~--------~ ....... ~r_~,_~~----------~ 
First record 
of data area 

Binary zeros 

Length (Ll) of first 
record of data area 
plus descriptor 
word (This field 
must fallon a 
fullword boundary.) 

Second record 
of data area 

Binary zeros 

Leng th (L2) of second 
record of data area 
plus descriptor 
word (This field 
must fallon the 
fullword boundary 
following the end 
of the previous 
record.) 

Flgure 59. Internal Data Area in Variable-Length Record Format 

108 MVS/370 Loader Logic 

nth record 
of data area 

Binary zeros 

Length (Ln) of nth record 
of data area plus 
descriptor word (This 
field must fall on the 
fullword boundary 
following the end of 
the previous record.) 

J 



" 

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

5-10 111-121 13-16 117-20 1 21-24 1 25-28 ~ 29-32 1 33-80 

LNot used. 

_ *Number of bytes of text 
(optionol) (4 bytes). 

- *Address of text extent (optional) 
(4 bytes). 

L..... Address of byte following the estimoted 
or actual end of text for the last 
control section in the module (4 bytes). 

Main storage address of the first byte of text 
'- for the first control section in the module. 

This address should be on a doubleword boundary. 
(The Loader assumes that each succeeding control 
section within the module begins on the next 
available doubleword boundary.) (4 bytes) 

..... Blank (4 bytes). 

'-Number of bytes of data to be processed in columns 17-32 
(number = 8 or 16) (2 bytes), 

'- Blank (6 bytes). 
'- MOD (3 bytes) • 

-12-9-2 0000 0010 1 byte). 

*Note: These two fields define storage that is to be identified as part of the loaded program. They 
are optional, but must occur on at least one of the MOD records in the internal data area if the 
Loader is invoked via the entry paints LOADER, HEWLDRGO, or HEWLOAD. Each occurrence of 
these two fields defines a new extent of the program. The values must conform to the rules for 
FREEMAIN parameters, that is, the address must begin on a doubleword boundary and the length 
must be a multiple of 8. 

Figure 60. MOD Record (Card Image) 

IDENTIFY MACRO INSTRUCTION--IDENTIFYING LOADED PROGRAM 

The IDENTIFY macro instruction, when invoked as described below, 
permits the loader to describe a program constructed in subpool 
o so that the program may later be invoked by a macro 
instruction such as LINK, XCTL, or ATTACH. The IDENTIFY macro 
instruction creates a contents directory entry (CDE) and an 
extent list for the program constructed. These system control 
blocks allow the supervisor to identify the program. 

The addresses and lengths of the program's extents, the entry 
point address, and the program name must be passed to the 
IDENTIFY macro instruction. (The format of the parameter list 
passed by the loader to the IDENTIFY macro instruction is shown 
in Figure 33 on page 80.) The IDENTIFY macro instruction flags 
the CDE that it creates to indicate that the program can be 
invoked by other macro instructions as well as by the LOAD macro 
instructio~~ Residence of the program in subpool 0 and the 
absence of the program as a load module on an external device 
are also indicated in the CDE. The IDENTIFY macro instruction 
places the CDE on the user's job pack area control queue; it 
also deriv~s the extent list from the parameter list passed to 
it and stores the extent list within the system queue area. 

Appendix. Error Messages, Etc. 109 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
l Y26-3922-0 

When the form of the IDENTIFY macro instruction described below 
is specified, all other operands are ignored. The format is: 

Name operation Operand 

[symbol] IDENTIFY MF=(E,address of parameter listl(I» 

where: 

MF= 
indicates the execute form of the macro instruction using a 
remote parameter list. (The format of the parameter list 
passed by the loader is shown in Figure 33 on page 80.) 
The address of the parameter list can be loaded into 
register 1, in which case MF=(E,(I» should be coded. If 
the address is not loaded into register 1, it can be coded 
as an address that is valid in an RX-type instruction, or 
as one of the registers 2 through 12 that were previously 
loaded with the address. A register can be designated 
symbolically or with an absolute expression, and is always 
coded within parentheses. 

Programming Notes: Failure to meet any of the following 
requi~ements will cause an exit with a return code to indicate 
the reason for unsuccessful completion. The requirements are: 

1. The extent list size must be a positive multiple of 8. 

2. The addresses in the parameter list must be in subpool O. 

3. The program name should not duplicate a name already on the 
link pack area control queue or the user's job pack area 
control queue. 

4. The entry point must be within one of the extents. 

5. The caller must be a nonsupervisory routine. 

6. The extents must be in the user's region in subpool 0, and 
they must begin on doubleword boundaries. 

When the IDENTIFY macro instruction returns control, register 15 
contains one of the following hexadecimal codes: 

Code 

00 

04 

08 

OC 

14 

18 

lC 

20 

110 MVS/370 loader Logic 

Meaning 

Successful completion. 

Program name and address already exist. 

Program name duplicates the name of a load module 
currently in virtual storage; CDE was not created. 

Entry point address is not within an eligible program; 
CDE was not created. 

An IDENTIFY macro instruction was previously issued 
using the same program name, but a different address; 
this request was ignored. 

Parameter list address is not on a doubleword 
boundary, or the program name specified is already on 
the link pack area control queue or the user's job 
pack area control queue; CDE was not created. 

Extent list length is negative, not a multiple of 8, 
or the extent addresses are not on doubleword 
boundaries; CDE was not created. 

Extents are not in subpool 0; CDE was not created. 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

LIST OF ABBREVIATIONS AND ACRONYMS 

adcon 

CESD 

CSECT 

DECB 

DSECT 

EOM 

ESD ID 

K 

LD 

LR 

PC 

PR 

P pointeI' 

RLD 

R pointeI' 

SD 

TTR 

wx 

address constant 

composite external symbol dictionary 

control section 

data event control block 

dummy section 

end of module 

external symbol dictionary identification 

1024 

label definHion 

label reference 

private code 

pseudo register 

position pointer 

relocation dictionary 

relocation pointer 

section definition 

relative track and record address on a 
direct-access device 

weak external reference 

List of Abbreviations and Acronyms 111 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

INDEX 

A-type address constant, purpose of 36 
abbreviations and acronyms, dictionary 
of 111 

address assignment 
for common areas 41 
for external DSECTs 42 
in non-resolution 24-27 
in resolution 28-31 

address constants, relocation of 
description of 37 
introduction to 5 

address list for BLDL information 
purpose of 40-41 
routine that builds the lists 73 

allocation 
of buffers and DECBs 14-15 
of save areas 12 
of table entries 24 

automatic 
deletion (for CESD type SD) 30-31 
library calls 40 

BLDL list 
format of 73 
purpose of 40-41 

BLDL macro instruction, issuance of 40 
boundary alignment (for PR entries) 

description of 42 
introduction to 32 

buffer, allocation of 14-15 

CALLINOCALLINCAL option 8 
CESD entry 24, 27 

See also composite external symbol 
dictionary entry 

common (CM) area 
address assignment of 41 
definition of 20 
processing a CM entry 27 

common reference 20 
communication area (HEWLDCOM) 

format of 81 
initialization of 12 

composite external symbol dictionary 
entry 

definition of 18 
internal format 77 
making an entry 24 
processing of 21-32 
record format of 100 

concatenated data sets (on SYSLIN) 3, 
13 

condensed symbol table 
creation of 44 

112 MVS/370 Loader Logic 

format of 77 
pur'pose of 11 

control 
and relocation dictionary record 

format 104 
dictionaries 5 
information processing 11 
record 

description 18 
format 102 
processing 34 

control level tables (routines) 62-66 
CR 

See common reference 
CSECT Identification Record 

record format 105 
treatment of 20 

data area layouts 
address list for BLDL information 73 
communication area (HEWLDCOM) 81 
default and ddname CSECT 

(HEWLDDEF) 84 
INITMAIN work area 85 

J 

data control block (DCB) for SYSLIN, 
SYSTERM, and SYSLOUT data sets, 
construction of 12, 13 ~ 

data control block (DCB), alternate for ~ 
SYSLIB 12, 107 

data event control block (DECB), format 
of 78 

DCB list, format of 106 
default and ddname CSECT (HEWLDDEF) 84 
deleting CSECTs 

in ESD processing 30-34 
in load module input 34, 35 

delinking 38-39 
diagnostic 

aids 88 
register contents at entry to 
routines 88 

dictionary print routine (HEWBTMAP) 
messages 92-93 

diagrams, operation 47-60 
directory, microfiche 70-72 
dummy DSECT, external 

END 

See external dummy section 

processing 39 
record formats 97 

entry point determination 
checking of 44 

EOM 

default for preloaded text 34 
in ESD processing 26 

See END 
EP=(keyword) 8 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

ER 
See external reference 

error 

ESD 

diagnostic dictionary processing 
routine (HEWBTMAP) 

messages 92-93 
internal code definitions 90 
message-issuer cross reference 
table 92-93 

See external symbol dictionary 
ESD 10 

definition of 6 
in END processing 
in ESD processing 
in RLD processing 
in text processing 

extent 

39 
27-28 
36-37 

32-34 

chain entry format 79 
processing 33 

external dummy section (pseudo register) 
address assignment 42 
definition of 6 
entry processing 

displacement and boundary 
alignment 32 

PR entry 27 
symbol resolution in 32 

function of 21 
external reference (ER) 

definition of 20 
entry processing 

match processing 30, 31 
no-match processing 27 

function of 20 
unresolved ER messages 43 
unresolved ER processing 40 

external symbol dictionary (ESD) 
definition of 6 
entry types 21 
identifier 

See ESD 10 
processing 

description of 19-32 
introduction to 10 
operation diagrams for 53-55 

record format 94 
EXTRACT macro instruction, issuance 
of 11 

final processing 
description of 41 
overview 11 

functions of the loader 1 

general register contents 88-89· 

HEWLDCOM (communication area) 
format of 81-84 
initialization of 12 

HEWLDDEF 
data area layout 84 
definition 3, 11 

HEW L LI B R 3, 6 1 
HEWLOAD, entry point for loading with 

identification 44 

I/O control-allocation, description 
of 13 

ID-Iength list 34 
identification of loaded program 

See also program name 
processing 43 
purpose of 11 
saving extent information for 33 

IDENTIFY macro instruction 
issuance of 11, 44 
parameter list 

creation of 44 
format of 80 

record format 105 
treatment of 33 

initialization processing 
description of 11 
operation diagram of 49 

INITMAIN work area, format of 85 
input 

conventions 93 
entry types 24 

description of 18 
introduction to 13 

primary data set 3 
record formats 94-105 
secondary data set 3 
secondary input processing 

description of 41 
internal input data area 

See also passed data sets 
concatenation restriction 4 
definition of 3 
format 

fixed-length records 107 
variable-length records 108 

processing 10, 12 
reading of 16 
SYSLIN control block for 12, 106 

internal object module 
See internal input data area 

label 
definition (LD) or reference (LR) 20 
lD and LR processing 

description of 26 
introduction to 22 
reference 20 
when CESD type ;s eM 31-32 
when CESD type is SO 30 

Index 113 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3922-0 

language translators 3 
LD 

See label definition 
LETIHOLET option 8 
library calls 40, 41 

See also automatic library call 
processor and secondary input 
processin 

load module 
processing 

description of (see also reading 
load module text) 19 

. operation diagram of 58 
RLD buffer, use of 16 

load module processing 
description of 16 

See also reading load module text 
Loader 

data sets 3 
options 7 
organization 61 
structure 3 

MAP option, processing of 23 
MAPIHOMAP option 8 
map, module, format example of 91 
match processing 29-32 
microfiche directory 70-72 
MOD record 

contents of 19 
input convention 94 
processing 33-34 
record format 109 

HAME=(keyword) 
See program name 

no-match processing 
description of 23-33 
tabulation of 24 

null type of ESD entry 21 

object and load module processing, 
differences 18 

object module 
allocation for 16 
control dictionaries in 5 

operation diagrams 47-60 
options 7 

114 MVS/370 Loader Logic 

passed data sets, compiler/loader 
interface 105-109 

PC 
See private code 

pointers, RLD (relocation dictionary 
processing), use of 36-37 

PR 
See pseudo register 

preloaded text 
See MOD record 

PRIHTIHOPRINT option 8 
private code (PC) 20 
processing control module 

See initialization, I/O, control and 
allocation processor 

program name 
passing to control program 12 
specifying 8 

pseudo register CPR) 
address assignment 42 
definition of 6 
entry processing 

displacement and boundary 
alignment 32 

symbol resolution in 32 
function of 21 

Q-type address constant 
purpose of 37 
use of in pseudo register 
relocation 42 

reading 
load module text 34 
module input 15-16 

readying data sets 12 
register contents at entry to 
routines 88-89 

aids 
register contents at entry to 
routines 89 

relative relocation constant 
definition of 37 
use of 38 

relocating address constants 38 
relocation constant, computing 27 
relocation dictionary CRLD) 

entries, use of 19 
introduction to 6 
processing 

details of 36-37 
introduction to 10 
operation diagram 59 

processor (HEWLRLD) 
for load module 103, 104 
input record 97 

table entry format 86 
RESINORES option 8 
resolution, symbol 29-32 
RLD 

J 

J 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3922-0 

See relocation dictionary 
RLO pointers, meaning of 6 

scatter/translation record, format 
of 101 

SO 
See section definition 

secondary input processing 
description of 41 

section definition (SO) 
introduction to 20 
processing an SO entry 26 
symbol resolution for SO entry 30 

serviceability aids 91 
SIZE=(keyword) 8 
storage allocation 

for buffers and DECBs 14-15 
for CESO entries 24 
for save areas used during 

loading 12 
SYM record 

format of input record 94 
format of record in load module 99 
treatment of 19 

symbol resolution 29-32 
SYSLIB data set 

alternate DCB for 12, 107 
characteristics of 3 
opening 40 
passing an open data set 12, 40 
resolving ERs from 40 

SYSLIN control block 
See also passed data sets 
format 106 
processing 12 
use in readin9 internal input 16 

SYSLIN data set 
See also internal input data area and 

passed data sets 
definition of 3 
initialization and input control 
of 12-13 

SYSLOUT data set 
initialization of 12-13 
purpose of 3 

SYSTERM data set 
initialization of 12 
purpose of 3 

tables 
construction and usage 73 
used in the CESO search 23 

TERMINOTERM option 8 
text 

input record format 96 
loading 33-34 
processing 17 
record processing 33-34 

text processing (operation diagram) 
translation 

of IDs in ID/length list 34 
translation control table, format of 86 
translation table 

format of 86 
making an entry in 27-28 
relation to translation control 
table 27 

V-type address constant, purpose of 37 
virtual storage allocation 24 

weak external reference (WX) 
definition of 21 
processing 24 

Index 115 



Hestricted Materials of I BM Corporation 
L Y26-3922-0 

==..= =® - ----- ----- -.. ----- - - ------------ _.-

,J 

s: 
< 
CJ) -­W 
-...J 
o 

." 

tI) 

z 
p 
CJ) 
W 
-...J 
o 
W 



., ... 
o 
2 

MVS/370 Loader Logic 
LY26-3922-0 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribu te whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications. or for assistance in using your IBM system. to your IBM representative or to 
the IBM branch office serving your locality . 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL _________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



L Y26-3922-0 

Reader's Comment Form 

FOld and tape Please do not staple FOld and tape 

...................................................................................................................... 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

....................................................................................................................... 
F old and tape Please do not staple F old and tape 

------- --- ----- -. -~-- - ------ ---_. 

:5:: 
< 
(f) -­W 
-...J 
o 

r 
o 
<e. 
n 

"T1 

co 
z 
o 
(f) 
W 
-...J 
o 
tv 

::J 

C 
en 
):. 

r' -< 
N 
C"l 
tv 
<D 
N 
N 

6 



• 

<l> 

o 
z 

MVS/370 Loader Logic 
L Y26-3922-0 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropria teo 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications. or for assistance in using your IBM system. to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them hue: 

Last TNL 

Previous TNL _________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



L Y26-3922-0 

Reader's Comment Form 

FOld and tape Please do not staple FOld and tape 

....................................................................................................................... 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO_ 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

II NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.. 

....................................................................................................................... 
F old and tape Please do not staple F old and tape 

--..- ------ ------. - ...... -- - - ---------"" - " 

',J 

• 

s:: 
< 
(J) 

---W 
-...J 
0 

J .., 
r 
0 
<e. 
n 

" Cil 
z 
s:> 
(J) 
W 
-...J 
0 
W 

-0 
~. 
:J 
ri-
m 
C. 

:J 

C 
(J) 

l> , 
r 
-< 
N 
O'l 

W 
(0 
N 
N 
6 


