
..
Large
Systems
Technical
Support

M. E. Swallow
Edited by: S. W. Wood

Technical
Bulletin

National Technical Support
Washington Systems Center

GG66-0282-00
February 1988

(,

Washington Systems Center
Gaithersburg, Maryland

Technical Bulletin

EXTENDING JES2
USING TABLE PAIRS

Mark E. Swallow
Edited by Scott W. Wood

GG66-0282-00
February, 1988

The information contained in this document has not been submitted to any formal IBM test and
is distributed on an "as is" basis without any warranty either expressed or implied. The use of this
information or the implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or
imply that only IBM's licensed program may be used; any functionally equivalent program may
be used instead.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's coIIlllients is provided at the back of this publication. If the form has been
removed, comments may be addressed to: IBM Washington Systems Center, JES2 Support, 18100
Frederick Pike, ISG/Building 183 Room 2T74, Gaithersburg, MD 20879

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines Corporation 1988

' I ""- _/

(,

Abstract
This presentation introduces the concepts of table pairs and describes the uses of table pairs in the
JES2 component of MYS/System Product (MVS/SP). The aim is to help you understand the
considerations necessary to migrate JES2 source modifications and exit code to tables.

IBM introduced table pairs in the JES2 component of MVS/SP JES2 1.3.3. They provide a means
to alter JES2 processing and achieve tailoring of the JES2 component of an MVS/SP JES2 system.
Table pairs are not meant to replace the JES2 exit facility. They are intended to work either with
or without the JES2 exit facility, depending upon the needs of your installation.

As with exit points and source modifications, only experienced system programmers with a thorough
knowledge of system programming, JES2 programming conventions, and JES2 design aitd code
should attempt to use this material. If you attempt to write exit routines, install new exit points,
or implement the table pair function described in this bulletin without this special knowledge and
experience you run the risk of seriously degrading the performance of your system or causing com­
plete system failure.

Documents key to understanding this material include MVS/XA SPL: JES2 Initialization and
Tuning, form SC23-0065, MVS/XA SPL: JES2 Modifications and Macros, form LC23-0069,
MVS/XA JES2 Logic, form LY24-6008, and JES2 component source code. In the latter, listings
of modules HAS PT ABS and HAS PST AB contain helpful examples of JES2 tables.

We developed the document and coding example using MVS/SP JES2 2.1.5. Although the editor
and reviewers have attempted to update this to the 2.2.0 level, we may have unintentionally missed
a few details which we therefore must leave to the reader to uncover. Also, changes or enhance­
ments to JES2 anytime can change coding details and some of the more specific examples herein.
As always, consult the manuals which correspond to the version, release, and level of the JES2
component of MVS/SP you are running.

Mark Swallow developed and presented this material for GUIDE 65 session SY-7141, July, 1986,
in Chicago. Harry Familetti presented it at SHARE 67 sessions 0382 and 0383, August, 1986, in
Atlanta.

Abstract iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv A GUIDE User Group Presentation

(

Preface

How to Read This Book
Unless you have a high tolerance for pain and have falling-out-of-the-chair insurance, we don't re­
commend you try to read this straight through. Instead, we recommend you:

• look at the table of contents, and then

• read the overview of the document contained in "Introduction".

Then, especially if you're new to modifying JES2, read the chapter called "What Are JES2 Table
Pairs?".

After you've sat on that for awhile and had at least a second cup, pick one of the table pair examples
in "Examples of Table Pairs" and skim that to get a general idea of the techniques you will need
to master.

If after all this you still feel you need to add function in your installation, then go back and study
the chapter which describes how to add table pairs for the function you need to develop. Be sure
you have ready access to JES2 source code libraries, a copy of SPL: JES2 Modifications and
Macros, and lots of patience.

Thanks
Thanks to the following people for their comments, encouragement, close reading of the text, and
testing. None are responsible for any mistakes left herein. (If you find one, tell us using the Reader
Comment Form, please.)

• Steve Anania

• Bernie Becker

• Bill Coltin

• Harry Familetti

• John Kinn

Preface v

/

\.. _/

THIS PAGE INTENTIONALLY LEFT BLANK

......... '

vi A GUIDE User Group Presentation

(

(

Table of Contents
Introduction , . t

Overview of Presentation . 1

What Are JES2 Table Pairs? . 3
JES2 Table Pairs Versus JES2 Exits . 3
Concepts .. 6
Master Control Table . 9
Functional Routines . 11
General Example .. 12
Summary ... 15

Examples of Table Pairs . 17
How These Examples Are Shown . 18

PCE Tables . 19
What Is a PCE Table? . 19
PCE Control Blocks and Macros . 22
A JES2 PCE Table .. 29
An Installation PCE Table . 37

Objective . 37
Required Pieces . 38
Coding the Installation PCE Table · 40
Resulting PCE Table ... 45
Coding the Other Pieces . 46

DTE Tables ... ·. 48
What Is a DTE Table? . 48
DTE Control Blocks and Macros . 50
A JES2 DTE Table . 54
An Installation DTE Table . 60

Objective .. , 60
Required Pieces . 61
Coding the Installation DTE Table . 63
Resulting DTE Table . 66
Coding the Other Required Pieces 67

TIO Tables . 69
What Is a TIO Table? . 69
TIO Control Blocks and Macros . 70
A JES2 TIO Table . 74
An Installation TIO Table .. ~ 77

Objective . 77
Required Pieces . 78
Coding the Installation TIO Table . 80
Resulting TID Table . 81
Coding the Other Required Pieces . 82

WS Tables . 85
What Is a WS Table? . 85
WS Control Blocks and Macros . 87
A JES2 WS Table . 89
An Installation WS Table . 98

Objective . 98

Table of Contents vii

Required Pieces . 99
Coding the Installation WS Table . 101
Resulting WS Table . 104
Coding the Other Required Pieces . 105

$SCAN Tables . 106
What Is a $SCAN Table? . 106
$SCAN Control Blocks and Macros . 107
A JES2 $SCAN Table . 112

More about Pre-Scan and Post-Scan Exits . 127
More about Display Routines . 131

An Installation $SCAN Table . 134
Objective . 134
Required Pieces . 135
Coding the Installation $SCAN Table . 136
Resulting $SCAN Table . 140
Coding the Other Required Pieces . 142

Conclusion • . • • . . • . . • . . • • . . . • • . . . • . • • • • . • • • • • • . • . . . • 145

Appendix A. Table Pairs Coding Example • • . . • • • • . . • 147
$USERCBS - Generates User Control Blocks . 148
$SCYWORK - Processor Work Area . 149
$SCDWORK - Subtask Work Area . 150
$UCT - User Communication Table . 151
Exit 0 - Initialization . 152

Prologue . 152
Real Code . 153
Epilog . 158

User Extension Code and Tables . 159
Prologue . 159
Overview . 161
USCTPCE - Initial Entry Point . 162
USCTDTE - Security Subtask, Initial Entry Point . 165
USCTDTE - Security Subtask, Main Processing . 167
USCTDTE - Security Subtask, Termination . 168
TROUT255 - Tracing Routine for SAP Call . 169
WSTRKGRP - Work Selection Routine . 171
Tables . 173

Index • • . • • . • . • • • . • • • . • • • • • • . • • • . • 175

viii A GUIDE User Group Presentation

\"'

(

(

Introduction

Overview of Presentation

Introduction

• What are Table Pairs

• Extensibility in JES2

• Concepts of Table Pairs

•Functions

• Examples of Table Pairs

• PCE Tables

• DTE Tables

• TID Tables

• WST AB Tables

• $SCAN Tables

• Canel usion

01188

This presentation will cover three general topics:

1. Definition of table pairs

2. Examples

3. Conclusions

First, we will discuss what table pairs are. We will look at extensibility in JES2 by comparing exits
versus table pairs and give positive and negative aspects of both. Next we will discuss the concepts
of table pairs and their potential functions.

Second, we will show examples of table pairs that currently exist in JES2:

• Processor Control Element (PCE) tables. These tables are used to create IBM and
installation-defined processors in JES2. We will show an example in a security processor.

Introduction

• Daughter Task Element (DTE) tables. These tables are used to create IBM and installation­
defined subtask elements. We will discuss how communication between installation-defined
processors and installation-defined subtasks takes place. We will show an example in a security
processor.

• Trace Id (TID) tables. These tables are used to create IBM and installation-defined trace re­
cords and format them. We will show an example of an installation-defined trace identifier
using the installation-defined security PCE and DTE.

• Work Selection (WST AB) tables. These tables are used to create IBM and installation-defined
work selection criteria for use with the WS = operand on printers, punches, ofiload devices,
etc. We will show an example of installation-defined work selection criteria.

• $SCAN tables. These tables are used to create IBM and installation-defined initialization
statements and commands. The $SCAN facility is the most complex and extensible example
of table pairs in JES2. We will show an example of an installation-defined initialization
statement and an installation-defined command.

As we present each of the above tables we will discuss the key control blocks and fields.

Third, we will present some general conclusions.

2 A GUIDE User Group Presentation

What Are JES2 Table Pairs?

JES2 Table Pairs Versus JES2 Exits

What Are Table Pairs?

• Extensibility in JES2 (Exit Points)

•Used to:

A Modify some JES2 processing or function

A Add some installation processing or function

A Delete some JES2 processing or function

•Involves:

A Installation-written modules or routines

A Code link-edited with or in addition to JES2

A Detailed knowledge of JES2 code, function, control blocks

01/88 2

Exit points were introduced into JES2 in the MYS/SP JES2 1.3.0 product. When you code exit
points you may modify some JES2 processing or function, add some installation processing or
function, or delete some JES2 processing or function. Notice that we use the word 'some' here.
This is due to the variation in function that exits points provide. The location, the services avail­
able, and the environment where the exit is called all affect what you are capable of achieving at a
particular exit point. Therefore, there may be an exit point where you are capable of modifying
JES2 processing but where you are not capable of deleting JES2 function or adding installation
function.

In order to use the exit facility, you must write exit modules to contain your exit routines. Your
modules can be link-edited with JES2 (in certain instances) or they may be independent of JES2.1

In general, coding exits requires detailed knowledge of JES2, its coding conventions and idiosyn-

1 Best general practice is to keep exits separate from JES2 modules and then use the LOAD initialization
statement to tell JES2 about them.

What Are JES2 Table Pairs? 3

crasies, its functions, capabilities, and drawbacks, and its control blocks both in content as well as
structure. Thus, using an exit point in JES2 can be a daunting endeavor for the uninitiated.

What Are Table Pairs? ...

• Extensibility in JES2 (Table Pairs)

•Used to:

A Modify JES2 processing or function

A Delete JES2 processing or function

A Add installation processing or function

•Involves:

01/88

A Installation written tables or routines

• Tables or routines link-edited with JES2 or addresses placed in
JES2

• Need less detailed knowledge of JES2 code, function, control
blocks

Table pairs were introduced into JES2 in the MVS/SP JES2 1.3.3 product as a complement to exit
points. When you code table pairs, you can modify JES2 processing or function, delete JES2
processing or function, or add installation processing or function. Notice that unlike exit points,
you can modify, delete, or add function without restriction. Note, however, we don't recommend
deleting JES2 function unless you understand the implications. We will discuss the implications
of deleting JES2 function under each of the examples in the section "Examples of Table Pairs" on
page 17.

In order to use table pairs, you must create installation table pairs and perhaps also supporting
routines, then either link-edit them with JES2 modules or define the table addresses to JES2. De­
pending on what table you are going to add, modify or delete, this generally takes less detailed
knowledge of JES2 code, function and control block structure and content than using JES2 exits
would take. If you wish to add an initialization statement to JES2, this would probably require
nothing more than a table entry to define the statement and to specify where to place the input.
If you require more specialized processing than that supplied by JES2, then you can create sup­
porting routines. In all of JES2's initialization and command tables, only about one-sixth require
supporting pre-scan or post-scan supporting routines. Therefore it is not likely that you will require
such a supporting routine. If, however, you wish to add a processor (PCE), this requires code and
expertise and adds a level of complexity.

Generally, table pairs provide a structured mechanism to change JES2 processing. This makes
changes somewhat less complex than what is required when you use an exit.

4 A GUIDE User Group Presentation

(
What Are Table Pairs? ...

• Extensibility in JES2 (Table Pairs)

• Do Not replace need for Exits

• Provide ability to include, replace, or delete installation
code in JES2 processing

A don't need exit code to perform

A generally possible with less code than with exits

• Less maintenance impact

01/88 4

It is important to emphasize that table pairs do not replace the need for exit points. Table pairs
and exit points can meet their respective requirements independently or together. However, using
table pairs imposes fewer constraints and less complexity than using exit points since you can add,
delete, or modify JES2 processing. Furthermore, since less code is usually needed, there is less of
a maintenance impact.

What Are JES2 Table Pairs? 5

Concepts

Next, we discuss concepts of table pairs in order to introduce key points used in implementing the
table pair functions of JES2.

What Are Table Pairs? ...

•Concepts of Table Pairs (Description)

TABLE
PAIR

01188

Router cs

V<INST TABLE>

V<JES2 TABlE>

.--

'

1-

~

> Inst: all ation
Table

TABLE START

TABLE ONE

TABLE II

TABLE 00

JES2
Table

TABLE START

TABLE AA

TABLE II

TABLE END

5

Table pairs in JES2 start with a router control block that contains a pair of addresses. This pair
of addresses is known as a 'table pair'. The first address in the pair of addresses points to an
installation-defined table and the second address points to a JES2-defined table. Each table is de­
fined by a TABLE START and by a TABLE END. The table information is contained within
the TABLE START and TABLE END delimiters.

In the example above, the installation table contains two table elements. The first is a table entry
that describes the element 'ONE' and the second table entry describes the element 'II'. The
IBM-supplied table in the example also contains two table elements of information. The first is a
table entry that describes the element 'AA' and the element 'II'.

JES2 uses these tables when it is processing the items 'ONE', 'II', and 'AA'.

l. First JES2 isolates the item to process (e.g., 'ONE', 'II', or 'AA') in the input source data.

2. Next it goes to the router control block to find the table pair to use to process the isolated item.

3. Then it attempts to find the installation table. If the first table pair pointer is zero, then JES2
will search the JES2 table only. If the table pair pointer is non-zero, then this value is assumed
to be the address of the installation table. In this way the installation table, if it exists, is always
searched prior to the JES2 table. The installation table is optional and will not exist unless
you create it.

4. If the item to process is located in the installation table, then processing continues using the
installation table entry. If the item is not found in the installation table, then JES2 will search
the JES2 table. If the item to process is located in the JES2 table, then processing continues

6 A GUIDE User Group Presentation

(

(

using the JES2 table entry. If the item is not found in the JES2 table then an error message
is issued.

Therefore, using the table arranged as described in the figure above, the three input items 'ONE',
'II', and 'AA' will be processed. Let's assume they are encountered in that order.

First, the input item 'ONE' is processed. The item 'ONE' is located and isolated in the input
stream. Next, the address of the installation table is found from the table pair in the router control
block. The installation table is searched by examining each table element for a match for the input
'ONE'. In this example the first table element matches the input. This table element will be used
by JES2 to process the input 'ONE'. Notice that the JES2 table does not include a table element
that describes 'ONE'. Therefore, the installation has added some processing or function to JES2
without modifying any JES2 code.

Next the input item 'II' will be processed. The item 'II' is located and isolated from the data
handed to JES2. Next the address of the installation table is found from the table pair in the router
control block. The installation table is searched by examining each table element for a match for
the input 'II'. In this example, the table element that matches the input is found later in the in­
stallation table. This table element will be used by JES2 to process the input 'II'. Notice that the
JES2 table includes a table element that describes 'II'. Since a match was found in the installation
table, JES2 never searched the JES2 table. Thus the installation has replaced or modified some
processing or function without modifying any JES2 code.

Finally, the input item 'AA' is processed. The item / AA' is located and isolated from the data
handed to JES.2. Next the address of the installation table is found from the table pair in the router
control block. The installation table is searched by examining each table element for a match for
the input 'AA'. In this example, there is no element that matches the input of 'AA' in the instal­
lation table. Therefore, processing continues by searching the JES2 table for an element that
matches 'AA'. When this table element is found in the JES2 table, the input 'AA' will be processed
by this table element.

Deleting a table element is done by deleting the table that contains the element. For example, if
you wished to delete the processing for the input 'AA', you would zero the second table pair address
that pointed to the JES2 table that contained the element for 'AA'. If there were elements in the
JES2 table that you would not want deleted along with the element for 'AA', you would have to
copy those elements to an installation table.2 It is not recommended that you delete JES2 tables.
However, the ability to do so is not inhibited since there may be times when such function is re­
quired.

2 An alternative might be to provide a null installation table element for the item to be 'deleted'.

What Are JES2 Table Pairs? 7

In summary:

What Are Table Pairs? ...

•Concepts of Table Pairs (Description) ...

•TABLE PAIR

4 pair of addresses, each pointing to a table of information

• "ROUTER" CB

4 Place where a table pair resides

4 Installation table defined as a weak external V-type address
constant

4 JES2 table defined as a V-type address constant

• Installation Table

4 table of info supplied by installation

4 begun with TABLE START, ended with TABLE END

• JES2 Table

4 table of info supplied by JES2

4 begun with TABLE START, ended with TABLE END

01/88

• A table pair consists of a pair of addresses where the first address is the address of an installa­
tion table of information and the second address is the address of the JES2 table of informa­
tion. One or the other of these fields may be zero, but not both. If the installation table
pointer is zero then no installation table exists and JES2 will use the JES2 table to attempt to
process the input. If the JES2 table pointer is zero then the input must be found in the in­
stallation table or else the input is marked as invalid.

• The router control block contains one or more table pair addresses. The installation table
fields of the table pair are defined as weak external V-type address constants. Therefore, in­
stallation tables may be link-edited with JES2 to have the linkage editor resolve the installation
table addresses. If the installation table is not link-edited with JES2 then you must fill in the
address of its table into the first of the correct table pairs. We will provide more information
on the specific tables and what must be done later (in "Examples of Table Pairs" on page
17). The JES2 table entries are defined as V-type address constants and the JES2 table ad­
dresses are placed into the table pairs by the lirikage editor.

• An installation table consists of a table of information defined by the installation. The table
begins with a TABLE START and concludes with a TABLE END.

• The JES2 table is supplied by IBM with the JES2 product. The table begins with a TABLE
ST ART and concludes with a TABLE END. Each function that uses the table pair capability
has its own table pair.

8 A GUIDE User Group Presentation

(Master Control Table

What Are Table Pairs? ...

•Concepts of Table Pairs (Control Blocks)

• $MCT - Master Control Table (NRouter" CB)

.t. Contains pointers to all table pairs within JES2

.t. Mapping macro $MCT expanded in module HASPTABS

.t. Contains table pair pointers for

6 PCE creation

6 DTE creation

6 Trace identifiers

6 Initialization options

6 Main parameter statements

6 Work selection options

01188

The router control block referred to above is called the Master Control Table ($MCT). This·
control block contains all of the table pairs in JES2. The mapping macro for this control block is
called the $MCT and is expanded in the JES2 module HAS PT ABS.

The $MCT contains the table pair pointers for:

• Processor creation (PCE's)

• Subtask creation (DTE's)

• Trace identifiers

• Initialization options (e.g., COLD, NOREQ, WARM, etc.)

• Main parameter statements (e.g., CKPTDEF, SPOOLDEF, etc.)

• Work selection options

What Are JES2 Table Pairs? 9

What Are Table Pairs? ...

•Concepts of Table Pairs (Control Blocks)

• $MCT - Master Control Table ...

A Pointed to from field $MCT in $HCT

A Installation Table addresses resolved by

6 Linkedit with HASJES20

6 Place address in HASPTABS from Exi!O

• other Control Blocks will be discussed later

01188

The Master Control Table ($MCT) is pointed to from the $HCT field $MCT. Addresses of the
installation tables can be resolved by either link-editing the installation table with JES2 (using the
appropriate name, as will be described later) or by placing the address of the installation table into
the $MCT through an exit. Exit 0 (initialization) can be used for this purpose.

Some of the other key control blocks for table pairs will be described in the section "Examples of
Table Pairs" on page 17.

I 0 A GUIDE User Group Presentation

(

(

Functional Routines

What Are Table Pairs? ...

• Functions (Generalized Scheme)

Install at:ion Router CB
Table CMCTJ

TABLE START <l TABLE 1
TABLE 2

VCUSERTBLE>

TABLE I V<HASPTBLE>

TABLE END

FUNCTIONAL ROUTINE:

01/88

Fl.l"ICtion:

l> Take Input:

2> Find Table Based on Input

5 > Process Input

I
..£S2
Table

TABLE START
TABLE A
TABLE B

TABLE I

TABLE Etll

A functional routine uses the table pair as a means to process input. The general flow is to process
some input by first isolating the item to process. Then the routine finds the corresponding table
element (either installation or JES2) which defines the input item. Then it processes the input using
the table element.

What Are JES2 Table Pairs? 11

General Example

Next, we explain examples of the processing done by a functional routine.

What Are Table Pairs? ...

•Concepts of Table Pairs (Examples)

IDEF PARM1 =,PARM2=

PRT1 FCB=,INSTBRST=,UCS=

DEBUG=YES

Instal 1 ation
Table

S'
USERTABl

TABLE START

HASPTABS TABLE IOEF

MCT TABLE PRT

TABLE ENO

TABLE DC VC USERTABl >
PAIR

DC VCHASPTABl>

L, HASP
Module

HASPTABl
TABLE START

TABLE DEBUG

TABLE PRT

TABLE ENO

01/88 10

In the example shown in the figure above, there are three initialization statements. A functional
routine will accept the input of 'IDEF PARM 1 = ,P ARM2 = ' and process it using the table struc­
ture shown.

Located in the JES2 module HASPT ABS is the Master Control Table that contains the main pa­
rameter statement table pair. The first entry is the pointer to the installation parameter statement
table USER TAB l. If you want the linkage editor to resolve the table address, you would have to
name the table USERTABI and link-edit the table with JES2. If you did not want to link-edit
with JES2, you would have to place the address of the table into this table pair entry.

The functional routine would first isolate the input IDEF from the input passed it. Next it would
find the table pair in the MCT and search the installation table for the element that matched IDEF.
Once it found the matching element, it would use this table element to process the statement 'IDEF
PARMl = ,PARM2' and not search the JES2 table. In this way, you have added an initialization
statement and the functional routine has not been modified.

To process the input 'PRTI FCB= ,INSTBRST= ,UCS = ', the functional routine would once
again isolate the first keyword in the input 'PRTI' and, using the table pair, search the installation
table for the element that matched the inpl:lt. Once it found the table element that matched PRTl,
it would use this table element to process 'PRT 1 FCB = ,INSTBRST =, UCS ='and not search the
JES2 table. Note that the functional routine did not search the JES2 table and did not find the
JES2 table element for PR T. In this way, you replaced an initialization definition without modi­
fying the functional routine.

Finally, to process the input 'DEBUG= YES', the functional routine would isolate the keyword
'DEBUG', find the table pair, and search the installation table. When no matching table element
was found in the installation table, the functional routine would obtain the address of the JES2

12 A GUIDE User Group Presentation

(

table from the table pair and search it. Once found, the table element for 'DEBUG' in the JES2
table would be used to process the initialization statement.

What Are Table Pairs? ...

•Concepts of Table Pairs (Examples) ...

PRT1 FCB=,INSTBRST=,UCS=

0 <

HASPTABS
TABLE START

TABLE DEBUG

TABLE PRT

TABLE ENO

USERTA82
TABLE START

TABLE INSTBRST

TABLE END

HASPTAB2
TABLE START

TABLE FCB

TABLE I.CS

TABLE al>

01/88

<1 L
MCT

PAR.uETERS
DC V<USERTA81>

DC V<HASPTASl >

:fl
PRT

DC V<USERT AB2)

OC V<HASPT A82 >

11

There can be multiple levels of tables to define parameters to JES2. In the example above, the
functional routine will search two levels of tables to process the input 'PR T 1
FCB = ,INSTBRST =, UCS = '. The functional routine will:

1. isolate the first keyword 'PRTl'.

2. obtain the table element to process the keyword. The functional routine will get the address
of the installation table. Since this address is zero, there is no installation table. Therefore, it
will search the JES2 table until it finds the table element that matches 'PRTl'.

3. process the 'PR Tl' statement using this table element. The table element for 'PRTl' tells the
functional routine that to process the rest of this statement it must use another level of tables.
These tables are pointed to from the table pair at PRT in the MCT.

4. isolate the next keyword 'FCB'.

5. obtain the table element to process the keyword. The functional routine will get the address
of the installation table from the first entry in the PRT table pair. Since 'FCB' is not in that
table, the function routine will search the JES2 table. The table element for 'FCB' is found
in the JES2 table.

6. process 'FCB' using this table element.

7. isolate the next keyword 'INSTBRST'.

8. obtain the table element to process the keyword. The functional routine will get the address
of the installation table from the first entry in the PRT table pair. It will find the table element
that matches 'INSTBRST' in the installation table.

9. process 'INSTBRST' using this table element.

What Are JES2 Table Pairs? 13

10. isolate the next keyword 'UCS'.

11. obtain the table element to process the keyword. The element will be found in the JES2 table.

12. process 'UCS' using this table element.

The functional routine will then determine that there is no more input and indicate completion.

14 A GUIDE User Group Presentation

(

Summary

To summarize:

1. Table pairs are a pair of addresses where the first address is a pointer to an installation table
of information and the second address is a pointer to the JES2 table of information.

2. The installation table is searched before the JES2 table to find a matching table element for
some input.

3. A functional routine is one that makes use of the table pairs to process some input.

What Are JES2 Table Pairs? IS

THIS PAGE INTENTIONALLY LEFT BLANK

16 A GUIDE User Group Presentation

/
I

01188

Examples of Table Pairs

Examples of Table Pairs in JES2

Examples of Table Pairs in
JES2

12

There are five ways JES2 uses table pairs. JES2 uses table pairs for:

l. PCE Tables

2. DTE Tables

3. TID Tables

4. WS Tables

5. $SCAN Tables

This chapter shows how JES2 makes use of table pairs. Some of the functions are more complex
than others, but all make use of table pairs and therefore allow you to add, modify, or delete JES2
functions or processing without directly modifying JES2 source code.

Examples of Table Pairs 17

How These Examples Are Shown

Examples of Table Pairs in JES2 ...

• Purpose of Table

• Supporting Control Blocks and Macros

• JES2 Example

• Table field detail descriptions

• Installation Example

•Objective

• Pieces required

• Table coding

• Resultant table

• Completion of required pieces

01/88 13

As we present each example we provide the following information:

• The purpose of the table or function. What is it that you can add, modify or delete? This
will not be detailed but will point you to other books that can be read to gather greater detail.

• Describe some of the supporting control blocks and macros. These are typically key control
blocks and macros that you would have to understand and make use of to fulfill the appro­
priate function.

• Step through a JES2 example. Describe what the table contains using a JES2 table element
as an example. This will describe the table element field values.

• Step through the creation of an installation table and table element. This involves:

• describing the objective the table is trying to satisfy;

• identifying what pieces besides the installation table are required, if any;

• coding the table element;

• describing what the final table looks like; and;

• describing what other required pieces look like.

"Appendix A. Table Pairs Coding Example" on page 147 contains coded examples of the specific
installation sample we are creating in this bulletin. The examples there are inter-related to show
how the tables can be used together. This is not required. That is, it is not necessary to code a
PCE table (create your own processor) and code your DTE table (create your own subtask). In
fact, it may make no sense to design interrelated tables for your particular use of JES2 table pairs.
The examples are contrived to show what can be done, not necessarily what should be done.

18 A GUIDE User Group Presentation

\. .. /

(

(

PCE Tables

What Is a PCE Table?

PCE Tables

• Processor Control Element (PCE) Tables

•Used to

A Add Installation processors to JES2 system

A Override HASP-defined processors in JES2 system

• HASP-defined PCE tables reside in HASPTABS

• See MVS!Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01188 14

The Processor Control Elements (PCE) tables are used to add installation-defined processors
(PCEs)3 to a JES2 system or to override JES2-defined processors. Notice that deleting a JES2
processor is not on our agenda. This is because we recommend you do not delete any JES2
processors.

The JES2-defined PCE tables reside in the JES2 module HAS PT ABS. Some of the following in­
formation can be found in SPL: JES2 User Modifications and Macros.

3 The term 'PCE' refers either to the JES2 unit of work (processor) or to the control block which represents
the processor. Where the distinction is important we have tried to add terms like 'processor' or 'control
block' to the term 'PCE' where it occurs.

Examples of Table Pairs 19

------ ~-----·---------

PCE Tables ...

• Processor Control Element (PCE) Tables ...

• Unit of JES2 work that is similar to MVS TCBs in function.

• Maintains control until $WAIT is done

• Receives control through the use of $POST

•Controlled through the JES2 Dispatcher

01/88 15

JES2 Processor Control Elements (PCEs) represent units of JES2 work. In this way they are
similar to MYS Task Control Blocks (TCBs). The JES2 dispatcher gives control to a PCE. Unlike
TCBs, this JES2 unit of work will not be preempted by the JES2 dispatcher. No other PCE will
gain control until and unless this PCE directly relinquishes control. This is done when the JES2
process issues a $WAIT. When a $WAIT is done, control is given to the JES2 dispatcher, which
saves the registers in the PCE control block that represents the JES2 processor and then dispatches
another JES2 processor. A JES2 processor is ineligible for dispatching until it is $POSTed.

20 A GUIDE User Group Presentation

_ /

/

PCE Tables ...

• Processor Control Element (PCE) Tables ...

•Specify

.t. Generated

6. at initialization

6. after initialization

6. don't generate

.t. Dispatched

6. after Initialization and Warm processing

6. after Initialization with Warm processor

6. $WAITed on work

.t. Relate lo a DCT (if one-to-one correspondence)

01/88 16

The PCE table, among other things, describes when the processor should be generated, when it
should be dispatched, and whether it is related to a device.

PCEs may be generated during JES2 initialization or after initialization. Therefore, you could
specify that a processor be created and be present for the life of JES2 or that it be created only upon
installation demand (i.e., after initialization). This provides a way to save storage or other re­
sources. You can also specify that a processor should never be created. This would be useful for
documentation purposes. JES2 has such a table element to document the initialization PCE. This
PCE is needed prior to the ability to create a processor through the PCE functional routine.

You may also specify when the processor should be given control. If you want a processor to be
given control concurrent with the HAS PW ARM processor for final initialization processing, this
can be specified. If the installation processor doesn't need to take control until initialization has
completed but concurrent with the other JES2 processors, this can be specified. You can also in­
dicate that a processor is only to get control when it is $POSTed for work (i.e., it is some sort of
service processor).

Processors can also be associated with a device. This is done by pointing to a particular OCT table
from the PCE table. This is a one-to-one correspondence. That is, one PCE is associated with one
device.

Examples of Table Pairs 21

PCE Control Blocks and Macros·

PCE Tables •.•

• PCE Tables (Related Control Blocks and Mactos)

• $MCT table fields:

MCTPCETU DC V{USERPCET) USER TBLE

MCTPCETH DC V(HASPPCET) HASP TBLE

• $PCETAB macro

A Builds PCE Tables and entries

A Maps PCE Table entries

• $PCED'(N macro

.l Used to dynamically attach, detach processors

.l Invokes $PCEDYN routine

01/88 17

The table pair used to point to the PCE tables is located in the $MCT. The field MCTPCETU
will contain the addres.s of the installation table, if such a table exists. If you want to link-edit your
table with JES2 you must name the table USERPCET and link-edit it with HASJES20. The
JES2-defined PCE table is pointed to from the $MCT field MCTPCETH and is named
HASPPCET.

To aid in creating PCE tables, JES2 supplies a macro named $PCET AB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the PCE table and element. We will describe this macro and its operands more thoroughly later
on ("A JES2 PCE Table" on page 29).

JES2 provides a mechanism to dynamically attach and detach processors via the $PCEDYN ser­
vice. This service is invoked by the $PCEDYN macro. The service_ routine makes use of the PCE
tables for the attaching and detaching of the processor (PCE).

22 A GUIDE User Group Presentation

/ '
I

(

(

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• $GETABLE macro

& Used to return table entries of USER or H~P table pairs

& To obtain PCE Table, use TABLE=PCE

• PCE control block

01/88

& Defines JES2 processors

& Contains fields req·uired on a processor basis within main task

& May have a variable length extension - processor specific
information

& Contains an OS-style save area at front

& installation-reserved fields (PCEUSERO, PCEUSER1)

18

The $GET ABLE macro invokes the $GET ABLE service routine that is located in the module
HASPT ABS. This service obtains a table element from the user or JES2 table. To obtain a PCE
table, you would code TABLE= PCE operand. This macro will return ihe table element of the
specified ID or, if LOOP is specified, return the next table element after the specified identifier.

The major control block for adding or modifying a processor is the PCE (Processor Control Ele­
ment). PCEs represent and define JES2 processors. This control block contains fields that are
required on a processor basis within the JES2 main task.4 The PCE is composed of a common
section (all JES2 processor PCEs contain this common section) and an optional variable length
section that is unique between processor types and contain processor specific information. The
various processor types in JES2 include:

• Input

• JCL Conversion

• Execution

• Output

• Print

• Purge

The PCE common section includes an OS-style save area at the front. This is pointed to by R 13
in the JES2 main task (i.e., it points to the PCE with the OS-style save area in the front) which
MVS services use as the available save area. In addition, two installation-reserved fields are con-

4 See the topic 'JES2 Structure' in MVS/XA JES2 Logic if the term 'main task' is unfamiliar to you in this
context.

Examples of Table Pairs 23

tained in the common section. These two words are the PCEUSERO and PCEUSERI fields in the
PCE control block.

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• PCE control block ...

-PCE AREA

OS ST'ILE SAVE AREA

FmDS C0111011 FOR ALL PROCESSliRs

VARIABLE LENGTH EXTENSION

01/88 19

The figure above illustrates what the PCE contains. The common area contains the OS-style save
area at the front, followed by those fields that are common for all types of processors.

The variable length extension area is an optional extension to the common area that contains
PCE-type specific information. Thus, the PCE extension for the reader (Input) PCE would be the
same as other reader PCEs but different from the printer PCE extension area. The size of this ex­
tension area is specified on the PCE table.

24 A GUIDE User Group .Presentation

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• Dispatcher Resource Wait Queue Chains

• $DRTOTAL {in $HASPEQU)- total number of resources - 64

• JES2 Defined - $DRxxxxx equates in $HASPEQU

• Installation-Defined - use $DRTOTAL-1 and down

•Macros:

•$POST SCTY

•$WAIT SCTY

01/88 20

JES2 processors, unlike MYS tasks, maintain control of JES2 processing until they issue a $WAIT
macro. When the $WAIT macro is issued, the JES2 dispatcher receives control and places the PCE
on a queue for the requested resource. In JES2 the total number of resource queues is defined in
$HASPEQU via an equate named $DRTOTAL. $DRTOTAL is defined for 64 resource queue
chains. When the processor issues a $WAIT macro with a one- to five-character resource name,
the macro and dispatcher place the processor on that $DRxxxxx queue, where $DRxxxxx is one
of up to 64 resource names defined via an EQU. JES2-defmed resources start at 0 and increase.
You have the ability to defme installation resource queues starting at 63 and decreasing.

Therefore, if a processor issued a '$WAIT SCTY', the dispatcher would place the processor on the
wait queue defmed as $DRSCTY.5 This processor would remain on this queue until a $POST
SCTY was done. When the $POST is done, the processors on the $DRSCTY wait queue are put
on the JES2 ready queue where they will be dispatched by the JES2 dispatcher.

Additional information can be found on the $WAIT and $POST macros in SPL: JES2 User
Modifications and Macros. Also, reference source module $HASPEQU for the IBM-defmed re­
source queues.

s ('SCTY' is an installation-defined resource, as in the sample code in "Appendix A. Table Pairs Coding
Example" on page 147.)

Examples of Table Pairs 25

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• PCE Save Area (PSV)

.a. Maps save areas chained from PCE

.a. Managed by $SAVE and $RETURN

.a. PSV in PCE provides standard save area for

t:. MVS services

t:. JES2 dispatcher

t:. HASPSSSM routine calls

.a. Run Save Areas by

t:. PCELPSV - points to last save area

6 PSVPREV - points to previous save area

6 PSVNEXT - volatile in PCE - DO NOT USE FROM PCE

01/88 21

All save areas in the JES2 main task are chained from a PCE. The PCE contains the PSV (PCE
Save Area) that maps save areas chained from the PCE as well as the save area in the PCE itself.
Save areas chained off the PCE are managed by JES2 $SA VE and $RETURN services. The PCE
save area is used for MVS service calls, by the JES2 dispatcher to save current register contents
when the processor is $W AITed, and by calls to HASPSSSM service routines.

In order to run the JES2-style save areas you must run the save areas backwards. Thus, use field
PCELPSV which points to the last (most recent) save area chained from the PCE and use
PSVPREV in that save area to point to the previous save area. Do not use PSVNEXT from the
PCE since this is a volatile field which may be overlaid by MYS services, the JES2 dispatcher, or
HASPSSSM even with JES2-style save areas chained from the PCE.

JES2 save areas are nearly identical to standard OS save areas in format, but not in the way they
are used and accessed. So:

• Register 13 does not point to an available save area in the JES2 main task. One can do a STM
into Rl3 (the PCE) but the correct approach would be to do a $SAVE to obtain a JES2 save
area and save the registers in the JES2 main task environment.

• You cannot use register 13 to follow the chain of save areas from the JES2 main task, since
Rl3 (the PCE) is kept as an available save area for calls to MVS services, not JES2 routines.

• The save area format is different in that there are extra words on the end of JES2 save areas
that we use to point to the PCE (PSVPCE) and the $SAVE identifier at the location where
the $SA VE was issued (PSVLABAD).

26 A GUIDE User Group Presentation

(

(

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• PCE Save Area (PSVl:··

01/88

SAVE
AREA

SAVE
AREA

PSVPCE
PSVLAIWl

SAVE
AREA

PSVPCE
PSVLABAD

22

The figure above illustrates the chaining used for JES2 save areas. The PCE field PCELPSV will
point to the last (most recent) JES2 save area and by using PSVPREV, the save areas can be
chained back to the PCE. The save area in the PCE is thus available for use by other services that
require OS-style save areas.

Examples of Table Pairs 27

PCE Tables ...

• PCE Tables (Related Control Blocks and Macros) ...

• PCE Save Area (PSV) ...

01/88 23

You can use the PCE field PSVPCE from any JES2 save area to obtain the PCE address. In ad­
dition, while running the JES2 save areas, the PSVNEXT field is valid. Do not, however, use this
field from the PCE, since it may not be valid.

28 A GUIDE User Group Presentation

/

/

(

A JES2 PCE Table

PCE Tables ...

• PCE Tables (Examples - JES2)

SPCETAS ..-,, •••

RDRPCET $PCETAB NAME=RDR,IESC::'READER',

DCTTAB=:IOtOCTT,

MODtli:HASl'm.,

EllTJM>T=ltAPRDRA,

01/88

GEN::lNIT ,DISPTOl:NARM,

PCEFl.GS=O.FSS=NO,

PCElD;i:<:PCELCLID,PCERDRID>

SPCETAlllWE: •••

24

The figure above illustrates what the JES2 PCE table looks like. The table element shown repres­
ents all the information that JES2 needs to generally define a JES2 reader processor. This is the
table element that is passed to the $PCEDYN service to create the reader PCE. Notice that the
name of the PCE table is HASPPCET, the same as that specified in the V-type address constant
in the $MCT.

Now we will describe each operand on the $PCET AB macro and how each should be specified.

Examples of Table Pairs 29

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB TABLE= HASP - invoke $PCETAB macro to build
JES2 PCE table

• $PCETAB - invokes $PCETAB macro to build PCE Table
entry for RDR PCE.

• NAME= - PCE name

A 1-8 characters

A $DPCE and $TPCE

• DESC= - describing PCE type

A 1-24 characters

A word 'PROCESSOR' appended to end

A used in termination messages, SOWA, trace entries, etc.

01/88 25

The JES2 table definitions are started by specifying 'TABLE= HASP'. This indicates to JES2 that
this table is a JES2 table. You would specify 'TABLE= USER' to indicate that the table is an
installation-coded table. Specifying whether it is a JES2 or installation table determines default
values for the ENTRYPT and CHAIN $PCETAB operands. We will discuss these operands later.
Specifying TABLE= HASP or TAB.LE= USER is the means JES2 provides to indicate the start
of the table (TABLE= ST ART) as discussed in "Concepts" on page 6.

When $PCET AB is specified with operands other than TABLE= , the macro generates a table el­
ement. In the above example, the table element that is generated will be for the Reader PCB.

The NAME operand specifies a one- to eight-character name. The command processor for $DPCE
(display PCB) and $TPCE (set PCB) commands uses this name. The DESC operand specifies a
one- to 24-character description of the PCB type. You can assume that the word 'PROCESSOR'
will be appended to the characters specified. Termination messages, the SDWA, $TRACE entries,
and other places throughout JES2 use the term.

30 A GUIDE User Group Presentation

I
\-""- /

(-

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB - table entry ...

01/88

4 DCJTAB= - label on DCT Table Entry that corresponds to this
PCE type

b. assumes DCT Table in same assembly module

b. defines PCE in one-to-one PCE-DCT correspondence

b. optional

4 MODULE= - assembly module containing processor's entry point

b. 1-8 characters

26

The DCTI AB operand is used only if the processor being defined is a processor that will control
a device. In the example for the RDR processor, this processor will be controlling a reader device.
In order to match the PCB with the device, the DCTT AB operand is coded by pointing it to the
$DCTT AB macro call that defines the device. DCTT ABs are also included in the HAS PT ABS
module but are not at this time installation-extensible. The PCB may only specify one DCT in this
way, so therefore, the PCB can only correspond with one DCT.

The MODULE operand specifies the name of the assembly module containing the processor's
entry point. This name is a one- to eight-character name. In the example, the module that contains
the RDR processor's entry point is the HASPRDR module. This operand is only used for doc­
umentation. JES2 code does not use this field.

Examples of Table Pairs 31

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB - table entry ...

01/88

.i. ENTRYPT = - name of fullword field holding processor entry point
addr

L. specifies MODMAP field if TABLE= HASP

L. specifies $UCT field if TABLE= USER

.i. CHAIN= - fullword field name used to point to first PCE of type
within $PCEORG PCE chain

L. specifies $HCT field if TABLE= HASP

L. specifies $UCT field if TABLE= USER

27

The ENTR YPT operand tells JES2 where the entry point address is for this processor. This op­
erand must be set to a fullword field for the entry point address. In the example,
ENTRYPT= MAPRDRA; the fullword field was MAPRDRA. Since the table that contains the
reader element is a JES2 table, this field is defaulted to be in $MODMAP. If you specify this field
in an installation table it is defaulted to be in the $UCT. If you wish to override this default you
would specify 'ENTRYPT= (name,$MODMAP)'. The field must be in either $MODMAP or the
$UCT. (The $UCT, or User Control Table, is a control block obtained by the installation and
chained from the $HCT from field $UCT in the $HCT.)6

The CHAIN operand is also a fullword field that tells JES2 where to chain the initial PCE of this
type. All PCEs can be run by starting at $PCEORG in the $HCT. You use the specified CHAIN
field to run PCEs of this type. In the example, CHAIN= $RDRPCE is the field that points to
the first reader processor. PCEPREV and PCENEXT are fields used to chain to the next PCE.
Since the table that contains the reader table element is a JES2 table, this field is defaulted to be in
$HCT. If you specify this field, it is defaulted to be in the $UCT. If you wish to override this
default you would specify 'CHAIN= (field,HCT)'. The field must be in either the $HCT or the
$UCT.

6 An example of how to define and chain a $UCT is in "Appendix A. Table Pairs Coding Example" on
page _147. ·

32 A GUIDE User Group Presentation

(

(

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB - table entry ...

01188

A. COUNTS= - fullword field name that contains two halfwords

6 first halfword is count of PCEs defined - filled in before $EXIT
24

6 second halfword is count of allocated PCEs

6 specifies HCT field if TABLE= HASP

6 specifies UCT field if TABLE= USER

A. MACRO= - mapping PCE work area macro

6 1-8 characters

6 for documentation only

• WORKLEN = - length of PCE work area for this PCE type

28

The COUNTS operand tells JES2 how many processors of this type should be created. This field
points to a two halfword field where the first halfword specifies how many processors to create and
the second halfword is where the $PCEDYN service saves how many are operative at the moment.
In the example, COUNTS= $NUMRDRS indicates that at label $NUMRDRS in the $HCT is
located the two halfwords. The default location for the field is in the $HCT if the table is a JES2
table and the $UCT if the table is an installation table. This can be overridden by specifying
'COUNTS= (field,HCT)' if the field that you want to use is in the $HCT.

The MACRO operand only documents what macro maps the PCE variable extension area. This
mapping macro name can be from one to eight characters in length. In the example,
MACRO= $RDRWORK, $RDRWORK is the name of the mapping macro for the reader vari­
able extension area.

The WORKLEN operand tells JES2 how long the variable extension area is for this processor type.
$PCEDYN uses this to $GETMAIN the $PCE and its extension in contiguous storage. In the
example, WORKLEN = RDWLEN; RDWLEN is the equate for the length of the variable exten­
sion area for the reader processor.

Examples of Table Pairs 33

------~c-----.--~-- -----

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB - table entry ...

01/88

.t. GEN= - specifies when $PCE should be generated

6 INIT - generate during init

6 DYNAMIC - generated and deleted after init

6 STATIC - do not generate

.t. DISPTCH = - initial dispatching after PCE created

6 WARM - at init. $WAITed on HOLD, other times, dispatched
immediately, at end of WARM Start Processing, all PCEs
$POSTed for HOLD

6 INIT - PCEs dispatched immediately after JES2 initialization,
concurrent with WARM START

6 WORK - $WAIT PCE on WORK

29

The GEN operand tells JES2 when this PCE should be created. There are three values that can
be specified; INIT, DYNAMIC, and STATIC.

• GEN= INIT indicates to JES2 that this processor should be generated during initialization,
along with most of the JES2 processors.

• GEN= DYNAMIC indicates to JES2 that this processor should not be automatically gener­
ated, but should be created through a specific $PCEDYN service call. Such processors may
also be dynamically deleted.

• GEN= STATIC tells JES2 that this table is for documentation only. The Initialization PCE
of JES2 is documented like this.

The DISPTCH operand tells JES2 when the processor should be dispatched after it is created.
There are three values that can be specified. These values are:

• DISPTCH =WARM causes two actions to take place dependent on when the PCE is created.

1. If the processor is created during initialization, then the processor is $W AITed on HOLD.
After WARM start processing is completed the processor will be $POSTed for HOLD
and the processor will be given control.

2. If the processor is created after WARM processing, the processor is immediately dis­
patched.

• DISPTCH = INIT causes JES2 to give the processor control immediately after initialization,
concurrent with WARM processing. For those processors attached after initialization, the
processors will be dispatched immediately.

• DISPTCH =WORK causes JES2 to $WAIT the processor on WORK. Thus, the processor
will not be dispatched until it is $POSTed for WORK.

34 A GUIDE User Group Presentation

,(

:'Z

PCE Tables ...

• PCE Tables (Examples - JES2) ...

• $PCETAB - table entry ...

A PCEFLGS= - value to set PCEFLAGS byte field

A FSS = - PCE type might run in FSS mode

to. YES - larger of JES mode PCE work size and FSS mode work
size for PCE

_• PCEID= - specifies value for PCEID field

to. first byte specifies type of device

to. second byte specifies identifier ~• PCE

_• $PCETAB TABLE= END - indicates end of table

01/88 30

The operand PCEFLGS primes the PCE field PCEFLAGS when the PCE is created by
$PCEDYN. The valid values that can be specified for this operand are:

• PCETRACE - processor is eligible for tracing

• PCEDSPXP - processor permanently exempt from non-dispatchability

• PCEDSPXT - processor temporarily exempt from non-dispatchability

• PCENWIOP - implicit $WAITs in 1/0 processing should be prohibited

The operand FSS indicates that the device associated with this PCE is a Functional Subsystem
(FSS) device. If FSS =YES is specified, a larger base PCE is obtained.

The PCEID operand specifies what values should be placed in the PCEID field in the PCE. This
identifier field sets the type and identifier of the processor in the PCE. The first byte of the PC EID
field specifies the type of processor. The JES2 types are:

• Non-Device processor (x'OO')

• Local Special PCE (x'Ol')

• Remote Special PCE (x'02')

• Network Special PCE - indicates NJE or XFR JT/JR/ST/JR (x'04')

• Internal Special PCE (x'08')

• Print Special PCE (x'80')

• Punch Special PCE (x'40')

• XFR Special PCE (x'20')

Examples of Table Pairs 35

The second byte of the PCE identifier field specifies the identifier of the processor. If only one value
is specified for the PCEID (e.g., PCEID =value) then the specified value is placed as the identifier
of the PCE. If you wish to specify your own PCE identifier you should start at 255 and work your
way down. JES2 starts at 1 and increases. There are currently 30 PCE identifiers. These are de­
fined in the $PCE macro. In the example, PCEID=(PCELCLID,PCERDRID) indicates that the
PCE is a Local special PCE and its identifier is that of an Input processor.

When TABLE= END is encountered, the table is closed. This indicates the end of the JES2 PCE
table. All JES2-defined PCEs are defined within this single table.

36 A GUIDE User Group Presentation

(An Installation PCE Table

PCE Tables ...

• PCE Tables (Examples - Installation)

•Objective:

A Create PCE to manage security calls

A Create PCE without modifying JES2

A Use PCE table installation-extensible function

• This is one scheme to complete this objective, others exist

01/88 31

In order to show how you would specify an installation PCE table, the remaining description of the
PCE tables will step through creating an installation-defined security PCE. This security PCE, as
it is implemented here, is not required to fulfill the security objective. This example is purely for
illustration.

Objective

The objective is to create a PCE to manage security calls. You wish to achieve this without mod­
ifying JES2 and to use the PCE tables as the means to define this PCE to JES2.

Examples of Table Pairs 37

Required Pieces

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Pieces consist of:

Exit 0 UCT

D
Module HASPXJOO USER PCE T A8l.E

D
01/88 32

To achieve the objective, you will need to code four pieces. These pieces are:

1. Exit 0

As discussed in "Concepts" on page 6, there are two ways to link the installation table with
JES2:

a. The first of these is to link-edit the installation PCE table with the HASJES20 load
module. This requires that the name of the installation table be USERPCET.

b. If you do not wish to link-edit the installation PCE table with HASJES20 or do not wish
to name the installation table USERPCET, then you must fill in the address of the in­
stallation PCE table into the $MCT at field MCTPCETU. This is the second method.
This method requires that you fill in the address before invoking the $PCEDYN service
routine to create the processor. Depending on when you want the processor generated,
you may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the PCE table early in initialization, specifically
in exit 0. Therefore, an exit 0 is required to load the module (if not already loaded) and resolve
the address of the table.

2. UCT

As has been indicated when examining the JES2 PCE table, there are certain operands that
assume $UCT fields in the installation PCE table entries. Of course you may override these
assumptions, but the objective of this effort was to use the tables and not modify JES2.
Therefore, a $UCT must be created that will hold certain values.

3. Module HASPXJOO

38 A GUIDE User Group Presentation

Since you are coding a new JES2 processor, you must write the code that is the processor. In
this example, the code will reside in the module HASPXJOO. This name was.chosen because
it is one of the reserved-for-installation-use names that JES2 has set up in the $MODMAP
control block. In this way, you can link-edit this module with HASJES20 and have its address
in $MOD MAP and not have to do the load of this exit from exit 0.

For this example, HASPXJOO illustrates this function. However, the rest of the sample code
will assume that this module is not in the HASJES20 load module and must be loaded by exit
0.

4. User PCE Table

You will have to code a PCE table that includes an element for the processor. We will describe
this installation table element in a step-wise fashion below.

Examples of Table Pairs 39

Coding the Installation PCE Table

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Table and Operands:

A Call PCE 'SCTY'

b. NAME=SCTY

A For display in messages, SONA use 'SECURITY PROCESSOR'

6 DESC ='SECURITY'

A SCTY PCE not associated with a OCT

6 DCTTAB = •-•

A PCE code located in module HASPXJOO

6 MODULE= HASPXJOO

01/88 33

In the figure above, you wanted to create a security PCE which would be called SCTY. Therefore,
you specified 'NAME= SCTY'. For display, the description to be issued was 'SECURITY
PROCESSOR'. Therefore you specified 'DESC =SECURITY'. Remember that the word
'PROCESSOR' is appended to the end of the value specified on the DESC operand.

Since the security processor was not to be associated with a device, there was no OCT table to be
specified so 'DCTTAB= *-*'was coded. MODULE= HASPXJOO was coded since the name of
the module to contain the processor code was HASPXJOO.

40 A GUIDE User Group Presentation

/

c

(

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Table and Operands ...

01/88

A Entry point to module HASPXJOO routine USCTPCE held in field
UCTMSCTYin$UCT

D. ENTRYPT = UCTMSCTY

A Field to hold addr of first SCTY PCE is UCTSYPCE in $UCT

D. CHAIN= UCTSYPCE

A Field UCTSYNUM in $UCT will hold counts of PCEs

D. COUNTS= UCTSYNUM

A Mapping macro to PCE work area is $SCYWORK

D. MACRO= $SCYWORK

34

The field to hold the entry point address is in the $UCT. The name of the field is UCTMSCTY.
It will hold the address of the routine USCTPCE. Therefore, we code
'ENTRYPT= UCTMSCTY' on the $PCETAB.

The $UCT field to hold the pointer to the first security PCE is UCTSYPCE. Thus, we code
'CHAIN= UCTSYPCE' to tell JES2 the name of the chain field. Since the table element is in the
installation table, the field will default to being in the $UCT.

The COUNTS operand specifies where the $PCEDYN service routine is to find out how many
PCEs of this type it may create and to keep track of how many it has created. This field defaults
to being in the $UCT for the installation table, therefore the $UCT field that will hold the counts
is UCTSYNUM. Thus, we specify 'COUNTS= UCTSYNUM'.

Since this processor will need fields that are unique to the security type of processor, it will need its
own variable extension area. The macro that we use to map this extension area is $SCYWORK.
This is documented in the $PCETAB by specifying 'MACRO= $SCYWORK'.

Examples of Table Pairs 41

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Table and Operands ...

A Length of $SCYWORK field is defined by equate SCYLEN

6 WORKLEN = SCYLEN

A PCE created during init by JES2

6 GEN=INIT

A PCE dispatched at end of WARM processing

6 DISPTCH=WARM

01/88 35

The length of the variable extension area of the security PCE is defined via the equate SCYLEN
in the $SCYWORK macro. This is the value that we specify in the table:
WORKLEN = SCYLEN.

You have also decided that the processor should be generated during initialization when the other
JES2 processors are generated. Therefore, we specify 'GEN= INIT' on the $PCET AB macro to
create the security processor.

The processor should receive control after WARM processing. This assumes that the security
processor will not be needed during WARM processing. To specify this, you will code
'DISPTCH =WARM' on the macro call.

42 A GlJIDE lJser Group Presentation

(PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Table and Operands ...

01/88

A Value of PCEFLAGS field preset by table

t;,. Valid values are:

· PCETRACE - eligible for tracing
PCEDSPXP - permanently exempt from

non-dispatchability
PCEDSPXT - temporarily exempt from

non-di spatchabi I ity
PCENWIOP - 1/0 processing $WAITs

prohibited

t;,. PCEFLGS=O

A PCE will not run in FSS mode

b. FSS=NO

36

The PCEFLGS operand specifies what initial value the PCE PCEFLAGS field should contain after
it is created by $PCEDYN. If the initial state of the processor should be that it:

• should be traced, then PCETRACE should be specified.

• should be marked as permanently exempt from non-dispatchability, then PCEDSPXP should
be specified. There are currently five JES2 processors that are marked as permanently exempt.
These are:

1. Asynchronous 1/0 Processor - this processor handles asynchronous 1/0 requests

2. Communications Processor - processes operator commands

3. Line Manager Processor - processes line related processing

4. STIMER/TIMER Processor - processes asynchronous timer requests

5. Checkpoint Processor - manages the checkpoint data sets

If the installation processor is one that should never be marked non-dispatchable, then you
should set this value.

• should be marked as temporarily exempt from non-dispatchability, then PCEDSPXT should
be specified. This value would be specified if some processing must be completed by this
processor that would fail if the processor was marked non-dispatchable. '

• cannot wait in the case of an 1/0 error, then you should specify PCENWIOP.

In this examplt:, the security processor has no special requirements, therefore, we code
'PCEFLAGS = O'.

Since the security processor will not run in FSS mode, 'FSS =NO' will also be specified.

Examp!es of Table Pairs 43

PCE Tables ••.

• PCE Tables (Examples - Installation) ...

• Table and Operands ...

01/88

• Identifier of PCE determined by two one-byte fields

tJ. First one-byte field determines type of device

O - non-device processor
PCELCLID - local special PCE identifier
PCERJEID - remote special PCE identifier
PCENJ.EID - netwk special PCE id,

indicates NJE or XFE
JT/JR/ST/SR

PCEINRID - intnl special PCE identifier
PCEPRSID - printer special PCE identifier
PCEPUSID - punch special PCE identifier
PCEXFRID - XFR special PCE identifier

tJ. Second one-byte field sets PCE identifier

A Installation PCE identifiers start at 255 and decrement

tJ. PCEID=(O,UPCESCTY)

37

The PCEID operand specifies the type and identifier of the processor. The type for the security
processor is zero, since the processor is a non-device processor. The identifier of the processor is
255. This is because installation-specified identifiers should start at 255 and decrease since JES2
processors start at land work their way up. We code an equate in the $UCT named UPCESCTY
and set it to 255. Therefore, we specify the operand as 'PCEID = (0, UPCESCTY)'.

44 A GUIDE User Group Presentation

/

(

Resulting PCE Table

PCE Tables ...

• PCE Tables (Examples - Installation) ...

USERPCET SPCETAB TABLE.USER

SCTVPCET SPCETAB NAME:;;SCTV,OESC:;'SECURITV' I

01/88

OCTTAB=*-* I

MOOULE:HASPX.JOO,

ENTRVPT :UCTMSCTV,

CHAINdJCTSVPCE,

COUNTS•lJCTSVMJM,

MACRO:$SCVHORK,

HORKLEN:SCVLEN,

GEN-INIT ,DISPTClioWARM,

PCEF\.GS:::O, FSS:::NO,

PCEIO=<.O,UPCESCTV)

SPCETAB TABLE-EWD

38

The figure above shows the resulting installation PCE table to add a security processor to JES2.
The table is begun with a TABLE= USER to tell JES2 that this is an installation table. The name
of the processor will be SCTY and we will call it 'SECURITY PROCESSOR'. The code for the
processor will reside in the HASPXJOO module with the entry point address contained at the field
UCTMSCTY in the $UCT. The first security processor is chained from the UCTSYPCE field in
the $UCT. The count of how many security processors that can be generated and the count of how
many have already been created will reside at the two halfword field UCTSYNUM in the $UCT.

Security processors will require their own variable extension area that is mapped by macro
$SCYWORK and is SCYLEN in length. The processors should be generated during JES2 initial­
ization but not dispatched until after WARM processing. No default PCE characteristics need be
set (i.e., PCEFLGS is equal to zero) and the PCE is not an FSS supported processor. The
processor's identifier is 255, as set by the equate UPCESCTY. The table is delineated by the
TABLE= END operand.

Examples of Table Pairs 45

Coding the Other Pieces

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Required Pieces

.t. HASPXJOO - module that holds PCE code

.t. $SCYWORK - macro that maps PCE extension that is obtained
with the PCE

6 SCYLEN - equate that defines length of $SCYWORK extension

.t. $UCT - macro contains fields:

6 UCTMSCTY DC A(*-") ADDR OF ENTRYPT

6 UCTSYPCE DC A(*-*) ADDR OF SCTY PCE

6 UCTSYNUM DC H'1',H'O'

6 UPCESCTY EQU 255 ID OF SCTY PCE

6 $DRSCTY EQU 63 DISP SEC RESOURCE

01188 39

Now that you have completed the installation PCE table, the other required pieces and fields may
be defined. You will have to write a HASPXJOO module that holds the PCE code. A macro must
be created called $SCYWORK that will map the PCE extension. A field named SCYLEN is re­
quired within the macro to define the length of the extension area needed.

In the installation-defined $UCT, several fields must be coded. The address of the entry point for
the HASPXJOO module for the installation PCE is held in the UCTMSCTY field. The address of
the first security PCE is chained from the UCTSYPCE field. The UCTSYNUM field is a two
halfword field where the first field defines the number of security PCEs that are to be created and
the second indicates to $PCEDYN how many have been created.

Finally, two equates must be defined. The first is the identifier of the installation security PCE (set
at 255) and a dispatching security resource. The $DRSCTY equate tells the PCE that some work
is ready for it to process. The installation PCE will '$WAIT SCTY' (which will result in the PCE
being put on the resource queue of 63) for work. When there is work for it to do, it is $POSTed
for SCTY (i.e., $DRSCTY = 63) and put on the ready queue.

46 A GUIDE User Group Presentation

(

PCE Tables ...

• PCE Tables (Examples - Installation) ...

• Required Pieces ...

01/88

4 Installation PCE Table

L. Defined as above

4 Exit 0

L. Obtain $UCT and place address in $HCT

L. Initialize the $UCT

L. Place Installation PCE table address in field MCTPCETU in
$MCT in HASPTABS

40

The last two pieces that are required are the installation PCE table, as coded above, and the code
for exit 0. The exit 0 code is required to do three things.

1. It must obtain the $UCT and place the $UCTs address in the $HCT.

2. It must initialize the $UCT fields. The fields that must be initialized include, at least, the
UCTMSCTY, UCTSYPCE, and the first halfword of UCTSYNUM.

3. Finally, it must place the installation PCE table address in the MCTPCETU field in the
$MCT in module HAS PT ABS.

The code that is contained in "Appendix A. Table Pairs Coding Example" on page 147 is the code
as an installation would be required to code it. This code includes:

• Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation PCE table address in the $MCT.

• The HASPXJOO module contains, among other items that we will describe shortly, the PCE
code and the installation PCE table.

• The macros for the $UCT and $SCYWORK. In addition, a $USERCBS macro extends the
$MODULE macro so that you can use installation-created macros without modifying the
$MODULE macro.

Examples of Table Pairs 47

DTE Tables

What Is a DTE J'able?

DTE Tables

• Daughter Task Element (DTE) Tables

•Used to

.A. Add Installation subtasks lo JES2 system

.A. Override HASP-defined subtasks in JES2 system

• HASP-defined DTE tables reside in HASPTABS

• See MVS!Extended Architecture SPL: JES2 User
Modifications and Macros(LC23-0069)

01188 41

Daughter Task Elements (DTEs) are JES2 control blocks that represent subtasks in JES2. As
PCEs represent JES2 processors in the main task environment, DTEs represent JES2 subtasks in
the subtask environment.7 Subtasks are used in JES2 to do work that may require MYS WAITs.
MYS WAITs are not tolerated in the JES2 main task, so therefore, subtasks are obtained by JES2
to do this type of work.

As PCEs are tabular via the $PCET ABs, the DTEs are tabular via the $DTET ABs. This provides
you the capability to add installation-defined subtasks and to override JES2-defmed subtasks. It is
not recommended that you delete JES2-defmed subtasks.

The tables that defme the JES2 subtasks reside in the module HAS PT ABS. Some of the following
information on DTEs can be found in SPL: JES2 User Modifications and Macros.

7 The term 'DTE' refers either to a JES2 subtask or to the control block which represents the subtask.
Where the distinction is important we have tried to add terms like 'subtask' or 'control block' to-the term
'DTE' where it occurs.

48 A GUIDE User Group Presentation

/

(

DTE Tables ...

• Daughter Task Element (DTE) Tables ...

• JES2 control block to represent subtasks of the JES2 main
task

• Use MVS dispatching methods to manage communication
between JES2 main task and subtask

01/88 42

The DTE is the control block that represents the subtask. This control block is available to the
Main Task (a PCE processor) and the subtask. Thus, this control block assists communication
between the two environments.

In order to serialize the communications between the main task and the subtask, normal MVS
dispatching methods should be followed. This involves the use of $W AITs and MVS POSTs from
the main task and MVS W AITs and POSTs from the subtask. Never issue an MVS WAIT from
the JES2 main task and never issue a JES2 $WAIT from a JES2 subtask.

Examples of Table Pairs 49

DTE Control Blocks and Macros

DTE Tables ...

• DTE Tables (Related Control Blocks and Macros)

• $MCT table fields:

MCTDTETU DC V{USERDTET) USER TBLE

MCTDTETH DC V(HASPDTET) HASP TBLE

• $DTETAB macro

A Builds DTE tables and entries

A Maps DTE table entries

• $DTEDYN macro

A Used to dynamically attach, detach a Subtask

A Invokes $DTEDYN routine

01/88 43

The table pair which points to the DTE tables is located in the $MCT. The field MCTDTETU
will contain the address of the installation table, if such a table exists. If you want to link-edit your
table with JES2 you must name the table USERDTET and link-edit it with HASJES20. The
JES2-defined DTE table is pointed to from the $MCT field MCTDTETH and is named
HASPDTET.

To aid in creating the DTE tables, JES2 supplies a macro named $DTET AB. This macro builds
both the JES2 and installation tables and table elements. This macro also contains the mapping
macro for the DTE table and element. We will describe this macro and its operands more thor­
oughly below.

JES2 provides a mechanism to dynamically attach and detach subtasks via the $DTEDYN service.
This service is invoked with the use of the $DTEDYN macro. The service routine makes use of
the DTE tables for attaching and detaching of subtasks (DTEs).

SO A GUIDE User Group Presentation

(

DTE Tables ...

• DTE Tables (Related Control Blocks and Macros) ...

• $GETABLE macro

" Used to return table entries of USER/HASP table pairs

& To obtain DTE Table, use TABLE=DTE

• $DTE control block

01/88

" Defines JES2 subtasks

" Contains fields required by all subtasks within JES2

" May have a variable length extension - subtask specific
information

" Contains an OS-style save area at front

44

The $GET ABLE macro invokes the $GET ABLE service routine that is located in the module
HASPT ABS. This service obtairis a table element from the user or JES2 table. To obtain a DTE
table, you would code the TABLE= DTE operand. This macro will return the table element of
the specified ID or, if LOOP is specified, it will return the next table element after the specified ID.

The major control block for adding and modifying of subtasks is the DTE (Daughter Task Ele­
ment). DTEs represent and define JES2 subtasks. This control block contains fields that are re­
quired on a subtask basis within the JES2 subtasks. The DTE is composed of a common section
(all JES2 subtask DTEs contain this common section) and an optional variable length section that
is unique between subtask types and contain subtask-specific information. The subtask names are:

• HASPIMAG

• HOSALLOC

• HOS POOL

• HASP ACCT

• HASPVTAM

• HASPWTO

• HOSCNVT

• HAS POFF

• HASPCKAP (added in 2.2.0)

The common section includes an OS-style save area at the front. This is pointed to by R 13 in the
JES2 subtask (i.e., it points to the DTE with the OS-style save area in the front) which is an
available save area.

Examples of Table Pairs 51

DTE Tables ...

• DTE Tables (Related Control Blocks and Macros) ...

•$DTE control block ...

.t. Other fields

6 $STABNDA - General subtask ESTAE routine

6 DTESTID - subtask identifier

6 DTEVRXAD - VRA exit routine address

6 DTERTXAD - Retry routine address

6 DTEESXAD - Clean-up routine address

01188 45

There are four fields that are used for subtask recovery. These fields are:

• $ST ABNDA - this is a field in the $HCT that contains the address of the general subtask re­
covery routine. If you code an EST AE (highly recommended) you should use this routine as
the recovery routine. This general recovery routine will take three "exit" calls, depending upon
whether the following three fields are non-zero.

• DTEVRXAD - this is a field in the DTE that contains the address of a VRA "exit" routine.
This routine will receive control from the JES2 general subtask recovery routine to complete
the variable recording area (VRA) in the SOWA. In this way, the data that is specific to this
subtask can be saved.

• DTER TXAD - this is a field in the DTE that contains the address of a retry routine. This
routine will receive control to attempt to retry. The general JES2 recovery routine issues a
SETRP to a general retry routine. This general retry routine will then give control to the
specified retry routine for this subtask. The subtask retry routine should issue a $SETRP to
a resumption point or percolate. If the subtask is to retry or percolate, the retry routine should
prepare for the event. ·

• DTESXAD - this is another field in the DTE that contains the address of a clean-up routine.
This routine will receive control from the JES2 general subtask recovery routine to attempt
subtask specific clean-up. There are two valid return codes from this recovery routine.

1. 0 - continue normal recovery, clean-up successful

2. 4 - unrecoverable subtask error, abend JES2 main task via a CALLRTM

Also included in the DTE is the field DTESTID which contains the subtask identifier. We will
present more information on this identifier shortly.

52 A GUIDE User Group Presentation

(

(

DTE Tables ...

• DTE Tables (Related Control Blocks and Macros) ...

• DTE Chain Heads

01/88

• Located in $HCT

• Zero if no subtask for that type exist

• Chain DTE Heads:

6 $DTEIMAG - Image DTE

6 $DTEALOC - Allocate DTE

6 $DTESPOL - Spool DTE

6 $DTESMF - SMF DTE

6 $DTEVTM - VT AM DTE

c. $DTEWTO - WTO DTE

6 $DTECNVT - Convert DTE

6 $DTEOFF - Offload DTE

6 $DTECKAP - Checkpoint application copy

46

Just as there were pointers in the $HCT for the JES2 processors (PCEs) for each type of processor,
there are pointers in the $HCT for the JES2 subtasks (DTEs) for each type of subtask. If the chain
head is zero, then no subtasks of that type exists. The chain heads are:

• $DTEIMAG - points to the image subtask(s)

• $DTEALOC - points to the allocation subtask

• $DTESPOL - points to the spool subtask(s)

• $DTESMF - points to the SMF subtask

• $DTEVTM - points to the VT AM subtask

• $DTEWTO - points to the WTO subtask

• $DTECNVT - points to the converter subtask(s)

• $DTEOFF - points to the offioad subtask(s)

• $DTECKAP - points to the checkpoint application copy subtask (new in 2.2.0)

We will describe the method for pointing to the installation subtask in the following foils.

Exainples of Table Pairs 53

A JES2 DTE Table

DTE Tables ...

• DTE Tables (Examples - JES2)

HASPllTET $0TETAB TAllLE=HASP

01/88

SDTETAB NAME= •••

SDTETAB IWE=COHVERT,

Ill=DTEIDCNV •

EPNAl!E--HOSCNVT.

EPLOC..-MAPCNVA,

IEAD=SOTECNVT,

NOllKl.EN:llCNV, -· STAE:NO,

SOTETAB NAME= •••

SOTETAB TAllLE=END

47

The figure above is an example qf what the JES2 subtask (DTE) table looks like. The table is
delimited by a TABLE= HASP (to start the table) and a TABLE= END (to end the table). The
table element shown represents all the information that JES2 needs to define a JES2 converter
subtask. This is the table element that is passed to the $DTEDYN service to create the converter
DTE. Notice that the name of the DTE table is HASPDTET, the same as that specified in the
V-type address constant in the $MCT.

The following discussion will describe each operand on the $DTET AB macro and how it should
be specified.

54 A GUIDE User (;roup Presentation

/

(

(

DTE Tables ...

•DTE Tables (Examples - JES2) ...

• $DTETAB TABLE= HASP - invoke $DTETAB macro to build
J ES2 DTE table

• $DTETAB - invokes $DTETAB macro to build DTE Table
entry for CNVT DTE.

A NAME= - DTE name

b. 1 - 8 characters

b. used for JES2 messages

A ID= - equated subtask identifier

b. JES2 identifiers sta.rt at 0 and increase

b. Installation identifiers start at 255 and decrease

01/88 48

The JES2 tables are started by specifying 'TABLE= HASP'. This indicates to JES2 that this table
is a JES2 table. You would specify 'TABLE= USER' to indicate that the table is an installation
coded table. Whether it is a JES2 or installation table determines some default values for the
EPLOC and HEAD $DTETAB operands. We will discuss these operands later. Specifying
TABLE= HASP or TABLE= USER is the means JES2 provides to indicate the start of the table
(TABLE= ST ART) as discussed in "Concepts" on page 6.

When you specify $DTETAB with operands other than TABLE=, the macro generates a table
element. In the example above, the table element that is generated is for the converter subtask.

The NAME operand specifies a one- to eight-character name. JES2 messages use this name. The
ID operand specifies an equated numeric value. JES2 identifiers start at 0 and increase. Installation
identifiers start at 255 and decrease. There are currently nine JES2 subtask types.

Examples of Table Pairs 55

DTE Tables ...

•DTE Tables (Examples - JES2) ...

• $DTETAB - table entry ...

A EPNAME = - entry point name used on MVS IDENTIFY macro call

A EPLOC = - name of fullword field holding subtask entry point
addr ·

A specifies MOOMAP field if TABLE=HASP

A specifies $UCT field if TABLE=USER

01188 49

The EPNAME operand specifies the name of the subtask entry point. The MVS IDENTIFY
macro uses this. The EPLOC operand points to the fullword field that holds the subtask entry
point address. If the DTE table is a JES2 table, the default location for this entry point address is
in MODMAP. If the DTE table is an installation table (i.e., TABLE= USER), the default location
for this entry point address is in the $UCT. This default can be overridden by specifying
'EPNAME= (field,MODMAP)'. The field must be in either MODMAP or the $UCT.

56 A GUIDE User Group Presentation

/

(DTE Tables ...

•DTE Tables (Examples - JES2) ...

• $DTETAB - table entry ...

01/88

& HEAD= - fullword field name used to point to first DTE of type
within $DTEORG DTE chain

6 specifies $HCT field if TABLE= HASP

6 specifies $UCT field if TABLE=USER

& WORKLEN = - length of DTE work area for this DTE type

50

The HEAD operand is similar to the CHAIN operand on the $PCET AB. This operand points to
the fullword field used to point to the first DTE of this type. JES2 will chain the initial DTE of
this type from the specified field. All DTEs can be run by starting at the $DTEORG in the $HCT.
In the example the first converter subtask can be found by obtaining the address in the
$DTECNVT field in the $HCT. DTEPREV and DTENEXT are fields used to chain to the next
DTE. If you specify this field, it is defaulted to be in the $UCT. If you wish to override this de­
fault, you would specify 'HEAD= (field,HCT)'. The field must be in either the $HCT or the
$UCT.

Just as there was a variable extension area off of PCEs, there are variable extension areas off of
DTEs. The size of these extension areas can be variable between subtask types. Therefore, you
specify the size for these extension areas in the $DTETAB via the WORKLEN operand. The
$DTEDYN service uses this value to $GETMAIN the DTE and its extension in contiguous stor­
age. In the example, WORKLEN= DCNVLEN, DCNVLEN is the equate for the length of the
variable extension area for the converter subtask.

Examples of Table Pairs 57

DTE Tables ...

• DTE Tables (Examples - JES2) ...

• $DTETAB - table entry ...

01/88

.._ GEN= - specifies when DTE should be generated

t::. YES - indicates subtask should be automatically started

t::. NO - indicates subtask dynamically created via $DTEDYN

.._ STAE= - specifies if STAE parm on MVS DETACH macro should
be issued

!:!. STAE on DETACH indicates if ESTAE exit should get control if
subtask detached before terminated

t::. YES - indicates STAE parm specified, implies MVS WAIT if
· WAIT= parm not specified on $DTEDYN

t::. NO - indicates STAE parm not specified (default NO)

51

The GEN operand specifies when the subtask should be generated. GEN= YES indicates that the
subtask should be automatically started. GEN= NO indicates that the subtask is dynamically cre­
ated via a $DTEDYN call. In the example, you specify GEN= NO since the converter subtask is
dynamically created through a $DTEDYN call by the converter processor when the subtask is
needed and it is not attached.

The ST AE operand indicates whether the ST AE parameter should be specified on the MYS DE­
TACH macro. If it is (i.e., STAB= YES), then the ESTAE exit will get control if the subtask de­
taches before it is terminated. If you specify ST AE =YES this µnplies an MYS WAIT if WAIT=
parameter is not specified on the $DTEDYN macro which creates the subtask. If you specify
STAE=NO, then the STAE parameter will not be generated on the MYS DETACH macro.
STAB= NO is the default.

58 A GUIDE User Group Presentation

/

('

(,, ~/

(
DTE Tables ...

• DTE Tables (Examples - JES2) ...

• $DTETAB - table entry ...

.t. SZERO = - indicates if subtask shares subpool O (default YES)

• $DTETAB TABLE= END - indicates end.of table

01/88 5Z

The final operand on the $DTET AB macro is the SZERO operand. This operand tells JES2
whether this subtask should share subpool 0. The default is SZERO =YES. In the example,
SZERO =NO was specified to say that the converter subtask cannot share subpool 0.

When the TABLE= END is encountered, the table is closed. This indicates the end of the JES2
DTE table. All JES2-defined subtasks are defined within this single table.

Examples of Table Pairs 59

An Installation DTE Table

DTE Tables ...

• DTE Tables (Examples - Installation)

• Objective:

.t. Create DTE to issue SAF call

.t. Create DTE without modifying JES2

.t. Use DTE table installation-extensible function

• This is one scheme to complete this objective, others exist

01/88 53

In order to show how you would specify an installation DTE table, we will step through the cre­
ation of an installation-defined security subtask. The security DTE is required to fulfill our security
objective since the SAF call can result in an MYS WAIT.

Objective

The objective is to create a DTE to issue the SAF call on behalf of a security processor (or, as it
turns out, any processor). The installation wishes to achieve this without modifying JES2 and to
use the DTE tables as the means to define this DTE to JES2.

60 A GUIDE User Group Presentation

/

(

(

Required Pieces

DTE Tables ...

• DTE Tables (Examples - Installation) ...

• Pieces consist of:

E>tit 0 UCT

D
Module HASPKJOO USER DTE TABLE

D
01/88 54

To achieve the objective, you will need to code four pieces. These pieces are:

l. Exit 0

2.

As was discussed in "Concepts" on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation DTE table with the HASJES20 load
module. This requires the _name of the installation table be USERDTET.

b. If you do not wish to link-edit an installation DTE table with HASJES20 or does not
wish to name the installation table USERDTET, then you must fill in the address of the
installation DTE table into the $MCT at field MCTDETTU. This is the second method.
This method requires that you fill in the address prior to the need to invoke the
$DTEDYN service routine to create the subtask. Depending on when you will have the
processor generated, you may fill in the address early in initialization or after JES2 is up
and running.

In this example, you will fill in the address of the DTE table early in initialization, specifically
in Exit 0. Therefore, you require an Exit 0 that will load the module (if not already loaded)
and resolve the address of the table.

UCT

As has been indicated when examining the JES2 DTE table, there are certain operands that
assume $UCT fields in the installation DTE table elements. Of course, you may override these
assumptions, but the objective of this effort was to use the tables and not modify JES2.
Therefore, a $UCT must be created that will hold certain values.

Examples of Table Pairs 61

3. Module HASPXJOO

Since you are coding a new JES2 subtask, you must write the code that is the subtask. In this
example, the code resides in the module HASPXJOO. Titls name is one of the reserved-for­
installation-use names that JES2 has in the $MODMAP control block. In this way, you can
link-edit this module with HASJES20 and have its address in $MODMAP and not have to
do the load of this exit from Exit 0.

4. User DTE Table

You will have to code your own DTE table to include an element for the particular subtask.
We will describe how to create this installation table element in the following section.

62 A GUIDE User Group Presentatioq

j

(

(.

' i

(

Coding the Installation DTE Table

DTE Tables ...

• DTE Tables (examples - Installation) ...

• Table and Operands:

.a. Call Subtask 'SECURITY'

6 NAME= SECURITY

.a. Id of Subtask determined by installation

6 Installation DTE identifiers start at 255 and decrease

6 ID=UDTESCTY

01/88 55

In the figure above, you wanted to create a security subtask which would be called SECURITY.
Therefore, NAME= SECURITY is specified to have the subtask called SECURITY in JES2
messages.

The identifier of the processor is 255. This is because installation specified identifiers should start
at 255 and decrease since JES2 subtask identifiers start at 0 and work their way up. There is an
equate specified in the $UCT named UDTESCTY set to 255. Therefore, we specify the operand
for the identifier as 'ID= UDTESCTY'.

Examples of Table Pairs 63

DTE Tables ...

• DTE Tables (Examples - Installation) ...

• Table and Operands ...

.a. Entry point to module HASPXJOO will be USCTDTE

A EPNAME=USCTDTE

.a. Entry point to module HASPXJOO held in field UCTMDSCY in
$UCT

A EPLOC = UCTMDSCY

.a. Field to hold addr of first SCTY DTE will be UCTSYDTE in $UCT

A HEAD= UCTSYDTE

01/88 56

The name of the entry point to the subtask code in module HASPXJOO is USCTDTE. Therefore,
we code 'EPNAME = USCTDTE' on the $DTETAB to tell JES2 to use USCTDTE on the MYS
IDENTIFY call. The field to hold the entry point address is in the $UCT. The name of the field
is UCTMDSCY. It will hold the address of the routine USCTDTE. Therefore, we code
'EPLOC= UCTMDSCY' on the $DTETAB. The $UCT field to hold the pointer to the first se­
curity subtask is UCTSYDTE. Thus, we code "HEAD= UCTSYDTE" to tell JES2 the name of
the chain field. Since the table element is in the installation table, the specified field will default to
being in the $UCT.

64 A GUIDE User Group Presentation

/

(

(

DTE Tables ...

• DTE Tables (examples - Installation) ...

• Table and Operands .•.

01/88

A. Length of $SCDWORK macro is defined by equate SCDLEN

t; WORKLEN=SCDLEN

A. Subtask created by SCTY PCE dynamically

t; GEN=NO

A. Subtask should not be detached with the STAE operand specified
on the DETACH

t; STAE=NO

• Subtask shares SUBPOOL 0

t; SZERO =YES

57

The length of the variable extension area of the security subtask is defined via an equate called
SCDLEN in macro $SCDWORK. This is the value that we specify in the table:
WORKLEN == SCDLEN.

You have also decid~d that the processor should not be generated automatically. Therefore, we
specify 'GEN== NO' on the $DTET AB macro to indicate that the subtask is created dynamically
via a call to $DTEDYN.

Also, you do not wish the subtask to be detached with the ST AE operand specified on the MVS
DETACH call. Thus, we specify 'STAE== NO'.

You would like the subtask to share subpool 0, so you specify 'SZERO==YES'.

Examples of Table Pairs 65

Resulting DTE Table

DTE Tables ...

• DTE Tables (Examples - Installation) ...

USERDTET SOTETAS TABlE:USER

01/88

SOTETAB NAIE=SECURITV,

ID:UOTESCTV,

EPNAME:USCTDTE,

EPLOC:UCTMDSCY,

HEAD=UCTSVDTE,

HORKLEN=SCDL.EN,

GEN::NO,

STAE::NO,

SZERO:VES

$0TETAB TABL.E=ENO

58

The figure above shows the resulting installation DTE table to add a security subtask to JES2.
The table is begun with a TABLE= USER to tell JES2 that this is an installation table. The name
of the subtask is SECURITY. The identifier of the subtask is 255, as defined by the equate
UDTESCTY. The code for the subtask resides in the module HASPXJOO and has the entry point
name USCTDTE. Its entry point address is in field UCTMDSCY in the $UCT.

The first security subtask is chained from the $UCT field UCTSYDTE.

The security subtask will require its own variable extension area to the DTE that is mapped by the
macro $SCDWORK with the length of SCDLEN. The subtask is generated through a specific
$DTEDYN, so it will not be generated during initialization. The subtask will not be detached with
the ST AE option and the subtask may share subpool 0.

The table is delineated by the TABLE= END operand of the $DTET AB macro.

66 A GUIDE User Group Presentation

(Coding the Other Required Pieces

DTE Tables ...

• DTE Tables (Examples - Installation) ...

• Required Pieces

.6. HASPXJOO - module that holds subtask code with entry point
USCTDTE

.6. $SCDWORK - macro that maps DTE extension obtained with DTE

6 SCDLEN - equate defines length of extension

.6. $UCT - macro contains fields:

6 UDTESCTY EQU 255 ID OF SCTY DTE

6 UCTMDSCY DC A(•-•) ADDR OF ENTRYPT

6 UCTSYDTE DC A(•-*) ADDR of SCTY DTE

01188 59

Now that you have completed the installation DTE table, the other required pieces may be defined.
You will have to write a HASPXJOO module that holds the DTE subtask code. A macro must be
created called $SCDWORK that will map the DTE extension. An equate named SCDLEN is re­
quired within the macro to define the length of the extension area needed.

In the installation-defined $UCT, two fields must be coded. The address of the entry point for the
HASPXJOO module for the installation DTE is in the UCTMDSCY field. The address of the first
security DTE is chained from the UCTSYDTE field. Finally, we must set an equate for the iden­
tifier of the subtask. We specify the equate UDTESCTY with a value of 255.

Examples of Table Pairs 67

DTE Tables ...

• DTE Tables (Examples - Installation) ...

• Required Pieces ...

.A. Installation DTE Table

6 Defined as above

.A. Exit 0

6 Obtain $UCT and place address in $HCT

6 Initialize the $UCT

6 Place Installation DTE table addr in field MCTDTETU in $MCT
in HASPTABS

01/88 60

The last two pieces that are required are the installation DTE table, as coded above, and the code
for exit 0. The exit 0 code is required to do three things:

1. It must obtain the $UCT and place the $UCT's address in the $HCT.

2. It must initialize the $UCT.

3. Finally, it must place the installation DTE table address in the MCTDTETU field in the
$MCT in module HASPT ABS.

The code that is contained in "Appendix A. Table Pairs Coding Example" on page 147 is the code
as you would be required to code it. This code includes:

• Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation DTE table address in the $MCT.

• The HASPXJOO module contains, among other items that we will describe shortly, the DTE
code and the installation DTE table.

• The macros for the $UCT and $SCDWORK. Also, a $USERCBS macro extends the
$MODULE macro so that you can use installation-created macros without modifying the
$MODULE macro.

68 A GUIDE User Group Presentation

(

(

TID Tables

What Is a TID Table?

TIO Tables

•Trace Id Tables (TIDTAB)

•Used to

• Add Installation trace identifiers to JES2 system

A Override HASP-defined trace identifiers in JES2 system

•HASP-defined TIDTAB tables reside in HASPTABS

• See MVS/Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01/88 61

The Trace Id (TID) tables are used to add installation trace identifiers to a JES2 system or to
override JES2-defined trace identifiers in JES2. Notice that deleting a JES2 trace identifier is not
listed. This is because we recommend you do not delete any JES2 trace identifiers.

The JES2-defined TIO tables reside in the JES2 module HAS PT ABS. Some of the following in­
formation can be found in SPL: JES2 User Modifications and Macros.

The TIO tables are perhaps the simplest and least complete of the JES2 tables. Some of the
"interfaces" need additional work. However, the function provided is useful and recommended over
alternatives such as in-line modifications to JES2 source code.

Examples of Table Pairs 69

TIO Control Blocks and Macros

TIO Tables ...

•Trace Id Tables (Related Control Blocks and Macros)

• $MCT table fields:

MCTTIDTU DC V(USERTIDT) USER TBLE

MCTTIDTH DC V(HASPTIDT) HASP TBLE

• $Tl OT AB macro

£ Builds TIDTAB tables and entries

£ Maps TIDTAB table entries

£ Defines Trace identifiers for the HASP $TRACE Facility

01/88 62

The table pair which points to the TID tables is located in the $MCT. The field MCTTIDTU
will contain the address of the installation table, if such a table exists. If you want to link-edit the
table with JES2 you must name the table USERTIDT and link-edit it with HASJES20. The
JES2-defined TID table is pointed to from the $MCT field MCTTIDTH and is named
HASPTIDT.

To aid in creating TID tables, JES2 supplies a macro named $TIDT AB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the TID table and element. We will describe this macro and its operands more thoroughly
below. ·

The $TRACE facility is the user of the TID tables. It uses the tables to determine what identifiers
are valid and what formatter routines will receive control (see "A JES2 TID Table" on page 74).

70 A GUIDE User Group Presentation

(

(

TIO Tables ...

•Trace Id Tables (Related Control Blocks and Macros) ...

• $TRACE macro

.A. Used to allocate JES2 trace table entry in an active trace table

.A. Invokes the JES2 event trace facility

• $GETABLE macro

.A. Used to relurn table entries of USER or HASP table pairs

.A. To obtain Trace Table, use TABLE=TID

• $TLGWORK control block

01188

.A. Contains fields specific to Event Trace Log Processor
(HASPEVTL)

.A. Work area extension for HASPEVTL Processor (PCE)

63

The $TRACE executable macro allocates a JES2 trace table entry in an active trace table and re­
turns its address. Optionally, $TRACE initializes the Trace Table Entry (TTE) based upon pa­
rameters passed. The JES2 event trace facility is called to perform the TTE allocation.

$TRACE can be specified anywhere in the JES2 system (including the HASPSSSM load module)
except in routines running as disabled interrupt exits (for example, an IOS appendage). Rl3 must
point to a usable OS-style save area. Be certain to also code the $TRP macro on the $MODULE
statement to provide the required mapping. Refer to SPL: Modifications and Macros for a detailed
description on the use of this macro.

As with the PCET ABs and DTET ABs, access can be obtained to the TIDT ABs via the
$GET ABLE macro. The $GET ABLE macro invokes the $GET ABLE service routine that is lo­
cated in the module HAS PT ABS. This service obtains a table element from the user or JES2 table.
To obtain a TIO table, you would code the TABLE= TIO operand. This macro will return the
table element of the specified ID or, if LOOP is specified, it will return the next table element after
the specified ID.

You will also need to specify $TLGWORK. This is the macro that maps the Event Trace Log
processor variable extension area. This macro is needed because it contains fields that are specific
for the processor. They will be needed by the installation format routines (which we will describe
later).

Examples of Table Pairs 71

TIO Tables ...

• Trace Id Tables (Related Control Blocks and Macros) ...

• TTP (Trace Table Prefix) Dsect

• Describes the trace table

• Dsect within the $TTE macro

• $TTE (Trace Table Entry) Control Block

• Used to describe trace data elements in table

• Represents the actual data in the trace table

01/88 64

Since the trace interface is not well-defined and is rather primitive, it is necessary to understand
some of the internal structures of the primary control blocks. These control blocks include the
Trace Table Prefix (TTP) and the Trace Table Entry (TTE). The TIP describes the entire trace
table while the TTE describes elements within the trace table. The next foil illustrates the TTP and
the TTE.

72 A GUIDE User Group Presentation

/

(

(

TIO Tables ...

•Trace Id Tables (Related Control Blocks and Macros) ...

TRACE TABLE PREFIX <-- TRACE TABLE PREFIX

<TIP> .-+=I <TTP>

TTE TTE

'"->

TTE

TYE

'-->

01188 65

In the illustration above, there are two trace tables. Both contain Trace Table Prefixes. The TTP
is made up of basically three pointers. The first pointer points to the previous trace table, the sec­
ond pointer points to the end of the table, and the final pointer points to the next available spot in
the trace table.

Trace tables are made up of as many TTEs (Trace Table Elements) as will fit in the trace table.
The TTEs are not of a set size, but are the size as was specified on the $TRACE macro call. The
front of the TTE contains the fields mapped by the $TTE macro that describe the data contained
in the TTE.

Examples of Table Pairs 73

A JES2 TID Table

TIO Tables ...

• TIO Tables (Examples - JES2)

~ STIDTAB TAllLE=HASP

01/88

STIDTAB ID= •••

$TIDTAB Ill=OOl,

F-T= TROUTOOl,

llAllE=$SA\IE

$TIDTAB DI= •••

STIDTAB TABLE=EHD

68

The figure above illustrates what the JES2 TIO table looks like. The table element shown repres­
ents all the information that JES2 needs to define JES2 trace identifier 1 for the tracing of $SA VEs.
This is the table element that is passed to the $TRACE facility. Notice that the name of the TIO
table is HASPTIOT, the same as that specified in the V-type address constant in the $MCT.

The following describes each operand on the $TIOT AB macro and tells how it should be specified.

74 A GUIDE User Group Presentation

(

(

TIO Tables ...

• TIO Tables (Examples - JES2) ...

• $TIDTAB TABLE= HASP - invoke $TIDTAB macro to build
JES2 Trace ID (TIO) table

• $TIDTAB - invokes $TIDTAB macro to build TIO Table entry
for trace identifier 001

J. ID= - identifier of the trace element

6 number between 1 and 255

£:. JES2 starts at 1 and increments

6 Installation starts at 255 and decrements

J. FORMAT= - specifies name of a formatting routine

L. routine name local, A-type address constant defined

£:. routine name not local, V-type address constant defined

01188 67

The JES2 tables are started by specifying 'TABLE= HASP'. This indicates to JES2 that this table
is a JES2 table. You would specify 'TABLE= USER' to indicate that the table is an installation­
coded table. Specifying TABLE= HASP or TABLE= USER is the means JES2 provides to indi­
cate the start of the table (TABLE= ST ART) as discussed in "Concepts" on page 6.

When $TIDT AB is specified with operands other than TABLE=, the macro generates a table el­
ement. In the example above, the table element that will be generated will be for trace identifier
1.

The ID operand specifies the trace identifier number that we will use to code the $TRACE macro.
The number must be between 1 and 255. JES2-defined trace identifiers start at 1 and increase.
Installation-defined trace identifiers should start at 255 and decrease.

The FORMAT operand specifies the name of a formatting routine to be given control when the
trace table entries are being processed for printing. If the name that is specified for this operand is
found to reside within the same module as the TIDT AB, then an A-type address constant is defined
for the name. If the name that is specified for this operand is not found to reside within the same
module as the TIDT AB, then a V-type address constant is defined for the name.

Examples of Table Pairs 75

TIO Tables ...

• TIO Tables (Examples - JES2) ...

• $TIDTAB - table entry ...

A. NAME= - specifies trace entry name

6 placed in trace output

• $Tl DT AB TABLE= END - indicates end of table

01/88 68

The NAME operand specifies a 1-8 character name that is associated with the specified trace id.
The name will appear in the trace output to further identify the trace data.

When the TABLE= END is encountered, the table is closed. This indicates the end of the JES2
TID tables. All JES2-defined trace identifiers are defined within this single table.

76 A GUIDE User Group Presentation

(

(

An Installation TID Table

TIO Tables ...

•TIO Tables (Examples - Installation)

•Objective:

A Create trace identifier to follow SAF calls

A Create trace identifier without modifying JES2

A Use TID table installation-extensible function

•This is one scheme to complete this objective, others exist

01/88 69

In order to show how you would specify a TID table, we now step through creating an
installation-defined trace identifier for tracing security calls from the security PCE.

Objective

The objective is to create a trace identifier for tracing security calls. You wish to achieve this
without modifying JES2 and to use the TID tables as the means to define the identifier to JES2.

Examples of Table Pairs 77

Required Pieces

TIO Tables ...

•TIO Tables (Examples - Installation) ...

• Pieces consist of:

EXIT 0 FORMAT ROUTINE

D
USER TIO TABLE

01188 70

To achieve the objective, you will need to code three pieces. These pieces are:

1. Exit 0

As was discussed in "Concepts" on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation TIO table with the HASJES20 load
module. This requires the name of the installation table as USER TIDT.

b. If you do not wish to link-edit the installation TIO table with HASJES20 or do not wish
to name the installation TIO table USER TIDT, then you must fill in the address of the
installation TIO table into the $MCT field MCTTIDTU. This is the second method.
This method requires that you fill in the address before invoking the $TRACE facility to
access this trace id. Depending on when the installation will use the trace id, you may fill
in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the TIO table early in initialization, specifically
in Exit 0. Therefore, you require an Exit 0 that will lo~d the module, if not already loaded,
and resolve the address of the table.

2. Format Routine

You will need to create a format routine that will get control to format the TTE into a print­
able form. In this way, you can put the data into the TTE in any form or format and interpret
yourself, independent of what JES2 understands or processes.

3. User TIO Table

78 A GlJIDE User Group Presentation

:~
\,

(

You will have to code a TID table that includes an element for the particular trace id. We
will describe this installation table element in a step-wise fashion in the following section.

Examples of Table Pairs 79

Coding the Installation TID Table

TIO Tables ...

• TIO Tables (Examples - Installation) ...

• Table and Operands:

4 Give the trace table an identifier of 255

6 10=255

4 Name of the formatter routine is TROUT255

6 FORMAT=TROUT255

4 Name of the trace is SAFCALL

6 NAME=SAFCALL

01/88 71

Since installation identifiers should start at 255 and decrease, the ID for this installation trace table
element will be 255 (ID= 255). The format routine will be called TROUT255, for TRace OUTput
for identifier 255. The name that should come out on the trace entry should be SAFCALL, since
the function of this trace identifier is to trace the fact that a SAF call has been made. Therefore,
we will code NAME= SAFCALL on the TIDT AB.

80 A GUIDE User Group Presentation

,,

(

Resulting TID Table

TIO Tables ...

•TIO Tables (Examples - Installation) ...

USERTIDT $TIOTAB TABLE:USER

01/88

$TIDTAB 10:255,

FORMAT:TROUT255,

NAHE:SAFCALL

STIOT AB T ABl.E:ENO

72

The figure above shows the resulting installation TIO table used to add a security trace identifier
to JES2. The table is begun with TABLE= USER to tell JES2 that this is an installation table.
The id of the trace element will be 255. The name of the routine that will format the trace data into
a printable form will be TROUT255. The name of the trace identifier is SAFCALL. Finally, the
table is delineated by the TABLE= END operand.

Examples of Table Pairs 81

I
Ii

'l

I
jl

il

Coding the Other Required Pieces

TID Tables ...

• TIO Tables (Examples - Installation) ...

• Required Pieces

.a. TROUT255 - routine used to format trace records for this identifier
type

01/88

D. DO NOT specify TRACE=YES on $SAVE or $RETURN used
from routine

D. Value of registers on entry to format routine

R 1 - Trace Table Buffer Pointer
(TTP)

R2 - Trace Table entry (TTE)
R4 - Trace ID table entry (TIO)
R5 - pointer to remaining output

area in print record (field
TLGBSAVE points to beginning
of print record)

R14 - return address
R 15 - entry address

73

One of the required pieces that you would have to provide to complete the installation extension
to the $TRACE facility is the format routine. This is where it becomes obvious that the trace ex­
tension facility is primitive.

The installation format routine cannot itself issue a TRACE= YES on its $SAVE or $RETURN.
The registers upon entry to the format routine are as follows:

• R 1 - this register points to the TTP for the trace table that contains the entry as defined by the
installation TIDTAB.

• R2 - this register points to the TTE that contains the data that the installation $TRACE macro
saved. This is the data to be formatted by the TROUT2SS format routine.

• R4 - this register points to the TIDT AB (Trace Id Table) element that you created.

• RS - this register points to an open area in an output area. The format routine will take the
data contained in the TTE, make the data printable, and place the resulting printable data into
this output area, starting at the location pointed to by RS. The field TLGBSAVE in the
$TLGWORK area (the variable extension area off of the event trace log PCE) points to the
beginning of this output area. The maximum size of this output is defined by an equate in
$HASPEQU named TRCLRECL. Therefore, the maximum area that can be saved in this
output area is TRCLRECL-1 (minus one for the carriage control). When the output area is
full, a call to a routine named TRCPUT can be made to 'PUT' this line and obtain a new
output area. We will describe TRCPUT shortly.

• R 14 - this register contains the return address.

• R l S - this register contains the format routine entry address.

82 A GUIDE User Group Presentation

_. /

/

(

TIO Tables ...

• TID Tables (Examples - Installation) ...

• Required Pieces ...

01/88

& TROUT2SS ...

6, TRCPUT Service Routine

- adds record to current buffer
- addr of TRCPUT in HCT field

$TRCPUT
- on exit RS points to next area

in buffer
- registers:

RO - Length of text (TLGBSAVE
points to start of text)

RS - Add r of New RCS on exit,
must return to caller

R14 - Return Addr
R1S - Zero on Exit

74

The TRCPUT service routine is an external routine available to installation format routines to
"PUT" a formatted output area and obtain a new output area. The address of the TRCPUT
routine is available from the $HCT field $TRCPUT.

On entry to the TRCPUT service routine, you must pass the length of the text in RO. You can
calculated this by taking the ending address in the output area of the installation data and sub­
tracting the value in TLGBSAVE. R15 must contain the address of the TRCPUT service routine
and Rl4 must contain the return address (i.e., use standard BALR R14,R15 linkage).

On exit, the TRCPUT service routine will return in R5 the address of the new output area. This
must be returned by the format routine to the caller of the installation format routine. Therefore,
a $STORE of RS should be done by the format routine upon return from the TRCPUT service
routine.

Examples of Table Pairs 83

TIO Tables ...

• TIO Tables (Examples - Installation) ...

• Required Pieces .•.

.a. Installation TIO table

6 Defined as above

... Exit 0

6 Obtain $UCT and place address in $HCT

6 Initialize the $UCT

6 Place Installation TIO table addr in field MCTTIDTU in $MCT
in HASPTABS

01/88 75

The last two pieces that are required are the installation TIO table, as coded above, and the code
for Exit 0. The Exit 0 code is required to do three thiµgs.

1. It must obtain the $UCT and place the $UCTs address in the $HCT.

2. It must initialize the $UCT.

3. Finally, it must place the installation TIO table address in the MCTTIOTU field in the $MCT
in module HAS PT ABS.

The code that is contained in "Appendix A. Table Pairs Coding Example" on page 147 is the code
as you would be required to code it. This code includes:

• Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation TIO table address in the $MCT.

• The HASPXJOO module contains, among other items that we will describe shortly, the TIO
table and the TIO format routine TROUT255.

84 A GUIDE User Group Presentation

/

(

WS Tables

What Is a WS Table?

Work Selection Tables

•Work Selection (WS) Tables

•Ability to select output based on devicG and JOE
characteristics

•Applied to local and remote print or punch devices

• Applied to offload job and sysout transmitters and receivers

• Device work selection setup defined by WS operand on
''devices"

WS = (nn, ... I nn, ...)

•Work selection tables ex~ensible

01188 76

Work Selection is the ability to select output based on a matching of device characteristics with
output characteristics (JOE characteristics). Work Selection is available in JES2 for local and re­
mote print and punch devices. Also, offload job and sysout transmitters and receivers make use
of work selection to determine what output or job to process. Device characteristics are set via the
WS (Work Selection) operand on the device. The WS operand contains a list of attributes that
define the characteristics of the device. The list is made up of criteria. The position of each crite­
rion relative to the slash in the list determines how important it is to match on that particular cri­
terion. Criteria to the left of the slash require an exact match between the device and the output
before that output is considered suitable. Criteria to the right of the slash indicate a preference for
a match, but the output need not match exactly.

Additional information on the use of work selection is available in SPL: JES2 Initialization and
Tuning, form (SC23-0065).

Examples of Table Pairs 85

Work Selection Tables ...

•Work Selection (WS) Tables ...

•Used to:

.a. Add Installation work selection criteria to JES2 system

.a. Override HASP-defined work selection criteria in JES2 system

• HASP-defined WS tables reside in HASPTABS

• See MVS!Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01/88 77

The Work Selection (WS) tables are used to add installation work selection criteria to a JES2 sys­
tem or override JES2-defined work selection criteria in JES2. Notice that deleting JES2 work se­
lection criteria was not discussed. This is because we do not recommend deleting any JES2 work
selection criteria.

The JES2-defined WS tables reside in the JES2 module HASPTABS. Some of the following in­
formation can be found in SPL: JES2 User Modifications and Macros.

86 A GlJIDE lJser Gro!lp Presentation

/

WS Control Blocks and Macros

Work Selection Tables ...

• WS Tables (Related Control Blocks and Macros)

• $MCT table fields:

01/88

MCTPRWTU DC V(USERPRWT) USER PRT
MCTPRWTH DC V(HASPPRWT) HASP PRT

MCTPUWTU DC V(USERPUWT) USER PUN
MCTPUWTH DC V(HASPPUWT) HASP PUN

MCT JTWTU DC V(USERJTWT) USER OFFJT
MCT JTWTH DC V(HASPJTWT) HASP OFFJT

MCT JRWTU DC V(USERJRWT) USER OFFJR
MCT JRWTH DC V(HASPJRWT) HASP OFFJR.

MCTSTWTU DC V(USERSTWT) USER OFFST
MCTSTWTH DC V(HASPSTWT) HASP OFFST

MCTSRWTU DC V(USERSRWT) USER OffSR
MCTSRWTH DC V(HASPSRWT) HASP OFFSR

78

The table pairs that are used to point to the WS tables are located in the $MCT. There is one table
pair for each device type which supports work selection. Therefore, there is a table pair for:

• Printers

• Punches

• Oflload Job Transmitters

• Oflload Job Receivers

• Oflload Sysout Transmitters

• Oflload Sysout Receivers

The $MCT fields for installation work selection tables are MCTPRWTU for printers,
MCTPUWTU for punches, MCTJTWTU for oflload job transmitters, MCTJRWTU for oflload
job receivers, MCTSTWTU for oflload sysout transmitters, and MCTSRWTU for oflload sysout
receivers. If you want to link-edit an installation table with JES2 you must name your tables
USERPRWT for printers, USERPUWT for punches, USERJTWT for oflload job transmitters,
USERJRWT for oflload job receivers, USERSTWT for oflload sysout transmitters, and
USERSRWT for oflload sysout receivers. The installation table must then be link-edited with
HASJES20. The JES2-defmed WS tables are pointed to from the $MCT using the MCT above
and table names.

Examples of Table Pairs 87

Work Selection Tables ...

• WS Tables (Related Control Blocks and Macros) ...

• $WSTAB macro

.t. Builds WS tables and entries

.t. Maps WS table entries

01188 79

To aid in the creating WS tables, JES2 supplies a macro named $WST AB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the WS tables and elements. We will. describe this macro and its operands more thoroughly
below.

88 A GUIDE User Group Presentation

j

/

~-

(_

A JES2 WS Table

Work Selection Tables ...

• WS Tables (Examples - JES2)

HASPPRWT $HSTAB TABLE--HASP

01188

$WSTAB NAME= •••

$WSTAB NAllE:JOBNAI£,

MDI.EN=~.

Fl..O=JQEJNAHE,

CB:JQE,

RTN~ARE

$11STAB NAI£:. • •

SWSTAB TABLE=Etll

80

The figure above illustrates what the JES2 work selection table looks like for the printers work se­
lection criterion JOBNAME. The table element shown represents all the information that JES2
needs to define the JES2 criterion for JOBNAME. This is the table element that is passed to the
$#GET service routine which returns eligible JOEs for processing based upon the work selection
list defined for the printer. Notice that the name of the WS table is HASPPRWT, the same as that
specified for the V-type address constant in the $MCT.

Now we describe each operand on the $WST AB macro and how you should specify them.

Examples of Table Pairs 89

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB TABLE= HASP - invoke $WSTAB macro to build
JES2 ws table

• $WSTAB - invokes $WSTAB macro to build WS table entry
for printer device

.a. NAME= - criterion name or slash

b. 1 - 8 characters

.a. MINLEN= - minimum length accepted for NAME=

b. optional, defaults to full length of NAME= criterion

01/88 81

The JES2 tables are started by specifying 'TABLE= HASP'. This indicates to JES2 that this table
is a JES2 table. You specify 'TABLE= USER' to indicate that the table is an installation-coded
table. Specifying TABLE= HASP or TABLE= USER is the means JES2 provides to indicate the
start of the table (TABLE= ST ART) as discussed in "Concepts" on page 6.

When $WST AB is specified with operands other than TABLE= , the macro generates a table ele­
ment. In the example above, the table element that is generated is for the JOBNAME work se­
lection criterion.

The NAME operand specifies the 1-8 character name of the criterion. The specified name is used
to display work selection criteria as well as to specify the criteria in the work selection list. The
NAME can also specify the special character'/'. The slash delineates the left section of the work
selection list from the right section. Criteria to the left of the slash are required to match explicitly.
Criteria to the right of the slash are not required to match. In the example above, the name of the
work selection criterion is JOBNAME.

The MINLEN operand specifies the minimum length that is required for the NAME. In the ex­
ample, the minimum length that can be specified for JOBNAME is 3, that is, JOB would be all that
would be needed before it was recognized as JOBNAME. The default value for this field is the
entire length of the value entered for the NAME operand.

90 A GUIDE User Group Presentation

/

/

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

.a. FLD = -name of field

L compared against device field for match

01/88 82

The FLO operand specifies the name of the field used to determine if there is a match with the
device field. In the example, the field JQEJNAME holds the job name. Thus, the job name is
compared against that specified with the device to determine if this job is illegible for processing
by the device.

Examples of Table Pairs 91

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ..•

A CB= - used to resolve FLO= , valid are:

!>. JQE - JQE

t::. WJOE - work-JOE

t::. CJOE - char-JOE

t::. HCT- HCT

t::. NJHG - general section of Job hdr

!>. NJH2 - JES2 section of Job hdr

t::. NJHU - user section of Job hdr

01/88 83

The CB operand tells JES2 what control block the value specified for the FLD operand is in. JES2
understands a finite number of values for.the CB operand. This is because JES2 will use the CB
operand to detennine what control blocks should be scanned to obtain a match between the
FLD/CB pair and that specified for the device. Therefore, in the example above, the CB= JQE
was specified which implies that the JQE must be looked at (using the JQEJNAME field) to find
a match. JES2 understands how to obtain the JQE address. JES2 would not understand all control
blocks.

Those control blocks that JES2 understands how to get addresses for include:

• JQE - the control block that represents jobs to JES2.

• WJOE - the work JOE which contains information on the output to be printed.

• CJOE - the characteristics JOE which contains information on some of the characteristics of
the output.

• NJHG - general section of the Job Header. This would be useful if the work selection list were
to select on header fields (as for OFFLOADing).

• NJH2 - JES2 section of the Job Header.

• NJHU - user section of the Job Header. This would be useful for installations that might want
to add work selection criteria of OFFLOAD (for example) where fields for selection resided in
the user section of the header.

92 A GUIDE User Group Presentation

/

(
Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

.I. CB= ...

t. NJHO - spool offload section of Job hdr

t:. NOHG - general section of OS hdr

t:. NOHA - 3800 section of OS hdr

t:. NOHS - datastream sectn of OS hdr

t:. NOHU - user section of OS hdr

t:. ZERO - no control block needed

01/88 84

Some of the other control blocks known by JES2 include:

• NJHO - spool offload section of the Job header. This is the section that JES2 uses for the
spool offloading and reloading of jobs.

• NDHG - general section of the dataset header. Just like the general section of the job header,
might 6e useful for installations to create work selection criteria for selecting items from the
net, tape, etc.

• NDHA - the 3800 section of the dataset header is also known by JES2.

• NDHS - datastream section of the dataset header.

• NDHU - user section of the dataset header.

• ZERO - this implies that no control block is needed and the FLO and FLAG operands are
ignored.

Examples of Table Pairs 93

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

4 DEVFLD= - name of device field

6 compare against FLO= field

4 OEVCB = - control block to use to resolve OEVFLO, valid are:

6 OCT

6 PIT

6 HCT

6 UCT

6 ZERO - no control block needed for criterion

01/88 85

The DEVFLD operand specifies the name of the field used to find a match for the device. This
device field is compared against the field specified for the FLD operand to determine if this device
should select that item for processing. In the example, the DCTJOBNM field is compared to the
JQEJNAME field in the JQE. If the fields are compatible, then the device can select that job re­
presented by the JQE.

The DEVCB operand tells JES2 what control block the value specified for the DEVFLD operand
is in. JES2 understands a finite number of values for the DEVCB operand. Like the CB operand,
JES2 will use the DEVCB operand to determine what control blocks should be scanned to obtain
a match between the FLD/CB pair and the DEVFLO/OEVCB pair. Therefore, in the example
above, the OEVCB = DCT was specified which implies that the OCT (Device Control Table, re­
presents the device) must be looked at (using the DCTJOBNM field) to find a match. JES2
understands how to obtain the OCT address. JES2 would not understand all control blocks.

Those control blocks that JES2 understands how to get addresses for include:

• OCT - the control block that represents devices

• PIT - the control block that represents MYS initiators

• HCT - the HASP Communication Table

• UCT - the User Communication Table

• Zero - this implies that no control block is needed. Both the OEVFLD and DEVFLAG op·
erands are ignored.

94 A GUIDE User Group Presentation

(

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

01/88

• RTN - specifies routine to check if work to be selected meets
criterion value. Valid are:

6 FLAG - call general flag routine

6 COMPARE - call general compare routine

6 RANGE - cal I general range routine

6 other - routine address called to check criterion

86

The RTN operand specifies a routine that is called to check if the work that has been selected sat­
isfies the criterion value. There are three routines that JES2 provides to support work selection
tables. These routines are:

• FLAG - a general routine to determine if flag values match

• COMPARE - a general routine to compare if two fields match

• RANGE - a general routine to determine if a value lies within a specified range.

In addition to these general routines, a routine name can be specified to receive control to pexf orm
the selection verification. We will say more on this shortly.

In the JES2 example, the COMPARE operand is specified to compare the JQE control block field
JQEJNAME with the OCT control block field DCTJOBNM to determine if a match exists.

Examples of Table Pairs 95

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

01188

.a. RTN ...

LC. registers on entry to routine:

R2 - addr of criterion being
processed

R7 - comparison length
RB - addr of device field or

device Control Block
R10 - addr of comparison field or

Control Block
R14 - return address
R15 - Entry address

87

You can specify an installation routine to receive control to perform the validation. When the
routine is given control:

• R2 will contain the address of the criterion being processed.

• R 7 will contain the length of the field being compared.

• R8 contains the address of the device field (as specified via the DEVFLD operand) or device
control block (as specified via the DEVCB operand).

• RlO contains the address of the comparison _field (as specified via the FLO operand) or the
control block (as specified via the CB operand).

• R 14 contains the return address.

• R 15 contains the routine entry address.

It is very important to keep in mind that the routine is called for every check of this criterion when
it is in the work selection list. Therefore, this routine is in a potentially critical performance path
(which is the reason for the non-standard register interface). Registers R2, R3, R4, Rll, Rl2 and
R 13 must not be altered by the routine.

96 A GUIDE User Group Presentation

•·.

(

(

Work Selection Tables ...

• WS Tables (Examples - JES2) ...

• $WSTAB - table entry ...

A RTN ...

6 return codes from routine:

0 - reject work
4 - criterion is met, continue

criteria processing
8 - work is selectable, return

to caller
12 - criterion is not met, check

if criteria after slash

• $WSTAB TABLE= END - indicates end of table

01188 88

There are four valid return codes that can be set by the installation routine. These are:

• 0 - implies that this unit of work should be rejected, that no more scanning should be done.

• 4 - implies that the test was positive and that this unit of work may be acceptable depending
on the tests of any other work selection criteria.

• 8 - implies that this unit of work should be selected without any further scanning of the work
selection criteria.

• 12 - implies that the test for this criterion failed. However, this may be acceptable depending
on the location of the criterion (before or after the slash); processing should continue to de­
termine if this failure is acceptable.

When the TABLE= END is encountered, the table is closed. This indicates the end of the JES2
Printer Work Selection tables. All of the JES2-defined printer work selection criteria are defined
within this single table.

Examples of Table Pairs 97

An Installation WS Table

Work Selection Tables ...

• WS Tables (Examples - Installation)

• Objective:

4 Create additional criteria

4 Use Work Selection table installation-extensible function

•Function:

4 Add criteria on an OFFLOAD SYSOUT transmit)er to offload
SYSOUT that exceeded an installation-specified number of track
groups

• This is one scheme to complete this objective, others exist

01/88 89

In order to show how you would specify installation Work Selection tables, the remaining de­
scription of the WS tables will step through the creation of an installation-defined work selection
criteria to select output that is beyond a specified limit for offioad processing.

Objective

During periods of peak spool use (e.g., end of month or end of year processing), you may be in­
terested in using the MYS/SP JES2 2.1.5 Spool Offioad facility to offioad jobs that are using a large
amount of JES2 spool. In order to achieve this in a way that involves the least amount of code,
you would like there to be an additional work selection criterion on the Offioad SYSOUT Trans­
mitter. This operand would indicate at what spool usage threshold a job would be when it would
be offioaded from the system.

To achieve this, you will add an installation table element to the work selection list for the Offioad
SYSOUT Transmitter. The following documents the pieces required, the coding of the table ele­
ment, and the required code to "plug" the table in. This is one scheme to achieve the stated ob­
jective; others do exist.

98 A GUIDE User Group Presentation

(

Required Pieces

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

• Pieces consist or:

EKit 0 . HS ROUTINE

D
USER HS TABLE

01188 90

To achieve the objective, you will need to code three pieces. These pieces are:

1. Exit 0

2.

As was discussed in "Concepts" on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation Work Selection table with the HASJES20
load module. This requires the name of the installation table be USERSTWT.

b. If you do not wish to link-edit your installation Work Selection table USERSTWT, then
you must fill in the address of your installation Work Selection table into the $MCT field
MCTSTWTU. This is the second method. This method requires that you fill in the
address of your table in the $MCT before invoking the Offioad SYSOUT Transmitter to
access this Work Selection criterion. Depending on when you use the transmitter, you
may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the Work Selection table early in initialization,
specifically in Exit 0. Therefore, you require an Exit 0 that will load your module (if not al­
ready loaded) and resolve the address of the table.

Work Selection Routine

The method of deciding whether a job exceeds the specified spool usage threshold requires
finding the amount of spool space used by the job. This value is held in two separate locations,
depending on whether or not the job is in conversion or execution, or is elsewhere. Since this
requires code more complex than that which the "canned" compare, range, or flag routines can
handle, you must code a work selection routine to gain control.

Examples of Table Pairs 99

3. User WS Table

You will have to code an installation Work Selection table that includes the table element for
your particular work selection criterion. We will describe this installation table element in a
step-wise fashion below.

I 00 A GUIDE User Group Presentation

Coding the Installation WS Table

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

• Table and Operands:

& Name of criterion is TRKGRP for track group

D. NAME= TRKGRP

& Minimum length for keyword is TR

6 MINLEN=2

& Allow operator to also specify TG for track group

!:!. ALIAS=TG

01188 91

Coding the installation Work Selection table involves deciding what values you want to expose to
your operators. For example, the work selection operand that is seen and entered by the operators
is TRKGRP, which indicates that work is selected based on the number of track groups (spool
space) that has been allocated to a job.

Since TRKGRP involves typing six characters, you may wish to make it easier for the operator
by indicating that only 2 of the 6 characters need be typed. Therefore, you will specify a minimum
length of 2 (MIN LEN= 2).

Also, when JES2 publications talk about track groups, they often refer to them in the abbreviated.
form of TG. In order to prevent confusion, you could specify an alias of TRKGRP that may make
more sense to your operators. Thus, the alias for TRKGRP is TG.

Examples of Table Pairs 101

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

• Table and Operands ...

.l Field to check is JQETGNUM in the $JQE

!:> FLO= JQETGNUM

.l Control block is the $JQE

!:> CB=JQE

.l OFFLOAD device field to check is DCTUSERO

!:> DEVFLD = DCTUSERO

01188 92

The field that contains the number of track groups allocated to the job is JQETGNUM. This field
determines whether there is a match with the device field. Therefore, the FLD operand is set to
JQETGNUM. Thus, the job's number of track groups obtained from field JQETGNUM deter­
mines whether the Offioad SYSOUT Transmitter "device" should select this job for transmitting.

The field FLD = JQETGNUM is located in the control block JQE. The JQE (Job Queue Ele­
ment) is a control block that represents the job while it is in the system.

So, the job's field JQETGNUM is compared against a threshold value set for the Offioad SYSOUT
Transmitter "device". The threshold value for the transmitter device is held in the field
DCTUSERO. The DCTUSERO field is set by the operator as the threshold value. We will discuss
the setting of the field in the Installation Examples section of the $SCAN tables. Thus, the devices
field is DEVFLD = DCTUSERO.

102 A GUIDE User Group Presentation

' /

(

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

• Table and Operands ...

01/88

.6. Field OCTUSERO is in the OCT

6 OEVCB=OCT

A Routine that will verify that the JQETGNUM field matches the
criterion in the OCT is WSTRKGRP

6 RTN = WSTRKGRP

93

The device field DCTUSERO is located in the control block DCT (Device Control Table). DCTs
define devices to JES2. Thus, every device in JES2 has a DCT; this includes Offload SYSOUT
Transmitters. Therefore, the device control block is DEVCB = DCT.

As discussed earlier, a work selection routine will have to gain control to verify that the amount
of spool space allocated to a job (JQETGNUM) is greater than the threshold specified by the user
for the device (DCTUSERO). This is because while the job is in conversion or execution,
JQETGNUM holds an offset into the checkpoint area which contains the number of track groups
allocated to the job. Thus, the routine is named (WSTRKGRP). This routine must be link-edited
with this table entry so that the routine's address can be resolved. See the sample code in "Ap­
pendix A. Table Pairs Coding Example" on page 147.

Examples of Table Pairs I 03

Resulting WS Table

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

USERSTWT $NSTAB TAlllE=USER

01/88

$HSTA8 NAIE=TRKGRP,

NINLEN:2,

FLD=JQETGNUM,

Cll=JQE,

DEVFLD=OCTUSERO,

DEVCB=DCT,

RTN=H$TRKGRP

$HSTAB TASLE=ENO

94

The figure above shows the resulting installation Work Selection Table to add a work selection
operand to the Offioad SYSOUT Transmitter. The table is begun with a TABLE= USER to tell
JES2 that this is an installation table. The name of the work selection criterion is TRKGRP. Only
TR need be typed by the operator to indicate TRKGRP, or the operator can use the alias name
of TG. The field to compare with in the job is JQETGNUM in the job's control block JQE. The
field to compare against in the device is DCTUSERO in the device control block OCT. A routine
to do the actual comparison is called WSTRKGRP. Finally, the table is ended with a
TABLE= END to indicate to JES2 that this installation table is completed.

104 A GUIDE User Group Presentation

/

(

(~-

Coding the Other Required Pieces

Work Selection Tables ...

• WS Tables (Examples - Installation) ...

• Required Pieces

01/88

& WSTRKGRP -.routine to verify that JQETGNUM is equal to or
greater than DCTUSERO

& Installation WS table

!!. Defined as above

& Exit 0

t, Obtain $UCT and place address in $HCT

!!. Initialize the $UCT

6 Place Installation WS table addr in field MCTSTWTH in $MCT
in HASPTABS

The pieces required to permit an installation to add a work selection operand are the installation
work selection routine (WSTRKGRP), the installation work selection table (as coded above), and
the code for Exit 0. The Exit 0 code is required to do three things.

1. It must obtain the $UCT and place the $UCT's address in the $HCT.

2. It must initialize the $UCT.

3. Finally, it must place the installation Work Selection table address in the MCTSTWTU field
in the $MCT in module HASPT ABS.

The code that is contained in "Appendix A. Table Pairs Coding Example" on page 147 is the code
as an installation would be required to code it. This code includes:

• Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation Work Selection table address in the $MCT.

• The HASPXJOO module contains, among other items that we will describe shortly, the Work
Selection table and the Work Selection criterion routine WSTRKGRP.

Examples of Table Pairs I OS

$SCAN Tables

What Is a $SCAN Table?

$SCAN Tables

• $SCAN tables

•Used to:

A Add Installation initialization and command statements and
operands to JES2 system

A Override HASP-defined $SCAN tables in JES2 system

A Delete HASP-defined $SCAN tables in JES2 system

•HASP-defined $SCAN tables reside in HASPSTAB

• See MVS!Extended Architecture SPL: JES2 User
Modifications a(ld Macros (LC23-0069)

01/88 96

$SCAN is a facility for scanning, from left to right serially, parameter statement input (initialization
statements and commands). The $SCAN facility allows the input to match a general grammar, to
follow a definition that is table-defined, and to process certain input via exit routines called during
the scan.

The $SCAN facility improves upon past initialization statement and command processors in that
it insures that all the input to process is valid. If at any point an invalid value is encountered, the
scanning is terminated and any changed values are restored to the previous values. The $SCAN
facility is not a general syntax checker in that it terminates processing at the first syntax failure. It
will not continue processing the statement, flushing out additional errors.

Through the $SCAN facility, you can add, override, or delete installation initialization statements
and operands (to a lesser degree this includes JES2 commands). It is recommended that if you want
to add commands that you call the $SCAN facility from the command exit (exit 5).

The JES2-defined $SCAN tables reside in HAS PST AB. Some of the following information can
be found in the SPL: JES2 User Modifications and Macros (LC23-0069).

106 A GUIDE User Group Presentation

\"- ./

(

$SCAN Control Blocks and Macros

$SCAN Tables ...

• $SCAN tables (Related Control Blocks and Macros)

• $MCT table fields:

01/88

MCTOPTTP OS OF OPTION TBLES
MCTOPTTU DC V(USEROPTT) USER OPT TBL
MCTOPTTH DC V(HASPOPTT) HASP OPT TBL

MCTMPSTP OS OF MAIN PARM STMT
MCTMPSTU DC V(USERMPST) USER MPS TBL
MCTMPSTH DC V(HASPMPST) HASP MPS TBL

97

The table pairs that are used to point to the initialization option tables and the initialization state­
ment tables are located in the $MCT.8 There is one table for the initialization options and one for
the initialization statements. The $MCT field for installation tables for initialization options is
MCTOPTTU; for the installation tables for the initialization statements the field is MCTMPSTU.
If you want to link-edit a table with JES2 you must name the table USEROPTT for initialization
options and USERMPST for initialization statements. The installation table would then need to
be link-edited with HASJES20. The JES2-defined options and statements are pointed to from the
$MCT using the MCT and table names as shown on the foil.

8 Initialization option examples: COLD, NOREQ, WARM. Initialization statement examples: PRT,
MASDEF.

Examples of Table Pairs l 07

$SCAN Tables ...

• $SCAN tables (Related Control Blocks and Macros) ...

• $SCANWA control block

01/88

.t. $SCAN Facility work area control block

.t. Contains fields required by $SCAN Facility process

.t. Interface control block between $SCAN Facility and all routines
it calls

98

The $SCANW A ($SCAN work area) control block is a work area for the $SCAN request. The
$SCAN facility can recursively call itself to process the input passed to it. At each invocation of
$SCAN, a new $SCANWA ($SCWA) is obtained to hold information to aid the facility in the
processing of the input. The $SCW A is the interface control block between the $SCAN facility
and all the routines that it calls, including the pre- and post-scan exit routines and the display exit
routine.

These exit routines will be given control pointing to the current $SCWA for this level of $SCAN.
There are three forms of $SCW As:

1. Work $SCWAs

2. Back-up $SCW As

3. Display $SCW As

The work $SCWAs are the control blocks that the exit routines will care the most about. We will
discuss more on this control block and its relationship with the exit routines later in "A JES2
$SCAN Table" on page 112.

108 A GUIDE User Group Presentation

(

(

$SCAN Tables ...

• $SCAN tables (Related Control Blocks and Macros) ...

• $SCAN macro

01/88

.t. Generates calling sequence to the JES2 $SCAN facility

.t. Operands:

r::. SCAN= - type of scan requested

SET - take input and set specified
area

DISPLAY - based on input, display
specified area

SETDISP - take input, set specified
area and then display
specified area

,SINGLE - limit scan to single
parameter keyword

99

The $SCAN facility is invoked by using the $SCAN macro. This macro generates the calling se­
quence to the facility and insures that the required data is passed on the call. There are several
operands on this macro (all of which are documented in SPL: JES2 User Modifications and
Macros).

The first operand that we will discuss is the SCAN= operand. This operand indicates the type of
request the caller wishes the $SCAN facility to fulfill. There are many types of calls. Three of them
are:

• SET indicates that the input should be processed and the validated input should be set into
fields specified by the $SCANT AB macro for the input being parsed.

• DISPLAY indicates that the input should be processed and the specified fields should be dis­
played using attributes specified in the $SCANT AB macro for the input being parsed.

• SETDISP indicates that a set request should be done and then, within the same $SCAN call,
a display of the result should be done.

The optional second positional value that you can specify with SET, DISPLAY, or SETDISP is
SINGLE. This indicates that only one initialization statement or command (with possibly many
operands) may be processed on this invocation of the $SCAN facility.

Examples of Table Pairs I 09

$SCAN Tables ...

• $SCAN tables (Related Control Blocks and Macros) ...

• $SCAN macro ...

4 TABLES= - addr of table pair

4 PARM= - addr of area to scan

4 PARMLEN = - len of area to scan

4 DI SPOUT= - addr of output area

4 DI SP LEN= - len of output area

4 DISPRTN = - addr of output display routine

4 CALLER= - caller identifier limits tables that will be searched

01/88 100

In addition to the SCAN= operand, there is the TABLES= operand. This operand points to the
table pair in the $MCT where the $SCAN facility is to start looking for table elements that match
the input that is encountered. This need not specify a table pair in the $MCT. However, the only
other location where a table pair can reside is in the $UCT.

The PARM= operand points to the input that the $SCAN facility is to process. This parameter
input area is required to contain the entire input plus one blanked out byte. The PARMLEN =
operand specifies the length of the input plus one for the blanked out byte. Thus, if an 80-byte
buffer area holds the input, and the input is only 40 bytes in length (not including the last blanked
out byte), then the PARM= will point to the beginning of the buffer area and the PARMLEN =
is set to 41 (includes the last blanked out byte).

The DISPOUT= operand points to the area where $SCAN facility generated display text is to be
placed. DISPLEN specifies the length of the display area and DISPRTN= specifies the display
routine that will get control to display the display area. The $SCAN facility does not issue any sort
of display of the specified area; this is up to the routine specified in the DISPRTN field. Also note
that DISPOUT=, DISPLEN=, and DISPRTN= are not required. However, if the $SCAN fa­
cility encounters an error, the diagnostic message it normally builds (using DISPOUT, DISPLEN,
and DISPRTN) will not be built. Therefore, if you want to see diagnostic messages, these three
display-oriented operands should be specified even for SCAN= SET calls.

The CALLER = operand is a means to specify or clarify environmental type of information on the
$SCAN call. It is possible for you to code two tables for the same keyword that $SCAN should
use at different times, one for initialization and one for command time, for example. Thus, a
CALLER= operand is provided on the table (as we will show shortly). When the $SCAN facility
is invoked with CALLER= specified on the $SCAN macro, this "caller id" is used to match the
table element. Therefore, different control blocks can be specified for the same keyword so that the
correct location is processed for the sets and displays. We will describe this operand further in "A
JES2 $SCAN Table" on page 112.

IIO A GUIDE User Group Presentation

(

(

$SCAN Tables ...

• $SCAN tables (Related Control Blocks and Macros) ...

• $SCANT AB macro

.a. Builds $SCAN tables and entries

.a. Maps $SCAN table entries

01/88 101

Just as there were table creating macros for the PCE Tables, DTE Tables, TID Tables, and WS
tables, there is a $SCANT AB macro to aid in creating $SCAN tables. This macro builds both the
JES2 and installation tables and table elements. This macro also contains the mapping macro for
the $SCAN tables and elements. We will describe this macro and its operand more thoroughly
shortly.

Examples of Table Pairs 111

A JES2 $SCAN Table

$SCAN Tables ...

• $SCAN Tables (Examples - JES2)

HASPMPST $SCANT AB TABLE:HASP

01/88

$SCANT AB NAME: •••

$SCANT AB NAME:RECVOPTS,

MSGID=S<'t-6,

CONV:SUBSCAN,

SUBSCAN:MCTRCVTP,

CB=< TEMP ,R\JSILNG),

PRESCAN:C PREORECV ,DISPLAY),

PSTSCAN:CPSTRECV ,SET),

CALLER:< $SCIRPL ,SSCIRPLC,

$SCDCMDS, SSCSOOS>

$SCANT AB NAME: •••

$SCANTAB TABLE:Et.O

102

The figure above illustrates what the $SCAN tables for JES2 main parameter statements (initial­
ization statements) look like. The table element shown represents the table element for the
RECVOPTS initialization statement. This is the table that is passed to the $SCAN facility during
JES2 initialization to process the initialization statements. Notice that the name of the $SCAN
table is HASPMPST, the same as that specified for the V-type address constant in the $MCT.

The following describes each of the operands on this table element as well as some other table el­
ements. However, there are several additional operands that will not be covered. You should re­
view the $SCANTAB macro and SPL: JES2 User Modifications and Macros fur a description
of all the operands that you may specify on the $SCANT AB table element.

112 A GUIDE User Group Presentation

(
$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

• $SCANTAB TABLE=HASP - invoke $SCANT AB macro to
build JES2 $SCAN table

• $SCANTAB - invokes $SCANTAB macro to build $SCAN
table entry

01188

4 NAME= - name of scan keyword being defined

;:; 1 - 8 characters

4 MSGID= - specifies 3-digit identifier for $HASPnnn message
when $SCAN proces~ing DISPLAY request

103

The JES2 $SCAN tables, like the preceding tables, are started by specifying 'TABLE= HASP'.
This indicates to JES2 that this table is a JES2 table. You would specify 'TABLE= USER' to
indicate that the table is an installation-coded table. Specifying whether it is a JES2 or installation
table determines default values for the CALLER and SUBSCAN $SCANT AB operands. We will
discuss these operands later. Specifying TABLE= HASP or TABLE= USER is the means JES2
provides to indicate the start of the table (TABLE= START) as discussed in "Concepts" on page
6.

When the $SCANT AB is specified with operands other than TABLE= , the macro generates a
table element. In the example above, the table element that is generated is for the RECVOPTS
initialization statement.

The NAME= operand specifies the 1-8 character name of the initialization parameter or operand.
In its processing, the $SCAN facility scans the input passed to it from left to right, isolating the
keywords that it encounters. The isolated keyword is then used as a matching criterion when
searching through $SCAN table elements. It is the value specified for this NAME operand that
$SCAN uses when attempting to match the isolated keyword.

The MSGID operand specified a three-digit message identifier that is appended to the end of
$HASP to use for display requests involved with this keyword. This operand is only honored at
the highest level of the keyword, the initialization statement name. In the example, for the initial­
ization statement RECVOPTS, the message identifier that is u·sed to respond to display requests is
846. Thus, the message identifier would be: $HASP846.

Examples of Table Pairs 113

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

• CONY= - specifies type of conversion to do for keyword input

t;, CHARlOOO< where

A - alphabetic (A-Z)

N - numeric (0-9)

S - special ($, @, #)

F - first character alphabetic

J - first character alphabetic or special

!)1188

The conversion operand specifies the type of conversion to do with the keyword input. There are
several valid values that this operand can take. The first is CHAR:xxxx. CHAR:xxxx specifies what
the valid characters are that may be specified in the input, where xxxx indicates five valid types:

1. A - indicates that the input must be alphabetic.

2. N - indicates that the in.put must be numeric.

3. S - indicates that the input must be a special character.

4. F - indicates that the first character in the input must be alphabetic.

5. J - indicates that the first character in the input must be alphabetic or special.

Therefore, in the following examples:

• CHARJNAS - indicates that the first character in the input must be alphabetic or special and
the rest of the input can be alphabetic, numeric, or special character (e.g., A$$$89A).

• CHARFNA - indicates that the first character in the input must be alphabetic and the rest of
the input can be numeric or alphabetic. Special character input is not permitted. (e.g.,
A998AB99)

• CHARA - indicates that only alphabetic input is permitted.

• CHARN - indicates that only numeric input is permitted.

• etc.

114 A GUIDE User Group Presentation

/

(

(

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

j. CONV= ..

6 FLAG - keyword represents a flag value, flag set as per VALUE
operand (see Mods and Macros)

01/88

6 ALIAS - keyword alias of other keyword as per SCANTAB=
operand

6 VECTOR - keyword represents a vector of values

L. SUBSCAN - keyword requires another level of scan using
tables as per SCANTAB= operand

6 NUM - keyword is numeric value

L HEX - keyword is hexadecimal

105

CONY= FLAG indicates that the input is a flag value. This value is then processed as the
VALUE= operand indicates on the $SCANT AB. If CONY= FLAG is specified, the VALUE=
operand is required. See SPL: JES2 User Modifications and Macros for additional information.

CONY= ALIAS indicates that this keyword is an alias name of a real keyword. The $SCANT AB
table element that describes the real keyword is pointed to by the SCANT AB = operand on this
alias $SCANT AB table element. This is useful for creating alternate names for initialization state­
ments or operands. JES2 used this alias capability with the PRINTER, PRINTR, PRT initial­
ization statements in releases at the 2.2.0 level and previous.

CONY= VECTOR indicates that the input represents a vector or list of input. The
$SCANT AB(s) that describes this list of input is pointed to from the SCANT AB= operand. An
example of vector input is:

VOL=(SPOOL1,SPOOL2,SPOOL3)

CONY= SUBSCAN indicates that in order to process the rest of the input, the $SCAN facility
must issue a subscan or a recursive $SCAN call. The SCANT AB = operand, in this instance,
points to a $SCAN table pair (in the $MCT in JES2).

CO NV= NUM indicates that the input is numeric in nature. The difference between this value and
CHARN is that with this value the number is converted to hexadecimal; with CHARN, the value
is character in format.

CONY= HEX indicates that the input is hexadecimal (e.g., l3EF3A).

In the JES2 ex.ample, the CONY= SUBSCAN indicates that processing the rest of the
RECVOPTS initialization statement after the RECVOPTS keyword is isolated will require a re­
cursive $SCAN call. The SUBSCAN = operand points to the $SCAN table pair that $SCAN uses
to process the operands of the RECVOPTS initialization statement.

Examples of Table Pairs I IS

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

A SUBSCAN = - points to additional $SCAN tables

6 if CONV=ALIAS - points to real $SCAN table

6 if CONV=VECTOR - points to $SCAN table(s) to defined Vector
input

6 if CONV=SUBSCAN - points to $SCAN table pair

Uiiiiii 106

As has been stated earlier, the SUBSCAN = operand points to additional $SCAN table elements
dependent upon the value of the CONY= operand. If CONY= ALIAS, the SUBSCAN operand
points to a $SCAN table element that contains the "real" keyword. If CONV =VECTOR, then
the SUBSCAN operand points to a table of Vector $SCAN tables. If CONY= SUBSCAN, the
SUBSCAN operand points to a $SCAN table pair. For JES2 CONY= SUBSCAN, the SUB­
SCAN operand points to a table pair in the $MCT. In the installation table, the SUBSCAN op­
erand would default to point to a table pair in the $UCT. With the MYS/SP JES2 2.2.0 release,
the SUBSCAN operand can point to a table pair located anywhere (A-type address constant or
V-type address constant).

In the JES2 example, the table pair that $SCAN uses to process the operands of the RECVOPTS
initialization statement is contained in the $MCT at label MCTRCVTP.

116 A GUIDE User Group Presentation

(
$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

.a. CB= - specifies primitive control block known by $SCAN facility

L HCT - JES2 HCT control block

L PCE - current PCE at time of $SCAN invocation

6 OCT - scan DCTs to find match for NAME and DCTDEVN

L UCT - Installation UCT control block

6 PARENT - use control block from previous $SCAN level

6 TEMP - $GETMAIN area for size specified

01/88 107

The CB = operand specifies the primitive control block that the $SCAN facility is to use to process
this $SCAN request. The $SCAN facility is set up to know a small number of basic control blocks.
These control blocks are:

l. HCT - the JES2 HCT control block.

2. PCB - the current Processor Control Element at the time of the $SCAN invocation.

3. DCT - a Device Control Table (DCT). This control block is found by calling the $DCTDYN
services which scans the DCTs comparing the NAME and DCTDEVN fields for a match.

4. UCT - the User Control Table (UCT) control block.

The $SCAN facility can also be told to use the control block that was found at the previous level
of $SCAN processing. Also, the facility will obtain a temporary area that can be used as a new
control block. This temporary area is freed upon completing this $SCAN request, so you will have
to code a POST $SCAN exit to $GETMAIN a permanent control block and copy the temporary
into it. If CB = TEMP is specified, a second positional operand must be specified that states the
size of the temporary control block to obtain. In the JES2 example, CB= (TEMP,RVSILNG), a
temporary control block is obtained that is RVSILNG in length.

Besides identifying these basic control blocks, the $SCAN facility can be told to do control block
indirection. Control block indirection is the ability to step from basic control blocks through a
series of other control blocks to find the control block to use to process a request. See the
CBIND= operand on the $SCANTAB macro in SPL: JES2 User Modifications and Macros.

Examples of Table Pairs 117

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

Ui/00

4 PRESCAN = -name of routine to receive control prior to keyword
processing

6 Can be used to find unique control block

6 Do setup or complete processing for keyword

4 PSTSCAN = - name of routine to receive control after keyword
processing

6 Do completion processing unique to keyword

10&:

The PRESCAN = operand names a routine which will receive control prior to keyword processing.
The routine address is resolved with a V-type address constant if it is determined that the routine
is not in the same module as the $SCAN table element that references it. This pre-scan exit routine
is given control to do unique processing to find control blocks or do setup to let the $SCAN facility
complete its processing. It can also do all the processing for the keyword and pass an indicator that
the $SCAN facility is finished with this keyword.

The PSTSCAN = operand names a routine that will receive control upon completing keyword
processing. This routine address is resolved with a V-type address constant if it is determined that
the routine is not in the same module as the $SCAN table element that references it. This post-scan
exit routine is given control to do cleanup processing related to resources that may have been ob­
tained by a pre-scan exit routine. If CB= TEMP was specified, this routine can obtain a permanent
control block to place the result of the $SCAN.

We will discuss more about pre- and post-scan exits later. In the JES2 example, a pre-scan exit
routine was specified with a second positional operand of DISPLAY. This means that the pre-scan
exit routine PREDRECV will receive control only for DISPLAY requests to the $SCAN facility.
The post-scan exit routine PSTRECV will only receive control for SET requests since the second
positional operand indicates SET.

t 18 A GUIDE User Group Presentation

(

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANT AB - table entry ...

.t. CALLER - specify caller identifiers for those callers permitted to
access table entry

6 $SCOPTS - JES2 init options (E.G., COLD, WARM, etc.)

6 $SCIRPL - JES2 init commands

6 $SCIRPLC - console issued init commands

6 $SCDCMDS - display commands

6 $SCSCMDS - set commands

6 $SCDOCMD - short form of display for display commands

01/88 109

As was described on the $SCAN macro, the CALLER= operand is a way to indicate an envi­
ronmental influence over what $SCAN table element to choose to process a keyword. The
CALLER= operand on the $SCAN table element indicates what caller identifiers may access this
table element.

In the JES2 example, the valid callers to access this table include:

l. JES2 initialization statement processing,

2. JES2 initialization display and set requests from the console,

3. display commands, and

4. set commands.

In order to access this table the CALLER= operand on the $SCAN macro must be one of either
$SCIRPL, $SCIRPLC, $SCDCMDS, or $SCSCMDS.

Examples of Table Pairs 119

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

RECVOPTS TYPE=ALL,COUNT==2,INTERVAL=24

0 ,<-----~ MCT . L MCTMPSTP
HASPMPST

TAll.E START

TAll.E DE8UG

T AILE llECVCPTS

TAll.E Elll

01/88

.--, - DC V<USEMPST>

L__ DC V<HASPMPST>

~> MC;i.;ecv:USERRCVT>

DC V<HASPRCVT>

110

With the processing that has occurred so far, the $SCAN facility has taken the initialization state­
ment described above, isolated the RECVOPTS keyword, and found the $SCAN table element for
this keyword. This table element has told the $SCAN facility:

1. for display requests, use the message identifier 846 (MSG ID=);

2. to complete processing for the operands on the statement a: subscan (recursive $SCAN) ca:ll
must be done (CONY=);

3. to use the table pair located at label MCTRCVTP in the $MCT (SUBSCAN =);

4. to obtain a temporary control block that is RVSILNG in length (CB=);

5. before processing the RECVOPTS keyword for display requests, ca:ll the PREDRECV pre­
scan exit routine (PRESCAN =);

6. after processing the RECVOPTS keyword for set requests, ca:ll the PSTRECV post-scan exit
routine (PSTSCAN =);

7. if the ca:ller of the $SCAN facility is not from initialization or command time, don't use this
table (CALLER=).

Now in order to process the operands of the RECVOPTS initialization statement, $SCAN uses the
tables at HASPRCVT.

120 A GUIDE User Group Presentation

/

(

(

$SCAN Tables ...

• $SCAN Tables (Examples • JES2)

RECVOPTS TYPE=ALL,COUNT=2,INTERVAL=24

HASPRCVT SSCANTAB TABLE=HASP

01/88

FIElD=RVSNAIE,DSECT:RVS,

$SCANTAB NAIE::COLNT ,CB:PARENT,

FIELD=RYSLIM,DSECT:RVS,

CONV:NUM,RANGE=<l,99>

$SCANTAB NAME:INTERVAL,CB::PARENT,

Fm.D::RVSINTV ,DSECT=RVS,

CONV::::Nl.14,RANGE:Cl, 9999>

SSCANTAB TABLE:END

111

The $SCAN tables that are pointed to by the RECVOPTS table element are shown above. These
tables describe the valid inputs for the RECVOPTS operands and to show where the input must
be placed and how it should be converted.

In order to fully explain what these table are doing, we will describe each operand below.

Examples of Table Pairs 121

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB TABLE= HASP - invoke $SCANTAB macro to
build JES2 $SCAN table

• $SCANTAB - invokes $SCANTAB macro to build $SCAN
table entry

A NAME= - name of scan keyword being defined

A CB= - use the control block located or obtained from previous
$SCAN level

A FIELD= - name and length of field associated with keyword value

A Length assumed based on assembler-defined length of field

A Length specified as second operand

01188 112

Once again, this is a JES2 table, as signified by TABLE= HASP. If you wish to add or override
keywords described in this table, you would code a table USERRCVT with TABLE= USER and
fill in the address to the table in the MCT. We will describe this process more later.

The NAME= operand is the same at this second level of scan as it was for the first level of scan­
ning (i.e., for the RECVOPTS keyword). It indicates the one- to eight-character name of the
keyword that this table element defines. In this example, there are three keywords defined by this
table; TYPE, COUNT, and INTERVAL are defined by the $SCAN table elements.

The CB= operand indicates that the temporary area obtained at the previous level of scanning is
to be used as the control block. This is indicated by specifying CB= PARENT. ·

The FIELD= operand indicates the name and length of the field that is set or displayed for the
specified keyword. The length need not be specified if it defaults to its assembler-defined length.
Otherwise, specify the length as a second positional operand on this FIELD= operand (e.g.,
FIELD=(RVSNAME,8) where 8 is the length).

122 A GUIDE User Group Presentation

/ '
\
''- j

(-

(

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

a DSECT= - DSECT name to use to resolve FIELD= value

t. If FIELD is absolute offset, DSECT should be 0

a CONV= - specifies type of conversion to do

6 CHARA - data must be alphabetic (A-Z) only

6 NUM - data must be numeric

01/88 113

In order to resolve the FIELD= offset, the DSECT that contains the field must be specified via
the DSECT = operand. If the FIELD is an absolute offset, then DSECT = 0 should be coded.

As was discussed earlier, the CONV = operand specifies the type of conversion for the input. The
two types of conversion in the example are CHARA and NUM. CHARA indicates that the input
can only be alphabetical in nature. NUM indicates that the input must be numeric.

Examples of Table Pairs 123

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• $SCANTAB - table entry ...

A RANGE= ·allowed range for the input

D. CHARx><xx - specifies length range

D. NUM, HEX, CHARN • specifies binary range

• $SCANTAB TABLE=END ·indicates end of table

01188 114

RANGE= indicates the allowed range for the input. If the CONY= operand indicates
CHAR:xxxx, then the RANGE= operand· indicates the allowed length of the character input. If
the CONY= operand indicates NUM, HEX, or CHARN, then the RANGE= operand indicates
the allowed binary range of the input.

In the JES2 example, the first table entry contains CONY= CHARA and RANGE=(l,8). This
means that the character input cannot be greater than eight characters and not less than one char­
acter in length. With CONY=NUM and RANGE=(l,99), this means that the numeric input
cannot be less than one nor greater than 99.

TABLE= END, of course, indicates the end of this table.

l24 A GUIDE User Group Presentation

;

(

(,

··~

(

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

RECVOPTS TYPE=ALL,COUNT=2,INTERVAL=24

0 <-< ------. MCT

IL MC~~T> HASPMPST
TABLE START

TABLE DEBUG

TABLE RECVOPTS

DC V<HASPMPST>

lrMC~~~>
~T_ABLE __ Elll ___ ~ .I I DC V<HASPRCTT>

0 <-< ------·

HASPRCVT
TABLE START

TABLE lWE

TABLE COUNT

TABLE INTERVAi.

TABLE Ell>

01/88 115

At this point in the $SCAN facility processing, the RECVOPTS initialization statement can be fully
processed. ·After finding the table for RECVOPTS and recursively calling itself, the $SCAN facility
completed the rest of the initialization statement by isolating the next keyword (TYPE), finding the
$SCAN table element that matched this keyword, and processing the input to this operand.

The table element indicated that the input must be alphabetic, which ALL is, and it must not be
less than one character and not greater than eight characters in length. Since the input passes these
checks, the input is put into the temporary control block using the RVSNAME field in the DSECT
RVS.

After completing the TYPE operand, the $SCAN facility continued with the COUNT operand.
This was done by isolating the keyword, finding the $SCAN table element that matched this
keyword, and processing the input to this operand.

The table element indicated that the input must be numeric, which COUNT is, and it must not
be less than one or greater than 99. Since the input passes these checks, the input is put into the
temporary control block using the RVSLIM field in the DSECT RVS.

After completing the COUNT operand, the $SCAN facility continued with the INTERVAL op­
erand. This was done by isolating the keyword, finding the $SCAN table element that matched this
keyword, and processing the input to this operand.

The table element indicated that the input must be numeric, which INTERVAL is, and it must
not be less than one or greater than 9999. Since the input passes these checks, the input is put into
the temporary control block using the RVSINTV field in the DSECT RVS.

At this point processing is done with all of the operands of the RECVOPTS initialization state­
ment. Thus $SCAN exits this level of $SCAN processing and returns to the first (RECVOPTS)
level of processing. Since the request was a SET request and since the RECVOPTS table element
indicated that a post-scan exit routine must be given control, the post-scan exit PSTRECV routine

Examples of Table Pairs 125

is given control to do some specific final processing (like obtaining a permanent control block, for
example).

126 A GUIDE User Group Presentation

/

(More about Pre-Scan and Post-Scan Exits

$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

• More on PRESCAN and PSTSCAN exits

~ Registers:

Reg Entry Exit

RO Token Unchanged
Rt @of SCWA Unchanged or

Diagnostic Ptr
R2-R10 NIA Unchanged
R11 @of $HCT Unchanged
R12 N/A Unchanged
R13 @of $PCE Unchanged
R14 Return Addr Unchanged
R15 Entry Addr Return Code

01/88 116

Above are the register conventions that pre- and post-scan exit routines can expect on entry. Before
JES2 release 2.2.0, register 0 was undefined upon entry; with 2.2.0, register 0 has the token specified
via TOKEN= on the $SCAN invocation. Register l contains the address of the $SCAN work area
($SCW A). From this work area, the exit routine is capability of obtaining the values of key fields.
We will document these fields shortly.

Registers 11, 13, 14, and 15 follow the normal JES2 $EXIT type of register conventions:

• Register ll contains the address of the $HCT.

• Register 13 contains the address of the PCE (Processor Control Element) for the processor in
control at the time of the $SCAN request.

• Register 14 contains the return address.

• Register 15 contains the entry point address of the exit routine.

The registers that may be set from these pre- and post-scan exit routines also follow normal con­
ventions. Register 1 can contain the address of a diagnostic phrase. This register is interrogated for
this diagnostic phrase if the return code in register 15 indicates so. Next, we describe the valid
values for register 15.

Examples of Table Pairs 127

$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

• More on PRESCAN and PSTSCAN exits ...

A Valid Return Codes from Pre-scan Exit

6 O - Continue as normal

6 4 - Terminate $SCAN, restore data areas (RI is address of
CL2'reason code',AL !(diagnostic length).C'diagnostic
message'

,:; 8 - Pre-scan exit routine processed keyword scan and reset
SCWA

6 12 - Pre-scan exit routine encountered error condition in which
stmt requests access to uninitialized fields - makes sense only
for DISPLAY related requests only

01/88 117

From the pre-scan exit routine, the routine can specify four different return codes in register 15.
Remember that pre-scan exit routines are given control after isolating the keyword from the input
and finding the appropriate $SCAN table element. Exit routines are given control before any
$SCAN facility processing of the keyword.

• The 0 return code indicates that the exit routine successfully completed whatever processing
it was expected to do and that the $SCAN facility should continue and process the keyword.
This processing may include recursive $SCAN calls.

• The 4 return code indicates that some sort of error was detected and that the $SCAN facility
should terminate processing. Part of termination processing for the $SCAN facility is to re­
store any fields that the $SCAN facility may have altered. Also, the $SCAN facility assumes
that register 1 contains the address of a diagnostic phrase. The diagnostic phrase consists of
three sections that are assumed contiguous. These sections are:

• a two-byte reason code (specified in character form - e.g., CL2'43')

• a one-byte length of a diagnostic message (specified in hex - e.g., AL1(23))

• a diagnostic message (specified in character form - C'msg text ... ')

• The 8 return code indicates that the pre-scan exit routine did all the processing for the keyword
and that the $SCAN facility should continue with the next keyword at this level.

• The 12 return code indicates that the pre-scan exit routine determined that the field to be al­
tered is not available and that $SCAN processing should be terminated. This return only
makes sense for DISPLAY related requests. If a display request is made, for instance, at a time
before the item to be displayed has been set, then the display is impossible and the request
should be terminated. As part of this termination, the $SCAN facility will issue an internal
diagnostic phrase in the format defined just above.

128 A GUIDE User Group Presentation

($SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• More on PRESCAN and PSTSCAN exits ...

01188

.a. Valid Return Codes from Postscan Exit

t:. 0 - Continue as normal

t:. 4 - Terminate $SCAN, restore data areas (R1 is addr of
CL2'reason code',AL1 (diagnostic length),C'diagnostic
message'

118

From the post-scan exit routine, the routine can specify two different return codes in register 15.
Remember that post-scan exit routines are given control after all the processing for the keyword
as completed. It is usually taken to "harden" control blocks (obtain permanent copies of the con­
trol block).

• The 0 return code indicates that the exit routine successfully completed whatever processing
it was expected to do and that the $SCAN facility should continue with the next keyword.

• The 4 return code indicates that some sort of error was detected and that the $SCAN facility
should terminate processing. Part of terminate processing for the $SCAN facility is to restore
any fields that the $SCAN facility may have altered. Also, the $SCAN facility assumes that
register 1 contains the address of a diagnostic phrase. The diagnostic phrase consists of three
diagnostic phrase sections that are assumed contiguous. These sections are:

• a two-byte reason code (specified in character form - e.g., CL2'43')

• a one-byte length of a diagnostic message (specified in hex - e.g., AL1(23))

• a diagnostic message (specified in character form - C'msg text ... ')

Examples of Table Pairs 129

$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

. • More on PRESCAN and PSTSCAN exits ...

.t. $SCWA fields of interest to PRE and PST SCAN exits

b. SCWASTAB - addr of $SCANTAB currently processing

b. SCWACBAD - addr of control block, if known, for keyword

b. SCWACNTR - field only useable by PRE and PST SCAN exit
routines

b. SCWAEXFL - flag byte available only to PRE and PST SCAN
exit rtns

b. SCWARLEN - len of remaining input to scan

01/88 119

As stated earlier, the $SCAN work area ($SCWA) for the current level of scanning is passed to pre­
and post-scan exit routines. There are a few fields that may be of interest to the pre- and post-scan
exits. These fields are:

• SCW AST AB - this field contains the address of the $SCAN table element for the current
keyword that is being processed.

• SCW ACBAD - this field contains the address of the control block that the $SCAN facility
determined was specified in the $SCAN table element (after any control block indirection
(CBIND) has been applied). This field may be zero only if CONY= SUBSCAN has been
specified in the table element. If the pre-scan exit finds this field zero and the CONY= op­
erand is not equal to SUBSCAN, then the pre-scan exit routine should find the appropriate
control block and set its address in this field

• sew ACNTR - this is a fullword field that is available to pre- and post-scan routines only.
The $SCAN main line facility will not use it. You can use it to save an incremental value
within a loop (e.g., PRT(l-8)) or to hold an address that is determined in a pre-scan exit rou­
tine.

• SeWAEXFL - this is a flag byte that is reserved for use by pre- and post-scan routines only,
like the fullword field SCWACNTR. Currently, the four high-most bits are reserved for JES2
(X' 11110000') and the four low bits are reserveg for installations (X'OOOO 1111 '), ,,

• sew ARLEN - this is a field that contains the length to scan of the remaining input. Pre- and
post-scan exit routines can use it so that if these routines need to do some scanning of their
own, they will be able to determine where the ending value is.

The JES2 pre- and post-scanning exit routines are located in module HASPSXIT.

130 A GUIDE User Group Presentation

/

''4\,._ ,/

More about Display Routines

$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

• More on Display Routines

01188

A Registers:

Reg

RO
R1

R2-R10
R11
R12
R13
R14
R15

Entry

token
@of SCWA

N/A
@of $HCT
NIA
@of $PCE
Return Addr
Entry Addr

Exit

Unchanged
Unchanged or
Diagnostic Ptr
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Return Code

120

The display exit routine that is specified on the DISPRTN = operand of the $SCAN macro (the
invoking macro of the $SCAN facility) has an interface with the $SCAN facility very similar to the
pre- and post-scan exit routines. It is called whenever the $SCAN facility determines that a line
of text (DISPOUT) is filled. This output area may contain the results of a display request or of a
diagnostic error message.

Before JES2 release 2.2.0, register 0 was undefined upon entry; with 2.2.0, register 0 has the token
specified via TOKEN= on the $SCAN invocation. Register 1 on entry to the display routine
contains the address of the current $SCAN work area ($SCWA). On exit from the display routine,
this register can contain a pointer to a diagnostic phrase. We will describe this shortly. Registers
11, 13, 14, and 15 follow the normal JES2 register conventions:

• Register 11 contains the address of the $HCT.

• Register 13 contains the address of the Processor Control Element (PCE) that is in control for
the $SCAN request.

• Register 14 contains the return address.

• Register 15 contains the entry address of the display routine. On exit, Register 15 will contain
a return code.

Examples of Table Pairs 131

$SCAN Tables ...

• $SCAN Tables (Examples - JES2) ...

• More on Display Routines ...

01/88

J. Valid Return Codes from Display Routines

6 0 - Display area displayed, continue

6 4 - Display not supported

6 8 - Display routine error, restore data areas (R1 is addr of
CL2'reason code',All(diagnostic length).C'diagnostic
message'

The valid return codes from the display routine are:

121

• 0 - The display area has been displayed. Continue $SCAN facility processing_ Note that to
continue $SCAN facility processing may be in fact to terminate the facility_ This would occur
if the display routine was given control to issue a diagnostic message. The following foil will
explain this further.

• 4 - The display routine determined that it was not able to issue the display under the current
conditions. In this case, the $SCAN facility will throw the current display line information
away.

• 8 - The display routine experienced an error in issuing the display. Register I contains a
pointer to a diagnostic phrase. The diagnostic phrase consists of three diagnostic phrase
sections that are assumed contiguous. These areas are:

• a two-byte reason code (specified in character form - e.g., CL2'43')

• a one-byte length of a diagnostic message (specified in hex - e.g., AL1(23))

• a diagnostic message (specified in character form - C'msg text ... ')

132 A GUIDE User Group Presentation

(

(

$SCAN Tables ...

•$SCAN Tables (Examples - JES2) ...

•More on Display Routines ...

01/88

A SSCWA fields of interest to Display Routines

6 SCWADOUT - addr of display output area

6 SCWADLEN - length of display output area

6 SCWARTCD - possible scan errors

O - SCAN ok, issue display
4 - Obsolete parm
8 - Non-supported keyword
12 - Internal $SCAN error

122

On entry to the display routine, the current SCWA ($SCAN work area) is passed in register 1. This
SCW A will contain three fields of interest to the display routine:

1. SCWADOUT - will contain the address of the display output area. This is the same output
area that was specified on the $SCAN macro call on the DISPOUT = operand.

2. SCW AD LEN - will contain the length of the display outp:ut area in a half word field. This is
the same length that was specified on the $SCAN macro call on the DISPLEN = operand.

3. SCWARTCD - will contain the return code in a halfword field with which the $SCAN facility
is currently working. This field will aid the display routine to determine if it has been given
control to process the results of a display request or to process a $SCAN facility diagnostic
message. The possible return code values are:

• 0 - The $SCAN processing is okay, the display routine has been given control to issue the
results of a display request.

• 4 - The $SCAN facility has encountered an obsolete parameter (as determined from the
$SCAN table element - see SPL: JES2 User Modifications and Macros for the
$SCANTAB macro). The display routine has been given control to issue a diagnostic
message.

• 8 - The $SCAN facility has encountered a non-supported keyword. This means that some
input was passed to the $SCAN facility and the facility could not locate a $SCAN table
element that matched the input. The display routine has been given control to issue a
diagnostic message.

• 12 - The $SCAN facility has encountered an internal $SCAN error situation and is ter­
minating the $SCAN request. The display routine has been given control to issue a di­
agnostic message.

Examples of Table Pairs 133

An Installation $SCAN Table

$SCAN Tables ...

• $SCAN Tables (Examples - Installation)

•Objective:

.t. Create additional operand

.t. Use $SCAN facility table installation extensible function

• Function:

.t. Provide the support necessary on the OFFn.STn so that operator
can specify and alter the TRKGRP value in support for the
TRKGRP work selection criterion.

• This is one scheme to complete this objective, others exist

01188 123

In order to show how you would specify $SCAN tables, the remaining description of the $SCAN
tables will step through creating an installation-defined operand to the Offioad Sysout Transmitter
(OFFn.ST) initialization statement and command.

Objective

Previously in this discussion, a work selection criterion was added to the Offioad Sysout Trans­
mitter to allow selecting work based on the amount of spool space that had been allocated to a job.
This work selection criterion was called TRkgrp, where only TR need be specified and an alias
value of TG could be used. In the work selection table element for this criterion, the value $#GET
would use to compare with was the JQE field JQETGNUM and the DCT field DCTUSERO. This
example will show how to add an operand to the OFFn.ST initialization statement and command
that would permit the operator to set a threshold limit in the DCTUSERO field.

To achieve this, you will add an installation table element to the OFFn.ST list of operands. The
following documents the pieces required, the coding of the table element, and the required code to
"plug" the table in. This is one scheme to achieve the statement objective; others do exist.

134 A GUIDE User Group Presentation

(-

Required Pieces

$SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

• Pieces consist of:

EKit 0

D
USER SCAN TABLE

01188 124

To achieve the objective, you will need to code two pieces. These pieces are:

1. Exit 0

2.

As was discussed in "Concepts" on page 6, there are two ways to link the installation table
with JES2.

a. The first of these is to link-edit the installation $SCAN table with the HASJES20 load
module. This requires the name of the installation table be USEROSTT. This name
was found by searching the $MCT for the table pair that matches the operand list table
pair for the OFFn.ST initialization statement.

b. If you do not wish to link-edit the installation $SCAN table USEROSTT, then you must
fill in the address of the installation $SCAN table into the $MCT field MCTOSTTU.
This is the second method. This method requires that you fill in the address of the table
in the $MCT before invoking the OFFLOAD SYSOUT transmitter to access the
DCTUSERO field to initialize it. Depending on when you will use the transmitter, you
may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the $SCAN table early in initialization, specif­
ically in Exit 0. Therefore, you require an Exit 0 that will load your module (if not already
loaded) and resolve the address of the table.

User $SCAN Table

You will have to code a $SCAN table which includes the table element for the operand. We
will describe the installation table element in a step-wise fashion below.

Examples of Table Pairs 135

Coding the Installation $SCAN Table

$SCAN Tables ...

•$SCAN Tables (Examples - Installation) ...

• Table and Operands:

• Name of keyword is TRKGRP

6 NAME= TRKGRP

• Minimum length of keyword is TR

6 MINLEN=2

• Field where value is set is DCTUSERO with length of 2

6 FIELD=(DCTUSER0,2)

01/88 125

The name of the Offload SYSOUT transmitter operand is TRKGRP to match the work selection
criterion created in the Work Selection Installation example. This is the name that the operator
will specify to set the threshold value. Therefore, the NAME= operand is set to TRKGRP.

Like the work selection criterion, the minimum length that the operator will have to specify for this
operand is two characters. Therefore, the MINLEN = operand is set to 2.

The field that was used as the device control block for the work selection criteria was DCTUSERO.
Therefore, this $SCAN initialization operand will have to set this field. Since the JQETGNUM
field that is being used as the comparing operand is only two bytes, the length of the DCTUSERO
full word field is only two bytes. This is specified by coding the length second positional operand
on the FIELD operand. Therefore, the FIELD= operand is set to (DCTUSER0,2).

136 A GUIDE User Group Presentation

/ "\

/

($SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

• Table and Operands ...

Ji. Field DCTUSERO in DSECT DCT

t:. DSECT=DCT

& Value of field is numeric

L CONV=NUM

& Valid range of numeric data is Oto 32,767

t:. RANGE= {0,32767)

01/88 126

The DCTUSERO field that is set is located in the DCT DSECT. Therefore, the DSECT= oper­
and is set to DCT.

The conversion value that we specify for this operand is numeric, thus, the CO NV= operand is
set to NUM.

Since the maximum amount of spool space that can be allocated to a job must fit in a halfword field
in the JQE, the maximum threshold value is 32,767. If there may be circumstances where all jobs
need to be selected, the minimum value is set to 0 (it would make more sense to remove the
TRKGRP criterion from the work selection list to achieve this end). Therefore, the RANGE=
operand is set to (0,32767).

Examples of Table Pairs 137

$SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

0 <-< ----~ MCT

I L MC~USERMPST> HASFll'ST
TABLE START

TABLE DEBUG

TABLE OFFST

TABLE END

DC VCHASPlf>ST>

r--> MCTOSTTP -' Ir DC VCUSEROSTT>

11 DC VCHASPOSTT>

0 <-< ----------~·

HASPOSTT
TABLE START

TABLE STATUS

TABLE DISP

TABLE DSll

TABLE END

01/88 127

In order to set the CB = operand, you must look at the existing table structure and determine where
the revised table structure will fit. Currently, there is a higher level table that contains the $SCAN
table elements for the Offioad devices. This table element specifies a Control Block of OCT so that
the proper OCT for this device is located by the $SCAN facility. Also, this higher level table ele­
ment indicates that the operands are included in a lower level table
(CONV=SUBSCAN,SUBSCAN=MCTOSTTP). It is at this lower level, preceding the JES2
table of Offioad SYSOUT Transmitter operands, that the installation table is placed. Therefore,
the control block that is wanted at this lower level has been found by the higher level, the parent
level.

138 A GUIDE User Group Presentation

'"'-- /

--

(

$SCAN Tables ...

•$SCAN Tables (Examples - Installation) ...

• Table and Operands ...

.t. Use the control block (DCT) addr from the previous $SCAN level

6 CB=PARENT

.t. Allow altering during init and command time

6 CALLER=($SCIRPL, $SCIRPLC, $SCDCMDS, $SCSCMDS)

01/88 128

Since the control block is located at the parent level, specify the CB = operand as PARENT so
$SCAN uses the device OCT.

A CALLERs identifier list is specified to allow altering this operand during JES2 initialization and
JES2 command time processing.

Examples of Table Pairs 139

Resulting $SCAN Table

$SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

USEROSTT $SCANTA8 TABLE=IJSER

TRltGRP $SCANTA8 NAllE= TRKGRP,

01/88

MDLEN=2,

CCNV=IDI,

RAta=<0,52767>,

Cll=PARENT,

CAl.L£R=< $SCIRPL,$SCIRPLC,

$SCDCllJS,$SCSCllOS>

$SCANTAB NAHE=TG,

CCNV=AUAS,

SCANT AB= TRKGRP

$SCANTAB TABLE=END

129

The figure above shows the resulting installation $SCAN table to add an operand to the Offioad
SYSO UT Transmitter initialization statement and command. Note that the name of the table is
USEROSTT, so that if you wished to link-edit this table with HASJES20, the table address would
be placed in the $MCT by the linkage editor. The table is begun with a TABLE= USER to tell
JES2 that this is an installation table. The name of the operand is TRKGRP although the operator
need only specify TR. The field that is set is the first two bytes of the fullword field DCTUSERO
located in the DSECT DCT. The conversion for the input is numeric and the numeric value can­
not be less than 0 nor greater than 32767. The address of the DCT is propagated down from the
parent level of $SCAN. Both JES2 initialization and JES2 command time processing may reference
this table element.

An additional table is shown to provide an example of specifying an alias name for the TRKGRP
operand. This table element simply indicates the name of the alias as TG (to match the work se­
lection criteria). This table element is known to be an alias (indicated by the CONY= ALIAS) of
the TRKGRP table element since the alias table element points to the TRKGRP element via the
SCANT AB operand specifying the TRKGRP table element name of TRKGRP.

Finally, the table is ended with a TABLE= END to indicate to JES2 that this installation table is
completed.

140 A GUIDE User Group Presentation

./

(

(

$SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

0~<~~~~~~ MCT

L MCTMPSTP
HASPM'ST

TABLE START

TABLE DEBUG

<1 - DC VCUSERMPST>

L___ DC VCHASPll'ST>

MCTOSTTP
DC VCUSEROSTT l

TABLE EMJ DC VCHASPOSTV>

TABLE OFFST YI >

~ .________.

USEROSST
TABLE START

TABLE TRKGRP

TABLE 00

HASPOSTT
TABLE START

TABLE STATUS

TABLE DISP

TABLE DSN

TABLE 00

01/88 130

The resulting table configuration is shown in the figure above. The higher level $SCAN table ele­
ment for the Ofiload SYSOUT Transmitter points to the MCTOSTTP table pair. The first entry
in this table pair will point to the installation table USEROSST which contains the installation­
added operand TRKGRP. The second entry in this table still points to the JES2 table
HASPOSTT which contains the JES2 operands. In this way, you have added an operand on the
OFFn.ST initialization statement and command.

Examples of Table Pairs 141

Coding the Other Required Pieces

$SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

• Required Pieces ...

01/88

.l Installation $SCAN Table

6 Deli ned as above

.l Exit 0

6 Obtain $UCT and place address in $HCT

6 Initialize the $UCT

6 Place Installation $SCAN table addr in field MCTOSTTU in
$MCT in HASPTABS module

131

The pieces required to permit you to add an operand are the installation $SCAN table (as coded
above) and the code for Exit 0. The Exit 0 code is required to do three things:

1. It must obtain the $UCT and place the $UCT's address in the $HCT.

2. It must initialize the $UCT.

3. Finally, it must place the installation $SCAN table address in the MCTOSTTU field in the
$MCT in module HASPT ABS.

The code that is contained in "Appendix A. Table Pairs Coding Example" on page 147 is the code
as you would be required to code it. This code includes:

1. Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation $SCAN table address in the $MCT.

2. The HASPXJOO module contains, among the other items previously discussed, the $SCAN
table.

142 A GUIDE User Group Presentation

($SCAN Tables ...

• $SCAN Tables (Examples - Installation) ...

•$SCAN JES2 Tables located in HASPSTAB module

.a. DO NOT BE AFRAID TO USE THEM FOR EXAMPLES

01/88 132

The JES2 $SCAN tables are located in the module HASPSTAB. It is more than likely that there
is an example in these tables that will aid you in attempting to code your first few tables. Do not
hesitate to use the JES2 $SCAN tables as an example. Also, use SPL: JES2 User Modifications
and Macros. This book contains a thorough description of the $SCAN related macros and also
contains a $SCAN section that makes for useful reading.

Examples of Table Palrt 143

THIS PAGE INTENTIONALLY LEFT BLANK

144 A GUIDE User Group Presentation

(

Conclusion

Conclusion

•Table Pairs provide the capability to modify JES2
processing without modifying source.

• Table Pairs very pervasive throughout JES2.

• Require less detailed knowledge of JES2 than needed
for some exit points.

• JES2 still has a lot more to do, but direction clear.

01/88 133

Hopefully you now know that table pairs provide the capability to modify JES2 processing without
modifying JES2 source. Through the ability to add, change, and even delete JES2 processors,
subtasks, trace identifiers, work selection criteria, and initialization statements, you have an ex­
tremely powerful tool to tailor the JES2 component to match local needs.

Since the majority of uses for table pairs will be for adding, changing, and deleting initialization
statements and operands (and, to a lesser extent, trace identifiers and work selection criteria), there
is less need to have a detailed knowledge of JES2 than is required for exit coding.

However, this is not true when you need to l!dd JES2 processors and subtasks. In this case the
systems programmer will need to understand JES2 environments, dispatching, etc., to make use of
these tables. However, this is not more than what a systems programmer needs to know to code a
JES2 exit and the ability to add these processors and subtasks provides extremely powerful function.

Clearly, JES2 design attempts to provide an interface whereby you can tailor the JES2 product to
meet business needs in a way that will not impact an your ability to migrate to newer releases of
JES2. Although much more is needed in this area, with the use of table pairs you have a workable
method to do this tailoring without the need to modify IBM-supplied JES2 source code.

Conclusion 145

I ."'- /

THIS PAGE INTENTIONALLY LEFT BLANK

146 A GUIDE User Group Presentation

(

(

Appendix A. Table Pairs Coding Example
This coding example implements an installation security processor. It is made up of a JES2 in­
itialization exit 0 and a user extension module named HASPXJOO which contains the installation
security processor, the installation security subtask, and the installation PCE, DTE, trace, work
selection, and $SCAN tables. The example includes sample mapping macros $SCYWORK,
$SCDWORK, and $UCT, and the macro $USERCBS which invokes the mapping macros·.

Note: This code is provided as an example of installation extensions to JES2. The code is not Type
l supported code of IBM; it is not APARable.9 A few tests were run using JES2 at the 2.1.5 level.

The examples are inter-related to show how the tables can be used together. This is not required.
That is, it is not necessary to code a PCE table (create your own processor) and code a DTE table
(create your own subtask). In fact, it may make no sense for certain applications to design inter­
related tables. Our example was contrived to show what can be done, not necessarily what should
be done.

There are six pieces required for the example used in this presentation.

• HASPXJOO - Installation extension code and tables that are required to create an installation
security processor, security subtask, trace id, work selection criteria on the offioad sysout
transmitter work selection list, and an additional operand on the offioad sysout transmitter.

• $UCT - contains required fields for table generation

• $SCDWORK - subtask DTE extension to hold fields specific to a security subtask

• $SCYWORK - processor PCE extension to hold fields specific to a security processor

• $USERCBS - control block that actually generates the above macros. This control block is
known by $MODULE and is the way to get $MODULE to generate installation control
blocks.

• HASPXITO - Exit 0 module that contains EXITO. This exit initializes the $MCT with the
addresses of the installation tables located in HASPXJOO.

9 However, we do encourage you to use the Reader Comment Form in the back of this document to tell
us about any problems you find.

Appendix A. Table Pairs Coding Example 147

$USERCBS - Generates User Control Blocks
MACRO -- $USERCBS - USER CONTROL BLOCK DSECT
$USERCBS

00100000
00200000

*********************************XKKKKXKKK************KXXKXXKXKltifX****if D0500000
* * 00600000
* $USERCBS - USER CONTROL BLOCK DSECT * D0700000
* * 00800000
* Fl.t«:TION: * 00900000
* * 01000000.
* THIS DSECT IS KNONll BY $MODULE AND HILL BE USED TO GET ALL * 01100000
* INSTALLATION CONTROL BLOCKS EXPANDED HITHOUT HAVING TO * 01200000
* MODIFY THE $MODULE MACRO. * 01300000
* * 01400000
* USED BY: * 01500000
* * 01600000
* ALL INSTALLATION MODULES TO GENERATE ALL INSTALLATION * 01700000
* DEFINED CONTROL BLOCKS. FOR DETAILS ON THE FOLLOHING * 01800000
* DATA, SEE THE INDIVIDUAL CONTROL BLOCK DSECTS. * 01900000
* * 02000000
* CREATED BY: N/A FREED BY: N/A * 02100000
* * 02200000
* SUBPOOL: N/A KEY: N/A * 02300000
* * 02400000
* SIZE: N/A COMPONENT ID: CODE EXAMPLE * 02500000
* * 02600000
* POINTED TO BY: N/A * 02700000
* * 02800000
* FREQUENCY: N/A * 02900000
* * 03000000
* RESIDENCY: N/A * 03100000
* * 03200000
* SERIALIZATION: N/A * 03300000
* * 03400000
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 * 03500000
* * 03600000
*** 03700000

GBLC &TITLEID 03800000
LCLC &TITL

USERCBS DSECT
&TITL SETC '&TITLEID

TITLE '&TITL'

&TITL

&TITL

$UCT ,
SETC '&TITLEID
TITLE '&TITL '

$SCDHORK ,
SETC '&TITLEID
TITLE '&TITL'

$SCYHORK
MEND

$UCT
USER CONTROL BLOCK DSECT

- USER CONTROL TABLE'

GEN THE UCT
$SCDHORK - SECURITY SUBTASK HORK DSECT'

GEN THE SECURITY SUBTASK HORK DSECT
$SCYHORK - SECURITY PCE HORK DSECT'

GEN THE SECURITY PCE HORK DSECT

148 A GUIDE User Group Presentation

03900000
04000000
04100000
04200000
04300000
04400000
04500000
04600000
04700000
04800000
99999999

I'
·i

\

j

($SCYWORK - Processor Work Area
HACRO -- $SCYHORK -- USER SECURITY PROCESSOR HORK AREA DSECT 00100000
$SCYHORK 00200000

*********************************itiCXXXXXXXXXX***********XXXXXXX******** 00500000
* * 00600000
* $SCYHORK - USER SECURITY PROCESSOR HORK AREA DSECT * 00700000
* * 00800000
* FIJl«:TION: * 00900000
* * 01000000
* HOLD FIELDS UNIQUE TO THE SECURITY PROCESSOR PCE * 01100000
* * 01200000
* USED BY: * 01300000
* * 01400000
* ALL SECURITY PROCESSOR PCEISJ * 01500000
* * 01600000
* CREATED BY: PCEDYN FREED BY: PCEDYN * 01700000
* * 01800000
* SUBPOOL: l KEY: l * 01900000
* * 02000000
* SIZE: SEE SCYLEN EQUATE COHPONENT ID: CODE EXAHPLE * 02100000
* * 02200000
* POINTED TO BY: UCTSYPCE FIELD OF THE $UCT DATA AREA CilHES * 02300000
* * 02400000
* FREQUENCY: ONE PER SECURITY PCE * 02500000
* * 02600000
* RESIDENCY: VIRTUAL - ABOVE * 02700000
* REAL - ANYHHERE * 02800000
* * 02900000
* SERIALIZATION: JES2 HAIN TASK SERIALIZATION * 03000000
* * 03100000
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 * 03200000
* 1/88 - FIXED COMHENT * 03300000
* * 03300000
XXXXXXXXXX*********** 03400000
PCE DSECT USER SECURITY PROCESSOR HORK AREA 03600000

ORG PCEHORK PCE HORK AREA 03 700000
SPACE l 03800000

** 03900000
* * 04000000
* FIELDS UNIQUE TO THE SECURITY PCE * 04100000
* * 04200000
** 04300000
SCYDTEAD DS A ADDR OF THE SECURITY DTE 04400000
SCYTQE DS XLI TQELENG J HASP TIHER QUEUE ELEHENT 04500000
* FIELD GOES HERE 04600000
* FIELD GOES HERE 04700000
* FIELD GOES HERE 04800000
SCYLEN EQU *-PCEHORK LENGTH OF SCY 04900000

HEND 99999999

Appendix A. Table Pairs Coding Example 149

$SCDWORK - Subtask Work Area
MACRO -- $SCDHORK -- USER SECURITY SUBTASK HORK AREA DSECT 00100000
$SCDHORK 00200000

*** 00500000
* * 00600000
* $SCDHORK - USER SECURITY SUBTASK HORK AREA DSECT * 00700000
* * 00800000
* FUNCTION: * 00900000
* * 01000000
* HOLD FIELDS UNIQUE TO THE SECURITY SUBTASK * 01100000
* * 01200000
* USED BY: * 01300000
* * 01400000
* ALL SECURITY SUBTASKS * 01500000
* * 01600000
* CREATED BY: DTEDYN FREED BY: DTEDYN * 01700000
* * 01800000
* SUBPOOL: l KEY: l * 01900000
* * 02000000
* SIZE: SEE SCDLEN EQUATE COMPONENT ID: CODE EXAMPLE * 02100000
* * 02200000
* POINTED TO BY: UCTSYDTE FIELD OF THE $UCT DATA AREA ~MES * 02300000
* * 02400000
* FREQUENCY: ONE PER SECURITY SUBTASK * 02500000
* * 02600000
* RESIDENCY: VIRTUAL - BELOH * 02700000
* REAL - BELOH * 02800000
* * 02900000
* SERIALIZATION: SUBTASKS FOLLOH MVS SERIALIZATION CONCERNS * 03000000
* * 03100000
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 * 03200000
* 1/88 - ADD SCDHCT * 03300000
* * 03300000
*** 03400000
DTE DSECT USER SECURITY SUBTASK HORK AREA 03600000

ORG DTEHORK DTE HORK AREA 03700000
SPACE l 03800000

** 03900000
* * 04000000
* FIELDS UNIQUE TO THE SECURITY SUBTASK * 04100000
* * 04200000
** 04300000
SCDHCT DS Al*-* J ADDRESS OF HCT ~SA 04500000
* FIELD GOES HERE 04500000
* FIELD GOES HERE 04600000
SCDLEN EQU *-DTEHORK LENGTH OF SCD 04700000

MEND 99999999

150 A GUIDE User Group Presentation

(

$UCT - User Co1nmunication Table
MACRO -- $UCT -- USER COMMUNICATION TABLE DSECT 00100000
$UCT 00200000

*** 00500000
* * 00600000
* $UCT - USER COMMUNICATION TABLE DSECT * 00700000
* * 00800000
* FUNCTION: * 00900000
*
*
*
* USED
*
*
*
*

HOLD FIELD VARIABLES COMMON FOR INSTALLATION CODE.

BY:

ALL INSTALLATION PROCESSOR/FUNCTIONS CAN MAKE USE OF
THE $UCT.

* 01000000
* 01100000
* 01200000
* 01300000
* 01400000
* 01500000
* 01600000
* 01700000

* CREATED BY: HASPXITO
*

FREED BY: JES2 TASK TERMINATION * 01800000
* 01900000

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

SUBPOOL: 0 KEY: 1

SIZE: SEE UCTLEN COMPONENT ID: CODE EXAMPLE

POINTED TO BY: $UCT FIELD OF THE $HCT DATA AREA

FREQUENCY: ONE PER JES2 SYSTEM

RESIDENCY: VIRTUAL - ABOVE
REAL - ANYHHERE

SERIALIZATION: JES2 MAIN TASK SERIALIZATION

CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86

* 02000000
* 02100000
* 02200000
* 02300000
* 02400000
* 02500000
* 02600000
* 02700000
* 02800000
* 02900000
* 03000000
* 03100000
* 03200000
* 03300000
* 03400000

*** 03500000
UCT DSECT USER COMMUNICATION TABLE DSECT 03700000
UCTID OS CL4'UCT' UCT IDENTIFIER 03800000
UCTSCDE DS Al*-*l ADDRESS OF INSTALLATION LOAD MODULE 03900000

SPACE 1 04000000
**
*
*
*

FIELDS REQUIRED FOR THE PCE TABLES *
*
*

**
SPACE 1

UCTMSCTY DS Al*-* J ADDR OF ENTRY POINT
UCTSYPCE OS Al*-*) SECURITY PROCESSORS
UCTSYNUM OS H'l',H'O'
UCTSYQUE DS Al*-*l ADDR OF ELEMENT TO BE VERIFIED
UPCESCTY EQU 255 ID OF SECURITY PCE
$DRSCTY EQU 63 DISPATCHER SECURITY RESOURCE

SPACE 1
**
* *
*
*

FIELDS REQUIRED FOR THE DTE TABLES *
*

**
SPACE 1

UCTMDSCY DS
UCTSYDTE OS
UDTESCTY EQU

Al*-*)
Al*-* J
255

SPACE 1

ADDR OF ENTRY POINT
ADDR OF SECURITY DTE
ID OF SECURITY DTE

**
* *
*
*

END OF UCT *
*

**
SPACE 1

UCTLEN EQU *-UCT
MEND

LENGTH OF UCT

04100000
04200000
04300000
04400000
04500000
04600000
04700000
04800000
04900000
05000000
05100000
05200000
05300000
05400000
05500000
05600000
05700000
05800000
05900000
06000000
06100000
06200000
06300000
06400000
06500000
06600000
06700000
06800000
06900000
07000000
99999999

Appendix A. Table Pairs Coding Example 151

Exit 0 - Initialization ./

Prologue

XITO TITLE 'USER EXIT 0 MODULE -- PROLOG IMODULE COMMENT BLOCK)' 00010000
KXKKKlHHHHt* 00020000
* * 00030000
* MODULE NAME = HASPXITO CSECT * 00040000
* * 00050000
* DESCRIPTIVE NAME = HASP EXIT 0 INITIALIZATION MODULE * 00060000
* * 00070000
* * 00080000
* STATUS = OS/VS2 - SEE $MODULE EXPANSION BELCH FOR FMID, VERSION * 00090000
* * 00100000
* FUNCTION = THE HASPXITO MODULE INITIALIZES THE INSTALLATION $UCT * 00110000
* AND OTHER INSTALLATION DEFINED ADDRESSES AND FIELDS. * 00120000
* * 00130000
* NOTES = SEE BELCH * 00140000
* * 00150000
* DEPENDENCIES = ll JES2 EXIT EFFECTOR * 00160000
* 2) JES2 PROCESSOR AND SUBTASK DISPATCHING * 00170000
* * 00180000
* RESTRICTIONS THIS CODE IS PROVIDED AS AN EXAMPLE OF * 00190000
* INSTALLATION EXTENSIONS TO JES2. THIS CODE IS * 00200000
* NOT TO BE CONSIDERED TYPE l SUPPORTED CODE OF * 00210000
* IBM. * 00220000
* * 00230000
* REGISTER CONVENTIONS = RO-R3 = HORK REGISTER * 00240000
* R4 = ADDRESS OF THE HTE ENTRY * 00250000
* R5 = ADDRESS OF THE HCT * 00260000
* R6-R9 = HORK REGISTER * 00270000 /

* RlO = ADDRESS OF THE UCT * 00280000
* Rll = ADDRESS OF THE HCT * 00290000
* Rl2 = LOCAL ADDRESSABILITY * 00300000
* Rl3 = ADDRESS OF THE HASPINIT PCE * 00310000
* Rl4-Rl5 = HORK AND LINKAGE REGISTER * 00320000
* * 00330000
* PATCH LABEL = NONE * 00340000
* * 00350000
* MODULE TYPE = CSECT * 00360000
* * 00370000
* PROCESSOR = OS/VS ASSEMBLER H OR ASSEMBLER XF 1370) * 00380000
* * 00390000
* MODULE SIZE = SEE $HODEND MACRO EXPANSION AT END OF ASSEMBLY * 00400000
* * 00410000
* ATTRIBUTES =NOT REUSABLE, NON-REENTRANT, SUPERVISOR STATE, * 00420000
* PROTECT KEY OF HASP'S Cl) OR O, RHODE 24, * 00430000
* AHODE 24/31 * 00440000
* * 00450000
* ENTRY POINT = EXITO * 00460000
* * 00470000
* PURPOSE = SEE FUNCTION * 00480000
* * 00490000
* LINKAGE = STANDARD JES2 $SAVE/$RETURN LINKAGE * 00500000
* * 00510000
* INPUT RO = A CODE INDICATING HHERE THE INTIALIZATION OPTIONS * 00520000
* HERE SPECIFIED * 00530000
* Rl = ADDRESS OF A 2-HORD PARAMETER LIST HITH THE * 00540000
* FOLLOHING STRUCTURE: * 00550000
* HORD l 1+0): ADDR OF INTIALIZATION OPTIONS STRING * 00560000
* HORD 2 1+4): LENGTH OF INITIALIZATION OPTIONS STRING* 00570000
* Rll = ADDRESS OF HCT * 00580000
* Rl3 = ADDRESS OF INITIALIZATION PCE * 00590000
* Rl4 = RETURN ADDRESS * 00600000
* Rl5 = ADDRESS OF ENTRY POINT * 00610000
* * 00620000
* OUTPUT Rl5 = RETURN CODE * 00630000
* lALL OTHERS UNCHANGED) * 00640000

152 A GUIDE User Group Presentation

(

(

* * EXIT-NORMAL = RETURN TO CALLER IHASPIRHAl

* EXIT-ERROR = RETURN TO CALLER IHASPIRHA) HITH NON-ZERO RETURN CODE

*

* 006500DO
* 00660000
* 00670000
* 00680000
* 00690000
* 00700000
* 00710000
* 00720000
* 00730000
* 00740000
* 00750000
* 00760000
* 00770000
* 00780000
* 00790000
* 00800000
* 00810000
* 00820000
* 0083DOOO
* 00840000
* 00850000
* 00860000
* 00860000
* 00870000

* EXTERNAL REFERENCES = SEE BELCH

* ROUTINES = MISCELLANEOUS JES2 SERVICE ROUTINES, AND-
* MISCELLANEOUS STANDARD SUPERVISOR SERVICE ROUTINES

* * DATA AREAS = SEE $MODULE MACRO EXPANSION

* CONTROL BLOCKS = SEE $MODULE MACRO EXPANSION

* * TABLES = SEE $MODULE MACRO DEFINITION IBELOH)

* * MACROS = JES2 $ENTRY, $GETHAIN, $HODCHK, $RETURN, $SAVE

* * MACROS = HVS NONE

* * CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86
* CODE AT SPl.3.6/2.1.5 LEVEL
* 1/88 - VARIOUS FIXES FOR T.B.

*** 00880000

Real Code

TITLE 'USER XITO INITIALIZATION -- PROLOG ($HASPGBL)'
COPY $HASPGBL COPY HASP GLOBALS

TITLE 'HASP XITO INITIALIZATION -- PROLOG !$MODULE)'
HASPXITO $MODULE NOTICE=NONE,

TITLE='HASP XITO
$DTE,
$ERA,
$HCT,
$HASPEQU,
$HCT,
$HIT,
$HITETBL,
$MODHAP,
$PCE,
$TQE,
$USERCBS,
$XECB

INITIALIZATION',
GENERATE HASP DTE DSECT
GENERATE HASP ERA DSECT
GENERATE HASP HCT DSECT
GENERATE HASP EQUATES DSECT
GENERATE HASP HCT DSECT
GENERATE HASP HIT DSECT
GENERATE HASP HITETBL DSECT
GENERATE HASP MODHAP DSECT
GENERATE HASP PCE DSECT
GENERATE HASP TQE DSECT
GENERATE HASP USERCB DSECT
GENERATE HASP XECB DSECT

00890000
Gll33 00900000

Gll33 00910000
C00920000

C00930000
C00940000
C00950000
C00960000
C00970000
C00980000
C00990000
COlOOOOOO
COlOlOOOO
C01020000
C01030000
C01040000

01050000

Appendix A. Table Pairs Coding Example 153

TITLE 'USER XITO INITIALIZATION -- EXITO
ECESSARY INFORMATION'

- OBTAIN AND SET NC01060000
01070000

*** 01080000
* * 01090000
* EXITO - INSTALLATION EXIT 0 ROUTINE * 01100000
* * 01110000
* FUNCTION: * 01120000
* * 01130000
* THIS EXIT POINT OBTAINS A $UCT C9N'fROL BLOCK, INITIALIZES * 01140000
* IT AND PLACES ITS ADDRESS IN THE $HCT. THIS ROUTINE ALSO * 01150000
* INITIALIZES THE $MCT HITH THE SPECIFIED INSTALLATION TABLE * 01160000
* ADDRESSES. * 01170000
* * 01180000
* LINKAGE: * 01190000
* * 01200000
* CALL BY JES2 INITIALIZATION * 01210000
* * 01220000
* ENVIRONMENT: * 01230000
* * 01240000
* JES2 MAIN TASK LIMITED UNITIALIZATION l. * 01250000
* * 01260000
* RECOVERY: * 01270000
* * 01280000
* NONE * 01290000
* * 01300000
* REGISTER USAGE IENTRY/EXITJ: * 01310000
* * 01320000
* REG VALUE ON ENTRY VALUE ON EXIT * 01330000
* * 01340000
* RO HHERE INIT OPTIONS * 01350000
* SPECIFIED UNCHANGED * 01360000
* Rl ADDR OF PARM LIST UNCHANGED * 01370000
* R2-Rl0 N/A UNCHANGED * 01380000
* Rll HCT BASE ADDRESS UNCHANGED * 01390000
* Rl2 N/A UNCHANGED * 01400000
* Rl3 INIT PCE BASE ADDRESS UNCHANGED * 01410000
* Rl4 RETURN ADDRESS UNCHANGED * 01420000
* Rl5 ENTRY ADDRESS RETURN CODE ISEE BELOHJ * 01430000
* * 01440000
* PARAMETER LIST: * 01450000
* * 01460000
* +0 - ADDR OF INIT OPTIONS STRING * 01470000
* +4 - LENGTH OF INIT OPTIONS STRING * 01480000
* * 01490000
* REGISTER USAGE IINTERNAL): * 01500000
* * 01510000
* REG VALUE * 01520000
* * 01530000
* RO-R3 HORK REGISTERS * 01540000
* R4 MTE ENTRY ADDRESS * 01550000
* R5 MCT BASE ADDRESS * 01560000
* R6-9 HORK REGISTER * 01570000
* RIO UCT BASE ADDRESS * 01580000
* Rll HCT BASE ADDRESS * 01590000
* Rl2 LOCAL BASE ADDRESS * 01600000
* Rl3 INIT PCE BASE ADDRESS * 01610000
* Rl4 LINK/HORK REGISTER * 01620000
* Rl5 LINK/HORK REGISTER * 01630000
* * 01640000
*RETURN CODES IR15 ON EXIT): * 01650000
* * 01660000
* 0 - PROCESSING SUCCESSFUL INO ERRORS) * 01670000
* 12 - PROCESSING FAILED, TERMINATE JES2 * 01680000
* * 01690000
* OTHER CONSIDERATIONS: * 01700000

* 01710000
* N/A * 01720000
* * 01730000
*** 01740000

154 A GUIDE User Group Presentation

(

(

EX ITO

SPACE l
USING UCT,RlO
SPACE l

$ENTRY BASE=Rl2
SPACE 2

$SAVE TRACE=NO,NAME=EXITO
LR Rl2,Rl5
CLC $UCT,$ZEROS
BNE XITRETO
E.JECT

ESTABLISH UCT ADDRESSABILITY

DEFINE HASPXITO ENTRY POINT

GET NEH SAVE AREA, SAVE REGS
ESTABLISH BASE REGISTER
ALREADY OBTAINED $UCT •••

YES, RETURN TO .JES2

01750000
01760000
01770000
01780000
01790000
01800000
01810000
01820000
01830000
01840000

** 01850000
* * 01860000
* OBTAIN AND INITIALIZE THE UCT * 01870000
* * 01880000
** 01890000

SPACE l 01900000
$GETMAIN RC,LV=UCTLEN,SP=O,LOC=ANY OBTAIN THE $UCT 01910000

LTR Rl5,Rl5 GETMAIN SUCCESSFUL... 01920000
BNZ XITGTERR NO, INDICATE ERROR ALLOCATING STOR 01930000
SPACE l 01940000
LR R2,Rl SET TO 01950000
LA R3,UCTLEN CLEAR THE 01960000
SLR Rl5,Rl5 STORAGE FOR 01970000
MVCL R2,Rl4 THE $UCT 01980000
SPACE l 01990000
ST Rl,$UCT SET UCT ADDRESS IN $HCT 02000000
LR RlO,Rl SET UCT ADDRESSABILITY 02010000
MVC UCTID,~CL4'UCT' SET UCT ID 02020000
MVC UCTSYNUM,$Hl SET NUMBER OF PCEIS) TO DEFINE 02030000
E.JECT 02040000

** 02050000
* * 02060000
* LOAD MODULE THAT CONTAINS THE SECURITY PCE, SECURITY DTE, * 02070000
* AND THE NECESSARY TABLES TO INSTALL INSTALLATION TAILORING * 02080000
* * 02090000
** 02100000

SPACE l 02110000
L Rl,$HASPMAP GET THE HASP MODMAP ADDRESS 02120000
ICM Rl,B'llll',MAPADDR+MAP.JXMOD-MAPIR11 IF HASPX.JOO IN 02130000
BNZ XITMODAD HAS.JES20, SKIP LOAD 02140000
SPACE 1 02150000

$MODCHK NAME='HASPX.JOO',LOAD=YES,TEST=IMIT,VERSION), C02160000
MESSAGE=YES,ERRET=XITGTERR LOAD THE INSTALLATION MODULE 02170000

SPACE 1 02180000
LR Rl ,RO GET EP ADDRESS IN Rl

XITMODAD ST Rl,UCTSCDE SAVE THE LOAD MODULE ADDRESS QlMES 02190000
E.JECT 02200000

** 02210000
* * 02220000
* SEARCH THROUGH MODULE TO FIND ENTRY POINTS FOR THE SECURITY * 02230000
* PCE, SECURITY DTE, PCE TABLE, DTE TABLE, TID TABLE, HORK * 02240000
* SELECTION TABLE, AND THE $SCAN TABLE. * 02250000
* * 02260000
** 02270000

XITOLP

XITOMTL

SPACE 1
USING MTE,R4 ESTABLISH MTE ADDRESSABILITY
USING MCT,R5 ESTABLISH MCT ADDRESSABILITY
SPACE 1
L R5,$MCT OBTAIN THE MCT ADDRESS
L R4,HITENTAD-MITl,Rl1 OBTAIN THE HITABLE ADDRESS
LA R6,XITOTBL1 OBTAIN THE TBL OF ENTRY POINTS ADDR
LA R7,XITOTBLL GET THE NUMBER OF ENTRIES IN TABLE
CLI MTENAME,X'FF' FOUND END OF TABLE •.•
BE XITENDT YES, GO VERIFY ADDRESSES
LH Rl,TBLFLDOFl,R61 OBTAIN THE OFFSET TO THE FIELD
CLC HTENAHE,TBLNAMEIR61 ENTRY IN MIT MATCH REQUEST IN TABLE
BNE XITOTB NO, INCREMENT TO NEXT TABLE ENTRY
CLC TBLFLDCBIL'TBLFLDCB,R61,$ZEROS YES, CB THE UCT •••
BE XITOUCT YES, GO SET FIELD ADDRESS IN UCT
ALR Rl,R5 SET THE FIELD ADDRESS IN THE MCT
B XITOMVC GO SET ENTRY ADDRESS IN MCT

02280000
02290000
02300000
02310000
02320000
02330000
02340000
02350000
02360000
02370000
02380000
02390000
02400000
02410000
02420000
02430000
02440000

Appendix A. Table Pairs Coding Example ISS

SPACE 1
XITOUCT ALR Rl,RIO
XITOMVC MVC 014,Rll,MTEADDR

B XITOLPC
SPACE 1

XITOTB LA R6,TBLENTYLl,R6l
BCT R7,XITOMTL

XITOLPC LA R4,MTELENl,R4l
B XITOLP
EJECT

SET FIELD ADDRESS IN THE UCT
MOVE ENTRY ADDR INTO CONTROL BLOCK
GO CHECK NEXT MIT ENTRY

02450000
02460000
02470000
02480000
02490000

INCREMENT TO NEXT TABLE ENTRY 02500000
CHECK NXT TABLE ENTRY AGAINST MITABL 02510000
INCREMENT TO NEXT MITABLE ENTRY 02520000
CONTINUE SEARCH FOR ENTRY POINTS 02530000

02540000

156 A GUIDE User Group Presentation

(**
* *

02550000
02560000
02570000
02580000
02590000
02600000
02610000
02620000
02630000
02640000
02650000
02660000
02670000
02680000
02690000
02700000
02710000
02720000
02730000
02740000
02750000
02760000

*
*

VERIFY THAT THE NECESSARY ADDRESSES HAVE BEEN FOUND *
*

**

XITENDT

XITCLCLP

XITUCT
XITCLC

SPACE 1
LA R6,XITOTBL1 SET THE ADDRESS TO TABLE
LA R7,XITOTBLL SET THE NUMBER OF ENTRIES
LH Rl,TBLFLDOFC,R6l OBTAIN THE OFFSET INTO THE CB
CLC TBLFLDCBCL'TBLFLDCB,R6J,$ZEROS CONTROL BLOCK THE UCT •..
BE XITUCT YES, GO CHECK IT
AL Rl,$MCT NO, GET THE MCT FIELD ADDRESS
B XITCLC GO CHECK IF ADDRESS SET
SPACE 1
ALR Rl,RlO GET THE UCT FIELD ADDRESS
CLC OC4,RlJ,$ZEROS FIELD SET ...
BE XITGTERR NO, EXIT HITH AN ERROR
LA R6,TBLENTYLC,R6l BUMP TO NEXT TABLE ENTRY
BCT R7,XITCLCLP GO CHECK NEXT TABLE ENTRY
SPACE 1

**
* * * SET GOOD RETURN CODE AND RETURN * 02770000
* * 02780000
** 02790000

SPACE 1 02800000
XITRETO SLR Rl5,Rl5 INDICATE GOOD RETURN 02810000

B XITRET GO RETURN TO JES2 02820000
SPACE 1 02830000

** 02840000
* * 02850000
* SET ERROR RETURN AND RETURN TO JES2. * 02860000
* * 02870000
** 02880000

SPACE 1 02890000
XITGTERR LA Rl5,12 INDICATE ERROR RETURN 02900000

SPACE 1 02910000
XITRET $RETURN TRACE=NO,RC=IR15l END OF EXITO INITIALIZATION 02920000

EJECT 02930000
*** 02940000
* * 02950000
* BUILD THE TABLE OF ENTRY POINTS THAT ARE TO BE FOUND. * 02960000
* THE TABLE CONSISTS OF: * 02970000
* * 02980000
* CL8'NAME OF ENTRY POINT', * 02990000
* AL2COFFSET INTO EITHER UCT OR MCT OF FIELD TO SETJ * 03000000
* AL2CO IF UCT OR 1 IF MCTJ * 03010000
* * 03020000
*** 03030000

SPACE 1 03040000
OS OF 03050000

XITOTBLl DC CL8'USCTPCE' ,AL2CUCTMSCTY-UCTJ,AL2COJ 03060000
DC CL8'USCTDTE' ,AL2CUCTMDSCY-UCTJ,AL210l 03070000
DC CL8'USERPCET',AL21MCTPCETU-MCTJ,AL2tll 03080000
DC CL8'USERDTET',AL21MCTDTETU-MCTJ,AL211) 03090000
DC CL8'USERTIDT',AL21MCTTIDTU-MCTJ,AL2Cll 03100000
DC CL8'USERSTHT',AL21MCTSTHTU-MCTJ,AL2Cll 03110000
DC CL8'USEROSTT',AL21MCTOSTTU-MCTJ,AL2Cll 03120000

XITOTBLL EQU C*-XITOTBLll/12 CALC NUMBER OF ENTRIES 03130000
SPACE 1 03140000

TBLNAME EQU o.a NAME OF ENTRY POINT 03150000
TBLFLDOF EQU 8,2 FIELD OFFSET 03160000
TBLFLDCB EQU 10,2 FIELD CONTROL BLOCK 03170000
TBLENTYL EQU 12 LENGTH OF TABLE ENTRY 03180000

Appendix A. Table Pairs Coding Example 157

Epilog

TITLE 'HASP XITO INITIALIZATION -- EPILOG !$MODEND)'
$MODEND ,

APARNUM DC CL7'XXXXXXX' APAR NUMBER
END END OF HASPXITO

158 A GUIDE User Group Presentation

99990000
99991010
99999999
99999999

(

(

User Extension Code and Tables

Prologue

XJOO TITLE 'USER EXTENSION MODULE -- PROLOG I MODULE COHHENT BLOCK J ' 00010000
*** 00020000
* * D0030000
* MODULE NAME = HASJES20 I HASPXJOO CSECT J * 00040000
* * 00050000
* DESCRIPTIVE NAME = HASPXJOO CSECT OF JES2 MAIN MODULE * 00060000
* * 00070000
* * 00080000
* STATUS = OS/YS2 - SEE $MODULE EXPANSION BELOH FOR FMID, VERSION * 00090000
* * 00100000
* FUNCTION = THE HASPXJOO CSECT CONTAINS THE INSTALLATION SECURITY * 00110000
* PROCESSOR, THE INSTALLATION SECURITY SUBTASK, AND * 00120000
* THE INSTALLATION PCE, DTE, TRACE, HORK SELECTION, * 00130000
* ~D $SCAN TABLES. * 00140000
* * 00150000
* NOTES = SEE BELO~ * 00160000
* * 00170000
* DEPENDENCIES = JES2 PROCESSOR AND SUBTASK DISPATCHING * 00180000
* * 00190000
* RESTRICTIONS = THIS CODE IS PROVIDED AS AN EXAMPLE OF * 00200000
* INSTALLATION EXTENSIONS TO JES2. THIS CODE IS * 00210000
* NOT TO BE CONSIDERED TYPE l SUPPORTED CODE OF * 00220000
* IBM. * 00230000
* * 00240000
* REGISTER CONVENTIONS = SEE ENTRY POINT DOCUMENTATION * 00250000
* * 00260000
* MODULE TYPE = PROCEDURE, TABLE I CSECT TYPE J * 00270000
* * 00280000
* PROCESSOR = OS/VS ASSEMBLER H OR ASSEMBLER XF 13701 * 00290000
* * 00300000
* MODULE SIZE = SEE $HODEND MACRO EXPANSION AT END OF ASSEMBLY * 00310000
* * 00320000
* ATTRIBUTES = HASP REENTRANT, RHODE 24, AMODE 24/31. * 00330000
* * 00340000
* ENTRY POINT = USCTPCE - INITIAL ENTRY TO SECURITY PROCESSOR * 00350000
* USCTDTE - INITIAL ENTRY TO THE SUBTASK USED FOR * 00360000
* AUTHORIZATION CHECKS * 00370000
* USERPCET - ENTRY FOR INSTALLATION PCE TABLE * 00380000
* USERDTET - ENTRY FOR INSTALLATION DTE TABLE * 00390000
* USERTIDT - ENTRY FOR INSTALLATION TRACE ID TABLE * 00400000
* USERSTHT - ENTRY FOR INSTALLATION OFFLOAD SYSOUT * 00410000
* TRANSMITTER HORK SELECTION TABLE * 00420000
* USEROSTT - ENTRY FOR INSTALLATION OFFLOAD SYSOUT * 00430000
* TRANSMITTER OPERAND TABLE * 00440000
* * 00450000
* PURPOSE = SEE FUNCTION * 00460000
* * 00470000
* LINKAGE = SEE ENTRY POINT DOCUMENTATION * 00480000
* * 00490000
* INPUT = SEE ENTRY POINT DOCUMENTATION * 00500000
* * 00510000
* OUTPUT = SEE ENTRY POINT DOCUMENTATION * 00520000
* * 00530000
* EXIT-NORMAL = SEE ENTRY POINT DOCUMENTATION * 00540000
* * 00550000
* EXIT-ERROR = SEE ENTRY POINT DOCUMENTATION * 00560000
* * 00570000
* EXTERNAL REFERENCES = SEE BELOW * 00580000
* * 00590000
* ROUTINES = NONE * 00600000
* * 00610000
* DATA AREAS = SEE $MODULE MACRO SPECIFICATION * 00620000
* * 00630000
* CONTROL BLOCKS = SEE $MODULE MACRO SPECIFICATION * 00640000

Appendix A. Table Pairs Coding Example 159

* * 00650000
* TABLES = SEE $MODULE MACRO SPECIFICATION * 00660000
* * 00670000
*MACROS = JES2 - $ACTIVE, $AMODE, $CALL, $DECODE, $DORMANT, $DTEDYN, * 00680000
* $ENTRY, $MODULE, $PCETAB, $REGS, $RETURN, $SAVE, * 00690000
* $SCANTAB, $STIMER, $STORE, $TIDTAB, $TRACE, $HAIT, * 00700000
* $HSTAB * 00710000
* * 00720000
*MACROS = MVS - ATTACH, DEQ, ENQ, ESTAE, POST, SDUMP, HAIT * 00730000
* * 00740000
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, Ill - 7/86 * 00750000
* CODE AT SPl.3.6/2.1.5 LEVEL * 00760000
* 1/88 VARIOUS FIXES BY BOB, SA, JK, MES, SHH FOR TB* 00760000
* * 00770000
*** 00780000

TITLE 'USER EXTENSION MODULE -- PROLOG 1$HASPGBL)'
COPY $HASPGBL COPY HASP GLOBALS
TITLE 'USER EXTENSION MODULE -- PROLOG !$MODULE)'

HASPXJOO $MODULE NOTICE=NONE,
ENTRIES=IUSERPCET,USERDTET,USERTIDT,USERSTHT,USEROSTTl,
TITLE='USER EXTENSION MODULE',
$OCT, GENERATE HASP OCT DSECT
$DTE, GENERATE HASP DTE DSECT
$DTETAB, GENERATE HASP DTETAB DSECT
$ERA, GENERATE HASP ERA DSECT
$HASPEQU, GENERATE HASP EQUATES DSECT
$HCT, GENERATE HASP HCT DSECT
$JQE, GENERATE HASP JQE DSECT
$MIT, GENERATE HASP MIT DSECT
$PCE, GENERATE HASP PCE DSECT
$PCETAB, GENERATE HASP PCETAB DSECT
$RDRHORK, GENERATE HASP RDRHORK DSECT
$SCANTAB, GENERATE HASP SCANTAB DSECT
$SCAT, GENERATE HASP SCAT DSECT
$SVT, GENERATE HASP SVT DSECT
$TIDTAB, GENERATE HASP TIDTAB DSECT
$TLGHORK, GENERATE HASP TLGHORK DSECT
$TQE, GENERATE HASP TQE DSECT
$TRP, GENERATE HASP TRP DSECT
$TTE, GENERATE HASP TTE DSECT
$USERCBS, GENERATE USER DSECTS
$HSTAB, GENERATE HASP HSTAB DSECT
$XECB GENERATE HASP XECB DSECT

160 A GUIDE User Group Presentation

00790000
00800000
00810000

C00820000
C00830000
C00840000
C00850000
C00860000
C00870000
C00880000
C00890000
C00900000
C00910000
C00920000
C00930000
C00940000
C00950000
C00960000
C00970000
C00980000
C00990000
COlOOOOOO
C01010000
C01020000
C01030000
C01040000
C01050000

01060000

Overview

TITLE 'USER EXTENSION MODULE -- INTRO
FUNCTION AND RELATED PIECES'

- BRIEF OVERVIEH OF MC01070000
01080000

MMMMMMMiHHE**iHHEiHHHHHHHHHf**** 01090000
* * 01100000
* FUNCTION -- THIS MODULE CONTAINS THE INSTALLATION EXTENSION CODE * 01110000
* AND TABLES THAT ARE REQUIRED TO CREATE AN INSTALLATION * 01120000
* SECURITY PROCESSOR, SECURITY SUBTASK, TRACE ID, HORK * 01130000
* SELECTION CRITERIA ON THE OFFLOAD SYSOUT TRANSMITTER * 01140000
* HORK SELECTION LIST, AND AN ADDITIONAL OPERAND ON THE * 01150000
* OFFLOAD SYSOUT TRANSMITTER. * 01160000
* * 01170000
* REQUIRED PIECES -- HASPXJOO - THIS MODULE * 01180000
* $UCT - CONTAINS REQUIRED FIELDS FOR TABLE * 01190000
* GENERATION * 01200000
* $SCDHORK - SUBTASK DTE EXTENSION TO HOLD FIELDS * 01210000
* SPECIFIC TO A SECURITY SUBTASK * 01220000
* $SCYHORK - PROCESSOR PCE EXTENSION TO HOLD * 01230000
* FIELDS SPECIFIC TO A SECURITY * 01240000
* PROCESSOR * 01250000
* $USERCBS - CONTROL BLOCK THAT ACTUALLY GENERATES * 01260000
* THE ABOVE MACROS. THIS CONTROL BLOCK * 01270000
* IS KNOHN BY $MODULE AND IS THE HAY * 01280000
* FOR AN INSTALLATION TO GET $MODULE TO * 01290000
* GENERATE THEIR CONTROL BLOCKS * 01300000
* HASPXITO - EXIT 0 MODULE THAT CONTAINS EXITO. * 01310000
* THIS EXIT INITIALIZES THE $MCT HITH * 01320000
* THE ADDRESSES OF THE INSTALLATION * 01330000
* TABLES LOCATED IN HASPXJOO. * 01340000
* * 01350000
*** 01360000

Appendix A. Table Pairs Coding Example 161

USCTPCE - Initial Entry Point

TITLE 'USER EXTENSION MODULE -- USCTPCE
INITIAL ENTRY POINT'

- SECURITY PROCESSOR,C01370000
01380000

******************ilKKKKKKKKKKKKKKK**K*iEKKKK•KKKKKKKK*iE*iE**KKKKKKKKKKKKK 01390000
• • 01400000
* PROCESSOR NAME -- USCTPCE K 01410000
• • 01420000
* DESCRIPTIVE NAME -- USER SECURITY PROCESSOR * 01430000
• • 01440000
* FUNCTION -- MANAGE THE INSTALLATION SECURITY SAF CALLS BY PASSING * 01450000
* A REQUEST TO THE SECURITY PROCESSOR'S SECURITY * 01460000
* SUBTASK TO ISSUE THE SAF CALL. * 01470000
• • 01480000
* NOTES BECAUSE A JES2 PROCESSOR IS NOT ALLOHED TO DIRECTLY * 01490000
* ISSUE AN OS HAIT, USCTPCE ATTACHES A SUB-TASK TO * 01500000
* PERFORM THOSE FUNCTIONS REQUIRING HAITS. THE SUB-TASK,• 01510000
* USCTDTE, PERFORMS THE CALL TO THE SECURITY * 01520000
* AUTHORIZATION FACILITY !SAF). * 01530000
• • 01540000
• • 01550000
* REGISTER CONVENTIONS RO - R2 -- HORK REGISTERS * 01560000
* R3 -- ADDRESS OF $DTE * 01570000
* R4 -- ADDRESS OF HORK ELEMENT * 01580000
* R5 - R9 -- HORK REGISTERS * 01590000
* RlO -- ADDRESS OF $UCT * 01600000
* Rll -- ADDRESS OF $HCT * 01610000
K R12 -- BASE ADDRESSABILITY * 01620000
* Rl3 -- ADDRESS OF PCE * 01630000
* Rl4 LINKAGE REGISTER * 01640000
* Rl5 -- LINKAGE REGISTER * 01650000
• • 01660000
*** 01670000

EJECT 01680000
*** 01690000
• • 01700000
* USCTPCE INITAL ENTRY POINT * 01710000
• • 01720000
**•·············· 01730000

SPACE 2 01740000
USING UCT,RlO
SPACE 1

USCTPCE $ENTRY BASE=R12
SPACE 1
L RlO,$UCT
EJECT

ESTABLISH UCT ADDRESSABILITY

PROVIDE PROCESSOR ENTRY POINT

OBTAIN THE UCT ADDRESS

01750000
01760000
01770000
01780000
01790000
01800000

*** 01810000
• • 01820000
* HAIN LOOP OF THE SECURITY PROCESSOR. * 01830000
• • 01840000
***********************-*****KKKKKKKKKKK--**KKK***-KKKKKKKKKKKKKKKKK!HE* 01850000

SPACE 1 01860000
USCTYLOP $ACTIVE INDICATE PROCESSOR ACTIVE 01870000

ICM R3,B'1111' ,SCYDTEAD SUBTASK ATTACHED. . . 01880000
BZ USCATACH NO, GO ATTACH IT 01890000
TH DTEFLAG1-DTEIR3),DTE1ACTV SUBTASK ACTIVE... 01900000
BO USCTEST YES, GO QUEUE UP MEMBER 01910000
SPACE 1 01920000

***********************lHE**lEKK* 01930000
* * 01940000
* DETACH THE SECURITY SUBTASK IABENDED) * 01950000
* * 01960000
*** 01970000

SPACE 1 01980000
$DTEDYN DETACH,ID=UDTESCTY,DTE=!R3),HAIT=XECB C01990000

DETACH ABENDED SUB-TASK 02000000
XC SCYDTEAD,SCYDTEAD CLEAR DTE ADDR 02010000
EJECT 02020000

******************•••••••••lHHf*** 02030000
• * 02040000
* (RE)-ATTACH THE SECURITY SUBTASK If 02050000

162 A GUIDE User Group Presentation

(

(

* * 02060000
*** 02070000

SPACE 1 02080000
USCATACH $0TEOYN ATTACH,ID=UDTESCTY,HAIT=XECB,ERRET=USCATERR C02090000

ATTACH USCTDTE 02100000
ST Rl,SCYDTEAD STORE SUBTASK DTE ADDRESS 02110000
HVC XECBECB-XECB+DTEIXECB-DTEl,RlJ,$ZEROS CLEAR C02120000

COMtl.INICATION ECB 02130000
LR R3,Rl SET THE SUBTASK DTE ADDRESS 02140000
ST Rll,SCOHCTl,R3J STORE HCT ADDRESS IN DTE XTNSN Q)SA 02140000

** 02160000
* * 02170000
* DETERMINE IF THERE IS HORK TO BE DONE * 02180000
* * 02190000
** 02200000

SPACE 1 02150000
USCTEST ICM R4,B'llll',UCTSY~E ANY HORK TO DO... 02220000

BNZ USCHORK YES, GO DO IT 02230000
SPACE 1 02240000

$DORMANT INDICATE THAT PROCESSOR COMPLETE 02250000
SPACE 1 02270000

$HAIT SCTY,INHIBIT=NO HAIT FOR HORK 02280000
B USCTYLOP GO CHECK FOR HORI< TO DO 02290000
EJECT 02300000

*** 02310000
* * 02320000
* SETUP FOR SUB-TASK TO PROCESS JOB * 02330000

* 02340000
* 02350000
* 02360000
* 02370000

* * INSTALLATION CODE HOULD GO HERE TO PASS TO SUBTASK THE NECESSARY
* INFORMATION I THROUGH THE DTE EXTENSION THAT IS UNIQUE FOR THE
* SECURITY SUBTASK).
* * 02380000
*** 02390000

SPACE 1 02400000
USCHORK OS OH 02410000

XC UCTSY~E,UCTSY~E INDICATE HORK BEING PROCESSED IIN C02420000
REALITY THIS HOULO PROBABLY UNCHAIN C02430000
THE RE~EST, NOT CLEAR THE ~EUE) 02440000

EJECT 02450000
*** 02460000
* * 02470000
* MVS POST THE SUBTASK FOR HORK TO DO AND $HAIT FOR IT TO * 02480000
* COMPLETE. NOTE THAT THE CALL TO THE SUBTASK IS $TRACE'D, * 02490000
* IF TRACING IS ACTIVE. * 02500000
* * 02510000
*** 02520000

SPACE 1 02530000
HVC XECBECB-XECB+DTEIXECB-DTEl,R3l,$ZEROS CLEAR ECB C02540000

FOR $HAIT 02550000
LA Rl,DTEHECB-DTEl,R3J POINT TO THE HORK ECB 02560000
SPACE 1 02570000
POST (1) POST SECURITY SUBTASK FOR HORK 02580000
SPACE 1 02590000

$TRACE ID=255,LEN=USCSAFML,OFF=USCTROFF,NAME=SAFCALL 02600000
HVC OIUSCSAFML,Rl),USCSAFM SET INFORMATION TO BE TRACED 02610000
SPACE 1 02620000

USCTROFF LR Rl,R3 GET DTE ADDRESS 02630000
$HAIT OPER,XECB=DTEIXECB-DTEC,Rl) $HAIT FOR SUB-TASK C02640000

TO POST US 02650000
EJECT 02660000

** 02670000
* * 02680000
* SUBTASK HAS POSTED US BACK * 02690000
* * 02700000
* INSTALLATION CODE HOULD GO HERE TO VALIDATE THE SUCCESS OF THE * 02710000
* SECURITY CALL AND TO DO ANY PROCESSING RELEVANT TO THE SUCCESS * 02720000
* OR FAILURE OF THE CALL. * 02730000
* * 02740000
** 02750000

SPACE 1 02760000
OS OH VALIDATE THE RESULT OF THE SECURITY C02770000

CALL. 02780000

Appendix A. Table Pairs Coding Example 163

SPACE 02790000
XXXXXXXX~XX***iEXX'************************XXXXXXXXXXXXXXXXXXXXJHCXXXXXXX 02800000
x x 02810000
x BRANCH TO OBTAIN THE NEXT ITEH TO VERIFY x 02820000
x x 02830000
** 02840000

SPACE 1 02850000
B USCTEST GO CHECK FOR HORE HORK 02860000
EJECT 02870000

XXXXXXXXX**X**X*******XX***iEXXX******XXXXXXXiCXXXXXXXXXXXXXXXXlEXX**XXX* 02880000
x x 02890000
x AN ERROR HAS ENCOUNTERED ON THE ATTACH OF THE SlBTASK. x 02900000
x HAIT FOR 30 SECONDS AND ATTEHPT TO TRY AGAIN. x 02910000
x x 02920000
'****XXX**X**XXXXXXXX**********************XXXXXXXXXXiHHCXXXXXXXXXXX 02930000

SPACE 1 02940000
USCATERR LA Rl,SCYTQE GET ADDRESS OF PCE TQE 02950000

LA R0,30 SET TIHE INTERVAL 02960000
ST RO,TQETIHE! ,Rl) IN TQE 02970000
ST R13,TQEPCE!,Rl) STORE PCE ADDRESS IN TQE 02980000

$STIHER I Rl) CHAIN THIS TQE 02990000
$HAIT HORK AND HAIT FOR INTERVAL TO ELAPSE 03000000
B USCATACH GO ATTACH SlBTASK 03010000
SPACE 1 03020000

********XXXX**XXXX**X**XXXXXXX**XX**XXX*XX**X*****X~XXXXXXXXXXXXXXXXXX 03030000
x x 03040000
x LIST LITERALS AND SUSPEND ADDRESSABILITIES. .x 03050000
x x 03060000
** 03070000

SPACE l 03080000
LTORG 03090000
SPACE l 03100000
DROP RlO,Rl2,Rl3 SUSPEND UCT, BASE, AND PCE ADDRESS 03110000

164 A GUIDE User Group Presentation

"·.. .,./

' \

USCTDTE - Security Subtask, Initial Entry Point

TITLE 'USER EXTENSION MODULE -- USCTDTE - SECURITY SUBTASK, IC03120000
NITIAL ENTRY POINT' 03130000

«XXXXXXXXXXXXXXXXXXltiHHHHf 03140000
* * 03150000
* USCTDTE - USER SECURITY SUBTASK * 03160000
* * 03170000
* FUNCTION: * 03180000
* * 03190000
* THIS IS AN EXAMPLE OF A USER CODED SECURITY SlBTASK. THIS * 03200000
* SUBTASK IS DEFINED BY THE USERDTET DTE TABLE. THIS SUBTASK * 03210000
* IS ATTACHED BY THE USCTPCE SECURITY PROCESSOR. THE * 03220000
* PURPOSE OF THIS SUBTASK IS TO CODE THE SAF CALL TO VERIFY * 03230000
* THE ELEMENT THAT HAS PASSED TO IT FROM THE SECURITY * 03240000
* PROCESSOR. * 03250000
* * 03260000
* LINKAGE: * 03270000
* * 03280000
* CONTROL GIVEN BY MYS VIA AN ATTACH MVS CALL. * 03290000
* * 03300000
* ENVIRONMENT: * 03310000
* * 03320000
* JES2 SlBTASK * 03330000
* * 03340000
* RECOVERY: * 03350000
* * 03360000
* MYS ESTAE ESTABLISH UPON ENTRY. THE RECOVERY ROUTINE IS * 03370000
* PROVIDED BY THE $STABEND ROUTINE LOCATED IN HASPRAS. * 03380000
* * 03390000
* REGISTER USAGE IENTRY/EXITl: * 03400000
* * 03410000
* REG VALUE ON ENTRY VALUE ON EXIT * 03420000
* * 03430000
* RO N/A UNPREDICTABLE * 03440000
* Rl DTE ADDRESS AS SPECIFIED * 03450000
* ON THE ATTACH CALL UNPREDICTABLE * 03460000
* R2-Rl4 N/A UNPREDICTABLE * 03470000
* Rl5 ENTRY ADDRESS UNPREDICTABLE * 03480000
* * 03490000
* PARAMETER LIST: * 03500000
* * 03510000
* ALL NECESSARY INFORMATION LOCATED IN THE DTE, AS PASSED * 03520000
* BY THE ATTACHING PROCESSOR. * 03530000
* * 03540000
* REGISTER USAGE IINTERNALl: * 03550000
* * 03560000
* REG VALUE * 03570000
* * 03580000
* RO-RlO HORK REGISTERS * 03590000
* Rll HCT BASE ADDRESS * 03600000
* Rl2 LOCAL BASE ADDRESS * 03610000
* Rl3 DTE BASE ADDRESS * 03620000
* Rl4 LINK/HORK REGISTER * 03630000
* Rl5 LINK/HORK REGISTER * 03640000
* * 03650000
* RETURN CODES IR15 ON EXITl: * 03660000
* * 03670000
* N/A * 03680000
* * 03690000
* OTHER CONSIDERATIONS: * 03700000
* * 03710000
* N/A * 03720000
* * 03730000
XXXXXXXXXXXXXXXXiE***iE**** 03740000

SPACE l 03750000
USING HCT,Rll ESTABLISH HCT ADDRESSABILITY 03760000

(USING DTE,Rl3 ESTABLISH DTE ADDRESSABILITY 03770000
SPACE l 03780000

USCTDTE $ENTRY BASE=Rl2 USER SECURITY SUB-TASK 03790000
LR Rl2,Rl5 SET LOCAL BASE 03800000
LR Rl3 ,Rl SET DTE BASE 03810000

Appendix A. Table Pairs Coding Example 165

L Rll,SCDHCT SET HCT BASE O>SA 03810000
****************************XXXXXXXXlE****if*XX***if*XXXXXXX**XXXXXXX:IHHHf 03850000
* CilBDB 03820000
*USCXA $AHODE 31,RELATED=IUSC37l FORCE 31-BIT MODE FOR UDTESCTY 03830000
* QlBDB 03820000
* REMOVED THE $AMODE BECAUSE THE $MODULE ENVIRONMENT IS JES2. CilBDB 03820000
* THIS CAUSES THE EXPANSION TO GENERATE A CONSTANT $HIBITON ~BDB 03820000
* HHICH RESIDES IN THE HCT. SINCE HE DON'T AUTOMATICALLY CilBDB 03820000
* HAVE ADDRESSABILITY TO THE HCT IN A SUBTASK HE ABEND IN G>BDB 03820000
* EXECUTION. CilBDB 03820000
* THIS IS NOT A PROBLEM IF THIS ROUTINE IS COPIED INTO ITS CilBDB 03820000
* OHN MODULE AND THEN CODE THE $MODULE HITH ENVIRON=SUBTASK. QlBDB 03820000
* CilBDB 03820000
** 03850000
USCXA LA Rl5,USCXA01 PSEUDO $AHODE $AMODE CilBDB 03830000

0 Rl5,HIGHON SET HI BIT ON $Al10DE CilBDB
BSH RO,Rl5 SET MODE $AMODE CilBDB

HIGHON DC OF'O',X'80000000' HASK FOR 31 BIT MODE $AMODE CilBDB
USCXAOl DS OH RESUME $AMODE CilBDB

SPACE l 03840000
** 03850000
* * 03860000
* SET THE RETRY ROUTINE, THE CLEAN-UP ROUTINE, AND THE * 03870000
x VRA EXIT ROUTINE ADDRESSES. * 03880000
* * 03890000
x INSTALLATION SHOULD SET THE DTERTXAD, DTEESXAD, AND DTEVRXAD * 03900000
x FOR THE RETRY ROUTINE ADDRESS, THE CLEAN-UP ROUTINE ADDRESS * 03910000
* AND THE VRA EXIT ROUTINE ADDRESS RESPECTIVELY, IF THESE * 03920000
x ROUTINES ARE NEEDED. * 03930000
* * 03940000
** 03950000

SPACE l 03960000
L R2,$STABNDA GET SUBTASK ESTAE RTN ADDRESS 03970000
LR R3,Rl3 COPY DTE ADDRESS 03980000
EJECT 03990000

XXXXXXX**XXXXXXXXlE***XXX**XXX**X**X****XXXXXXXXXXXXXX****************** 04000000
* x 04010000
x E S T A B L I S H E S T A E E N V I R 0 N H E N T * 04020000
* * 04030000
*** 04040000

SPACE l 04050000
MVC DTEAHRKAIUSCSTLNJ,USCABND MOVE ESTAE PARM LIST 04060000
SPACE l 04070000
ESTAE 121,PARAH=l31,RECORD=YES,HF=IE,DTEAHRKA1 C04080000

ESTABLISH RECOVERY ENVIR01111ENT 04090000
SPACE l 04100000
OI DTEFLAGl,DTElACTV SHOH SUBTASK ACTIVE 04110000

* 04120000
* INSTALLATION SHOULD INITIALIZE THE DTE EXTENSION FOR THE SUBTASK 04130000
x HERE 04140000
* 04150000

166 A GUIDE User Group Presentation

USCTDTE - Security Subtask, Main Processing

TITLE 'USER EXTENSION MODULE -- - SECURITY SUBTASK, MC04160000
AIN PROCESSING' 04170000

*** 04180000
* * 04190000
* NOTIFY PROCESSOR THAT HORK NEEDED AND HAIT FOR A RESPONSE * 04200000
* * 04210000
*** 04220000

SPACE 1 04230000
USCPOST XC DTEHECB,DTEHECB CLEAR HORK ECB 04240000

SPACE 1 04250000
POST DTEIXECB POST PROCESSOR FOR HORK 04260000
SPACE 1 04270000
TM DTEFLAGl,DTElTERM SUBTASK SHUTDOHN REQUESTED... 04280000
BO USCRET YES, EXIT TO DELETE SECURITY SUBT 04290000
SPACE 1 04300000
HAIT ECB=DTEHECB ELSE HAIT FOR HORK TO DO 04310000
SPACE 1 04320000
TM DTEFLAGl,DTElTERM SUBTASK SHUTDOHN REQUESTED... 04330000
BO USCRET YES, EXIT TO DELETE SECURITY SUBT 04340000
EJECT 04350000

** 04740000
* ~BOB 04730000
* ISSUE A MVS HTO TO INDICATE THAT THE SUBTASK IS <i>BOB 04730000
* EXECUTING. ~BOB 04730000
* ~BOB 04730000
** 04740000

SPACE 1 04410000
LA Rl,USMSG901 ~BOB

HTO MF=IE,11)) <i>BOB 04420000
SPACE l 04430000

** 04440000
* * 04450000
* GO POST THE PROCESSOR FOR HORK * 04460000
* * 04470000
** 04480000

SPACE 1 04490000
B USCPOST GO POST PROCESSOR FOR HORK 04500000

(

Appendix A. Table Pairs Coding Example 167

USCTDTE - Security Subtask, Termination

TITLE 'USER EXTENSION MODULE -­
ERMINATION'

- SECURITY SUBTASK·, TC04510000
04520000

****************************iEXXXXXX~X******************iE****ilXXXXXXXXXX 04530000
* * 04540000
* TERMINATE SECURITY SUBTASK * 04550000
* * 04560000
* NOTE THAT THE HAIN TASK TERMINATION CODE HAITS 30 SECONDS x 04570000
x FOR THE SUBTASK TO GO AHAY BEFORE CONTINUING. IF THE HAIN x 04580000
* TASK COMPLETES TERMINATION BEFORE THE SUBTASK DOES lDUE TO * 04590000
x DEBUG TRACING IN THE SUBTASK J, AN A03 ABEND HILL RESULT. x 04600000
* * 04610000
XXXXXXXXX******************** 04620000

SPACE 1 04630000
USCRET DS OH 04640000
USC37 $AHODE 24,RELATED=lUSCXAJ AHODE 24 FOR SECURITY TERMINATION 04650000

SPACE 1 04660000
ESTAE 0 CANCEL ESTAE 04670000
SVC 3 THEN RETURN TO SYSTEM 04680000
EJECT 04690000

** 04700000
* * 04710000
* CREATE THE ESTAE PARAMETER LIST AND TRACED INFORMATION * 04720000
* * 04730000
** 04740000

SPACE 1 04750000
USCABND ESTAE ,CT,PURGE=NONE,ASYNCH=YES,TERH=NO,HF=L 04760000
USCSTLN EQU x-USCABND LENGTH OF ESTAE PARAMETER LIST 04770000

SPACE 1 04780000
USCSAFH DC C'THIS IS TRACE DATA THAT SHOULD BE FILLED IN FOR INSTALC04790000

USCSAFHL EQU
SPACE

$HID
USHSG901 HTO

LATION USE IN TRACING SECURITY CALLS' 04800000
*-USCSAFH 04810000
1 04820000
901 Q)BDB
'&HID. SECURITY SUBTASK INVOKED', GlBDBC
HF=L,ROUTCDE=10,DESC=6 G)BDB

SPACE 1 04820000
DROP Rl3 DROP DTE ADDRESSABILITY 04830000

168 A GUIDE User Group Presentation

\~ _/

./

(

4
J(I(

(

TROUT255 - Tracing Routine for SAF Call

TITLE 'USER EXTENSION MODULE -- TROUT2SS - TRACING ROUTINE FORC04840000
SAFCALL ID=2SS' 048SOOOO

*** 04860000
* * 04870000
* TROUT2SS - TRACING ROUTINE IN SUPPORT OF THE TRACE ID 2SS. * 04880000
* * 04890000
* FUNCTION: * 04900000
* * 04910000
* THIS ROUTINE HILL BE CALLED TO FORMAT THE TRACE RECORD FOR * 04920000
* THE INSTALLATION TRACE ID 2SS. THIS ROUTINE SHOULD BE * 04930000
* ALTERED BY THE INSTALLATION TO FORMAT THE INFORMATION THAT * 04940000
* HAS SAVED ON THE TRACING OF THIS ID. * 049SOOOO
* * 04960000
* LINKAGE: * 04970000.
* * 04980000
* BALR Rl4,1S TO BY HASPMISC * 04990000
* * osoooooo
* ENVIRONMENT: * OSOlOOOO
* * OS020000
* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK. * OS030000
* * OS040000
* RECOVERY: * OSOSOOOO
* * OS060000
* NONE * OS070000
* * OS080000
* REGISTER USAGE IENTRY/EXITl: * OS090000
* * 05100000
* REG VALUE ON ENTRY VALUE ON EXIT * OSllOOOO
*
* RO
* Rl
* R2
* R3
* R4
* RS
*
* R6-Rl0
* Rll
* Rl2
* RB
* Rl4
* RlS

*

N/A
TRACE TABLE BUFFER ADDR
TRACE TABLE ENTRY ITTEl
N/A
TRACE ID TABLE ENTRY
POINTER TO REMAINING OUT-

PUT AREA IN PRINT RECORD
N/A
HCT BASE ADDRESS
N/A
PCE BASE ADDRESS
RETURN ADDRESS
ENTRY ADDRESS

* PARAMETER LIST:

*
* NONE
*
* REGISTER USAGE IINTERNALl:

*
* REG VALUE
*
* RO-Rl HORK REGISTERS

* R2 TTE ADDRESS
* R3 LOCATION IN TTE
* R4 HORK REGISTER
* RS LOCATION IN OUTPUT AREA
* R6-R8 HORK REGISTER
* R9 *** RESERVED ***
* RlO HORK REGISTER
* Rll HCT BASE ADDRESS
* Rl2 LOCAL BASE ADDRESS
* RB PCE BASE ADDRESS
* Rl4 LINK/HORK REGISTER
* Rl5 LINK/HORK REGISTER
*
* RETURN CODES (RlS ON EXIT l :
*

* OS120000
UNCHANGED * 05BOOOO
UNCHANGED * 05140000
UNCHANGED * 05150000
UNCHANGED * 05160000
UNCHANGED * 05170000
POINTER TO LOCATION IN OUT- * 05180000

PUT AREA AFTER THIS ENTRY * 05190000
UNCHANGED * OS200000
UNCHANGE.D * 05210000
UNCHANGED * 05220000
UNCHANGED * OS230000
UNCHANGED * 05240000

0 * 05250000
* 05260000
* 05270000
* OS280000
* 05290000
* 05300000
* 05310000
* 05320000
* OS330000
* OS340000
* 05350000
* OS360000
* 05370000
* OS380000
* 05390000
* OS400000
* 05410000
* 05420000
* OS430000
* OS440000
* OS4SOOOO
* OS460000
* OS470000
* OS480000
* OS490000
* ossooooo

* 0 PROCESSING SUCCESSFUL INO ERRORSJ * OSSlOOOO
* OSS20000 * * OTHER CONSIDERATIONS: * OSS30000

Appendix A. Table Pairs Coding Example 169

*
*
*

* 05.540000
MUST RETURN THE NEH VALUE OF R5 ON EXIT (I • E. , $STORE (R5)) * 05550000

* 05560000
*******************XXXXXXXXXXXXXXIHHHHEXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 05570000

SPACE 1 05580000
USING TTE ,R2 ESTABLISH TTE ADDRESSABILITY 05590000
USING PCE,Rl3 ESTABLISH PCE ADDRESSABILITY 05600000
SPACE 1 05610000

TROUT255 $ENTRY BASE=Rl2 ID=255 TRACE FORHATOR ROUTINE 05620000
$SAVE NAHE=TROUT255,TRACE=NO SAVE CALLERS REGISTERS 05630000

LR Rl2,Rl5 ESTABLISH BASE ADDRESS 05640000
SPACE 1 05650000
LA R3,TTEDATA POINT TO THE TTE DATA 05660000
MVC OIUSCSAFML,RSl,OCR3l SET THE TRACED INFO IN OUTPUT AREA 05670000
LA RO,USCSAFMLl,R5) POINT BEYOND INFORMATION 05680000
SL RO,TLGBSAVE . AND FIND LENGTH OF PRINT LINE 05690000
L Rl5,$TRCPUT GET TRCPUT ROUTINE ADDRESS AND GlBDB

$CALL IR15) GO PRINT THE LINE G)JK 05700000
$STORE I RS) INSURE NEH BUFFER IS PASSED BACK 05710000

SPACE 1 05720000
$RETURN TRACE=NO RETURN TO CALLER 05730000

SPACE 1 05740000
DROP R2,Rl2,Rl3 SUSPEND TTE, LOCAL, AND PCE ADDRESS 05750000

170 A GUIDE User Group f>resentation

.. /

(

(

WSTRKGRP - Work Selection Routine

TITLE 'USER EXTENSION MODULE -- HSTRKGRP - HORI<. SELECTION ROUTC05760000
INE FOR TRKGRP CRITERIA' 05770000

*** 05780000
* * 05790000
* HSTRKGRP - HORI<. SELECTION ROUTINE TO COMPARE THE OCT'S * 05800000
* AND JQE 'S NUMBER OF TRACK GROUPS. * 05810000
* * 05820000
* FUNCTION: * 05830000
* * 05840000
* THIS ROUTINE HILL BE CALLED TO INSURE THAT THE JOB'S NUMBER * 05850000
* OF TRACK GROUPS IS EQUAL TO OR BEYOND THE OCT'S THRESHOLD. * 05860000
* * 05870000
* LINKAGE: * 058SOOOO
* * 05890000
* BALR Rl4,15 TO BY HASPSERV * 05900000
* * 05910000
* ENVIRONMENT: * 05920000
* * 05930000
* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK. * 05940000
* ~ 05950000
* RECOVERY: * 05960000
* * 05970000
* NONE * 05980000
* * -05990000
* REGISTER USAGE IENTRY/EXITJ: * 06000000
* * 06010000
* REG VALUE ON ENTRY VALUE ON EXIT * 06020000
* * 06030000
* RO N/A UNCHANGED * 06040000
* Rl N/A UNPREDICTABLE * 06050000
* R2 ADDR OF CRITERION BEING * 06060000
* PROCESSED UNCHANGED * 06070000
* R4-R5 N/A UNCHANGED * 06080000
* R6 N/A UNPREDICTABLE * 06090000
* R7 COMPARISON LENGTH UNPREDICTABLE * 06100000
* RS ADDR OF DEVICE FIELD UNCHANGED * 06110000
* R9 N/A UNCHANGED * 06120000
* RlO ADDR OF COMPARISON FIELD UNCHANGED * 06130000
* Rll HCT BASE ADDRESS UNCHANGED * 06140000
* Rl2 N/A UNCHANGED * 06150000
* Rl3 PCE BASE ADDRESS UNCHANGED * 06160000
* Rl4 RETURN ADDRESS UNCHANGED * 06170000
* Rl5 ENTRY ADDRESS 0 * 06180000
*
* PARAMETER LIST:
*
* NONE
*
* REGISTER USAGE I INTERNAL):
*
* REG VALUE
*
* RO N/A
* Rl ADDR OF JQE
* R2 ADDR OF CRITERION BEING
* PROCESSED
* R4-R5 N/A
* R6 N/A
* R7 COMPARISON LENGTH
* RS ADDR OF DEVICE FIELD
* R9 N/A
* RlO ADDR OF COMPARISON FIELD
* Rll HCT BASE ADDRESS
* Rl2 N/A
* Rl3 PCE BASE ADDRESS
* Rl4 LINKAGE REGISTER
* Rl5 LINKAGE REGISTER
*
* RETURN CODES IR15 ON EXIT):
*

* 06190000
* 06200000
* 06210000
* 06220000
* 06230000
* 06240000
* 06250000
* 06260000
* 06270000
* 062SOOOO
* 06290000
* 06300000
* 06310000
* 06320000
* 06330000
* 06340000
* 06350000
* 06360000
* 06370000
* 06380000
* 06390000
* 06400000
* 06410000
* 06420000
* 06430000
* 06440000
* 06450000

Appendix A. Table Pairs Coding Example 171

* 4 - CONTINUE CRITERIA PROCESSING, ACCEPTABLE CONDITION
* 12 - UNACCEPTABLE CONDITION, CRITERIA DO NOT MATCH

* * OTHER CONSIDERATIONS:

* * $SAVE AND $RETURN NOT USED FOR PERFORMANCE REASONS

*

* 06460000
* 06470000
* 06480000
* 06490000
* 06500000
* 06510000
* 06520000

*** 06530000
SPACE 1
ENTRY HSTRKGRP
USING HSTRKGRP,R6
USING PCE,Rl3
SPACE 1

ESTABLISH ENTRY POINT
ESTABLISH ADDRESSABILITY
ESTABLISH PCE ADDRESSABILITY

HSTRKGRP LR R6,Rl5 SET ADDRESSABILITY
BCTR R7 ,o PREPARE LENGTH FOR EXECUTES
LR Rl5,Rl0 SET THE JQE FIELD ADDRESS
SL Rl5,=AIJQETGNUH-JQE) TO OBTAIN THE JQE ADDRESS
LR Rl,RlO OBTAIN THE FIELD ADDRESS
TM JQEFLAG5-JQEIR15),JQE5XUSD NUH OF TGS IN EXT AREA •..
BNO HSTTGN NO, GO DO COMPARISON
LH Rl,JQETGNUH-JQEl,Rl5) GET THE OFFSET INTO EXT AREA
AL Rl,$JQEEXT AND OBTAIN THE ADDRESS OF TGN

HSTTGN LA Rl5,12 ASSUME TG NUMBER NOT AT THRESHOLD
EX R7,HSTCLC TG NUMBER AT THRESHOLD ...
BLR Rl4 NO, RETURN INDICATING NO MATCH
LA RlS,4 YES, INDICATE MATCH
BR Rl4 RETURN TO CALLER
SPACE 1

HSTCLC CLC 0(*-*•RlJ,OIR8)
SPACE 1
DROP R6,Rl3

*** EXECUTE ONLY ***

SUSPEND LOCAL AND PCE ADDRESSABILITY

172 A GUIDE User Group Presentation

06540000
06550000
06560000
06570000
06580000
06590000
06600000
06610000
06620000
06630000
06640000
06650000
06660000
06670000
06680000
06690000
06700000
06710000
06720000
06730000
06740000
06750000
06760000

Tables

TITLE 'USER EXTENSION MODULE -- USERPCET - TABLE FOR INSTALLATC06770000
ION SECURITY PROCESSOR' 06780000

** 06790000
* * 06800000
* DEFINE THE PROCESSOR TABLE * 06810000
* * 06820000
** 06830000

SPACE 1 06840000
USERPCET $PCETAB TABLE=USER 06850000
SCTVPCET $PCETAB NAHE=SCTV,DESC='SECURITV',MODULE=HASPXJOO, C06860000

ENTRVPT=UCTMSCTV,CHAIN=UCTSVPCE,COUNTS=UCTSVNUH, C06870000
HACRO=$SCVHORK,HORKLEN=SCVLEN,GEN=INIT,DISPTCH=HARH, C06880000
PCEFLGS=O,FSS=NO,PCEID=IO,UPCESCTVl,DCTTAB=*-* 06890000

$PCETAB TABLE=END 06900000

TITLE 'USER EXTENSION MODULE -- USERDTET - TABLE FOR INSTALLATC06910000
ION SECURITY SUBTASK' 06920000

********************·** 06930000
* * 06940000
* DEFINE THE SUBTASK TABLE * 06950000
* * 06960000
** 06970000

SPACE 1 06980000
USERDTET $DTETAB TABLE=USER 06990000

$DTETAB NAHE=SECURITV,ID=UDTESCTV,EPNAHE=USCTDTE, C07000000
EPLOC=UCTHDSCV,HEAD=UCTSVDTE,HORKLEN=SCDLEN, C07010000
GEN=NO,STAE=NO,SZERO=VES 07020000

$DTETAB TABLE=END 07030000

TITLE 'USER EXTENSION MODULE -- USERTIDT - TABLE FOR INSTALLATC07040000
ION TRACE ID TABLE IS l' 07050000

** 07060000
* * 07070000
* DEFINE THE TRACE ID TABLE * 07080000
* * 07090000
** 07100000

SPACE 1 07110000
USERTIDT $TIDTAB TABLE=USER 07120000

$TIDTAB ID=255,FORMAT=TROUT255,NAHE=SAFCALL 07130000
$TIDTAB TABLE=END 07140000

TITLE 'USER EXTENSION MODULE -- USERSTHT - TABLE FOR INSTALLATC07150000
ION HORK SELECTION CRITERIA' 07160000

** 07170000
* * 07180000
* DEFINE THE HORK SELECTION CRITERIA TABLE * 07190000
* * 07200000
** 07210000

SPACE 1 07220000
USERSTHT $HSTAB TABLE=USER 07230000

$HSTAB NAHE=TRKGRP,MINLEN=2,ALIAS=TG,FLD=JQETGNUH,CB=JQE, C07240000
DEVFLD=DCTUSERO,DEVCB=DCT,RTN=HSTRKGRP 07250000

$HSTAB TABLE=END 07260000

TITLE 'USER EXTENSION MODULE -- USEROSTT - TABLE FOR INSTALLATC07270000

(
ION SCAN TABLE FOR OFFN.STN' 07280000

** 07290000
* * 07300000
* DEFINE THE OFFLOAD SVSOUT TRANSMITTER OPERAND TABLE * 07310000
* * 07320000
•••••••••••••• 07330000

Appendix A. Table Pairs Coding Example 173

SPACE 1
USEROSTT $SCANTAB TABLE=USER
TRKGRP $SCANTAB NAME=TRKGRP,HINLEN=2,FIELD=IDCTUSER0,2J,DSECT=DCT,

CONV=NUH,RANGE=I0,32767J,CB=PARENT,CALLERS=l$SCIRPL,
$SCIRPLC,$SCDCHDS,$SCSCHDSJ

$SCANTAB NAHE=TG,CONV=ALIAS,SCANTAB=TRKGRP
$SCANTAB TABLE=END
EJECT

07340000
07350000

C07360000
C07370000
07~80000

07390000
07400000

*************'IHHHHHEXXXKXKXXXKIHHHHf'IHHHHHE*****iE*****iEXXXXKXXXXXXXKXXlf*if* 07410000
* * 07420000
* LIST THE LITERALS FOR THE HASPX.JOO HODULE. * 07430000
* * 07440000
***************************•••••••***********~··········•************** 07450000

SPACE 1 07460000
LTORG , 07470000

TITLE 'USER EXTENSION HODULE -- EPILOG 1$HODENDJ'
$HODEND ,

APARNUH DC CL7'0ZXXXXX' APAR NUMBER
END END OF HASPXJOO

174 A GUIDE User Group Presentation

99990000
99991000
99999997
99999999

(

(

A

alias 101, 104, 115, 134, 140
Attach 22, 50

B

BALR 83

c
CALLER 110, 112, 113, 119, 120, 139, 140
CALLRTM 52
CB 6, 8, 9, 11, 89, 92, 93, 94, 96, 102, 104,

112, 117, 118, 120, 121, 122, 138, 139, 140
CBIND 117, 130
CHAIN 25, 26, 27, 29, 30, 32, 41, 45, 46, 53,

57' 64, 66, 67
CHAR 114, 115, 121, 123, 124
Checkpoint 43, 53, 103
CJOE 92
CKPTDEF 9
CNVT 55
COLD 9, 107, 119
control blocks, JES2

See specific control blocks, such as DTE
CONVERT 53, 54, 55, 57, 58, 59, 115, 121

Converter subtask 53, 54, 55, 57, 58, 59

D

Daughter 1, 48, 49, 51
DCNVLEN 54, 57
OCT

DCTDEVN 117
DCTJOBNM 89, 94, 95
DCTTAB 29, 31, 40, 45

Index
DCTUSERO 102, 103, 104, 105, 134, 135,

136, 137, 140
DEBUG 12, 13, 120, 125, 138, 141
deleting entries 3, 4, 5, 7, 17, 18, 19, 34, 48,

69, 86, 106, 145
Detach 22, 50, 58, 65, 66
DEVCB 89, 94, 96, 103, 104
DEVFLAG 94
DEVFLD 89, 94, 96, 102, 104
Dispatch 20, 21, 25, 26, 34, 35, 42, 43, 45, 46,
49, 145

DISPLAY 109, 112, 113, 118, 128
DISPLEN 110, 133
DISPOUT 110, 131, 133
DISPTCH 29, 34, 42, 45
DTE

DTExxx 1, 2, 9, 17, 18, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 111, 147

DTEESXAD
DTE I DC NV
DTENEXT 57
DTEPREV 57
DTERTXAD 52
DTESTID 52
DTESXAD 52
DTETAB 71
DTEVRXAD 52

DTE Tables 48, 1, 17, 48-68

E

ENTRYPT 29, 30, 32, 41, 45, 46, 67
EPLOC 54, 55, 56, 64, 66
EPNAME 54, 56, 64, 66
EQU 25, 46, 67
Equate 25, 33, 42, 44, 45, 46, 55, 57, 63, 65,
66, 67, 82

ESTAE 52, 58
Exit point iii, 3, 4, 5, 145
Exit 0 10, 38, 39, 47, 61, 62, 68, 78, 84, 99,

105, 135, 142, 147, 152

Index l7S

F

falling-out-of-the-chair insurance v
FCB I2, I3
field names, JES2

See JES2 macros and field names
FSS 29,3S,43,4S

H

HASPXITO I47
HCT JES2 Control Block 32, 33, 57, 83, 92,
94, 117

HOLD 34

I

IDEF 12
IDENTIFY 56, 64
INSTBRST 12, 13
insurance, falling-out-of-chair

See falling-out-of-the-chair insurance
IOS 71

J

JES2 control blocks
See specific control blocks, such as DTE

JES2 initialization parameters
See specific parameters, such as JOBDEF
JOBNUM=

JES2 labels
HASPDTET 50, 54
HASPEVTL 71
HASPJRWT 87
HASPJTWT 87
HASPMPST 107, 112, 120, 12S, -138, 14I
HASPOPTT 107
HASPOSTT 138, 141
HASPOSTV 141
HASPPCET 22, 29
HASPPRWT 87, 89
HASPPUWT 87
HASPRCTT 125
HASPRCVT 120, 121, 125
HASPSRWT 87
HASPSTWT 87
HASPTABl I2, 13
HASPTAB2 13
HASPTBLE II
HASPTIDT 70, 74
HASPXJOO 38, 39, 40, 41, 45, 46, 47, 61,
62, 64, 66, 67, 68, 84, lOS, I42, 147

JES2 macros and field names
$DCTDYN 117

176 A GUIDE User Group Presentation

$DCTTAB 31
$DPCE 30
$DRSCTY 2S, 46
$DRTOTAL 2S
$DRxxx.xx 2S
$DTE SI, S2
$DTEALOC S3
$DTECKAP S3
$DTECNVT S3, S4,. S7
$DTEDYN SO, S4, S7, S8, 61, 6S, 66
$DTEIMAG 53
$DTEOFF S3
$DTEORG S7
$DTESMF S3
$DTESPOL S3
$DTETAB 48, SO, S4, SS, S6, S7, S8, S9,
64, 65, 66

$DTEVTM 53
$DTEWTO S3
$GETABLE 23, Sl, 71
$GETBUF
$GETMAIN 33, S7, 117
$GETWORK
$HASPEQU 2S, 82
$HCT 10, 32, 33, 47, 52, 53, 57, 68, 83,
84, 105, 127, 131, 142

$JQE 102
$MCT 9, 10, 22, 29, 38, 47, SO, S4, 61, 68,

70, 74, 78, 84, 87, 89, 99, 105, 107, 110,
112, 115, 116, 120, 135, 140, 142, 147

$MODMAP 32, 38, 39, 62
$MODULE 47, 68, 71, 147
$NUMRDRS 29, 33
$PCE 33, 34, 36, 127, 131
$PCEDYN 22, 29, 33, 34, 35, 38, 41, 43,
46

$PCEORG 32
$PCETAB 22, 29, 30, 31, 32, 33, 34,.35,
41,42,45,48, S7

$POST 20, 2I, 25, 34, 46
$RDRPCE 29, 32
$RDRWORK 29, 33
$RETURN 26, 82
$SAVE 26, 74, 82
$SCAN 1, 2, I7, 102, 106, 107, 108, 109,

110, 111, 112, 113, 114, 115, 1I6, 117, 118,
119, 120, 121, 122, 123, I24, 125, 127, I28,
129, 130, 131, 132, 133, 134, 13S, 136, I37,
138, 139, 140, I4I, I42, 143, 147

$SCANTAB 109, Ill, 112, 113, 114, 115,
116, 117, 118, 1I9, I21, 122, 123, 124, 130,
133, 140

$SCANWA 108
$SCDCMDS 112, I 19, 139, 140
$SCDOCMD 119
$SCDWORK 6S, 66, 67, 68, 147, 150
$SCIRPL 112, 119, 139, 140
$SCIRPLC 112, 119, 139, 140
$SCOPTS 119
$SCSCMDS 112, 119, 139, 140
$SCWA 108, 127, 130, 13I, 133

I ',

/ '

(

(

$SCYWORK 41, 42, 45, 46, 47, 147, 149
$SETRP 52
$STABNDA 52
$STORE 83
$TIDTAB 70, 74, 75, 76, 81
$TLGWORK 71, 82
$TPCE 30
$TRACE 30, 70, 71, 73, 74, 75, 78, 82
$TRCPUT 83
$TRP 71
$TTE 72, 73
$UCT 32, 33, 38, 41, 44, 45, 46, 47, 56,

57, 61, 63, 64, 66, 67, 68, 84, 105, 110, 116,
142, 147, 151

$USERCBS 47, 68, 147, 148
$WAIT 20,21, 25, 26, 34, 35,43,46,49
$WST AB 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 104

JES2 messages
See specific messages, such as $HASP050

JES2 modules 3, 4
HASJES20 IO, 22, 38, 39, 50, 61, 62, 70,
78, 87, 99, 107, 135, 140

HASPRDR 29, 31
HASPSSSM 26, 71
HASPSTAB iii, 106, 143
HASPSXIT 130
HASPTABS iii, 9, 10, 12, 19, 23, 31, 47,
48, 51, 68, 69, 71, 84, 86, 105, 142

HASPWARM 21
JES2 subtasks 48, 51, 53

HASPACCT 51
HASPCKAP 51
HASPIMAG 51
HASPOFF 51
HASPVTAM 51
HASPWTO 51
HOSALLOC 51
HOSCNVT 51, 54
HOSPOOL 51

Job 85, 87, 91, 92, 93, 94, 98, 99, 101, 102,
103, 104, 134, 137

JOBNAME 89, 90
JOE JES2 Control Block 85, 89, 92
JQE

JQEJNAME 89, 91, 92, 94, 95
JQETGNUM 102, 103, 104, 105, 134,

136
job receivers 35, 44
job transmitters 35, 44

L

labels, JES2
See JES2 labels

Link 3, 4, 8, 10, 12, 22, 38, 39, 50, 61, 62, 70,
78, 83, 87, 99, 103, 107, 135, 140

Load 38, 39, 61, 62, 71, 78, 99, 135

M

macros, JES2
See JES2 macros and field names

MAIN 107
MAPCNVA 54
MAPRDRA 29, 32
MASDEF 107
MCT 11, 12, 13, 87, 107, 120, 122, 125, 138,

141
MCTDETTU 61 ,. • ...,.,
MCTDTETH 50
MCTDTETU 50, 68
MCTJRWTH 87
MCTJRWTU 87
MCTJTWTH 87
MCTJTWTU 87
MCTMPSTH 107
MCTMPSTP 107, 120, 125, 138, 141
MCTMPSTU 107
MCTOPTTH 107
MCTOPTTP 107
MCTOPTTU 107
MCTOSTTP 138, 141
MCTOSTTU 135, 142
MCTPCETH 22
MCTPCETU 22, 38, 47
MCTPRWTH 87
MCTPRWTU 87
MCTPUWTH 87
MCTPUWTU 87
MCTRCVTP 112, 116, 120, 125
MCTSRWTH 87
MCTSRWTU 87
MCTSTWTH 87, 105
MCTSTWTU 87, 99, 105
MCTTIDTH 70
MCTTIDTU 70, 78, 84

messages
See specific messages, such as $HASP050

MINLEN 89, 90, 101, 104, 136, 140
Modif iii, v, 3, 4, 5, 7, 12, 17, 18, 19, 23, 25,
37, 38, 47, 48, 51, 60, 61, 68, 69, 71, 77, 86,
106, 109, 112, 115, 117, 133, 143, 145

MODMAP 32, 56
modules, JES2

See JES2 modules
MPS 107
MSGID 112, 113, 120

Index 177

N

NAME 29, 30, 40, 45, 54, 55, 63, 66, 74, 76,
80, 81, 89, 90, 101, 104, 112, 113, 117, 121,
122, 136, 140

NJE headers
NDHA 93
NDHG 93
NDHS 93
NDHU 93
NJHG 92
NJHO 93
NJHU 92
NJH2 92

NOREQ 9, 107
NUM 115, 121, 123, 124, 137, 140

0

OFFJR 87
OFFJT 87
Oflload 2, 53, 85, 87, 92, 93, 98, 99, 102, 103,

104, 134, 135, 136, 138, 140, 141, 147
OFFLOADing 92
OFFn 134, 135, 141
Offset 103, 123
OFFSR 87
OFFST 87, 138, 141
OPT 107
OPTION 107
OS-style 23, 24, 27, 51, 71
Override 19, 32, 38, 48, 57, 61, 69, 86, 106,

122

p

PARENT 117, 121, 122, 139, 140
PARM 107, 110
PARMLEN 110
Path 96
PCE

PCEDSPXP 35, 43
PCEDSPXT 35, 43
PCEFLAGS 35, 43
PCEFLGS 29, 35, 43, 45
PCEID 29, 35, 36, 44, 45
PCEINRID 44
PCELCLID 29, 36, 44
PCELPSV 26, 27
PCENEXT 32
PCENJEID 44
PCENWIOP 35, 43
PCEPREV 32
PCEPRSID 44
PCEPUSID 44
PCERDRID 29, 36

178 A GUIDE User Group Presentation

PCERJEID 44
PCETAB 71
PCETRACE 35, 43
PCEUSERO 23
PCEUSERl 23
PCEXFRID 44

PCE Tables 19, 1, 17, 19-47, 111
Percolate 52
Performance iii, 96
PIT JES2 Control Block 94
POST 49, 117
PRE 130
PREDRECV 112, 118, 120
PREFIX 73
PRESCAN 112, 118, 120, 127, 128, 129, 130
PRINTER 115
PRINTR 115
PRT 12, 13, 87, 107, 115, 130
PST JES2 Control Block 112, 118, 120, 125,

127, 128, 129, 130
PSV 26, 27, 28

PSVLABAD 26
PSVNEXT 26, 28
PSVPCE 26, 28
PSVPREV 26, 27

PUT 82, 83

R

Range 95, 99, 121, 124, 137, 140
RCB 83
RDR 29, 30, 31
RDRDCTT 29
RDRPCET 29
RDWLEN 29, 33
Recursive 108, 115, 120, 125, 128
RECVOPTS 112, 113, 115, 116, 120, 121,

122, 125
Registers

RO 83, 127, 131
RI 82, 127, 128, 129, 131, 132
RIO 96, 127, 131
Rl 1 96, 127, 131
R12 96, 127, 131
R13 23, 26, 27, 28, 51, 71, 96, 127, 131
R14 82, 83, 96, 127, 131
R15 82, 83, 96, 127, 131
R2 82, 96, 127, 131
R3 96
R4 82, 96
RS 82, 83
R7 96
R8 96

RVS 121, 125
RVSILNG 112, 117, 120
RVSINTV 121, 125
RVSLIM 121; 125
RVSNAME 121, 122, 125

/ ",
\, /

(

(

s

SAF 60, 77, 80
SAFCALL 80, 81
Save area 23, 24, 26, 27, 28, 51, 71
SCAN 4, 92, 94, 97, 106, 108, 109, 110, 113,

115, 117, 118, 120, 122, 125, 127, 128, 129,
130, 131, 133, 135

SCANTAB 115, 140
SCDLEN 65, 66, 67
SCTY 25, 40, 41, 45, 46, 64, 65, 67
SCTYPCET 45
SCWA 40, 127, 128, 131, 133

SCWACBAD 130
sew ACNTR 130
SCWADLEN 133
SCWADOUT 133
sew AEXFL 130
sew ARLEN 130
SCWARTCD 133
sew AST AB 130

SCYLEN 42, 45, 46
SOWA 30, 52
SEC 46
SECURITY 40, 45, 63, 66
Serialize 49
SET 109, 110, 112, 118, 125
SETDISP 109
SETRP 52
SINGLE 109
SMF 53
spool 53, 93, 98, 99, 101, 103, 134, 137
SPOOLDEF 9
sysout receivers 44
sysout transmitters 35, 44, 54, 58, 65, 66, 134,

135, 141
ST AE 54, 58, 65, 66
START 6, 8, 11, 12, 13, 30, 34, 55, 75, 90,

113, 120, 125, 138, 141
STATIC 34
STATUS 138, 141
STIMER 43
STMT 107
SUBPOOL 59, 65, 66

SubpoolO 59, 65, 66
Subscan 112, 113, 115, 116, 120, 130, 138
Subtask 1, 9, 18, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
145, 147, 150

subtasks, JES2
See JES2 subtasks

Sysout 85, 87, 98, 99, 102, 103, 104, 134, 135,
136, 138, 140, 141, 147

T

TABLE= END 29, 35, 36, 45, 54, 59, 66, 74,
76, 81, 89, 97, 104, 112, 121, 124, 140

TABLE= HASP 29, 30, 32, 33, 54, 55, 56,
57, 74, 75, 89, 90, 112, 113, 121, 122

TABLE= USER 30, 32, 33, 45, 55, 56, 57,
66, 75, 81, 90, 104, 113, 122, 140

TBL 22, 50, 70, 107
TCB 20
TG 101, 104, 134, 140
TIO l, 2, 17, 69, 70, 71, 74, 75, 76, 77, 78,

80, 81, 82, 83, 84, 11 l
TIO Tables 69, 1, 17, 69-84, 111
TIOTAB 69, 70, 71, 75, 80, 82
TIMER 43
TLGBSA VE 82, 83
TR 101, 104, 134, 136, 140
Trace 2, 9, 30, 69, 70, 71, 72, 73, 74, 75, 76,
7~ 78, 8~ 81, 82, 145, 147

TRCLRECL 82
TRCPUT 82, 83
TRkgrp 101, 104, 134, 136, 137, 140, 141
TROUTOOl 74
TROUT255 80, 81, 82, 83, 84
TTE 71, 72, 73, 78, 82
TTP 72, 73, 82
TYPE 120, 121, 122, 125

u

ucs 12, 13, 14
UCT 33, 38, 61, 94, 117

UCTMDSCY 64, 66, 67
UCTMSCTY 41, 45, 46, 47
UCTSYDTE 64, 66, 67
UCTSYNUM 41, 45, 46, 47
UCTSYPCE 41, 45, 46, 47

UOTESCTY 63, 66, 67
UPCESCTY 44, 45, 46
USCTDTE 64, 66, 67
USCTPCE 41
USE 26, 143
USERxn.

USERDTET 50, 61, 66
USERJRWT 87
USERJTWT 87
USERMPST 107, 120, 125, 138, 141
USEROPTT 107
USEROSST 141
USEROSTT 135, 138, 140, 141
USERPCET 22, 38, 45
USERPRWT 87
USERPUWT 87
USERRCVT 120, 122, 125
USERSRWT 87
USERSTWT 87, 99, 104
USERTABl 12, 13

Index 179

v

USERTAB2 13
USERTBLE 11
USERTIDT 70, 78, 81

VALUE 115
VECTOR 115, 116
VOL 115
VRA 52

w
\VAIT 48,49, 58, 60
\VARM 9, 29, 34, 42, 45, 107, 119
\VJOE 92
\VORKLEN 29, 33, 42, 45, 54, 57, 65, 66
\VS 2, 17, 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105,
111 .

180 A GUIDE User Group Presentation

WS Tables 85, 17, 85-105
\VSTAB l, 2
\VSTRKGRP 103, 104, 105
\VTO 53

z

ZERO 93, 94
$EXIT 33, 127
$HASP 113
$HASPnnn 113
$HASP846 113
$SCAN Tables 106, 1, 17, 106-143
$SCY\VORK 41, 42, 45, 46, 47, 147, 149

/

(

(

Title:

READER'S COMMENT FORM

Extending JES2
Using Table Pairs
Washington Systems Center
Technical Bulletin GG66-0282-00

You may use this form to communicate your comments about this publication, its organization,
or subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Please state your occupation: -----------

Comments:

Please mail to: Scott W. Wood
IBM Washington Systems Center
JES2 Support
18100 Frederick Pike
ISG/Building 183 Room 2T74
Gaithersburg, MD 20879

Reader's Comment Form

Fold and tape

Fold and tape

---- -------- -----· ~--- -. ---- -------- --____ ,_
ID

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

S. W. Wood
I BM Corporation
Washington Systems Center
18100 Frederick Pike
Gaithersburg, MD 20879

Please Do Not Staple

ARMONK, N.Y.

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

(")

s
"Tl
0
ii
))

g
"' i
;; ..

(

READER'S COMMENT FORM

Title: Extending JES2
Using Table Pairs
Washington Systems Center
Technical Bulletin GG66-0282-00

You may use this form to communicate your comments about this publication, its organization,
or subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Please state your occupation: -----------

Comments:

Please mail to: Scott W. Wood
IBM Washington Systems Center
JES2 Support
18100 Frederick Pike
ISG/Building 183 Room 2T74
Gaithersburg, MD 20879

--- ----------- -

Reader's Comment Form

Fold and tape Pleue Co Not StaPle Fold and tape .. ·-········--········· Tirl1T····· .. ··················~;;,;.~~-······· 1

INTHE
UNITED STATES

Fold and tape

---- ----- ----- - -- -. ---- ----------_ _,_ .. _
®

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

S. W. Wood
IBM Corporation
Washingt;on Systems Center
18100 Frederick Pike
Gaithersburg, MD 20879

Pleue Co Not StaPle

ARMONK,N.Y.

Fold and tape

/~ -

GG66-0282-00

--- ---- -- ------ -------- -- ------ ----- · -

GG66-0282-0

m
~
CD
:::J
Q.

:::J
co
c..
m
(/J
II.)

c:
!!?.
:::J
co
-4
I»
tr
CD'
"C
I»
~·

"C
:::!.
:::J -CD
Q.

:::J

c:
en
~

~
~
CJ)
CJ)
I

0
II.)
00
II.)

8

