H= ] ' Large Technical
Systems Bulletin
Technical
Support
(R i e S OSSO

M. E. Swallow
Edited by: S. W. Wood

National Technical Support

Washington Systems Center
N SRR P33
GG66-0282-00

February 1988



Washington Systems Center
Gaithersburg, Maryland

Technical Bulletin
EXTENDING JES2
USING TABLE PAIRS
Mark E. Swallow
Edited by Scott W. Wood

February, 1988



The information contained in this document has not been submitted to any formal IBM test and
is distributed on an “as is” basis without any warranty either expressed or implied. The use of this
information or the implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the customer’s operational
environment. While each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or
imply that only IBM s licensed program may be used; any functionally equivalent program may
be used instead.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to: IBM Washington Systems Center, JES2 Support, 18100
Frederick Pike, ISG/Building 183 Room 2T74, Gaithersburg, MD 20879

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information

you supply.

© Copyright International Business Machines Corporation 1988



BN

Abstract

This presentation introduces the concepts of table pairs and describes the uses of table pairs in the
JES2 component of MVS/System Product (MVS/SP). The aim is to help you understand the
considerations necessary to migrate JES2 source modifications and exit code to tables.

IBM introduced table pairs in the JES2 component of MVS/SP JES2 1.3.3. They provide a means
to alter JES2 processing and achieve tailoring of the JES2 component of an MVS/SP JES2 system.
Table pairs are not meant to replace the JES2 exit facility. They are intended to work either with
or without the JES2 exit facility, depending upon the needs of your installation.

As with exit points and source modifications, only experienced system programmers with a thorough
knowledge of system programming, JES2 programming conventions, and JES2 design and code
should attempt to use this material. If you attempt to write exit routines, install new exit points,
or implement the table pair function described in this bulletin without this special knowledge and
experience you run the risk of seriously degrading the performance of your system or causing com-
plete system failure.

Documents key to understanding this material include MVS/XA4 SPL: JES2 Initialization and
Tuning, form SC23-0065, MVS/XA SPL: JES2 Modifications and Macros, form 1LC23-0069,
MVS|XA JES2 Logic, form LY24-6008, and JES2 component source code. In the latter, hstmgs
of modules HASPTABS and HASPSTAB contain helpful examples of JES2 tables.

We developed the document and coding example using MVS/SP JES2 2.1.5. Although the editor
and reviewers have attempted to update this to the 2.2.0 level, we may have unintentionally missed
a few details which we therefore must leave to the reader to uncover. Also, changes or enhance-
ments to JES2 anytime can change coding details and some of the more specific examples herein.
As always, consult the manuals which correspond to the version, release, and level of the JES2
component of MVS/SP you are running.

Mark Swallow developed and presented this material for GUIDE 65 session SY-7141, July, 1986,
in Chicago. Harry Familetti presented it at SHARE 67 sessions 0382 and 0383, August, 1986, in
Atlanta.

Abstract il




v

THIS PAGE INTENTIONALLY LEFT BLANK

A GUIDE User Group Presentation



o

Preface

How to Read This Book

Unless you have a high tolerance for pain and have falling-out-of-the-chair insurance, we don’t re-
commend you try to read this straight through. Instead, we recommend you:

e Jook at the table of contents, and then
e read the overview of the document contained in “Introduction”.

Then, especially if you're new to modifying JES2, read the chapter called “What Are JES2 Table
Pairs?”.

After you've sat on that for awhile and had at least a second cup, pick one of the table pair examples
in “Examples of Table Pairs” and skim that to get a general idea of the techniques you will need
to master.

If after all this you still feel you need to add function in your installation, then go back and study
the chapter which describes how to add table pairs for the function you need to develop. Be sure
you have ready access to JES2 source code libraries, a copy of SPL: JES2 Modifications and
Macros, and lots of patience.

Thanks

Thanks to the following people for their comments, encouragement, close reading of the text, and
testing. None are responsible for any mistakes left herein. (If you find one, tell us using the Reader
Comment Form, please.)

e Steve Anania

e  Bernie Becker

e Bill Coltin
e  Harry Familetti
¢ John Kinn

Preface v




THIS PAGE INTENTIONALLY LEFT BLANK

vi A GUIDE User Group Presentation



Table of Contents

Introduction ... ... ... .. 0.ttt eeneeeoneeeoesoeannseeoaeasasanneanns 1
Overview of Presentation ... ... ... ... .. ..ttt ittt 1
What Are JES2 Table Pairs? ... ...... ... .. ittt tenneeeennneannnannnnnn 3
JES2 Table Pairs Versus JES2 Exits .. ....... ... ... i, 3
@703 1<) o £ 6
Master Control Table . ... ... . .. e 9
Functional RoUtines ... ... ... ... ittt e 11
General Example .............. ... . ... .. . ... e 12
SUMMATY . .o e e e 15
Examples of Table Pairs . ... ... ... ... ittt teeianananns 17
How These Examples Are Shown . ......... .. it 18
PCE Tables .. ...t e e et ettt et e 19
What Isa PCE Table? .. ... ... ... . ettt e e 19
PCE Control Blocks and Macros . ... .. .....iititin ittt i 22
AJES2PCE Table . ...... ...t e et e 29
An Installation PCE Table ... .. ... ... ... e eaaeann 37
Ot IVE .« o v ottt et e e e e e e e e e 37
Required Pieces . ....... ... . e 38
Coding the Installation PCE Table ....... e et e ettt e 40
Resulting PCE Table .. ... ... ... i i e, 45
Coding the Other Pieces ... ... ... ... i i 46
DTE Tables .......... ittt e 48
What Isa DTE Table? . ... ... .. . i i et e et e e e 48
DTE Control Blocks and Macros .. ... ... iittinn ettt 50
AJES2DTE Table . ..... ... . e e e 54
An Installation DTE Table . ... .. ... .. . . i 60
O CtiVE . o vt ittt e e e e e e e 60
Required Pieces .. ... ... ... e e 61
Coding the Installation DTE Table . ........... ... ... .. .. i . 63
Resulting DTE Table .. ... ... ... . .. ittt e e e 66
Coding the Other Required Pieces .. ....... ... 67
TID Tables . ...oi ittt e e e e e e e 69
What Isa TID Table? ...................... e e e e e e 69
TID Control Blocks and Macros . .. ....... ittt 70
AJES2TID Table . ... ...ttt et e e e 74
An Installation TID Table ........ ... ... . .. . e 17
O JeCtIVE .« . o e e e e e 77
Required Pieces .. ... ... .. et 78
Coding the Installation TID Table ............ ... . .t 80
Resulting TID Table .. ..... ... it e eeiee e 81
Coding the Other Required Pieces . ........... .. ittt imniniiiieeenn 82

WS Tables . ...ttt ittt e e e e e 85
What Is a WS Table? . ... ...t ettt e ettt eiee e, 85
WS Control Blocks and Macros . ... ......couiiiiiineeeeemnnniiieennennns 87
AJES2 WS Table . ...ttt ittt e et e e 89
An Installation WS Table ... ... it ittt 98
L0 03 T O . 98

Table of Contents vil




Required Pieces . ... ...ttt et el 99

Coding the Installation WS Table ........... ... ... ... . i, 101
Resulting WS Table . ......... ... ... ittt 104
Coding the Other Required Pieces . ............ciiiiiiiiiiiiinnnnnnn. 105
BSCAN Tables . ..ottt e e e e e 106
What Is a $SCAN Table? . ... .. it et i it e e e 106
$SCAN Control Blocks and Macros ... .......uvitrntnenetnnnnennnnennnns 107
AJES2$SCAN Table . ........ ..ottt i ieeeenns PR 112
More about Pre-Scan and Post-Scan Exits .. .......... ... i 127
More about Display Routines . ............ . .t 131

An Installation $SCAN Table .. ...ttt it e e 134
Objective . ....... e e e e e e e e 134
Required Pieces . ... ...ttt i e e e 135
Coding the Installation $SCAN Table .................. ittt iinnnnnn. 136
Resulting $SCAN Table .. ... ...ttt e 140
Coding the Other Required Pieces ............ ..., 142
L0071 T 11T T T PP 145
Appendix A. Table Pairs Coding Example .............. ... . .. . oot 147
$USERCRBS - Generates User Control BIocks . ... ...ttt 148
$SCYWORK - Processor Work Area ... ... ii ittt iit ittt e e e 149
$SCDWORK - Subtask Work Area . ... ...ttt e 150
$UCT - User Communication Table . .......... ... . . .. . i iiiiiiiinnanennn .. 151
Exit 0 - Initialization . ... ... ...ttt ittt e e et e e 152
Prologue . ... e e e e 152
Real Code .. ... i e e e e 153
2501 Y - P 158
User Extension Code and Tables ... ...... ... ... it iiiiiinnnennn. 159
PrologUE . .. e e 159
(0775 o 1<) PN 161
USCTPCE - Initial Entry Point . ... ... .ttt et et it e e eee e 162
USCTDTE - Security Subtask, Initial Entry Point . ........................... 165
USCTDTE - Security Subtask, Main Processing . ............ccouuuuiinnnnnn... 167
USCTDTE - Security Subtask, Termination ............................. ... 168
TROUT?2S55 - Tracing Routine for SAF Call ....... ... .. ... ... ... ... .... 169
WSTRKGRP - Work Selection Routine .. ........ ... .. ..t iiinneeennn. 171
Tables . ... e e e 173
T U PP 175

viii A GUIDE User Group Presentation



Introduction

Overview of Presentation

Introduction

e What are Table Pairs

= Extensibility in JES2
= Concepts of Table Pairs

= Functions

® Examples of Table Pairs

» PCE Tables
= DTE Tables
= TID Tables
= WSTAB Tables

» $SCAN Tables

e Conclusion

01/88 1

This presentation will cover three general topics:
1. Definition of table pairs

2.  Examples

3. Conclusions

First, we will discuss what table pairs are. We will look at extensibility in JES2 by comparing exits
versus table pairs and give positive and negative aspects of both. Next we will discuss the concepts
of table pairs and their potential functions.

Second, we will show examples of table pairs that currently exist in JES2:
e  Processor Control Element (PCE) tables. These tables are used to create IBM and

installation-defined processors in JES2. We will show an example in a security processor.

Introduction 1




Daughter Task Element (DTE) tables. These tables are used to create IBM and installation-
defined subtask elements. We will discuss how communication between installation-defined
processors and installation-defined subtasks takes place. We will show an example in a security
Processor.

Trace Id (TID) tables. These tables are used to create IBM and installation-defined trace re-
cords and format them. We will show an example of an installation-defined trace identifier
using the installation-defined security PCE and DTE.

Work Selection (WSTAB) tables. These tables are used to create IBM and installation-defined
work selection criteria for use with the WS = operand on printers, punches, offload devices,
etc. We will show an example of installation-defined work selection criteria.

$SCAN tables. These tables are used to create IBM and installation-defined initialization
statements and commands. The $SCAN facility is the most complex and extensible example
of table pairs in JES2. We will show an example of an installation-defined initialization
statement and an installation-defined command.

As we present each of the above tables we will discuss the key control blocks and fields.

Third, we will present some general conclusions.

2

A GUIDE User Group Presentation




What Are JES2 Table Pairs?

JES2 Table Pairs Versus JES2 Exits

What Are Table Pairs?

¢ Extensibility in JES2 (Exit Points)

» Used to:

A Modify some JES2 processing or function
A Add some installation processing or function

A Delete some JES2 processing or function

= |[nvolves:

A Installation-written modules or routines
A Code link-edited with or in addition to JES2

A Detailed knowledge of JES2 code, function, control blocks

01/88 2

Exit points were introduced into JES2 in the MVS/SP JES2 1.3.0 product. When you code exit
points you may modify some JES2 processing or function, add some installation processing or
function, or delete some JES2 processing or function. Notice that we use the word ‘some” here.
This is due to the variation in function that exits points provide. The location, the services avail-
able, and the environment where the exit is called all affect what you are capable of achieving at a
particular exit point. Therefore, there may be an exit point where you are capable of modifying
JES2 processing but where you are not capable of deleting JES2 function or adding installation
function.

In order to use the exit facility, you must write exit modules to contain your exit routines. Your
modules can be link-edited with JES2 (in certain instances) or they may be independent of JES2.!
In general, coding exits requires detailed knowledge of JES2, its coding conventions and idiosyn-

1 Best general practice is to keep exits separate from JES2 modules and then use the LOAD initialization
statement to tell JES2 about them.

What Are JES2 Table Pairs? 3



crasies, its functions, capabilities, and drawbacks, and its control blocks both in content as well as
structure. Thus, using an exit point in JES2 can be a daunting endeavor for the uninitiated.

What Are Table Pairs? ...

® Extensibility in JES2 (Table Pairs)

= Used to:

A Modify JES2 processing or function
A Delete JES2 processing or function

A Add installation processing or function

= [nvolves:

A Installation written tables or routines

A Tables or routines link-edited with JES2 or addresses placed in
JES2

A Need less detailed knowledge of JES2 code, function, control
blocks

01/88 3

Table pairs were introduced into JES2 in the MVS/SP JES2 1.3.3 product as a complement to exit
points. When you code table pairs, you can modify JES2 processing or function, delete JES2
processing or function, or add installation processing or function. Notice that unlike exit points,
you can modify, delete, or add function without restriction. Note, however, we don’t recommend
deleting JES2 function unless you understand the implications. We will discuss the implications
of deleting JES2 function under each of the examples in the section “Examples of Table Pairs” on
page 17.

In order to use table pairs, you must create installation table pairs and perhaps also supporting
routines, then either link-edit them with JES2 modules or define the table addresses to JES2. De-
pending on what table you are going to add, modify or delete, this generally takes less detailed
knowledge of JES2 code, function and control block structure and content than using JES2 exits
would take. If you wish to add an initialization statement to JES2, this would probably require
nothing more than a table entry to define the statement and to specify where to place the input.
If you require more specialized processing than that supplied by JES2, then you can create sup-
porting routines. In all of JES2’s initialization and command tables, only about one-sixth require
supporting pre-scan or post-scan supporting routines. Therefore it is not likely that you will require
such a supporting routine. If, however, you wish to add a processor (PCE), this requires code and
expertise and adds a level of complexity.

Generally, table pairs provide a structured mechanism to change JES2 processing. This makes
changes somewhat less complex than what is required when you use an exit.

4 A GUIDE User Group Presentation



What Are Table Pairs? ...

® Extensibility in JES2 (Table Pairs)

» Do Not replace need for Exits

= Provide ability to include, replace, or delete installation
code in JES2 processing

A don’t need exit code to perform

A generally possible with less code than with exits

= Less maintenance impact

01/88

It is important to emphasize that table pairs do not replace the need for exit points. Table pairs
and exit points can meet their respective requirements independently or together. However, using
table pairs imposes fewer constraints and less complexity than using exit points since you can add,
delete, or modify JES2 processing. Furthermore, since less code is usually needed, there is less of

a maintenance impact.

What Are JES2 Table Pairs? )



Concepts

Next, we discuss concepts of table pairs in order to introduce key points used in implementing the
table pair functions of JES2.

What Are Table Pairs? ...
¢ Concepts of Table Pairs (Description)
—> Installation
Table
TABLE START
TABLE ONE
Router CB . TABLE IT
TABLE END
TABLE VCINST TABLE)
PATR VCJES2 TABLE> —
JES2
Table
TABLE START
TABLE AA
TABLE II
TABLE END
01/88 S

Table pairs in JES2 start with a router control block that contains a pair of addresses. This pair
of addresses is known as a ‘table pair’. The first address in the pair of addresses points to an
installation-defined table and the second address points to a JES2-defined table. Each table is de-
fined by a TABLE START and by a TABLE END. The table information is contained within
the TABLE START and TABLE END delimiters.

In the example above, the installation table contains two table elements. The first is a table entry
that describes the element ‘'ONE’ and the second table entry describes the element ‘II’. The
IBM-supplied table in the example also contains two table elements of information. The first is a
table entry that describes the element “AA” and the element “II".

JES2 uses these tables when it is processing the items ‘'ONE’, ‘II’, and ‘AA’.

1.
2.
3.

First JES2 isolates the item to process (e.g., 'ONE’, II’, or "AA’) in the input source data.
Next it goes to the router control block to find the table pair to use to process the isolated item.

Then it attempts to find the installation table. If the first table pair pointer is zero, then JES2
will search the JES2 table only. If the table pair pointer is non-zero, then this value is assumed
to be the address of the installation table. In this way the installation table, if it exists, is always
searched prior to the JES2 table. The installation table is optional and will not exist unless
you create it.

If the item to process is located in the installation table, then processing continues using the
installation table entry. If the item is not found in the installation table, then JES2 will search
the JES2 table. If the item to process is located in the JES2 table, then processing continues

A GUIDE User Group Presentation



using the JES2 table entry. If the item is not found in the JES2 table then an error message
is issued.

Therefore, using the table arranged as described in the figure above, the three input items ‘'ONE’,
‘II’, and “AA’ will be processed. Let’s assume they are encountered in that order.

First, the input item ‘ONE’ is processed. The item ‘ONE’ is located and isolated in the input
stream. Next, the address of the installation table is found from the table pair in the router control
block. The installation table is searched by examining each table element for a match for the input
‘ONE’. In this example the first table element matches the input. This table element will be used
by JES2 to process the input ‘'ONE’. Notice that the JES2 table does not include a table element
that describes ‘'ONE’. Therefore, the installation has added some processing or function to JES2
without modifying any JES2 code.

Next the input item 'II” will be processed. The item °II’ is located and isolated from the data
handed to JES2. Next the address of the installation table is found from the table pair in the router
control block. The installation table is searched by examining each table element for a match for
the input ‘II". In this example, the table element that matches the input is found later in the in-
stallation table. This table element will be used by JES2 to process the input ‘II’. Notice that the
JES2 table includes a table element that describes ‘II’. Since a match was found in the installation
table, JES2 never searched the JES2 table. Thus the installation has replaced or modified some
processing or function without modifying any JES2 code.

Finally, the input item ‘AA’ is processed. The item ‘AA’ is located and isolated from the data
handed to JES2. Next the address of the installation table is found from the table pair in the router
control block. The installation table is searched by examining each table element for a match for
the input “AA’. In this example, there is no element that matches the input of “AA’ in the instal-
lation table. Therefore, processing continues by searching the JES2 table for an element that
matches "AA’. When this table element is found in the JES2 table, the input "AA” will be processed
by this table element. '

Deleting a table element is done by deleting the table that contains the element. For example, if
you wished to delete the processing for the input “AA’, you would zero the second table pair address
that pointed to the JES2 table that contained the element for ‘AA’. If there were elements in the
JES2 table that you would not want deleted along with the element for “AA’, you would have to
copy those elements to an installation table.2 It is not recommended that you delete JES2 tables.
However, the ability to do so is not inhibited since there may be times when such function is re-
quired.

2 An alternative might be to provide a null installation table element for the item to be ‘deleted’.

What Are JES2 Table Pairs? 7



What Are Table Pairs? ...

¢ Concepts of Table Pairs (Description) ...
= TABLE PAIR
A pair of addresses, each pointing to a table of information
= "ROUTER” CB

A Place where a table pair resides

A Installation table defined as a weak external V-type address
constant

A JES2 table defined as a V-type address constant
= |nstallation Table

A table of info supplied by installation

A begun with TABLE START, ended with TABLE END

= JES2 Table

A table of info supplied by JES2

A begun with TABLE START, ended with TABLE END

01/88 6

In summary:

8

A table pair consists of a pair of addresses where the first address is the address of an installa-
tion table of information and the second address is the address of the JES2 table of informa-
tion. One or the other of these fields may be zero, but not both. If the installation table
pointer is zero then no installation table exists and JES2 will use the JES2 table to attempt to
process the input. If the JES2 table pointer is zero then the input must be found in the in-
stallation table or else the input is marked as invalid.

The router control block contains one or more table pair addresses. The installation table
fields of the table pair are defined as weak external V-type address constants. Therefore, in-
stallation tables may be link-edited with JES2 to have the linkage editor resolve the installation
table addresses. If the installation table is not link-edited with JES2 then you must fill in the
address of its table into the first of the correct table pairs. We will provide more information
on the specific tables and what must be done later (in “Examples of Table Pairs” on page
17). The JES2 table entries are defined as V-type address constants and the JES2 table ad-

“dresses are placed into the table pairs by the linkage editor.

An installation table consists of a table of information defined by the installation. The table
begins with a TABLE START and concludes with a TABLE END.

The JES2 table is supplied by IBM with the JES2 product. The table begins with a TABLE
START and concludes with a TABLE END. Each function that uses the table pair capability
has its own table pair.

A GUIDE User Group Presentation



Master Control Table

What Are Table Pairs? ...

¢ Concepts of Table Pairs (Control Blocks)

« $MCT - Master Control Table (“Router” CB)

A Contains pointers to all table pairs within JES2
A Mapping macro $MCT expanded in module HASPTABS

A Contains table pair pointers for

& PCE creation

A DTE creation

A Trace identifiers

A Initialization options

A Main parameter statements

A Work selection options

o/88 ) 7

The router control block referred to above is called the Master Control Table ($MCT). This
control block contains all of the table pairs in JES2. The mapping macro for this control block is
called the $MCT and is expanded in the JES2 module HASPTABS.

The $MCT contains the table pair pointers for:

Processor creation (PCE’s)

Subtask creation (DTE’s)

Trace identifiers

Initialization options (e.g., COLD, NOREQ, WARM, etc.)
Main parameter statements (e.g., CKPTDEF, SPOOLDEF, etc.)

Work selection options

What Are JES2 Table Pairs? 9




What Are Table Pairs? ...

¢ Concepts of Table Pairs (Control Blocks)

= $MCT - Master Control Table ...

A Pointed to from field $MCT in $HCT

A Installation Table addresses resolved by

& Linkedit with HASJES20

4 Place address in HASPTABS from Exit0

= Other Control Blocks will be discussed later

01/88 8

The Master Control Table ($MCT) is pointed to from the $HCT field $MCT. Addresses of the
installation tables can be resolved by either link-editing the installation table with JES2 (using the
appropriate name, as will be described later) or by placing the address of the installation table into
the $SMCT through an exit. Exit 0 (initialization) can be used for this purpose.

Some of the other key control blocks for table pairs will be described in the section “Examples of
Table Pairs” on page 17.

10 A GUIDE User Group Presentation



Functional Routines

What Are Table Pairs? ...

® Functions (Generalized Scheme)

1> Take Input

3> Process Input

Installation Router CB JES2
Table Ty Table
< >
TABLE START TABLE START
TABLE 1 TABLE A
TABLE 2 TABLE B
. VCUSERTBLE> :
TABLE T VCHASPTBLE> TABLE T
TABLE END TABLE END
FUNCTIONAL ROUTINE:
Function:

2> Find Table Based on Input

01/88

A functional routine uses the table pair as a means to process input. The general flow is to process
some input by first isolating the item to process. Then the routine finds the corresponding table
element (either installation or JES2) which defines the input item. Then it processes the input using

the table element.

What Are JES2 Table Pairs?

11




General Example

Next, we explain examples of the processing done by a functional routine.

What Are Table Pairs? ...
® Concepts of Table Pairs (Examples)
IDEF PARM1=,PARM2=
PRT1 FCB=,INSTBRST=,UCS=
DEBUG=YES
Installation
Table
USERTABL
TABLE START
HASPTABS TABLE IDEF
MCT TABLE PRT
: TABLE END
TABLE DC VCUSERTABL)
PAIR
DC VCHASPTABL)
HASP
Module
>| HASPTABL
TABLE START
TABLE DEBUG
TABLE PRT
TABLE END
01/88 10

In the example shown in the figure above, there are three initialization statements. A functional
routine will accept the input of IDEF PARMI1 = ,PARM2="and process it using the table struc-
ture shown.

Located in the JES2 module HASPTABS is the Master Control Table that contains the main pa-
rameter statement table pair. The first entry is the pointer to the installation parameter statement
table USERTABI. If you want the linkage editor to resolve the table address, you would have to
name the table USERTABI and link-edit the table with JES2. If you did not want to link-edit
with JES2, you would have to place the address of the table into this table pair entry.

The functional routine would first isolate the input IDEF from the input passed it. Next it would
find the table pair in the MCT and search the installation table for the element that matched IDEF.
Once it found the matching element, it would use this table element to process the statement 'IDEF
PARMI1 = ,PARM?2" and not search the JES2 table. In this way, you have added an initialization
statement and the functional routine has not been modified.

To process the input ‘PRT1 FCB=,INSTBRST =,UCS =", the functional routine would once
again isolate the first keyword in the input ‘PRT1” and, using the table pair, search the installation
table for the element that matched the input. Once it found the table element that matched PRT1,
it would use this table element to process 'PRT1 FCB = ,INSTBRST = ,UCS =" and not search the
JES2 table. Note that the functional routine did not search the JES2 table and did not find the
JES2 table element for PRT. In this way, you replaced an initialization definition without modi-
fying the functional routine.

Finally, to process the input ‘DEBUG= YES’, the functional routine would isolate the keyword
'‘DEBUG’, find the table pair, and search the installation table. When no matching table element
was found in the installation table, the functional routine would obtain the address of the JES2

12 A GUIDE User Group Presentation



table from the table pair and search it. Once found, the table element for ‘DEBUG’ in the JES2
table would be used to process the initialization statement.

What Are Table Pairs? ...

¢ Concepts of Table Pairs (Examples)...
PRT1 FCB=,INSTBRST=,UCS=

0 < mcT
| PARAMETERS
HASPTABS DC  VCUSERTABL)
TABLE START |
DC  VCHASPTABL)

TABLE DEBUG

PRT

>
TABLE PRT PR g DC VCUSERTAB2)
TABLE END ! DC  VCHASPTAB2)
USERTAB2 <

TABLE START
TABLE INSTBRST
TABLE END

HASPTAB2
TABLE START

TABLE FCB
TABLE UCS
TABLE ENO

01/88 "

There can be multiple levels of tables to define parameters to JES2. In the example above, the
functional routine will search two levels of tables to process the input ‘PRTI
FCB=,INSTBRST=,UCS=". The functional routine will:

1. isolate the first keyword 'PRT1".

2. obtain the table element to process the keyword. The functional routine will get the address
of the installation table. Since this address is zero, there is no installation table. Therefore, it
will search the JES2 table until it finds the table element that matches '‘PRT1".

3. process the ‘PRT1’ statement using this table element. The table element for 'PRT1" tells the
functional routine that to process the rest of this statement it must use another level of tables.
These tables are pointed to from the table pair at PRT in the MCT.

4. isolate the next keyword ‘FCB'".

5. obtain the table element to process the keyword. The functional routine will get the address
of the installation table from the first entry in the PRT table pair. Since ‘FCB’ is not in that
table, the function routine will search the JES2 table. The table element for ‘FCB’ is found
in the JES2 table.

6. process 'FCB’ using this table element.
7. isolate the next keyword 'INSTBRST".

8. obtain the table element to process the keyword. The functional routine will get the address
of the installation table from the first entry in the PRT table pair. It will find the table element
that matches INSTBRST" in the installation table.

9. process INSTBRST" using this table element.

What Are JES2 Table Pairs? 13



10. isolate the next keyword "UCS".
11. obtain the table element to process the keyword. The element will be found in the JES2 table.
12. process "'UCS’ using this table element.

The functional routine will then determine that there is no more input and indicate completion.

14 A GUIDE User Group Presentation



Summary

To summarize:

1. Table pairs are a pair of addresses where the first address is a pointer to an installation table
of information and the second address is a pointer to the JES2 table of information.

2. The installation table is searched before the JES2 table to find a matching table element for
some input.

3. A functional routine is one that makes use of the table pairs to process some input.

What Are JES2 Table Pairs? 15



THIS PAGE INTENTIONALLY LEFT BLANK

16 A GUIDE User Group Presentation



=ty

Examples of Table Pairs

Examples of Table Pairs in JES2

Examples of Table Pairs in
JES2

01/88 12

There are five ways JES2 uses table pairs. JES2 uses table pairs for:
1. PCE Tables

2. DTE Tables

3. TID Tables

4. WS Tables

5. $SCAN Tables

This chapter shows how JES2 makes use of table pairs. Some of the functions are more complex
than others, but all make use of table pairs and therefore allow you to add, modify, or delete JES2
functions or processing without directly modifying JES2 source code.

Examples of Table Pairs 17



How These Examples Are Shown

Examples of Table Pairs in JES2 ...

® Purpose of Table
® Supporting Control Blocks and Macros

® JES2 Example

= Table field detail descriptions

® |nstallation Example

= Objective

= Pieces required
« Table coding

= Resultant table

= Completion of required pieces

01/88 13

As we present each example we provide the following information:

e The purpose of the table or function. What is it that you can add, modify or delete? This
will not be detailed but will point you to other books that can be read to gather greater detail.

¢ Describe some of the suppoﬁing control blocks and macros. These are typically key control
blocks and macros that you would have to understand and make use of to fulfill the appro-
priate function.

e  Step through a JES2 example. Describe what the table contains using a JES2 table element
as an example. This will describe the table element field values.

e  Step through the creation of an installation table and table element. This involves:

describing the objective the table is trying to satisfy;

identifying what pieces besides the installation table are required, if any;
coding the table element;

describing what the final table looks like; and,

describing what other required pieces look like.

“Appendix A. Table Pairs Coding Example” on page 147 contains coded examples of the specific
installation sample we are creating in this bulletin. The examples there are inter-related to show
how the tables can be used together. This is not required. That is, it is not necessary to code a
PCE table (create your own processor) and code your DTE table (create your own subtask). In
fact, it may make no sense to design interrelated tables for your particular use of JES2 table pairs.
The examples are contrived to show what can be done, not necessarily what should be done.

18

A GUIDE User Group Presentation




P

PCE Tables

What Is a PCE Table?

PCE Tables

¢ Processor Control Element (PCE) Tables

= Used to

A Add Installation processors to JES2 system

A Override HASP-defined processors in JES2 system

= HASP-defined PCE tables reside in HASPTABS

= See MVS/Extended Architecture SPL: JES2 User
Moaifications and Macros (LC23-0069)

01/88 14

The Processor Control Elements (PCE) tables are used to add installation-defined processors
(PCEs)® to a JES2 system or to override JES2-defined processors. Notice that deleting a JES2
processor is not on our agenda. This is because we recommend you do not delete any JES2
Processors.

The JES2-defined PCE tables reside in the JES2 module HASPTABS. Some of the following in-
formation can be found in SPL: JES2 User Modifications and Macros.

3 The term 'PCE’ refers either to the JES2 unit of work (processor) or to the control block which represents
the processor. Where the distinction is important we have tried to add terms like “processor” or ‘control
block” to the term 'PCE’ where it occurs.

Examples of Table Pairs 19



PCE Tables ... , N

® Processor Control Element (PCE) Tables...

= Unit of JES2 work that is similar to MVS TCBs in function

= Maintains control until $WAIT is done

= Receives control through the use of $POST

= Controlled through the JES2 Dispatcher

01/88 15

JES2 Processor Control Elements (PCEs) represent units of JES2 work. In this way they are
similar to MVS Task Control Blocks (TCBs). The JES2 dispatcher gives control to a PCE. Unlike
TCBs, this JES2 unit of work will not be preempted by the JES2 dispatcher. No other PCE will
gain control until and unless this PCE directly relinquishes control. This is done when the JES2
process issues a SWAIT. When a $WAIT is done, control is given to the JES2 dispatcher, which
saves the registers in the PCE control block that represents the JES2 processor and then dispatches
another JES2 processor. A JES2 processor is ineligible for dispatching until it is $POSTed.

20 A GUIDE User Group Presentation



-

£

PCE Tables ...

® Processor Control Element (PCE) Tables...
= Specify
A Generated

4 at initialization
& after initialization

& don’t generate
A Dispatched

£ after Initialization and Warm processing
A after Initialization with Warm processor

& $WAITed on work

A Relate to a DCT (if one-to-one correspondence)

01/88 186

The PCE table, among other things, describes when the processor should be generated, when it
should be dispatched, and whether it is related to a device.

PCEs may be generated during JES2 initialization or after initialization. Therefore, you could
specify that a processor be created and be present for the life of JES2 or that it be created only upon
installation demand (i.e., after initialization). This provides a way to save storage or other re-
sources. You can also specify that a processor should never be created. This would be useful for
documentation purposes. JES2 has such a table element to document the initialization PCE. This
PCE is needed prior to the ability to create a processor through the PCE functional routine.

You may also specify when the processor should be given control. If you want a processor to be
given control concurrent with the HASPWARM processor for final initialization processing, this
can be specified. If the installation processor doesn’t need to take control until initialization has
completed but concurrent with the other JES2 processors, this can be specified. You can also in-
dicate that a processor is only to get control when it is $POSTed for work (i.e., it is some sort of
service processor).

Processors can also be associated with a device. This is done by pointing to a particular DCT table
from the PCE table. This is a one-to-one correspondence. That 1s, one PCE is associated with one
device.

Examples of Table Pairs 21




PCE Control Blocks and Macros

PCE Tables ...

® PCE Tables (Related Control Blocks and Macros)

= $MCT table fields:

MCTPCETU DC V(USERPCET) USER TBLE

MCTPCETH DC V(HASPPCET) HASP TBLE

= SPCETAB macro

A Builds PCE Tables and entries

A Maps PCE Table entries

= $PCEDYN macro

A Used to dynamically attach, detach processors

A Invokes $PCEDYN routine

01/88 17

The table pair used to point to the PCE tables is located in the $MCT. The field MCTPCETU
will contain the address of the installation table, if such a table exists. If you want to link-edit your
table with JES2 you must name the table USERPCET and link-edit it with HASJES20. The
JES2-defined PCE table is pointed to from the $MCT field MCTPCETH and is named
HASPPCET.

To aid in creating PCE tables, JES2 supplies a macro named $PCETAB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the PCE table and element. We will describe this macro and its operands more thoroughly later
on (“A JES2 PCE Table” on page 29).

JES2 provides a mechanism to dynamically attach and detach processors via the $SPCEDYN ser-

vice. This service is invoked by the SPCEDYN macro. The service routine makes use of the PCE
tables for the attaching and detaching of the processor (PCE).

22 A GUIDE User Group Presentation



PCE Tables ...

¢ PCE Tables (Related Control Blocks and Macros)...

» SGETABLE macro

A Used to return table entries of USER or HASP table pairs

A To obtain PCE Table, use TABLE=PCE

= PCE control block

A Defines JES2 processors
A Contains fields required on a processor basis within main task

A May have a variable length extension - processor specific
information -

A Contains an OS-style save area at front

A installation-reserved fields (PCEUSERO, PCEUSER1)

01/88 18

The $GETABLE macro invokes the SGETABLE service routine that is located in the module
HASPTABS. This service obtains a table element from the user or JES2 table. To obtain a PCE
table, you would code TABLE =PCE operand. This macro will return the table element of the
specified ID or, if LOOP is specified, return the next table element after the specified identifier.

The major control block for adding or modifying a processor is the PCE (Processor Control Ele-
ment). PCEs represent and define JES2 processors. This control block contains fields that are
required on a processor basis within the JES2 main task.* The PCE is composed of a common
section (all JES2 processor PCEs contain this common section) and an optional variable length
section that is unique between processor types and contain processor specific information. The
various processor types in JES2 include:

e Input
e JCL Conversion

¢ Execution

e  OQOutput
e  Print
e  Purge

The PCE common section includes an OS-style save area at the front. This is pointed to by R13
in the JES2 main task (i.e., it points to the PCE with the OS-style save area in the front) which
MYVS services use as the available save area. In addition, two installation-reserved fields are con-

4 See the topic ‘JES2 Structure” in MVS/XA JES2 Logic if the term ‘main task’ is unfamiliar to you in this
context.

Examples of Table Pairs 23



tained in the common section. These two words are the PCEUSERO and PCEUSER 1 fields in the
PCE control block.

PCE Tables ...

¢ PCE Tables (Related Control Blocks and Macros)...

« PCE control block...

COMMON PCE AREA

0S STVLE SAVE AREA

FIELDS COMMON FOR ALL PROCESSORS

VARIABLE LENGTH EXTENSION

01/88 19

The figure above illustrates what the PCE contains. The common area contains the OS-style save
area at the front, followed by those fields that are common for all types of processors.

The variable length extension area is an optional extension to the common area that contains
PCE-type spectfic information. Thus, the PCE extension for the reader (Input) PCE would be the
same as other reader PCEs but different from the printer PCE extension area. The size of this ex-
tension area is specified on the PCE table.

24 A GUIDE User Group Presentation



PCE Tables ...

¢ PCE Tables (Related Control Blocks and Macros)...

= Dispatcher Resource Wait Queue Chains

A $DRTOTAL (in $HASPEQU) - total number of resources - 64
A JES2 Defined - $DRxoooc equates in $HASPEQU

A Installation-Defined - use $DRTOTAL-1 and down

® Macros:

=« §POST SCTY

= $WAIT SCTY

01/88 20

JES2 processors, unlike MVS tasks, maintain control of JES2 processing until they issue a SWAIT
macro. When the $WAIT macro is issued, the JES2 dispatcher receives control and places the PCE
on a queue for the requested resource. In JES2 the total number of resource queues is defined in
$HASPEQU via an equate named $DRTOTAL. $DRTOTAL is defined for 64 resource queue
chains. When the processor issues a $WAIT macro with a one- to five-character resource name,
the macro and dispatcher place the processor on that $DRxxxxx queue, where $DRxxxxx is one
of up to 64 resource names defined via an EQU. JES2-defined resources start at 0 and increase.
You have the ability to define installation resource queues starting at 63 and decreasing.

Therefore, if a processor issued a ‘SWAIT SCTY", the dispatcher would place the processor on the
wait queue defined as $SDRSCTY.S This processor would remain on this queue until a $POST
SCTY was done. When the $POST is done, the processors on the SDRSCTY wait queue are put
on the JES2 ready queue where they will be dispatched by the JES2 dispatcher.

Additional information can be found on the $WAIT and $POST macros in SPL: JES2 User
Modifications and Macros. Also, reference source module SHASPEQU for the IBM-defined re-
source queues.

5 ('SCTY’is an installation-defined resource, as in the sample code in “Appendix A. Table Pairs Coding
Example” on page 147.)

v Examples of Table Pairs 25



PCE Tables ...

¢ PCE Tables (Related Control Blocks and Macros)...

= PCE Save Area (PSV)

A Maps save areas chained from PCE
A Managed by $SAVE and $RETURN

A PSV in PCE provides standard save area for

A MVS services
A JES2 dispatcher

& HASPSSSM routine calls
A Run Save Areas by

A PCELPSYV - points to last save area
A PSVPREV - points to previous save area

A PSVNEXT - volatile in PCE - DO NOT USE FROM PCE

01/88 ‘ ) 21

All save areas in the JES2 main task are chained from a PCE. The PCE contains the PSV (PCE
Save Area) that maps save areas chained from the PCE as well as the save area in the PCE itself.
Save areas chained off the PCE are managed by JES2 $SAVE and SRETURN services. The PCE
save area is used for MVS service calls, by the JES2 dispatcher to save current register contents
when the processor is $WAITed, and by calls to HASPSSSM service routines. -

In order to run the JES2-style save areas you must run the save areas backwards. Thus, use field
PCELPSV which points to the last (most recent) save area chained from the PCE and use
PSVPREYV in that save area to point to the previous save area. Do not use PSVNEXT from the
PCE since this is a volatile field which may be overlaid by MVS services, the JES2 dispatcher, or
HASPSSSM even with JES2-style save areas chained from the PCE.

JES2 save areas are nearly identical to standard OS save areas in format, but not in the way they
are used and accessed. So:

e Register 13 does not point to an available save area in the JES2 main task. One can do a STM
into R13 (the PCE) but the correct approach would be to do a $SAVE to obtain a JES2 save
area and save the registers in the JES2 main task environment.

®  You cannot use register 13 to follow the chain of save areas from the JES2 main task, since
R13 (the PCE) is kept as an available save area for calls to MVS services, not JES2 routines.

e The save area format is different in that there are extra words on the end of JES2 save areas
that we use to point to the PCE (PSVPCE) and the $SAVE identifier at the location where
the $SAVE was issued (PSVLABAD).

26 A GUIDE User Group Presentation



PCE Tables ...

e PCE Tables (Related Control Blocks and Macros)...

» PCE Save Area (PSV)...

e 1|

PSVNEXT PSVNEXT PSVNEXT

SAVE SAVE SAVE
AREA AREA AREA
PSVPCE PSVPCE PSVPCE

PCELPSV LPSVL‘BAD PSVLABAD

01/88 22

The figure above illustrates the chaining used for JES2 save areas. The PCE field PCELPSV will
point to the last (most recent) JES2 save area and by using PSVPREYV, the save areas can be
chained back to the PCE. The save area in the PCE is thus available for use by other services that
require OS-style save areas.

Examples of Table Pairs 27



PCE Tables ...

® PCE Tables (Related Control Blocks and Macros)...

» PCE Save Area (PSV)...

> pee save | | save
PSVPREV PSVPREV _J_ PSVPREV
PSVNEXT PSUNEXT PSVEXT |->0
SAVE SAVE SAVE
AREA AREA AREA
PSVPCE Ipsvece psvpce
PCELPSY '_ PSVLABAD [ PSVLABAD

01/88 23

You can use the PCE field PSVPCE from any JES2 save area to obtain the PCE address. In ad-
dition, while running the JES2 save areas, the PSVNEXT field is valid. Do not, however, use this
field from the PCE, since it may not be valid.

28 A GUIDE User Group Presentation




A JES2 PCE Table

PCE Tables ...

® PCE Tables (Examples - JES2)

HASPPCET SPCETAB TABLE=HASP
SPCETAB NAME=...

RORPCET SPCETAB NAME=RDR,DESC="READER’ ,
DCTTAB=RDROCTT,
MODULE=HASPROR ,
ENTRVPT=MAPRDRA ,
CHAIN=SRDRPCE,
COUNTS=SNUMRDRS ,
MACRO=SRDRHORK ,
WORKLEN=ROWLEN,
GEN=INIT,DISPTCH=HARM,
PCEFLGS=0,FSS=NO,
PCEID=CPCELCLID, PCERORID)

SPCETAB NAME=...

SPCETAB TABLE=END

01/88 24

The figure above illustrates what the JES2 PCE table looks like. The table element shown repres-
ents all the information that JES2 needs to generally define a JES2 reader processor. This is the
table element that is passed to the SPCEDYN service to create the reader PCE. Notice that the
name of the PCE table is HASPPCET, the same as that specified in the V-type address constant
in the $MCT.

Now we will describe each operand on the $PCETAB macro and how each should be specified.

Examples of Table Pairs 29



PCE Tables ...

® PCE Tables (Examples - JES2)...

= $PCETAB TABLE=HASP - invoke $PCETAB macro to build
JES2 PCE table

= $PCETAB - invokes $PCETAB macro to build PCE Table
entry for RDR PCE.

A NAME= - PCE name

A 1-8 characters
A $DPCE and $TPCE

A DESC= - describing PCE type

A 1-24 characters
& word ‘PROCESSOR’ appended to end

A used in termination messages, SDWA, trace entries, etc.

01/88 : 25

The JES2 table definitions are started by specifying " TABLE = HASP’. This indicates to JES2 that
this table is a JES2 table. You would specify “TABLE = USER’ to indicate that the table is an
installation-coded table. Specifying whether it is a JES2 or installation table determines default
values for the ENTRYPT and CHAIN $PCETAB operands. We will discuss these operands later.
Specifying TABLE = HASP or TABLE = USER is the means JES2 provides to indicate the start
of the table (TABLE =START) as discussed in “Concepts” on page 6.

When $PCETAB is specified with operands other than TABLE =, the macro generates a table el-
ement. In the above example, the table element that is generated will be for the Reader PCE.

The NAME operand specifies a one- to eight-character name. The command processor for SDPCE
(display PCE) and $TPCE (set PCE) commands uses this name. The DESC operand specifies a
one- to 24-character description of the PCE type. You can assume that the word 'PROCESSOR’
will be appended to the characters specified. Termination messages, the SDWA, $TRACE entries,
and other places throughout JES2 use the term.

30 A GUIDE User Group Presentation



PEREREN

PCE Tables ...

¢ PCE Tables (Examples - JES2)...

= $PCETAB - table entry...

A DCTTAB = - label on DCT Table Entry that corresponds to this
PCE type

& assumes DCT Table in same assembly module
A defines PCE in one-to-one PCE-DCT correspondence

A optional
A MODULE = - assembly module containing processor’s entry point

& 1-8 characters

01/88 26

The DCTTAB operand is used only if the processor being defined is a processor that will control
a device. In the example for the RDR processor, this processor will be controlling a reader device.
In order to match the PCE with the device, the DCTTAB operand is coded by pointing it to the
$DCTTAB macro call that defines the device. DCTTABs are also included in the HASPTABS
module but are not at this time installation-extensible. The PCE may only specify one DCT in this
way, so therefore, the PCE can only correspond with one DCT.

The MODULE operand specifies the name of the assembly module containing the processor’s
entry point. This name is a one- to eight-character name. In the example, the module that contains

the RDR processor’s entry point is the HASPRDR module. This operand is only used for doc-

umentation. JES2 code does not use this field.

Examples of Table Pairs 31



PCE Tables ...

® PCE Tables (Examples - JES2)...

» SPCETAB - table entry...

A ENTRYPT = - name of fullword field holding processor entry point
addr

A specifies MODMAP field if TABLE =HASP

A specifies $UCT field if TABLE =USER

A CHAIN= - fullword field name used to point to first PCE of type
within $PCEORG PCE chain

A specifies $HCT field if TABLE = HASP

A specifies $UCT field if TABLE=USER

01/88 27

The ENTRYPT operand tells JES2 where the entry point address is for this processor. This op-
erand must be set to a fullword field for the entry point address. In the example,
ENTRYPT = MAPRDRA,; the fullword field was MAPRDRA. Since the table that contains the
reader element is a JES2 table, this field is defaulted to be in SMODMAP. If you specify this field
in an installation table it is defaulted to be in the $UCT. If you wish to override this default you
would specify 'ENTRYPT = (name,$MODMAP)’. The field must be in either SIMODMAP or the
$UCT. (The $UCT, or User Control Table, is a control block obtained by the installation and
chained from the $HCT from field $UCT in the $HCT.)s

The CHAIN operand is also a fullword field that tells JES2 where to chain the initial PCE of this
type. All PCEs can be run by starting at SPCEORG in the $HCT. You use the specified CHAIN
field to run PCEs of this type. In the example, CHAIN = $RDRPCE is the field that points to
the first reader processor. PCEPREV and PCENEXT are fields used to chain to the next PCE.
Since the table that contains the reader table element is a JES2 table, this field is defaulted to be in
$HCT. If you specify this field, it is defaulted to be in the $UCT. If you wish to override this
gefault you would specify ‘CHAIN = (field, HCT)’. The field must be in either the SHCT or the
UCT.

6 An example of how to define and chain a $UCT is in “Appendix A. Table Pairs Coding Example” on
page 147.

32 A GUIDE User Group Presentation



PCE Tables ...

e PCE Tables (Examples - JES2)...

= PCETAB - table entry...
A COUNTS = - fullword field name that contains two halfwords

A first halfword is count of PCEs defined - filled in before $EXIT
24

A second halfword is count of allocated PCEs
A specifies HCT field if TABLE =HASP

A specifies UCT field if TABLE=USER
A MACRO = - mapping PCE work area macro

A 1-8 characters

A for documentation only

A WORKLEN = - length of PCE work area for this PCE type

01/88 28

The COUNTS operand tells JES2 how many processors of this type should be created. This field
points to a two halfword field where the first halfword specifies how many processors to create and
the second halfword is where the SPCEDYN service saves how many are operative at the moment.
In the example, COUNTS = $NUMRDRS indicates that at label SNUMRDRS in the $HCT is
located the two halfwords. The default location for the field is in the $HCT if the table is a JES2
table and the SUCT 1if the table is an installation table. This can be overridden by specifying
‘COUNTS = (field, HCT)’ if the field that you want to use is in the SHCT.

The MACRO operand only documents what macro maps the PCE variable extension area. This
mapping macro name can be from one to eight characters in length. In the example,
MACRO=$RDRWORK, $SRDRWORK is the name of the mapping macro for the reader vari-
able extension area.

The WORKLEN operand tells JES2 how long the variable extension area is for this processor type.
$PCEDYN uses this to $§GETMAIN the $PCE and its extension in contiguous storage. In the
example, WORKLEN=RDWLEN; RDWLEN is the equate for the length of the variable exten-
sion area for the reader processor.

Examples of Table Pairs 33




PCE Tables ...

¢ PCE Tables (Examples - JES2)...

= $PCETAB - table entry...
A GEN= - specifies when $PCE should be generated

A INIT - generate during init
A DYNAMIC - generated and deleted after init

A STATIC - do not generate
A DISPTCH = - initial dispatching after PCE created

A WARM - at init, $WAITed on HOLD, other times, dispatched
immediately, at end of WARM Start Processing, all PCEs
$POSTed for HOLD :

A INIT - PCEs dispatched immediately after JES2 initialization,
concurrent with WARM START

A WORK - $WAIT PCE on WORK

01/88 29

The GEN operand tells JES2 when this PCE should be created. There are three values that can
be specified; INIT, DYNAMIC, and STATIC.

GEN=INIT indicates to JES2 that this processor should be generated during initialization,
along with most of the JES2 processors.

GEN=DYNAMIC indicates to JES2 that this processor should not be automatically gener-
ated, but should be created through a specific $SPCEDYN service call. Such processors may
also be dynamically deleted.

GEN=STATIC tells JES2 that this table is for documentation only. The Initialization PCE
of JES2 is documented like this.

The DISPTCH operand tells JES2 when the processor should be dispatched after it is created.
There are three values that can be specified. These values are:

®

34

DISPTCH =WARM causes two actions to take place dependent on when the PCE is created.

1. If the processor is created during initialization, then the processor is $WAITed on HOLD.
After WARM start processing is completed the processor will be $POSTed for HOLD
and the processor will be given control.

2. If the processor is created after WARM processing, the processor is immediately dis-
patched.

DISPTCH = INIT causes JES2 to give the processor control immediately after initialization,
concurrent with WARM processing. For those processors attached after initialization, the
processors will be dispatched immediately.

DISPTCH=WORK causes JES2 to $WAIT the processor on WORK. Thus, the processor
will not be dispatched until it is $POSTed for WORK.

A GUIDE User Group Presentation



&

PCE Tables ...

¢ PCE Tables (Examples - JES2)...

= $PCETAB - table entry...

A PCEFLGS = - value to set PCEFLAGS byte field

A FSS= - PCE type might run in FSS mode

A YES - larger of JES mode PCE work size and FSS mode work
size for PCE

_A PCEID= - specifies value for PCEID field

& first byte specifies type of device

A& second byte specifies identifier ~f PCE

® $PCETAB TABLE=END - indicates end of table

01/88 30

The operand PCEFLGS primes the PCE field PCEFLAGS when the PCE is created by
$PCEDYN. The valid values that can be specified for this operand are:

PCETRACE - processor is eligible for tracing

PCEDSPXP - processor permanently exempt from non-dispatchability
PCEDSPXT - processor temporarily exempt from non-dispatchability
PCENWIOP - implicit SWAITs in I/O processing should be prohibited

The operand FSS indicates that the device associated with this PCE is a Functional Subsystem
(FSS) device. If FSS=YES is specified, a larger base PCE is obtained.

The PCEID operand specifies what values should be placed in the PCEID field in the PCE. This
identifier field sets the type and identifier of the processor in the PCE. The first byte of the PCEID
field specifies the type of processor. The JES2 types are:

L]

[ ]

Non-Device processor (x'00%)

Local Special PCE (x'01")

Remote Special PCE (x'02")

Network Special PCE - indicates NJE or XFR JT/JR/ST/JR (x'04")
Internal Special PCE (x'08")

Print Special PCE (x'80")

Punch Special PCE (x'40")

XFR Special PCE (x720")

Examples of Table Pairs 35




The second byte of the PCE identifier field specifies the identifier of the processor. If only one value
is specified for the PCEID (e.g., PCEID = value) then the specified value is placed as the identifier
of the PCE. If you wish to specify your own PCE identifier you should start at 255 and work your
way down. JES2 starts at 1 and increases. There are currently 30 PCE identifiers. These are de-
fined in the $PCE macro. In the example, PCEID = (PCELCLID,PCERDRID) indicates that the
PCE is a Local special PCE and its identifier is that of an Input processor.

When TABLE = END is encountered, the table is closed. This indicates the end of the JES2 PCE
table. All JES2-defined PCEs are defined within this single table.

36 A GUIDE User Group Presentation



An Installation PCE Table

PCE Tables ...

® PCE Tables (Examples - Installation)

= Objective:

A Create PCE to manage security calls
A Create PCE without modifying JES2

A Use PCE table installation-extensible function

= This is one scheme to complete this objective, others exist

01/88 31

In order to show how you would specify an installation PCE table, the remaining description of the
PCE tables will step through creating an installation-defined security PCE. This security PCE, as
it is implemented here, is not required to fulfill the security objective. This example is purely for
illustration.

Objective

The objective is to create a PCE to manage security calls. You wish to achieve this without mod-
ifying JES2 and to use the PCE tables as the means to define this PCE to JES2.

Examples of Table Pairs 37



Required Pieces

PCE Tables ...

e PCE Tables (Examples - Installation)...

= Pieces consist of:

Exit 0 ucr

Module HASPXJOO USER PCE TABLE

01/88 32

To achieve the objective, you will need to code four pieces. These pieces are:
1. Exit0

As discussed in “Concepts” on page 6, there are two ways to link the installation table with
JES2:

a. The first of these is to link-edit the installation PCE table with the HASJES20 load
module. This requires that the name of the installation table be USERPCET.

b. If you do not wish to link-edit the installation PCE table with HASJES20 or do not wish
to name the installation table USERPCET, then you must fill in the address of the in-
stallation PCE table into the $SMCT at field MCTPCETU. This is the second method.
This method requires that you fill in the address before invoking the $PCEDYN service
routine to create the processor. Depending on when you want the processor generated,
you may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the PCE table early in initialization, specifically
in exit 0. Therefore, an exit 0 is required to load the module (if not already loaded) and resolve
the address of the table.

2. UCT

As has been indicated when examining the JES2 PCE table, there are certain operands that
assume $UCT fields in the installation PCE table entries. Of course you may override these
assumptions, but the objective of this effort was to use the tables and not modify JES2.
Therefore, a $UCT must be created that will hold certain values.

3. Module HASPXJ00

38 A GUIDE User Group Presentation



Since you are coding a new JES2 processor, you must write the code that is the processor. In

_this example, the code will reside in the module HASPXJ00. This name was chosen because
it is one of the reserved-for-installation-use names that JES2 has set up in the SMODMAP
control block. In this'way, you can link-edit this module with HASJES20 and have its address
in SMODMAP and not have to do the load of this exit from exit 0.

For this example, HASPXJ00 illustrates this function. However, the rest of the sample code
will assume that this module is not in the HASJES20 load module and must be loaded by exit
0.

User PCE Table

You will have to code a PCE table that includes an element for the processor. We will describe
this installation table element in a step-wise fashion below.

Examples of Table Pairs 39



Coding the Installation PCE Table

PCE Tables ...

¢ PCE Tables (Examples - Installation)...

= Table and Operands:

A Call PCE ‘SCTY"
& NAME=SCTY

.A For display in messages, SCWA use ’SECUéITY PROCESSOR’
& DESC='SECURITY’

A SCTY PCE not associated with a DCT
A DCTTAB=**

A PCE code located in module HASPXJ0O

A MODULE = HASPXJ00

01/88 33

In the figure above, you wanted to create a security PCE which would be called SCTY. Therefore,
you specified 'NAME=SCTY’. For display, the description to be issued was "SECURITY
PROCESSOR’. Therefore you specified ‘DESC=SECURITY’. Remember that the word
"PROCESSOR’ is appended to the end of the value specified on the DESC operand.

Since the security processor was not to be associated with a device, there was no DCT table to be
specified so '‘DCTTAB = *-*" was coded. MODULE = HASPXJ00 was coded since the name of
the module to contain the processor code was HASPXJ00.

40 A GUIDE User Group Presentation




PCE Tables ...

e PCE Tables (Examples - Installation)...

= Table and Operands...

A Entry point to module HASPXJO00 routine USCTPCE held in field
UCTMSCTY in $UCT

A ENTRYPT=UCTMSCTY

A Field to hold addr of first SCTY PCE is UCTSYPCE in $UCT
A CHAIN=UCTSYPCE

A Field UCTSYNUM in $UCT will hold counts of PCEs
A COUNTS =UCTSYNUM

A Mapping macro to PCE work area is $SCYWORK

A MACRO =$SCYWORK

01/88 34

The field to hold the entry point address is in the $UCT. The name of the field is UCTMSCTY.
It will hold the address of the routine USCTPCE. Therefore, we code
'‘ENTRYPT = UCTMSCTY’ on the $PCETAB.

The $UCT field to hold the pointer to the first security PCE is UCTSYPCE. Thus, we code
‘CHAIN = UCTSYPCE' to tell JES2 the name of the chain field. Since the table element is in the
installation table, the field will default to being in the $UCT.

The COUNTS operand specifies where the SPCEDYN service routine is to find out how many
PCEs of this type it may create and to keep track of how many it has created. This field defaults
to being in the $UCT for the installation table, therefore the $UCT field that will hold the counts
is UCTSYNUM. Thus, we specify ‘'COUNTS =UCTSYNUM".

Since this processor will need fields that are unique to the security type of processor, it will need its
own variable extension area. The macro that we use to map this extension area is $SCYWORK.
This is documented in the $PCETAB by specifying 'MACRO = $SCYWORK".

Examples of Table Pairs 41



PCE Tables ...

o PCE Tables (Examples - Installation)...

= Table and Operands...
A Length of $SCYWORK field is defined by equate SCYLEN
A WORKLEN=SCYLEN
A PCE created during init by JES2
A GEN=INIT
A PCE dispatched at end of WARM processing

A DISPTCH=WARM

01/88 35

The length of the variable extension area of the security PCE is defined via the equate SCYLEN
in the $SCYWORK macro. This is the value that we specify in the table:
WORKLEN=SCYLEN.

You have also decided that the processor should be generated during initialization when the other
JES2 processors are generated. Therefore, we specify ‘'GEN = INIT’ on the $PCETAB macro to
create the security processor.

The processor should receive control after WARM processing. This assumes that the security
processor will not be needed during WARM processing. To specify this, you will code
‘DISPTCH=WARM'’ on the macro call.

42 A GUIDE User Group Presentation



s

PCE Tables ...

® PCE Tables (Examples - Installation)...

= Table and Operands...
A Value of PCEFLAGS field preset by table

A Valid values are:

"PCETRACE - eligible for tracing
PCEDSPXP - permanently exempt from
non-dispatchability
PCEDSPXT - temporarily exempt from
non-dispatchability
PCENWIOP - 1/0 processing $WAITs
prohibited

A PCEFLGS =0
A PCE will not run in FSS mode

A FSS=NO

01/88 36

The PCEFLGS operand specifies what initial value the PCE PCEFLAGS field should contain after
it is created by SPCEDYN. If the initial state of the processor should be that it:

e  should be traced, then PCETRACE should be specified.

¢  should be marked as permanently exempt from non-dispatchability, then PCEDSPXP should
be specified. There are currently five JES2 processors that are marked as permanently exempt.
These are:

1.

2
3.
4
5

Asynchronous I/O Processor - this processor handles asynchronous I/O requests
Communications Processor - processes operator commands

Line Manager Processor - processes line related processing

STIMER/TIMER Processor - processes asynchronous timer requests

Checkpoint Processor - manages the checkpoint data sets

If the installation processor is one that should never be marked non-dispatchable, then you
should set this value.

e  should be marked as temporarily exempt from non-dispatchability, then PCEDSPXT should
be specified. This value would be specified if some processing must be completed by this
processor that would fail if the processor was marked non-dispatchable. '

¢  cannot wait in the case of an I/O error, then you should specify PCENWIOP.

In this example, the security processor has no special requirements, therefore, we code
"PCEFLAGS=0'".

Since the security processor will not run in FSS mode, 'FSS= NO’ will also be specified.

Examples of Table Pairs 43



PCE Tables ...

¢ PCE Tables (Examples - Installation)...

= Table and Operands...
A ldertifier of PCE determined by two one-byte fields

A First one-byte field determines type of device

0 - non-device processor

PCELCLID - local special PCE identifier

PCERJEID - remote special PCE identifier

PCENJEID - netwk special PCE id,
indicates NJE or XFE
JT/JR/ST/SR

PCEINRID - intnl special PCE identifier

PCEPRSID - printer special PCE identifier

PCEPUSID - punch special PCE identifier

PCEXFRID - XFR special PCE identifier

A Second one-byte field sets PCE identifier
A Installation PCE identifiers start at 255 and decrement

A& PCEID = (0,UPCESCTY)

01/88

37

The PCEID operand specifies the type and identifier of the processor. The type for the security
processor is zero, since the processor is a non-device processor. The identifier of the processor is
255. This is because installation-specified identifiers should start at 255 and decrease since JES2
processors start at 1 and work their way up. We code an equate in the $UCT named UPCESCTY
and set it to 255. Therefore, we specify the operand as "PCEID = (0,UPCESCTY)’.

44

A GUIDE User Group Presentation



Resulting PCE Table

PCE Tables ...

¢ PCE Tables (Examples - Installation)...

USERPCET $PCETAB TABLE=USER

SCTYPCET SPCETAB NAME=SCTY,DESC=’ SECURITY’,
DCTTAB=*-#,
MODULE=HASPXJ0O,
ENTRYPT=UCTMSCTY,
CHAIN=UCTSVPCE,
COUNTS=UCTSYNUM,
MACRO=$SCYHORK ,
HORKLEN=SCVLEN,
GEN=INIT,DISPTCH=WARM,
PCEFLGS=0,FSS=NO,
PCEID=C0,UPCESCTY>

$PCETAB TABLE=END

01/88 38

The figure above shows the resulting installation PCE table to add a security processor to JES2.
The table is begun with a TABLE = USER to tell JES2 that this is an installation table. The name
of the processor will. be SCTY and we will call it ‘'SECURITY PROCESSOR’. The code for the
processor will reside in the HASPXJ00 module with the entry point address contained at the field
UCTMSCTY in the $UCT. The first security processor is chained from the UCTSYPCE field in
the SUCT. The count of how many security processors that can be generated and the count of how
many have already been created will reside at the two halfword field UCTSYNUM in the $UCT.

Security processors will require their own variable extension area that is mapped by macro
$SCYWORK and is SCYLEN in length. The processors should be generated during JES2 initial-
ization but not dispatched until after WARM processing. No default PCE characteristics need be
set (i.e., PCEFLGS is equal to zero) and the PCE is not an FSS supported processor. The
processor’s identifier is 255, as set by the equate UPCESCTY. The table is delineated by the
TABLE =END operand.

Examples of Table Pairs 45



Coding the Other Pieces

PCE Tables ...

e PCE Tables (Examples - Installation)...

» Required Pieces

A HASPXJO00 - module that holds PCE code

A $SCYWORK - macro that maps PCE extension that is obtained
with the PCE

A SCYLEN - equate that defines length of $SCYWORK extension
A $UCT - macro contains fields:

A UCTMSCTY DC A(*-*) ADDR OF ENTRYPT
& UCTSYPCE DC A(*-*) ADDR OF SCTY PCE
4 UCTSYNUM DC H'17,H0”

& UPCESCTY EQU 255 ID OF SCTY PCE

A $DRSCTY EQU 63 DISP SEC RESOURCE

01/88 39

Now that you have completed the installation PCE table, the other required pieces and fields may
be defined. You will have to write a HASPXJ00 module that holds the PCE code. A macro must
be created called $SSCYWORK that will map the PCE extension. A field named SCYLEN is re-
quired within the macro to define the length of the extension area needed.

In the installation-defined $UCT, several fields must be coded. The address of the entry point for
the HASPXJ00 module for the installation PCE is held in the UCTMSCTY field. The address of
the first security PCE is chained from the UCTSYPCE field. The UCTSYNUM field is a two
halfword field where the first field defines the number of security PCEs that are to be created and
the second indicates to $PCEDYN how many have been created.

Finally, two equates must be defined. The first is the identifier of the installation security PCE (set
at 255) and a dispatching security resource. The $DRSCTY equate tells the PCE that some work
is ready for it to process. The installation PCE will ‘SWAIT SCTY’ (which will result in the PCE
being put on the resource queue of 63) for work. When there is work for it to do, it is $POSTed
for SCTY (i.e., SDRSCTY = 63) and put on the ready queue.

46 A GUIDE User Group Presentation



PCE Tables ...

® PCE Tables (Examples - Installation)...

= Required Pieces...
A Installation PCE Table
A Defined as above
A ExitO

A Obtain $UCT and place address in $HCT
4 Initialize the $UCT

4 Place Installation PCE table address in field MCTPCETU in
$MCT in HASPTABS

01/88 40

The last two pieces that are required are the installation PCE table, as coded above, and the code
for exit 0. The exit 0 code is required to do three things.

L.
2.

It must obtain the $UCT and place the $UCTs address in the $HCT.

It must initialize the SUCT fields. The fields that must be initialized include, at least, the
UCTMSCTY, UCTSYPCE, and the first halfword of UCTSYNUM.

Finally, it must place the installation PCE table address in the MCTPCETU field in the
$MCT in module HASPTABS.

The code that is contained in “Appendix A. Table Pairs Coding Example” on page 147 is the code
as an installation would be required to code it. This code includes:

Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation PCE table address in the $MCT.

The HASPXJ00 module contains, among other items that we will describe shortly, the PCE
code and the installation PCE table.

The macros for the SUCT and $SCYWORK. In addition, a $USERCBS macro extends the
$MODULE macro so that you can use installation-created macros without modifying the
$MODULE macro.

Examples of Table Pairs 47



DTE Tables

What Is a DTE Table?

DTE Tables

e Daughter Task Element (DTE) Tables

= Used to

A Add Installation subtasks to JES2 system

A Override HASP-defined subtasks in JES2 system

= HASP-defined DTE tables reside in HASPTABS

= See MVS/Extended Architecture SPL: JES2 User
Modifications and Macros(LC23-0069)

01/88 41

Daughter Task Elements (DTEs) are JES2 control blocks that represent subtasks in JES2. As
PCE:s represent JES2 processors in the main task environment, DTEs represent JES2 subtasks in
the subtask environment.” Subtasks are used in JES2 to do work that may require MVS WAITs.
MVS WAITS are not tolerated in the JES2 main task, so therefore, subtasks are obtained by JES2
to do this type of work.

As PCEs are tabular via the SPCETABs, the DTEs are tabular via the SDTETABs. This provides
you the capability to add installation-defined subtasks and to override JES2-defined subtasks. It is
not recommended that you delete JES2-defined subtasks.

The tables that define the JES2 subtasks reside in the module HASPTABS. Some of the following
information on DTEs can be found in SPL: JES2 User Modifications and Macros.

7 The term ‘DTE’ refers either to a JES2 subtask or to the control block which represents the subtask.
Where the distinction is important we have tried to add terms like ‘subtask” or ‘control block’ to-the term
‘DTE’ where it occurs.

48 A GUIDE User Group Presentation



DTE Tables ...

¢ Daughter Task Element (DTE) Tables...

= JES2 control block to represent subtasks of the JES2 main
task

= Use MVS dispatching methods to manage communication
between JES2 main task and subtask

01/88 42

The DTE is the control block that represents the subtask. This control block is available to the
Main Task (a PCE processor) and the subtask. Thus, this control block assists communication
between the two environments.

In order to serialize the communications between the main task and the subtask, normal MVS
dispatching methods should be followed. This involves the use of $WAITs and MVS POSTs from
the main task and MVS WAITs and POSTs from the subtask. Never issue an MVS WAIT from
the JES2 main task and never issue a JES2 $WAIT from a JES2 subtask.

Examples of Table Pairs 49



DTE Control Blocks and Macros

DTE Tables ...

* DTE Tables (Related Control Blocks and Macros)

» MCT table fields:

MCTDTETU DC V(USERDTET) USER TBLE

MCTDTETH DC V(HASPDTET) HASP TBLE

» $DTETAB macro

A Builds DTE tables and entries

A Maps DTE table entries

= $DTEDYN macro

A Used to dynamically attach, detach a Subtask

A Invokes $DTEDYN routine

01/88 43

The table pair which points to the DTE tables is located in the SMCT. The field MCTDTETU
will contain the address of the installation table, if such a table exists. If you want to link-edit your
table with JES2 you must name the table USERDTET and link-edit it with HASJES20. The
JES2-defined DTE table is pointed to from the $MCT field MCTDTETH and is named
HASPDTET.

To aid in creating the DTE tables, JES2 supplies a macro named $DTETAB. This macro builds
both the JES2 and installation tables and table elements. This macro also contains the mapping

macro for the DTE table and element. We will describe this macro and its operands more thor-
oughly below.

JES2 provides a mechanism to dynamically attach and detach subtasks via the SDTEDYN service.
This service is invoked with the use of the $DTEDYN macro. The service routine makes use of
the DTE tables for attaching and detaching of subtasks (DTEs).

50 A GUIDE User Group Presentation



AR

DTE Tables ...

e DTE Tables (Related Control Blocks and Macros)...

= §GETABLE macro

A Used to return table entries of USER/HASP table pairs

A To obtain DTE Table, use TABLE=DTE

» $DTE control block

A Defines JES2 subtasks
A Contains fields required by all subtasks within JES2

A May have a variable length extension - subtask specific
information

A Contains an OS-style save area at front

01/88 44

The $GETABLE macro invokes the SGETABLE service routine that is located in the module
HASPTABS. This service obtains a table element from the user or JES2 table. To obtain a DTE
table, you would code the TABLE = DTE operand. This macro will return the table element of
the specified ID or, if LOOP is specified, it will return the next table element after the specified ID.

The major control block for adding and modifying of subtasks is the DTE (Daughter Task Ele-
ment). DTEs represent and define JES2 subtasks. This control block contains fields that are re-
quired on a subtask basis within the JES2 subtasks. The DTE is composed of a common section
(all JES2 subtask DTEs contain this common section) and an optional variable length section that
is unique between subtask types and contain subtask-specific information. The subtask names are:

s HASPIMAG
e HOSALLOC
¢ HOSPOOL

e HASPACCT
e HASPVTAM

e HASPWTO
e HOSCNVT
e HASPOFF

e HASPCKAP (added in 2.2.0)

The common section includes an OS-style save area at the front. This is pointed to by R13 in the
JES2 subtask (i.e., it points to the DTE with the OS-style save area in the front) which is an
available save area.

Examples of Table Pairs 51



DTE Tables ...

® DTE Tables (Related Control Blocks and Macros)...

» $DTE control block...

A Other fields

& $STABNDA - General subtask ESTAE routine
& DTESTID - subtask identifier

£ DTEVRXAD - VRA exit routine address

£ DTERTXAD - Retry routine address

& DTEESXAD - Clean-up routine address

01/88 45

There are four fields that are used for subtask recovery. These fields are:

$STABNDA - this is a field in the $HCT that contains the address of the general subtask re-
covery routine. If you code an ESTAE (highly recommended) you should use this routine as
the recovery routine. This general recovery routine will take three “exit” calls, depending upon
whether the following three fields are non-zero.

DTEVRXAD - this is a field in the DTE that contains the address of a VRA “exit” routine.
This routine will receive control from the JES2 general subtask recovery routine to complete
the variable recording area (VRA) in the SDWA. In this way, the data that is specific to this
subtask can be saved. '

DTERTXAD - this is a field in the DTE that contains the address of a retry routine. This
routine will receive control to attempt to retry. The general JES2 recovery routine issues a
SETRP to a general retry routine. This general retry routine will then give control to the
specified retry routine for this subtask. The subtask retry routine should issue a $SETRP to
a resumption point or percolate. If the subtask is to retry or percolate, the retry routine should
prepare for the event. '

DTESXAD - this is another field in the DTE that contains the address of a clean-up routine.
This routine will receive control from the JES2 general subtask recovery routine to attempt
subtask specific clean-up. There are two valid return codes from this recovery routine.

1. 0 - continue normal recovery, clean-up successful

2. 4 - unrecoverable subtask error, abend JES2 main task via a CALLRTM

Also included in the DTE is the field DTESTID which contains the subtask identifier. We will
present more information on this identifier shortly.

52

A GUIDE User Group Presentation



o=

DTE Tables ...

e DTE Tables (Related Control Blocks and Macros)...

= DTE Chain Heads

A Located in $HCT
A Zero if no subtask for that type exist

A Chain DTE Heads:

A $DTEIMAG - Image DTE
& $DTEALOC - Allocate DTE
A $DTESPOL - Spool DTE

& $DTESMF - SMF DTE

A $DTEVTM - VTAM DTE

A $DTEWTO - WTO DTE

& $DTECNVT - Convert DTE
2 $DTEOFF - Offload DTE

& $DTECKAP - Checkpoint application copy

01/88 46

Just as there were pointers in the SHCT for the JES2 processors (PCEs) for each type of processor,
there are pointers in the $HCT for the JES2 subtasks (DTEs) for each type of subtask. If the chain
head is zero, then no subtasks of that type exists. The chain heads are:

[

[

$DTEIMAG - points to the image subtask(s)

$DTEALOC - points to the allocation subtask

$DTESPOL - points to the spool subtask(s)

$DTESMF - points to the SMF subtask

$DTEVTM - points to the VTAM subtask

$DTEWTO - points to the WTO subtask

$DTECNVT - points to the converter subtask(s)

$DTEOFF - points to the offload subtask(s)

$DTECKAP - points to the checkpoint application copy subtask (new in 2.2.0)

We will describe the method for pointing to the installation subtask in the following foils.

Exainples of Table Pairs

53



A JES2 DTE Table

DTE Tables ...

¢ DTE Tables (Examples - JES2)

HASPDTET $OTETAB TABLE=HASP
SDTETAB NAME=...

SDTETAB NAME=CONVERT,
ID=DTEIDCNV,
EPNAME=HOSCNVT,
EPLOC=MAPCNVA,
HEAD=$DTECNVT,
HRORKLEN=DCNVLEN,
GEN=NO,

STAE=NO,
SZERO=NO

SDTETAB NAME=...

SDTETAB TABLE=END

01/88 47

The figure above is an example of what the JES2 subtask (DTE) table looks like. The table is
delimited by a TABLE = HASP (to start the table) and a TABLE=END (to end the table). The
table element shown represents all the information that JES2 needs to define a JES2 converter
subtask. This is the table element that is passed to the $DTEDYN service to create the converter
DTE. Notice that the name of the DTE table is HASPDTET, the same as that specified in the
V-type address constant in the $SMCT.

The following discussion will describe each operand on the SDTETAB macro and how it should
be specified.

S4 A GUIDE User Group Presentation



DTE Tables ...

® DTE Tables (Examples - JES2)...

» $DTETAB TABLE=HASP - invoke $DTETAB macro to build
JES2 DTE table

» $DTETAB - invokes $DTETAB macro to build DTE Table
entry for CNVT DTE.

A NAME= - DTE name

& 1 - 8 characters

& used for JES2 messages
A ID= - equated subtask identifier

& JES2 identifiers start at 0 and increase

& Installation identifiers start at 255 and decrease

01/88 48

The JES2 tables are started by specifying "TABLE = HASP’. This indicates to JES2 that this table
is a JES2 table. You would specify "TABLE = USER’ to indicate that the table is an installation
coded table. Whether it is a JES2 or installation table determines some default values for the
EPLOC and HEAD $DTETAB operands. We will discuss these operands later. Specifying
TABLE =HASP or TABLE = USER is the means JES2 provides to indicate the start of the table
(TABLE =START) as discussed in “Concepts” on page 6.

When you specify SDTETAB with operands other than TABLE =, the macro generates a table
element. In the example above, the table element that is generated is for the converter subtask.

The NAME operand specifies a one- to eight-character name. JES2 messages use this name. The
ID operand specifies an equated numeric value. JES?2 identifiers start at 0 and increase. Installation
identifiers start at 255 and decrease. There are currently nine JES2 subtask types.

Examples of Table Pairs 55



DTE Tables ...

e DTE Tables (Examples - JES2)...

» $DTETAB - table entry...

A EPNAME = - entry point name used on MVS IDENTIFY macro call

A EPLOC= - name of fullword field holding subtask entry point
addr

A specifies MODMAP field if TABLE =HASP

A specifies $UCT field if TABLE=USER

01/88 49

The EPNAME operand specifies the name of the subtask entry point. The MVS IDENTIFY
macro uses this. The EPLOC operand points to the fullword field that holds the subtask entry
point address. If the DTE table is a JES2 table, the default location for this entry point address is
in MODMAP. If the DTE table is an installation table (i.e., TABLE = USER), the default location
for this entry point address is in the $UCT. This default can be overridden by specifying
"‘EPNAME = (field, MODMAPY)’. The field must be in either MODMAP or the $UCT.

56 A GUIDE User Group Presentation



pross

DTE Tables ...

e DTE Tables (Examples - JES2)...

= $DTETAB - table entry...

A HEAD= - fullword field name used to point to first DTE of type
within $DTEORG DTE chain

A specifies iHCT field if TABLE =HASP

& specifies $UCT field if TABLE = USER

A WORKLEN = - length of DTE work area for this DTE type

01/88 50

The HEAD operand is similar to the CHAIN operand on the $PCETAB. This operand points to
the fullword field used to point to the first DTE of this type. JES2 will chain the initial DTE of
this type from the specified field. All DTEs can be run by starting at the $DTEORG in the $HCT.
In the example the first converter subtask can be found by obtaining the address in the
$DTECNVT field in the $HCT. DTEPREV and DTENEXT are fields used to chain to the next
DTE. If you specify this field, it is defaulted to be in the SUCT. If you wish to override this de-
fault, you would specify '"HEAD = (field, HCT)". The field must be in either the $SHCT or the
$UCT.

Just as there was a variable extension area off of PCEs, there are variable extension areas off of
DTEs. The size of these extension areas can be variable between subtask types. Therefore, you
specify the size for these extension areas in the $DTETAB via the WORKLEN operand. The
$DTEDYN service uses this value to SGETMAIN the DTE and its extension in contiguous stor-
age. In the example, WORKLEN = DCNVLEN, DCNVLEN is the equate for the length of the
variable extension area for the converter subtask.

Examples of Table Pairs 57



DTE Tables ...

® DTE Tables (Examples - JES2)...

= $DTETAB - table entry...
A GEN= - specifies when DTE should be generated

A YES - indicates subtask should be automatically started

& NO - indicates subtask dynamically created via $DTEDYN

A STAE = - specifies if STAE parm on MVS DETACH macro should
be issued

& STAE on DETACH indicates if ESTAE exit should get control if
subtask detached before terminated

A YES - indicates STAE parm specified, implies MVS WAIT if
WAIT = parm not specified on $DTEDYN

A NO - indicates STAE parm not specified (default NO)

| o188 51

The GEN operand specifies when the subtask should be generated. GEN = YES indicates that the
subtask should be automatically started. GEN= NO indicates that the subtask is dynamically cre-
ated via a SDTEDYN call. In the example, you specify GEN = NO since the converter subtask is
dynamically created through a $DTEDYN call by the converter processor when the subtask is
needed and it is not attached.

The STAE operand indicates whether the STAE parameter should be specified on the MVS DE-
TACH macro. Ifitis (i.e., STAE = YES), then the ESTAE exit will get control if the subtask de-
taches before it is terminated. If you specify STAE = YES this implies an MVS WAIT if WAIT =
parameter is not specified on the $DTEDYN macro which creates the subtask. If you specify
STAE=NO, then the STAE parameter will not be generated on the MVS DETACH macro.
STAE = NO is the default.

58 A GUIDE User Group Presentation



@ DTE Tables ...

¢ DTE Tables (Examples - JES2)...

=« $DTETAB - table entry...

A SZERO= - indicates if subtask shares subpool 0 (default YES)

= §DTETAB TABLE=END - indicates end of table

,

T

01/88 52

The final operand on the SDTETAB macro is the SZERO operand. This operand tells JES2
whether this subtask should share subpool 0. The default is SZERO=YES. In the example,
SZERO = NO was specified to say that the converter subtask cannot share subpool 0.

When the TABLE = END is encountered, the table is closed. This indicates the end of the JES2
DTE table. All JES2-defined subtasks are defined within this single table.

Examples of Table Pairs 59



An Installation DTE Table

' DTE Tables ...

e DTE Tables (Examples - Installation)

= Objective:

A Create DTE to issue SAF call
A Create DTE without modifying JES2

A Use DTE table installation-extensible function

= This is one scheme to complete this objective, others exist

01/88 53

In order to show how you would specify an installation DTE table, we will step through the cre-
ation of an installation-defined security subtask. The security DTE is required to fulfill our security
objective since the SAF call can result in an MVS WAIT.

Objective
The objective is to create a DTE to issue the SAF call on behalf of a security processor (or, as it

turns out, any processor). The installation wishes to achieve this without modifying JES2 and to
use the DTE tables as the means to define this DTE to JES2.

60 A GUIDE User Group Presentation



preaen

Required Pieces

DTE Tables ...

e DTE Tables (Examples - Installation)...

= Pieces consist of:

Exit O uct

Module HASPXJOO USER DTE TABLE

01/88 54

To achieve the objective, you will need to code four pieces. These pieces are:

L.

Exit 0

As was discussed in “Concepts” on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation DTE table with the HASJES20 load
module. This requires the name of the installation table be USERDTET.

b. If you do not wish to link-edit an installation DTE table with HASJES20 or does not
wish to name the installation table USERDTET, then you must fill in the address of the
installation DTE table into the $MCT at field MCTDETTU. This is the second method.
This method requires that you fill in the address prior to the need to invoke the
$DTEDYN service routine to create the subtask. Depending on when you will have the
processor generated, you may fill in the address early in initialization or after JES2 is up
and running.

In this example, you will fill in the address of the DTE table early in initialization, specifically
in Exit 0. Therefore, you require an Exit 0 that will load the module (if not already loaded)
and resolve the address of the table.

UCT

As has been indicated when examining the JES2 DTE table, there are certain operands that
assume $UCT fields in the installation DTE table elements. Of course, you may override these
assumptions, but the objective of this effort was to use the tables and not modify JES2.
Therefore, a SUCT must be created that will hold certain values.

Examples of Table Pairs 61



62

Module HASPXJ00

Since you are coding a new JES2 subtask, you must write the code that is the subtask. In this
example, the code resides in the module HASPXJ00. This name is one of the reserved-for-
installation-use names that JES2 has in the SMODMARP control block. In this way, you can
link-edit this module with HASJES20 and have its address in $MODMAP and not have to
do the load of this exit from Exit 0.

User DTE Table

You will have to code your own DTE table to include an element for the particular subtask.
We will describe how to create this installation table element in the following section.

A GUIDE User Group Presentation



Coding the Installation DTE Table

DTE Tables ...

e DTE Tables (examples - Installation)...

= Table and Operands:

A Call Subtask "SECURITY”

& NAME =SECURITY

A |d of Subtask determined by installation

A Installation DTE identifiers start at 255 and decrease

A ID=UDTESCTY

01/88 55

In the figure above, you wanted to create a security subtask which would be called SECURITY.
Therefore, NAME =SECURITY is specified to have the subtask called SECURITY in JES2

messages.
The identifier of the processor is 255. This is because installation specified identifiers should start
at 255 and decrease since JES2 subtask identifiers start at 0 and work their way up. There is an
equate specified in the $UCT named UDTESCTY set to 255. Therefore, we specify the operand
for the identifier as 'ID=UDTESCTY".

Examples of Table Pairs 63



DTE Tables ...

® DTE Tables (Examples - Installation)...

= Table and Operands...
A Entry point to module HASPXJ00 will be USCTDTE
A EPNAME =USCTDTE

A Entry point to module HASPXJ00 held in field UCTMDSCY in
$UCT

A EPLOC =UCTMDSCY

A HEAD=UCTSYDTE

A Field to hold addr of first SCTY DTE will be UCTSYDTE in $UCT

01/88

56

The name of the entry point to the subtask code in module HASPXJ00 is USCTDTE. Therefore,
we code ' EPNAME = USCTDTE’ on the $DTETAB to tell JES2 to use USCTDTE on the MVS
IDENTIFY call. The field to hold the entry point address is in the $UCT. The name of the field
i1s UCTMDSCY. It will hold the address of the routine USCTDTE. Therefore, we code
"EPLOC=UCTMDSCY’ on the $DTETAB. The $UCT field to hold the pointer to the first se-
curity subtask is UCTSYDTE. Thus, we code “HEAD = UCTSYDTE” to tell JES2 the name of
the chain field. Since the table element is in the installation table, the specified field will default to

being in the $UCT.

64 A GUIDE User Group Presentation




DTE Tables ...

¢ DTE Tables (examples - Installation)...

= Table and Operands...
A Length of $SCDWORK macro is defined by equate SCOLEN
& WORKLEN =SCDLEN
A Subtask created by SCTY PCE dynamically
& GEN=NO

A Subtask should not be detached with the STAE operand specified
on the DETACH

& STAE=NO
A Subtask shares SUBPOOL 0

A SZERO=YES

01/88 57

The length of the variable extension area of the security subtask is defined via an equate called
SCDLEN in macro $SCDWORK. This is the value that we specify in the table:
WORKLEN=SCDLEN.

You have also decided that the processor should not be generated automatically. Therefore, we
specify ‘GEN = NQO’ on the $DTETAB macro to indicate that the subtask is created dynamically
via a call to $DTEDYN.

Also, you do not wish the subtask to be detached with the STAE operand specified on the MVS
DETACH call. Thus, we specify 'STAE= NQO".

You would like the subtask to share subpool 0, so you specify 'SZERO = YES'.

Examples of Table Pairs 65



Resulting DTE Table

DTE Tables ...

¢ DTE Tables (Examples - Installation)...

USERDTET SDTETA8 TABLE=USER

SDTETAB NAME=SECURITY,
ID=UDTESCTY,
EPNAME=USCTDTE,
EPLOC=UCTMDSCY,
HEAD=UCTSYDTE,
HORKLEN=SCDLEN,
GEN=NoO,

STAE=NO,
SZERO=VES

SDTETAB TABLE=END

01/88 58

The figure above shows the resulting installation DTE table to add a security subtask to JES2.
The table is begun with a TABLE = USER to tell JES2 that this is an installation table. The name
of the subtask is SECURITY. The identifier of the subtask is 255, as defined by the equate
UDTESCTY. The code for the subtask resides in the module HASPXJ00 and has the entry point
name USCTDTE. Its entry point address is in field UCTMDSCY in the $UCT.

The first security subtask is chained from the $UCT field UCTSYDTE.

The security subtask will require its own variable extension area to the DTE that is mapped by the
macro $SCDWORK with the length of SCDLEN. The subtask is generated through a specific
$DTEDYN, so it will not be generated during initialization. The subtask will not be detached with
the STAE option and the subtask may share subpool 0.

The table is delineated by the TABLE = END operand of the $DTETAB macro.

66 A GUIDE User Group Presentation



=,

Coding the Other Required Pieces

DTE Tables ...

e DTE Tables (Examples - Installation)...

= Required Pieces

A HASPXJ00 - module that holds subtask code with entry point
USCTDTE

A $SCDWORK - macro that maps DTE extension obtained with DTE
& SCDLEN - equate defines length of extension
A $UCT - macro contains fields:

A UDTESCTY EQU 255 ID OF SCTY DTE
A UCTMDSCY DC A(*-*) ADDR OF ENTRYPT

A UCTSYDTE DC A(*-*) ADDR of SCTY DTE

01/88 59

Now that you have completed the installation DTE table, the other required pieces may be defined.
You will have to write a HASPXJ00 module that holds the DTE subtask code. A macro must be
created called $SCDWORK that will map the DTE extension. An equate named SCDLEN is re-
quired within the macro to define the length of the extension area needed.

In the installation-defined $UCT, two fields must be coded. The address of the entry point for the
HASPXJ00 module for the installation DTE is in the UCTMDSCY field. The address of the first
security DTE is chained from the UCTSYDTE field. Finally, we must set an equate for the iden-
tifier of the subtask. We specify the equate UDTESCTY with a value of 255.

Examples of Table Pairs 67



DTE Tables ...

= Required Pieces...
A Installation DTE Table
A Defined as above
A Exit 0

4 Obtain $UCT and place address in $HCT

A Initialize the $UCT

in HASPTABS

e DTE Tables (Examples - Installation)...

A Place Instaliation DTE table addr in field MCTDTETU in $MCT

01/88

The last two pieces that are required are the installation DTE table, as coded above, and the code

for exit 0. The exit 0 code is required to do three things:

1. It must obtain the $UCT and place the $UCT’s address in the $HCT.

2. It must initialize the $UCT.

3. Finally, it must place the installation DTE table address in the MCTDTETU field in the

$MCT in module HASPTABS.

The code that is contained in “Appendix A. Table Pairs Coding Example” on page 147 is the code

as you would be required to code it. This code includes:

e  Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,

and places the installation DTE table address in the $MCT.

e The HASPXJ00 module contains, among other items that we will describe shortly, the DTE

code and the installation DTE table.

e The macros for the $SUCT and $SCDWORK. Also, a SUSERCBS macro extends the
$MODULE macro so that you can use installation-created macros without modifying the

$MODULE macro.

68 A GUIDE User Group Presentation




T,

TID Tables

What Is a TID Table?

TID Tables

® Trace |d Tables (TIDTAB)

= Used to

A Add Instaliation trace identifiers to JES2 system

A Override HASP-defined trace identifiers in JES2 system

= HASP-defined TIDTAB tables reside in HASPTABS

= See MVS/Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01/88 61

The Trace Id (TID) tables are used to add installation trace identifiers to a JES2 system or to
override JES2-defined trace identifiers in JES2. Notice that deleting a JES2 trace identifier is not
listed. This is because we recommend you do not delete any JES2 trace identifiers.

The JES2-defined TID tables reside in the JES2 module HASPTABS. Some of the following in-
formation can be found in SPL: JES2 User Modifications and Macros.

The TID tables are perhaps the simplest and least complete of the JES2 tables. Some of the
“interfaces” need additional work. However, the function provided is useful and recommended over
alternatives such as in-line modifications to JES2 source code.

Examples of Table Pairs 69



TID Control Blocks and Macros

TID Tables ...

¢ Trace Id Tables (Related Control Blocks and Macros)

= $MCT table fields:

MCTTIDTU DC V(USERTIDT) USER TBLE

MCTTIDTH DC V(HASPTIDT) HASP TBLE

= $TIDTAB macro

A Builds TIDTAB tables and entries
A Maps TIDTAB table entries

A Defines Trace identifiers for the HASP $TRACE Facility

01/88 62

The table pair which points to the TID tables is located in the $SMCT. The field MCTTIDTU
will contain the address of the installation table, if such a table exists. If you want to link-edit the
table with JES2 you must name the table USERTIDT and link-edit it with HASJES20. The
JES2-defined TID table is pointed to from the $MCT field MCTTIDTH and is named
HASPTIDT.

To aid in creating TID tables, JES2 supplies a macro named $TIDTAB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the TID table and element. We will describe this macro and its operands more thoroughly
below.

The $TRACE facility is the user of the TID tables. It uses the tables to determine what identifiers
are valid and what formatter routines will receive control (see “A JES2 TID Table” on page 74).

70 A GUIDE User Group Presentation



AR

TID Tables ...

® Trace |d Tables (Related Control Blocks and Macros)...

= $TRACE macro

A Used to allocate JES2 trace table entry in an active trace table

A Invokes the JES2 event trace facility

= §GETABLE macro

A Used to return table entries of USER or HASP table pairs

A To obtain Trace Table, use TABLE=TID

» STLGWORK control block

A Contains fields specific to Event Trace Log Processor
(HASPEVTL)

A Work area extension for HASPEVTL Processor (PCE)

01/88 63

The $TRACE executable macro allocates a JES2 trace table entry in an active trace table and re-
turns its address. Optionally, $TRACE initializes the Trace Table Entry (TTE) based upon pa-
rameters passed. The JES2 event trace facility is called to perform the TTE allocation.

$TRACE can be specified anywhere in the JES2 system (including the HASPSSSM load module)
except in routines running as disabled interrupt exits (for example, an I0S appendage). R13 must
point to a usable OS-style save area. Be certain to also code the $TRP macro on the SMODULE
statement to provide the required mapping. Refer to SPL: Modifications and Macros for a detailed
description on the use of this macro.

As with the PCETABs and DTETABs, access can be obtained to the TIDTABs via the
$GETABLE macro. The $SGETABLE macro invokes the §GETABLE service routine that is lo-
cated in the module HASPTABS. This service obtains a table element from the user or JES2 table.
To obtain a TID table, you would code the TABLE=TID operand. This macro will return the
table element of the specified ID or, if LOOP is specified, it will return the next table element after
the specified ID.

You will also need to specify STLGWORK. This is the macro that maps the Event Trace Log
processor variable extension area. This macro is needed because it contains fields that are specific
for the processor. They will be needed by the installation format routines (which we will describe
later).

Examples of Table Pairs 71




TID Tables ...

® Trace Id Tables (Related Control Blocks and Macros)...

= TTP (Trace Table Prefix) Dsect

A Describes the trace table

A Dsect within the $TTE macro

= $TTE (Trace Table Entry) Control Block

A Used to describe trace data elements in table

A Represents the actual data in the trace table

01/88 64

Since the trace interface is not well-defined and is rather primitive, it is necessary to understand
some of the internal structures of the primary control blocks. These control blocks include the
Trace Table Prefix (TTP) and the Trace Table Entry (TTE). The TTP describes the entire trace
table while the TTE describes elements within the trace table. The next foil illustrates the TTP and
the TTE.

72 A GUIDE User Group Presentation



=

AT

TID Tables ...
¢ Trace |d Tables (Related Control Blocks and Macros)...
TRACE TABLE PREFIX < TRACE TABLE PREFIX
[411:5] (4110}
TTE TE
>
TTE
TTE
01/88 65

In the illustration above, there are two trace tables. Both contain Trace Table Prefixes. The TTP
is made up of basically three pointers. The first pointer points to the previous trace table, the sec-
ond pointer points to the end of the table, and the final pointer points to the next available spot in
the trace table.

Trace tables are made up of as many TTEs (Trace Table Elements) as will fit in the trace table.
The TTEs are not of a set size, but are the size as was specified on the $TRACE macro call. The
front of the TTE contains the fields mapped by the $TTE macro that describe the data contained
in the TTE.

Examples of Table Pairs 73




A JES2 TID Table

TID Tables ...

¢ TID Tables (Examples - JES2)

HASPTIOT STIDTAB TABLE=HASP
$TIDTAB ID=...

$TIDTAB ID=001,
FORMAT=TROUTOOL,
NAME=$SAVE

STIDTAB ID=...

STIDTAB TABLE=END

01/88 66

The figure above illustrates what the JES2 TID table looks like. The table element shown repres-
ents all the information that JES2 needs to define JES2 trace identifier 1 for the tracing of $SAVEs.
This is the table element that is passed to the $TRACE facility. Notice that the name of the TID
table is HASPTIDT, the same as that specified in the V-type address constant in the $SMCT.

The following describes each operand on the $TIDTAB macro and tells how it should be specified.

74 A GUIDE User Group Presentation



AR

TID Tables ...

e TID Tables (Examples - JES2)...

= $TIDTAB TABLE=HASP - invoke $TIDTAB macro to build
JES2 Trace ID (TID) table

= $TIDTAB - invokes $TIDTAB macro to build TID Table entry
for trace identifier 001

A ID= - identifier of the trace element

& number between 1 and 255
& JES2 starts at 1 and increments

4 Installation starts at 255 and decrements
A FORMAT = - specifies name of a formatting routine

4 routine name local, A-type address constant defined

A routine name not local, V-type address constant defined

01/88 67

The JES2 tables are started by specifying “TABLE = HASP’. This indicates to JES2 that this table
is a JES2 table. You would specify "TABLE = USER’ to indicate that the table is an installation-
coded table. Specifying TABLE = HASP or TABLE = USER is the means JES2 provides to indi-
cate the start of the table (TABLE = START) as discussed in “Concepts” on page 6.

When $TIDTAB is specified with operands other than TABLE =, the macro generates a table el-
ement. In the example above, the table element that will be generated will be for trace identifier
1.

The ID operand specifies the trace identifier number that we will use to code the $TRACE macro.
The number must be between 1 and 255. JES2-defined trace identifiers start at 1 and increase.
Installation-defined trace identifiers should start at 255 and decrease.

The FORMAT operand specifies the name of a formatting routine to be given control when the
trace table entries are being processed for printing. If the name that is specified for this operand is
found to reside within the same module as the TIDTAB, then an A-type address constant is defined
for the name. If the name that is specified for this operand is not found to reside within the same
module as the TIDTAB, then a V-type address constant is defined for the name.

Examples of Table Pairs 75



TID Tables ...

¢ TID Tables (Examples - JES2)...

= $TIDTAB - table entry...

A NAME = - specifies trace entry name

4 placed in trace output

= $TIDTAB TABLE=END - indicates end of table

01/88 68

The NAME operand specifies a 1-8 character name that is associated with the specified trace id.
The name will appear in the trace output to further identify the trace data.

When the TABLE = END is encountered, the table is closed. This indicates the end of the JES2
TID tables. All JES2-defined trace identifiers are defined within this single table.

76 A GUIDE User Group Presentation



An Installation TID Table

TID Tables ...

¢ TID Tables (Examples - Installation)

= Objective:

A Create trace identifier to follow SAF calls
A Create trace identifier without modifying JES2

A Use TID table installation-extensible function

= This is one scheme to complete this objective, others exist

01/88 69

In order to show how you would specify a TID table, we now step through creating an
installation-defined trace identifier for tracing security calls from the security PCE.

Objective

The objective is to create a trace identifier for tracing security calls. You wish to achieve this
without modifying JES2 and to use the TID tables as the means to define the identifier to JES2.

Examples of Table Pairs 77



Required Pieces

TID Tables ...

® TID Tables (Examples - Installation)...

= Pieces consist of:

EXIT O FORMAT ROUTINE

USER TID TABLE

01/88 70

To achieve the objective, you will need to code three pieces. These pieces are:

1.

78

Exit 0

As was discussed in “Concepts” on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation TID table with the HASJES20 load
module. This requires the name of the installation table as USERTIDT.

b. If you do not wish to link-edit the installation TID table with HASJES20 or do not wish
to name the installation TID table USERTIDT, then you must fill in the address of the
installation TID table into the $MCT field MCTTIDTU. This is the second method.
This method requires that you fill in the address before invoking the $TRACE facility to
access this trace id. Depending on when the installation will use the trace id, you may fill
in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the TID table early in initialization, specifically
in Exit 0. Therefore, you require an Exit 0 that will load the module, if not already loaded,
and resolve the address of the table.

Format Routine

You will need to create a format routine that will get control to format the TTE into a print-
able form. In this way, you can put the data into the TTE in any form or format and interpret
yourself, independent of what JES2 understands or processes.

User TID Table

A GUIDE User Group Presentation



You will have to code a TID table that includes an element for the particular trace id. We
will describe this installation table element in a step-wise fashion in the following section.

Examples of Table Pairs 79



Coding the Installation TID Table

TID Tables ...

¢ TID Tables (Examples - Installation)...

= Table and Operands:
A Give the trace table an identifier of 255
A ID=255
A Name of the formatter routine is TROUT255
A FORMAT =TROUT255
A Name of the trace is SAFCALL

A NAME =SAFCALL

01/88 n

Since 1installation identifiers should start at 255 and decrease, the ID for this installation trace table
element will be 255 (ID = 255). The format routine will be called TROUT?2SS, for TRace OUTput
for identifier 255. The name that should come out on the trace entry should be SAFCALL, since
the function of this trace identifier is to trace the fact that a SAF call has been made. Therefore,
we will code NAME = SAFCALL on the TIDTAB.

30 A GUIDE User Group Presentation



Resulting TID Table

TID Tables ...

® TID Tables (Examples - Installation)...

USERTIDT STIDTA8 TABLE=USER

$TIDTAB ID=255,
FORMAT=TROUT255,
NAME=SAFCALL

STIDTAB TABLE=END

01/88 72

The figure above shows the resulting installation TID table used to add a security trace identifier
to JES2. The table is begun with TABLE = USER to tell JES2 that this is an installation table.
The id of the trace element will be 255. The name of the routine that will format the trace data into
a printable form will be TROUT?255. The name of the trace identifier is SAFCALL. Finally, the
table is delineated by the TABLE = END operand.

Examples of Table Pairs 81



Coding the Other Required Pieces

TID Tables ...

¢ TID Tables (Examples - Installation)...

= Required Pieces

A TROUT25S - routine used to format trace records for this identifier
type

& DO NOT specify TRACE = YES on $SAVE or $RETURN used
from routine

& 'Value of registers on entry to format routine

R1 - Trace Table Buffer Pointer
(TTP)

R2 - Trace Table entry (TTE)

R4 - Trace D table entry (TID)

RS - pointer to remaining output
area in print record (field
TLGBSAVE points to beginning
of print record)

R14 - return address

R15 - entry address

01/88 73

One of the required pieces that you would have to provide to complete the installation extension
to the $TRACE facility is the format routine. This is where it becomes obvious that the trace ex-
tension facility is primitive.

The installation format routine cannot itself issue a TRACE = YES on its $SAVE or $SRETURN.
The registers upon entry to the format routine are as follows:

82

R1 - this register points to the TTP for the trace table that contains the entry as defined by the
installation TIDTAB.

R2 - this register points to the TTE that contains the data that the installation $TRACE macro
saved. This is the data to be formatted by the TROUT?255 format routine.

R4 - this register points to the TIDTAB (Trace Id Table) element that you created.

RS - this register points to an open area in an output area. The format routine will take the
data contained in the TTE, make the data printable, and place the resulting printable data into
this output area, starting at the location pointed to by RS. The field TLGBSAVE in the
$TLGWORK area (the variable extension area off of the event trace log PCE) points to the
beginning of this output area. The maximum size of this output is defined by an equate in
$HASPEQU named TRCLRECL. Therefore, the maximum area that can be saved in this
output area is TRCLRECL-1 (minus one for the carriage control). When the output area is
full, a call to a routine named TRCPUT can be made to ‘PUT’ this line and obtain a new
output area. We will describe TRCPUT shortly.

R14 - this register contains the return address.

R15 - this register contains the format routine entry address.

A GUIDE User Group Presentation



ey

TID Tables ...

¢ TID Tables (Examples - Installation)...

= Required Pieces...
A TROUT255...

A TRCPUT Service Routine

- adds record to current buffer
- addr of TRCPUT in HCT field
$TRCPUT
- on exit RS points to next area
in buffer
- registers:
RO - Length of text (TLGBSAVE
points to start of text)
RS - Addr of New RCB on exit,
must return to caller
R14 - Return Addr
R15 - Zero on Exit

01/88 74

The TRCPUT service routine is an external routine available to installation format routines to
“PUT” a formatted output area and obtain a new output area. The address of the TRCPUT
routine is available from the $HCT field $TRCPUT.

On entry to the TRCPUT service routine, you must pass the length of the text in RO. You can
calculated this by taking the ending address in the output area of the installation data and sub-
tracting the value in TLGBSAVE. R15 must contain the address of the TRCPUT service routine
and R14 must contain the return address (i.e., use standard BALR R14,R15 linkage).

On exit, the TRCPUT service routine will return in RS the address of the new output area. This
must be returned by the format routine to the caller of the installation format routine. Therefore,
a $STORE of R5 should be done by the format routine upon return from the TRCPUT service
routine.

Examples of Table Pairs 83



TID Tables ...

¢ TID Tables (Examples - Installation)...

= Required Pieces...
A Installation TID table
& Defined as above
A Exit0

4 Obtain $UCT and place address in $HCT
4 Initialize the $UCT

A Place Installation TID table addr in field MCTTIDTU in $MCT
in HASPTABS

01/88 7%

The last two pieces that are required are the installation TID table, as coded above, and the code
for Exit 0. The Exit 0 code is required to do three things.

1. It must obtain the $UCT and place the $UCTs address in the $HCT.
2. It must initialize the $UCT.

3.  Finally, it must place the installation TID table address in the MCTTIDTU field in the $SMCT
in module HASPTABS.

The code that is contained in “Appendix A. Table Pairs Coding Example” on page 147 is the code
as you would be required to code it. This code includes:

e  Exit 0 that obtains the $UCT, places the SUCT address in the $HCT, initializes the $UCT,
and places the installation TID table address in the $MCT.

e The HASPXJ00 module contains, among other items that we will describe shortly, the TID
table and the TID format routine TROUT?25S.

84 A GUIDE User Group Presentation



WS Tables

What Is a WS Table?

Work Selection Tables

® Work Selection (WS) Tables

= Ability to select output based on device and JOE
characteristics

= Applied to local and remote print or punch devices
= Applied to offload job and sysout transmitters and receivers

= Device work selection setup defined by WS operand on
“devices”

WS = (nn,../nn,..)

= Work selection tables extensible

01/88 76

Work Selection is the ability to select output based on a matching of device characteristics with
output characteristics (JOE characteristics). Work Selection is available in JES2 for local and re-
mote print and punch devices. Also, offload job and sysout transmitters and receivers make use
of work selection to determine what output or job to process. Device characteristics are set via the
WS (Work Selection) operand on the device. The WS operand contains a list of attributes that
define the characteristics of the device. The list is made up of criteria. The position of each crite-
rion relative to the slash in the list determines how important it is to match on that particular cri-
terion. Criteria to the left of the slash require an exact match between the device and the output
before that output is considered suitable. Criteria to the right of the slash indicate a preference for
a match, but the output need not match exactly.

Additional information on the use of work selection is available in SPL.: JES2 Initialization and
Tuning, form (SC23-0065).

Examples of Table Pairs 85



Work Selection Tables ...

® Work Selection (WS) Tables...

= Used to:

A Add Installation work selection criteria to JES2 system

A Override HASP-defined work selection criteria in JES2 system

= HASP-defined WS tables reside in HASPTABS

= See MVS/Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01/88 77

The Work Selection (WS) tables are used to add installation work selection criteria to a JES2 sys-
tem or override JES2-defined work selection criteria in JES2. Notice that deleting JES2 work se-
lection criteria was not discussed. This is because we do not recommend deleting any JES2 work
selection criteria.

The JES2-defined WS tables reside in the JES2 module HASPTABS. Some of the following in-
formation can be found in SPL: JES2 User Modifications and Macros.

86 A GUIDE User Group Presentation



PN

WS Control Blocks and Macros

Work Selection Tables ...

e WS Tables (Related Control Blocks and Macros)

= §MCT table fields:

MCTPRWTU DC V(USERPRWT) USER PRT
MCTPRWTH DC V(HASPPRWT) HASP PRT

MCTPUWTU DC V(USERPUWT) USER PUN
MCTPUWTH DC V(HASPPUWT) HASP PUN

MCTJTWTU DC V(USERJTWT) USER OFFJT
MCTJTWTH DC V(HASPJTWT) HASP OFFJT

MCTJRWTU DC V(USERJRWT) USER OFFJR
MCTJRWTH DC V(HASPJRWT) HASP OFFJR

MCTSTWTU DC V(USERSTWT) USER OFFST
MCTSTWTH DC V(HASPSTWT) HASP OFFST

MCTSRWTU DC V(USERSRWT) USER OFFSR
MCTSRWTH DC V(HASPSRWT) HASP OFFSR

01/88 78

The table pairs that are used to point to the WS tables are located in the $MCT. There is one table
pair for each device type which supports work selection. Therefore, there is a table pair for:

e  Printers

e Punches

¢ Offload Job Transmitters

e Offload Job Receivers

e  Offload Sysout Transmitters
e Offload Sysout Receivers

The $MCT fields for installation work selection tables are MCTPRWTU for printers,
MCTPUWTU for punches, MCTITWTU for offload job transmitters, MCTJRWTU for offload
job receivers, MCTSTWTU for offload sysout transmitters, and MCTSRWTU for offload sysout
receivers. If you want to link-edit an installation table with JES2 you must name your tables
USERPRWT for printers, USERPUWT for punches, USERJTWT for offload job transmitters,
USERJRWT for offload job receivers, USERSTWT for offload sysout transmitters, and
USERSRWT for offload sysout receivers. The installation table must then be link-edited with
HASJES20. The JES2-defined WS tables are pointed to from the $MCT using the MCT above
and table names.

Examples of Table Pairs 87




Work Selection Tables ...

* WS Tables (Related Control Blocks and Macros)...

« SWSTAB macro

A Builds WS tables and entries

A Maps WS table entries

01/88 9

To aid in the creating WS tables, JES2 supplies a macro named $WSTAB. This macro builds both
the JES2 and installation tables and table elements. This macro also contains the mapping macro
for the WS tables and elements. We will describe this macro and its operands more thoroughly
below.

88 A GUIDE User Group Presentation



A JES2 WS Table

Work Selection Tables ...

® WS Tables (Examples - JES2)

HASPPRHT $WSTAB TABLE=HASP
SWSTAB NAME=...

SHSTAB NAME=JOBNAME ,
MINLEN=3,
FLD=JQEJNAME,
CB=JQE,
DEVFLD=DCTJOBNM,
DEVCB=DCT,
RTN=COMPARE

SHSTAB NAME=...

SWSTAB TABLE=END

01/88 80

The figure above illustrates what the JES2 work selection table looks like for the printers work se-
lection criterion JOBNAME. The table element shown represents all the information that JES2
needs to define the JES2 criterion for JOBNAME. This is the table element that is passed to the
$#GET service routine which returns eligible JOEs for processing based upon the work selection
list defined for the printer. Notice that the name of the WS table is HASPPRWT, the same as that
specified for the V-type address constant in the SMCT.

Now we describe each operand on the $WSTAB macro and how you should specify them.

Examples of Table Pairs 89



Work Selection Tables ...

e WS Tables (Examples - JES2)...

= §WSTAB TABLE=HASP - invoke §WSTAB macro to build
JES2 WS table

= SWSTAB - invokes $WSTAB macro to build WS table entry
for printer device '

A NAME = - criterion name or slash
A& 1 - 8 characters
A MINLEN= - minimum length accepted for NAME =

A optional, defaults to full length of NAME = criterion

01/88 81

The JES2 tables are started by specifying “TABLE=HASP’. This indicates to JES2 that this table
is a JES2 table. You specify "TABLE = USER’ to indicate that the table is an installation-coded
table. Specifying TABLE = HASP or TABLE = USER is the means JES2 provides to indicate the
start of the table (TABLE =START) as discussed in “Concepts” on page 6.

When $WSTAB is specified with operands other than TABLE =, the macro generates a table ele-
ment. In the example above, the table element that is generated is for the JOBNAME work se-
lection criterion. :

The NAME operand specifies the 1-8 character name of the criterion. The specified name is used
to display work selection criteria as well as to specify the criteria in the work selection list. The
NAME can also specify the special character ’/’. The slash delineates the left section of the work
selection list from the right section. Criteria to the left of the slash are required to match explicitly.
Criteria to the right of the slash are not required to match. In the example above, the name of the
work selection criterion is JOBNAME.

The MINLEN operand specifies the minimum length that is required for the NAME. In the ex-
ample, the minimum length that can be specified for JOBNAME is 3, that is, JOB would be all that
would be needed before it was recognized as JOBNAME. The default value for this field is the
entire length of the value entered for the NAME operand.

920 A GUIDE User Group Presentation



Work Selection Tables ...

¢ WS Tables (Examples - JES2)...

= SWSTAB - table entry...

A FLD= - name of field

£ compared against device field for match

‘@ 01/88 82

The FLD operand specifies the name of the field used to determine if there is a match with the
device field. In the example, the field JQEJINAME holds the job name. Thus, the job name is
compared against that specified with the device to determine if this job is illegible for processing
by the device.

Examples of Table Pairs 91



Work Selection Tables ...

¢ WS Tables (Examples - JES2)...

= SWSTAB - table entry...
A CB= - used to resolve FLD =, valid are:

A JQE - JQE

& WJOE - work-JOE

& CJOE - char-JOE

& HCT - HCT

& NJHG - general section of Job hdr
A NJH2 - JES2 section of Job hdr

A NJHU - user section of Job hdr

01/88 83

The CB operand tells JES2 what control block the value specified for the FLD operand is in. JES2
understands a finite number of values for the CB operand. This is because JES2 will use the CB
operand to determine what control blocks should be scanned to obtain a match between the
FLD/CB pair and that specified for the device. Therefore, in the example above, the CB=JQE
was specified which implies that the JQE must be looked at (using the JQEJNAME field) to find
a match. JES2 understands how to obtain the JQE address. JES2 would not understand all control
blocks.

Those control blocks that JES2 understands how to get addresses for include:

L

92

JQE - the control block that represents jobs to JES2.
WIOE - the work JOE which contains information on the output to be printed.

CJOE - the charactenistics JOE which contains information on some of the characteristics of
the output.

NJHG - general section of the Job Header. This would be useful if the work selection list were
to select on header fields (as for OFFLOADing).

NJH2 - JES2 section of the Job Header.

NJHU - user section of the Job Header. This would be useful for installations that might want
to add work selection criteria of OFFLOAD (for example) where fields for selection resided in
the user section of the header.

A GUIDE User Group Presentation




=

Work Selection Tables ...

* WS Tables (Examples - JES2)...

« SJWSTAB - table entry...
A CB=_.

£ NJHO - spool offload section of Job hdr
& NDHG - general section of DS hdr

& NDHA - 3800 section of DS hdr

£ NDHS - datastream sectn of DS hdr

A NDHU - user section of DS hdr

A ZERO - no control block needed

01/88 84

Some of the other control blocks known by JES2 include:

[ ]

NJHO - spool offload section of the Job header. This is the section that JES2 uses for the
spool offloading and reloading of jobs.

NDHG - general section of the dataset header. Just like the general section of the job header,
might be useful for installations to create work selection criteria for selecting items from the
net, tape, etc.

NDHA - the 3800 section of the dataset header is also known by JES2.
NDHS - datastream section of the dataset header.
NDHU - user section of the dataset header.

ZERO - this implies that no control block is needed and the FLD and FLAG operands are
ignored.

Examples of Table Pairs 93



Work Selection Tables ...

¢ WS Tables (Examples - JES2)...

» SWSTAB - table entry...
A DEVFLD = - name of device field
A compare against FLD = field
A DEVCB = - control block to use to resolve DEVFLD, valid are:

& DCT
o PIT
& HCT
A UCT

& ZERO - no control block needed for criterion

01/88 ' 85

The DEVFLD operand specifies the name of the field used to find a match for the device. This
device field is compared against the field specified for the FLD operand to determine if this device
should select that item for processing. In the example, the DCTJOBNM field is compared to the
JQEJNAME field in the JQE. If the fields are compatible, then the device can select that job re-
presented by the JQE.

The DEVCB operand tells JES2 what control block the value specified for the DEVFLD operand
is in. JES2 understands a finite number of values for the DEVCB operand. Like the CB operand,
JES2 will use the DEVCB operand to determine what control blocks should be scanned to obtain
a match between the FLD/CB pair and the DEVFLD/DEVCB pair. Therefore, in the example
above, the DEVCB = DCT was specified which implies that the DCT (Device Control Table, re-
presents the device) must be looked at (using the DCTJOBNM field) to find a match. JES2
understands how to obtain the DCT address. JES2 would not understand all control blocks.

Those control blocks that JES2 understands how to get addresses for include:
e  DCT - the control block that represents devices

e  PIT - the control block that represents MVS initiators

e HCT - the HASP Communication Table

e  UCT - the User Communication Table

e  Zero - this implies that no control block is needed. Both the DEVFLD and DEVFLAG op-
erands are ignored.

94 A GUIDE User Group Presentation



=N

Work Selection Tables ...

o WS Tables (Examples - JES2)...

= SWSTAB - table entry...

A RTN - specifies routine to check if work to be selected meets
criterion value. Valid are:

A FLAG - call general flag routine
A& COMPARE - call general compare routine
A RANGE - call general range routine

A other - routine address called to check criterion

01/88 86

The RTN operand specifies a routine that is called to check if the work that has been selected sat-
isfies the criterion value. There are three routines that JES2 provides to support work selection
tables. These routines are:

e FLAG - a general routine to determine if flag values match
¢ COMPARE - a general routine to compare if two fields match
¢ RANGE - a general routine to determine if a value lies within a specified range.

In addition to these general routines, a routine name can be specified to receive control to perform
the selection verification. We will say more on this shortly.

In the JES2 example, the COMPARE operand is specified to compare the JQE control block field
JQEINAME with the DCT control block field DCTIOBNM to determine if a match exists.

Examples of Table Pairs 95



Work Selection Tables ...

¢ WS Tables (Examples - JES2)...

= SWSTAB - table entry...
A RTN...

A registers on entry to routine:

R2 - addr of criterion being
processed

R7 - comparison length

R8 - addr of device field or
device Control Block

R10 - addr of comparison field or
Control Block

R14 - return address

R15 - Entry address

01/88 87

You can specify an installation routine to receive control to perform the validation. When the
routine is given control:

[ ]

R2 will contain the address of the criterion being processed.
R7 will contain the length of the field being compared.

R8 contains the address of the device field (as specified via the DEVFLD operand) or device
control block (as specified via the DEVCB operand).

R10 contains the address of the comparison field (as specified via the FLD operand) or the
control block (as specified via the CB operand).

R 14 contains the return address.

R 15 contains the routine entry address.

It is very important to keep in mind that the routine is called for every check of this criterion when
it is in the work selection list. Therefore, this routine is in a potentially critical performance path
(which is the reason for the non-standard register interface). Registers R2, R3, R4, R11, R12 and
R 13 must not be altered by the routine.

96

A GUIDE User Group Presentation



== N

Work Selection Tables ...

® WS Tables (Examples - JES2)...

= SWSTAB - table entry...

A RTN...

A return codes from routine:

0 - reject work

4 - criterion is met, continue
criteria processing

8 - work is selectable, return
to caller

12 - criterion is not met, check
if criteria after slash

= SWSTAB TABLE=END - indicates end of table

01/88 88

There are four valid return codes that can be set by the installation routine. These are:
e 0 - implies that this unit of work should be rejected, that no more scanning should be done.

® 4 - implies that the test was positive and that this unit of work may be acceptable depending
on the tests of any other work selection criteria.

e 8 - implies that this unit of work should be selected without any further scanning of the work
selection criteria.

e 12 - implies that the test for this criterion failed. However, this may be acceptable depending
on the location of the criterion (before or after the slash); processing should continue to de-
termine if this failure is acceptable.

When the TABLE = END is encountered, the table is closed. This indicates the end of the JES2
Printer Work Selection tables. All of the JES2-defined printer work selection criteria are defined
within this single table. :

Examples of Table Pairs 97



An Installation WS Table

Work Selettion Tables

® WS Tables (Examples - Installation)

= Objective:

A Create additional criteria

A Use Work Selection table installation-extensible function

= Function:

A Add criteria on an OFFLOAD SYSOUT transmitter to offload
SYSOUT that exceeded an installation-specified number of track
groups

= This is one scheme to complete this objective, others exist

01/88 89

In order to show how you would specify installation Work Selection tables, the remaining de-
scription of the WS tables will step through the creation of an installation-defined work selection
criteria to select output that is beyond a specified limit for offload processing.

Objective

During periods of peak spool use (e.g., end of month or end of year processing), you may be in-
terested in using the MVS/SP JES2 2.1.5 Spool Offload facility to offload jobs that are using a large
amount of JES2 spool. In order to achieve this in a way that involves the least amount of code,
you would like there to be an additional work selection criterion on the Offload SYSOUT Trans-
mitter. This operand would indicate at what spool usage threshold a job would be when it would
be offloaded from the system.

To achieve this, you will add an installation table element to the work selection list for the Offload
SYSOUT Transmitter. The following documents the pieces required, the coding of the table ele-
ment, and the required code to “plug” the table in. This is one scheme to achieve the stated ob-
jective; others do exist.

98 A GUIDE User Group Presentation



A o,

Required Pieces

Work Selection Tables ...

® WS Tables (Examples - Installation)...

= Pieces consist of:

Exit 0 _ WS ROUTINE

USER WS TABLE

01/88 90

To achieve the objective, you will need to code three pieces. These pieces are:

1.

Exit 0

As was discussed in “Concepts” on page 6, there are two ways to link the installation table
with JES2:

a. The first of these is to link-edit the installation Work Selection table with the HASJES20
load module. This requires the name of the installation table be USERSTWT.

b. If you do not wish to link-edit your installation Work Selection table USERSTWT, then
you must fill in the address of your installation Work Selection table into the $MCT field
MCTSTWTU. This is the second method. This method requires that you fill in the
address of your table in the $MCT before invoking the Offload SYSOUT Transmitter to
access this Work Selection criterion. Depending on when you use the transmitter, you
may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the Work Selection table early in initialization,
specifically in Exit 0. Therefore, you require an Exit 0 that will load your module (if not al-
ready loaded) and resolve the address of the table.

Work Selection Routine

The method of deciding whether a job exceeds the specified spool usage threshold requires
finding the amount of spool space used by the job. This value is held in two separate locations,
depending on whether or not the job is in conversion or execution, or is elsewhere. Since this
requires code more complex than that which the “canned” compare, range, or flag routines can
handle, you must code a work selection routine to gain control.

Examples of Table Pairs 99



3. User WS Table

You will have to code an installation Work Selection table that includes the table element for
your particular work selection criterion. We will describe this installation table element in a
step-wise fashion below.

100 A GUIDE User Group Presentation



Coding the Installation WS Table

Work Selection Tables ...

* WS Tables (Examples - Installation)...

» Table and Operands:
A Name of criterion is TRKGRP for track group
A NAME =TRKGRP
A Minimum length for keyword is TR
A MINLEN=2
A Allow operator to also specify TG for track group

A ALIAS=TG

01/88 91

Coding the installation Work Selection table involves deciding what values you want to expose to
your operators. For example, the work selection operand that is seen and entered by the operators
is TRKGRP, which indicates that work is selected based on the number of track groups (spool
space) that has been allocated to a job.

Since TRKGRP involves typing six characters, you may wish to make it easier for the operator
by indicating that only 2 of the 6 characters need be typed. Therefore, you will specify a minimum
length of 2 (MINLEN = 2).

Also, when JES2 publications talk about track groups, they often refer to them in the abbreviated
form of TG. In order to prevent confusion, you could specify an alias of TRKGRP that may make
more sense to your operators. Thus, the alias for TRKGRP is TG.

Examples of Table Pairs 101



Work Selection Tables ...

® WS Tables (Examples - Installation)...

= Table and Operands...
A Field to check is JQETGNUM in the $JQE
A FLD=JQETGNUM
A Control block is the $JQE
A CB=JQE
A OFFLOAD device field to check is DCTUSERO

A DEVFLD =DCTUSERO

01/88 92

The field that contains the number of track groups allocated to the job is JQETGNUM. This field
determines whether there is a match with the device field. Therefore, the FLD operand is set to
JQETGNUM. Thus, the job’s number of track groups obtained from field JQETGNUM deter-
mines whether the Offload SYSOUT Transmitter “device” should select this job for transmitting.

The field FLD=JQETGNUM is located in the control block JQE. The JQE (Job Queue Ele-
ment) is a control block that represents the job while it is in the system.

So, the job’s field JQETGNUM is compared against a threshold value set for the Offload SYSOUT
Transmitter “device”. The threshold value for the transmitter device is held in the field
DCTUSERO0. The DCTUSERO field is set by the operator as the threshold value. We will discuss
the setting of the field in the Installation Examples section of the $SCAN tables. Thus, the devices
field is DEVFLD = DCTUSERO.

102 A GUIDE User Group Presentation



AT

Work Selection Tables ...

o WS Tables (Examples - Installation)...

= Table and Operands...

A Field DCTUSERO is in the DCT

& DEVCB=DCT

A Routine that will verify that the JQETGNUM field matches the
criterion in the DCT is WSTRKGRP

& RTN=WSTRKGRP

01/88 93

The device field DCTUSERO is located in the control block DCT (Device Control Table). DCTs
define devices to JES2. Thus, every device in JES2 has a DCT; this includes Offload SYSOUT
Transmitters. Therefore, the device control block is DEVCB = DCT.

As discussed earlier, a work selection routine will have to gain control to verify that the amount
of spool space allocated to a job (JQETGNUM) is greater than the threshold specified by the user
for the device (DCTUSERO0). This is because while the job is in conversion or execution,
JQETGNUM holds an offset into the checkpoint area which contains the number of track groups
allocated to the job. Thus, the routine is named (WSTRKGRP). This routine must be link-edited
with this table entry so that the routine’s address can be resolved. See the sample code in “Ap-
pendix A. Table Pairs Coding Example” on page 147.

Examples of Table Pairs 103



Resulting WS Table

Work Selection Tables ...

* WS Tables (Examples - Installation)...

USERSTWT $HSTAB TABLE=USER

SHSTAB NAME=TRKGRP,
MINLEN=2,
ALIAS=TG,
FLD=JQETGNUM,
CB=JQE,
DEVFLD=DCTUSERO,
DEVCB=DCT,
RTN=WSTRKGRP

SWSTAB TABLE=END

01/88 94

The figure above shows the resulting installation Work Selection Table to add a work selection
operand to the Offload SYSOUT Transmitter. The table is begun with a TABLE = USER to tell
JES2 that this is an installation table. The name of the work selection criterion is TRKGRP. Only
TR need be typed by the operator to indicate TRKGRP, or the operator can use the alias name
of TG. The field to compare with in the job is JQETGNUM in the job’s control block JQE. The
field to compare against in the device is DCTUSERO in the device control block DCT. A routine
to do the actual comparison is called WSTRKGRP. Finally, the table is ended with a
TABLE =END to indicate to JES2 that this installation table is completed.

104 A GUIDE User Group Presentation



Coding the Other Required Pieces

Work Selection Tables ...

e WS Tables (Examples - Installation)...

» Required Pieces

A WSTRKGRP - routine to verify that JQETGNUM is equal to or
greater than DCTUSERO

A Installation WS table
A Defined as above
A Exit0

A Obtain $UCT and place address in $HCT
A Initialize the $UCT

4 Place Installation WS table addr in field MCTSTWTH in $MCT
in HASPTABS '

01/88 95

The pieces required to permit an installation to add a work selection operand are the installation
work selection routine (WSTRKGRP), the installation work selection table (as coded above), and
the code for Exit 0. The Exit 0 code is required to do three things.

1. It must obtain the $UCT and place the $UCT’s address in the SHCT.
2. It must initialize the $UCT.

3. Finally, it must place the installation Work Selection table address in the MCTSTWTU field
in the $MCT in module HASPTABS.

The code that is contained in “Appendix A. Table Pairs Coding Example” on page 147 is the code
as an installation would be required to code it. This code includes:

e Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation Work Selection table address in the SMCT.

¢  The HASPXJ00 module contains, among other items that we will describe shortly, the Work
Selection table and the Work Selection criterion routine WSTRKGRP.

Examples of Table Pairs 105



$SCAN Tables

What Is a $SCAN Table?

$SCAN Tables

e $SCAN tables

= Used to:

A Add Installation initialization and command statements and
operands to JES2 system

A Override HASP-defined $SCAN tables in JES2 system

A Delete HASP-defined $SCAN tables in JES2 system

» HASP-defined $SCAN tables reside in HASPSTAB

= See MVS/Extended Architecture SPL: JES2 User
Modifications and Macros (LC23-0069)

01/88 9%

$SCAN is a facility for scanning, from left to right serially, parameter statement input (initialization
statements and commands). The $SCAN facility allows the input to match a general grammar, to
follow a definition that is table-defined, and to process certain input via exit routines called during
the scan.

The $SCAN facility improves upon past initialization statement and command processors in that
it insures that all the input to process is valid. If at any point an invalid value is encountered, the
scanning is terminated and any changed values are restored to the previous values. The $SCAN
facility is not a general syntax checker in that it terminates processing at the first syntax failure. It
will not continue processing the statement, flushing out additional errors.

Through the $SCAN facility, you can add, override, or delete installation initialization statements
and operands (to a lesser degree this includes JES2 commands). It is recommended that if you want
to add commands that you call the $SCAN facility from the command exit (exit 5).

The JES2-defined $SCAN tables reside in HASPSTAB. Some of the following information can
be found in the SPL: JES2 User Modifications and Macros (LC23-0069).

106 A GUIDE User Group Presentation



$SCAN Control Blocks and Macros

$SCAN Tables ...

e $SCAN tables (Related Control Blocks and Macros)

» SMCT table fields:

MCTOPTTP DS OF OPTION TBLES
MCTOPTTU DC V(USEROPTT) USER OPT TBL
MCTOPTTH DC V(HASPOPTT) HASP OPT TBL

MCTMPSTP DS OF MAIN PARM STMT
MCTMPSTU DC V(USERMPST) USER MPS TBL
MCTMPSTH DC V(HASPMPST) HASP MPS TBL

01/88 97

The table pairs that are used to point to the initialization option tables and the initialization state-
ment tables are located in the $MCT # There is one table for the initialization options and one for
the initialization statements. The $MCT field for installation tables for initialization options is
MCTOPTTU,; for the installation tables for the initialization statements the field is MCTMPSTU.
If you want to link-edit a table with JES2 you must name the table USEROPTT for initialization
options and USERMPST for initialization statements. The installation table would then need to
be link-edited with HASJES20. The JES2-defined options and statements are pointed to from the
$MCT using the MCT and table names as shown on the foil. '

8 Initialization option examples: COLD, NOREQ, WARM. Initialization statement examples: PRT,
MASDEF.

Examples of Table Pairs 107



$SCAN Tables ...

o $SCAN tables (Related Control Blocks and Macros)...

= $SCANWA control block

A $SCAN Facility work area control block

A Contains fields required by $SCAN Facility process

A Interface control block between $SCAN Facility and all routines
it calls

01/88 98

The $SCANWA ($SCAN work area) control block is a work area for the $SCAN request. The
$SCAN facility can recursively call itself to process the input passed to it. At each invocation of
$SCAN, a new $SCANWA ($SCWA) is obtained to hold information to aid the facility in the
processing of the input. The $SCWA is the interface control block between the $SCAN facility
and all the routines that it calls, including the pre- and post-scan exit routines and the display exit
routine.

These exit routines will be given control pointing to the current $SCWA for this level of $SCAN.
There are three forms of $SCWAs:

1. Work $SCWAs
2. Back-up $SCWAs
3. Display $SCWAs

The work $SCW As are the control blocks that the exit routines will care the most about. We will
discuss more on this control block and its relationship with the exit routines later in “A JES2
$SCAN Table” on page 112.

108 A GUIDE User Group Presentation



Ty,

$SCAN Tables ...

¢ $§SCAN tables (Related Control Blocks and Macros)...

= $SCAN macro

A Generates calling sequence to the JES2 $SCAN facility

A Operands:

& SCAN= - type of scan requested

SET - take input and set specified
area

DISPLAY - based on input, display
specified area

SETDISP - take input, set specified
area and then display
specified area

,SINGLE - limit scan to single
parameter keyword

01/88

99

The $SCAN facility is invoked by using the $SCAN macro. This macro generates the calling se-
quence to the facility and insures that the required data is passed on the call. There are several
operands on this macro (all of which are documented in SPL: JES2 User Modifications and

Macros).

The first operand that we will discuss is the SCAN = operand. This operand indicates the type of
request the caller wishes the $SCAN facility to fulfill. There are many types of calls. Three of them

are:

SET indicates that the input should be processed and the validated input should be set into
fields specified by the $SCANTAB macro for the input being parsed. '

DISPLAY indicates that the input should be processed and the specified fields should be dis-
played using attributes specified in the $SCANTAB macro for the input being parsed.

SETDISP indicates that a set request should be done and then, within the same $SCAN call,
a display of the result should be done.

The optional second positional value that you can specify with SET, DISPLAY, or SETDISP is
SINGLE. This indicates that only one initialization statement or command (with possibly many
operands) may be processed on this invocation of the $SCAN facility.

Examples of Table Pairs

109



$SCAN Tables ...

¢ $SCAN tables (Related Control Blocks and Macros)...

» $SCAN macro...

A TABLES = - addr of table pair

A PARM= - addr of area to scan

A PARMLEN= - len of area to scan

A DISPOUT = - addr of output area

A DISPLEN= - len of output area

A DISPRTN= - addr of output display routine

A CALLER= - caller identifier limits tables that will be searched

01/88 100

In addition to the SCAN = operand, there is the TABLES = operand. This operand points to the
table pair in the SMCT where the $SCAN facility is to start looking for table elements that match
the input that is encountered. This need not specify a table pair in the SMCT. However, the only
other location where a table pair can reside is in the $UCT.

The PARM = operand points to the input that the $SCAN facility is to process. This parameter
input area is required to contain the entire input plus one blanked out byte. The PARMLEN =
operand specifies the length of the input plus one for the blanked out byte. Thus, if an 80-byte
buffer area holds the input, and the input is only 40 bytes in length (not including the last blanked
out byte), then the PARM = will point to the beginning of the buffer area and the PARMLEN =
is set to 41 (includes the last blanked out byte).

The DISPOUT = operand points to the area where $SCAN facility generated display text is to be
placed. DISPLEN specifies the length of the display area and DISPRTN = specifies the display
routine that will get control to display the display area. The $SCAN facility does not issue any sort
of display of the specified area; this is up to the routine specified in the DISPRTN field. Also note
that DISPOUT =, DISPLEN =, and DISPRTN = are not required. However, if the $SCAN fa-
cility encounters an error, the diagnostic message it normally builds (using DISPOUT, DISPLEN,
and DISPRTN) will not be built. Therefore, if you want to see diagnostic messages, these three
display-oriented operands should be specified even for SCAN = SET calls.

The CALLER = operand is a means to specify or clarify environmental type of information on the
$SCAN call. It is possible for you to code two tables for the same keyword that $SCAN should
use at different times, one for initialization and one for command time, for example. Thus, a
CALLER = operand is provided on the table (as we will show shortly). When the $SCAN facility
1s invoked with CALLER = specified on the $SCAN macro, this “caller id” is used to match the
table element. Therefore, different control blocks can be specified for the same keyword so that the
correct location is processed for the sets and displays. We will describe this operand further in “A
JES2 $SCAN Table” on page 112.

110 A GUIDE User Group Presentation



$SCAN Tables ...

¢ $SCAN tables (Related Control Blocks and Macros)...

» $SCANTAB macro

A Builds $SCAN tables and entries

A Maps $SCAN table entries

01/88 101

Just as there were table creating macros for the PCE Tables, DTE Tables, TID Tables, and WS
tables, there is a $SCANTAB macro to aid in creating $SCAN tables. This macro builds both the
JES2 and installation tables and table elements. This macro also contains the mapping macro for

the $SCAN tables and elements. We will describe this macro and its operand more thoroughly
shortly.

Examples of Table Pairs 111



A JES2 $SCAN Table

$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)

HASPMPST SSCANTAB TABLE=HASP
$SCANTAB NAME=...

$SCANTAB NAME=RECVOPTS,
V MSGID=846,
CONV=SUBSCAN,
SUBSCAN=MCTRCVTP,
CB=C TEMP,RVSILNG),
PRESCAN=C PREDRECV,DISPLAY),
PSTSCAN=CPSTRECV, SET),
CALLER=C$SCIRPL , $SCIRPLC,
$SCDCMDS , $SCSCMDS >

$SCANTAB NAME=...

$SCANTAB TABLE=END

01/88 102

The figure above illustrates what the $SCAN tables for JES2 main parameter statements (initial-
ization statements) look like. The table element shown represents the table element for the
RECVOPTS initialization statement. This is the table that is passed to the $SCAN facility during
JES?2 initialization to process the initialization statements. Notice that the name of the $SCAN
table is HASPMPST, the same as that specified for the V-type address constant in the $SMCT.

The following describes each of the operands on this table element as well as some other table el-
ements. However, there are several additional operands that will not be covered. You should re-
view the $SCANTAB macro and SPL: JES2 User Modifications and Macros for a description
of all the operands that you may specify on the $SSCANTAB table element.

112 A GUIDE User Group Presentation



Aamam,

$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= $SCANTAB TABLE=HASP - invoke $SCANTAB macro to
build JES2 $SCAN table

= $SCANTAB - invokes $SCANTAB macro to build $SCAN
table entry

A NAME = - name of scan keyword being defined

A 1 - 8 characters

A MSGID= - specifies 3-digit identifier for $HASPnnn message
when $SCAN processing DISPLAY request

01/88 103

The JES2 $SCAN tables, like the preceding tables, are started by specifying "TABLE = HASP".
This indicates to JES2 that this table is a JES2 table. You would specify "TABLE= USER’ to
indicate that the table is an installation-coded table. Specifying whether it is a JES2 or installation
table determines default values for the CALLER and SUBSCAN $SCANTAB operands. We will
discuss these operands later. Specifying TABLE = HASP or TABLE = USER is the means JES2
provides to indicate the start of the table (TABLE =START) as discussed in “Concepts” on page
6.

When the $SCANTAB is specified with operands other than TABLE =, the macro generates a
table element. In the example above, the table element that is generated is for the RECVOPTS
initialization statement.

The NAME = operand specifies the 1-8 character name of the initialization parameter or operand.
In its processing, the $SCAN facility scans the input passed to it from left to right, isolating the
keywords that it encounters. The isolated keyword is then used as a matching criterion when
searching through $SCAN table elements. It is the value specified for this NAME operand that
$SCAN uses when attempting to match the isolated keyword.

The MSGID opérand specified a three-digit message identifier that is appended to the end of
$HASP to use for display requests involved with this keyword. This operand is only honored at
the highest level of the keyword, the initialization statement name. In the example, for the initial-
ization statement RECVOPTS, the message identifier that is used to respond to display requests is
846. Thus, the message identifier would be: $HASP846.

Examples of Table Pairs 113



$SCAN Tables ...

® $§SCAN Tables (Examples - JES2)...

= $SCANTAB - table entry...
A CONV= - specifies type of conversion to do for keyword input
A CHAR»00 where

A - alphabetic (A-2)

N - numeric (0-9)

(%]

- special ($, @, #)

F - first character alphabetic

~

- first character alphabetic or special

01/82 ivé

The conversion operand specifies the type of conversion to do with the keyword input. There are
several valid values that this operand can take. The first is CHARxxxx. CHARxxxx specifies what
the valid characters are that may be specified in the input, where xxxx indicates five valid types:

1. A - indicates that the input must be alphabetic.

2. N - indicates that the input must be numeric.

3. S - indicates that the input must be a special character.

4. F - indicates that the first character in the input must be alphabetic.

5. J - indicates that the first character in the input must be alphabetic or special.
Therefore, in the following examples:

e CHARIJNAS - indicates that the first character in the input must be alphabetic or special and
the rest of the input can be alphabetic, numeric, or special character (e.g., A$$$89A).

e CHARFNA - indicates that the first character in the input must be alphabetic and the rest of
the input can be numeric or alphabetic. Special character input is not permitted. (e.g.,
A998AB99)

e CHARA - indicates that only alphabetic input is permitted.
¢ CHARN - indicates that only numeric input is permitted.

L4 etc.

114 A GUIDE User Group Presentation



$SCAN Tables ...

® $SCAN Tables (Examples - JES2)...

= $SCANTAB - table entry...
A CONV=_..

& FLAG - keyword represents a flag value, flag set as per VALUE
operand (see Mods and Macros)

4 ALIAS - keyword alias of other keyword as per SCANTAB=
operand

4 VECTOR - keyword represents a vector of values

& SUBSCAN - keyword requires another level of scan using
tables as per SCANTAB = operand

A NUM - keyword is numeric value

& HEX - keyword is hexadecimal

01/88 105

CONV=FLAG indicates that the input is a flag value. This value is then processed as the
VALUE = operand indicates on the $SCANTAB. If CONV =FLAG is specified, the VALUE =
operand is required. See SPL: JES2 User Modifications and Macros for additional information.

CONV = ALIAS indicates that this keyword is an alias name of a real keyword. The $SCANTAB
table element that describes the real keyword is pointed to by the SCANTAB = operand on this
alias $SCANTAB table element. This is useful for creating alternate names for initialization state-
ments or operands. JES2 used this alias capability with the PRINTER, PRINTR, PRT initial-
ization statements in releases at the 2.2.0 level and previous.

CONV=VECTOR indicates that the input represents a vector or list of input. The
$SCANTAB(s) that describes this list of input is pointed to from the SCANTAB= operand. An
example of vector input is:

VOL=(SPOOL1, SPOOL2, SPOOL3)

CONV=SUBSCAN indicates that in order to process the rest of the input, the $SCAN facility
must issue a subscan or a recursive $SCAN call. The SCANTAB = operand, in this instance,
points to a $SCAN table pair (in the $MCT in JES2).

CONV = NUM indicates that the input is numeric in nature. The difference between this value and
CHARN is that with this value the number is converted to hexadecimal; with CHARN, the value

is character in format.
CONV = HEX indicates that the input is hexadecimal (e.g., 13EF3A).

In the JES2 example, the CONV=SUBSCAN indicates that processing the rest of the
RECVOPTS initialization statement after the RECVOPTS keyword is isolated will require a re-
cursive $SCAN call. The SUBSCAN = operand points to the $SCAN table pair that $SCAN uses
to process the operands of the RECVOPTS initialization statement.

Examples of Table Pairs 115




$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= $SCANTAB - table entry...

A SUBSCAN= - points to additional $SCAN tables

A if CONV=ALIAS - points to real $§SCAN table

A if CONV=VECTOR - points to $SCAN table(s) to defined Vector
input

A if CONV=SUBSCAN - points to $SCAN table pair

0i/88 106

As has been stated earlier, the SUBSCAN = operand points to additional $SCAN table elements
dependent upon the value of the CONV = operand. If CONV =ALIAS, the SUBSCAN operand
points to a $SCAN table element that contains the “real” keyword. If CONV =VECTOR, then
the SUBSCAN operand points to a table of Vector $SCAN tables. If CONV=SUBSCAN, the
SUBSCAN operand points to a $SCAN table pair. For JES2 CONV =SUBSCAN, the SUB-
SCAN operand points to a table pair in the SMCT. In the installation table, the SUBSCAN op-
erand would default to point to a table pair in the $UCT. With the MVS/SP JES2 2.2.0 release,
the SUBSCAN operand can point to a table pair located anywhere (A-type address constant or
V-type address constant).

In the JES2 example, the table pair that SSCAN uses to process the operands of the RECVOPTS
initialization statement is contained in the $MCT at label MCTRCVTP.

116 A GUIDE User Group Presentation



== N

$SCAN Tables ...

e $SCAN Tables (Examples - JES2)...

= $SCANTAB - table entry...
A CB= - specifies primitive control block known by $SCAN facility

£ HCT - JES2 HCT control block

& PCE - current PCE at time of $SCAN invocation

& DCT - scan DCTs to find match for NAME and DCTDEVN
& UCT - Installation UCT control block

A PARENT - use control block from previous $SCAN level

& TEMP - $GETMAIN area for size specified

01/88 ) 107

The CB = operand specifies the primitive control block that the $SCAN facility is to use to process
this $SCAN request. The $SCAN facility is set up to know a small number of basic control blocks.
These control blocks are:

1. HCT - the JES2 HCT control block.
2. PCE - the current Processor Control Element at the time of the $SCAN invocation.

3. DCT - a Device Control Table (DCT). This control block is found by calling the $DCTDYN
services which scans the DCTs comparing the NAME and DCTDEVN fields for a match.

4. UCT - the User Control Table (UCT) control block.

The $SCAN facility can also be told to use the control block that was found at the previous level
of $SCAN processing. Also, the facility will obtain a temporary area that can be used as a new
control block. This temporary area is freed upon completing this $SCAN request, so you will have
to code a POST $SCAN exit to SGETMAIN a permanent control block and copy the temporary
into it. If CB=TEMP is specified, a second positional operand must be specified that states the
size of the temporary control block to obtain. In the JES2 example, CB=(TEMP,RVSILNG), a
temporary control block is obtained that is RVSILNG in length.

Besides identifying these basic control blocks, the $SCAN facility can be told to do control block
indirection. Control block indirection is the ability to step from basic control blocks through a

series of other control blocks to find the control block to use to process a request. See the
CBIND= operand on the $SCANTAB macro in SPL: JES2 User Modifications and Macros.

Examples of Table Pairs 117




$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= §SCANTAB - table entry...

A PRESCAN= - name of routine to receive control prior to keyword
processing

A Can be used to find unique control block

& Do setup or complete processing for keyword

A PSTSCAN= - name of routine to receive control after keyword
processing

A Do completion processing unique to keyword

The PRESCAN = operand names a routine which will receive control prior to keyword processing.
The routine address is resolved with a V-type address constant if it is determined that the routine
is not in the same module as the $SCAN table element that references it. This pre-scan exit routine
is given control to do unique processing to find control blocks or do setup to let the $SCAN facility
complete its processing. It can also do all the processing for the keyword and pass an indicator that
the $SCAN facility is finished with this keyword.

The PSTSCAN= operand names a routine that will receive control upon completing keyword
processing. This routine address is resolved with a V-type address constant if it is determined that
the routine is not in the same module as the $SCAN table element that references it. This post-scan
exit routine is given control to do cleanup processing related to resources that may have been ob-
tained by a pre-scan exit routine. If CB=TEMP was specified, this routine can obtain a permanent
control block to place the result of the $SCAN.

We will discuss more about pre- and post-scan exits later. In the JES2 example, a pre-scan exit
routine was specified with a second positional operand of DISPLAY. This means that the pre-scan
exit routine PREDRECYV will receive control only for DISPLAY requests to the $SCAN facility.
The post-scan exit routine PSTRECYV will only receive control for SET requests since the second
positional operand indicates SET.

118 A GUIDE User Group Presentation



SR IN

$SCAN Tables ...

® $SCAN Tables (Examples - JES2)...

» §SCANTAB - table entry...

A CALLER - specify caller identifiers for those callers permitted to
access table entry

A $SCOPTS - JES2? init options (E.G., COLD, WARM, etc.)
A $SCIRPL - JES2 init commands

& $SCIRPLC - console issued init commands

A $SCDCMDS - display commands

& $SCSCMDS - set commands

A $SCDOCMD - short form of display for display commands

01/88 108

As was described on the $SCAN macro, the CALLER = operand is a way to indicate an envi-
ronmental influence over what $SCAN table element to choose to process a keyword. The
CALLER = operand on the $SCAN table element indicates what caller identifiers may access this
table element.

In the JES2 example, the valid callers to access this table include:

1.
2.
3

4.

JES?2 initialization statement processing,
JES2 initialization display and set requests from the console,
display commands, and

set commands.

In order to access this table the CALLER = operand on the $SCAN macro must be one of either
$SCIRPL, $SCIRPLC, $SCDCMDS, or $SCSCMDS.

Examples of Table Pairs 119




$SCAN Tables ...

o $SCAN Tables (Examples - JES2)...

RECVOPTS TYPE=ALL,COUNT=2,INTERVAL=24

o MCT
| MCTMPSTP
HASPMPST < DC  VCUSERMPST)
TABLE START —t
[+ R4 T
TABLE DEBUG
._I_——> MCTRCVTP
TABLE RECVOPTS BC  VCUSERRCVT)
TABLE END DC  VCHASPRCVT)

01/88 110

With the processing that has occurred so far, the $SCAN facility has taken the initialization state-
ment described above, isolated the RECVOPTS keyword, and found the $SCAN table element for
this keyword. This table element has told the $SCAN facility:

1.
2.

for display requests, use the message identifier 846 (MSGID=);

to complete processing for the operands on the statement a subscan (recursive $SCAN) call
must be done (CONV =);

to use the table pair located at label MCTRCVTP in the $SMCT (SUBSCAN =);
to obtain a temporary control block that is RVSILNG in length (CB=);

before processing the RECVOPTS keyword for display requests, call the PREDRECV pre-
scan exit routine (PRESCAN =),

after processing the RECVOPTS keyword for set requests, call the PSTRECV post-scan exit
routine (PSTSCAN=);

if the caller of the $SCAN facility is not from initialization or command time, don’t use this
table (CALLER =).

Now in order to process the operands of the RECVOPTS initialization statement, $SCAN uses the
tables at HASPRCVT.

120

A GUIDE User Group Presentation



pr-e=s N

$SCAN Tables ...

e $SCAN Tables (Examples - JES2)

RECVOPTS TYPE=ALL,COUNT=2,INTERVAL=24

HASPRCVT $SCANTAB TABLE=HASP

$SCANTAB NAME=TYPE,CB=PARENT,
FIELD=RVSNAME ,DSECT=RVS,
CONV=CHARA ,RANGE=(1,8)

$SCANTAB NAME=COUNT ,CB=PARENT,
FIELD=RVSLIM,DSECT=RVS,
CONV=NUM,RANGE=(1,99)>

$SCANTAB NAME=INTERVAL ,CB=PARENT,
FIELD=RVSINTV,DSECT=RVS,
CCONV=NUM,RANGE=(1,9999>

$SCANTAB TABLE=END

01/88 "1

The $SCAN tables that are pointed to by the RECVOPTS table element are shown above. These
tables describe the valid inputs for the RECVOPTS operands and to show where the input must
be placed and how it should be converted.

In order to fully explain what these table are doing, we will describe each operand below.

Examples of Table Pairs 121




$SCAN Tables ...

e $SCAN Tables (Examples - JES2)...

= $SCANTAB TABLE=HASP - invoke §SCANTAB macro to
build JES2 $§SCAN table

= §SCANTAB - invokes $SCANTAB macro to build §SCAN
table entry

A NAME = - name of scan keyword being defined

A CB= - use the control block located or obtained from previous
$SCAN level

A FIELD = - name and length of field associated with keyword value

A Length assumed based on assembler-defined length of field

A Length specified as second operand

01/88 112

Once again, this is a JES2 table, as signified by TABLE = HASP. If you wish to add or override
keywords described in this table, you would code a table USERRCVT with TABLE = USER and
fill in the address to the table in the MCT. We will describe this process more later.

The NAME = operand is the same at this second level of scan as it was for the first level of scan-
ning (i.e., for the RECVOPTS keyword). It indicates the one- to eight-character name of the
keyword that this table element defines. In this example, there are three keywords defined by this
table; TYPE, COUNT, and INTERVAL are defined by the $SCAN table elements.

The CB= operand indicates that the temporary area obtained at the previous level of scanning is
to be used as the control block. This is indicated by specifying CB=PARENT. ’

The FIELD= operand indicates the name and length of the field that is set or displayed for the
specified keyword. The length need not be specified if it defaults to its assembler-defined length.
Otherwise, specify the length as a second positional operand on this FIELD= operand (e.g.,
FIELD = (RVSNAME,8) where 8 is the length).

122 A GUIDE User Group Presentation



4 $SCAN Tables ...

e $SCAN Tables (Examples - JES2)...

s $SCANTAB - table entry...

A DSECT= - DSECT name to use to resolve FIELD = value

A If FIELD is absolute offset, DSECT should be 0

A CONV = - specifies type of conversion to do

& CHARA - data must be alphabetic (A-Z) only

& NUM - data must be numeric

01/88 ’ 13

In order to resolve the FIELD = offset, the DSECT that contains the field must be specified via
the DSECT = operand. If the FIELD is an absolute offset, then DSECT = 0 should be coded.

As was discussed earlier, the CONV = operand specifies the type of conversion for the input. The
two types of conversion in the example are CHARA and NUM. CHARA indicates that the input
can only be alphabetical in nature. NUM indicates that the input must be numeric.

Examples of Table Pairs 123




$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= $SCANTAB - table entry...
A RANGE = - allowed range for the input

& CHARxox - specifies length range

£ NUM, HEX, CHARN - specifies binary range

= §SCANTAB TABLE=END - indicates end of table

01/88 114

RANGE = indicates the allowed range for the input. If the CONV= operand indicates
CHARzxxxx, then the RANGE = operand-indicates the allowed length of the character input. If
the CONV = operand indicates NUM, HEX, or CHARN, then the RANGE = operand indicates
the allowed binary range of the input.

In the JES2 example, the first table entry contains CONV=CHARA and RANGE=(1,8). This
means that the character input cannot be greater than eight characters and not less than one char-
acter in length. With CONV=NUM and RANGE=(1,99), this means that the numeric input
cannot be less than one nor greater than 99.

TABLE =END, of course, indicates the end of this table.

124 A GUIDE User Group Presentation



SR T,

$SCAN Tables ...
® $SCAN Tables (Examples - JES2)...
RECVOPTS TYPE=ALL,COUNT=2,INTERVAL=24
1] MCT
| MCTMPSTP
HASPMPST < DC  VCUSERMPST)
TABLE START _l
TABLE DEBUG pe e >
TABLE RECVOPTS ‘——[———» mbcmz'(’USERRCVT)
TABLE END I7 DC  VCHASPRCTT)
o
HASPRCVT <
TABLE START
TABLE TYPE
TABLE COUNT
TABLE INTERVAL
TABLE END
01/88 115

At this point in the $SCAN facility processing, the RECVOPTS initialization statement can be fully
processed. *After finding the table for RECVOPTS and recursively calling itself, the $SCAN facility
completed the rest of the initialization statement by isolating the next keyword (TYPE), finding the
$SCAN table element that matched this keyword, and processing the input to this operand.

The table element indicated that the input must be alphabetic, which ALL is, and it must not be
less than one character and not greater than eight characters in length. Since the input passes these
checks, the input is put into the temporary control block using the RVSNAME field in the DSECT
RVS.

After completing the TYPE operand, the $SCAN facility continued with the COUNT operand.
This was done by isolating the keyword, finding the $SCAN table element that matched this
keyword, and processing the input to this operand.

The table element indicated that the input must be numeric, which COUNT is, and it must not
be less than one or greater than 99. Since the input passes these checks, the input is put into the
temporary control block using the RVSLIM field in the DSECT RVS.

After completing the COUNT operand, the $SCAN facility continued with the INTERVAL op-
erand. This was done by isolating the keyword, finding the $SCAN table element that matched this
keyword, and processing the input to this operand.

The table element indicated that the input must be numeric, which INTERVAL is, and it must

not be less than one or greater than 9999. Since the input passes these checks, the input is put into
the temporary control block using the RVSINTYV field in the DSECT RVS.

At this point processing is done with all of the operands of the RECVOPTS initialization state-
ment. Thus $SCAN exits this level of $SCAN processing and returns to the first (RECVOPTS)
level of processing. Since the request was a SET request and since the RECVOPTS table element
indicated that a post-scan exit routine must be given control, the post-scan exit PSTRECYV routine

Examples of Table Pairs 125



is given control to do some specific final processing (like obtaining a permanent control block, for
example).

126 A GUIDE User Group Presentation



More about Pre-Scan and Post-Scan Exits

$SCAN Tables ...

® $SCAN Tables (Examples - JES2)...

= More on PRESCAN and PSTSCAN exits

A Registers:

Reg Entry Exit

RO Token Unchanged

R1 @ of SCWA Unchanged or
Diagnostic Ptr

R2-R10 N/A Unchanged

R11 @ of $HCT Unchanged

R12 N/A Unchanged

R13 @ of $PCE Unchanged

R14 Return Addr Unchanged

R15 Entry Addr Return Code

01/88 116

Above are the register conventions that pre- and post-scan exit routines can expect on entry. Before
JES2 release 2.2.0, register 0 was undefined upon entry; with 2.2.0, register 0 has the token specified
via TOKEN = on the $SCAN invocation. Register 1 contains the address of the $SCAN work area
($SCWA). From this work area, the exit routine is capability of obtaining the values of key fields.
We will document these fields shortly.

Registers 11, 13, 14, and 15 follow the normal JES2 $EXIT type of register conventions:

[ ]

Registcr 11 contains the address of the $HCT.

Register 13 contains the address of the PCE (Processor Control Element) for the processor in
control at the time of the $SCAN request.

Register 14 contains the return address.

Register 15 contains the entry point address of the exit routine.

The registers that may be set from these pre- and post-scan exit routines also follow normal con-
ventions. Register 1 can contain the address of a diagnostic phrase. This register is interrogated for
this diagnostic phrase if the return code in register 15 indicates so. Next, we describe the valid
values for register 15.

Examples of Table Pairs 127



$SCAN Tables ...

e $SCAN Tables (Examples - JES2)...

= More on PRESCAN and PSTSCAN exits...
A Valid Return Codes from Pre-scan Exit

A 0 - Continue as normal

A 4 - Terminate $SCAN, restore data areas (R1 is address of
Cl2’reason code’, AL1(diagnostic length),C'diagnostic
message’

A 8 - Pre-scan exit routine processed keyword scan and reset
SCWA

A 12 - Pre-scan exit routine encountered error condition in which
stmt requests access to uninitialized fields - makes sense only
for DISPLAY related requests only

01/88 17

From the pre-scan exit routine, the routine can specify four different return codes in register 15.
Remember that pre-scan exit routines are given control after isolating the keyword from the input
and finding the appropriate $SCAN table element. Exit routines are given control before any
$SCAN facility processing of the keyword.

128

The 0 return code indicates that the exit routine successfully completed whatever processing
it was expected to do and that the $SCAN facility should continue and process the keyword.
This processing may include recursive $SCAN calls.

The 4 return code indicates that some sort of error was detected and that the $SCAN facility
should terminate processing. Part of termination processing for the $SCAN facility is to re-
store any fields that the $SCAN facility may have altered. Also, the $SCAN facility assumes
that register 1 contains the address of a diagnostic phrase. The diagnostic phrase consists of
three sections that are assumed contiguous. These sections are:

=  atwo-byte reason code (specified in character form - e.g., CL2°43")
= aone-byte length of a diagnostic message (specified in hex - e.g., AL1(23))
= a diagnostic message (specified in character form - C’'msg text...")

The 8 return code indicates that the pre-scan exit routine did all the processing for the keyword
and that the $SCAN facility should continue with the next keyword at this level.

The 12 return code indicates that the pre-scan exit routine determined that the field to be al-
tered is not available and that $SCAN processing should be terminated. This return only
makes sense for DISPLAY related requests. If a display request is made, for instance, at a time
before the item to be displayed has been set, then the display is impossible and the request
should be terminated. As part of this termination, the $SCAN facility will issue an internal
diagnostic phrase in the format defined just above.

A GUIDE User Group Presentation



$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= More on PRESCAN and PSTSCAN exits...

A Valid Return Codes from Postscan Exit

4 0 - Continue as normal

4 4 - Terminate $SCAN, restore data areas (R1 is addr of
CL2reason code’ AL 1(diagnostic length),C’diagnostic
message’

01/88 118

From the post-scan exit routine, the routine can specify two different return codes in register 15.
Remember that post-scan exit routines are given control after all the processing for the keyword
as completed. It is usually taken to “harden” control blocks (obtain permanent copies of the con-
trol block).

e The 0 return code indicates that the exit routine successfully completed whatever processing
it was expected to do and that the $SCAN facility should continue with the next keyword.

e The 4 return code indicates that some sort of error was detected and that the $SCAN facility
should terminate processing. Part of terminate processing for the $SCAN facility is to restore
any fields that the $SCAN facility may have altered. Also, the $SCAN facility assumes that
register 1 contains the address of a diagnostic phrase. The diagnostic phrase consists of three
diagnostic phrase sections that are assumed contiguous. These sections are:

= atwo-byte reason code (specified in character form - e.g., CL2'43")
= aone-byte length of a diagnostic message (specified in hex - e.g., AL1(23))

= a diagnostic message (specified in character form - C'msg text...")

Examples of Table Pairs 129



$SCAN Tables ...

e $SCAN Tables (Examples - JES2)...

" =« More on PRESCAN and PSTSCAN exits...
A $SCWA fields of interest to PRE and PST SCAN exits

A SCWASTAB - addr of $SCANTAB currently processing
& SCWACBAD - addr of control block, if known, for keyword

& SCWACNTR - field only useable by PRE and PST SCAN exit
routines

& SCWAEXFL - flag byte available only to PRE and PST SCAN
exit rtns

A SCWARLEN - len of remaining input to scan

01/88 119

As stated earlier, the $SSCAN work area (§$SCWA) for the current level of scanning is passed to pre-
and post-scan exit routines. There are a few fields that may be of interest to the pre- and post-scan
exits. These fields are:

SCWASTAB - this field contains the address of the $SCAN table element for the current
keyword that is being processed.

SCWACBAD - this field contains the address of the control block that the $SCAN facility
determined was specified in the $SCAN table element (after any control block indirection
(CBIND) has been applied). This field may be zero only if CONV =SUBSCAN has been
specified in the table element. If the pre-scan exit finds this field zero and the CONV = op-
erand is not equal to SUBSCAN, then the pre-scan exit routine should find the appropriate
control block and set its address in this field

SCWACNTR - this is a fullword field that is available to pre- and post-scan routines only.
The $SCAN main line facility will not use it. You can use it to save an incremental value
within a loop (e.g., PRT(1-8)) or to hold an address that is determined in a pre-scan exit rou-
tine.

SCWAEXFL - this is a flag byte that is reserved for use by pre- and post-scan routines only,
like the fullword field SCWACNTR. Currently, the four high-most bits are reserved for JES2
(X’11110000") and the four low bits are reservez__c,_l for installations (X’00001111).

SCWARLEN - this is a field that contains the length to scan of the remaining input. Pre- and
post-scan exit routines can use it so that if these routines need to do some scanning of their
own, they will be able to determine where the ending value is.

The JES2 pre- and post-scanning exit routines are located in module HASPSXIT.

130

A GUIDE User Group Presentation



o

=

Move about Display Routines

$SCAN Tables ...

® $SCAN Tables (Examples - JES2)...

= More on Display Routines

A Registers:

Reg Entry Exit

RO token Unchanged

R1 @ of SCWA Unchanged or
Diagnostic Ptr

R2-R10 N/A Unchanged

R11 @ of $HCT Unchanged

R12 N/A Unchanged

R13 @ of $PCE Unchanged

R14 Return Addr Unchanged

R15 Entry Addr Return Code

01/88 120

The display exit routine that is specified on the DISPRTN = operand of the $SCAN macro (the
invoking macro of the $SCAN facility) has an interface with the $SCAN facility very similar to the
pre- and post-scan exit routines. It is called whenever the $SCAN facility determines that a line
of text (DISPOUT) is filled. This output area may contain the results of a display request or of a
diagnostic error message.

Before JES2 release 2.2.0, register 0 was undefined upon entry; with 2.2.0, register 0 has the token
specified via TOKEN= on the $SCAN invocation. Register 1 on entry to the display routine
contains the address of the current $SCAN work area ($SCWA). On exit from the display routine,
this register can contain a pointer to a diagnostic phrase. We will describe this shortly. Registers
11, 13, 14, and 15 follow the normal JES2 register conventions:

e Register 11 contains the address of the $HCT.

e  Register 13 contains the address of the Processor Control Element (PCE) that is in control for
the $SCAN request.

e  Register 14 contains the return address.

e  Register 15 contains the entry address of the display routine. On exit, Register 15 will contain
a return code.

Examples of Table Pairs 131



$SCAN Tables ...

© $SCAN Tables (Examples - JES2)...

= More on Display Routines...

A Valid Return Codes from Display Routines

A 0 - Display area displayed, continue
& 4 - Display not supported

& 8 - Display routine error, restore data areas (R1 is addr of
CL2’reason code’ AL1{diagnostic length),C’diagnostic
message’

01/88 121

The valid return codes from the display routine are:

132

0 - The display area has been displayed. Continue $SCAN facility processing. Note that to
continue $SCAN facility processing may be in fact to terminate the facility. This would occur
if the display routine was given control to issue a diagnostic message. The following foil will
explain this further.

4 - The display routine determined that it was not able to issue the display under the current
conditions. In this case, the $SCAN facility will throw the current display line information
away.

8 - The display routine experienced an error in issuing the display. Register 1 contains a
pointer to a diagnostic phrase. The diagnostic phrase consists of three diagnostic phrase
sections that are assumed contiguous. These areas are:

=  atwo-byte reason code (specified in character form - e.g., CL2°43")
=  a one-byte length of a diagnostic message (specified in hex - e.g., AL1(23))

=  a diagnostic message (specified in character form - C'msg text...")

A GUIDE User Group Presentation



=N

$SCAN Tables ...

¢ $SCAN Tables (Examples - JES2)...

= More on Display Routines...

A $SCWA fields of interest to Display Routines

& SCWADOUT - addr of display output area
& SCWADLEN - length of display output area
.. SCWARTCD - possible scan errors

0 - SCAN ok, issue display
4 - Obsolete parm

8 - Non-supported keyword
12 - Internal $SCAN error

01/88 122

On entry to the display routine, the current SCWA ($SCAN work area) is passed in register 1. This
SCWA will contain three fields of interest to the display routine:

1.

SCWADOUT - will contain the address of the display output area. This is the same output
area that was specified on the $SCAN macro call on the DISPOUT = operand.

SCWADLEN - will contain the length of the display output area in a half word field. This is
the same length that was specified on the $SCAN macro call on the DISPLEN = operand.

SCWARTCD - will contain the return code in a halfword field with which the $SCAN facility
1s currently working. This field will aid the display routine to determine if it has been given
control to process the results of a display request or to process a $SCAN facility diagnostic
message. The possible return code values are:

e 0 - The $SCAN processing is okay, the display routine has been given control to issue the
results of a display request.

e 4 - The $SCAN facility has encountered an obsolete parameter (as determined from the
$SCAN table element - see SPL: JES2 User Modifications and Macros for the
$SCANTAB macro). The display routine has been given control to issue a diagnostic
message.

¢ 8- The $SCAN facility has encountered a non-supported keyword. This means that some
input was passed to the $SCAN facility and the facility could not locate a $SCAN table
element that matched the input. The display routine has been given control to issue a
diagnostic message.

e 12 - The $SCAN facility has encountered an internal $SCAN error situation and is ter-
minating the $SCAN request. The display routine has been given control to issue a di-
agnostic message.

Examples of Table Pairs 133



An Installation $SCAN Table

$SCAN Tables ...

¢ $SCAN Tables (Examples - Installation)

= Objective:

A Create additional operand

A Use $SCAN facility table installation extensible function

= Function:

_ A Provide the support necessary on the OFFn.STn so that operator
can specify and alter the TRKGRP value in support for the
TRKGRP work selection criterion.

= This is one scheme to complete this objective, others exist

01/88 123

In order to show how you would specify $SCAN tables, the remaining description of the $SCAN
tables will step through creating an installation-defined operand to the Offload Sysout Transmitter
(OFFn.ST) initialization statement and command.

Objective

Previously in this discussion, a work selection criterion was added to the Offload Sysout Trans-
mitter to allow selecting work based on the amount of spool space that had been allocated to a job.
This work selection criterion was called TRkgrp, where only TR need be specified and an alias
value of TG could be used. In the work selection table element for this criterion, the value $#GET
would use to compare with was the JQE field JQETGNUM and the DCT field DCTUSERO. This
example will show how to add an operand to the OFFn.ST initialization statement and command
that would permit the operator to set a threshold limit in the DCTUSERO field.

To achieve this, you will add an installation table element to the OFFn.ST list of operands. The
following documents the pieces required, the coding of the table element, and the required code to
“plug” the table in. This is one scheme to achieve the statement objective; others do exist.

134 A GUIDE User Group Presentation



peresN

Required Pieces

$SCAN Tables ...

e $SCAN Tables (Examples - Installation)...

= Pieces consist of:

Exit 0

USER SCAN TABLE

01/88 124

To achieve the objective, you will need to code two pieces. These pieces are:

1.

Exit 0

As was discussed in “Concepts” on page 6, there are two ways to link the installation table
with JES2.

a. The first of these is to link-edit the installation $SCAN table with the HASJES20 load
module. This requires the name of the installation table be USEROSTT. This name
was found by searching the SMCT for the table pair that matches the operand list table
pair for the OFFn.ST initialization statement.

b. If you do not wish to link-edit the installation $SCAN table USEROSTT, then you must
fill in the address of the installation $SCAN table into the $MCT field MCTOSTTU.
This is the second method. This method requires that you fill in the address of the table
in the $MCT before invoking the OFFLOAD SYSOUT transmitter to access the
DCTUSERO field to initialize it. Depending on when you will use the transmitter, you
may fill in the address early in initialization or after JES2 is up and running.

In this example, you will fill in the address of the $SCAN table early in initialization, specif-
ically in Exit 0. Therefore, you require an Exit 0 that will load your module (if not already
loaded) and resolve the address of the table.

User $SCAN Table

You will have to code a $SCAN table which includes the table element for the operand. We
will describe the installation table element in a step-wise fashion below.

Examples of Table Pairs 135



Coding the Installation $SCAN Table

$SCAN Tables ...

e $SCAN Tables (Examples - Installation)...

= Table and Operands:
A Name of keyword is TRKGRP
A NAME = TRKGRP
A Minimum length of keyword is TR
A MINLEN=2
A Field where value is set is DCTUSERO with length of 2

A FIELD =(DCTUSERO,2)

01/88 125

The name of the Offload SYSOUT transmitter operand is TRKGRP to match the work selection
criterion created in the Work Selection Installation example. This is the name that the operator
will specify to set the threshold value. Therefore, the NAME = operand is set to TRKGRP.

Like the work selection criterion, the minimum length that the operator will have to specify for this
operand is two characters. Therefore, the MINLEN = operand is set to 2.

The field that was used as the device.control block for the work selection criteria was DCTUSERO.
Therefore, this $SCAN initialization operand will have to set this field. Since the JQETGNUM
field that is being used as the comparing operand is only two bytes, the length of the DCTUSERO0
full word field is only two bytes. This is specified by coding the length second positional operand
on the FIELD operand. Therefore, the FIELD = operand is set to (DCTUSERDO0,2).

136 A GUIDE User Group Presentation



F

$SCAN Tables ...

¢ $SCAN Tables (Examples - Installation)...

= Table and Operands...
A Field DCTUSERO in DSECT DCT
& DSECT=DCT
A Value of field is numeric
2 CONV=NUM
A Valid range of numeric data is 0 to 32,767

& RANGE = (0,32767)

01/88 126

The DCTUSERO field that is set is located in the DCT DSECT. Therefore, the DSECT = oper-
and is set to DCT.

The conversion value that we specify for this operand is numeric, thus, the CONV = operand is
set to NUM.

Since the maximum amount of spool space that can be allocated to a job must fit in a halfword field
in the JQE, the maximum threshold value is 32,767. If there may be circumstances where all jobs
need to be selected, the minimum value is set to 0 (it would make more sense to remove the
TRKGRP criterion from the work selection list to achieve this end). Therefore, the RANGE =
operand is set to (0,32767).

Examples of Table Pairs 137



$SCAN Tables ...
o §SCAN Tables (Examples - Installation)...
0 McT
l MCTMPSTP
HASPMPST < DC  VCUSERMPST)
TABLE START __I
DC  VCHASF bl
TAELE DEBUG MCTOSTTP
TABLE OFFST —-—J——> DC  VCUSEROSTT)
TABLE END l DC  VCHASPOSTT)>
0
HASPOSTT
TABLE START
TABLE STATUS
TABLE DISP
TABLE DSN
TABLE END
01/88 127

In order to set the CB= operand, you must look at the existing table structure and determine where
the revised table structure will fit. Currently, there is a higher level table that contains the $SCAN
table elements for the Offload devices. This table element specifies a Control Block of DCT so that
the proper DCT for this device is located by the $SCAN facility. Also, this higher level table ele-
ment  indicates that the operands are included in a lower level table
(CONV=SUBSCAN,SUBSCAN=MCTOSTTP). It is at this lower level, preceding the JES2
table of Offload SYSOUT Transmitter operands, that the installation table is placed. Therefore,
the control block that is wanted at this lower level has been found by the higher level, the parent
level.

138 A GUIDE User Group Presentation



( $SCAN Tables ...

¢ §SCAN Tables (Examples - Installation)...

= Table and Operands...

A Use the control block (DCT) addr from the previous $SCAN level

A CB=PARENT

A Allow altering during init and command time

& CALLER = ($SCIRPL, $SCIRPLC, $SCDCMDS, $SCSCMDS)

01/88 128

Since the control block is located at the parent level, specify the CB = operand as PARENT so
$SCAN uses the device DCT.

A CALLERsS identifier list is specified to allow altering this operand during JES2 initialization and
JES2 command time processing.

Examples of Table Pairs 139



Resulting $SCAN Table

$SCAN Tables ...

¢ $SCAN Tables (Examples - Installation)...

USEROSTT $SCANTAB TABLE=USER

TRKGRP  $SCANTAB NAME=TRKGRP,
MINLEN=2,
FIELD=CDCTUSERO,2),
DSECT=DCT,
CONV=NUM,
RANGE=(0,32767),
CB=PARENT,
CALLER=C$SCIRPL , $SCIRPLC,

$SCDCMDS, SSCSCMDS>

$SCANTAB NAME=TG,
CONV=ALTIAS,
SCANTAB=TRKGRP

$SCANTAB TABLE=END

01/88 129

The figure above shows the resulting installation $SCAN table to add an operand to the Offload
SYSOUT Transmitter initialization statement and command. Note that the name of the table is
USEROSTT, so that if you wished to link-edit this table with HASJES20, the table address would
be placed in the SMCT by the linkage editor. The table is begun with a TABLE = USER to tell
JES2 that this is an installation table. The name of the operand is TRKGRP although the operator
need only specify TR. The field that is set is the first two bytes of the fullword field DCTUSERO
located in the DSECT DCT. The conversion for the input is numeric and the numeric value can-
not be less than 0 nor greater than 32767. The address of the DCT is propagated down from the
parent level of $SCAN. Both JES2 initialization and JES2 command time processing may reference
this table element.

An additional table is shown to provide an example of specifying an alias name for the TRKGRP
operand. This table element simply indicates the name of the alias as TG (to match the work se-
lection criteria). This table element is known to be an alias (indicated by the CONV = ALIAS) of
the TRKGRP table element since the alias table element points to the TRKGRP element via the
SCANTAB operand specifying the TRKGRP table element name of TRKGRP.

Finally, the table is ended with a TABLE = END to indicate to JES2 that this installation table is
completed.

140 A GUIDE User Group Presentation



$SCAN Tables ...
® $SCAN Tables (Examples - Installation)...
[} <—‘ MCT
HASPMPST mmmswUSERDPST
< V¢l bl
TABLE START
—_I———-— DC  VCHASPMPST)
TABLE DEBUG MCTOSTIP
B >
TABLE OFFST —’_ DC VCUSEROSTT)
TABLE END l DC VCHASPOSTV)
TABLE START
TABLE TRKGRP
TABLE END
HASPOSTT <
TABLE START
TABLE STATUS
TABLE DISP
TABLE DSN
TABLE END
01/88 130

The resulting table configuration is shown in the figure above. The higher level $SCAN table ele-
ment for the Offload SYSOUT Transmitter points to the MCTOSTTP table pair. The first entry
in this table pair will point to the installation table USEROSST which contains the installation-
added operand TRKGRP. The second entry in this table still points to the JES2 table
HASPOSTT which contains the JES2 operands. In this way, you have added an operand on the
OFFn.ST initialization statement and command.

Examples of Table Pairs 141



Coding the Other Required Pieces

$SCAN Tables ...

® $SCAN Tables (Examples - Installation)...

= Required Pieces...
A Installation $SCAN Table
A Defined as above
A Exit0

A Obtain $UCT and place address in $HCT
A Initialize the $UCT

A Place Installation $SCAN table addr in field MCTOSTTU in
$MCT in HASPTABS module

01/88 131

The pieces required to permit you to add an operand are the installation $SCAN table (as coded
above) and the code for Exit 0. The Exit 0 code is required to do three things:

1. It must obtain the $UCT and place the $UCT’s address in the $HCT.
2. It must initialize the SUCT.

3. Finally, it must place the installation $SCAN table address in the MCTOSTTU field in the
$MCT in module HASPTABS.

The code that is contained in “Appendix A. Table Pairs Coding Example” on page 147 is the code
as you would be required to code it. This code includes:

1. Exit 0 that obtains the $UCT, places the $UCT address in the $HCT, initializes the $UCT,
and places the installation $SCAN table address in the $MCT.

2.  The HASPXJ00 module contains, among the other items previously discussed, the $SCAN
table.

142 A GUIDE User Group Presentation



BTN,

$SCAN Tables ...

o $SCAN Tables (Examples - Installation)...

» $SCAN JES2 Tables located in HASPSTAB module

A DO NOT BE AFRAID TO USE THEM FOR EXAMPLES

01/88 132

The JES2 $SCAN tables are located in the module HASPSTAB. It is more than likely that there
is an example in these tables that will aid you in attempting to code your first few tables. Do not
hesitate to use the JES2 $SCAN tables as an example. Also, use SPL: JES2 User Modifications
and Macros. This book contains a thorough description of the $SCAN related macros and also
contains a $SCAN section that makes for useful reading.

Examples of Table Pairs 143




THIS PAGE INTENTIONALLY LEFT BLANK

144 A GUIDE User Group Presentation



GEeay,

Conclusion

Conclusion

e Table Pairs provide the capability to modify JES2
processing without modifying source.

® Table Pairs very pervasive throughout JES2.

® Require less detailed knowledge of JES2 than needed
for some exit points.

o JES?2 still has a lot more to do, but direction clear.

01/88 133

Hopefully you now know that table pairs provide the capability to modify JES2 processing without
modifying JES2 source. Through the ability to add, change, and even delete JES2 processors,
subtasks, trace identifiers, work selection criteria, and initialization statements, you have an ex-
tremely powerful tool to tailor the JES2 component to match local needs.

Since the majority of uses for table pairs will be for adding, changing, and deleting initialization
statements and operands (and, to a lesser extent, trace identifiers and work selection criteria), there
is less need to have a detailed knowledge of JES2 than is required for exit coding.

However, this is not true when you need to add JES2 processors and subtasks. In this case the
systems programmer will need to understand JES2 environments, dispatching, etc., to make use of
these tables. However, this is not more than what a systems programmer needs to know to code a
JES2 exit and the ability to add these processors and subtasks provides extremely powerful function.

Clearly, JES2 design attempts to provide an interface whereby you can tailor the JES2 product to
meet business needs in a way that will not impact an your ability to migrate to newer releases of
JES2. Although much more is needed in this area, with the use of table pairs you have a workable
method to do this tailoring without the need to modify IBM-supplied JES2 source code.

Conclusion 145




THIS PAGE INTENTIONALLY LEFT BLANK

146 A GUIDE User Group Presentation




=N

Appendix A. Table Pairs Coding Example

This coding example implements an installation security processor. It is made up of a JES2 in-
itialization exit 0 and a user extension module named HASPXJ00 which contains the installation
security processor, the installation security subtask, and the installation PCE, DTE, trace, work
selection, and $SCAN tables. The example includes sample mapping macros $SCYWORK,
$SCDWORK, and $UCT, and the macro $USERCBS which invokes the mapping macros.

Note: This code is provided as an example of installation extensions to JES2. The code is not Type
1 supported code of IBM; it is not APARable.® A few tests were run using JES2 at the 2.1.5 level.

The examples are inter-related to show how the tables can be used together. This is not required.
That s, it is not necessary to code a PCE table (create your own processor) and code a DTE table
(create your own subtask). In fact, it may make no sense for certain applications to design inter-
related tables. Our example was contrived to show what can be done, not necessarily what should
be done.

There are six pieces required for the example used in this presentation.

e HASPXIJ00 - Installation extension code and tables that are required to create an installation
security processor, security subtask, trace id, work selection criteria on the offload sysout
transmitter work selection list, and an additional operand on the offload sysout transmitter.

¢ $UCT - contains required fields for table generation
¢ $SCDWORK - subtask DTE extension to hold fields specific to a security subtask
e $SCYWORK - processor PCE extension to hold fields specific to a security processor

e  SUSERCBS - control block that actually generates the above macros. This control block is
known by $SMODULE and is the way to get SMODULE to generate installation control
blocks.

e HASPXITO - Exit 0 module that contains EXITO0. This exit initializes the SMCT with the
addresses of the installation tables located in HASPXJ00.

9 However, we do encourage you to use the Reader Comment Form in the back of this document to tell
us about any problems you find. .

Appendix A. Table Pairs Coding Example 147




SUSERCBS - Generates User Control Blocks

MACRO -- $USERCBS - USER CONTROL BLOCK DSECT 00100000
$USERCBS 00200000
JE36I6IEIEIEIEIIIEIIIIEII NI I IIINIEI I IIIIEIIINIIINII I IO % 00500000
%* * 00600000
%* $USERCBS - USER CONTROL BLOCK DSECT % 00700000
%* % 00800000
% FUNCTION: * 00900000
E % 01000000
%* THIS DSECT IS KNOWN BY $MODULE AND WILL BE USED TO GET ALL % 01100000
* INSTALLATION CONTROL BLOCKS EXPANDED WITHOUT HAVING TO % 01200000
%* MODIFY THE $MODULE MACRO. % 01300000
% % 01400000
% USED BY: % 01500000
%* * 01600000
%* ALL INSTALLATION MODULES TO GENERATE ALL INSTALLATION * 01700000
%* DEFINED CONTROL BLOCKS. FOR DETAILS ON THE FOLLOWING % 01800000
%* DATA, SEE THE INDIVIDUAL CONTROL BLOCK DSECTS. % 01900000
%* % 02000000
%* CREATED BY: N/A FREED BY: N/A % 02100000
* % 02200000
%* SUBPOOL: N/A KEY: N/A % 02300000
%* % 02400000
* SIZE: N/A COMPONENT ID: CODE EXAMPLE %* 02500000
%* % 02600000
% POINTED TO BY: N/A % 02700000
* % 02800000
%* FREQUENCY: N/A % 02900000
%* % 03000000
ES RESIDENCY: N/A % 03100000
% % 03200000
%* SERIALIZATION: N/A % 03300000
%* % 03400000
%* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 * 03500000
%* * 03600000
F6IEIEIEIEIEIIEIIENIIIEIEIINIENN IR INIIIEIIIININFINIINNIIINNNINNNIININNRINFIINNN¥% 03700000
GBLC &TITLEID 03800000
LCLC &TITL
USERCBS DSECT USER CONTROL BLOCK DSECT 03900000
&TITL SETC '&TITLEID -- $UCT - USER CONTROL TABLE® 04000000
TITLE ‘'&TITL® 04100000
$UCT > GEN THE UCT 04200000
&TITL SETC ‘'&TITLEID -- $SCDWORK - SECURITY SUBTASK WORK DSECT' 04300000
TITLE ‘'&TITL' 04400000
$SCDWORK GEN THE SECURITY SUBTASK WORK DSECT 04500000
&TITL SETC ‘'&TITLEID -- $SCYWORK - SECURITY PCE WORK DSECT® 04600000
TITLE ‘'&TITL® 04700000
$SCYHWORK GEN THE SECURITY PCE WORK DSECT 04800000
MEND 99999999

148 A GUIDE User Group Presentation



SSCYWORK - Processor Work Area

MACRO -- $SCYWORK -- USER SECURITY PROCESSOR WORK AREA DSECT
$SCYHORK

FIHHIFIHIEIEINFINNIIIIIEIIINFIIEI I F NI NI I IENHIEH I NI I I FNKH K
%* *
%* $SCYWORK - USER SECURITY PROCESSOR WORK AREA DSECT %*
* *
% FUNCTION: %*
* %*
* HOLD FIELDS UNIQUE TO THE SECURITY PROCESSOR PCE *
* *
% USED BY: %*
%* *
%* ALL SECURITY PROCESSOR PCE(S) *
* *
%* CREATED BY: PCEDYN FREED BY: PCEDYN %*
%* *
* SUBPOOL: 1 KEY: 1 %*
% %*
* SIZE: SEE SCYLEN EQUATE COMPONENT ID: CODE EXAMPLE *
3 %
%* POINTED TO BY: UCTSYPCE FIELD OF THE $UCT DATA AREA IMES %
%* %*
* FREQUENCY: ONE PER SECURITY PCE *
% %*
%* RESIDENCY: VIRTUAL - ABOVE %*
* REAL - ANYWHERE *
%* *
* SERIALIZATION: JES2 MAIN TASK SERIALIZATION %*
% *
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 %*
%* 1/88 - FIXED COMMENT %*
% %
FEIEIIHIHHIH I IIIIIIHIIINIHHIIIIINIINHIIIIIIIHIIIIINHIHIEHHHHIHIIIHIIIHFINK
PCE DSECT USER SECURITY PROCESSOR WORK AREA

ORG  PCEWORK PCE WORK AREA

SPACE 1
FEFFHIH I HIIIIEIHIIIIIIII NI NI IIIINIIIINIIIIIIIH I IIIH I WK KKK
* %
%* FIELDS UNIQUE TO THE SECURITY PCE *
%* *
FEIEIIIIINHFIIIIINIHIIIIININIH I NI NI IIIIIIIIIIIIHIIIIF I I HHHHWIHIHNK
SCYDTEAD DS A ADDR OF THE SECURITY DTE
SCYTQE DS XL(TQELENG) HASP TIMER QUEUE ELEMENT

%* FIELD GOES HERE

%* FIELD GOES HERE

%* FIELD GOES HERE

SCYLEN EQU  *-PCEWORK LENGTH OF SCY
MEND

Appendix A. Table Pairs Coding Example

00100000
00200000
00500000
00600000
00700000
00800000
00900000
01000000
01100000
01200000
01300000
01400000
01500000
01600000
01700000
01800000
01900000
02000000
02100000
02200000
02300000
02400000
02500000
02600000
02700000
02800000
02900000
03000000
03100000
03200000
03300000
03300000
03400000
03600000
03700000
03800000
03900000
04000000
04100000
04200000
04300000
04400000
04500000
04600000
04700000
04800000
04900000
99999999

149



$SSCDWORK - Subtask Work Area

MACRO -- $SCDWORK -- USER SECURITY SUBTASK WORK AREA DSECT
$SCDWORK
FEIIEHIIHIHIEHIEIIIIIIINIF NI INIIIINNIHIIIIIIIINIINHIN NI IHHHHHIIIIHIINHIHIINNK
$SCDWORK - USER SECURITY SUBTASK WORK AREA DSECT
FUNCTION:
HOLD FIELDS UNIQUE TO THE SECURITY SUBTASK
USED BY:

ALL SECURITY SUBTASKS

CREATED BY: DTEDYN FREED BY: DTEDYN
SUBPOOL: 1 KEY: 1
SIZE: SEE SCDLEN EQUATE COMPONENT ID: CODE EXAMPLE

POINTED TO BY: UCTSYDTE FIELD OF THE $UCT DATA AREA JMES
FREQUENCY: ONE PER SECURITY SUBTASK

RESIDENCY: VIRTUAL - BELOW
REAL - BELOW

SERIALIZATION: SUBTASKS FOLLOW MVS SERIALIZATION CONCERNS

CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86
1/88 - ADD SCDHCT

KK K K K K K K K K K K XK K K XK XKXKXKXKXXKXXXXEXXXHXKHXK
XK OK K K K K K K K K K K K K K K XK XK K K XK K K XK K XK XK K X

I6IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEHIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIIE I

DTE DSECT USER SECURITY SUBTASK WORK AREA
ORG  DTEWORK DTE WORK AREA
SPACE 1
FEIEIIEFIEIIHIENIIIIIEH K HIINIIIHHNIEN KK HIINIIIIIIIENHIIIIHIHF K IHIIIIIIHHKN K
%* %*
* FIELDS UNIQUE TO THE SECURITY SUBTASK *
% %*
FIEIEIIRIIEIINIIEIHIIHIEIIIIIIHIIIEIEI I IEIHHHHHHIENIIH I IHIEIEIIEHHHH I I N
SCDHCT DS A(%-%) ADDRESS OF HCT ASA

% FIELD GOES HERE

%* FIELD GOES HERE

SCDLEN EQU  %*-DTEWORK LENGTH OF SCD
MEND

150 A GUIDE User Group Presentation

00100000
00200000
00500000
00600000
00700000
00800000
00900000
01000000
01100000
01200000
01300000
01400000
01500000
01600000
01700000
01800000
01900000
02000000
02100000
02200000
02300000
02400000
02500000
02600000
02700000
02800000
02900000
03000000
03100000
03200000
03300000
03300000
03400000
03600000
03700000
03800000
03900000
04000000
04100000
04200000
04300000
04500000
04500000
04600000
04700000
99999999



SUCT - User Communication Table

MACRO -- $UCT -- USER COMMUNICATION TABLE DSECT 00100000

sucT 00200000
*********************************************************************** 00500000
* * 00600000
* $UCT - USER COMMUNICATION TABLE DSECT % 00700000
* % 00800000
% FUNCTION: % 00900000
* % 01000000
% HOLD FIELD VARIABLES COMMON FOR INSTALLATION CODE. % 01100000
* % 01200000
% USED BY: % 01300000
* % 01400000
* ALL INSTALLATION PROCESSOR/FUNCTIONS CAN MAKE USE OF % 01500000
* THE $UCT. % 01600000
x % 01700000
* CREATED BY: HASPXITO FREED BY: JES2 TASK TERMINATION % 01800000
* % 01900000
* SUBPOOL: 0 KEY: 1 % 02000000
E3 % 02100000
* SIZE: SEE UCTLEN COMPONENT ID: CODE EXAMPLE * 02200000
x % 02300000
* POINTED TO BY: $UCT FIELD OF THE $HCT DATA AREA % 02400000
* % 02500000
x FREQUENCY: ONE PER JES2 SYSTEM % 02600000
* % 02700000
* RESIDENCY: VIRTUAL - ABOVE % 02800000
* REAL - ANYWHERE % 02900000
x % 03000000
* SERIALIZATION: JES2 MAIN TASK SERIALIZATION * 03100000
% % 03200000
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 % 03300000
* % 03400000
IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIIEIIEIIEIEIIEIIEINIININ}XX¥¥ 03500000
ucT DSECT USER COMMUNICATION TABLE DSECT 03700000
UCTID DS  CLG'UCT® UCT IDENTIFIER 03800000
UCTSCDE DS  A(%-%) ADDRESS OF INSTALLATION LOAD MODULE 03900000

SPACE 1 04000000
IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIE I IEIEIEIEIEIEIE I I I K€ 04100000
* % 04200000
* FIELDS REQUIRED FOR THE PCE TABLES % 04300000
* % 04400000
IEIEIEIEIEIEIEIEIEIEIEIEIE IE IE IEIEIEIE I IEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I I IEIEIEIE I I I I I X 04500000

SPACE 1 04600000
UCTMSCTY DS A(%-%) ADDR OF ENTRY POINT 04700000
UCTSYPCE DS A(%-%) SECURITY PROCESSORS 04800000
UCTSYNUM DS H'1',H'0" 04900000
UCTSYQUE DS  A(%-x) ADDR OF ELEMENT TO BE VERIFIED 05000000
UPCESCTY EQU 255 ID OF SECURITY PCE 05100000
$DRSCTY EQU 63 DISPATCHER SECURITY RESOURCE 05200000

SPACE 1 05300000
IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I I IEIEIEIEHIEIHEIEIEIEIE I I, IENHH X 05400000
* % 05500000
* FIELDS REQUIRED FOR THE DTE TABLES % 05600000
* % 05700000
IEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIHIEIIIIEIIEIIEIIIIIENIEIIEIIEHINIINNNNINNX¥¥ 05800000

SPACE 1 05900000
UCTMDSCY DS A(%-%) ADDR OF ENTRY POINT 06000000
UCTSYDTE DS A(%-x) ADDR OF SECURITY DTE 06100000
UDTESCTY EQU 255 ID OF SECURITY DTE 06200000

SPACE 1 06300000
I6IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I 6 IEIEIEIEIEIE I IEIEIEIEIEIE I I IEIEIEIEIIIEIEIEIEIIEIIIENIIINHRXHNNX 06400000
% % 06500000
* END OF UCT % 06600000
* % 06700000
636363636 IEIEIEIEIEIEIEIEIE IEIE IEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIIEIIIEIEIHIEIEINIEHIHIINNINXXNXN®® 06800000

SPACE 1 06900000
UCTLEN EQU  %-UCT LENGTH OF UCT 07000000

MEND 99999999

Appendix A. Table Pairs Coding Example 151




Exit 0 - Imitialization

Prologue

XITO TITLE '

USER EXIT 0 MODULE -- PROLOG (MODULE COMMENT BLOCK)®

FEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIIIEIEFIEIEIEIEIIE I IEIEIEIEIEIEIIEIEIEIIEIIEIIEIEIEIEIIHIIEIEIEIE NI IIEIIHIEINN

MODULE NAME =

FUNCTION = THE
AND

NOTES = SEE BE

DEPENDENCIE

PATCH LABEL

MODULE TYPE =

PROCESSOR =

MODULE SIZE

ATTRIBUTES

ENTRY POINT =
PURPOSE = S
LINKAGE =

INPUT RO =

RL =
R11 =
R13 =
R14 =
R15 =
OUTPUT R15 =

HOK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KKK K KKK KKK KKK KKK KNKNKKNKNKKNKKKXKXNKXNKHK

152 A GUIDE

REGISTER CONVENTIONS = RO-R3

HASPXITO CSECT

DESCRIPTIVE NAME = HASP EXIT 0 INITIALIZATION MODULE

STATUS = 0S/VS2 - SEE $MODULE EXPANSION BELOW FOR FMID, VERSION

HASPXITO MODULE INITIALIZES THE INSTALLATION $UCT
OTHER INSTALLATION DEFINED ADDRESSES AND FIELDS.

LOW

S = 1) JES2 EXIT EFFECTOR
2) JES2 PROCESSOR AND SUBTASK DISPATCHING

RESTRICTIONS = THIS CODE IS PROVIDED AS AN EXAMPLE OF

INSTALLATION EXTENSIONS TO JES2. THIS CODE IS
NOT TO BE CONSIDERED TYPE 1 SUPPORTED CODE OF
IBM.

WORK REGISTER

RG = ADDRESS OF THE MTE ENTRY
R5 = ADDRESS OF THE MCT
R6-R9 = WORK REGISTER
R10 = ADDRESS OF THE UCT
R11 = ADDRESS OF THE HCT
R12 = LOCAL ADDRESSABILITY
R13 = ADDRESS OF THE HASPINIT PCE
R14-R15 = WORK AND LINKAGE REGISTER
= NONE
CSECT

0S/VS ASSEMBLER H OR ASSEMBLER XF (370) .
= SEE $MODEND MACRO EXPANSION AT END OF ASSEMBLY
= NOT REUSABLE, NON-REENTRANT, SUPERVISOR STATE,
PROTECT KEY OF HASP'S (1) OR 0, RMODE 24,
AMODE 24/31
EXITO

EE FUNCTION

STANDARD JES2 $SAVE/$RETURN LINKAGE

A CODE INDICATING WHERE THE INTIALIZATION OPTIONS
WERE SPECIFIED

ADDRESS OF A 2-WORD PARAMETER LIST WITH THE

FOLLOWING STRUCTURE:

WORD 1 (+#0): ADDR OF INTIALIZATION OPTIONS STRING
WORD 2 (+4): LENGTH OF INITIALIZATION OPTIONS STRING
ADDRESS OF HCT

ADDRESS OF INITIALIZATION PCE

RETURN ADDRESS

ADDRESS OF ENTRY POINT

RETURN CODE

(ALL OTHERS UNCHANGED)

User Group Presentation

EOK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K XK KKXKXKXKXKXKXKXXKKXXXDIXXKXIXXEXZX XZK KX

00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000
00110000
00120000
00130000
00140000
00150000
00160000
00170000
00180000
00190000
00200000
00210000
00220000
00230000
00240000
00250000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00380000
00390000
00400000
00410000
00420000
00430000
00440000
00450000
00460000
00470000
00480000
00490000
00500000
00510000
00520000
00530000
00540000
00550000
00560000
00570000
00580000
00590000
00600000
00610000
00620000
00630000
00640000



(' %*

%*

% EXIT-ERROR = RETURN TO CALLER (HASPIRMA) WITH NON-ZERO RETURN CODE

%*

% EXTERNAL REFERENCES = SEE BELOW

MACROS

MVS - NONE

MACROS

KK K K K K K K K K K K K XK X X XK X

% EXIT-NORMAL = RETURN TO CALLER (HASPIRMA)

DATA AREAS = SEE $MODULE MACRO EXPANSION

TABLES = SEE $MODULE MACRO DEFINITION (BELOW)

ROUTINES = MISCELLANEOUS JES2 SERVICE ROUTINES, AND-
MISCELLANEOUS STANDARD SUPERVISOR SERVICE ROUTINES

CONTROL BLOCKS = SEE $MODULE MACRO EXPANSION

JESZ2 - $ENTRY, $GETMAIN, $MODCHK, $RETURN, $SAVE

CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86
CODE AT SP1.3.6/2.1.5 LEVEL
1/88 - VARIOUS FIXES FOR T.B.

00650000
00660000
00670000
00680000
00690000
00700000
00710000
00720000
00730000
00740000
00750000
00760000
00770000
00780000
00790000
00800000
00810000
00820000
00830000
00840000
00850000
00860000
00860000
00870000

KK K K K K K XK K K K XK XK K XK XK X XK X X X X X X

EIEIEIEIEIEIEIEIEIEIEIEIEIEFEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIIIEIEIEIIEIEIEIIIEIEIEIEHIEIIEIIEIIHIIIHIRI}HXXH¥® 00880000

Real Code

TITLE 'USER XITO INITIALIZATION -- PROLOG ($HASPGBL)'
COPY HASP GLOBALS

COPY $HASPGBL

TITLE 'HASP XITO INITIALIZATION -- PROLOG ($MODULE)'

HASPXITO $MODULE NOTICE=NONE,

TITLE='HASP XITO INITIALIZATION®,

$DTE,
$ERA,
$HCT,
$HASPEQU,
$MCT,
$MIT,
$MITETBL,
$MODMAP ,
$PCE,
$TQE,
$USERCBS,
$XECB

GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE

HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP

DTE DSECT
ERA DSECT
HCT DSECT
EQUATES DSECT
MCT DSECT
MIT DSECT
MITETBL DSECT
MODMAP DSECT
PCE DSECT
TQE DSECT
USERCB DSECT
XECB DSECT

Appendix A. Table Pairs Coding Example

00890000
2133 00900000

9133 00910000
€00920000

C00930000
C00940000
C00950000
C00960000
C00970000
€00980000
€00990000
C01000000
C01010000
€01020000
C€01030000
€01040000

01050000

153



TITLE 'USER XITO INITIALIZATION -- EXITO - OBTAIN AND SET NC01060000
ECESSARY INFORMATION' 01070000
* % 01090000
%* EXITO - INSTALLATION EXIT 0 ROUTINE % 01100000
* % 01110000
% FUNCTION: % 01120000
o * 01130000
%* THIS EXIT POINT OBTAINS A $UCT CONTROL BLOCK, INITIALIZES % 01140000
*® IT AND PLACES ITS ADDRESS IN THE $HCT. THIS ROUTINE ALSO % 01150000
* INITIALIZES THE $MCT WITH THE SPECIFIED INSTALLATION TABLE % 01160000
%* ADDRESSES. % 01170000
%* % 01180000
% LINKAGE: % 01190000
%* % 01200000
* CALL BY JES2 INITIALIZATION % 01210000
* % 01220000
% ENVIRONMENT: % 01230000
%* % 01240000
%* JESZ2 MAIN TASK LIMITED (INITIALIZATION). % 01250000
%* * 01260000
% RECOVERY: % 01270000
% * 01280000
% NONE % 01290000
%* % 01300000
% REGISTER USAGE (ENTRY/EXIT): % 01310000
* % 01320000
* REG VALUE ON ENTRY VALUE ON EXIT % 01330000
%* % 01340000
* RO WHERE INIT OPTIONS % 01350000
%* SPECIFIED UNCHANGED % 01360000
* R1 ADDR OF PARM LIST UNCHANGED % 01370000
* R2-R10 N/A UNCHANGED % 01380000
* R11 HCT BASE ADDRESS UNCHANGED % 01390000
* R12 N/A UNCHANGED % 01400000
%* R13 INIT PCE BASE ADDRESS UNCHANGED % 01410000
%* R14 RETURN ADDRESS UNCHANGED ¥ 01420000
* R15 ENTRY ADDRESS RETURN CODE (SEE BELOW) % 01430000
%* % 01440000
% PARAMETER LIST: % 01450000
% % 01460000
* +0 - ADDR OF INIT OPTIONS STRING % 01470000
* +G - LENGTH OF INIT OPTIONS STRING % 01480000
* ¥ 01490000
% REGISTER USAGE (INTERNAL): % 01500000
%* % 01510000
* REG VALUE % 01520000
* % 01530000
* RO-R3 WORK REGISTERS % 01540000
% R4 MTE ENTRY ADDRESS % 01550000
% R5 MCT BASE ADDRESS % 01560000
* R6-9 WORK REGISTER % 01570000
%* R10 UCT BASE ADDRESS * 01580000
* R11 HCT BASE ADDRESS % 01590000
%* R12 LOCAL BASE ADDRESS % 01600000
* R13 INIT PCE BASE ADDRESS % 01610000
%* R14 LINK/WORK REGISTER % 01620000
* R15 LINK/WORK REGISTER % 01630000
%* % 01640000
% RETURN CODES (R15 ON EXIT): % 01650000
%* % 01660000
%* 0 - PROCESSING SUCCESSFUL (NO ERRORS) % 01670000
%* 12 - PROCESSING FAILED, TERMINATE JES2 % 01680000
* % 01690000
% OTHER CONSIDERATIONS: % 01700000
% 01710000
%* N/A % 01720000
%* % 01730000
FERIIIOIEENNOERIEEEEEHNOREHORNEEEENRRNEOEEEEOOoo:. 01740000
154 A GUIDE User Group Presentation



A

4

EXITO

%*
%*
%

SPACE 1 01750000
USING UCT,R10 ESTABLISH UCT ADDRESSABILITY 01760000
SPACE 1 01770000
SENTRY BASE=R12 DEFINE HASPXITO ENTRY POINT 01780000
SPACE 2 01790000
$SAVE TRACE=NO,NAME=EXITO GET NEW SAVE AREA, SAVE REGS 01800000
LR R12,R15 ESTABLISH BASE REGISTER 01810000
cLc $UCT , $ZEROS ALREADY OBTAINED $UCT... 01820000
BNE  XITRETO YES, RETURN TO JES2 01830000
EJECT 01840000
EIEIEIEIEFIEHIEIEIEIEIEIEIEIEIEIEHIIHIIEIIEIEIIEIEIIIIIIIINIEIEIEIIIIIIIIHIIIINIINRIIIINIEHIHXNXXX 01850000
* 01860000

OBTAIN AND INITIALIZE THE UCT * 01870000
% 01880000

363636366 IIININIIIIIIININIIEIIIINIIIINNINHNIIIINIIININININIHIIIINNANNNNNNX% 01890000
SPACE 1 01900000
$GETMAIN RC,LV=UCTLEN,SP=0,L0C=ANY  OBTAIN THE $UCT 01910000
LTR R15,R15 GETMAIN SUCCESSFUL... 01920000
BNZ  XITGTERR NO, INDICATE ERROR ALLOCATING STOR 01930000
SPACE 1 01940000
LR RZ,R1 SET TO 01950000
LA R3,UCTLEN CLEAR THE 01960000
SLR  R15,R15 STORAGE FOR 01970000
MVCL R2,R14 THE $UCT 01980000
SPACE 1 01990000
ST R1,$UCT SET UCT ADDRESS IN $HCT 02000000
LR R10,R1 SET UCT ADDRESSABILITY 02010000
MVC  UCTID,=CLG'UCT" SET UCT ID 02020000
MVC  UCTSYNUM,$H1 SET NUMBER OF PCE(S) TO DEFINE 02030000
EJECT 02040000

FEIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEHIEIEIEI I IEIEIEIEFIEIEHIIHIEIEIEIIIIEIIIEIIIEIRIIIF I NI NNNNKNX® 02050000

%
%*
%

* 02060000

LOAD MODULE THAT CONTAINS THE SECURITY PCE, SECURITY DTE, *¥ 02070000
AND THE NECESSARY TABLES TO INSTALL INSTALLATION TAILORING * 02080000

% % 02090000
FEIEIHIEIENFHIEIIIIIININHINIIIH I IFHIINIIFIII RN NIINFHIIHIFNHIINHHHHINNINHNNNHHNXN% 02100000
SPACE 1 02110000
L R1,$HASPMAP GET THE HASP MODMAP ADDRESS 02120000
ICcM R1,B'1111"',MAPADDR+MAPJXMOD-MAP(R1) IF HASPXJ0O IN 02130000
BNZ XITMODAD HASJES20, SKIP LOAD 02140000
SPACE 1 02150000
$MODCHK NAME='HASPXJO00' ,LOAD=YES,TEST=(MIT,VERSION), €C02160000
MESSAGE=YES,ERRET=XITGTERR LOAD THE INSTALLATION MODULE 02170000
SPACE 1 02180000

LR R1,R0O GET EP ADDRESS IN R1
XITMODAD ST R1,UCTSCDE SAVE THE LOAD MODULE ADDRESS QaMES 02190000
EJECT 02200000
3636363636 JEFIIEIIIIIIEIEI I IIIEIII I I I I I I ININIINIFINHIINIIEIIIININININXX%X 02210000
%* % 02220000
% SEARCH THROUGH MODULE TO FIND ENTRY POINTS FOR THE SECURITY % 02230000
% PCE, SECURITY DTE, PCE TABLE, DTE TABLE, TID TABLE, WORK * 02240000
% SELECTION TABLE, AND THE $SCAN TABLE. % 02250000
% * 02260000
263663636 36 IEIEIIIEIIEIEIEIEIEIEI 66 I I I IEIE I I I I I INIIIINIIIIIIININIIINIIIIIINININNNNXNX 02270000
SPACE 1 02280000
USING MTE,R4 ESTABLISH MTE ADDRESSABILITY 02290000
USING MCT,R5 ESTABLISH MCT ADDRESSABILITY 02300000
SPACE 1 02310000
L R5,S$MCT OBTAIN THE MCT ADDRESS 02320000
L R4 ,MITENTAD-MIT(,R1) OBTAIN THE MITABLE ADDRESS 02330000
XITOLP LA R6,XITOTBL1 OBTAIN THE TBL OF ENTRY POINTS ADDR 02340000
LA R7,XITOTBLL GET THE NUMBER OF ENTRIES IN TABLE 02350000
CLI MTENAME ,X'FF* FOUND END OF TABLE... 02360000
BE XITENDT YES, GO VERIFY ADDRESSES 02370000
XITOMTL LH R1,TBLFLDOF( ;R6) OBTAIN THE OFFSET TO THE FIELD 02380000
CLC  MTENAME,TBLNAME(R6) ENTRY IN MIT MATCH REQUEST IN TABLE 02390000
BNE XITOTB NO, INCREMENT TO NEXT TABLE ENTRY 02400000
CLC TBLFLDCB(L'TBLFLDCB,R6),$ZEROS YES, CB THE UCT... 02410000
BE XITOUCT YES, GO SET FIELD ADDRESS IN UCT 02420000
ALR R1,R5 SET THE FIELD ADDRESS IN THE MCT 02430000
B XITOMVC GO SET ENTRY ADDRESS IN MCT 02440000

Appendix A. Table Pairs Coding Example

155




XITOUCT
XITOMVC

XITOTB

XITOLPC

156

SPACE 1

ALR  R1,R10 SET FIELD ADDRESS IN THE UCT

MVC  0(4,R1),MTEADDR MOVE ENTRY ADDR INTO CONTROL BLOCK
B XITOLPC GO CHECK NEXT MIT ENTRY

SPACE 1

LA R6 ,TBLENTYL( ,R6) INCREMENT TO NEXT TABLE ENTRY

BCT  R7,XITOMTL CHECK NXT TABLE ENTRY AGAINST MITABL
LA R4 ,MTELEN(,R%) INCREMENT TO NEXT MITABLE ENTRY

B XITOLP CONTINUE SEARCH FOR ENTRY POINTS
EJECT

A GUIDE User Group Presentation

02450000
02460000
02470000
02480000
02490000
02500000
02510000
02520000
02530000
02540000



IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIIEIEIIIIEIEIIIIIINIINNINIINNNNNK¥X 02550000

* % 02560000
%* VERIFY THAT THE NECESSARY ADDRESSES HAVE BEEN FOUND * 02570000
% % 02580000
636366 IEIEIEIEIEIIIIEIEIIIEIEIFIEIIIIIIEIIHIEIIIIINIIIIIIIIIIININIIIIIINNNINNNNNXXX 02590000
SPACE 1 02600000
XITENDT LA R6,XITOTBL1 SET THE ADDRESS TO TABLE 02610000
LA R7,XITOTBLL SET THE NUMBER OF ENTRIES 02620000
XITCLCLP LH R1,TBLFLDOF(,R6) OBTAIN THE OFFSET INTO THE CB 02630000
CLC TBLFLDCB(L'TBLFLDCB,R6),$ZEROS CONTROL BLOCK THE UCT... 02640000
BE XITUCT YES, GO CHECK IT 02650000
AL R1,$MCT NO, GET THE MCT FIELD ADDRESS 02660000
B XITCLC GO CHECK IF ADDRESS SET 02670000
SPACE 1 ‘ 02680000
XITUCT ALR R1,R10 GET THE UCT FIELD ADDRESS 02690000
XITCLC CLC 0(4,R1),%$ZEROS FIELD SET... 02700000
BE XITGTERR NO, EXIT WITH AN ERROR 02710000
LA R6 ,TBLENTYL( ,R6) BUMP TO NEXT TABLE ENTRY 02720000
BCT R7,XITCLCLP GO CHECK NEXT TABLE ENTRY 02730000
SPACE 1 02740000
63636 6 I6 IEIEIE IEIEIEIEIEIEIE IE IE IEIEIEIE IEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIE I I H 02750000
% . ¥ 02760000
% SET GOOD RETURN CODE AND RETURN % 02770000
%* % 02780000
63636 IEI6 IEIEIEIEIEIEIEIEIEIE IEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIE I IE I IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIE I IEIEIEIE I I INNH 02790000
SPACE 1 02800000
XITRETO SLR R15,R15 INDICATE GOOD RETURN 02810000
B XITRET GO RETURN TO JES2 02820000
SPACE 1 ' 02830000
363636363696 6 IEIEIIIEIEIE I I I IIIIEIIIIIENINOINNIIOIININIINRFHNIRNINNXXAXXN® 02840000
* % 02850000
* SET ERROR RETURN AND RETURN TO JES2. % 02860000
%* % 02870000
FEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIE I IEIEIEIE I 02880000
SPACE 1 02890000
XITGTERR LA R15,12 INDICATE ERROR RETURN 02900000
SPACE 1 02910000
XITRET $RETURN TRACE=NO,RC=(R15) END OF EXITO INITIALIZATION 02920000
EJECT 02930000
F6IEI6IEIEHIIEIIIIIIEIEIIIEIF I K I HIIEII I IFIIIIIIIIIENINNIRININININNININXXX® 02940000
%* * 02950000
%* BUILD THE TABLE OF ENTRY POINTS THAT ARE TO BE FOUND. * 02960000
%* THE TABLE CONSISTS OF: % 02970000
%* % 02980000
%* CL8°'NAME OF ENTRY POINT', % 02990000
% AL2(OFFSET INTO EITHER UCT OR MCT OF FIELD TO SET) % 03000000
%* AL2(0 IF UCT OR 1 IF MCT) % 03010000
% ¥ 03020000
636366 IEIEIEIEIEIEIEIEIEIIEIIEIEIEIEIEIEIIIEIIEIIEN I IINIIIIINOINENIIIIONIIIINIINNIXXE 03030000
SPACE 1 03040000
DS OF 03050000
XITOTBL1 DC CL8'USCTPCE ' ,AL2(UCTMSCTY-UCT ),AL2(0) 03060000
DC CL8'USCTDTE ' ,AL2(UCTMDSCY-UCT ) ,AL2(0) 03070000
DC CL8'USERPCET ' ,AL2(MCTPCETU-MCT),AL2(1) 03080000
DC CL8'USERDTET® ,AL2(MCTDTETU-MCT ),AL2(1) 03090000
DC CL8'USERTIDT ' ,AL2(MCTTIDTU-MCT),AL2(1) 03100000
DC CL8'USERSTHT ' ,AL2(MCTSTHTU-MCT ),AL2(1) 03110000
DC CL8'USEROSTT' ,AL2(MCTOSTTU-MCT ),AL2(1) 03120000
XITOTBLL EQU (3%-XITOTBL1)/12 CALC NUMBER OF ENTRIES 03130000
SPACE 1 03140000
TBLNAME EQU 0,8 NAME OF ENTRY POINT 03150000
TBLFLDOF EQU 8,2 FIELD OFFSET 03160000
TBLFLDCB EQU 10,2 FIELD CONTROL BLOCK 03170000
TBLENTYL EQU 12 LENGTH OF TABLE ENTRY 03180000

Appendix A. Table Pairs Coding Example 157




Epilog

TITLE 'HASP XITO INITIALIZATION -- EPILOG ($MODEND)' 99990000
$MODEND , 99991010
APARNUM DC CL7 ' XXXXXXX" APAR NUMBER 99999999
END > END OF HASPXITO 99999999

158 A GUIDE User Group Presentation



e

User Extension Code and Tables

Prologue

XJoo TITLE 'USER EXTENSION MODULE -- PROLOG (MODULE COMMENT BLOCK)'
F636IEIEIIINIIIIIIHHIHHIEN NI IIIIIINIIIIIIHIENIIINIFHIIINNIIIINHHHHHHIII N
%*

% MODULE NAME = HASJES20 ( HASPXJ0OO CSECT )

DESCRIPTIVE NAME = HASPXJ0OO CSECT OF JES2 MAIN MODULE

STATUS = 0S/VS2 - SEE $MODULE EXPANSION BELOW FOR FMID, VERSION
FUNCTION = THE HASPXJ0OO CSECT CONTAINS THE INSTALLATION SECURITY
PROCESSOR, THE INSTALLATION SECURITY SUBTASK, AND
THE INSTALLATION PCE, DTE, TRACE, WORK SELECTION,
AND $SCAN TABLES.
NOTES = SEE BELOW

DEPENDENCIES = JES2 PROCESSOR AND SUBTASK DISPATCHING

RESTRICTIONS = THIS CODE IS PROVIDED AS AN EXAMPLE OF
INSTALLATION EXTENSIONS TO JES2. THIS CODE IS
NOT TO BE CONSIDERED TYPE 1 SUPPORTED CODE OF
IBM.
REGISTER CONVENTIONS = SEE ENTRY POINT DOCUMENTATION
MODULE TYPE = PROCEDURE, TABLE ( CSECT TYPE )
PROCESSOR = 0S/VS ASSEMBLER H OR ASSEMBLER XF (370)
MODULE SIZE = SEE $MODEND MACRO EXPANSION AT END OF ASSEMBLY
ATTRIBUTES = HASP REENTRANT, RMODE 2G4, AMODE 264/31.
ENTRY POINT =  USCTPCE - INITIAL ENTRY TO SECURITY PROCESSOR
USCTDTE - INITIAL ENTRY TO THE SUBTASK USED FOR
AUTHORIZATION CHECKS
USERPCET - ENTRY FOR INSTALLATION PCE TABLE
USERDTET - ENTRY FOR INSTALLATION DTE TABLE
USERTIDT - ENTRY FOR INSTALLATION TRACE ID TABLE
USERSTWT - ENTRY FOR INSTALLATION OFFLOAD SYSOUT
TRANSMITTER WORK SELECTION TABLE
USEROSTT - ENTRY FOR INSTALLATION OFFLOAD SYSOUT
TRANSMITTER OPERAND TABLE
PURPOSE = SEE FUNCTION
LINKAGE = SEE ENTRY POINT DOCUMENTATION
INPUT = SEE ENTRY POINT DOCUMENTATION
OUTPUT = SEE ENTRY POINT DOCUMENTATION
EXIT-NORMAL = SEE ENTRY POINT DOCUMENTATION
EXIT-ERROR = SEE ENTRY POINT DOCUMENTATION
EXTERNAL REFERENCES = SEE BELOW
ROUTINES = NONE

DATA AREAS = SEE $MODULE MACRO SPECIFICATION

XK K K K XK K K K K XK K XK K K XK KK XKXKXKKKKKIKKDIKIKIKDIKKIKDIKKIKXNKDIKZXXKIIXIXIKDIKIXDIKD?KIKDIXDIKD?IKDIKDIIK?IKIZIKDIIKDIXIXIZIKSXHXK
XK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K XK K X

CONTROL BLOCKS = SEE $MODULE MACRO SPECIFICATION

Appendix A. Table Pairs Coding Example

00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000
00110000
00120000
00130000
00140000
00150000
00160000
00170000
00180000
00190000
00200000
00210000
00220000
00230000
00240000
00250000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00380000
00390000
00400000
00410000
00420000
00430000
00440000
00450000
00460000
00470000
00480000
00490000
00500000
00510000
00520000
00530000
00540000
00550000
00560000
00570000
00580000
00590000
00600000
00610000
00620000
00630000
00640000

159




$WSTAB

KK K K XK XK XK XK XK X X X X X

TABLES = SEE $MODULE MACRO SPECIFICATION

MACROS = JES2 - $ACTIVE, $AMODE, $CALL, $DECODE, $DORMANT, $DTEDYN,
$ENTRY, $MODULE, $PCETAB, $REGS, $RETURN, $SAVE,
$SCANTAB, $STIMER, $STORE, $TIDTAB, $TRACE, $HWAIT,

MACROS = MVS - ATTACH, DEQ, ENQ, ESTAE, POST, SDUMP, WAIT
CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86

CODE AT SP1.3.6/2.1.5 LEVEL
1/88 VARIOUS FIXES BY BDB, SA, JK, MES, SWH FOR TB* 00760000

00650000
00660000
00670000
00680000
00690000
00700000
00710000
00720000
00730000
00740000
00750000
00760000

KK K K K XK K K X X X X

% 00770000

TITLE 'USER EXTENSION MODULE -- PROLOG ($HASPGBL)®
COPY HASP GLOBALS
TITLE 'USER EXTENSION MODULE -- PROLOG ($MODULE)'

COPY $HASPGBL

HASPXJ0O $MODULE NOTICE=NONE,

ENTRIES=(USERPCET ,USERDTET ,USERTIDT ,USERSTHWT ,USEROSTT),

TITLE='USER EXTENSION MODULE',

$DCT,»
$DTE,
$DTETAB,
$SERA,
$HASPEQU,
$HCT»
$JQE ,
$MIT,
$PCE,
$PCETAB,
$RDRHWORK ,
$SCANTAB,
$SCAT,
$SVT,
$TIDTAB,
$TLGHWORK ,
$TQE»
$TRP,
$TTE,
$USERCBS,
$WSTAB,
$XECB

GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE
GENERATE

160 A GUIDE User Group Presentation

HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
HASP
USER
HASP
HASP

DCT DSECT

DTE DSECT
DTETAB DSECT
ERA DSECT
EQUATES DSECT
HCT DSECT

JQE DSECT

MIT DSECT

PCE DSECT
PCETAB DSECT
RDRWORK DSECT
SCANTAB DSECT
SCAT DSECT
SVT DSECT
TIDTAB DSECT
TLGHWORK DSECT
TQE DSECT

TRP DSECT

TTE DSECT
DSECTS

WSTAB DSECT
XECB DSECT

00790000

00800000

00810000
€00820000
€00830000
€00840000
C00850000
C00860000
C00870000
€00880000
€00890000
C00900000
C00910000
€00920000
C00930000
C00940000
C00950000
C00960000
C00970000
C00980000
C€00990000
C01000000
C01010000
€01020000
C01030000
C01040000
C01050000

01060000



s
=

2=

Overview

TITLE ‘*USER EXTENSION MODULE -- INTRO - BRIEF OVERVIEW OF MC01070000

FUNCTION AND RELATED PIECES'
FEIIIIEIIIIIIINII NI IIIIEIIINIIIINIIIIEIIENINIEII NI I I INIIH I I I IEIEH I HFNR

FUNCTION -- THIS MODULE CONTAINS THE INSTALLATION EXTENSION CODE
AND TABLES THAT -ARE REQUIRED TO CREATE AN INSTALLATION
SECURITY PROCESSOR, SECURITY SUBTASK, TRACE ID, WORK
SELECTION CRITERIA ON THE OFFLOAD SYSOUT TRANSMITTER
WORK SELECTION LIST, AND AN ADDITIONAL OPERAND ON THE
OFFLOAD SYSOUT TRANSMITTER.

REQUIRED PIECES -~ HASPXJ0O - THIS MODULE
SUCT ~ CONTAINS REQUIRED FIELDS FOR TABLE
GENERATION
$SCDWORK - SUBTASK DTE EXTENSION TO HOLD FIELDS
SPECIFIC TO A SECURITY SUBTASK
$SCYWORK - PROCESSOR PCE EXTENSION TO HOLD
FIELDS SPECIFIC TO A SECURITY
PROCESSOR
$USERCBS - CONTROL BLOCK THAT ACTUALLY GENERATES
THE ABOVE MACROS. THIS CONTROL BLOCK
IS KNOWN BY $MODULE AND IS THE WAY
FOR AN INSTALLATION TO GET $MODULE TO
GENERATE THEIR CONTROL BLOCKS
EXIT O MODULE THAT CONTAINS EXITO.
THIS EXIT INITIALIZES THE $MCT WITH
THE ADDRESSES OF THE INSTALLATION
TABLES LOCATED IN HASPXJ0O.

HASPXITO

K K K K K K K K K K K XK XK K K K K XK XK K XK K X X X X
X K K K K K K K K K K K K K K K K XK XK K K K XK K X X

FEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIE I IEIEIENHIEIEIEIEIIEIEIE I H I I IIENH

Appendix A. Table Pairs Coding Example

01080000
01090000
01100000
01110000
01120000
01130000
01140000
01150000
01160000
01170000
01180000
01190000
01200000
01210000
01220000
01230000
01240000
01250000
01260000
01270000
01280000
01290000
01300000
01310000
01320000
01330000
01340000
01350000
01360000

161




USCTPCE - Initial Entry Point

TITLE ‘USER EXTENSION MODULE -- USCTPCE - SECURITY PROCESSOR,C01370000
INITIAL ENTRY POINT' 01380000
IEIEIEIEIEIEIEIEIEIEIEIEIEIIEIIEIEIIEIIEIIEIENIEIEIEIEIIEIIEHIEIEIEIIEIEIEIENIEIEIEIH I IEIEIIIEIIINIININNHXX¥%¥% 01390000
%* * 01400000
% PROCESSOR NAME -- USCTPCE % 01410000
%* % 01420000
% DESCRIPTIVE NAME -- USER SECURITY PROCESSOR * 01430000
%* % 01440000
% FUNCTION -- MANAGE THE INSTALLATION SECURITY SAF CALLS BY PASSING % 01450000
% A REQUEST TO THE SECURITY PROCESSOR'S SECURITY * 01460000
* SUBTASK TO ISSUE THE SAF CALL. % 01470000
* % 01480000
% NOTES -- BECAUSE A JES2 PROCESSOR IS NOT ALLOWED TO DIRECTLY % 01490000
* ISSUE AN OS WAIT, USCTPCE ATTACHES A SUB-TASK TO * 01500000
%* PERFORM THOSE FUNCTIONS REQUIRING WAITS. THE SUB-TASK,* 01510000
%* USCTDTE, PERFORMS THE CALL TO THE SECURITY % 01520000
* AUTHORIZATION FACILITY (SAF). % 01530000
%* % 01540000
* % 01550000
% REGISTER CONVENTIONS -- RO - R2 -- WORK REGISTERS % 01560000
* R3 -- ADDRESS OF $DTE % 01570000
%* R4 -- ADDRESS OF WORK ELEMENT % 01580000
%* R5 - R9 -- HORK REGISTERS % 01590000
* R10 -- ADDRESS OF $UCT % 01600000
* R11 -- ADDRESS OF $HCT % 01610000
%* R12 -- BASE ADDRESSABILITY % 01620000
* R13 -- ADDRESS OF PCE % 01630000
%* R14 -~ LINKAGE REGISTER * 01640000
%* R15 -- LINKAGE REGISTER % 01650000
% % 01660000
FEIEIEIIEIIEIIENHRIIEIEIEIIEIIEIIEIEIHIEIEIEIIEIIEIIEIEIEIIEI NI IEIIEIEIEIH I IEIIEIIENIENINRINNNNNXIXX% 01670000
EJECT 01680000
I IEIENIEIIEIIHIEIHIIENIIEHIHIEIIEIEIEIENIEIEIEIIEIIENIEIEIIEI I I IEIEIEFH I IEIIEHIENIONINIINNNNNXXNX¥ 01690000
%* % 01700000
%* USCTPCE INITAL ENTRY POINT % 01710000
%* % 01720000
6 IEIEIEIIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIE I IEIEIEIEIIEIIENIEIENIENIIEI NN IINRIIINNONINONNXX XX 01730000
SPACE 2 01740000
USING UCT,R10 ESTABLISH UCT ADDRESSABILITY 01750000
SPACE 1 01760000
USCTPCE $ENTRY BASE=R12 PROVIDE PROCESSOR ENTRY POINT 01770000
SPACE 1 01780000
L R10,$UCT OBTAIN THE UCT ADDRESS 01790000
EJECT 01800000
e e T T e 2y 01810000
%* % 01820000
% MAIN LOOP OF THE SECURITY PROCESSOR. % 01830000
% % 01840000
JEIEIEIE I IEIENIFHIIIIEIEIHIEIIEIEIIEIENHINIEIIIIEIEIIEIE I NI NI IEIIEHINNINIRINWINNNNXXX 01850000
SPACE 1 01860000
USCTYLOP $ACTIVE INDICATE PROCESSOR ACTIVE 01870000
ICM R3,B*1111"',SCYDTEAD SUBTASK ATTACHED... 01880000
BZ USCATACH NO, GO ATTACH IT 01890000
™ DTEFLAG1-DTE(R3),DTELIACTV SUBTASK ACTIVE... 01900000
BO USCTEST YES, GO QUEUE UP MEMBER 01910000
SPACE 1 01920000
JEIEIEIEEFIEIEIEIEIEIEIEIEIEIEIIE I K HIEIIEIEIEN I IIHIEIIEIIEIENHIIIIHIHIEIIINIIIHHKHIIINONIINNNNXXXX%¥ 01930000
% % 01940000
* DETACH THE SECURITY SUBTASK (ABENDED) % 01950000
%* % 01960000
EIEIIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIIEIEIEIIEIEIIEIIEIENIEIEIEIEIEIIHIIEIIIIIIINNNRININNN XXX 01970000
SPACE 1 01980000
$DTEDYN DETACH,ID=UDTESCTY,DTE=(R3),NAIT=XECB €01990000
DETACH ABENDED SUB-TASK 02000000
XC SCYDTEAD,SCYDTEAD CLEAR DTE ADDR 02010000
EJECT 02020000
FEIEIIEIIINIEINNNIIIEIIIIINIENIIININIIIIIIIIIIIIEIIENINIINININIININIINNOE 02030000
%* % 02040000
* (RE)-ATTACH THE SECURITY SUBTASK % 02050000
162 A GUIDE User Group Presentation



% % 02060000
636362636 I IEIEIEIEIEIEIEIEIIEIIEIIEIEIE NI I IEIEIEHIEII I IEIEHIIIIEIIINIIINIINNIN NN R IINIINNN%% 02070000
SPACE 1 02080000

USCATACH $DTEDYN ATTACH,ID=UDTESCTY ,WAIT=XECB,ERRET=USCATERR €C02090000
ATTACH USCTDTE 02100000

ST R1,SCYDTEAD STORE SUBTASK DTE ADDRESS 02110000

MVC XECBECB-XECB+DTEIXECB-DTE( ,R1),$ZEROS CLEAR €02120000
COMMUNICATION ECB 02130000

LR R3,R1 SET THE SUBTASK DTE ADDRESS 02140000

ST R11,SCDHCT( ,R3) STORE HCT ADDRESS IN DTE XTNSN 2SA 02140000
JEIEIEIEIEIEIEIEIEIEIIEIENIIIIEIEIIIEII I IEINIEIIEIENIIIIIIIIIIIIIINIININININNININNINNX% 02160000
% % 02170000
% DETERMINE IF THERE IS WORK TO BE DONE % 02180000
% % 02190000
26I6IEIEIEIEIIEIEIEIEIIEIEIEIEIEIIIEIIEIEIHEIIEIEIEIEIIIENIIIEFHIEIIIIEIIIIIIIINIIIININININNINNNNNXX 02200000
SPACE 1 02150000

USCTEST ICM R4,B'1111',UCTSYQUE ANY WORK TO DO... 02220000
BNZ USCHORK YES, GO DO IT 02230000

SPACE 1 02240000

$DORMANT INDICATE THAT PROCESSOR COMPLETE 02250000

SPACE 1 02270000

$WAIT SCTY,INHIBIT=NO WAIT FOR WORK 02280000

B USCTYLOP GO CHECK FOR WORK TO DO 02290000

EJECT 02300000
J63EI6IEIEIEIIEIEIIEIIEIEIINHIIEIEIEIEIN NI IEFIIHIEFHIIEIINIIINIIIINIIIININNIIINIIINNINNNA€% 02310000
%* % 02320000
%* SETUP FOR SUB-TASK TO PROCESS JOB % 02330000
% % 02340000
% INSTALLATION CODE WOULD GO HERE TO PASS TO SUBTASK THE NECESSARY * 02350000
% INFORMATION (THROUGH THE DTE EXTENSION THAT IS UNIQUE FOR THE % 02360000
% SECURITY SUBTASK). % 02370000
% % 02380000
JEIEIEIIEIENIEIENINHIEIEIIIIIIEHIIIIHIEIEII I I IEIIIIINIIIIIINHININIINNNNNININININNNIN%%X 02390000
SPACE 1 02400000

USCWORK DS OH 02410000

XC UCTSYQUE ,UCTSYQUE INDICATE WORK BEING PROCESSED (IN  C02420000
REALITY THIS WOULD PROBABLY UNCHAIN C02430000
THE: REQUEST, NOT CLEAR THE QUEUE) 02440000

EJECT 02450000

IEIEIEIE I HIEIIHIEIHIEIIEIENIIHNIIEIIEIHRIEI IR HHIEI I HHHIINIEIHIHINHIHHININHIIIIIIIIHRIINNXNX 02660000
* % 02470000
%* MVS POST THE SUBTASK FOR WORK TO DO AND $WAIT FOR IT TO * 02480000
* COMPLETE. NOTE THAT THE CALL TO THE SUBTASK IS $TRACE'D, % 02490000
* IF TRACING IS ACTIVE. % 02500000
%* ¥ 02510000
J6IEHIIEINNEIENINIEININNIEIIINFIIHNIIHHFIIIINIOINIIINIFIIIIININNNHHFINNINONNXX%® 02520000
SPACE 1 02530000

MVC XECBECB-XECB+DTEIXECB-DTE( ,R3),$ZEROS CLEAR ECB C02540000

FOR $WAIT 02550000

LA R1,DTENECB-DTE(,R3) POINT TO THE WORK ECB 02560000

SPACE 1 02570000

POST (1) POST SECURITY SUBTASK FOR WORK 02580000

SPACE 1 02590000

$TRACE ID=255,LEN=USCSAFML ,0FF=USCTROFF ,NAME=SAFCALL 02600000

MVC 0(USCSAFML,R1),USCSAFM SET INFORMATION TO BE TRACED 02610000

SPACE 1 02620000

USCTROFF LR R1,R3 GET DTE ADDRESS 02630000
$WAIT OPER,XECB=DTEIXECB-DTE(,R1) $WAIT FOR SUB-TASK C02640000

TO POST Us 02650000

EJECT 02660000
FIIEIIMININIIIIIINININFENHINEIIIIINNHFNFINIINIINIIIIIIENHIIININXXXXXNXX 02670000
%* * 02680000
%* SUBTASK HAS POSTED US BACK * 02690000
%* % 02700000
%* INSTALLATION CODE WOULD GO HERE TO VALIDATE THE SUCCESS OF THE % 02710000
%* SECURITY CALL AND TO DO ANY PROCESSING RELEVANT TO THE SUCCESS * 02720000
* OR FAILURE OF THE CALL. * 02730000
%* % 02740000
SPACE 1 02760000

DS OH VALIDATE THE RESULT OF THE SECURITY C02770000

CALL. 02780000

Appendix A. Table Pairs Coding Example

163



SPACE
FEIEIEIEINNI I NI HH I INIENIHIHIINININIIENIIIIIIIR KRNI
%* %
* BRANCH TO OBTAIN THE NEXT ITEM TO VERIFY *
* %
FEHIIINHHH NI INIIIIIN IR HINNIIIIIINHINHIHIIININIIIIN KN IFHHINK

SPACE 1

B USCTEST GO CHECK FOR MORE HWORK

EJECT
FIINNNFNHII NN NI IN NN NI IINIINIEIIIIIIINNIIIIEINIIIIENNR
%* *
* AN ERROR WAS ENCOUNTERED ON THE ATTACH OF THE SUBTASK. %
%* WAIT FOR 30 SECONDS AND ATTEMPT TO TRY AGAIN. *
% %
FHIIIINIIIIIIIIIIIERIIIISEIIIDEIONNNEEINEEIINENIOIOINOEONIEE NI

SPACE 1
USCATERR LA R1,SCYTQE GET ADDRESS OF PCE TQE

LA RO,30 SET TIME INTERVAL

ST RO,TQETIME( ,R1) IN TQE

ST R13,TQEPCE( ,R1) STORE PCE ADDRESS IN TQE

$STIMER (R1) CHAIN THIS TQE

$HWAIT KWORK AND WAIT FOR INTERVAL TO ELAPSE

B USCATACH GO ATTACH SUBTASK

SPACE 1
FEIIININNHHNIIH NI NN IININIIEIIINOHIEOEIINNNEINENNNNONENOEEENNEEER
* *
%* LIST LITERALS AND SUSPEND ADDRESSABILITIES. %*
% %
NI KNI IIH NN NN IIIIIIIIEIINIIIIIOEIIIIIIIIIIIN NI

SPACE 1

LTORG

SPACE 1

DROP R10,R12,R13 SUSPEND UCT, BASE, AND PCE ADDRESS

164 A GUIDE User Group Presentation

02790000
02800000
02810000
02820000
02830000
02840000
02850000
02860000
02870000
02880000
02890000
02900000
02910000
02920000
02930000
02940000
02950000
02960000
02970000
02980000
02990000
03000000
03010000
03020000
03030000
03040000
03050000
03060000
03070000
03080000
03090000
03100000
03110000



USCTDTE - Security Subtask, Initial Entry Point

TITLE ‘'USER EXTENSION MODULE -- USCTDTE - SECURITY SUBTASK, IC03120000

NITIAL ENTRY POINT®

03130000

IEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIIEIEIIEIHIIEINIEIIINIIIIIINNIIINNXX¥X% 03140000

USCTDTE - USER SECURITY SUBTASK

FUNCTION:

PROCESSOR.

LINKAGE:

ENVIRONMENT :
JESZ SUBTASK
RECOVERY :

MVS ESTAE ESTABLISH UPON ENTRY.

REGISTER USAGE (ENTRY/EXIT):

REG VALUE ON ENTRY
RO N/A
R1 DTE ADDRESS AS SPECIFIED

ON THE ATTACH CALL
R2-R14 N/A
R15 ENTRY ADDRESS

PARAMETER LIST:

BY THE ATTACHING PROCESSOR.

REGISTER USAGE (INTERNAL):

REG VALUE

RO-R10 WORK REGISTERS

R11 HCT BASE ADDRESS
R12 LOCAL BASE ADDRESS
R13 DTE BASE ADDRESS
R14 LINK/WORK REGISTER
R15 LINK/WORK REGISTER

RETURN CODES (R15 ON EXIT):

N/A

OTHER CONSIDERATIONS:

N/A

XK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K XK XK K X

THIS IS AN EXAMPLE OF A USER CODED SECURITY SUBTASK. THIS
SUBTASK IS DEFINED BY THE USERDTET DTE TABLE. THIS SUBTASK
IS ATTACHED BY THE USCTPCE SECURITY PROCESSOR. THE

PURPOSE OF THIS SUBTASK IS TO CODE THE SAF CALL TO VERIFY
THE ELEMENT THAT WAS PASSED TO IT FROM THE SECURITY

CONTROL GIVEN BY MVS VIA AN ATTACH MVS CALL.

PROVIDED BY THE $STABEND ROUTINE LOCATED IN HASPRAS.

ALL NECESSARY INFORMATION LOCATED IN THE DTE, AS PASSED

03150000
03160000
03170000
03180000
03190000
03200000
03210000
03220000
03230000
03240000
03250000
03260000
03270000
03280000
03290000
03300000
03310000
03320000
03330000
03340000
03350000
03360000
03370000
03380000
03390000
03400000
03410000
03420000
03430000
03440000
03450000
03460000
03470000
03480000
03490000
03500000
03510000
03520000
03530000
03540000
03550000
03560000
03570000
03580000
03590000
03600000
03610000
03620000
03630000
03640000
03650000
03660000
03670000
03680000
03690000
03700000
03710000
03720000
03730000

THE RECOVERY ROUTINE IS

VALUE ON EXIT
UNPREDICTABLE
UNPREDICTABLE

UNPREDICTABLE
UNPREDICTABLE

OK K N K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KK K XK K XK KK XXX

JEIEIEIEIEIIEIEIEIEIEIIEIEIEIIEIEIIEIIEIIEIIEIEIEIEIIEIIEIIEIEIEIIIEIEIIEIIFHINIININIIIIININIIINNNNIX%¥ 03740000

SPACE 1 03750000
USING HCT,R11l ESTABLISH HCT ADDRESSABILITY 03760000
USING DTE,R13 ESTABLISH DTE ADDRESSABILITY 03770000
SPACE 1 03780000
USCTDTE $ENTRY BASE=R12 USER SECURITY SUB-TASK 03790000
LR R12,R15 SET LOCAL BASE 03800000
LR R13,R1 SET DTE BASE 03810000

Appendix A. Table Pairs Coding Example

165



L R11,SCDHCT SET HCT BASE dSA 03810000
JE3IEIEIEIIIININIINIINININNOEOOOOEIIIIIIIINIIIINNFIINNNNINNNNXXXX 03850000
3€ 2BDB 03820000
%¥USCXA $AMODE 31,RELATED=(USC37) FORCE 31-BIT MODE FOR UDTESCTY 03830000
3 2BDB 03820000
E REMOVED THE $AMODE BECAUSE THE $MODULE ENVIRONMENT IS JES2. 2BDB 03820000
* THIS CAUSES THE EXPANSION TO GENERATE A CONSTANT $HIBITON 2BDB 03820000
3 WHICH RESIDES IN THE HCT. SINCE WE DON'T AUTOMATICALLY 2BDB 03820000
% HAVE ADDRESSABILITY TO THE HCT IN A SUBTASK WE ABEND IN 2BDB 03820000
%* EXECUTION. aBDB 03820000
% THIS IS NOT A PROBLEM IF THIS ROUTINE IS COPIED INTO ITS 2BDB 03820000
% OWN MODULE AND THEN CODE THE $MODULE WITH ENVIRON=SUBTASK. 2BDB 03820000
* aBDB 03820000
3636636362696 IIEINIEIEIIHNHIIHIIIOINNINIIIIIIINIINIINIIIINNIINNNININNNNNXXXX 03850000
USCXA LA R15,USCXA01 PSEUDO $AMODE $AMODE 3BDB 03830000

o} R15,HIGHON SET HI BIT ON $AMODE JBDB

BSM RO,R15 SET MODE $AMODE JBDB
HIGHON DC OF'0’,X'80000000" MASK FOR 31 BIT MODE $AMODE 3BDB
USCXA01 DS OH RESUME $AMODE 3BDB

SPACE 1 03840000
JEIEIEIHIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEN I I IEIIEIIIEIIIENIIIHIIEIIIEIIIIINIINININNINNNNNXNAX 03850000
* % 03860000
* SET THE RETRY ROUTINE, THE CLEAN-UP ROUTINE, AND THE * 03870000
ES VRA EXIT ROUTINE ADDRESSES. % 03880000
3 % 03890000
% INSTALLATION SHOULD SET THE DTERTXAD, DTEESXAD, AND DTEVRXAD % 03900000
%* FOR THE RETRY ROUTINE ADDRESS, THE CLEAN-UP ROUTINE ADDRESS ¥ 03910000
%* AND THE VRA EXIT ROUTINE ADDRESS RESPECTIVELY, IF THESE ¥ 03920000
E ROUTINES ARE NEEDED. % 03930000
% % 03940000
JEIEIEIEIEIEIEIEIEIIEIIEIENIENIEIEIEININIEIIIEIIIINIINIINIIININIIENIIIININIINNIINNNNNAXXAXX 03950000

SPACE 1 03960000

L R2,$STABNDA GET SUBTASK ESTAE RTN ADDRESS 03970000

LR R3,R13 COPY DTE ADDRESS 03980000

EJECT 03990000
EIEHIIIIEIIENHIENINIIIIENIHI NI IIIIEIINIEIIIIIIIEIIH I NI IINIIIIIIIINNINNNHAXNNXX 04000000
% % 04010000
%* ESTABLTISH ESTAE ENVIRONMENT % 04020000
% % 04030000
JEIEIEIEIEIEIEIEIEIEIEIENIEIIEIEIEIIIENIEIIEIENIEINIIIIEIINIIEINIEIHIIINIIIIMIIIIININNINNNNXNAXNNX% 06040000

SPACE 1 04050000

MVC DTEAWRKA(USCSTLN) ,USCABND MOVE ESTAE PARM LIST 04060000

SPACE 1 04070000

ESTAE (2),PARAM=(3),RECORD=YES,MF=(E,DTEAWRKA) C04080000

ESTABLISH RECOVERY ENVIRONMENT 04090000

SPACE 1 04100000

)8 DTEFLAG1,DTE1ACTV  SHOW SUBTASK ACTIVE 04110000
E 04120000
% INSTALLATION SHOULD INITIALIZE THE DTE EXTENSION FOR THE SUBTASK 04130000
% HERE 04140000
€ 04150000

166 A GUIDE User Group Presentation



Pt

USCTDTE - Security Subtask, Main Processing

TITLE 'USER EXTENSION MODULE -- - SECURITY SUBTASK, MC04160000
AIN PROCESSING® 04170000
%* % 04190000
% NOTIFY PROCESSOR THAT WORK NEEDED AND WAIT FOR A RESPONSE * 04200000
%* %* 04210000
FEEIEINNNIIININIIIIIIIIIIOONNNNEIENNHHNNNNNNNNHHNNONNHNDONEHNNNONE 06220000
SPACE 1 04230000
USCPOST XC DTEWECB , DTEWECB CLEAR WORK ECB 04240000
SPACE 1 . 04250000
POST DTEIXECB POST PROCESSOR FOR KWORK 04260000
SPACE 1 04270000
™ DTEFLAG1,DTE1TERM SUBTASK SHUTDOWN REQUESTED... 04280000
BO USCRET YES, EXIT TO DELETE SECURITY SUBT 04290000
SPACE 1 04300000
WAIT ECB=DTEWECB ELSE WAIT FOR WORK TO DO 04310000
SPACE 1 04320000
™ DTEFLAG1,DTE1TERM SUBTASK SHUTDOWN REQUESTED... 04330000
BO  USCRET YES, EXIT TO DELETE SECURITY SUBT 04340000
EJECT 04350000
FEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I 04740000
3 aBDB 04730000
% ISSUE A MVS WTO TO INDICATE THAT THE SUBTASK IS aBDB 04730000
* EXECUTING. aBDB 04730000
% aBDB 04730000
FEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE IEIEIE I IEIEIEIE I IEIEIE I IEIEIEIEIE I 04740000
SPACE 1 04410000

LA R1,USMSG901 2BDB
WTO MF=(E,(1)) : aBDB 04420000
SPACE 1 04430000
JEIEIEIEIEIEIENEIEIEIEIEIIEIIENIEIEIEIEIEIEIEIEIEIEIEIEIENIEIIIEIEIEIEIIIINIIEIIIIIIIIIENIIININNINNNNX® 06460000
%* * 04450000
%* GO POST THE PROCESSOR FOR WORK * 04460000
E 3 * 04470000
IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIEIEIEIE I IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEFEIEIIEIEIEIEIE N 04480000
SPACE 1 04490000
B USCPOST GO POST PROCESSOR FOR WORK 04500000

Appendix A. Table Pairs Coding Example

167



USCTDTE - Security Subtask, Termination

TITLE 'USER EXTENSION MODULE -- - SECURITY SUBTASK, TC04510000
ERMINATION' 04520000
%* % 04540000
* TERMINATE SECURITY SUBTASK * 04550000
* % 04560000
* NOTE THAT THE MAIN TASK TERMINATION CODE WAITS 30 SECONDS  * 04570000
* FOR THE SUBTASK TO GO AWAY BEFORE CONTINUING. IF THE MAIN % 04580000
* TASK COMPLETES TERMINATION BEFORE THE SUBTASK DOES (DUE TO % 04590000
* DEBUG TRACING IN THE SUBTASK), AN A03 ABEND WILL RESULT. % 04600000
* * 04610000
FEIEHIIFINIEIIEIIHIIH I IIIHIHIIIININIIIIIIINNHIN IR NN FINIIININNNIIN® 06620000
SPACE 1. 04630000
USCRET DS  OH 04640000
USC37  $AMODE 2G,RELATED=(USCXA)  AMODE 24 FOR SECURITY TERMINATION 04650000
SPACE 1 04660000
ESTAE 0 CANCEL ESTAE 04670000
svC 3 THEN RETURN TO SYSTEM 04680000
EJECT 04690000
* % 04710000
% CREATE THE ESTAE PARAMETER LIST AND TRACED INFORMATION % 04720000
* % 04730000
SPACE 1 04750000
USCABND ESTAE ,CT,PURGE=NONE ,ASYNCH=YES, TERM=NO,MF=L 04760000
USCSTLN EQU  %-USCABND LENGTH OF ESTAE PARAMETER LIST 04770000
SPACE 1 04780000
USCSAFM DC  C'THIS IS TRACE DATA THAT SHOULD BE FILLED IN FOR INSTALC04790000
LATION USE IN TRACING SECURITY CALLS' 04800000
USCSAFML EQU  %-USCSAFM 04810000
SPACE 1 04820000
$MID 901 2808
USMSG901 WTO  '&MID. SECURITY SUBTASK INVOKED', 9BDBC
MF=L ,ROUTCDE=10,DESC=6 2BDB
SPACE 1 04820000
DROP R13 DROP DTE ADDRESSABILITY 04830000

168 A GUIDE User Group Presentation



o=,

TROUT255 - Tracing Routine for SAF Call

TITLE 'USER EXTENSION MODULE -- TROUT255 - TRACING ROUTINE FORC04840000

SAFCALL ID=255'
269NN HIENIIIIINHHIIEI NI IINFIIINININIIIININININIIHHIIINNR

RETURN CODES (R15 ON EXIT):

0 - PROCESSING SUCCESSFUL (NO ERRORS)

%* %
* TROUT255 - TRACING ROUTINE IN SUPPORT OF THE TRACE ID 255. *
% %*
% FUNCTION: *
€ E 3
%* THIS ROUTINE WILL BE CALLED TO FORMAT THE TRACE RECORD FOR  *
%* THE INSTVALLATION TRACE ID 255. THIS ROUTINE SHOULD BE *
* ALTERED BY THE INSTALLATION TO FORMAT THE INFORMATION THAT %
%* WAS SAVED ON THE TRACING OF THIS ID. *
%* %*
% LINKAGE: %*
%* %*
* BALR R14,15 TO BY HASPMISC *
%* %*
% ENVIRONMENT : *
E3 %*
* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK. *
%* %*
% RECOVERY: %*
%* %
%* NONE *
% %*
% REGISTER USAGE (ENTRY/ZEXIT): *
€ %*
* REG VALUE ON ENTRY VALUE ON EXIT *
% *
* RO N/A UNCHANGED *
* R1 TRACE TABLE BUFFER ADDR UNCHANGED %
* R2 TRACE TABLE ENTRY (TTE) UNCHANGED %*
* R3 N/A UNCHANGED *
%* RG TRACE ID TABLE ENTRY UNCHANGED %*
* R5 POINTER TO REMAINING OUT- POINTER TO LOCATION IN OUT- *
* PUT AREA IN PRINT RECORD PUT AREA AFTER THIS ENTRY *
%* R6-R10 N/A UNCHANGED %*
%* R11 HCT BASE ADDRESS UNCHANGED %*
%* R12 N/A UNCHANGED *
%* R13 PCE BASE ADDRESS UNCHANGED %
* R14 RETURN ADDRESS UNCHANGED %
%* R15 ENTRY ADDRESS 0 *
* %*
% PARAMETER LIST: *
%* %*
%* NONE *
%* %*
% REGISTER USAGE (INTERNAL): %*
€ %*
* REG VALUE *
€ %*
* RO-R1 WORK REGISTERS *
* R2 TTE ADDRESS %*
* R3 LOCATION IN TTE *
* R4 WORK REGISTER *
* R5 LOCATION IN OUTPUT AREA *
%* R6-R8 WORK REGISTER *
%* R9 . %%% RESERVED %% *
%* R10 WORK REGISTER %*
* R11 HCT BASE ADDRESS *
* R12 LOCAL BASE ADDRESS *
* R13 PCE BASE ADDRESS *
* R14 LINK/WORK REGISTER *
%* R15 LINK/WORK REGISTER *
E3 %*
% %*
E3 *
% %*
%* *
%* *

OTHER CONSIDERATIONS:

Appendix A. Table Pairs Coding Example

04850000
04860000
04870000
04880000
04890000
04900000
04910000
04920000
04930000
04940000
04950000
04960000

04970000

04980000
04990000
05000000
05010000
05020000
05030000
05040000
05050000
05060000
05070000
05080000
05090000
05100000
05110000
05120000
05130000
05140000
05150000
05160000
05170000
05180000
05190000
05200000
05210000
05220000
05230000
05240000
05250000
05260000
05270000
05280000
05290000
05300000
05310000
05320000
05330000
05340000
05350000
05360000
05370000
05380000
05390000
05400000
05410000
05420000
05430000
05440000
05450000
05460000
05470000
05480000
05490000
05500000
05510000
05520000
05530000

169



*
%

% 05540000
MUST RETURN THE NEW VALUE OF R5 ON EXIT (I.E., $STORE (R5})) % 05550000

* % 05560000
JEIEIEIEIEIEIEIEIEIEIEIEIEIEIIIEIEIIEIEIIEIIEIEIEIIEIEIEIEIEIEIEIEIEIEIIEIIEIEIEIEIEIEIINIEIIIENIIINIENIINWNNN XXX 05570000
SPACE 1 05580000

USING TTE,R2 ESTABLISH TTE ADDRESSABILITY 05590000

USING PCE,R13 ESTABLISH PCE ADDRESSABILITY 05600000

SPACE 1 05610000
TROUT255 $ENTRY BASE=R12 ID=255 TRACE FORMATOR ROUTINE 05620000
$SAVE NAME=TROUT255,TRACE=NO SAVE CALLERS REGISTERS 05630000

LR R12,R15 ESTABLISH BASE ADDRESS 05640000

SPACE 1 05650000

LA R3,TTEDATA POINT TO THE TTE DATA 05660000

MVC  O(USCSAFML,R5),0(R3) SET THE TRACED INFO IN OUTPUT AREA 05670000

LA RO ,USCSAFML( ,R5) POINT BEYOND INFORMATION 05680000

SL RO, TLGBSAVE . AND FIND LENGTH OF PRINT LINE 05690000

L R15,$TRCPUT GET TRCPUT ROUTINE ADDRESS AND 3BDB

$CALL (R15) GO PRINT THE LINE ?aJK 05700000

$STORE (R5) INSURE NEW BUFFER IS PASSED BACK 05710000

SPACE 1 05720000

$RETURN TRACE=NO RETURN TO CALLER 05730000

SPACE 1 05740000

DROP R2,R12,R13 SUSPEND TTE, LOCAL, AND PCE ADDRESS 05750000

170

A GUIDE User Group Presentation



WSTRKGRP - Work Selection Routine

TITLE ‘USER EXTENSION MODULE ~- WSTRKGRP - WORK SELECTION ROUTC05760000

INE FOR TRKGRP CRITERIA'

JEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIETEIEIEIEIE IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEIE I IEIEIEIEIEIEIEIE I IEIEIEIEIEIEIEIIEHIEIENHI

3
%*

%

%

% FUNCTION:

%*

%*

%*

%

% LINKAGE:

%*

%* BALR R14,15 TO BY HASPSERY
%

% ENVIRONMENT:

%*

%* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK.
%

% RECOVERY:

%*

%* NONE

%

% REGISTER USAGE (ENTRY/EXIT):

%*

%* REG VALUE ON ENTRY

%*

% RO N/A

%* R1 N/7A

% R2 ADDR OF CRITERION BEING
%* PROCESSED

% R4-R5 N/7A

%* Ré6 N/A

% R7 COMPARISON LENGTH

%* R8 ADDR OF DEVICE FIELD
% R9 N/A

% R10 ADDR OF COMPARISON FIELD
% R11 HCT BASE ADDRESS

%* R12 N/A

% R13 PCE BASE ADDRESS

%* R14 RETURN ADDRESS

%* R15 ENTRY ADDRESS

%*

% PARAMETER LIST:

%*

%* NONE

%*

% REGISTER USAGE (INTERNAL):

%*

%* REG VALUE

%

%* RO N/A

%* R1 ADDR OF JQE

%* R2 ADDR OF CRITERION BEING
%* PROCESSED

%* R4-R5 N/A

%* Ré6 N/A

%* R7 COMPARISON LENGTH

%* R8 ADDR OF DEVICE FIELD
E R9 N/7A

%* R10 ADDR OF COMPARISON FIELD
E R11 HCT BASE ADDRESS

%* R12 N/A

% R13 PCE BASE ADDRESS

% R14 LINKAGE REGISTER

% R15 LINKAGE REGISTER

E

% RETURN CODES (R15 ON EXIT):

%

WSTRKGRP - WORK SELECTION ROUTINE TO COMPARE THE DCT'S

AND JQE'S NUMBER OF TRACK GROUPS.

THIS ROUTINE WILL BE CALLED TO INSURE THAT THE JOB'S NUMBER
OF TRACK GROUPS IS EQUAL TO OR BEYOND THE DCT'S THRESHOLD.

VALUE ON EXIT

UNCHANGED
UNPREDICTABLE

UNCHANGED
UNCHANGED
UNPREDICTABLE
UNPREDICTABLE
UNCHANGED
UNCHANGED
UNCHANGED
UNCHANGED
UNCHANGED
UNCHANGED
UNCHANGED
0

KoK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KK K K KK KXKXKXKXKXKKXKIXXKZXKZX

05770000
05780000
05790000
05800000
05810000
05820000
05830000
05840000
05850000
05860000
05870000
05880000
05890000
05900000
05910000
05920000
05930000
05940000
05950000
05960000
05970000
05980000
05990000
06000000
06010000
06020000
06030000
06040000
06050000
06060000
06070000
06080000
06090000
06100000
06110000
06120000
06130000
06140000
06150000
06160000
06170000
06180000
06190000
06200000
06210000
06220000
06230000
06240000
06250000
06260000
06270000
06280000
06290000
06300000
06310000
06320000
06330000
06340000
06350000
06360000
06370000
06380000
06390000
06400000
06410000
06420000
06430000
06440000
06450000

Appendix A. Table Pairs Coding Example

171




%* 4 - CONTINUE CRITERIA PROCESSING, ACCEPTABLE CONDITION * 06460000
* 12 - UNACCEPTABLE CONDITION, CRITERIA DO NOT MATCH % 06470000
%* * 06480000
% OTHER CONSIDERATIONS: * 06490000
%* % 06500000
* $SAVE AND $RETURN NOT USED FOR PERFORMANCE REASONS * 06510000
* * 06520000
FEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIENIIIIIONEIEIIEIIEIEIEI I IIIIIIIIEIIIIINHIIIINOONN XXX 06530000
SPACE 1 06540000
ENTRY WSTRKGRP ESTABLISH ENTRY POINT 06550000
USING WSTRKGRP,R6 ESTABLISH ADDRESSABILITY 06560000
USING PCE,R13 ESTABLISH PCE ADDRESSABILITY 06570000
SPACE 1 06580000
WSTRKGRP LR R6,R15 SET ADDRESSABILITY 06590000
BCTR R7,0 PREPARE LENGTH FOR EXECUTES 06600000
LR R15,R10 SET THE JQE FIELD ADDRESS 06610000
SL  R15,=A(JQETGNUM-JQE) TO OBTAIN THE JQE ADDRESS 06620000
LR R1,R10 OBTAIN THE FIELD ADDRESS 06630000
TM  JQEFLAG5-JQE(R15),JQESXUSD NUM OF TGS IN EXT AREA... 06640000
BNO.  WSTTGN NO, GO DO COMPARISON 06650000
LH  R1,JQETGNUM-JQE(,R15) GET THE OFFSET INTO EXT AREA 06660000
AL R1,$JQEEXT AND OBTAIN THE ADDRESS OF TGN 06670000
WSTTGN LA  R15,12 ASSUME TG NUMBER NOT AT THRESHOLD 06680000
EX  R7,WSTCLC T6 NUMBER AT THRESHOLD... 06690000
BLR R14 NO, RETURN INDICATING NO MATCH 06700000
LA  R15,4 YES, INDICATE MATCH 06710000
BR  Rl4 RETURN TO CALLER 06720000
SPACE 1 06730000
WSTCLC CLC  O(%-%,R1),0(R8)  %%x EXECUTE ONLY %% 06740000
SPACE 1 06750000
DROP Ré,R13 SUSPEND LOCAL AND PCE ADDRESSABILITY 06760000
172 A GUIDE User Group Presentation



A,

Tables
TITLE 'USER EXTENSION MODULE -- USERPCET - TABLE FOR INSTALLATC06770000
ION SECURITY PROCESSOR' 06780000
36636 I 36 I6IE IEIE IEIEIEIE IEIEIEIEIE IEIEIEIEIEIEIEIEIEIE IEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIE IE IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE NI 06 790000
%* * 06800000
* DEFINE THE PROCESSOR TABLE %* 06810000
2 ¥ 06820000
IEIEIEIEIEIEIEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIE I IEFEIEIEIEIEIEIEIEIE IEIEIEIEIEIEIEIEIEIEIEIE W IEIE 06830000
SPACE 1 06840000
USERPCET $PCETAB TABLE=USER 06850000
SCTYPCET $PCETAB NAME=SCTY ,DESC='SECURITY' ,MODULE=HASPXJ0O, C06860000
ENTRYPT=UCTMSCTY ,CHAIN=UCTSYPCE ,COUNTS=UCTSYNUM, C06870000
MACRO=$SCYWORK , NORKLEN=SCYLEN,GEN=INIT ,DISPTCH=WARM, C06880000
PCEFLGS=0,FSS=NO,PCEID=(0,UPCESCTY ) ,DCTTAB=%-% 06890000
$PCETAB TABLE=END 06900000

TITLE 'USER EXTENSION MODULE -- USERDTET - TABLE FOR INSTALLATC06910000

ION SECURITY SUBTASK' 06920000
FEHHIIINNIEINHFIINIINHFIINHH NI NI IFIIIIIIIIIINIIINIIINIOINNNHINNANXNX 06930000
% ¥ 06940000
% DEFINE THE SUBTASK TABLE ¥ 06950000
* % 06960000
I IEIEIIEIE I H I NI KN NI HIIIIININNNINIINNNNN XN NNNX 06970000

SPACE 1 06980000
USERDTET $DTETAB TABLE=USER 06990000
$DTETAB NAME=SECURITY,ID=UDTESCTY ,EPNAME=USCTDTE, C07000000

EPLOC=UCTMDSCY ,HEAD=UCTSYDTE ,HORKLEN=SCDLEN, €07010000

GEN=NO,STAE=NO,SZERO=YES 07020000

$DTETAB TABLE=END 07030000

TITLE ‘USER EXTENSION MODULE -- USERTIDT - TABLE FOR INSTALLATC07040000

ION TRACE ID TABLE(S)' 07050000

62 HIEFHFIFFFIIINFFHININIIIIIINNFHIIIININHIIINIINIINIIEIIIIINHRIIEIFHANINNNNNNNNXX 07060000
%* * 07070000
* DEFINE THE TRACE ID TABLE % 07080000
* % 07090000
FEXNIIENHIIIINENIH IR N INHNIIIININIIIIIIINNIHINWIINNNINNNXX 07100000
SPACE 1 07110000
USERTIDT $TIDTAB TABLE=USER 07120000
$TIDTAB ID=255,FORMAT=TROUT255,NAME=SAFCALL 07130000

$TIDTAB TABLE=END 07140000

TITLE 'USER EXTENSION MODULE -- USERSTWT - TABLE FOR INSTALLATC07150000

ION WORK SELECTION CRITERIA' 07160000

FH IR N HHIIOOENINNNINIIIIININIINFIIINIIIIOOIIIENNNXXXX 07170000
%* % 07180000
* DEFINE THE WORK SELECTION CRITERIA TABLE * 07190000
%* ¥ 07200000
FEIEIIIINNIIININIIIINIIIIIIININNHINIINIININIIIIOOINEINENNNNIINNXXNXX 07210000
SPACE 1 07220000
USERSTHT $WSTAB TABLE=USER 07230000
$WSTAB NAME=TRKGRP ,MINLEN=2,ALIAS=TG,FLD=JQETGNUM,CB=JQE, C07240000
DEVFLD=DCTUSERO ,DEVCB=DCT ,RTN=WSTRKGRP 07250000

$WSTAB TABLE=END 07260000

TITLE 'USER EXTENSION MODULE -- USEROSTT - TABLE FOR INSTALLATC07270000

ION SCAN TABLE FOR OFFN.STN' 07280000
FEIHIEIEIINHIINFINFHHINFIINNIIININ I NI NRHINHIINIINIIINR RN KNI HHRNNRNNNNXNX 07290000
%* * 07300000
%* DEFINE THE OFFLOAD SYSOUT TRANSMITTER OPERAND TABLE % 07310000
%* * 07320000

FEIEIEIEIEIEIIEIEIIEIEIEIEIEIEIEIEIEIENIEIEIEIEIEIE I IEIE I I IEIEIEHIEIIENIEIIEIIIEINIINIENIINININ NN NNNNH% 07330000

Appendix A. Table Pairs Coding Example

173



SPACE 1

USEROSTT $SCANTAB TABLE=USER

TRKGRP

$SCANTAB NAME=TRKGRP,MINLEN=2,FIELD=(DCTUSERO,2),DSECT=DCT,
CONV=NUM,RANGE=(0,32767) ,CB=PARENT ,CALLERS=( $SCIRPL ,
$SCIRPLC,$SCDCMDS , $SCSCMDS)

$SCANTAB NAME=TG,CONV=ALIAS,SCANTAB=TRKGRP

$SCANTAB TABLE=END

EJECT

FEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIEIEIEIEIIEIEIEIIEIIEIIEIEIIEIEIEIIEN I

3
%
%*

LIST THE LITERALS FOR THE HASPXJ0O MODULE.

*
%
*

FEIEIEIEIEIEIEIEIEIEIEIEIIEIEIEIIEIEIIEIEIEIEIIEIEIEIEIEIEIEIEIEIEIEIIEIEIEHIEIEIIEIEIEIEIIEIEIE I IEIEIIEIIIEIWIIEIIIH NI

SPACE 1
LTORG »

TITLE 'USER EXTENSION MODULE -- EPILOG ($MODEND)*
$MODEND ,

APARNUM DC CL7'0ZXXXXX"® APAR NUMBER
END > END OF HASPXJ0O
174 A GUIDE User Group Presentation

07340000
07350000
€07360000
€07370000
07380000

07390000
07400000
07410000
07420000
07430000
07440000
07450000
07460000
07470000

99990000
99991000
99999997
99999999



A

alias 101, 104, 115, 134, 140
Attach 22, 50

B

BALR 83

C

CALLER 110, 112, 113, 119, 120, 139, 140
CALLRTM 52
CB 6,8,9,11, 89, 92, 93, 94, 96, 102, 104,
112, 117, 118, 120, 121, 122, 138, 139, 140
CBIND 117,130
CHAIN 25, 26, 27, 29, 30, 32, 41, 45, 46, 53,
57, 64, 66, 67
CHAR 114, 115, 121, 123, 124
Checkpoint 43, 53, 103
CIJOE 92
CKPTDEF 9
CNVT 55
COLD 9,107, 119
control blocks, JES2
See specific control blocks, such as DTE
CONVERT 53, 54, 55, 57, 58, 59, 115, 121
Converter subtask 53, 54, 55, 57, 58, 59

D

Daughter 1, 48, 49, 51

DCNVLEN 54, 57

DCT
DCTDEVN 117
DCTIJOBNM 89, 94, 95
DCTTAB 29, 31, 40, 45

Index

DCTUSERO 102, 103, 104, 105, 134, 135,
136, 137, 140
DEBUG 12, 13, 120, 125, 138, 141
deleting entries 3, 4, 5, 7, 17, 18, 19, 34, 48,
69, 86, 106, 145
Detach 22, 50, 58, 65, 66
DEVCB 89, 94, 96, 103, 104
DEVFLAG 94
DEVFLD 89, 94, 96, 102, 104
Dispatch 20, 21, 25, 26, 34, 35, 42, 43, 45, 46,
49, 145
DISPLAY 109, 112, 113, 118, 128
DISPLEN 110, 133
DISPOUT 110, 131, 133
DISPTCH 29, 34, 42, 45
DTE
DTExxx 1,2,9, 17, 18, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 111, 147
DTEESXAD
DTEIDCNV
DTENEXT 57
DTEPREV 57
DTERTXAD 52
DTESTID 52
DTESXAD 52
DTETAB 71
DTEVRXAD 52
DTE Tables 48, 1, 17, 48-68

E

ENTRYPT 29, 30, 32, 41, 45, 46, 67

EPLOC 54, 55, 56, 64, 66

EPNAME 54, 56, 64, 66

EQU 25, 46, 67

Equate 25, 33, 42, 44, 45, 46, 55, 57, 63, 65,
66, 67, 82

ESTAE 52, 58

Exit point 1, 3, 4, 5, 145

Exit 0 10, 38, 39, 47, 61, 62, 68, 78, 84, 99,
105, 135, 142, 147, 152

Index 175



F

falling-out-of-the-chair insurance v
FCB 12,13
field names, JES2

See JES2 macros and field names
FSS 29, 35,43, 45

H

HASPXITO 147
HCT JES2 Control Block 32, 33, 57, 83, 92,
94, 117

HOLD 34
I
IDEF 12

IDENTIFY 56, 64
INSTBRST 12,13
insurance, falling-out-of-chair
See falling-out-of-the-chair insurance
I0S 71

J

JES2 control blocks

See specific control blocks, such as DTE
JES2 initialization parameters

See specific parameters, such as JOBDEF

JOBNUM=
JES2 labels

HASPDTET 50, 54

HASPEVTL 71

HASPIJRWT 87

HASPJTWT 87 .

HASPMPST 107, 112, 120, 125, 138, 141

HASPOPTT 107

HASPOSTT 138, 141

HASPOSTV 141

HASPPCET 22,29

HASPPRWT 87, 89

HASPPUWT 87

HASPRCTT 125

HASPRCVT 120, 121, 125

HASPSRWT 87

HASPSTWT 87

HASPTAB1 12,13

HASPTAB2 13

HASPTBLE 11

HASPTIDT 70, 74

HASPXJ00 38, 39, 40, 41, 45, 46, 47, 61,

62, 64, 66, 67, 68, 84, 105, 142, 147

JES2 macros and field names

$DCTDYN 117

176 A GUIDE User Group Presentation

$DCTTAB 31

$DPCE 30

$DRSCTY 25,46

$DRTOTAL 25

$DRxxxxx 25

$DTE 51, 52

$DTEALOC 53

$DTECKAP 53

$DTECNVT 53, 54, 57

$DTEDYN 50, 54, 57, 58, 61, 65, 66

$DTEIMAG 53

$DTEOFF 53

$DTEORG 57

$DTESMF 53

$DTESPOL 53

$DTETAB 48, 50, 54, 55, 56, 57, 58, 59,
64, 65, 66

$DTEVTM 53

$DTEWTO 53

$GETABLE 23, 51, 71

$GETBUF

$GETMAIN 33, 57, 117

$GETWORK

$HASPEQU 25, 82

$HCT 10, 32, 33, 47, 52, 53, 57, 68, 83,
84, 105, 127, 131, 142

$IQE 102

$MCT 9, 10, 22, 29, 38, 47, 50, 54, 61, 68,
70, 74, 718, 84, 87, 89, 99, 105, 107, 110,
112, 115, 116, 120, 135, 140, 142, 147

$MODMAP 32, 38, 39, 62

$MODULE 47, 68, 71, 147

$NUMRDRS 29, 33

$PCE 33, 34, 36, 127, 131

$SPCEDYN 22, 29, 33, 34, 35, 38, 41, 43,
46

$PCEORG 32

$PCETAB 22, 29, 30, 31, 32, 33, 34, 35,
41, 42, 45, 48, 57

$POST 20, 21, 25, 34, 46

$RDRPCE 29, 32

$RDRWORK 29, 33

$RETURN 26, 82

$SAVE 26, 74, 82

$SCAN 1, 2, 17, 102, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 147

$SCANTAB 109, 111, 112, 113, 114, 115,
116, 117, 118, 119, 121, 122, 123, 124, 130,
133, 140

$SCANWA 108

$SCDCMDS 112, 119, 139, 140

$SCDOCMD 119

$SCDWORK 65, 66, 67, 68, 147, 150

$SCIRPL 112, 119, 139, 140

$SCIRPLC 112, 119, 139, 140

$SCOPTS 119

$SCSCMDS 112, 119, 139, 140

$SCWA 108, 127, 130, 131, 133



$SCYWORK 41, 42, 45, 46, 47, 147, 149
$SETRP 52
$STABNDA 52
$STORE 83
$TIDTAB 70, 74, 75, 76, 81
$TLGWORK 171, 82
$TPCE 30
$TRACE 30, 70, 71, 73, 74, 75, 78, 82
$TRCPUT 83
$TRP 71
$TTE 72,73
SUCT 32, 33, 38, 41, 44, 45, 46, 47, 56,
57, 61, 63, 64, 66, 67, 68, 84, 105, 110, 116,
142, 147, 151
$USERCBS 47, 68, 147, 148
SWAIT 20, 21, 25, 26, 34, 35, 43, 46, 49
$WSTAB 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 104
JES2 messages
See specific messages, such as SHASP050
JES2 modules 3, 4
HASJES20 10, 22, 38, 39, 50, 61, 62, 70,
78, 87, 99, 107, 135, 140
HASPRDR 29, 31
HASPSSSM 26, 71
HASPSTAB iii, 106, 143
HASPSXIT 130
HASPTABS iii, 9, 10, 12, 19, 23, 31, 47,
48, 51, 68, 69, 71, 84, 86, 105, 142
HASPWARM 21
JES2 subtasks 48, 51, 53
HASPACCT 51
HASPCKAP 51
HASPIMAG 51
HASPOFF 51
HASPVTAM 51
HASPWTO 51
HOSALLOC 51
HOSCNVT 51, 54
HOSPOOL 51
Job 85, 87, 91, 92, 93, 94, 98, 99, 101, 102,
103, 104, 134, 137
JOBNAME 89, 90
JOE JES2 Control Block 85, 89, 92
JQE
JQEJINAME 89, 91, 92, 94, 95
JQETGNUM 102, 103, 104, 105, 134,
136
job receivers 35, 44
job transmitters 35, 44

L

labels, JES2
See JES2 labels
Link 3,4, 8, 10, 12, 22, 38, 39, 50, 61, 62, 70,
78, 83, 87, 99, 103, 107, 135, 140
Load 38, 39, 61, 62, 71, 78, 99, 135

M

macros, JES2
See JES2 macros and field names
MAIN 107
MAPCNVA 54
MAPRDRA 29, 32
MASDEF 107
MCT 11, 12, 13, 87, 107, 120, 122, 125, 138,
141
MCTDETTU 61 -~
MCTDTETH 50
MCTDTETU 50, 68
MCTJRWTH 87
MCTIJRWTU 87
MCTIJTWTH 87
MCTITWTU 87
MCTMPSTH 107

MCTMPSTP
MCTMPSTU
MCTOPTTH
MCTOPTTP
MCTOPTTU
MCTOSTTP
MCTOSTTU
MCTPCETH
MCTPCETU
MCTPRWTH
MCTPRWTU
MCTPUWTH
MCTPUWTU
MCTRCVTP
MCTSRWTH
MCTSRWTU
MCTSTWTH
MCTSTWTU

107, 120, 125, 138, 141
107

107

107

107
138, 141

135, 142

22

22, 38, 47

87

87

87

87

112, 116, 120, 125
87

87

87, 105
87, 99, 105

MCTTIDTH 70

MCTTIDTU 70, 78, 84
messages
See specific messages, such as $SHASP050
MINLEN 89, 90, 101, 104, 136, 140
Modif 1, v, 3,4,5,7, 12, 17, 18, 19, 23, 25,
37, 38, 47,.48, 51, 60, 61, 68, 69, 71, 77, 86,
106, 109, 112, 115, 117, 133, 143, 145
MODMAP 32, 56
modules, JES2
See JES2 modules
MPS 107
MSGID 112, 113, 120

Index 177



N

NAME 29, 30, 40, 45, 54, 55, 63, 66, 74, 76,
80, 81, 89, 90, 101, 104, 112, 113, 117, 121,
122, 136, 140

NIJE headers

NDHA 93
NDHG 93
NDHS 93
NDHU 93
NJHG 92
NJHO 93
NJHU 92
NJH2 92
NOREQ 9, 107
NUM 115, 121, 123, 124, 137, 140

o

OFFJR 87

OFFJT 87

Offload 2, 53, 85, 87, 92, 93, 98, 99, 102, 103,
104, 134, 135, 136, 138, 140, 141, 147

OFFLOADing 92

OFFn 134, 135, 141

Offset 103, 123

OFFSR 87

OFFST 87, 138, 141

OPT 107

OPTION 107

OS-style 23, 24, 27, 51, 71

Override 19, 32, 38, 48, 57, 61, 69, 86, 106,
122

P

PARENT 117, 121, 122, 139, 140

PARM 107,110

PARMLEN 110

Path 96

PCE

PCEDSPXP 35,43
PCEDSPXT 35, 43
PCEFLAGS 35,43
PCEFLGS 29, 35, 43, 45
PCEID 29, 35, 36, 44, 45
PCEINRID 44
PCELCLID 29, 36, 44
PCELPSV 26, 27
PCENEXT 32
PCENIJEID 44
PCENWIOP 35, 43
PCEPREV 32
PCEPRSID 44
PCEPUSID 44
PCERDRID 29, 36

178 A GUIDE User Group Presentation

PCERIJEID 44
PCETAB 71
PCETRACE 35, 43
PCEUSERO 23
PCEUSER1 23
PCEXFRID 44
PCE Tables 19, 1, 17, 19-47, 111
Percolate 52
Performance iii, 96
PIT JES2 Control Block 94
POST 49, 117
PRE 130
PREDRECV
PREFIX 73
PRESCAN 112, 118, 120, 127, 128, 129, 130
PRINTER 115
PRINTR 115
PRT 12,13, 87, 107, 115, 130
PST JES2 Control Block 112, 118, 120, 125,
127, 128, 129, 130
PSV 26, 27, 28
PSVLABAD 26
PSVNEXT 26, 28
PSVPCE 26, 28
PSVPREV 26, 27
PUT 82,83

112, 118, 120

R

Range 95, 99, 121, 124, 137, 140
RCB 83
RDR 29, 30, 31
RDRDCTT 29
RDRPCET 29
RDWLEN 29,33
Recursive 108, 115, 120, 125, 128
RECVOPTS 112, 113, 115, 116, 120, 121,
122, 125
Registers
RO 83, 127, 131
R1 82, 127, 128, 129, 131, 132
R10 96, 127, 131
R11 96,127, 131
R12 96, 127, 131
R13 23, 26, 27, 28, 51, 71, 96, 127, 131
R14 82, 83, 96, 127, 131
R15 82, 83, 96, 127, 131
R2 82,96, 127, 131
R3 96
R4 82,96
R5 82,83
R7 96
R8 96
RVS 121, 125
RVSILNG
RVSINTV 121, 125
RVSLIM 121, 125
RVSNAME 121, 122, 125

112, 117, 120



S

SAF 60, 77, 80
SAFCALL 80, 81
Save area 23, 24, 26, 27, 28, 51, 71
SCAN 4, 92,94, 97, 106, 108, 109, 110, 113,
115, 117, 118, 120, 122, 125, 127, 128, 129,
130, 131, 133, 135
SCANTAB 115, 140
SCDLEN 65, 66, 67
SCTY 25, 40, 41, 45, 46, 64, 65, 67
SCTYPCET 45
SCWA 40, 127, 128, 131, 133
SCWACBAD 130
SCWACNTR 130
SCWADLEN 133
SCWADOUT 133
SCWAEXFL 130
SCWARLEN 130
SCWARTCD 133
SCWASTAB 130
SCYLEN 42, 45, 46
SDWA 30, 52
SEC 46
SECURITY 40, 45, 63, 66
Serialize 49
SET 109, 110, 112, 118, 125
SETDISP 109
SETRP 52
SINGLE 109
SMF 53
spool 53, 93, 98, 99, 101, 103, 134, 137
SPOOLDEF 9
sysout receivers 44
sysout transmitters
135, 141
STAE 54, 58, 65, 66
START 6,8, 11, 12, 13, 30, 34, 55, 75, 90,
113, 120, 125, 138, 141
STATIC 34
STATUS 138, 141
STIMER 43
STMT 107
SUBPOOL 59, 65, 66
Subpool 0 59, 65, 66

35, 44, 54, 58, 65, 66, 134,

Subscan 112, 113, 115, 116, 120, 130, 138
Subtask 1,9, 18, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

145, 147, 150
subtasks, JES2
See JES2 subtasks
Sysout 85, 87, 98, 99, 102, 103, 104, 134, 135,

136, 138, 140, 141, 147

T

TABLE=END 29, 35, 36, 45, 54, 59, 66, 74,
76, 81, 89, 97, 104, 112, 121, 124, 140

TABLE=HASP 29, 30, 32, 33, 54, 55, 56,
57,74, 75, 89, 90, 112, 113, 121, 122

TABLE=USER 30, 32, 33, 45, 55, 56, 57,
66, 75, 81, 90, 104, 113, 122, 140

TBL 22, 50, 70, 107

TCB 20

TG 101, 104, 134, 140

TID 1,2,17,69,70,71, 74,75, 76, 71,78,
80, 81, 82, 83, 84, 111

TID Tables 69, 1, 17, 69-84, 111

TIDTAB 69, 70, 71, 75, 80, 82

TIMER 43

TLGBSAVE 82, 83

TR 101, 104, 134, 136, 140

Trace 2,9, 30, 69, 70, 71, 72, 73, 74, 75, 76,
77,78, 80, 81, 82, 145, 147

TRCLRECL 82

TRCPUT 82, 83

TRkgrp 101, 104, 134, 136, 137, 140, 141

TROUTO01 74

TROUT255 80, 81, 82, 83, 84

TTE 71, 72,73, 78, 82

TTP 72,73, 82

TYPE 120, 121, 122, 125
U
UCS 12,13, 14

UCT 33,38, 61, 94, 117
UCTMDSCY 64, 66, 67
UCTMSCTY 41, 45, 46, 47
UCTSYDTE 64, 66, 67
UCTSYNUM 41, 45, 46, 47
UCTSYPCE 41, 45, 46, 47

UDTESCTY 63, 66, 67

UPCESCTY 44, 45, 46

USCTDTE 64, 66, 67

USCTPCE 41

USE 26, 143

USERxxa
USERDTET 50, 61, 66
USERJRWT 87
USERITWT 87
USERMPST 107, 120, 125, 138, 141
USEROPTT 107
USEROSST 141
USEROSTT 135, 138, 140, 141
USERPCET 22, 38, 45
USERPRWT 87
USERPUWT 87
USERRCVT 120, 122, 125
USERSRWT 87
USERSTWT 87, 99, 104
USERTABI 12, 13

Index 179



USERTAB2 13
USERTBLE 11
USERTIDT 70, 78, 81

A%

VALUE 115
VECTOR 115, 116
VOL 115

VRA 52

w

WAIT 48, 49, 58, 60
WARM 9, 29, 34, 42, 45, 107, 119
WIOE 92

WORKLEN 29, 33, 42, 45, 54, 57, 65, 66
WS 2,17, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105,

111

180 A GUIDE User Group Presentation

WS Tables 85, 17, 85-105
WSTAB 1,2
WSTRKGRP 103, 104, 105
WTO 53

Z

ZERO 93,94

$EXIT 33, 127

$HASP 113

$HASPonn 113

$HASP846 113

$SCAN Tables 106, 1, 17, 106-143

$SCYWORK 41, 42, 45, 46, 47, 147, 149




P

READER’S COMMENT FORM

Title: Extending JES2
Using Table Pairs
Washington Systems Center
Technical Bulletin GG66-0282-00

You may use this form to communicate your comments about this publication, its organization,
or subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Please state your occupation:

Comments:

Please mail to: Scott W. Wood
IBM Washington Systems Center
JES2 Support

18100 Frederick Pike
ISG/Building 183 Room 2T74
Gaithersburg, MD 20879



Reader’s Comment Form

Fold and tape

Please Do Not Staple

Foid and tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

S. W. Wood _

IBM Corporation
Washington Systems Center
18100 Frederick Pike
Gaithersburg, MD 20879

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tape

<||I
oIt

Please Do Not Staple

Fold and tape

s e o e e e S e S e, S o e S e S S e, o S . e e e S, St e S e e e ., S e S S (. e S e S s, S s o, e B2 et et e e e wrnm e QU] HUO Y PIO Y 40 IND e e e o e




AR

READER’S COMMENT FORM

Title: Extending JES2
Using Table Pairs
Washington Systems Center
Technical Bulletin GG66-0282-00

You may use this form to communicate your comments about this publication, its organization,
or subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Please state your occupation:

Comments:

Please mail to: Scott W. Wood
IBM Washington Systems Center
JES2 Support

18100 Frederick Pike
ISG/Building 183 Room 2T74
Gaithersburg, MD 20879



Reader’s Comment Form

Fold and tape

Please Do Not Staple

Fold and tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

S. W. Wood

IBM Corporation
Washington Systems Center
18100 Frederick Pike
Gaithersburg, MD 20879

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tape

.."
olI"

Ptease Do Not Stapie

Fold and tape

e e e e e e e e e e e . e e S . (o S B . . e . S e e St o o o S o S e o . S S S e B e S e T i S S o S o e e e e B . o o S e e . ot e e e e e e DU} HUOYYS PO 40 IND = e e e






