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Preface 

The MVS/Extended Architecture Overview is an introduction to MVS/Extended 
Architecture (MVS/XA), the operating system that manages IBM System/370-XA 
computers. This book expects readers to have a general understanding of how 
computers work. That is, it assumes some background knowledge of the 
components of a computer system, the role of an operating system, and computer 
programming concepts. 

Chapter 1 describes the environment in which MVS/XA runs and the attributes 
that allow MVS/XA to govern complex computer configurations. It presents 
MVS/XA interpretations of computer terms and concepts. 

The remaining chapters give an overview of how MVS/XA works. Chapters 2 and 
3 explain how MVS/XA manages and makes use of two key system resources: 
real storage and virtual storage. Subsequent chapters explain how MVS/XA 
accomplishes the primary operating system functions of: 

• 	 Chapter 4: Managing the hardware 

• 	 Chapter 5: Monitoring system resource use 

• 	 Chapter 6: Processing units of work 
, 

• 	 Chapter 7: Reading and writing code and data 

• 	 Chapter 8: Identifying, tracking, and allocating resources to jobs 

• 	 Chapter 9: Preventing and tracing system errors 

Chapter 10: Recovering from system errors 

• 	 Chapter 11: Initializing the system 

There are no prerequisite MVS/XA reading materials for using this book. 
Additional documentation of MVS/XA appears in the MVS/XA library. The 
MVS/XA Library User's Guide, GC28·1339, gives a complete list of related 
publications. 
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Chapter 1. Introduction to MVS/Extended Architecture 
,~ 

An operating system is a group of related programs that govern the computer 
system. The operating system controls the execution of programs and provides 
services they need to make use of the computer system hardware. MVS/XA is the 
operating system that takes advantage of the IBM System/370 extended 
architecture (System/370-XA). 

A computer's architecture consists of the functions the computer system provides. 
It is distinct from the physical design, and, in fact, different machine designs may 
conform to the same computer architecture. In a sense, the architecture is the 
computer as seen by the user such as a system programmer. For example, part of 
the architecture is the set of machine instructions that the computer can recognize 
and execute. 

System/370-XA, as its name implies, is an extension of the System/370 computer 
architecture. Similarly, MVS/XA is an extension of the MVS/370 operating 
system that supports the System/370 architecture. Thus, MVS/XA, despite the 
fact that it supports significant changes to System/370 .architecture, includes much 
that is familiar to MVS/370 users. 

The differences between MVS/370 and MVS/XA center on taking advantage of 
the continuing high performance enhancements to computer system hardware and 
improving the reliability, availability, and serviceability of the system. The two 
most significant changes are: 

31-bit addressing 

MVS/370 provides a 24-bit addressing scheme. MVS/XA provides both a 
31-bit and a 24-bit addressing scheme. This change extends the storage 
available to anyone user from 16 million bytes (16 megabytes) to two billion 
bytes (two gigabytes). 

• The channel subsystem 

The channel subsystem handles input and output (I/O) operations 
independently of the processors in the MVS/XA system. MVS/370 also 
allows overlap of I/O operations with instruction processing, but the MVS/XA 
channel subsystem increases the amount of overlap and allows all of the 
processors to access all of the I/O devices without the need for multiple tasks 
or for switches. 

Neither of the changes, however, creates the need for users to change existing 
application programs. Application programs written for 24-bit addressing can run 
under MVS/XA, and there have been no changes to the way programs invoke I/O 
operations. 

The MVS/XA Environment 

To understand how and why MVS/XA functions as it does, it is important~~..~ . 
understand the environment in which it functions. The special features that make 
MVS/XA unique reflect the features of the computer environments that MVS/XA 
manages. 

Chapter 1. Introduction to MVS!Extended Architecture 1-1 
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Virtual Storage 

By way of contrast, consider a simple, single user, computer system. Its operating 
system is a simple one that reads in one job, finds the data and devices it needs, lets 
the job run to completion, and then reads in another job. (~, 

The computer systems that MVS/XA manages are capable of multiprogramming, or 
executing many programs concurrently. By means of multiprogramming the system 
can, for example, run hundreds of jobs simultaneously for users who might be at 
distant geographical locations. 

MVS/XA can also manage multiprocessing, which is the simultaneous operation of 
two or more processors that share the various system hardware devices. Figure 1-1 
illustrates the IBM 3081 Processor Complex; two central processors share main 
storage and the channel subsystem. Chapter 4, "Multiprocessing" gives more 
detail on the MVS/XA multiprocessing environment. 

Main 
StorageI I 
I 

I-­
System Channel '-­

Controller Subsystem -­-
I 

I IIProc~~sor I IProcessor 
02 I 

Figure 1-1. The 3081 Processor Complex 

Many users running many separate programs means that, along with large amounts 
of complex hardware, MVS/XA users need large amounts of storage to ensure 
suitable system performance. They run sophisticated application programs that 
access large data bases and program modules. Such applications require the 
operating system to provide routines to protect privacy as well as routines for 
sharing the data bases and software services. 

Thus, multiprogramming, multiprocessing, and the need for large amounts of 
storage mean that MVS/XA must provide function beyond simple job-to-job 
transition. The following introduction describes, in a general way, the attributes 
that enable MVS/XA to manage complex computer configurations. Subsequent 
chapters explain these features in more detail. 

The MVS in MVS/XA stands for multiple virtual storage to indicate that each user 
has access to virtual, rather than only real (physical), main storage. Virtual storage 
means that each running program can assume it has access to all of the main 
storage that the addressing scheme allows. The only limit is the number of bits in a 
storage address. This ability to use a large number of storage locations is important 
because a program may be long and complex and, both the program's code and the 
data it requires must be in main storage in order for the processor to access them. 

/~
! \ 
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Address Spaces 

Task Management 

The 31-bit address supported by MVS/XA allows a program to address up to 
2,147,483,648 (two gigabytes) storage locations. In contrast, the system has much 
less real storage. How much less depends upon the model of computer and the 
installation's configuration. 

To allow each user to behave as though he had much more real storage than really 
exists in the computer system, MVS/XA keeps only the active portions of each 
program in real storage and the rest of its code and data in special data sets, usually 
on high-speed direct access storage devices (DASDs). 

Virtual storage, then, is this combination of real and auxiliary storage. MVS/XA 
requires billions of bytes of auxiliary storage to make virtual storage possible. It 
uses a system of tables and bit settings to relate the DASD locations to real storage 
locations and keep track of the identity and authority of each program. Chapter 
2, "Multiple Virtual Storage," explains how MVS/XA manages virtual and real 
storage. 

A complete two-gigabyte range of 31-bit virtual storage addresses is known as an 
address space. MVS/XA provides each user (batch job initiator, TSO user, or 
started task) with a unique address space and maintains the distinction between the 
code and data belonging to each address space. MVS/XA also includes cross 
memory services, that permit a single user to access other address spaces when 
necessary. 

The ability of many users to share the same resources implies the need to protect 
users from one another and to protect the operating system itself. Along with such 
methods as "keys" for protecting real storage and code words for protecting data 
files and programs, separate address spaces ensure that users' programs and data do 
not overlap. Chapter 3, "MVS/XA Address Spaces," describes the virtual storage 
areas within each address space and which address spaces are created during 
system initialization. 

MVS/XA breaks each job into separate units of work known as tasks and attempts 
to process each one as efficiently as possible. The tasks for one job compete with 
one another, and with tasks related to other jobs, for use of system resources. 
Responsibility for controlling the progress of tasks through the system lies with the 
supervisor, a component of the operating system. The supervisor allocates 
resources (other than I/O devices) and maintains current information about each 
task so that processing can resume from the appropriate point in case of an 
interruption. 

MVS/XA includes several mechanisms to enable the supervisor and other system 
components to maintain control. This section describes four control mechanisms: 
control blocks, the program status word, interruptions, and macro instructions. 
Chapter 6, "Supervising the Execution of Work," describes other key features of 
MVS/XA task management. 

"!.-­
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Control Blocks 

MVS/XA modules normally store the information needed to control a particular (\. 
unit of work or manage a resource in defined storage areas called control blocks. 
Generally speaking, there are three types of MVS/XA control blocks: 

• System 

Each system-related control block represents one MVS/XA system. These 
contain system-wide information such as how many processors are functioning. 

Resource 

Each resource-related control block represents one resource such as a 
processor or auxiliary storage device. 

• Task 

Each task-related control block represents one unit of work. 

Control blocks work as vehicles for communication throughout MVS/XA. Such 

communication is possible because the structure of a control block is known to all 

of its users, and thus all can find needed information about the unit of work or 

resource. The MVS/XA system control blocks, for example, are all documented in 

the multi-volume MVS/XA Debugging Handbook. 


Control blocks representing many units of the same type may be chained together 

on queues, with each control block pointing to the next one in the chain. A ~, 


program can search the queue to find the data for a particular unit of work or 

resource, which might be: 


• An address (of a control block or a required routine) 
• Actual data, such as a value, a quantity, a parameter, or a name 
• Status flags (usually single bits in a byte, where each bit has a specific meaning) 

All fields in a control block are defined and identified in the documented structure 
of the specific control block. 

Control blocks have many sizes and formats. Usually, a control block consists of a 
series of fullword field§, but some fields can be longer (such as the name of a data 
file) or shorter (such as a flag byte). Important points to remember about control 
blocks are that they are structured, documented, and usually chained together. 
Figure 1-2 illustrates a queue of task control blocks (TCBs). 

l 
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Program Status Word 

(\ 
I 

TCB 

Queue 


NextTCB NextTCB NextTCB 
Task A TaskB TaskD 

, Back Back 

Figure 1-2. A Queue of Task Control Blocks 

The program status word (PSW)is a 64-bit data area in the processor that, along 
with control registers, timing registers, and the prefix registers, provides details 
crucial to both the hardware and the software. The current PSW includes the 
address of the next program instruction and control information about the program 
that is running, such as whether it is running in 24-bit or 31-bit addressing mode or 
whether or it is running in the problem program state or supervisor state. 

Supervisor state programs are authorized to issue all instructions, including those 
that, for example, change the PSW. Problem programs may be IBM-distributed 
programs, such as language translators, or user-written application programs. They 
are not authorized to use all operating system instructions. Only when the problem 
state bit in the PSW is off can the program execute all instructions. 

Each processor has only one current PSW. Thus, only one task can execute on a 
processor at anyone time. Multiprogramming is possible, however, because an 
interruption causes the processor to save the contents of the current PSW and insert 
new PSW information in order to process the interruption. Figure 1--3 illustrates 
the MVS/XA PSW and some of its most important bits. 
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Problem State Bit Addressing Mode Bit 

15 32 

-Address 
of the next instruction to be executed 

24-BIT ADDRESSING MODE 31-BIT ADDRESSING MODE 

Figure 1-3. The MVS/XA PSW 

r. ( •.6.nterruptlons 

Macro Instructions 

Resource IVlanagement 

An interruption is a request for attention from a processor. It indicates that an 
event, such as the completion of an I/O operation, expiration of a time interval, a 
program error, or a request for high-priority system services has taken place, and f\ 

. the system must reassess the mix of work to be done. When an interruption occurs, 
the processor temporarily ceases execution of the current task and begins executing 
an MVS/XA interruption handler. 

First level interruption handlers (FUHs) store the crucial information (such as the 
contents of the PSW) about the status of the interrupted task and give control to 
second level interruption handlers (SUHs), which actually respond to the reason for 
the interruption. 

After the interruption handlers complete their processing, a :system component 

called the dispatcher might be called to select the highest priority ready unit of work 

(not necessarily the one that had been interrupted) and give it control until it 

completes or until another interruption occurs. An interruption thus allows the 

dispatcher to reassess the priorities of the tasks at hand. 


Communication between MVS/XA programs occurs because system programmers 
follow established programming conventions and use common macro instructions. 
These instructions invoke segments of program code that map frequently used . 
control blocks or perform frequently used system functions. MVS/XA macros, 
many of which are available to application programmers, exist for such functions as 
opening and closing data files, loading and deleting programs, and sending 
messages to the computer system operator. 

Multiprogramming and multiprocessing create the need to measure the activity of 
the system and to adjust the workload to fit changing conditions. MVS/XA, for 

1-6 MVS/Extended Architecture Overview 

--- -----~----- --------- ­



Operator Comole 

example, monitors how much each active address space uses the processors, I/O· 
devices, and real storage locations. The system resources manager,the MVS/XA 
component known as SRM, uses this information when it determines whether an 
address space should remain resident in real storage or whether a new address 
space should 'be created. 

The system resources manager also takes into account the workload goals and 
priorities for users and equipment that the installation specifies in the installation 
performance specification (IPS). SRM, described in Chapter 5, "Managing System 
Resources," is the primary means by which the system and the installation manage 
the system resources. 

MVS/XA provides other tools that allow the installation to control use of system 
resources. These include system parameters, exit routines, and the operator 
console. 

System parameters are values specified by IBM or the installation and stored in the 
system data set named SYS 1.PARMLIB. Each member of this data set contains 
parameters that the operator selects to control processing. For example, member 
IEASYSOO contains the default system parameters that tailor MVS/XA at start-up; 
the system uses these parameters and other values during the system initialization 
process. 

An exit is a defined point in system processing where a system program calls 
another program. The called program that IBM supplies performs standard default 
processing; it is designed to be replaced by a user version of the exit routine. The 
user exit routine performs user-defined functions appropriate to that particular 
point in MVS/XA processing. 

The installation controls MVS/XA by entering system commands through one or 
more devices defined to MVS/XA as operator consoles. There is also a system 
console for use by IBM- customer engineers in diagnosing and correcting hardware 
problems. 

Through system commands issued at the operator console, the operator or system 
programmer can control MVS/XA or respond to a condition MVS/XA detects. 
System commands cah: 

• 	 Change the status of hardware units, such as devices, between online 
(available) and offline (not available) to the system 

• 	 Monitor the status of various units of work in the system 

• 	 Change those system parameters that can be referenced after system 
initialization 

• 	 Start and stop system functions 

• 	 Set a trap for a recurring error condition 

Chapter 1. Introduction to MVS/Extended Architectii1Y ~ 1:'7 



I/O and Data Management 

Job Management 

Nearlyall tasks involve some amount of data input or data output. The channel 

subsystem manages the use of I/O devices, such as disks, tapes, and printers, while 

MVS/XA, through software, associates the data for the task at hand with a device. 


MVS/XA manages data by means of data sets. Data sets can hold information 

usually thought of as file data like the patients' records in a doctor's office. Or, 

data sets can hold information the computer needs, like parameters or programs. 


The records in data sets may be organized in various ways, depending upon how 

the information will be accessed. Data sets can be organized for sequential access 

or direct access. 


In a sequential data set organized for sequential access, records are data items that 

are stored consecutively. To retrieve the tenth item in the data set, for example, 

the system first passes by the preceding nine items. Data items that must all be 

used in sequence, like the alphabetical list of names in a seating chart, are best /\ 

stored in sequential access data sets. 


In a data set organized for direct access, also called random access, records are 

data items stored with control information so that the system can retrieve an item 

without searching all preceding items in the data set. Data items that are used 

frequently and in an' unpredictable order are best stored in direct access data sets. 


Partitioned data sets combine the features of sequential and direct access. The data 

set consists of a directory and members. The directory holds the address of each 

member and thus makes it possible to access each member directly. A member, 

however, consists of sequentially·stored records. 


Partitioned data sets are often called libraries. Programs are stored as members of 
. partitioned data sets so that, even though they generally execute sequentially when 

running, the operating system can access them directly when selecting one for 
execution. 

MVS/XA supports many differe~t devices for data storage. Disks or tape are most 

frequently used for storing data sets on a long term basis. Disk drives are known as 

direct access storage devices (DASDs) because, even though some of the data sets 

on them might be stored sequentially, these devices can handle direct access. Tape 

drives are known as sequential access devices because data sets on tape must be 

accessed sequentially. 


To enable the system to locate a specific data set quickly, MVS/XA includes a a 

data set known as the mastercatalog that permits access to any of the data sets in 

the computer system or to other catalogs of data sets. MVS/XA requires that the 

master catalog reside on a DASD that is always mounted on a drive that is online to 

the system. Certain other key data sets needed by the operating system reside on a 

particular DASD known as SYSRES, or the system residence volume, and must 

also always be on line. Chapter 7, "Satisfying I/O Requests," gives more details 

on how MVS/XA manages I/O operations and the transfer of data within the 

computer system. 


MVS/XA provides several ways to enter work into the, computer system. With 
batch processing, a user enters a job through a local terminal or, by means of 
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Recovery Management 

Summary 

remote job entry (RJE), through a remote terminal, or from tape, card reader, or 
disk, and the system process~s the job at a later time. The operating system follows 
installation-defined guidelines as it chooses the time and resources for the job. 
With interactive job entry, such as the time sharing option (TSO), the system 
responds to terminal users while they are actually logged-on to the system. 
MVS/XA also permits the computer operator to enter a job by means of the 
START command; such jobs are called started tasks. 

For MVS/XA, a job is more than the work to be done; it is the work to be done 
embedded in a stream of job control language (JCL) statements supplied by the 
user or the installation. JCL identifies such things as the system resources and data 
the job needs. The job entry subsystem (JES) processes the JCL, organizes the 
necessary programs, data, and resources, and presents MVS/XA with a job that is 
ready to be processed. Upon completion of the job, JES releases resources used 
for processing and schedules job output. 

There are two IBM-supplied job entry subsystems: JES2 and JES3. Chapter 
8, "Entering and Scheduling Work," describes how each one manages jobs. 

A data processing system must be available for use when it is needed. For a la(ge 
system, this means that the system can function even if one component fails and 
can, possibly, diagnose the cause and correct or compensate for the failure. 
MVS/XA includes recovery mechanisms to prevent a user error from causing the 
failure of the computer system, to isolate and recover from operating system errors, 
and to protect the system from hardware errors .. It also has programs that trace 
system activity and display the status and contents of various system resources. 
Chapter 9, "Monitoring System Activity," describes how MVS/XA monitors 
system activity; Chapter 10, "Recovering From Errors," describes t.he recovery 
mechanisms. 

The operating system called MVS/XA is a combination of program and data 
modules. Large groups of modules that make a particular MVS/XA function 
possible are known as system components. Other groups of modules that provide 
added function that is de'pendent on MVS/XA are known as subsystems. 
MVS/XA includes a subsystem interface (SSI) for communication with IBM 
subsystems (such as the job entry subsystems) or user-supplied subsystems. 

The motto, "divide and conquer", aptly describes how MVS/XA manages a 
computer configuration. MVS/XA gets work done by dividing it into pieces and 
giving portions of the job to components and subsystems that function 
interdependently. At any point in time, one component or another gets control of 
the processor, makes its contribution, and then passes control along to a user 
program or another component. There is no one entity that is MVS/XA. Rather, 
what exists is a collection of specialists acting according to accepted guidelines to 
get work done. 

The remainder of this book describes important aspects of MVS/XA processing' 
and gives an overview of what various components do and how they do it. It 
finishes with Chapter 11, "Initializing the System," which shows how components 
work together. 
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Chapter 2. Multiple. Virtual Storage 

The two gigabytes of storage in an MVS/XA address space are shared between 
user programs and MVS/XA system programs. System areas include the prefixed 
save area (PSA), which holds critical information unique to each processor in the 
system, the nucleus portion of the system control program that must always be in 
storage, and tbe commonly used system programs and subsystems. The map of an 
address space showing the addresses allocated for these areas is the same for all 
users. It is shown in Figure 2-1. 

The organization of the MVS/XA virtual storage address space map arose from the 
need to maintain compatibility with programs written for MVS/370. Because of its 
24-bit addressing scheme, MVS/370 provides address spaces with a maximum of 
16 million bytes of virtual storage to be shared among user and system programs. 
Thus, maintaining compatibility means that MVS/XA must provide portions of 
each region at addresses below 16 megabytes as well as extended portions of these 
regions above the 16-megabyte line. 

Virtual Storage Map 

1.--------.12GB 

,~ 	 Extended 'I" 
Private 
(User) 

Extended Common 
(System) 

------------Nucleus------------- 16MB 

Common 
(System) 

Private 
(User) 

PSA 	 o 
,. 

FIgure 2-1. The MVS/XA Address Space 

Addressing Mode and Residence Mode 

To maintain compatibility withMVS/370, MVS/XA recognizes 24-bit addresses. 
Whether it interprets an address as 24 or 31 bit depends upon the setting of the 
addressing mode bit in the current PSW at the time an instruction executes. If this 
bit, bit 32, is set on, all addresses are interpreted as 31-bit addresses. Programs 
running in 31-bit mode can access locations zero to two gigabytes of virtual ~,_ 
storage. 

If the addressing mode bit is zero, the processor uses the 24 right-hand bits of an 
address. Programs running in 24-bit addressing mode can address the first 16 
megabytes of virtual storage. MVS/XA allows programs to switch from one mode 
to another during execution in order to access data or call modules running in the 
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other mode. Thus, new programs can take advantage of 31-bit addressing and still 
be compatible with ones written for 24-bit addresses. 

All MVS/XA program modules have an addressing mode (AMODE) attribute that 
indicates which addressing mode is to take affect when a module is given control. 
The AMODE attribute is assigned to an MVS/XA program module by the 
programmer, as input to the assembler or the linkage editor, or by default. The 
default is 24-bit addressing mode. 

MVS/XA modules also have a residence mode (RMODE) attribute that indicates 
whether they must be loaded below the 16-megabyte address line or can be loaded 
anywhere in virtual storage. RMODE=24 modules require residency below 
16-megabytes. RMODE=ANY allows the operating system to load a module 
anywhere in virtual storage. . 

A program that must be directly addressable by 24-bit callers must reside below the 
16-megabyte line. A program that does not have 24-bit callers, or whose 24-bit 
callers call it indirectly, can reside anywhere. The RMODE attribute is assigned as ~\. 

input to the assembler or linkage editor, or established by default. RMODE=24 is 
the default residence mode. 

Figure 2-2 shows the meaning of the AMODE and RMODE program attributes. 

PROGRAM ATIRIBUTES 

RESIDENCY MODE ADDRESSING MODE 

~__________~ 2GB 

RMODE 

16MB VIRTUAL ADDRESS 

. WHERETO (\ 
LOAD THE 24 BIT 
PROGRAM ~ 

~ 31 BIT 
0 

VIRTUAL STORAGE 

FIgure 2-2. AMODE and RMODE Attributes 

The AMODE and RMODE attributes can be assigned to modules in various 
combinations depending on the location of the code and data they use. Not all of 
the possible combinations make sense, however. The combination of AMODE=24 
and RMODE=ANY, for example, is invalid because a program using 24-bit 
addresses cannot function in locations above the 16-megabyte line where more 
than 24 bits are needed to denote an address. The AMODE=ANY and 
RMODE=ANY combination can be specified, but the system translates it to 
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Virtual and Real Storage 

AMODE=31, RMODE=ANY at execution time. Figure 2-3 shows the possible 
combinations of program attributes and indicates which are ones are valid. 

AMODE RMODE 
24 ANY 

24 valid invalid 

31 valid valid 

ANY valid invalid 

F"JgUre 2-3. Valid AMODE and RMODE Combinations 

Virtual storage is the MVS/XA mechanism that makes it possible for a user to 
access the maximum amount of storage that can be addressed in 31 bits even 
though the system might have much less real storage. Virtual storage works 
because MVS/XA keeps active portions of each address space in real storage 
and inactive portions on high-speed DASD (auxiliary storage). It moves them back· 
and forth as necessary to ensure that the program code and data for each user are 
in real storage when they are needed. 

To enable the parts of a program in virtual storage to move between real storage 
and auxiliary storage, MVS/XA breaks real storage, virtual storage, and auxiliary 
storage into blocks: 

• A block of real storage is a frame. 
• A block of virtual storage is a page. 
• A block of auxiliary storage is a slot. 

A page, a frame, and a slot are all the same size: each is 4096 (4K) bytes. An 
active virtual storage page resides in a real storage frame; a virtual storage page 
that becomes inactive resides in an auxiliary storage slot. 

Moving pages between real storage frames and auxiliary storage slots is called 
paging. Figure 2-4 shows how MVS/XA performs paging for a program that has 
been running in virtual storage. At point., parts A, B, and C of a three-page 
program are in virtual storage. Page A is active and executing in a real storage 
frame, while pages Band C are inactive since they have been moved to auxiliary 
storage slots. At pointe, page B is required; the system brings B in from a.uxiliary 
storage and puts it in an available real storage frame. At point e, page C is 
required; the system brings C in from auxiliary storage and puts it in an available 
real storage frame. If page A had not been used recently and the system needed its 
frame in real storage, page A would be moved to an auxiliary storage slot, as shown 
at pointe. 
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Figure 2-4. Virtual Storage Page Movement 

Thus, the entire program resides in virtual storage; the system copies pages of the 
program between real storage frames and auxiliary storage slots to ensure that the 
pages that are currently active are in real storage as they are required. Note also 
that neither the frames nor the slots allocated to li program need to be contiguous; 
thus, a page could occupy several different frames and several different slots during '­
the execution of a program. That is, if page A in the example became active again, 
MVS/XA would move it to any available frame. 

Each address space competes with all other active address spaces for the use of real 
storage and other system resources, and the work being performed in each address 
space is paged between real and auxiliary storage. In order for this paging activity 
to take place quickly and efficiently, the sys!em must be able to translate a virtual 
address (the address of a specific instruction or data item in virtual storage) into a 
real address (the address of the corresponding location in real storage). The . 
solution is dynamic address translation. 

Dynamic Address Translation (DAT) 

Dynamic address translation (DAT) is a hardware feature that plays an important 
role in making virtual storage possible. The DAT hardware feature works with 
MVS/XA system software to translate a virtual address into a real address. 
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In order to denote a location in virtual storage (create a virtual address), MVS/XA 
breaks the two gigabytes of virtual storage into 2048 segments, numbered 0 
through 2047. E;ach segment consists of 1,048,576 bytes (one megabyte). The 
bytes in each segment are further broken down into 256 pages, numbered 0 
through 255. Each page, as stated earlier, consists of 4K bytes. Within each page, 
a specific location is addressed by its byte_displacement, that is, the number of 
byte% between the page origin and the ~pedfi.c locati.on., 

[- A virtual address, therefore; consists of the segment number, the page number 
within that segment, and the byte displacement within that page. Figure 2-5 shows 
how virtual storage is broken down to provide a 31-bit virtual address that consists 
of an eleven-bit segment number, an eight-bit page number and a twelve-bit byte 
displacement. 

Virtual Storage 

2,147,483,648 Bytes 


I Page 255 

Segment 2047 

Page 0 J 
2047 MB,,, ,.., 

Segments 2 to 2046 Virtual Address: ,~ '1'" 

2MB Page 255 Hex: 0 0 1 F F 004 

o 1 12 20 31 


,Segment 1 {I I 00000000001 I 11111111 I 000000000100 I 

Segment 1 Page 255 Byte 4 


Page 0 I 

1MB Page 255 


Segment 0 

Page 0 I 
o 

Figure 2-S. Virtus! Storage Address 

Segment IlIIIl Page Tables 

To translate a virtual address into a 31-bit real address, the DA T feature uses a 
control register, the segment table origin register (STOR) and one segment table and 
2048 page tables for each address space. The segment table has on~entry for each 
of the 2048 segments in the address space; each entry contains, among other 
things, a pointer to the page table for that particular segment. When address 
translation occurs, the STOR points to the segment table for the address space. 
This provides the distinction between a virtual address for one address space an<l-.~ 
the same virtual address for any others. ' . 

The page table for each segment has one entry for each of the 256 pages in the 
segment. If a page is currently in a real storage frame, the entry includes the page. 
frame real address (PFRA) for the frame that corresponds to that page. If a copy 
of a page is not currently in a frame in real storage, the entry indicates this; the 
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invalid bit is set on, and the system must copy the page from auxiliary storage to 
real storage and update the page table before the virtual address can be successfully 
translated. The MVS/XA page table also contains a page protection bit that, when 
set, marks the corresponding frame as read-only. The system uses this bit to 
protect against unexpected modification of code and data. Figure 2-6 shows the 
relationship between the segment table, the page tables, and the pages in real 
storage. 

Segment and Page Tables 

( segment) 
Page Table 2047 Real Storage Frames 

12 9 13
1 1
Page 255 


8 14 


--- ..... 0 255 107
Segment Table 

1 84
Segment 2047 


Segment 2046 


", ,1.. 

I"' I" 

Segment 1 


( segment) 

Segment 0 Page Table 0 12 37 1


1
Page 255 255 5 IO 


3 156 


~ 0 2 


Figure 2-6. Segment Table and Page Tables 

Two-Level Lookup 

To translate a virtual address into a real address, OAT looks in two tables. 
Figure 2-7 illustrates-this process. The first table lookup. adds the address of the 
start of the segment table, in the segment table origin register (STOR), to the 
segment number from the virtual address (multiplied by 4 bytes, the length of each 
segment table entry) to locate the proper segment table entry. This entry contains 
the origin address of the page table for that segment. The second table lookup. 
adds the page table origin to the page number in the virtual address (also multiplied 
by 4 bytes, the length of each page table entry) to locate the required entry in the 
page table. Unless the page is invalid, the page table entry contains the address of 
the real storage frame that holds the page specified in the virtual address. The final 
step. in dynamic address translation adds the address of the real storage frame to_. 
the byte displacement within the frame. The byte displacement is the 12 rightmost 
bits of the virtual address. The result of this addition is the 31-bit real address. 

(\ 
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FIgure 2-7. DyDamie Address Translation 

Each time a virtual address is successfully translated into a real address, the system 
saves the address of the real storage frame in a special hardware buffer called the 
translation lookaside buffer (TLB). The TLB contains, an address space identifier, 
the segment number and page number from the virtual address, and the 
corresponding real storage address for the most active virtual pages. The OAT 
hardware checks the TLB before beginning the process of address translation, and, 
because a very high percentage of addresses can be found in the TLB, address 
translation time is significantly reduced by bypassing the two-level table lookup 
process most of the time. 

When the first step of the table look up process encounters a segment table entry 
that has no corresponding page table in real storage, the OAT cannot translate the 
virtual address and a segment translation exception, or segment fault occurs. If the 
page table for the segment exists, paging is required to bring the page table into 
real storage. If the page table does not exist, one is built before paging occurs. 

Similarly, when the second step of the table lookup process encounters an invalid 
page table entry, it means the required page is not in a real storage flame. The 
OAT hardware thus cannot translate the virtual address, and a page-translation 
exception, known as a page fault, occurs. If the page has been defined in the page 
table, demand paging - the transfer of a slot in auxiliary storage to a page iIi real 
storage on demand - is required to bring the page into real storage. If the page i!h.:cc 
not backed by a frame, a frame is assigned to the page and demand paging occurs. 

The Paging Process 

n. , In addition to the DAT hardware and the segment and page tables required for 
address translation, paging activity involves a number of system components to, 
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handle the movement of pages and several additional tables to keep track of the 
most current version of each page at any particular time. 

To understand how paging works, assume that DA T encounters an invalid page 
table entry during address translation, indicating that a page is required that is not 
in a real storage frame. To resolve this page fault, the system must bring the page 
in from auxiliary storage. First, however, it must locate an available real storage 
frame. If there is no available frame, the request must be saved and an assigned 
frame must be freed. To free a frame, the system copies its .contents to auxiliary 
storage and marks its corresponding page table entry as invalid. This operation is 
called a page-out. Actually, the system performs a page-out only when the 
contents of the frame have been changed since the page was copied into real 
storage. If the contents have not changed, the frame is freed by simply setting on 
the page table entry invalid bit. 

After a frame is located for the required page, the contents of the page are copied 
from auxiliary storage to real storage and the page table invalid bit is set off. This 
operation is called a page-in. Actually, in order to avoid unnecessary I/O, the (\. 
processor checks, before doing a page-in, to see if the frame that previously held 
the contents of the page has the same information and ownership as the slot on 
DASD indicating that the frame has not been changed. If so, the frame is reclaimed 
by setting the page table invalid bit off, and no.actual data transfer occurs. 

Figure 2-8 summarizes the paging process, showing how pages move between real 
and auxiliary storage in response to a page fault or to fill the need for an adequate 
supply of real storage frames. 
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Paging can also take place when the program loader loads a program into virtual 
storage. The program loader brings an entire program into virtual storage. 
MVS/XA obtains virtual storage for the user program, and allocates a real storage 
frame to each page. Each page is then active and subject to the normal paging 
activity; that is, the most active pages are retained in real storage while the pages 
not currently active might be paged out to auxiliary storage. 

MVS/XA tries to keep an adequate supply of available real storage frames 
constantly on hand. When a program refers to a page that is not in rfal storage, 
the system uses a real storage page frame from a supply of available frames. When 
this supply becomes low, the system uses page stealing to replenish it. 

Page stealing occurs when the system takes a frame assigned to an active user and 
makes it available for other work. The decision to steal a particular page is based 
on the activity history of each page currently residing in a real storage frame. 
Pages that have not been accessed for a relatively long time are good candidates for 
page stealing. 

Chapter 2. Multiple Virtual Storage 2-9 ­



To determine which pages are to be stolen, MVS/XA examines the activity history 
of the pages that are currently in real storage. This information is held in the page f\ 
frame table. There is one page frame table for the entire system, and it has an 
entry for each frame of real storage. Each entry identifies a page frame and 
includes the address space identifier and the virtual address within the address 
space for the page that is currently using the frame. 

Other information in the entry describes the activity history of the page. The 
available frame field indicates whether the frame is currently in use or is available. 
Two additional bits associated with the frame, the reference bit and the change bit, 
are relevant when the frame is in use. (Note: These bits are actually part of a 
control field associated with each 4K block of storage. They are maintained by the 
hardware and used by the software to make paging decisions; they are therefore 
described here as if they were physically part of the page frame table.) 

The unreferenced interval count indicates how long it has been since a program 
referenced the frame. The reference bit is set on by the hardware whenever a page 
frame is referenced. At regular intervals, the system checks the reference bit for 
each page frame. If the ref~rence bit is not on -- that is, the frame has not been 
referenced -- the system adds to the page frame's unreferenced interval count. It 
adds the number of seconds since this address space last had the reference count 
checked. If the reference bit is on, the frame has been referenced and the system 
turns it off and sets the unreferenced interval count for the page frame to zero. 
Those page frames with the highest unreferenced interval counts are most likely to 
be stolen. 

The change bit is set to zero when a page is initially brought into a real storage 
./\frame. When the contents of the page are changed the change bit is set on. Setting 

the change bit on tells the system that it must copy the contents of the frame to 
auxiliary storage before making the frame available for other work. Checking the 
change bit ensures that no changes made during program execution are lost during 
the paging process. 

Figure 2-9 shows a portion of the page frame table and illustrates how the entries 
are set up and how the reference, change information, and unreferenced interval 
count are used to determine which pages will be stolen. All example frames are in 
use; the available frame bits are set to zero. The system checks the unreferenced 
interval count and finds two pages that have not been referenced recently. These 
two pages will be st.91en. The first page. has not been changed since it was 
brought in from auxiliary storage; therefore, no physical page-out is required to 
save its contents because the copy of the ,age in real storage is the same as the 
copy of the page in auxiliary storage. The second page. has been changed; 
therefore the system performs a page-out before it steals the page, and the contents 
of the page are written to auxiliary storage. The system is thus able to steal two 
pages, only one of which requires a page-out. (The first page will be the first one 
selected for stealing because of its higher unreferenced interval count.) 

-j-. -. 
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referenced, but it has been changed 
since page-in. Before page stealing 
occurs, it must be paged-out. 

Figure 2-9. Page Frame Table 

Swapping is the process of transferring all of the most recently valid private pages 
of an address space between virtual storage and auxiliary storage. This has the 
effect of moving an entire address space into or, out of, virtual storage. It is one of 
several methods MVS/XA employs to balance the system workload, as well as to 
ensure that an adequate supply of available real storage frames is maintained. 
Address spaces that are swapped-in are active, having pages in real storage frames 
and pages in auxiliary storage slots. Address spaces that are swapped-out are 
inactive; the address space resides on auxiliarystorage and cannot execute until it is. 
swapped in. Swapping is performed in response to recommendations from the 
system resources manager (SRM). described in Chapter 5, "Managing System 
Resources. " 

Figure 2-4 showed how virtual storage works for one program; in reality, of course, 
many programs or users would be competing for use of the system. MVS/XA uses 
two techniques to preserve the integrity of each user's work: (1) a private address 
space for each user, as described in Chapter 3, "MVS/XA Address Spaces," and 
(2) multiple storage protect keys, as described in the following topic. 

~ 

Under MVS/XA, the information in real storage is protected from unauthorized 
use by means of mUltiple storage protect keys. A control field in storage called a 
key is associated with each 4K frame of real storage. This field, or key, is not itself 
addressable except by special operating system instructions. 

The key in storage contains the protect key that the user of the frame must have as 
well as a fetch protect bit. The protect key controls which, if any, users can modify 
the frame. (A bit in the page table, the protection bit, makes the frame read-only 
and thereby prevents modification by any user.) The fetch-protect bit also protects 
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a frame. When it is set, a program must have the same key as the frame or have 
key O. Otherwise, it can neither modify the frame nor read, or fetch, its contents. 
Figure 2-10 shows the format of the key in storage. 

Key 

o 34567 

Key - 4-bit protect key 
F - Fetch protect 

j R - Storage has been referenced 
C - Storage has been changed 

Storage Key U - Reserved 

4K 4K 4K 4K 4K 
Real 
Storage 

~~--------------------~~~------------------~/ 
Addressable Storage 

Figure 2-IO."n!e Key in Storage 

When a request is made to modify the contents of a real storage location, the key is 
compared to the storage protect key associated with the request, which appears in 
the current program status word (PSW). If the keys match or the program is 
executing in key 0, the request is satisfied. If the key associated with the request 
does not match the storage key, the system rejects the request and issues a program 
exception interruption. 

When a request is made to read (or fetch) the contents of a real storage location, 
the request is automatically satisfied unless the fetch protect bit is on, indicating 
that the frame is fetch-protected. When a requestis made to access the contents of 
a fetch-protected real storage location, the key in storage is compared to the key 
associated with the request. If the keys match, or the requestor is in key O,the 
request is satisfied. If the keys do not match, and the requestor is not in key 0, the 
system rejects the request and issues a program exception interruption. 

Key Assignments 

There are sixteen possible storage protect keys available. A specific key is assigned 
according to the type of work being performed. Figure 2-11 summarizes the ~;~. :.,;­
assignment of storage protect keys. 

Storage protect keys 0 through 7 are reserved for the MVS/XA control program 
and various subsystems. Storage protect key 0 is the master key. Its use is f\ 
restricted to those parts of the control program that require almost unlimited store 
and fetch capabilities. With two limitations, a storage protect key of 0 associated 
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with a request to access or modify the contents of a real storage location means 
that the request is satisfied. The limitations on the ability of key 0 to modify real 
storage are: first, no program can store into real storage locations 0 to 511; 
second, no program. can store into real storage frames for which the page table 
protection bit is set on. 

Storage protect keys 8 through 15 are assigned to users. Because all users are 
isolated in pri'late address spaces, most users - those whose programs run in a 
virtual region - can use the same storage protect key. These users are called V = V 
(virtual=virtual) users and are assigned a key of 8. Some users, however, must run 
in a real storage region. These users are known as V =R (virtual=real) users and 

} require individual storage protect keys because their addresses are not protected by 
the DA T process that keeps each address space distinct. Without separate keys, 
V=R users might reference each other's code and data. These keys are in the 
range of 9 through 15. 

Key Use 

o MVS/XA system control program 

Job scheduler and job entry subsystems 
(JES2 or JES3) 

2 Virtual Storage Personal Computing (VSPC) 

3-4 Reserved 

5 Data management 

(\, 6 TCAM and VTAM 

7 IMS 

8 V= V users running in virtual storage 

9-15 V = R users requiring real storage 

Figure 2-11. Storage Protect Key Assignment 

n Key Switching 

Frequently, a use!: program requests a service from a system (or subsystem) 
program; with the reqqest the program passes the address of an area in storage to 
be modified by the system program. This area should belong to the user. 
However, if an error occurs and the area really belongs to the system instead of the 
user, the system could be destroyed. Thus, the system program does a key switch 
before performing the service for the user. A key switch means that the system 
program uses the storage protect key of the user program rather than its own 
storage protect key while performing the requested service. 

MVS/XA Storage Managers 

Real storage frames, auxiliary storage slots and the virtual storage pages that they 
support, are managed by separate components of MVS/XA. They are the real 
storage manager, the auxiliary storage manager, and the virtual storage manager. 
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Real Storage Manager (RSM) 

The real storage manager (RSM) keeps track of the contents of real storage. It (\ 
maintains the entries in the system's page frame table, and in each address space's 
page tables and associated external page tables that relate the virtual storage page 
to a page data set slot. It manages the paging activities described earlier such as 
page-in, page-out, and page stealing. RSM also assists with swapping an address 
space in or out, verifies the storage protect keys, and does page fixing (marking 
pages as unavailable for stealing). 

Auxiliary Storage Manager (ASM) 

The auxiliary storage manager (ASM) keeps track of the contents of the page data 
sets, the swap data sets and the VIO data sets (described in Chapter 7, "Satisfying 
I/O Requests;'). Page data sets contain slots representing virtual storage pages 
that are not currently occupying a real storage frame. They also contain slots 
representing pages that do currently occupy a real frame but, because the frame's 
contents have not been changed, the slots are still valid. 

Swap data sets contain the working set of an address space. Generally speaking, 
the working set is a subset of pages that were in real storage and associated with 
the address space when the swap out occurred. The working set includes the most 
recently referenced pages; pages fixed in real storage, and the segment and the 
page tables. 

When a page-in or page-out is required, ASM works with RSM to locate the proper 
real storage frame and auxiliary storage slots. For a page-in, RSM reads the entries 
in the external page table to determine the slot location of a page, locates an 
available frame, and passes this information to ASM, which uses it to bring the slot 
into real storage. For a page-out, ASM locates an available slot on auxiliary 
storage, copies the page from real storage to auxiliary storage, and sends RSM the 
information needed to update the external page table. 

VirtuDl Storage Manager (VSM) 

The virtual storage manager (VSM) responds to requests to obtain and free virtual 
storage. It also manages storage allocation for any program that must run in real, 
rather than virtual storage. Storage is allocated to code and data when they are 
loaded in virtual storage. As they run, programs can request additional storage by 
means of the GETMAIN macro; they request the release of storage with the 
FREEMAIN macro instruction. 

VSM keeps track of the map of virtual storage for each address space. In so doing, 
it sees an address space as a collection of 256 subpools. Subpools are logically 
related areas of virtual storage idelltified by numbers (0 to 255). Being logically 
related means the storage areas within a subpool share characteristics such as: 

• Storage protect key 

• Whether or not they are fetch protected 

• Whether or not they are pageable 

• Whether or not they are swappable 
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o 	 Where they must reside in virtual storage (above or below the 16 megabyte 
line) 

° 	 Whether they can be shared by more than one task 
/ 

Some subpools (with numbers 128 to 255) are predefined for use by system 
programs. Subpool252, for example, is for authorized programs from authorized 
program libraries. Others (numbered 0 to 1-27) are defined by user programs. 

Within an address space, VSM keeps track of: 

° Unallocated areas: 

Virtual storage that is not allocated to a subpool 

° Allocated areas: 

Virtual storage that is allocated to a subpool 

0 Free areas: 


Virtual storage within a subpool that is not being used 


0 
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Virtual Storage Areas 

Conceptually, an MVS/XA address space consists of the two gigabytes of virtual 
storage available to each user. Figure 3-1 shows an address space as the 
rectangular description of virtual storage. 

Virtual Storage 

2 Gigabytes 

------------------------------------- 16 Megabytes 

o 
~----------------~ 

Figure 3-1. A Logical Representation of Virtual Storage 

An MVS/XA address space contains the system prefix save area, private areas, 
and common areas. Each user has an entire address space and thus has access to 
all three kinds of areas. MVS/XA effectively isolates one address space from 
another by means of segment and page tables. Through the common areas of the 
address space, users can share programs and data areas. Thus, MVS/XA balances 
both the need to share resources and the need to maintain users' privacy. 

Program modules and data are located within an address space according to 
characteristics such as whether: 

• They can be shared among all address spaces 
• They can be paged or must always be backed by real storage (fixed) 
• They must reside below the 16-megabyte line 

The mapping Of an MVS/XA address space in Figure 3-2 shows the various areas 
of an address space. It appears as it does because of the need to maintain 
compatibility with MVS/370. Almost every area exists below the 16-megabyte 
line and has an extended area above the line. As much as possible, MVS/XA 
treats each area of virtual storage below the line and its extended portion above 16 
megabytes as one logical area. For example, if you request a report (dump) of the 
contents of the common service area (CSA), the system dumps both the CSA 
below 16 megabytes and the extended CSA. The sections that follow describe the 
areas of the virtual storage map. 
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Private User Region 
( 20K 

l 
 System Region 

4K 

Common { PSA 

o 

FIgUre 3-2. Virtual Storage Layout 

Prefixed Save Area 

The PSA contains critical information about both the MVS/XA operating system 
and the processor. It includes fixed storage locations for such things as the data 
items that become the contents of the current PSW when an interruption occurs, 
register save areas for system routines, and pointers to important control blocks. It 
is always fixed in real storage and never paged out. 

For a uniprocessor, the PSA occupies the first 4K, the first page, of virtual and real 
storage. Each processor in a multiprocessing system running MVS/XA also 
addresses its own PSA as though the PSA were fixed in the first 4K of storage. 
MVS/XA uses the prefix register and a technique called prefixing to distinguish the 
PSA of one processor from the PSA of another. 

With prefixing, the processors do not use absolute locations 0-4095. Rather, each 
processor has its own separate PSA and its own prefix register. When a processor 
is brought on line, the real starting address of its PSA is stored in its prefix register. 
Whenever the processor uses an address between 0 and 4095, the hardware adds 
the the contents of the prefix register to the address and uses the result. With 
prefixing, the address that normally would be the absolute address of the 
information in the first page of storage becomes an offset from the start of the real 
PSA. Because each processor's prefix register contains a different address, each 
processor can address locations 0 to 4095 and reference its own data. 

The Private Area and Extended Private Area 

The private area contains modules and data not shared by other address spaces. It 
consists of five sections: 

1. System region 
2. User region/ extended user region 
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3. Authorized user key (AUK)/extended AUK 
4. Scheduler work area (SWA)/extended SWA 
5. Local system queue area (LSQA)/extended LSQA 

The last three areas (AUK, SWA, and LSQA) are intermixed in the private area 
virtual addresses and are separate from the system region and the user/extended 
user regions. 

System Region 

The system region is the only section of the private area that does not have a 
counterpart above the 16M line. It is used by system functions performing work 
for an address space. These system functions run under the region control task 
(ReT). The region control task is the highest level task in each address space; it 
plays a key role when an address space must be swapped in or out. The system 
region consists of four virtual pages (locations 4K to 20K) allocated from the 
bottom of the private area . 

.~ User Region/Extended User Region 

The user region is the section of the private area in which user programs run. 
MVS/XA programmers try to use the extended user region as much as possible 
because it is vastly larger than the user region below the 16-megabyte line. 

There are two types of user regions: virtual (V=V) and real (V=R). The two 
types are mutually exclusive; that is, a user region can be V=V or V=R, but it 
cannot be both. 

A virtual (V = V) user region can be any size up to the size of the private area 
minus the size of LSQA, SWA, AUK, and the system region. Its size can be 
limited by the REGION parameter on the user's JOB or EXEC statement or by 
installation-written program exits. 

V = V user regions are pageable and swapp able. Only enough real storage frames 
are allocated at any particular time to hold the recently accessed parts of the user 
program. 

-
Real (V =R) regions occur only below the 16 megabyte line. Each virtual address 
in the region always corresponds to the same real address. Figure 3-3 illustrates 
V=R storage mapping. Real storage for the entire region is allocated and fixed 
when the real region is created. Thus, a V =R job is non-pageable and 
non-swappable. 

The installation must reserve sufficient real storage for all V=R regions that might 
exist at anyone time. During system generation, the REAL= parameter of the 
CTRLPROG macro reserves real storage; during system initialization, the REAL= 
system parameter establishes real region storage limits. The system uses storage in 
the V =R area for normal paging activity if the V =R storage is not being currently 
used for V =R jobs. Particularly when system activity is high, a V =R job might not 
be started immediately; it must wait until the system can free the storage the Y..=:=R 
job requires. 
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Virtual Storage 
0 

-
Common Area 

Real Storage 

LSQA, SWA and LSQA, SWA and LSQA, SWA and 
AUK AUK AUK 

J 
Pageable Area -.­

·V=R Limit 

V=RJOB3 V=RJOB3 

V=R JOB2 V=RJOB2 

V=RJOBl V=RJOBl 

System Region System Region System Region 

PSA PSA 

·Limit of storage available for running V=R jobs 

Vrgure 3-3. V=R Storage Mapping 

Real regions should be used only for jobs with time-dependent functions (that is, 
jobs that cannot wait for paging activity to take place) or for jobs that cannot run 

. in the virtual environment, such as jobs with channel programs that use the 
program control interruption (PCI) to modify themselves dynamically. See, 
"Satisfying I/O Requests," later in this book for more information about channel 
programs. 

The default V =R region size is controlled by the VRREGN parameter in the 
IEASYSxx member of SYS1.PARMLIB. It can be overridden by the REGION 
parameter in a user JOB or EXEC statement. 

Authorized User Key (AUK)/Extended AUK 

The authorized user key (AUK) jirea of the private region contains system data 
relating to a specific user. Protected user resources, such as the data extent block 
(DEB) that describes a user data set, reside in this area. 

This area is also identified as subpools 229 and 230. Subpools 229 and 230 are 
both protected by the user's storage key, that is, by the key in the PSW that is 
associated with the program using the storage. In addition, subpool 229 is 
fetch-protected, which means that its contents cannot even be read unless the key 
in storage matches the key in the PSW. 

The AUK also contains data for the LNKLST lookaside (LLA) directory of 
modules in the system's LNKLST libraries. Because this directory is always in 
storage, it provides fast access to system modules and reduces I/O operations that 
consume time and channel paths. 

Scheduler Work Area (SWA)/Extended SWA 

The scheduler work area (SW A) contains the control blocks that exist from job 
step initiation to job step termination. These contain the internal form of the job 
control language (JCL) statements that accompany a job. The information in SW A 
is created when a job is interpreted and used during job initiation and execution. 
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(Chapter 8, "Entering and Scheduling Work," describes how MVS/XA processes a 
job.) The SWA is pageable.and swapp able. 

Local System Queue Area (LSQA)/Extended LSQA 

The local system queue area (LSQA) contains tables and queues that are unique to 
a particular address space. For example, LSQA includes the user's segment table 
and private area page tables. LSQA also contains all the control blocks that the 

') 	 region control task (RCT) requires. LSQA is swapp able but not pageable. That is, 
the LSQA for each address space that is swapped-in is fixed in real storage frames. 

The Common Area and Extended Common Area 

The common area holds system information, such as program code, control blocks, 
tables, and data areas. It is common to all address spaces in the sense that any type 
of data or code in this area has the same virtual addresses in all address spaces. 
The common area includes: 

1. Common service area (CSA) and extended CSA 
2. 	 Pageable link pack area (PLPA) and extended PLPA 
3. 	 Fixed link pack area (FLPA) and extended FLPA 
4. 	 Modified link pack area (MLPA) and extended MLPA 
5. 	 System queue area (SQA) and extended SQA 
6. 	 Nucleus and extended nucleus 

Common Service Area (CSA)/Extended CSA 

The common service area is addressable by all active programs and is shared by all 
swapped-in users. Data associated with an individual address space can be isolated 
by a storage protect key, but the primary advantage of CSA is to enable 
inter-address space communication. 

CSA contains some fixed and some pageable system and user data areas; pageable 
areas are paged in and out of real storage as required. The total amount of storage 
for CSA is specified during system initialization and is allocated in 4K pages. 

Pageable Link Pack Area (PLPA)/Extended PLPA 

The pageable link pack area contains MVS/XA control program functions (SVC 
routines), access methods, other read-only system programs, and selected user 
programs. Because these modules are heavily used, and loading the PLPA is a 
lengthy process, MVS/XA normally saves its contents from one start-up to 
another. 

As its name implies, PLPA is pageable; however, no physical page-outs are 
performed. PLPA pages that have not recently been used, however, might be 
stolen. 

PLPA space is allocated in 4K pages. The size of PLPA is determined by the 
number of modules included, and, once the size is set, PLP A does not expand 
dynamically. 

F'ixed Link Pack Area (FLPA)/Extended FLPA 

FLPA pages are fixed in real storage. They contain modules that could be in PLPA 
but require the extremely fast response that comes from having fixed pages. 
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Because FLPA is fixed, it reduces the amount of real storage available for other 
uses, such as running installation programs. Thus, the modules selected for FLPA 
are chosen with care. The MVS/XA paging routines normally keep a heavily-used {\ 
PLPA module in real storage. Therefore, the most likely candidates for FLPA are 
modules that are infrequently used (those whose pages would be stolen) but require 
rapid response when they are used. An installation determines the size and 
contents of the fixed link pack area each time the MVS/XA system is started. 

Modified Link Pack Area (MLPA)/Extended MLPA 

The modified link pack area can be used for reentrant modules from selected 
system or user libraries; it acts as an extension to PLPA, but exists only for the 
duration of the current MVS/XA session. The system does not save the contents 
of the MLPA from one MVS/XA start-up to another as it does for the PLPA. 

MLPA modules are normally read-only. Because MVS/XA searches the MLPA 
before it searches the PLPA, installations often use the MLPA to test modules 
before adding them to the PLPA. 

System Queue Area (SQA)/Extended SQA 

The system queue area (SQA) contains tables and queues that relate to the entire 
system. For example, the page tables that define the system area and the common 
area reside in SQA. The contents of SQA depend on an installation's configuration 
and job requirements. 

The installation specifies the amount of storage for SQA when the system is 
initialized. If MVS/XA needs more storage for SQA, it uses CSA storage. If the 
system then runs out of CSA, it stops creating address spaces. The SQA is always 
fixed in real storage. 

Nucleus/Extended Nucleus 

The nucleus and the extended nucleus hold the resident part of the MVS/XA 
control program. Aside from the control program load module, the nucleus and 
extended nucleus contain the page frame table entries (PFTEs), data extent blocks 
(OEBs) for the system libraries, recovery management support routines, and unit 
control blocks (UCBs) for the I/O devices. The nucleus and extended nucleus 
surround the 16-megabyte line in virtual storage. They actually comprise what is 
known as the DAT-on nucleus. The hardware OAT feature translates their 
addresses to real addresses. 

MVS/XA, however, also includes a DAT -off nucleus that consists of modules that 
must operate with the OAT feature off. It includes such routines as the recovery 
processing that occurs when a hardware problem makes the OAT feature 
inoperable. The OAT -off nucleus resides in real storage. It uses the highest real 
addresses available at the time it is loaded. The OAT-off nucleus is not part of 
virtual storage. 

The DA T -on nucleus is fixed in real storage and is divided into four sections as . 
shown in Figure 3-4. These are the read-only and read-write sections for both the 
nucleus and extended nucleus. While the size of the DA T -on nucleus varies 
depending on the system configuration and the extensions and options an 
installation chooses, the size of the nucleus does not change as additional jobs are 
swapped in and out. 
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Read-Write Modules 
3 I-Bit Addressing Mode 

Extended Nucleus 
Read-Only Modules 
31-Bit Addressing Mode 

----_.-.----_.-._----.---------------_..._-- 16Mb 
Read-Only Modules 
24-Bit Addressing Mode 

Nucleus 
Read-Write Modules 
24-Bit Addressing Mode 

Figure 3-4. The DAT -on Nucleus 

MVS/XA System Component Address Spaces 

The master scheduler, a component of MVS/XA, interacts with operator 
commands and system parameters to initiate required functions. For example, the 
master scheduler controls the creation of address spaces. 

When an MVS/XA system is initialized, the master scheduler address space is the 
first one created. Then, key system component address spaces are created. 
Because the master scheduler address space is the first address space, initializing its 
common areas also initializes the common areas for aU address spaces. Thus all 
system components with their own address spaces have access to the following 
areas: 

1. 	 The private area below the 16-megabyte line 

2. 	 The common area, which surrounds the 16-megabyte line and includes the 
nucleus. 

3. 	 The extended private area above the 16-megabyte line 

4. 	 The prefixed save area (PSA), which resides at location 0 

A system component can execute in the address space of a function that requests 
its services,~or, if it has one, it can execute in its own address space. By creating its 
own address space to hold some or all of its data and executable code,a system 
component can reduce the amount of storage it requires in the common areas of 
virtual storage. If a system component has its own address space, that address 
space must be created and initialized to be capable of handling the requ~sts of 
other address spaces. 

The following system components have address spaces created during system 
initialization. They are listed in the order of their creation. 

1. 	 Program call/authorization (PC/AUTH address space) PC/AUTH is 'th~"first 
system component address space initialized. The PC/AUTH initialization 
routines initialize all the cross-memory tables needed to establish 
communication with other address spaces. As other system component address 
spaces,are established, their associated initialization routines use PC/AUTH 
services to create and initialize their own cross-memory tables. 
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2. System trace (TRACE address space). 

Extended LSQA/SWA/AUK 

Master Scheduler 

Extended User Region 

Extended CSA 

Extended PLPA/FLPA/MLPA 

Extended SQA 

I-_~e~<!!!.u~us____ 

Nucleus 

SQA 

PLPA/FLPA/MLPA 

CSA 

LSQA/SWA/AUK 

Master Scheduler 


User Region 


System Region 


PSA 


3. Global resource serialization. 
~ 

4. Dumping services (DUMPSRV address space). 

5. Communications task (CONSOLE address space). 

6. Allocation (ALLOCAS address space). 

7. System management facilities (SMF address space). 

8. Primary job entry subsystem (JES2 or JES3 address space). 

9. LNKLST lookaside (LLA address space). 

Figure 3-5 shows the layout of the storage areas for the system address spaces that 
are created during system initialization. 
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Flaure 3-5. VIrtual Storage Layout For Key MVS/XA Components. 
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Inter-Address Space Communication 

Cross Memory 

n 

There are two ways to communicate between address spaces: asynchronously and 
synchronously. Asynchronous inter-address space is controlled by control blocks 
known as service request blocks (SRBs) and is explained in Chapter 
6, "Supervising the Execution of Work." The synchronous form of inter-address 
space communication is known as cross memory. 

Cross memory allows programs to pass control to programs in other address spaces 
and to move data from one address space to another. Because a program using 
cross-memory capabilities can directly access programs and data in the private area 
of another address space, cross memory can reduce the amount of common area 
needed in the virtual address spaces in the system. By using macro instructions to 
define a program as having cross-memory capability it is possible to control access 
to the shared data. 
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Chapter 4. Multiprocessing 

Multiprocessing (MP) provides the solution to the need for increased computer 
power and increased computer system availability. Uniprocessing (UP) is the 
traditional starting point for a computer installation, but, as applications grow and 
online users proliferate, a single processor often becomes inadequate. 

A uniprocessor is a single-processor system that contains its own main storage, is 
controlled by a single operating system, and has no direct communication with 
other processors. If it needs repair or maintenance, it must be removed from 
service. 

In contrast, a multiprocessing system has at least two processors that share at least 
some of the system's resources. These processors can interchange tasks and 
subtasks to maintain a steady flow of work. One processor might initiate an I/O 
operation and another might handle the interruption that occurs when it has 

(/\ 	 completed. If one processor fails, another is usually available to pick up its work 
and carryon. 

Types of Multiprocessing 

There are two types of multiprocessing: 

• 	 Loosely-coupled multiprocessing, where processors operate under separate 
operating systems yet share access to data such as a common workload queue. 
The processors are connected by shared DASD or by channel-to-channel 
(CTC) adapters and by shared DASD. 

• 	 Tightly-coupled multiprocessing, where at least two processors operate under 
the control of a single operating system. Some tightly-coupled multiprocessing· 
systems consist of processor configurations that can be divided in half 
(partitioned) to form two independent configurations. Other tightly-coupled 
systems, known as a dyadic multiprocessor systems, cannot be partitioned. 

Loosely-Coupled Multiprocessing 

Loosely-coupled multiprocessing affords an easy growth path. The installation can 
connect many combinations of UP or MP systems into a single configuration with 
the following traits: 

• 	 The processors share a common workload queue. 
• 	 Each processor has its own operating system 
• 	 Jobs can, if necessary, be routed to a particular processor 

Figure 4-1 illustrates a loosely-coupled system. 
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FJgUre 4-1. Loosely-Coupled Processing 

Tightly-Coupled Multiprocessing 

In a tightly-coupled multiprocessing system, the two or more processors share main 
storage, communicate directly with each other, and operate under the control of a 
single operating system. The MP system presents a single system image to the 
operator. The operator needs to communicate with and control only one operating 
system. Even though there are two or more processors available for work, the 
operator has one operational interface to the entire system, one job scheduling 
interface, and one point of control for all the resources available. The operator 
also can dynamically change the hardware configuration to meet various needs and 
control the operation of the processors and yet keep their individual control and 
status infoffilation separate. 

Configuring a Tightly-Coupled Processor 

A tightly-coupled MP configuration consists of many hardware components. 
Reconfiguration is the process of adding or removing some of these components 
from the configuration. The reconfigurable components in a system are: . 

1. 	 Processors 
2. 	 Channel paths 
3. 	 Storage 
4. 	 I/O devices 

Reconfiguration is usually initiated' for one of three reasons: 

1. 	 A component, such as a segment of storage or a channel path, has 
malfunctioned and is interfering with the operation of the system. Oependtng 
on the circumstances, either the operator or the system can initiate the 
reconfiguring of the failing component offline so the system can continue -'-'.;e 
processing without it. 

2. 	 One or more components are scheduled for maintenance 

3. 	 Inlarger systems, a change in workload necessitates the reconfiguring of a 
single system into two separate systems. In this case, the operator would 
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configure the appropriate processors; channel paths, storage, and devices 
offline from the runnin~ system and configure them into the second system. 
Figure 4-2 shows the 3084 Processor Complex, which usually runs with four 
processors. The illustration shows sides'"'Aand B, which are each composed of 
two processors. The 3084 Processor Complex can be reconfigured to become 
two independent MP systems with two processors each. 
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Storage Storage I Storage Storage
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Figure 4-2. Tightly-Coupled Multiprocessing 

The operator"'initiates reconfiguration with the MVS/XA CONFIG and VARY 
commands, specifying ·which elements to configure and whether they are to be 
made online or offline to the system. Reconfiguration processing has two stages: 

1. 	 Logical reconfiguration, which makes the component online or offline to 
MVS/XA. This process involves marking entries in MVS/XA system resource 
tables. 

2. 	 Physical reconfiguration, which makes the component online or offline to the 
hardware. This process often involves the setting of hardware switchesJ~at 
control whether access to the component is physically possible. . ':.a 

Both logical and physical reconfiguriltion are performed or initiated by the 
MVS/XA reconfiguration command processor. The CONFIG command also 
allows the operator to display which hardware components are presently online to 
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the system and which items are available to be configured online or offline. The 
DISPLAY M command provides the status of the hardware components. 

Dyadic Tightly-Coupled Multiprocessing 

A dyadic processor consists of two processors sharing storage and the channel 
subsystem. The processors are coordinated by a system controller that monitors 
communication and controls data flow between the two processors. Although there 
are two processors, the dyadic processor cannot be reconfigured into two 
uniprocessors. Figure 4-3 illustrates a 3081 processor complex, which is a dyadic 
processor. 

If one processor fails in a dyadic multiprocessing system, which cannot be 
reconfigured into separate systems, the work of the failed processor is switched to 
the operative processor. The operator can remove the failing processor from the 
configuration and continue processing (with some performance degradation) on the 
remaining processor. However, repair of the failing processor must wait until the 
entire processor complex can be shut down. 

Storage 

Channel -Subsystem I I I
L __L-----, 

System ____..JI I I 
r--­Controller Ir--1----J .---­ I 

1 II II 
II Processor Processor II 00 02 

.1 I 
1 I I I
L ___~-------T--__ L ___ - __~ 

Figure 4-3. Dyadic Processor Complex 

Control of Processing in a Tightly-Coupled MP System 

Although tightly-coupled MPs share all real storage and run under the control of a 
single MVS/XA operating system, each processor must have a unique physical 
address for identification purposes. Likewise, each processor must have its own 
status and control information. 

As explained in Chapter 3, "MVS/XA Address Spaces," the hardware and 
MVS/XA software maintain status and control information in specifically-assigned 
real storage locations called the prefixed save area (PSA). Each processor views 
the PSA as a 4096-byte block of fixed storage in the low-address range (storage 
locations 0-4095) of real storage. However, because multiprocessors can execute 
more than one job simultaneously, (one in each processor) each processor has its 
own PSA and uses a prefixing technique, also described in Chapter 3, to access its f\, 
own PSA. 
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Communication Among Processors in an MP System 

To control the system resources, the processors in an MP system must 
communicate with each other. Communication between the processors is called 
interprocessor communication (IPC). The MVS/XA software and system 
hardware both provide support for IPC. 

MVS/XA-Initiated Communication 

MVS/XA establishes interprocessor communication for several purposes: 

• 	 To perform system initialization 
To dispatch work 

• 	 To stop or restart a processor during reconfiguration 
• 	 To attempt alternate CPU recovery (ACR) 

To accomplish this communication, MVS/XA uses the signal processor (SIGP) 
instruction. A SIGP instruction signals a processor and transmits a request to 
perform a function. The addressed processor decodes the request, performs the 
requested function (if possible), and transmits a response to the calling processor. 
The response contains a condition code and status information. 

Some of the conditions that cause SIGP requests are: 

• 	 Initialization 

During the initialization of a tightly-coupled MP system, MVS/XA can 
determine whether other processors are online by issuing a SIGP sense 
instruction to each of the other processors. Each processor responds with an 
indication of its status. If the response indicates the proces~or is online, 
MVS/XA can initialize it. When initialization is complete, multiprocessing 
operations can proceed. 

• 	 Operation 

Normal operation proceeds with each processor receiving work from the 
MVS/XA dispatcher. The dispatcher normally gets control after a system 
event occurs or when a unit of work is complete. However, if one processor 
has entered the wait state because it had no work to perform, another 
process~r can tell the idle processor that new work has arrived. This kind of 
communication is called shoulder-tapping. It is accomplished by a SIGP 
instruction that causes an external interruption in the addressed processor. 

• 	 Reconfiguration 

When the operator configures a processor offline or onlirie, MVS/XA-initiated 
interprocessor communication is necessary. For example, if the master 
scheduler is running in processor A when a CONFIG command is received to 
configure processor B offline, processor A issues a SIGP instruction to. tell 
processor B to stop. Processor B enters the stopped state just as it woulclJlad 
the STOP key on the processor's system console been pressed. To configure 
processor B back online, processor A issues a SIGP restart instruction to restart 
processor B just as though the RESTART key had been pressed. 

Chapter 4. Multiproceslling 4-5 



• Recovery 

When a processor fails due to a software malfunction the machine check 
handler (MCH) issues a SIGP emergency signal (EMS) instruction to the other 
processors. The EMS causes an external interruption on the functioning 
processors. The first processor to receive the interruption initia~es recovery 
processing for the failing processor. As part of recovery processing, the 
functioning processor might issue SIGP instructions to determine the status of 
the failing processor. I~ the status can be obtained, the MVS/XA recovery 
routines have a better chance of succeeding. These recovery routines, known 
as alternate CPU recovery (ACR) routines, are described in Chapter 
10, "Recovering From Errors." 

Hardware-Initiated Communication 

In addition to the signals exchanged between processors through use of the SIGP 
instruction, the hardware supports direct communication between the processors. 
This communication is necessary to ensure: 

• Clock Synchronization 

In a tightly-coupled MP configuration, there is more than one time-of-day 
(TOO) clock. (Note that the 3081, a dyadic tightly-coupled processor, has 
only one.) The TOO clocks must be synchronized when a tightly-coupled MP 
system is initialized or when a processor is reconfigured to be online. 

• Storage Control 

Because storage is shared among the processors, the processors must 
communicate with each other to ensure that all references to shared storage 
refer to the most current data. Therefore, each processor (for example, 
processor A) indicates when it modifies the contents of a real storage location. 
Another processor (for example, processor B) can determine whether its 
high-speed buffer currently contains the contents of that same real storage 
location. If so, this copy of the storage is no longer current; processor B 
invalidates the copy in its buffer. 

~.. 

• Recovery 

When a processor experiences a failure that causes it to enter the check-stop 
state, the failing processor generates a malfunction-alert (MFA) interruption 
on the other processors, one of which then attempts recovery. Alternate CPU 
recovery (ACR) routines, described in Chapter 10, "Recovering From Errors," 
receive control and remove the failing processor from the configuration so that 
MVS/XA can continue running on an operative processor. 

4-6 MVS/Extended Architecture Overview 
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SRM Decisions 

Functional Areas ofSRM 

An MVS/XA system, like other computer systems, has three broad categories of 
computer system resources: processors, real storage, and I/O devices. Managing 
system resources is the responsibility of the MVS/XA component, the system 
resources manager (SRM). SRM has two objectives: 

To achieve optimal use of the system resources from the system point of view 
(throughput) 

• 	 To achieve optimal use of system resources from the point of view of the 
individual address space (response and turnaround time) 

This chapter describes how SRM attempts to meet these objectives, including the 
decisions it makes and the factors it considerS-'in making those decisions. The 
installation can influence almost all of the decisions made by SRM routines by 
means of member IEAIPSxx, the installation performance specification (IPS), and 
member IEAOPTxx of the SYSl.PARMLIB data set. 

SRM's two objectives are contradictory. Optimizing throughput implies keeping 
resources busy; meeting the installation's objectives for response and turnaround 
time (as reflected in the IPS) implies the availability of any resource when it's 
required. SRM makes decisions that represent trade-offs between its two 
conflicting objectives. 

The decisions SRM makes include the following: 

• 	 Which address spaces should be permitted access to the system's resources 
(that is, swapped in) 

• 	 When to steal pages and which pages to steal 

• 	 When to change the dispatching priority of address spaces 

• 	 Which device should be allocated, when allocation routines have a choice of 
devices 

• 	 When to inhibit the creation of new address spaces 

To reach its decisions, SRM is divided into three major functional areas: 

• 	 SRM control, which determines the processing required and routes control to 
the appropriate SRM routines. SRM control decides when and which address 
spaces will be swapped in or out. To make this decision, it obtains 
recommendations from the other functional areas of SRM: the workload "";'"'­
manager and the resource manager. 

• 	 Workload manager, which monitors the use of resources by the various address 
spaces. It gives swapping recommendations to SRM control. These 
recommendations attempt to maintain each address space's use of system 
resources as specified in the IPS. 
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CommuniCllting with SRM 

Resource manager, which monitors system-wide use of resources to determine if 
they are over-utilized or under-utilized. It makes swapping recommendations 
to SRM controrthat are intended to achieve a balance between throughput and 
response time. In addition, the resource manager is responsible for 
implementing other SRM controls related to the use of resources: 

Inhibiting the creation of new address spaces or stealing pages when certain 
shortages of real storage exist 

Changing the dispatching priority of address spaces, which controls the rate 
at which the address spaces are allowed to consume resources 

Choosing the device to be allocated, if a choice of devices exists, in order to 
balance the use of I/O resources. 

Other system components communicate with SRM by means of the SYSEVENT !\ 
macro instruction. All SYSEVENTs have a code, which indicates the processing 
SRM is to do. These codes fall into one of two categories: 

• SYSEVENTs that notify SRM of a change in status for a particular address 
space or for the system as a whole. For example, a SYSEVENT is issued: 

when real storage has been configured into or out of the system 

when an address space is to be created (if a shortage of SQA or page able 
storage exists, SRM will prohibit the creation of an address space) f\ 

when an address space has been deleted 

when an address space enters a long wait (SRM will swap the address space 
out of real storage) 

when an initiator selects or terminates a job 

when a swap-in starts or a swap-out completes. 

• SYSEVENTs that invoke SRM's decision-making functions. Such a 
SYSEVENT is,,,issued: 

when allocation routines can choose the devices allocated to a request 
(SRM will recommend one of the devices) 

when a time interval expires. (The timer-interval SYSEVENT is the 
exclusive means to invoke most of SRM's algorithms, which provide data 
on which SRM bases its decisions.) 

Most SYSEVENTs invoke SRM control which, in tum, calls the resource or 
workload manager. The remainder of this chapter describes in greater detail SR~.r-~" 
control, the workload manager, and the resource manager. 
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SRMControl 

SWIlp AlIIllysis 

SRM control is the dispatcher of SRM. It schedules actions and algorithms to be 
performed by other SRM routines and is responsible for the swapping of address 
spaces. 

The installation provides guidelines for SRM's swap decisions by defining a domain 
for each distinct type of work (for example, batch work). For each domain, the 
installation defines aminimum MPL and maximum MPL (multiprogramming level) 
and the domain's importance relative to other domains. The MPLs state the 
minimum and maximum number of address spaces in each domain that should be in 
real storage (that is, swapped in) at the same time. 

Within the boundaries of the minimum and maximum MPL and based on such 
factors as the total utilization of system resources, SRM periodically computes an 
optimal MPL for each domain, called the target MPL. The objeCtive of the swap 
analysis performed by SRM control is to maintain the MPL of each domain at its 
target value. 

Swap analysis is triggered by several events, such as when a user becomes ready to 
execute or when a time interval expires. The swap analysis must answer two 
questions: whether a swap is necessary; and, if so, which address space(s) to swap. 

The are four types of swaps SRM considers necessary: 

1. Unilateral Swap-Out 

If SRM locates any domain(s) whose current MPL exceeds its target, SRM 
control swaps out the required number of address spaces to lower the domain's 
MPL to its target value. 

2. ENQ Exchange 

If a swapped-out address space is enqueued on a resource requested by another 
user, SRM control swaps in the enqueued user. Note: enqueuing is a 
technique for gaining control of a resource and is explained in Chapter 
6, "Supervising the Execution of Work." 

3. Exchange Swap 

If SRM determines that an exchange of a swapped-in address space and 
swapped-out address space will redress an imbalance in the use of resources, 
the exchange swap occurs. 

4. Unilateral Swap-In 

IF SRM locates any domain(s) whose current MPL is less than the target, SRM 
control swaps in the required number of address spaces to raise the current; 
MPL to its target value. 

To determine which address space(s) within a domain to swap in or out, SRM 
control asks the workload manager and resource manager for swap 
recommendations, which take the form of swap recommendation values (RVs). The 
workload manager's RVs aim to maintain an address space's use of resources as 

~ .. 
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The Workload Manager 

The Resource Manager 

specified in the IPS. The resource manager's RVs aim to correct imbalances in I/O 
or processor utilization. By combining the RVs of the workload manager and 
resource manager, SR:M control makes trade offs between its two objectives: 
distributing resources as specified in the IPS and optimizing throughput. 

The workload manager has three basic functions: 

• 	 To monitor service rates - the rates at which system resources are being 

provided to individual address spaces 


• 	 To provide swapping recommendations requested by SRM control 

• 	 To collect data for certain measurement tools such as the Resource 

Measurement Facility (RMF) 


The workload manager measures the rate at which resources are used in terms of 
service units per second. Service units are computed as a combination of three 
basic system resources: processor time used, I/O activity, and real storage frames 
occupied. The service rate is the result of dividing the number of service units by a 
time interval, which includes both the time an address space is swapped into real 
storage and the time it is swapped out but otherwise ready to execute. 

To arrive at a swapping recommendation, the workload manager measures the 
service rates of different address spaces and compares them in light of factors 
defined by the installation in the IPS (installation performance specification). By 
means of these factors, the installation can instruct SRM to give certain users better 
service at the expense of other users. For example, assume two address spaces 
exist in real storage and one must be swapped out; the installation-defined IPS 
factors will dictate how the workload manager views measured service rates: 

• 	 Address space A has a higher service rate than address space B. Based on IPS 
factors associated with these two address spaces, the workload manager 
determines that address space B should be swapped out. 

• 	 Address space A has a lower service rate than address space B. A different IPS 
indicates that address space A is more important and, based on this, the 1\, 
workload manager determines that address space B should be swapped out. 

~. 

• 	 Address space A and address space B have identical service rates. Again, IPS 
factors indicate which address space is more important and which, therefore, 
should remain in storage. 

The workload manager passes its swap recommendations to SRM control, which 
combines them with recommendations from the resource manager. 

The resource manager employs algorithms that are concerned with improving the 
system-wide use of resources (as contrasted to an individual address space's use of 
resources, which is the concern of the workload manager). The resource manager's 
routines can be divided into four functional areas: 

• 	 Storage management, which is concerned with SRM's decisions to steal pages 
and to prevent the creation of new address spaces 
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Stomge MllIIIlgement 

• 	 I/O management, which is concerned with SRM's swap decisions and device 

allocation decisions 


• 	 Processor management, which is concerned with SRM's swap decisions and 

decisions to change an address space's dispatching priority 


• 	 Resource monitoring, which is concerned with adjusting the target MPLs of 

individual domains based on the need to raise or lower the system-wide 

multiprogramming level 


SRM's storage management routines take action when shortages of the following 
are detected: available frames in real storage; space in the system queue area 
(SQA) that causes the SQA to expand into the common service area (CSA); slots 
on auxiliary auxiliary storage; and pageable frames in real storage. 

The system maintains an available frame queue, which indicates the number of 
available frames in real storage. When the number of available frames falls below a 
"low" threshold, SRM storage management routines begin to steal the 
least-recently used pages from the working sets of address spaces in real storage. 
The storage management routines continue stealing pages until the count of 
available frames plus the number of pages stolen exceeds an "OK" threshold for 
the available frame queue. 

SQA shortages are detected by the virtual storage manager (VSM), which calls 
SRM's storage management routines when a shortage is detected. The storage 
management routines prevent the creation of new address spaces until the shortage 
is relieved. The routines also write messages to the operator when the shortage is 
detected and when the shortage is relieved. 

SRM's storage management routines periodically verify that the number of 
available auxiliary storage slots has not fallen below a certain limit. Shortages of 
pageable real storage are detected by real storage management (RSM) when the 
percentage of fixed frames to total frames exceeds a certain limit; RSM then 
notifies SRM's storage management routines. The action taken by SRM for 
shortages of auxiliary storage slots or pageable real storage is the same; SRM: 

Prevents the creation of new address spaces 

• 	 Delays newly-initiated jobs' 

• 	 Sets the multiprogramming level in each domain to its minimum MPL 

• 	 Swaps out the user who is 'acquiring slots at the greatest rate (for shortages of 
auxiliary storage) or the user who has the most fixed frames (fol' shortages of 
~eal storage) 

• 	 Notifies the operator of the shortage and the identity of the sW<;lpped-out user 
, ~;~''.:t.!. 

When the shortage is relieved, creation of address spaces is again allowed, the 
operator is notified, and address spaces that were swapped out are again made 
eligible for swap-in. 

(\. 
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I/O Management 

Processor Management 

SRM's I/O management routines are called to: 

• 	 Choose a device when allocation routines have a choice of devices to allocate 
(device allocation) 

• 	 Give swap recommendations to SRM control (I/O load balancing) 

In both cases, the objective of I/O management is to balance I/O activity across 
channel paths and, thereby, make optimal use of the channel subsystem. SRM uses 
the concept of logical paths. A logical path is the set of physical channel paths 
leading to a single device. Any other devices that share the same physical paths, 
share the same logical path. Channel paths are described in Chapter 7, "Satisfying 
I/O Requests." 

When choosing a device for allocation, the device allocation algorithm seeks 
candidates on the logical path that has the lowest utilization. For direct access .~. 

devices, it chooses the device with the least delays in accessing allocated data sets. 
When it gives swap recommendations to SRM control, the I/O load balancing 
algorithm bases its recommendations on the extent to which the swap-in or 
swap-out of a user would correct a detected I/O imbalance: it recommends, via 
swap recommendation values, that a significant user of an over-used logical path be 
swapped out; or that a significant user of an under-used logical path be swapped in. 

Processor management routines have three responsibilities: 

• 	 Controlling the APG (automatic priority group) subset of dispatching priorities 

• 	 Preventing the swap-out of users who are enqueued on resources required by 
other users 

• 	 Making swap recommendations to correct under-utilization or over-utilization 
of the processor 

The APG is a range of dispatching priorities under the control of SRM. 
Dispatching priority controls the rate at which address spaces are allowed to 
consume resources after they have been given access to those resources. By 
placing jobs in the APG range, the installation, via the IPS and SRM, can alter the 
dispatching priorities of address spaces as their execution characteristics change. 
The APG is the primary means by which SRM controls nonswappable address 
spaces. 

The APG has at least one group of dispatching priorities. Each group is divided 
into three categories: mean-time-to-wait (MTTW), rotate priority, and fixed 
priorities. 

.­
• 	 The MTTW can be used to increase system throughput by increasing processor 

and I/O overlap (that is, the processor is not waiting while I/O requests are 
satisfied). Users in the MTTW group have a dispatching priority based on the 
user's mean execution time before entering a wait state; users who quickly 
release the processor receive a high priority within the MTIW group. 
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Resource Monitoring 

• 	 The rotate priority can be used to ensure that one address space does not 

dominate the proc~ssor in relation to other address spaces also assigned the 

rotate priority. Processor management routines periodically reposition the 

address space that is highest in the rotate priority group to the bottom of the 

group. 


• 	 SRM does not change {'lXed priorities. They are available so that the installation 
can associate, via th~ IPS, a different fixed priority with different periods in the 
life of a job or transaction. 

In the case of address spaces with users e'nqueued on resources in demand by other 
users, processor management routines prevent their swap-out until they have 
released the resource or executed for a fixed period of time (whichever occurs 
first). The installation can specify the execution time interval via an SRM tuning 
parameter. 

If processor management routines determine that the processor is over- or 
under-utilized, they search for heavy processor users and calculate swap 
recommendation values for swap-out (to correct over-use) or swap-in (to correct 
under-use). A heavy processor user is one that meets or exceeds a certain mean 
execution time before entering the wait state. The processor is considered 
over-utilized if, during the period under consideration, it did not enter the wait 
state and any ready address space on the dispatching queue was not dispatched. 
The processor is considered under-utilized when its use is less than a certain 
percentage of total possible processor use. Processor management routines take 
into account the extent to which the processor is over- or under-utilized when 
computing swap recommendation values for SRM control. 

The resource monitoring function of the resource manager periodically checks 
several system resource use indicators such as processor use. If measured resource 
use (averaged over a number of sample intervals) is greater than a "high" threshold 
or less than a "low" threshold for that indicator, the resource monitoring function 
recommends that the system-wide multiprogramming level (MPL)be lowered or 
raised. (The system-wide MPL is the total number of address spaces in the system 
that are swapped in.) 

If the system-wide MPL is to be raised or lowered, resource monitoring routines 
then identify the individual domain whose MPL will be raised or lowered to achieve 
the recommended system-wide MPL. The domain selected for MPL adjustment 
depends on the relative importance of the domains, as defined by the installation in 
the installation performance specification (IPS). 
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Chapter 6. Supervising the Execution of Work 


Interruption Processing 

The MVS/XA component known as the supervisor provides the controls needed for 
multiprogramming: The supervisor takes control once work is brought into real 
storage where it has access to the processor. This chapter describes the following 
supervisor controls: 

• 	 Interruption prOCessing. In order to achieve multiprogramming, there must be 
some technique to switch control from one routine to another so that, for 
example, when routine A must wait for an I/O request to be satisfied, routine 
B can execute. In MVS/XA, this switch is achieved by interruptions, which are 
events that alter the sequence in which the processor executes instructions. 
When an interruption occurs, the hardware gives control to the supervisor 
which saves the execution status of the interrupted routine, analyzes the 
interruption, and passes control to the appropriate routine to process the 
interruption. 

• 	 Creating dispatchable units of work. The supervisor requires some way to 
identify and keep track of all the work in the system. It does this by 
representing each unit of work with a control block. Two types of control 
blocks represent dispatchable units of work in MVS/XA systems: task control 
blocks (TCBs), which represent tasks executing within an address space; and 
service request blocks (SRBs), which represent high priority system services. 

• 	 Dispatching work. After supervisor routines process interruptions, they either 
return control to the routine that was interrupted or pass control to a routine 
called the dispatcher. Which action occurs is described in detail in the topic 
"The Interruption Handlers." The dispatcher determines which unit of ready 
work, of all the ready units of work in the system, has the highest priority and 
passes control to that unit of work. 

• 	 SeriaUzing the use of resources. In a multiprogramming system, almost any 
sequence of instructions can be interrupted, to be resumed later. If that set of 
instructions manipulates or modifies a resource (for example, a control block or 
a record in a data set), the supervisor must prevent other programs from using 
the resource until the interrupted program has completed its processing of the 
resource. 

In MVS/XA, the supervisor provides two techniques for serializing the use of 
resources: enqueuing (via the ENQ or, for shared DASD, RESERVE macro 
instruction) and locking. All users can issue ENQ or RESERVE, but only 
supervisor routines can use locking to serialize the use of resources. 

An interruption is an event that alters the sequence in which the processor executes 
instructions. An interruption may be planned (specifically requested by the 
program the processor is currently executing) or unplanned (caused by an event 
that mayor may not be related to the task currently executing). There are six types 
of interruptions: 

• 	 SVC (supervisor call) interruptions, which occur when the program issues an 
SVC instruction. An SVC is a request for a particular system service; for 
example, to open a data set (SVC 19 - OPEN), or to obtain storage (SVC 4­
GETMAIN), or to write a message to the operator (SVC 35 - WTO/WTOR). 
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• 	 I/O interruptions, which occur when the channel subsystem signals a change of 
status. For example, an I/O operation completes, an error occurs, or a device 
becomes ready. ~.. 

• 	 External interruptions, which indicate any of several events. For example, a 
time interval expires, or the operator presses the interrupt key on the console, 
or one processor receives a signal from another processor. 

• 	 Restart interruptions, which occur when the operator selects the restart function 
at the console or when a restart SIGP (signal processor) instruction is received 
from another processor. 

• 	 Program interruptions, which are caused by program errors (for example, the 
program attempts an invalid operation), page faults (the program references a 
page that is not in real storage), or requests to monitor an event. 

• 	 Machine check interruptions, which are caused by machine malfunctions. 

The supervisor includes six first level interruption handler (FLIH) routines to 
process the six types of interruptions: an SVC FLIH, I/O FLIH, external FLIH, 
restart FLIH, program FLIH, and machine check FLIH. When an interruption 
occurs, the hardware saves the key information about the program that was 
interrupted and, if possible, disables the processor for further interrupts of the same 
type. It then routes control to the appropriate first level interruption handler 
routine. The PSW is a key resource in this process. 

The program status word (PSW) controls the order in which instructions are 
executed and indicates the status of the system in relation to the program currently 
being executed. Even though each processor has only one PSW, it is useful to think 
of three types of PSWs in order to understand interruption processing. The three 
PSWs are: the current PSW, new PSWs, and old PSWs. 

The current PSW is the hardware location in the processor that indicates the next 
instruction to be executed. It also indicates whether the processor is enabled or 
disabled for I/O interruptions, external interruptions, machine check interruptions, 
and certain program interruptions. When the processor is enabled, these 
interruptions can occur. When the processor is disabled, these interruptions are 
ignored or remain pending. A pending interruption is processed when the unit of 
work that is executing in the disabled state completes. (The processor is never 
disabled for SVC, restart, certain program interruptions, and certain machine 
checks.) 

There is a new PSW and an old PSW associated with each of the six types of 
interruptions. The new PSW contains the address of the first level interruption 
handler routine that can process its associated interruption. If the processor is 
enabled for interrupts when an interruption occurs, the MVS/XA hardware 
switches PSWs by: 

1. 	 Storing the current PSW in the old PSW associated with the type of interruption 
that occurred 

2. 	 Moving the contents of the new PSW for the type of interruption that occurred ~ 
into the current PSW 
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The Interruption Handlers 

The current PSW, which indicates the next instruction to be executed, now contains 
the address of the appropriate FLIH routine to handle the interruption (see 
Figure 6-1); this switch has the effect of transferring control to the appropriate first 
level interruption handling routine. . 

Nell'PSWs 	 OldPSWs 

Contains address of Provides a save area for 

routine within supervisor PSW that was current at 

to handle interruption time of interruption 


IRESTART 	 IRESTART 

IEXTERNAL 	 IEXTERNAL 

SUPERVISOR CALL Current PSW SUPERVISOR CALL 

IPROGRAM CHECK I Hardware switches PSWs IPROGRAM CHECK I 

IMACHINE CHECK 	 IMACHINE CHECK 

11/0 	 11/0 

Figure 6-1. The Use of Program Status Words (PSWs) in Interruption ProcesSing 

The first level interruption handler (FLIH) that receives control saves the status 
(general registers and the old PSW) of the unit of work that was interrupted, 
analyzes the interruption, enables the processor for further interruptions, and 
determines the control program action required. Specifically: 

• 	 The SVC first level interruption handler determines the type and location of the 
requested SVC routine and, if the requested routine requires that the caller be 
authorized, checks that the caller has the appropriate authorization. (The 
request is denied if the caller lacks the required authorization.) There are 
several types of SVC routines, and each type has different execution 
characteristics. For example, some types of SVC routines reside in the nucleus, 
others in the link pack area; some types can issue other SVCs, other types 
cannot. If the requested SVC routine is a type that can issue other SVCs, the 
SVC FLIH builds a control block called an SVC request block (SVRB) for the 
requested routine. The SVRB is needed to save status information about the 
routine so that it can be resumed after the additional SVC interruption has 
been processed. After checking for proper authorization and, if neqessary, 
building an SVRB, the SVC FLIH passes control to the requested SVC 
routine. 

• 	 The I/O first level interruption handler passes control to the input/output 
supervisor (lOS). lOS performs all processing for I/O requests and controls all 
II0 error processing. 

• 	 The external first level interruption handler determines the cause of the external 
interruption and passes control to the appropriate external service routine. 
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• 	 The restart first level interruption handler routes control to the recovery 

termination manager (RTM) ..RTM is the focus of Chapter 10, "Recovering 

From Errors." 


• 	 The machine check first level interruption handler records all machine checks 
(hardware problems) and, if the machine check cannot be corrected by 
hardware; calls the recovery termination manager (RTM). 

• 	 The program first level interruption handler determines the cause of the program 
interruption and, depending on the cause, passes control to one of the 
following: 

Real 'storage manager (RSM), if the program interruption was caused by a 
page or segment fault. RSM determines if the fault is valid and, if it is, 
starts the processing necessary to either build the page table or bring the 
referenced page into real storage. 

System trace (TRACE), if the program interruption was a trace table 
exception. This indicates a full buffer condition, which system trace 
handles before using another buffer. System trace is described in Chapter 
9, "Monitoring System Activity," 

Generalized trace facility (GTF), if the interruption occurred as the result 
of a request to monitor a class of events. GTF, also described in Chapter 
9, "Monitoring System Activity," records the event. 

Serviceability level indication processing (SLIP) if the interruption occurred 
as a result of a request to monitor an instruction fetch, successful branch, 
or storage alteration event. SLIP, described in Chapter 9, "Monitoring 
System Activity;" performs a diagnostic action for such an event. 

A user-provided program-interruption exit routine, if the program 
interruption was caused by an error in user code such as using an incorrect 
address or attempting to execute privileged instructions, and the user issued 
a specify program interruption element (SPIE) macro instruction to provide 
an error-handling routine. 

The recovery termination manager (RTM), if the program interruption was 
caused by an error in system code or in user code that does not also include 
SPIE. 

The routine that receives control after the interruption is processed depends on 
whether the interrupted unit of work was non-preemptive. A non-preemptive unit 
of work can be interrupted but must receive control after the interruption is 
processed. All SRBs are non-preemptive; a TCB is non-preemptive if it is 
executing anon-preemptive SVC (the installation identifies which SVCs will be 
non-preemptive during system generation). If the interrupted unit of work was 
preemptive, the dispatcher receives control and determines which unit of work 
should'be performed next. 

Figure 6-2 summarizes the processing of interruptions; for more information on the 
dispatcher, see "Dispatching Work." 

6-4 MVS/Extended Architecture Overview 



loads new PSW 
MVS/XA 

~---------------------------, 

Unit of Work - executing Interruption-handling Routine 

• Analyzes interruption 

Interruption • Determines action requir~~ 
occurs 

\ 
• Routes coinrol to appropriate part 

of control program 
• 

\ 

\ 

Routine that Perfonns Requested \ 
Service\ 

\ 
\ Some services might require another 

service and, therefore, cause an 
interruption, which causes the supervisor 

Highest Priority Ready cycle to be restarted. 
Unit of Work \ 

~, \ 
\ I 
\ \ 
\\ Yes 

~ 

Dispatcher 

The dispatcher dispatches the highest 
priority ready unit of work, which might 
be the unit of work that was interrupted 
or might be another task or SRB. 

Figure 6-2. Summary of Interruption Processing 

Creating Dispatchable Units of Work 

In MVS/XA, dispatch able units of work are represented by two different control 
blocks: . 

~'~"~ 

Task control blocks (TeBs), which represent tasks executing within an address 
space, such as user programs and system programs executed to support the user 
programs. 

Service request blocks (SRBs), which represent requests to execute a service 
routine. ~RBs are typically created when dne address space detects an event 
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Task Control Blocks (TCBs) 

that affects a different address space; they provide one mechanism for 

communication between address spaces. 


Task control blocks (TCBs) are created in response to an ATTACH macro 
instruction. By issuing ATTACH, a user or system routine causes the supervisor to 
begin the execution of the program specified on the A TT ACH macro as a subtask 
of the caller's task. Asa subtask, the specified program can compete for processor 
time and may use certain resources already allocated to the caller's task. 

The ATTACH macro instruction causes an SVC interruption. The SVC 
interruption handler branches to the ATTACH SVC routine to perform the 
requested service. The ATTACH routine does the following: 

• 	 Obtains storage for a new TCB 

• 	 Places in the new TCB information needed to control the subtask 

• 	 Places the new TCB on the chain of TCBs for that address space 

• 	 Branches to program management routines to locate the first program to be 
executed for the new subtask and, if necessary, fetches the program from a 
program library. 

The region control task (RCT), which is responsible for preparing an address space 
for swap-in and swap-out, is the highest priority task in an address space. All tasks 
within an address space are subtasks of the RCT. The RCT's TCB is pointed to f" 
from the address space control block extension (ASXB) and points to the next 
TCB in the address space. Figure 6-3 illustrates the address space dispatching 
queue of the TCBs for batch jobs, operator-started jobs, and TSO users. 
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Figure 6-3. AddreSs Space Task Control Block (TCB) Dispatching Queues 

. Service Request Blocks (SRBs) 

An SRB represents a request to perform a service in a specified address space. 
Typically, an SRB is created when one address space is executing and an event 
occurs that affects a different address space. 

Only supervisor state, key 0 functions create an SRB. They obtain storage and 
initialize the control block with such things as the identity of the target address 
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Dispatching Work 

space and pointers to the code that will process the request. The component 
creating the SRB then issues the SCHEDULE macro and indicates whether the 
SRB has global (system-wide) or local (address space wide) priority. SCHEDULE 
places the SRB on the appropriate dispatching queue where it will remain until it 
becomes the highest priority task on the queue. 

SRBs with a global priority have a higher priority than that of any address space, 
regardless of the actual address space in which they will be executed. SRBs with a 
local priority have a priority equal to that of the address space in which they will be 
executed, but higher than that of any TCB within that address space. The 
assignment of global or local priority depends on the "importance" of the request; 
for example, SRBs for I/O interruptions are scheduled at a global priority, to 
minimize I/O delays. 

SRBs are non-preemptive. Thus, if a routine represented by an SRB isinterrupted, 
it will receive control after the interruption has been processed. In contrast, a 
routine represented by a TCB is preemptive. If it is interrupted, control returns to 
the dispatcher when the interruption handling completes. The dispatcher then 
determines what task, of all the ready tasks, executes next. Any, TCB, except one 
representing a task issuing a non-preemptive SVC, can be preempted. 

/\ 

An SRB can execute concurrently and in a different address space from the task 
that created it and issued the SCHEDULE macro. This means, among other 
things, that an SRB provides the means for asynchronous inter-address space 
communication. Such communication improves the availability of resources in a 
multiprocessing environment. 

As an example, consider that, when address space A is executing, an I/O 
interruption occurs because an I/O operation requested by address space B has 
completed. The I/O interruption handler collects the necessary information about 
the interruption and creates and schedules the SRB to control the final processing 
of the completed I/O operation. The I/O interruption handler then starts any 
other I/O requests waiting for the I/O path used by the just-completed request and 
can accept any additional pending interruptions. Building the SRB allows faster 
re-use of the I/O path and less time when the processor is disabled for 
interruptions. 

The SRB identifies the routine to process the completed I/O request and the 
address space in which the routine should execute. In the preceding example, the 
SRB would be executed in address space B, because that address space had 
requested the I/O operation. 

/\ 
~j 

Dispatching work consists of routing control to the highest priority unit of work 
that is ready to execute. The dispatcher, a supervisor routine, dispatches work in 
the following order: 

1. Special exits. These are exits to routines that have a high priority because of 
specific conditions in the system. For example, if one processor in a 
tightly-coupled. multiprocessing system fails, alternate CPU recovery (ACR) 
will be invoked by means of a special exit to recover work that was being 
executed on the failing processor. 
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2. 	 SRBs that have global priority. If a global SRB cannot be dispatched (for 
example, the address space in which it will execute is swapped out), the 
dispatcher reschedules it at a local priority. 

3. 	 Ready address spaces in order of priority. An address space is ready to execute 
if it is swapped in and not waiting for some event to complete; an address 
space's priority is determined by the dispatching priority specified by the user 
or the installation. The address space control block (ASCB) contains the 
address space's'dispatching priority; ASCBs that represent ready address 
spaces are queued in storage according to their dispatching priority. To select 
an address space, the dispatcher selects the first ready ASCB on the chain of 
ASCBs. 

After selecting the highest-priority ASCB, the dispatcher first dispatches SRBs 
with a local priority that are scheduled for that address space and then TCBs in 
that address space. 

If there is no ready work in the system, the dispatcher loads an enabled wait PSW. 

The dispatcher receives control after a task is interrupted or becomes 
non-dispatchable, after an SRB completes or is suspended, (that is, an SRB is 
delayed because a required resource is not available), and from other supervisor 
routines that want higher priority work dispatched without waiting for an 
interruption to occur. The dispatcher saves the status of the unit of work 
relinquishing control, selects a unit of work, builds a program status word (PSW) 
for the selected unit of work, and issues a load PSW (LPSW) instruction, which 
causes the selected routine to receive control. That routine executes until an 
interruption occurs or until the routine voluntarily gives up control (for example, by 
issuing a WAIT SVC). 

Serializing the Use of Resources 

The supervisor provides two techniques for serializing the use of resources: 
enqueuing and locking. The primary function of these techniques is to provide 
orderly access to system resources needed by more than one user in a 
mUltiprogramming or multiprocessing environment. 

To protect system resources from unauthorized users, IBM makes available the 
Resource Access Control Facility (RACF). RACF controls access by permitting 
only authorized.-users to perform authorized actions on protected resources. These 
resources include DASD data sets, DASD and tape volumes, display terminals, 
system and user programs, and application program transactions. 

Enqueuing 

Enqueuing is accomplished by means of the ENQ (enqueue) and DEQ (dequeue) 
macro instructions, which can be used by both user and system programs; or, for 
devices shared between systems, by means of the RESERVE and DEQ macro 
instructions. On ENQ or RESERVE, a user specifies the name(s) of one or more 
resources and requests shared or exclusive control of those resources. If the W; -. :.; 

resources are to be modified, the user must request exclusive control; if the 
resources are not to be modified, the user should request shared control, which 
allows the resource to be shared by other users that do not require exclusive 
control. If the resource is-not available, the requestor is suspended until it becomes f"""\ 

( 	 available. The DEQ macro instruction is used to release control of a resource. 
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Global Resource Serialization 

Locking 

Lock Hierarchy 

The global resource serialization co~ponent of MVS/XA processes the requests 
for resources that programs issue. It serializes access to resources to protect their 
integrity. An installation can connect two or more systems with 
channel-to-channel (CTC) adapters to form a global resource serialization complex 
to serialize access to resources shared among the systems in the complex. Chapter 
8, "Entering and Scheduling Work"illustrates the use of global resource 
serialization in a multiprocessing configuration~ ­

In a complex without global resource serialization, a RESERVE macro instruction 
applies to the entire shared DASD volume on which the resource resides; no other 
system can access any resource on the volume. With a global resource serialization 
complex, an installation can improve the availability of resources on shared DASD 
volumes by converting RESERVEs to apply to only the requested resource; other 
systems can then access other resources on the volume. 

Locking serializes the use of system resources by supervisor routines and, in a 
tightly-coupled multiprocessing system, by processors. A lock is simply a named 
field in storage that indicates whether a resource is being used and who is using it. 
In MVS/XA, there are two kinds of locks: global locks, for resources related to 
more than one address space, and local locks, for resources assigned to a particular 
address space. Global locks are provided for non-reusable or non-shareable 
routines and various resources. 

To use a resource protected by a lock, a routine must first request the lock for that 
resource. A part of the supervisor called the lock manager acquires and maintains 
all locks. If the lock is unavailable (that is, already held by a different program or 
processor), the action taken by the program or processor that requested the lock 
depends on whether the lock is a spin lock or a suspend lock: 

• 	 If a spin lock is unavailable, the requesting processor continues testing the lock 
until the other processor releases it. As soon as the lock is released, the 
requesting processor can obtain the lock and, thus, control of the protected 
resource. All of the globallqcks except the cross-memory-services locks are 
spin locks. 

• 	 If a suspend lock is unavailable, the unit of work requesting the lock is delayed 
until the lock is available; other work is dispatched on the requesting processor .. 
The cross-memory-services global locks and all local locks are suspend locks. 

A deadlock is the situation where two users request locks held by each other and 
simultaneously wait for the other to release its lock first. The result is a stalemate. 

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or routine­
can unconditionally request only locks higher in the hierarchy than locks it 
currently holds. For example, a deadlock could occur if processor 1 held lock A 
and required lock B; and processor 2 held lock B and required lock A. This 
situation cannot occur because locks have to be acquired in hierarchical sequence. 
Assume, in the preceding example, that lock A precedes lock B in the hierarchy. 
Processor 2, then, cannot unconditionally request lockA while holding lock B. It 1\ 

I 

must, instead, release lock B, request lock A, and then request lock B. Because of 
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the hierarchy, a deadlock cannot occur. Figure 6-4 identifies the locks MVS!XA 
provides and lists them in hierarchical order. 

Lock Name Category Type Description (See note l.) 

RSMGL Global Spin - Real storage management global lock - serializes RSM global resources. 


VSMFIX Global Spin - Virtual storage management fixed subpools lock - serializes VSM global queues. 


ASM Global Spin - Auxiliary storage management lock - serializes ASM resources on an address space level. 


ASMGL Global Spin - Auxiliary storage management global lock - serializes ASM resources on a global level. 


RSMST Global Spin - Real storage management steal lock - serializes RSM control blocks on an address space level 

when it is not known which address space locks are currently held. 

RSMCM Global Spin - Real storage management common lock - serializes RSM common area resources (such as page 
table entries). 

RSMXM Global Spin - Real storage management cross memory lock - serializes RSM control blocks on an address 
space level when serialization is needed to a second address space. 

RSMAD Global Spin - Real storage management address space lock - serializes RSM control blocks on an address 
space level. 

RSM Global Spin - Real storage management lock (shared/exclusive) - serializes RSM functions and resources on 
a global level. 

VSMPAG Global Spin - Virtual storage management page able subpools lock - serializes the VSM work area for VSM 
pageable subpools. 

DISP Global Spin - Global dispatcher lock - serializes the ASVT and the ASCB dispatching queue. 

SALLOC Global Spin - Space allocation lock - serializes receiving routines that enable a processor for an emergency 
signal or malfunction alert. 

IOSYNCH Global Spin - I/O supervisor synchronization lock - serializes, using a table of lockwords, lOS resources. 

IOSUCB Global Spin - I/O supervisor unit control block lock - serializes access and updates to the UCBs. There is one 
10SUCB lock per UCB. 

SRM Global Spin - System resources management lock - serializes SRMcontrol blocks and associated data. 

TRACE Global Spin - Trace lock (shared/exclusive) - serializes the system trace buffer. 

CPU Global Spin - Processor lock - provides system-recognized (legal) disablement. (See note 2.) 

CMSSMF Global Suspend - System management facilities cross memory services lock - serializes SMF functions and control 
blocks. (See note 3.) 

CMSEQDQ Global Suspend - ENQ/DEQ cross memory services lock - serializes ENQ/DEQ functions and control blocks. 
(See note 3.) 

CMS Global Suspend - General cross memory services lock - serializes on more than one address space where this 
serialization is not provided by one or more of the other global locks. The CMS lock provides 
global serialization when enablement is required (See note 3.) 

CML Local Suspend - Local storage lock - serializes functions and storage within an adtlress space other than the 
home address space. There is one CML lock per address space. (See note 4.) 

o 
LOCAL Local Suspend - Local storage lock - serializes functions and storage within a local address space. There is one 

LOCAL lock per address space. (See note 4.) 

Notes: 
" 

1. All locks are listed hierarchical order, with RSMGL being the highest lock in the hierarchy. (See also notes 2, 3, and 4.) 
2. The CPU lock has no hierarchy in respect to the other spin type locks. However, once obtained, no suspend locks can be obtained. 
3. The cross memory services locks (CMSSMF CMSEQDQ, and CMS) are equal to each other in the hierarchy. 
4. The CML and LOCAL locks are equal to each other in the hierarchy. 

FIgure 6-4. Dermltion and Hierarchy of Locks 
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Chapter 7. Satisfying I/O Requests 

An: input/output (I/O) operation involves the movement of data between main 
storage and an I/O device. Input is the movement of data from the device to main 
storage. Output is the movement of data in the reverse direction: from storage to 
the device. The I/O device may be a tape, a disk, printer, or a telecommunication 
device (such as a local display terminal or telecommunication control unit). 

An: MVS/XA system configuration can include more than 4000 I/O devices and 
can run many programs concurrently. To manage the I/O operations that these 
programs request, MVS/XA works with a separate processor dedicated to handling 
I/O operations. The I/O processor and its components are the channel subsystem. 

MVS/XA initiates an I/O operation by signaling the channel subsystem. The 
channel subsystem, executing independently of the central processor, moves data 
between storage and the I/O device. The subsystem's ability to execute 
independently of the processor allows an I/O operation to overlap with central 
processor activity. This overlap is particularly important because an I/O operation. 
takes a long time to complete compared to the time the central processor requires 
to execute a series of instructions. The overlap of I/O operations with processor 
activity is then one of the key ways that MVS/XA achieves efficient use of both 
the central processor and the computer system's I/O resources. Figure 7-1 
illustrates the components involved in an I/O operation. 
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Figure 7-1. Components of the I/O Request 

How 110 Data Moves Through the System 

An I/O path can either be a conventional direct line I/O path or a 

telecommunication I/O path. The conventional I/O path consists of main storage, 

the channel subsystem, a control unit, and I/O devices such as disks and tapes used ;/\ 

for local long-term storage of computer users' data and programs. Output data 

moves from storage to the device. Input data moves from the device to main 

storage. Figure 7-2 illu;trates conventionalI!O. 
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Transmitted 
Data 

The telecommunication I/O path consists of storage, the channel subsystem, a 
communications_ controller, a data link, a control unit, and a device (usually a 
terminal). Input data moves from the terminal to the control unit to the data link. 
In the data link, the data is changed by a modem (modulator/demodulator) into a 
form that is transmitted over the communication line (such as a telephone line) to 
the processor location. At the processor location, another modem receives the data 
and converts it back to its original form. The data then moves through the 
communications controller and the channel subsystem to storage. Figure 7-3 
illustrates telecommunication I/O. 

.. Received 
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Figure 7-3. Telecommunication Input/Output 

Output data uses the same path in reverse order; it moves from storage through the 
channel subsystem to the communications controller. From the communications 
controller, the data moves to the data link. In the data link, the data is changed by 
a modem into a form that is transmitted over a communication line to the terminal 
location. At the terminal location, another modem receives the data and converts it 
back to its original form. The terminal at the remote location then receives the 
data. Telecommunication I/O paths are used in an interactive computing 
environment where terminal users work with applications (such as TSO and IMS) 
that are executing on a processor at another location. 

The I/O paths in the preceding figures illustrate, in a general way, the route data 
travels within an MVS/XA system. For the channel subsystem, the term channel 
path refers to a precise path of data transmission among specific components. For 
either conventional or telecommunication transfer, MVS/XA allows the definition 
of mUltiple I/O paths to a single device. That is, there can be more than one 
physical channel path to a specific device. Multiple paths enable the channel 
subsystem to schedule I/O requests to balance the load over physical channel paths 
and devices and also to allow continued access to a device if one of the multiple 
paths is inoperative. 

Figure 7 -4 shows the use of multiple channel paths to devices. Data can move;: 
between storage and disk A, disk B, and the tape device by using the path over 
channel path 01 or the path over channel path 02. If an input operation is under 
way from disk A through channel path 01, then channel path 02 can be used for an 
input operation from disk B or the tape device without having to wait for the input 
operation on disk A to complete. Data can move between storage and the 
communications controller (and SUbsequently to terminals C, D, and E by way of 
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the data link) by using the path over channel path 01 or the path over channel path 
03. If terminal C and te!IDinal D are using channel path 03 to interact with an 
application, terminal E can use another application and channel path 01 without 
affecting the response time of terminal C and terminal D. 

Channell-______-r-___--.____-r-__-, 

Path 01 

w 
(!) :E< .Jw 
o a: wI;; 
I­ Z> Channel 
en ~ la Path 02 1---------'------'-------' 
Z :1:::>« ()en Data 
:E 

Channel Communications 
Path 03 Controller 

FIpre 7-4. Multiple I/O Channel Paths 

Controlling the I/O processing for jobs where multiple paths to an I/O device are 
available is a complex process. To manage this process the channel subsystem 
views groups of up to four channel paths and up to four physical control units as 
logical control units. The channel subsystem controls I/O processing (not only for 
one job, but for the many jobs that run concurrently in the system) by polling the 
possible channel paths to a device and assigning an available one to the next I/O ~ 
request on the queue for the logical control unit. Figure 7-5 illustrates the 
relationship among logical control units, physical control units and channel paths. 
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Figure 7-5. Logical Control Units 

The channel subsystem identifies each device by a unique subchannel ID number. 
Usually, MVS/XA installations assign their own device number to each of the I/O 
devices. The MVS/XA component that initiates I/O requests, I/O supervisor 
(lOS), relates these two numbers to ensure that each I/O request is directed to the 
proper device. If that device is active with a previous lOS request when the current 
request is made, lOS holds the current request on a queue for that device. 

The channel subsystem makes it possible for anyone central processor in a 
multiprocessor system to access any of the I/O devices in the computer system. 
Each processor communicates with the channel subsystem, and the channel 
subsystem communicates with all of the I/O devices. The channel subsystem also 
protects against I/O delays and bottlenecks in the event of the failure of one 
processor in a multiprocessing system. 

How an I/O Request Moves Through MVS/XA 

MVS/XA is a flexible operating system that includes services that allow 
programmers to ignore the many details of I/O operations or to bypass or add to 
some phases of the I/O operations. Figure 7-6 illustrates the MVS/XA I/O 
services - access methods, an lOS driver, and lOS - and shows how they relate to 
one another when an I/O request is made by a user program. The discussion that 
follows describes how these services function in the typical situation where a 
programmer makes an I/O request by means of an access method that uses the 
EXCP processor as an lOS driver. 
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Figure 7-6. MVS/XA I/O Services 

(1) The user program begins an I/O operation by issuing an OPEN macro 
instruction and asking for either input or output of data using an 1/0 macro 
instruction like, GET, PUT, READ, or WRITE, and specifying a target I/O device. 
An I/O macro instruction invokes an access method that interprets the I/O request 
and determines which system resources are needed to satisfy the request. The user 
program could bypass the access method, but it would then need to consider the 
many details of the I/O operation, such as the transmission characteristics of the 
path over which the data is to move, and the order in which to move the data 
between the I/O device and storage. The program would also have to create a 
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channel program, composed of instructions for the channel subsystem, and invoke 
the EXCP processor, an lOS ,driver, to handle the next phase of the I/O process. 

(2) There are several MVS/XA access methods, each of which offers differing 
functions to the user program. These access methods fall into three categories: 
conventional access methods, telecommunication access methods, and the virtual 
storage access method (VSAM). 

Conventional access methods move data between storage and I/O devices such as 
disks or tape; the program uses the I/O device to hold data the program would not 
normally keep in main storage. Telecommunication access methods move data over 
telecommunication I/O paths between storage and I/O devices such as display 
terminals; the I/O device is normally used to communicate and interact with the 
program rather than to hold data. The selection of an access method in either 
category (conventional or telecommunication) depends on how the data is currently 
organized and how the program plans to access it (randomly or sequentially, for 
example). VSAM is particularly designed for use with virtual storage. The final 
section of this chapter describes the various access methods in detail. 

(3) To request the movement of data, either the access method or the user program 
presents information about the operation to the EXCP processor by issuing the 
EXCP macro instruction. EXCP translates this information into a format 
understandable to the channel subsystem and invokes the I/O supervisor (lOS). 

(4) lOS places the request for I/O on the queue for the chosen I/O device, if 
necessary, and initiates the channel subsystem. Then, the central processor usually 
does other work until the channel subsystem indicates that the I/O operation has 
completed. 

(5) The channel subsystem selects the best channel path for data transmission 
between storage and the device and controls the movement of data. When I/O is 
complete, the channel subsystem signals the completion by causing an I/O 
interruption and indicating exactly what occurred during the I/O operation. 

(6) lOS evaluates the interruption, and returns control to EXCP. 

(7) EXCP indicates that I/O is complete by posting the event control block (ECB) 
(created by the access method) and calling the dispatcher. 

(8) When appropriate, the dispatcher re-activates the access method. 

(9) The access method returns control to the user program which can then continue 
its processing. 

A Closer Look at How an I/O Request Moves Through MVS/XA 

As MVS/XA processes an I/O request, several software components communicate 
using MVS/XA macro instructions and programming conventions. Both the 
software and the hardware rely upon information stored in control blocks as the 
I/O process progresses. The following sections describe the role of each ", 
component involved in an I/O request and the control blocks and instructions they 
use. 
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User Program Functions 

OPEN Processing 

The user program that issues the I/O request must describe the data set to be used 
and the specific operation to be performed on the data set. It supplies this 
informatIon in a DD statement in the program's JCL and in a data control block 
(DCB), which the program creates. When the program issues an OPEN macro 
instruction, the DCB is filled in with all the relevant data set information. 

When the user program issues an OPEN macro instruction, it invokes the system 
OPEN routines. These routines merge information from various sources to build a 
complete description of the data set. The information used comes from: 

• 	 The job file control block (JFCB), which contains data set and device 
information from the DD statement included in the JCL for the user program. 
After the device for the the data set has been allocated, the task I/O table 
(TIOT) entry points to the unit control block (UCB) for the required device 
and to the JFCB. 

• 	 The data set control block (DSCB) that describes the data set in great detail. It 
indicates, for example, how the data is organized, whether it it password 
protected, and when it was last referenced. For data sets on a direct access 
device, for example, the DSCB comes from the volume table of contents 
(VTOC) for the volume containing the data set. 

The data control block (DCB) built by the user's program. When OPEN 
processing begins, the DCB contains information about the data set 
organization and location that can be augmented by information from the JCL 
for the current job step. 

When OPEN processing is complete, the DCB contains all of the information 
about the data set merged during OPEN processing. This information includes 
the address of the access method routines which usually perform I/O 
operations. VSAM, and some subsystems use an equivalent of the DCB 
known as the ACB, or access method control block. 

The OPEN routines can acquire the information they need from any of these 
sources, giving the user a great deal of flexibility in specifying I/O operations. To 
achieve device independence, for example, a user can specify a minimal amount of 
DCB information in the program and supply the rest of the information on the JCL 
for a particular execution of the program. 

The OPEN routines build a data extent block (DEB), which, for DASD, specifies 
the device on which the volume is mounted and the physical extent of the data set 
on that volume. If the user program needs access method appendages Or user exits 
to perform such functions as analyzing data errors or processing end-of-data 
conditions, the address of the user program and the required routines are also built 
into the DEB. Figure 7-7 summarizes the relationships the OPEN routines 
establish between the control blocks and between the user program and the access 
method. 
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Requesting I/O 

Access Method Exit Appendages 

. 
DCB r-­

t 
DEB 

r-­
~ -

t 
UCB 

Access Access 
Method Method 
Appendages 

Figure 7 -7. Relationships Established by OPEN 

Once the data set to be used for the operation is successfully opened, it is ready to 
be used. The program can then issue an I/O request. 

To transfer data between a data area in storage and an I/O device using an access 
method, the user program issues a macro instruction. GET and PUT are used for 
queued input and output requests; the access method does not return control to the 
user program until the I/O operation is complete. READ and WRITE are used for 
basic input and output requests; control returns to the user program once the I/O 
operation is initiated, and the user program must test for the completion of the 
operation. 

Either type of "'request causes a branch to the access method. If the access method 
cannot satisfy the request because of a specification error in the request, the access 
method immediately returns control to the user with indicators set to describe the 
nature of the error. If the request was made correctly, processing of the I/O 
operation continues as des~ribed later in this chapter under"Access Method 
Functions. " 

Appendages are routines that enable an access method (or a user program 
functioning as an access method) to get control at various points during the -'--. 
execution of an I/O operation. Some are entered before execution of the I/O -" 
operation, others after execution, and one, the program controlled interrupt (PCI) 
appendage, enables a an access method to get control during an I/O operation in 
order to modify the channel program while it is executing. 
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To establish these exits, authorized routines from authorized libraries identified 
during system generation can be loaded during OPEN processing for authorized 
users. The DEB contains the pointers to the appendage routines. ~ .. 

CLOSE Processing 

When all of the user program's requests for I/O are complete, the program must 
invoke the system CLOSE routines by issuing the CLOSE macro. These routines 
complete the final steps of the I/O operation, such as writing out the .contents of 
the file buffer and marking the end of the file data. They alsom6dify the DCB to 
oreak the logical connections between control blocks and between the user 
program and the access method. The CLOSE routines free any storage acquired 
by the OPEN routines. 

Once the data setis closed, the user program can free the data set and the I/O 
device from its controi'with explicit JCL or program instructions. Or,the user can 
rely upon the the system to . automatically free them at the end of the job step. 

For DASD, the CLOSE routines also rewrite the DSCB for the data set to the 
volume. Because the DSCB can be modified during OPEN processing, a user 
program can change the specifications for the data set by opening and closing it. 

Figure 7 -8 summarizes the control blocks used as input to the CLOSE routines, the 
functions the CLOSE routines perform, and the control blocks that are modified 
during CLOSE processing. 

Input 	 Process Output 

DCB 

• 	 Write DSCB* 
DCB 

• Restore DCB 
DEB 

• 	 Release storage 
acquired by OPEN 

!~ 

*For DASD data sets 

Figure -7-8. CLOSE Processing Summary 

Acau Method Functions 

Because the OPEN routines place the address of the required access method in the 
DCB for the data set, the access method gets control when the user program issues 
an I/O macro instruction. The access method uses the control block structure built 
by the OPEN routines to build control blocks for the EXCP processor and a 
channel program for the I/O request. The access method then issues an EXCP 
macro instruction to pass control to the EXCP processor. ~! 
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Building the Channel Program 

Building Control Blocks 

In~oking EXCP 

The access method builds a channel program for the I/O operation. A channel 
program consists of a string of channel command words (CCWs) that describe the 
operation to the channel subsystem. Channel command words provide the channel 
subsystem with all of the information that it needs to perform the operation, such 
as the address of the data area and the number of bytes of data to be transferred. 

The access method builds two control blocks: the input/output block (lOB) and 
the event control block (ECB). The lOB points to the DCB; through the DCB, the 
EXCP processor, can access the contents of the DEB and the VCB. The lOB also 
points to the ECB and to the channel program. The lOB thus contains pointers to 
all of the information EXCP and lOS need about the I/O request. 

EXCP posts the ECB when the I/O operation is complete. The access method or 
the user program can thus test the contents of the ECB to find the outcome of the 
I/O operation. 

When the lOB and ECB have been built and initialized and the channel program 
has been created, the access method issues an EXCP macro instruction. The 
EXCP macro instruction causes an SVC interruption to occur. As a result of this 
interruption, the SVC interruption handler causes control to be passed to the 
EXCP processor. 

Figure 7-9 summarizes the control block structure, the channel program built, and 
the pointers the access method establishes before it passes control to the EXCP . 
processor. 

Access Method 	 EXCP 
Processor 

EXCP 

s~c----------------------1r--
REG I 

Channel 

Program 


FIgure 7-9. Control Block Structure for the EXCP Processor 
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EXCP and IDS Functions 

Control returns to the access method when EXCP has sent the request to lOS. If 
the request used a GET or PUT macroinstruction (queued access technique), the ~, 

access method issues a WAIT macro against the ECB for the operation. In this 
case, the access method waits until the ECB is posted complete, and then it returns 
control to the user program. If the request used a READ or WRITE macro 
instruction (basic access technique), the access method returns control to the user 
program, which issues the WAIT macro instruction against the ECB and waits until 
the request is completed. 

lOS is the interface between I/O requests from system components and the 
channel subsystem. EXCP, and other I/O drivers, pass control to lOS, and IDS, in 
turn, passes control to the subsystem by issuing the Start Subchannel (SSCH) 
instruction. IDS monitors the progress of each I/O request and the status of the 
I/O devices. It notifies its drivers of successful completion of a request. And, if 
errors occur in the channel subsystem, IDS initiates appropriate recovery actions. 
Because the standard access methods use the execute channel program (EXCP) ~ 
processor as an interface to lOS, this chapter describes the relationship between 
lOS and the EXCP processor. 

Figure 7-10 shows some other lOS drivers that meet the special needs of various 
lOS users. 

lOS USER DRIVER lOS 

User Program 

EXCPAccess Method 

JES2 

I Paging 

RSM I ASM ~ ASM 


VSAM 


VSAM r ~I (ABP) 


Program ~ FETCH lOS 

Manager ~ 
VTAM VTAM-, 

..[ OLTEPI~~agnostics ~ 
MSS MSS·1 
JES3 JES3·1 

FIgure 7-10. Some lOS Drivers 
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EXCP Processor Front End 

lOS I/O Initiation 

The EXCP processor has three major parts: front end, exit processing, and back 
end. These parts function in response to the needs of the I/O request to interact 
with the three majo(parts of lOS: I/O initiation, I/O interruption handling, and 
post status. The EXCP processor, like other lOS drivers, is separate from lOS, 
acting primarily aS,an interface between the access method and lOS. However, 
because the drivers and lOS work together to process a request, their functions are 
presented in chronological order to show the steps involved in satisfying a single 
I/O request. 

EXCP and lOS communicate by means of the I/O supervisor block (IOSB). 
Created by EXCP, the 10SB contains information needed to start an I/O 
operation such as: 

• The address of the UCB for the device required by the I/O operation 
• The address of the channel program translated by EXCP. 

Most user programs and the standard access methods run with virtual addresses. 
Thus, user data areas, control blocks, and the channel programs built by the 
standard access methods are in virtual storage, use virtual addresses, and are 
pageable. However, the channel subsystem transfers data into and out of real 
storage locations. Therefore, the data areas, the control blocks, and the channel 
program for the I/O operation must be fixed and use real addresses. User 
programs running in virtual storage use the EXCP macro to invoke EXCP. EXCP 
translates the channel program and data areas to real addresses and performs page 
fixing (marks the pages as not available for page-out). Users that invoke EXCP 
with the EXCPVR macro provide a channel program with real addresses but use 
the EXCP page fixing functions. 

Users that run in a real region do not require address translation or page fixing. 
The EXCP processor recognizes such a user and bypasses the address translation 
and page fixing functions. 

Whether or not it performs address translation and page fixing, the EXCP front 
end processing constructs the control blocks lOS requires and issues a ST ARTIO 
macro instruction to activate lOS. 

lOS communicates with the channel subsystem by means of instructions like SSCH 
(Start Subchannel). The channel subsystem communicates with lOS by means of 
I/O interruptions. Befere passing a request to the channel subsystem, lOS disables 
the current central processor for I/O and external interruptions and builds an I/O 
queue (100) control block for the device requested. It also isolates the device 
from other I/O requests by obtaining the appropriate unit control block (UCB) 
lock. 

lOS verifies that the subchannel for the device is usable and creates the operation 
request block (ORB) containing information the channel subsystem needs to 
process the I/O request. This information includes the address of the channel ~,-..... . 
program and I/O operation control information. When lOS invokes the channel 
subsystem by issuing the SSCH instruction, it gives the address of the ORB as an 
instruction operand. 
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Channel Subsystem Functions 

lOS Interruption Handling 

EXCP Exit Processing 

The channel subsystem executes the channel program, transfers data, updates 
control blocks, and when the I/O operation is complete, posts an I/O interruption. 
The subsystem places information about the status of the device in the subchannel 
information block (SCHIB) and about the completed I/O request in the interrupt 
response block (IRB). lOS uses the information in the IRB to determine what 
action to take as a result of the interruption. 

The channel subsystem posts both solicited and unsolicited interruptions. Solicited 
interruptions result from an active I/O request on a subchannel and occur when: 

1. 	 The PCI bit in one of the channel command words of the channel program 
indicates a branch to a user appendage. 

2. 	 The I/O operation completes (successfully or unsuccessfully). 

Unsolicited interruptions are not related to an, active I/O request and occur when: ~ 

1. 	 A device changes from the not-ready to ready state. 
2. 	 A terminal user presses the attention key. 

If the interruption is solicited, lOS returns control to EXCP exit processing. If the 
interruption is unsolicited, lOS makes tests to determine how best to handle it. 

If necessary, lOS can force a device offline by boxing which is returning I/O ..~ 
requests for the device to the driver as permanent errors. 

lOS operates to maintain system availability by monitoring the subchannels for: 

• 	 Hot I/O 

A Hot I/O condition is a hardware malfunction that causes repeated 
unsolicited interruptions from a device. lOS will either try to clear the 
subchannel (with the Clear Subchannel, (CSCH) instruction), take the device 
offline, or initiate channel path recovery routines. ,~ 

• 	 Missing Interruption Handler 

At initialization, missing interruption handler (MIH) control statements in 
SYSl.PARMLIB assign a time interval at which lOS checks the device for 
interruptions. If an interruption has not occurred when expected, lOS tries to 
resolve the missing interruption and make the device usable again. It may clear 
the subchannel, terminate the operation, or try the operation again. 

During interruption processing, lOS also recognizes and gives control to driver exit~ 
specified in the 10SB. EXCP will, in turn, give control to access method 
appendages provided in the DEB. 

Once an interruption has been evaluated, lOS issues the SCHEDULE macro to 
schedule the service request block (SRB) under which the lOS post status routines 
run. The post status routines handle the final processing of the I/O operation. 
After scheduling the post status routines, lOS issues a test pending interrupt 
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lOS Post Status 

EXCP Processor Back End 

Summmy 

instruction (TPI) to see if other 1/0 interruptions have occurred while the current 
one was being processed. If S9, processing of the new interruption begins 
immediately. This action saves the time required to enable the processor for I/O 
interruptions, and then immediately disable it again. 

MVS/XA monitors the number of TPls issued and. if it becomes excessive, the 
system resource manager (SRM), might enable another processor for I/O 
interruptions. This facility is known as selective processor enablement. 

The lOS post status routines complete the processing of an I/O request after the 
central processor has been enabled for interruptions and after EXCP exit 
processing completes. lOS determines what processing should be done by 
examining information in the IOSB about the completion of the I/O request. The 
post status processing can include: 

• 	 Invoking an EXCP processor exit and then returning control to the EXCP back 
end 

• 	 Invoking error recovery procedures (ERPs) 

• 	 Returning control to the EXCP back end 

The back end of EXCP issues a POST macro to post the status of the completed 
operation in the ECB and returns control to the dispatcher. The access method or 
user program that is waiting for the ECB to be posted then becomes ready for 
execution and is eventually dispatched. Control returns to the user program or 
access method at the instruction immediately following the WAIT for the 
completion of the I/O request. 

Figure 7-11 presents an overview of the interaction between the user program, the 
access method, the EXCP processor, lOS, and the channel subsystem. It shows the 
function each performs in processing the I/O request, the instructions that pass 
control from step to step. and the control blocks that permit the communication of 
information about the I/O request. 
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Figure 7-t 1. IVIVS/XA I/O Processing 

Virtual Input/OUtput (VIO) 

As a means of improving system performance by eliminating much of the overhead 
and time required to allocate a device and move data physically between main 
storage and an I/O device, MVS/XA provides virtual input/output (VIO). As 
described earlier, a physical input/output operation reads data from Of writes d.ata 
to a data set on an I/O device. In contrast, a virtual input/output (VIO) operation 
uses the system paging routines to transfer data. VIO can only be used for ~;-- ~~. 
temporary data sets that store data for the duration of the current job; it uses the 
system paging routines to transfer data into and out of a page data set. 

To use VIO, an installation specifies one or more I/O unit names for VIO at 
system generation time. Then, a user program or access method can build a 
channel program to send data to a system-named temporary data set on a unit that 
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was specified for VIO. The EXCP processor intercepts such a channel program 
and branches to VIO instead of invoking lOS to transfer the data over a channel to 
a device. VIO uses the move instruction to move that data from the channel 
program buffers to a special buffer in the user's address space. This special buffer 
is called a window. 

The window contains enough contiguous virtual storage pages to hold all of the 
data that could be placed on a track for a real device. For example, a 3330 or 2305 
track requires a four-page window. Figure 7-12 shows the channel program buffer 
and the VIO window. 
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Figure 7-12. VlO Wmdow 

When the user program or access method determines that the track is full, it builds 
another channel program to place data on a second track. When VIO detects this 
track switch, it writes the contents of the window to a page data set, using the 
system paging routines. The system keeps VIO data set pages in real storage after 
this page-out, whenever possible. VIO then disconnects the window from the 
frames that contain theVIO data set pages. When VIO moves new data (the 
second track) tolhe window, a page fault occurs, causing fresh frames to be 
assigned to the window. 

As the data set is created and auxiliary storage assigned, the system keeps track of 
the locations of each page of the VIO data set. The paging data set slots, like the 
real storage frames, are not necessarily contiguous; they are allocated dynamically 
throughout auxiliary storage as the data set is used. 

When data is to be retrieved from the VIO data set, VIO locates the pages that 
contain the required data. If the data is not currently in the window, VIO chaqg~s 
the appropriate external page table entries to point to the required pages in . 
auxiliary storage and turns on the invalid bit in the page table entries for the pages 
in the window. Then VIO uses the MVCL instruction to move data from the 
window to the channel program buffers. This instruction causes a page fault, and 
the proper page is either reclaimed or brought into real storage and made 
addressable through the window. 
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Virtual Fetch 

Access Methods 

Acceu Techniques 

Thus, VIO uses paging rather than explicit I/O to transfer data. VIO eliminates 

the channel program translation and page fixing done by the EXCP driver as well ~ 


as some device allocation and data management overhead. It also provides ;.. 

dynamic allocation of DASD space as it is needed. Another advantage of VIO is 

that the data set can remain in real storage after it is created because RSM attempts 

to keep the pages in real storage as long as possible. 


Virtual fetch, like VIO, is a means of improving system performance. Its goals are 

to streamline the process of loading modules and reduce the contention for channel 

paths to I/O devices. 


At system initialization time, a virtual fetch address space can be created containing 

a directory that points to ready-to-Ioad modules which, when they are needed, must 

be retrieved as quickly as possible. These modules are stored in special virtual 

fetch data sets on a DASD volume in an "optimized" format that minimizes the 

time needed to load and pass control to them. In a manner similar to VIO, virtual r\ 

fetch creates a virtual storage window in the user's address space equivalent to the 

size of the load module so that a complete module can be loaded in one operation. 

Jobs in users' address spaces use cross memory services to read the virtual fetch 

directory in the virtual fetch address space. 


Virtual fetch is useful for modules that are part of interactive applications, such as 

the Information Management System (IMS), where users query data files. Storing 

these modules in a virtual fetch data set not only reduces the time for loading them 

but also minimizes the competition for channel paths between the code and its 

data. The time needed to respond to a user request is minimized. f\ 


An access method is a data management routine that moves data between storage 

and an I/O device in response to requests made by a program. With an access 

method, the program is insulated from I/O details and need concern itself only with 

using the proper access method to meet its needs. Although the access method 

handles the actual I/O operation, the program using the access method still needs 

to be concerned with the organization of the data and the access technique the 

access method uses to move the data. ~ 


There are two techniques a program can use to access the records in a data set or 

the contents of a message: the queued access technique or the basic access 

technique. Some data sets can be accessed by either technique. The access 

methods that support basic access and queued access techniques are logically 

connected to the data when the program issues the OPEN macro instruction. 


The queued access technique is used when the sequence in which records are to be 

be processed is known to the access method. The system can anticipate which 

records are needed and make them available. When an output buffer is full, the 

access method writes them to auxiliary storage; when an input buffer is empty, the 

access method refills it. 


With queued access, the program uses the GET and PUT macro instructions to 

transfer data. The access method automatically groups records or messages in 

anticipation of future I/O requests. Records or messages are then generally 

available when needed. Also, the access method does not return control to the 
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Acam Method Categories 

Conventional Access Methods 

program that uses the GET and PUT macro instructions until the requested I/O 
operation has completed. 

The basic access technique is used when no assumptions can be made beforehand 
about the sequence in which records are to be processed. The access method does 
not read or write a record to an I/O buffer until the program makes the I/O 
request. 

With basic access, the program uses the READ and WRITE macro instructions to 
transfer data. The basic technique allows access to any records in the data set or 
messagesfrom a telecommunications device. No grouping of records or messages 
takes place. No anticipation of future I/O requests occurs. Also, the program that 
uses the READ and WRITE macro instructions must test for the completion of the 
I/O operation because the access method returns control to the program before the 
I/O operation is completed. 

The access methods can be viewed as falling into three categories: the 
conventional access methods, the telecommunication access methods, and the 
virtual storage access method. 

Conventional access methods move data that resides in a data set. A data set is a 
collection of related records that are associated with a particular device or group of 
devices. If the device is a tape or a disk, the data set occupies a specific area on a 
volume mounted on the device drive. An MVS/XA data set can be organized in 
one of four ways: 

• 	 Sequential. Records are stored and retrieved according to their physical order . 
within the data set. 

• 	 Indexed sequential. Records are physically ordered according to a key. An 
index or set of indexes maintained by the access method gives access to the 
records. Indexed sequential data sets must reside on a direct access device. 

• 	 Direct. The records in the data set, which must be on a direct access volume, 
can be organized in any way that meets the user's needs. Records are stored 
and retrieved according to the address of each record within the data set. 

• 	 Partitioned. The data set, which must be on a direct access volume, consists of 
members. A member is an independent group of sequentially-organized 
records that is accessed through its name in the directory of the data set. 
Partitioned data sets are generally used to store libraries of similar things, such 
as programs, macros, or procedures. 

Access methods are usually identified by the technique they employ and the type of 
data organization to which they apply. For example, QSAM, the queued sequential 
access method, uses the queued access technique to retrieve sequentially organized 
records. MVS/XA supports the following conventional access methods: ~;-',<,-

• 	 Basic sequential access method (BSAM). Records in a data set processed by 
BSAM are sequentially organized and are stored and retrieved in physical 
blocks. The READ and WRITE macro instructions initiate I/O operations. 
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The user's program must test for completion of the operation and perform any 
required blocking or deblocking. 

• 	 Queued sequential access method (QSAM). Records in a data set processed by 
QSAM are stored and retrieved as logical records; QSAM handles any physical 
blocking or deblocking required. On input, QSAM anticipates the need for a 
record based on its physical order; normally, the desired record is in storage, 
ready for use, before the request for it is made. On output, QSAM holds the 
logical records in a buffer and performs physical output 'only when the buffer is 
filled. 

• 	 Basic direct access method (BDAM). Records in a data set processed by 
BDAM can be organized in any manner chosen by the programmer. The data 
set must reside on one or more direct acce~s volumes. Records are stored and 
retrieved by actual or relative addresses within the data set. 

• 	 Indexed sequential access method (ISAM). Records in a data set processed by 
ISAM are arranged in sequential order according to the contents of a key. 
ISAM maintains an index structure that is used to locate a particular record. 
Access to the records can be either sequential (QISAM) or direct (BISAM). 
Both the data set and the indexes must reside on a DASD volume. 

• 	 Basic partitioned access method (BPAM). A data set processed by BP AM 
consists of a number of members and a directory that holds the name and 
location of each member. A member contains a group of records that are 
organized sequentially. BPAM maintains and accesses the directory; once 
BPAM locates the desired member, the records within the member are 
processed by BSAM or QSAM. The data set, including the directory, must 
reside on a DASD volume. 

Telecommunication Access Methods 

Telecommunication access methods move data as messages. A message is a 
collection of related pieces of data sent and received as a single unit between the 
remote device and storage. If the remote device is an interactive terminal, the data 
in the message is the data the terminal user enters at the keyboard and sends to the 
application, or the data that the application sends to the terminal for display or 
printing. The terminal or access method turns this data into a message by ~\ 

embedding in it standard communications line control information, and the modems 
further convert the ~essage characters into a form suitable for transmission over 
the data link. 

MVS/XA provides three access methods for moving data over telecommunication 
I/O paths between storage and the I/O device: 

• 	 Basic telecommunication access method (BT AM). The READ and WRITE 
macro instructions move messages between storage and the device. BTAM 
manages the messages it processes across all the various communication lines 
being used. . 

• 	 Telecommunication access method (TeAM). The GET or READ macro 
instructions and the PUT or WRITE macro instructions move messages 
between storage and the device. TeAM allows an application to perform its 
own message routing, message editing, and error checking. ~ 
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• 	 Virtual telecommunication access method (VTAM). Data transfer between the 
application and the termil)al occurs in either record mode or basic mode. In 
record mode, the application issues SEND and RECEIVE macro instructions to 
transmit data between the terminal and storage. In basic mode, the application 
issues READ and WRITE macro instructions to transmit messages between the 
terminal and storage. 

VT AM is the primary access method usedJo support the system network 

architecture (SNA), an overall system definition of the functional responsibilities of , 

telecommunication system components upon which new teleprocessing applications 

can be planned and implemented. 


Virtual Storage Access Method (VSAM) 

The virtual storage access method (VSAM) is specifically designed to take 
advantage of virtual storage. VSAM is for access to DASD data and runs in· virtual 
storage and uses virtual storage to buffer I/O operations. VSAM is one access 
method that does not use the EXCP processor. 

VSAM employs modified queued and basic access techniques and can process three 
types of data sets: key-sequenced, entry-sequenced, and relative record. The 
order in which the data set is initially loaded and updated is different for each type. 

For a key-sequenced data set, records are loaded, as the name implies, in key 
sequence. Each record must have a key, and the ordering of the records is 
determined by the collating sequence of the keys. Any new records subsequently 
added to the data set are added in key sequence. 

For an entry-sequenced data set, records are loaded in sequential order as they are 
entered. New records are added at the end of the data set. 

For a relative record data set, records are loaded according to a relative record 
number that can be assigned either by VSAM or by the user program. When 
VSAM assigns the relative record number, new records are added at the end of the 
data set. When the user program assigns the relative record number, new records 
can be added in relative record number sequence . 

.0 
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Chapter 8. Entering and Scheduling Work 

MVS/XA processes an installation's workload as jobs. A job can be viewed as a 
series of job control language (JCL) statements. JCL identifies the program to 
run, and information such as what data sets, devices, or other system resources the 
job needs when it runs. The input data needed by a job may be included with its 
JCL, or the JCL may refer to data in existing data sets. 

A collection of jobs presented to MVS/XA in this way is called an input stream. 
Each user classifies a job in an input stream by assigning it a job class. A job class 
is defined by the installation. Jobs of similar characteristics and processing 
requirements are generally assigned to the same job class. For example, 
long-running data processing programs may require setting up many DASD or tape 
volumes and disrupt the turnaround time for a daily workload such as invoice and 
accounts receivable processing. The long-running jobs can be assigned to a single 
job class, and MVS/XA can process them when the system is not busy and when 
the resources they need are available. 

A user also classifies each job's output by output class. An output class, which is 
defined by the installation, is used to describe the output on local or remote 
printers or punches or to schedule output through the subsystem interface. 
Grouping output with similar characteristics by output class allows MVS/XA to 
keep the existing system output devices as active as possible. 

Other installation-specified job characteristics also help MVS/XA use system 
resources effectively. A job's priority is an important one. If MVS/XA knows the 
priority of each job, it can order its processing of jobs, running high priority jobs 
before low priority jobs. 

The role of the Job Entry Subsystem 

For reasons such as the efficient use of system resources, MVS/XA breaks a job 
into tasks and processes each task separately. At any point in time, the computer 
system resources are busy processing the tasks for various jobs. Other tasks are 
queued awaiting resources. Actually, MVS/XA divides the management of jobs 
and resources between the job entry subsystem and MVS/XA components. 
Generally speaking, the job entry subsystem manages jobs before and after 
execution; MVS/XA manages them during execution. 

Thus, an MVS/XA installation requires a job entry subsystem (JES) in order to 
process jobs. Its function is to screen jobs before admitting them to the system and 
to handle their termination when processing is done. JES ensures that the job 
request has been properly made and translates it to the correct form and places in 
the right category for processing under MVS/XA. 

The job entry subsystem reads an input stream. It reads each job and places it on a 
direct access device (or devices) known as the spool device. SPOOLing, or 
simultaneous peripheral operations on-line, is the temporary storing of jobs and 
job-related data in intermediate stages of processing so that they are readily ~'.' 

accessible. Because each job has a job class, priority, and output class, the job 
entry subsystem selects jobs from the spool device for execution in a way that 
encourages the effective use of other system resources. 

This chapter describes in more detail what the job entry subsystem does, how it 
ensures that system resources are allocated to'the job, and how it works in various 
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MVS/XA environments. The way MVS/XA specifically controls a job once it is 
selected for execution is described in Chapter 6, "Supervising the Execution of 
Work." 

Job Entry/Output Processing 

Even though each MVS/XA system uses only one job entry subsystem, there are 
actually two IBM job entry subsystems available: JES2 and JES3. They differ in 
three important respects: how they select a job to be scheduled for execution, how 
they allocate resources for a job, and how they control the spool in multiprocessing 
systems. These differences are described in more detail as this chapter proceeds. 

Job entry subsystem processing includes the entry and output of jobs and occurs in 
six stages: 

• Entry 
• Conversion/Interpretation 
• Device allocation 

/~ 

• Scheduling a job for execution 
• Output 
• Purge 

The following descriptions of the stages of job entry and job output processing 
generally apply to either MVS/XA job entry subsystem. When necessary, they 
indicate any processing uniquely performed by either JES2 or JES3. 

Entry 

The job entry subsystem reads an input stream from a device such as a card reader, 
remote terminal, another MVS or MVS/XA system, tape drive, or direct access 
device. 

Users at remote work stations as many as hundreds of miles from the job entry 
subsystem can submit jobs by means of remote job entry (RJE). A work station 
may be a single I/O device, a number of separate devices, or one of a number of 
allowable non-system/370 processors with their devices. The job entry subsystem 
can write the output of a remotely submitted job on local devices or transmit it to 
any work station connected to the job entry subsystem. ~. 

There are two methods for RJE communication: . Binary synchronous 
communication (BSe), where each device at a work station needs a separate 
communication line; and system network architecture (SNA), where many devices 
can share a line. JES2 and JES3 use both BSC and SNA for remote job 
processing. 

Jobs, themselves, can create input streams. Rather than being entered from a 
device; job-created input streams are processed by a JES internal reader program. 
An internal reader includes a special data set that other programs can USe to submit 
jobs, control statements, and commands to the job entry subsystem. Any job 
executing in MVS/XA can use an internal reader to pass an input stream to the job· 
entry subsystem, and the job entry subsystem can receive multiple jobs 
concurrently through multiple internal readers. 
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During system initialization, for example, MVS/XA uses two internal readers, to 
pass the JCL for started tasks, MOUNT commands, and TSOLOGON requests to 
the job entry subsystem. They are: 

• 	 STCINRDR, which the started task control (STC) routine uses to process a 
START or MOUNT command. When starting VT AM, for example, STC 
creates the JCL to run the VT AM procedure and passes this JCL to the job 
entry subsystem through the STCINRDR internal reader. 

• 	 TSOINRDR, which is used by the TSO LOGON command to initiate a TSO 
terminal session. The LOGON command generates a job identifying the user's 
logon procedure .. The job entry subsystem reads this job from the TSOINRDR 
internal reader. 

As the job entry subsystem reads the input stream, it assigns a job ID to each job 
and places each job's JCL, optional JES control statements, and input data into 
spool data sets. Jobs are then selected from the spool for processing and 
subsequent execution. 

Batch jobs are selected by the job entry subsystem in response to request for work 
from the initiator function of the MVS/XA job scheduler. They run in the 
initiator's address space. Jobs created by TSO LOGON, the MOUNT command, 
or the START command are selected for processing when they are entered by a 
process known as demand select. These jobs run in their own address spaces. No 
matter how they are selected, and regardless of the address space in which they 
run, once they have been selected, all jobs are processed in much the same way. 

The job entry subsystem uses a converter program to analyze each job's JCL 
statements. The converter takes the job's JCL, merges it with JCL from a 
procedure library (usually SYSl.PROCLIB), and converts the composite JCL into 
internal text (a form of data that the job entry subsystem and the job scheduler 
functions of MVS/XA both recognize). If the converter detects any syntactic 
errors in the JCL, it issues diagnostic messages and places the job on the output 
queue; the job won't be selected to run. 

If the job has no syntactic errors, JES2 stores the internal text in a spool data set 
and queues the job for execution according to its priority within its job class. When 
JES2 finally selects a job for execution by MVS/XA, the interpreter function will 
further analyze the JCL and build control blocks. JES3, in contrast, invokes the 
interpreter at the outset and stores both the internal text and control blocks in the 
spool data set. JES3 may also perform additional processing before scheduling the 
job for execution. The sections that follow explain when this occurs. 

Most jobs have auxiliary storage requirements. That is, a job generally needs to 
use I/O devices, such as tapes or DASDs, and data sets when it runs. MVS/XA 
assigns these resources to jobs through a function called device allocation. Device,,_ 
allocation uses the information in the job's JCL statements to assign the proper 
resources - devices, volumes, and data sets - to the job. 

Each job's JCL statements identify the job (JOB statement), each job step within 
the job (EXEC statement), and the data sets to be used by the job (DD 
statements). A job can have one step (single EXEC statement) or mUltiple steps 
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(multiple EXEC statements). Each EXEC statement is normally followed by DO 
statements that identify the data sets that are to be allocated for use by the job 
step. The parameters on the DD statement identify such things as: 

• 	 The name of the data set 
• 	 The name of the volume on which the data set resides 
• 	 The type of I/O device that holds the data set 
• 	 The format of the records on the data set 
• 	 Whether the data set exists or is to be created 
• 	 The size of the data set to be created 

Device allocation uses this information to identify the devices, volumes, and data 
sets to be used by the job steps and to assign them to the job step so that 0 those 
devices, volumes, and data sets that can be shared are available to other job steps 
and" those devices, volumes, and data sets that cannot be shared are used only 
by this job step. Through device allocation, MVS/XA tries to ensure that no job 
step that is ready to execute has to wait for its devices, volumes, or data sets to be 
assigned. ~\ 

Device allocation performs the following general functions to allocate resources: 

• 	 Locating the volume and unit information for a requested data set 
• 	 Resolving relationships among two or more requests 
• 	 Creating, through data management, new data sets 
• 	 Assigning I/O devices to the request 
• 	 Instructing the operator to mount necessary volumes 
• 	 Allowing dynamic concatenation and deconcatenation of data sets 

Device allocation performs the following general functions to deallocate resources: 

• 	 Controlling what happens to a data set when a job step finishes using it 
• 	 Releasing a data set, reserved by an initiator, for use by other job steps 
• 	 Releasing I/O devices for use by other job steps 

MVS/XA has three forms of device allocation to assign resources to "jobs: 

• 	 Job step allocation: The initiator allocates devices as part of initiating a job step. 
(An initiator is an MVS/XA system program that the operator starts or that 
JES2 or JES3 starts when the system is initialized. Its function is to start 
execution of a j6b step. An initiator starts a job step by allowing it to compete 
for system resources with other jobs that are already running.) Job step 
allocation is used by JES2 and JES3 and when the TSO LOGON, START, or 
MOUNT command enters a job. 

• 	 JESJ device allocation: JES3 allocates devices before passing a job to the 
initiator. 

• 	 Dynamic aUocation: A job allocates devices as it executes. 

Job Step Allocation 

Job step allocation consists of various system allocation routines that analyze the 
DD statement information for each job step. JES2 is the primary user of job step 
allocation; JES3, as will be described later, can perform many allocation functions 
itself before the job begins and the MVS/XA allocation routines execute. 
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JES3 Device. Allocation 

After JES2 selects a job to run and passes it to the initiator, the initiator invokes 
the interpreter to create scheduler work area (SW A) control blocks that describe 
the job's resource requirements. The initiator then passes control to the system 
allocation routines for the first step in the job. The system allocation routines use 
the SW A control block information to analyze the job's device, volume, and data 
set requirements and allocate those resources needed by the program for that job 
step. The initiator does not start the job step until the system allocation routines 
assign all the resources the job step needs.· When all resources are ready, the 
system allocation routines return to the initiator, which starts the job step. After 
the job step finishes running, the initiator uses the system deallocation routines to 
release those resources no longer needed; the initiator then repeats its use of the 
system allocation routines for the next job step. 

A user whose job is processed by JES3 can use JES3 device allocation to allocate 
resources before the job is selected to run. The user controls the extent to which 
JES3 allocates devices, volumes, and data sets to the job. At one extreme, the user 
can bypass JES3 device allocation altogether. At the other extreme, the user can 
have JES3 allocate devices, volumes, and data sets for all of the steps in the job 
before the job is selected to run. In either case, JES3 reads the SW A control 
blocks for the job from the spool data set and passes them to the initiator when the 
job is selected to run. The initiator invokes the system allocation routines of job 
step allocation. These routines analyze the SW A control blocks and endorse the 
allocation decisions already made by JES3, or they assign required devices, 
volumes, or data sets that have not yet been allocated to the job. 

Three categories of devices can be defined for the JES3 installation: 

• 	 JES3 devices, which are exclusively managed by JES3 
• 	 JES3 and MVS/XA devices, which are jointly managed by JES3 and MVS/XA 
• 	 MVS/XA devices, which are exclusively managed by MVS/XA 

JES3 can take an active role in assigning the devices it exclusively manages and the 
devices it jointly manages by: 

• 	 Selecting certain jobs over other jobs competing for resources in order to keep 
each processor as busy as possible. For example, JES3 normally selects for 
execution on a given processor the first job (within a given priority) that can 
acquire the resources it needs on that processor. 

• 	 Selecting an eligible processor in a mUlti-processing complex on which to 
allocate devices for a selected job. JES3 compares each job's resource 
requirements with the JES3-managed devices attached to each processor. 
JES3 selects the processor with the best match of shareable devices. This 
emphasis on shareable devices helps to increase the number of concurrent 
device allocations that can be performed, thus increasing the number of jobs 
that can be processed concurrently. 

• 	 Assigning devices, volumes, and data sets to jobs to maximize the use of the~; -. ~.' 
devices and minimize the physical movement of volumes. 

A JES3 installation can also define a pool of devices (called device fencing) to be 
used exclusively by a set of jobs in a job class group. In addition, the installation 
can optionally allow this set of jobs to use devices not in this pool and have other 
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devices allocated as needed. Device fencing lets the installation tailor its device use 
to its workload. 

Dynamic Allocation 

Because resource requirements might not be fully known before execution, 
dynamic allocation routines are available to enable jobs and time-sharing users to 
acquire resources as the need develops. Dynamic allocation also allows resources 
to be used more efficiently because the resources can be acquired just before use 
and released immediately after use. 

A typical use for dynamic allocation occurs in a program that needs temporary use 
of a device, volume, or data set for which there is heavy contention. In such a case, 
dynamic allocation provides the means for a job to tie up the resource for only as 
long as necessary rather than for the life of the job. 

Another common use for dynamic allocation is in a job whose need for allocated 
resources might vary according to its input. Dynamic allocation permits such jobs 
to dynamically allocate and free only the data sets necessary to process the input, 
sothe specific resources supporting the required data set can be in use for the 
minimum time. A job can use dynamic allocation to free a SYSOUT data set so 
that the job entry subsystem can process it while the job is still executing. Such 
data sets are called spin-off data sets. 

Schetlu/ing a Job for Execution 

The execution phase of the job entry subsystem responds to requests for jobs from 

the MVS/XA job scheduler initiator function. The job entry subsystem selects 

jobs from a job queue on a spool data set and sends them to this function. The job ~, 


queue contains jobs in the following stages of processing: 


• 	 Jobs waiting to run 

• 	 Jobs currently running 

• 	 Jobs waiting for their output to be produced 

• 	 Jobs having their output produced 

• 	 Jobs (for which all processing has completed) waiting to be purged from the 
system. 

By distinguishing among jobs on the job queue, the job entry subsystem can 
manage the flow of jobs through the system. JES2 and JES3, however, schedule 
jobs in different ways. 

JESl Job Scheduling 

To process the jobs on the job queue, JES2 communicates with an initiator. The 
initiator asks JES2 for a job. JES2 knows what job class or job classes are assigned 
to the initiator and in what order the job classes should be searched for ajob. If 
the initiator, for example, is assigned two job classes, JES2 scans the job queue to 
determine if any jobs in the first class are waiting for execution before scanning the 
job queue for any jobs in the second class. Within a given class, JES2 selects jobs 
according to their priority. JES2 selects the lowest priority job in the first class 
ahead of the highest priority job in the second class. It selects jobs from the second 
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JES3 Job Scheduling 

class only when there are no jobs in the first class. When JES2 selects a job it 
passes it to the initiator. 

Associating each initiator with one or more job classes in this way allows an 
installation to control job selection to encourage a more efficient use of available 
system resources. Assume, for example, the following job class assignments exist: 

Class B = jobs that need special devices 
Class C = jobs with high instruction processing requirements 
Class D = jobs with high I/O-request requirements 

Assume also that the following initiator assignments apply: 

Initiator 1 can process classes B, C, and D 
Initiator 2 can process classes C, D, and B 
Initiator 3 can process classes D, B, and C 

Initiator 1 can accept jobs in classes B, C, and D, but will process class C jobs only 
when class B is empty, and class D jobs only when classes Band C are empty. If 
there are jobs on the queue in all three classes and all necessary resources (for 
example, I/O devices and data sets) are available, then three jobs (one from each 
of the three different classes) can run concurrently Each initiator runs the highest 
priority job in its highest priority class. 

After JES2 selects the highest priority job in a job class for the initiator and passes 
the job to it, the initiator invokes the interpreter to build control blocks fro~ the 
internal text that the converter created for the job. The interpreter builds these 
control blocks in the scheduler work area (SW A) of the initiator's address space . 

The initiator then allocates the input and output devices specified in the JCL for 
the first step of the job. This allocation ensures that the devices are available 
before the job step starts running. Th,e initiator then starts the program requested 
in the EXEC statement. 

To process a job on the job queue, JES3, like JES2, communicates with an 
initiator. While JES2 relies on the installation to control the job mix through its 
assignments of job classes to initiators, JES3 job scheduling algorithms control the 
job mix in order to provide the correct proportion of I/O-bound and 
processor-bound jobs. To control ,the job mix, JES3 uses predefined job class 
groups. 

JES3 associates a job class group, a set of job classes, with one or more initiators 
and also with specific devices and processors. The installation defines job class 
groups during JES3 initialization; this definition allows JES3 to Control: 

• The maximum number of jobs of a given class that can be readied to run 

• The maximum number of jobs that can run in the JES3 installation 

• The maximum number of jobs that can run on a given processor at one time 

• The resources a job uses, such as initiators, storage, and devices 
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• 	 The kind of job selection and job priority adjustments allowed for jobs waiting. 
to be selected to run 

After JES3 prepares a job to run, it passes the job to the initiator. The initiator can 
normally activate the job immediately because JES3 has allocated the devices this 
job needs. Once the job is running, the MVS/XA allocation routines perform any 
additional device allocations that are needed. 

Additional Job Scheduling Functions 

When all initiators are busy, the progress of certain jobs through the system may 
fall below normal expectations. To help in these situations, JES2 and JES3 
perform additional scheduling functions that attempt to reduce the time required to 
schedule· jobs, that help to ensure that certain jobs are selected to run by a certain 
time, and that schedule jobs dependent on the success or failure of other jobs. 
These scheduling functions are: 

• 	 Execution batch scheduling (JES2) 
• 	 Deadline scheduling (JES3) 
• 	 Priority aging (JES2 and JES3) 
• 	 Dependent job control (JES2 and JES3) 

Execution batch scheduling is an extension of normal JES2 job scheduling that helps 
to increase throughput by reducing the job scheduling overhead for certain types of 
jobs. Jobs eligible for execution batch scheduling are jobs of relatively short 
duration, especially single-step jobs that have common device setup requirements 
and jobs that are run frequently. Examples of such jobs are compile-and-go, 
debugging, order-entry, and file-inquiry jobs. 

To use the execution batch scheduling facility, an installation must write an 
execution batch (XBATCH) processing program and a procedure to initiate it, and 
assignthe jobs a unique job class associated with the execution batch procedure. 
Also the installation must include execution batch scheduling parameters when 
initializing JES2. 

When JES2 recognizes a job with the execution-batch-scheduling job class, JES2 
builds and processes JCL to invoke the XBA TCH procedure.. Once the XBATCH 
procedure initiates the XBATCH program, the program remains active as long as it 
has jobs to process. Thus execution batch scheduling involves gathering related 
jobs into a single input stream and passing them as an input data set to the 
user-written XBATCH program. This process reduces the initiator's overhead 
associated with setting up for and processing numerous individual jobs or job steps. 

Deadline scheduling allows a JES3 installation to specify a time of day (deadline) by 
which a given job should be selected to run or a job's output should be scheduled. 
A job requests deadline scheduling and specifies the deadline time through JES3 
control statements in its JCL. If the job remains in the job queue as the deadline 
approaches, JES3 increases the job's selection priority - that is, the priority at 
which the job is selected to run - until the job is selected to run'or until a 
maximum priority is reached. The operator can modify the parameters that affect 
deadline scheduling in order to deal with unforeseen changes in the installation's 
workload. 

Priority aging ensures that jobs that have been waiting to run in the workload of 
either a JES2 or JES3 installation have a chance of being selected to run before 
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those jobs that just entered the system. JES2 and JES3, however, differ in how 
they implement priority aging. 

JES2 can increase the priority of a job within its job class depending on the length 
of time the job has been in the system. By using priority aging, a JES2 installation 
can increase the priority of a waiting job. The longer the job waits, the higher its 
priority becomes and the greater its chances of being selected to run. JES3, on the 
other hand, increases the priority of a job depending on the number of times the. 
job has been passed over for selection. 

Dependent job control (DJC) is a JES3 function that allows jobs to run in a 
predefined order. That is, the user can specify that one set of jobs be completed 
before another job or set of jobs. Also, devices used by a set of jobs under 
dependent job control can be reserved for those jobs in that set, ensuring that 
they;ll be available when needed. The Chained Job Scheduler (CJS) is an IBM 
program product that provides a similar function for JES2 users. 

The job entry subsystem controls all SYSOUT processing. While running, a job 
can produce system messages that must be printed, as well as data sets that must be 
printed or punched. After the job finishes, the job entry subsystem analyzes the 
characteristics of the job's output in terms of its output class and setup 
requirements and processes its output accordingly. Specifically, the job entry 
subsystem gathers the output data by output class, device availability, process 
mode, and set-up characteristics, then queues it in the SYSOUT data set on the 
spool device for output processing. 

MVS!XA includes an external writer program (XWTR) that uses the subsystem 
interface for SYSOUT processing. An installation uses this external writer to write 
to devices other than those supported by the job entry subsystem. Installation 
written external writer programs can also control the output; these programs tailor 
the output to the installation's needs. 

When all processing for a job is completed, the job entry subsystem releases the 
spool space assigned to the job, making it available for allocation to subsequent 
jobs. The job entry subsystem also issues a message to the operator to indicate that 
the job has been purged from the system. 

Job Entry Subsystems in a Muld-System Environment. 

For an installation with a single MVS!XA system, JES2 and JES3 perform the 
same basic functions. That is, they read jobs into the system, convert them to 
internal form, select them for execution, process their output, and purge them from 
the system. But, for an installation having more than one MVS!XA processor or 
processor complex in the configuration, there are noticeable differences between 
JES2 and JES3 processing. Figure 8-1 and the discussion that follows illustrate 
these differences: 

1. Control of job entry processing 

JES2 exercises independent control over its job processing functions. Each 
JES2 processor controls its own job input, job scheduling, and job output 
processing. 
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Each JES2 multiple system configuration, also called a multi-access spool 
configuration, or node, consists of two or more JES2 processors at the same 
physical location, all sharing the same job queue and spool. Each JES2 
processor can read jobs from local and remote card readers, select jobs from 
the shared spool for execution, print and punch results on local and remote 
output devices, and communicate with the operator. 

The common job queue enables each JES2 processor to share in processing the 
installation's workload; jobs can execute on whatever processor is available 
and print or punch output on whatever processor has an available device with 
the proper requirements. One JES2 processor can process a job's input while 
another JES2 processor may schedule and execute the same job. 

If one processor in the configuration fails, the others can continue processing 
from the shared job queue. Only work in process on the failed processor is 
interrupted; the other JES2 processors continue their processing. 

JES3, in contrast, exercises centralized control over its job processing functions. 
JES3 controls the job input, job scheduling, and job output processing in a 
single processor complex, called the global JES3 processor. Other JES3 
processors attached to the global processor are called local processors and are 
under the control of the global JES3 processor. The global JES3 processor and 
each local JES3 processor form a loosely-coupled multiprocessing 
configuration; they communicate over a channel-to-channel (CTC) adapter, 
which carries control information between the global and local processors. 
Together, the global and local processors comprise a JES3 node. 

As with JES2, each JES3 processor can access the spool data set, which 
consists of SYSIN and SYSOUT data, JCL, and the job queue for the entire 
JES3 installation. It is the JES3 global processor, however, that reads jobs 
from local and remote input devices, places them on the spool, and selects them 
to run on the global or any local processor; the global processor controls all the 
processing of job output. The local processors access the spool only to read or 
write data for jobs executing on the local processor. 

The JES3 system operator can dynamically bring up a local JES3 processor as 
the JES3 global processor if the global processor fails. The relink of this new 
JES3 global processor to the remaining local JES3 processors is performed 
automatically. Jobs that were executing on the failed processor can be 
recovered. ,., 

2. Selection of jobs for processing 

Both JES2 and JES3 process jobs that have been read into the system and 
placed on the spool. Each JES2 processor has access to the spool and 
independently selects jobs for processing from the spool. In contrast, only the 
global JES3 processor selects jobs from the spool for processing even though 
all JES3 processors share the spool. As a result, the JES3 environment can . 
control the integrity of shared data sets. A JES2 installation can provide a 
similar degree of control by combining its JES2 systems into a global resource 
serialization complex. As explained in Chapter 6, "Supervising the Execution of 
Work," a global resource serialization complex with the systems connected by 
channel-to-channel adapters can protect the integrity and increase the 
availability of data on DASD shared among all of the processors in the 
complex. 
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3. Multi-processor configurations 

. 
Both JES2 and JES3 multi-system configurations may combine a variety of 
multiprocessors, ~uch as a 3081 dyadic processor complex and a 3084 four-way 
processor complex. For JES2, there can be no more than seven operating 
systems in the configuration. JES3 is limited to eight operating systems 
although the actual capacity might be less depending upon the work mix in the 
configuration. A loosely-coupled c5~nfiguration becomes more difficult to 
manage as the· number and speed of the MVS/XA systems within it increase. 

4. System operation 

JES3 presents the system operator with a single system image. There is one 
JES3 console to which all of the.96 routing codes direct JES3 messages. (If a 
JES3 console failure occurs messages can be routed to an MVS/XA operator 
console). The JES3 operator need not be concerned about where work comes 
from or where it is processed. 

JES2 presents a less unified system image. JES2 system message traffic, for 
example, is sent by means of 16 routing codes to various consoles according to 
the functions they affect. 
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Figure 8-1. Job Entry Subsystem Compations 

Job Networking 

Job entry subsystem nodes, each at different physical locations, can be joined 
through communication lines (such as those used for telephone or satellite 
communications) or channel-to-channel (eTC) adapters to form a network. A job 
entered at one location can be transmitted to another location in the network wh~re 
it canuse, for example, special hardware, or software features, a centralized data ~;~~: 

base, or special applications. Similarly, reports produced by an accounting 
program, for example, can be distributed automatically to several locations in the 
network. 
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JES2 nodes in a network use the network job entry (NJE) function that is a part of 
JES2 to process jobs. The NJE facility enables JES2 to: 

• 	 Manage the paths between the JES2 nodes joined in a network so that work 
moves from place to place, a process known as automatic path management. 

• 	 Transmit and receive input streams, commands, messages, and output among 
JES2 nodes in the network. 

Allow the system operator at any node to control jobs throughout the network. 

With NJE, each JES2 node in the network can process jobs from other JES2 nodes. 
lES2 nodes can pass both jobs and job output among themselves for processing. 
The installation can choose between either SNA or BSC communications protocols 
for a link between two nodes within a JES2 network. For the network as a whole, 
the installation can use a combination of SNA and BSC links. 

London 	 Washin on D.C. 

MVS/XA 	 VSE/Power 

JES2 	 Version 2 

Networking 

MVS/XA CTC VM/370 

JES3 adapter RSCS 

Networking 

New York 

Figure 8-2. Job Networking. 

A JES2 NIE network can also be extended to include VSE/POWER Version 2 
with VM/370 and JES3. The remote spooling communications subsystem (RSCS), 
for example~ allows a VM/370 node to participate in job networking with a JES2 
NJE node. Figure 8-2 illustrates a network. 

JES3, like JES2, also contains a network job entry function to allow job 
networking. A network of JES3 nodes can be joined together by communication 
lines. Each global JES3 processor in the network communicates with other global 
lES3 processors at other lES3 nodes (there is no master-subordinate relationship), . 
offering advantages similar to those that JES2 NJE offers; jobs can be submitted at 
one location and executed at another, and job output can be produced at any 
location within the network. lES3 uses binary synchronous communications-.~ 
(BSC). In addition to JES3 nodes, a JES3 network can also be extended to inCiude 

. VSE/POWER Version 2 Networking with VM/370 and JES2. These non-JES3 
nodes then participate with JES3 nodes in job networking. 
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Comparing JESl and JES3 Features 
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Chapter 9. Monitoring System Activity 

The first operating systems were simple to use and fix, yet inefficient in several 
ways. Long-running jobs held up other jobs, and only those resources associated 
with the active program were used. All other resources waited. This inefficiency 
derived from the system's simple operation. On the other hand, the system's simple 
operation had specific benefits. When there was a system error, it was generally 
easy to determine what program was executing at the time. Also, accounting 
algorithms for charging users involved simple computations (job stop time minus 
job start time). Using the system efficiently was more a matter of establishing 
efficient installation procedures for processing jobs rather than using sophisticated' 
operating system function to handle the job-to-job transition. 

In contrast, MVS/XA is not a simple system, yet its design keeps more work going 
on in parallel. More interruptions occur. More task switches take place. More 
resources are shared. More non-serial operation occurs. MVS/XA does these 
things through sophisticated control programs - programs that dispatch work, that 
save job status, that switch from one piece of work to another, that keep things 
straight among the many programs that share common resources, and that read 
jobs into the system and produce their output in parallel with controlling the jobs 
already in execution. 

MVS/XA, like earlier operating systems, handles job-to-job transition. However, 
MVS/XA handles a variety of job types. A job can be part of a batch input 
stream, an interactive terminal session, or an installation program that runs in the 
background (low priority) or foreground (high priority) of the system's work. 
Moreover, a single job is generally not as easy to identify because MVS/XA splits 
each job into pieces. The job entry subsystem for example, processes a job as 
records on the spool, the dispatcher as address spaces, TCBs, and SRBs, the 
interruption handlers as status save areas, and the system resources manager as 
swapped-in or swapped-out address spaces. 

As a result, jobs lose much of their identity. The single job, started, executed, and 
completed, is a collection of individual pieces of work efficiently dispatched, 
interrupted, redispatched, and eventually completed. An MVS/XA job, then, 
equals all the completed pieces of work. So when a job fails in MVS/XA, the 
diagnosis must focus on locating the piece that failed. And, because of MVS/XA's 
complexity, finding this piece can be difficult. 

MVS/XA helps to m!lke this diagnosis easier by providing various monitoring 
mechanisms that can keep track of the individual pieces of work in the system. 
These monitoring mechanisms condense the pieces of work into a processing 
history the installation can use to isolate, diagnose, and fix program errors. 

Other MVS/XA monitoring mechanisms, or tools, enable the installation to 
evaluate system performance and overall resource use. These mechanisms produce 
reports the installation can use to adjust MVS/XA in order to maximize its 
efficiency and, as a result, improve its job processing capability . 

.0 
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The remainder of this chapter describes these monitoring mechanisms. They are: 

• 	 The system management facilities (SMF) 

• 	 The Resource Measurement Facility (RMF) Version 3 (program product 
5665-274) 

• 	 Dumping facilities, specifically SNAP dump, ABEND dump, SVC dump, 
stand-alone dump, and the dump reporting facilities: print dump and the 
interactive problem control system (IPCS) 

• 	 Trace facilities, specifically system trace, generalized trace facility (GTF), and 
master trace 

• 	 Serviceability level indication processing (SLIP) 

• 	 SYSl.LOGREC error recording 

System Management Facilities 

The system management facilities (SMF) collect information about MVS/XA 
processing that the installation can use to account for system use and to analyze 
system performance. SMF receives this information from various system services 
in the form of SMF records or obtains the information from various control blocks 
and builds SMF records. It writes these records to SMF data sets. These records 
describe system events, such as the, start of TSO, the logon and logoff of TSO 
users, the reconfiguration of hardware, and individual job starts and terminations. 
SMF records also describe system status information, such as data set status 
(opened, closed, or scratched), VSAM catalog information, and job output 
statistics (cards pun~hed and lines printed). An installation uses this recorded data 
to measure its processing capabilities, charge its users for processing time and 
resource usage, and make adjustments where necessary to provide better overall 
service. Usually SMF begins processing when MVS/XA starts, but,if necessary, 
the installation can stop or start SMF processing while MVS/XA runs. 

Figure 9-1 presents an overview of SMF processing. The major elements of SMF 
processing are as follows: 

1. 	 SMF is part of the MVS/XA control program that runs in its own address 
space. It is initialized along with MVS/XA using the SMFPRMxx member of 
SYS 1.PARMLIB which contains the parameters that define how SMF is to 
operate. Some SMFPRMxx parameters are required. Others are optional. 
Required parameters specify, for example, the identifier of the system on which 
SMF is running. Optional parameters specify, for example, the record types 
the installation chooses to have SMF write, whether the operator can modify 
SMF parameters, and whether SMF exit routines are to be used. . 

2. 	 Various MVS/XA components include routines that provide data toSMF. 
Some components provide this data in complete records ready to be written'to 
the SMF data sets; other components provide unformatted data, which SMF 
formats into records. 

3. 	 Some system routines that provide data to SMF also have interfaces with 
installation-writtenSMF exit routines to perform additional processing for 
certain events. The system routines invoke these exits at various times during 
job and job step processing. 
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4. 	 Installation exit routines can, for example, enforce those standards of job 
processing unique to the installation (such as supplying defaults for missing 
JCL parameters), collect installation-dependent job information, or enforce the 
installation's standards for resource usage. 

5. 	 SMF routines collect unformatted data and format this data into SMF records, 
transfer records from the SMF buffer to the SMF data set, and issue messages 
to the operator indicating the successful or unsuccessful completion of specific 
SMF-related events. -­

6. 	 SMF writes records to an SMF data set. When the data set is full, SMF writes 
records to another data set. The data in the full data set can then be saved on 
tape. 

7. 	 The installation can write analysis and report routines and use these to process 
SMF data. These routines execute as ordinary jobs. The analysis routines can 
collect SMF measurements into meaningful units of information by extracting 
or sorting the data and analyzing it. The report routines can format and print 
the results of the analysis. Reports on direct access volume activity, data set 
activity, and resource use can help an installation assess its computing 
efficiency. 
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Figure 9-1. System Management Facilities - Overview 

Resource Measurement Facility 

The Resource Measurement Facility (RMF) Version 3 (program product 
5665-274) is a measurement program the installation can use to analyze the 
performance of its system. RMF measures the use of many system resources, such 
as the processors, channel paths, devices, and real storage. Also, RMF measures 
the resource contention that enqueueing causes, the processing service that the 
system gives to different classes of users, the workflow (or speed) at which users 
move through the system, and the interaction that takes place among real storage, 
the processor, and the system resources manager (SRM). 
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An execution of RMF is called a session. Some sessions are of long duration, while 
others can be short. Some sessions are interactive, while others can be background 
jobs. The installation selects the sessions that best meet its needs. 

Within a time interval, RMF measures data by exact count or by sampling. RMF 
makes an exact count measurement of a system indicator by computing the 
difference between its value at the beginning of an interval and its value at the end 
of the interval. RMF makes a sampUng measurement of a system indicator by 
recording its value at each cycle within the interval; a cycle is a subdivision of an 
interval. (For example, each minute in an interval can be divided into sixty cycles 
that are one second long.) At the end of the interval, RMF gathers the data 
collected at each cycle and prepares to report the results. The installation controls 
the length of the interval and the cycle for the session. 

Monitor I sessions measure a variety of system data over many intervals of time; 
they generally produce printed reports spanning large amounts of processing time. 
When each interval elapses, RMF summarizes the data it has measured, formats it, 
and reports it in a form the installation has selected. 

Monitor II sessions, in contrast, take snapshots of the system's performance and 
produce either printed reports or reports on the screen for immediate inspection. 
Interactive sessions (called display sessions) can be short in duration; the interval 
of measurement is normally the time between two successive commands at the 
terminal. 

Monitor III sessions collect information about the activities of users (units of work) 
and the delays they encounter when accessing system resources. Monitor III also 
measures the workflow of users and resources, which reflects the speed at which 
work moves through the system. Monitor III sessions are always interactive. 

Through Monitor I, Monitor II, and Monitor III sessions, RMF can measure 
resource use in various system areas: 

• 	 Processor activity indicates the extent of wait time each processor experiences. 

• 	 Address space activity describes the status of address spaces and how they're 
being used. 

• 	 Channel path activity, I/O queuing activity and I/O device activity describe the 
use of the ~ystem's I/O configuration. 

• 	 Paging activity shows the amount of paging and swapping taking place. 

• 	 Workload activity shows what system services are being provided to particular 
users or groups of users. 

• 	 Page/swap data set activity describes the use of the paging data sets and swap 
data sets. 

• 	 ASM/RSM/SRM trace activity traces the contents of various control blo~k.<, 
fields that ASM, RSM, and SRM use to perform swapping for address spaces. ' 

• 	 Enqueue activity shows the contention for serially-reusable resources. 

• 	 Real storage/processor/SRM activity gives an overview of system activity. 
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• 	 Virtual storage activity describes the use of common storage and private area 

storage. 


• 	 Transaction activity gives an overview of transaction activity by performance 

group period. 


• 	 Domain activity provides information ori current domain definitions. A domain 
is a group of resources defined by the installation. 

• 	 Workflow indicates how jobs use system resources, the speed with which jobs 
move through the system, and how efficiently resources are serving job 
requests. 

• 	 Delay shows when a job is not productive because of contention for, or the 
unavailability of, some resource in the system. 

The installation uses these measurements of system activity to identify use of 
system components and resources, to relate how well service is provided to 
different classes of users, to identify bottlenecks where contention for resources is 
high, and to locate excessive users of particular resources. Special RMF exception 
reports show when system performance reaches pre-selected thresholds. 

RMF produces three forms of output: SMF records, printed reports, and display 
reports. The type of output RMF can produce depends on the type of RMF 
session. Monitor I and Monitor II sessions can produce SMF records for all 
activities measured. RMF can print reports either as a part of session processing or 
at a later time as part of post processing. The post processor can produce printed 
interval reports and various types of summary reports. 

During Monitor III sessions, RMF produces screen displays of workflow and delay 
measurements rather than SMF records or printed reports. However, copies of 
individual screens can be printed. 

The user starts an RMF session by issuing a START RMF command at a system 
console or by issuing an RMFWDM or RMFMON TSO command at a TSO 
terminal. During a non-display RMF session, the installation can use the MODIFY 
command to control RMF processing and display RMF status. An RMF session 
ends when its time limit expires or when the operator or terminal user stops the ~. 
session. 

RMF can invoke user exit routines at various points within a session; the type of 
session dictates the number of exits available. An installation exit routine, for 
example, can sample additional data at each cycle within a measurement interval, 
format and write its own SMF records, and produce its own reports. 

Figure 9-2 summarizes the functions RMF provides. 
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Dumping Facilities 

Dumps are snapshots of what virtual storage looks like at a given instant in time; 
they are hard copy listing of the contents of the system's virtual storage locations. 
Dumps can include large areas of virtual storage or only a few locations. They can 
contain control blocks and data areas used by programs, the programs themsel~es. '. 
or both. While dumps can be taken to validate specific processing when the system 
is running normally, they are most frequently used to solve system problems and 
error conditions. 

Dumping system information when an error occurs requires precise timing. As the 
system operates, the control blocks and data areas for both system and user 
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SNAP Dump 

programs keep changing. Because these control blocks and data areas are volatile, 
taking a dump too early can reveal too little about a problem, and taking a dump 
too late can mean that the pertinent information has been overlaid with new data. 
A useful dump, then, is one that captures the contents of virtual storage when the 
error occurs or as close as possible to when the error occurs. Being able to take 
this kind of dump depends, to a large degree, on whether the error is job-related or 
system-related. 

Job-related errors are those that a job can try to anticipate. That is, the user 
program or programs that make up the job include logic that plans for the 
occurrence of an error, such as an erroneous value in a control block or an 
unsuccessful return code from a called routine. When such a job-related error 
occurs, the program can immediately dump critical control blocks and data areas. 
These dumps then represent an accurate view of the contents of virtual storage that 
the problem solver can use to solve the problem. 

System-related errors, on the other hand, are those that cannot be anticipated by a 
user job. A system-related error can affect the system, a major subsystem like the 1\ 
the job entry subsystem (JES) or the information management system (IMS), or 
several components of MVS/XA. This type of error is generally not localized to a 
specific job - although a specific job might be running at the time - and what 
to dump is not obvious. The MVS/XA dumping service, itself, might fail because 
of the system error. And, unless system activity is reduced shortly after such an 
error occurs, too much system information can change, rendering a dump of the 
error less useful. 

MVS/XA dumping facilities handle either kind of error; the dumps they produce 
are the SNAP dump, ABEND dump, SVC dump, and stand-alone dump. SNAP 
and ABEND dumps are generally taken for job-related errors. SVC dumps and 
stand-alone dumps are generally taken for system-related errors. 

Each of these dumps can contain two types of information: system data and 
program data. System data includes the nucleus, system queue area (SQA), local 
system queue area (LSQA), and control blocks associated with the units of work in 
MVS/XA, such as the TCBs, ASCBs, and SRBs. Program data includes the 
program's PSW, its register contents, its TCB and associated RBs, its save areas, 
and the program itself. 

The remainder of this section presents more information about each of these 
dumps, including when they're used, how they're taken, and what output they 
produce. 

The SNAP dump, as its name implies, is a snapshot of virtual storage requested by 
a program. This dump is formatted and easy to read. A program can take a SNAP 
dump at any time during its processing. During program testing, for example, a 
program can take a SNAP dump to print intermediate results of certain _ 
calculations. The programmer can analyze this dump to ensure that the program is 
operating correctly. For a job-related error, a program can take a SNAP dump to -;-. 
capture critical program storage areas at-the time it detects the error. The 
programmer can then analyze this dump to determine the specific nature of the 
error and the reason for it. 

To take a SNAP dump, the program uses the SNAP macro instruction; its operands 
identify the information to be dumped and the output data set for the dump. The 
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ABEND Dump 

output data set can be sent to a printer for analysis of hard copy results, to a disk or 
tape for printing and analysis at, a later time, or to a display terminal for viewing on 
the screen. 

After the SNAP dumping service finishes processing the dump, it returns control to 
the program that invoked it. The program can then take other SNAP dumps at 
other points in its processing; the result is a comprehensive collection of 
information. 

An ABEND dump is a display of virtual storage that a program can request directly 
when it can't circumvent an error and wants to terminate its processing. MVS/XA 
can also provide an ABEND dump indirectly when it detects job-related processing 
errors that can be circumvented by terminating the job. In either case, the program 
can't circumvent the error, and the only remaining action is to dump critical 
program storage and terminate. The programmer can then analyze this dump to 
determine what caused the abnormal termination. 

To request an ABEND dump, the program uses the ABEND macro instruction with 
the DUMP operand. The ABEND dumping service writes the dump to a data set 
identified by a DD statement in the terminating job's JCL. This DD statement 
must be named SYSUDUMP, SYSABEND, or SYSMDUMP. 

A SYS 1.PARMLIB member exists for each of these names. Each member defines 
default dump options, which specify the default system and program data to be 
dumped to the SYSUDUMP, SYSABEND, or SYSMDUMP data set. The types of 
information dumped to these data sets are: 

SYSUDUMP - Storage associated with the failing task, such as its enqueue 
control blocks. This information is formatted by the ABEND dumping service 
and is ready for printing. 

SYSABEND - Storage associated with the failing task (same as the storage for 
the SYSUDUMP DD statement) with the addition of the local system queue 
area and lOS control blocks. This information is formatted by the ABEND 
dumping service and is ready for printing. 

• 	 SYSMDUMP - Storage used by the system to process the failing task, such as 
the nucleus, the system queue area, the local system queue area, the scheduler 
work area, and the private area of the address space for the failing task. This 
information is not formatted by the ABEND dumping service. Analysis and 
formatting programs can process this output to produce a readable dump. The 
PRDMP MVS/XA service aid (called print dump) and the interactive problem 
control system (IPCS) are such programs. IPCS allows the programmer to 
format and view dumps at a display terminal without having to print them. The 
dump analysis and elimination (DAE) function suppresses duplicate dumps that 
come from the same problem. 

The program requesting the ABEND dump can accept the default dump options.or 
alter them through other operands on the ABEND macro. The final contents of 
the ABEND dump, however, might not be what the program requested because the 
operator can alter the system default dump options through the CHNGDUMP 
command. Also, any recovery routines (invoked by the recovery termination 
manager as a result of the program's abnormal termination) can alter these dump 
options. 
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SVCDump 

( 

Stand-Alone Dump 

SVC dumps serve system programs in the same way as SNAP dumps serve user 
programs. That is, SVC dumps are the control program's equivalent to the user 
pr\>gram's SNAP dump. Also, only authorized programs or those running in 
control program key can request SVC dumps. Among these programs are: 

• 	 Programs that are part of MVS/XA. These programs take SVC dumps for 
system-related errors they can anticipate. 

MVS/XA recovery routines (FRRs and ESTAEs). These programs take SVC 

dumps for unanticipated system-related errors that occur in the programs that 

define them. 


• 	 Authorized installation programs and user modifications to MVS/XA. These 
programs can take SVC dumps both for system-related error conditions and as 
part of normal processing. SVC dumps during normal processing help to test 
the program before installing it in MVS/XA. ~ 

• 	 Programs that process the DUMP operator command. The operator issues the 
DUMP command for certain system error conditions, and these programs 
request theSVC dump. 

To take an SVC dump, the program issues the SDUMP macro instruction, either 
specifying operands that identify the information that is to be dumped and a 
specific data set to be used for the dump or accepting the system default options. 
As with ABEND dumps, the operator can change the default SVC dump options 
through the CHNGDUMP command. 

SVC dump output data sets (named SYSl.DUMPxx) reside on disk or tape. 
Because SVC dump output is unformatted on these data sets, an analysis and 
formatting program must process this dump output to produce readable dumps. 
Similar to the ABEND dump for the SYSMDUMP DD statement, the PRDMP 
MVS/XA service aid and the interactive problem control program (IPCS) can be 
used to format the SVC dump into a readable form. IPCS allows the .programmer 
to format and view dumps at a terminal without having to print them. 

After the SVC dump service finishes producing the dump, it returns control to the r'\ 
program that invoked it. The program can then take additional SVC dumps at 
other points in its processing. This ability to take several SVC dumps is helpful for 
any recovery routine that handles system-related errors. By requesting SVC dumps 
at various points in its recovery processing, the recovery routine can produce a 
comprehensive collection of system program information reflecting its recovery 
actions. If the system does fail, these SVC dumps'can help to isolate the cause of 
the failure. To avoid unneeded SVC dumps (those dumps of the same problem), 
the dump analysis and elimination (DAE) function is used to suppress duplicate 
dumps. 

,-" .. 

A stand-alone dump is a dump produced by a program that the operator executes. 
When MVS/XA fails, the operator loads the stand-alone dump program into 
storage from a volume where it resides. The program runs by itself and dumps all 
of real storage and selected portions of virtual storage. The dump includes the ~ 
nucleus, the trace table of system events, the real storage contents and selected 
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virtual storage contents of all address spaces, the prefixed storage area (PSA),.and 
the system queue area (SQA). ~ 

The first step in running stand-alone dump program is to activate the store status 
procedure that stores the processor time, current PSW, general purpose registers, 
and other processor-type information into permanently assigned locations in 
storage. The store status procedure can be invoked by an operator command or by 
an option of the stand-alone dump program. This procedure preserves in the dump 
the processor status existing at the time the system failure was detected. 

There are two forms of stand-alone dumps: a low-speed form and a high-speed 
form. The low-speed form dumps storage and automatically formats it for printing. 
The high-speed form merely dumps storage in unformatted form to tape or disk for 
formatting and printing at a later time. (PRDMP and IPCS can be used to format 
the high-speed stand-alone dump). 

Figure 9-3 summarizes the MVS dumping facilities. 
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Trace Facilities 

Tracing system events provides valuable information for performance analysis and 
problem diagnosis. For example, a sequence of I/O interruptions from specific 
devices can pinpoint high or low device use. Or, a sequence of program 
interruptions can either eliminate programs as possible sources of an error or, in 
fact, isolate the program that did cause the error. Any tracing mechanism must be 
able both to capture the system event and to record pertinent information about 
the event for later use. 

There are three MVS/XA trace facilities: system trace, master trace and 
generalized trace facility (GTF). System trace and GTF record the same internal 
system events although GTF does so in more detail. 

System trace is most useful when an unexpected problem occurs and GTF is most 
useful when there is a known problem and a need to narrow it down. GTF uses 
more system resources than system trace. 

Master trace records external system activity such as the commands entered by the 
operator, responses to these commands, and other !>ystem messages. 

Aside from these three trace facilities which record system events, each installation 
has either JES2 or JES3 traces to monitor job entry and output processing. 

Installation-written programs, MVS/XA system components, and first-level 
interruption handlers activate the MVS/XA trace facilities by a mechanism known 
as hook processing. A hook is a sequence of instructions that signal to the trace 
facility that the event has occurred, capture the relevant system data, and either 
pass this data to the trace facility directly or store the data until the tracing 
mechanism records it. Figure 9-4 shows how a hook can capture information about 
a program interruption. The sequence of events is as follows: 

1. 	 Program A attempts to store data in an area of storage that is protected from 
access. This action causes a protection exception program interruption. 

2. 	 When the program intequption occurs, the processor immediately switches 
control from program A to the program check first-level interruption handler 
(PCFLIH), which saves the processing status of the interrupted program. 

3. 	 The PCFLIH contains a hook, a sequence of instructions that calls the tracing 
mechanism to trace the program interruption. 

4. 	 The tracing mechanism, after recording the program interruption event and the 
relevant system data (such as processor identifier, time of the interruption, 
PSW of program A) preserved by the PCFLIH, returns to the PCFLIH, which 
finishes its processing of the interruption. 

Each MVS/XA tracing mechanism is started and stopped by operator commands. 
The operator uses the TRACE command with the ON or OFF operand to start or,_ ... , 
stop system trace and master trace. The START GTF and STOP GTF commands -<­

perform the same functions for GTF. All tracing mechanisms can be on at the 
same time. 
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The installation can start or stop system trace and control trace options by means 
of the TRACE command. Usually, the installation starts system trace when it 
starts MVS/XA and, from that point on, system trace records the following types 
of events: 

Start subchannel 
• Modify subchannel 
• Halt subchannel 
• Clear subchannel 
• Resume subchannel 
• External interruption 
• Emergency signal (EMS) external interruptions. 
• Service signal external interruption 
• External call external interruption 
• Clock comparator external interruption 
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• 	 SVC interruption 
• 	 SVC return 
• 	 SVC error 
• 	 Program interruption 
• 	 I/O interruption 
• 	 Task dispatch 
• 	 Initial SRB dispatch 
• 	 Suspended SRB dispatch 
• 	 Wait task dispatch 
• 	 Machine check interruption 
• 	 Restart interruption 
• 	 Alternate CPU recovery 
• 	 Lock Suspension 
• 	 Trace options alteration 
• 	 User event trace 
• 	 Program Call (PC) control instruction 
• 	 Program Transfer (PT) control instruction 
• 	 Set Secondary Address Space Number (SSAR) control instruction 
• 	 Branch and Link (BALR) general instruction 
• 	 Branch and Save and Set Mode (BASSM) general instruction 
• 	 Branch and Save (BASR) general instruction lJ 

System trace logs each event in a system trace table in the TRACE address space 
in virtual storage. The system trace table consists of a queue of buffers for each 
processor running under one MVS/XA system. The installation can control the 
size of the trace table with the TRACE command. Each entry in the table includes 
the following information for each event: 

1. 	 A unique code that identifies the event 

2. 	 Data associated with the program affected by the event, such as the processor 
identifier, the address of the current TCB, and the contents of the PSW 

Figure 9-5 illustrates the system trace function and the MVS/XA components that 
invoke it. 
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Stand-alone dumps always. contain the system trace tables, and users can request 

that the system trace tables be copied into their ABEND dumps, SNAP dumps and 

SVC dumps. The print dump (PRDMP) service aid utility program includes a 

TRACE verb to request formatting and printing of the trace table entries. 


The generalized trace facility (GTF) provides greater event and data selectivity 

than system trace and produces trace output in more ways. GTF traces most of the ~\ 


same events as system trace, and also traces events such as when the recovery 

termination manager routes control to recovery routines (FR.Rs and ESTAEs), 
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when MVS/XA programs invoke the system resources manager, and the 
processing activities associated with a VT AM network and subsystems. 

GTF traces in two modes: internal mode or external mode. In internal mode, GTF 
builds the trace records in virtual storage. Users of the MVS/XA dumping 
facilities can optionally request that these records be incorporated into their 
ABEND dumps, SNAP dumps, and SVC dumps. (Stand-alone dumps always 
contain GTF trace records.) In external mode, GTF provides the same function as 
for internal mode but also writes each trace record to a data set that resides on an 
external storage device (either a tape or disk). The trace records on the external 
storage device can be formatted, analyzed, and printed at a later time to produce 
reports of system activity. The EDIT function of the PRDMP MVS/XA service 
aid program is normally used to format these GTF trace records. 

GTF is a started task. The system operator issues the START command to start 
GTF and the STOP command to stop it. The options that govern its operation 
reside in the GTFPARM member of SYSl.PARMLIB; these options define the 
events GTF is to trace and the mode of tracing GTF is to use. The operator has 
the ability to override these options. 

Like system trace, GTF uses hooks to trace system events. The difference between 
system trace hooks and GTF hooks, though, lies in how the hook causes tracing to 
occur. System trace hooks invoke system trace directly, in contrast to GTF hooks, 
which cause a program interruption that switches control. to GTF. The monitor call 
(MC) instruction, which is part of each GTF hook, selectively produces this 
program interruption. 

GTF uses this characteristic of the MC instruction to define classes of events that it 
can monitor. When GTF is started, these classes of events are specified as trace 
options in GTFPARM or as responses to GTF prompt messages. Hooks for events 
that match the initialized events cause the MC program interruption and switch of 
control to GTF. Hooks for events that do not match the initialized events cause no 
MC program interruptions; these events are ignored and not traced. 

Programs use the HOOK or GTRACE macro instructions to set the hooks that 
trace the system events. MVS/XA supervisor functions use the HOOK macros to 
trace, for example, program interruptions, dispatches, and RTM routing to recovery 
routines. User programs and subsystems use the GTRACE macro to trace events 
unique to them. 

Figure 9-6 summarizes GTF processing; the figure highlights the following . 
processing steps: 

1. 	 The system operator starts or stops GTF at the system console using the 
START and STOP commands. The GTFPARM member of SYS1.PARMLm 
or operator replies to GTF prompting messages define the system events GTF 
is to trace. 

2. 	 GTF operates in internal mode or external mode. In internal mode, GTF builds 
the trace records in storage. In external mode, GTF builds the trace records i~;-· 
storage and also writes the trace records to a data set for printing or analysis at 
a later time. MVS/XA dumping facilities can include trace records in dumps 
regardless of whether GTF is operating in internal or external mode. 
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3. 	 User programs or subsystems use the GTRACE macro to define GTF hooks to 
record events unique to them. Supervisor programs use the HOOK macro to 
define GTF hooks ~to record system events . 

. These macros generate monitor call instructions that cause a program 
interruption if the event defined by the hook matches an event in GTFPARM. 
As a result of the program interruption, the processor switches control to GTF 
to trace the event defined by the hook. After GTF traces the event, control 
returns to the program that invoked GTF. 
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FIgure 9-6. Generalized Trace FacWty - Summary 
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MVS/XArecords console traffic through master trace. Unlike the tracing 
functions of system trace and GTF, which preserve internal system activity (I/O 
interruptions, dispatches, routing to FRRs, and so forth), master trace preserves 
external system activity, such as mount messages, status displays, operator-issued 
commands, system responses to commands, and other messages, recording this 
activity when it occurs in a table in storage. 

When the master trace function is started, the communications task schedules the 
tracing; Because the communications task normally handles message traffic within 
MVS/XA anyway, it is in a perfect position to trace such traffic; it routes each 
message to master trace, and master trace preserves each message in the master 
trace table. (A hardcopy log function, separate from master trace, provides a 
permanent record of the same kinds of console traffic that master trace preserves.) 

A hard copy listing of the operator console message traffic can help in debugging a 
system failure, especially if an I/O device caused the failure. In reconstructing the 
events that led up to stich a failure, the system trace table (previously described in 
this chapter) would contain entries for I/O errors that occurred when programs 
accessed the faulty device. This information might be enough to pinpoint a device 
problem, but a listing of console traffic showing when volumes were mounted . 
would also help. By comparing the time when a volume was mounted to the times 
associated with the I/O errors, the problem. solver can pinpoint the problem as a 
faulty device. Knowledge of console traffic, then, generally helps to create a more 
complete picture of the system environment and decreases the chance of 
overlooking obvious;dlUses of errors . 

Because the master trace table resides in virtual storage, it can also be dumped. 
That is, users of those MVS/XA dumping facilities, described earlier in this 
chapter, can request that the contents of the master trace table be included in their 
dumps, thus providing a more complete collection of information regarding an error 
condition. The installation sets the size of the master trace table with operands on 
the TRACE command issued to start master trace. 

Figure 9-7 illustrates the master trace function. 
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Serviceability Level Indication Processing (SLIP) 

Serviceability level indication processing (SLIP) aids in error diagnosis. Diagnosing 
a problem requires iQformation about the problem. This information includes the. 
events that led to the error and the contents of critical data areas and control 
blocks at the time of the error. Dumps supply a picture of virtual storage when the 
error occurs. Traces supply a record of system events. SLIP joins these two 
diagnostic mechanisms into a powerful debugging tool that associates a prescribed 
diagnostic action, like dumping or tracing, with a specific event, like a program 
interruption, ABEND, or storage reference. 

The description of the system event that is to be intercepted and the action to. be 
taken as a result is called a trap. At the operator console or an authorized TSO 
terminal, the problem solver enters the SLIP command to describe each trap. ~ 

Operands on the SLIP command specify the system event to be intercepted, the 
action to take place when the event occurs, and whetherthe trap is to be enabled 
or disabled. An enabled trap is one for which the action is taken if the system event 
to be intercepted does, in fact, occur. A disabled trap, on the other hand, is 
ignored; that is, no check is made for the system event. The problem solver can 
enable and disable traps as system conditions change. 
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SLIP traps can intercept two classes of system events: program event recording 
(PER) events and error events. 

Progrll11l Event Recording Events 

PER events take place because the processor can cause a program interruption 
when certain system events occur. Specifically, the PSW, which controls the 
processor's execution of instructions, cont~ins a program event recording bit. 
When this bit and the bits in control register 9 that correspond to a particular 
condition are on, a program interruption or PER interruption (as it is commonly 
called) occurs. This may be for one of the following conditions: 

The instruction executed was fetched from a storage location that falls within a 
specific range of addresses. 

• 	 The instruction executed is a successful branch instruction. 

The altered storage location falls within a specific range of addresses. 

The PER interruption that occurs in these cases is handled by the program check 
first-level interruption handler (PCFLIH), which alters the sequence of processing 
from the program that contains the instruction to SLIP. The processor, in effect, 
recognizes an instruction fetch, a successful branch, or a storage alteration of a 
program and gives control to SLIP. After SLIP processes the PER event, it 
normally returns control to the interrupted program, (although SLIP traps can be 
defined so that the program interrupted by PER events is abnormally terminated). 

Error Events 

Error events are ~ subset of errors that .cause recovery termination management 
(RTM) processing. Chapter 10, "Recovering From Errors" lists the errors that 
cause RTM processing. Some of the errors that SLIP can trap are: 

• 	 Program check interruptions. Programs cause errors, such as an addressing 
exception and a storage protection check. 

Dynamic address translation errors. The DAT hardware fails or the contents of 
f\ the page tables become invalid. 

• 	 Machine checks. The machine check is not recoverable by the hardware, and 
the softwar~ must try to recover. 

Abnormal address space termination. MVS/XA components request RTM to 
terminate an address space and clean up its resources. 

• 	 ABEND. A task abnormally terminates. 

• 	 SVC error. A locked, disabled, or SRB mode program issues a supervisor call 
instruction. 

• 	 Restart interruption. The operator presses the restart key on the system 
console. 
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SLIP Actions 

Using SUP Traps 

For either a PER event or an error event, SLIP can perform one of the following 
actions: . 

• 	 Take an SVC dump tailored to the needs of the problem solver. 

• 	 Cause a GTF trace record to be written. 

Put the system into the wait state so that the problem solver can manually 
display or alter storage or take a stand-alone dump. 

• 	 Ignore· the event altogether. 

• 	 Override the suppression of a dump by the dump analysis and elimination 

(DAE) facility. 


For error events, SLIP can also suppress selected dumps. 

The SLIP command can define a trap, alter the state of existing traps (that is, 
enable or disable them) to meet new system conditions, or delete traps that are no 
longer useful. SLIP traps can be defined so that they are automatically disabled 
after they have been matched a specified number of times. Also, SLIP traps for 
PER events can be defined so that they are automatically disabled when processing 
the PER events identified by these traps consumes a specified percentage of system 
processing time. 

The system interprets a sequence of SLIP traps in a "last-in-first-out" (LIFO) 
order. That is, the most recently-defined trap is processed first, then the next most 
recent, and so on until the conditions specified in the trap match the system events. 
When the match occurs, SLIP takes the action specified by the trap, and the 
process of interpreting the traps begins again in LIFO order with the most 
recently-defined trap. The problem solver uses this ordered processing of traps to 
control the way in which system events are intercepted. For example, assume that 
a program is modifying location X, but JES2 is the only program that should 
modify location X. To identify any other program that is modifying location X, the 
problem solver sets two traps in the following order: 

1. 	 TRAP!: A SLIP trap to intercept the PER event of storage alteration for 

location X for all programs in all address spaces. Take an SVC dump if this 

event is intercepted. 


2. 	 TRAP2: A SLIP trap to intercept the PER event of storage alteration for 
location X for only address space 2, which belongs to JES2. Ignore the event 
when it's intercepted. 

Because of the LIFO order in processing traps, TRAP2 is processed first. When 
JES2 alters location X, the event is ignored. TRAP! is not processed. When a 
program running in an address space other than address space 2 alters location X, 
TRAP2 is processed but does not match. TRAPI is then processed. TRAPI does 
match this event, and an SVC dump is taken. In this way, a sequence of SLIP traps 

. can be designed to filter out known processing and expose unknown processing. 
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Figure 9-8 summarizes the basic SLIP concepts and functions. The following 
description highlights these concepts and functions: 

1. 	 The problem solver establishes a SLIP trap by entering the SLIP command at 
the system console or an authorized TSO terminal. 

2. 	 A PER event SLIP trap interrupts the program when a PER event occurs. The 
PER events are instruction fetch, successful branch, and storage alteration. 

3. 	 An error event SLIP trap intercepts error events. SLIP error events are a 
subset of those errors that cause RTM processing. They include program 
checkinterruptions, SVC errors, and DAT errors. 

4. 	 Each SLIP trap indicates actions that are to take place when a PER event or 
error event is intercepted. These actions include dumping critical storage areas 
and control blocks, writing GTF trace records to the SYS1.TRACE data set, or 
ignoring the event altogether. 

1'\. 
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SYS1.LOGREC Error Recording 

Diagnosing errors in MVS/XA can require more information than is supplied by 
those monitoring and dumping mechanisms already described. In order to recreate 
certain environmental conditions important to the solution of the problem, the 
problem solver might need a knowledge of the system's complete history, 
sometimes going back as far as when the system was initialized for operation. The 
time when early system events occurred and the order in which they occurred can 
help to reveal the cause or causes of system failures. 

SYSl.LOGREC error recording creates such a history by recording hardware 
failures, selected software errors, and other system eve.nts for the entire processing 
life of the system - from initialization to shutdown. Various MVS/XA control 
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programs write system error information to SYSI.LOGREC, a 
permanently-resident system data set, creating, over a period of time, a system 
history. The recovery termination manager (RTM), for example, records the error 
analysis that the machine check handler does for a machine check interruption and 
also records the data that error recovery routines supply about software errors. 

SYS I.LOGREC is one of the data sets that can be on the system residence 
(SYSRES) volume or a user-specified volume. During the first stages of MVS/XA 
initialization, SYS I.LOGREC error recording begins; it ends only when the system 
stops operating (whether through normal shutdown or abnormal failure). The 
SYS1.LOGREC data set, then, becomes a running log of valuable information 
about errors -- such as hardware errors associated with failing storage or devices 
and software errors associated with failing programs -- that occurred during the 
system's operation. The installation can use this information to make configuration 
changes and debug system problems. 

Figure 9-9 illustrates the following steps in SYSI.LOGREC error recording: 

1. 	 During system generation, the IFCDIPOO service aid program initializes the 
SYS1.LOGREC data set. This program creates a time stamp record that 
contains the time when MVS/XA was generated, the time of a forthcoming 
IPL, and various other system-related data; this record is the starting point for 
the history of MVS/XA processing. After IFCDIPOO finishes the initialization, 
SYS1.LOGREC is ready to receive error records. 

2. 	 During system operation, various MVS/XA routines format and write records 
to SYS1.LOGREC about failing hardware (such as a device or a processor), 
software errors (such as program errors, machine checks, ABENDS), and other 
system events (such as device demounts, reconfigurations, and end-of-day or 
shutdown events). For most of these situations, the recording routines write to 
SYS1.LOGREC regardless of whether or not the system was able to recover 
from the error. Each record, while identifying the error and the time it 
occurred, also contains other information, such as the current device hardware 
status, any results of software recovery, and statistical data on the number of 
such errors that have occurred to date. 

3. 	 The environmental recording, editing, and printing program, EREP, retrieves 
data from SYSl.LOGREC to (1) produce reports useful for diagnosing system 
errors or to (2) dump the SYS1.LOGREC data to an auxiliary data set so that 
SYS1.LOGREC can be used again. Many auxiliary data sets can be generated 
as SYS I.LOGREC fills up, forming an archive of SYS I.LOGREC data that 
the installation can use to extend the history of error activity beyond the 
capacity of SYS1.LOGREC. To produce detailed reports of the system's error 
activity, EREP can process any or all of the data sets in the archive, including 
the data on SYS1.LOGREC itself. 
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Chapter 10. Recovering From Errors 


A system is available when both its hardware and software are capable of 
processing jobs. Error recovery in MVS/XA is designed to increase the availability 
of the system and reduce the impact on users when errors occur in critical software 
and hardware components. If recovery is not possible, MVS/XA attempts to 
continue without the damaged facility. In general, recovery is attempted in such a 
manner that the recovery processes arelransparent to the user. 

Recovery routines have four objectives: 

• To isolate the error 

• To assess the damage and attempt to confine it to one useror task 

• To indicate the actions, such as dumping, that should be taken 

• To repair the damage and perform clean-up processing so that the function can 
/ be restarted 

In MVS/XA, error processing of software failures is handled by recovery 
termination (RTM), and error processing of hardware failures is handled by several 
facilities. As a result, MVS/XA processing continues with minimal downtime. 

Software Recovery: Recovery Termination Manager 

The recovery termination manager (RTM) monitors the flow of software recovery 
processing by handling all abnormal termination of tasks and address spaces, and 
passing control to recovery routines associated with the terminating functions. The 
RTM enables user programs to establish their own recovery protection and system 
programs to enhance system serviceability and reliability. 

The RTM is invoked for the following conditions: 

• I/O error during a page-in operation 
• Program error not handled by a program interruption routine 
• Machine error not handled by hardware recovery 
• Supervisor call that is invalid 
• Restart operation initiated by the console operator 
• CALLRTM macro instruction directed toward another task (ABTERM) 
• CALLRTM macro instruction directed toward an address space (MEMTERM) 
• ABEND macro instruction 
• Dynamic address translation (DAT) error 
• Branch entries for abnormal termination requests 
• Reentry for abnormal termination requests 
• Reentry for machine checks 

Recovery Routines 

Two types of recovery routines are identified by the RTM: task recovery routihes 
and functional recovery routines. These routines are described in the following 
sections. 
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Task Recovery Routines 

Functional Recovery Routines 

Task recovery routines -: extended-specify task abnormal exit (ESTAE/ESTAI)­
provide recovery for those programs that run enabled, unlocked, and in task mode. 
They are established by using the EST AE macro instruction or the EST AI 
parameter of the ATTACH macro instruction. 

A program can intercept an anticipated ABEND by issuing the EST AE macro or 
the ATTACH macro with the ESTAI option. Control is given to a user-specified 
routine in which the user may perform pretermination processing, diagnose the 
cause of the abend, and specify a retry address if he wishes to avoid the 
termination. The routines operate in the mode (problem program or supervisor) 
that existed at the time the EST AE request was made. 

Note: STAE/STAI, specify task abnormal exit, are available with OS/VS2 
Release 1 (SVS) and with OS/MVT and OS/MFT. Although STAE and STAI are 
also available in MVS/XA, it is recommended that EST AE or EST AI be used in 
MVS/XA. EST AE or EST AI provide increased capabilities over STAE or ST AI; 
they can schedule clean-up processing under certain instances for which ST AE 
routines do not get control and can provide defaults for the most commonly used 
options. 

If a task is scheduled for abnormal termination, the recovery routine specified by 
the most recently issued EST AE macro instruction gets control. If the EST AE 
routine cannot provide recovery for the error, the next higher-level ESTAE routine 
(if any) associated with the task is gets control. This process of passing control 
from a recovery routine to a higher-level recovery routine along a pre-established 
path is called percolation. 

Each EST AE routine for the task is then given control, one at a time in LIFO 
(last-in first-out) order, until retry is requested or all routines for the task are 
exhausted. When EST AE processing is exhausted, abnormal termination occurs. 

Functional recovery routines (FRRs) provide recovery for those system programs 
that run disabled, locked, or in SRB (service request block) mode, or less 
frequently, for programs in supervisor state, key 0, that run enabled and unlocked. 
The system programs establish the FRR by using the SETFRR macro instruction. 

The SETFRR macro instruction provides each system program with the ability to 
define its own unique recovery environment. Each FRR established by a system 
program is placed in an FRR LIFO (last-in first-out) stack that is used during RTM 
processing. The SETFRR macro instruction can be used to add, delete, or replace 
FRRs in the stack. 

Each FRR stack used by the RTM contains the addresses of the FRRs established 
to protect a single path through the system control program. When an error occurs . 
in a path, the RTM passes control to the last FRR in the associated stack. If the 
FRR cannot provide recovery for the error, the previously-established FRR in the 
stack is given control (percolation). Each FRR in the stack is eventually given 
control, one at a time in LIFO order, until retry is requested or the stack is 
exhausted. When FRR processing is exhausted, appropriate task recovery routines 
(if any exist) are given control; otherwise, abnormal termination occurs. 
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Any user-written routines outside the control program that are qualified to issue the 
SETFRR macro instruction. may add one, and onlY one, FRR to a stack. If more 
than one FRR is added to a stack, abnormal termination may occur when SETFRR 
is issued. 

Hardware Recovery Facilities 

Machine Cheek Handler 

A.lternate CPU Recovery 

MVS/XA facilities gather information about hardware reliability and allow retry of 
operations that fail because of processor; I/O device, or channel errors. The 
facilities are designed to keep the system operational in the event of hardware 
failures. 

The hardware recovery facilities are: 

• Machine check handler (MCH) 
• Alternate CPU recovery (ACR) 
• Stibchannellogout handler (SLH) 
• Dynamic device reconfiguration (DDR) 
• Missing interruption handler (MIH) 

The machine check handler (MCH) minimizes the impact of machine malfunctions 
on MVS/XA systems. It alerts the control program to any hardware failures that 
could affect the successful execution of the control program. 

Recovery from machine malfunctions is initially attempted by the hardware, 
instruction retry (HIR) and error checking and correction (ECC) facilities of the 
hardware. If the hardware recovery attempts are unsuccessful, MCH gets control 
to analyze the data and isolate the source of error. 

When the MCH completes its analysis, it records the error ana,lysis on the 
SYSl.LOGREC data set and invokes the appropriate functional recovery routines 
to attempt recovery from the machine check. If recovery is possible, RTM resumes 
the interrupted program at the point of interruption; if recovery is not possible, 
RTM terminates the interrupted program. 

In a uniprocessing environment, if MCH determines that processing cannot 
continue, it will terminate execution on the processor and place the processor in a 
disabled wait state. In a multiprocessing environment, however, an irreparable 
machine check'causes an emergency signal (EMS) to a functioning processor. On 
this processor, MCH invokes the alternate CPU recovery routine. 

The alternate CPU recovery (ACR) routine provides a multiprocessor complex 
with the ability to recover system operations on an operational processor after 
another processor fails. Where possible, it will take responsibility for all work in 
progress on the failing processor. . 

In a multiprocessing environment, if MCH is unsuccessful because of a recursive~ 
error or a damaged processor, MCH invokes ACR on an operative processor to 
terminate execution on the failing processor. When ACR receives control, it 
logically removes the failing processor from the system and attempts to transfer 
work that was in progress on the failing processor to the operative processor. The 
recovery termination manager then initiates recovery by invoking the appropriate 
functional recovery routines to free resources associated with the failing processor. 
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Figure 10-1 demonstrates the flow of control through the machine check handler 
and alternate CPU recovery. 

MALFUNCTIONING PROCESSOR FUNCTIONING PROCESSOR 
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Functional 
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Figure 10-1. Control Flow for MCH and ACR 

Subchannel Logout Handler 

The subchannellogout handler (SLH) reduces the impact of subchal1nel 
malfunctions on systems running MVS/XA. It is an integral part of the I/O 
supervisor (lOS) that aids in recovering from subchannel errors and informs the 
operator or system maintenance personnel when errors occur. 

SLH receives control after a channel malfunction is detected. It analyzes the type 
and extent of the error using the information stored by the channel. 

When an error condition occurs, SLH allows the device-dependent error recovery 
procedures to retry the failing I/O, forcing the retry on an alternate subchannel (if 
one is available). Records describing the error are written to the SYSl.LOGREC 
data set. SLH performs no error recovery itself; it does not retry any operation or 
make any changes to the system. Recovery from subchannel errors is performed 
only by the device-dependent routines. 
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Dyna~ic device reconfiguration (DDR) allows the system and user to circumvent 
an I/O failure by, if possible, moving a demountable volume (tape or disk) from 
one device to another or by substituting one unit 'record device (reader, punch, or 
printer) for another. DDR requests are processed without shutting down the 
system and might eliminate the need to terminate a job. 

Either the system or the operator initiates a DDR swap. When a permanent I/O 
error occurs, MVS/XA initiates a swap along with a proposed alternate device to 
take over the processing of the device on which the error occurred. The operator 
accepts the swap and proposed device, accepts the swap but selects another device, 
or refuses 'the swap. The operator can also initiate a swap (via the SWAP 
command). The ability of the operator to initiate a swap is useful if a device 
cannot be made ready, if there is a need to substitute one unit record device (such 
as a card reader or printer) for another, or if, for example, a device must be taken 
offline for some reason. 

The missing interruption handler, described in Chapter 7, "Satisfying I/O 
Requests" also contributes to recovery management in MVS/XA. The missing 
interruption handler (MIH) checks whether expected I/O interruptions occur 
within a specified period of time. If an interruption does not occur, MIH notifies 
the operator so that corrective steps can be taken before system status is harmed. 
The absence of interruptions might indicate, for example, that there is high 
contention for a device that may have been reserved for a particular processor, that 
there is a software problem, or that a device has malfunctioned. 

n 
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Chapter 11 .. Initializing the System 

Before MVS/XA can do work, it must be initialized. Some starting values are 
established during the one-time system generation process that occurs when an 
MVS/XA system is first installed. Others are provided by the system operator 
during the initialization process that takes place each time the MVS/XA system 
starts. These values serve to tailor the MVS/XA system to meet the installation's 
needs. 

The system is initialized for several reasons: 

• Because of a change in the MVS/XA system 
• Because of the installation of a new product 
• To resume service after the system has been inoperative 

As shown in Figure 11-1 the initialization process consists of loading the nucleus, 
(\, 	 initializing system resources and resource managers, initializing system component 

address spaces, and initializing the primary job entry subsystem (usually JES2 or 
,......1JE83). Input to the process includes data sets initialized during system generation. 

These data sets reside on the system residence volume (SYSRES) and other direct 
access device (DASD) volumes. The process also requires the use of real storage, 
paging data sets, and optional swap data sets. To provide additional system 
tailoring, the system operator can interact with the various initialization routines 
through the master console. 
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Figure 11-1. The Initialization Process 

System initialization begins when the system operator initializes the hardware. The 
system operator performs the initial microprogram load (IML) to start the 
processor, mounts the necessary DASD and tape volumes, and readies the system 
printers. 

The system operator initiates the software load procedures after ensuring that the 
system residence (SYSRES) volume. is mounted. Then, using the master console, 
the operator activates the LOAD function, which loads the first initialization 
module into real storage and begins the MVS/XA initialization process. 

The system resources initialized include real, virtual, and auxiliary storage, all I/O 
devices, consoles, and processors. The initialization of system resources is the 
process of describing what resources are available and in what quantities and 
setting initial values in system data sets, so that resource managers can control their 
use. For example, the initialization process provides a description of real storage 
that the real storage manager (RSM) can use to control the use of real storage. 

Loading the Nucleus 

Initializing System Resources 
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InitiaIizing the Resource Managers 

The initialization process is a bootstrap operation. The first initialization control 
modules must provide for themselves, and for the modules they control, the 
essential system services that the uninitialized resource managers cannot yet 
provide. Initialization of a resource manager means initializing the control blocks 
and the data areas that the manager needs to provide service. When these areas 
are initialized, the resource manager is ready to perform its tasks. 

Initializing the Master Scheduler Address Space 

The task of initializing the master scheduler address space continues throughout 
system initialization. The first step is the mapping of two gigabytes of virtual 
storage for the master scheduler. This address space will include both common 
areas, which will be available to all system component and user address spa~es, and 
private areas, which will be available only to the master scheduler. 

InitiaIizing a Job Entry Subsystem 

Subsystem initialization is the process of readying a subsystem for use in the 
system; this process involves defining the subsystem's name and initializing the 
subsystem so that the system recognizes it by name. In this manner, subsystems 
such as the job entry subsystem (JES2 or JES3, for example) can be initialized. 
Subsystems communicate with MVS/XA through a system component known as 
the subsystem interface. Figure 11-2 illustrates how the subsystem interface acts as 
a liaison between a subsystem and MVS/XA. 

SUBSYSTEM INTERFACE 

MVS/XA 

FUNCTIONS: 

1. 	 DETERMINE IF SUBSYSTEM 

NAME IS VALID 

2. 	 DETERMINE IF SUBSYSTEM 

IS ACTIVE 

Subsystem 

3. 	 DETERMINE IF SUBSYSTEM Interface 

CAN PROCESS THE REQUEST 

4. 	 BRANCH TO SUBSYSTEM 

TO PROCESS_THE REQUEST 

Figure 11-2. The Subsystem Interface 

The Initia!iwion Process 

The remainder of this chapter describes the sequence of events in the MVS/XA 
initialization process. It begins with the loading of the initial program loader (IPL) 
control program and ends when the system is ready to accept a LOGON command 
or a batch job. MVS/XA initialization occurs in three phases. Figure 11-3 
summarizes these phases, which are: IPL, NIP, and master scheduler initialization. c-
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Figure 11-3. System initialization Summary 

1. IPL 

The initial program load (IPL) phase is controlled by the IPL control program, 
which is loaded when the operator activates the load function. The IPL control 
program controls the initialization of system resources; however, the actual 
initialization is done by IPL resource initialization modules (IRIMs). Each IRIM 
is part of the component that controls a resource. For example, the real 
storage manager (RSM) IRIM initializes the control blocks that RSM uses ~nd 
maintains during normal system operation. 

2. NIP 

The nucleus initialization program (NIP) phase continues the initialization that 
IPL began. Again, the NIP control program invokes resource initialization 
modules (RIMs) to perform the work of initialization. As with IRIMs, each 
RIM is part of a component and initializes the control blocks that the 
component is responsible for. 

During NIP, the PC/AUTI}, TRACE, global resource serialization, and 
DUMPSRV address spaces are initialized. 

3. Master Scheduler 

The master scheduler initialization routines initialize the master scheduler 
address space. Once the master scheduler address space is initialized, these 
routines attach and initialize tasks that remain as permanent system tasks after 
system initialization. 

During this phase of initialization, the CONSOLE, ALLOCAS, and SMF 
address spaces are created, and the subsystem interface is initialized. Finally, 
the master scheduler, itself, starts the job entry subsystem (JES2 or JES3); 
creating the JES2 or JES3 address space. 

11-4 MVSjExtended Architecture Overview ­



Required Resources 

Duripg initialization, the control program, the IRIMs, the RIMs, and the master 
scheduler initializatIon modules require certain system resources: 

• 	 The system residence volume (SYSRES) must be online and ready during system 
initialization because it contains the IPL control program and some of the 
system data sets needed during the initialization process. Some data sets that 
must be on the SYSRES volume are: _.. , 

SYSl.NUCLEUS, which contains the resident nucleus, the IRIMs, the 
RIMs, the NIP control program, and other initialization modules. 

SYSl.SVCLI~, which is an authorized program library containing 
supervisor routines that are not part of the resident nucleus but are invoked 
during initialization. 

• 	 Other required data sets, which reside on direct access devices that must be 
online and ready, are: 

SYS I.LINKLIB, which contains system and user programs, including the 
linkage editor, service aid programs, utility programs, and some of the 
master scheduler initialization modules. 

The master catalog, which contains pointers to all system data sets. 

SYS1.PARMLIB, which contains both IBM-supplied and user-suppIled lists 
of system parameter values that serve as input to system initialization. The 
initialization process depends on values that are specified for the system 
parameters. System parameters are' discussed later in this chapter under, 
"Processing, System Parameters". 

SYSl.LPALIB, which contains the modules that are loaded into the link 
pack area. 

SYS1.STGINDEX, which contains auxiliary storage management (ASM) 
mapping tables for the pages of virtual input/output (VIO) data sets that 
must be saved across job steps and between system initializations. 

SYSl.LOGREC, which is used for recording hardware, software, and I/O 
errors. This data set is opened during initialization so that error recording 
can take place. 

• 	 The master console, which the operator uses to control system initialization. 
During the NIP phase of i~itialization, the operator can specify system 
parameters and override system parameters specified in SYSl.PARMLIB. 
Because of its importance in operator-system communication, the master 
console is one of the first devices to be initialized. 

• 	 Real storage, which must be at least four megabytes. Generally speaking, th~_.:.... 
more real storage there is, the greater the workload that the system can handle. 

• 	 Page data sets, which will make up the page space portion of auxiliary storage. 
The auxiliary storage manager (ASM) uses this page space to store the 
contents of .pageable virtual pages and virtual input/output (VIO) data set 
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Initial Program Load (IPL) 

pages. Each page data set is formatted in 4K-byte records called slots. A slot 
is dynamically allocated whenever a page must be moved out of real storage. 

ASM classifies page data sets based on data set content and use. The four 
types of page data sets are: 

Pageable link pack area (PLP A) data set, which contains system routines 
and access methods 

Common page data sets, which provide space for the non-PLPA virtual 
pages in the system common area 

Duplex page data set, which is an optional duplicate data set that an 
installation supplies as a back-up for the common and PLPA data sets 

Local page data sets, which provide space for each address space's unique 
pages, the virtual input/output (VIO) data sets, and, if there are no swap 
data sets available, private address space (LSQA) pages 

• 	 Swap data sets, which make up the swap space portion of auxiliary storage. 
ASM uses swap space to store and retrieve the set of pages that belong to a 
swapped-out address space. 

Swap data sets are optional. However, if none are supplied, swapping is done 
to page data sets which, can degrade system performance. 

Each page and swap data set must be defined and cataloged on a direct access 
storage device (OASO). While the system is running, these data sets must 
remain open. 

IPL is the first phase of the system initialization process. When the operator 
initiates the load process, a bootstrap loader brings the IPL control program into 
real storage starting at location zero, as shown in Figure 11-4. Then the IPL 
control program receives control. 

.1\,. 
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The IPL program prepares an environment in which the IRIMs can execute, 
controls the loading and deleting of the IRIMs, and provides service routines for 
the first phase of initialization. It handles page faults by assigning frames of real 
storage to each page of virtual storage that the IRIMs request. It clears real 
storage, and maps two gigabytes of virtual storage for the master scheduler address 
space. It searches SYSRES for the SYS1.NUCLEUS data set.,. which contains the 
IRIMs, RIMs, and other modules needed for system initialization. The IPL control 
program then passes control to the first IRIM. 

TM Work of the !RIMs 

As stated earlier, the IRIMs are the programs that actually do the work of the IPL 
phase. They perform very basic initialization tasks; they load the nucleus, build 
virtual and real storage areas, and initializ~ the device on which SYSRES resides. 

Loading the Nucleus 

As Chapter 2, "Multiple Virtual Storage" explains, some code in the nucleus must 
run with dynamic address translation (DAT) turned off. Because of this 
requirement, the nucleus con~ists of two load modules, which the first IRIM loads 
into storage. The IRIM places the DAT-off nucleus in contiguous frames of the 
highest available addresses of real storage; it is not mapped in virtual storage. The 
IRIM loads the control sections (CSECTs) in the four sections of the DAT-on 
nucleus into virtual storage from low addresses upward in the order of: read-write, 
read-only, read-only extended, and read-write extended. 

An IRIM builds the DAT -off to DAT-on linkage table at the beginning of the 
DAT-off nucleus in real storage. This table establishes addressability between 
entries in the DAT-off nucleus in real storage and entries in the DAT -on nucleus in 
virtual storage. 
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Initializing Virtual Storage 

One of the IRIMs builds the nucleus map (NUCMAP), an address-sorted directory 
of CSECTs and entry points in the OAT-on nucleus. NUCMAP resides in virtual 
storage in the read-write extende<I nucleus. 

During the IPL phase of initialization, the IRIMs initialize or reserve storage for 
many system component control blocks, work areas, and programs. The IRIMs 
also begin to initialize the private area of the master scheduler address space, the 
first address space to be created. Some important areas initialized in this first 
address space are: 

• 	 The system queue area (SQA) and extended SQA 

The VSM IRIM reserves storage for the tables and queues that relate to the 

system. 


• 	 The extended local system queue area (extended LSQA) for the master 
scheduler 

The VSM IRIM initializes the area above the 16-megabyte line that contains 

tables and queues that the master scheduler will use. 


• 	 The master scheduler segment table 

An RSM IRIM initializes a segment table whose entries are the addresses of 
page tables for the common area of virtual storage. This common segment 
table is part of the master scheduler address space segment table. During the 
NIP phase of initialization, an RSM RIM copies the common segment table .f\ 
from the master scheduler'S private area into SQA for all address spaces to use. 
Eventually,each address space also has a segment table for its own private 
area. 

• 	 The RSM page frame table 

An RSM IRIM initializes the tables that identify how th~ frames of real storage 
are assigned. As Chapter 2, "Multiple Virtual Storage" explains, there is one 
page frame table for the entire system, and it has one entry for each frame of 
real storage. This table resides in the read-write extended nucleus. The IRIM f\ 
initializes those frames that have already been assigned and are permanently 
resident. 

Figure 11-5 shows the virtual storage map for the mastel. ..cheduler address space 
at the end of the IPL phase. 
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As previously described, the IPL control program zeroes each 4K-byte frame of 
real storage. It then reserves space for permanent data areas and control blocks. 
By the end of the IPL phase, the following areas have been permanently initialized 
in real storage: 

• 	 System data areas that are never page<t out of real storage 
• 	 OAT-off nucleus 
• 	 OAT-on nucleus 
• 	 Prefix save area (PSA) 

Figure 11-6 shows a schematic representation of real storage at the end of the IPL 
phase of initialization. The figure illustrates the following points. 

• 	 As the virtual storage manager (VSM) initializes the DAT-on nucleus, the 
SQA, the extended SQA, and the extended LSQA in virtual storage, RSM 
alloca~~s non-contiguous real storage frames to provide working' copies of these 
pages. 

• 	 The PSA resides atlocation zero. 

• 	 Only the DAT-off nucleus resides in contiguous real frames. 

• 	 The code for the last executing module (the last IRIM) is in real storage at exit 
fromIPL. 

Chapter 11. Initializing the System 11-9 



OAT-On Nucleus 

. Nucleus 

IPL/NIP 
Interface 
Routine 

SOA 

c:=:::J-------=:::::::J.,.. Extended 

C=~------r 

LSQA 

The Last 

IRIM 

PSA 

o 

Figure 11-6. Real Storage at Exit from IPL 

Initializing the IPL Device 

One of the IRIMs initializes the unit control block (UCB) for the device on which 
the IPL volume, SYSRES, resides. Note that the IPL device is only the first of 
many devices to be initialized. 

Nucleus Initialization Program (NIP) 

NIP processing is the second phase of the system initialization process. The NIP 
control program prepares the environment that will allow the resource initialization 
modules, the RIMs, to perform their functions of initializing system components. 
The NIP control program is responsible for the loading and deleting of the RIMs. 
It also provides service routines that substitute for functions that are not yet 
available in the system, as well as diagnostic support for software and hardware 
failures that might occur during this second phase. 

The RIMs depend on system parameters to tell them what initialization functions to 
perform and which SYSl.PARMLIB members to use to initialize the system. 
System parameter lists are contained in the IEASYSxx member of SYS 1.PARMLIB 
or are specified by the operator during NIP. Based on the values in effect for the 
system parameters, the RIMs perform three major functions: 

• 	 Continue to establish the master scheduler address space 

• 	 Process SYSl.PARMLIB-specified and operator-specified system initialization 
parameters 

• 	 Continue to initialize the resource managers 
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Eftablishing the MlISter Scheduler Address Space 

NIP and the RIMs establish the master scheduler address space, completing the job 
started during the IPL phase. As stated earlier, the master scheduler address space 
contains private areas for the master scheduler (in which NIP and the RIMs 
execute) and common areas for use by all address spaces. As shown in 
Figure 11-7, VSM and ASM RIMs allocate virtual storage in the common area for 
the common service area (CSA), the system queue area (SQA), and the link pack 
area (LPA), All of these areas exist both below the 16-megabyte line (for 
programs executing in 24-bit addressing mode) and above the 16-megabyte line 
(for programs executing in 31-bit addressing mode). Figure 11-7 shows the 
completed map of the master scheduler address space. 
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FIgure 11-7. Virtual Storage at Exit from NIP 

The amount of storage allocated for the different areas of virtual storage depends 
on values specified for system parameters. An example of how the VSM RIM uses 
a system parameter appears in the following section on processing system 
parameters. 

During NIP processing, the RIMs depend on system parameters to tell them hQW to 
perform certain initialization functions. The RIMs obtain system parameters from" 
two sources: from system parameter lists, which reside in SYS I.PARMLIB, and 
directly from the system operator. . 

.~. 
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System Parameter Lists 

System Operator 

System parameter lists reside in SYSl.PARMLIB. The NIP RIMs always read the 
default general parameter list (IEASYSOO). This list contains basic initialization 
instructions, installation-specified initialization defaults, and other initialization 
values that will not change from one initialization to another. For example, if 
IEASYSOO contains 

CSA={400,2000) 

a VSM RIM allocates 400K bytes for the CSA and 2000K bytes for the extended 
CSA. 

SYS l.PARMLIB may also contain alternate system parameter lists (IEASYSxx 
members other than IEASYSOO) that NIP merges with the default parameter list 
during initialization. The alternate parameter lists, sometimes called secondary 
lists, contain values that override corresponding values in the default list. They 
may also contain additional values not originally specified in the default list. 
Alternate lists normally contain parameters that are subject to change. For 
example, they might contain parameters that, because of workload changes, must 
change between shifts. 

After console communication has been established, the system operator receives 
the message: 

. SPECIFY SYSTEM PARAMETERS 

If an installation wants NIP to merge one or more alternate parameter lists with the 
default list, the system operator identifies them at this time. In addition, the system 
operator may directly specify certain system parameters. Such a "direct 
specification" would include parameters that are unique for a specific initialization. 
If no alternate parameter lists or direct specifications are indicated by the system 
operator, the default general system parameter list is the sole source of initialization 
values. 

The operator selects the type of i.nitialization, which affects the data sets that are 

opened and their starting values. The type selected depends upon the reason the 

system has previously been shutdown: 


• 	 The cold start, the most complicated initialization process, involves reloading 
the link pack area, respecifying page and swap data sets, and deleting previous 
VIO data set pages. It is performed (by specifying the CLPA system 
parameter) under these circumstances: 

If this is the first initialization after system generation 
If the installation is adding or modifying modules in SYSl.LPALIB 
If the link pack area data set pages need to be restored 

• 	 The quick start, the usual initialization performed after normal shut-down, uses 
the link pack area from the previous system initialization without reloading it. 
The VIO data set pages are deleted, page data sets can be added, and swap 
data sets must be respecified. 

• 	 The wann start, the simplest initialization process, occurs after a system has 

completed a cold start but then has a system failure. The VIO data set pages 


Q,o.,­
-.­
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are retained, page data sets can be added, and swap data sets must be 
respecified. 

Initilllizing System Resources lind ResoU1'Ce MIIMgm 

Many resources and resource managers are initialized by the RIMs in the second 
phase of system initialization - in fact, too many to describe here. To give 
examples of the type of processing the RIMs perform, this chapter will describe the 
initialization of: 

• II0 devices 
• System catalog 

O! Auxiliary storage management (ASM) 


Inidllliz.ing I/O Devica 

To initialize the devices in the configuration the input/output supervisor (lOS) 
RIMs need to initialize two data areas: the unit control blocks (UCBs) and the 
installed channel path table (ICHPT). 

Each device is represented by a UCB that MVS/XA uses for device allocation and 
for controlling input/output operations. The lOS RIMs initialize the UCB for each 
device by setting status and condition flags. For direct access devices (DASDs), 
the lOS RIM also records volume information in the UCBs. Initialization of the 
UCBs requires several steps: 

• Initializing the channel subsystem 

f"... 	 Every device has one subchannel in every system to which it is attached. An 
lOS RIM initializes all valid subchannels by placing the subchannel number in 
the UCB of the corresponding device and enabling the appropriate subchannel 

Once the channel subsystem is initialized, an lOS RIM initializes the installed 
channel path table (ICHPT) to reflect the current state of each channel path, 
such as whether or not the channel path is online. 

• Testing the availability of a device 

The lOS RIM considers a device unavailable if it was (1) defined as offline 
during system generation or (2) defined as online but does not now have an 
available channel path. 

• Testing the accessibility of a device 

The lOS RIM tests the accessibility of each available device on all defined 
channel paths. Figure 11-8 illustrates a configuration in which II0 device X 
has a single channel path, and devices Y and Z have multiple channel paths. 
For a device to be accessible, there must be at least one channel path to that 
device. 

To test for accessibility, an lOS RIM requests an I/O operation on each 
defined channel path. The results of these I/O operations determine how a 
device can be accessed. For a DASD, the lOS RIM first verifies that there is 
an available channel path by issuing a dummy (no-op) command to determine 
whether it can communicate with the device. If so, the lOS RIM reads the 
volume label to determine the volume serial number and the location of the 
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volume table of contents (VTOC). For a shared DASD, an lOS RIM requests 
an I/O operation to determine if the device is actually shareable. Unavailable 
devices are not tested for accessibility. 

• Checking for duplicate volumes 

As the DASD DCBs are initialized, an lOS RIM scans the UCBs for online 
DASDs to verify that there are no duplicate volume serial numbers. If any 
duplicatc? volumes are found, a message asks the operator to remove one of 

. them. 
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lIIltializlng tM MastD' Catalog 

The master catalog is used to locate cataloged data sets and other catalogs. An 
entry for a cataloged data set contains the volume serial number and device type. 
The master catalog can contain entries for VSAM and non-VSAM data sets and 
VSAM and integrated catalog facility (ICF) user catalogs. 

During NIP. initialization routines can open data sets residing on the system 
residence volume whether or not the master catalog has been opened. However, 
they must use master catalog pointers to locate system data sets residing on 
volumes other than the system residence volume; and they cannot open or access 
these data sets until the master catalog is initialized. For example, before NIP can 
complete the opening of SYS1.LINKLIB and read from SYSl.PARMLIB, NIP 
must open the master catalog. 
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RIMs open, initialize, and close the master catalog at initialization time. The 
system operator receives the message: 

SPECIFY MASTER CATALOG PARAMETER 

and must identify the SYS1.NUCLEUS member that contains the volume serial 
number and the device type of the desired master catalog. As shown in 
Figure 11-9 the RIM then locates the UCB representing the device on which the 
volume is mounted. If the volume containing the master catalog is not mounted, 
the RIM issues a message that asks the operator to mount it. A RIM builds the 
necessary control blocks, then opens the data set and initializes it as the master 
catalog. 

SYSRES 

.~. 

.r"'., 

•
•• 

FIgure 11-9. LoeatIDg the Master Catalog 

After NIP processing finishes but before NIP terminates, it invokes a RIM to close 
the master catalog. After system initialization is complete, the first reference to a 
cataloged system data set causes the master catalog to be opened for normal use. 

]II/tUdizJng 1M Auxilillry StOl'tlge MIIIIIlgR 

The auxiliary storage manager (ASM) controls the auxiliary storage the systelll u~s 
for paging and swapping and requests I/O operations needed for paging and ­
swapping. To page efficiently, ASM divides paging requirements into pageable link 
pack area (PLPA), common, local pages and duplex. During system generation, 
the installation allocates, catalogs, and formats page data sets to meet its 
requirements for the four types of page data sets. System generation places the 
names of the data sets into the default system parameter list. Additional page data 
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Initializing Page Data Sets 

( 

Initializing Swap Data Sets 

sets can be specified in the alternate system parameter lists or supplied directly by 
the system operator at sy~tem initialization. 

Optionally, the names of installation-def::ted swap data sets and/or duplex 
(duplicate) data sets can be specified in the same manner. Also, the installation 
can indicate whether it wants VIO data sets to be reestablished when a subsequent 
system initialization is performed. 

After initialization, additional page and swap data sets can be dynamically added to 
the system. To do this, the system operator uses the PAGEAOD command and 
names the the page or swap data sets to be added. 

The ASM RIM opens and initializes page data sets according to the type of IPL 
start - cold, quick, or warm (described earlier in this chapter under "System 
Operator"). During a cold start, the PAGE system parameter in the default system 
parameter list specifies applicable page data set names. However, during IPL, the 
operator also receives the message: 

SPECIFY SYSTEM PARAMETERS 

and can use the PAGE parameter to specify additional page data sets. 

During a quick start, the link pack area is rebuilt, not reloaded. That is, the page 
and segment tables are reset to match the last-created link pack area. The PAGE 
. system parameter in the default system parameter list, or the operator response to 
system messages, supplies the applicable page data set names. 

During a warm start, the page data set names are those used in the previous system 
initialization, although the operator can use the PAGE parameter to specify 
additional data sets. 

Successful initialization of ASM requires that qne PLP A, one common, and at least 
one local page data set, be specified and available. Before initialization, however, 
all page data sets (up to a maximum of 64) must be allocated, cataloged, and 
formatted as VSAM data sets. 

The installation can, optionally, define a duplex data set that holds a duplicate copy 
of all pages written to the pageable link pack area (PLPA and extended PLPA) and 
common pagedata sets.~ The DUPLEX system parameter, contained in a system 
parameter list or specified directly by the system operator, specifies the duplex data 
set name. 

Swap data sets are optional, but their use can significantly improve performance. 
(If no swap data sets are specified, and swapping occurs, ASM directs the LSQA 
and working set pages of the swapped-out address space to a local page data set.). 
Swap data set names are specified by the SWAP system parameter in one of the 
system parameter lists or supplied directly by the operator. Unlike the PAGE 
parameter, the SWAP parameter is an overriding parameter that permits the 
replacement of data set names specified in the system parameter lists. 
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Initializing the Master Scheduler 

Master scheduler initialization is the third and final phase of the system 
. initialization proct:ss. As shown in Figure 11-10, it consists of three steps: 

1. Initializing the master scheduler base 
2. Initiating the master scheduler 
3. Initializing the master scheduler region 

NIP 

(2) ,-'E-I_---. 
Master scheduler 

Base initialization 

o .---.....:&.._--, 
I-________--,~J Subsystem interface J 

~-IL-___-r-_---' 

Initiator r--.....~."...,....,,~.-/
SYS1.PARMLIB 

I Master subsystem ~====~~'\roo ~ 
I~------------~· MSTJCLxx 

" --COMMNDxx 
I Device allocation I '­
I 

0) 
~---~-------, 

Master scheduler 

Region initialization 
A 

Master scheduler 

Wait 

L--___---______________________________________________________________~.~ 

FIgure 11-10. Master Scheduler Initialization 
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Initializing the Moster Scheduler BQSI! 

The master scheduler base initialization routine is entered from NIP processing. It 
loads routines required by system-initiated cancel, SWA management, and resource 
management routines. It creates and initializes the control blocks needed to invoke 
the initiator, a system program that starts a job step. Then, it locates and stores 
entry points for certain jobscheduler routines. It initializes the subsystem 
interface, the communications task, and some TSO addresses and parameters. It 
performs master trace initialization, sets the time-of-day clocks, and, finally, it 
attaches the initiator to initiate the master scheduler. 

Initiflting the Moster Scheduler 

Before attaching the master scheduler region initialization routines that initiate the 
master scheduler, master scheduler initialization starts tasks that remain as a 
permanent system tasks. These include the missing interruption handler (MIH) and 
error recovery routines. At this point, no JES readers are active and no procedure 
libraries are open. So, the initiator gets the JCL necessary for attaching the master 
scheduler region initialization routines from the MSTJCLxx member of 
SYS 1.PARMLIB. 

To read and process MSTJCLxx, the initiator invokes, through the subsystem 
interface, the master subsystem - a primitive job entry subsystem. The master 
subsystem, reads MSTJCLxx and invokes job scheduler routines to process th~ 
JCL and initialize the necessary control blocks. The last statement in MSTJCLxx 
is a command to START JES. This command is passed to the command processor 
portion of the master scheduler and scheduled for execution. 

The initiator uses the device allocation routines to allocate the data sets indicated in 
MSTJCLxx and required by the master scheduler (data sets such as 
SYSLPROCLIB and SYSl.PARMLIB). These data sets are required when JES is 
subsequently started. Two internal reader data sets are also allocated. They are 
used later to pass JCL from system routines to JES. Lastly, the initiator attaches 
master scheduler region initialization as the job step task. The master scheduler is 
now active. 

Initializing the Moster Scheduler Region 

The region initialization routine attaches other tasks to be run in the master 
scheduler region and passes commands found in SYS1.P ARMLIB to the command 
processor for execution or scheduling. These commands are contained in a 
command list (COMMNDxx, a member of SYSl.PARMLIB). Because there can 
be multiple command lists, the CMD system parameter is used to tell master 
scheduler initialization which list to use. 

After master scheduler initialization completes, control passes to the master 
scheduler; the master scheduler waits for individual system commands to be issued 
and then activates the processing of each command. When the START JES 
command appears in MSTJCLxx, the master scheduler starts the initialization of 
the job entry subsystem. 
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Initilllizing the Job Entry Subsystem 
, 

The process of initializing the job entry subsystem (JES) consists of: 

1. 	 Creating an address space for JES 

2. 	 Initializing a region control task (RCT) to ready the JES address space for 
execution 

3. 	 Building JCL statements that invoke the JES initiation procedure 

4. 	 Passing the JCL to an initiator 

Creating an Address Space for JES 

Creating an address space for JES is similar to creating any address space. The 
master scheduler attaches the address space create routine. ,This routine asks the 
system resources manager (SRM) if a new address space can be created, and, upon 
receiving permission to proceed, builds LSQA in the private area and initializes 
segment tables and page tables to represent the new address space. Lastly, the. 
address space create routine builds task control blocks for a region control task 
(RCT) and places the address space control block (ASCB) on the dispatching 
queue. When JES3 is the primary job entry subsystem, a second JES3 address 
space, JES3AUX, can be created after master scheduler initialization completes. 

Initializing the Region Control Task 

The region control task (RCT) is the highest priority task in the new address space. 
RCT controls the address space and prepares it for execution. It has responsibility 
for attaching the started task control (STC) routine and managing the swapping 
activity of the address space. Therefore, when the JES address space becomes 
active, the first task dispatched is the RCT. After the RCT is initialized, it attaches 
the STC to initiate JES. 

Initiating JES 

The START JES command causes the STC routine to build the JCL necessary to 
invoke the JES proc~dure. Then STC starts the job entry subsystem. 

The initiator invokes the master subsystem, which uses job scheduler routines much 
as it did when initiating tHe'master scheduler. However, to start JES, the initiator 
uses the hitemal JCL built by STC rather than MSTJCLxx. 

After all JCL has been processed and after job scheduler control blocks have been 
built in the SW A, the initiator calls device allocation to allocate the data sets 
specified in the JES procedure. Then, using the program name from the EXEC 
statement of the JES procedure, the initiator attaches the primary job entry 
subsystem. JES is started and MVS/XA is ready for work. 

Initilllizing the Time Sluuing Option (TSO) 

When TSO sessions are part of an installation's workload, TSO must be initialized 
before TSO 10gons can be accepted. TSO initialization requires two steps. 

First, an operator START command starts the telecommunication access method 
(TCAM or VT AM) selected by the installation. (These telecommunication access 
methods are described in more detail in Chapter 7, "Satisfying I/O Requests") The 
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master scheduler recognizes the START command and creates an address space for 
the access method. 

For TCAM~ the operator must next enter the MODIFY command to activate the 
terminal I/O controller (TIOC) as a subtask of TCAM. 

For VTAM, the operator must enter a second START command to activate the 
terminal control address space (TCAS). Once either of these commands has been 
processed, TSO users can LOGON. 

Creating User Address Spaces 

Batch jobs, entered by means of card readers or similar unit record devices, the 
TSO SUBMIT command, or other running jobs, run in an initiator's address space. 
Jobs entered by means of the START, MOUNT or LOGON command run in their 
own address space. 

The operator issues a START command to run any of the user or IBM-supplied 
programs whose JCL is stored in the system library, SYSl.PROCLIB. The 
operator issues the MOUNT command to run programs that affect the attributes of 
I/O devices such as whether they are available for public or private access. All 
system users with a TSO identification give the LOGON command to begin an 
interactive computing session at a terminal. 

When a START, MOUNT, or LOGON command is issued, the master scheduler 
uses other system components to create a new address space and a task that 
performs the requested function in the address space. Figure 11-11 summarizes 
the process of creating an address space. 
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Ffaure 11-11. Creating an Address Space 
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The address space creation routine, operating in the master scheduler's address 
space, assigns an address space identifier (ASID) to the new address space and 
creates contr,ol blocks for it. Then the routine notifies the system resources 
manage, (SRM) that a new address space is to be created. SRM decides (based on 
the availability of system resources) whether the creation of an address space 
should be allowed. 

f"'\ 

If system conditions are unfavorable for creating a new address space (such as 
when there is a shortage of auxiliary storage, page able frames, or SQA), SRM does 
not allow the address space to be created. Instead, the address space creation 
routine releases the ASIO and frees the storage used by the control blocks. The 
operator receives a message indicating that the address space could not be created. 

If current system conditions are favorable to creating the new address space, the 
address space creation routine invokes the virtual storage manager (VSM) to assign 
virtual storage and set up addressability for the address space. VSM builds a local 
system queue area (LSQA) and calls RSM to set up a segment table, a page table, 
and external page tables in it. VSM also creates control blocks to operate the 
region control task (RCT) for the address space. 

/\ 

Next, the RCT receives control in the new address space. There is one RCT in 
each address space. When the address space is created, the RCT is the only task 
associated with it. The RCT builds control blocks that further define the address 
space, then attaches the started task control (STC) routine. 

STC determines which command is being processed (START, MOUNT, or 
LOGON), builds in-storage JCL for the task associated with the command, then 
passes the JCL to the job entry subsystem. 

For a TSO user, the LOGON initialization routine verifies all the user-supplied 
LOGON parameters, prompts the user for any additional ones, and builds the JCL 
necessary to invoke the LOGON procedure. LOGON initialization then passes this 
JCL to the job entry subsystem. 

The job entry subsystem reads the job, scans the JCL and writes it on a spool data 
set, invokes the converter to transform the spooled JCL into internal text, queues 
the job on an internal queue, and assigns a job 10, which it returns to STC. 

Next, STC uses its initiator subroutine to pass this job 10 back to the job entry 
subsystem with a request to prepare the job for execution. The job entry 
subsystem invokes the interpreter to build and initi~e the scheduler control 
blocks for the address space from the internal text cr~ated by the converter. Upon 
return from the job entry subsystem, the initiator subroutine invokes the allocation 
routines and then issues an ATTACH macro instruction for the task related to the 
address space: any STARTed program, the MOUNT command processor 
(MOUNT), or the terminal monitor program (TMP) for a LOGON request. 

TMP is the program that controls the interchange of user commands with TSO. 
After the TMP starts, and you, the TSO user, have logged on, the READY message 
appears; MVS/XA awaits your command. 
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initiation 7-13 

interruption handlinl6-3 

poststatus 7-14 


I/O supervisor block (lOSB) 7-13,7-15 
IEAIPSxx 

See SYS1.PARMLIB 
IEAOPTxx 

See SYS1.PARMLIB 
IEASYSxx 

See SYS1.PARMLIB 
IEASYSOO 

See Default aeneral parameter lise 
See SYS1.PARMLIB 

Indexed sequentialllClCCSl method (ISAM) 7-20 

Information management system (lMS) 7-3,7-18 

Initial microproaram load (IML) 11-2 

Initial proaram load (IPL) 11-3, 11-6 


initializing real storaae 11-9 

iniUalizinl the IPL device 11-10 

initializing virtual storaae 11-8 
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IPL program 11-7 

IPL resource initialization module (lRIM) 11-4, 11-7 

loading the nucleus 11-7 

real storage manager (RSMj 11-8 


Initialization process 

See also Initial program load (IPL) 

See also Master scheduler 

See also Nucleus initialization program (NIP) 

phases of 11-3 

required resources 11-5 


Initializing the system 11-1 

Initiator 8-4 

Initiator subroutine 


See Started task control (STC) 
~nput 

defined 7-1 

Input stream 8-1,8-2 

Input/output block (lOB) 7-11 

Installation performance specification (IPS) 1-7,5-1,5-4,5-7 

Installed channel path table (ICHPT) 11-13 

Integrated catalog facility (ICF) 11-14 

Inter-address space communication 


See also Cross memory 

asynchronous 3-9,6-8 

synchronous 3-9 


Interactive problem control system (IPCS) 9-2,9-9,9-10 

Interactive processing 1-8 

Internal reader 8-2 


STCINRDR 8-3 

TSOINRDR 8-3 


Interpreter 8-7, 11-22 

Interprocessor communication (lPC) 4-5 


hardware-initiated 4-6 

MVS/XA-initiated 4-5 


Interrupt response block (lRB) 7-14 

Interruption 
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I/O interruption 6-2,6-3, 6-8 
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program interruption 6-2,6-4 

restart interruption 6-2, 6-4 

supervisor call (SVC) interruption 6-1, 6-3, 6-6 

types 6-1 


Introduction to MVS/Extended Architecture 1-1 
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See Page table 

lOS 

See I/O supervisor (lOS) 
See Subchannellogout handler (SLH) 

IPC 
See Interprocessor Communication (IPC) 

IPCS 
See Interactive problem control system (IPCS) 

IPL 
See Initial program load (IPL) 

IPL device 
See Initial program load (IPL) 

IPL resource initialization module (IRIM) 
See IPL 

IPS 
See Installation performance specification (IPS) 

IRIM 
See IPL resource initialization module (IRIM) 

ISAM 
See Indexed sequential access method (ISAM) 

J 

JCL 
See Job control language (JCL) 

JES2 1-9 

See also Job entry subsystem (JES) 

chained job scheduler (CJS) 8-9 

compared with JES3 8-14 

converter 8-3 

device allocation 8-4 

execution batch scheduling 8-8 

independent control 8-9 
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job scheduling 8-6 

job step allocation 8-4 

multi-access spool configuration 8~9 


JES3 1-9 

See also Job entry subsystem (JES) 

centralized control 8-10 

channel-to-channel (CTC) adapter 8-10 

compared with JES2 8-14 

converter/interpreter 8-3 

deadline scheduling 8-8 

dependent job control 8-9. 

device allocation 8-4, 8-5 

device fencing 8-5 

global processor 8-10 

JES3AUX address space 11-19 

job scheduling 8-7 

local processor 8-10 

single system image 8-11 


Job 
defined 8-1, 9-1 


Job class 8-1 

Job class group 8-5 

Job control language (JCL) 1-9,3-4 


See also Data control block (DCB) 

See also DD statement 

See also EXEC statement 

See also Job file control block (JFCB) 

See also JOB statement 

CLOSE processing 7-10 

conversion 8-3 

default parameters 9-3 

execution-batch-scheduling 8-8 

function 8-1 

interpretation 8-3 
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SYS l.PROCLIB 8-3 

XBATCH procedure 8-8 


Job entry subsystem (JES) 1-9,9-1,11-22 

See also Master scheduler 

comparing JES2 and JES3 8-14 

function 8-1 

in a multi-system environment 8-9 
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initiating 11-19 
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Job entry subsystem (JES) address space 3-8,11-4,11-19 
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Job networking 8-12 

control of job entry processing 8-9 
multiprocessor configurations 8-11 

. node 8-9 
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system operation 8-11 


Job queue 8-6 
Job scheduling 8-8 

See also Job entry/output processing 
JOB statement 3-3, 3-4, 8-3 
Job step allocation 8-4 

See also Device allocation 

K 

Key assignments 2-12 
Key switching 2-13 
KeyO 6-7,10-2 
Key-sequenced data set 7-21 

L 

Library 
See also Partitioned data set (PDS) 
See also SYSl.PROCLIB 
SYS1.LINKLIB 11-5 
SYSl.SVCLIB lI-S 

Linklist lookaside (LLA) 3-4 
LNKLST lookaside (LLA) address space 3-8 
LOAD function 

See System operator 
Load PSW (LPSW) instruction 6-9 
Local processor 8-10 
Local system queue area (LSQA) 3-5,11-6,11-19. 
Lock 6-9 

See also Spin lock 

See also Suspend lock 

global 6-10 

hierarchy 6-10 

local 6-10 


Lock hierarchy 6-10 
Locking 6-10 

See also Lock 
Logical control units 7-4 
Logical path 5-6 

balanced use of 5-6 
LOGON 

See Demand select 
See Time sharing option (TSO) 

Loosely-coupled multiprocessing 4-1 
LSQA 

See Local system queue area (LSQA) 

M 

Machine check handler (MCH) 4-6,10-3 
Machine check interruption 6-2 
Machine check interruption handler 6-4 
Macro instruction 

defined 1-6 
Managing system resources 5-1 
Master catalog 1I-5, 1I-14 

defined 1-8 
Master console 11-1, 11-5 
Master scheduler 3-7,11-3 

See also Nucleus initialization program (NIP) 

address space creation 11-21 
address space initialization 11-4 
creating an address space for JES 11-19 
creating user address spaces 11-20 
extended LSQA 11-8 
initializing the job entry subsystem (IES) 11-19 
initializing the master scheduler base 11-18 
initializing the master scheduler region 11-18 
initializing the time sharing option (TSO) 11-19 
initiating 11-18 
initiating IES 11-19 
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segment table 1I-8 
steps in initializing 1I-3, 11-17 

Master subsystem 1I-18,11-19 
Master trace 9-13; 9-20 

See also Tracing facilities 
Master trace table 9-19 
MCH 

See Machine check handler (MCH) 
MCS 

See Multiple console support (MCS) 
Mean-time-to-wait (MTTW) 

See also Dispatching priority 
defined 5-6 

Member 7-19, 7-20 
See also SYS1.PARMLIB 
defined 1-8 

MEMTERM 
See CALLRTM macro 

MIH 
See Missing interruption handler (MIH) 

Missing interruption handler (MIH) 7-14, 10-3, 10-5, 11-18 
MLPA 

See Modified link pack area (MLPA) 
Modem 7-3 
Modified link pack area (MLP A) 3-6 
MODIFY command 

See Resource measurement facility (RMF) 
Monitor call instruction (MC) 9-17 . 
MOnitoring system activity 9-1 
MOUNT command 8-3 

See also Demand select 
MP 

See MP system 
See Multiprocessor 

MP system 4-1,4-2,4-3,4-4,4-5,4-6 
See also Multiprocessing 
See also Multiprocessor 

MPL 
See Multiprogramming level (MPL) 

MSTJCLxx 
See SYS1.PARMLIB 

MTTW 
See Mean-time-to-wait (MTTW) 

MUlti-access spool configuration 
See Job networking 

Multi-system complex 
See lob networking 

Multiple console support (MCS) 1-7 
Multiple virtual storage 

See MVS (Multiple virtual storage) 
Multiprocessing 1-1,4-1,8-9 

See also Dyadic processing 
See also Loosely-coupled multiprocessing 
See also Tightly-coupled multiprocessing 
global resource serialization 6-10 
inter-address space communication 6-8 
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Multiprocessor 3-2 


See also MP system 

defined 4-1 


Multiprogramming 1-1 

See also Supervisor 

controlling 6-1 


Multiprogramming level (MPL) 5-3, 5-7 

target 5-3 


MVS (multiple virtual storage) 2-1 

defined 1-2 
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address spaces 3-1 

entering and scheduling work 8-1 

I/O and data management 7-1 

initializing the system 11-1 
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locks 6-11 

monitoring system activity 9-1 

multiprocessing environment 4-1 

recovering from errors 10-1 

resource management 5-1 

storage management 2-1 

supervising the execution of work 6-1 


MVS/XA Overview 
See MVS/Extended Architecture Overview 

N 

Network job entry (NIB) 8-13 

Networking 8-12 

NIP 

See Nucleus initialization program (NIP) 
Node 

See Job networking 
Non-preemptive unit of work 

See Task 
Nucleus 2-1,3-6,11-2 


OAT-off 3-6,11-7,11-9 

OAT-on 3-6,11-7,11-9 

OAT-on, read-only 11-7 

OAT-on, read-only extended 11-7 

OAT-on, read-write 11-7 

OAT -on, read-write extended 11-7 


Nucleus initialization program (NIP) 11-4,11-10 

establishing the master scheduler address space 11-11 

initializing I/O devices 11-13 

initializing page data sets 11-16 

initializing swap data sets 11-16 

initializing system resources and resource managers 11-13 

initializing the auxiliary storage manager 11-15 

initializing the master catalog 11-14 

processing system parameters 11-11 

system operator 11-12 

system parameter list 11-12 


Nucleus map (NUCMAP) 11-7 


o 

Offline 

defined 1-7 


Online 

defined 1-7 


OPEN macro 7-6,7-8 

OPEN processing 


data control block (OCB) 7-8 

data extent block (DEB) 7-8 


data set control block (OSCB) 7-8 

job file control block (JFCB) 7-8 


Operating system 

defined 1-1 

MVS/XA 1-1,9-1 

MVS/370 1-1 

simple 9-1 


Operation request block (ORB) 7-13 

Operator commands 11-1 


See also System operator 

CHNGOUMP command 9-9 

CONFIG command 4-3, 4-5 

DISPLAY M command 4-4 

DUMP command 9-10 

MODIFY command 11-20 

MOUNT command 11-20, 11-22 

PAGEADO command 11-16 

START command 9-17,11-19,11-20,11-22 

START GTF command 9-13 

STOP command 9-17 

STOP GTF command 9-13 

TRACE command 9-13 

VARY command 4-3 


Operator console 

defined 1-7 


Output 

See Job entry/output processing 


Output class 8-1 


P 

Page 2-3 

Page data set 11-5 


common 11-6 

duplex 11-6 

initializing 11-16 

local 11-6 


Page fault 2-7,7-17 
Page fixing 2-14,7-13 
Page frame table 2-10,2-14 

initializing 11-8 

Page stealing 2-9, 5-1 

PAGE system parameter 11-16 

Page table 2-5,2-14 


. invalid bit 2-8 

protection bit 2-11 


Page-in 2-8 

Page-out 2-8,7-13,7-17 

Pageab\e link pack area (PLPA) 3-5, 11-6 

PAGEADO command 


See Operator commands 
Paging 2-7 


See also Resource measurement facility (RMF) 

defined 2-3 

VlO 7-16,7-17 


Paging process 

See Paging 


Partitioned data set (PDS) 1-8 

member 7-19 


PC/AUTH 

See Program call authorization (PC/AUTH) 


POS 

See Partitioned data set (POS) 


Percolation 10-2 

PLPA 


See Pageable link pack area (PLP A) 

Post status 7-15 


~.. 

X-6 MVS/Extended Architecture Overview 



PRDMP 

See Print dump (PRDMP) 


Preemptive unit of work 

See Task 


Prefix save area (PSA) 2-1,3-2,4-4, 11-9 

Prefixing 3-2, 4-4 

Print dump (PRDMP) 9-2,9-9,9-10,9-16 


EDIT function 9-17 

Priority 8-1 

Priority aging 8-8 

Private area 3-2 

Processor activity 


See Resource measurement facility (RMF) 

Processor communication 


See Interprocessor communication (lPC) 

Processor complex 8-9 

Program call authorization (PC/AUTH) 3-7, 11-4 

Program check first-level interruption handler (PCFLIH) 9-13 

Program controlled interrupt (PCI) 7-9,7-14 

Program interruption 6-2 


generalized trace facility (GTF) 6-4 

real storage manager (RSM) 6-4 

recovery termination manager (RTM) 6-4 

serviceability level indication processing (SLIP) 6-4 

specify program interruption element (SPIE) macro 6-4 

user-provided exit 6-4 


Program interruption handler 6-4 

Program status word (PSW) 2-1,2-12,3-4,6-2,6-9,9-21 


current 1-5,6-2 

defined 1-5 

interruption processing 6-2 

new 6-2 

old 6-2 

switching 6-2 


.~. Protecting storage 2-11 

Protecting system resources 6-9 

Protection bit 


See Page table 

PSA 


See Prefix save area (PSA) 

PSW 


See Program status word (PSW) 

Purge 


See Job entry/output processing 

PUT macro 7-6,7-9,7-11,7-19,7-20 


Q 

Queued sequential access method (QSAM) 7-20 

Quick start 11-12 


R 

RACF 

See Resource Access Control Facility (RACF) 


RCT 

See Region control task (RCT) 


READ macro 7-6,7-9,7-11,7-19,7-20 

Real storage 1-3 


See also Initial program load (IPL) 

See also Storage 


Real storage manager (RSM) 2-14,5-5, 11-2 

See also Initial program load (IPL) 

RSM control block initialization 11-4 

RSM IRIM 11-4 


RECEIVE macro 7-20 

Reclaim 2-8 

Reconfiguration 4-2 


logical 4-3 

physical 4-3 


Recovering from errors 10-1 

Recovery 


See also Alternate CPU recovery (ACR) 

See also Dynamic device reconfiguration (DDR) 

See also Functional recovery routine (FRR) 

See also Machine check handler (MCH) 

See also Missing interruption handler (MIH) 

See also Subchannellogout handler (SLH) 

See also Task recovery routine 

hardware 10-3 

objectives 10-1 

software 10-1 


Recovery management 

introduction 1-9 


Recovery termination manager (RTM) 6-4,9-21, 10-1, 10-3 

reasons for invoking 10-1 


Reference bit 2-10 

Region control task (RCT) 3-5,6-6,11-19,11-22 

REGION parameter 3-3 

Relative record data set 7-21 

Remote job entry (RJE) 1-8 


binary synchronous communication (BSC) 8-2 

system network architecture (SNA) 8-2 


Required data set 

IPL resource initialization module (IRIM) 11-5 

master catalog 11-5 

nucleus initialization program (NIP) 11-5 

resource initialization rpodule (RIM) 11-5 

SYSI.LINKLIB 11-5, 11-14 

SYSI.LOGREC 11-5 

SYSI.LPALIB 11-5 

SYSI.NUCLEUS 11-5 

SYSI.PARMLIB 11-5 

SYSI.STGINDEX 11-5 

SYSI.SVCLIB 11-5 


RESERVE macro 6-1,6-9 

Residence mode 


RMODE program attribute 2-1,2-2 

Resource access control facility (RACF) 6-9 

Resource initialization module (RIM) 11-4, 11-10 

Resource management 


initializing the resource managers 11-3 

introduction 1-6 


Resource measurement facility (RMF) 5-4, 9-2, 9-4, 9-6 

address space activity 9-5 

ASM/RSM/SRM trace activity 9-5 

channel path activity 9-5 

cycle 9-5 

delay 9-5 

domain activity 9-5 

enqueue activity 9-5 

exact count 9-5 

MODIFY command 9-6 

monitor I session 9-5 

monitor II session 9-5 

monitor III session 9-5 

page/swap data set activity 9-5 

paging activity 9-5 

processor activity 9-5 

real storage/processor/SRM activity 9-5 

RMFMON command 9-6 

RMFWDM command 9-6 

sampling 9-5 

session 9-4 

START RMF command 9-6 

transaction activity 9-5 
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virtual storage activity 9-5 

workflow activity 9-5 

workload activity 9-5 


Resources 
See also Device allocation 
See also Resource management 
categories 5-1 
initializing 11-2 
protected 6-9 
required during initialization 11-5 
serializing 6-9 
service rates 5-4 
service units 5-4 
use threshold 5-7 

Response time 5-1 
Restart interruption 6-2 
Restart interruption handler 6-4 
RESTART key 4-5 
RIM 

See Resource initialization module (RIM) 
RJE 

See Remote job entry (RJE) 
RMF 

See Resource measurement facility (RMF) 
RMFMON command 

See Resource measurement facility (RMF) 
RMFWDM command 

See Resource measurement facility (RMF) 
RMODE 

See Residence mode 
Rotate priority 

See also Dispatching priority 
defined 5-6 

RSM 
See Real storage manager (RSM) 

RTM 
. See Recovery termination manager (RTM) 

S 

SADMP 
See Stand-alone dump (SADMP) 

Satisfying I/O requests 7-1 
Saving status 6-3,6-9 
SCHEDULE macro 6-7,6-8,7-14 
Scheduler work area (SWA) 3-4,11-19 
Scheduling a job for execution 

See also Job entry/output processing 
chained job scheduler 8-9 
deadline scheduling 8-8 
dependent job control 8-9' 
execution batch scheduling 8-8 
JES2 8-6 
IES3 8-7 
priority aging 8-8 

SDUMP macro 9-10 
Second level interruption handler (SLIH) 1-6 
Segment fault 2-7 
Segment table 2-5 

See also Master scheduler 
common 11-8 

Segment table origin register (STOR) 2-6 
Selective processor enablement 7-15 
SEND macro 7-20 
Sequential access 1-8 
Serialization 

function of 6-9 
techniques 6-9 

Serializing the use of resources 6-9 

Service aid 
See also Dumping facilities 
See also Print dump (PRDMP) 
See also Stand-alone dump (SADMP) 
IFCDIPOO program 9-25 

Service rates 
defined 5-4 

Service request block (SRB) 6-1,6-5,7-14,9-1, 10-2 
defined 6-7 
functional recovery routines 10-2 
global 6-8 
local 6-8 

Service units 
defined 5-4 

Serviceability level indication processing (SLIP) 6-4, 9-2, 9-20 
actions 9-22 
error events 9-21 
program event recording (PER) 9-21 
SLIP command 9-20 
SLIP trap 9-20 

SETFRR macro 
See Functional recovery routine (FRR) 

Shoulder-tapping 4-5 
Signal processor (SlOP) instruction 4-5 

emergency signal (EMS) 4-6,10-3 

restart function 4-5 

restart instruction 6-2 

sense instruction 4-5 

shoulder tapping 4-5 

stop function 4-5 


SlOP 
See Signal processor (SlOP) instruction 

Single system image 4-2 
See also Job networking 

SLH 
See Subchannellogout handler (SLH) 

SLiH 
See Second level interruption handler (SLlH) 

SLIP 
See Serviceability level indication processing (SLIP) 

SLIP command 
See Serviceability level indication processing (SLIP) 

SLlPtrap 
See Serviceability level indication processing (SLIP) 

Slot 2-3 
SMF 

See System management facility (SMF) 
SMFPRMxx 

See SYSl.PARMLIB 
SNA 

See System network architecture (SNA) 
SNAP dump 9-2,9-8,9-16,9-17 

See also Dumping facilities 
Special exits 6-8 
Specify program interruption element (SPIE) macro 6-4 
Specify task abnormal exit (STAB) macro 10-2 
SPIE 

See Specify program interruption element (SPIE) macro 
Spin lock 

global 6-10 
Spin-off data set 8-6 
Spool 8-1, 8-9 
SQA 

See System queue area (SQA) 
SRB 

See Service request block (SRB) 
SRM 

See System resources manager (SRM) 
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STAE 
See Specify task abnormal exit (ST AE) macro 

STAI 
See Subtask ABEND intercept (ST AI) parameter 

Stand-alone dump (SADMP) 9-2,9-8,9-17 

See also Dumping facilities 

high-speed 9-11 

low-speed 9-11 


START command 9-17 

See also Demand select 

See also Operator commands 


START GTF command 
See Operator commands 


START JES command 11-18 

START RMF command 


See Resource measurement facility (RMF) 

Start subchannel (SSCH) 7-12 

Started task control (STC) 11-1~, 11-22 


initiator subroutine 11-22 

State 


problem 1-5 

supervisor 1-5, 6-7 


STCINRDR 

See Internal reader 


STOP command 9-17 

See also Operator commands 


STOP GTF command 

See Operator commands 


STOP key 4-5 

STOR 


See Segment table origin register (STOR) 
Storage 


See also Address space 

See also Initial program load (IPL) 

See also Stand-alone dump (SADMP) 

See also System resources manager (SRM) 

auxiliary 1-3, 2-3 

auxiliary storage manager (ASM) 2-14 

frame 2-3 

managers 2-13,2-15 

page 2-3 

protection 2-11 

real 1-2, 2-3 

real storage manager (RSM) 2-14 

slot 2-3 

virtual 1-2, 1-3,2-1,2-3 

virtual address 2-5 

virtual storage manager (VSM) 2-15 


Storage protect key 2-11,2-12 

assignments 2-12 

switching 2-13 


Storage protection 2-11 

Subchannel ID number 7-5,7-13 

Subchannel information block (SCHIB) 7-14 

Subchannellogout handler (SLH) 10-3,10-4 

Subpool 2-14,3-4 

Subpool229 


See Authorized user key (AUK) 
SubpooJ230 

See Authorized user key (AUK) 
Subsystem 

defined 1-9 

Subsystem interface (SSI) 1-9, 11-3, 11-18 

Subtask ABEND intercept (STAI) parameter 10-2 

Supervising the execution of work 6-1 

Supervisor 1-3,6-1,6-6 


dispatcher 6-8 

state 6-7 


Supervisor call (SVC) 6-3 

ATTACH SVC routine 6-6 


GETMAIN 6-1 

OPEN 6-1 

WAITSVC 6-9 

WTO/WTOR 6-1 


Suspend lock 

global cross-memory-services 6-10 

local locks 6-10 


SVC 
See Supervisor call (SVC) 

SVC dump 9-2, 9~8, 9-16, 9-17 

See also Dumping facilities 

SYSl.DUMPxx output data set 9-10 


SVC interruption 6-1,7-11 

SVC request block (SVRB) 6-3 

SWA 


See Scheduler work area (SWA) 
Swap analysis 5-3 


See also System resources manager (SRM) 

ENQ exchange 5-3 

exchange swap 5-3 

unilateral swap-in 5-3 

unilateral swap-out 5-3 


SWAP command 10-5 

Swap data set 11-6, 11-16 


initializing 11-16 

Swap recommendation,value (RV) 5-3 

Swapping 2-11,5-1 


See also Resource. measurement facility (RMF) 

Switching storage protect keys 2-13 

SYSABEND 


See SYSl.PARMLIB 

SYSEVENT macro 


categories 5-2 

SYSMDUMP 


See SYSl.P ARMLIB 

SYSOUT 8-9 

System command 1-7 

System component 


address spaces 3-7, 11-4 

defined 1-9 


System console 1-7 

System generation 11-1 

System management facilities (SMF) 9-2, 9-4 

System management facilities (SMF) address space 3-8, 11-4 

System network architecture (SNA) 7-21,8-13 


See also Remote job entry (RIE) 
System operator 11-12 


LOAD function 11-2 

loading the nucleus 11-2 


System parameters 
defined 1-7 


System queue area (SQA) 3-6, 5-5, 11-8 

System region 3-3 , 

System residence volume (SYSRES) 1-8,9-25,11-1,11-5,11-10 


See also SYSl.LOGREC error recording 

nucleus 11-5 

SYSl.NUCLEUS 11-5,11-7.11-15 

SYSl.SVCLIB 11-5 


System resources manager (SRM) 2-11, 11-19 

available frame queue 5-5 

communicating with 5-2 

creating an address space 11-22 

decisions 5-1 

defined 5-1 

domain 5-3 

functional areas 5-1 

I/O management 5-6 

introduction 1-6 
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multiprogramming level (MPL) 5-3 

objectives 5-1 

page stealing 5-5 

processor management 5-6 

resource manager 5-2,5-4 
resource monitoring 5-7 

service rates 5-4 

service units 5-4 

SRM control 5-1, 5-3 

storage management 5-5 

swap analysis 5-3 

workload manager 5-1, 5-4 


System trace 9-13, 9-16 

See. also Tracing facilities 

System trace table 9-15 

SYSUDUMP 

See SYSl.PARMLIB 
SYSl.DUMPxx 

See SVC dump 
SYS 1 :LINKLIB 

See Library 
See Required data set 

SYSl.LOGREC 10-3 

See also Required data set 

SYSl.LOGREC error recording 9-2, 9-24, 9-26 

function 9-24 

steps in 9-25 

SYS1.LOGREC data set 9-24 


SYS 1.~PALIB 
See Required data set 

SYSl.NUCL~US 
See IPL Resource initialization module (lRIM) 
See Required data set 
See System residence volume (SYSRES) 


SYSl.PARMLIB 1-7,7-14,11-5,11-11,11-14 

initialization parameters 11-5 

member COMMNDxx 11-18 

member GTFPARM 9-17 

member IEAIPSxx 5-1 

member IEAOPTxx 5-1 

member IEASYSxx 3-4,11-10 

memberIEASYSOO 1-7,11-12 

member MSTJCLxx 11-18 

member SMFPRMxx 9-2 

member SYSABEND 9-9 

member SYSMDUMP 9-9 

member SYSUDUMP 9-9 


SYSl.PROCLlB 8-3 

SYS1.STGINDEX 


See Required data set 

SYSl.SVCLlB 


See Library 
See Required data set 
See System residence volume (SYSRES) 

T 

Task 
See also CALLRTM macro 
See also Service request block (SRB) 
See also Task control block (TCB) 
abnormalterrnination 10-1 

defined 1-3 

non-preemptive 6-4, 6-8 

preemptive 6-4 

subtask 6-6 

subtask of region control task (RCT) 6-6 


Task control block (TCB) 6-1,6-5,6-6,9-1 

Task I/O table (TIOT) 7-8 


Task management 

.introduction 1-3 


Task recovery routine 

extended specify task abnormal exit (ESTAE) macro 10-2 

extended subtask ABEND intercept (ESTAI) parameter 10-2 


TCAM 

See Telecommunication access method (TCAM) 


TCB 

See Task control block (TCB) 


Telecommunication 7-2,7-3,7-7 

Telecommunication access method (TCAM) 11-19 


terminal I/O controller (TIOC) 11-20 

Telecommunication access methods 


basic telecommunication access method (BTAM) 7-20 

function 7-20 

message 7-20 

telecommunication access method (TCAM) 7-20 

virtua'! telecommunication access method (VTAM) 7-20 


Terminal control address space (TCAS) 
SeeVTAM 

Terminal I/O controller (TlOC) 
SeeTCAM 

Terminal monitor program (TMP) 
See Time sharing option (TSO) 


Test pending interrupt (TPI) instruction 7-14 

Throughput 5-1 

Tightly-Coupled multiprocessing 4-2 


configuring a system 4-2 

control of processing 4-4 


Time sharing option (TSO) 7-3, 11-19, 11-22 

See also Resource measurement facility (RMF) 

See also User 

job control language (JCL) 11-22 

LOGON command 11-20, 11-22 

LOGON initialization routine 11-22 

SMF records 9-2 

terminal monitor program (TMP) 11-22 


Time-of-day (TOD) clock 4-6 

TLB 

See Translation lookaside buffer (TLB) 
TOD 

See Time-of-day (TOD) clock 

Trace address space 3-8, 11-4 

TRACE command 9-14,9-19 


See also Operator commands 

Trace facilities 

TRACE verb 9-16 

Tracing 


defined 9-13 

Tracing facilities 


generalized trace facility (GTF) 9-16 

master trace 9-19 

system trace 9-14 


Track 7-17 

Transaction activity 


See Resource measurement facility (RMF) 

Translation lookaside buffer (TLB) 2-7 

TSO 

See Time sharing option (TSO) 
TSOINRDR 

See Internal reader 

Turnaround time 5-1 

Two-levellookup 2-6 


U 

Unilateral swap-in 5-3 
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v 

Unilateral swap-out 5-3 

Uniprocessor 3-2 


defined 4-1 

Unit control block (UeB) 7-8,7-13, 11-10, 11-13 

Unreferenced interval count 2-10 

UP 


See Uniprocessor 

UP system 4-1 

User 


batch job initiator 1-3, 6-6 

started task 1-3, 6-6 

time sharing option (TSO) 1-3,6-6 


User program 

I/O macro instructions 7-9 

responsibilities when doing I/O 7-8 


User region 3-3 


V=R 2-13,3-3,3-4 
V=V 2-13,3-3 
VARY command 

See Operator commands 
VIO 

See Virtual Input/Output (VIO) 

Virtual address 2-5 

Virtual fetch 7 -18 

Virtllal Input/Output (VIO) 7-16, 11-6 


See also Buffer 

See also Channel program 

See also External page table , 

See also Paging 

See also Window 


Virtual storage 11-8 

See also Initial program load (IPL) 

See also Resource measurement facility (RMF) 

See also Storage 

defined 1-3 

function 1-2 


Virtual storage access method (VSAM) 11-14 

See also Entry sequenced data set 

See also Key-sequenced data set 

See also Relative record data set 

access techniques employed 7-21 

function 7-21 

SMF records 9-2 

types of data sets 7-21 


Virtual storage areas 

See Address space 


Virtual storage manager (VSM) 2-14,2-15,5-5, 11-9 


See also Initial program load (IPL) 

creating an address space 11-22 


Virtual telecommunication access method (VTAM) 8-3,11-19 

basic mode 7-21 

record mode 7-20 

terminal c')ntroladdress space (TCAS) 11-20 


Volume tab'; of contents (VTOC) 7-8 

VSAM 


See Virtual storage access method (VSAM) 

VSM 


See Virtual storage manager (VSM) 

VTAM 


See Virtual telecommunication access method (VT AM) 


W 

WAIT macro 7-11 

Warm start 11-12 

Window 7-17,7-18 

Work station 8-2 

Worknow 


See Resource measurement facility (RMF) 

Working set 2-14 

Workload activity 


See Resource measurement facility (RMF) 
WRITEmacro 7-6,7-9,7-11,7-19,7-20 

x 

XBATCH procedure 8-8 

XWTR (external writer) 8-9 


16 megabyte line 2-1 


2 


24-bit address I-I, 2-1 


3081 processor complex 1-2, 4-4 

3084 processor complex 4-3 

31-bit address I-I, 1-2,2-1 


Index X-ll 
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