
------- ------ ---- - - -------------, -

Publication Number
5A22-7092-0

IBM Assists for MVS/XA

File Number
5370-01

PREFACE

This publication is intended for system
programmers and IBM Field Engineering
personnel. The reader should be famil­
iar with the general machine functions
of 370-XA, as described in the IBM
370-XA Principles of Operation,
SA22-7085, and with the MVS/SP Version 2
Licensed Program, referred to in this
publication as the MVS/XA control
program. The standard names for MVS/XA
control blocks are used throughout the
publication. The formats of these
control blocks are described in the
MVS/XA Debugging Handbook, Volumes 1
through 5, LC28-1164 through LC28-1168,
respectively.

First Edition (March 1983)

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that ~nly IBM's program product may be ~sed. Any func­
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A ~rm for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Department
B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.

GVCopyright International Business Machines Corporation 1983

CONTENTS

ASSISTS FOR MVS/XA · · · · 1
Simplified Execution Paths · · · · · · · · 1
Instructions · · · 2

ADD FRR · 3
OBTAIN CMS LOCK . . · . . · · · · 3
OBTAIN LOCAL LOCK . . . · · · · · 3
RELEASE CMS LOCK · · · · 4
RELEASE LOCAL LOCK · · · · 4
SVC ASSIST · . . . · . . . · · · · 5

iii

This publication describes six
instructions that depend on control
blocks whose formats and relationships
normally are established only by the
MVS/XA control program. These
instructions improve performance in
frequently used parts~f the MVS/XA
control program on machines which
provide the 370-XA archi/tectural mode
and these instructions. Four of the
instructions assist the handling of
control-program locks. A locking proto­
col is used by the MVS/XA control
program to achieve sirial use of
control-program resources when multipro­
gramming and multiprocessing activities
may cause temporary, multiple demands
for the same resource. One instruction
assists the execution of the SUPERVISOR
CALL instruction, which is frequently
used to request control-program
services. The remalnlng instruction
helps in establishing parameters that
are used by the MVS/XA control program
following detection of certain failure
and error conditions. The six
instructions are:

ADD FRR
OBTAIN CMS LOCK
OBTAIN LOCAL LOCK
RELEASE CMS LOCK
RELEASE LOCAL LOCK
SVC ASSIST

All of the instructions are privileged
instructions.

ADD FRR uses the RRE instruction format:

Op Code

o 16 24 28 31

The other instructions use the SSE
format. The SSE instruction format is:

"--__ oP_c_od_e __ I_B_t---L-1 ~. I B. I ~:J
o 16 20 32 36 47

In addition to the operands explicitly
designated by the instructions, implicit
operands at fixed storage locations are
also used. Sometimes operands fetched
from storage are used in turn for
addressing still other operands. Unless
otherwise stated, all operand addresses
are logical. Either 24 or 31 bits are
used for addressing, depending on the
value of the A-mode bit in the current
PSW. The leftmost eight bits or the
leftmost bit, depending on the A-mode
bit in the current PSW, are ignored in a
word which is a source of an operand
address or a branch address. Storage

ASSISTS FOR MVS/XA

protection applies to all storage OPQr­
and accesses in the usual way. A
specification exception is recognized
for any operand that does not meet a
specified alignment requirement, and
instruction execution is suppressed.

Not all possible operands are accessed
for every execution of an instruction.
In some cases the state of control bits
or the results of comparisons of oper­
ands determine which operands are subse­
quently accessed. Exceptions mayor may
not be recognized for operands not need­
ed for completion of a particular
execution of an instruction, except
where the definition of a particular
instruction notes restrictions.

Program-event recording applies in the
usual fashion to these instructions,
except that branch events are not recog­
nized when these instructions cause
branching.

The two instructions which obtain locks
fetch and test a word for zeros, and, if
the fetched word is zero, cause a speci­
fied value to be stored back at the same
location by means of an interlocked
update. The two· i nstructi ons whi ch
release locks may perform a conditional
interlocked update of a doubleword
locatio.,. For these instructions, if
the second word of a doubleword location
contains all zeros, the. enti re double­
word is set to zeros by means of an
interlocked update. When the SVC ASSIST
instruction is used to assist a type-l
SVC, a conditional interlocked update of
a doubleword location is performed which
is similar to that performed by the
COMPARE DOUBLE AND SWAP instruction.

The four lock-handling instructions may,
under certain conditions, access the
lock-interface-table prefix, consisting
of the four words at negative offsets
from the lock-interface table. The
lock-interface table is located by using
an address contained in the word in main
storage following the second operand.

SIMPLIFIED EXECUTION PATHS

Simplified execution paths are defined
for the following instructions. When a
simplified path is used, specific
actions defined for the corresponding
instruction are performed uncondi­
tionally; that is, specific actions are
taken without the prescribed tests being
made to determine that those actions
should be selected.

1

•

•

•

OBTAIN CMS~. Execut;on
proceeds as if a CMS lock were
already held.

OBTAIN LOCAL LOCK. Execution
proceeds as if the--Iocal lock were
already held.

RELEASE CMS LOCK. Execution
proceeds as if the currently
dispatched unit of work held no CMS
lock.

• RELEASE LOCAL LOCK. Execution
proceeds as if the local lock were
already released.

• SVC ASSIST. Instruction execution
rs-completed with normal instruc­
tion sequencing and without the
performance of other actions.

Use of the simplified execution paths is
not apparent to application programs

Name

ADD FRR RRE M
OBTAIN CMS LOCK SSE M
OBTAIN LOCAL LOCK SSE M
RELEASE CMS LOCK SSE M
RELEASE LOCAL LOCK SSE M
SVC ASSIST SSE M

Exelanation:

A Access exceptions
M Privileged-operation exception
OP Operation exception
R PER general-register-alteration
RRE RRE instruction format
SP Specification exception
SSE SSE instruction format
ST PER storage-alteration event

Instruction Summary

2 Assists for MVS/XA

using program products. In certain
models, simplified execut;on paths are
used when the available control-storage
space is 1 i mi ted. The ADD FRR i nstruc-'
tion is opt;onal and mayor may not be
provided as part of the assists.

INSTRUCTIONS

The instructions described in this
section are listed in the figure
"Instruction Summary," as are their
operation codes and the program­
interruption conditions that can be
recognized when they are executed.

In the format shown in the instruction
description, the operation code is given
in hex, which is signified by enclosing
its value in single quotation marks
('XXXX') •

Characteristics Code

A SP R OP ST B242
A SP R ST E506
A SP R ST E504
A SP R ST E507
A SP R ST E505
A SP R ST E503

event

ADD FRR

[RREl

'B242'

o 16 24 28 31

A new entry is added to the top of the
current functional-recovery-routine
(FRR) stack. The entry is initialized
with values provided in general regis­
ters, with the PSW A-mode bit (bit 32),
and with the PSW S bit (bit 16).
Optionally, the contents of control
registers 3 and 4 are saved in an entry
in a separat~ table.

- The general register designated by the
R2 field provides the logical address of
the FRR entry point.

Before instruction execution, the gener­
al register designated by the R t field
provides three bytes that are stored in
the new FRR entry and whose value deter­
mines if control registers 3 and 4 are
to be stored as well. When instruction
execution is completed, the register
designated by R t contains the logical
address of the six-word work area within
the new, current FRR-stack entry.

Logical location 380 hex contains the
logical address of the stack-table head­
er. The stack-table header contains
(1) a logical address which is 32 less
than the address of the first dynamic
entry in the stack table, (2) the
logical address of the last entry in the
stack table, and (3) the logical address
of the current stack-table entry.

At an offset from the beginning of the
stack-table header is found a table of
stack-entry-extension entries.
Optionally, the contents of control
registers 3 and 4 are saved in an exten­
sion entry. One extension entry
corresponds to each entry in the stack
table. The offset to the table of
extension entries, and the encoded
length of an extension entry, are found
in the word at logical location BAa hex.

Condition Code:
unchanged.---

Program Exceptions:

The code

Access (storage operands)

remains

Operation (when the instruction is
not installed)

Privileged operation
Specification

OBTAIN CMS LOCK

General Form

/

~~ 'E506 ' B t D. B2
/

0 16 20 32 36 47

Forms Used in the Control Program

'E506' I ' 0 ' I '2~4' I ' 0 ' 1'2~~
0 16 20 32 36 47

or

'E506' I 'C' I'o~o' I '0' 1'2~~
0 16 20 32 36 47

If the word fetched from the second­
operand location shows that the execut­
ing CPU holds the local lock and does
not hold a CMS lock, and if the CMS lock
addressed by general register 11 is not
held, then the lock is replaced, by
using an interlocked update, with the
first-operand word. Also, an indicator
is set to show that a CMS lock is held,
and zeros are placed in general register
13.

Otherwi3e, the updated instruction
address is placed in general register
12, with a zero placed in bit position
0; the contents of the word at LIT minus
8 are placed in general register 13, and
bits are selected from the word which
replace the instruction-address portion
of the PSW, leaving the A-mode bit
unchanged.

Serialization occurs before the lock is
fetched and, if the lock is obtained,
again after the lock is updated.

Condition Code:
unchanged.

Program Exceptions:

Access

The

Privileged operation
Specification

OBTAIN LOCAL LOCK

General Form

/
'E504' B t D.

/
0 16 20

code remains

B2 ~~
32 36 47

3

Form Used in the Control Program

______ '_E_5_o_4 __ ' ____ ~I_,_0 __ , __ I_,_2~4' 1'0' 1'2~~
o 16 20 32 36 47

If the local lock in the ASCB addressed
by the first-operand word is not held,
the lock is replaced, by using an inter­
locked update, with the value from the
word at the second-operand location
minus 4; the local-lock bit of the word
fetched from the second-operand location
is set to one; and zeros are placed in
general register 13.

Otherwise, the updated instruction
address is placed in general register
12, with a zero placed in bit position
OJ the contents of the word at LIT minus
16 are placed in general register 13,
and bits are selected from the word
which replace the instruction-address
portion of the PSW, leaving the A-mode
bit unchanged.

Serialization occurs before the local
lock is fetched and, if the lock is
obtained, again after the lock is
updated.

Condition Code:
unchanged.

Program Exceptions:

Access

The

Privileged operation
Specification

RELEASE CMS LOCK

General Form

/
'E507' B t Dt

/
0 16 20

Forms Used in the Control

, E507' I ' 0 ' 1'+'
0 16 20

or

'E507' I 'C' 1'+'
0 16 20

code remains

B2 ~~
32 36 47

Program

I ' 0 ' 1'2~~
32 36 47

I ' 0 ' 1'2~~
32 36 47

If (1) the contents of the CMS lockword
addressed by general register 11 equal
the contents of the first-operand word,
(2) the currently dispatched unit of
work holds a CMS lock, and (3) the word

4 Assists for MVS/XA

after the CMS lockword is zero, then the
doubleword containing the lockword is
set to zero by using an interlocked
update. Also, the word fetched from the
second-operand location is set to show
that no CMS lock is held, and zeros are
placed in general register 13.

Otherwise, the updated instruction
address is placed in general register
12, with a zero placed in bit position
0; the contents of the word at LIT minus
4 are placed in general register 13; and
bits are selected from the word which
replace the instruction-address portion
of the PSW, leaving the A-mode bit
unchanged.

Condition Code: The
unchanged.

Program Exceptions:

Access
Privileged operation
Specification

RELEASE LOCAL LOCK

General Form

/
'E505' Bt Dt

/
0 16 20

Form Used in the Control

code remains

B2 ~~
32 36 47

Program

~ ___ '_E_5_0_5_' ____ ~I_'_0_'~I_'_2~4' 1'0' 1'2~~
o 16 20 32 36 47

If the word fetched from the second­
operand location shows that the execut­
ing CPU holds the local lock and does
not hold a CMS lock, and if the word
after the local lock word in the ASCB
addressed by the first-operand word is
zero, then the doubleword containing the
lock is set to zero by using inter
locked update. Also, the local-lock bit
of the highest-lock-held-indicator word
is set to zero, and zeros are placed in
general register 13.

Otherwise, the updated instruction
address is placed in general register
12, with a zero placed in bit position
0; the contents of the word at LIT minus
12 are placed in general register 13,
and bits are selected from the word
which replace the instruction-address
portion of the PSW, leaving the A-mode
bit unchanged.

Condition Code:
unchanged.

The code remains

Program Exceptions:

Access
Privileged operation
Specification

SVC ASSIST

General Form

/
'E503' B t D t

/
0 16 20

Form Used in the Control

B2 EJ
32 36 47

Program

~ ___ '_E_5_0_3_' ____ ~I_'_o_'~I_!_2~4' "0' 1'2~~
o 16 20 32 36 47

The first and second operands are words
containing the addresses of the current
ASCB and TCB, respectively.

Main-storage locations which contain
status for the last SVC interruption are
tested to determine if SVC-assist action
is to be taken. If SVC-assist action is
not taken, instruction execution is
completed with normal instruction
sequencing. No assist action is taken
unless the CPU was enabled prior to the
last SVC interruption, and a task is
currently dispatched which holds no
locks and for which SVC screening is not
activated. In addition, no assist
action is taken unless (1) both the
primary space and the secondary space
match the dispatched space, and
(2) primary-space mode is specified in
the supervisor-call old PSW.

A type-1 SVC request is assisted only if
the request is for an assistable type-l
function, if the only lock needed for
the requested SVC function is the local
lock, and if an attempt to obtain the
local lock is successful.

A type-2, -3, or -4 SVC request is
assisted only if the request is for an
assistable function of type 2, 3, or 4,
and if an attempt to dequeue an SVRB
from the SVRB pool of the current
address space is successful.

A type-6 SVC request is assisted only if
the request is for an assistable type-6
function for which no locks are needed.

Assist action consists in copying the
information stored at the last SVC
interruption into the current request
block, saving all 16 general registers,
loading the general registers as shown
below, and then loading the instruction
address portion of the PSW from general
register 9.

GR No.

3

Contents loaded
on Assist Action

Address of CVT

4

5

Second operand

Address of the current RB for
type 1 or type 6; address of
the acquired SVRB for type 2,
3, or 4

6 SVC entry-point address

7

8

9

11

12

First operand

Address of the RB for the
program which was being
executed at SVC interruption

Entry address from that MPl
field which is appropriate to
the SVC type, that is, the
address of the routine that
receives control on completion
of the assist

Address of the MBCB part of
the SVRB acquired; for type 2,
3, or 4 only

Address of requested SVC-table
entry

14 Exit address
field which is
the SVC type

from that MPl
appropriate to

Condition Code: The
unchanged.---

Program Exceptions:

Access
Privileged operation
Specification

code remains

5

IBM Assists for MVS/XA

Order No. SA22-7092-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number oflatest Newsletter associated with this pUblication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

SA22-7092-0

Reader's Comment Form

FOld and tape

Fold and tape

--------------- - ---- - - ----------_.-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New'! ork 12602

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

s:
<
CJ) ->< »
."

co
Z
P
CJ)
W
-.....J
o
6

CJ)

»
I\J
I\J
~
o co
I\J

6

--....- ------ -------- - ---- - - --------___ ,_ 1/

