
GC28-8303-2 

Systems VS BASIC Language 



Third Edition (December 1976) 

This edition replaces the previous edition (numbered GC28-S303-1) and its technical 
newsletter (numbered GN26-0S04) and makes them obsolete. 

This edition applies to Release 3 of VS BASIC, program number 574S-XXl, and to any 
subsequent releases unless otherwise indicated in new editions or technical newsletters. 

Significant changes to the VS BASIC language are summarized under "Summary of 
Amendments" following the list of figures. Technical changes made are indicated by a 
vertical bar to the left of the change. Editorial changes that have no technical significance 
are not noted. 

Information in this publication is subject to significant change. Any such changes will be 
published in new editions or technical newsletters. Before using the publication, consult the 
latest IBM Syslem/370 Bibliography, GC20-0001, and the technical newsletters that amend 
the bibliography, to learn which editions and technical newsletters are applicable and 
current. 

Requests for copies of IBM publications should be made to the IBM branch office that 
serves you. 

Forms for readers' comments are provided at the back of the publication. If the forms have 
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020, 
Programming Publishing, San Jose, California, 95150. All comments and suggestions 
become the property of IBM. 

© Copyright International Business Machines Corporation 1974, 1976 



Preface 

This book has two parts. Each contains a comprehensive description of the 
VS BASIC language-the parts differ in the way that the language is 
presented. 

In Part I, VS BASIC concepts are discussed (for the remainder of the 
publication, the terms "vs BASIC" and "BASIC" will be used 
interchangeably). Simplest concepts are presented first, along with those that 
are essential to any BASIC program. More complex features of the language 
are then gradually introduced- with the aid of many examples. Once the 
fundamentals of the language have been discussed, the presentation is 
modular. Thus, someone not interested in a particular advanced feature of 
BASIC (for example, matrix multiplication, or record-oriented files) can skip 
the section describing that feature. 

If you are new to programming, or if you have never used BASIC or a similar 
high-level programming language, you should start reading with the first 
chapter of Part I. 

Part IT presents the BASIC language in reference fashion and should be used 
like a dictionary or a book of rules. BASIC statements are arranged in 
alphabetic order; in some cases, statements that are related to each other are 
discussed together, and the alphabetic entry for one statement may direct you 
to another statement for the discussion. Each statement description includes 
discussions of syntax and statement action, rules for coding the statement, 
and examples of coded statements. Little or no emphasis is placed on 
explaining examples or concepts; instead, there are references back to 
sections of Part I for instructional discussion of a subject. 

If you have used BASIC or another high-level language before, you will 
probably want to proceed to Part IT immediately to acquaint yourself with the 
VS BASIC statements. It is likely that you will find yourself, guided by the 
cross-references in Part IT, returning to sections of Part I for detailed 
discussions of certain language features. Once you've mastered the language, 
you will probably need to refer only to Part IT and even then only 
occasionally, say for a quick reference to a coding rule. 

In several places in this book, you will find references to a Terminal User's 
Guide and a Programmer's Guide. These publications describe how to use 
VS BASIC in different environments - VSPC, CMS, TSO, DOS/VS, and 
OS/VS. Each of these publications is intended to supplement the information 
presented in this language manual to provide a complete guide to using VS 
BASIC in a particular environment. Each guide contains a master index 
containing entries to this manual as well as entries specifically discussed in the 
Guide. 

Preface 3 



4 VS BASIC Language 

The publications are: 

• VS BASIC: TSO Terminal User's Guide, SC2S-S304 

• VS BASIC: CA-fS Terminal User's Guide, SC2S-S306 

• VS BASIC for VSPC: Terminal User's Guide, SH20-9060 

• VS BASIC: OS/VS and DOS/VS Programmer's Guide, SC2S-S30S 

Note to Batch Users: In some places in this book, particularly in the 
discussions of the INPUT and PRINT statements, you will find references to 
terminals and terminal operations. In a batch environment, substitutions 
should be made for these terms, as follows: 

terminal (input function) -
terminal (output function) -
print line-
carrier return -
carrier position, line position -

system input device, or user data file 
system output device, or user data file 
system output record, or user data record 
end of output record 
output record position 



Contents 

Preface ............................................................................................................ 3 

FJgUres ............................................................................................................. 9 

Summary of Amendments .............................................................................. 11 

Part I. Using VS BASIC ................................................................................ 15 

Introduction ................................................................................................... 17 

Your BASIC Program .................................................................................... 19 
Getting Data into the Computer ................................................................... 20 

The Assignment Statement ....................................................................... 20 
The READ, DATA, and RESTORE Statements ..................................... 20 
The INPUT Statement ............................................................................. 22 

Using the Comma as a Continuation Character .................................. 22 
Using the Slash (I) to Delimit Input Data ........................................... 23 
Using Consecutive Commas as a Null Delimiter ................................. 23 
Prompting Your Input .......................................................................... 23 
Buffered-Ahead Terminal Input .......................................................... 24 

Different Kinds of Data ................................................................................ 24 
Arithmetic Data ........................................................................................ 25 

A Word About Precision ..................................................................... 26 
Character Data ......................................................................................... 26 

Uses of Character Data ....................................................................... 27 
Some Rules About Delimiters .............................................................. 27 

Rules for Forming Variables ......................................................................... 28 
Arithmetic Variables ................................................................................ 28 
Character Variables .................................................................................. 28 

Mixing Arithmetic and Character Data ........................................................ 29 
Expressions and Calculations ....................................................................... 30 

Evaluation of Expressions ......................................................................... 31 
Character Expressions .............................................................................. 32 
Intrinsic Functions .................................................................................... 32 
Internal Constants .................................................................................... 33 
Pseudo Variables ...................................................................................... 34 
Internal Variables ..................................................................................... 34 

Getting Data Out Using the PRINT Statement ............................................ 34 
A Simple Program ......................................................................................... 36 
Comments In Your Program ......................................................................... 37 

Testing and Controlling Program Data ........................................................... 39 
Loops ............................................................................................................ 39 
Using the IF Statement ................................................................................. 40 

Logical Operators ..................................................................................... 41 
The Computed GO TO Statement ................................................................ 42 
More About Loops-Using FOR and NEXT Statements ............................ 43 

Using Arrays .................................................................................................. 47 
Naming Arrays .............................................................................................. 47 
Defining Arrays ............................................................................................ 48 
Placing Values into Arrays ........................................................................... 50 
Redimensioning Arrays ................................................................................. 51 
Differences between MAT and LET ............................................................ 51 
Array Operations .......................................................................................... 52 

Array Addition and Subtraction ............................................................... 53 

Contents 5 



Scalar Multiplication ................................................................................. 53 
Sorting ...................................................................................................... 53 
Identity Function ...................................................................................... 53 
Inverse Function ....................................................................................... 54 
Transpose Function .................................................................................. 54 
Matrix Multiplication ............................................................................... 55 

Functions and Subroutines ............................................................................. 57 
Functions ...................................................................................................... 57 
Subroutines ................................................................................................... 58 

Computed GO SUB Statement ................................................................. 60 

PRINT USING Image and FORM ................................................................ 61 
The Image Statement .................................................................................... 61 
The FORM Statement .................................................................................. 62 

Numeric Specification-PIC ........................................................... '" ...... 62 
Character Specification-PIC .................................................................. 65 
Character Specification-C and Literals .........................•....................... 65 
Format Control Specifications-X, POS, SKIP ....................................... 66 

Program Chaining .......................................................................................... 69 

Stream-Oriented FUes ................................................................................... 71 
Naming a File ............................................................................................... 71 
Retrieving Data From a File ............................................................................ 72 
Activating and Deactivating Files ................................................................. 73 
Repositioning Files ................................................................... '" ................. 74 

Input/ Output Error Handling .................................................................. 74 

Record-Oriented FUes ................................................................................... 77 
Designing a Record ....................................................................................... 78 
An Entry-Sequenced File ............................................................................. 78 

Entering Records ...................................................................................... 78 
Retrieving Records ................................................................................... 80 
Updating Records ..................................................................................... 81 
Rereading_Records ................................................................................... 81 
Opening, Closing and Repositioning Files ............................................... 82 
Using the EXIT Statement ....................................................................... 83 

A Key-Sequenced File .................................................................................. 83 
Entering Records ...................................................................................... 83 
Retrieving Individual Records .................................................................. 84 
Retrieving Records Sequentially ............................................................... 85 
Updating Records With and Without Keys .............................................. 85 

Using Generic Keys ............................................................................. 86 
Rereading Records ................................................................................... 87 
Deleting Records ...................................................................................... 87 
Repositioning Files ................................................................................... 87 
Key Clauses on the EXIT Statement ....................................................... 87 

A Relative-Record File ................................................................................. 88 
Entering Records ...................................................................................... 88 
Retrieving Records ................................................................................... 88 
Updating Records ..................................................................................... 89 
Rereading Records ...................................................... ~ ............................ 89 
Deleting Records ...................................................................................... 89 
Repositioning Files ................................................................................... 89 
Error Clauses on the EXIT Statement ..................................................... 89 
&REC Internal Variable ........................................................................... 90 

The FORM Statement-Differences Between PRINT and Record I/O ..... 90 

6 VS BASIC Language 



The NC Specification ...................................................... ......................... 90 
The Sand L Specifications ....................................................................... 91 

A Last Example ............................................................................................ 92 
Summarizing Record-Oriented Statements ................................................... 93 
Program Error Handling ............................................................................... 94 

Part II. The VS BASIC ~e ..•...•.•......••....•.•..••.•.....•.....•..•......•.•.......•••. 97 

Syntax Def"lIlition ........................................................................................... 99 
Syntax Notation ...................................................... .................................... 100 

Statements ................................................................................................... 101 
Statement Numbers ...................................................... .............................. 101 

The Basic Character Set .............................................................................. 103 
Alphabetic Characters ................................................................................ 103 
Numeric Characters .................................................................................... 103 
Special Characters ...................................................................................... 104 

Use of Blanks ...................................................... ................................... 104 
Use of Tab Character ............................................................................. 105 

Data Representation .................................................................................... 107 
Arithmetic Data .......................................................................................... 107 

Magnitude .............................................................................................. 107 
Arithmetic Precision ............................................................................... 107 
Arithmetic Data Formats ........................................................................ 107 

Integer Format ................................................................................... 107 
Fixed-Point Format ........................................................................... 108 
Floating-Point Format ...................................................... ................. 108 

Arithmetic Constants ............................................................................. 108 
Internal Constants ............................................................................. 108 

Arithmetic Variables .............................................................................. 108 
Character Data ........................................................................................... 109 

Character Constants ............................................................................... 109 
Character Variables ................................................................................ 110 
Internal Variables ................................................................................... 110 

Arrays ......................................................................................................... 111 
Declaring Arrays .................................................................................... 112 
Redimensioning Arrays .......................................................................... 113 
Naming Conventions for Variables and Arrays ..................................... 113 

Functions .................................................................................................... 113 
Expressions ................................................................................................. 116 

Arithmetic Expressions and Operators ................................................... 116 
Priority of Operators .......................................................................... 117 

Character Expressions and Operators .................................................... 118 
Array Expressions .................................................................................. 119 
Logical Expressions ................................................................................. 119 

Logical Subexpressions ...................................................................... 119 

Basic Statements ......................................................................................... 121 
The Array Assignment Statement ............................................................... 123 

The Array Assignment Statement (Scalar Value) .................................. 123 
The Array Assignment Statement (Simple Array) ................................. 124 
The Array Assignment Statement (Addition and Subtraction) .............. 125 
The Array Assignment Statement (Matrix Multiplication) .................... 126 
The Array Assignment Statement (Scalar Multiplication) ..................... 127 
The Array Assignment Statement (Identity Function) .......................... 128 
The Array Assignment Statement (Inverse Function) ........................... 129 

Contents 7 



The Array Assignment Statement (Transpose Function) ...................... 130 
The Array Assignment Statement (Ascending Sort Function) .............. 130 
The Array Assignment Statement (Descending Sort Function) ............. 131 

The CHAIN and USE Statements .............................................................. 133 
The CLOSE Statement ............................................................................... 134 
The DATA Statement ................................................................................. 136 
The DEF, RETURN, and FNEND Statements .......................................... 138 
The DELETE FILE Statement ................................................................... 142 
The DIM Statement .................................................................................... 144 
'1'1-."" p~ ~t-"'t-"" ....... ""ftt- 1 Ll~ 
..I...I..I.""".L.J.1. .... ~ u ... u ... "".LI..I.V.l..I. ...................................................................................... ..a.-,-v 

The EXIT Statement .................................................................................. 147 
The FNEND Statement .............................................................................. 148 
The FOR and NEXT Statements ............................................................... 149 
The FORM Statement ................................................................................ 151 
The GET Statement .................................................................................... 158 
The GOSUB and RETURN Statements ..................................................... 160 
The GOTO Statement ................................................................................ 162 
The IF Statement ........................................................................................ 163 
The IMAGE Statement .............................................................................. 165 
The INPUT Statement ................................................................................ 166 
The INPUT FROM Statement ................................................................... 170 
The LET Statement (Scalar Assignment Statement) .................................. 172 
The NEXT Statement ................................................................................. 174 
The ON Statement ...................................................................................... 175 
The OPEN Statement ................................................................................. 178 
The OPTION Statement ............................................................................. 180 
The PAUSE Statement ............................................................................... 181 
The PRINT Statement ................................................. 0 .............................. 182 

PRINT .................................................................................................... 182 
PRINT USING Image ............................................................................ 186 
PRINT USING with FORM Clause ...................................................... 192 

The PRINT TO Statement .......................................................................... 198 
The PUT Statement .................................................................................... 200 
The READ Statement ................................................................................. 202 
The READ FILE Statement ....................................................................... 204 
The REM Statement ................................................................................... 207 
The REREAD FILE Statement .................................................................. 208 
The RESET Statement ............................................................................... 210 
The RESTORE Statement .......................................................................... 213 
The RETURN Statement ........................................................................... 214 
The REWRITE FILE Statement ................................................................ 215 
The STOP Statement .................................................................................. 218 
The USE Statement .................................................................................... 219 
The WRITE FILE Statement ..................................................................... 220 

Appendix A. Implementation Considerations ................................................ 223 
Time-Sharing Environments ................................................................... 223 
Batch Environments ............................................................................... 224 
The Separable Library ............................................................................ 225 
Printing Output Created on a PRINT TO File ....................................... 225 

Appendix B. CoDating Sequence of the VS BASIC Character Set ............... 227 

Glossary ....................................................................................................... 229 

Index ........................................................................................................... 233 

8 VS BASIC Language 



Figures 

Figure 1. 
Figure 2. 
Figure 3. 
Figure 4. 
Figure 5. 
Figure 6. 

Internal Constants ................................................................ 109 
Internal Variables ................................................................. 110 
Naming Conventions for Variables and Arrays ................... 113 
Intrinsic Functions ................................................................ 114 
Packed Print Zone Lengths for Arithmetic Expressions ....... 184 
Carrier Positions in PRINT Statement ................................. 185 

Figures 9 





Summary of Amendments 

Number 3 

INPUT FROM Statement 

PRINT TO Statement 

Release 3 

This new statement permits the user to obtain input data normally retrieved 
from the user terminal, from a user data file. 

This new statement permits the user to direct output data, normally printed at 
the user terminal, to a user data file. 

Record-Oriented Files Extension 

VS BASIC support of record-oriented files is extended to include the support 
of relative record accessing of record-oriented files and the ability to reuse a 
record-oriented file. 

Error Handling During Program Execution 

The OPEN FILE, CLOSE FILE, and RESET FILE statements now accept 
error clauses, similar to those supported by the GET and PUT statements. 

A new statement, the ON statement, together with new (read-only) internal 
variables, provides for additional information relative to errors occurring at 
program execution time. 

Buffered-Ahead Terminal Input 

This new facility allows entry of input data to satisfy the request of more than 
one INPUT statement, on a single input line. 

Alphabetic Equivalent Operators 

OPTION Statement 

DA fA Statement Extension 

This extension allows for the use of alphabetic equivalent operators for the 
relational and logical operations in addition to the special characters now 
supported for this purpose. 

This new statement permits the user to specify certain options to apply to a 
given BASIC program that override normal VS BASIC actions. 

This extension permits character data to be included in a DATA statement 
without surrounding single or double quotation marks, similar to that now 
supported by the INPUT statement .. 

Summary of Amendments 11 



FORM Statement Extension 

The PIC clause of the FORM statement is extended to accept character data 
and to include new trailing data form specifications for identifying a credit 
(CR) and a debit (DB) condition. In addition, a literal enclosed in quotation 
marks is allowed in a FORM statement. 

PRINT USING Image Statement Extensions 

New Intrinsic Function 

These extensions provide the user with the following capabilities: 

• The ability to combine the output of a PRINT USING Image statement 
with the output of any other PRINT USING statement onto a single output 
print line. 

• The ability to reuse the Image statement format specifications for the 
,.. ... .c.n+:I"'10. ............ ..f n C1~~ft'lL:lio 1: ..... .0. 1"'Io..f ,....,,+...,.,,+ ..... Thc. ..... i-hL:lio ....... , .. +~, .. + 1~ ... + ",f +1-.0 DDT"""TT 
"'.l",a!..lV.l.l V.l a i3.l.l.l&'" .l.l.l.l'" V.l vu;'"pu;," Yl'.l.l"'.l.l ,".1.1'" vu;'"pu;," lli3'- V.l !..I.l"'''' ......... .1 ...... 

USING statement contains more scalar expressions than the number of 
format specifications in the corresponding Image statement. 

A new intrinsic function, CHR, is provided which converts an arithmetic 
expression into an equivalent character form. 

Program Listing Comments Extension 

Number 2 

This extension permits comments to be added to most BASIC statements 
through the use of the REM keyword. This optional comment, consisting of 
the keyword, followed by the comment, is appended to the end of a BASIC 
statement. 

Date of Publication: March 26, 1976 

Form of Publication: TNL GN26-0804 to GC28-8303-1 

VSPC Support 0/ VS BASIC 

12 VS BASIC Language 

New: Program Feature 

VS BASIC will now operate under VSPC (VS Personal Computing) as well as 
under CMS (Conversational Monitor System) and TSO (Time Sharing 
Option). VSPC operates in three VS operating systems: OS/VS1, OS/VS2, 
and DOS/VS.1t offers the user both time sharing and batch processing. The 
following changes have been made: 

• In VSPC the length of the character string used to pass a value in a 
CHAIN statement to a chained program can be as many as 255 characters. 

• Users can access VSAM record-oriented files but must have the data 
processing installation personnel define them. A VSPC user can define his 
own VSPC record-oriented files. 

• Appendix A. "Implementation Considerations" has been expanded. 



Number 1 

New Appendix and Glossary 

Date of Publication: July 1974 

Order No. of Publication: Revision GC28-8303-1 

New: Documentation Only 

Appendix B, which describes the collating sequence of the VS BASIC 
character set, and a glossary have been added. The former Appendix B is now 
Appendix C. 

Intemal Constants and Pseudo- Variables 

New: Documentation Only 

Descriptions of internal constants and pseudo-variables have been added to 
Part I. In Part II, the values in the table of internal constants have been 
extended to 7 and 15 significant digits. 

Implementation Considerations 

File Information 

Maintenance: Documentation Only 

The list of specific considerations for using VS BASIC in the CMS, TSO, 
DOS/VS, and OS/VS environments has been expanded. Especially 
significant are the file-naming conventions for each environment. 

Maintenance: Documentation Only 

Additional information about file usage has been included in Part I; for 
example, repositioning files, the use of generic keys, the size of rewritten 
records in record-oriented files, and opening files with the OUT keyword. 

Maintenance: Documentation Only 

The discussion of arrays in Part I has been expanded to include defining 
arrays by context, the distinction between MAT and LET, and additional 
examples. In Part II, additional examples have been added to the array 
assignment statement. 

Trailing Characters in FORM Statement 

Floating-Point Numbers 

Maintenance: Documentation Only 

Changes have been made in Parts I and II to clarify the discussion of the 
FORM statement, and in Part II to identify the use of the symbols +,-, and $ 
as trailing characters. 

Maintenance: Documentation Only 

The discussion of floating-point numbers in Part I has been clarified. 

Summary of Amendments 13 



Delimiters lor Input Data 

Maintenance: Documentation Only 

Sections have been added to Part I which explain the use of the slash and the 
comma to delimit input data, and the use of the comma during input as a 
continuation character. 

Additional Rules lor BASIC Statements 

Print Zones 

Intrinsic Functions 

Maintenance: Documentation Only 

Rules have been added to these BASIC statement specifications in Part II: 
DEF, DELETE FILE, FORM, GET, OPEN, PRINT, PUT, READ FILE, 
REREAD FILE, RESET, REWRITE FILE, and WRITE FILE. 

Maintenance: Documentation Only 

The discussion of print zones in Part I has been expanded. 

Maintenance: Documentation Only 

The discussion of intrinsic functions in Part I has been clarified. In Part II, the 
description of the DAT, JDY and RND functions in the table of intrinsic 
functions has also been clarified. 

Additional Examples Throughout 

Maintenance: Documentation Only 

More examples have been included in both Part I and Part II. 

14 VS BASIC Language 



Part I. Using VS Basic 

• Introduction 

• Your BASIC Program 

• Testing and Controlling Program Data 

• Using Arrays 

• Functions and Subroutines 

• PRINT USING Image and FORM 

• Program Chaining 

• Stream-Oriented Files 

• Record-Oriented Files 

• Program Error Handling 

Part 1. Using VS BASIC 15 





Introduction 

Chances are you want to use a computer because there's something you want 
to do-fast. It may be a problem to be solved, a report to be written, some 
information to be tested or analyzed. You're reading this manual because you 
want to do that something in the easiest possible way-using the BASIC 
language. 

Essentially, all the things you can do with BASIC and the computer fall into 
one of these categories: 

• Getting information into the computer 

• Moving information around inside the computer 

• Performing calculations on numeric information-adding, subtracting, 
multiplying, etc. 

• Testing information to see if it meets certain requirements. 

• Getting information (usually your result) out of the computer. 

BASIC, like any other programming language, gives you many ways to do 
each of these things. Some are very simple and straightforward, others slightly 
more complex. Each method has its own particular advantages. In the rest of 
Part I, we're going to show you all the simple, straightforward ways first; 
then, if you want to learn the more complex methods, you can go on to read 
about them. You'll probably find that once you've mastered the easy things 
you'll want to go on, for the sake of getting your work done even faster and 
more efficiently. 

Introduction 17 





Your BASIC Program 

No matter what it is you want to do on the computer, you'll have to have a 
logical plan for getting it done. You can call this logical plan your "program." 
If you want to solve a simple problem, such as figuring out someone's bowling 
average, your plan would look like this: 

1. Collect all that person's bowling scores. 

2. Add up all the scores. 

3. Divide the sum by the number of scores. 

4. Display the result. 

If you want~d to print a report, your plan might look like this: 

1. Print a heading that identifies the report. 

2. Set up the format of the report, deciding how many columns it should have 
and what should go where. 

3. Print headings for your columns. 

4. Collect all the information that is to appear in the report. 

5. Put all the information in the proper order. 

6. Print the information. 

Each of the steps of your plan can be transformed into one or several BASIC 
statements. The collection of statements is called a BASIC program. Writing 
your program means putting all the necessary statements together, in the 
proper order. When you've done that, you are ready to execute, or run, the 
program-that is, have it do what it was written to do. You can run your 
program right after you've written it, or you can save it and run it at a later 
time. Theoretically, you write your program once, but can run it many times, 
as often as you like. 

In this book, we're going to concentrate on telling you how to write your 
BASIC program. Your Terminal User's Guide, or Programmer's Guide, will 
give you exact information on how to run and/or save it. But we will be 
mentioning in later sections some of the things that can happen when you're 
running your program. 

Now, let's see what a BASIC statement looks like: 

00010 LET A = 3 REM ASSIGN VALUE TO A 

This is actually a BASIC statement line. The five-digit number on the 
left-00010--is the statement number. Every BASIC statement has to have 
one. The number can't contain more than five digits, and it has to be different 
from every other statement number in the program. Zeros on the left don't 
make a number unique-00010 and 10 are considered to be the same. 

The statement number is always the first thing on the statement line; then the 
statement itself begins. In the example we showed, LET A = 3 is the BASIC 
statement. 

The phrase following the BASIC statement LET A = 3 is a comment and has 
no effect on what your program is doing. The word REM can be used to put 
comments on most BASIC statements. A comment serves as a reminder when 
you look at your program, of what the statement is doing. Your comment or 

Your BASIC Program 19 



I remark can say anything you want it to say, as long as it fits on one line with 
the statement. 

Getting Data into the Computer 

r.':e Assignment Statement 

'There are several different ways that you can get a piece of information into 
the computer. 

Earlier, we showed the statement: 

LET A = 3 REM ASSIGN VALUE TO A 

This statement is an assignment statement-it puts the value 3 into the 
computer and names that value A. In the statement, the number 3 is a 
constant -it can never have any value other than 3. The name A, however, is 
a variable -it can have any number of values, but only one at a time. Right 
now it has the value 3, but that value can be changed by other statements 
during a program. For example, the assignment statement: 

LET A = 4 

gives the value 4 to A. 

You can also use the assignment statement to give a value to several different 
variables. For example: 

LET A,B,C = 15 

Here, A, B, and C are all given the value 15. 

When you write an assignment statement, you don't have to include the word 
LET. The statements we've shown could instead be written: 

A = 3 
A = 4 
A,B,C = 15 

There are other things you can do with the assignment statement, such as 
performing calculations on data. We'll be talking more about them later. Right 
now, let's look at some more ways to get data into the computer. 

The READ, DATA, and RESTORE Statements 

20 VS BASIC Language 

To assign ten numbers, say the numbers 1 through 10, to ten variables, you 
could use 10 assignment statements: 

100 LET A 1 REM ASSIGN VALUE TO A 
200 LET B 2 
300 LET C 3 

etc. 

Using ten assignment statements can be tedious; another way to enter these 
numbers is with one DATA statement: 

200 DATA 1,2,3,4,5,6,7,8,9,10 



The DATA statement causes numbers to be put into a data table in the 
computer. You can use one or several DATA statements to do this. The 
following set of statements would have the same effect as the single DATA 
statement above: 

200 
201 
202 

DATA 
DATA 
DATA 

1,2,3 
4,5,6 
7,8,9,10 

Once the numbers are in the table, you use the READ statement to assign 
them to variables. Here's an example: 

200 
210 

DATA 
READ 

1,2,3,4,5,6,7,8,9,10 
A,B,C,D,E,F,G,H,I,J 

The READ statement reads the values in the data table and assigns them (in 
order) to the variables-the number 1 to the variable A, 2 to B, 3 to C, etc. 

You don't have to read all of the values in the data table at one time. For 
example: 

200 
300 

DATA 
READ 

1,2,3,4,5,6,7,8,9,10 
A,B,C 

will result in the first three values in the table being assigned to A, B, and C, 
respectively. Another READ statement will take up where the last left off. 
Thus: 

310 READ D,E,F,G 

will read the values 4,5,6, and 7 into D, E, F, and G. 

You must be careful, though, not to try to read more values than the table 
contains. For example, still another READ statement: 

320 READ H,I,J,K 

would be requesting values for four variables when only three numbers (8, 9, 
and 10) are left in the table. 

If you want to, you can use the values in the data table more than once. At 
any point in your program, you can ask that values be read from the 
beginning of the table again, even if you haven't read all the values in the 
table yet. To go back to the beginning of the table, use the RESTORE 
statement: 

100 RESTORE 

Say you want to read the values 1, 2, and 3 into three variables A, B, and C, 
in that order. Later on in the program, you want to read the same values into 
D, E, and F. These statements will do just that: 

30 DATA 1,2,3,4,5,6 

50 READ A,B,C 

100 RESTORE REM READ FROM START OF DATA TABLE 
105 READ D,E,F 

Your BASIC Program 21 



The INPUT Statement 

It's important to remember, when using READ and DATA statements, that 
no matter how many DATA statements you put in your program, only one 
data table is created, before any READ statement is executed. The table is 
created from all the DATA statements in your program, regardless of where 
they appear-at the beginning, at the end, or scattered throughout. Each of 
the three sets of statements here have the same effect: 

200 DATA 1,2,3 
210 DATA 4,5,6 
220 READ H,I,J,K,L,M 

200 READ H,I,J,K,L,M 
210 DATA 1 ,2,3 
220 DATA 4,5,6 

200 DATA 1,2,3 
210 READ H,I,J,K,L,M 
220 DATA 4,5,6 

Both the assignment statement and the DATA statement use 
constants-unchanging data items that are part of your program-to assign 
values to variables. You have to know, at the time you're writing your 
program, what numbers you want to assign. 

The INPUT statement allows a little more flexibility. This statement names 
the variables that are to receive values, but allows you to wait until you are 
running your program to actually supply the values. For example: 

50 INPUT X,Y,Z 

means that you will supply values for X, Y, and Z when your program is run. 
You'll know when it's time to supply the values because a question mark will 
be printed at the terminal: 

? 

When you see this, you should enter your values, one for each variable in the 
INPUT statement-in this case, three. The numbers are entered all on one 
line, separated by commas. Thus, when you've typed the information, the line 
should look like this: 

? 
185, 205, 191 

By entering these numbers, you've assigned 185 to X, 205 to Y, and 191 to Z. 

You have to be certain, when typing your input line, to enter exactly the same 
number of values as there are variables in the INPUT statement in your 
program. If you try to enter too many or too few, the line won't be accepted 
and you'll have to try again. 

Using the Comma as a Continuation Character 

22 VS BASIC Language 

If your input is too long to fit on one line, a comma entered after the last item 
on the line acts as a continuation character. Data on the next line is read as a 
continuation of the input from the preceding line. For example, the input for 
this statement: 

100 INPUT A,B,C,D,E,F,G,H,I,J 



could be entered like this: 

? 
53095, 10033, 76332, 41329, 12498, 29875, 35608, 
81421, 73190, 30042 

The comma appearing after the last item on a line informs the computer that 
additional data is to be read from the next line. 

Using the Slash (/) to Delimit Input Data 

The slash can be used to end an input line and, in effect, skip the remaining 
variables in the INPUT statement. For example, if you were using statement 
100 above, but wished to enter only five values, you could enter: 

? 
53095, 10033, 76332, 41329, 12498/ 

The computer assigns the values to A, B, C, D, and E, and ignores F, G, H, I, 
andJ. 

Using Consecutive Commas as a Null Delimiter 

Prompting Your Input 

Two consecutive commas appearing in the data are treated as a null entry; 
that is, the corresponding variable in the INPUT statement is unchanged. For 
example, if you did not wish to enter an item for B in this statement: 

70 INPUT A,B,C,D 

you could enter this data: 

? 
4,,3,9 

The computer assigns the value 4 to A, leaves B unchanged, assigns the value 
3 to C, and assigns the value 9 to D. 

Since a lot of time can elapse between the time you write a program and the 
time you run it, you may have difficulty remembering exactly how many 
values you have to enter. This is especially true when your program contains 
more than one INPUT statement. Then you have to keep track of which one 
comes first. 

You can have your program keep track for you by reminding you what has to 
be entered. All you have to do is put a PRINT statement immediately before 
the INPUT statement in your program. For example, if your program is 
averaging bowling scores, you could use these statements: 

45 PRINT 'ENTER THREE BOWLING SCORES' 
50 INPUT X,Y,Z 

Then, at run time, instead of just a question mark appearing when it's time to 
enter your values, these lines will be printed: 

ENTER THREE BOWLING SCORES 

? 

When you've entered your numbers, the lines will look like this: 

ENTER THREE BOWLING SCORES 
? 
185, 205, 191 

Your BASIC Program 23 



Buffered-Ahead Terminal Input 

Different Kinds of Data 

24 VS BASIC Language 

You can put any reminder message that you want in the PRINT statement, as 
long as you put quotation marks around it. You can use single or double 
quotation marks-this PRINT statement is effectively the same as the one 
shown above: 

45 PRINT "ENTER THREE BOWLING SCORES" 

Of course, you also have to remember that the PRINT statement has to fit 
entirely on one line. If your message is so long that it doesn't fit, you might 
consider using several PRINT statements in a row: 

45 PRINT 'TYPE IN TWELVE AVERAGE TEMPERATURES' 
46 PRINT 'FOR THE MONTHS JANUARY TO DECEMBER' 
50 INPUT M,N,O,P,Q,R,S,T,U,V,W,X 

Bear in mind that you should use this method only when a long message is 
absolutely essential. As a general rule, you should keep your messages as brief 
as possible. 

Another facility to allow entry of data values for more than one INPUT 
statement is called "buffered-ahead terminal input." This facility enables you 
to enter, on a single line, data values to satisfy more than one INPUT request. 
Each data value group entered is equivalent to a single line of input data, and 
is separated by a semicolon. For example, you could have written PRINT and 
INPUT statements for the system to prompt you as follows: 

ENTER BOWLING SCORES - TEAM A 
? 
185,201,191 
ENTER BLOWING SCORES - TEAM B 
? 
133,188,244 

Using the buffered-ahead terminal input facility, the above could be entered 
as: 

ENTER BOWLING SCORES - TEAM A 
? 
185,201,191; 133,188,244 
ENTER BOWLING SCORES - TEAM B 

As you can see from the second example, the second question mark does not 
appear because the second input request was satisfied with the data values 
following the first question mark. 

Remember, with the INPUT statement, the number of data values you enter 
should not exceed the width of the terminal input line. 

So far we've learned that data can be entered into the computer in two forms: 
as constants within a program, or as input during program execution. Most of 
the data we've shown in our examples has consisted of numeric values. This 
arithmetic data is one of the two types of data that BASIC can handle. The 
other is character data. We've seen an example of character data in the 
PRINT statement used to prompt input-the prompting message enclosed in 
quotes. Now let's look at each data type in detail. 



Arithmetic Data 

VS BASIC allows several forms of arithmetic data-integer, fixed-point, and 
/loating-point. Integer data is the form we've been using in our exampies. It 
consists of whole numbers, positive or negative: 

12 
+356 
-4 
24657 

Notice that you can't use commas in an integer; in other words, the last 
number can't be expressed as: 

24,657 

Fixed-point data consists of a number containing a decimal point. Like 
integers, fixed-point numbers can be positive or negative: 

1.59 
.0054 
34.0 
+2.1212 
-48. 

The /loating-point form of arithmetic data gives you a way of concisely 
expressing extremely large or extremely small values. (Unless you're working 
with math or science problems, you'll probably never need it.) In science, a 
very large value is often expressed as a small number multiplied by 10 raised 
to a power (for example, 3 million-or 3000000-is expressed as 3 times 
106). Similarly, a very small value is expressed as a large number multiplied by 
10 raised to a negative power (for example, .000003 is expressed as 3 times 
10-6). 

A floating-point number looks like an integer or a fixed-point number, 
followed by the letter E, followed by an exponent-the power of 10. The 
number 3000000-0r 3 times 106-is written in floating point as 3E+6; or it 
can be written in any of these equivalent ways: 

3.0E+6 
3E6 
+3E06 

Likewise, the number .000003-or 3 times 10-6-can be written in floating 
point as 3E-06. Some other ways of expressing it are: 

3.0E-6 
3E-06 
+3E-6 

Here are some things to remember about floating-point numbers: 

• The number preceding the E can be either integer or fixed-point 
format-that is, it mayor may not contain a decimal point. 

• A positive exponent can be preceded by a plus sign, or it can be written 
with no sign. 

• A negative exponent must be preceded by a minus sign. 

• The largest absolute value that can be expressed is approximately 1075• 

• The smallest absolute value that can be expressed is approximately 10-78• 

• The exponent can be expressed as one or two digits. 

Your BASIC Program 25 



A Word About Precision 

Character Data 

26 VS BASIC Language 

There's a limit to the number of digits that you can have in integer or 
fixed-point numbers as well. BASIC allows numbers to be expressed in 
short-form or long-form. You can specify the precision you want your 
program to have in an OPTION statement, or in the command you use to 
execute your program. If you use OPTION statement, it must be the first 
statement in your program. 

Short-form arithmetic data can contain as many as seven significant digits; 
long form data as many as fifteen. If a number in your program contains more 
digits than allowed for the precision you~have chosen, only the first seven or 
fifteen significant digits are used. 

When dealing with whole numbers, one can always expect seven places of 
accuracy. However, when dealing with fractions, such accuracy cannot always 
be obtained. This is because of the way VS BASIC represents numbers 
internally during execution. Numbers are converted to hexadecimal for 
computation, and there are some decimal fractions which do not have an 
exact hexadecimal equivalent, that is, there are repeating hexadecimal 
numbers. 

These maximum precisions apply to the integer or fixed-point portion of a 
floating-point data item, as well as to integers and fixed-point numbers. 

The other form of data, as we said, is character data. To the computer, it is 
merely a string of characters-letters, digits, punctuation marks, etc., strung 
together in any combination. Such a character string can be a single 
character, or it can be as many as 255 characters. 

Depending on the way in which it is used, character data may have to be 
enclosed within quotation marks-either single or double. For example, 
quotation marks are needed for character data used in an assignment 
statement (LET statement). When character data is used in a DATA or 
INPUT statement, quotation marks should be used when the data contains 
any of the following: 

• commas or slashes (or semicolon-INPUT only) 

• leading or trailing blanks 

• leading or trailing single or double quotation marks 

• an initial integer immediately followed by an asterisk 

It is never an error to use the enclosing quotation marks, so if you are not sure 
whether or not the quotation marks are needed in any given case, you can 
always use them. 

These quotation marks are often referred to as delimiters, because they show 
the limits-the beginning and end--of a character data item. 



Uses of Character Data 

Some Rules about Delimiters 

The length of a character data item is the number of characters in it, not 
counting the delimiting quotation marks. But everything between the 
delimiters must be counted, even blanks. Here are some character constants 
and their lengths: 

Constant 

'ABeD' 
"TWO AND TWO" 
'1234567' 

Length 

4 
11 
7 

Notice that the last constant, except for the quotation marks, looks just like 
an integer. Be careful not to confuse the two. An integer has an arithmetic 
value and, as you'll see later, can be used in arithmetic operations. A 
character string, even when it is made up of all numeric digits, cannot be 
added to or subtracted from. It is only a string of digits. 

You might want to use character data for a number of reasons. You've 
already seen it used to create messages. You can also use it to put a heading 
on a report, or to label your results in a program doing arithmetic calculations. 
You may want to read some names and account numbers, perhaps test them 
(you'll learn how to do this later), and print them. An account number or a 
serial number is a good example of a character data item that is all digits. 

We've already said that a character data item can be bounded by--enclosed 
in-single or double quotation marks. While you have a choice, you cannot 
use both types to delimit a single character data item. An item that starts with 
a single quote must end with a single quote; likewise for double quotes. This 
has special significance when you want to use quotation marks as part of your 
character data item. 

Let's say you want to use this character value: 

IT IS THE DOG'S BONE 

We haven't shown any delimiting quotes here yet; the single quote within the 
constant is needed as a punctuation mark. If you tried to use single quotes to 
delimit this value: 

'IT IS THE DOG'S BONE' 

the computer would recognize the punctuation mark as a delimiter, and you 
would wind up with the value: 

IT IS THE DOG 

The remaining characters-S BONE'-would cause an error. 

One way of avoiding this problem, in this instance, is to use double quotes to 
delimit the constant: 

"IT IS THE DOG'S BONE" 

Since the opening delimiter is a double quote, only a double quote is 
recognized as the closing delimiter, and the entire value is accepted. If for 
some reason you're unable to use double quotes, BASIC allows this 
convention to solve the problem: 

'IT IS THE DOG' 's BONE' 

Your BASIC Program 27 



Using two single quotes in succession here indicates that you want one single 
quote to be part of your character value, and that more characters may 
follow. This way, the entire constant is recognized. 

All of what we've said applies when double quotes are needed as part of a 
constant: 

A "FLOATING-POINT" ITEM 

This value can be expressed in either of these ways: 

'A "FLOATING-POINT" ITEM' 
"A ""FLOATING-POINT"" ITEM" 

To restate the convention-two consecutive occurrences of the delimiting 
character in a character constant are interpreted as one occurrence of that 
character within the character value. When this happens, by the way, the 
double occurrence of the character counts as only one character in 
determining the length of the constant. The constant just shown has a length 
of 18, regardless of the way it is expressed. 

Rules for Forming Variables 

Arithmetic Variables 

Character Variables 

28 VS BASIC Language 

Now that you know about the different kinds of data you can use in your 
program, you'll have to follow some rules to form the variables that data can 
be assigned to. 

You may have noticed that all of the variables we've used in our examples 
involving arithmetic data were single lett~rs of the alphabet-A, B, C, and so 
forth. Actually, BASIC allows arithmetic variables to be any of the following: 

• A single letter of the extended alphabet 

• A single letter of the extended alphabet followed by one of the digits 0 
through 9 

By the extended alphabet, we mean any of the 26 letters of the English 
alphabet, plus 3 additional characters: the commercial "at" sign (@), the 
number or pound sign (#), and the currency or dollar sign ($). These three 
characters are often referred to as the alphabet extenders. 

Here are a few examples of valid arithmetic variables: 

X 
B3 
# 
$1 
QO 

Character variables must be different from arithmetic variables. They are 
formed from a single letter of the extended alphabet, followed by a currency 
symbol ($). For example: 

A$ 
@$ 
$$ 

Just as a character data item has a certain length, a character variable, too, 
has a length associated with it. The length of a character variable is the 



number of characters that can be assigned to it. Without any action on your 
part, all character variables are given a length of 18. If you want any or all of 
your character variables to have a different length, you can define these 
lengths by including a DIM statement in your program: 

200 DIM B$6, C$12 

Here, we've said that the character variables B$ and C$ are to have lengths of 
6 and 12, respectively. This DIM statement must appear before any other 
references to B$ or C$ in your program. If there are no other DIM statements 
in the program, all other character variables used have a length of 18. 

You can put as many character variables in a DIM statement as you wish, 
provided that a length is specified after each variable, and the entries are 
separated by commas and will fit on one line. If you want to specify more 
variables than will fit on one line, you can use additional DIM statements. 
(The DIM statement, by the way, has another use that we'll cover later.) 

Now let's look at the effect that the length of a variable has when character 
values are assigned to it: 

30 LET A$ = 'DATA STRING' 

Since there is no DIM statement specifying the length of A$, its length is 18. 
Any value it is assigned must be 18 characters long. Since the character value 
being assigned here is only 11 characters long, 7 blanks are added to the end 
of it to fill out the length of 18. To say this another way, it is padded on the 
right with 7 blanks. 

If this DIM statement were to be in the program: 

100 DIM A$8 

the character value DATA STRING would be truncated on the right-only 
the first eight characters would be assigned to conform to A$'s length of 
eight. Now the value of A$ would be: 

DATA STR 

Mixing Arithmetic and Character Data 
All of the methods for getting arithmetic data into the computer-the 
assignment statement, the DATA and READ statements, and the INPUT 
statement-can be used for character data as well. In fact, character and 
arithmetic variables can be interspersed in the same READ or INPUT 
statement: 

30 INPUT A,B,C,M$ 

Three arithmetic values and one character value must be supplied, in that 
order, when the program is run. For example: 

? 
77, 85, 83, "DAILY TEMPERATURES" 

Similarly: 

10 DATA 2507, JOHN DOE, 33,"2/76" 
20 READ A, B$, X, X$ 

Your BASIC Program 29 



Note that in both these cases, arithmetic and character data must be arranged 
in the same order as the arithmetic and character variables. The following 
statements would cause execution of your program to fail: 

10 DATA 2507, JOHN DOE 
20 READ B$, A 

Expressions and Calculations 

30 VS BASIC Language 

In an assignment statement, only a variable can appear to the left of the equal 
sign. Both variables and constants can appear to the right of the equal sign. In 
fact, constants and/or variables can be combined with operators. Here are 
some examples: 

10 LET A = B 
20 LET H = 300 + 278 + 312 + 218 
40 J = 71 + 14 - 34 I X 
50 LET X = X + 2 

The last example adds 2 to X. If you know algebra, you will see a difference 
between the LET statement and an algebraic equation. A LET statement 
assigns a value to a variable and does not imply that the items on the left and 
right of the equal sign are mathematically equal. This LET statement says that 
2 is to be added to the value of X and the new value is to be assigned to X. If 
the old value of X was 10, it becomes 12. 

That part of the assignment statement to the right of the equal sign is called 
an expression. The expression specifies the value to be assigned to the 
variable on the left of the equal sign. An expression can be very simple, 
involving no calculations, or it can be quite complicated, involving many 
variables and arithmetic operations. Some examples of arithmetic expressions 
are: 

3E6 
71 + 14 - 34 
A1 
-6.4 
X + Y + Z 
X3 / (-6) 

The symbols used in expressions to specify mathematical operations are called 
arithmetic operators. There are two kinds of arithmetic operators, unary and 
binary. 

The two unary operators are the symbols + and -. The following examples 
show how unary operators are used: 

+5 
-10 
-C1 

The first example states that 5 has a positive value. (It does not mean that 5 is 
to be added to some other number.) The second example states that 10 has a 
negative value. The third example illustrates a negative variable. When a 
negative variable is encountered, the sign of the variable is reversed. That is, 
if C1 contains the value +5, the value of -C1 is -5; if C1 contains -10, the 
value of -C1 is + 10. 



Evaluation of Expressions 

There are five binary operators: 

Symbol Meaning Example 

+ addition 5+3 
subtraction 5-3 

* multiplication 5 * 3 
/ division 5/3 
t or ** exponentiation 5 * * 3 (5 raised to the third 

power: 5 * 5 * 5) 

Arithmetic expressions are evaluated according to the priorities of the 
operators involved. Operations with higher priorities are performed first. 
Those at the same priority level are performed as they are encountered, from 
left to right. 

The order of priority is as follows: 

1. Exponentiation is performed first; thus it is said to have the highest 
priority. 

2. Unary operations have the second priority. 

3. Multiplication and division have the third priority. 

4. Finally, addition and subtraction have the lowest priority. 

Let's look at this example (assume A = 4, B = 10, and C = 5): 

-A ** 2 + B / C * 2.5 

The evaluation process follows this sequence: 

1. A ** 2 is evaluated first. (Result = 16) 

2. The unary minus sign is applied to the result of A ** 2 (that is, the sign of 
A ** 2 is reversed). (Result = -16) 

3. B is divided by C. (Result = 2) 

4. The result of B / C is multiplied by 2.5. (Result = 5) 

5. Finally, the result of item 4 is added to the result of item 2. (Result = -11) 

Parentheses may be used in an expression to alter the order in which the 
expression is evaluated by the computer. Any part of an expression enclosed 
in parentheses is evaluated before any other part of the expression. For 
example, the expression 

A - B / C 

is evaluated as follows: divide B by C and then subtract the result from A. 
Spacing is ignored; that is, even if the expression were written: 

A-B / C 

the division operation would be performed before the subtraction operation. 
Assuming values of 15, 10, and 5 for A, B, and C, the result would be 13. 
However, by using parentheses, the order of evaluation can be altered: 

(A - B) / C 

Your BASIC Program 31 



CluuilCter Expression, 

Intrinsic '1I1IetiO", 

32 VS BASIC Language 

Now the expression is evaluated as follows: first subtract B from A and then 
divide the result by C. Assuming the same values for A, B, and C, the result 
here is 1. 

Note that A - (B / C) is the same as A - B / C. 

Thus, the use of parentheses in expressions is similar to the use of parentheses 
in algebra; that is, parentheses group operations and indicate which 
operations should be performed first. As a general rule, use parentheses 
whenever you are in doubt about the wayan expression would otherwise be 
evaiuated. 

As a further illustration, evaluation of (2**3)**2 or 2**3**2 gives 64, 
whereas, evaluation of 2**(3**2) gives 512. 

To summarize arithmetic expressions, there are two unary operators: + (plus) 
and -(minus:), There are five binary operators. In order of priority, they are: 
** (exponentiation), * (multiplication) and / (division), and +(addition) and 
- (subtraction). An expression can consist of a constant, a variable, a function 
reference, a subexpression contained in parentheses, or any combination of 
these separated by suitable operators. (In addition, an expression can contain 
an array reference, which we have not yet discussed.) 

A character expression can consist of a character constant, a character 
variable, a character-valued function reference, a character array 
member-not yet discussed--or any combination ,of these, separated by 
binary character operators and parentheses. 

The following are examples of character expressions: 

'NEW YORK" 
A$ 
'ABC' I I 'DEFG' 

The concatenation operator, symbol I I, causes two character expressions to 
be joined together. In the last example, the character string DEFG is 
concatenated with ABC forming the character string ABCDEFG. The 
concatenation operator can also be written using the alphabetic equivalent 
symbol.CAT. instead of the symbol II. 
When two or more character strings are concatenated the length of the 
resulting string is the sum of the lengths of the individual strings. 

For example: 

"1234" .CAT. "5" 

The length of the resulting character string is 5. 

Functions are available in VS BASIC which simplify mathematical and 
character string operations. They include mathematical functions, such as 
sine, square root, and natural logarithms; and character functions, which 
perform such actions as extracting a portion of a character string and 
providing the time of day. These functions are called intrinsic functions. 
Conceptually, you can think of an intrinsic function as a group of instructions 
that performs a calculation. For example, the sine function consists of 
instructions to obtain the sine of an angle. To save you the trouble of having 



Inte17Ul1 Constants 

to write these instructions into your program, these functions are made 
available as part of VS BASIC. 

To use a function, you call it by its name. For example, to perform the sine 
operation, you refer to SIN. The name given to the square root function is 
SQR, to the natural logarithm, LOG, and to the time of day function, CLK. A 
complete list of intrinsic functions available in VS BASIC is given in Part n of 
this publication. Some examples of their use are shown below: 

70 LET V SIN(Y) 
80 LET Z = 1 + SQR(X**3) 
90 W = 1 - SQR(COS(A)) 

100 T$ = CLK 

The quantity in parentheses immediately following the name of the function is 
an argument (for example, X**3 in statement 80). An argument is merely an 
expression representing a value that the function is to act upon. The 
expression can be as simple or as complicated as any of the expressions we've 
encountered so far, and it is evaluated according to the same rules. Thus, in 
the second example, if the value of X is 4, then the value of X**3 is 64, and 
the value of SQR(X**3)--or the square root of 64-is 8. The third example 
shows nested function references. In such cases, the expression within the 
innermost set of parentheses is evaluated first; the expression within the next 
innermost set is evaluated next, and so on until the outermost level is reached. 
Thus, the cosine of A is found first and the square root of that cosine value is 
found next. The last example shows the CLK function, which has no 
argument, 

Two functions allow you to locate or refer to portions of character strings, or 
substrings. With the IDX function you can locate a group of characters within 
a character string; with the STR function, you can extract or display a group. 
The following example illustrates the use of these functions: 

00 DIM S$1 ,C$2 
10 L$ = 'HTNSBRIMODXGYAVFLKQCZUWEJP' 
20 S$ = 'A' 
30 N = IDX(L$,S$) 
40 C$ = STR(L$,5,2) 

Statement 30 finds the position of the character' A' in a scrambled alphabet. 
N will receive the arithmetic value 14 because the string 'A' (in variable S$) is 
at position 14 of the alphabetic string (variable L$). Statement 40 extracts 
two consecutive letters starting at position 5 of the scrambled alphabetic 
assigns then to C$. Thus, C$ will be set to 'BR', which occupies positions 5 
and 6 of string L$. 

When you use a function in a statement, you are making a function reference. 

An internal constant is an arithmetic constant having a predefined value. 
Internal constants, such as the value of 'IT, the square root of 2, and the 
number of centimeters to an inch, help to simplify mathematical operations. 
By specifying the name of an internal constant in a BASIC statement, you 
make it unnecessary to define the value yourself. A complete list of internal 
constants available in VS BASIC is given in Part n of this publication. Some 
examples are shown below: 

30 A &PI * R ** 2 
40 B = &INCM * I 

Your BASIC Program 33 



Pseudo Variables 

Intemal Variables 

Assuming variable R is a radius, statement 30 calculates the area of a circle by 
multiplying the square of the radius by the internal constant &PI, which 
contains the value of 'IT. Assuming variable I represents inches, statement 40 
converts inches to centimeters by multiplying I by the internal constant 
&INCM, which contains the number of centimeters to an inch. 

A pseudo variable is a special use of an intrinsic function as a variable. It can 
be used to receive a value in any place that an ordinary variable can be used, 
for example, in an INPUT statement, or on the left side of an equal sign. 
There is only one pseudo variable in VS BASIC. Its name, data type, and 
format are the same as those of the STR intrinsic function. Here is an 
example: 

00 DIM A$10 
10 A$ = 'ABCDEFGHIJ' 
20 STR(A$,7,2) = 'XX' 

The pseudo variable in statement 20, which is written to the left of the equal 
sign, indicates where the character string 'XX' should be assigned in A$. This 
statement assigns the string to the two character positions starting at position 
7 of string A$. The result will be to give A$ the value ABCDEFXXIJ. 

Internal variables are used by VS BASIC to record information about your 
program as it executes. For example, during program execution, the internal 
variable &LINE contains the program line number of the VS BASIC 
statement currently being executed. You can find out the value assigned to an 
internal variable by specifying the name of the variable in a VS BASIC 
statement. 

Internal variables are sometimes referred to as "read-only" internal variables 
because, while you can "read" them (that is, find out what the value of the 
variable is), you cannot write them (that is, assign new values to them that 
would write over the value VS BASIC has assigned to them). 

One use of the internal variable in a VS BASIC program is to help identify 
and locate those errors that can occur during program execution. 

A list of· internal variables and their uses is given in Part II of this publication. 

Getting Data Out Using the PRINT Statement 

34 VS BASIC Language 

The simplest way to get data out of the computer is by using the PRINT 
statement. The PRINT statement is the output counterpart of the INPUT 
statement. 

As you recall, the INPUT statement enters data in the following manner: 

300 INPUT A, B, C, D, E, F, G 

The set of variables in the statement is known as a list. 

The PRINT statement prints the values of an output list in the same manner 
as the INPUT statement enters values for an input list: 

350 PRINT A, B, C, D, E, F, G 



The PRINT statement can print both constants and variables, and can be used 
to print character and arithmetic data on the same output line. Here are 
examples: 

400 PRINT A, B, C, 5, 6, 7 

This statement prints the values of the arithmetic variables A, B, and C, 
followed by the arithmetic constants 5, 6, and 7. 

450 PRINT 'THE VALUE OF A IS:', A 

This statement prints the character constant enclosed in single quotation 
marks, followed by the value of the arithmetic variable A. If A had the value 
56, the printed line would look like this: 

THE VALUE OF A IS: 56 

A PRINT statement can also include an expression made up of variables and 
operators. For example: 

500 PRINT A, B, A*B 

The values of A and B will be printed, along with the product of both values. 

In general, each PRINT statement causes the computer to begin a new line. 
Thus, a useful technique for entering blank lines between lines of output is to 
write a PRINT statement with no list; the computer prints a blank line. 

Horizontally, the output page is divided into full print zones, each zone 
having 18 print positions. Assuming that the left-hand margin is set at 
position 1 on the terminal, the zones would begin in positions 1, 19, 37, 55, 
73, etc. A comma is used in the PRINT statement as a signal to the computer 
to move across the page to the next full print zone. For example, if we use the 
following statement: 

400 PRINT A,S, 'PING', 'PONG' 

the computer would start at the left edge of the page and print the value of 
the variable A. Then it would skip over to print position 19 and print the 
value 5. The character constant PINGl> (the l> indicates a blank character) 
would be printed beginning in print position 37, followed by the character 
constant PONG, beginning in print position 55. 

If the variable A contained the value -12345, the printed line would look 
like this: 

Print 
Position 
1 

-12345 

19 

f>5 

37 55 

PINGf> PONG 

Note that a positive number is preceded by a blank, and a negative number is 
preceded by a minus sign. 

It is possible to increase the number of print zones on a line. A semicolon or a 
null delimiter (a blank or no separation at all between data items) in the 
PRINT statement indicates to the computer to use a packed print zone rather 
than a full print zone. The size of the packed zone for arithmetic data is 
determined by the length of the field to be printed. An arithmetic value 
between 2 and 4 characters in length has a packed zone of 6 print positions. 
A value between 5 and 7 characters has a zone of 9 positions. Longer values 
have longer print zones; Table 4 in Part II of this publication summarizes 
print zones. 

Your BASIC Program 35 



A Simple Program 

36 VS BASIC Language 

Note that the minimum arithmetic value is considered to be 2 characters 
rather than 1, because the first print position is always reserved for the 
arithmetic sign, either a blank for a positive number, or a minus for a negative 
one. Thus, the value 5 in the example above would be considered a 
two-character value, having a packed zone of 6 positions. The other 
arithmetic value in the example, -12345, has a zone of 9 positions. 

The size of the packed zone for a character variable or expression is the 
length of the data item minus any trailing blanks. For a character constant, 
the size of the packed print zone equals th~ length of the character string that 
is enclosed in quotes. 

If PRINT statement 400 were rewritten to specify packed print zones: 

400 PRINT Ai 5 'PING 'i'PONG' 

it would cause tllis line to be print~d: 

Print 
Position 
1 
-12345 

10 
f>5 

16 
PINGf> 

21 
PONG 

At this point, let's put together some of the statements we've been using, and 
construct a simple program. 

Suppose we average those bowling scores we talked about earlier. First, we 
have to enter the scores (six of them, in this case), so that the computer can 
act on them. We can use an INPUT statem~nt to do that. Then we have to tell 
the computer to add all the scores and then divide them by 6. We can use one 
or two LET assignment statements for that. Then we print the average so we 
can see the result. The PRINT statement can be used for that. 

Here's our program: 

50 PRINT 'ENTER SIX BOWLING SCORES' 
100 INPUT A, B, C, D, E, F 
200 LET X = A + B + C + D + E + F 
300 y = X / 6 REM COMPUTE AVERAGE 
400 PRINT 'THE BOWLING AVERAGE IS', Y 
500 END 

Statement 500, the END statement, tells the computer that the end of the 
program has been reached. Every program must have an END statement, and 
it should be the highest numbered statement in the program. If any statements 
appear after the END statement, they are ignored. 

When we run the program, the computer will signal us that it is ready to 
accept the input by printing a question mark at the terminal. We respond by 
entering the six numbers to be entered into the variables A through F. When 
the computer is finished processing, it will print out the result using the format 
specified in PRINT statement 400. Here's what the output would look like at 
the terminal: 

ENTER SIX BOWLING SCORES 

? 
175, 173, 181, 184, 181, 172 

THE BOWLING AVERAGE IS 177.6667 



Comments In Your Program 
You will probably find it useful to put comments throughout your program, 
particularly if it is a complex one, or one that you do not use often enough to 
remember exactly how it is run. BASIC provides several ways to include 
comments in your program. 

• Include comments on BASIC statements using the REM keyword. 

• Include comments on certain BASIC statements without using the REM 
keyword 

• Include comments using the REM statement 

Earlier examples showed how to include a comment on a BASIC statement 
using the REM keyword. The REM keyword can be used with all BASIC 
statements except the DATA statement (described earlier) and the Image 
statement (to be discussed later). Recall the examples: 

010 LET A=100 REM ASSIGN THE VALUE 100 TO A 

020 RESTORE REM READ FROM START OF DATA TABLE 

For BASIC statements consisting solely of a keyword, BASIC allows 
comments to be appended with or without the REM keyword. Statements 
such as RESTORE, END, and other statements not yet described (STOP, 
PAUSE, FNEND, and RETURN when used with GOSUB) do not require 
the REM keyword. The second example above could have been written: 

020 RESTORE READ FROM START OF DATA TABLE 

BASIC also provides a special statement used specifically to include remarks 
in your program. It is the REM statement. Like other BASIC statements, it is 
preceded by a statement number. The following are examples: 

40 REM THIS A COMMENT 
10 REM USE THIS PROGRAM TO COMPUTE BOWLING AVERAGES 

In the last example, the REM statement is used to describe the purpose of the 
program, computing bowling averages. 

Your BASIC Program 37 





Testing and Controlling Program Data 

Loops 

Now that we can write simple programs, let us explore different ways to make 
our programs more efficient. 

Suppose you wanted to print out each number from 1 to 50 together with its 
square. You could do it simply enough by writing the following statements: 

10 PRINT 1, 1**2 
20 PRINT 2, 2**2 
30 PRINT 3, 3**2 
40 PRINT 4, 4**2 

and so on, ending with 

490 PRINT 49, 49**2 
500 PRINT 50, 50**2 
510 END 

Although this technique works correctly, it is very time consuming and 
tedious. In writing out a number and its square for all numbers from 1 to 50, 
what we are really doing is performing the same operation repeatedly, but 
using different numbers each time. Calculations that are to be repeated can 
generally be done efficiently by a simple programmiiig device known as a 
loop. 

Here's a concise method of performing the same operations shown above: 

10 LET X = 1 
20 PRINT X, X**2 
30 LET X = X + 1 
40 GO TO 20 
50 END 

Here we have created a loop in statements 20 through 40. When the program 
is run, the PRINT statement will be executed once each time the value of X 
increases by 1. The statement that makes the loop possible is the GO TO 
statement. It alters the normal sequence of execution by directing the 
computer to execute a different statement. It does this by referring to the 
number of that statement. The statement GO TO 20 directs the computer 
back to statement 20, which prints the value of X and its square. Statement 
30 then increases the value of X by 1, and statement 40 is executed again, 
"branching" the program back to statement 20. 

There is one problem with the loop we have shown here: there is no provision 
for ending the loop. Consequently, not only will we get results for values from 
1 to 50, but also for 51, 52, and so on, unless we take some action to stop the 
execution. In this program, we want the loop to end after we reach the value 
50, or, put another way, we want the loop to continue as long as X is less 
than or equal to 50. To provide this action, we should build into the loop a 
test for some condition, so that when the condition is met, the loop would end 
automatically. 

Testing and Controlling Program Data 39 



Using the IF Statement 

40 VS BASIC Language 

An IF statement says it quite concisely: 

IF X <= 50 GOTO 20 

This IF statement says that if X is less than «) or equal to (=) the value 50, 
the program is to branch to statement 20. Here we have incorporated the 
GOTO statement into the IF statement. Let's put this new statement into the 
program and see what happens. 

10 LET X = 1 
20 PRINT X, X**2 
30 LET X = X + 1 
40 IF X <= 50 GOTO 20 
50 END 

As long as X satisfies the condition "X less than or equal to SO." execution 
will loop back to the PRINT statement. However, when X no longer satisfies 

't 

the condition-when X is greater than 50-the loop will end automatically 
and the execution will "fall through" the IF statement to the next statement, 
which in this case is an END statement signifying the end of the program. 

The IF statement has many applications, some of which can be quite 
sophisticated, depending on the condition tested in the statement. For 
example, condit,ions such as the following can be tested: 

160 IF A 0 GOTO 60 
170 IF A = 0 THEN 60 ELSE 70 
180 IF B - X / Y < Z**2 GO TO 80 
190 IF Z>Y THEN PRINT Z ELSE PRINT Y 

The first example is quite simple: if the value of the variable A is equal to 0, 
branch to statement number 60. The second statement tests the same 
condition as the first statement, but substitutes the word THEN for GOTO. 
In the IF statement, THEN and GOTO have exactly the same meaning. This 
IF statement also introduces the ELSE clause, which provides an alternative 
action if the condition is not met. This ELSE clause causes a branch to 
statement 70 whenever A does not equal zero. The third statement makes a 
test between two sets of expressions. The first expression evaluates the result 
of B-X/Y. The second expression evaluates the result of Z**2. If the result of 
the first expression is less than «) the result of the second expression, then 
the program is to branch to statement 80. 

The last example illustrates the use of an IF statement to perform actions 
other than branching. It states that if the value of Z is greater than (» the 
value of Y, Z is to be printed, otherwise Y is to be printed. 

These symbols <, >, and = are part of a set of operators called relational 
operators. Relational operators are used to test the relationship between two 
expressions. It is important to note that relational operators do not perform 
any arithmetic operations. They simply test whether a condition is or is not 
satisfied. For example, in the statement: 

300 IF X=50 GOT 350 

The equal sign does not mean that X is to be given the value 50, it tests 
whether the value already assigned to X equals 50. If a condition is satisfied 
(if X does equal 50 in this example), then the condition is considered "true." 
If a condition is not satisfied (if X does not equal SO), the condition is 
considered "false." Thus, a relational operator says that if the condition being 
tested is true, the action specified is taken; otherwise, the action is not taken. 
Reviewing this concept using the example IF A=O GOTO 60, if the condition 



Logical Operators 

is true (A does equal 0), then the branch to statement number 60 is made; 
otherwise the branch is not made. Instead, the program continues with the 
next statement in sequence. 

The relational operators and their definition are: 

Operator 

= or .EQ. 
<> or .NE. or =1= 

>or.GT. 
< or .LT. 

Meaning 

Equal to 
Not equal to 
Greater than 
Less than 

>= or .GE. or ~ 
<= or .LE. or ~ 

Greater than or equal to 
Less than or equal to 

The special characters and their alphabetic equivalents can be used 
interchangeably in relational expressions. Here are some examples: 

IF A = B 
IF "PRINT" < "PRIZE" 
IF A$ .NE. D$ 

In the first example, a test is made between the values contained in the 
arithmetic variables A and B. The second example illustrates comparison of 
character data. For character data, a comparison is made according to the 
EBCDIC collating sequence of each character in corresponding positions in 
the constant. (Refer to Appendix B. "Collating Sequence of the VS BASIC 
Character Set.") In other words, the first character of one constant is 
compared to the first character of the other, the second compared to the 
second of the other, etc. In this example, the first three letters of the 
constants compare equal, but when the letter N is compared to Z, they 
compare unequal. The letter N, occurring before the letter Z in the alphabet, 
registers "less than" in the collating sequence. At this point, the condition 
tested would be met, that is, the character string PRINT is indeed less than 
PRIZE. 

In the third example, character variables are compared. Let's assume that the 
variable A$ contains the value ON and the variable D$ contains ONLY. The 
first two characters match but when the letter L is compared to a blank, 
which is assumed for comparison purposes, they do not match. Thus, the 
result in this case would also be true, since the value of A$ is not equal to the 
value of D$.If, however A$ and D$ did contain matching strings, say both 
contained the characters ONLY, then the test results would be false-A$ and 
D$ would be equal, thereby not satisfying the condition of the test. 

The example IF A=B tests the relationship between two expressions. 
Suppose, however, that you wish to take action if more than one relationship 
is true. For example, suppose that not only must A equal B but also X must 
equal Y. You could make these comparisons this way: 

40 IF A=B THEN 50 ELSE 60 
50 IF X=Y THEN 100 
60 ... 

In statement 40, if the values of A and B are equal, then statement 50 is 
executed; otherwise, a branch is made around statement 50. In statement 50, 
if the values o~ X and Y are equal, then statement 100 is executed; otherwise, 
program execution continues with statement 60. 

A more concise way of making this test is by using the And logical operator, 
written as & or .AND.: 

Testing and Controlling Program Data 41 



40 IF A=B & X=Y THEN 100 
60 ... 

Statement 40 now says that if A equals B and X equals Y, then statement 
100 is executed. If only one comparison, or neither comparison, is true, 
program execution continues with statement 60. 

The IF statement can specify two logical operators: 

Operator Meaning 

& or .AND. And 

or .OR. Or 

The And operator states that both conditions of a test must be true in order 
for the entire expression to be true; the Or operator, that either condition 
must be true. 

if you wanted to branch to statement i 00 if either A equalled B or X equalled 
Y, you could write this statement: 

40 IF A=B I X=Y THEN 100 

Here are other examples of the And and Or operators: 

70 IF C$> D$ I J$=K$ THEN 50 ELSE 150 
80 IF Al:#A2 & J$ > "CAT" GO TO 300 
90 IF Al.NE.A2 & J$ .GT. "CAT" GOTO 300 

The first example tests an Or condition using character variables. It says that 
if either the value in the variable C$ is greater than that in D$ or the values in 
J$ and K$ are equal, then a branch is made to statement 50; if neither 
condition is true, then a branch is made to statement 150. 

The second example tests an And condition using mixed variables. It says that 
if both the value in the arithmetic variable Al is not equal to that in A2 and 
the value in the character variable J$ is greater than the character string CAT, 
then the program is to branch to statement 300; otherwise, program execution 
is to continue with the next sequential statement. 

The third example illustrates tne use of the alphabetic equivalents in place of 
the symbol in a BASIC statement. It tests the same conditions as the second 
example. 

The Computed GO TO Statement 

42 VS BASIC Language 

The computed GOTO statement is a version of the GOTO statement that 
gives you the ability to branch to different statements during various stages in 
a program. 

A computed GOTO could look like this: 

100 GO TO 30, 40, 50 ON J 

A branch is made to statement 30, to statement 40, or to statement 50, based 
on the value contained in the variable J. J may contain a valid value of from 1 
to 3. If J contains 1, a branch is made to the first statement shown in the list, 
statement number 30. If J contains 2, the branch is to the second statement, 
number 40. If J contains 3, the branch is to the third statement, number 50. If 
J contains any other value, program execution "falls through" to the 
statement following the computed GOTO statement. 

The expression determining the branch to be made can be a simple variable, 
such as J above, or a more complicated expression, say, (A+B)/2. If such an 



expression were used, its computed value would determine the branch to be 
made. Consider this example: 

50 GOTO 200, 220, 100, 240 ON (A+B)/2 

The expression (A+B)/2 is evaluated, and a branch is made to statement 
number 200, 220, 100, or 240, depending on whether the value is 1, 2, 3, or 
4, respectively. Note also that the statement numbers shown in the list do not 
have to be specified in sequential order; that is, statement number 100 can be 
the third number in the list even though it is a lower number than the others. 

More About Loops-Using FOR and NEXT Statements 
A still more concise method of specifying a loop is by using the FOR and 
NEXT statements. For example, our program for finding and printing the 
square of the numbers from 1 through 50 could be further simplified to look 
like this: 

10 FOR I = 1 TO 50 
20 PRINT I, 1**2 
30 NEXT I 
40 END 

The FOR statement identifies the beginning of the loop; the NEXT statement 
identifies the end of it. In between is the statement, or sequence of 
statements-we only need one for this example-that will be executed 
repeatedly until the specification in the FOR statement has been satisfied. 

In our example, the FOR statement specifies that the statement in the loop 
(the PRINT statement) will be executed repeatedly for successive values of I 
from 1 through 50 (an increment of 1 is added to I for each execution of the 
PRINT statement). When the value of I exceeds 50, execution of the loop is 
ended, and control is passed to the next logically executable statement 
following the NEXT statement. In this case, the following statement is an 
END statement denoting the end of the program. However, other statements 
could precede it, or the NEXT could be the last statement prior to the END. 

The specification "I = 1 TO 50 " defines the set of values over which the 
loop will be executed. As we've seen, the set in our example is 1,2,3, ... ,50. 
The increment is always 1 unless it is explicitly stated to be otherwise; for 
example: 

10 FOR I = 1 TO 50 STEP 2 

This FOR statement explicitly states an increment (or step) of 2. Thus, the 
statement(s) in the loop will be executed once for every odd value of I from 1 
to 50 (that is, the range is 1,3, 5, .. .49). When the value of I exceeds 50 (that 
is, when it reaches 51), execution of the loop will end. The value of I will be 
set back to 49 before the next logically executable statement is executed. 

If you wanted to execute the loop once for every even value of I from 1 to 50 
(that is, 2, 4, 6, ... 50), you would say the following: 

10 FOR I = 2 TO 50 STEP 2 

Again, when the value of I exceeds 50 (in this case, when it reaches 52), 
execution of the loop will end. The value of I will be set back to 50 when the 
next logically executable statement is executed. 

As with expressions appearing in assignment statements and in the body of 
PRINT statements, the specifications in FOR statements can be quite 
complicated. For example, the following FOR statements are permitted: 

Testing and Controlling Program Data 43 



44 VS BASIC Language 

30 
40 
50 

FOR I 
FOR J 
FOR K 

A TO B 
8*M+Y TO A**3 
SQR(B) - C TO 550 STEP A/B**2 

The first example states that the initial value of I is to be taken from the 
variable A and that the loop is to be executed repeatedly until the value 
exceeds the value of B. The second example states that the initial value of J is 
the value of the expression 8 *M + Y, and the loop is to be executed until this 
value exceeds the value of A **3. The third example states that the initial 
value of K is to be the square root of B minus C; the loop is to be executed 
until the value 550 is exceeded~ and each time through the loop the value of K 
is to be increased by the value of the expression A/B**2. 

You can also use more than one set of FOR/NEXT statements together in a 
program, by "nesting" one loop within another one. Let's look at a program 
that computes compound interest and uses nested FOR loops in the process. 

Tne mathematical formula to compute compound interest is: 

A = P (1 + ~)t 
100 

where A is the amount to be calculated, P is the principal, R is the rate of 
interest, and t is the time period. 

The program below shows how you can enter any amount as the principal 
(P), compute interest on it using interest rates from 1 % to 20%, for each of 
ten years, and print out all the amounts-a total of 200 values. 

90 PRINT 'ENTER PRINCIPAL' 
100 INPUT P 
105 PRINT 'TIME' , 'RATE' , 'AMOUNT' 
110 FOR T 1 TO 10 REM VARY THE TIME 
120 FOR R = 1 TO 20 REM VARY THE RATE 
130 LET A = p*( 1 + R/100)**T REM COMPUTE THE AMOUNT 
140 PRINT T, R, A 
150 NEXT R REM USE THE NEXT RATE 
160 NEXT T REM USE THE NEXT TIME 
170 END 

Statement 130 duplicates, in VS BASIC terms, the compound interest 
formula. The FOR statement numbered 120 and the NEXT statement 
numbered 150 delimit one loop. The first time through the loop, the value of 
R, the rate variable, is set to 1. When NEXT R is reached, R is incremented 
by 1 and the statements are executed again with the new value of R. Each 
time through the loop the PRINT statement prints time, rate, and amount 
values. This process continues until R reaches 20 and the loop is ended. 

However, this loop is enclosed, or nested, within the loop delimited by the 
FOR and NEXT statements numbered 110 and 160. This outer loop changes 
the value of T, the time variable, from 1 to 10. Each time the value of T 
changes, the inner loop cycles through 20 times changing the value of R. 
Since T changes value 10 times, the loop changing the value of R is executed 
200 times. Each time, the PRINT statement prints new values. 



A nested loop is one that is enclosed by another loop. That is, the 
FOR/NEXT statements of one loop occur between the FOR/NEXT 
statements of another loop, as illustrated: 

r-------------100 FOR P etc. 

outer 
loop 

I

' --------110 FOR R etc. 
Ir---- 120 FOR T etc. 

nested nested 
loop #1 loop #2 

LISONEXTT 
160 NEXT R 

'-------------- 170 NEXT P 

Testing and Controlling Program Data 45 





Using Arrays 

Naming Arrays 

An array is a simple way to keep together data items that are related. For 
example, if you wanted to keep the average temperature for each month of 
the year, you could construct an array having twelve data items. The DIM 
statement can be used to define an array: 

10 DIM T( 12 ) 

This statement defines an arithmetic array, T, containing 12 items, or 
members. The DIM statement is the same statement we used earlier to define 
character length, using B$6 and C$12 for character variables of length 6 and 
12. The computer recognizes an item as an array by the appearance of 
parentheses. The parentheses are used to define the number of items in the 
array. 

Arrays can be arithmetic or character. For example: 

20 DIM T$( 12) 

This statement defines a character array having twelve members. 

A DIM statement can specify the length of the members of a character array 
at the same time it is defining the array: 

20 DIM T$10(12) 

Here each of the members of array T$ is assigned a length of 10; without the 
length specification, each member, like other character variables, would be 
assumed to be 18 characters long. All members of a character array have the 
same length. 

Character arrays are named in exactly the same way as character variables, 
that is, the name must consist of a single alphabetic character (including the 
alphabet extenders) followed by the currency symbol. Thus, the name A$ can 
name either a character array or character variable. Arithmetic arrays are 
named in almost the same way as arithmetic variables. An arithmetic array 
name may consist only of a single alphabetic character (including the 
alphabet extenders); you may recall that arithmetic variables can also be 
named with a character followed by a digit. Thus, the name A can be used for 
either an arithmetic array or arithmetic variable, but the name A 1 can be used 
only for an arithmetic variable. 

Using Arrays 47 



Defining Arrays 

48 VS BASIC Language 

Defining an array in a DIM statement is known as an explicit array 
declaration. There is another way to define an array through implicit 
declaration; that is, by referring to a member of an array in a program 
statement without having defined it first in a DIM statement. When you refer 
to an array member without explicitly declaring it in the DIM statement, the 
computer will recognize that you are working with an array and will 
automatically allow space for ten members. To refer to a particular member 
of an array, you specify it by its location in the array. For example, T(1) 
refers to the first member of the array named T, T(2) refers to the second 
member, T(3) refers to the third member, and so on. Each number giving the 
location of a particular member is called a subscript. If the following 
statement appeared in the program: 

40 LET T(9) = 69 

only the ninth member of T would be assigned the value 69; all other 
members would remain unchanged. 

Remember that an array defined implicitly is assumed to have ten members. 
So in order for our array T to contain twelve members, we must explicitly 
define it. If an array has very few members, (for example, two or three), it 
would be wise to use a DIM statement, such as: 

10 DIM A(2), B(3) 

The DIM statement, in addition to defining the number of members in the 
array, also defines the number of dimensions in the array. 

So far, we have discussed only one-dimensional arrays. In BASIC, you can 
also have arrays of two dimensions. Assume that values have been assigned to 
our array T, such that: 

TO) is 31 
T(2) is 43 
T(3) is 42 
T(4) is 57 
T(5) is 64 
T(6) is 73 
T(7) is 79 
T(8) is 79 
T(9) is 69 

T(10) is 58 
T(II) is 44 
T(12) is 39 

Let us assume that these values represent the average temperature for the 
month; T(1), represents January's average, T(2), February's, etc. 

For various reasons, another programmer might want to consider the year as 
divided into four quarters of three months each; he could define his array (call 
it M) as a two-dimensional array, as follows: 

15 DIM M(4,3) 

In this statement, the array M is defined as a two-dimensional array 
containing 12 members (the product of 4 and 3), just like the array T. The 
difference is that the members of M are distributed over two dimensions, 
whereas in T they are distributed over only one dimension. Conceptually, the 
two dimensions of M can be thought of as rows and columns-four rows and 
three columns. The first value would be identified as being in the first row and 
the first column, or as M(1,l); the second value would be in M(1,2), the first 



row, the second column; the third in M(1,3), the first row, third column. The 
fourth item is M(2,l), or the second row, the first column, the fifth item, 
M(2,2), would be in the second row, second column, and so on. 

Assuming that the same temperatures assigned to T are assigned to M, notice 
the difference in the way each item is referred to: 

ArrayT Temperature Array M 

TO) 31 M(1,l) 
T(2) 43 M(1,2) 
T(3) 42 M(1,3) 
T(4) 57 M(2,l) 
T(5) 64 M(2,2) 
T(6) 73 M(2,3) 
T(7) 79 M(3,l) 
T(8) 79 M(3,2) 
T(9) 69 M(3,3) 
TOO) 58 M(4,l) 
TOt) 44 M(4,2) 
T(12) 39 M(4,3) 

Two subscripts are needed to refer to a particular member of M; for example, 
M(3,l) refers to the temperature for July, the first month in the third quarter. 

Note the difference between a subscript and the array dimension 
specification. A subscript refers to a particular member of an array. It can be 
any valid arithmetic expression (for example, a numeric constant or an 
arithmetic variable). In the example above, the expression is truncated to the 
value 1,2, 3, or 4, depending on the value of the member of the array. The 
dimension specification defines the number of members of an array. The 
dimension specification can appear only in a DIM statement and it must be 
indicated by unsigned integers only. An array name cannot appear in a DIM 
statement if the array has already been defined-either implicitly by usage or 
explicitly by already being defined in a previous DIM statement. 

As you can with a one-dimensional array, you can implicitly define a 
two-dimensional array by using it in a program statement without defining it 
in a DIM statement first. You would do this by referring to a particular 
member, using two subscripts. For example, A(4,3) would refer to the item in 
the fourth row, the third column of the array A. A two-dimensional array 
defined implicitly will be assigned the dimensions (10,10), or 100 members 
altogether. If the value of either dimension is to exceed ten, however, you 
must use a DIM statement to define the array as you would for a 
one-dimensional array that exceeds ten members. Remember that DIM 
statements to define arrays must appear in the program before you refer to 
the array. 

Still another way to define an array is by declaring it implicitly by context, 
that is, by using it in an assignment statement without defining its number of 
members or dimensions. For example, this statement: 

180 MAT A (5) 

assigns the value 5, enclosed in parentheses, to all members of the array A, 
identified as an array by the keyword MAT . MAT is used in an assignment 
statement to indicate that an operation is to be performed on an entire array, 
in this particular case, to assign the value 5 to all members. If A has not been 
previously declared, its occurrence in statement 180 would declare it by 
context, and it would be implicitly declared as a two-dimensional array, with 
ten members in each dimension, for a total of 100 members. 

Using Arrays 49 



Placing Values into Arrays 

50 VS BASIC Language 

Initially the system sets all arithmetic arrays to zero and all character arrays to 
blanks. Arrays can be given other values through LET, READ, and INPUT 
statements, just like other variables. The assignment statement can assign 
values to individual array members or to all the members of the array. Here 
are some examples: 

300 LET A(4,5) = 10 
320 MAT A = (15) 
330 LET P$(4) = "PHILADELPHIA" 

The first example assigns the value 10 to the member in the fourth row, fifth 
column of the two-dimensional arithmetic array A. In the second example, the 
keyword MAT identifies A as an array, and the value 15 is assigned to all the 
members of the array. (This is a special form of the assignment statement and 
is known as the "array assignment statement.") In the third example, the 
value PHILADELPHIA is put into the fourth member oi the one-dimensional 
character array P$. 

When specifying values by means of READ and INPUT statements, you must 
remember that every array member that is to receive a value must be 
represented in the statement, and a value must be supplied for each member 
specified. Let's look at these statements: 

10 DIMT(12),T$(12) 
15 PRINT 'ENTER 3 TEMPERATURES, THEN THREE MONTHS' 
20 INPUT T( 1 ), T( 2 ), T( 3 ), T$ ( 1 ), T$ ( 2 ), T$ ( 3 ) 

The DIM statement defines the arithmetic array T and the character array T$, 
each with 12 members. The INPUT statement states that values will be 
supplied at execution time for the first three members of each array. 
Execution of the INPUT statement at a terminal causes the computer to print 
the question mark (1) at the terminal. A valid response would be: 

? 
31,43,42,JANUARY,FEBRUARY,MARCH 

The first three values are entered into TO), T(2), and T(3), respectively. The 
next three values are entered into T$(1), T$(2), and T$(3), respectively. 

The following statement can be used to enter values for the arithmetic array 
A, consisting of four rows and three columns: 

30 INPUT MAT A(4,3) 

When this statement is executed, the computer prints a question mark at the 
terminal, and you can enter the three values for the first row, followed by a 
carrier return: 

? 
1 , 1 , 1 

For each succeeding row, the computer prints a double question mark, after 
which you, enter three more values followed by a carrier return: 

?? 
2,2,2 
?? 
3,3,3 
?? 
4,4,4 

Another way of assigning input values to arrays is through use of a 
FOR/NEXT group in conjunction with the READ and DATA statements. 



Redimensioning Arrays 

For example, if you wanted a list of 15 numbers assigned to an array named 
B, you could write: 

10 DIM B( 15 ) 
20 FOR I = 1 TO 15 
30 READ B(I) 
40 NEXT I 
50 DATA 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47 

The subscript I is used to step through the values in the data table. 

Once an array has been dimensioned, either explicitly using a DIM statement, 
or implicitly through usage, it cannot be explicitly dimensioned again. But it 
can be redimensioned; that is, the array can be given new dimensions. A 
one-dimensional array can be redimensioned into a two-dimensional array, or 
it can be redimensioned into a one-dimensional array with a different number 
of members. Similarly, a two-dimensional array can be redimensioned into a 
one-dimensional array or a two-dimensional array having a different number 
of members in either or both dimensions. The rule to remember when 
redimensioning an array is that the total number of members in the new array 
may not exceed the total number in the original array. For example, the array 
M(12,10) has 120 members, the product of 12. and 10. It can be 
redimensioned as long as the new array does not contain more than 120 
members (it can contain fewer). Thus, M(12,10) may be correctly 
redimensioned to M(40,3), or M(100), but not to M(40,4). 

One way to redimension an array is by stating its new dimensions right after 
the array name in an array assignment statement. For example, if you want to 
redimension the array C(5,5) to C(3,4), you could use the array assignment 
statement: 

MAT C(3,4) = (0) 

The word MAT is used to indicate that operations are to be performed on the 
entire array, or matrix. This statement changes the array dimensions to (3,4) 
and assigns the value zero to each member of the newly dimensioned array. 

Difference between MAT and LET 
It is important to note the distinction between the array assignment 
statement, identified by the word MAT, and the LET assignment statement. 
The following example shows a sequence of assignment statements along with 
the output from each one. 

10 DIM C( 2,3) Array C is initialized to [OOOJ 
000 

Array C is [OOOJ 
100 

20 LET C( 2, 1 ) 

Array C is [555J 555 30 MAT C = (5) 

40 MAT C( 3,2 ) ( 8 ) Array C is [H] 
50 LET C = 9 Variable C is 9 

Using Arrays 51 



Array Operations 

52 VS BASIC Language 

Statement 10 defines arithmetic array C as a 2x3 array and initializes each 
member to O. Statement 20 assigns the value 1 to the member in the second 
row, first column of the array. Statement 30 assigns the value 5 to all 
members of the array. Statement 40 redimensions the 2x3 array into a 3x2 
array and assigns the value 8 to all members. Statement SO does not refer to 
an array but to an arithmetic variable, C, and assigns the value 9 to it. VS 
BASIC allows you to use the same name to represent both an array and a 
simple variable in the same program. 

The array assignment statement can also assign the values of an array to 
another array~ as long as both arrays have identical dimensions. Let's look at 
this example. 

100 DIM Y(4), Z(4) 

150 f'l'cAT Y (7\*0 \ 
\J:")'-J,.J I 

180 LET Y(3) 15 

200 MAT Z = Y 

Statement 1 SO assigns the value of the expression A *B to all the members of 
the array Y. The expression must always be enclosed in parentheses. 
Statement 180 assigns the value 15 to the third member of Y. Note the 
difference between the LET statement and the MAT statement. Statement 
200 assigns the values in array Y to array Z. If the only change made to array 
Y between statements 1 SO and 200 was the assignment made in statement 
180, array Y will contain the values A *B in members 1, 2, and 4 and the 
value 15 in member 3. Array Z will be assigned these values in the 
corresponding members. 

In order for the values of one array to be assigned to another, both arrays 
must have identical dimensions. For example, if Z had the dimension (5), or 
(2,2), it would have to be redimensioned to the dimensions of Y before it 
could receive Y's values. 

A number of different operations can be perforrfled on arrays. Arithmetic 
arrays can be used in simple arithmetic operations, such as adding or 
subtracting the values of members in different arrays, and in true 
mathematical matrix operations such as matrix multiplication, matrix identity, 
and matrix transposition. Additionally, values in both arithmetic and character 
arrays can be sorted in ascending or descending order. Arrays used in 
arithmetic operations must have the same number of dimensions. Let's look at 
some of the operations available. 



Array Addition and Subtraction 

Example 1: 

Scalar Multiplication 

Sorting 

Identity Function 

10 DIM X(5), Y(5), Z(5) 
20 MAT X = Y+Z 

In this example, each member of the array X is to be assigned the sum of the 
corresponding members of the arrays Y and Z. The values of Y (1) and Z( 1) 
are added and the sum is assigned to X(1), the values of Y(2) and Z(2) are 
added and assigned to X(2), and so on. 

Example 2: 

30 DIM X(5), Y(5), Z(5) 
40 MAT X = Y-Z 

This example is like the first example, except that the array X is assigned the 
difference between the corresponding members of the arrays Y and Z. 

Scalar multiplication is the process whereby each member of an array is 
multiplied by the same number. 

Example: 

35 DIM A(10,5), B(14) 
40 MAT A(14) = (4)*B 

In statement 40, A is redimensioned to correspond to the dimensions of the 
array B. Then, the value in each member of B is multiplied by 4 and the 
product is assigned to the corresponding member of A; B(1)*4 is assigned to 
A(1), B(2)*4 to A(2), etc. 

Sorting operations can be performed on character as well as on arithmetic 
arrays. Character arrays are sorted alphabetically, arithmetic arrays 
numerically. Arrays can be sorted in ascending or descending sequence, 
depending on the keywords ASORT and DSORT. 

Example: 

20 DIM A$(3,3), B$(3,3) 
50 MAT B$ = ASORT(A$) 

The values in the members of the array A$ are compared and arranged in 
ascending alphabetic order, and then are entered, in sorted order, into the 
array B$. The keyword ASORT indicates ascending sorting order. If the 
keyword DSORT were used, the array would be sorted in descending order. 

An identity function may be performed only on a square array, that is, a 
two-dimensional array having the same number of rows and columns. The 
identity function assigns the value 1 to all array members whose subscripts are 
equal and the value 0 to all other array members. 

Example: 

75 DIM C(3,3) 
80 MAT C=IDN 

Using Arrays 53 



Inverse Function 

Transpose Function 

54 VS BASIC Language 

The value 1 is assigned to members C(1,l), C(2,2), and C(3,3). All other 
members, C(1,2), C(1,3), etc., are assigned the value O. The array would look 
like this: 

An inverse function causes the matrix inverse of one square array to be 
assigned to another square array. Not every matrix has an inverse; before 
using the inverse function, you should test the matrix with the determinant 
function DET. The inverse of a matrh: exists if DET returns a value other 
than O. 

Example: 

85 
90 

DIM J(2,2), K(2,2) 
IF DET(K)=O THEN 110 

MAT J = INV(K) 

GO TO 120 

95 

100 
110 
120 

PRINT 'MAT K SINGULAR' 

If the array K had the value: 

array J would be assigned the matrix inverse: 

[ 2 -lJ 
- 1 1 

The transpose function causes the values of one two-dimensional array to be 
transposed into another two-dimensional array. The values contained in 
column 1 of one array are transferred into row 1 of the other, the values in 
column 2 are transferred into row 2, etc. The number of rows in each array 
must equal the number of columns in the other array. 

Example: 

45 DIM A(3,4), B(4,3) 
50 MAT B = TRN(A) 

If A contained the values: 

[ ~ 10 
20 
30 

100 
200 
300 

1000 ] 
2000 
3000 



Matrix Multiplication 

B would contain 

[ 

1 

10 
100 

1000 

2 
20 

200 
2000 

3J 30 
300 

3000 

Matrix multiplication is the process whereby the matrix product of two 
arithmetic arrays is assigned to a third array. 
All three arrays involved in matrix multiplication must be two-dimensional. 

Example 1: 

65 DIM X(2,2), Y(2,2), Z(2,2) 
70 MAT Z = X*y 

If X contained [: and Y contained [: :J 
the values of Z would be constructed as follows: 

j = a*e + b*g 
(members in first row of X times members in first column of Y) 

k = a*f + b*h 
(members in first row of X times members in second column of Y) 

1= c*e + d*g 
(members in second row of X times members in first column of Y) 

m = c*f + d*h 
(members in second row of X times members in second column of Y) 

All the arrays shown in example 1 are two-dimensional, square, and with the 
same number of members. Arrays used in matrix multiplication need not be 
square or have the same number of members, but must be two-dimensional 
and conformable. Look at this example: 

75 DIM A(2,4), B(4,3), C(2,3) 
80 MAT C = A*B 

Remember that the first subscript in a two-dimensional array indicates the 
number of rows, and the second subscript indicates the number of columns. 
(In the example above, A has two rows and four columns.) To be 
conformable for matrix multiplication, arrays must meet these requirements: 

1. The number of columns in the first array to be multiplied must equal the 
number of rows in the second. In the example above, A(x,4) = B(4,x). 

2. The number of rows in the receiving array must equal the number of rows 
in the first array. In the example, C(2,x) = A(2,x). 

Using Arrays 55 



56 VS BASIC Language 

3. The number of columns in the receiving array must equal the number of 
columns in the second array. In the example, C(x,3) = B(x,3). 

These requirements are graphically represented below: 

The arrays in statements 75 and 80 are conformable, and thus are valid for 
matrix multiplication operations. 

If A contained 

r
a b c ~l and B contained r~ kl 

£ m Lt: I g Il.J 

l: ~ p 

s 

the values of C [: v :J' would be constructed as follows: 

y 

u = a*i + b*l + c*o + d*r 
(members in first row of A times the members in first column of B) 

v = a*j + b*m + c*p + d*s 
(members in first row of A times the members in second column of B) 

w = a*k + b*n + c*q + d*t 
(members in first row of A times the members in third column of B) 

x = e*i + f*l + g*o + h*r 
(members in second row of A times the members in first column of B) 

y = e*j + f*m + g*p + h*s 
(members in second row of A times the members in second column of B) 

z = e*k + f*n + g*q + h*t 
(members in second row of A times the members in third column of B) 



Functions and Subroutines 

Functions 

In addition to the intrinsic functions supplied as part of the BASIC language 
(see Part II of this publication for a list of these functions), you can define 
any other function or write a program segment, called a subroutine, which 
you expect to use several times in your program. 

User-written functions can be arithmetic or character. An arithmetic function 
is named by the letters FN followed by a single letter or digit. A character 
function is named by the letters FN followed by a single letter and the 
currency symbol, $. 

The following can be names of arithmetic functions: 

FNA 
FNB 
FN3 
FN# 

The following can be names of character functions: 

FNA$ 
FN#$ 

A user-written function is named and defined by the DEF statement. For 
example: 

10 DEF FNE(X) = EXP (X**2) 

defines the natural exponential of X squared, using the intrinsic function 
EXP. The arithmetic variable X, enclosed in parentheses after the function 
name FNE, is called a dummy variable. You can have more than one dummy 
variable, and the list of variables can contain both arithmetic and character 
variables. Your function performs its defined calculation on the actual values 
supplied for these dummy variables. (The expression value substituted for 
each dummy variable is called an argument.) After defining a function, the 
function name and its accompanying argument(s) can be used anywhere in 
your program. For example: 

10 DEF FNE(X) = EXP(X**2) 

50 LET Y = FNE( .5) 
60 LET Z = FNE (C + 2) 
70 PRINT FNE(3.7S) + Y / Z 

User-defined functions can be defined in one statement or over a group of 
statements. A function defined in one statement, such as the function 
illustrated above, is called a single-line function. A function defined over 
many statements is called a multiline function. A multiline function begins 
with the word DEF, the function name, and any arguments, the same as 
single-line functions. However, the DEF statement does not contain the equal 
sign or an expression. Rather, the expression is developed by the statements 
following the DEF, and is defined in a RETURN statement, which computes 
the value and "returns" the value to the program. The end of a multiline 
function is defined by the FNEND statement. Here is the way the statements 
in a multiline function must be sequenced: 

Functions and Subroutines 57 



Subroutines 

58 VS BASIC Language 

DEF function name [(args, if any) J 

RETURN expression 

FNEND 

Here is an example of a multiline function: 

30 DEF FNA(X,Y) 
40 IF X > 0 THEN RETURN X+Y ELSE RETURN X-Y 
50 FNEND 

This function uses two arithmetic variables as dummy arguments, labeled X 
and Y. The function tests the value of the first argument. If that value is 
greater than zero, it is added to the value of the second argument and the sum 
is returned to the program. If the value is less than or equal to zero, the value 
of Y is subtracted from it and the difference is returned. 

If this function were used in the following program, C would have a value of 
7 and D would have a value of -2. 

30 DEF FNA(X,Y) 
40 IF X .GT. 0 THEN RETURN X+Y ELSE RETURN X-Y 
50 FNEND 

100 LET A 
120 LET B 
130 LET C 
150 LET D 

5 
2 
FNA(A,B) 
FNA(0,2) 

Another way of writing a group of statements to be executed at different 
times in your program is to group them into a subroutine. Execution of a 
subroutine begins with the GOSUB statement, where the number specified in 
the statement is the statement number of the first statement in the subroutine. 
For example: 

100 GOSUB 200 

causes the computer to skip, or "branch," to statement 200, the first 
statement in the subroutine. Program execution continues from that point. To 
cause the computer to branch back to statement 100 (actually, to the next 
sequential statement following statement 100), the last statement of the 
subroutine must be a RETURN statement. (This RETURN statement, unlike 
a RETURN used with a function, contains no expression.) A program 
containing a subroutine could be sequenced like this: 



100 GOSUB 200 
110 
120 
130 
140 
150 
160 
170 
180 
190 STOP 

200 ( 
210 
220 

230 ~ 
240 
250 

These are the statements that will 
be executed after the RETURN. 

First statement of the subroutine. 

Statements executed as part of the 
subroutine. 

260 RETURN 
270 END 

Statement 100 branches to statement 200. Statement 260 returns control to 
statement 110. Statement 190 tells the computer the end of the program has 
been reached. The STOP statement is similar to an END statement except 
that higher-numbered statements may follow it. Its use is to denote the end of 
program execution when the logical conclusion of the program occurs 
somewhere in the middle of the program, as shown here. The STOP statement 
here is equivalent to writing GO TO 270. 

A program illustrating the use of a subroutine is shown below. This program 
determines the greatest common divisor of three integers. The first two 
numbers are selected in program statements 30 and 40, and their greatest 
common divisor (CD) is determined in the subroutine, statements 200-310. 
The CD just found is assigned to X in statement 60. The third number read in 
from the INPUT statement is assigned to Y in statement 70. The subroutine is 
entered a second time from statement 80 to find the greatest common divisor 
(CD) of these two numbers. The result is, of course, the greatest common 
divisor of the three given numbers. It is printed out with them in statement 
90. 

10 PRINT 'ENTER THREE INTEGERS' 
20 INPUT A, B, C 
30 LET X = A 
40 LET Y = B 
50 GOSUB 200 
60 LET X = G 
70 LET Y = C 
80 GOSUB 200 
85 PRINT 'A', 'B', 'C', 'CD' 
90 PRINT A, B, C , G 

100 GO TO 320 
200 LET Q = INT(X/Y) 
210 LET R = X-Q*Y 
220 IF R = 0 THEN 300 
230 LET X = Y 
240 LET Y = R 
250 GO TO 200 
300 LET G Y 
310 RETURN 
320 END 

Functions and Subroutines 59 



Let's assume these numbers are entered when the INPUT statement is 
executed: 

ENTER THREE INTEGERS 
? 
60,90,120 

The output will be: 

1 19 37 55 
A 

60 
B 

90 
C CD 

120 30 

(Print Positions) 

Another example of input and resulting output is: 

ENTER THREE INTEGERS 
? 
32,384,72 

A 
32 

B C 
384 72 

CD 
8 

Computed GOSUB Statement 

60 VS BASIC Language 

The computed GOSUB statement is similar to the computed GOTO 
statement previously discussed in "Testing and Controlling Program Data." 
They both cause a branch to one of a number of statements based on the 
computed value of an expression. The difference between the two statements 
is that the GO SUB branches to a subroutine; the RETURN statement in the 
subroutine returns program execution to the statement following the 
computed GO SUB statement. 

Consider this example: 

30 GOSUB 120, 175, 195 ON X-Y 

A branch is made to one of three subroutines, either the one beginning with 
statement 120, the one beginning with statement 175, or the one beginning 
with statement 195, depending on whether the integer value contained in the 
expression X-Y is 1,2, or 3, respectively. If the expression X-Y results in a 
value other than 1,2, or 3, program execution continues with the statement 
following the GOSUB. 



PRINT USING Image and FORM 

The Image Statement 

The PRINT USING statement is quite similar to the PRINT statement but is 
much more useful for controlling the format of the answer to be printed. 
PRINT USING is used in conjunction with an Image or FORM statement to 
print values according to the format specified in these statements. The PRINT 
USING statement includes the values to be printed and the statement number 
of a corresponding Image or FORM statement which specifies the format of 
the print line. For example: 

30 PRINT USING 40, N,A 

This statement refers to statement number 40, an Image or FORM statement, 
which will instruct the computer how to format the arithmetic variables Nand 
A on the print line. 

Statement 40 could look like this: 

40 :IN ## YRS AMT = $####.## 

The colon beginning statement 40 identifies it as an Image statement. The 
alphabetic characters are printed exactly as they appear in the statement, and 
the pound sign (#) is the symbol used to indicate that a value will be supplied 
from the output list in the PRINT USIN G stat~ment. The value of N replaces 
the first set of #'s, and the value of A replaces the final set. The decimal point 
appearing in the final set indicates that the value of A is to be aligned on the 
decimal point in the image specification. 

If N contained the value 10 and A the value 1628.88, the output line 
produced by statements 30 and 40 would look like: 

IN 10 YRS AMT = $1628.88 

In the Image statement, the pound sign, #, is used as a place holder. In 
statement 40, the first set of #'s indicates that a value is to be displayed using 
two positions; the second set displays a value over six positions aligned on a 
decimal point between the fourth and fifth positions. If the value to be printed 
were smaller than six digits, say the value 300.40, the first, or high-order 
position, would be printed with a blank. 

The Image statement can also contain a place holder for an exponential value, 
using the symbols I I I I. If you wanted to print a value containing an 
exponent, the Image statement could contain the following sequence of 
symbols: 

##.## II I I 

This sequence states that a value is to be printed with four digits aligned on a 
decimal point between the second and third digits, followed by an exponential 
value. An exponential value is always printed using four positions for the 
format: E ± dd. The letter E is followed by a plus or minus sign indicating a 
positive or negative exponent, followed by two digits. Therefore, a set of four 
I 's must always be specified as placeholders for exponents. If an Image 
specification contained this sequence: 

##. ## I I I I 

PRINT USING Image and FORM 61 



The FORM Statement 

the table below shows how different values would be printed by that 
sequence. 

If the number is 

123 
12.3 
.123 

The printed format is 

12.30E+01 
12.30E+OO 
12.30E-02 

The specification calls for four digits to be printed aligned on the decimal 
point. Therefore, the number 123 is represented as 12.30 with an exponent of 
+ 1. The exponent tells us two things: the direction in which the decimal point 
is to be moved, (+, to the right, and -, to the left), and the number of digits 
qver which it is to be moved. In the first number, the exponent + 1 tells us to 
move the decimal point one position to the right; the number 12.30E+01 is 
the same as 123. In th~ second example, the number 12.3 can be aligned on 
the decL'1la! point \vith no action required by the exponent, hence an exponent 
of E+OO; the number 12.30E+00 is the same as 12.3. The third example tells 
us to move the decimal point two positions to the left; 12.30E-02 is the same 
as .123. 

The FORM statement, similar to the Image statement, offers greater 
formatting capabilities. It provides for the same specification characters, # 
and I, and also for many more through the use of the PIC keyword, to 
specify numeric data. It provides a special code to specify character data. It 
contains format control specifications to tell the computer how to position 
output on a print line; one of these specifications, SKIP, must be coded on the 
FORM statement to cause a line to be printed. 

Numeric Specification-PIC 

62 VS BASIC Language 

The PIC specification in the FORM statement shows a "picture" of the way a 
number should be formatted. This picture is enclosed in parentheses. The 
symbols #, ., and I, previously illustrated in the Image statement, could be 
used in the FORM statement in this format: 

PIC( ## . ## I I I I ) 

You recall that the # symbol is used as a place holder for a digit and the 
symbol I is used as a place holder for an exponent. The PIC specification has 
these additional place holders, or digit specifiers: 

Symbol 

Z 

* 
$ 

+ 

Meaning 

Replace a leading zero with a blank. 

Replace a leading zero with an asterisk. 

Floating dollar sign. A dollar sign is to be printed immediately 
before the first significant digit. 

Floating sign. A plus sign for a positive number, or a minus sign for 
a negative number, is to be printed immediately before the first 
significant digit. 

Floating minus sign. A minus sign for a negative number, or a blank 
for, a positive number, is to be printed immediately before the first 

significant digit. 



Here are examples of digit specifiers. Assume a data item containing the value 
112233 is to be printed. 

If the PIC specification were: 

PIC(#########) 

PIC(ZZZZZZZZZ) 

PIC(ZZZZZZ###) 

PIC(******###) 

PIC($$$$$$###) 

PIC(++++++###) 

PIC(---######) 

Printed output would be: 

000112233 

112233 

112233 

***112233 

$112233 

+112233 

112233 

If a floating character (dollar sign, plus sign, or minus sign) is specified only 
once in a PIC specification, it does not float through the field but instead is 
printed in the indicated position. For example: 

If the PIC specification were: 

PIC($ZZZZZ###) 

PIC(+ZZZZ###) 

(The character b represents a blank.) 

Printed output would be: 

$1515112233 

+15112233 

The PIC specification can also contain insertion characters, to edit a printed 
item. The difference between digit specifiers and insertion characters is that 
digit specifiers indicate how the number itself is to be treated, while insertion 
characters simply insert additional characters into a field, generally to improve 
readability. The following insertion characters can be specified: 

Symbol Meaning 

B Print a blank unconditionally. 

Print a comma conditionally (that is, only if a digit precedes the comma.) 

/ Print a slash conditionally (only if a digit precedes the slash.) 

Print a decimal point conditionally (if the value to be printed is non-zero and 
zero suppression is not in effect). 

+ Trailing sign. When the + appears in the rightmost position of a PIC 
specification, it is treated as a trailing sign. A plus sign is printed for a positive 
number, a minus sign for a negative number. 

Trailing minus sign. When the - appears in the rightmost position of a PIC 
specification, it is treated as a trailing sign. A minus sign is printed for a 
negative number, a blank for a positive number. 

CR Trailing credit sign. When the CR appears in the rightmost positions of a PIC 
specification, it is treated as a trailing credit sign. The letters, CR, are printed 
for a negative value and two blanks are printed for a positive value or zero. 

DB Trailing debit sign. When the DB appears in the rightmost positions of a PIC 
specification, it is treated as a trailing debit sign. The letters, DB, are printed 

for a negative value and two blanks are printed for a positive value or zero. 

PRINT USING Image and FORM 63 



64 VS BASIC Language 

Here are examples of insertion characters added to the examples previously 
shown: 

If the PIC specification were: 

PIC(###B##B####) 

PIC(ZZZBZZBZ###) 

PIC(ZZZ,ZZZ,###) 

PIC(ZZZZZ/Z#/##) 

PIC(******#.##) 

PIC($$$$$$###+) 

PIC($$$,$$$,$$$.##) 

Printed output would be: 

000 11 2233 

11 2233 

112,233 

11/22/33 

*112233.00 

$112233+ 

$112,233.00 

In the first example, a blank is entered after the third and fifth digits. Since # 
is denoted as the digit specifier, leading zeros are not suppressed. 

The second example illustrates the blank used with the Z digit specifier which 
does suppress leading zeros. 

The third example illustrates the use of commas. The first comma is not 
printed because no digit precedes it (zero suppression having been specified); 
the second comma is printed. 

The fourth example inserts slashes. 

The fifth example illustrates the effect of a decimal point; since the number 
112233 is an integer number, it is aligned on the decimal point and zeros print 
out in the decimal portion of the field. 

The sixth example adds a trailing sign to a field that also contains floating 
dollar signs. 

The seventh example adds commas and a decimal point to format a dollar 
amount. Note that the first comma is not printed, nor is its absence marked by 
a blank-it , simply disappears, as it did in example three. The dollar sign floats 
over the comma. 

The following are examples of PIC specifications with trailing signs along with 
the printed results for negative and positive values. 

PIC specif'lcation Printed Output Printed Output for 
for a Negative 123 a Positive 123 

PIC (###+) 123- 123+ 
PIC (###-) 123- 123 
PIC (###CR) 123CR 123 
PIC (###DB) 123DB 123 

Here are some more examples of PIC: 

PIC (ZZZ###+) 

PIC ($$$,$$$,###.##) 

The first example states that a number containing up to six significant digits 
may be printed. Leading zeros appearing in the first three positions are 
suppressed. Either a plus sign or a minus sign is to be printed in the last 
position. If the number 1234 were to be printed using this specification, it 
would look like: 

f>f>1234+ 



The second example states that the dollar sign is to print before the first 
printed digit. The comma insertion character indicates that a comma is to be 
printed only if a significant digit precedes it. If the amount $12628.88 were 
to be printed using this specification, it would look like: 

iSiSiSiS$12,628.88 

If the number 3.33 were to be printed, it would look like: 

iSiSiSiSiSiSiS$003.33 

Character Specification-PIC 

The PIC specification in the FORM statement can also accept character data. 
The length of the character data string to be printed is determined by the total 
number of positions in the PIC specification. 

Character data is printed starting at the first position of the PIC specification. 
Any unused portion of the PIC specification is replaced by blanks. If the 
length of the character data string exceeds the PIC specification length, then 
the character data string is truncated on the right to the length of the PIC 
specification. 

For example, executing the following: 

10 A = 12345.67 
20 PRINT USING 40, 'HEADING1' 
30 PRINT USING 40, A 
40 FORM PIC(ZZZ,ZZZ,##), SKIP 

results in the output: 

HEADING 1 
12,345.67 

Character Specification-C and Literals 

The character specification code C is used in the FORM statement to indicate 
a place where character data is to appear. The actual character data is written 
in the corresponding PRINT USING statement. Character data can also be 
specified in the FORM statement by using literals that must be enclosed in 
single or double quotation marks. 

To print character data using the character specification code C, the 
corresponding PRINT USING statement could be written as follows: 

30 PRINT USING 50, 'COST OF ',A1,' CHAIRS IS' , B1 

the corresponding FORM statement could look like this: 

50 FORM C, PIC(Z#), C, PIC ($$$,$$#,##) 

Using the literals, the corresponding PRINT USING statement could be 
written like this: 

30 PRINT USING 50, A1, B1 

the corresponding FORM statement could look like this: 

50 FORM 'COST OF ' PIC(Z#), , CHAIRS IS " PIC($$$,$$#,##) 

The first PIC specification describes the arithmetic variable AI; if the value is 
zero, a blank is printed in the leftmost position, followed by a zero. The 
second PIC specification describes the variable B 1. 

PRINT USING Image and FORM 65 



The character specification code C marks a place for character data regardless 
of the number of characters to be printed. You could specify the exact 
number of characters to be printed by indicating the number after the C code. 
For example: 

C6 

This specification indicates that six characters are to be printed. Care should 
be used when specifying a number, because only that number of characters is 
printed. For example, if you specified C6 to print the character string COST 
OF, only the characters COST 0 wouid be printed. 

Format Control Specifications-x, POS, SKIP 

66 VS BASIC Language 

Format control specifications provide great flexibility in formatting an output 
line. These specifications allow you to space over a number of print positions 
on a line, to specify the print position where a data item is to begin printing, 
and to skip print lines. 

The Xn specification spaces over n print positions. For example, X10 would 
cause the terminal or printer to space the next 10 positions before printing a 
data item. 

The POSn specification prints a data item beginning in position n. For 
example, POS50 would cause the next data item to print beginning in position 
50. 

The SKIPn specification skips n print lines. To skip five lines, specify SKIPS. 
To skip to the next line, specify SKIP1 or SKIP with no number. For example, 
to cause statement 50, shown earlier, to print a line, SKIP must be added to 
it: 

50 FORM C, PIC(Z#), C, PIC($$$,$$#.##), SKIP 

Statement 50 is now complete, and if combined with PRINT USING 
statement number 30, 

30 PRINT USING 50, 'COST OF " Al, , CHAIRS IS', B1 

would result in this output: 

COST OF 14 CHAIRS IS $1,510.00 

Here are additional statements using format control specifications: 

Example 1: 

140 PRINT USING 145, A1,B1 
145 FORM POS15, PIC(Z#), POS32, PIC($$$,$$#.##), SKIPl 

Statement 145 uses the POS and SKIP control specifications. POS 15 
positions the terminal or printer at position 15 before printing the value 
contained in Al described by the PIC specification. POS32 begins printing 
the value of Blat position 32. After all printing is completed, SKIP 1 causes 
the carriage to skip to the next print line. 

Example 2: 

110 PRINT USING 115, 'COST OF', Al, 'CHAIRS IS', B1 
115 FORM X5, C, POS15, PIC(Z#), POS20, C, POS32, 

PIC($$$,$$#.##), SKIPl 

In statement 115, X5 states that the first five positions of the print line are to 
be skipped, and the character data controlled by the C code, the string COST 
OF, is to be printed. POS15 prints the value of Al beginning in position 15. 



POS20 prints the character string CHAIRS IS beginning in position 20. 
POS32 prints the value of B1 beginning in position 32. SKIP1 causes the line 
to be printed. 

Note that although statement 115 is shown coded over two lines in this 
example, when you enter it at the terminal, it cannot be continued onto a 
second line. 

Following is a program that uses these statements. 

100 A 1 = 15 
105 B1 = A1 * 115.25 
110 PRINT USING 115, 'COST OF', A1, 'CHAIRS IS', B1 
115 FORM X5, C, POS15, PIC(Z#), POS20, C, POS32, 

PIC($$$,$$#.##), SKIP1 
120 FOR A1 = 14 TO 1 STEP -1 
130 B1 = A1 * 115.25 
140 PRINT USING 145, A1, B1 
145 FORM POS15, PIC(Z#), POS32, PIC($$$,$$#.##), SKIP1 
150 NEXT A1 
160 END 

This program finds the cost of 15 chairs to 1 chair at $115.25 each. 
Statements 110 and 115 print out the first line, statements 140 and 145 print 
out all succeeding lines based on the loop defined between statements 120 
and 150. 

Output from this program would look like this: 

Print 
Position 6 15 20 

COST OF 15 CHAIRS 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 

Example 3: 

50 R$ = 'WINS. ' 
60 IF A < B THEN R$ = 'LOSES.' 
70 IF A = B THEN R$ = 'TIES. ' 

32 

IS $1,728.75 
$1,613.50 
$1,498.25 
$1,383.00 
$1,267.75 
$1,152.50 
$1,037.25 

$922.00 
$806.75 
$691.50 
$576.25 
$461.00 
$345.75 
$230.50 
$115.25 

80 PRINT USING 90, 'HOME TEAM XXXXXX FINAL SCORE', 
A, '-', B,R$ 

90 FORM POS10, C, PIC(Z#), C, PIC(Z#), POS20, C6 

Statement 90 uses the POS20 and C6 control specifications to overlay 
position 20 of the print line with the value of R$. If A is 3 and B is 24, the 
printed line would look like this: 

Print 
Position 10 20 28 

HOME TEAM LOSES. FINAL SCORE 3-24 

PRINT USING Image and FORM 67 





Program Chaining 

With the program chaining technique, BASIC programs can be shared with 
other BASIC programs and with other users. For example, suppose that in 
writing a program you discover that an operation you want to perform is 
available as a separate program. It could be time saving to you to be able to 
use that program in conjunction with the one you are currently writing. The 
CHAIN and USE statements can help you access and execute that program. 

The CHAIN statement is used in one BASIC program to tell the computer to 
stop executing the current program and start executing another BASIC 
program. To tell the computer which program to start executing, you name it 
in the CHAIN statement. Here's an example: 

500 CHAIN 'PROGB' 

This statement instructs the computer to begin executing the program named 
PROGB. Note that when the CHAIN statement is executed, the current 
program (the program containing the CHAIN statement) is terminated. 

You can "pass" a character-string value to the chained program by specifying 
the value in the CHAIN statement right after the program name. For 
example: 

500 CHAIN 'PROGB', J$ 

The value contained in the character variable J$ is passed to PROGB, that is, 
it becomes accessible for use in that program. 

The length of the character-string value you can pass to the chained program 
has a maximum length of 255 characters. 

In the program being chained, the USE statement designates the character 
variable that will receive the value passed from the CHAIN statement. For 
example, the value passed by J$ to PROGB can be received by PROGB in 
the statement: 

200 USE K$ 

Note that the USE statement is written in the new program, the pr,ogram 
being chained, and the CHAIN statement is written in the chaining program, 
the one requesting execution of another program. 

The USE statement may appear anywhere in the chained program. It results 
in the USE variable being initialized with the value passed by the chaining 
program. 

The CHAIN and USE statements derive their value in being able to help you 
string two or more programs together instead of having to code similar 
program sections for individual programs. 

Program ChainiTlg 69 



70 VS BASIC Language 

An example of CHAIN and USE is: 

Chaining Program 

10 REM THIS IS PROGA 

300 CHAIN 'PROGB', A$ 
310 END 

Chained Program 

10 REM THIS IS PROGB 

50 USE Z$ 

120 END 

When statement 300 in PROGA is reached, execution transfers to PROGB. 
At the start of execution of PROGB, the variable Z$ is initialized to the value 
contained in variable A$ of the CHAIN statement. 

CHAIN 'PF.oGB' i A 

is illegal because A is numeric. 



Stream-Oriented Files 

Naming a File 

A file is a group of related data items which are stored together. A 
stream-oriented file is one in which all the items are arranged as a stream of 
data, that is, all the items are stored in sequential order. 

In the section "More About Loops-Using the FOR and NEXT Statements," 
we illustrated the use of the compound interest program shown below: 

90 PRINT 'ENTER PRINCIPAL' 
100 INPUT P 
105 PRINT 'TIME', 'RATE', 'AMOUNT' 
110 FOR T = 1 TO 10 REM VARY THE TIME 
120 FOR R = 1 TO 20 REM VARY THE RATE 
130 LET A = P*(1 + R/100)**T REM COMPUTE THE AMOUNT 
140 PRINT T, R, A 
150 NEXT R REM USE THE NEXT RATE 
160 NEXT T REM USE THE NEXT TIME 
170 END 

You may recall that the PRINT statement in this program was executed 200 
times to produce an output listing containing 200 values. These 200 values 
could be grouped as a stream-oriented file. In fact, instead of printing them, 
we could store them into the file and use them at a later time. By substituting 
the PUT statement for the PRINT statement, we can create a stream-oriented 
file; for example: 

140 PUT 'FILE1', T, R, A 

This PUT statement instructs the computer to put the values contained in the 
variables T, R, and A into the file named FILE 1. As far as the computer is 
concerned, both PUT and PRINT mean output; the only difference is whether 
the output goes into a file or to the terminal. 

A filename is always a character expression. It can be a character constant, a 
character variable, a character-valued function reference, a character array 
member, or any combination of these. The following examples illustrate 
different ways to name a file. 

Example 1: A filename as a character constant: 

80 PUT ' XYZ', . M 

The character constant XYZ is the name of the file. Statement 80 writes data 
into the file XYZ. 

Example 2: A filename as a character variable: 

120 H$ 'PAYFILE' 

130 PUT H$, J 

The filename is the value in the character variable H$. Statement 130 writes 
data into the file named P A YFILE. 

Example 3: A filename as a character-valued function reference: 

100 F$ 'FILE1FILE2FILE3FILE4' 
110 PUT STR(F$,16,5), A,B,C 

Stream-Oriented Files 71 



In this example, the filename is a value returned by the function reference 
STR(F$,16,5). Statement 110 writes data into the file named FILE4, which is 
the value extracted from the string F$ by the function reference. 

Example 4: A filename as a character array member: 

200 PUT A$(3)X,Y,Z 

In this example, the filename is the value contained in the third member of the 
array A$. If A$ had four members~ having the values FILEA, FILEB, FILEC, 
and FILED, statement 200 would write to the file named FILEC. 

Example 5: A filename as a concatenated character value: 

120 A$ 'SYS' 
130 B$ = '001' 
140 C$ = '002' 
150 PUT A$ I I B$, x, Y, Z 
"j 60 PUT A$ I I C$, Xl, X2, X3 

In statement 150, the variables A$ and B$ are concatenated to form the 
filename SYSOOl; in statement 160, A$ and C$ are concatenated to form the 
name SYS002. 

Information regarding filename syntax appears in "Appendix A: 
Implementation Considerations." 

Retrieving Data From a File 

72 VS BASIC Language 

To access data in a stream-oriented file, you use the GET statement, which is 
the input counterpart to the PUT statement. 

To access the first set of values from the file created with the PUT statement 
above, we can use the GET statement written as follows: 

20 GET 'FILE1', T, R, A 

This statement assigns the first three values contained in FILE 1 to the 
variables T, R, and A. It is not necessary that we use the same variable names 
used when the file was created; for example, we could assign these values to 
variables X, Y, and Z. The important requirement is that the values in the file 
and the variables to which they are assigned must be of the same 
type-arithmetic variables for arithmetic values, character variables for 
character values. 

After the first GET is executed, the file is positioned at the next value. Thus, 
a second GET for FILEt would access the next three values in the file. If we 
wanted to access all the values stored previously, we could issue the GET 
statement 200 times, or enclose one GET statement in a loop, as follows: 

10 FOR X = 1 TO 200 
20 GET 'FILE1', T, R, A 
30 PRINT T, R, A 
40 NEXT X 
50 END 

This program would print the 200 values for each T, R, and A. Note that at 
the end of the program, FILEI is still available for use. 



Activating and Deactivating Files 
Files must be activated or "opened" before they can be used. A file can be 
opened implicitly by the system at the first appearance of the file name in a 
GET or PUT statement, or it can be opened explicitly by including an OPEN 
statement in the program. We could have included the following statement as 
the first statement in our program shown above: 

5 OPEN 'FILE1' IN 

The word IN indicates that the file is to be used for retrieving data items from 
the file for use in the program. If a file were to be used with PUT statements, 
it could be opened explicitly as an output file with this statement: 

100 OPEN 'TF' OUT 

Normally, a file is deactivated or "closed" by the system after execution of 
your program. However, if you want to switch an input file to output (or vice 
versa) and continue to use it in the same program, you must explicitly 
deactivate it by using the CLOSE statement before reopening it. (If you did 
not use the CLOSE statement and attempted to use an output file for input or 
vice versa, execution of your program would be terminated.) CLOSE 
deactivates the file; a subsequent OPEN, GET, or PUT statement opens 
(reactivates) the file for its new use and repositions it at its beginning. 

Remember that under ordinary circumstances, both OPEN and CLOSE are 
optional; the first GET or PUT will open a file implicitly, and the system will 
close a file at the end of program execution. The one time that CLOSE is 
required is if you use the same file for both input and output operations in the 
same program. For example: 

40 PUT 'AF', A, B, C, D, E 

80 CLOSE' AF' 
90 GET 'AF', V, w, x, Y, Z 

Statement 40 creates an output file named AF and places five values in it. At 
statement 80, AF is deactivated. In statement 90, AF is reactivated' as an 
input file and the same five values are read and made available for use later in 
the program. 

Notice what happens when an input file is closed and reactivated as an output 
file. 

30 OPEN 'AF' IN 
40 GET 'AF' , A, B, C, D, E 
50 LET B A 
60 LET A = 36 
70 LET C = C+B 

100 CLOSE 'AF' 
110 OPEN' AF' OUT 
120 PUT 'AF' , A, B, C 

A previously created file, named AF, is activated for input. In statement 40, 
five values are made available to the program. In statements 50 through 70, 
new values are acquired for A, B, and C. Statement 100 deactivates AF, and 
statement 110 re-opens the file for output. Statement 120 places the new 
values for A through C into the file. All of the old values in the file are lost. 

Stream-Oriented Files 73 



Repositioning Files 

VS BASIC allows you to open or close more than one file with a single OPEN 
or CLOSE statement. This capability is referred to as a mUltiple OPEN or 
CLOSE. 

The maximum number of concurrently active input/output files is 15. 

You may have an occasion to use an input file or an output file more than one 
time in the same program. The RESET statement allows you to reposition the 
file without deactivating it (deactivation is necessary only when the function 
of a file is changed from input to output or vice versa). For example: 

50 GET "ABC", X, Y, Z, Q, R, S 

100 RESET "ABC" 
110 GET "ABC", X, Y, z, Q, R, S 

150 RESET "ABC" 
160 GET "ABC", X, Y, Z, Q, R, S 

Between statements 50 and 100, the variables X, Y, Z, Q, R, and S could be 
used in one set of calculations and their values changed. By repositioning the 
file, the original values in the file could again be made available and put into 
variables X, Y, Z, Q, R, and S again for different calculations or uses between 
statements 110 and 150, and again between 160 and the end of the program. 
Actually, the RESET statement used in this way functions for files in the 
same way that the RESTORE statement does for the data table created by 
the DATA statement. 

To add data to the end of the file, you can reset it to its end by using the 
RESET statement with the END keyword: 

200 RESET "ABC" END 

This statement positions ABC to the end of the last data item in the file. PUT 
statements appearing after statement 200 will place additional values into the 
file. In effect, RESET END changes an input file to an output file. 

Input/Output En-or Handling 

74 VS BASIC Language 

Certain error conditions can occur while you are processing files. As an 
example, when reading through a file, you need to take action after the last 
item is read, otherwise the computer will terminate the program. The EOF 
clause (for End Of File) can be written in the GET statement to branch to 
another program statement when the end of the file is reached. 

A GET statement with an EOF clause could look like this: 

40 GET "MYFILE", X, Y, Z, EOF 100 

This statement directs the computer to statement 100 when the end of the file 
is reached. At statement 100, you could end the program, or close the file and 
continue processing, or perform any number of actions. The important thing 
is that specifying the EOF clause allows you to retain control of program 
execution. 



The EOF clause can be specified on the PUT statement as well, to prevent 
writing out beyond the available file space. Note that if an EOF condition 
occurs, all of the PUT statements may not have been processed. 

These are other error handling clauses: 

Clause 

IOERRn 

CONVn 

Meaning 

Branch to the statement numbered n if a hardware malfunction 
prevents reading or writing of a record. IOERR can be specified 
on the GET, PUT, OPEN, CLOSE, and RESET statements. 

Branch to the statement numbered n if a conversion error occurs 
while a data item is being assigned, for example, if an attempt is 
made to read character data into a numeric variable. CONY can 
be specified on the GET statement but not on the PUT 

statement. 

In place of writing these error handling clauses on many GET, PUT, OPEN, 
CLOSE, and RESET statements throughout your program, you can write 
them on one or more EXIT statements. An EXIT statement is used in 
conjunction with many input/output statements to group error handling 
clauses in one place. The statement could look like this: 

80 EXIT EOF 100, IOERR 150, CONV 200 

This statement tells the computer to branch to statement 100 when the end of 
the file is reached, to branch to statement 150 if a hardware error is 
encountered, and to branch to statement 200 if a data conversion error is 
encountered. 

If you use the EXIT statement, you should write an EXIT clause on each 
appropriate input/output statement to tell the computer which statement to 
branch to. For example: 

40 GET "MYFILE", X, Y, Z, EXIT 80 

80 EXIT EOF 100, IOERR 150, CONV 200 

If an error occurs while statement 40 is executing, the program uses statement 
80 to determine the appropriate branch to a statement listed for the error 
condition. 

To summarize, a file can be created through the use of PUT statements. Once 
a file has been created, it can be used as input to the same program by 
deactivating and reactivating the file, or it can be used as input to some other 
program (not the one in which it was created) just by using the GET 
statement. Files can be explicitly opened with the OPEN statement and 
explicitly closed with the CLOSE statement. The CLOSE statement must be 
specified to close a file whose function is being changed between input and 
output. Additionally, values in the file can be retrieved more than once by 
using the RESET statement, or new values can be added to a file by using the 
RESET statement with the END keyword. 

Error conditions can be controlled by specifying error handling clauses in 
either the GET, PUT, OPEN, CLOSE, or RESET statements, or in the EXIT 
statement. 

Stream-Oriented Files 75 





Record-Oriented Files 

PUT and GET statements work with stream-oriented files. VS BASIC 
provides another kind of file capability that permits you to group related data 
items into records. For example, if you were maintaining a file that described 
the fifty states, each record might contain the state's name, its population, its 
area, the capital city, the largest city, etc. All data items for each state could 
be grouped together into a single record in a record-oriented file. 

You can define three types of record-oriented files: entry-sequenced, 
key-sequenced, and relative-record 

An entry-sequenced file is one in which the records are stored in the order in 
which they are entered. To use our example of the fifty states, if you enter the 
records in alphabetic order, the first record would be Alabama, followed by 
Alaska, Arizona, Arkansas, and so on. If you enter them in geographic order, 
say with the New England states first, they could be stored in the order 
Maine, New Hampshire, Vermont, and so on. In an entry-sequenced file, all 
records are retrieved in sequential order. 

A key-sequenced file is one in which each record is stored according to a 
unique identification called a key. If the fifty states were stored by key, the 
name "Montana" could be the key to· one record, the name "Oregon", the 
key to another. When you retrieve a record, you identify which key to look 
for. The file is searched until the record with the particular key you specified 
is found. In a key-sequenced file, each record thus can be retrieved directly. 
Records can also be retrieved in sequential order. If you do not specify keys 
for the records, they will be retrieved in the order in which they are stored. 

A relative-record file is one in which each record is stored in a fixed-length 
'slot' according to the relative-record number specified at the time the record 
is written. This number indicates the position of a particular record slot in the 
file relative to the start of the file. Relative-record numbers start at 1 and 
continue up to the maximum number of records that can be stored in the file. 
Relative record 5, then, is in the fifth record slot in the file. 

When you retrieve a relative record, you can specify the relative-record 
number of the record to be found. As with a key-sequenced file, the record is 
retrieved directly. 

Whether you have an entry-sequenced file, a key-sequenced file or a 
relative-record file depends on how the file is set up. Depending on your 
environment, you mayor may not define record-oriented files yourself. 
Whatever the case, however, you should design the records for your 
record-oriented files. For information on record-oriented files as they relate 
to VSPC, CMS, TSO, OS/VS, and DOS/VS, see Appendix A. 
"Implementation Considerations." 

Record-Oriented Files 77 



Designing a Record 
Assume you are teaching a class and you decide to set up a record for each 
person. Each record will contain the person's name, his home address, test 
marks for five tests you plan to give, his average mark, and a code to indicate 
whether he is an honor student. The entries in the record might look lik~ this: 

NAME 25 characters 
ADDRESS 65 characters 
GRADES 15 characters 
AVERAGE 5 characters 
HONORS 1 characters 

Altogether, these entries take up 111 characters. You decide to include 
additional space in each record for possible entries to be added later, such as 
awards, special achievements, remarks, etc. Altogether, you decide to have a 
record with 150 characters, and have your installation set up an 
entry-sequenced file named CLASS with a maximum of 150 positions for the 
record. Each record could be smaller or equal to the maximum size. 

An Entry-Sequenced File 

Entering Records 

78 VS BASIC Language 

The WRITE FILE statement is the record-oriented counterpart to the PUT 
statement. It writes records into a file. 

At the beginning of the school session, the only information available to you 
for each student is his name and address. You could write one WRITE FILE 
statement for each student to enter his name and address, like this: 

50 WRITE FILE 'CLASS', 'BUTLER, J.S. 
'323 W. 76 STREET, NEW YORK, 10023' 

(To illustrate the example, the WRITE FILE statement is shown continued 
onto a second line; note that in actual practice, BASIC statements cannot be 
continued. ) 

You could also write one generalized WRITE FILE statement using two 
character variables for the name and address, like this: 

50 WRITE FILE 'CLASS', N$, A$ 

This statement would enter the values of the two variables N$ and A$. 

This DIM statement could be included in the program, to assign a length of 
25 to N$ and 65 to A$: 

10 DIM N$25, A$65 

Each record written by the WRITE FILE statement would be arranged in the 
file this way: 

name 
1 

address 
26 90 

Note that this WRITE FILE statement writes a record 90 positions long, and 
not the 150 that you set up as the maximum size. This record would contain 
space for the person's name and address but no space for the additional 
entries to come later. To make room for additional information, you should 
use the FORM statement in conjunction with WRITE FILE. The FORM 
statement was described earlier in the discussion of PRINT. The WRITE 
FILE statement contains a USING clause with the statement number of the 



FORM statement, and the FORM statement describes how the entries are to 
be formatted into the record. The combination of WRITE FILE and FORM 
statements could look like this: 

50 WRITE FILE USING 55 'CLASS', N$, A$ 
55 FORM POS1, C, POS26, C, POS91, X60 

This FORM statement says that, beginning at position 1 in the record, a 
character variable is to be written, (N$); beginning at position 26 of the 
record, a second character variable is to be written, (A$); and, after that 
variable, an additional 60 spaces are to be skipped. This combination 
effectively increases the size of the record from 90 to 150: 

I name I address I unused 
26 91 150 

The following program shows how you could enter the names and addresses 
of the students into the file named CLASS. 

10 DIM N$25, A$65 
20 PRINT 'ENTER NAME AND ADDRESS' 
30 INPUT N$, A$ 
40 IF N$ = 'LAST' GO TO 70 
50 WRITE FILE USING 55 'CLASS', N$, A$ 
55 FORM POS1, C, POS26, C, POS91, X60 
60 GOTO 30 
70 END 

The program is constructed to recognize the word LAST as the end of input; 
therefore, the last input item should be coded "LAST", "X". Your input 
could look like this: 

"Butler,J.S." 
"cook, A. B." 

"Smith, C. A." 
"Young, W." 
"LAST" 

"323W. 76Street, N. Y., 10023" 
"3062Street, WestNewYork, N.J., 07094" 

"228E. 55Street, N.Y., 10022" 
"3230 165 Street , Flushing, N. Y. , 11358" 
"X" 

After the records are entered, the first record in CLASS would look like this: 

IBUTLER, J. S. 1323 W. 76 STREET, N. Y . , 10023 
I 26 90 150 

After the file has been created, if you decide to add more records, say for a 
new student who registers late, the WRITE FILE statement can be used to 
enter additional records. No RESET statement is necessary as with 
stream-oriented files; the WRITE Fll..E statement automatically positions an 
entry-sequenced file at its end, unless the file has been opened with the 
REUSE clause specified. In this case, records are written at the beginning of 
the file, writing over any existing records. 

Record-Oriented Files 79 



Retrieving Records 

80 VS BASIC Language 

To retrieve a record, use the READ FILE statement, which is the 
record-oriented counterpart to the GET statement. The READ FILE 
statement could be written like this: 

80 READ FILE USING 85 'CLASS', Y$, Z$ 

This statement reads in two values from a record in the file named CLASS, 
and assigns them to the variables Y$ and Z$. The corresponding FORM 
statement describes from which po~itjons in CLASS the values are to be 
obtained. The FORM statement could be written like this to obtain the name 
and address information: 

85 FORM POS1, C, POS26, C 

It is not necessary to read the items in the same order in which they appear in 
the record. For exampie, if it is more convenient to read the address first, the 
statements could be written: 

80 READ FILE USING 85 'CLASS', Z$, Y$ 
85 FORM POS26, C, POS1, C 

Nor is it necessary to read all the items in a record. H you were interested 
only in obtaining name information, you could use this READ FILE and 
FORM combination: 

40 READ FILE USING 45 'CLASS', J$ 
45 FORM POS1, C 

This combination might be helpful when you wish to insert test marks for 
each student. You could read through the file sequentially, obtain each 
student's record, print his name at the terminal for verification, and enter the 
corresponding mark. 

The READ FILE statement, like the GET statement, can contain an EOF 
clause to transfer control when the end of the file is reached. In the program 
shown below, the READ FILE statement causes program control to branch 
to statement 100 at the end of the file, which is used to print a message. 

This program shows how you can read each student's record to insert a test 
mark. The program also introduces the REWRITE FILE statement, which is 
used to update an existing record, and shows how OPEN and CLOSE 
statements can be used with record-oriented files. 

20 DIM J$25 
30 OPEN FILE 'CLASS' ALL HOLD 
40 READ FILE USING 45 'CLASS', J$, EOF 100 
45 FORM pas 1, C 
50 PRINT J$ 
60 INPUT G REM OBTAIN NEW MARK 
70 REWRITE FILE USING 75 'CLASS', G 
75 FORM pas 101, PIC{ZZ#) 
80 GOTO 40 REM TO OBTAIN NEXT RECORD 

100 PRINT 'END OF FILE--LAST RECORD READ' 
110 CLOSE FILE 'CLASS' 
120 END 

Statement 30 opens the file. ALL is a special keyword used with 
record-oriented files to indicate that both input and output operations can 
take place on the file. ALL is required if any rewriting operations are to take 
place. HOLD means that no other user can get to a record while you are 
updating it. There may be occasions when more than one user may have 
access to the same file. By specifying HOLD, you prevent other users from 
getting the particular record you are updating until you are finished with it. 



Updating Records 

Rereading Records 

Statements 40 and 45 obtain the name information from the file. Statement 
50 prints the name at the terminal, allowing you to verify it and enter the 
corresponding test mark in statement 60. Statement 70 is the REWRITE 
FILE statement, which enters one data item into the record just read, the 
numeric variable G. Statement 75 says that the variable is to be entered 
beginning at position 101 of the record, in the format PIC(ZZ#), three digits 
with leading zeros suppressed. The remaining statements cause the program to 
cycle through all the records and close the file after the last record is handled. 

The REWRITE FILE statement writes over all or part of a record. It can 
rewrite an existing data item, and can write new information into an unused 
portion of a record. In order to perform rewriting operations on a file, you 
must explicitly open the file with the OPEN FILE statement specifying ALL. 
To update records in an entry-sequenced file, you must read each record 
before rewriting it. 

If the mark for BUTLER were 92, his record would look like this after the 
REWRITE FILE statement is executed: 

lBUTLER,J.S. \323W. 76STREET,N.Y., 10023 1f>92 
I 26 101 150 

Note that it is not necessary to enter data immediately after the last data item 
previously written in the record; that is, you can begin writing the marks in 
position 101 rather than in position 91. A rewritten record must be the same 
size as the original record in an entry-sequenced file. 

The REUSE keyword on the OPEN FILE statement can be used to write 
over a file. By specifying OUT REUSE or ALL[HOLD] REUSE on the 
OPEN FILE statement subsequent WRITE FILE statements will place data 
at the beginning of a record-oriented file, writing over any existing records. 
Thus the REUSE clause eriables you to use the same file space several times. 
For example: 

10 OPEN FILE 'DAILY' OUT REUSE 
20 OPEN FILE A$ ALL REUSE, EXIT 50 

Statement 10 opens the file named DAILY as an output file, and the 
specification of REUSE indicates that file space can be used again. The file 
will be positioned at its beginning and any records that were on the file prior 
to the open will be written over. 

Statement 20 opens the file A$. The ALL keyword means both input and 
output operations can take place on the file. REUSE means the file space will 
be used more than once. 

In the program shown above, when statement 40 reads a record, that record 
remains available until another record is read or written (or the end of the 
program is reached). Thus, the record is available for rereading operations as 
well as for rewriting operations. 

Suppose the student C. A. Smith says that he is not receiving class mail that 
the other students are getting. He suspects his address may have been entered 
incorrectly. Since the address is not normally read in, you can use the 

Record-Oriented Files 81 



REREAD FILE statement to obtain this information. The REREAD FILE 
and FORM statements could be written like this: 

100 REREAD FILE USING 105 'CLASS', K$ 
105 FORM POS26, C 

These statements retrieve the information starting at position 26, the address 
location. 

The program below shows how these statements could be used to verify the 
address, and further demonstrates the use of the REWRITE FILE statement 
as well, to write over existing data. 

20 DIM J$25, K$65, L$65, C$l 
30 OPEN FILE 'CLASS' ALL HOLD 
40 READ FILE USING 45 'CLASS', J$, EOF 200 
45 FORM POS1, C 
50 PRINT J$ 
60 INPUT G 
70 IF J$ = 'SMITH,C.A.' GO TO 100 
80 REWRITE FILE USING 85 'CLASS', G 
85 FORM POS104, PIC(ZZ#) 
90 GO TO 40 

100 REREAD FILE USING 105 'CLASS',K$ 
105 FORM POS26, C 
110 PRINT 'SMITH ADDRESS IS'; K$; 'TYPE R IF CORRECT' 
120 INPUT C$ 
130 IF C$ = 'R' GO TO 80 
135 PRINT 'TYPE IN CORRECT ADDRESS' 
140 INPUT L$ 
150 REWRITE FILE USING 155 'CLASS', L$, G 
155 FORM POS26, C, POS 104, PIC(ZZ#) 
160 GO TO 40 
200 PRINT 'END OF FILE--LAST RECORD READ' 
210 CLOSE FILE 'CLASS' 
220 END 

This program reads each student's name, prints it at the terminal, and enters 
the next test mark into position 104 of each record. The program also checks 
for Smith's name, and, upon encountering it, branches to statements 100 
through 160. Statement 100 rereads the record, obtaining the address 
information. Statement 110 prints the address for verification. Statement 120 
requests a code, the character R if the address is right, any other character if 
the address if wrong. Statement 130 tests that code and, if the address is 
right, continues processing other records with no further action. Otherwise, 
statement 140 requests the correct address, which statement 150 writes into 
the record, replacing the incorrect address. 

As with rewriting operations, you must read a record before you can reread it. 

Open;ng, Closing, and Repos;tion;ng Files 

82 VS BASIC Language 

Record-oriented files, like stream-oriented files, can be opened and closed 
implicitly or explicitly. A file is opened implicitly for input by the first 
occurrence of a READ FILE statement and for output by the first occurrence 
of a WRITE FILE statement if it has not been previously opened explicitly. It 
is opened explicitly through the OPEN FILE statement. As you may recall, 
for stream-oriented files, OPEN is specified with the keywords IN for input or 
OUT for output. Record-oriented files can be opened in the same way, and, 
in addition, can be opened for both input and output if ALL is specified. 
Statement 30 in the preceding program shows this use of the OPEN 
statement. 



Using the EXIT Statement 

A Key-Sequenced File 

Entering Records 

CLOSE FILE is used in exactly the same way for record-oriented files as 
CLOSE is used for stream-oriented files. It closes the file, or if the statement 
is not present, the system closes the file at the end of program execution. 

Inclusion of the REUSE keyword on the OPEN FILE statement positions a 
record-oriented file at its beginning so that the file can be reused by 
subsequent WRITE FILE statements. 

The RESET FILE statement may also be used to reposition a file to its 
beginning. 

The maximum number of concurrently active input/output files is 15. 

The section "Stream-Oriented Files" introduced the EXIT statement, to 
specify the transfer of control in the event of certain error conditions. The 
EXIT statement can be used for record-oriented files as well. An EXIT 
statement for an entry-sequenced file could look exactly the same as for a 
stream-oriented file: 

80 EXIT EOF 100, IOERR 150, CONV 200 

If you use the EXIT statement, remember to include an EXIT clause, 
specifying the statement number of the EXIT statement, on each appropriate 
input/ output statement. 

The same VS BASIC statements are used for key-sequenced and 
entry-sequenced files, with one additional statement available for 
key-sequenced files. The DELETE FILE statement is used to erase a record. 
Records in an entry-sequenced file cannot be deleted. An entry-sequenced 
record that is no longer needed can be written over with blanks, zeros, or 
other characters, utilizing the REWRITE FILE statement. Also, by using the 
REUSE keyword on the OPEN FILE statement, a file can be positioned to its 
beginning, so that the file can be used again. 

To compare how BASIC statements are used, let us go back and create a 
key-sequenced file for the class records. One of the differences between a 
key-sequenced file and an entry-sequenced one is that before the file is 
created you must tell your installation personnel the position and length of a 
key within a record. The key can be constructed of any number of characters 
up to 255, and must be a character value. It can contain, or can consist 
completely of, digits, as in a charge account number or an employee serial 
number. In the key-sequenced file for class records, a logical choice for a key 
would be the name of the person. Assume, therefore, that you have the 
installation create a key-sequenced file having a maximum size of 150 
positions, with the key in the first 25 positions. To avoid confusing this file 
with CLASS, let's call it GRADE. 

Another difference with a key-sequenced file is that no matter how you enter 
records, they will be stored according to key; you do not have to sort them 
beforehand. In fact, because the person's name is being used as the key in 
GRADE, these particular records will be sorted into alphabetic order by the 
computer. 

Record-Oriented Files 83 



To enter records into GRADE, use the WRITE FILE statement in the same 
manner as for entry-sequenced files: 

50 WRITE FILE USING 55 'GRADE', N$, A$ 

One of the data items in the output list must be used to write the key. In this 
example, the key is the name field, N$. 

The FORM statement could look like this: 

55 FORM POS1, C, POS26, C 

The statement tells the computer to enter the first variable, (N$), beginning in 
position 1 of the record, and then enter the second variable, (A$), beginning 
in position 26. 

A key-sequenced record, unlike an entry-sequenced one, can be made larger 
lo::lt~.,. (nn tn t"h~ ..... "'V ...... ll ..... .,.~I"n.,.rl "''7~ \ T"h.,,, 't'" n ...... OI"~"""' ..... 7 .... th'" t:<'{"\D~" ................... , ... p '"'''' "' .............. .LL .... .A.l..LLl.u..LI..1. ... "" ..... V.l. ..... L:J.l..L..lV.I_ .L.J..I.u:...:J,.I.&..I.L:J u..I..1..l..l.""' ........... ..::tLJu..I.J .Ll..l. ... .I.~l.::J .I.. ......,.&.'-.1. ..... 

statement to specify X60 to reserve space for later use. 

When formatting the key field, you should exercise care in putting the key 
into the proper position in the file. For purposes of simplicity, these examples 
use the first 25 record positions for the key. The occasion may arise, however, 
when you might have a file with the key in some other positions. By careful 
use of POS, you can ensure that the key will be properly inserted. Also, you 
can use the intrinsic function KPS(filename), to find the position, relative to 
1, of the start of an embedded key in the file named filename, and you can 
use the intrinsic function KLN(filename) to find the length of the key. 

After the records are entered into GRADE, additional records can be added 
and will be stored in key-sequenced order. The records in GRADE can be 
retrieved directly or sequentially with the READ FILE statement. 

Retrieving Individual Records 

84 VS BASIC Language 

To retrieve a particular record, specify the KEY clause in the READ FILE 
statement. If you wanted Smith's record, you would specify his name in the 
clause: 

70 READ FILE USING 75 'GRADE', KEY='SMITH,C.A.', F$, G$ 

The computer will search for the record whose key matches, then will read the 
values from the record into the variables F$ and G$. 

If, however, the computer cannot find the key, it automatically terminates 
program execution unless you instruct it to take alternative action. For 
example, if you enter the key incorrectly (say you spell the name SMIHT) , 
the match would never be found. To protect program execution, include the 
NOKEY clause on the READ FILE statement: 

70 READ FILE USING 75 'GRADE', KEY='SMITH,C.A.', 
F$, G$, NOKEY 200 

The NOKEY clause tells the computer that if the matching key cannot be 
found, the program should branch to statement number 200. The NOKEY 
clause for key-sequenced files is similar to the EOF clause for 
entry-sequenced files; it permits you to retain control of program execution if 
a particular condition arises. It is a good idea to code the NOKEY clause on 
any statement that matches keys. 

The READ FILE statement shown above will of course search only for the 
key "SMITH, C. A.". To provide flexibility, you can specify a character 
variable in the KEY clause, and assign the character string to the variable 



through other means, such as an INPUT statement. This READ FILE 
statement could be used to search for any character string assigned to the 
variable K$: 

70 READ FILE USING 75 'GRADE',KEY=K$,F$,G$,NOKEY 200 

Retrieving Records Sequentially 

To read records sequentially, write the READ FILE statement without the 
KEY clause. Such a statement is the same as a READ FILE statement for an 
entry-sequenced file. For example, 

90 READ FILE USING 95 'GRADE', Y$, Z$, EOF 210 

In effect, you are telling the computer not to look for any key, just retrieve 
the next record in the file. 

Using this statement, you can read the entire file from beginning to end as a 
sequential file, or can begin reading it sequentially from some point in the file 
after having searched particular keys with a READ FILE statement having 
the KEY clause. 

Updating Records With and Without Keys 

The REWRITE FILE statement can be used to update records in a sequential 
manner in the same way as for entry-sequenced files, th~t is, by rewriting 
each record after it is read. No KEY clause is required. If a KEY clause is 
specified, the REWRITE FILE statement can update a particular record. 

If you needed to update Smith's address, you could do it quite simply in a 
key-sequenced file by using these statements: 

40 DIM N$25, A$65 
50 INPUT N$, A$ 
60 REWRITE FILE USING 65 'GRADE', KEY=N$, A$, 

NOKEY 80 
65 FORM POS26, C 
70 STOP 
80 PRINT 'NO MATCH FOUND' 
90 END 

In statement 50 you enter the name and the correct address. Statements 60 
and 65 replace whatever address was in the record with the new address. 
Statement 80 informs you if no match was found. 

Note that if the KEY clause is used in the REWRITE FILE statement, no 
READ FILE statement is required to retrieve the record first. If the KEY 
clause is specified in the REWRITE FILE statement, the record matching that 
key is brought in from the file; thus, the REWRITE FILE statement with a 
KEY clause retrieves, as well as rewrites. 

The REWRITE FILE statement can write over existing data or unused 
portions of a record, but must not change the contents of the field containing 
the key information. Unlike records in entry-sequenced files, a rewritten 
record in a key-sequenced file can be made larger, but not smaller, than the 
original record. Fields not written over remain unchanged. 

As another example of REWRITE FILE, assume that during the school term 
you give the students an extra credit project; their final grade will be raised by 
five to ten points depending on the quality of their work. Before the end of 
the term, you add in the extra credit for those students who handed in the 

Record-Oriented Files 85 



Using Generic Keys 

86 VS BASIC Language 

project. The short program below illustrates how the REWRITE FILE 
statement can be useful in updating the records. 

90 DIM N$25 
100 PRINT 'ENTER STUDENT'S NAME AND EXTRA CREDIT MARK' 
110 INPUT N$, E 
120 IF N$='LAST' GO TO 170 
130 REWRITE FILE USING 135 'GRADE', KEY=N$, E, 

NOKEY 150 
135 FORM POS140, PIC(Z#) 
140 GOTO 110 
150 PRINT 'NO MATCH FOUND FOR', N$ 
160 GO TO 110 
170 END 

Statement 100 prompts you for input information. Statement 110 accepts the 
student name in N$ and the mark in E. Statement 120 tests whether the end 
of input has been reached; assume the last input data item should have the 
word LAST as the student's name. Statement i 30 enters the mark recorded in 
E into the file after the key has been matched with the name in N$. Statement 
135 formats the mark into positions 140 and 141. 

The character string specified in a KEY clause does not have to be the same 
length as the matching key in a record. The computer searches a record key 
for the characters you specify in the KEY clause, starting at key position 1. 
Therefore, you can specify a key containing fewer characters than a full key. 
This is called a generic key. 

To illustrate, assume that a file named CITIES has these keys: 

AUSTIN})})})})}) 
BIRMINGHAM}) 
BOISE})})})})})}) 
BOSTON})})})})}) 
MINNEAPOLIS 
NEWDORLEANS 
SACRAMENTO}) 

The following statement uses the string 'BO' as a generic key to search the 
file named CITIES. 

110 READ FILE USING 130 'CITIES', KEY='BO', P$, NOKEY 200 

The computer will search for the first record whose key has 'BO' as its first 
two characters. In the file above, both BOISE and BOSTON start with these 
characters condition. Since the search is made according to the EBCDIC 
collating sequence, the computer will pick BOISE. (Refer to Appendix B. 
"Collating Sequence of the BASIC Character Set" for a list of the EBCDIC 
collating sequence.) 

Here's another example: 

100 READ FILE USING 130 'CITIES', KEY='L', P$, NOKEY 200 

In this example the generic key is 'L'. Since there is no key in the file which 
starts with 'L', no match is found, and the branch specified in the NOKEY 
clause will be taken. 

In addition to the equal sign (=) or .EO. in a KEY clause, you can also 
specify the relational operator 'greater than or equal to' (>= or ~ or .GE.). 
For example: 

110 READ FILE USING 130 'CITIES', KEY .GE. 'L', 
P$, NOKEY 200 



Rereading Records 

Deleting Records 

Repositioning Files 

The generic key is once again 'L', and again there is no match for it. But the 
relational operator tells the computer that if there is no equal, it is to choose 
the next key in the EBCDIC collating sequence that is greater than the one 
specified. In the file above, it is MINNEAPOLIS. 

The REREAD FILE statement does not specify the KEY clause, since the 
record to be reread is already available. The REREAD FILE statement would 
be written exactly the same for a key-sequenced file as for an 
entry-sequenced one. 

Records in a key-sequenced file can be erased by using the DELETE FILE 
statement, and specifying the key of the record to be deleted. For example: 

90 DELETE FILE 'GRADE', KEY=N$, NOKEY 130 

This statement would delete the record whose key matched the character 
value in N$, or would branch to statement 130 if the key could not be 
matched. 

The RESET FILE statement can reposition a file to its beginning. If RESET 
FILE contains a KEY clause, the file will be repositioned to the particular 
record associated with that key. 

Inclusion of the OUT REUSE or ALL REUSE clause on the OPEN FILE 
statement positions a record-oriented file at its beginning so that the file can 
be reused by subsequent WRITE FILE statements. 

Key Clauses on the EXIT Statement 

For key-sequenced files, the EXIT statement can specify these clauses in 
addition to the other clauses available: 

• NOKEY, to transfer control if no key satisfying a KEY clause can be 
found, 

• DUPKEY, to transfer control if a key specified for a new record already 
exists in a file. 

An EXIT statement specifying error handling and KEY clauses could look 
like this: 

180 EXIT EOF 300,IOERR320,CONV 350,NOKEY 130,DUPKEY 200 

When using the EXIT statement, remember to include an EXIT clause on 
each appropriate input/output statement. For example, to refer to the EXIT 
statement above, the DELETE FILE statement previously illustrated could be 
written: 

90 DELETE FILE 'GRADE', KEY=N$, EXIT 180 

Record-Oriented Files 87 



A Relative Record File 

E"te,.i"g Reco,.ds 

Retrievi"g Reco,.ds 

88 VS BASIC Language 

Records in a relative record file are fixed length and each record is identified 
by its position relative to the start of the file. That is, relative-record number 
5 refers to the fifth record in the file. The number is used to directly access 
records in the file. Records in a relative-record file mayor may not contain 
data. When a record does not contain data, it is called a null record. 

'Fixed length' means that, when the file is created, the same amount of space 
is allowed for each record to be written into the file. A record does not 
necessarily have to use all of the space allowed. 

However, once you've written a short record into the space (that is, one that 
does not use all of the space) you cannot extend that record-that is, if you 
update the record by rewriting it, the rewritten record cannot be longer than 
the pre\rious record ,vritten. 

Records in a relative record file are stored in sequence according to the 
relative record number you specify when you write them to the file. 

To enter a record, you use the WRITE FILE statement containing a REC 
clause. 

20 WRITE FILE 'GRADE', REC=5, A$,N$, DUPREC 100 

This statement causes data from the variables A$ and N$ to be entered into 
relative record number 5 of the file GRADE. The DUPREC clause transfers 
program control to statement 100 if a duplicate relative record is encountered. 
That is, relative record 5 already exists .. 

To retrieve a particular record, you specify the REC clause in the READ 
FILE statement. For example: 

50 READ FILE 'ACCT' , REC=5, X$, Y$ 

This statement retrieves relative record 5, then reads the values into the 
variables X$ and Y$. 

If the relative-record number cannot be found, program execution terminates 
unless you instruct it to take alternative action. For example, if you specified 
a relative record that did not exist in the file, the REC condition could not be 
satisfied. By including the NOREC clause on the READ FILE statement, you 
retain control of program execution. For example: 

50 READ FILE 'ACCT', REC=5, X$, Y$, NOREC 180 

The NOREC clause causes the program to branch to statement number 180 if 
the relative record specified cannot be found. 

To read records sequentially, you use the READ FILE statement without the 
REC clause. By so doing, you will retrieve the next non-null record in the file 
in relative-record number sequence. 



Updating Records 

Rereading Records 

Deleting Records 

Repositioning Files 

To update records, you use the REWRITE FILE statement. The REWRITE 
FILE statement with the REC clause updates a particular relative record. A 
REWRITE FILE without a REC clause must be preceded by a READ FILE 
statement with a REC clause. 

The length of the new record must not be greater than the length of the 
original record. 

The REREAD FILE statement without the REC clause is used to reread a 
record. The REC clause is not specified because, as with entry- and 
key-sequenced files, the record to be read is already available. The REREAD 
statement is written in the same format as for entry- and key-sequenced files. 

Records in a relative-record file are removed by using the DELETE FILE 
statement with a REC clause specifying the relative-record number of the 
record to be deleted. 

80 DELETE FILE 'GRADE', REC=5, NOREC 120 

This statement deletes the record whose relative record number is 5. If no 
match is found, the program branches to statement 120. 

The RESET FILE statement without a REC clause repositions a file to its 
beginning. If the RESET FILE statement contains a REC clause, the file is 
positioned to the particular record specified in the REC clause. 

Error Clauses in the EXIT Statement 

&REC Intemal Variable 

For relative record files, the EXIT statement can also specify the following 
additional clauses. 

• NOREC to transfer control if a matching relative record is not found when 
reading a file. 

• DUPREC to transfer control if a record with the same relative record 
number as a new record already exists on a file when writing to a file 

An EXIT statement specifying error handling clauses could look like this: 

180 EXIT EOF 300, IOERR 320, CONV 350, NOREC 130, DUPKEY 200 

Remember to include an EXIT clause, specifying the statement number of the 
EXIT statement, on each appropriate input/output statement. 

The internal variable &REC is available for use with relative-record files. This 
variable contains the number of the last record referred to successfully (that 
is, without causing a DUPREC, NOREC or any other input/output error.) 

Record-Oriented Files 89 



The FORM Statement-Differences Between PRINT 
and Record I/O 

The Ne Specification 

90 VS BASIC Language 

The version of the FOR..\1 statement used with record-oriented files is similar 
to that used with PRINT USING in the following ways: 

1. Both contain the C character specification. 

2. Both contain the PIC numeric specification, with the same digit specifiers 
and insertion characters. 

3. Both contain the format control specifications X and POS. 

4. Both can contain the SKIP control. 

5. Both can contain literals. 

The two versions are different in the following manner: 

Under record-oriented I/O, numeric data can be formatted using other 
specification codes besides PIC. Additional specification codes are: 

NC 
PD 
B 
5 
L 

N C, PD and B are used to store and retrieve numeric data in special internal 
formats, and are not generally used in most BASIC applications. Except for 
one use of NC, they are not further discussed here; additional material on 
these codes can be found in Part II of this publication under "The FORM 
Statement. " 

The one use of N~ applicable to this discussion is in its relationship to PIC. 
PIC can be used only in output operations; thus, it can appear in FORM 
statements related to WRITE FILE and REWRITE FILE statements, but not 
in those related to READ FILE or REREAD FILE statements. To read data 
that was written using PIC, NC is used, specifying the number of positions in 
the record to be read. For example, 

NC4 

would read four positions of a number. 

If a number were written using this PIC specification: 

PIC(###) or PIC(ZZ#) 

the NC specification to retrieve it would be: 

NC3 

To retrieve only the first two of these digits, you would specify NC2. 

Earlier, this FORM statement was used to enter the two-digit numeric 
variable E into the file called GRADE: 

135 FORM POS140, PIC(Z#) 

To retrieve that value, you could use this FORM statement: 

55 FORM POS140, NC2 



The Sand L Specifications 

NC can also specify the number of decimal digits in a number, in the 
following manner: 

NCS.2 

This specification says that five positions are to be read, and a decimal point 
is to appear before the two rightmost digits. That is, the five positions could 
look like this: 

12.34 
1.234 
11234 

would be read as 
would be read as 
would be read as 

12.34 
12.34 

112.34 

If an item were written using this PIC specification, 

PIC(####.##) 

The NC specification to retrieve it would be: 

.NC7.2 

The first number specified in NC is the field width, that is, the total number 
of characters to be read, including digits, decimal points, commas, dollar 
signs, etc. The second number is the number of decimal digits. The following 
are examples of how PIC and NC can be used in combination: 

H PIC were specified: 

PIC(###.##) 
PIC(ZZZ.##) 
PIC($$,$$$.##) 
PIC(ZZBZZBZZ) 

NC would be specified: 

NC6.2 
NC6.2 
NC9.2 
NC8 or NC8.0 

The specification S indicates that an item in a record is in short-form 
precision. A number in short-form precision takes up four positions in a 
record. If S is specified for an input operation, the value in the record is 
moved to the variable specified in the READ FILE or REREAD FILE 
statement; if the program is in long-form precision, such a value is extended 
to long-form. If S is specified for an output operation, a short-form value is 
written from the variable specified in the WRITE FILE or REWRITE FILE 
statement into the record. 

The specification L indicates long-form precision and is the long-form 
counterpart to the S specification. A number in long-form precision takes up 
eight positions in a record. 

For an input operation, the value in the record is moved to the variable 
specified in the READ FILE or REREAD FILE statement; if the program is 
in short-form precision, long-form items are truncated to short-form before 
being used. For an output operation, a long-form value is written into the 
record from the variable specified in the WRITE FILE or REWRITE FILE 
statement. 

Record-Oriented Files 91 



A Last Example 

92 VS BASIC Language 

Continuing with the example for class records after all the marks for five tests 
and the extra credit for the project have been entered into the file GRADE, 
the first record in the file could look like this: 

b92b84100b80b73 17 
1 26 101 

If you wanted to print the final mark and the honors status, you could use this 
program: 

10 DIM G(5), M$l, N$25 
20 PRINT USING 25, 'NAME' , 'FINAL MARK', 'HONORS' 
25 FORM POS6, C, POS35, C, POS50, C, SKIP2 
30 OPEN FILE 'GRADE' ALL HOLD 
50 READ FILE USING 55 'GRADE', N$, MAT G, E, EOF 110 
55 FORM POS1, C, POS10l, 5*NC3, POS140, NC2 
60 A = SUM(G)/5 + E 
65 IF A> 100 THEN A = 100 
70 IF A > = 90 THEN M$ = '+' ELSE M$ = ' , 
80 PRINT USING 85,N$, A, M$ 
85 FORM POS6, C, POS35, PIC(ZZ#.#), POS50, C, SKIPl 
90 REWRITE FILE USING 95 'GRADE', A, M$ 
95 FORM POS 130, PIC(ZZZ.Z), POS135, C 

100 GO TO 50 
110 END 

Statement 10 defines an arithmetic array, G, with five members, a character 
variable, M$, with one character, and a character variable, N$, with 25 
characters. The array G is to hold the five marks for each student, M$ is to 
hold the honors character, either a + or a blank, and N$ is the name field. 

Statements 20 and 25 format a printed heading. Statement 30 opens the file 
for input, output, and updating operations. 

Statement 50 reads the file according to the format shown in statement 55. 
Remember that although GRADE is a key-sequenced file, its records can be 
read in sequential order if the KEY clause is not specified. From statement 55 
we can determine that the items being retrieved are the name, placed into N$, 
five sequences of three digits (the five marks beginning in position 101), 
placed into the array G, and a two-digit number for extra credit, placed 
into E. 

Statement 60 sums the five marks, divides the sum by 5 to find the average, 
then adds in the extra credit recorded in E, and puts the resulting value 
into A. 

Statement 65 reduces any mark that exceeds 100. 

Statement 70 analyzes the value of A. If the value equals or exceeds 90, a 
plus sign, indicating honor student, is placed into M$. If the value of A is less 
than 90, M$ is assigned a blank. 

Statements 80 and 85 print the student's name (N$), the final mark (A), and 
the honors code (M$). 

Statements 90 and 95 enter the final mark and the honors code into the 
record, beginning in positions 130 and 135, respectively. 

Statement 100 branches back to statement 50 and the next record is read. 
After all records are read, the program ends. 

140 i50 



Output from this program could be the following: 

Print 
Position 6 35 

NAME FINAL MARK 

BUTLER, J. S. 92.5 
COOK, A. B. 82.0 

SMITH, C. A. 84.0 
YOUNG, W. 97.0 

Summarizing Record-Oriented Statements 

50 

HONORS 

+ 

+ 

All three types of record-oriented files, entry-sequenced, key-sequenced, and 
relative-record, can be accessed sequentially. Key-sequenced and 
relative-record files can also be accessed directly. 

The OPEN FILE statement explicitly opens a record-oriented file. If IN is 
specified, the file is opened for input; if OUT is specified, it is opened for 
output; if ALL is specified, it is opened for both operations. 

The WRITE FILE statement writes a record. In an entry-sequenced file, each 
record is stored in the order in which it is entered. In a key-sequenced file, 
each record is entered at a point determined by the key, which is one of the 
fields within the record. In a relative-record file, each record is stored 
according to its relative position, specified by the REC clause. 

The READ FILE statement reads a record. In an entry-sequenced file, each 
record is read in sequential order. In a key-sequenced file, each record is read 
in sequential order if no KEY clause is specified in the statement. If KEY is 
specified, the record having a matching key is read. In a relative-record file, 
each non-null record is read in sequential order if the REC clause is not 
specified in the statement. If the REC clause is specified, the record in the 
relative position specified by the relative-record number is read. 

The REREAD FILE statement makes the last record previously read 
available again, regardless of whether the record was read in sequential order, 
by key, or by relative-record number. 

The REWRITE FILE statement alters an existing record, provided that the 
file was opened with the OPEN FILE statement specifying ALL. In an 
entry-sequenced file, the last record read is altered. In a key-sequenced file, 
the last record read is altered if no KEY clause is specified in the statement. If 
KEY is specified, the record having a matching key is read and then rewritten. 
In a relative-record file, the last record read is altered if the REC clause is not 
specified in the statement. If REC is specified the record with the matching 
relative-record number is read and rewritten. 

The RESET FILE statement repositions a file to its beginning. In a 
key-sequenced file, if a KEY clause is specified, the file will be repositioned 
to the particular record associated with that key. In a relative-record file, if a 
REC clause is specified, the file is repositioned to the particular record 
indicated by the REC clause. 

Record-Oriented Files 93 



Program Error Handling 

94 VS BASIC Language 

The DELETE FILE statement deletes a record from a key-sequenced or 
relative-record file. For key-sequenced files, the KEY clause is required in 
order to identify the record being deleted. For relative-record files, the REC 
clause is required to identify the record being deleted, 

The EXIT statement specifies the statement number to which control should 
be given if a particular input/output error occurs. The error keywords that 
can be written in the statement are EOF, IOERR, CONY, NOKEY, 
DUPKEY, NOREC, and DUPREC. 

Tne CLOSE FILE statement expiicitiy closes a record-oriented file. 

The FORM statement specifies the format of fields in record-oriented files. 

Many errors can occur during the execution of your program. VS BASIC 
provides several ways for you to receive program control when these error 
conditions occur. 

• Use of the ON statement with its associated clauses 

• Use of the error clauses on I/O statements (discussed earlier) 

With the ON statement, you can specify: (1) where program control should 
be transferred if certain error conditions occur, using the GOTO or THEN 
clause, or the statement number; (2) that the printing of certain error 
messages be suppressed, using the IGNORE clause; and (3) that the system 
default be taken, using the SYSTEM clause. 

The arithmetic and attention interrupts (to suspend program execution) and 
input/ output errors that can be specified in the ON statement are: 

OFLOW (overflow) 
This condition is raised whenever an arithmetic operation would result in a 
value greater than the maximum machine value. 

UFLOW (underflow) 
This condition is raised whenever an arithmetic operation would result in a 
value less than the minimum machine value. 

ZDIV (zero divide) 
This condition is raised whenever division by zero is attempted. 

A TIN (attention) 
This condition is raised whenever the attention key or equivalent is 
pressed, and allows the program to specify a statement where program 
control can optionally be transferred. 

INERR (input errors) 
This condition allows control to be transferred to a designated statement if 
input errors occur. 

ERR (error) 
Any error not handled by an ON statement with a specific error clause or 
by an error clause on an I/O statement. 

Once the ON statement is executed and becomes active, it applies to the 
execution of all subsequent statements in your BASIC program except those 
within a user-defined function (a user-defined function, however, can have its 



own ON statement}. The ON statement remains active until program 
execution terminates or another ON statement that refers to the same error 
condition is encountered. 

The internal variables &CODE, &ERR, &FILE and &LINE can also help 
you identify errors and where they occur. They can be used in conjunction 
with the ON statement, and with error clauses on input/output statements 
and other BASIC statements. 

At the beginning of program execution, the internal variables &CODE, 
&ERR, and &LINE contain the value of zero; &FILE contains blanks. 
When an error occurs in your program, the internal variable contains the 
value associated with the error. This is the value that gives you information 
about the error that occurred. This value is retained until another error 
occurs. 

The following example use the ON statement for arithmetic overflow or 
division by zero: 

10 DIM B( 10 ), C( 10) 
20 MAT READ B 
30 DATA 2,0,0,4,5,6,0,8,0,2 
40 ON ZDIV GOTO 120 
50 FOR J=1 TO 2 
60 FOR 1=1 TO 10 
70 C(I) = 20/B(I) 
80 NEXT I 
90 ON ZDIV SYSTEM 

100 NEXT J 
110 STOP 
120 PRINT 'THE 'I' VALUE OF B IS ZERO' 
130 GO TO 80 
140 END 

The program produces the following results: 

THE 2 VALUE OF B IS ZERO 
THE 3 VALUE OF B IS ZERO 
THE 7 VALUE OF B IS ZERO 
THE 9 VALUE OF B IS ZERO 
ICD413 LINE70: DIVISION BY ZERO 
ICD413 LINE70: DIVISION BY ZERO 
ICD413 LINE70: DIVISION BY ZERO 
ICD413 LINE70: DIVISION BY ZERO 

In this example, statement 40 sets up a procedure for the error condition 
division by zero. When statement 70 is executed, as directed by the ON 
statement on line 40, control goes to line 120 each time a division by zero 
occurs. 

The ON statement at line 90 illustrates one ON statement super~eding 
another ON statement. In this case, the subsequent ON statement directs that 
the action on division by zero be changed to that of normal system action 
(printing of an error message each time division by zero takes place and 
setting the result to zero). 

Record-Oriented Files 95 





PART n. THE VS BASIC LANGUAGE 

• Syntax Definition 

• Statements 

• The BASIC Character Set 

• Data Representations 

• BASIC Statements 

Part II. The VS BASIC Language 97 





Syntax Definition 

To assist you in using Part II, the 'Syntax Definitions' that follow describe 
certain syntactical elements of the language that apply to a number of 
language statements. For example, an 'input-list' can appear in a GET, 
INPUT, READ, READ FILE, or REREAD FILE statement. To avoid 
duplication, the items that can make up the input-list are described here 
instead of being scattered throughout. 

input-list: v l['V 2]'" 

where v is any of the following: 

• A scalar variable 

• Any array member reference 

• A pseudo-variable 

• An array reference (that is, MAT array-name ) 

• An array reference with redimensioning (that is, MAT array-name 
([exp l[exp 2]]) 

output-list: exp l[,exp 2]. .. 

where exp is either of the following: 

• A scalar expression 

• An array reference (that is, MAT array-name) 

redimension specification: exp l[exp 2] 

where exp 1 is an arithmetic expression representing the number of 
members in a one-dimensional array or the number of rows in a 
two-dimensional array, and exp 2 is an arithmetic expression representing 
the number of columns in' a two-dimensional array. 

pseudo variable: STR (x,y,z ) 

where x is a character variable or array member reference, and y and z 
are arithmetic expressions, whose meanings are the same as for the STR 
intrinsic function. 

Syntax Definition 99 



Syntax Notation 

100 VS BASIC Language 

The following conventions are used for syntax notation in this book: 

Stacking of items 
a 
b 
c 

or separation of items by a vertical 

bar a I b I c indicates that one and only one of the items in the group may be 
specified. 

Brackets [] enclose an item or group of items that is optional; either one item 
may be specified or none may be specified. 

Braces {} enclose a group of items that is not optional; one of the items in the 
group must be specified. 

The ellipsis ... indicates that the item or group of items immediately preceding 
it can be repeated any number of times (subject to physical limitations, such 
as line length). 

Uppercase letters and punctuation marks other than those described above 
represent information that must appear exactly as shown. 

Lowercase letters represent information that must be supplied by the user. 



Statements 

Statement Numbers 

A BASIC program consists of a group of numbered statements. There are two 
types of statements: executable and nonexecutable. 

Executable statements are those that specify a program action such as 
assigning a value to a variable (the LET statement), printing a value (the 
PRINT statement), or directing the order of program flow (the GOTO 
statement) . 

Nonexecutable statements are those that specify information necessary for 
program execution. The DATA statement, which provides values to be used, 
and the DIM statement, which specifies the size of data arrays, are typical 
nonexecutable statements. 

Executable and nonexecutable statements may be intermixed when a BASIC 
program is entered. The maximum number of statements permitted in a single 
BASIC program is 1000. 

Each statement in a BASIC program must be preceded by a statement 
number. A statement number cannot contain more than five digits. 

Statements 101 





The BASIC Character Set 

Alphabetic Characters 

Numeric Characters 

The characters that have syntactic meaning in BASIC fall into three 
categories: alphabetic, numeric, and special characters. All elements that 
make up a BASIC program are constructed from characters in these three 
categories, with the exception of comments and character constants, either of 
which can contain any character permitted by the machine configuration on 
which the BASIC program is processed. 

The alphabetic characters in BASIC are the upper- and lower-case letters of 
the standard English alphabet (A-Z and a-z) and the following three 
characters, called the alphabet extenders: 

@ (the commercial "at" sign) 
# (the number or pound sign) 
$ (the currency symbol) 

Corresponding upper- and lower-case letters of the standard alphabet are 
evaluated identically and may be used interchangeably; however, the 
characters on the same keys as the alphabet extenders are treated differently 
from the extenders and may not be used in their places. Thus, the symbols A2 
and a2 are equivalent, while the symbols $$ and 4$ (where the digit 4 is the 
lower-case character corresponding to the upper-case $) are not equivalent. 

When BASIC is used with languages other than English, the three alphabet 
extenders can be used to cause printing of letters that are not in the standard 
alphabet. In such instances, the intemal-or EBCDIC-representation of the 
added character is the same as that of the alphabet extender that it replaces in 
printing. 

The numeric characters in BASIC are the digits 0 through 9. 

The BASIC Character Set 103 



Special Characters 

Use 0/ Blanks 

104 VS BASIC Language 

There are twenty-four special characters in BASIC: 

Character 

+ 

* 
/ 
t 
( 
) 

I 
& 
! 
? 

> 
< 
::F 
S 
~ 

Name 

Blank 
Equal sign or assignment symbol 
Plus sign 
Minus sign 
Asterisk or multiplication symbol 
Slash or division symbol 
Up-arrow or exponentiation symbol 
Left parenthesis 
Right parenthesis 
Comma 
Point or period 
Single quotation mark 
~~ .. L.1~ ~ •• ~ .. ~ .. :~ ____ 1. 
Ll'VUVI~ '{UVLCl.LlVll 111<11110. 

Semicolon 
Colon 
OR sign or vertical bar 
AND sign or ampersand 
Exclamation symbol 
Question mark 
Greater than symbol 
Less than symbol 
Not equal symbol 
Less than or equal to symbol 
Greater than or equal to symbol 

Certain special characters may be combined to produce other syntactic forms 
in BASIC, of which the following combinations are examples: 

Symbol 

>= 
<= 
<> 
** 
II 

Meaning 

Greater than or equal to 
Less than or equal to 
Not equal 
Exponentiation 
Concatenation 

Blanks can be used freely throughout a BASIC program to improve 
readability. They have no syntactic meaning except within character constants 
and in the DATA and Image specification statement. Thus, all of the 
following statements are effectively the same: that is, the integer value 25 is 
assigned to an arithmetic variable named A2: 

LET A2 = 25 
LETA2=25 
LET A 2 = 2 5 
L ET A2 = 25 

In a character constant, the blank is considered to be one of the characters. 
The constants shown below are not the same: 

LET A$ 'MAN y' 
LET A$ = 'MANY' 



Use 0/ Tab Characters 

If your terminal has a tabulation capability, you can use the tab key to enter a 
tab character. The primary uses of the tab character are to improve 
readability of, and to speed up, the listing of a source program. 

During program entry, the tab can be used (instead of spaces) to move the 
carrier to the right, one or more positions. Then your program statements are 
written using this positioning to indent groups of statements, such as those 
within a FOR - ~XT loop. 

When listing a program, the tabulation is used. Since it is faster to move the 
carrier ten positions with a single tab than it is to space the ten positions, 
listing is accelerated if the program contains tabs. 

A user may therefore, obtain program listings faster, and in a more readable 
form by using this feature. 

The BASIC Character Set 105 





Data Representation 

Arithmetic Data 

Magnitude 

Arithmetic Precision 

Arithmetic Data Formats 

Integer Format 

The BASIC character set can be used to represent either arithmetic or 
character data. 

Arithmetic data items are those having a numeric value. All numbers in 
BASic are expressed to the base ten; that is, they are treated as decimal 
numbers. 

The magnitude of a number is its absolute value. The range of absolute 
numbers permitted in VS BASIC programs is 0 or in the range of 
approximately 10-78 through 1075• 

In BASIC, the precision of an integer or fixed-point number is the maximum 
number of digits it may contain. The precision of a floating-point number is 
the number of digits in the number to the left of the E (see format 
descriptions below). 

VS BASIC supports two levels of arithmetic precision, designated short form 
and long form. The level of precision for the two forms is seven significant 
decimal digits and fifteen significant decimal digits, respectively. 

The BASIC user specifies the level of precision (long or short form) under 
which his program is to be run by a command language statement entered 
when the program is compiled, or by specifying the precision in the OPTION 
statement. When the OPTION statement is used, it must be the first 
statement in your source program. 

Arithmetic data may be entered or printed in any of three formats: integer, 
fixed-point, or floating-point. The appropriate format for a given number 
depends on its magnitude and the level of arithmetic precision required by the 
user. 

Numbers in any format can be either positive or negative. Negative numbers 
must be preceded by a minus sign. A plus sign before positive numbers is 
optional; when no sign is specified, the number is treated as a positive 
number. The three formats are defined as follows. 

Numbers expressed in integer format are written as an optional sign followed 
by one or more digits. 

Examples of numbers in integer format are: 

o +2 -23 2683 

Data Representation 107 



Fixed-Point Format 

Arithmetic Constants 

Internal Constants 

Arithmetic Variables 

108 VS BASIC Language 

Numbers expressed in fixed-point format are written as an optional sign, 
followed by one or more digits and a single decimal point. The decimal point 
may appear before, after, or among the digits. 

Examples of numbers in fixed-point format are: 

33. 33.00 -.3 +3.56 

Numbers expressed in floating-point format are written as an integer or 
fixed-point number followed by the letter E and an optionally signed one- or 
two-digit exponent. 

The value of a floating-point number is equal to the number to the left of the 
E, multiplied by ten to the power represented by the number to the right of 
the E. This notation corresponds to standard scientific notation in which 
values are expressed as numbers multiplied by powers of ten. For example, 
the value 101 can be expressed as 1E7 in BASIC floating-point format. The 
integer or fixed-point number-in this example, the integer l-cannot be 
omitted. 

Examples of numbers in floating-point format are: 

Floating-Point Number 

.25E-4 
+1 .OE+5 
5E-7 
-15.33E6 

Equivalent Decimal Value 

.000025 
100000 
.0000005 
-15330000 

An arithmetic constant in a BASIC program is either an integer, fixed-point, 
or floating-point number whose value is never altered during execution of the 
program. 

Thus, the integer 1 is a constant in the following statement: 

75 LET X = X + 1 

An internal constant is an arithmetic constant whose value is pre-defined by 
the BASIC language processor. Unlike other arithmetic constants, internal 
constants are referred to by names, though like normal constants, their values 
are never altered during program execution. The internal constants are listed 
in Figure 1. 

A variable is a named data item whose value is subject to change during 
execution of the program. 

Arithmetic variables are named by a single letter of the extended alphabet, or 
by a letter followed by a single digit. Examples of such names are: A, A2, #, 
and #3. As stated in the section "Alphabetic Characters," the variables A and 
A2 can also be referred to by the symbols a and a2. 

When a BASIC program is executed, the initial value of all arithmetic 
variables is set to zero. 



Character Data 

Character Constants 

Constant Name Short-Fonn Long-Fonn Value 
Value 

'IT &PI 3.141593 3.14159265358979 

Base of Natural Logs &E 2.718282 2.71828182845905 

Square Root of Two &SQR2 1.414214 1.41421356237309 

Centimeters per inch &INCM 2.540000 2.54000000000000 

Kilograms per pound &LBKG .4535924 .453592370000000 

Liters per gallon & GALl 3.785412 3.78541178400000 

Figure 1. Internal Constants 

Character data in BASIC is any data not having an arithmetic value. Like 
arithmetic data, character data may be handled in the form of constants or 
variables. 

A character constant is a string of characters enclosed in a pair of single or 
double quotation marks. Any EBCDIC character may appear in a character 
constant, including digits and characters that are not part of the BASIC 
character set. Thus, the following are all valid character constants: 

"ABCDEF" 
'1234567' 
"a%%345" 
'ABC' 

The length of a character constant is defined as the total number of characters 
it contains, including blanks, but excluding the delimiting quotation marks. 
The maximum number of characters permitted in a single character constant 
is 255. 

If single quotation marks are used to enclose a character constant, a single 
quotation mark within the constant is represented by two consecutive single 
quotation marks. Unless this procedure is followed, the contained quotation 
mark will be recognized as the end of the constant. The same procedure is 
required for character constants bounded by double quotation marks and 
containing double quotation marks. In neither case is the extra quotation 
mark considered part of the length of the character string. (Note that 
quotation marks not enclosing any characters cause 18 blanks to be 
generated.) The following are some examples of how quotation marks are 
handled in BASIC character constants: 

Actual Length 
Form Entered Constant Value of Constant 

'its' its 3 
"its" its 3 
"it's" it's 4 
'it"s' it's 4 
'"its''' "its" 5 
"""its""" "its" 5 
'''it' 's'" "it's" 6 

Data Representation 1 09 



Character Variables 

Internal Variables 

] 10 VS BASIC Language 

A character variable is a named item of character data whose value is subject 
to change during execution of the program. 

Character variables are named by a single letter of the extended alphabet 
followed by the currency symbol ($). Examples of such names are: A$ and 
$$. As stated under the heading "Alphabetic Characters," the variable A$ 
can also be referred to by the symbol a$. 

When a BASIC program is executed~ the initial value of each character 
variable is set to all blank characters. 

The length of a character variable is specified in the DIM statement. In the 
absence of such a specification, the variable is assumed to have a length of 18 
characters. 

\V-nen a character vaiue is assigned to a character variabie, the vaiue is 
adjusted to conform to the length of the variable. Longer values are truncated 
on the right, and shorter ones are left-justified and padded to the right with 
blanks. 

An internal variable is a numeric or character variable which can be accessed 
by the user but whose value is set and changed by VS BASIC. (The value of 
the variable &BUFF is reset to zero if &BUFF is specified in the RESET 
statement. ) 

When a VS BASIC program is executed, the initial value of all the numeric 
variables is set to zero, and the character variable is set to blanks. 

Name Type Meaning 

& BUFF "Numeric Contains the number of unprocessed groups of 
input data values. 

&CODE Numeric Contains the system return code resulting from a 
VSAM error. 

& ERR Numeric Contains the VS BASIC error message number for 
identifying the particular error that was 
encountered. 

&FILE Character Contains the name of the data file associated with 
the error condition. 

& LINE Numeric Contains the line number of the statement where 
the error occurred. 

&REC Numeric Contains the number of the last record of a 
relative record file, successfully referred to in an 
110 statement. 

Figure 2. Internal Variables 



Arrays 
Data items of the same type (either arithmetic or character) may be grouped 
together to form an array. An array is a collection of such data items that is 
referred to by a single name. 

Arithmetic arrays are named by a single letter of the extended alphabet. Thus, 
the letter A may stand for a single arithmetic variable and/or an arithmetic 
array, while the symbol A2 may stand for only a single arithmetic variable. A 
single letter stands for an array only when it has been declared as an array 
implicitly or explicitly. Declaring arrays is discussed in the next section. 

All members of an arithmetic array are initially set to zero when the program 
is executed. 

Character arrays, like simple character variables, are named by a single letter 
of the extended alphabet followed by the currency symbol ($). Thus, the 
name D$ may refer to either a simple character variable or a character array. 

All elements of a character array must be of the same length and are initially 
set to all blank characters when the program is executed. 

BASIC arrays may be either one- or two-dimensional. A one-dimensional 
array can be thought of as a row of successive data items. A two-dimensional 
array can be thought of as a rectangular matrix of rows and columns. The 
following illustration shows a schematic representation of a one-dimensional 
array containing four elements and a two-dimensional array with four rows 
and three columns. 

ONE-DIMENSIONAL ARRAY NAMED A 

AO) A(2) A(3) A(4) 

TWO-DIMENSIONAL ARRAY NAMED B 

BO,1) B(1,2) B(1,3) 

B(2,1) B(2,2) B(2,3) 

B(3,1) B(3,2) B(3,3) 

B(4,1) B(4,2) B(4,3) 

Each member in an array is referred to by the name of the array followed by 
a subscript in parentheses which indicates the position of the member within 
the array. The general form for referring to an array member is: 

name (e t[,e2]) 

where name is the name of the array and e is any arithmetic expression 
whose integer value is greater than zero. 

For a one-dimensional array, the expression in the subscript gives the position 
of the member in the array. Thus, the third member of a one-dimensional 
array named A$ can be referred to by the symbol A$(3), as in this example: 

10 LET A$(3) = 'MARCH' 

For a two-dimensional array, the first expression in the subscript gives the 
number of the row containing the member referred to. Rows are numbered 
from top to bottom. The second expression in the subscript gives the number 
of the column containing the member referred to. Columns are numbered 
from left to right. Thus, the second member in the fourth row of a 

Data Representation 111 



Declaring Aways 

112 VS BASIC Language 

two-dimensional array named B can be referred to by the symbol B( 4,2), as 
in this example: 

20 LET B(4,2) = 1.53E6 

The number of dimensions in an array, and the number of data items in each 
dimension, is established when the array is declared. In BASIC, arrays may be 
declared either explicitly, by use of the DIM statement, or implicitly. An 
implicit declaration is either: 

1. A reference to a member of an array, without a preceding DIM statement. 

2. The use of a name in a context where only an array name is permitted-in 
an array assignment statement, as a MAT name in an input or output list, 
or ~~ ~n ~rOlltnpnt in thp nPT ~T TM PR n nr nOT intrim:i~ _ ... -- _ ...... _ ... ,0_ ........ _ ........................... - -_.-, - _ ..... _, .- --, -- - - - -----------

functions-without having been declared in a preceding DIM statement. 

When an array is declared explicitly, the number of dimensions and the 
number of members in each dimension are specified in the DIM statement. 
For character arrays, the DIM statement may also specify the length of the 
members. 

When an array is declared implicitly by a reference to one of its members, it 
will have the number of dimensions specified in the reference, and each 
dimension will be assumed to be ten. For example, when no prior DIM 
statement exists for an array named A, the statement: 

100 LET A(3) = 50 

will establish a one-dimensional array containing ten members, the third of 
which will have the integer value 50. Likewise, when no prior DIM statement 
exists for an array named B, the statement: 

1 1 0 LET B ( 5 , 6) = 6. 91 3 

will establish a two-dimensional array containing ten rows and ten columns 
(100 members), with the sixth member of the fifth row containing the value 
6.913. 

When an array is declared implicitly by context, it is defined as a 
two-dimensional array, with ten members in each dimension. For example, 
when no prior DIM statement exists for the array named C, the statement: 

150 MAT C = (1) 

will establish a two-dimensional array containing ten rows and ten columns 
( 100 members), with all members containing the value 1. 

Whenever a character array is implicitly declared, either by reference to a 
member or by context, the length of each of its members is assumed to be 
eighteen characters. 

One-dimensional arrays containing more than 10 members and 
two-dimensional arrays containing more than 100 members must be explicitly 
declared. Thus, appropriate prior DIM statements must exist for the following 
statements: 

250 LET A( 15) = 22.4 
300 LET B(6,20) = 66.6 

After an array has been declared, either explicitly or implicitly, it may not 
appear in a DIM statement elsewhere in the program. Arrays may be 



Redimensioning A"ays 

redimensioned, however, by other BASIC statements according to the rules 
described in the next section, "Redimensioning Arrays." 

The following rules apply when an array is to be redimensioned: 

1. An array can be redimensioned in an array assignment statement, a READ 
statement, an INPUT statement, a GET statement, a READ FILE 
statement,_ or a REREAD FILE statement. 

2. An array cannot be redimensioned in a DIM statement. 

3. An array can be redimensioned both in number of dimensions and in 
number of members per dimension as long as the original total number of 
members is not exceeded. 

Naming Conventions for Variables and A"ays 

Functions 

Figure 3 provides a concise review of the names used to refer to variables and 
arrays in the BASIC language. The symbol ext denotes a letter of the 
extended alphabet. 

Data Type Name Example 

Arithmetic Variable ext [digit] A, a2, $3 

Arithmetic Array ext A,b,# 

Character Variable ext $ A$, C$,@$ 

Character Array 

Figure 3. Naming Conventions for Variables and Arrays 

The BASIC language supplies functions that perform. a number of common 
operations. These are called the intrinsic functions and are summarized in 
Figure 4. In addition, BASIC allows the user to name and define his own 
frequently used functions through use of the DEF statement. Multiline 
functions (that is, functions defined by more than one BASIC statement) can 
be defined through use of the DEF, FNEND, and RETURN statements. 

Data Representation 113 



Function Name Description Type of Argu- Type of Value 
ment(s) Returned 

ABS(x) Absolute value of x Arithmetic Arithmetic 

ACS(x) Arcosine (in radians) of x Arithmetic Arithmetic 

ASN(x) Arcsine (in radians) of x Arithmetic Arithmetic 

ATN(x) Arctangent (in radians) of x Arithmetic Arithmetic 

ICEN(X) Centigrade equivalent of x Fahrenheit I Arithmetic Arithmetic 
degrees 

CHR(x) Converts the scalar arithmetic Arithmetic Character 
expression x to its equivalent character 
string 

CLK Time of day in 24-hour clock notation - Character 
(in the form hh:mm:ss) 

CNT Number of data items successfully - Arithmetic 
processed by last I/O statement 

COS(x) Cosine of x radians Arithmetic Arithmetic 

COT(x) Cotangent of x radians Arithmetic Arithmetic 

CPU Seconds taken by program execution - Arithmetic 

CSC(x) Cosecant of x radians Arithmetic Arithmetic 

DAT[(x)] Current Gregorian date, or Gregorian Arithmetic Character 
equivalent of Julian date x** 

DEG(x) Number of degrees in x radians Arithmetic Arithmetic 

DET(x) Determinant of an arithmetic array Arithmetic Arithmetic 

DOT(x,Y) Dot product* of arrays x and Y Arithmetic Arithmetic 

EXP(x) Natural exponential of x Arithmetic Arithmetic 

FAH(x) Fahrenheit equivalent of x Centigrade Arithmetic Arithmetic 
degrees 

HCS(x) Hyperbolic cosine of x radians Arithmetic Arithmetic 

HSN(x) Hyperbolic sine of x radians Arithmetic Arithmetic 

HTN(x) Hyperbolic tangent of x radians Arithmetic Arithmetic 

IDX(x,y) Position of first character of string y Character Arithmetic 
within string x-value 0 returned if 
string not found 

INT(x) Integral part of x Arithmetic Arithmetic 

JDY[(x)] Current Julian date, or Julian equivalent Character Arithmetic 
of Gregorian date x** 

KLN(x) Length in bytes of embedded key for Character Arithmetic 
file x 

KPS(x) Byte position at which embedded key Character Arithmetic 
for file x starts 

* DOT is always calculated in a higher precision if available. 
** Gregorian date form is yyyy/mm/dd, range is 0000/03/01 to 9999/12/31. Julian 

date range is 1721120 to 5373484. 

Figure 4. Intrinsic Functions (Part 1 of 2) 

114 VS BASIC Language 



Function Name Description Type of Type of Value 
I Argument(s) Returned 

LEN(x) Length of character string x, minus Character Arithmetic 
trailing blanks - value 0 returned if 
string all blanks 

LGT(x) Logarithm of x to the base 10 Arithmetic Arithmetic 

LOG(x) Logarithm of x to the base e Arithmetic Arithmetic 

LTW(x) Logarithm of x to the base 2 Arithmetic Arithmetic 

MAX(x,yLz ... ]) Maximum value of x,y,z, ... Arithmetic Arithmetic 

MIN(x,yLz ... ]) Minimum value of x,y,z ... Arithmetic Arithmetic 

NUM(x) Arithmetic value of character string x Character Arithmetic 

PRD(x) Product* of elements in array x Arithmetic Arithmetic 

RAD(x) Number of radians in x degsees Arithmetic Arithmetic 

RLN(x) Length of last record referred to in file x Character Arithmetic 

RND[(x)] Random number; a new stream of Arithmetic Arithmetic 
random numbers is begun starting with 
an unpredetermined number if x is 0, 
or starting with x if x is not 0; if x is 
not specified, the next number from a 
stream of random numbers is assigned; 
if no stream was previously defined 
(that is, no prior RND (x», the stream 
of random numbers will begin with an 
unpredetermined number; all random 
numbers have a decimal value greater 
than 0, and less than 1, in the precision 
specified for the program (for example, 
.4157627 (short), .012345678901234 
(long». 

SEC(x) Secant of x radians Arithmetic Arithmetic 

SGN(x) Sign of x (-1,0, or +1) Arithmetic Arithmetic 

SIN(x) Sine of x radians Arithmetic Arithmetic 

SQR(x) Square root of x Arithmetic Arithmetic 

STR(x,yLz]) Portion ** of string x from yth Character(x) Character 
character to end of string or z Arithmetic(y ) 
characters from string x, starting with Arithmetic(z) 
yth character 

SUM (x) Sum* of elements in array x Arithmetic Arithmetic 

TAN (x) Tangent of x radians Arithmetic Arithmetic 

TIM Time of day in seconds since midnight Arithmetic Arithmetic 

* PRO and SUM are always calculated in a higher precision if available. 
** STR is also a pseudo variable. See "Pseudo Variables" hi Part I of this publication 
for a discussion of its use. 

Figure 4. Intrinsic Functions (Part 2 of 2) 

Data Representation 115 



Expressions 
An expression in BASIC is any representation of an arithmetic or character 
value. Constants, variables (both scalar and array), array member references, 
and function references are all considered expressions. Expressions may also 
be formetl by combining any of these value representations with symbols 
called operators. 

An operator specifies either the relationship between data items, an arithmetic 
operation to be performed on them, or whether they are positive or negative. 
For example, the symbols >, *, and + are operators specifying greater than, 
multiplication, and positivity (or addition), respectively. 

A special class of expressions, called logical expressions, is used with the IF 
statement to test the truth of specified relationships. 

Expressions refelljng to entire arrays, rather than individuai array members, 
are called array expressions. Any expression that evaluates to a single value, 
rather than to a set of values, is called a scalar expression. 

A.rithmetic Expressions and Operators 

116 VS BASIC Language 

An arithmetic expression may be an arithmetic constant, an arithmetic 
variable, a subscripted arithmetic array member reference, or an 
arithmetic-valued function reference; or it may be a sequence of the above 
separated by binary arithmetic operators and parentheses and preceded by 
unary arithmetic operators. Some examples of arithmetic expressions are: 

A1 
X3/( -6) 
X+Y+Z 
SIN(R) 
-6.4 
-(X-X**2/2+X) 

The value of an arithmetic expression is obtained by performing the implied 
operations on the specified data items according to the rules below. 

The five binary arithmetic operators are: 

Symbol 

** or t 

* 
/ 
+ 

Meaning 

Exponentiation 
(either form of the operator is acceptable) 
Multiplication 
Division 
Addition 
Subtraction 

The two unary operators are: 

+ Positive 
Negative 

Special cases for the arithmetic operators and the resulting actions are as 
follows: 

Exponentiation: The expression At B or A **B is defined as the variable A 
raised to the B power. 

1. If A=B=O, an error will occur. 

2. If A=O and B<O, an error will occur. 

3. If A<O and B is not an integer, an error will occur. 

4. If A:#=O and B=O, At B or A **B is evaluated as 1. 



Priority of Operators 

5. If A=O and B>O, At B or A **B is evaluated as O. 

Multiplication and Addition: A *B and A + B, multiplication and addition 
respectively, are both commutative, that is, A*B = B*A and A+B = B+A. 
They are not always associative due to low-order rounding errors, that is, 
A *(B*C) does not necessarily give the same results as (A *B)*C. 

Division: A/B is defined as A divided by B. If B=O, an error "division by 
zero" will occur. 

Subtraction: A-B is defined as A minus B. No special conditions exist. 

Unary Operators: The + and - signs may also be used as unary operators to 
indicate: 

• whether a constant is positive (+) or negative ( -) 

• whether the sign of a value assigned to a variable is to be retained (+) or 
reversed (-). 

Two operators may not be used sequentially. Parentheses may be used to 
separate operators that would otherwise have to be specified sequentially. 

For example: 

-A+(-(B)) or B**(-2) is valid. 
A + -B or B**-2 is invalid. 

Arithmetic expressions are evaluated according to the priorities of the 
operators involved. Operations with higher priorities are performed first; 
those at the same priority level are performed from left to right. The levels of 
priority of the operators are: 

Operator 

** or t 
unary + and -
* and / 
binary + and -

Priority Level 

Highest 

1 
Lowest 

An expression is evaluated by being reduced to its component subexpressions. 
A subexpression is defined as a group that can be read 
operand-operator-operand, where an operand is one of these: 

1. A constant 

2. A variable 

3. A subscripted array member reference 

4. A function reference 

5. A subexpression 

Starting with the first operator to be executed according to the priority 
scheme above, the operands of its subexpression are reduced to simple 
references to data in a left-to-right order. This process is repeated as many 
times as required in a left-to-right and/or descending order of priority of the 
remaining operators, until the entire expression is evaluated. 

The normal priority sequence can be modified'by enclosing subexpressions 
within parentheses. Subexpressions so modified will be evaluated beginning 
with the innermost set of parentheses. 

Data Representation 117 



The following examples illustrate the successive steps in the evaluation of four 
arithmetic expressions according to the rules described above. In each 
expression, the variables A, B, and C have been assigned the integer values 4, 
6, and 2, respectively. 

Expression 

-A**2+B/C*2.5 

(-A**2)+B/C*2.5 

-A**(2+B/C)*2.5 

-A**((2+B)/C)*2.5 

Evaluation and Result 

-4**2+6/2*2.5 
-16 +6/2*2.5 
-16 + 3 *2.5 
-16 + 7.5 

-8.5 

(-4**2)+6/2*2.5 
-16 +6/2*2.5 
-16 + 3 *2.5 
-16 + 7.5 

-8.5 

-4**(2+6/2)*2.5 
-4**(2+ 3 )*2.5 
-4** 5 *2.5 

1024 *2.5 
-1024 *2.5 

-2560 

-4**((2+6)/2)*2.5 
-4**( 8 /2)*2.5 
-4** 4 *2.5 

256 *2.5 
-256 *2.5 

-640 

Character Expressions and Operators 

118 VS BASIC Language 

A character expression is a character constant, a character variable, a 
subscripted character array member reference, or a character-valued function 
reference; or it may be a sequence of the above separated by binary character 
operators and parentheses. The only binary character operator is: 

Symbol Meaning 

II or .CAT. Concatenation 

The following are examples of valid character expressions: 

A$ 
"ABC" 
, abc' I I ' defg , 
D$ ( 4 ) I I D$ ( 5 ) 
D$(4) .CAT. A$ .CAT. 'ABC' 

The length of the character string resulting from the concatenation of two or 
more character strings is the sum of the lengths of the individual strings. 



An-ay Expressions 

Logical Expressions 

Logical Subexpressions 

An array expression may appear only on the right side of the equal sign in an 
array assignment statement. It may take one of the following forms: 

Form 

a 
a+b 
a-b 
a * b 
(e)* a 
IDN 
INV(a) 
TRN(a) 
ASORT(a) 
DSORT(a) 

Meaning 

An array 
Sum of two arrays 
Difference between two arrays 
Matrix product of two arrays 
Product of a scalar value and an array 
Identity matrix 
Inverse of a matrix 
Transpose of a matrix 
Ascending sort of an array 
Descending sort of an array 

where a and b are array names, and e is a scalar arithmetic expression. 

For the array expressions a, ASORT(a), and DSORT(a), a can be either an 
arithmetic or character array. All other array expressions are arithmetic and 
require arithmetic operands. 

The definition of these array expressions can be found in the discussion of the 
array assignment statement, later in this book. 

A logical expression is either a logical subexpression or two logical 
subexpressions joined by a logical operator. It can appear in a BASIC 
program only as part of an IF statement. It has the general format: 

s 1 [logical-operator s 2] 

where s is a logical subexpression and logical-operator is either of these: 

Operator 

& or.AND. 
lor.OR. 

Meaning 

And 
Or 

The logical expression is evaluated as being satisfied (true) or unsatisfied 
(false). If the And (&) operator is used, both logical subexpressions must be 
satisfied for the expression to be satisfied. If the Or ( I ) operator is used, the 
expression is satisfied if at least one of the subexpressions is satisfied. 

A logical subexpression compares the values of two arithmetic expressions or 
two character expressions. It has the general format: 

e 1 relational-operator e 2 

where e is a scalar expression, and relational-operator is any of those 
operators described below. Both eland e 2 must be of the same data type 
(character or arithmetic), and only two expressions may be compared in a 
single logical subexpression. 

Data Representation 119 



120 VS BASIC Language 

The relational operators and their definitions are: 

Operator 

= or .EQ. 
<> or ::F or .NE. 
>= or ~ or .GE. 
<= or S or .LE. 
> or.GT. 
< or .LT. 

Meaning 

Equal 
Not equal 
Greater than or equal to 
Less than or equal 
Greater than 
Less than 

When the alphabetic equivalents are used, they must be enclosed in periods. 

Tne two expressions are first evaluated and then compared according to the 
definition of the relational operator specified. According to the result, the 
logical subexpression is either satisfied (true) or not satisfied (false). 

When character data appears in a logical subexpression, it is evaluated 
according to the EBCDIC collating sequence, character by character, left to 
right. Tnus, the following subexpressions would all be satisfied: 

"ABC" = 'ABC' 
'able' < 'BALL' 
"123" > "ball" 
'$123' .LT. "able" 

When the alphabetic equivalents are used, they must be enclosed in periods. 

When character operands of different lengths are compared, the shorter is 
considered to be extended on the right with blanks to the length of the longer 
operand. Thus, in the third example above: 

"123" > "ball" 

the values compared are 123 b and ball, where b is a blank character. 



BASIC Statements 

Detailed specifications for all of the statements composing the BASIC 
language are contained in this chapter. For the most part, the statements are 
arranged in alphabetic order. In a few cases, related statements are discussed 
together; the combined discussion is cross-referenced, however, in the 
appropriate alphabetic position. 

Each discussion contains the following topics: 

Function: A brief description of the purpose of the statement. 

General Format: A description of the syntax of each statement. 

Action: A discussion of the action that results when the statement is 
encountered in the BASIC program. 

Rules: A discussion of pertinent factors that affect coding of the statement. 

Example: An illustration of how the statement would appear in the program. 

BASIC Statements 121 





The Array Assignment Statement 

Function: 

The array assignment statement causes values to be assigned to the members 
of an array. The value to be assigned can be derived from a parenthesiZed 
scalar expression or from one of the following array expressions: 

Array Expression 

a 
a+b 
a-b 
a*b 
(e)*a 
ION 
INV(a) 
TRN(a) 
ASORT(a) 
DSORT(a) 

Meaning 

Simple array 
Addition 
Subtraction 
Matrix Multiplication 
Scalar multiplication 
Identity function 
Inverse function 
Transpose function 
Ascending sort function 
Descending sort function 

For a discussion of how this statement is used, see "Using Arrays" in Part I of 
this publication. 

The A"ay Assignment Statement (Scalar Value) 

Function: 

This statement assigns a specified scalar value to each member of an array. 

General Format: 

MAT name [(r)] = (exp) [REM comment] 

where name is the name of an array, r is a redimension specification, exp is a 
scalar expression, and comment is one or more EBCDIC characters. 

Action: 

The parenthesized scalar expression to the right of the equal sign is evaluated, 
and each member of the array to the left of the equal sign is set to that value. 

If a redimension specification follows the array name, the truncated mteger 
portion of each expression value in r is used to redimension the array before 
the scalar value is evaluated and assigned to each of its members. 

F or character data, if the character value being assigned is shorter than the 
members of the array, the value is padded on the right with blanks to the 
length of the array members before being assigned. If the character value 
being assigned is longer than the members of the array, the value is truncated 
on the right to the length of the array members before being assigned. 
Character constants containing no characters (null) are assigned as all blank 
characters. 

The scalar expression to the right of the equal sign must be of the same type 
(arithmetic or character) as the array to which it is assigned. 

Examples: 

The first example shows simple assignment of a scalar value to an array; 
contrast this with the second example in the next section (Simple Array). 

10 DIM A(2,2) 
20 B = 5 
30 MAT A = (B) 

BASIC Statements 123 



The resulting values are represented below: 

The second example shows assignment of a scalar value to an array with 
redimensioning specified. 

40 DIM Y(3,3) 
50 MAT Y(2,2) = (0) 

The resulting values are represented below: 

Vis 

The Array Assignme"t Stateme"t (Simple A"ay) 

124 VS BASIC Language 

Function: 

This statement assigns the elements of one array to another array. 

General Format: 

MAT name 1 [~)] = name 2[REM comment] 

where name is the name of an array, r is a redimension specification, 
and comment is one or more EBCDIC characters. 

Action: 

Each element of the array specified to the right of the equal sign is assigned to 
the corresponding member of the array to the left of the equal sign. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

For character arrays, if the members of the array to the right of the equal sign 
are shorter than the members of the array to the left of the equal sign, each 
value is padded on the right with blanks to the length of the receiving array 
before being assigned. If the members of the array to the right of the equal 
sign are longer than the members of the array to the left of the equal sign, 
each value is truncated on the right to the length of the receiving array before 
being assigned. 

Rules: 

1. Both arrays specified must be of the same type (arithmetic or character). 

2. Both arrays specified in the array assignment statement must have identical 
dimensions (after redimensioning, if any). 

3. The same array name should not be specified on both sides of the equal 
sign. 



Examples: 

The first example shows assignment of the elements of an array to another 
array. 

20 DIM A (2,2), B(2,2) 

100 MAT A = B 

The resulting values are represented below: 

IfB=~ :J Ais [: :J 
The second example can be contrasted with the first example in the section 
above (Scalar Value). 

10 DIM A(2,2), B(2,2) 
20 B = 5 
30 MAT A = B 

Because B in the MAT assignment statement is recognized as an array, not a 
scalar, the computer assigns the values of array B to array A: 

Ais [: :J 
The An-ay AssigJ,ment Statement (Addition and Subtraction) 

Function: 

These statements assign the sum or the difference of the elements of two 
arrays to the members of a third array. 

General Format: 

MAT name 1 [(r )] = name 2 {+ I -) name 3[REM comment ] 

where name is the name of an arithmetic array, r is a redimension 
specification, and comment is one or more EBCDIC characters. 

Action: 

The elements of the arrays specified to the right of the equal sign are added or 
subtracted, as indicated, and the result of the operation is assigned to the 
corresponding member in the array to the left of the equal sign. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

BASIC Statements 125 



Rules: 

1. All three arrays must be arithmetic. 

2. All three arrays specified in the statement must have identical dimensions 
(after redimensioning, if any). 

3. If the array to the left of the equal sign is being redimensioned, it cannot 
appear to the right of the equal sign. 

Example: 

10 DIM X(3,3), Y(2,2), Z(2,2) 

100 MAT X(2,2) = Y + Z 

The resulting values are represented belm,v: 

If Y =[: : ] and Z = [: : ] X is 
[ 

a+e 

c+g 

b+fJ 

d+h 

The A"ay Assignment Statement (Matrix Multiplication) 

126 VS BASIC Language 

Function: 

This statement performs the mathematical matrix multiplication of two 
arithmetic arrays and assigns the product to a third. 

General Format: 

MAT name 1 [~)] = name 2 * name 3 [REM comment] 

where name is the name of an arithmetic array, r is a redimension 
specification, and comment is one or more EBCDIC characters. 

Action: 

In matrix multiplication, an array A of dimensions (p,m) and an array B of 
dimensions (m,n) yield a product array C of dimensions (p,n) such that for i 
= 1 ,2, ... ,p and for j = 1,2, ... ,n: 

C(i,j) = 
m 
2: A(i,k) * B(k,j) 
k=l 

·If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

Rules: 

1. All three arrays specified must be arithmetic. 

2. The array specified to the left of the equal sign may not be the same array 
as either array to the right of the equal sign. 

3. All of the following relationships must be true (after 'redimensioning, if 
any): 



a. All three arrays must be two-dimensional. 

b. The number of columns in the array specified by name 2 must be equal 
to the number of rows in the array specified by name 3. 

c. The number of rows in the array specified by name t must equal the 
number of rows in the array specified by name 2. 

d. The number of columns in the array specified by name 1 must equal the 
number of columns in the array specified by name 3. 

Example: 

10 DIM X(2,2), Y(2,2), Z(2,2) 

100 MAT Z = X * Y 

The resulting values are represented below: 

If X is[: : ] and Y = [: 
f] . ~*e + b*g 

Z IS 

h c*e + d*g 

The A"ay Assignment Statement (Scala,. Mllltiplication) 

Function: 

a*f + b*h] 

c*f + d*h 

This statement causes the elements of an arithmetic array to be multiplied by 
the value of an arithmetic expression, and the resulting products to be 
assigned to the members of another arithmetic array. 

General Format: 

MAT namet [(r)] = (x) * name 2 [REM comment] 

where name is the name of an arithmetic array, r is a redimension 
specification, the parenthesized x is a scalar arithmetic expression, aDd 
comment is one or more EBCDIC characters. 

Action: 

The scalar expression is evaluated, and that value is multiplied by the value of 
each member in the array to the right of the equal sign. The resulting products 
are then assigned to the corresponding members of the array to the left of the 
equal sign. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before any other action takes place. 

Rules: 

1. Both arrays specified must be arithmetic. 

2. Both arrays specified must have identical dimensions (after 
redimensioning, if any). 

3. If the array to the left of the equal sign is being redimensioned, it cannot 
appear to the right of the equal sign. 

BASIC Statements 127 



Example: 

20 DIM X(2,2), Y(2,2) 

100 MAT Y = (4) * X 

The resulting values are represented below: 

IfX= Y is 

TIle AITtlY Assignment Statement (Identity Function) 

\ 

128 VS BASIC Language 

Function." 

This statement causes an arithmetic array to assume the form of an identity 
matrix. 

General Format: 

MAT name [(r)] = IDN [REM comment] 

where name is the name of an arithmetic array, r is a redimension 
specification, and comment is one or more EBCDIC characters. 

Action: 

Each member of the specified array for which the values of both subscripts 
are equal, for example, A(2,2) or A(3,3), is assigned the integer value 1. All 
other members-for example, A(2,3) or A(3,1)-are assigned the value O. 

If a redimension specification follows the array name, the truncated integer 
portion of each expression value in r is used to redimension the array before 
the assignment of 1 or 0 to each of its members. 

Rules: 

1. The array specified must be arithmetic. 

2. The specified arithmetic array must be a square matrix; that is, the number 
of rows must equal the number of columns (after redimensioning, if any). 

Example: 

50 DIM X( 16) 

60 MAT X(4,4) = IDN 

The resulting values are represented below: 

0 0 0 

0 0 0 
X is 

0 0 0 

0 0 0 



The Array Assignment Statement (Inverse Function) 

Function: 

This statement causes one array to be assigned the mathematical matrix 
inverse of another array. 

General Format: 

MAT name 1 [(r)] =INV (name 2) [REM comment] 

where name is -the name of an arithmetic array, r is a redimension 
specification, and comment is one or more EBCDIC characters. 

Action: 

The matrix inverse of the array specified to the right of the equal sign is 
assigned to the array specified to the left of the equal sign. For the square 
array A of dimensions (m,m), the inverse array B, if it exists, is an array of 
identical dimensions such that: 

A*B=B*A=I 

where I is an identity matrix. 

Not every matrix has an inverse. The intrinsic function DET (see 
"Functions") may be used to determine if a given array has an inverse. The 
inverse of array A exists if DET(A) #: O. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

Rules: 

1. Both arrays specified must be arithmetic. 

2. Both arrays specified must be square arrays, and both must have identical 
dimensions (after redimensioning, if any). 

3. The same array name may not be used on both sides of the equal sign. 

Example: 

20 

80 
90 

295 
300 
310 

DIM X(2,2), Y(2,2) 

IF DET(Y) = a THEN 300 
MAT X = INV(Y) 

GO TO 110 
PRINT 'SINGULAR MATRIX' 
END 

The resulting values are represented below: 

If Y is [
1 

1 ] Then X is [2 -1 ] 
1 2 -1 1 

BASIC Statements 129 



Be Array Ass;gIIment Statement (Transpose Function) 

Function: 

This statement causes the elements of one array to be replaced by the matrix 
transpose of another array. 

General Format: 

MAT name 1 [(r)]= TRN (name 2)[REM comment] 

where name is the name of an arithmetic array, r is a redimension 
specification, and comment is one or more EBCDIC characters. 

Action: 

The transpose matrix of the array specified to the right of the equal sign is 
assigned to the array specified to the left of the equal sign. The values in 
column y of one array becOille the values in row y of the other array. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

Rules: 

1. Both arrays specified must be arithmetic. 

2. Both arrays specified must be two-dimensional, and the number of rows in 
each array must be equal to the number of columns in the other (after 
redimensioning, if any). 

3. The same array name may not be used on both sides of the equal sign. 

Example: 

40 DIM A(3,2), B(2,3) 

60 MAT B = TRN(A) 

The resulting values are represented below: 

If A is [: d 

c ;] 
Be Array Assigllment Statement (Ascendbtg Sort F""ction) 

130 VS BASIC Language 

Function: 

This statement causes the elements of one array to be sorted in ascending 
order and assigned to the members of another array. 

General Format: 

MAT name 1 [6" )] = ASORT (name 2)[REM comment] 

where name is the name of an array, r is a redimension specification, and 
comment is one or more EBCDIC characters. 



Action: 

The elements of the members of the array specified to the right of the equal 
sign are sorted in ascending order and assigned to the members of the array to 
the left of the equal sign. For a one-dimensional array A, the smallest value is 
placed in A(1), the next smallest value in A(2), and so on. For 
two-dimensional arrays, values are assigned row by row. Thus, for a 
two-dimensional array B, the smallest value is placed in B(1,l), the next 
smallest value in B(1,2), and so on. 

For a character array, the data is sorted according to the EBCDIC collating 
sequence, character by character, left to right. If the members of the array to 
the right of the equal sign are shorter than the members of the array to the 
left of the equal sign, each value is padded on the right with blanks to the 
length of the receiving array before being assigned. If the members of the 
array to the right of the equal sign are longer than the members of the array 
to the left of the equal sign, each value is truncated on the right to the length 
of the receiving array before being assigned. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

The sort operation has no effect on the array specified to the right of the 
equal sign, unless it is the same array that is specified to the left of the equal 
sign. 

Rules: 

1. Both arrays specified must be of the same type (arithmetic or character). 

2. Both arrays specified must have identical dimensions (after 
redimensioning, if any). 

3. If the array to the left of the equal sign is being redimensioned, it cannot 
appear to the right of the equal sign. 

Example: 

20 

50 

If A 

DIM A(3,3), B(3,3) 

MATB 

8 
7 
1 

ASORT(A) 

~J Then B is 

The An-ay Assignment Statement (Descending Sort Function) 

Function: 

[~
1 2 

5 
8 ~J 

This statement causes the elements of one array to be sorted in descending 
order and assigned to the members of another array. 

General Format: 

MAT name! [(r)] = DSORT (name2)[REM comment] 

where name is the name of an array, r is a redimension specification, and 
comment is one or more EBCDIC characters. 

BASIC Statements 131 



132 VS BASIC Language 

Action: 

The elements of the array specified to the right of the equal sign are sorted in 
descending order and assigned to the members of the array to the left of the 
equal sign. For a one-dimensional array A, the largest value is placed in A(l), 
the next largest value in A(2), and so on. For two-dimensional arrays, values 
are assigned row by row. Thus, for a two-dimensional array B, the largest 
value is placed in B(1,1), the next largest value in B(1,2}, and so on. 

For a character array, the data is sorted according to the EBCDIC collating 
sequence; character by character, left to right. If the members of the array to 
the right of the equal sign are shorter than the members of the array to the 
left of the equal sign, each value is padded on the right with blanks to the 
length of the receiving array before being assigned. If the members of the 
array to the right of the equal sign are longer than the members of the array 
to the left of the equal sign, each value is truncated on the right to the length 
of the receiving array before being assigned. 

If a redimension specification follows the name to the left of the equal sign, 
the truncated integer portion of each expression value in r is used to 
redimension the array before values are assigned to it. 

The sort operation has no effect on the array to the right of the equal sign, 
unless it is the same array that is specified to the left of the equal sign. 

Rules: 

1. Both arrays specified must be of the same type (arithmetic or character). 

2. Both arrays specified must have identical dimensions (after 
redimensioning, if any). 

3. If the array to the left of the equal sign is being redimensioned, it cannot 
appear to the right of the equal sign. 

Examples: 

20 DIM A$2(3,3), B$2(3,3) 

50 MAT B$ = DSORT(A$) 

The resulting values are represented below: 

If A$ = 
[

CB BB AC] 
AB CA CC 
AA BC BA 

Then B$ is 

110 DIM A$3(2,2), B$2(2,2) 
120 MAT B$ = DSORT(A$) 

The resulting values are represented below: 

If A$ = 
[

ABC 

RST 

XYzJ 
UVW 

Then B$ is 

\~~ i: ~1J ljc AB AA 

[

XV UV] 

RS AB 



The CHAIN and USE Statements 
Function: 

The CHAIN statement terminates execution of the program in which it 
appears and starts another BASIC program, causing it to be executed. The 
USE statement is a nonexecutable statement in the chained program that 
specifies a variable to receive a character value passed into the program from 
the chaining program. For a discussion of how these statements are used, see 
"Program Chaining" in Part I of this publication. 

General Format: 

CHAIN p La][REM comment] 
USE b {REM comment] 

where p is the name of the chained program, a is a character expression 
representing a value to be passed to the chained program, b is a character 
variable that is to receive the value a, and comment is one or more EBCDIC 
characters. 

Action: 

When a CHAIN statement is executed, the current program is terminated and 
the program (P) specified in the CHAIN statement is executed. If a is 
specified in the CHAIN statement, the character expression is evaluated and 
its value passed to the chained program. The maximum length of the 
character-string is 255 bytes. If a chained program contains a USE statement, 
the character variable in the USE statement is initialized at the start of 
program execution by the value passed from the chaining program. 

If the character string passed from a chaining program is shorter than the 
length of the variable in the USE statement, the string is padded on the right 
with blanks to the length of the USE statement variable. If the character 
string is longer than the USE statement variable, it is truncated on the right. 

Rules: 

1. The USE statement can appear anywhere in a program except within a 
multiline user function definition (that is, between a DEF statement and its 
associated FNEND statement). 

2. There must be no more than one USE statement in the chained program. 

Example: 

Chaining Program: 

250 CHAIN 'SCAN',N$ 

Chained Program: 

30 USE P$ 

Statement 250 terminates execution of the current program. All active files 
are closed. The value of N$ is used to initialize the variable P$ in the program 
SCAN, which is then executed. 

BASIC Statements 133 



The CLOSE Statement 

134 VS BASIC Language 

Function: 

The CLOSE statement causes input and output files to be deactivated. For a 
discussion of how this statement is used, see" Activating and Deactivating 
Files" for stream-oriented files, and "Opening and Closing Files" for 
record-oriented files in Part I of this publication. 

General Format: 

[
,EXIT es ] 

CLOSEr FILE] jilename I [Jilcname2] . . . ,IOERR s [REM comment] 

where filename is a character expression, es is the statement number of the 
EXIT statement, s is an executable statement number, and comment is one 
or more EBCDIC characters. 

Action: 

The file or files specified in the CLOSE statement are deactivated. If the 
keyword FILE is specified, the file or files to be deactivated are 
record-oriented files. 

If the EXIT clause is included, and an error condition arises, the specified 
EXIT statement is examined for the appropriate error condition and control 
passes to that statement. 

If the IOERR clause is included, a device malfunction prevents the closing of 
the file and control is tranferrred to the specified statement. 

An implicit CLOSE statement is automatically executed for each active file at 
the completion of program execution. 

Rules: 

1. All of the files specified in one CLOSE statement must be either 
stream-oriented or record-oriented; the two types cannot be combined in a 
single statement. 

2. A CLOSE statement for record-oriented files must contain the keyword 
FILE. 

3. If a stream-oriented file is to be used for both output and input during 
execution of a single program, it must be closed between output and input 
references. 

4. If a file specified in a CLOSE statement is not active at the time the 
CLOSE statement is executed, its appearance in the CLOSE statement is 
ignored. 

5. If EXIT is specified for a particular file, the IOERR error clause cannot be 
specified. 

6. In a mUltiple CLOSE statement, an error causes transfer of program 
control to the statement designated, and any subsequent files specified are 
not processed. 

7. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 



Examples: 

25 CLOSE 'CDF', "RST" 
30 CLOSE FILE 'RECFIL', A$ 
40 CLOSE 'STOCK', A$, IOERR 100 

BASIC Statements 135 



The DATA Statement 

136 VS BASIC Language 

Function: 

The DATA statement is a nonexecutable statement that creates an internal 
data table from which values are supplied to variables, arrays, and 
pseudo-variables specified in corresponding READ statements. For a 
discussion of how this statement is used, see "Getting Data Into the 
Computer" in Part I of this publication. 

General Format: 

DATA [n 1*] constant 1 ['~2';'] constant2] ... 

where constant is either an arithmetic or character constant, and n is a 
nonzero, unsigned, integer constant specifying the number of times the 
constant is to appear in succession in the data table, 

Action: 

Before execution time, a single table is constructed containing all the values 
from all the DATA statements in the program in their order of appearance by 
statement number. At the same time, a pointer is set to the first item in the 
table. The pointer is advanced through the table, item by item, as the data is 
supplied to items in the input list of a READ statement. 

Rules: 

1. Each item of data in a DATA statement must be of the same type as that 
specified by the variable to which it is to be assigned in the corresponding 
READ statement. Thus, if the third constant in the DATA statement is a 
character constant, then the READ statement variable to which it is 
assigned must be a character variable. 

2. DATA statements may be placed either before or after the READ 
statements to which they supply data. 

3. A DATA statement cannot appear within a multiline function definition 
(between a DEF statement and its associated FNEND statement). 

4. A character constant should be bounded by a pair of single or double 
quotation marks, if the constant: 

• contains commas or slashes 

• has leading or trailing blanks or tab characters 

• has leading single or double quotation marks. 

• starts with an integer immediately followed by an asterisk. 

Otherwise, a character constant does not have to be enclosed in quotation 
marks. 

5. A number that is not enclosed in quotation marks can be assigned to either 
a character or numeric variable; a quoted constant may only be assigned to 
a character variable. 

6. Comments are not allowed on the DATA statement. 

Examples: 

10 DATA 'JONES', 15.00, SMITH, 20.50 
20 DATA 3*1.0, 2.0, 2*3.0 
30 DATA 3*ABC,'3*ABC' 



Note in the last example, that the first item will initialize 3 character variables, 
each with a value of ABC, whereas the second item will initialize 1 character 
variable with the value of 3* ABC. 

BASIC Statements 137 



The DEF, RETURN, and FNEND Statements 

138 VS BASIC Language 

Function: 

The DEF statement is a nonexecutable statement that defines a user-written 
function. It can be used alone to define a single-line function. In conjunction 
with the RETURN and FNEND statements, it defines a multiline function. 
For a discussion of how these statements are used, see "Functions" in Part I 
of this publication. 

General Format: 

Single-line function definition (arithmetic): 

[DEF] FN a [(dv 1[,dv 2]"')] = scalar-arithmetic-expression [REM comment] 

Single-line function definition (characier): 

[DEF] FN b [~v J,dv 2]"')] = scalar-character-expression [REM comm~nt] 

Multiline function definition (arithmetic): 

[DEF] FN a [(dv 1[' dv 2]"')] [REM comment] 

RETURN scalar-arithmetic-expression [REM comment] 

[RETURN scalar-arithmetic-expression] [REM comment] 

FNEND ~omment] [REM comment] 

Multiline function definition (character): 

[DEF] FN b$ [(dvJ,dv 2] ... )] [REM comment] 

RETURN scalar-character-expression [REM comment] 

[RETURN scalar-character-expression] [REM comment] 

FNEND [[REM] comment] 

where a is any letter of the extended alphabet or a digit 0 through 9, b is any 
letter of the extended alphabet, dv is a dummy variable, which can be an 
arithmetic or character variable, or a character variable followed by an 
unsigned, nonzero, integer constant defining the length of the dummy 
variable, and comment is one or more EBCDIC characters. 

A reference to a user-written function has the general format: 

Arithmetic Function: 

FN a [(x lLx 2]"')] [REM comment] 

Character Function: 



where FN7 or FNb $ is the name of the function and x is an argument, 
which can be either an arithmetic or character expression. 

Action: 

When a reference to a user-written function is encountered in an expression 
at execution time, the current value of each argument x is used to initialize 
the corresponding dummy variable dv. When the expression in the DEF or 
RETURN statement is evaluated, the result is assigned as the value of the 
function reference. 

If a character argument is shorter than the corresponding dummy variable, the 
value of the argument is padded on the right with blanks to the length of the 
dummy variable before being assigned to it. If a character argument is longer 
than its corresponding dummy variable, its value is truncated on the right to 
the length of the dummy variable before being assigned to it. 

The values of any program variables or array member references that appear 
either in the DEF statement expression or within the multiline function 
definition are set at the time of invocation. 

Rules: 

1. A function may be defined anywhere in a BASIC program, either before 
or after references to it. 

2. A function of a given name may be defined only once in a program. 

3. A function definition may not contain references to itself nor to other 
functions which refer to it in their definitions. 

4. A function reference to a user-written function may appear anywhere in a 
BASIC expression that a constant, variable, subscripted array member 
reference, or intrinsic function reference may appear. 

5. A function must not change the value of any variable which appears in 
the statement containing the function reference. 

6. The list of arguments in a reference to a user-written function must agree 
in number, order, and type (arithmetic or character) with the dummy 
variables in the DEF statement. 

7. The maximum number of arguments in a user-written function is 25.9 

8. If there is no length specifie~ for a character dummy variable in the DEF 
statement, the dummy variable is assumed to have a length of eighteen 
characters. 

9. The dummy variable dv has meaning only within the function definition. 
Consequently, it is possible to have a dummy variable with the same 
name as a variable used elsewhere in the program. The BASIC language 
will recognize each as a unique identifier, and no conflict of names or 
values will result from this duplicate usage-for example, modification of 
one has no effect on the other. 

10. The maximum number of user-written functions permitted in a BASIC 
program is 39 numeric functions and 29 character functions. The 
maximum number of active function references is 47, unless there are 
active GOSUB statements. For every two active GOSUB statements, 1 
must be subtracted from this maximum. Thus, with four active GOSUB 
statements, the maximum number of active function references is 45. 
(See "The GOSUB and RETURN Statements.") 

BASIC Statements 139 



140 VS BASIC Language 

11. The following statements may not appear within a multiline user function 
definition (between a DEF statement and its associated FNEND 
statement): DATA, DEF, DIM, END, FORM, Image, and USE. 

12. An FNEND statement may not appear outside the multiline user function 
definition; a RETURN statement outside of a function definition can 
be of the form; RETURN [ [REM] comment] . 

13. Transfer of control into or out of multiline function definition is not 
permitted. 

a. An 110 statement within a multiline function definition may not refer 
to an EXIT statement that is outside of the function definition; 
similarly, an I/O statement outside of a function definition may not 
refer to an EXIT statement within the function definition. 

b, The ON statement can...D.ot transfer control into or out of a user-defined 
function. 

14. User-defined functions that are referred to during an I/O operation may 
not themselves perform any I/O. 

15. If control is passed to a DEF statement, either through normal 
sequential execution or from elsewhere in the program, control goes to 
the statement following the function definition. 

16. The last executable statement preceding the FNEND statement must 
prevent control from passing to the FNEND statement-such as a 
RETURN, STOP, CHAIN, or unconditional GOTO. 

Examples: 

After execution of the following series of BASIC statements, the variable Z$ 
will have the value "AREA CODE" and W$ will have the value "ZIP 
CODE". 

00 DIM Z$9, W$8 
10 LET Y$ = 'AREA' 
20 DEF FNA$ (X$5) X$I I 'CODE' 
30 LET Z$ = FNA$(Y$) 
40 LET W$ = FNA$( 'ZIP' ) 

In the next example, the variable R will have the integer value 72 after 
execution of statement 80. When statement 80 is executed, the current value 
of Y, which is 2, is substituted for each occurrence of the dummy variable X 
in the arithmetic expression of statement 100. Since the function FNC, 
defined in statement 100, uses the function FNB in its definition, the value 2 
is substituted for each occurrence of X in the arithmetic expression of 
statement 90. The resulting value, 47, is then substituted for the function 
reference FNB(X) in statement 100. The current value of Y, 2, is then added 
to 47, and the resulting value, 49, is substituted for the function reference 
FNC(Y) in statement 80. This value is added to 23, and the resulting value, 
72, is assigned to the variable R. 

70 LET Y = 2 
80 LET R = FNC(Y) + 23 
90 DEF FNB(X) 5*X**2+27 
100 DEF FNC(X) = FNB(X) + X 



The next example shows a multiline function definition. When these 
statements are executed, C will have a value of 7 and D will have a value of 
-2. 

10 LET A = 5 
20 LET B = 2 
30 DEF FNA (X,Y) 
40 IF X>O THEN RETURN X+Y ELSE RETURN X-Y 
50 FNEND 
60 LET C = FNA(A,B) 
70 LET A 0 
80 LET D = FNA(A,B) 

BASIC Statements 141 



The DELETE FILE Statement 

142 VS BASIC Language 

Function: 

The DELETE FILE statement causes a specified record to be deleted from a 
key-sequenced or relative-record record-oriented file. For a discussion of how 
this statement is used, see "Deleting Records" in Part I of this publication. 

General Format-Key Sequenced Files: 

r,EXIT es 1 
DELETE FILE filename, KEY = exp L ,IOERR s J [,NOKEY s] [REM comment J 

General Format-Relative Record Files: 

DELETE FILE filename, REC = e 

where filename is a character expression, exp is a character expression, es is 
the number of an EXIT statement, e is a positive scalar arithmetic expression, 
s is the number of an executable statement, and comment is one or more 
EBCDIC characters. 

Action: 

If it has not been previously opened, the file specified in the DELETE FILE 
statement is activated for input and output operations. Execution of the 
DELETE FILE statement causes the record whose key is specified in the 
KEY clause or whose relative-record number is specified in the REC clause, 
to be deleted from the specified file. The file is then positioned after the 
deleted record. 

The character expression in the KEY clause is evaluated and truncated on the 
right to the length of the 'record key before being compared with the actual 
record key. A character string shorter than the record key is compared with 
the first n characters of the key, where n is the number of characters in the 
character string, and the first record satisfying that condition is deleted from 
the file. 

The numeric expression in the REC clause is the integer part of a positive 
number which gives the relative record number 1,2, 3, ... m, with m being the 
maximum number of records in the file. The relative record number is not 
part of the data record; it is used to calculate the relative position of the 
record within the file. 

If the NOKEY clause is included, control is transferred to the specified 
statement if a record with the specified key does not exist on the file. 

If the NOREC clause is included, and a record with the specified 
relative-record number does not exist on the file, control is transferred to the 
specified statement. 

If the IOERR clause is included, control is transferred to the specified 
statement if a device malfunction prevents deletion of the record. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if any of the above problems occur. 



Rules: 

1. The NOKEY or NOREC and IOERR clauses can be specified in any 
order. The presence of any of these clauses precludes the specification of 
an EXIT clause. 

2. The specified file must be a record-oriented file that is activated for both 
input and output operations. 

3. The internal variable &REC contains the relative record number of the last 
record successfully referred to. 

4. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Example: 

30 DELETE FILE "FAB", KEY "320" 

BASIC Statements 143 



The DIM Statement 

144 VS BASIC Language 

Function: 

The DIM statement is a nonexecutable statement used to specify the size of 
arrays and the length of a character variable or array member. For a 
discussion of how this statement is used, see "Rules for Forming Variables" 
for character data and "Using Arrays" for arrays in Part I of this publication. 

General Format: 

where name is an arithmetic or character array name or a character scalar 
variable, len is a nonzero, unsigned, integer constant specifying the length of 
a chaiactei variable or a character array member, f and c are nonzero, 
unsigned, integer constants specifying the first and second dimensions of an 
array, respectively, and comment is one or more EBCDIC characters. 

Action: 

A character scalar variable in a DIM statement is defined as having the 
number of characters in its associated length specification len. 

A one-dimensional array whose name is specified in a DIM statement is 
defined as having the number of members represented by the integer r. 

A two-dimensional array whose name is specified in the DIM statement is 
defined as having r number of rows and c number of columns. 

All members of a character array whose name is specified in a DIM statement 
are defined as having the length specified by len; if len is absent for that 
array name, all members are assumed to have a length of 18 characters. 

The initial value of each arithmetic array member is zero. The initial value of 
each character array member is all blank characters. 

Rules: 

1. An array name may not appear in a DIM statement if it has been 
previously defined, either implicitly, or explicitly in a prior DIM statement. 
(Arrays may be redimensioned after definition according to the rules 
explained in the section "Redimensioning Arrays.") 

2. A character variable may not appear in a DIM statement if it has appeared 
in any previous statement in the program. 

3. Arrays of one or two dimensions may be defined in a DIM statement. 

4. A length specification must not accompany an arithmetic array name; it is 
optional for a character array name; it must be specified for a character 
scalar variable. 

5. The maximum permissible length of a character variable or character array 
member is 255. 

6. The maximum permissible size of one- and two-dimensional arrays is 
32767 members. 

Example: 

20 DIM A(4,2), B$6(2,2), D$8, Z$(5) 



When the program is executed, the initial value of the arrays will be: 

B= [1:> 1:> 1:> 1:> 1:> 1:> 1:> 1:> 1:> 1:> 1:> 1:> ] 
1:>1:>1:>1:>1:>1:> 1:>1:>1:>1:>1:>1:> 

0$= 1:>1:>1:>1:>1:>1:>1:>1:> 

Z$ = Five strings of 18 blank characters each. 

BASIC Statements 145 



The END Statement 

146 VS BASIC Language 

Function: 

The END statement signifies the end of source program statements, and, at 
execution time, causes the termination of a BASIC program. For a discussion 
of how this statement is used, see "A Simple Program" in Part I of this 
publication. 

General Format: 

[
[REM] comment ] 

END RC = exp [REM comment] 

where comment is one or more EBCDIC characters and exp is a numeric 
expression which returns the integer part of a non-negative value. 

Action: 

The END statement indicates the logical end of a program. When it is 
encountered during program compilation, it causes any statements that follow 
it numerically to be excluded from the program. When an END statement is 
encountered at execution time, it causes closing of all open files and 
termination of processing. By specifying the expression RC=, the user can 
return a completion code to the host system at the end of execution. 

Rule: 

1. The END statement is optional. If omitted by the user, END will be 
assumed by the system to follow the highest-numbered statement in the 
program. 

Example: 

999 END RC=16 REM RETURN TO HOST SYSTEM 



The EXIT Statement 
Function: 

The EXIT statement is a nonexecutable statement used in conjunction with 
input/ output statements for stream and record-oriented files to allow transfer 
of control when certain errors occur during the I/O operation. For a 
discussion of how this statement is used, see "Input/Output Error Handling" 
for stream-oriented files and "Using the EXIT Statement" and "Key Clauses 
on the EXIT statement" for record-oriented files, in Part I of this publication. 

General Format: 

EXIT [EOF s][,IOERR s][ ,CONY s ][,DUPKEY s][,NOKEY s] 
[,DUPREC s ][,NOREC s ][REM comment] 

where s is the statement number to receive control if an error condition of 
the type specified arises, and comment is one or more EBCDIC characters. 

Action: 

If an error occurs during execution of an I/O statement that contains an 
EXIT clause, the specified EXIT statement is examined. If the error condition 
appears as a parameter in the EXIT statement, control is transferred to the 
statement number specified for that error condition. If the error condition is 
not included in the EXIT statement, program execution is terminated. 

Rules: 

1. The parameters of the EXIT statement may be specified in any order. 

2. At least one parameter must appear in the EXIT statement, and no error 
condition can be specified more than once. 

3. The exact meaning of the error condition varies with the I/O statement 
during which the error occurred. (See the discussion of the appropriate 
statement for this information.) 

4. The maximum number of EXIT statements permitted in a program is 50. 

Example: 

100 
200 
300 

EXIT EOF 200, CONV 250 
EXIT DUPKEY 500, NOKEY 550, IOERR 700 
EXIT NOREC 800, DUPREC 830, EOF 550 

BASIC Statements 147 



The FNEND Statement 
See "The DEF, RETURN, and FNEND Statements." 

148 VS BASIC Language 



The FOR and NEXT Statements 
Function: 

Together, a FOR statement and its paired NEXT statement delimit a "FOR 
loop"-a set of BASIC statements that may be executed a number of times. 
The FOR statement marks the beginning of the loop and specifies the 
conditions of its execution and termination. The NEXT statement marks the 
end of the loop. For a discussion of how these statements are used, see "More 
About Loops-Using FOR and NEXT Statements" in Part I of this 
publication. 

General Format: 

FOR av = x 1 TO x 2 [STEP X3] [REM comment] 

NEXT av [REM comment] 

where av is a simple arithmetic variable called the control variable, x 1 is an 
arithmetic expression which assigns an initial value to av, x 2 is an arithmetic 
expression representing the test value that will cause execution of the loop to 
be terminated, x 3 is an arithmetic expression representing the value of the 
increment to be added to av at the end of each execution of the loop and 
comment is one or more EBCDIC characters. The arithmetic variable av 
must be the same in any given pair of FOR and NEXT statements. 

Action: 

All expressions (x h X 2, and x 3) are e~aluated. The initial value x 1 is 
tested against the final value x 2. If the initial value is greater than (less than, 
for negative increments) the final value, the loop is not executed; instead, the 
value of the control variable av is left unchanged and control goes to the 
statement following the NEXT statement. 

IT the loop is executed, the control variable av is set equal to the initial value 
x 1. The statements in the loop are executed; when the NEXT statement is 
executed, the specified increment x 3 is added to the control variable av, 
which is then compared with the specified final value x 2. If the control 
variable av is still less than (greater than, for negative increments) or equal to 
the final value x 2, the loop is executed and the cycle continues until an 
increment is made which renders the control variable greater than (less than, 
for negative increments) the specified final value X2. At that time, the control 
value is set back to its last value and control "falls through" to the first 
executable statement following the NEXT statement. 

BASIC Statements 149 



150 VS BASIC Language 

Rules: 

1. The value of the control variable av may be modified by statements within 
the FOR loop, but its initial value Xl, final value x 2, and increment x 3 are 
established during the initial execution of the FOR statement and are not 
affected by any statements within the FOR loop. 

2. If the" optional STEP clause is omitted in the FOR statement, the increment 
value is automatically set to + 1. 

3. If the STEP option is assigned a value that is contradictory to the 
increment direction implied by the initial and final values (for example, 
FOR X = 1 TO 5 STEP -1), the FOR loop is not executed, no value is 
assigned to the control variable av, and execution proceeds from the first 
executable statement following the associated NEXT statement. 

4. If the value of the STEP option is zero, the FOR loop can be exited only if 
the control variable is set outside of the specified range or if control is 
transferred out of the FOR loop. 

5. Transfer of control into or out of a FOR loop is permitted; a NEXT 
statement acts as a non-executable statement if its associated FOR 
statement has not been executed. 

6. FOR loops may be nested within one another as long as the internal FOR 
loop falls entirely within the external FOR loop (see example). 

7. The maximum number of FOR loops permitted in a program is 80. 

8. The maximum number of levels permitted when FOR loops are nested is 
15. 

Examples: 

The first example shows a simple FOR loop that increments the control 
variable by 2 until the value 25 is exceeded: 

20 FOR I = 1 TO 25 STEP 2 

95 NEXT I 

The second example shows the correct technique for nesting FOR loops. The 
inner loop is executed 100 times for each execution of the outer loop. 

10 FOR J = A TO B STEP C(l )**3 

150 FOR K 1 TO 100 

280 NEXT K 

620 NEXT J 



The FORM Statement 

FORM With PRINT USING 

This statement can be used to format print lines with the PRINT USING 
statement, and to format records with other BASIC statements that process 
record-oriented files. 

See "PRINT USING FORM" under "The PRINT Statement." 

FORM With Record-Oriented Files 

Function: 

This statement is used in conjunction with a READ FILE, REREAD FILE, 
WRITE FILE, or REWRITE FILE statement to specify the formatting of 
records in record-oriented files. For a discussion of how this statement is 
used, see "Record-Oriented Files" in Part I of this publication. 

General Format: 

[ 

"lit~' ] 
,C2 

,[112 *]d2 ••• [REM comment] 

where "lit" is a literal specified by a quoted character constant , c is a control 
specification as defined below, d is a data form specification, as defined 
below, and n is an unsigned, nonzero, integer constant, or an arithmetic 
variable whose value is greater than zero, that indicates the number of 
consecutive times that the data form specification is to be interpreted before 
the next data form or control specification is examined, and comment is one 
or more EBCDIC characters. 

A control specification can be either of the following: 

X[n] 
POS[n] 
SKIP[n] 

where n is an unsigned, nonzero, integer constant, or an arithmetic variable 
whose value is greater than zero. The SKIP clause is ignored when processed 
in conjunction with record-oriented READ FILE and WRITE FILE 
statements. 

A data form specification can be any of the following: 

PIC( 

B[w] 
C[w] 
NC w [.d] 
PD w [.d] 
S 
L 

{ ~~ll} U:,' ] .. . [ I I I I ][ tr ]) 

BASIC Statements 151 



152 VS BASIC Language 

where w is an unsigned, nonzero, integer constant, d is an unsigned, 
nonzero, integer constant, ds is one of the digit specifiers #, Z, *, $, +, or -, ic 
is one of these insertion characters: 

, 
/ 
B 

comma 
slash 
blank 
decimal point 

and tr is one of these trailing characters: 

+ trailing pius 
trailing minus 

$ trailing dollar sign 
CR trailing credit sign 
DB trailing debit sign 

Action: 

When a READ FILE, REREAD FILE, WRITE FILE, or REWRITE FILE 
statement with a USING clause is executed, the specified FORM statement is 
used for conversion of the data items specified in the record I/O statement. 
Each data item is matched against a data form specification in the FORM 
statement. If there are more items in the I/O statement than there are data 
form specifications in the FORM statement, the FORM statement is reused 
from its beginning until all of the items in the I/O statement have been 
exhausted. Excess data form specifications are ignored. Arrays in the I/O 
statement are handled row by row. 

Control Specifications: Control specifications may be interspersed with data 
form specifications in the FORM statement to pass over unwanted parts of a 
record. 

If POS n is specified, the record pointer is set at position n of the record. 
The value n must be between 1 and the length of the current record. The 
position specified can be either to the right or to the left of the current 
position in the record. If an arithmetic variable is used to specify n, the 
truncated integer portion of the value is used to determine the record position. 
If POS alone is specified (without a position number), it is assumed that n 
has a value of 1. 

If Xn is specified, the record pointer spaces forward n positions in the 
record. If an arithmetic variable is used to specify n, the truncated integer 
portion of the value is used to determine the number of forward spaces. If X 
alone is specified (without a number), it is assumed that n has a value of 1. 

Data Form Specifications: Data form specifications define the exact format of 
each item in the record. A single data form specification can be interpreted n 
consecutive times by prefixing it with an n* replication factor. If an 
arithmetic variable is used to specify n, the truncated integer portion of the 
value is used to determine the number of consecutive interpretations of the 
data form specification. 

The specification B[w] is used to allow access to fixed-point binary integer 
data in the record. The values of w can be 2, 4, or 8 depending on the length 
of the numeric data to be converted. 

• For input, the next w positions of the record contain a binary value that is 
to be converted to a VS BASIC arithmetic value and moved to the 
corresponding arithmetic variable in the READ FILE or the REREAD 
FILE statement. If w is omitted, 4 positions or a length of 4 is assumed. 



• For output, an arithmetic value for an arithmetic expression in the WRITE 
FILE or REWRITE FILE statement is converted to a truncated 
fixed-point binary integer format field of length wand placed in the 
record. If w is omitted, 4 positions or a length of 4 is assumed. 

The specification C[w] indicates that the item in the record is a character 
value. Its exact meaning varies for input and output operations: 

• For input, the next w characters from the record are moved to the 
corresponding character variable in the input list of the READ FILE or 
REREAD FILE statement. If the length of the character variable is greater 
than w, the value extracted from the record is padded on the right with 
blanks to the length of the variable. If the length of the character variable 
is less than w, a number of characters equal to the length of the variable is 
moved from the record, and the remaining record positions are passed over 
until w characters have been either moved or spaced over. If w is omitted, 
a number of characters equal to the length of the variable is moved from 
the record. 

• For output, the next w characters placed in the record will be from the 
value of a character expression in the WRITE FILE or REWRITE FILE 
statement. If the length of the character value is less than w, the value will 
be padded on the right with blanks to a length of w before being written in 
the record. If the length of the character value is greater than w, only the 
first w characters in the string will be written in the record. If w is 
omitted, the number of characters placed in the record will equal the length 
of the character value. 

The numeric conversion specification NC w [.d] is used for a numeric data 
item in the record as follows: 

• For input, the next w positions of the record contain a numeric value that 
will be converted to internal arithmetic representation. In the record, the 
numeric value is a string consisting of digits in combination with any of the 
characters $, +, -, *, /, b, comma, decimal point, or exponential notation 
(E or D ± numeric constant). Zoned decimal fields can also be read. The 
constant d indicates the number of decimal positions in the field, and, if 
present, will override an explicit decimal point in the input field. If this 
causes the position of the decimal point to change, the value is also thereby 
changed. 

• For output, an arithmetic value from an expression in the WRITE FILE or 
REWRITE FILE statement is converted to a signed, zoned decimal field of 
length wand placed in the record. If d is specified, d decimal positions 
will be present in the record field; otherwise, all w positions will represent 
the integer portion of the arithmetic value. 

The specification PD w [.d] is used for a numeric data item in packed decimal 
format in the record as follows: 

• For input, the next w posivons of the record contain a numeric value in 
packed decimal format (two digits per position, except for the last position 
which contains one digit and a sign). The item is to be converted to 
internal arithmetic representation and moved to the corresponding 
arithmetic variable in the READ FILE or REREAD FILE statement. The 
constant d indicates the number of decimal positions in the field; if it is 
omitted, the field is assumed to have no decimal positions. 

• For output, an arithmetic value from an expression in the WRITE FILE or 
REWRITE FILE statement is converted to a packed decimal field of 

BASIC Statements 153 



154 VS BASIC Language 

length wand placed in the record. If d is specified, d decimal positions 
will be present in the record field; otherwise, all w positions will represent 
the integer portion of the arithmetic value. 

The specification S indicates that the item in the record occupies four 
positions (short form) and is a numeric value in internal format: 

• For input, the short form numeric value in the record is moved without 
conversion to the arithmetic variable specified in the input list of the 
READ FILE or REREAD FILE statement. If long form precision has 
L ________ ~~!_...J ~ ___ .... 1 _________ .... ! ____________ .... L _ ___ 1 ___ ! ____ .L ___ ..:1_...l ___ .... 1 __ ._!_.1_L 

Ut;t;ll :spt;l:lllt;U lUI LIlt; t;At;l:ULUl~ plU~(1l11, LUt; Vi:1lUt; I:s t;ALt;nut;U un lnt; ngnl 

with zeros before being assigned to the variable. 

• For output, an arithmetic value from an expression in the output list of the 
WRITE FILE or REWRITE FILE statement is written in the record in 
short form precision without conversion. 

The specification L indicates that the item in the record occupies eight 
positions (l~mg form) and is a numeric value in internal format: 

• For input, the long form numeric value in the record is moved without 
conversion to the arithmetic variable specified in the input list of the 
READ FILE or REREAD FILE statement. If short form precision has 
been specified for the executing program, the value is truncated on the 
right before being assigned to the variable. 

• For output, an arithmetic value from an expression in the output list of the 
WRITE FILE or REWRITE FILE statement is written in the record in 
long form precision without conversion. 

The PIC specification is a string of digit specifiers and/or insertion 
characters, optionally followed by an exponent specifier. It can refer to 
arithmetic or character data. When used with arithmetic data, the field is 
edited as indicated by the PIC specification. When used with character data, 
the total number of positions in the PIC specification indicates the length of 
the character data. The PIC specification can be used for output operations 
only. 

With respect to the printing of arithmetic data, the following rules apply: 

1. Digit specifiers can be conditional or unconditional. They are: 

# This character is placed in any position that must always contain a 
numeric digit. 

Z This character causes a leading zero in the associated position to be 
replaced by a blank. 

* This character causes a leading zero in the associated position to be 
replaced by an asterisk. 

$ This character is placed in each position that can potentially be occupied. 
by a floating dollar sign-that is, a dollar sign to the immediate left of 
the first significant digit. Nonsignificant zeros are suppressed. 

+ This character is placed in each position that can potentially contain a 
floating high-order sign. The appearance of either a plus sign or a minus 
sign is guaranteed in the record. Nonsignificant zeros are suppressed. 



- This character is placed in each position that can potentially contain a 
floating high-order minus sign if the value in the record is negative. 
Nonsignificant zeros are suppressed. 

2. Insertion characters are conditional or unconditional. They are: 

B This unconditional character always causes a blank to be inserted in the 
corresponding position of the record. 

, This character is inserted in the corresponding position of the record 
unless zero suppression is in effect and no significant digits appear to 
the left of the comma in the record. In this case, the comma will be 
replaced by a floating or zero suppression character. 

/ This character is inserted in the corresponding position of the record 
unless zero suppression is in effect and no significant digits appear to 
the left of the slash in the record. In this case, the slash will be replaced 
by a floating or zero suppression character. 

This character is inserted in the corresponding position of the record 
unless zero suppression has been specified for every digit position and 
the value is zero. In this case, the decimal point will be replaced by a 
floating or zero suppression character. 

3. The exponent specifier I I I I causes the following sequence of characters 
to be placed in the corresponding positions of the record: 

a. The letter E 

b. The exponent sign (plus or minus) 

c. Two digits representing the value of the exponent. 

These characters do not appear in the record when zero suppression is 
in effect and the value to be placed in the record equals zero. 

4. Trailing characters are conditional. They are: 

trailing + 
This character causes a plus sign or a minus sign to be inserted in the 
corresponding position of the record unless zero suppression is in effect 
and no significant digits appear to the left of the sign in the record. In this 
case, the sign will be replaced by an asterisk or a blank. 

trailing -
This character is inserted'in the corresponding position of the record if the 
value to be displayed is negative, unless zero suppression is in effect and no 
significant digits appear to the left of the minus sign in the record. In this 
case, the minus sign will be replaced by an asterisk or a blank. 

trailing $ 
This character is inserted in the corresponding position of the record unless 
zero suppression is in effect and no significant digits appear to the left of 
the dollar sign in the record. In this case, the dollar sign will be replaced by 
an asterisk or a blank. 

trailing credit CR 
These alphabetic characters are inserted in the corresponding positions of 
the record if the value to be displayed is negative. The two alphabetic 
characters are replaced by two blanks if the value is positive. 

BASIC Statements 155 



156 VS BASIC Language 

trailing debit DB 
These alphabetic characters are inserted in the corresponding positions of 
the record if the value to be displayed is negative. If the value is positive, 
the two alphabetic characters are replaced by two blanks. 

Rules: 

1. The maximum number of FORM statements permitted in a single BASIC 
program is dependent on the number of Image statements also present. 
Together, they may not exceed 50. 

2. FORM statements are nonexecutable and may be placed anywhere in a 
BASIC program, either before or after the 1/0 statements that refer to 
them. However, they may not appear within a multiline function 
definition (that is, between a DEF statement and its associated FNEND 
statement) . 

3. A PiC speciiication in a FORM statement may not contain both the Z 
and * digit specifiers. 

4. A PIC string must be from 1 to 32 characters ~ong. 

5. A single $, +, or - as the leftmost character in a PIC string is treated as a 
static character. Two or -ore $, +, or - signs at the leftmost end of a PIC 
string are treated as floating characters. The same character cannot 
appear as both a static character and part of a floating character string in 
a single PIC string. 

6. A string of floating characters must c~ntain at least one more floating 
character than the maximum number of expected digits in the output 
field. 

7. A PIC string cannot end with a B, slash (I), or comma (,) insertion 
character. 

8. A PIC string cannot begin with a slash (I) or comma (,) insertion 
character. 

9. There cannot be more than one decimal point (.) insertion character in a 
PIC string. 

10. A PIC string must include at least one #, Z, *, or floating string. 

11. No # digit specifiers may appear to the left of a zero suppression 
character or a floating character. 

12. A # digit specifier may not appear in a PIC string that contains a decimal 
point followed by -zero suppression or floating characters. 

13. The symbols +,., CR, and DB cannot appear in the same PIC string. 

14. A trailing character may not appear in a PIC string in which that trailing 
character is used as either a static character or as part of a floating 
character string. 

15. Blanks replace any unused portion of the PIC specification resulting from 
a character data assignment. 

16. If the length of the character string exceeds the length of the PIC 
specification, the character string is truncated on the right to the length of 
the PIC specification. 

17. The SKIP clause is ignored if specified in the FORM statement when 
processed in conjunction with record-oriented inputloutput statements. 



Examples: 

25 READ FILE USING 30 'FILEA', KEY=N$, A$, G 

30 FORM X25, C, X10, NC7 

The record whose key satisfies the value in N$ is to be read. Two values from 
the record are to be put into the input list variables described in the READ 
FILE statement. One is a character value, to be placed into A$, the other is a 
numeric value, to be placed into G. The FORM statement says that the first 
25 positions of the record are to be skipped and the number of characters 
equal in length to the variable A$ (eighteen by default in this example), are to 
be read from the record into A$. Ten more positions are to be skipped, and 
the next seven positions in the record are to be converted and read into the 
numeric variable G. 

110 REWRITE FILE USING 100 'FILEA', A$, M 
100 FORM X25, C, POS150, PIC(Z##.##) 

Two values from the input Jist in the REWRITE FILE statement are to be 
entered into a record in the file FILEA. The first 25 positions in the record 
are to be skipped, a character value equal in length to the variable A$ is to be 
inserted into the record, and, in position 150 of the record, the numeric value 
in M is to be inserted according to the PIC specification. 

BASIC Statements 157 



The GET Statement 

158 VS BASIC Language 

Function: 

The GET statement causes values to be assigned to variables from a specified 
stream-oriented file. For a discussion of how this statement is used, see 
"Retrieving a File" in Part I of this publication. 

General Format: 

lr- ,EXIT es J-
[MAT] GET filename, input-list [,EOF s] [,CONV s] [,10ERR s] [REM commellt] 

where filename is a character expression, es is the number of an EXIT 
statement, s is the number of any executable statement, and comment is one 
or more EBCDIC characters. 

Action: 

If it has not been specified in a previously executed OPEN statement, a 
stream-oriented file is activated for input by the first execution of a GET 
statement specifying its file name. The file is positioned at its beginning and 
values are assigned from it to the items specified in the input list of the GET 
statement. Values are assigned to arrays row by row. Subsequent GET 
statements for the same file cause values to be assigned beginning at the 
current file position. 

Note: Data items in the file can be separated by an unquoted blank string of 
one or more blank characters, or by a comma. 

If the EOF clause is included in the GET statement, control is transferred to 
the specified statement if the input file is exhausted before all items in the 
input list are filled. 

If the CONV clause is included, control is transferred to the specified 
statement if 'a conversion error occurs (for example, if an attempt is made to 
read character data with a numeric variable.) 

If the IOERR clause is included, control is transferred to the specified 
statement if a device malfunction prevents reading of an item in the input file. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if any of the above problems occur. 

Subscripted references to array members in the input list are evaluated as they 
occur, from left to right. Thus, an assigned variable in a GET statement may 
be used subsequently as the subscript of another variable in the same GET 
statement. 

Arithmetic values are assigned in the form (long or short) specified for the 
program in which the GET statement appears. Thus, arithmetic values from a 
file that was created in long form are assigned in short form arithmetic in a 
program using short form precision. Likewise, arithmetic values from a file 
that was created in short form are assigned in long form arithmetic in a 
program using long form precision. 

If a redimension specification follows an array name in a GET statement, the 
truncated integer portion of each expression value is used to redimension the 
array immediately before any data values from a file are assigned to that 
array. 



A file is deactivated in response to a CLOSE statement or at the end of 
program execution. 

Rules: 

1. A file currently activated as an output file may not be specified in a GET 
statement. It must first be closed. 

2. Each value assigned in a GET statement must be of the same data type 
(character or arithmetic) as the corresponding item in the input list. 

3. If the input file is exhausted before all items in the input list are filled, 
program execution is terminated unless an EOF clause, or an EXIT clause 
pointing to an EXIT statement with an EOF clause, is specified. 

4. The EOF, CONY, and IOERR clauses can be specified in any order. The 
presence of any of these clauses in the GET statement precludes the 
specification of an EXIT clause. 

5. If all of the items in the input list are array references (that is, array names 
preceded by the keyword MAT), the MAT can be dropped from each of 
the array references and specified once before the keyword GET. 

6. Consecutive commas (null items) are not allowed between data items 
within stream-oriented files. 

7. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Examples: 

70 GET 'ABF', X, Y, MAT Z( 100), A(4), A(5), D$, E$ 
80 MAT GET 'BCD', A, B(10), Z(5,20) 

BASIC Statements 159 



The GOSUB and RETURN Statements 

160 VS BASIC Language 

Function: 

GOSUB and RETURN statements are used together in the creation of 
subroutines. The GOSUB statement transfers control, conditionally or 
unconditionally, to a specified statement. The RETURN statement transfers 
control to the first executable statement following the last active GO SUB 
statement executed. A GOSUB becomes inactive when a RETURN is 
executed for it. For a discussion of how these statements are used, see 
~~Subroutines" in Part I of this publication. 

General Format: 

The GOSUB statement may be written in either of two forms, simple or 
computed. 

Simpie: 

GOSUB s [REM comment] 

Computed: 

GO SUB SI [, S2]. •• ON e [REM comment] 

where s is the number of a statement to which control is to be transferred e 
is an arithmetic expression, and comment is one or more EBCDIC characters. 

The RETURN statement has the following format: 

RETURN [[REM] comment] 

where comment is one or more EBCDIC characters. The REM keyword must 
be specified on a RETURN statement comment that is in a multiline function 
definition (that is, a RETURN statement that appears between a DEF 
statement and its corresponding FNEND statement). 

Action: 

Execution of a simple GO SUB statement causes an unconditional transfer of 
control to the statement whose number is specified. 

Execution of a computed GO SUB statement causes the arithmetic expression 
e to be evaluated and control transferred to the statement whose numerical 
position in the list of statement numbers (reading from left to right) is equal 
to the truncated integer value of the expression. Thus an expression with a 
value of 2.75 would cause control to be transferred to the second statement in 
the list. If the expression has a value less than 1 or greater than the total 
number of statements listed, control "falls through" to the first executable 
statement following the computed GOSUB. 

When a simple or computed GO SUB statement causes control to be 
transferred to a nonexecutable statement, control is passed to the first 
executable statement following the specified statement. 

Execution of the RETURN statement causes an unconditional transfer of 
control to the first executable statement following the last active GO SUB 
statement executed. 



X=3 X=2 

Rules: 

1. More than one GOSUB statement may be executed before a RETURN 
statement is executed, but whenever a RETURN statement is executed, 
there must be at least one active GO SUB statement (that is, an already 
executed GO SUB statement for which a corresponding RETURN 
statement has not been executed). 

2. The maximum number of simultaneously active GO SUB statements is 
94. (This number may be reduced if nested function references occur 
within a GOSUB/RETURN group. See "The DEF, RETURN, and 
FNEND Statements" for details.) 

3. A GOSUB statement may not transfer control into or out of a multiline 
function definition. 

Examples: 

r- 50 
60 

100 

140 

[;

350 
400 

X=l 

500 

GOSUB100 80 

[ 

90 

150 

RETURN 

GOSUB500,550,6000NX 

190 
200 

240 
250 

300 

540 RETURN 

GOSUB150 

GOSUB250 

~:TURNJ 

RETURN 

-------. 550 

590 RETURN 
-------____ 600 

640 RETURN 

BASIC Statements 161 



The GO TO Statement 

162 VS BASIC Language 

Function: 

The GOTO statement transfers control, either conditionally or 
unconditionally, to a specified statement. For a discussion of how this 
statement is used, see "Loops" and "The Computed GOTO Statement" in 
Part I of this publication. 

General Format: 

The GOTO statement may be written in either of two forms, simple or 
computed. 

Simple: 

GOTO s [REM comment] 

Computed: 

GOTO s t[ s 2] ... ON e [ItEM comment] 

where s is the number of a statement to which control is to be transferred, e 
is an arithmetic expression, and comment is one or more EBCDIC characters. 

Action: 

Execution of a simple GOTO statement causes an unconditional transfer of 
control to the statement whose number is specified. 

Execution of a computed GOTO statement causes the arithmetic expression e 
to be evaluated and control transferred to the statement whose numerical 
position in the list of statement numbers (reading from left to right) is equal 
to the truncated integer value of the expression. Thus, an expression with a 
value of 2.75 would cause control to be transferred to the second statement in 
the list. If the expression has a value less than 1 or greater than the total 
number of statement numbers listed, control "falls through" to the first 
executable statement follOwing. the computed GOTO statement. 

When a simple or computed GOTO statement causes control to be 
transferred to a nonexecutable statement, control is passed to the first 
executable statement following the one specified. 

Rules: 

1. A GOTO may not transfer control into or out of a multiline function 
definition. 

2. The maximum number of nonexistent line numbers that may be referred to 
is 24. 

Examples: 

The following statement will pass control to statement number 20: 

100 GOTO 20 

When X=4, the following statement will pass control to statement 
number 60: 

50 GOTO 40,60,15,100 ON (X+4)/4 



The IF Statement 
Function: 

The IF statement causes program action to be determined as the result of the 
evaluation of a logical expression. For a discussion of how this statement is 
used, see "Using the IF Statement" in Part I of this publication. 

General Format: 

{
GOTO SI } 

IFlogical-expression THEN {sIlt!} [ELSE{s2It2}] [REMcommem] 

where s is the number of a statement to which control can be transferred and 
t is any of the following statements: 

any kind of assignment PRINT 
CHAIN PRINT TO 
CLOSE PUT 
DELETE FILE READ 
GET READ FILE 
GOSUB REREAD FILE 
GOTO RESET 
INPUT RESTORE 
INPUT FROM RETURN 
LET REWRITE FILE 
ON STOP 
OPEN WRITE FILE 
PAUSE 

and comment is one or more EBCDIC characters. 

Action: 

When an IF statement is executed, the logical expression is evaluated. If it is 
true, either of the following occurs: 

• Control is transferred to the statement number specified in the GOTO or 
THEN clause. 

• The statement physically included in the THEN clause is executed. Unless 
this statement itself transfers control to another statement, control is then 
passed to the first executable statement following the IF statement. 

If the relationship is not true, one of the following occurs: 

• Control is transferred to the statement specified in the ELSE clause. 

• The statement physically included in the ELSE clause is executed. Unless 
this statement itself transfers control to another statement, control is then 
passed to the first executable statement following the IF statement. 

• When no ELSE clause is present, control is passed to the first executable 
statement following the IF statement. 

In the event that a statement specified to receive control is nonexecutable, 
control is passed to the first executable statement following the specified 
statement. 

BASIC Statements 163 



164 VS BASIC Language 

Rules: 

1. The expressions being compared within the logical expression must contain 
data of the same type (character or arithmetic). 

2. The THEN and GOTO clauses are interchangeable in the IF statement. 
Either may be used, but not both. 

3. An IF statement may not transfer control into or out of a multiline 
function definition. 

Examples: 

30 IF A(3) * X+2/Z THEN 85 
40 IF R$ > "CAT" GO TO 70 
50 IF S2 = 37.222 THEN N=O ELSE N=l 
60 IF X .GT. Y THEN X = Y ELSE 90 
70 IF R < S & A$ = 'CAT' THEN 100 ELSE A B 



The Image Statement 
See "PRINT Using Image" under "The PRINT Statement." 

Note: Comments are not allowed on the Image statement. 

BASIC Statements 165 



The INPUT Statement 

Buffered-Ahead Terminal Input 

166 VS BASIC Language 

Function: 

The INPUT statement allows the BASIC user to assign values to variables 
from the terminal at execution time. For a discussion of how this statement is 
used, see "Getting Data Into the Computer" in Part I of this publication. 

General Format: 

[MAT] INPUT input-list [REM comment] 

Action: 

When an INPUT statement is encountered at execution time, it causes a 
question mark to be printed out at the terminal and program execution to be 
temporarily interrupted. The user then enters a set of values which are 
assigned, in order of appearance~ to the items specified in the input list, When 
the complete set has been entered, program execution resumes. 

Subscripted references to array members in the input list are evaluated as they 
occur; thus, an assigned variable in an INPUT statement may be used 
subsequently as the subscript of another variable in the same statement. 

If a redimension specification follows an array name in the input list, the 
truncated integer portion of each expression value is used to redimension the 
array before data values are entered. 

A character constant entered at the terminal that is shorter than the variable 
in the input list is padded on the right with blanks to the length of the variable 
before being assigned. A character constant longer than the corresponding 
variable is truncated on the right to the length of the variable before being 
assigned. A character constant containing no characters (null) is assigned as 
all blank characters. 

When an INPUT statement is executed immediately after a PRINT statement 
in which the final delimiter is a comma or semicolon, the question mark 
generated by the INPUT statement is printed following the last data item on 
the same print line. In all other instances, the question mark appears as the 
first character on the next print line. 

The buffered-ahead terminal input facility allows groups of data values to be 
entered on a single line, to satisfy the request of more than one consecutively 
executed INPUT statement. This facility is invoked by entering a semicolon 
directly after the last data item in response to an INPUT statement request. 
Additional data items can then be entered on the same input line to satisfy the 
requests of subsequent input statements. 

When buffered-ahead terminal input is active, subsequent INPUT statements 
retrieve input data until a carrier return is encountered, indicating there is no 
more data. 

The internal variable &BUFF is available for use with the buffered-ahead 
facility and contains the number of unprocessed groups of input data items 
remaining to satisfy subsequent INPUT statement requests. When 
buffered-ahead terminal input is not active the internal variable, &BUFF, 
contains the value zero. A test can be made using &BUFF, to determine the 
amount of input data available by using a statement such as: 

IF &BUFF r exp 



where r is a relational operator and exp is an arithmetic expression. 

The internal variable &BUFF is also used with the RESET statement. 
RESET &BUFF results in the following actions taken: 

1. The value of &BUFF is reset to zero. 

2. All groups of data values (identified by a preceding semicolon) not yet 
accessed by an INPUT statement are discarded. For example, if the 
following input line were entered in response to an initial INPUT statement 
request, 

1,2,3;4,5,6;7,8,9 

the execution of RESET &BUFF before another INPUT statement is 
executed will result in the data value groups of 4,5,6 and 7,8,9 being 
discarded. 

Rules: 

1. Each value entered must be of the same data type (character or arithmetic) 
as the corresponding item in the input list. Data types may be mixed in the 
same statement. 

2. Each value entered must be separated from the next by a comma. Two 
consecutive commas are treated as a null entry, that is, the value of the 
corresponding item in the input list is unchanged. When the same input 
value is to occur several times in succession, the following shorthand 
notation can be used: 

j*value 

where j is an unsigned, nonzero, integer constant specifying the number of 
consecutive times the value occurs. Multiple null entries can be specified by 
the notation: 

j* 

where j is the number of consecutive null entries. 

3. Values are entered one line at a time. If the current input list item is a 
scalar, a single question mark is printed, and as many values should be 
entered as there are consecutive scalar items in the 110 list. If the current 
item is an array, a single question mark is printed, and enough values to fill 
one row of the array should be entered. A double question mark is then 
printed before new values are accepted for additional rows of the array. 

If a line is filled before all expected values (scalars or array row members) 
are entered, a comma at the end of the current line will allow additional 
values to be entered on a new input line. 

4. A character constant in the input stream must be bounded by a pair of 
single or double quotation marks, if the constant: 

• contains commas, semicolons or slashes 

• has leading or trailing blanks or tabs 

• has leading single or double quotes 

• starts with an integer immediately followed by an asterisk 

5. The number of values entered at execution time should be equal to the 
number of items specified in the input list of the INPUT statement except 
when using buffered-ahead terminal input. However, a slash not enclosed 

BASIC Statements 167 



168 VS BASIC Language 

in quotation marks can be entered in the input line to cause all remaining 
items in the input list to be left unchanged. 

6. Transmission of input values continues until each item in the input list has 
been either filled or explicitly left unchanged. 

7. If all of the items in the input list are array references (that is, array names 
preceded by the keyword MAT), the MAT can be dropped from each of 
the array references and specified once before the keyword INPUT. 

8. Bufiered-ahead terminai input is limited to the totai number oi INPUT 
statements that can be satisfied by input data entered on a single input line. 
The maximum number of data values that can be entered cannot exceed 
the width of the terminal input line. 

9. The procedure for retry or re-entry of data after an error is described in 
your Terminai User's Guide or Programmer's Guide. 

Example: 

10 INPUT A$, R(3),X,Y(X),MAT Q(6),MAT B(2,2) 

? 
"DOG", 4E-7,8,.013 
? 
6*10 
? 
2*3.0 
?? 
2*3.0 

Buffered-Ahead Terminal Input Example: 

100 PRINT 'ENTER EMPLOYEE SERIAL NUMBER' 
200 INPUT M 
300 IF &BUFF .NE. 0 GOTO 500 
400 PRINT 'ENTER HOURS AND HOURLY RATE' 
500 INPUT H,R 
600 IF R .LT. 5 .OR. R .GT. 10 GOTO 2000 
700 IF &BUFF .NE. 0 GOTO 900 
800 PRINT 'ENTER NAME' 
900 INPUT N$ 

1000 PUT 'FILEZ', M, H, R, N$ 
1010 
1020 
1030 

2000 PRINT 'ERROR IN RATE - REKEY' 
2100 RESET &BUFF 
2200 INPUT R 
2300 GO TO 600 
2400 END 



Normal execution: 

ENTER EMPLOYEE SERIAL NUMBER 

? 
123 
ENTER HOURS AND HOURLY RATE 
? 
37,7.5 
ENTER NAME 
? 
joe 
ENTER EMPLOYEE SERIAL NUMBER 
? 

Buffered-Ahead Facility: 

ENTER EMPLOYEE SERIAL NUMBER 

? 
123;37,7.5;joe 
ENTER EMPLOYEE SERIAL NUMBER 
? 

f· 

BASIC Statements 169 



The INPUT FROM Statement 

170 VS BASIC Language 

Function: 

The INPUT FROM statement allows data normally requested from the 
terminal to be retrieved from a entry-sequenced record-oriented file or from 
the terminal. 

General Format: 

INPUT FROM filename fREM comment] 

where filename is a character expression and comment is one or more 
EBCDIC characters. 

Action: 

If an entry-sequenced record-oriented data file has not been previously 
opened by an OPEN FILE statement, the INPUT FROM statement opens 
and activa~es that file as an input file and causes subsequent [MA T]INPUT 
statements to obtain values from that file, starting at the beginning. A file is 
deactivated by a CLOSE FILE statement or at the end of program execution. 

If the value of the character expression specified in the INPUT FROM 
statement consists of one or more blanks, subsequent INPUT statements 
accept values from the user's terminal. The INPUT FROM statement does 
not close any previously activated data file. 

Rules: 

I.Only entry-sequenced record-oriented data files can be accessed as a result 
of the execution of the INPUT FROM statement. Each record in the file 
must consist of data as it would have been entered on a single line at a 
terminal. Each line contains EBCDIC values delimited by commas or 
semicolons. 

2. The INPUT FROM statement can only be associated with one file at any 
one time. 

3.INPUT, CLOSE FILE, and RESET FILE are the only VS BASIC 
statements that can refer to a record-oriented file that has been opened for 
access by the INPUT FROM statement. Conversely, any record-oriented 
file opened for accessing by a READ FILE/REREAD FILE statement 
may not be accessed by an INPUT FROM statement. 

4.Errors that occur with input data from a file can be handled by the ON 
INERR or ON ERR statements. 

5.1n a file where the first item in the records may be a line number, the line 
number is passed to the program as the first variable in the I/O list. 

Example: 

10 PRINT 'ENTER FILENAME FOR THE INPUT DATA' 
20 INPUT A$ 
30 OPEN FILE A$ IN 

80 INPUT FROM A$ 
90 MAT INPUT A, B 

100 INPUT FROM ' , 
110 PRINT 'INPUT FROM FILE' ;A$; , COMPLETED' 
120 PRINT 'ADDITIONAL DATA WILL BE INPUT FROM TERMINAL' 
130 INPUT G1, G2 



This program requests the value for A$ to be entered from the terminal and 
causes the values for the arrays A and B to be entered from the data file 
whose name is taken from A$. The values for Gland G2 are entered from 
the terminal. 

BASIC Statements 171 



The LET Statement (Scalar Assignment Statement) 

172 VS BASIC Language 

Function: 

The LET statement assigns the value of an expression to one or more 
variables. For a discussion of how this statement is used, see "Getting Data 
Into the Computer" and "Using Arrays" in Part I of this publication. 

General Format: 

[LET] v 1[' v 2] ... = exp [REM comment] 

where v is a scalar variable, a subscripted array member reference or a 
pseudo-variable, exp is an expression, and comment is one or more EBCDIC 
characters. 

Action: 

The expression exp is evaluated once; then the resulting value is assigned to 
the specified variable list from left to right. 

A character value containing fewer characters than the variable receiving it is 
padded on the right with blanks to the length of the variable before being 
assigned. A character value containing more characters than the variable 
receiving it is truncated on the right to the length of the variable before being 
assigned. Character constants containing no characters (null) are assigned as 
all blank characters. 

Rules: 

1.Data values to the right of the equal sign must be of the same type 
(arithmetic or character) as the variables to which they are assigned. 

2.Subscripted references to array members are permitted in the scalar 
assignment statement, but unsubscripted array references may appear only 
in the array assignment statement (see "Array Assignment Statement"). 

Examples: 

10 LET Z$ = "CAT" 
20 LET X = 9 
30 LET Y(X) = 2 
40 X, Y(X) = x/Y(X) 

After execution of statement 10, the character variable Z$ will contain the 
word CAT followed by 15 blank characters (Z$ has an implicitly defined 
length of 18 characters). 

After execution of statement 20, the arithmetic variable X will have the 
integer value 9. 

After execution of statement 30, the ninth member of the one-dimensional 
arithmetic array Y will have the integer value 2. 

After execution of statement 40, the arithmetic variable X will have the 
decimal value 4.5, as will the fourth member of the one-dimensional array Y. 
The action of the assignment statement in statement 40 is to first evaluate the 
expression on the right according to the current values of the variables X and 
Y(X), 9 and 2, respectively. The resulting value, 4.5, is then assigned to the 
variable X. The new value of X, 4.5, is then used in the evaluation of the 
subscript of the array variable Y(X), for which purpose only the truncated 
integer portion, 4, is considered. Thus, the fourth member of array Y is set to 
the expression value 4.5. 



If statement 40 had been LET Y(X),X = X/Y(X), the resulting values would 
have been 4.5 for the ninth member of array Y and for the variable X. 

BASIC Statements 173 



The NEXT Statement 
See "The FOR and NEXT Statements." 

174 VS BASIC Language 



The ON Statement 
Function: 

The ON statement allows the user to specify certain conditions which, when 
they occur, will be handled by the program itself rather than cause program 
termination. (See 'Program Error Handling' in Part I of this publication for a 
discussion of how this statement is used.) 

General Format: 

ON {~:~~~}{~~~~~~ THEN] s} [REM comment] 
ZDIV SYSTEM 

ON {:~R }{~~~i~~THEN]S} [REMcomment] 

where s is the number of any statement, and comment is one or more 
EBCDIC characters. 

OFLOW applies to the condition of arithmetic overflow. 

UFLOW applies to the condition of arithmetic underflow. 

ZDIV applies to the condition of division by zero. 

ATIN applies to the condition associated with a terminal "attention" key or 
equivalent. 

INERR applies to the condition for errors arising from input in response to 
the INPUT statement. 

ERR·applies to those errors not covered by any of the above clauses or by 
errors local to input/output statements (that is, EOF, IOERR, CONV). 

Action: 

A condition can be specified in an ON statement and be activated by 
executing that ON statement. When, subsequently, the condition occurs 
during program execution, the action taken depends upon the clause specified. 
If s, GOTO s, or THEN s is specified, then control is transferred to 
statement s when the condition arises. 

If SYSTEM is specified, then the system defaults are taken. This clause is 
used to reset a previous ON statement including a GOTO, THEN, or 
IGNORE clause, that is, it deactivates an ON condition. 

The IGNORE clause applies only to those ON statement which handle 
arithmetic error conditions (OFLOW, UFLOW, and ZDIV) and suppresses 
the printing of the messages 'OVERFLOW', 'UNDERFLOW', or 'DIVISION 
BY ZERO' which occur when the system substitutes the maximum machine 
magnitude value (or zero in the case of UNDERFLOW), and carries on. The 
clause allows a user to suppress a message which might otherwise occur in the 
middle of a printed report. 

ON A TIN does not suppress the normal attention-interrupt message that is 
issued when the attention key is pressed, but it will allow the user to specify a 
statement which can receive control instead of resuming normal execution. 

BASIC Statements 175 



176 VS BASIC Language 

The ATTN (attention) clause is used in conjunction with a terminal 
"attention" key or equivalent. The ON ATTN statement, if active, provides 
for alternative courses of action by the user when an "attention" signal is sent 
from the terminal. 

The following choices can be made when the message is printed at the 
terminal: 

Press C/R 
(carrier return or equivalent) 

resumes program execution at the line number specified by an active ON 
A TIN statement. 

Enter RESume 
continues program execution at point of interruption, overriding any action 
ON ATTN statement. 

Any other keyed user input causes program execution to terminate. 

The INERR clause will override the normal system action for those errors 
occurring in response to an INPUT statement. Such input errors include the 
entering of too much data, too little data, or a data conversion error. 

ON ERR will handle all program errors for which no other action has been 
specified through an ON ATTN, ON OFLOW, ON UFLOW, ON ZDIV, or 
ON INERR, or through local error clauses on specific input/output 
statements and associated EXIT statements. 

Rules: 

1. Any of the error clauses on I/O statements: EXIT, IOERR, CONY, EOF, 
NOKEY, DUPKEY, NOREC, and DUPREC take precedence for that I/O 
statement over an active ON ERR statement. 

2. Errors occurring on I/O statements that do not have the appropriate error 
clause will be handled by an active ON ERR statement. 

3. Once the ON statement is executed and becomes active, it applies to the 
execution of all subsequent statements in your program except within 
user-defined functions; a user-defined function can, however, have its own 
ON statements. The same rules apply to the ON statement as to the GOTO 
statement, that is, it is not permitted to transfer control into or out of a 
user-defined function. 

4. Any active ON statement is superseded by the execution of another ON 
statement containing the same condition clause. 

5. The ON statement cannot be specified as a conditionally executable 
statement within an IF statement. However, an ON statement can be a 
statement referred to by the GOTO or THEN clause of the IF statement. 

Examples: 

100 ON ATTN GOTO 1000 
200 ON ERR THEN 4000 
300 ON OFLOW IGNORE 
400 ON INERR SYSTEM 

Internal Variables: 

Four internal variables, &ERR, & LINE , &CODE, and &FILE, are available 
for further identifying error conditions at time of execution. These are: 



&ERR 
This arithmetic internal variable will contain a specific error number as a 
result of the occurrence of a particular error during execution. Error 
numbers assigned are those appearing in the ICDnnn message 
identification. 

& LINE 
This arithmetic internal variable will contain the line number of the 
statement at which an error occurred. 

&CODE 
This arithmetic internal variable will contain the code returned by the host 
system when a VSAM error occurs; otherwise, &CODE will contain zerO. 

& FILE 
This internal variable will contain the name of the file associated with the 
error condition raised. 

Action: 

At the beginning of program execution, the internal variables &ERR, &LINE, 
and &CODE contain zero; &FILE contains blanks. After any error, handled 
either by an ON statement or by the error clauses associated with 1/0 
statements, these variables can be tested to determine the type of error, the 
possible VSAM error code, the line number of the statement at which the 
error occurred, and the name of the file associated with the error (where 
applicable). The four internal variables always contain values associated with 
the last (current) error occurrence. 

Rules: 

1. &ERR, &LINE, &CODE, and &FILE cannot be assigned values by the 
user. They are "read-only" internal variables. 

Example: 

100 ON ERR GOTO 1000 

1000 IF &ERR = nnn GOTO 500 
1010 PRINT 'PROGRAM ERROR AT LINE 'i &LINE 

where nnn is the number associated with the ICDnnn message identification 
identifying a specific error. 

BASIC Statements 177 



The OPEN Statement 

178 VS BASIC Language 

Function: 

The OPEN statement causes input and output files to be activated. For a 
discussion of how this statement is used, see "Activating and Deactivating 
Files" for stream-oriented files, and "Opening and Closing Files" for 
record-oriented files, in Part I of this publication. 

General Format-Stream-Oriented Files: 

{
' IN J" [,EXIT esJ 

OPEN filename lOUT [/ilename2' .. ] ,IOERR s [REM comment ] 

General Format - Record-Oriented Files: 

{,~ \ 

OPEN FILE filename 1 ~ ~~T [REUSE] ~ [/ilename2"'] 
l ALL [HOLD] [REUSE] J 

[
,EXIT es ] 
,IOERR s [REM comment] 

where filename is a character expression, es is the EXIT statement number, s 
is a statement number, and comment is one or more EBCDIC characters. 

Action: 

When the OPEN statement is executed, the specified file or files are activated 
as indicated. If IN is specified, the file is activated for input only. If OUT is 
specified, the file is activated for output only. If ALL is specified, the file is a 
record-oriented file activated for input, output, and updating operations. The 
inclusion of the REUSE keyword specifies a record-oriented file as reusable 
and positions the file at its beginning for the placement of data by subsequent 
WRITE FILE statements. inclusion of the HOLD keyword means that while 
a record is being processed, no other user can access the record. The HOLD 
keyword is useful when changes in existing records are to take place. 

When the EXIT or IOERR error clause is specified, program control is 
transferred to the designated statement when the error condition occurs. 

The OPEN statement positions the file at its beginning. An OPEN statement 
that refers to a file that is already opened is ignored. 

Rules: 

l.1f a file is opened for input only or for output only, no replacement 
(REWRITE FILE) or deletion (DELETE FILE) is allowed. 

2.For an existing stream-oriented file, specifying OPEN with the OUT clause 
deletes the file contents. Therefore, to add records to an existing file, open 
the file using the RESET statement with the END clause, not OPEN with 
OUT. 

3.To overwrite an existing record-oriented file, use the OPEN FILE with the 
OUT REUSE clause. 

4.1n a multiple OPEN statement, an error causes transfer of program control 
to the statement designated. Subsequent files specified on the OPEN 
statement are not processed. 



S.Only one error clause, which will apply to all files, may be specified in a 
multiple OPEN FILE. 

6.Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Example: 

40 OPEN' XYZ' IN, "ABC" OUT 

50 OPEN FILE A$ ALL HOLD, B$I IC$ IN 

OUT REUSE clause 

10 OPEN FILE 'DAILY' OUT REUSE 
20 OPEN FILE A$ ALL REUSE, EXIT 50 

Error clause 

10 OPEN 'STOCK' IN, EXIT 99 

BASIC Statements 179 



The OPTION Statement 

180 VS BASIC Language 

Function: 

The OPTION statement allows the VS BASIC user to select specific options 
that can be applied to a VS BASIC program. 

General Format: 

OPTION opt} [,opt 2 ](REM comment] 

where opt 1 and opt 2 are either: 

{ 
SPREC } 

INVP or LPREC 

INVP specifies an inverted print edit option, SPREC specifies a short 
precision option, LPREC specifies a long precision option, and comment is 
one or more EBCDIC characters. 

Action: 

When the inverted print (INVP) keyword is encountered at execution time, it 
causes the inversion of the comma and period (decimal point) special 
characters when a [MAT] PRINT [USING] statement is executed. That is, the 
decimal point replaces the comma (and vice versa) in the printing of numeric 
data. 

Specifying LPREC or SPREC results in long or short precision, respectively, 
being applied to the arithmetic data in your VS BASIC program. Use of the 
LPREC or SPREC in the OPTION statement overrides any precision 
specification in the command used to execute the program or the 
system-supplied default. 

Rules: 

1. When used, the OPTION statement must be the first statement in a BASIC 
program. 

2. When the option is specified, it applies throughout the execution of the 
BASIC program. 

3. The options may appear in any order within the OPTION statement. If 
both LPREC and SPREC are specified, the last one stated is effective. 

Example: 

10 OPTION SPREC, INVP 
20 A = 12345.67 
30 PRINT Using 40, A 
40 FORM PIC (ZZ,ZZZ.##), SKIP 

Statement 10 causes the short precision and inverted print options to apply to 
the program. The output of the PRINT USING statement is printed as 
12.345,67 in place of the representation, 12,345.67. 



The PAUSE Statement 
Function: 

The PAUSE statement causes program execution to be interrupted and a 
message to be printed. (Program execution is not interrupted in the batch 
environment. ) 

General Format: 

PAUSE [[REM] comment] 

where comment is one or more EBCDIC characters. 

Action: 

When a PAUSE statement is encountered during program execution, 
execution is interrupted and the following line is printed at the terminal: 

PAUSE AT LINE s 

where s is the number of the PAUSE statement. 

When a PAUSE statement is executed immediately after a PRINT statement, 
the message PAUSE AT LINE s is printed on the line below the last line of 
output from the PRINT statement, even if the final delimiter of that 
statement is a comma or semicolon. 

Rule: 

The procedure for subsequent resumption of program execution after a 
PAUSE statement is to issue a carrier return. 

Example: 

The following statement would cause the message PAUSE AT LINE 80 to be 
displayed and processing to be suspended until the user presses the carrier 
return or equivalent. 

80 PAUSE 

BASIC Statements 181 



The PRINT Statement 

PRINT 

182 VS BASIC Language 

The PRINT statement causes the values of specified expressions to be printed 
at the terminal. It has three forms: PRINT, PRINT with a USING clause 
referring to an Image statement, and PRINT with a USING clause referring to 
a FORM statement. 

Function: 

For this form of the PRINT statement, the format of printed values is 
standardized, but the BASIC user can control the spacing between values on 
the printed line. For a discussion of how this statement is used, see "Getting 
Data Out Using the PRINT Statement" in Part I of this publication. 

General Format: 

[MAT] PRINT [exp d [, I;] [exp 2] ... [REM comment] 

where exp is a scalar expression, an array name preceded by the keyword 
MAT, or T AB(n), where n is a scalar arithmetic expression resulting in a 
positive integer; the comma and semicolon are delimiters that specify the 
formatting of the output and comment is one or more EBCDIC characters. 

As the format description indicates, a comma or semicolon delimiter is 
optional. An expression in a PRINT statement may be followed by a null 
delimiter of one or more blank characters, or of no characters at all. Null 
delimiters may be used between two expressions when one, and only one, of 
them is a character constant. Two consecutive character constants, or a 
character constant immediately adjacent to a character constant that is part of 
an expression, or two expressions of which neither is a character constant, 
must be separated by either a comma or semicolon delimiter. 

Action: 

When a PRINT statement is executed, each specified expression value is 
converted to the appropriate standard output format, as described below, and 
printed at the terminal in the order in which it appears in the PRINT 
statement. The carriage is then positioned as specified by the delimiter 
immediately following the expression. 

Each array specified in the PRINT statement is printed by rows, the first row 
of each array beginning at the start of a new line and separated from the 
preceding line by two blank lines. The remaining rows of each array begin at 
the start of a new line and are separated from the preceding line by a single 
blank line. 

After the printing of each array member, the carriage is repositioned as 
specified by the delimiting character that follows the array name. If the final 
delimiter is a null delimiter, it will be treated as a comma. After the final row 
has been printed, the carriage is positioned to the start of the next line. 

If TAB (n) is specified in the output list, the value of n indicates the position 
for the next value or item to be printed. The value of n should be between 1 
and the defined width of the terminal print line. If the value of n is greater 
than the defined width of the terminal print line, then the modulo of the line 
width is taken as the line position. If n is not specified or the value of n is 
less than 1, the TAB control specification defaults to 1. 

Standard Output Formats: If the expression value to be printed is a character 



constant, the actual characters contained or referred to in it (including trailing 
blanks) are printed. For all other character expressions, trailing blanks are not 
printed. 

If the expression value is an arithmetic expression, it is converted for printing 
to one of the following standard output formats. (The letter P in these 
descriptions denotes the maximum number of digits-IS and 7, 
respectively-provided for long-form and short-form arithmetic.) 

1. Integer-format, consisting of a sign (blank or minus, and up to P significant 
decimal digits for integers whose absolute value is less than lE+P. 

2. Floating-point format, consisting of a sign (blank or minus), up to 11 
significant decimal digits, a decimal point following the first digit, the letter 
E, and a signed exponent consisting of two digits. Floating-point format is 
used to print numbers whose absolute value is less than 1 E-l or greater 
than or equal to lE+P. Printed values are rounded off, not truncated. 

3. Fixed-point format, consisting of a sign (blank or minus), up to P 
significant digits, and a decimal point in the appropriate position. 
Fixed-point format is used to print numbers whose absolute values are not 
included in the integer and floating-point descriptions above. Printed 
values are rounded off, not truncated. 

The following examples show how various arithmetic values would be printed 
in response to a PRINT statement in a program run with short-form 
arithmetic, providing a precision of seven significant digits. The symbol b 
represents a blank character, which always appears in the sign position of a 
positive number. 

Value Given 

123 
-1234567 
123.4 
12345.678 
999999 
1000000 

Value Printed 

n123 
-1.234567E+06 
n123.4 
n12345.68 
n999999 
n1.000000E+06 

Spacing of Printed Values: The converted value of each expression specified in 
the PRINT statement is printed at the terminal in its own print zone. Print 
zones may be either "full" or "packed," as specified by the delimiter 
following the expression, and a single printed line may be made up of values 
in either or both zone types. 

For numeric data, the full print zone, which is specified by a comma, is always 
eighteen characters in length, measured from the first character of the 
expression value to be printed. For character data, the full print zone is the 
smallest multiple of eighteen large enough to accommodate the data. Since 
most printed values are shorter than eighteen characters, a line of full print 
zones usually produces widely spaced output arranged in columnar fashion. 

The packed print zone, which is specified by a semicolon or a null delimiter, 
varies in length according to the length and data type of the expression that it 
contains. Packed zones usually produce a denser line of output than full 
zones. 

If the expression to be printed is a character constant, the length of the 
packed print zone containing it is equal to the length of the character string 
itself, including all blanks, but not the enclosing single or double quotation 
marks. 

BASIC Statements 183 



t 84 VS BASIC Language 

For any other character expression, the length of the packed print zone 
containing it is equal to the length of the character string, minus any trailing 
blanks. 

If the expression is arithmetic, the length of the packed print zone containing 
it is determined by the length of the converted value, including sign, digits, 
decimal point, and exponent, as shown in Figure 5. (Note that positive 
numbers are preceded by a blank character in the sign position, as described 
in the standard output formats above.) 

Length of Converted Data 
Item Length of Packed Print Zone Example (b represents a blank) 

2-4 characters 6 characters b17.3b 

5-7 characters 9 characters b17.357bb 

8-10 characters 12 characters -45.63927bbb 

11-13 characters 15 characters b 1. 73579E-23bbb 

14-17 characters 18 characters -892270493115663bb 

Figure 5. Packed Print Zone Lengths for Arithmetic Expressions 

Positioning of the Carrier: The movements of the carrier at the terminal 
before, during, and after the printing of expression values depend on both the 
type of expression ~ing printed and the delimiter following it in the PRINT 
statement. Figure 6 shows the variety of carrier actions that are possible. 

Rules: 

1. If all of the expressions in the PRINT statement are array references (that 
is, array names preceded by the keyword MAT), the MAT can be dropped 
from each of the array references and specified once before the keyword 
PRINT. 

2. An array cannot be redimensioned in a PRINT statement. 

3. If the last character in a PRINT statement is a comma or semicolon, and 
the PRINT statement is followed by a STOP, CHAIN, or END statement 
with no intervening PRINT statement, the output is printed before the 
program terminates. 

4. If the value of n in the TAB control specification is less than the current 
line position, then the current line is printed and the line position set to the 
value of n on the next line. 

S. The TAB control specification overrides the trailing delimiter (either the 
comma or the semicolon). 

6. The TAB control specification cannot be specified when the MAT option 
is specified with PRINT USING. 



Data Type DeUmiter Carrier Position For Printing Carrier Position After Printing 

Arithmetic Comma If the line contains sufficient space to The carrier will be moved past any remaining 
Expression accommodate the value, printing will begin at spaces in the full print zone. If the end of the 

the current carrier position. If not, printing will line is encountered, the carrier will be moved 
start at the beginning of the next line. to the beginning of the next line. 

Semicolon If the line contains sufficient space to The carrier will be moved past any remaining 
accommodate the value, printing will begin at spaces in the packed print zone. If the end of 
the current carrier position. If not, printing will the line is encountered, the carrier will be 
start at the beginning of the next line. moved to the beginning of the next line. 

Null (Not end If the line contains sufficient space to The carrier will be left at the print position 
of statement) accommodate the value, printing will begin at immediately following the data item. 

the current carrier position. If not, printing will 
I start at the beginning of the next line. 

Null (End of If the line contains sufficient space to The carrier will be moved to the beginning of 
statement) accommodate the value, printing will begin at the next line. 

the current carrier position. If not, printing will 
start at the beginning of the next line. 

Character Comma If at least 18 spaces remain on the line, printing The carrier will be moved past any remaining 
Expression will start at the current carrier position. If spaces in the full print zone. If the end of the 

fewer than 18 spaces remain on the line, line is encountered, the carrier will be moved 
printing will start at the beginning of the next to the beginning of the next line. 
line. If the end of the line is encountered before 
the data item is exhausted, printing of the 
remaining characters will begin on the next 
line. 

Semicolon or Printing will start at the current carrier The carrier will be left at the print position 
Null (Not end position. If the end of the line is encountered immediately following the packed print zone. 
of statement) before the data item is exhausted, printing of 

the remaining characters will begin on the next 
line. 

Null (End of Printing will start at the current carrier The carrier will be moved to the beginning of 
statement) position. If the end of the line is encountered the next line. 

before the data item is exhausted, printing of 
the remaining characters will begin on the next 
line. 

Null Comma No printing will occur. The carrier will be moved 18 spaces. If the end 
of the line is encountered, the carrier will be 
moved to the beginning of the next line. 

Semicolon No printing will occur. The carrier will be moved three spaces. If the 
end of the line is encountered, the carrier will 
be moved to the beginning of the next line. 

Null No printing will occur. If the null data item is the first item on the list, 
the carrier will be moved to the beginning of 
the next line. Otherwise, no movement of the 
carrier will occur. 

Figure 6. Carrier Positions in PRINT Statement 

BASIC Statements 185 



PRINT USING Image 

186 VS BASIC Language 

Examples: 

Statement 

10 PRINT 'A','B' 
20 PRINT 'A';'B' 
30 LET A$="B" 
40 PRINT 'A' A$ 
50 PRINT A$ 'A',A$;A$ 
60 PRINT A$;'A' 
70 LET A$ = " 
80 PRINT' A ' ; A$ ; , A' 
90 PKIN~ iAi;ii;iAi 

Printed Output 

A --17 blanks-- B 
AB 

AB 
BA --17 blanks-- BB 
BA 

AA 
A --18 blanks-- A 

In the following example, assume that there are 18 spaces from the beginning 
of one print zone to the next and that the line width set at the terminal is 126. 

20 MAT READ A(15) 
30 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 
40 MAT X(2,2) = (1) 
50 MAT PRINT A,X 

3 4 5 6 7 

8 

15 

2 

9 10 11 12 13 14 

The following example illustrates the use of the TAB control specification 
with the PRINT statement. 

10 W = 6 
20 PRINT TAB(7) 'X'; TAB(4*W), Z 

results in the literal X being printed starting at line position 7, and the value Z 
being printed starting at line position 24. 

Function: 

This form of the PRINT statement allows the BASIC user to have program 
values printed at the terminal in a format of his own choosing. The PRINT 
statement specifies the values to be printed and the statement number of the 
Image statement to be used. The Image statement provides explicit format 
specifications for the values to be printed. In addition, literal data 
(non-quoted character strings) can be included in the Image statement. For a 
discussion of how these statements are used, see "PRINT Using Image and 
FORM" in Part I of this publication. 

General Format: 

PRINT Statement with USING Image Clause: 

[MAT] PRINT USING s [,output-list] [;] [REM comment] 

where s is the line number of the Image statement to be used, output-list is 
defined under "Syntax Definition," and comment is one or more EBCDIC 
characters. (Note: Consecutive scalar expressions within the output-list of a 
PRINT statement with the USING Image clause can be separated by either a 
comma or a semicolon.) 



Image Statement: 

: l~:J'fc,J,J..fc'l l 
fie t[ f 2 C J .. [ f n] 

The symbol for an Image statement is a colon (:) following the statement 
number. The term c represents a string, without enclosing quotes, of any 
EBCDIC characters other than the pound sign (#), and the term f represents 
one or more format specifications, as described below. 

Action: 

When a PRINT statement with a USING Image clause is executed, the output 
list items are evaluated, and their values are edited, in order of appearance in 
the PRINT statement, into the corresponding format specifications in the 
Image statement. The EBCDIC characters represented by c in the general 
format description are printed exactly as entered in the Image statement itself. 

Each array specified in a MAT PRINT statement with a USING Image clause 
is printed by rows at the terminal according to the format defined by the 
associated Image statement. 

When printed, the first row of each array begins at the start of a new line and 
is separated from the preceding line by two blank lines. Each succeeding array 
row begins at the start of a new line and is separated from the preceding row 
by one blank line. After the last row has been printed, the carriage is 
repositioned to the beginning of the next line. 

As stated above, consecutive scalar expressions in the output-list of the 
PRINT statement with USING Image clause can be separated by either a 
comma or a semicolon delimiter. The delimiter used determines how output 
will be printed when the number of scalar expressions in the PRINT 
statement exceeds the number of format specifications in the corresponding 
Image statement. If the expression using the last format specification is 
followed by a comma delimiter, the current output is printed, the carrier is 
positioned to the beginning of the next line, and the remaining expressions are 
formatted according to the format specifications from the beginning of the 
corresponding Image statement. If the expression using the last format 
specification is followed by a semicolon delimiter, the current output is not 
printed, and output from the remaining expressions (formatted according to 
the format specifications from the beginning of the corresponding Image 
statement) is added to the current output print line. 

If the number of members in a row of an array, specified by a MAT PRINT 
statement with a USING clause, exceeds the number of format specifications 
in the corresponding Image statement, output is printed, the carrier is 
positioned to the beginning of the next line, and the remaining row members 
are formatted according to the format specifications from the beginning of the 
corresponding Image statement. 

If either the number of scalar expressions or the number of row members is 
less than the number of format specifications in the corresponding Image 
statement, the output of the current print line ends at the first unused format 
specification. 

Format Specifications: For each occurrence of the pound sign (#) in an Image 
statement, a single space is reserved in the print line for a character in the 
corresponding data reference of the associated PRINT statement. The pound 
sign may represent either character or arithmetic data. For arithmetic data, 

BASIC Statements 187 



188 VS BASIC Language 

decimal points and the plus and minus signs, like the characters represented 
by c in the general format description, are printed as entered, provided the 
values are appropriate to the specified signs. (See "Conversion of Data 
Reference Values" below for a discussion of the printing of signs in the Image 
statement.) For character data, the character string will override any format 
descriptors. 

1. The various format specifications are: 

a. Character-format--one or more # characters. 

Generai Format: #[#] ... 

b. Integer-format-an optional sign followed by one or more # 
characters. 

General Format: [+ I -]#[#] ... 

c. Fixed-Decimai jormat-an optionai sign ioiiowed by either: 

(1) no #'s, a decimal point, one or more # characters 

(2) one or more #'s, a decimal point, no #'s 

(3) one or more #'s, a decimal point, one or more # characters 

General Format: [+ I -] [#] .... #[#] ... 1#[#] .... [#] ... 

d. Floating-Point format- either the integer or fixed-point format (given 
above) followed by four I characters 

General Format: Integer-format Fixed-decinial format I I I I 

2. The following rules define the start of a format specification: 

a. A # character is encountered and the preceding character is not a # 
character, decimal point, plus sign, or minus sign. 

b. A plus sign or a minus sign is encountered, which is followed by: 

(1) A # character or 

(2) A decimal point that is followed by a # character. 

c. A decimal point is encountered, which is followed by a # character 
and: 

(1) The preceding character is not a # character, plus sign, or minus 
sign, or 

(2) The preceding character string is a fixed-decimal format 
specification. 

3. The following rules define the end of a format specification that has been 
started: 

a. A # character is encountered and: 

(1) The following character is not a # character, or 

(2) The following character is not a decimal point, or 

(3) The following character is a decimal point and a decimal point has 
already been encountered, or 

(4) The following four consecutive characters are not I characters. 

b. A decimal point is encountered and: 



(1) The following character is not a # character, or 

(2) The following character is another decimal point, or 

(3) The following four consecutive characters are not I characters. 

c. Four consecutive I characters are encountered. 

Conversion of Data Reference Values: When the data referred to is a character 
value, the characters contained in it are edited into the line replacing 
characters in the format specification including sign, pound sign, decimal 
point, and I I I I. 
If an edited character value is shorter than its format specification, blank 
padding occurs on the right. If an edited character value is longer than its 
format specification, it is truncated on the right. A character constant 
containing no characters (null) causes blank padding of the entire format 
specification. 

An arithmetic expression is converted in accordance with its format 
specification as follows: 

1. If the format specification contains a plus sign, and the expression value is 
positive, a plus sign is edited into the line. 

2. If the format specification contains a plus sign, and the expression value is 
negative, a minus sign is entered into the line. 

3. If the format specification contains a minus sign, and the expression value 
is positive, a blank is edited intothe line. 

4. If the format specification contains a minus sign, and the expression value 
is negative, a minus sign is edited into the line. 

5. If the format specification does not contain a sign, and the expression value 
is negative, the negative number will be printed with a minus sign provided 
that the format specification is long enough to contain both the number 
and the sign. If the format specification is not long enough, a minus sign 
and asterisks are edited into the line instead of the negative expression 
value. 

6. The expression value is converted according to the type of its format 
specification as follows: 

Integer-format: The value of the expression is converted to an integer, 
rounding any fraction. 

Fixed-Point-format: The value of the expression is converted to a fixed-point 
number, rounding the value or extending it with zeros in accordance with the 
format specification. 

Floating-Point format: The value of the expression is converted to a 
floating-point number, either rounding the value or extending it with zeros 
and adjusting the exponent in accordance with the format specification. 

If the length of the integer portion of the arithmetic expression value is less 
than or equal to the length of the integer portion of the format specification, 
the expression value is edited, right-justified, into the line. If the length of the 
integer portion of the format specification is less than the length of the integer 
portion of the expression value, asterisks are edited into the line instead of the 
expression value. 

BASIC Statements 189 



190 VS BASIC Language 

Some examples of reference values and the way they are printed under 
various format specifications are as follows: 

Fonnat Reference Printed 
Specification Value Fonn 

### 123 123 
### 12 n12 
### 1.23 Dnl 
+### 123 +123 
+### -123 -123 
-### 123 D123 
-### -123 -123 
-### **** 
+### 1234 **** 
##.## 123 ***** 
##.## 1.23 Dl.23 
##.## 1.23456 lSl.23 
##.## .123 nO.12 
##.## 12.345 12.35 
###1111 123 123E+00 
###1111 12.3 123E-Ol 
###1111 .1234 123E-03 
##.##1111 123 12.30E+Ol 
##.##1111 1.23 12.30E-01 
##.##1111 .1234 12.34E-02 
##.##1111 1234 12.34E+02 

Rules: 

1. The maximum number of Image statements permitted in a single BASIC 
program is dependent on the number of FORM statements also present. 
Together, they may not exceed 50. 

2. If the PRINT statement output list contains at least one item, there must be 
at least one format specification in the corresponding Image statement. 

3. If all of the items in the output list of the PRINT statement are array 
references (that is, array names.preceded by the keyword MAT), the MAT 
can be dropped from each of the array references and specified once 
before the keyword PRINT. 

4. Image statements are nonexecutable and may be placed anywhere in a 
BASIC program, either before or after the PRINT statements that refer to 
them. However, they may not appear within a multiline function definition 
(that is, between a DEF statement and its associated FNEND statement). 

5. An array cannot be redimensioned in a PRINT USING statement. 

6. A comma ending an output data list on a PRINT statement with a USING 
Image clause will be ignored, and treated as a null. 

Examples: 

30 PRINT USING 40, X,Y 
40 :RATE OF LOSS #### EQUALS ####.## POUNDS 



Printed Output: 

RATEOF LOSS 342 
~ 

Value 

of X 

For the following example: 

10 DIM A( 4,3 ) 

EQUALS 

20 : ### ##. ## ##. ## I I I I 
30 MAT A = (1) 
40 PRINT USING 20, MAT A 

the output would appear as follows: 

1.00 10.00E-Ol 
1.00 10.00E-Ol 
1.00 10.00E-Ol 
1.00 10.00E-Ol 

42.02 POUNDS 
~ 

Value 

of Y 

Use of the semicolon delimiter within the output list of a PRINT statement 
with USING Image clause: 

10 A=123 
20 B=234 
30 C=345 
40 0=456 
50 PRINT USING 70, A,B,C,D 
60 PRINT 
70 ### ### 
80 PRINT USING 70, A,B;C,D 

results in the following output: 

123 234 
345 456 

123 234 345 456 

For the same values for A,B,C,D as above, the following statements: 

100 PRINT A,B; 
110 PRINT USING 120,C,D 
120 ### ### 

results in: 

123 234 345 456 

Use of the optional semicolon at the end of a PRINT statement with USING 
Image clause: 

140 PRINT USING 150; 
150 : TWO LINES 
160 PRINT USING 170 
170 : ARE JOINED 

results in: 

TWO LINES ARE JOINED 

BASIC Statements 191 



PRINT USING With FORM Clause 

192 VS BASIC Language 

Function: 

This form of the PRINT statement allows the BASIC user to have values 
printed at the terminal in a format of his own choosing, with the additional 
capabilities of inserting edit characters in numeric data items, and controlling 
line skipping, blank field insertion, and line positioning. The PRINT statement 
specifies the values to be printed and the statement number of the FORM 
statement to be used. The FORM statement contains data form specifications 
~nn f"nntrnl ,.;:np.("ifi("~tinn!O: that povern the nTinting oneration. For a discussion _ ... .&- -- ........... - ... -r--........... -_ ..... _ .............. ---- 0-· ---- ---- c--------o -r--------- - -- -- ------------
of how these statements are used, see "PRINT Using Image and FORM" in 
Part I of this publication. 

General Format: 

PRINT Statement: 

[MAT] PRINT USING s[,output-list] [REM comment] 

FORM Statement: 

[

"lit;' ] 
,C2 

,[n2 *]d [REM comment] 

where s is the number of the FORM statement to be used, and comment is 
one or more EBCDIC characters. In the FORM statement, "lit" is literal 
specified by a quoted character constant, c is a control specification as 
defined below, d is a data form specification as defined below, and n is an 
unsigned, nonzero, integer constant, or an arithmetic variable whose value is 
greater than zero, indicating the number of consecutive times that the 
associated data form specification is to be interpreted before the next data 
form or control specification is examined. 

A control specification can be any of the following: 

X[n] 
POS[n] 
SKIP[n] 

where n is an unsigned, integer constant or an arithmetic variable whose 
value must be greater than zero. 

A data form specification can be either of the following: 

C[w] 

1 
ds It 

PIC( ic I \ [ f::J ... [I I I Il~r]) 
where w is an unsigned, nonzero, integer constant, ds is one of the digit 
specifiers #, Z, *, $, +, or -, ic is one of these insertion characters: 

comma 
/ slash 
B blank 

decimal point 



and tr is one of these trailing characters: 

+ trailing plus 
trailing minus 

$ trailing dollar sign 
CR trailing credit sign 
DB trailing debit sign 

Action: 

When a PRINT statement with a USING clause referring to a FORM 
statement is executed, the output list items are evaluated, and their values are 
displayed, in order of appearance in the PRINT statement, according to the 
data form specifications and the control specifications in the FORM 
statement. Each item in the PRINT statement is converted, if necessary, to 
the form and length of the corresponding data form specification in the 
FORM statement, and placed in the position specified by the control 
specification. Array references in the PRINT statement are converted row by 
row. The literal, enclosed in quotation marks, is printed exactly as entered in 
the FORM statement. 

If there are more items in the PRINT statement than data form specifications 
in the FORM statement, the FORM statement is reused from its beginning 
until all of the items in the PRINT statement are exhausted. When the PRINT 
list is exhausted, any control specifications immediately following the last data 
form specification used are interpreted and executed. 

Control Specifications: Control specifications may be interspersed with data 
form specifications in the FORM statement to control line skipping, insertion 
of blank fields, and line position of the next value to be displayed. 

If POS n is specified, the line position for the next displayed value is set to 
position n. The value n must be between 1 and the defined line width of the 
terminal. If an arithmetic variable is used to specify n, the truncated integer 
portion of the value is used to determine line position. A value less than 1 
causes the control specification to have no effect. A value greater than the 
defined line width causes the current line to be displayed and the line position 
to be reset to position 1 of the next line. If POS alone is specified (without a 
position number), it is assumed that n has a value of 1. 

If Xn is specified, n positions are spaced over. If an arithmetic variable is 
used to specify n, the truncated integer portion of the value is used to 
determine the number of spaces. A value less than 1 causes the control 
specification to be ignored. If X alone is specified (without a number), it is 
assumed that n has a value of 1. 

If SKIP n is specified, the current line is displayed and n line advances occur. 
If an arithmetic variable is used to specify n, the truncated integer portion of 
the value is used to determine the number of line advances. The value of n 
must be between 1 and 255; if the control specification is greater than 255, it 
is set back to 255. Regardless of the number of line advances that occur, the 
line position is always at the initial position of a line. If SKIP alone is specified 
(without a number), it is assumed that n has a value of 1. 

Output Line Display: An output line is displayed only when one of the 
following occurs: a SKIP control specification is encountered in the FORM 
statement or the position of the next value to be included in the display line is 
beyond the line length of the terminal. After an output line is displayed, the 
line position is reset to the initial position. If the defined line length of the 

BASIC Statements 193 



194 VS BASIC Language 

terminal is insufficient to display a value, the portion that fits is included in 
the display line, the line is displayed, and the remaining portion of the value 
begins at the in~tial position of the next line. In general, it is good practice to 
include a SKIP control specification at the end of a FORM statement. 

Data Form Speci!icatiom: Data form specifications control the exact form in 
which each item in the PRINT statement is to be displayed. A single data 
form specification can be interpreted n consecutive times by prefixing it with 
an n * replication factor. If an arithmetic variable is used to specify n, the 
truncated integer portion of the value is used to determine the number of 
consecutive interpretations of the data form specification. 

The specification C[w] indicates that the item to be displayed is a character 
value. The integer constant w specifies the length of the display field that is 
to contain the character value. If the actual character string is shorter than the 
display field, the value displayed is padded on the right with blanks. If the 
character string is longer than the display field, the value displayed is 
truncated on the right to the length of the field. If w is not specified, the 
length of the display field is equal to the length of the character string. 

The PIC specification is a string of digit specifiers and/or insertion 
characters, optionally followed by an exponent specifier. It can refer to 
arithmetic or character data. When used with arithmetic data, the field is 
edited as indicated by the PIC specification. When used with character data, 
the total number of positions in the PIC specification indicates the length of 
the character data. The PIC specification can be used for output operations 
only. 

With respect to the printing of arithmetic data, the following rules apply: 

1. Digit specifiers can be conditional or unconditional. They are: 

# This character is placed in any position that must always contain a 
numeric digit. 

Z This character causes a leading zero in the associated position to be 
replaced by a blank. 

* This character causes a leading zero in the associated position to be 
replaced by an asterisk. 

$ This character is placed in each position that can potentially be occupied 
by a floating dollar sign-that is, a dollar sign to the immediate left of 
the first significant digit. Nonsignificant zeros are suppressed. 

+ This character is placed in each position that can potentially contain a 
floating high-order sign. The appearance of either a plus sign or a minus 
sign is guaranteed in the printed field. Nonsignificant zeros are 
suppressed. 

- This character is placed in each position that can potentially contain a 
floating high-order minus sign if the value in the field is negative. 
Nonsignificant zeros are suppressed. 

2. Insertion characters are conditional or unconditional. They are: 

B This unconditional character always causes a blank to be inserted in the 
corresponding position of the display field. 

, This character is inserted in the corresponding position of the display 
field unless zero suppression is in effect and no significant digits appear 



to the left of the comma in the display field. In this case, the comma will 
be replaced by a floating or zero suppression character. 

/ This character is inserted in the corresponding position of the display 
field unless zero suppression is in effect and no significant digits appear 
to the left of the slash in the display field. In this case, the slash will be 
replaced by a floating or zero suppression character. 

This character is inserted in the corresponding position of the display 
field unless zero suppression has been specified for every digit position 
and the value to be displayed is zero. In this case, the decimal point will 
be replaced by a floating or zero suppression character. 

Note: When the INVP option is specified, the commas and decimal points will 
be converted during program execution. 

3. The exponent specifier I I I I causes the following sequence of chacters to 
be placed in the corresponding positions of the display field: 

a. The letter E 

b. The exponent sign (plus or minus) 

c. Two digits representing the value of the exponent. 

These characters do not appear in the display field when zero suppression is 
in effect and the value to be displayed equals zero. 

4. Trailing characters are conditional. They are: 

trailing + 
This character causes a plus sign or a minus sign to be inserted in the 
corresponding position of the display field unless zero suppression is in 
effect and no significant digits appear to the left of the sign in the 
display field. In this case, the sign will be replaced by an asterisk or a 
blank. 

trailing -
This character is inserted in the corresponding position of the display 
field if the value to be displayed is negative, unless zero suppression is in 
effect and no significant digits appear to the left of the minus sign in the 
display field. In this case, the minus sign will be replaced by an asterisk 
or a blank. 

trailing $ 
This character is inserted in the corresponding position of the display 
field unless zero suppression is in effect and no significant digits appear 
to the left of the dollar sign in the display field. In this case, the dollar 
sign will be replaced by an asterisk or a blank. 

trailing credit CR 
These alphabetic characters are inserted in the corresponding position of 
the display field if the value to be displayed is negative. The two 
alphabetic characters are replaced by two blanks if the value is positive. 

trailing debit DB 
These alphabetic characters are inserted in the corresponding position of 
the display field if the value to be displayed is negative. If the value is 
positive, the two alphabetic characters are replaced by two blanks. 

BASIC Statements 195 



196 VS BASIC Language 

Rules: 

1. The maximum number of FORM statements permitted in a single BASIC 
program is dependent on the number of Image statements also present. 
Together, they may not exceed 50. 

2. There must be at least one data form specification in the FORM 
statement if there is an output list. 

3. FORM statements are nonexecutable and may be placed anywhere in a 
BASIC program, either before or after the PRINT statements that refer 
to them. However, they may not appear within a multiline function 
definition (that is, between a DEF statement and its associated FNEND 
statement) . 

4. An array cannot be redimensioned in a PRINT USING statement. 

S, A PIC specification in a FORM statement cannot contain both the Z and 
* digit specifiers. 

6. A PIC string must be from 1 to 32 characters ,ong. 

7. A single $, +, or - as the leftmost character in a PIC string is treated as a 
static character. Two or more $, +, or - signs at the leftmost end of a PIC 
string are treated as floating characters. The same character cannot 
appear as both a static character and part of a floating character string in 
a single PIC string. 

8. A string of floating characters must contain at least one more floating 
character than the maximum number of digits expected in the output 
field. 

9. A PIC string cannot end with a B, slash (I), or comma (,) insertion 
character. 9 

10. A PIC string cannot begin with a slash (I) or comma (,) insertion 
character. 

11. There cannot be more than one decimal point (.) insertion character in a 
PIC string. 

12. A PIC string must include at least one #, Z, *, or floating character string. 

13. No # digit specifiers can appear to the left of a zero suppression character 
or a floating character. 

14. A # digit specifier cannot appear in a PIC string that contains a decimal 
point followed by zero suppression or floating characters. 

15. The symbols + and - cannot appear in the same PIC string. 

16. The trailing signs CR, DB, +, and - cannot appear in the same PIC string. 

17. A trailing character cannot appear in a PIC string in which that trailing 
character is used as either a non-floating character or as part of a floating 
character string. 

18. In order to edit signed numbers properly, a sign must appear in the 
picture clause, either as a floating character or a trailing character. 

19. Blanks replace any portion of the PIC specification that is not used as a 
result of a character data assignment. 



20. If the length of the character string exceeds the length of the PIC 
specification, the character string is truncated to the length of the PIC 
specification. 

21. A comma or semicolon at the end of an output list on a PRINT USING 
statement that refers to a FORM statement will be ignored, and treated 
as a null. 

Examples: 

50 PRINT USING 55, "NAME", "LOCATION", "HEIGHT", "RANK" 

55 FORM POS6, C, POS31 , C, POS46, C, POS60, C, SKIP2 

The character constants NAME, LOCATION, HEIGHT, and RANK are to 
be printed beginning in print positions 6, 31, 46, and 60, respectively. After 
the line is printed, the carrier, skips two lines. 

60 PRINT USING 65, N$, L$, S, R 

65 FORM X5, C,POS31, C,POS46, PIC(ZZZ,###) 
POS62, PIC(Z#), SKIP1 

. Two character variables and two numeric variables are to be printed. The first 
character variable, N$, is printed after five print positions are skipped; the 
second, L$, is printed beginning in print position 31. The first numeric 
variable, S, is printed beginning in print position 46 according to the PIC 
specification, and the second variable, R, is printed beginning in print position 
62, also according to a PIC specification. After the line is printed, the carrier 
skips to the next line. 

Assuming that N$, L$, S, and R contained appropriate values, these two 
examples could be combined to produce this output: 

NAME LOCATION HEIGHT RANK 
EVEREST NEPAL-CHINA 29, 141 1 

BASIC Statements 197 



The PRINT TO Statement 

198 VS BASIC Language 

Function: 

The PRINT TO statement directs output normally printed at the terminal to 
an entry-sequenced record-oriented file or to the terminal. 

General Format: 

PRINT TO filename [REM comment] 

where filename is a character expression, and comment is one or more 
EBCDIC characters. 

Action: 

If the filename on the PRINT TO statement has not been previously opened 
by an OPEN FILE statement, the PRINT TO statement opens and activates 
this fiie ior output. The subsequent [MAT]PRINT[DSING] statements cause 
output to be placed on that file. The file produced contains print line images. 

If the value of the character expression specified for the filename consists of 
one or more blanks, the output from subsequent [MAT]PRINT[USING] 
statements is printed at the user's terminal. 

Any errors that occur on the PRINT TO or subsequent 
[MAT]PRINT[USING] statements can be handled by the general ON ERR 
statement (See the ON statement discussion). 

If space in the output file is exhausted before all print line images in a 
[MAT]PRINT[USING] statement are placed in the file,.program execution is 
terminated unless a general ON ERR statement is active. 

Rules: 

1. The PRINT TO statement, which includes the filename of the data file, 
causes subsequent [MAT]PRINT[USING] statements to add print line 
images to an entry-~equenced record-oriented file. The print line added is 
identical to the print line as it would have been printed at the terminal. The 
record length of the file must be large enough to accommodate the total 
number of characters in the widest line. 

2. A PRINT TO statement can only be operational on one file at a time. That 
is, only one data file can receive data from a subsequent PRINT statement 
at one time. 

3. A PRINT TO statement referring to a filename of a data file that is already 
open for output and is currently active as the file print is directed to, is 
ignored. 

4. An input file must be explicitly closed before it can be referred to by a 
PRINT TO statement. 

5. CLOSE FILE, RESET FILE, and PRINT are the only BASIC statement 
that can access a record-oriented file opened for accessing by PRINT TO 
statements. Conversely, any record-oriented file opened by a WRITE 
FILE/REWRITE FILE statement cannot be accessed by a 
[MAT]PRINT[USING] statement. 

6. A data file opened by a PRINT TO statement is positioned at its end and 
subsequent [MAT]PRINT[USING] statements append records to the end 
of the file. To write over data existing on a file, the REUSE clause with the 
OPEN statement must be used. 



7. In a file where the first item in the record is line numbers, the line number 
is picked up as part of the print line. 

Note: Files created using PRINT TO can be printed using Access Method 
Services. Appendix A contains a summary of the VS BASIC requirements for 
using these services to print such files. 

Example: 

10 PRINT 'ENTER FILE NAME FOR PRINTING OF REPORT' 
20 INPUT A$ 
30 OPEN FILE A$ OUT 

90 PRINT TO A$ 
100 PRINT 'RESULTS OF TEST CASES 120-400' 

200 PRINT TO ' 
210 PRINT 'YOUR REPORT PRINTED ONTO FILE ' ;A$ 

results in the output at line 10 printing at the terminal, the report header at 
line 100, and all subsequent [MAT]PRINT[USING] statement writing onto 
the data file designated by A$ up to the execution of the statement at line 
200. The output at line 210 is printed at the terminal. 

BASIC Statements 199 



The PUT Statement 

200 VS BASIC Language 

Function: 

The PUT statement causes data values to be placed in a specified 
stream-oriented file. For a discussion of how this statement is used, see 
"Stream-Oriented Files" in Part I of this publication. 

General Format: 

r ,EXIT es 1 
[MAT] PUT filename, output-list L [,EOF s] [,IOERR s] J [REM comment] 

where filename is a character expression, es is the number of an EXIT 
statement, s is the number of any executable statement and comment is one 
or more EBCDIC characters. 

Action: 

If it has not been otherwise specified in an OPEN statement or a RESET 
statement with an END clause, a file is activated for output by the first 
execution of a PUT statement specifying its file name. The file is positioned at 
its beginning and values are placed in it from the output list items in the PUT 
statement. Values of array members are written row by row. Subsequent PUT 
statements for the same file cause values to be placed in it beginning at the 
current file position. 

If the EOF clause is included in the PUT statement, control is transferred to 
the specified statement if space in the output file is exhausted before all items 
in the PUT statement have been placed in it. 

If the IOERR clause is included, control is transferred to the specified 
statement if a device malfunction prevents the placing of an item in the output 
file. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if either of the above problems occurs, and 
control passes to that statement. 

A file is deactivated in response to a CLOSE statement or at the end of 
program execution. 

Rules: 

I.A file currentiy activated as an input fiie may not be specified in a PUT 
statement. It must first be closed, either by a CLOSE statement or by a 
RESET statement with an END clause. 

2.1f space in the output file is exhausted before all items in the PUT statement 
are placed in the file, program execution is terminated unless an EOF 
clause, or an EXIT clause pointing to an EXIT statement with an EOF 
clause, is specified. 

3.The EOF and IOERR clauses can be specified in any order. The presence 
of either of these clauses in the PUT statement precludes the specification 
of an EXIT clause. 

4.1n the DOS/VS environment, the EOF clause cannot be specified. 

5.1f all of the items in the output list of the PUT statement are array 
references (that is, array names preceded by the keyword MAT), the MAT 



can be dropped from each of the array references and specified once 
before the word PUT. 

6.An array cannot be redimensioned in a PUT statement. 

7.Specifying PUT for a file that has not been previously opened positions the 
file to its beginning, and causes the existing data in the file to be deleted 
and the new data to be entered. 

8.To add records to an existing file, open the file using the RESET statement 
with the END clause before executing a PUT statement. 

9.Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Examples: 

30 PUT 'ABF',Z3,S*X-7,MAT A,D$,9.00S 
60 MAT PUT 'BCD', A,M,Q,B$ 

BASIC Statements 201 



The READ Statement 

202 VS BASIC Language 

Function: 

The READ statement assigns values to variables and arrays from the data 
table created by OAT A statements. For a discussion of how these statements 
are used, see "Getting Data Into the Computer" in Part I of this publication. 

General Format: 

[MAT] READ input-list [REM comment] 

where comment is one or more EBCDIC characters. 

Action: 

When a READ statement is executed, successive values from the data table 
are assigned to the items in the input Jist; beginning at the current position of 
the data table pointer. Values are assigned to arrays row by row. 

Subscripted references to array members in the input list are evaluated as they 
occur; thus, an assigned variable in a READ statement may be used 
subsequently as the subscript of another variable in the same statement. 

If a redimension specification follows an array name in the input list, the 
truncated integer portion of each expression value is used to redimension the 
array before data values are entered. 

If a character constant in the data table is shorter than the variable in the 
input list, its value is padded on the right with blanks to the length of the 
variable before being assigned. If a character constant is longer than the 
corresponding variable, its value is truncated on the right to the length of the 
variable before being assigned. A character constant containing no characters 
(null) is assigned as all blank characters. 

Rules: 

1. Each data value read from the table must be of the same type (character or 
arithmetic) as the variable to which it is assigned. 

2. A READ statement is invalid if there are no DATA statements in the 
program. 

3. If the data table is exhausted and unassigned variables, arrays, or array 
members still remain in the READ statement input list, an error condition 
results. 

4. If all of the items in the input list are array references (that is, array names 
preceded by the keyword MAT), the MAT can be dropped from each of 
the array references and specified once before the keyword READ. 

Examples: 

05 DIM A$8,B$8,Z(5,3) 
10 DATA 'JONES', 15.00, 'SMITH', 20.50 
20 READ A$, A1, B$, B1 
30 DATA 1,2,3,4,5,6 
40 READ A,B,C,X(A),X(B),X(C) 
50 DATA 5*1.0, 5*2.0 
60 MAT READ Z(10) 

After execution of the above statements, the character variables A$ and B$ 
will contain the character strings JONES and SMITH, respectively, each 
padded on the right with blanks to a length of eight. The arithmetic variables 
At and Bl will contain the numeric values 15.00 and 20.50, respectively. The 



arithmetic variables A, B, and C will contain the integer values 1, 2, and 3, 
respectively, and the first three members of the one-dimensional array named 
X will contain the integer values 4, 5, and 6, respectively. The 
two-dimensional array Z, with 5 rows and 3 columns, will be redimensioned 
as a one-dimensional array with 10 members. The first five members will be 
assigned the value 1.0; the remaining five members will receive the value 2.0. 

BASIC Statements 203 



The READ FILE Statement 

204 VS BASIC Language 

Function: 

The READ FILE statement causes values to be assigned to variables from a 
specified record-oriented file. For a discussion of how this statement is used, 
see "An Entry-Sequenced File," "A Key-Sequenced File," and "A Relative 
Record File" in Part I of this publication. 

General Format-Entry-Sequenced Files: 

[MAT] READ FILE [USING Sll] jilename, input-list 

r,EXIT es l 
[,EOF s] [,IOERR s] r ,CONY s 1 fREM comment 1 

L - - ~..J 

General Format - Key-Sequenced Files: 

[MAT] READ FILE [USING sn] filename [,KEY r exp] ,'input-list 

[
,EXIT es ] 
[,EOF s] [,IOERR s] [,CONV s] [,NOKEY s] [REM comment] 

General Format - Relative Record Files: 

[MAT] READ FILE [USING SIl] jlfellame (.REC = e], illput-list 

[
,EXIT es ] 
[,EOF s] [,10ERR s] [,CONV s] (,NOREC s] [REM comment] 

where sn is the number of the FORM statement; filename is a character 
expression; r is the relational operator = or .EO., ~, >=, or .GE.,; exp is a 
character expression; e is an arithmetic expression; es is the number of an 
EXIT statement; s is the number of an executable statement; and comment is 
one or more EBCDIC characters. 

Action: 

Execution of the READ FILE statement causes a record to be placed in a 
buffer associated with the file specified. From this buffer, values are assigned 
to the items in the input list. Values are assigned to arrays row by row. When 
all of the items in the input list have been assigned a value, execution of the 
program resumes. 

If the USING clause is present, values are converted as indicated in the 
specified FORM statement. Otherwise, values are assigned from the record 
without conversion; thus, numeric data must exist in the record in internal 
format and in the correct precision. 

For key-sequence files, if the KEY clause is included, the first record 
satisfying the specified condition is retrieved. The character expression is 
evaluated and truncated on the right, if longer than the record key, before 
being compared with the actual record key. A character string shorter than 



the record key is compared with the first n characters of the key, where n is 
the number of characters in the character string. 

If the KEY clause is not present, the next sequential record is retrieved from 
the file. If the NOKEY clause is included, and no record with a key satisfying 
the KEY clause condition exists in the file, control is transferred to the 
specified statement. 

For relative record files, if the REC clause is included, the record is retrieved 
by the relative record number specified. The arithmetic expression is the 
integer part of a positive number which gives the relative record number of a 
particular record. 

If the REC clause is not present, the READ FILE statement retrieves the 
next non-null record following the last record successfully referred to. 

If the NOREC clause is included, and the relative record specified does not exist 
in the record-oriented file, control is transferred to the statement specified. 

The internal variable, &REC, will contain the number of the last relative 
record successfully referred to. 

For all files, if the EOF clause is included, control is transferred to the 
specified statement if the KEY or the REC clause is not present and the last 
record in the file has been read. 

If the IOERR clause is included, control is transferred to the specified 
statement if a device malfunction prevents reading of the record. 

If the CONY clause is included, control is transferred to the specified 
statement if an item of data in the record cannot be converted to the type of 
the corresponding variable in the input list, or if the end of the record is 
encountered before all of the variables in the input list are filled. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if any of the above problems occur. 

Subscripted references to array members in the input list are evaluated as they 
occur, from left to right. Thus, an assigned variable in a READ FILE 
statement may be used subsequently as the subscript of another variable in 
the same READ FILE statement. 

If a redimension specification follows an array name in a READ FILE 
statement, the truncated integer portion of each expression value is used to 
redimension the array before data values are assigned from the record. 

Rules: 

1. Each value assigned in a READ FILE statement should be of the same 
type (arithmetic or character) as the corresponding item in the input list. 

2. If the input record is exhausted before all items in the input list are filled, 
program execution is terminated unless a CONY clause, or an EXIT clause 
pointing to an EXIT statement with a CONY clause, is specified. 

3. The EOF, IOERR, CONY, NOKEY or NOREC, clauses can be specified 
in any order. The presence of any of these clauses in the READ FILE 
statement precludes the specification of an EXIT clause. 

4. If all of the items in the input list are array references (that is, array names 
preceded by the keyword MAT), the MAT can be dropped from each of 
the array references and specified once before the keywords READ FILE. 

BASIC Statements 205 



206 VS BASIC Language 

5. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Examples: 

50 READ FILE 'ABC', KEY='05', X,Y,MAT Z, EXIT 200 

70 READ FILE 'FILE6', A,B,C$,D$ 

90 MAT READ FILE USING 100 'FILE3' ,X,Y$,EOF 210, 
CONV 250 

100 FORM NC5.1,X5,Cl0 



The REM Statement 

REM As A Keyword 

Function: 

The REM statement allows the BASIC user to insert comments in the 
program listing. For a discussion of how this statement is used, see 
"Comments in Your Program" in Part I of this publication. 

General Format: 

REM [comment] 

where comment is one or more EBCDIC characters. 

Action: 

The REM statement is nonexecutable. It appears in the program listing, but 
has no effect on program execution. 

Rule: 

A REM statement may appear anywhere in a BASIC program. 

Example: 

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT 

The REM keyword allows the BASIC user to insert comments on all VS 
BASIC statements except the DATA and Image statements. See "Comments 
in Your Program" in Part I of this publication for further discussion. 

Action: 

The REM keyword, like the REM statement, is nonexecutable. It appears in 
the BASIC statement to indicate that the data that follows it is a comment. It 
has no effect on program execution. 

Rule: 

A comment cannot appear on the DATA or Image statement. 

BASIC Statements 207 



The REREAD FILE Statement 

208 VS BASIC Language 

Function: 

The REREAD FILE statement causes the last record read from a 
record-oriented file to be reaccessed and the values in it reassigned to 
variables. For a discussion of how this statement is used, see "Rereading 
Records" in Part I of this publication. 

General Format: 

[MAT] REREAD FILE [USING sn] filellame. input-list 

[
,EXIT esJ 
,CONY s [REM comments] 

where sn is the number of a FORM statement, filename is a characte.r 
expression, es is the number of an EXIT statement, s is the number of any 
executable statement, and comment is one or more EBCDIC characters. 

Action: 

Execution of the REREAD FILE statement causes the record that was last 
read from the specified file to be accessed from its buffer. Values are assigned 
to the items in the input list. Values are assigned to arrays row by row. When 
all of the items in the input list have been assigned a value, execution of the 
program resumes. Note that no actual I/O transmission occurs from the file to 
the buffer. 

If the USING clause is present, values are converted as indicated in the 
specified FORM statement. Otherwise, values are assigned from the record 
without conversion; thus, numeric data must exist in the record in internal 
format and in the correct precision. 

If the CONY clause is included, control is transferred to the specified 
statement if an item of data in the record cannot be converted to the type of 
the corresponding variable in the input list, or if the record does not contain 
sufficient values to fill all of the variables in the input list. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the CONV error condition if the above problem occurs. 

Subscripted references to array members in the input list are evaluated as they 
occur, from left to right. Thus, an assigned variable in a REREAD FILE 
statement may be used subsequently as the subscript of another variable in 
the same REREAD FILE statement. 

If a redimension specification follows an array name in a REREAD FILE 
statement, the truncated integer portion of each expression value is used to 
redimension the array before data values are assigned from the record. 

Rules: 

1. Each value assigned in a REREAD FILE statement should be of the same 
type (arithmetic or character) as the corresponding variable in the input 
list. 

2. The CONV and EXIT clauses cannot both be specified in the REREAD 
FILE statement. 

3. The last I/O operation on the file specified in a REREAD FILE statement 
must have been the result of a READ FILE or REREAD FILE statement. 



4. If all of the items in the input list are array references (that is, array names 
preceded by the keyword MAT), the MAT can be dropped from each of 
the array references and specified once before the keywords REREAD 
FILE. 

5. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Examples: 

40 REREAD FILE 'ABC', A, B, MAT C, CONV 300 

70 MAT REREAD FILE USING 100 'FILE2',Q,A$,EXIT 280 
100 FORM NC6,POS10,C20 

BASIC Statements 209 



The RESET Statement 

210 VS BASIC Language 

Function: 

The RESET statement causes an input or output file to be repositioned. A 
stream-oriented file can be positioned at its beginning or its end. A 
record-oriented file can be positioned at its beginning or at a record whose 
key or relative-record number satisfies a specified condition. For a discussion 
of how this statement is used, see "Repositioning Files" in Part I of this 
publication. 

General Format-Stream-Oriented Files: 

RESET filename} [END][Jilename2 ... ] [
,EXIT es ] 
,IOERR s [REM comment] 

General Format - Entry-Sequenced Files: 

[
,EXIT es ] 

RESET FILE filename} [!ilename2 ... ] ,IOERR s [REM comment] 

General Format - Key-Sequenced Files: 

[
,EXIT es ] 

RESET FILE filename} [,KEY r exp] [filename2 ... ] ,IOERR s] [,NOKEY s] 

[REM comment] 

General Format - Relative Record Files: 

r ,EXIT es ] 
RESET FILE filename} [,REC = e] [!ilename2 ... ][ ,IOERR s] [,NOREC s] 

[REM comment] 
General Format Using &BUFF: 

RESET &BUFF [REM comment] 

where filename is a character expression; r is the relational operator = or 
.EQ., ~, >= or .GE.; exp is a character expression; e is a positive scalar 
arithmetic expression; es is the number of an EXIT statement; s is the 
number of an executable statement; and comment is one or more EBCDIC 
characters. 

Action: 

Execution of a RESET statement for a specified file positions an internal 
pointer so that a subsequent GET, PUT, READ FILE, or WRITE FILE 
reference to the file will refer to a specific item in it. For stream-oriented files, 
the file is positioned at its beginning. 

The error condition specified in the RESET statement causes program control 
to be transferred to a designated statement if the error condition occurs. 

If the END clause is specified, the file is positioned at its end, closed, and 
activated for output. 

If the KEY clause is specified, the file is positioned at the first record whose 
key satisfies the condition set forth in the KEY clause. 



If the NOKEY clause is included, and the record with the specified key does 
not exist on the file, control is transferred to the specified statement. 

If the REC clause is specified, the file is positioned to the relative record 
identified by the arithmetic expression (that is, the integer part of a positive 
number). 

If the NOREC clause is included, and a record with the relative record 
number specified does not exist on the file, control is transferred to the 
specified statement. 

If IOERR is included, a device malfunction occurs, and control is transferred 
to the specified statement. 

The RESET statement is used with the &BUFF internal variable for 
buffered-ahead terminal input (see INPUT statement, Part II). RESET 
&BUFF results in the following actions taken: 

1. The value of &BUFF is reset to zero. 

2. All groups of data values (identified by a preceding semicolon) not yet 
accessed by an INPUT statement are discarded. For example, if the 
following input line were entered in response to an initial INPUT statement 
request, 

1,2,3;4,5,6;7,8,9 

the execution of RESET &BUFF before another INPUT statement is 
executed will result in the data value groups of 4,5,6 and 7,8,9 being 
discarded. 

Rules: 

1. If a file specified in a RESET statement is not currently active, its name in 
the RESET statement will be ignored if no clause is specified for that file. 
If a KEY or REC clause is specified, the file is activated for input 
operations. If an END clause is specified, the file is activated for output 
operations. 

2. To add records to an existing stream-oriented file, open the file by 
specifying RESET with the END clause. This specification causes the file 
to be positioned to its end. Do not use OPEN with the OUT clause; OUT 
positions a file to its beginning, effectively deleting the file contents. 

3. The END clause cannot be specified in the DOS/VS environment. 

4. If the EXIT clause is specified for a particular file, then no other error 
clause can be specified. 

5. In a mUltiple RESET statement, if an error causes transfer of program 
control to the statement designated, subsequent files specified are not 
processed. 

6. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Examples: 

60 GET 'IN', X, Y, Z 

120 RESET 'IN' 
130 GET 'IN', A, B, C 

BASIC Statements 211 



212 VS BASIC Language 

Statement 60 reads the first three values of IN into X, Y, and Z, respectively. 
The RESET statement in 120 repositions the file named IN to the beginning. 
The GET statement in 130, therefore, reads the first three values of IN into 
A, B, and C, respectively. 

200 RESET FILE A$, REC=4, NOREC 300 

220 RESET FILE 'ABLE,' KEY=B$, NOKEY 600 



The RESTORE Statement 
Function: 

The RESTORE statement causes the next READ statement executed to begin 
assigning values from the first item in the first DATA statement of the 
program. For a discussion of how this statement is used, see "Getting Data 
Into the Computer" in Part I of this publication. 

General Format: 

RESTORE [[REM] comment] 

where comment is one or more EBCDIC characters. 

Action: 

The RESTORE statement returns the data table pointer from its current 
position to the beginning of the table. The optional comment is a character 
string that does not affect the execution of the statement. 

Rule: 

A RESTORE statement in a program containing no DATA statements is 
ignored. 

Example: 

After the following series of statements is executed, the variables A and C 
will each have a value of 1, and the variables Band D will each have a value 
of 2. 

10 DATA 1,2 
20 READ A,B 
30 RESTORE 
40 READ C,D 

BASIC Statements 213 



The RETURN Statement 

214 VS BASIC Language 

For use of the RETURN statement in the creation of subroutines, see "The 
GOSUB and RETURN Statements." 

F or use of the RETURN statement within a multiline function definition, see 
"The DEF, RETURN, and FNEND Statements." 



The REWRITE FILE Statement 
Function: 

The REWRITE FILE statement causes the alteration of a record that already 
exists in a record-oriented file. For a discussion of how this statement is used, 
see" An Entry-Sequenced File", "A Key-Sequenced File" and" A 
Relative-Record File" in Part I of this publication. 

General Format-Entry-Sequenced Files: 

[MAT] REWRITE FILE [USING sn] filename, output-list 

[
,EXIT es J 
[,EOF s][,IOERRs][,CONV s] [REM comment] 

General Format - Key-Sequenced Files: 

[MAT] REWRITE FILE [USING sn] filename [,KEY r exp], output-list 

[
,EXIT es ] 
[,EOF s] [,IOERR s] [,CONY s] [,NOKEY s] [REM comment] 

General Format - Relative Record Files: 

[MAT] REWRITE FILE [USING sn] filename [,REC = e] , output-list 

[
,EXIT es ] 
[,EOF s] [,IOERR s] [,CONV s] [,NOREC s] [REM commellt] 

where sn is the number of a FORM statement, filename is a character 
expression, r is the relational operator = or .EQ., ~, >=, or .GE., exp is a 
character expression, es is the number of an EXIT statement, s is the number 
of an executable statement and comment is one or more EBCDIC characters. 

Action: 

Execution of the REWRITE FILE statement causes a record to be written 
over an already existing record in a record-oriented file. Values from the 
variables in the output list are placed in a buffer associated with the specified 
file. Values from arrays are placed in the buffer row by row. 

If the USING clause is present, values are converted as indicated in the 
specified FORM statement. (Note: An X or POS control specification in the 
FORM statement causes a spacing over of record positions, permitting a 
selective rewriting of portions of the record.) In the absence of a USING 
clause, values are assigned to the buffer without conversion. 

If the KEY clause is included, the first record satisfying the specified 
condition is written over. The character expression is evaluated and truncated 
on the right, if longer than the record key, before being compared with the 
actual record key. A character string shorter than the record key is compared 

BASIC Statements 215 



216 VS BASIC Language 

with the first n characters of the key, where n is the number of characters in 
the character string. 

If the NOKEY clause is included, and no record with a key satisfying the 
KEY clause condition exists in the file, control is transferred to the specified 
statement. 

If the REC clause is included, the record whose relative record number 
matches the relative record number specified is written over. The record 
length of the rewritten record must not be greater than the original record. 

If the NOREC clause is included and no record with the relative record 
number satisfying the REC clause condition exists in the file, control is 
transferred to the specified stat~menL 

If the EOF clause is inclused, and there is no I room for the rewritten record in the 
file, and control is transferred to the specified statement. 

If the IOERR clause is included, and a device malfunction prevents reading or 
writing of the record, control is transferred to the specified statement. 

If the CONY clause is included, control is transferred to the specified 
statement if a value cannot be converted to the format defined for the item in 
an associated FORM statement, or if a record larger than the maximum 
permitted size is written. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if any of the above problems occur. 

Rules: 

1. A file specified in a REWRITE FILE statement must be activated for 
both input and output operations (that is, ALL must be specified in the 
OPEN statement for the file). 

2. If the KEY clause is omitted from the REWRITE FILE statement for a 
key-sequenced file, the last 110 operation of the specified file must have 
resulted from a READ FILE or REREAD FILE statement for the record 
to be rewritten. 

3. If the REC clause is omitted from the REWRITE FILE statement for a 
relative-record file, the last 110 operation on the specified file must have 
resulted from a READ FILE or REREAD FILE statement for the record 
to be rewritten. 

4. If the specified file is entry-sequenced, the length of the rewritten record 
may not exceed the original length of the record. The rewritten record 
will be the same length as the original record. 

5. If the specified file is keyed, the length of the rewritten record can be 
equal to or greater than the original length of the record; however, the 
contents of the record positions occupied by the record key may not be 
altered. 

6. If the specified file is relative record, the length of the rewritten record 
may not be greater than the length of the original record. 

7. The EOF, IOERR, and CONY clauses and the NOKEY or NOREC 
clauses can be specified in any order. The presence of any of these 
clauses in the REWRITE FILE statement precludes the specification of 
an EXIT clause. 



8. If all of the items in the output list are array references (that is, array 
names preceded by the keyword MAT), the MAT can be dropped from 
each of the array references and specified once before the keyword 
REWRITE. 

9. An array cannot be redimensioned in a REWRITE FILE statement. 

10. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Example: 

70 
75 

REWRITE FILE USING 75 "ABC", KEY=' 05', Ml, M2, M3 
FORM X5, S, POS30, S, POS40, PIC (ZZZ.ZZ) 

BASIC Statements 217 



The STOP Statement 

218 VS BASIC Language 

Function: 

The STOP statement causes program execution to be terminated. For a 
discussion of how this statement is used, see "Subroutines" in Part I of this 
publication. 

General Format: 

I fREM 1 comment 1 
STOP L RC = ;xp [REM comment] J 

where exp is a numeric expression which returns the integer part of a 
non-negative number, and comment is one or more EBCDIC characters. 

Action: 

When a STOP statement is executed, program processing is terminated and all 
open files are automatically closed. Unlike the END statement, which 
functions identically at execution time, the STOP statement has no effect on 
the compilation of the program. 

If RC= exp ~s specified a completion code is returned to the host system at 
the end of program execution. 

Rule: 

1. A STOP statement may appear anywhere in a BASIC program. 

Example: 

75 STOP 

Return/Completion example: 

500 STOP RC=16REM RETURN TO HOST SYSTEM 



The USE Statement 
See "The CHAIN and USE Statements." 

BASIC Statements 219 



The WRITE FILE Statement 

220 VS BASIC Language 

Function: 

The WRITE FILE statement adds a new record to a record-oriented file. For 
a discussion of how this statement is used, see "An Entry-Sequenced File", 
"A Key Sequenced File", and "A Relative Record File" in Part I of this 
publication. 

General Format-Entry-Sequenced Files: 

[MAT] WRITE FILE [USING sn 1 filename ,output-list 

[
,EXIT es ] 
[,EOF s] [,IOERR s] [,CONV s] [REM comment] 

General Format - Key-Sequenced Files: 

[MAT] WRITE FILE [USING sn] filename ,output-list 

[
,EXIT es ] 
[,EOF s] [ ,IOERR s] [,CONV s] [,DUPKEY s] [REM comment] 

General Format - Relative Record Files: 

[MAT] WRITE FILE [USING sn] filename ,REC = e ,output-list 

r,EXITes ] L[ ,EOF s] [,IOERR s] [,CONV s] [,DUPREC s] [REM comment] 

where sn is the number of a FORM statement; filename is a character 
expression; r is the relational operator =, or .EQ.; ~, >=, or .GE.; e is a 
positive scalar arithmetic expression; es is the number of an EXIT statement; s is the 
number of an executable statement; and comment is one or more EBCDIC characters. 

Action: 

Execution of a WRITE FILE statement causes a record to be added to the 
specified HIe, which can be entry-sequenced, keyed, or relative record. For an 
entry-sequenced file, the record is added to the end of the file. For a keyed 
file, the record is inserted in the file at a point determined by its record key, 
which is one of the fields within the record itself. For a relative-record file, 
the record is written into the file slot number specified in the REC clause. 

When the WRITE FILE statement is executed, values from variables in the 
output list are placed in a buffer associated with the specified file. Values 
from arrays are placed in the buffer row by row. 

If the USING clause is present, values are converted as indicated in the 
specified FORM statement. (Note: Record fields that are not filled with data 
- as the result of a POS or X control specification-are filled with binary 
zeros (interpreted as blanks), thus creating a "null field" within the record.) 
In the absence of a USING clause, values are assigned to the buffer without 
conversion. 



For relative record files, the record identified in the REC clause is written. 

If the EOF clause is included, control is transferred to the specified statement 
if there is no room in the file for the new record. 

If the IOERR clause is included, control is transferred to the specified 
statement if a device malfunction prevents writing of the record. 

If the CONY clause is included, control is transferred to the specified 
statement if a value cannot be converted to the format defined for the item in 
an associated FORM statement, or if a record larger than the maximum 
permitted size is written. 

If the DUPKEY clause is included, control is transferred to the specified 
statement if the key field of the record to be written matches the key field of 
a record already in the file. 

If the DUPREC clause is included and the relative record number of the 
record to be written matches a slot in which a record is already written, 
control is transferred to the specified statement. 

If the EXIT clause is included, the specified EXIT statement is examined for 
the appropriate error condition if any of the above problems occur. 

Rules: 

1. For a keyed file, the output list must refer to a character value which is to 
be used as the record key. The length and position of the record key vary 
with each file and are defined outside of the BASIC program. 

2. The EOF, IOERR, DUPKEY, or DUPREC and CONY clauses can be 
specified in any order. The presence of any of these clauses in the WRITE 
FILE statement precludes the specification of an EXIT clause. 

3. If all of the items in the output list are array references (that is, array 
names preceded by the keyword MAT), the MAT can be dropped from 
each of the array references and'specified once before the keyword 
WRITE. 

4. An array cannot be redimensioned in a WRITE FILE statement. 

5. When referring to a relative-record file, the WRITE FILE statement can 
only write a record into a null slot that has a length equal to or greater than 
the record's length. 

6. Naming conventions for files depend upon the environment in which they 
are used. See Appendix A. "Implementation Considerations." 

Example: 

50 WRITE FILE USING 100 "NEW", K$, X1, X2, 
X3, X4 

BASIC Statements 221 





APPENDIX A. IMPLEMENTATION 
CONSIDERATIONS 

Time-Sharing Environments 

• vSPc: 

1. VSPC Internal Files: A VS BASIC user, under VSPC, can create, 
access, and delete VSPC files as either sequential files or as direct files. 
Sequential files are used for either stream-oriented access (GET/PUT) 
or as entry-sequenced record-oriented files (READ FILE/WRITE 
FILE or INPUT FROM/PRINT TO). Direct files are defined for 
relative-record, record-oriented files (READ FILE/WRITE FILE with 
a REC clause). 

VSPC internal files are not key-sequenced, so may not be accessed with 
any statement containing a KEY, DUPKEY, or NOKEY clause. 

2. VSPC External Files: External files must be defined through the use 
of VSAM's Access Method Services. They are typically created by the 
data processing installation personnel. The files are always 
record-oriented, and are defined in a system library. The VS BASIC 
programmer must know the library number of that library in order to 
write programs which can access the data files defined there. 

When entry-sequenced files are defined, the name of the file, the 
number of records in the file, and the maximum size record must be 
defined. 

When key-sequenced files are defined, the length and position of the 
key in the record must also be defined. 

When relative-record files are defined, only the record length and file 
size are specified. 

For all external files, the DD/DLBL card for each file must be in the 
VSPC start-up deck. 

3. VSPC filenames have the form: 

library number filename/password 

where filename is 1 to 8 characters, the first of which must be 
alphabetic. 

When using VSPC internal files in your own library, the library number 
may be omitted. When using VSPC external files, or VSPC internal files 
in another library, the library number must be included. 

For example: 

OPEN FILE 'BABe' IN 

will open file ABC in library 8. 

In addition, a password may be required for data access. See VS 
BASIC for VSPC: Terminal User's Guide for further discussion of 
files and filenames. 

Appendix A. Implementation Considerations 223 



Batch Environments 

224 VS BASIC Language 

• CMS: 

1. A filename consists of between one and eight alphabetic (including the 
alphabet extenders) or numeric characters. For example: 

50 PUT 'IliA' ,Bl,B2 

• TSO: 

1. A filename consists of between one and eight alphabetic (including the 
alphabet extenders) or numeric characters, with the first character 
always alphabetic. For example: 

100 GET 'FILE1' ,C1,C2 

2. A stream-oriented file which has been permanently allocated (either by 
a DD statement in the LOGON procedure or through an ALLOCATE 
command issued at the terminal) may not be repositioned to its end by a 
RESET statement with the EN!) clause. 

3. All record-oriented files must be defined by the data processing 
installation personnel. For an entry-sequenced file, you must provide the 
name of the file, the number of records in the file, and the maximum 
size record the file will hold. For a key-sequenced file, you also must 
supply the length and position of the key in the record. For a 
relative-record file you must provide the length of the record and the 
number of records in the file. 

4. If you have not previously allocated an output stream data file, VS 
BASIC will dynamically allocate a data set for your output using the 
following default values: LRECL=562, BLKSIZE= 1690, 
RECFM=VB. 

• Both CMS and TSO: 

1. The PAUSE statement causes program execution to be interrupted until 
you press the carrier return key at the terminal. 

• DOS/VS: 

1. The filename for a stream-oriented file must be a logical unit name, in 
the form SYSxxx, where xxx is a number from 001 to the maximum 
permitted by the installation. For example: 

100 GET 'SYS010' ,A,B,C$ 

The filename for a record-oriented file can be any name, consisting of 
up to seven alphabetic and numeric characters, the first of which must 
be alphabetic. For example: 

20 LET B$ = 'GRADE' 
30 WRITE FILE B$, X,Y,Z 

The filename in this example is GRADE. 

To link the BASIC program to operating system resources, the 
filename specified in the input/output statement must be specified in 
the appropriate TLBL or DLBL job control statement. For example: 

II TLBL SYS010 .. . 

I I DLBL GRADE .. . 



The Separable Library 

2. Positioning to the end of a file is not supported. Therefore, END 
cannot be used with RESET. 

3. The EOF clause on the PUT statement is not supported. 

4. The CPU intrinsic function always returns a value of 1. 

5. All record-oriented files must be defined by the data processing 
installation personnel. For an entry-sequenced file, you must supply 
the name of the file, the number of records in the file, and the 
maximum size record the file will hold. For a key-sequenced file, you 
also must provide the length and position of the key in the record. For 
a relative-record file, you must provide the length of the record and the 
number of records in the me. 

• OS/VS (VSl and VS2): 

1. A filename can be any name consisting of up to eight alphabetic 
(including the alphabet extenders) and numeric characters, the first of 
which must be alphabetic. For example: 

200 READ FILE 'A12296', MAT G 

To link the BASIC program to operating system resources, the filename 
specified in the input/output statement must be specified in the DD job 
control statement that defines the file. For example: 

//A12296 DD 

• Both DOS/VS and OS/VS: 

1. The PAUSE statement prints a message but does not cause program 
execution to be interrupted. 

Installation-written functions can be made available to all users in the same 
manner as processor-supplied intrinsic functions, by installing them in the 
library of functions. This separable library facility provides programming 
convenience and enables VS BASIC users to share such functions. See your 
installation personnel for details before attempting to write or install such 
functions. 

Printing Output Created on a PRINT TO File 

Output from files created using the PRINT TO facility may be printed on a 
system printer by using the REPRO command of Access Method Services. 
You may want to contact your installation personnel to use these services; 
briefly, here are some points to remember when using Access Method 
Services to print the output: 

• Use the REPRO command, not the PRINT command, of Access Method 
Services. 

• Specify the filename used in the VS BASIC program as the name of the 
input file to the REPRO request. 

• Include a DD card for that file. 

• Define an output file, with a destination of the normal systems output 
device. 

Appendix A. Implementation Considerations 225 



226 VS BASIC Language 

• The record-format parameter of the output file must be specified as 
fixed-blocked in order to override the normal system use of the first 
character of each record as a forms control character. 

• Use that output file as the outfile parameter to the REPRO request. 

For an OS/VS installation, the following JCL will print the contents of the 
file: 

//LISTVSAM 

/ ... ,.....T""'\I'T'\TT'T""It. 

j ... ,::,J:..lU.l:" 

//STEP1 
//SYSPRINT 
//FILENAME 
//PRTFILE 
//SYSIN 

REPRO -

/* 

JOB 

EXEC 
DD 
DD 
DD 
DD * 

ACCOUNTING INFORMATION,REGION=256K, 
MSGLEVEL=1 
SETUP INFORMATION IF REQU1RED 
PGM=I DCAMS 
SYSOUT=A 
DSNAME=DATASET-NAME,DISP=OLD 
SYSOUT=A,DCB=(RECFM=FB) 

INFILE(FILENAME) -
OUTFILE(PRTFILE) 



APPENDIX B. COLLATING SEQUENCE OF THE 
VS BASIC CHARACTER SET 

The EBCDIC collating sequence of the VS BASIC character set is ordered in 
ascending sequence according to the internal representation of each character. 

Cbaracter 

< 
( 

+ 

& 

$ 

* 

/ 

> 
? 

# 

@ 

" 

Internal 
Hexadecimal 
Representation 

40 

4B 

4C 

4D 

4E 

4F 

50 

Name 

Blank 

Point or period 

Less-than symbol 

Left parenthesis 

Plus sign 

OR sign or vertical bar 

AND sign or ampersand 

5A Exclamation symbol 

5B 

5C 

Currency symbol 

Asterisk or multiplication symbol 

5D Right parenthesis 

5E Semicolon 

60 

61 

6B 

6E 

6F 

7A 

7B 

7C 

7D 

Minus sign 

Slash or division symbol 

Comma 

Greater-than symbol 

Question mark 

Colon 

Number or pound sign 

Commercial "at" sign 

Single quotation mark 

7E Equal sign or assignment symbol 

7F 
8A 

8C 

AE 

BE 

Double quotation mark 

Up-arrow or exponentiation symbol 

Less-than-or-equal-to symbol 

Greater-than-or-equal-to symbol 

Not-equal symbol 

Appendix B. Collating Sequence of the VS BASIC Character Set 227 



Internal 
Hexadecimal 

Character Representation 

A,a Cl 
B,b C2 
C,c C3 
O,d C4 
E,e C5 
F,f C6 
G,g C7 
H,h C8 
I,i C9 
J,j 01 
K,k 02 
L,l 03 
M,m D4 

N,n 05 
0,0 06 
P,p 07 
Q,q 08 
R,r 09 
S,s E2 
T,t E3 
U,U E4 
V,V E5 
W,W E6 
X,X E7 
Y,y E8 
Z,Z E9 
0 FO 

1 Fl 
2 F2 

3 F3 
4 F4 
5 F5 
6 F6 
7 F7 

8 F8 
9 F9 

228 VS BASIC Language 



GLOSSARY 

Alphabet extender. Anyone of the following three special 
characters: #, @, and $. 

Alphabetic character. Any of the 26 letters (A through Z) of 
the English alphabet or any of the alphabet extenders (#, @, 
and $). 

Alphabetic equivalent. The alphabetic character equivalent 
logical and relational operators that can be used 
interchangeably with the corresponding special character 
operators in logical subexpressions. The alphabetic 
equivalents must be enclosed in periods. 

See also logical operators and relational operators. The 
alphabetic equivalents are: 

.EQ. 

.NE. 

.GT. 

.LT. 

.GE. 

.LE. 

.CAT. 

.OR. 

.AND. 

equal to 
not equal to 
greater than 
less than 
greater than or equal to 
less than or equal to 
concatenation 
or 
and 

Alphameric character. A numeric or alphabetic character. 

Argument. An arithmetic expression appearing in parentheses 
following a function name, either in a function reference 
(either a user-written function or an intrinsic function) or in a 
pseudo variable. The expression represents a value that the 
function is to act upon. The function name mayor may not 
be followed by arguments. 

Arithmetic array. A named table of arithmetic data items. An 
array may be implicitly declared through usage or explicitly 
declared in a DIM statement. VS BASIC allows one- and 
two-dimensional arithmetic arrays. 

Arithmetic constant. A constant with a numeric value. The 
four forms of arithmetic constants permitted in VS BASIC 
are: integer, fixed-point, floating-point, and internal. 

Arithmetic data item. Data having a numeric value. 

Arithmetic expression. An arithmetic constant, a simple 
arithmetic variable, a scalar reference to an arithmetic array, 
an arithmetic-valued function reference, or a sequence of the 
above appropriately separated by arithmetic operators and 
parentheses. 

Arithmetic operator. A symbol representing an operation to be 
performed upon arithmetic data. The arithmetic operators 
are: 

+ 

* 
/ 
t or ** 

addition and unary plus sign 
subtraction and unary minus sign 
multiplication 
division 
exponentiation 

Arithmetic variable. The name of an arithmetic data item 
whose value is assigned and/or changed during program 
execution. The name consists of a single alphabetic character 
or an alphabetic character followed by a digit. 

Array. A named list or table of data items, all of which are the 
same type-arithmetic or character. VS BASIC allows one­
and two-dimensional arrays. 

Array declaration. The process of naming an array and 
assigning dimensions to it either explicitly (by the DIM 
statement) or implicitly through usage. 

Array element. See array member. 

Array expression. An arithmetic expression or a character 
expression representing an array of values rather than a 
single value. It may be used only in an array assignment 
statement. 

Array member. A single data item in an array; its position is 
indicated by a subscripted array reference. 

Array variable. The name of an entire array. The name 
consists of an alphabetic character (for arithmetic arrays) or 
an alphabetic character followed by the dollar sign character, 
$, (for character arrays). 

Assignment. The process of giving values to variables; for 
example, via LET statements, READ statements, INPUT 
statements, etc. 

Assignment symbol. The symbol =, which is used in an 
assignment statement to give a value to one or more 
variables. 

BASIC. A programming language designed for interactive 
systems and originally developed at Dartmouth College to 
encourage non-programmers to use computers for simple 
problem-solving operations. The word BASIC is an acronym 
for Beginners' All-purpose Symbolic Instruction Code. 

Binary operator. A symbol representing an operation to be 
performed upon two data items, arrays, or expressions. The 
four types of binary operators are: arithmetic, character, 
logical, and relational. 

Branching. Executing a statement other than the next 
sequential one; f<lr example, via the GO TO statement. 

Built-in function. See intrunsic function. 

Carriage return. See carrier return. 

Carrier return (CR). The process of ending a line by pressing 
the appropriate key(s) on your terminal. 

Character array. A named table of character data items. An 
array may be implicitly declared through usage or explicitly 
declared in a DIM statement. VS BASIC allows one- and 
two-dimensional character arrays. 

Character constant. A constant with a character value. It is 
always enclosed by a pair of single or double quotation 
marks. 

Character data. Data having a character value, as opposed to a 
numeric value. 

Character expression. A character constant, a simple character 
variable, a scalar reference to a character array, a 
character-valued function reference, or a sequence of the 
above separated by the concatenation operator (I I) and 
parentheses. 

Character operator. A symbol representing an operation to be 
performed upon character data. The concatenation operator 
(I I) is the only character operator in VS BASIC. 

Character string. A sequence of characters which represents an 
item of character data. 

Glossary 229 



Character variable. The name of a character data item whose 
value is assigned and/or changed during program execution. 
The name consists of an alphabetic character followed by the 
dollar sign character ($). 

Comment. A remark or note included in the body of a 
program by the programmer. It has no effect on the 
execution of the program; it merely documents the program. 
Comments are written as a string of characters and may 
appear as a part of any program statement that has no 
operands (for example, REM, STOP, END, RESTORE, 
etc.), with or without the REM keyword, or by using the 
REM keyword, may be im::luded on an BASIC staternt!nis 
except the DATA and Image statements. 

Concatenation. The joining of two character data items by the 
symbol I I or its alphabetic equivalent .CAT. 

Concatenation operator. The symbol I I or .CAT., the 
alphabetic equivalent, is, used to concatenate, or join, two 
character data items. 

Constant. A value that never changes. VS BASIC has two 
types of constants: arithmetic and character. 

Control specification. (1) One of the specifications X or POS, 
used in the FORM statement to specify formatting of records 
in record-oriented files. (2) One of the specifications X, POS, 
or SKIP, used in the FORM statement to control print line 
formatting at a terminal. 

Data rile. See file. 

Data form specification. (1) One of the specifications B, C, 
NC, PD, S, L, or PIC, used in the FORM statement to specify 
formatting of character and arithmetic values in 
record-oriented files. (2) One of the specifications C or PIC, 
used in the FORM statement to format character and 
arithmetic values on a printed line. 

Data item. A single unit of data; that is, a constant, a variable, 
an array element, or a function reference. 

Data table. The values contained in the DATA statements of 
your program. DATA statements are processed in statement 
number sequence (lowest to highest). The values in each 
DATA statement are collected and placed in a single table in 
order of their appearance (left to right). 

Data table pointer. An indicator that moves sequentially 
through the data table, pointing to each value as it is assigned 
to a corresponding variable in a READ statement. Initially, 
the indicator refers to the first item in the table. It can be 
repositioned to the beginning of the table at any time by the 
RESTORE statement. 

Declaration. See explicit declaration and implicit declaration. 

Delimiter. A character that groups or separates data items. 

Digits. 0, 1,2,3,4,5,6,7,8,9. 

Dimension specification. The specification of the size of an 
array and the arrangement of its members into one or two 
dimensions. 

Direct access. The storage or retrieval of data independently 
of other data in a file, that is, regardless of its location 
relative to other data. 

Dummy variable. A simple variable enclosed in parentheses 
and placed after the name of a user-written function in a DEF 
statement. The function performs its defined calculation on 

230 VS BASIC Language 

the expression value substituted for each dummy variable 
when the program is executed. 

EBCDIC coUating sequeM~e. The ordering of character data 
i~ems according to the Extended Binary Coded Decimal 
Interchange Code. 

Entry-sequenced file. A record-oriented file whose records are 
stored and accessed in the order in which they are entered. 

Error message. A message generated by the computer when an 
error has been detected. 

Executable statement. A program statement that causes an 
action to be performed by the computer. 

Execution error. An error discovered during execution of a VS 
BASIC program (for example, dividing by zero branching to 
a non-existing statement number, etc.) 

Explicit declaration. The use of a DIM statement to specify the 
nUffibt!r of members in an array, the number of dimensions in 
an array, or the length of a character variable. 

Exponent (of floating-point format number). An integer constant 
specifying the power of ten by which the base (mantissa) of 
the decimal floating-point number is to be multiplied. 

Exponentiation. Raising a value to a power. 

Expression. A representation of a value, for example, 
variables and constants appearing alone or in combination 
with operators. Three forms of expressions are defined in VS 
BASIC: scalar (arithmetic or character), array (arithmetic or 
character), and logical. 

Extended alphabet. The 26 letters of the English alphabet and 
the 3 alphabet extenders. 

File. A named group of related data items that are stored 
together. In VS BASIC there are two types of files: 
stream-oriented and record-oriented. 

Filename. A character expression whose value is the name of a 
file. 

FIXed-point constant. An arithmetic constant consisting of one 
or more digits and a decimal point, and optionally preceded 
by a sign. 

Fixed-point format. The form used to express a fixed-point 
constant. 

Floating-point constant. An arithmetic constant consisting of 
an integer or fixed-point constant followed by the letter E, 
followed by an optionally signed one- or tWo-digit integer 
constant. 

Floating-point format. The form used to express a 
floating-point constant. 

Fun print zone. Eighteen horizontal print positions. In a 
PRINT statement, a comma is used to indicate that a full 
print zone should be used. 

Function. A named expression that computes a single value. 
See also intrinsic function and user-written function. 

Function reference. The appearance of an intrinsic function 
name or a user-written function name in an expression. 

Generic key. An argument specified in the KEY clause of a 
record I/O statement that is less than the full key length 
defined for a corresponding file. 

Implicit declaration. (1) The specification of the number of 
members in an array or the number of dimensions in an 



array, either by a reference to a member of an array or by 
context (without the array being explicitly specified in a DIM 
statement). (2) The specification of the length of a character 
variable by context (without the variable being explicitly 
defined in a DIM statement). . 

Input. The transfer of data from an external medium to 
internal storage. 

Input Ust. A list of variables to which values are assigned from 
input data; the list can be made up of scalar variables, array 
member references, pseudo variables, array references, and 
array references with redimensioning. 

Input/output. The transfer of data between an external 
medium (that is, the terminal typewriter or a file) and 
internal storage. 

Integer constant. An arithmetic constant containing one or 
more digits, optionally preceded by a sign. 

Integer format. The form used to express an integer constant. 

Internal constant. An arithmetic constant whose value is 
supplied by VS BASIC. The name of the internal constants 
are: &PI, &SQR, &E, &INCM, &LBKG, and &GALI. 

Internal storage. A computer's main storage. 

Internal variable. A character or numeric value set and 
changed by VS BASIC that is available to the user in certain 
operations. The internal variables are & BUFF, &CODE, 
&ERR, &FILE, &LINE, and &REC. 

Interrupt. The suspension of program execution. 

Intrinsic function. A function supplied by VS BASIC (for 
example, SIN, COS, SQR, etc.) 

Key. One or more consecutive characters used to identify a 
particular record in a key-sequenced file. 

Key-sequenced me. A record-oriented file whose records are 
stored and accessed according to keys embedded in the 
records. 

UteraI. A symbol or quantity in a source program that is itself 
data, rather than a reference to data. 

Logical expression. A logical subexpression, or two logical 
subexpressions joined by a logical operator (& or I). Its 
value is either true or false. 

Logical operator. An operator that is used in a logical 
expression. The logical operators are: & (And) and I (Or). 

Long-form precision. Precision whereby, externally, values 
printed with I-format and F-format have a maximum of 15 
significant digits, and values printed with floating-point 
format have a maximum of eleven significant digits in the 
mantissa. 

Loop. A sequence of instructions that is executed repeatedly 
until a terminating condition is reached. The FOR statement 
identifies the beginning of a loop; the NEXT statement 
identifies the end of it. 

Mantissa. In floating-point notation (floating-point format), 
the number that precedes the E. The value represented is the 
product of the mantissa and that power of ten specified by the 
exponent. 

Matrix (mathematical). A two-dimensional arithmetic array. 

Multiline function. A user-defined function that is defined with 
more than one statement. 

Nesting. (1) The occurrence of a FOR/NEXT loop withil'l 
another FOR/NEXT loop. (2) The occurrence of a GOSUB 
statement when one or more GOSUB statements are already 
active. (3) The use of more than one set of parentheses to 
indicate the order of evaluation in a complex arithmetic 
expression. 

Nonexecutable statement. A program statement that specifies 
information necessary for program execution. 

Null character string. Two adjacent single or double quotation 
marks that specify a character constant of 18 blank 
characters. 

Null delimiter. One or more blanks or no characters at all (that 
is, one data item directly following another data item with no 
intervening space or delimiter) used in a PRINT statement to 
specify a packed print zone. data items is a character 
constant. 

Numeric character. Any of the digits 0, 1,2,3,4,5,6, 7,8,9. 

Operand. A constant, a variable, an array member reference, 
a function reference, or a subexpression on which an 
operation is to be performed. 

Operator. A symbol specifying an operation to be performed. 
See also arithmetic operator, binary operator, concatenation 
operator, logical operator, relational operator, and unary 
operator. 

Output. The transfer of data from internal storage to an 
external medium. 

Output Ust. A list of variables from which values are written to 
an output file; the list can be made up of scalar expressions 
and array references. 

Packed print zone. A section of a printed line, consisting of a 
number of horizontal print positions, whose size is 
determined by the type (arithmetic or character) and length 
of the data being printed. In the PRINT statement, a 
semicolon or null delimiter is used to indicate that a packed 
print zone is to be used. 

Padding. The addition of one or more blanks to the right of a 
character string to extend the string to a required length. 

Precision. The number of digits for which significance can be 
expressed. 

Print zone. See full print zone and packed print zone. 

Priority. A rank assigned to an arithmetic operator; it is used 
when evaluating an arithmetic expression. The order of 
priorities, from high to low, is: exponentiation, unary 
operations, multiplication and division, addition and 
subtraction. Operations at the same priority level are 
evaluated as they are encountered (from left to right in the 
expression). 

Program. A logically self-contained sequence of BASIC 
statements that can be executed by.the computer to attain a 
specific result. 

Programmer-dermed function. See user-written function. 

Pseudo variable. The use of an intrinsic function as a receiving 
variable. STR is the only pseudo variable in VS BASIC. 

Record. A collection of related data items treated as a unit. 

Record-oriented rde. A file in which items are stored in 
records. 

Glossary 231 



Redimension specification. The assignment of a new dimension 
specification to an already existing array, via an array 
assignment statement, a READ statement, an INPUT 
statement, a GET statement, a READ FILE statement, or a 
REREAD FILE statement. 

Redimensioning. The changing of the number of dimensions or 
the number of members in each dimension of a previously 
declared array. 

Relational operator. An operator used in a logical 
subexpression. The relational operators are: 

.EQ. or = 

.NE. or::/:: or <> 

.GT. or> 

.LT. or < 

.GE. or >= or ~ 

.LE. or <= or:S; 

equai to 
not equal to 
greater than 
less than 
greater than or equal to 
less than or equal to 

Reliitlye-record me. A file whose recorus are ioaded inio 
fixed-length slots. 

Relative-record number. A number that identifies not only the 
slot in a relative-record data set but also the record occupying 
the slot. 

Remark. See comment. 

Scalar. A single data item (as opposed to an array of items). 

Scalar expression. An arithmetic expression or a character 
expression representing a single value rather than an array of 
values. 

Sequential access. The retrieval of data according to the order 
in which the data is stored in a file. 

Short-form precision. Precision whereby, externally, values 
printed with integer format and fixed-point format have a 
maximum of seven significant digits, and values printed with 
floating-point format have a maximum of seven significant 
digits in the mantissa. 

Significant digits. All the digits of a number starting with the 
leftmost non-zero digit. 

Simple variable. A scalar variable (but not an array member). 

Single-line function. A user-defined function that is defined in 
one statement (that is, the DEF statement). 

Slot. The space for a data record in a relative-record data set. 

Special characters. Any characters allowed in VS BASIC that 
are not alphameric characters. 

Statement number. The number which prefaces a VS BASIC 
statement. It can be up to five digits in length (in the range 
00000 to 99999). 

Stream-oriented nJe. A file in which items are stored as a 
stream of data and retrieved in sequential order. 

Subexpression. A group within an arithmetic expression and 
used by the computer to evaluate that expression. 

Subroutine. A program segment (sequence of statements) 
branched to by a GOSUB statement. The last statement of a 
subroutine must be a RETURN statement which directs the 
computer to return and execute the statement following the 
GOSUB statement. 

Subscript. Any valid arithmetic expression (whose truncated 
integer value is greater than zero) used to refer to a particular 
member of an array. 

232 VS BASIC Language 

Substring. A part of a character string. 

System-supp6ed constants. See internal constants. 

Terminal. A device resembling a typewriter that is used to 
communicate with the computer. 

Truncation. The deletion of one or more characters on the 
right of a character string to shorten the string to a required 
length. 

Unary operator. An operator that precedes, and thus is 
associated with, an arithmetic expression. The unary 
operators are + (p!us) and - (minus). 

User. Anyone utilizing the services of a computing system. 

User-written function. A function defined by the user in a 
single-line or multiline function definition. 

Variable. A name used to represent a data item whose value 
may change during execution of a program. 

VS BASIC. A language processor derived from the BASIC 
language and developed by IBM for virtual storage systems. It 
can be used in time-sharing environments (VSPC, CMS, 
TSO) and batch environments (OSVS 1, OSVS2, DOS/VS, 
CMS Batch). 

Zero suppression. The elimination of leading nonsignificant 
zeros in a number. 



INDEX 

(Where more than one page reference is given, the major reference appears first.) 

blank 104 
1\ 
** 

< 
( 
+ 

Or 

& 
&BUFF 
&CODE 
&E 
&ERR 
&FILE 
&GALI 
&INCM 
&LBKG 
&LINE 
&PI 
&REC 
&SQR2 

$ 

concatenation symbol 118,32, 104 
exponentiation symbol 116-118, 31 
greater than or equal to symbol 104,41 
less than or equal to symbol 104,41 
not equal to symbol 104,41 
decimal point 104 

in fixed-format data 107-25 
in FORM statement 194,64 
in Image statement 187 -18 9 
in PRINT statement 183 

less than symbol 104, 41 
left parenthesis 104 
plus sign 104 

as a binary operator 116, 31 
as a unary operator 116,30 
in array assignment statement 125 
in PIC specification 63-64 

as a floating character 194 
as an insertion character 155 
as a static character 156 

sign 104,41 
as an exponent specifier 

in FORM statement 194, 62 
in Image statement 187 

And sign or ampersand 104,41 
internal variable 110 
internal variable 110 
(base of natural logs ) internal constant 109 
internal variable 110 
internal variable 110 
(liters per gallon) internal constant 109 
(centimeters per inch) internal constant 109 
(kilograms per pound) internal constant 109 
internal variable 110 
(1T) internal constant 109 
internal variable 110 
(square root of two) internal constant 109 
exclamation symbol 104 
dollar sign 

as an alphabet extender 104, 28 
in PIC specification 

as a floating character 194,62 
as a static character 1 56 

use in defining character arrays 47 
use in defining character 
functions 138, 57 
use in defining character 
variables 28-29 

* 

) 

> 
? 

# 

@ 

" 
t 

asterisk 104 
as a binary operator 116, 31 
as a multiplication symbol in array 
assignment statement 126 
in PIC specification 62 

to print asterisks 194-195 
right parenthesis 104 
semicolon 104 

delimiter in PRINT statement 182 
with PRINT using Image statement 182 

minus sign 104 
in array assignment statement 125 
as a binary operator 116, 31 
as a unary operator 116,30-31 
in PIC specification 64 

as a floating character 194 
as an insertion character 155 
as a static character 156 

slash 104 
as a binary operator 116, 30-31 
in PIC specification 194, 63-64 
used to end input line 23 

comma 104 
as delimiter in PRINT statement 182 
as null entry in INPUT statement 
data 166 
in PIC specification 63-64 

as insertion character 194 
greater than symbol 104,41 
question mark 104 

as character to prompt input 22-24 
colon 104 

to identify Image statement 187,61 
pound sign 

as an alphabet extender 104, 28 
in FORM statement as a digit 
specifier 194, 196 
in Image statement as a digit 
specifier 61-62, 187 

commercial "at" sign, as an alphabet 
extender 104, 28 
single quotation mark 104 
equal sign 104,41 
double quotation mark 104 
exponentiation symbol 104 

Index 233 



A 

"A Key-sequenced File" 83-88 
"A Relative Record File" 
"A Simple Program" 36 
ABS (absolute value) intrinsic function 114 
ACS (arcosine) intrinsic function 114 
"Activating and Deactivating Files" 73 
addition 116 

array 53 
priority of 31 

addition and subtraction array assignment 
statement 126 
algebraic equation, contrasted with 
assignment statement 30 
ALL keyword in OPEN FILE 
statement 178, 80-81 

required for use of REWRITE FILE 
statement 216 

alphabet, extended 104, 28 
alphabet extender, definition of 229 
alphabetic characters 104 

definition of 229 
alphabetic eqUivalents definition of 229 

use of 41 
alphameric character, definition of 229 
AMS (Access Method Services) 223,225 
"An Entry-sequenced File" 78-83 
And logical operator 104,42 
argument 

defmition of 229 
in user-defined functions 139, 33 
relationship to dummy variable 57 

arithmetic 
array 111 
definition of 229 
initial value of 50 
naming an 47 
constants 108 
definition of 230 
data 107,25 
contrasted with character data 26 
mixing with character data 29 
printing with Image statement 186-187 
relational operators with 4041 
specifying with PIC 62-65 
expressions 116 
definition of 230 
evaluation of 117,31-32 
print zone lengths for 184 
functions 138,57 
operators 116, 30-31 
contrasted with relational operators 4041 
definition of 229 
signs, in PIC 63-64 
variables 109, 28 
definition of 229 

arithmetic data item, definition of 229 

234 VS BASIC Language 

array assignment statement 50 
contrasted with scalar assignment statement 
(LET) 51-52 
operations with 
addition and subtraction 125,53 
identity function 128,54 
inverse function 129, 54 
matrix multiplication 55-56 
scalar multiplication 127, 53 
scalar value in 123 
simple array 124 
sort 
ascending sort 130, 53-54 
descending sort 131 , 53 
subtraction 125, 53 
transpose function 130, 55 
redimensioning arrays with 51-52 

array declaration, definition of 229 
array variable; definition of 229 
arrays 47-51 

arithmetic III 
definition of 229 
character III 
definition of 229 
comparison between one- and two-dimensional 49 
conformable 127 
defining 48 
DIM statement 144 
definition of 229 
expression in 119 
definition of 229 
initial value of 50 
input values for, through INPUT statement 167 
membersof 112,47 
definition of 229 
naming 113,47 
output values from 
with PRINT statement 186 
with PRINT USING FORM 192 
with PRINT USING Image 189 
redimensioning 51-52 
subscripts 111, 48 

ascending sort function array assignment 
statement 130 

ASN (arcsine) intrinsic function 114 
ASORT ascending sort array assignment 

statement 130,53 
assignment, definition of 229 
assignment statement 

array 123, 50 
contrasted with algebraic equation 30 
example of in a program 36 
scalar 172 

assignment symbol, definition of 229 
asterisk, digit specifier in FORM 

statement 154,194 
ATN (arctangent) intrinsic function 114 



B 

B data form specification 152 
B, insertion character in FORM statement 194, 154 

restrictions in use of 194, 155 
use of 63-64 

BASIC character set 103 
BASIC, definition of 229 
BASIC statements (see statements) 
batch environments, DOS/VS and OS/VS 
implementation considerations 223 
binary data 152 
binary operators 30 

definition of 229 
arithmetic 116, 30 
definition of 229 
in PRINT statement 35 
priority of 117 
character 118, 52 
definition of 229 
logical 119,4142 
definition of 231 
relational 119, 4041 
definition of 232 

blank lines, printing 35 
blanks 

in character constants 104 
as digit specifier in FORM statement 194, 154 
ignored by BASIC 31 
in Image statement 104 
in place of plus sign 35 
initial value of character array 50 
null delimiter 35 

branching 
definition of 229 
program 39 
subroutine 58 

Buffered-Ahead Terminal Input 24 
built-in functions (see intrinsic functions) 

c 
C data form specification 184,192,153 

use of 
in printing 65 
with record-oriented statements 90 

carrier positions, print 185, 187 
carrier return. definition of 229 
CEN (Centigrade) intrinsic function 114 
CHAIN statement 133 

example of 69-70 
chaining, program 69-70 
character 

array 111 
defining 47 
definition of 229 
initial value of 50 
length of members 112 
naming an 47 
constants 109 

definition of 230 
data 109,26 
contrasted with numeric data 26 
defining 144 
definition of 230 
in FORM statement 193,65 
in Image statement 187 
in INPUT statement 166 
in internal data table 202 
in PRINT statement 184 
in scalar assignment statement (LET) 172 
in scalar assignment for array assignment 
statement 123 
in simple array assignment statement 124 
in sort array assignment statements 130 
in user-defined functions 139 
mixing with arithmetic data 29 
relational operators with 41 
expressions 117, 32 
definition of 230 
functions 138, 57 
operators 117 
string 26 
definition of 229 
variables 110, 28-29 
definition of 230 
key in KEY clause of record-oriented statements 85 
size of in packed print zone 36 
USE statement 133 

character set, BASIC 103 
EBCDIC collating sequence of 227 

CHR intrinsic function 114 
CLASS 

as fIle name for entry-sequenced fIle 78 
contrasted with key-sequenced fIle 83 

CLK (time of day) intrinsic function 114 
CLOSE FILE statement 83 

VSAM requirement 223 
CLOSE statement 134, 73 

summarized 76 
closing fIles 73,83 
CMS time-sharing environment 

file naming conventions 224 
non-support of record-oriented statements 224 
PAUSE statement implementation consideration 224 

CNT (number of I/C data items) intrinsic function 114 
collating sequence, EBCDIC 227 

definition of 230 
use in sorting arrays 130 
use with relational operators 41 

colon (:) to identify Image statement 187 
column, as array dimension 112, 48 
comma (,) 

as a data separator 22 
as an insertion character in FORM 
statement 194,63-64 
to specify full print zones 183 
use in INPUT statement 166 
use in PRINT statement 182 
used as null delimiter during input 23 
used to continue input line 22 

Index 235 



comment 
definition of 230 
in REM statement 207,37 
in RESTORE statement, example 21-22 
with REM keyboard 37 

"Comments in Your Program" 37 
computed GOSUB statement 160, 60 
computed GOTO statement 162, 42 
concatenation 

definition of 230 
of character data. 32 
operator 119, 104 
definition of 230 

conformable arrays for matrix multiplication 56, 127 
constants 

arithmetic 108 
definition of 230 
character 109 

. definition of 229 
definition of 230 
internal 108 

continuation character, use of comma as 22 
control specification, in FORM statement 192, 151 

(see also POS, SKIP, X) 
definition of 230 

control variable, in FOR statement 149 
CONY error handling keyword 74-75 

in EXIT statement 147 
in GET statement 158 
in READ FILE statement 204 
in REREAD FILE statement 208 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 

COS (cosine) intrinsic function 114,33 
COT (cotangent) intrinsic function 114 
CPU (program execution time) intrinsic function 114 

DOS/VS implementation consideration 224 
credit sign (CR) 114 

floating character in FORM statement 195 
CSC (cosecant) intrinsic function 114 

D 
DAT (Gregorian date) intrinsic function 114 
data 

(see also arithmetic; character) 
arithmetic 107, 24-26 
fixed-point 108 
floating-point 108 
integer 107 
charac ter 1 09, 26 
definition of 229 
length of 28-29 
entering into computer 20-24 
testing and controlling 3945 

data form specification, in FORM statement 151, 193 
(see also C; PIC) 
definition of 230 

data item, definition of 230 
DATA statement 136,20-22 

relationship to READ statement 202, 20-22 
relationship to RESTORE statement 213,21-22 
restriction with user-defined functions 140 

236 VS BASIC Language 

data table 202, 20-22 
DATA statement 136 
definition of 230 

data table pointer 177 
definition of 230 

decimal point (.) 
in fixed-point data 108,25 
in Image statement 187 
in PRINT statement 183 
insertion character in FORM statement 194,63-65 

declaration, array 112,4749 
DEF statement 138 

rules 139 
use of 57-58 

DEG (degrees) intrinsic function 114 
DELETE FILE statement 142,87 

restriction with entry-sequenced files 83 
restriction on use of input or output only 178 
summarized 93 
VSAM requirement 224 

"Deleting Records" 87 
delimiters 

definition of 230 
for character data 110, 26 
examples of 27 
null, in PRINT statement 182 
definition of 231 
slash, used to end input line 23 

descending sort function array assignment 
statement 131 

designing record for record-oriented mes 78 
DET (determinant) intrinsic function 114,54 
determinant function (DET) 114,54 
digi t specifiers 

examples of 62-63 
in FORM statement 151, 192 
in Image statement 187 

digits, definition of 230 
DIM statement 144 

defining arrays with 47 
defining character data with 28-29 
restriction with user-defined functions 140 
use with record-oriented flIes 78 

dimension specification, definition of 230 
dimensions, of arrays 111, 48 

identical 52 
direct access, definition of 230 
direct retrieval of records in key-sequenced flIes 84-85 

relative record flIes 
division 116, 103 

priorityof 31-32 
dollar sign ($) 

as an alphabet extender 103, 28 
floating character in FORM statement 194, 62 
to name character data arrays 47 
functions 57 
variables 28-29 



DOS!VS batch environment 
CPU intrinsic function 
consideration 224 
file naming conventions 224 
non-support of END with RESET statement 225 
non-support of EOF with PUT statement 225 
PAUSE statement implementation 
consideration 224 

DOT (dot product) intrinsic function 114 
DSORT descending sort array assignment 

statement 131, 53 
dummy variable 138 

definition of 230 
relationship to argument 57 

DUPKEY keyword 
in EXIT statement 147, 87 
in WRITE FILE statement 220 

DUPREC keyword 
in EXIT statement 147,87 
in WRITE FILE statement 220 

E 
E as an exponential specifier 61-62 
EBCDIC collating sequence 227 

definition of 230 
use in sorting arrays 130 
use with relational operators 41 

ELSE keywork in IF statement 163,40 
embedded key 

use of intrinsic functions to locate 84 
enclosed loops 4445, 150 
END keyword in RESET statement 210, 74 

DOS!VS implementation consideration 224 
end of fIle condition 

in GET statement 158 
in READ FILE statement 204 

END statement 146 
restriction with user-defined function 140 

entering records into record-oriented ftle 77, 83 
entry-sequenced fIles 77, 78 

(see also record-oriented fIles) 
definition of 230 
reading words from 80 
updating records 81 
writing records into 78-79 

EOF keyword 
DOS!VS implementation consideration 224 
in EXIT statement 147 
in GET statement 159,74-75 
in PUT statement 200, 74-75 
in READ FILE statement 204,80-81 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 
related to NOKEY clause 85 

erasing records in record-oriented fIle 83 
error conditions 

EXIT statement to control 147, 74-75 
in GET statement 158 
in ON statement 175 
in PUT statement 200 
in READ FILE statement 119 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 

error message, definition of 230 
evaluation 

of arithmetic expressions 116,31 
of logical expressions and subexpressions 119 

executable statements 101 
definition of 230 

execution error, definition of 230 
EXIT keyword 

discussion of 75, 87 
in DELETE FILE statement 142 
in GET statement 158 
in PUT statement 200 
in READ FILE statement 204 
in REREAD FILE statement 208 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 

EXIT statement 147 
-restriction with user-defined function 140 
use with record-oriented files 83,87-88 
use with stream-oriertted fIles 74-75 

EXP (natural exponential) intrinsic function 114 
explicit declaration 

definition of 230 
of arrays 112,4749 
of character variables 110, 28-29 

exponent in floating-point format number, definition 
of 230 

exponent specifier 
in FORM statement 155,194 
in Image statement 187, 61 

exponen tia tion 
definition of 231 
operator 104 
priority of 31-32,116 
rules for 116 

expressions 
arithmetic 116 
definition of 230 
evaluation of 31-32,116 
array 119 
definition of 229 
character 117, 32 
definition of 229 
logical 119,4142 
definition of 231 
scalar 116 
testing in IF statement 4041 

extended alphabet 103, 28 
definition of 230 

F 
FAH (Fahrenheit) intrinsic function 114 
false value, in IF statement 163,41 
FILE keyword 

in CLOSE statement 134 
in OPEN statement 178 
in RESET statement 210 

ftlename, definition of 230 

Index 237 



files 
(see also record-oriented files; stream-oriented files) 
definition of 230 
naming conventions for 71-72, 223 
positioning of with RESET statement 210,87 
record -orien ted 
definition of 231 
entry-sequenced 77 
definition of 230 
key-sequenced 77 
definition of 231 
relative record 77 
definition of 232 
stream-oriented 71 
definition of 232 

final value, in FOR statement 149 
fixed-point constant, definition of 230 
fixed-point format data 108 

definition of 230 
example of 25 
in Image statement 187, 189 
in PRINT statement 183 

floating characters in PIC 62, 193 
floating-point constant, definition of 230 
floating-point format data 108 

definition of 230 
example of 25 
in Image statement 187-189 
in PRINT statement 183 

FN, to identify user-defined functions 138,57 
FNEND statement 138,57-58 
FOR statement 149,43-45 

example of 4345 
use with arrays 51 

FORM statement 
differences between PRINT and record I/O 90 
maximum number of 155 
used with PRINT 192 
examples of 62-67 
general format of 192 
rules of usage 195 
used with record-oriented files 151 
examples of 78 
general format of 151 
rules of usage 155 

format control specifications in 
FORM statement 65-67 
(see also X, pas, SKIP) 

format specifications, in Image statement 187 
full print zone 183 

definition of 230 
function reference 32-33 

definition of 230 
"Functions" 57-58 
functions 

definition of 230 
intrinsic 113 
references to 32-33 
user-defined 57-58 
DEF statement to define 138 
multiline, definition of 232 
single-line, definition of 232 

238 VS BASIC Language 

G 

generic keys 86-87 
definition of 230 

GET statement 158,72-75 
compared to READ FILE statement 80 
error handling with 73-75, 147 
relationship to OPEN and CLOSE statements 73 

"Getting Data into the Computer" 24 
"Getting Data out Using the PRINT Statement" 34-36 
GOSUB statement 160,58 

computed GOSUB 60 
GOTO keyword in IF statement 163 
GOTO statement 162 

computed GOTO 42 
compared to computed GOSUB 60 
used in loop 39 
used with IF statement 40 

GRADE, as a filename for key-sequenced file 83 

H 
HCS (hyperbolic cosine) intrinsic function 114 
HOLD keyword in OPEN FILE statement 178 81 
HSN (hyperbolic sine) intrinsic function 114 ' 
HTN (hyperbolic tangent) intrinsic function 114 

I 
identity function, array assignment statement 128, 54 
IDN identity array assignment statement 1.28, 54 
IDX (character position in string) intrinsic function 33 
IF statement 163 

example of 4041 
logical operators in 4142 

Image statement 186 
examples of 62-63 
general format of 187 
maximum number of 189 
rules of usage 189 

implementation considerations 223 
implicit declaration 

definition of 230 
of array 112,47 
by context 49-51 
of character variables 110, 28-29 

IN keyword in OPEN statement 178, 73-74 
increment value, in FOR statement 149 
individual record, retrieving in key-sequenced file 84 

relative record file 88 
initial value, in FOR statement 149 
input 

definition of 231 
files 72-73 
terminal 22-24 

input list 
definition of 231 
syn tax definition of 99 

INPUT statement 166-169,22-24 
compared to PRINT statement 34 
example of, in a program 36 
mixing arithmetic and character data in 29 
use with arrays 50-51 



INPUT FROM statement 170 
input/output, definition of 231 
"Input/Output Error Handling" 74-75 
input/output statements 

INPUT 22-24 
PRINT 34-36,61 
record-oriented 
(see also entries for the individual statements 
listed below) 
CLOSE FILE 80-83 
DELETE FILE 87 
EXIT 83,87 
FORM 90, 78-79 
INPUT FROM 170 
OPEN FILE 80-82 
PRINT TO 198 
READ FILE 80, 84-85 
REREAD FILE 80, 87 
RESET FILE 83 
REWRITE FILE 80-82, 85-86 
summarized 93-94 
WRITE FILE 78-79,84 
stream-oriented 
(see also entries for the individual statements 
listed below) 
CLOSE 73-74 
EXIT 75 
GET 72-74 
OPEN 73-74 
PUT 71-75 
RESET 74 
summarized 75-76 

insertion characger, in PIC specification 63-65, 194-196 
INT (integral part) intrinisic function 114 
integer constant, definition of 231 
integer data 107 

example of 24-25 
in Image statement 188-189 
in PRINT statement 183 

internal constants 108,33 
definition of 231 

internal data table 202, 20 
DATA statement 136 

internal storage, definition of 
internal variables 110 

definition of 231 
interrupt, definition of 231 
intrinsic functions 113-115,32 

CPU, DOS/VS implementation 
consideration for 225 
definition of 231 
DET 54 
IDX 33 
KLN 84 
KPS 84 
STR 33 

INV inverse array assignment statement 129, 54 
inverse function, array assignment statement 129, 54 
IOERR keyword 75 

J 

in CLOSE FILE statement 134 
in DELETE FILE statement 142 
in EXIT statement 147 
in GET statement 158 
in OPEN FILE statement 178 
in PUT statement 175 
in READ FILE statement 204 
in RESET FILE statement 204 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 

JDY (Julian date) intrinsic function 114 

K 
key, generic 86 

definition of 231 
key, in key -sequenced file 83 

importance in proper positioning in record 84 
locating using intrinsic functions 84 
use of to update records 85 

KEY clause 
in DELETE FILE statement 140 
in READ FILE statement 204,84-85 
in RESET FILE statement 210 
in REWRITE FILE statement 215 

"Key Clauses on the EXIT Statement" 87 
key-sequenced files 77 

(see also record-oriented files) 
definition of 231 
keys in 85 
reading records from 84 
writing records into 83 
rules for 221 

KLN (key length) intrinsic function 115, 84 
KPS (key position) intrinsic function 115, 84 

L 
L specification for long form precision 154,91 
LEN (length of character string) intrinsic function 115 
length 

of character array members 47 
of character constants 107, 27 
of concatenated strings 119 
of packed print zones 184 
of rewritten record- oriented records 216 

LET statement 172, 19 
contrasted with array assignment statement 51 
example of, in a program 36 
use in array operations 50 

LGT (logarithm to base 10) intrinsic function 115 
line skipping, in printed lines 192-193 

Index 239 



list 
in INPUT and PRINT statements 34 
input 
definition of 231 
syntax definition of 99 
output 
definition of 231 
syntax definition of 99 

"lit", literal 192 
LOG (logarithm to base e) intrinsic function 115 
logical expressions 119 

definition of 231 
1,,~;~~1 "_,.,.~~+" .. ,, 1 1 0 II 1 
~v51\ ... a~ vp...,~aLvl" .I. .I./,""T.I. 

definition of 231 
logical subexpressions 119 
long-form precision 107, 26 

definition of 231 
L specification 91, 154 

use with OPTION statement 180 
"Loops" 39 
loops 39 

definition of 231 
FOR and NEXT statements 43, 149 
rules of usage 149 
maximum number of 150 
nested 44 

LTW (logarithm to base 2) intrinsic function 115 

M 
magnitude, arithmetic 107 
mantissa, definition of 231 
MAT, array assignment statement 123-132 

(see also array assignment statement) 
contrasted with LET assignment statement 51 

MAT keyword, to identify an array 49-50 
in GET statement 158 
in Image statement 189 
in INPUT statement 166 
in PRINT statement 182 
in PUT statement 200 
in READ statement 202 
IN READ FILE statement 204 
in REREAD FILE statement 208 
in REWRITE FILE statement 215 
in WRITE FILE statement 220 

matrix (mathematical), definition of 231 
matrix inverse 54, 129 
matrix multiplication 55 

array assignment statement 126 
rules 126 

MAX (maximum value) intrinsic function 115 
maximum number of characters in characters 

constant 109, 27 
maximum number of statements in program 101 
member, array 47, 111 

definition of 229 
selecting individual 48 

MIN (minimum value) intrinsic function 115 

240 VS BASIC Language 

minus sign (-) 
as a binary operator 116,31 
as a unary operator 116,30 
in PIC 63 
as a floating character 194 
as a trailing character 195 

"More About Loops -- Using FOR and NEXT 
Statements" 43 

multiline function 57, 138 
definition of 231 

multiplication 116 

N 

array assignment statement 126 

operator 116 
priority of 31 

names 
array 111, 113 
file 223, 71 

NC data form specification 153 
examples of 90 

negative increments, in FOR statement 149 
nested function references 33 
nested loops 44, 150 
nesting, definition of 231 
NEXT statement 149, 43 

use with arrays 51 
NOKEY keyword 

in DELETE FILE statement 142 
in EXIT statement 147,90 
in READ FILE statement 204 
in RESET FILE statement 210 
in REWRITE FILE statement 215 

nonexecutable statement 101 
DATA 136 
DEF and FNEND 138 
definition of 231 
DIM 144 
EXIT 147 
FORM 192 
Image 186 
REM 207 
USE 133 

NOREC keyword 
in DELETE FILE satement 142 
in EXIT statement 147, 90 
in READ FILE statement 204 
in RESET FILE statement 210 
in REWRITE FILE statement 215 

null character string, definition of 231 
null data 

in Image statement 189 
in INPUT statement 166 
in LET statement 172 
printing 185 

null delimiter 35 
consecutive commas during input 23 
definition of 231 
in packed print zone 182-185 

NUM (arithmetic value of character string) 
intrinsic function 115 



numeric character, definition of 231 
numeric conversion 

specifications 61-65, 90 
(see also PIC) 
B 152,90 
L 154,91 
NC 153,90 
PD 153 
S 153,91 

numeric data 
(see also arithmetic) 
contrasted with character data 26 

o 
one-dimensional array 111, 48 

compared to two-dimensional array 48 
restrictions in redimensioning 51 

OPEN FILE statement 178 
VSAM requirement 223 

OPEN statement 178 
"Opening Closing, and Repositioning Files" 82 
opening files 

record-oriented 82 
stream-oriented 73 

operand 117 
definition of 231 

operators 
definition of 231 
binary 30 
arithmetic 116, 30 
definition of 229 
in PRINT statement 35 
priority of 117 
character 118,32 
definition of 229 
definition of 229 
logical 119, 41 
definition of 231 
relational 119-120,40 
definition of 232 
unary 116-117,30 
definition of 232 
priority of 31 

OPTION statement 180 
Or logical operator 42, 104 
OS/VS batch environment 

file-naming conventions 224 
PAUSE statement implementation 
consideration 225 

OUT keyword, in OPEN statement 178,73 
outer loop, constrasted with nested loop 45 
output 

definition of 231 
formatting printed 66 
example of 67 
FORM statement 192-197 
PRINT statement 182-186,34 
terminal 22 

output error handling 74 
output files 73 
output list 

definition of 231 
syntax definition of 99 

p 

packed print zone, 183,35 
definition of 231 
length of 63 

padding 
definition of 231 
of character data 29 

paren theses 
in arithmetic operations 31 
to define arrays 48 
to enclose array expressions 52 
to enclose PIC specifications 62 

PAUSE statement 181 
CMS and TSO implementation 
considerations 224 
DOS/VS and OS/VS implementation 
considerations 225 

PD data form specification 153 
PIC 

data form specification 193,154 
examples of 62 
with record I/O 90 
relationship to NC specification 90 

place holders 
example of 61-62 
in FORM statement 193, 154 
in Image statement 187 

plus sign (+) 
as a binary operator 116, 31 
as a unary operator 116, 30 
in PIC 63 
as a floating character 194 
as a trailing character 195 

pas control specification 192-193,152 
examples of 66 
use in positioning key of key-sequenced 
file 84 
use with REWRITE FILE statement 215 
use with WRITE FILE statment 220 

positioning a file, RESET statement to 210,87 
pound sign (#) 

as an alphabet extender 103, 28 
in FORM statement 194, 154 
in Image statement 187 

PRD (product of array elements) intrinsic function 115 
precision 26 

definition of 231 
long-form 107 
definition of 231 
OPTION statement 180, 107 
short-form 107 
definition of 232 

print positions 
carrier 185 
using pas 193 
using X 193 

Index 241 



PRINT statement 
carriage positions for output from 185 
compared to INPUT statement 34 
compared to PUT statement 71 
examples of 36, 61 
general format 182 
with FORM statement 192 
examples 62 
rules of usage 196 
with Image statement 186 
examples 61 
rules of usage 192 
rules of usage 184 
TAB con troI specification 182 
example 186 
used in loop, example of 39 
used with IF statement 40 

PRINT TO statement 198 
PRINT USING FORM Statement 192 

exampies 62 
general format 192 
rules of usage 196 

"PRINT Using Image and FORM" 63 
PRINT USING Image Statement 186 

examples 61 
rules of usage 190 

print zone 
full 183,35 
definition of 231 
packed 183,35 
definition of 231 

printed output 
example of 67 
formatting 66 
spacing of values 182 

printing a line, 
SKIP specification needed with FORM 193 

priority of arithmetic 
operators 117, 31 
definition of 231 

program 19 
branching in 39 
definition of 231 
documenting 37 
examples of 
a first program 36 
illustrating use of PRINT USING and FORM 66 
illustrating use of record-oriented statements 78 
illustrating use of subroutines 58 
readability 105 
running and saving 19 

"Program Chaining" 69 
"Program Error Handling" 94 
program termination 

END statement 146, 36 
STOP statement 218,59 

prompting input 23 
pseudo variables 31 

definition of 231 
syntax definition of 99 

242 VS BASIC Language 

PUT statement 200, 71 

Q 

compared to WRITE FILE statement 78 
relationship to OPEN and CLOSE statements 73 
use of error handling keywords 74-75 
use of EXIT statement 147 

question mark (?) to prompt input 
examples of 23-24,36 
in INPUT statement 166 

quotation marks (" ') 

R 

to delimit character data 109, 26 
using within a character string 27 

RAD (radians) intrinsic function 115 
READ statement 202,20 

mixing arithmetic and character data in 29 
relationship to DATA statement 136-137 
relationship to RESTORE statement 213 
using with arrays 51 

READ FILE statement 204, 
relationship to REREAD FILE statement 208 
relationship to REWRITE FILE statement 216 
rules for using data form specifications 
B specification 
C specification 152 
L specification 154 
NC and PD specifications 153 
S specification 154 
use of EXIT statement 147 
used with entry-sequenced files 80 
used with key-sequenced files 84 
used with relative record files 88 
VSAM requirement 223 

REC clause 
in DELETE FILE statement 142 
in READ FILE statement 204 
in RESET FILE statement 210 
in REWRITE FILE statement 215 

record, definition of 231 
"Record-oriented Files" 77-96 
record-oriented files 

definition of 231 
designing records for 78 
entry-sequenced 78 
entering records into 78 
opening, closing, and repositioning 82 
rereading records in 81 
retrieving records from 80 
updating records in 81 
key -sequenced 77 
deleting records in 87 
entering records into 83-84, 220 
rereading records in 87 
retrieving records from 84 
updating records in 85 



relative record 77 
deleting records in 89 
entering records into 88 
repositioning file 89 
retrieving records from 88 
updating records in 89 
program illustrating input/output statements for 92 

record-oriented input/output statements 
CLOSE FILE 134, 80 
DELETE FILE 142,90 
OPEN FILE 178,80 
READ FILE 204 
with entry sequenced file 80 
with key-sequenced file 84 
REREAD FILE 208, 81 
RESET FILE 210,83 
REWRITE FILE 215 
with entry sequenced file 80 
with key-sequenced file 85 
with relative record file 89 
VSAM requirement 223 
WRITE FILE 220 
with entry-sequenced file 78 
with key-sequenced file 84 
with realtive record file 83 

records in record-oriented file 77 
redimension specification 

definition of 232 
in GET statement 158 
in INPUT statement data 166 
in READ FILE statement 205 
in REREAD FILE statement 208 
in scalar multiplication 127 
in scalar value array assignment statement 123 
in simple array assignment statement 124 
in sort array assignment statements 131 
syntax definition of 99 

redimensioning arrays 51, 113 
definition of 232 

relative record file 88 
relational operators 119,40 

definition of 232 
REM statement 207,37 
REM keyword 207,37,19 
remarks in program 37 
"Repositioning Files" 74 
REREAD FILE statement 208 

relationship to REWRITE FILE statement 216 
rules for data form specification 
B specification 152 
C specification 153 
L specification 154 
NC and PD specifications 153 
S specification 154 
use of EXIT statement 147 
used with entry-sequenced file 81 
used with key-sequenced file 87 
used with relative-record file 88 
VSAM requirement 223 

"Rereading Records" 81, 87 
RESET FILE statement 210,83 

VSAM requirement 223 

RESET statement 210, 74 
TSO implementation considerations 223 
RESTORE statement 213,20 
compared to RESET statement 74 

"Retrieving a File" 72 
retrieving records from record-oriented file 80, 84 
retrieving stream-oriented file 72 
RETURN statement 138 

used in functions 58 
used in subroutines 59 
used outside user-defined functions 140 
used with GOSUB 160 

return completion code END statement 146 
STOP statement 218 

return value from functions 58 
REUSE keyword 81,178 
REWRITE FILE statement 215 

restriction on use of input or output only 178 
rules for data form specification 
B specification 152 
C specification 153 
NC and PD specifications 153 
Sand L specifications 154 
use of EXIT statement 147 
used with entry-sequenced files 81 
used with key-sequenced files 85 
used with relative record files 89 
VSAM requirement 223 
REUSE keyword, in OPEN statement 

rewritten records, length of 216 
RLN (record length) intrinsic function 115 
RND (random number) intrinsic function 115 
row, as array dimension 111 ,48 
"Rules for Forming Variables" 28 

s 
S Specification for short form precision 91 
sample programs (see program) 
scalar definition of 232 
scalar assignment statement 172 

contrasted with array assignment statement 51 
scalar expression 

arithmetic 116 
in scalar multiplication array assignment 
statement 127 
definition of 232 

scalar multiplication 53 
array assignment statement 127 

scalar value 
array assignment statement 123 
in INPUT statement data 167 

semicolon (;) 
as null delimiter 35 
in PRINT statement 182 
to specify packed print zone 183 

separable library facility 225 
sequential access 

definition of. 232 
of records in key-sequenced files 85 

sequential fIles 
record-oriented 77 
stream-oriented 71 

Index 243 



SCN (sign) intrinsic function 115 
short-form precision 107, 26 

definition of 232 
example of printed output 183 
S specification 91 
used in programs having long-form precision 154 

significant digits, definition of 232 
simple array, 

array assignment statement 124 
simple COSUB statement 160,58 
simple COTO statement 162, 39 
simple program 36 
simple variable, definition of 232 
SIN (sine) intrinsic function 115 
single-line function 138 

contrasted with multiline function 57 
definition of 232 

SKIP control specification 193, 67 
required to print line 193 
unnecessary with record I/O 90 

slash (/) 
as a binary operator 116, 31 
in PIC specification as an insertion 
character 194, 155 
example of 63 
used to end input line 23, 161 

sort function array assignment statements 130,53 
spacing of printed values 183 
special characters 103 

definition of 232 
SQR (square root) intrinsic function 115,33 
square array needed for identity function 54 
standard output format in PRINT statement 183 
statement number 19,101 

definition of 232 
statements 

format of, general description 121 
typesof 101 

static character in FORM statement 196 
STEP keyword 

in FOR statement 149 
zero value for 150 

STOP statement 218, 59 
return completion code (RC=) 218 

STR (portion of string) intrinsic function 115,33 
stream-oriented files 

activating 73 
contrast;d with record-oriented files 77 
creating 71 
definition of 232 
error handling for 74-75 
repositioning 74 
retrieving 72 
TSO implementation considerations 223 

stream-oriented input/output statements 
CLOSE 134, 73 
CET 158,72 
OPEN 178,74 
PUT 200,72 
RESET 210, 74 

244 VS BASIC language 

su bexpressions 
arithmetic 116 
definition of 232 
logical 119 

subroutines 
definition of 232 
user-written 58 
COSUB statement 160 

"Subroutines" 58 
subscript 111 

definition of 232 
substring 33 

definition of 232 
subtraction 116 

array assignment statement 125, 53 
operator 116 
priority of 31 

SUM (sum of array elements) intrinsic function 115 

'1' 
tab character 105 
tab control specification 182 

example 186 
table, data 20 

definition of 230 
TAN (tangent) intrinsic function 115 
terminal 

definition of 232 
entering data through 22 
printing blank lines at 35 
printing data at 23 

test value, in FOR statement 149 
testing program data 39 
"The Computed COTO Statement" 42 
THEN keyword in IF statement 163, 40 
TIM (time of day in seconds) intrinsic function 115 
time-sharing environments, CMS and TSO 

implementation considerations 223 
trailing signs, in FORM statement 194 
transfer of con trol 

COSUB statement 160 
COTO statement 162 
IF statement 163 

transpose function 55 
array assignment statement 130 

TRN transpose array assignment statement 130 
true value, in IF statement 163 
truncation 

defini tion of 232 
of character data 29 

TSO time-sharing environment 
file-naming conventions 223 
PAUSE statement implementation 
consideration 223 

two-dimensional array 48, 111 

u 

compared to one-dimensional array 49 
restriction in redimensioning 51 

unary operators 116, 30 
definition of 232 
priority of 31 



updating records in record-oriented files 85, 81 
USE statement 133 

example of 69 
restriction with user-defined functions 140 

user, definition of 232 
user-written functions 57 

DEF statement to define 138 
rules of usage 139 
definition of 232 
maximum number permitted 140 

"Using Arrays" 47 
USING clause to relate to FORM statement 152 
"Using Generic Keys" 86 
"Using the EXIT Statement" 83 
"Using the IF Statement" 40 

v 
variable 20 

arithmetic 109 
definition of 229 
use in GET statement 72 
character 110 
as key in KEY clause 83 
definition of 229 
use in record-oriented files 78 
definition of 232 
dummy 57,138 
definition of 230 
naming conventions for 113 
rules for forming names 28 
simple, definition of 232 
used in input/output statements 
INPUT 22 
PRINT 34-35 
READ 21 

VS BASIC, definition of 232 
VS batch environment (see DOS/VS batch 

environment; OS/VS batch environment) 
VSAM (Virtual Storage Access Method) 223 

w 
WRITE FILE statement 220 

rules for data form specification 
B specification 152 
C specification 153 
NC and PD specifications 153 
Sand L specifications 154 
used with entry-sequenced files 78 
used with key-sequenced files 84 
used with relative record files 88 
VSAM requirement 223 

writing records into record-oriented file 78, 83-84 

x 
X control specification 193, 152 

examples of 65 

z 

use with REWRITE FILE statement 215 
use with WRITE FILE statement 220 

Z digit specifier 194, 154 
example of 63 
restrictions in use o( 196, 156 

zero, as initial value of arithmetic array 50 
zero suppression 

definition of 232 
in FORM statement 154 

zoned decimal format 127, 153 
zones, print 183 

Index 245 



VS BASIC Language 
GC28-8303-2 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

Please do not use this fonn to ask technical questions about IBM 
systems and programs or to request copies of publications. Rather, 
direct such questions or requests to your local IBM representative. 

If you would like a reply, please provide your name and address 
(including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



G C28-8303-2 

Fold and Staple 
, " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " "" " "" " "" " " " " "" " " " " "" " "" """". "" " """ " "" " " "" " " " """ " "" " " " " " " " " " " " """ " " " " " " " "" " "" " " " " " " " " " " " " "" " " " " " " .. !''' "" " " " " 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

IBM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 • 

First Class Permit 
Number 6090 
San Jose, California 

........................................................................................................................................ 
Fold and Staple 

ilrnlli1 
® 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

< en 
OJ 
l> 
en 
() 

r 
Q) 

:::J 
1.0 
C 
Q) 

1.0 
C'O 



GC28-8303-2 

~rn~ 
® 

International Business Machines Corporation 

Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 

(U.S.A. only) 

IBM World Trade Corporation 

821 United Nations Plaza, New York, New York 10017 

(I nternational) 

~ 
::l 
r-+ 
('0 

0.. 

::l 

C 
U'J 

~ 
G) 
("') 
N 
00 
Co 
tv 
o 
tv 
N 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	replyA
	replyB
	xBack

