
o

o

o

••••••
• "III1I1!UI. •• .11
•• .15
••••• 1111.
a •••••
•• a.
•• ... • •••••

IIIIDIIIIII ••
1111 .11
.11 1511
lIa ••••••
lIa.II.II!!1I
1111 .11
•• 11£1 ... II. •••• 11.

Pas cal / V S

• ••••••••••••••••••
Ref ere nee

Man u a 1

•• .11 IID •• llmll.

•• ••
!III
.II!lII •••

!l1I ••• II.
II.

•• II •

•••••••• • •••••
1111.... • •• 11.1111.

• 11.1111 •••• 11.11.1111 •••
•• II •• II ••••• lIlIal5l1l1.

•• ••
• 11 ••

.. II liS

•• ••
1111 1111
• 11 liS

1111 1111

•• ••
II. al!

•• • • ••
• 11
1111 .11 .11 •• . a......

•••••• •••••••• •• •• •• • • ••••••••
...11 ••• 11 •

•• ••
.!I ••
liS 1511 ••
II. ••••

•• ••

• •• ••• • ••

•••• •• ••
II •••

• •••

• •• ••••

'I
I ,

\ I
•• • •••••• 11 •••••••••••••••••••
•• .1I1I1I •• II!lIIII •• II ••••••••• II ••••

•• •• •
••• •• • ••• • •• •• • •••

II.
• 11

••
IUS

a •
••

• 11 •••• 11 •••• 11111111.11.

•• •• •• •• • a.IIII.IIDII.IIIIIIDIIII ••
!I. ••
1111 ••

•• • • • a •••••• DII •••••••••••••••••
1111.111111 •••• 11 •••••••••• 11 •••••

May 12, 1980

Final Draft

IBM Internal Use Only

•• • • • ••••••• • •••••••
• • •• I I

o

o

o

Fi rst Edi ti on (May 1980) .
This is the first edition of SH20-6163-0, a new publication that applies to the
Pascal/VS Installed User Program, program number 5796-PNQ.

It is possible that this material may contain reference to, or information about IBM
products (machines and programs) that are not available in your country. Such refer­
ences or information must not be construed to mean that IBM intends to announce such
products in your country.

Requests for copies of IBM publications should be made'to the IBM branch office that
serves you.

A form for reader's comments has been supplied at the back of this publication. If
the form has been removed, comments may be addressed to Pascal/VS Development, IBM
Corporation, M48/D25, P. O. BOX 50020, San Jose, California 95150. IBM may use or
distribute any information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the informa­
tion that you supply.

(c) Copyright Intern~tional Business Machines Corporation 1980

ii Pascal/VS Reference Manual

o

o

o

Preface

This document is the reference manual
to the Pascal/VS programming language.
The Pascal/VS Programmer's Guide,
SH20-6162, is also avai lable from IBM
to help write programs in Pasca!/VS.

It is assumed that you are already
familiar with Pascal and programming in
a high level programming language.
There are many text books available on
Pascali the following list of books was
taken from the Pascal User's Group
Pascal News, December 1978 NUMBER 13
and September 1979 NUMBER 15. You may
wish to check later editions of Pascal
News and your library for more recent
books.

•

•

•

•

•

•

•

•

•

..

•

•

The Design of Well-Structured and
Correct Programs by S. Alagic and
M.A. Arbib, Springer-Verlag, New
York, 1978, 292 pP.

Microcomputer Problem Solving by
K.L. Bowles, Springer-Verlag, New
York, 1977, 563 pp.

A Structured Programming Approach
to Data, by D. Coleman, MacMillan
Press Ltd, london, 1978, 222 pp.

A Primer Qll Pascal by R.W. Conway,
D. Gries and E.C. Zimmerman,
Winthrop Publishers Inc.,
Cambridge Mass., 1976, 433 pP.

PASCAL: An Introduction to Method­
ical Programming by W. Findlay and
D. Watt, Computer Science Press,
1978, 306 PP.i UK Edition by Pitman
International Text, 1978.

Programming in PASCAL by Peter
Grogono, Addison-Wesley, Reading
Mass., 1978, 357pp.

Pascal Users Manual and Report by
K. Jensen and N. Wirth, Springer­
Verlag, New York, 1978, 170 pp.

Structured Programming and
Problem-Solving with Pascal by
R.B. Kieburtz, Prentice-Hall Inc.,
1978, 365 pp.

Programming via Pascal by J.S. Rohl
and Barrett, Cambridge University
Press.

An Introduction to Programming and
Problem-Solving with Pascal, by
G.M. Schneider, S.W. Weingart and
D. M. Perlman, Wi ley & Sons Inc.,
New York, 394 pp.

Introduction to Pascal, by C.A.G.
Webster, Heyden, 1976, 129 pp.

Introduction to Pascal, by J. Welsh
and J. Elder, Prentice-Hall Inc.,
Englewood Cliffs, 220 pp.

• A Practical Introduction to Pascal
by I.P. Wilson and A.M. Addyman,
Springer-Verlag New York, 1978,
145pPi MacMillan, London, 1978.

• Systematic Programming: An Intro­
duction by H. Wirth, Prentice-Hall
Inc., Englewood Cliffs, 1973 169
pp.

• AIQorithms + Data Structures = Pro­
grams by N:- Wirth, Prentice-Hall
Inc., Englewood Cliffs, 1976 366
pp.

This reference manual considers ISO/TC
97/SC 5 N565 as the Pascal Standard
although N565 is a proposed standard
and subject to further modification.

structure of thi 5 Manual

This manual is divided into the follow­
i ng maj or topi cs

Chapter 1 is a summary of the lan­
guage.

Chapter 2 is a description of the
basic units (lexical) of
Pascal/VS.

Chapters 3 through 9 are a top­
down presentation of the lan­
guage.

Chapter 10 describes the I/O pro­
cedures and functions.

Chapter 11 describes the prede­
fined procedures and functions.

Chapter 12 describes the compiler
directives.

Appendices provide supplemental
information about Pascal/VS.

Pascal/VS Syntax Di agrams

The syntax of Pascal/VS will be
described with the aid of syntax dia­
grams. These diagrams are essentiallY
'road maps'; by traversing the diagram
in the direction of the arrows you can
i denti fy every possi ble legal
P~scal/VS program.

Within the syntax diagram, the names of
other diagrams are printed in lower
case and surrounded by braces ('{}').
When you traverse the name of another
diagram you can consider it a subrou­
tine call (or more precisely a 'subdia­
gram call'). The names of reserved
words are always in lower case. Special
symbols (i .e. semicolons, commas,
operators etc) appear as they appear
ina Pascal/VS program.

Preface iii

o

o

o

The di agram traversal starts at the
upper left and completes with the arrow
on the right. Every horizontal line has
an arrowhead to show the direction of
the traversal on that line. The
direction of traversal on the vertical
lines can be deduced by looking at the
horizontal lines to which it connects.
Dashed lines (i .e. ,----') indicate
constructs which are unique to
Pascal/VS and are not found in standard
Pascal.

Identifiers may be classified accord­
ing to how they are declared. For the
sake of clarity, a reference in the
syntax diagram for {id} is further
specified with a one or two word
description indicating how the identi-

iv Pascal/VS Reference Manual

fier was declared. The form of the ref­
erence is '{id:description}'. For
example {id:type} references an iden­
t i fi er declared as a type;
{id:function} references an identifier
declared as a function name.

Rev; si on Codes

The convention used in this document is
that all changes in the current version
from the previous edition are flagged
with a vertical bar in the left margin.

Extensions to Pascal are marked with a
plus sign in the margin.

o

o

o

+

+
+
+

+

+

+
+
+

+

CONTENTS

1.0 Introduction to Pascal/VS
1.1 Pascal Language Summary

2.0 The Base Vocabulary •..
2.1 Identi fi ers
2.2 Lexical Scope of Identifiers
2.3 Reserved Words
2.4 Special Symbols
2.5 Comments
2.6 Constants .
2.7 Structured Constants

3.0 Structure of a Module

4.0 Pascal/VS Declarations
4.1 The Label Declaration
4.2 The Const Declaration
4.3 The Type Declaration
4.4 The Var Declarat ion
4.5 The Static Declaration
4.6 The Def/Ref Declaration
4.7 The Value Declaration

5.0 Types
5.1 A Note about Stri ngs
5.2 Type Compat i bi Ii ty

5.2.1 Implicit Type Conversion
5.2.2 Same Types
5.2.3 Compat i ble Types
5.2.4 Assignment Compatible Types ...•

5.3 The Enumerated Sca la r
5.4 The Subrange Scalar
5.5 Predefined Scalar Types

5.5.1 The Type INTEGER
5.5.2 The Type CHAR .
5.5.3 The Type BOOLEAN
5.5.4 The Type REAL

5.6 The Array Type .
5.6.1 Array Subscripting

5.7 The Record Type
5.7.1 Naming of a Field
5.7.2 Fixed Part
5.7.3 Variant Part
5.7.4 Packed Records
5.7.5 Offset Qualification of Fields

5.8 The Set Type
5. 9 The F i I e Type
5.10 Predefined Structure Types

5.10.1 The Type STRING
5.10.2 The Type ALFA
5.10.3 The Type ALPHA
5.10.4 The Type TEXT

5.11 The Po inter Type
5.12 Storage, Packing, and Alignment

6.0 Routines
6.1 Routine Declaration
6.2 Routine Parameters .

6.2.1 Pass by Value Parameters
6.2.2 Pass by Var Parameters
6.2.3 Pass by Const Parameters
6.2.4 Formal Routine Parameters

6.3 Routi ne Composi ti on
6.4 Funct ion Resul ts
6.5 Predefined Procedures and Functions

7 . 0 Vari abIes
7.1 Array Referencing
7.2 Field Referencing

1
1

9
9
9

11
12
13
14
16

17

19
19
20
21
22
23
24
25

27
27
27
27
28
28
28
29
30
31
31
33
34
35
36
36
38
38
39
39
40
40
42
44
45
45
48
49
50
51
52

53
53
54
54
54
54
54
54
55
56

57
57
58

CONTENTS v

o
+

+

+

+

+

+

+

+
+
+

o

+

+
+

+
+
+
+
+

+
+

+

+
G~

7.3 Pointer Referencing
7.4 File Referencing

8.0 Express ions
8.1 Operators . .
8.2 Constant Expressions
8.3 Boolean Expressions
8.4 Logical Expressions
8.5 Function Call
8.6 Scalar Conversions
8.7 Set Factors

9.0 Statements. .
9.1 The Assert Statement •
9.2 The Assignment Statement
9.3 The Case Statement .
9.4 The Compound Statement
9.5 The Continue Statement
9.6 The Empty Statement
9.7 The For Statement
9.8 The Goto Statement
9.9 The If Statement ..
9.10 The Leave Statement
9.11 The Procedure Call
9.12 The Repeat Statement
9.13 The Return Statement
9.14 The While Statement
9.15 The With Statement

10.0 I/O Faci lit i es
10.1 RESET Procedure
10.2 REWRITE Procedure .
10.3 INTERACTIVE Procedure
10.4 OPEN Procedure
10.5 CLOSE Procedure
10.6 GET Procedure
10.7 PUT Procedure
10.8 EOF Function
10.9 READ and READLN (TEXT Files)
10.10 READ (Non-TEXT Files) .
10.11 WRITE and WRITELN (TEXT Files)
10.12 WRITE (Non-TEXT Fi les)
10.13 EOLN function
10.14 PAGE Procedure
10.15 COLS Function

11.0 Execution Library Facilities
11.1 Memory Management Routines

11.1.1 MARK Procedure
11.1.2 RELEASE Procedure
11.1.3 NEW Procedure .
11.1.4 DISPOSE Procedure

11.2 Data Movement Routines
11.2.1 PACK Procedure
11.2.2 UNPACK Procedure

11.3 Data Access Routines
11.3.1 LBOUHD Function
11.3.2 HBOUHD Function
11.3.3 LOWEST Function
11.3.4 HIGHEST Function
11.3.5 SIZEOF Function

11.4 Conversion Routines
11.4.1 ORD Function
11.4.2 CHR Function .
11.4.3 Scalar Conversion
11.4.4 FLOAT Function
11.4.5 TRUNC Function
11.4.6 ROUND Function
11.4.7 STR Function .

11.5 Mathematical Routines
11.5.1 MIN Function
11.5.2 MAX Function
11.5.3 PRED Function
11.5.4 SUCC Function
11.5.5 ODD Function

vi Pascal/VS Reference Manual

. . '.

. '. .

58
59

61
64
66
67
68
69
70
71

73
74
75
76
78
79
80
81
83
84
85
86
87
88
89
90

93
93
94
94
95
95
96
96
97
97
99
99

101
102
103
103

105
106
106
106
107
108
109
109
109
110
110
111
111
112
112
113
113
113
114
114
115
115
116
117
117
117
118
118
119

0
+

+
+
+
+
+
+
+
+

+
+

+
+
+
+

+
+
+
+
+
+
+
+

+

0 +
+

o

11.5.6 ABS Function
11.5.7 SIN Function
11.5.8 COS Function
11.5.9 ARCTAN Function
11.5.10 EXP Function
11.5.11 LN Function
11.5.12 SQRT Function
11.5.13 SQR Function .•..
11.5.14 RANDOM Function

11.6 STRING Routines
11.6.1 LENGTH Function
11.6.2 SUBSTR Function
11.6.3 DELETE Function
11.6.4 TRIM Function
11.6.5 LTRIM Function
11.6.6 COMPRESS Function
11.6.7 INDEX Function
11.6.8 TOKEN Procedure

11.7 General Routines
11.7.1 TRACE Procedure
11.7.2 HALT Procedure ...

11.8 System Interface Routines
11.8.1 DATETIME Procedure
11.8.2 CLOCK Function
11.8.3 PARMS Function
11.8.4 RETCODE Procedure

12.0 The ~ Feature
12.1 The 7.INCLUDE Statement
12.2 The 7.CHECK Statement
12.3 The 7.PRINT Statement
12.4 The 7.LIST Statement
12.5 The 7.PAGE Statement
12.6 The 7.TITLE statement
12.7 The 7.SKIP statement

A.O The Space Type
A.l The Space Declaration
A.2 Space Referencing

B.O Standard Identifiers in Pascal/VS

C.O Syntax Diagrams

D.O Index to Syntax Diagrams

E.O Glossary

CONTENTS

119
120
120
121
121
122
122
123
123
124
124
124
125
125
126
126
127
127
129
129
129
130
130
130
131
131

133
134
134
134
134
134
134
134

135
135
135

137

139

151

153

vi j

o

o

o
viii Pascal/VS Reference Manual

o

o

o

,! • .2. INTRODUCTION TO PASCAL/VS

"The language Pascal was designed by
Professor Niklaus Wirth to satisfy two
principal aims:
(a) to make available a language suit­

able for teaching programming as a
systemati c di sci pI i ne based on
certain fundamental concepts
clearly and naturally reflected by
the language.

(b) to define a language whose imple­
mentations could be both reliable
and efficient on then available
computers."

(Pascal Draft Proposal ISO/TC 97/SC 5
N565, February 19, 1980)

Pascal/VS is an extension to standard
Pascal. The purpose of extending Pascal
is to facilitate application program­
ming requirements. Among the exten­
sions are such features as separately
compilable external routines, internal
and external static data, and varying
length character strings.

Pascal is of interest as a high level
programming language for the following
reasons:

• It provides constructs for defin­
ing data structures in a clear man­
ner.

•

•

•

•

•

•

•

It is suitable for applying struc­
tured programming techniques.

The language is
machine-independent.

relatively

Its syntax and semantics allow
extensive error diagnostics during
compilation.

A program written in the language
can have extensive execution time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

,!.,! PASCAL LANGUAGE SUMMARY

This section of the manual is meant to
be a capsule summary of Pascal/VS. It
should serve as a brief outline to the
language. The details are explained in
the remainder of this document.

Modules

program

segment

self-contained and independently executable module

a shell in which procedures and functions may be
separately compiled

Introduction to Pascal/VS 1

o

o

o

label

const

type

var

def

ref

static

value

procedure

function

enumeration

subrange

array

record

set

f1 Ie'

pointer

Declarations

declares a label in a program, procedure or function

declares an identifier that becomes synonymous with a
compile time computable value

declares an identifier which is a user-defined data type

declares a local variable

declares a variable which is defined in one module and
may be referenced in other modules

declares a variable which is defined in another module

declares a variable which is persists for the entire
execution of the program

assigns a value to a def or static variable at
compi Ie time

a unit of a module which may be invoked

a unit of a module which may be invoked and returns a
value

Data Types

a list of constants of a user-defined scalar data type

a continuous subset of a scalar type

a data structure composed of a list of homogeneous
elements

a data structure composed of a list of heterogeneous
elements

a collection of zero or more scalar values

a sequence of data to be read or written by a Pascal
program

a reference to a variable created by the programmer

2 Pascal/VS Reference Manual

0

o

o

INTEGER

REAL

CHAR

BOOLEAN

TEXT

ALFA

ALPHA

STRING

FALSE

TRUE

MAXINT

MININT

ALFALEN

ALPHALEN

value

variable

constant

procedural

functional

Predefined Data Type Identifiers

whole numbers in the range -2147483648 .. 2147483647

System/370 long floating point numbers

an EBCDIC character

an enumerated scalar with values FALSE and TRUE

a "file of char", used for readable input and output

a "packed array[I .. 8] of char"

a "packed array[I .. 16] of char"

a "packed array[I .. n] of char" where n varies up to
compile time specified maximum value

Predefined Constant Identifiers

boolean constant

boolean constant

value is equal to 2147483647 which is the largest
INTEGER value

value is equal to -2147483648 which is the smallest
INTEGER value

value is equal to 8 which the number of characters
in an ALFA

value is equal to 16 which the number of characters
in an ALPHA

Parameter Passing Mechanisms

parameter passing method whereby a copy of the actual
parameter is assigned to the formal parameter

parameter passing method whereby the formal parameter
represents the variable which is the actual parameter;
this method is also refered to as by reference

parameter passing method whereby the formal parameter
is treated as if it were a constant

the mechanism whereby a procedure may be passed to the
called routine and executed from there

the mechanism whereby a function may be passed to the
called routine and executed from there

Introduction to Pascal/VS 3

o

o

o

assert

assignment

case

compound

continue

empty

for loop

goto

if

leave

Executable statements

a statement that permits you to specify a condition
that should be true and if not causes a runtime
error to be indicated

the statement that assigns a value to a variable

this statement causes anyone of a list of statements
to be executed based upon the value of an expression

the 'begin/end' reserved words bracket a series of
statements that cause the series to act as a single
statement

this statement resumes execution of the next iteration
of the innermost loop. The termination condition is
tested to determine if the loop should continue

the statement that contains no executable code

a looping statement that modifies a control variable for
each iteration of the loop

the statement which changes the flow of your program

this statement causes one of two statements to be
executed based on the evaluation of an expression

this statement terminates the execution of the innermost
loop. Execution resumes as if the loop termination
condition were true

procedure call this statement invokes a procedure. At the conclusion
of the procedure, execution continues at the next
statement

repeat loop a loop with the termination test after each execution

return

while loop

wi th

of the iterated statements

this statement terminates execution of the executing
routine and returns control to the caller

a loop with the termination test before each execution
of the iterated statement

a statement that permits complicated references to
fields within a record to be simplified

4 Pascal/VS Reference Manual

\ Multiplying Operators

o operator operation operands result

* multiplication It'HEGER It'HEGER
REAL REAL
one REAL, one INTEGER REAL

/ real division INTEGER REAL
REAL REAL
one REAL, one INTEGER REAL

div integer division INTEGER INTEGER

mod modulo INTEGER INTEGER

& (and) boolean and BOOLEAN BOOLEAN

& (and) logical and INTEGER INTEGER

* set intersection set of t set of t

II string catenation STRING STRING

« logical left shift It-HEGER INTEGER

» logical right shift INTEGER INTEGER

Adding Operators

operator operation operands result

+ addition INTEGER INTEGER

() REAL REAL
one REAL, one INTEGER REAL

- subtraction INTEGER INTEGER
REAL REAL
one REAL, one INTEGER REAL

- set difference set of t set of t

I (or) boolean or BOOLEAN BOOLEAN

I (or) logical or INTEGER INTEGER

+ set union set of t set of t

&& (xor) boolean xor BOOLEAN BOOLEAN

&& (xor) logical xor INTEGER INTEGER

&& (xor) 'exclusi vet union set of t set of t

The Not Operator

operator operation operand result

... (not) boolean not BOOLEAN BOOLEAN

... (not) logical one's INTEGER INTEGER
complement

o
... (not) set complement set set

Introduction to Pascal/VS 5

Relational Operators

0 operator operation operands result

= compare equal any set, scalar type, BOOLEAN
pointer or string

<> C .. =) compare not equal any set, scalar type, BOOLEAN
pointer or string

< compare less than scalar type or string BOOLEAN

<= compare < or = scalar type, string BOOLEAN

<= subset set of t BOOLEAN

> compare greater scalar type, string BOOLEAN

>= compare > or = scalar type, string BOOLEAN

>= superset set of t BOOLEAN

in set membership t and set of t BOOLEAN

Reserved Words

and end not + segment
array file of set

+ assert for or + space
begin function + otherwise + static
case goto packed then

o const if procedure to
+ continue in program type
+ def label + range until

div + leave record + value
do mod + ref var
downto nil repeat while
else + return with

+ xor

note: those words marked by , +, are not reserved in standard Pascal

o
6 Pascal/VS Reference Manual

0

0

o

symbol

+
-
*
1

..
I
&
&&

=
<
<=
>=
>
<> or

»
«
II
. -

I

:
; .. ,
~ or

(
)
[or
] or

{ or
} or
1*
*1

.. =

->

(. .)
OE
*)

Special Symbols

meaning

addition and set union operator
subtraction and set difference operator
mUltiplication and set intersection operator
division operator, REAL results only

BOOLEAN not, one's complement on INTEGER or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union

equality operator
less than operator
less than or equal operator
greater than or equal operator
greater than operator
not equal operator

right logical shift on INTEGER
left logical shift on INTEGER
catenation operator

assignment symbol
period to end a module
field separator in a record
comma, used as a list separator

colon, used to specify a definition
semicolon, used as a statement separator.
subrange notation
quote, used to begin and end string constants
pointer symbol

left parenthesis
right parenthesis
left square bracket
right square bracket

comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

Constants

integer whole numbers in the range -2147483648 .• 2147483647

real System/370 long (8 bytes) floating point numbers

string a sequence of EBCDIC characters

nil the value of a pointer which does not point to a variable

array constant constant of an array type

record constant constant of a record type

set constant constant of a set type

Introduction to Pascal/VS 7

o

o

o
8 Pascal/VS Reference Manual

o

o

o

~ • .Q. THE BASE VOCABU LARY

~.1 IDENTIFIERS

Syntax:

i d:

>

->{letter}

L
--->{digit} >}---

>{letter} > >
"---> {underscore}-->]

where:
{letter} is ' A ' , ' B ' , ••• I 'Z','a','b', ' z' or '$,
{digit} is ' 0 ' , ' 1 ' , ... , , 9'
underscore is , ,

-

Identifiers are names given to vari­
ables, data types, procedures, func­
tions, named constants and modules.

correct:

I
K9
New York
AMOUNT$

incorrect:

5K
NEW JERSEY

Valid and Invalid Identifiers

Pascal/VS permits identifiers of up to
16 characters in length. You may use
longer names but Pascal/VS will ignore
the portion of the name longer than 16
characters. You must assure identifi­
ers are unique within the first 16
positions.

There is no distinction between lower
and upper case letters within an iden­
tifier name. For example, the names
'ALPHA', 'alpha', and 'Alpha' are
equivalent.

There is an implementation restric­
tions on the naming of external vari­
ables and external routines. You must

make sure that identifiers used as
external names are unique in the first
8 characters.

~.~ LEXICAL SCOPE OF IDENTIFIERS

The area of the module where a partic­
ular identifier can be referenced is
called the lexical scope of the identi­
fier (or simply scope).

In general, scopes are dependent on the
structure of routine declarations.
Since routines may be nested within
other routines, a lexical level is
associated with each routine.--y;:;--addi­
tion, record definitions define a lexi­
cal scope for the fields of the record.
Within a lexical level, each identifier
can be def i ned on 1 yonce. A program
module is at level 0, routines defined
wi thi n -the module are at level 1; in
general, a routine defined in level i
would be at level (i+1). The following
diagram illustrates a nesting struc­
ture.

The Basic Vocabulary 9

o

o

o

program M (level 0)

procedure A (level 1)

procedure B (level 2)

type
R =

record
R 1: •••
R2: •••
end;

I function C I
(level 3)

procedure D (level 2)

function X (level 1)

procedure Y (level 2)

procedure Z (level 2)

The scope of an identifier is the
entire routine (or module) in which it
was declared; thi s includes all
routines defined within the routine.
The following table references the pre-

10 Pascal/VS Reference Manual

ceding diagram.

identifiers
declared in:

Module M
procedure A
procedure B
type R
function C
procedure D
function X
procedure Y
procedure Z

are accessible in:

M,A,B,C,D,X,Y,Z
A,B,C,D
B,C
B,C
C
D
X,Y,Z
Y
Z

If an identifier is declared in a rou­
tine wh i ch is nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the identifier declared at the
inner most level is the one accessible.

The scope of a field identifier defined
within a record definition is limited
to the record i tsel f. The scope of a
record may be accessed by either field
referencing (section 7.2) or with the
with-statement (section 9.15, page 90
) .
The Pascal/VS compiler effectively
inserts a prelude of declarati ons at
the beginning of every module it com­
pi les. These declarati ons consi st of
the predefined types, constants, and
routines. The scope of the prelude
encompasses the entire module. You may
re-declare any identifier that is pre­
defined if you would like to use the
name for another purpose.

o

o

~.~ RESERVED WORDS

Reserved Words

and end
array file

+ assert for
begin function
case goto
const if

+ continue in
+ def label

div + leave
do mod
downto nil
else

note: those words marked by , +, are not

Pascal/VS reserves the identifiers
shown above for expressing the syntax
of the language. These reserved words
may never be declared by you. Reserved
words must be separated from other
reserved words and identifiers by a

not + segment
of set
or + space

+ otherwise + static
packed then
procedure to
program type

+ range until
record + value

+ ref var
repeat while

+ return with
+ xor

I

reserved in standard Pascal

special symbol, a comment, or at least
one blank.

A lower case letter is treated as
equivalent to the corresponding upper
case letter in a reserved word.

The Basic Vocabulary 11

o

+
+

+
+
+

o

+
+

o

SPECIAL SYMBOLS

symbol

+ -
*
/

-r

I
&
&&

=
<
<=
>=
>
<> or

.»
«
II

· -
· · ,
:
;
· . ,
{ or

(
)
[or
J or

{ or
} or
/*
*/

-r_

->

(. .)
(*
*>

Special Symbols

meaning

addition and set union operator
subtraction and set difference operator
mUltiplication and set intersection operator
division operator, REAL result only

BOOLEAN not, one's complement on INTEGER or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER
and set exclusive union

equality operator
less than operator
less than or equal operator
greater than or equal operator
greater than operator
not equal operator

right logical shift on INTEGER
left logical shift on INTEGER
catenation operator

assignment symbol
period to end a module
field separator in a record
comma, used as a list separator

colon, used to specify a definition
semicolon, used as a statement separator
subrange notation
quote, used to begin and end string constants
pointer symbol

left parenthesis
right parenthesis
left square bracket
right square bracket

comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

Symbol
Special symbols used by Pascal/VS are
listed above. Several special symbols
may also be written as a reserved word.
These symbols are shown in the follow­
i ng table.

I
&
&&

Reserved Word
not
or
and
xor

12 Pascal/VS Reference Manual

o

o

o

~ • .2. COMMENTS

Pascal/VS supports two forms of com­
ments: '{ ... }' and '/* ... */'. The
curved braces are the standard comment
symbol in Pascal. The symbols '(*' and
'*)' are considered by the compiler to
identical to left and right braces. The
form of comment using '/*' and ,*/' is
considered to be distinct from the form
us i ng braces.

When the compiler encounters the symbol
'{I, it will bypass all characters,
including end-of-line, until the sym­
bol '}' is encountered. L i kewi se, all
characters following '/*' will be
bypassed until the symbol ,*/' is
detected. As a result, either form may
be used to enclose the other; for exam­
ple /* .•. { ... } ..• */ is one comment. The
two di sti nct forms of comments are use-

ful to distingish different kinds of
information to the program reader. For
example, a '/* ... */' comment could be
used to indicate a temporary piece of
code, or perhaps debugging statements.

A comment may be placed anywhere in a
module where a blank would be accepta­
ble.

1*
if A = 10 then C* this statement is

for program
debugging *)

WRITE('A IS EQUAL TO TEN');
*/

Example of a nested Comment

The Basic Vocabulary 13

o

+
+
+
+

+ ...

o
+

o

~.~ CONSTANTS

Syntax:

unsigned-integer:

F
>{di9it}--~I--------------------------~1-------------------------->

---> , ---l~::~~~~~~~~_~~~~:~:::r---> 'B --->

---> , ---l~::~~~~~:~~~~~~:::r---> 'X ------>

real-number:

'XR -----------------> ---r---> , ---l~::~~~~~:~~~~~~:::r--->
l< >{digit} I I >. L< ___ >_{_d_i_9_i_t_}:::~~I--~I--+------------->

C< > E ---,.-------- ----r---> >{digit}------------>
t:::~ + :::~1 L< ____________ ~

unsigned-number:

~>{unsigned-integer}--->J""--->
~>{real-number} >

string:

---...--> ,
l ___ > ,

--~-------------------~---> , l< __ {cha racter} <----.I
---l~::~~~~~:~~~~~~:::r---> 'XC

--------~------------------------> ______ >J

unsigned-constant:

1
>{UnSigned-nUmber}-~--->

>{string} :>j
>{id:constant}-----

> nil

constant:

>{unsigned-constant}------------------~J~------------------------------>
I > + J >{unsigned-number}-->
~> - -->

where:
{binary-digit} is '0' or '1'.
{digit} is '0' through '9';
{hex-digit} is '0' through '9' and 'A' through 'F';
{character} is any EBCDIC character.

Constants can be divided into several
categories according to the predefined
type to which they belong. An unsigned
number will conform to either a REAL or
an INTEGER. Strings will conform to the
type STRING or packed array[I .. nl of
CHAR. In addition, if the string is one
character in length, it will conform to
the type CHAR.

14 Pascal/VS Reference Manual

If a single quote is to be used within
a string, then the quote must be writ­
ten twice. lower case and upper case
letters are distinct within string con­
stants. String literals are not permit­
ted to extend past the end of line of a
source line. longer strings can be
formed by catenating shorter strings.

o

o

o

Nil is of a special type which will
conform to any pointer type. It repres­
ents a unique pointer value which is
not a val i d address.

The constants TRUE and FALSE are prede­
fined in the language and are of the
standard type BOOLEAN.

+ Integer hexadecimal constants are
+ enclosed in quotes and suffixed with an
+ 'X' or 'x'. Integer binary constants
+ are enclosed in quotes and suffixed
+ wi th a '8' or 'b'. Such constants may
+ be used in any context where an integer
+ constant is appropriate. If you do not
+ specify 8 hexadecimal digits Ci.e. 4
+ bytes), Pascal/VS assumes that the dig­
+ its not supplied are zeros on the left.
+ For example, 'F'x is the value 15.

+ Floating point hexadecimal constants
+ are enclosed in quotes and suffixed
+ with an 'XR' or 'xr'. Such constants
+ may be used in any context where a real
+ constant is appropriate. If you do not
+ specify 16 hexadecimal digits (i.e. 8
+ bytes), Pascal/VS assumes that the dig­
+ its not supplied are zeros on the
+ right. For example, '4110'xr is the
+ same as '411000000000000'xr.

+ String hexadecimal constants are
+ enclosed in quotes and suffixed with an
+ 'XC' or 'xc'. Such constants may be
+ used in any context where a string con­
+ stant is appropriate. There must be an
+ even number of digits within a
+ hexadecimal string constant; that is,
+ you must specify each character fully

+ that is to be in the string.

The symbol 'E' or 'e' when used in a
real-number expresses 'ten to the power
of' .

Pascal/VS permits constant expressions
in places where the Pascal standard
only permits constants. Constant
expressions are evaluated and replaced
by a single result at compile time. See
section 8.2 on page 66 for a
description of constant expressions.

constant
o
-500
1.0
314159E-5
OEO
1.OEIO
TRUE
'FF'X
, A '
'ABC'

matches standard lle.g
INTEGER
INTEGER
REAL
REAL
REAL
REAL
BOOLEAN
INTEGER
CHAR
STRING

'CIC2C2'xc
'4E800000FFFFFFFF'xr
'abc'

STRING
REAL
STRING , , , , , , , ,

'Thats"s all'

STRING
CHAR
CHAR
STRING
STRING

Examples of Constants

The Basic Vocabulary 15

+ ~.1. STRUCTURED CONSTANTS

cr Syntax:
+

+ structured-constant:

+
+

---I--->{record-structureJ---r--->
--->{array-structureJ--->

+ record-structure:

+
+
+

--->{id:type}---> (---I---1:::~~~~~:~~~~:~~~~~::;r---T--->) -------------> <____________ , < _____________ J

+

+
+
+
+
+
+

array-structure:

+ repetition:

) ---------->

+ --->{constant-exprJ-->

+ note: must evaluate to positive integer.

a
+ Constant structures are constants
+ which are of a structured type. The
+ type of the constant is determined by
+ the type identifier which is used in
+ its definition. These constants may be
+ used in constant declarations, value
+ declarations or in the executable
+ statements.

+ There are two kinds of constant struc­
+ tures: one is used for arrays and the
+ second is used to specify records.

+ Array constants are specified by a list
+ of constant expressions where each
+ expression defines one element of the
+ array. See section 8.2 on page 66 for a
+ description of constant exepressions.
+ You may omit an element of the array
+ within the list in which case the value
+ of that element is not defi ned.
+ Elements may be omitted at the end of
+ the array in which case the value of
+ those elements are also not defined.
+ You may follow the constant expression
+ with a colon and a repetition expres­
+ sion; this is used to specify that the
+ first constant expression is to be
+ repeated.

+ The second kind of constant structure
+ is used to specify records. Record con-et stants are specified by a list of con­
T stant expressions where each

16 Pascal/VS Reference Manual

+ expression defines one field of the
+ record. You spec i fy one constant
+ expression for each field of the fixed
+ part of the record. You may omi t a
+ field of the record within the list in
+ which case the value of that field is
+ not defined. Restriction: You may not
+ specify a value for any fields in a
+ variant part; note that the tagfield is
+ considered part of the fixed part.

+

+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+

+

type
COMPLEX = record

RE,IM: REAL
end;

VECTOR = array[1 .. 71 of INTEGER;
CARRAY = array[O .. 91 of COMPLEX;

const
(* Structured Constants *)
THREEFOUR = COMPLEX(3.0,4.0);
VECTOR_l = VECTOR(7,O:5,1);
VECTOR 2 = VECTOR(2,3,,4);
VECTOR-3 = CARRAY(

- COMPLEX(l.O,O.O),
COMPLEX(1.O,1.O):8,
COMPLEX(O.O,l.O»;

EXamples of Structured Constants

o

0 +
+
+
+
+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

o

1.,2, STRUCTURE OF A MODULE

Syntax:

module:

L >{program-module}----~J~-->
--->{segment-module}--->

program-module:

--> program --> {i d}---r--> (> {i d} » l __________ ~~:::_:_~:::: _________ >J >]

§
; <------------------------------~

< >{declarationJ-->]

>{compound-statementJ-->

declaration:

---r--> {label-dclJ---->

~>{constant-dcIJ--->

~>{type-dclJ------>·

~>{var-dcl}----->

r--->{def-dcl}--------->

~--->{static-dclJ------>

r--->{value-dclJ------->

--->

~> {r 0 uti n e-dc 1 J _.-. ->~-->

segment-module:

---~<::~:::~-::::~~~~::::-~-::::]
--->{constant-dcl}~--->

--->{type-dclJ-------->

"--->{def-dcl}--------->­

--->{static-dclJ------>

--->{value-dcl}------->

--->{routine-dcIJ----->

---> . -->

A module is an independently compilable
un it of code. There are two types of
modules in Pascal/VS: the program mod­
ule and the segment module.

The program is the module which gains
initial control when the compiled
program is invoked from the system
loader. It is effectively a procedure
that the loader invokes. The body of a
program module is identical to the body

Structure of a Module 17

+ ,.--- ...

L~
+
+
+
+
+
+

o

o

of a procedure.

A segment module may be compiled as a
unit independent of the program module.
It consists of routines that are to be
linked into the final program prior to
execution. Data is passed to routines
through parameters and external vari­
ables. Segments are useful in breaking
up large Pascal/VS programs into small­
er units.

The identifier following the reserved
word "program" must be a un i que
external name. The identifier follow­
ing the reserved word "segment" may be
the same as one of the ENTRY routines
in the segment or may be a un i que
external name. Thus, an entry function
called SIN could be in a segment called
SIN. An external name is an identifier
for a program, segment, def or ref var­
iable, ENTRY routine, or EXTERNAL rou­
tine.

The optional identifier list following
the program identifier is not used by
Pascal/VS. The identifiers will be

Pascal/VS program

ignored.

A program is formed by linking a pro­
gram module with segment modules Cif
any) and with the Pascal/VS execution
library and libraries that you may sup­
ply.

Pascal/VS allows declarations to be
given in any order. This is an exten­
sion to Pascal and is provided primari­
ly to permit source that is INCLUDEd
during compilation to be independent of
any ordering already established in the
module. The standard ordering for dec­
larations is shown in the diagram for
declarations. (For a description of the
INCLUDE facility see section 12.1 on
page 134)

Every i dent i fi er must be, predefi ned or
declared by you before it is used.
There is one exception to this rule: a
definition of a pointer may refer to an
identifier before it is declared. The
identifier must be declared later or a
compile-time' diagnostic will be
produced.

modules

~s-e~g-m-e-n-t---m-o-d-u-I-e-s--~ program-module

program EXAMPLE;
var

I : INTEGER;
begin

for 1:=0 to 1000 do
if I mod 7 = 0 then

WRITElN(1:5,

execution-library

, IS DIVISIBLE BY SEVEN')
end.

Example of a Program Module

18 Pascal/VS Reference Manual

segment EXAMSEGi
function COSINE

(X:REAL):REALi ENTRY;
var s: REAL;
begin

S := SIN(X)i
COSINE := SQRT(1.0 - S*S)

end; .

Example of a Segment Module

+

o

o

~.~ PASCAL/VS DECLA~ATIONS

Pascal/VS provides you with 10 types of
declarations:

• label

• const

• type

• var

~.l. THE LABEL DECLARATION

Syntax:

label-del:

--> label

label:

[>{label~-~~->;
<--- ,< .

+ • def

+ • ref

+ • static

+ • value

• procedure

• function

--------------------------------------~->

l >{unsigned-integer}--~J--->
--->{id}---------------->

Note: the values of the unsigned integer must be in the subrange 0 •• 9999.

A label declaration is used to declare
labels which will appear in the routine
and will be r~ferenced by a goto state­
ment within the routine. All labels
defined within a routine must be
declared in a label declaration within
the routine.

A label may be either an unsigned inte­
ger or an identifier. If the value is
an unsigned integer it must be in the
range 0 to 9999.

label
10,
label A,
1, -
2,
Error_exit;

A label Declaration

Pascal/VS Declarations 19

~.~ THE CONST DECLARATION

,-.,

U Syntax:

constant-del:

+ --> const -~-->{id}--> = -->{constant-exprl--> --------------------> l< _____________ ---J

A constant declaration allows you to
+ assign identifiers that are to be used
+ as synonyms for constant expressions.

o

o

The type of a constant identifier is
determined by the type of the expres­
sion in the declaration.

const
BLANK
BLANKS

= , ';
=' , ;

FIFTY = 50;
A = FIFTY;
B = FIFTY * 10/(3+2);
C SQUARED = A*A + B*B;
ORD_OF_A = ORDC'A');
PI = 3.14159265358;
MASK = '8000'X I '0400'X;
ALFALEN = 8;
ALPHALEN = 16;
LETTERS = ['A' .. 'Z','a' .. 'z']
MAXREAL = '4FFFFFFFFFFFFFFF'xr;

Constant Declarations

20 Pasca!/VS Reference Manual

o

o

~.~ THE TYPE DECLARATION

Syntax:

type-del:

--> type --~--->{idl--> = --->{typel--> --~--------------------------> l< __________ ----I

A type declaration allows you to define
a data type and associate a name to
that type. Once declared, such a name
may be used in the same way as a prede­
fined type name.

type

C* all of the following types *)
C* are predefined in Pascal/VS *)

INTEGER = MININT .. MAXINT;
BOOLEAN = CFALSE,TRUE);
ALFA = packed array[1 .. ALFALENl

of CHAR;
ALPHA = packed array[1 .. ALPHALENl

of CHAR;
TEXT = file of CHAR;

Type Declarations

Pascal/VS Declarations 21

----------------- ------ ------- - ---.- -- - ------- ._- - - - ---

~.~ THE VAR DECLARATION

,...--.,

U Syntax:

o

o

var-dcl:

l
[< ___ >{;d~---~--> --->{type}---> --~------------------>

<--~

--> var

The var declaration is used to declare
automatic variables. Automatic vari­
ables are allocated when the routine is
invoked, and are de-allocated when the
corresponding return is made. If the
routine is invoked a second time,
before an initial invocation completes
(a recursive call), the local automatic
variables will be allocated again in a
stack-like manner. The variables allo­
cated for the first invocation become
inaccessible until the recursive call
completes.

Commas are used in the declaration to
separate two or more identifiers that
are being declared of the same type.
This is a shorthand notation for two
separate declarations.

You may have automatic variables
declared in the outermost nesting (lev­
el 0) of a program module. However this
is not the case for segment modules.

22 Pascal/VS Reference Manual

This is because a segment is used as a
shell in which procedures are compiled
and has no activation (call) of its
own. You may always declare static, def
and ref variables in the outermost lev­
el of a segment.

var
I
SYSIN
X,

INTEGER;
TEXT;

Y,
Z
CARD

: REAL;

record
RANK
SUIT

end;

1 .. 13;
(SPADE,HEART,DIAMOND,CLUB)

Example of a Var Declaration

0

o

o

+ ~.a THE STATIC DECLARATION

+
+ Syntax:
+

+ static-dcl:

+
+
+
+

---> static ---1---1--->{idJ---r---> : --->{typeJ---> i ---J--------------->
<--- I ----

<--
+

+
+
+
+
+
+

The static declaration is used to
declare static variables. The vari­
ables declared in this way are allo­
cated prior to program execution and
exi st for the life of the program's
execution.

+ Static variables can be referenced
+ according to the lexical scoping rules.
+ Two static variables in different
+ scopes are different variables even
+ though they have the same name.

+ Data in static variables that are local
+ to a rout i ne wi 11 be preserved over
+ separate invocations of the routine.
+ Such a routine called recursively will

+ access the same instance of each static
+ variable.

+ Static variables may be initialized at
+ compile-time by the use of a value dec­
+ laration.

+

+ static
+ SYSPRINT : TEXTi
+ X,Y: REALi

+ Example of a Static Declaration

+

Pascal/VS Declarations 23

+ ~.~ THE DEF/REF DECLARATION

Syntax:

+ def-dcl:

+
+
+
+

L ___ > ref ---> L<___ ----
---T---> def ----r---l---T--->{id}---r---> : --->{type}---> ---J--------->

<--------~---------------------------------
+

+ The def/ref declarations are used to
+ declare external variables. External
+ variables are allocated prior to exe­
+ cution and can be accessed from more
+ than one module. All identifiers that
+ are to be used as external names must
+ be unique in the first eight charac­
+ ters.

+ If an external variable with a partic­
+ ular name is declared in several mod­
+ ules, a single common storage location
+ will be associated with each such vari­
+ able. An external variable must be
+ declared with identical types in each
+ module; the programmer is responsible
+ for assuring that the types are the
+ same.

+

C~
+
+
+
+
+
+
+
+
+
+
+
+
+
+

The def declaration specifies that the
program loader is responsible for gen­
erating the common storage for the var­
iable. The ref declaration specifies
that storage for the var i able is
defined in another module (or in the
runtime environment). Ref declared
variables will remain unresolved until
the encompassing module is compiled and
linked with a module in which the vari­
able is declared as a def variable or
defined in a non-Pascal CSECT or in an
assembly language COM. The expected use
of ref variables is to access external
data declared in non-Pascal/VS pro­
grams such a s tho se wr i tten ina ssembl y
language.

+ A def or ref variable may be declared
+ local to a routine; the same scope
+ rules apply as for any other declared
+ identifier. However, if the name of the
+ variable is declared in another scope
+ (even in another module) as a def or
+ ref variable, both occurrences of the
+ variable will reference the same stor­
+ age.

o
24 Pascal/VS Reference Manual

+ In the following example, the variable
+ X in procedures A, B, and C references
+ the same storage; however, the vari­
+ abIes X declared in segment P and pro­
+ cedure D each refer to storage that is
+ separate from the external variable X.

+ Def variables may be initialized at
+ compile-time by the use of a value dec­
+ laration.

+

+
+
+
+
+
+

+
+
+
+
+

+
+
+

+
+
+
+

+
+
+
+
+

+

+

segment M;
procedure A;

def X: REAL; (* same as X in B *>
begin

end;

procedure B;
def X: REAL; (* same as X in A *)
begin

end; .

segment p;
static X: REAL;(* local to P *)
procedure C;

ref X: REAL; (* same as X in A,B*)
begin

end;

procedure D;
var X: REAL; (* local to D *)
begin

end;.

Examples of Def and Ref Declarations

,.--....

L)

o

o

+ !i.I THE VALUE DECLARATION

+
.+ Syntax:
+

+ value-del:

+
+

---> value ---t---{value-assignment}---> ; ---r---------------------------->
<------------------------------

+ value-assignment:

+
+

--->{variable}---> .- ---I--->{constant-expression}----r------------------->
--->{structured-eonstant}--->

+
+

note: If the variable contains subscripts, the subscripts are limited
to constant expressions.

+

+ The value declaration is used to speci­
+ fy an initial value for static and def
+ variables. The declaration is composed
+ of a list of value-assignment state­
+ ments separated by semicolons. The
+ assignment statements in a value decla­
+ ration are of the same form as the
+ assignment statements in the body of a
+ routine except that all subscripts and
+ expressions must be able to be evalu­
+ ated at compile time.

+ If a def variable is initialized with a
+ value declaration in one module, you
+ may not use a value declaration on that
+ variable in another module. The compil­
+ er will not check this violation,
+ however a diagnostic will be generated
+ when you comb; ne the modules into a
+ single load module by the system load­
+ ere

+
+ type
+ COMPLEX = record
+ RE,IM: REAL
+ end;
+ VECTOR = array[1 .. 7] of INTEGER;

+ static
+ c: COMPLEX;
+ V: VECTOR;
+ VI: VECTOR;

+ def
+ I: INTEGER;
+ Q: array[1 .• 10] of COMPLEX;

+
+
+
+
+
+
+
+
+
+
+

OE the following assignments will
(* take place at compile time
value

C · - COMPLEX(3.0,4.0);
V · - VECTOR(1,0:5,7);
Vl · - VECTOR(",4);
V[2] · - 2;
V[3] · - 3*4-1;
I · - 0;
Q[1].RE · - 3.1415926 / 2;
Q[I].IM · - 1.414;

+ Example of a Value Declaration

+

*)
*)

Pascal/VS Declarations 25

o

o
26 Pascal/VS Reference Manual

o

o

.2 • .2. TYPES

Syntax:

.b!.eg :

> {i d: type}

r--->{enumerated-scalar-type}

--->{subrange-scalar-type}

--->{array-type}

--->{record-type}

--->{set-type}

--->{file-type}

--->{polnter-type}

A data type determines the kind of val­
ues that a vari able of that type can
assume. Pascal/VS allows you to define
new data types with the type declara­
tion. The data type mechanism is a very
important part of Pascal/VS. With it
you can describe your data with great
clarity.

There are several mechanisms that can
be used to defi ne a type; each mech­
anism allows the new data type to have
certain properties. All data types can
be classified as either scalar, point­
er, or structured.

You define the data type of a variable
when the variable is declared. A previ­
ous type declaration allows an identi­
fier to be associated with that type.
Such an identifier can be used wherever
a type definition is needed: in a vari­
able declaration (var, static, def, or
ref), as a parameter, in a procedure or
function, in a field declaration within
a record definition, or in another type
declaration.

.,. .2.1. A NOTE ABOUT STRINGS

.,. Standard Pascal defines a string as

.,. 'packed array[1 .. n] of CHAR' where n is

.,. fixed for every string at compile time.

.,. Pascal/VS extends the notation of a

.,. string to a allow n to vary during

.,. execution from 0 up to a compile time

.,. specified maximum value. Variables can

.,. be declared as a string type by using

.,. the predefined data type STRING •

.,. Throughout this manual a reference to a

.,. string is assumed to refer to an object

>.

>

>

>.

>-

>-

>.

> >

+ of the predefi ned type STRING as
+ opposed to simply a 'packed array[1 •• n]
+ of CHAR'.

.2.~ TYPE COMPATIBILITY

Pascal/VS supports strong typing of
data. The strong typing permits
Pascal/VS to check the validity of many
operations at compile time; this helps
to produce reliable programs at exe­
cution time. Strong typing puts strict
rules on what data types are considered
to be the same. These rules, called
~ compatibility, requires you to
carefully declare data.

a.~.! IMPLICIT TYPE CONVERSION

In general, Pascal/VS does not perform
implicit type conversions on data. The
only implicit conversions that
Pascal/VS permits are:

1. An INTEGER will be converted to a
REAL when one operand of a binary
operation is an INTEGER and the
other is a REAL .

2. An INTEGER will be converted to a
REAL when assigning an INTEGER to
a REAL variable .

3. An INTEGER will be converted to a
REAL if it is used in a floating
point divide operation ('/') .

Types 27

/"\

U

4. An INTEGER will be converted to a
REAL if it is passed by value or
passed by const to a parameter
requiring a REAL value.

+ 5. A stri ng wi 11 be converted to a
'packed array[l .. n] of CHAR' on
assignment. The string will be
padded with blanks on the right if
it is shorter than the array to
which it is being assigned. Trun­
cation will raise a runtime error
if checking is enabled.

+
+
+
+
+
+
+
+ 6.
+

A string being passed by value or
passed by const to a formal param­
eter that requires a 'packed
array[l .. n] of CHAR' will be con­
verted. The string will be padded
with blanks on the right if it is
shorter than the array to which it
is being passed. Truncation will
raise a runtime error if checking
is enabled.

+
+
+
+
+
+
+
+

o

2.~.~ SAME TYPES

Two variables are said to be of the
..§.Q!!lg 1Y.E.g if the declarati on of the
variables:

• refer to the same type identifier;

• or, refer to different type identi­
fiers which have been defined as
equivalent by a type definition of
the form:

type T1 = T2

2.~.1 COMPATIBLE TYPES

Operations can be performed between two
values that are of compatible ~.
Two types are said to be compatible if:

• the types are the same;

• one type is a subrange of the other
or they are both subranges of the
same type;

• both types are strings;

+ •
+

one value is a string literal and
the other is a 'packed array[l .• n]
of CHAR' ; +

•

•

o·
28

one value is a string literal of
one character and the other is a
CHARi

they are set types with compatible
base types;

or, they are both 'packed
array[l •• n] of CHAR' with the same
number of elements.

Pascal/VS Reference Manual

Furthermore, any object which is of a
set type is compatible with the empty
set. And, any object which is a pointer
type is compatible with the value nil.

2.~.~ ASSIGNMENT COMPATIBLE TYPES

A value may be assigned to a variable
if the types are assignment compatible.
An expressi on E is sa i d to be assi gn­
ment compatible with variable V if:

•

•

•

•

•

the types are same type and neither
is a file type;

V is of type REAL and E is compat­
ible with type INTEGER;

V is a compatible subrange of E and
the value to be assigned is within
the allowable subrange of V;

V and E have compatible set types
and all members of E are permissi-

ble members of V; or,

V is a 'packed array[l •. n] of CHAR'
and E is a string .

type

X = array[1 •• 10] of
INTEGER;

DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);

WEEKDAY = MON •. FRI;

var

A : array[1 •. 10] of
INTEGER;

B : array[1 .• 10] of
INTEGER;

C,
D array[1 .. 10] of

CHARi
E : Xi
F : X;
W1: DAYS;
W2: WEEKDAY

is compatible
with

A A
B B
C C, D
D D, C
E E, F
F F, E
WI Wl, W2
W2 W2, WI

Examples of Compatibility

o

c

.2..~ THE ENUMERATED SCALAR

Syntax:

enumerated-scalar-type:

--> ([>{id}=-:J >) --->
<-- , <

An enumerated scalar is formed by list­
ing each value that is permitted for a
variable of this type. Each value is an
identifier which is treated as a self­
defining constant. This allows a mean­
ingful name to be associated with each
value of a variable of the type.

type
DAYS

MONTHS

var
SHAPE

REC

MONTH

= (MON, TUES, WED, THURS,
FRI, SAT, SUN);

= (JAN, FEB,
MAY, JUN,
SEP, OCT,

MAR, APR,
JUL, AUG,
NOV, DEC);

(TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

record
SUIT: (SPADE, HEART,

DIAMOND, CLUB);
WEEK: DAYS

end;

MONTHS;

Enumerated Scalars

An enumerated scalar type definition
declares the identifiers in the enumer­
ation list as constants of the scalar

+
+

+
+

type being defined. The lexical scope
of the newly defined constants is the
same as that of any other identifier
declared explicitly at the same lexical
level.

These constants are ordered such that
the first value is less than the sec­
ond, the second less than the third and
so forth. In the first example, MON <
TUES < WED < ••• < SUN. There is no val­
ue less than the first or greater than
the last.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function
ORO
MAX
MIN
PRED
SUCC
LOWEST
HIGHEST

Notes:

Section
11.4.1
11.5.2
11.5.1
11.5.3
11.5.4
11.3.3
11.3.4

Page
113
117
117
118
118
111
112

1. Two enumerated scalar type defi­
nitions must not have any elements
of the same name in the same lexi­
cal scope.

2. The standard type BOOLEAN
defined as (FALSE, TRUE).

is

Types 29

.2.~ THE SUBRANGE SCALAR

,,--.......
U Syntax:

+

+

o

+
+

+
+

o

subrange-scalar-type:

t~==;-~~:~:~-===~]
>{constantJ---> .. --->{constant-expr}----------------------~---->

---> range --->{constant-exprl---> .. --->{constant-exprl--->J

The subrange type is a subset of con­
secutive values of a previously defined
scalar type. Any operation which is
permissible on a scalar type is also
permissible on any subrange of it.

A subrange is defined by specifying the
minimum and maximum values that will be
permitted for data declared with that
type. For subranges that are packed,
Pasca!/VS will assign the smallest num­
ber of bytes required to represent a
value of that type.

If the reserved word range is used in
the subrange definition, then both the
minimum and maximum values may be any
expression that can be computed at com­
pile time. If the range prefix is not
employed then the minimum value of the
range must be a simple constant.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function
ORO
MAX
MIN
PRED
SUCC
LOWEST
HIGHEST

Notes:

Section
11.4.1
11.5.2
11.5.1
11.5.3
11.5.4
11.3.3
11.3.4

Page
113
117
117
118
118
111
112

1. A subrange of the standard type
REAL is not permitted.

30 Pascal/VS Reference Manual

2. The number of values in a subrange
of type CHAR is determined by the
collating sequence of the EBCDIC
character set.

3. The lower bound of a subrange
definition that is not prefixed
with 'range' must be a simple
constant instead of a generalized
constant expression.

const
SIZE

type
DAYS

MONTHS

UPPER CASE
ONE HUNDRED
CODES

INDEX

var
WORK DAY
SUMMER
SMALLINT
YEAR

=

=

=

=
=
=

=

1000;

(SU, MO, ru, WE,
TH, FR, SA) ;

(JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC) ;

, A ' .. ' Z' i
0 .. 99;

range
CHR(0) •. CHR(255);

packed 1 .. SIZE+1;

MO .. FR;
JUN .. AUG;
packed 0 .. 255;
1900 .• 2000;

Subrange Scalars

o

G

..

..

,2.,2 PREDEFINED SCALAR TYPES

. ,2.s'.1 THE TYPE INTEGER

The following table describes the oper­
ations and predefined functions that

apply to values which are the standard
type INTEGER.

operation

+
+

* I

div
mod

=
<> or -.­
<
<=
>=
>

I
&
&&
«

»

CHRex)
PRED(x)
SUCC(x)
ODD(x)
ABS(x)
SQR(x)
FlOAT(x)
MIN()
MAxe)
LOWEST(x)

HIGHEST(x)

SIZEOF(x)

form

unary
binary
unary
binary
binary
binary

binary
binary

binary
binary
binary
binary
binary
binary

unary
binary
binary
binary
binary

binary

function
function
function
function
function
function
function
function
function
function

function

function

INTEGER

description

returns the unchanged result of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
converts the operands to REAL and produces

the REAL quotient
forms the integer quotient of the operands
forms the integer modulus of the operands

compares for equality
compares for inequality
compares for less than
compares for less than or equal to
compares for greater than or equal to
compares for greater than

returns one's complement on the operand
returns 'logical or' on the operands
returns 'logical and' on the operands
returns 'logical xor' on the operands
returns the left operand value shifted

left by the right operand value
returns the left operand value shifted

right by the right operand value

returns a CHAR whose EBCDIC representation is x
returns x-1
returns x+l
returns TRUE if x is odd and FALSE otherwise
returns the absolute value of x
returns the square of x
returns a REAL whose value is x
returns the minimum value of two or more"operands
returns the maximum value of two or more operands
returns MININT or the minimum value of the range

if x is a 5ubrange of INTEGER
returns MAXINT or the maximum value of the range

if x is a subrange of INTEGER
returns the number of bytes required for a value

of the type of x, which is always 1, 2 or 4

The type INTEGER is provided as a pre­
defined type in Pascal/VS. This type
represents the subset of whole numbers
as defined below:

bit values in 2's complement notation.

Type definitions representing integer
subranges may be prefixed with the
reserved word "packed". For variables
declared with such a type, Pascal/VS
will assign the smallest number of
bytes required to represent a value of
that type. The following table defines
the number of bytes required for dif­
ferent ranges of integers. For ranges
other than those listed, use the first
range that encloses the desired range.

type
INTEGER = MININT .• MAXINT;

where MININT is a predefined INTEGER
constant whose value is -2147483648 and
MAXINT is a predefined INTEGER constant
whose value is 2147483647. That is, the
predefined type INTEGER represents 32

Types 31

Given a type definition T as:

u
type

T = packed i .• j;

Range of Size in Alignment
i .. j bytes

0 •• 255 1 BYTE

-128 .• 127 1 BYTE

-32768 .• 32767 2 HALFWORD

0 .. 65535 2 HALFWORD

otherwise 4 FULLWORD

o

o
32 Pascal/VS Reference Manual

Notes:

1. The operations of div and mod are
defi ned as:

A div B = TRUNCCA/B), B<>O

A mod B = A-B*CA div B), A>=O,B>O
A mod B = B-abs(A) mod B, A<O,B>O

B=O when doing a div operation or
B<=O when doing a mod operation
is defi ned as an error and wi 11
cause a runtime error message to
be produced.

2. The following operators perform
logical operations:

« shift left logical
» shi ft ri ght. logi cal

l' s complement
I logi cal i nclusi ve or
& logi cal and
&& logi cal exclusi ve or

The operands are treated as
unsigned strings of binary dig­
its. See section 8.4 for more
details on logical expressions.

o

o

+
+.
+
+
+
+
+
+
+

The following table describes the oper­
ations and predefined functions that

apply to the standard type CHAR.

operation

=
<> or .. =
<
<=
>=
>

ORDex)

PREDex)

SUCC(x)

STRex)
MINe)
MAxe)
lOWEST(x)

HIGHESTex)

SIZEOFex)

form

binary
binary
binary
binary
binary
binary

function

function

function

function
function
function
function

function

function

CHAR

description

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

converts operand to an INTEGER based on ordering
sequence of underlying character set.

returns the preceding character
in collating sequence

returns the succeeding character
in collating sequence

converts the operand to a STRING
returns the minimum value of two or more operands
returns the maximum value of two or more operands
returns the minimum value of the range of the

character x
returns the maximum value of the range of the

character x
returns the number of bytes required for a value

of the type of a CHAR, which is always 1

The type CHAR is defined as a value
from the EBCDIC character set. Vari­
ables of this type occupy one byte of

memory and will be aligned on a byte
boundary.

Types 33

o

+

+
+
+
+
+
+

o

o

The following table describes the oper­
ations and predefined functions that

apply to the standard type BOOLEAN.

operation

&
I
&&

=
<> or ... -
<
<=
>=
>

ORD(x)
MItH)
MAX()
LOWEST(x)
HIGHEST(x)
SIZEOF(x)

form

unary

binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function

BOOLEAN

description

returns TRUE if the operand is FALSE,
otherwise it returns FALSE

returns TRUE if both operands are TRUE
returns TRUE if either operand is TRUE
returns TRUE if either, but not both operands are TRU

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

returns 0 if x is FALSE and 1 if x is TRUE
returns TRUE if all operands are TRUE
returns FALSE if all operands are FALSE
returns the FALSE by definition
returns the TRUE by definition
returns the number of bytes required for a value

of the type of a BOOLEAN, which is always 1

Binary Operations on BOOLEAN

FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE Name

- TRUE
<> FALSE
< FALSE
<= TRUE
>= TRUE
> FALSE
& FALSE
I FALSE
&& FALSE

This type is predefined as:

type
BOOLEAN = (FALSE,TRUE);

FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE

The type BOOLEAN is defined as a scalar
whose values are FALSE and TRUE. Vari­
ables of this type will occupy one byte
of memory and will aligned on a byte
boundary. The relational operators
form valid boolean functions as shown

34 Pascal/VS Reference Manual

FALSE TRUE Equivalence
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE

FALSE Exclusive Or
FALSE
TRUE Implication
TRUE
FALSE
TRUE And
TRUE Inclusive Or
FALSE Exclusive Or

in the table of binary operations.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving '&'
(and) and 'I' (or) such that the right
operand expression will not be evalu­
ated if the result of the operation can
be determined by evaluating the left
operand. For more details see section
8.3 on page 67.

+

0 +
+
+

o

The following table describes the oper­
ations and predefined functions that

apply to the standard type REAL.

operation

+
+
-
-
* /

=
<> or ... -
<
<=
>=
>

TRUNCex)
ROUNOex)
ABSex)
SINex)
COSex)
ARCTANex)
LNex)
EXP(x)
SQRTex)
SQRex)
MINe)

MAxe)
SIZEOFex)

form

unary
binary
unary
binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function
function
function
function
function
function
function
function

REAL

description

returns the value of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
forms the REAL quotient of the operands

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

returns the operand value truncated to an INTEGER
returns the operand value rounded to an INTEGER
returns the absolute value of the operand
returns the trigonometric sine of x (radians)
returns the trigonometric cosine of x (radians)
returns eradians) the arc tangent of x
returns the natural logarithm of x
returns natural log base raised to the x power
returns square root of x
returns the square of x
returns the minimum value of the operands
returns the maximum value of the operands
returns the number of bytes required for a value

of the type of a REAL, which is always 8

The type REAL represents floating point
data. Variables of thi s type wi 11 occu­
py eight bytes of memory and will be
aligned on a double word boundary. All
REAL arithmetic is done using 370 long
floating point. See section 5.2.1 on
page 27 for implicit type conversions.

The type REAL has restrictions that
other scalar types do not have. You may
not take a subrange of REAL nor index
an array by REAL. The predefined func­
tions SUCC, PREO, ORO, HIGHEST and LOW­
EST are not defined for type REAL.

Types 35

- - - - -.. - --,--.---- -.- ---- ---- -. - - - -- - ---'-"--'-.-,- - - --- - - - _ .. - -.- ,- - -- - -- --- - - -----~---.- --- ._._.- _ .. - -,-- -- ,---,----

o

o

o

Syntax:

array-type:

l .> packed ==:J
[< -
~--------> array [--~--->{index-type}----~-->] of --->{type} l<______ , < ________ ~ ----->

index-type:

E
>{enumerated-scalar-type}--->~

---+------->{id:scalar-type} >~-->
> {subrange-scalar-typel----->

The array type defines a list of homo­
geneous elements; each element ;s
paired with one value of the index. An
element of the array is selected by a
subscript. The number of elements in
the array is the number of values
potentiallY assumable by the index.
Each element of the array is of the
same type, which is called the element
type of the array. Ent ire arrays may be
assigned if they are of the same type.

Pascal/VS uses square brackets, '[' and
,] " in the declarat i on of arrays.
Because these symbols are not directly
available on many I/O devices, the sym­
bol s '(.' and '.)' may be used as an
equivalent to square brackets.

Pascal/VS will align each element of
the array, if necessary, to make each
element fallon an appropriate bounda­
ry. A packed array will not observe the
boundary requirements of its elements.
Elements of packed arrays may not be
passed as var parameters to routines.

An array whi ch is defi ned wi th more
than one index is said to be a multi­
dimensional array. A multi-dimen­
sional array is exactly equivalent to
an array of arrays. In short, an array
definition of the form

array[i , j , . ..] of T

is an abbreviated form of

array[i 1 of
array[j] of

••• T

where i and j are scalar type defi­
nitions. Thus, the first and second
type declarations in the example below
are alternatives to the same structure.

36 Pascal/VS Reference Manual

type

MATRIX = array[1 .. 10, 1 .. 10] of
REAL;

MATRIXO = array[1 .. 10] of
array[1 .. 10] of

REAL;

ABLE = array[BOOlEAN] of INTEGER;

COLOR = (RED, YELLOW, BlUE)i

INTENSITY = packed array[COLORl
of REAli

AlFA = packed array[1 .. AlFAlENl of
CHAR;

Examples of Array Declarations

There are two procedures available for
conversion between a packed array and a
similar but unpacked array. The prede­
fined procedures PACK (section 11.2.1)
and UNPACK (section 11.2.2) are pro­
vi ded for thi s purpose.

~.~.! ARRAY SUBSCRIPTING

Array subscripting is performed by
placing an expression in square brack­
ets following an array variable. The
expression. must be of a type that is
compatible with the index type and
evaluate to one of the values of the
index. (See section 7.1 on page 57).
The index may be any scalar type except
REAL.

c

c

var
M
HUE

begin

MATRIX;
INTENSITY;

(* assign ten element array *>
M[l] := M[2];

(* assign one element of a two *>
(* dimensional array two ways *>
M[l,l] := 3.14159;
M[ll[ll := 3.14159;

(* this is a reddish orange *>
HUE[RED] .- 0.7;
HUE[YELLOW] := 0.3;
HUE[BLUEl := 0.0;

Examples of Array Indexing

Types 37

2.1. THE RECORD TYPE

r--\
L-I Syntax:

+

+

o
+

+
+

o

record-type:

----~-----------------~--> record --->{field-listJ---> end
L---> packed _>J

fi eld-Ii st:

------------------>

>]
---T--->{fixed-part}--~---> ; --~--->{variant-part}--~-----~--> --~---> ~ ____________________________ >J _________ >J

fixed-part:

l [---~~--:~:~~~~~-------~---->~]---> --->{typeJ--~------------------------>

<--------------------- ; <------------------------~

variant-part:

---> case
r----------------->]

----r'--_-_-_>_{_f_i_e_l_d_}~~~_> _______ >] > {i d: t yp e J

(--~--->{field-list}---T-->) '--_______________ >J ----r----> ~>{rangeJ---T--->
<---- , <----~

< <--------------------------------~

field:

--->{id}--~------------------------------------~~------------------------>
L ___ > (--->{constant-exprJ--->) ___ >J

--->{constant-exprJ--~----------------------------------r--------------------->
L ___ > --->{constant-exprJ--->J

A record is a data structure which is
composed of heterogeneous components;
each element may be of a different
type. Components of a record are
called fields.

~.1.1 NAMING OF A FIELD

A field is referred to by the name of
the field. The scope of the identifiers

38 Pascal/VS Reference ~1anual

used as names is the record type
itself. That is, every field name with­
ina record must be un i que, even if
that name appears ina vari ant part.

+ A field of a record need not be named;
+ that is, the field identifier may be
+ missing. In such a case, the field only

+ serves as padding; it can not be refer­
+ enced.

o

o

type
REC = record

A,
B It'HEGER;

CHAR;
C CHAR
end;

1 .. 31;
1 .. 12;

(*unnamed*>

DATE = record
DAY
MONTH
YEAR
end;

1900 •• 2100

PERSON = record
LAST NANE,
FIRST NAME
MIDDLE INITIAL
AGE -
EMPLOYED
end;

ALFA;
CHAR;
O •• 99;
BOOLEAN

Simple Record Declarations

.a.l . .6 FIXED PART

The fixed part of a record is a series
of fields common to all variables of a
given record type. The fixed part, if
present, is always before the variant
part.

.a.l.1 VARIANT PART

The variant part of a record permits
the defining of an alternative struc­
ture to the record. The record struc­
ture adopts one of the variants at a
time.

The variant part of a record is denoted
with the case symbol. A tag field iden­
tifier may follow. The value of this
field indicates which variant is
intended to be act i ve.

The tag field is a field in the fixed
part of the record. When the tag field
is followed by a type identifier, then
the tag field defines a new field with­
in the record.

+ If the type identifier is missing, then
+ the tag field name must be one which
+ was previ ously defi ned wi thi n the
+ record. This allows you to place the
+ tag field anywhere in the fixed part of
+ the record.

A variant part of a record need not
have a tag field at all. In this case,
only a type identifier is specified in

the case construct. You still refer to
the variant fields by their names but
it is your responsibility to keep track
of which variant is 'active' (i.e. con­
tains valid data> during execution.

In short, tag fields may be defined in
the following ways:

•

•

•

"case I : INTEGER of" results in I
being a tag field of type INTEGER.

"case INTEGER of" means no tag
field is present, the variants are
denoted by integer values in the
variant declaration.

"case I: of" means that lis the
tag fi eld and it must have been
declared in the fixed part, the
type of I is as. given in the field
definition of I.

The following examples illustrate the
three tag fields in complete record
definitions.

type

SHAPE = (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

COORDINATES =
(* fixed part:

record
X,Y
AREA
case S

REAL;
REAL;
SHAPE of

(* variant part:
TRIANGLE:

(SIDE : REALi
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS : REAL)

end;

A Record With a Variant Part

The record defined as COORDINATES in
the example above contains a variant
part. The tag field is S, its type is
SHAPE, and its value (whether TRIANGLE,
RECTANGLE, SQUARE, or CIRCLE> i ndi­
cates which variant is in effect. The
fields SIDE, SIDEA, EDGE, and RADIUS
would all occupy the same offset within
the record. The following diagram
illustrates how the record would look
in storage.

Types 39

"-",,
~)

fixed part:
X

Y

AREA

tag field: S

variant part:

SIDE SIDEA EDGE I RADIUsl

BASE SIDEB

Each column in the variant represents
one alternative for the variant.

+ If you preferred the tag field to be
+ the first field instead of the fourth,
+ you could define it as follows:

+

+
+
+
+
+
+
+
+
+
+

C!
+
+
+
+
+

COORDINATES =
record

S
X,Y
AREA
case S

TRIANGLE:

SHAPE;
REAL;
REAL;
of

OE vari ant part:

(SIDE: REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS : REAL)

end;

+ Record with Back Reference
+ Tag Field

+

o

If you preferred the tag field to be
absent altogether you could define the
record as follows:

40 Pascal/VS Reference Manual

COORDINATES =
record

X, Y : REAL;
AREA : REAL;
case SHAPE of

(* variant part: *)
TRIANGLE:

(SIDE: REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS : REAL)

end;

Record Variant with No Tag Field

.5,.1.~ PACKED RECORDS

The fi elds ina record are normally
assigned offsets sequentially, padding
where necessary for boundary align­
ment. In packed records, however, no
such paddi ng is done. Thi 5 may save
storage within the record, but may
degrade performance of the program.
Fi elds of packed records may not be
passed as var parameters to a routine.

+ ,2.1 • .5, OFFSET QUALIFICATION OF FIELDS

+ Pascal/VS provides you a method of
+ forcing the fields of a record to begin
+ at a specified byte offset in the
+ record. A field name may be followed by
+ a integer constant expression enclosed
+ in parentheses which represents the
+ byte offset within the record that the
+ fi eld is to represent. All fi elds so
+ specified must be in consecutive order
+ according to offsets. If the offset is
+ not speci fi ed, the fi eld wi 11 be
+ assigned the next offset that is
+ required for boundary alignment. If an
+ offset speci f i cat i on attempts to
+ assign an incorrect boundary for a
+ field and the record is not packed, a
+ compile time error will be raised.

+ As an example of offset qualified
+ fields within a record, consider a
+ large control block of 100 bytes, in
+ which four fields at various offsets
+ need to be referenced.

o

o

+
+
+
+
+
+
+

byte
displacement information

o field A (integer)
36 field B (8 chars)
80 field C (4 flags)
92 field D (integer)

+ The control block might be represented
+ in Pascal/VS as follows:

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

+

type
FLAGS = set of

(Fl,F2,F3,F4);
PADDING = packed array[1 .. 4] of

CHAR;
CB = packed record

var

A INTEGER;
B(36) ALFA;
C(80) FLAGS;
D(92) INTEGER;

PADDING
end;

BLOCK CB;

A Record with Offset Qualified
Fields

Types 41

o

o

+
+
+

o

Syntax:

set-type:

---,------------------,----> set of --->{base-scalar-typel---------------------->
L-> packed _>J

base-scalar-tvpe:

E >{enumerated-scalar-typel--->j
---+------->{id:scalar-typel >+--->

> {subrange-scalar-typel----->

A variable whose type is a set may con­
tain any combination of values taken
from the base scalar ~. A value is
either in the set or it is not in.

Note: Pascal/VS sets can be used in
many of the same ways as bit strings
(which often tend to be machine depen­
dent). For example, a set operation
such as intersection (the operator is
'*') is the same as tak i ng the 'boolean
and' of two bit strings.

type'
CHARS = set of CHAR;
DAYSOFMON = packed set of 1 .. 31;
DAYSOFWEEK = set of MONDAY .. FRIDAY;
FLAGS = set of

(A,B,C,D,E,F,G,H);

Set Declarations

The following table describes the oper­
ations that apply to the variables of a
set type.

Set Operators

operation

...

=
<> or ... -
<=

>=

in

+
* -
&&
SIZEOF(x)

form

unary

binary
binary
binary

binary

binary

binary
binary
binary
binary
function

description

returns the complement of the operand

compares for equality
compares for inequality
returns TRUE if first operand is subset of

second operand
returns TRUE if first operand is superset of

second operand
TRUE if first operand ea scalar) is a member in

the set represented by the second operand

forms the union of two sets
forms the intersection of two sets
forms the difference between two sets
forms an 'exclusive' union of two sets
returns the number of bytes required for a value

of the type of x

Set union produces a set which contains
all of the elements which are members
of the two operands. Set intersection

produces the set that contains only the
elements common to both sets. Set dif­
ference produces the set which includes

42 Pascal/VS Reference Manual

o

o

all elements from the left operand
except those elements which are members
of the right operand. Set exclusive
union produces the set which contains
all elements from the two operands
except the elements whi ch are common to
both operands. The in operator tests
for membership of a scalar within a
set; if the scalar is not a permissible
value of the set and checking is ena­
bled, then a runtime diagnostic will
result.

The storage and alignment required for
a set variable is dependent on the
scalar type on which the set is based.
The amount of storage required for a
packed set will be the minimum number
of bytes needed to contain the largest
member of the set. Given a set defi­
nition:

type
5 = set of BASE;

where BASE ;s a scalar type which is
not a subrange

the ordinal value of the largest member
M which is in the set is:

M := ORDCHIGHEsTCBAsE»

The following table indicates the map­
pi ng of a set vari able as a functi on of
M.

Range of Size in Alignment
M Bytes

0 <= M <= 7 1 BYTE

8 <= M <= 15 2 HALFWORD

16 <= M <= 23 3 FULLWORD

24 <= M <= 31 4 FULLWORD

32 <= M <= 255 (M+7) BYTE
div 8

Unpacked sets based upon integer Cor
subranges of integers) will occupy 32
bytes. The maximum value of a member of
a set of integer may not exceed 255.

The storage is the same for all
unpacked sets of subranges of a base
scalar type. The following illustrates
this point.

Given:
type

T = set of t;
5 = set of s;

Where:
t is a subrange of s.

The types T and 5 have identical stor­
age mappi ngs.

Types 43

r"" U Syntax:

file-type:

---> file of --->{typeJ-->

o

o

All input and output in Pascal/VS use
the file type. A file is a structure
consisting of a sequence of components
where each component is of the same
type. Variables of this type reference
the components with pointers called
file pointers. A file pointer could be
thought of as a pointer into an
input/output buffer.

The association of a file variable to
an actual file of the system is imple­
mentation dependent and will not be
described in this manual. Refer to the
Programmer's Guide for this informa­
tion.

type
TEXT = file of CHAR;
LINE = file of

packed array[1 .. 80] of
CHAR;

PFILE = file of
record

NAME: packed
array[1 .. 251 of

CHAR;
PERSON NO:INTEGER;
DATE_EMPLOYED:DATE;
WEEKLY_SALARY:INTEGER

end;

File Declarations

You access the file through predefined
procedures and functions. (see section
10.0 on page 93) They are:

44 Pascal/VS Reference Manual

• GET (Section 10.6)

• PUT (Section 10.7)

• EOF (Section 10.8)

• EOLN (Section 10.13)

• RESET (Section 10.1)

• REWRITE (Section 10.2)

+ • INTERACTIVE (Section 10.3)

+ • OPEN (Section 10.4)

+ • CLOSE (Section 10.5)

• READ (Section 10.9)

• WRITE (Section 10.11)

OUTPUT is predefi ned as a TEXT fi Ie
variable. This is the file which will
receive Pascal/VS execution time diag­
nostics.

Pascal/VS enforces the following
restrictions on the file type:

1. A fi Ie may be passed by var or
passed by const, but never by
value to a procedure or function.

2. A file may not be an element of an
array.

3. A fi Ie may not be a fi eld of a
record.

4. A file may not be contained within
a file.

C)

o

+
+
+
+.

.a.10 PREDEFINED STRUCTURE TYPES

Syntax:

string-type:

+
+ ---> STRING ---t::::_~_::::~:~~:~~~~::~~~~::::_~_::;J---------------------->

+

+ The type STRING is defined as a 'packed
+ array[l .. n] of CHAR' whose length
+ varies at execution time up to a com­
+ pile time specified maximum. The length
+ of the array is obtained during exe­
+ cution by the LENGTH function (section
+ 11.6.1). The length is managed implic­
+ i tly by the operators and funct ions
+ which apply to STRINGs. The length of a
+ STRING variable is determined when the
+ variable is assigned. By definition,
+ string constants belong to the type
+ STRING.

+ STRING variables may be sUbscripted to
+ retrieve individual characters. Upon
+ subscripting, the variable behaves as
+ though it were declared as a 'packed
+ array[1 .. n] of CHAR', where n is the
+ current length of the STRING.

+ The constant expression which follows
+ the STRING qualifier in the type defi­
+ nition is the maximum length that the
+ string may obtain and must be in the
+ range of 1 to 255. If the value is not
+ specified, the maximum length of 255 is
+ assumed.

+ Any variable of a STRING type is com­
+ patible with any other variable of a
+ STRING type; that is, the maximum
+ length field of a type definition has
+ no bearing in type compatibility tests.

+ Implicit conversion is performed when
+ assigning a STRING to a packed
+ array[1 .. n] of CHAR'. All other conver­
+ sion must be done explicitly.

+ The assignment of one string to another
+ may cause a run time error if the actu­
+ al length of the source string is
+ greater then the maximum length of the
+ target. Pascal/VS will never truncate
+ imp 1 i cit 1 y .

+

+ function GETCHAR(
+ const S : STRING;
+ lOX : INTEGER)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

begin
GETCHAR .­

end;

var

S[IOX]

S1: STRING(10);
S2: STRING(5);
C: CHAR;

begin
S1 .- 'MESSAGE:';
C := GETCHAR(Sl,4);
(* C assigned'S' *)

+ S2·- 'FIVE';
+ C := GETCHAR(S2,2);
+ (* C assigned 'I' *)
+ end;

CHAR;

+ Usage of STRING Variables

+

+ The following table describes the oper­
+ ations and predefined functions that
+ apply to the variables of type STRING.

Types 45

+
+

~+
Lt

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+

C!
+

+

+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

o

operation form

= binary
<> or .. = binary
< binary
<= binary
>= binary
> binary
II binary
LENGTH function

LBOUND function

HBOUND function

SUBSTR function

DELETE function

TRIM function

LTRIM function

COMPRESS function

INDEX function

SIZEOFex) function

STRING

description

compares for equality+
compares for inequality+
compares for left less than right+*
compares for left less than or equal to right+*
compares for left greater than or equal to right+*
compares for left greater than right+*
catenates the operands
returns the length of the STRING
(section 11.6.1, page 124)

returns the value 1, STRINGS always have a lower
bound of one (section 11.3.1, page 110)

returns the declared maximum number of elements of
the string (section 11.3.2, page 111)

returns a specified portion of a STRING
(section 11.6.2, page 124)

returns a STRING with a portion removed
(section 11.6.2, page 124)

returns a STRING with trailing blanks removed
(section 11.6.4, page 125)

returns a STRING with leading blanks removed
(section 11.6.5, page 126)

returns a STRING with multiple blanks removed
(section 11.6.6, page 126)

locates a STRING in another STRING
(section 11.6.7, page 127)

returns the number of bytes required for a value
of the type of x

+ If two STRINGs being compared are of different lengths, the
shorter is assumed to be padded with blanks on the right
until the lengths match.

* Relative magnitude of two strings is based upon the collating
sequence of EBCDIC.

STRING Conversions with Relational Operators

RIGHT OPERAND
packed

relational array[l .. n] of
L operations CHAR CHAR STRING
E
F CHAR allowed not permitted use STR on
T the CHAR

0 packed not permitted okay if the use STR on
P array[l .. n] of types are the array
E CHAR compatible
R
A STRING use STR on use STR on allowed
H the CHAR the array
0

46 Pascal/VS Reference Manual

+
+ STRING Conversions on Assignment
+

~ u + FRO M

+ packed
+ array[l .. n] of
+ assignment CHAR CHAR STRING
+
+ T CHAR allowed not permitted use string
+ indexing to
+ 0 obtain char
+
+
+ packed not permitted okay if the okay, STRING is
+ array[l .. n] of types are converted. If
+ CHAR compatible truncation is
+ required, then
+ an error results.
+
+
+ STRING use STR to use STR to allowed
+ convert CHAR convert array
+ to a STRING to a STRING

+

()

o
Types 47

+
+

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+

o

o

The standard type AlFA is defined as:

const
AlFAlEH = 8;

type
AlFA = packed

array[l .. AlFAlEHJ of
CHARi

operation form description

= binary compares for
<> or .. = binary compares for
< binary compares for
<= binary compares for
>= binary compares for
> binary compares for

+ Any 'packed array[l .. n] of CHAR',
+ including AlFA, may be converted to
+ type STRING by the predefined function
+ STR. The following table describes the
+ operations and predefined functions
+ that apply to the variables of the pre­
+ defined type AlFA.

AlFA

equality
inequality
left less than right
left less than or equal to right
left greater than or equal to right
left greater than right

STRex) function converts the AlFA to a STRING
SIZEOFex) function returns the number of bytes required for a value

of the type of an AlFA, which is always 8

48 Pasca1/VS Reference Manual

o

o

+ The standard type ALPHA is defined as: + Any 'packed array[1 .. n] of CHAR',
+ including ALPHA, may be converted to
+ type STRING by the predefined function
+ STR. The following table describes the
+ operations and predefined functions
+ that apply to the variables of the pre­
+ defined type ALPHA.

+ const
+ ALPHALEN = 16;

+ type
+ ALPHA = packed
+ array[1 •. ALPHALENl of
+ CHAR;

+
+
+
+
+
+
+
+
+
+
+
+
+ .,.
.,.

operation

=
<> or ... =
<
<=
>=
>
STRex)
SIZEOF(x)

form

binary
binary
binary
binary
binary
binary
function
function

ALPHA

description

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right
converts the ALPHA to a STRING
returns the number of bytes required for a value

of the type of an ALPHA, which is always 16

Types 49

,---,

L': The standard type TEXT is defi ned as:

o

o

type
TEXT = file of CHARi

In addition to the predefined proce­
dures to do input and output, Pascal/VS
defines several procedures which oper­
ate only on files of type TEXT. These
procedures perform character to
internal representati on (EBCDIC)
conversions and gives you some control
over output field lengths. The prede­
fied routines that may be used on TEXT
fi les are:

• GET (Section 10.6)

• PUT (Section 10.7)

•
•

EOF (Section 10.8)

EOlN (Section 10.13)

• RESET (Section 10.1)

50 Pascal/VS Reference Manual

• REWRITE (Section 10.2)

• READ (Section 10.9)

• READlN (Section 10.9)

• WRITE (Section 10.11)

• WRITELN (Section 10.11)

• PAGE (Section 12.5)

+ • INTERACTIVE (Section 10.3)

+ • OPEN (Section 10.4)

+ • CLOSE (Section 10.5)

+ • COlS (Section 10.15)

Pascal/VS predefines two TEXT vari­
ables named OUTPUT and INPUT. You may
use these files without declaring them
in your program.

o

o

o

.5..11 THE POINTER TYPE

Syntax:

pointer-type:

---> -> --->{id:type}-->

Pascal/VS allows variables to be cre­
ated during program execution under
your explicit control. These vari­
ables, which are called dynamic vari­
ables, are generated by the predefined
procedure NEW. NEW creates a new vari­
able of the appropri ate type and
assigns its address to the argument of
NEW. You must explicitly deallocate a
dynamic variable; the predefined pro­
cedures DISPOSE and RELEASE are pro­
vided for this purpose.

+ Dynamic variables are created in an
+ area of storage called a heap. A new
+ heap is created with the MARK prede-·
+ fined procedure; a heap is released
+ with the RELEASE predefined procedure.
+ A initial heap is allocated by
+ Pascal/VS. All variables that were
+ allocated in a heap are deallocated
+ when the heap is released. An attempt
+ to use a dynamic variable that has been
+ deallocated (either via DISPOSE or
+ RELEASE) is an error. Refer to section
+ 11.1.1, page 106 for details on MARK,
+ RELEASE, DISPOSE and NEW.

Pascal/VS pointers are constrained to
point to a particular type. This means
that on declaration of a pointer, you
must specify the type of the dynamic
variable that will be generated by NEW
or referenced.

Pascal/VS defines the named constant
nil as the value of a pointer which
does not point to any dynamic variable
(empty pointer). Nil is type compatible
to every pointer type.

The only operators that can be applied
to variables of pointer type are the
test for equality and inequality. The
predefined function ORO may be applied
to a pointer variable; the result of
the function is an integer value which
is equal to the address of the dynamic
variable referenced by the pointer.
There is no function in Pascal/VS to
convert an integer into a pointer.

type
PTR = -> ELEMENT;
ELEMENT = record

PARENT PTR;
CHILD PTR;
SIBLING: PTR

end;

A Pointer Declaration

This example illustrates a data types
that can be used to build a tree. With
this structure the parent node contains
a pointer to the eldest child, the
eldest points to the next sibling who
points to the next, and so forth.

In the above example type ELEMENT was
used before it was declared. Referenc­
ing an identifier prior to its declara­
tion is generally not permitted in
Pascal/VS. However, a type identifier
which is used as the base type to a
pointer declaration is an exception to
thi s rule.

Types 51

o

o

STORAGE" PACKING" AND ALIGNMENT record are allocated on the next byte,
---- ignoring alignment requirements.

For each variable declared with a par­
ticular type, Pascal/VS allocates a
specific amount of storage on a specif­
ic alignment boundary. The Program­
mer's Guide describes implementation
requirements and defaults.

Pascal/VS provides the packed record
feature in which all boundary alignment
is suppressed. Fields of a packed

52 Pascal/VS Reference Manual

Packed data occupies less space and is
more compact but may increase the exe­
cution time of the program. Moreover, a
field of a packed record or an element
of a packed array may not be passed by
read/write reference (var) to a rou­
tine.

o

o

o

+
+
+
+

~.Q ROUTINES

Syntax:

routine-dcl:

~>{procedure-headingJ »~
~>{function-heading}--------------------- I
<------------------- j <----------------------
---> EXTERNAL ---> ; ------------------------------->.
---> FORTRAN ----> i ------------------------------->

~::~-~~~~~-:::~-~-:::~]
~> FORWARD ---> ; >

~<

~>{declaration}--->J

---->{compound-statementJ---> i

procedure-heading:

------------------------~----------------->

---> procedure --->{id}--->{formal-parameters}------------------------------->

function-heading:

---> function --->{id}--->{formal-parameters}---> : --->{id:type}---------->

formal-parameters:

--~I---> ([>{formal}--~I---» ---J~-------------------------------->
<----- i <----~

'-------->

formal:

L > var
---> const __ >J

[{i d}:::J -----...---> : -> { i d: type }-------..--->
<--- , <

L
{ i d} -:::J----.r--> : ------->{id:type}------------------------->·

<--- , <

~>{procedure-heading}-->

---->function-heading}-->

There are two categories of routines:
procedures and functions. Procedures
should be thought of as addi ng new
statements to the language. These new
statements effectively increase the
language to a superset language con­
taining statements tailored to your
specialized needs. Functions should
also be thought of as increasing the
flexibility of the language: functions
add to your ability to express data
transformation in expressions.

Routines can return data to the caller
by altering the var parameters or by
assigning to variables that are common
to both the invoker and the invoked
routi ne. In addi ti on, functi ons also

return a value to the invoker upon
return from the function.

~.l ROUTINE DECLARATION

Routines must be declared prior to
their use. The routine declaration
consists of the routine heading, decla­
rations and one compound statement.

The headi ng defi nes the name of the
routine and binds the formal parameters
to the routine. The heading of a func­
tion declaration also binds the func­
tion name to the type of value returned

Routines 53

o
by the function. Formal p~rameters
speci fy data that is to be passed to
the routine when it is invoked. The
declarations are described in chapter
4. The compound statement will be exe­
cuted when the routine is invoked.

2..~ ROUTINE PARAMETERS

Formal parameters are bound to the rou­
tine when the routine is defined. The
formal parameters define what kind of
data may be passed to the routine when
it is invoked. These parameters also
specify how the data will be passed.

When the routine is invoked, a parame­
ter list is built. At the point of
i nvocat i on the parameters are called
the actual parameters.

Pascal/VS permits parameters to be
passed in following ways:

pass by value

+ -

pass by read/write reference (var)

pass by read only reference (const)

formal routine parameter

o

o

PASS BY VALUE PARAMETERS

Pass by value parameters can be thought
of as local variables that are initial­
ized by the caller. The called routine
may change the value of this kind of
parameter but the change is never
reflected back to the caller. Any
expression, variable or constant (ex­
cept of file type) may be passed with
this mechanism. .

2..~.~ PASS BY VAR PARAMETERS

This' method is also called pass 1u! ref­
erence. Parameters that are passed by
var reflect modifications to the param­
eters back to the caller. Therefore you
may use this parameter type as both an
input and output parameter. The use of
the var symbol in a parameter indicates
that the parameter is to be passed by
read/write reference. Only variables
may be passed 1u! thi s mechan ism;
expressions and constants may not.
Also, fields of a packed record or ele­
ments of a packed array may not be
passed as var parameters.

54 Pascal/VS Reference Manual

+ 2..~.~ PASS BY CONST PARAMETERS

+ Parameters passed by const may not be
+ altered by the called routine. Also you
+ should not modify the actual parameter
+ value while the call to the routine has
+ not yet completed. If you attempt to
+ alter the actual parameter while a it

+ is being passed by const, the result is
+ not defined. This method could be
+ called pass 1u! read only reference. The
+ parameters appear to be constants from
+ the called routine's point of view. Any
+ expression, variable or constant may be
+ passed by const (fi elds of a packed
+ record and elements of a packed array
+ may also be passed). The use of the
+ "const" reserved word ina parameter
+ indicates that the parameter is to be
+ passed by this mechanism. With parame-
+ ters which are structures (such as
+ strings), passing by const is usually
+ more efficient than passing by value.

2..~.!t FORMAL ROUTINE PARAMETERS

A procedure or function may be passed
to a routi ne as a formal parameter.
Within the called routine the formal
parameter may be used as if it were a
procedure or function.

ROUTINE COMPOSITION

There are five kinds of routine decla­
rations:

internal

+ - EXTERNAL

+ - FORTRAN

+ - ENTRY

FORWARD

The directive used
kind of declaration
case above.

to identify each
is shown in upper

An internal routine may be invoked only
from within the lexical scope that con­
tains the routine definition.

+ An EXTERNAL routine can be invoked from
+ within the lexical scope that contains
+ the declaration but the routine body is
+ defined outside the module. The formal
+ parameters defined in the EXTERNAL rou­
+ tine declaration must match those in
+ the module where the routine is
+ defined, but this is the programmer's
+ responsiblity. An EXTERNAL routine may
+ refer to a Pascal/VS routine which is
+ declared in another module or it may
+ refer to code produced by other means

o

o

o

+ e such as assembler code).

+ A FORTRAN routine is similiar to an
+ EXTERNAL routine in that it specifies a
+ routine that is defined outside the
+ module being compiled. In addition, it
+ specifies that the routine is a FORTRAN
+ subprogram and that the conventions of
+ FORTRAN are to be used. If you pass a
+ literal constant to a FORTRAN subpro­
+ gram by CONS T, then you must assure
+ that the FORTRAN subprogram does not
+ alter the contents of parameter. In
+ order to meet the requirements of
+ FORTRAN you must obey the following
+ restrictions:

+ - All parameters may be only var or
+ const parameters.

+ - If the routine is a function, it
+ may only return a scalar result
+ (including a REAL).

+ - Routines may not be passed.

+ -
+

Multi-dimensional arrays are not
remapped to conform to FORTRAN
indexing, that is, an element of an
array A[n,m] in Pascal will be ele­
ment ACm,n) in FORTRAN.

+
+
+

+ An ENTRY routine declaration defines a
+ routine that can be invoked from anoth­
+ er module. An ENTRY routine can be
+ invoked from within the module in which
+ it is declared and from any module that
+ declares it as EXTERNAL.

+ ENTRY routines can only be declared at
+ the outermost nest i ng level. That is,
+ they must be declared directly within
+ the program module or directly within a
+ segment module; they can never be
+ declared within another routine.

A routine declared FORWARD is the means
by which you can declare the routine
heading before declaring the declara­
tions and compound statement. The rou­
tine heading is declared followed by
the symbol 'FORWARD'. This allows you
to have a call to a routine prior to
defi n i ng the rout i ne' s body. If two
routines are to be mutually recursive
and are at the same nesting level, one
of the routines must be declared FOR­
WARD.

To declare the body of the FORWARD rou­
tine, you declare the routine leaving
off the formal parameter definition. A
routine declared as an ENTRY routine
may also be FORWARDed.

Notes:

1. Pascal/VS allows routines to be
textuallY nested to a depth not
greater than eight.

2. A routine must be declared before
it can be referenced. This allows
the compiler to assure the validi­
ty of a call by checking parameter

compatiblity.

static
C: CHAR;

function GETCHAR:CHAR;
EXTERNAL;

procedure EXPRevar VAL: INTEGER);
ENTRY; FORWARD;

procedure FACTORCvar VAL: INTEGER);
ENTRY;
begin

C := GETCHAR;
if C = '(' then

begin
C := GETCHAR;
EXPR(VAL)

end
else

end;

procedure EXPR (*var VAL: INTEGER*);
begin

FACTOReVAL);

end;

Examples of Routine Declarations

function CHARFOUND
(const S: STRING;

C: CHAR): BOOLEAN;
var I: 1 .• 255;
begin

for I := 1 to LENGTH(S) do
if SCI] = C then

begin
CHARFOUND := TRUE;
return

end;
CHAR FOUND := FALSE;

end;

Example of Const Parameter

~.~ FUNCTION RESULTS

A value is returned from a function by
assigning the value to the name of the
function prior to leaving the function.
This value is inserted within the
expression at the point of the call.
The value must be assi gnment
conformable to the type of the func­
tion.

Routines 55

o

o

If the function name is used on the
right side of an assignment, it will be
interpreted as a recursive call.

function FACTORIAL
ex: INTEGER): INTEGER;

begin
if X <= 1 then

FACTORIAL .- 1
else

FACTORIAL := X * FACTORIALeX-l)
end;

Example of Recursive Function

56 Pascal/VS Reference Manual

6.5 PREDEFINED PROCEDURES
TIONS

Pascal/VS predefines a number of proce­
dures and functions that you may find
valuable. Details of the predefined
procedures and functions are given in
section 10.0 beginning at page 93.

FUNC-

o

o

o

I.$! VARIABLES

Syntax:

variable:

--> {i d }-->-
<

~> [[>{expr}
<-- I

-> . -->{id:field}

-> ->

Pascal/VS divides variables into five
classes depending on how they are
declared:

+ -

+ -

automatic (var variables)

dynamic (pointer-qualified vari­
ables)

static (static variables)

external (def/ref variables)

parameter (declared on a routine
declaration)

A variable may be referenced in several
ways depending on the variable's type.
You may always refer to the entire var­
iable by specifying its name. You may
refer to a component of a structured
variable by using the syntax shown in
the syntax diagram.

If you simply specify the name of the
variable, then you are referring to the
entire variable. If that variable is
declared as an array, then you are
referring to the entire array. You may
assign an entire array. Similarly, you
may deal with record and set variables
as units.

I > 1 --->-

var
LINEl,

>

>

notes:

array reference

field reference

pointer reference

lIHE2 : packed

.
array[1 .. 80 1 of

CHAR;

(* assign all 80 characters
(* of the array
LIN E 1 : = L I H E2 ;

>

Using Variables in their entirety

1.1 ARRAY REFERENCING

An element of an array is selected by
placing an indexing expression
enclosed within square brackets, after
the name of the array. The i ndexi ng
expression must be of the same type as
declared· on the corresponding array
index definition.

A multi-dimensional array may be refer­
enced as an array of arrays. For exam­
ple, let variable A be declared as
follows:

A: array [a .. b,c .. dl of T

As explained in section 5.6, this dec­
laration is exactly equivalent to:

A: array [a .. bl of
array [c .. dl of T

Variables 57

o

o

A reference of the form A[I] would be a
variable of type:

array [c .. d] of T

and would represent a single row in
array A. A reference of the form
A[I][J] would be a variable of type T
and would represent the Jth element of
the Ith row of array A. This latter
reference would customarily be abbre­
vi ated as

A[I,J]

Any array reference with two or more
subscript indicies can be abbreviated
by writing the subscripts in a comma
separated list. That is, A[I][J] ...
could be written as A[I,J, ...].

If the '%CHECK SUBSCRIPT' option is
enabled, the index expressi on wi 11 be
checked at execution time to make sure
its value does not lie outside of the
subscript range of the array. An exe­
cution time error diagnostic will occur
if ~he value lies outside of the pre­
scribed range. (For a description of
the CHECK feature see section 12.2 on
page 134)

A[12]
A[I]
A[I+J]
DECK[CARD-FIFTY]
MATRIX[ROW[I], COLUMN[J]]

Subscripted Variables

I.~ FIELD REFERENCING

A field of a record is selected by fol­
lowing the record variable by a period
and by the name of the field to be ref­
erenced.

58 Pascal/VS Reference Manual

var
PERSON:

record
FIRST NAME,
LAST NAME: STRING(IS);

end; -

DATE:
record

DAY: 1 .• 31;
MONTH: 1 .. 12;
YEAR: 1900 •. 2000

end;

DECK:
array[l .. 52] of

record
CARD: 1 .. 13;
SUIT:

end;

(SPADE, HEART,
DIAMOND, CLUB)

PERSON.LAST NAME := 'SMITH';
DATE.YEAR :: 1978;

-DECK[I].CARD := 2;
DECK[I].SUIT := S;

Field Referencing Examples

I.~ POINTER REFERENCING

A dynamic variable is created by the
predefined procedure NEW or by an
implementation provided routine which
assigns an address to a pointer vari­
able. You may refer either to the
pointer or to the dynamic variable;

referencing the dynamic variable
requires using the pointer notation.

For example

var P : -> R;

P refers to the pointer
P-> refers to the dynamic variable

If the '%CHECK POINTER' option is ena­
bled, any attempt to reference a point­
er that has not been assigned the
address of an allocated variable will
result in an execution time error diag­
nostic. (For a description of the CHECK
feature see section 12.2 on page 134)

o

o

o

type
INFO = record

var

AGE: 1 .. 99;
WEIGHT: 1 .. 400;

endj

FAMILY =
record

FATHER,
MOTHER,
SELF: ->INFO;
KIDS: 0 .. 10

end;

FAMILY_POINTER: ->FAMIlY

NEW(FAMIlY_POINTER);
FAMIlY_POINTER->.KIDS := 2;
NEW(FAMIlY POINTER->.FATHER)j
FAMIlY_POINTER->.FATHER->.AGE .- 35;

Pointer Referencing Examples

I.!! FILE ~EFE~ENCING

A component of a file is selected from
the file buffer by a pointer notation.
The file variable is assigned by using
the predefined procedures GET and PUT.

Each use of these procedures moves the
current component to the output file
(PUT) or assigns a new component from
the input file (GET). (For a
descr i pt i on of GET and PUT, see
sections 10.6 and 10.7.)

If the '%CHECK POINTER' option is ena­
bled, any attempt to reference a file
pointer which has no value will result
in an execution time error diagnostic.
(For a description of the CHECK feature
see section 12.2 on page 134)

TEXT;
TEXT;

var
INPUT
OUTPUT
LINEI array [1 .. 80] of CHAR;

(* scan off blanks
(* from a file of CHAR
GETCINPUT)j
whi Ie INPUT-> = , , do

GET(INPUT);

(* transfer a line to the
(* OUTPUT file
for I := 1 to 80 do

begin
OUTPUT-> := lINE1[I];

PUTCOUTPUT)
end;

File Referencing Examples

Variables 59

o

o

o
60 Pascal/VS Reference Manual

('"
~,I

o

c~

+

+
+
+

+

~.~ EXPRESSIONS

Syntax:

constant-expr:
expr:

--->{simple-express;on}--~--~-------->

> = [>{s;mPle-expreSSionl--->
> <> --->
> < ---->
> <= --->
> >= --->
> > -->
> in --->

simple-expression:

--~t:::----~--:--:~~:-~-~r---~l--->{term}--~~-_-_-_-~--f-&--_-_-~-~------------------------------->

<--------------------~-

term:

--~--->{factor}--~-->
* ----->
/ ---->
div -->
mod --->
» ---->
« ---->
I I ---->

> & --->
<------------------------------~

factor:

---T--->{funct;on-call}--~~------------>

> {variable}-->

> {set-factor}---­

> (--->{expr}---> ------------------------------------->
--->{structured-constantJ-----------------~-------------->

> not -->{factorJ--------------------------------------->

>{unsigned-constantJ-------------------------------------->

Pascal/VS expressions are similar in
function and form to expressions found
;n other high level programming lan­
guages. Expressions permit you to com­
bine data according to specific
computational rules. The type of compu­
tation to be performed is directed by
operators which are grouped into four
classes according to precedence:

- the not operator (highest)
- the multiplying operators
- the adding operators
- the relational operators (lowest)

An expression is evaluated by perform­
ing the operators of highest precedence
first, operators of the next precedence

Expressions 61

o

o

second and so forth. Operators of equal
precedence are performed in a left to
right order. If an operator has an
operand which is a parenthesized sub­
expression, the sub-expression is
evaluated prior to applying the opera­
tor.

The operands of an expression may be
evaluated in either order; that is, you
should not expect the left operand of
dyadic operator to be evaluated before
the ri ght operand. If ei ther operand

62 Pascal/VS Reference Manual

changes a global variable through a
function call, and if the other operand
uses that value, then the value used is
not specified to be the updated value.
The only exception is in boolean
expressions involving the logical
operations of 'and' (&) and 'or' (I);
for these operations the right operand
will not be evalauted if the result can
be determined from the left operand.
See section 8.3 on page 67.

o

o

o

Examples of Expressions

Assume the following declarations:

const
ACME = 'acme';

type
COLOR
SHADE
DAYS
MONTHS

= (RED, YELLOW, BLUE);
= set of COLOR; = (SUN, MON, rUES, WED, THUR, FRI, SAT);
= (JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC);

var
A_ COLOR
A SET
BaOL
I,
J

factors:

I
15
(HES+J)
[RED J
[]
ODDCI*J)
not BOOL
COLORe 1)
ACME

terms:

I
I * J
I div J

: COLOR;
: SHADE;
: BOOLEAN;

: INTEGER;

ACME II ' TRUCKING'
A_SET * [RED J
I & 'FFO 0 'X
BOOL & 000(1)

I * J
I + J
I I 'SOOOOOOO'X
A_SET + [BLUE J
- I

expression:

I + J
(I <= J) = CK > L)
RED in A_SET

variable
unsigned constant
parenthetical expression
set of one element
empty set
function call
complement expression
scalar type converter
constant reference

factor
multiplication
integer division
catenation
set intersection
logical and on integers
boolean and

term
addition
logical or on integers
set union
unary minus on an integer

simple expression
relational operations
test for set inclusion

Expressions 63

~.1. OPERATORS

Multiplying Operators

operator operation operands result

* multiplication INTEGER INTEGER
REAL REAL
one REAL, one INTEGER REAL

/ real division INTEGER REAL
REAL REAL
one REAL, one INTEGER REAL

div integer division INTEGER INTEGER

mod modulo INTEGER INTEGER

& (and) boolean and BOOLEAN BOOLEAN

+ & (and) logical and INTEGER INTEGER

* set intersection set of t set of t

+ II string catenation STRING STRING

+ « logical left shift INTEGER INTEGER

+ » logical right shift INTEGER INTEGER

Adding Operators

o operator operation operands result

+ addition INTEGER INTEGER
REAL REAL
one REAL, one INTEGER REAL

- subtraction INTEGER INTEGER
REAL REAL
one REAL, one INTEGER REAL

- set difference set of t set of t

I (or) boolean or BOOLEAN BOOLEAN

+ I (or) logical or INTEGER INTEGER

+ set union set of t set of t

+ && (xor) exclusive or BOOLEAN BOOLEAN

+ && (xor) exclusive or INTEGER INTEGER

+ && (xor) 'exclusive' union set of t set of t

o
64 Pascal/VS Reference Manual

C)

o

+
+

operator

~ (not)

~ (not)

~ (not)

operator

=

<> (~=)

<

<=

<=

>

>=

>=

in

./

The Not Operator

operation operand

boolean not BOOLEAN

logical one's INTEGER
complement

set complement set

Relational Operators

operation

compare equal

compare not equal

compare less than

compare < or =
subset

compare greater

compare > or =
superset

set membership

operands

any set, scalar type,
pointer or string

any set, scalar type,
pointer or string

scalar type or string

scalar type, string

set of t

scalar type, string

scalar type, string

set of t

t and set of t

result

BOOLEAN

INTEGER

set

result

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

Expressions 65

+ ~.~ CONSTANT EXPRESSIONS

L~+ Constant expressions are expressions
t which can be evaluated by the compiler
+ and replaced with a result at compile
+ time. By its nature, a constant expres­
+ sion may not contain a reference to a
+ variable or to a user-defined function.
+ Constant expressions may appear in con­
+ stant declarations.

+ The following predefined functions are
+ permitted in constant expressions:

+

+
+
+
+
+
+
+
+
+
+
+
+
+

o

o

Function

- ABS
- CHR
- HIGHEST
- LENGTH
- LOWEST
- MAX
- MIN
- ORO
- PRED
- scalar conversion

functions
- SIZEOF
- SUCC

Section

11.5.6
11.4.2
11.3.4
11.6.1
11.3.3
11.5.2
11.5.1
11.4.1
11.5.3

11.4.3
11.3.5
11.5.4

66 Pascal/VS Reference Manual

119
113
112
124
111
117
117
113
118

114
112
118

+

+
+
+

+
+
+
+
+
+
+

+

+

constant
expression

ORDC'A')
SUCCCCHRC'FO'X»
256 div 2
'TOKEN'IISTRCCHRCO»
'8000'X 'OOOl'X
['0' .. '9']
32768*2-1

type

INTEGER
CHAR
INTEGER
STRING
INTEGER
set of CHAR
INTEGER

Examples of Constant Expressions

o

o

~.~ BOOLEAN EXPRESSIONS

You should recognize that Pascal
assigns the operations of "&" (and) and
"I" a higher precedence than the rela­
tional operators. This means that the
expression:

A<B & C<O

will be evaluated as

(A < (B&C» < 0

Thus, it is advisable to use parenthe­
sis when writing expressions of this
sort.

Pascal/VS will optimize the evaluation
of BOOLEAH expressions involving '&'
(and) and 'I' (or) such that the right
operand of the expression will not be
evaluated if the result of the oper­
ation can be determined by evaluating
the left operand. For example, given
that A, B, and C are boolean expres­
sions and X is a boolean variable, the
evaluat i on of

X : = A or B or C

would be performed as

if A then
X : = TRUE

else
if B then

X := TRUE
else

X : = C

The evaluation of

X : = A and Band C

would be performed as

if ... A then
X : = FALSE

else
if ... B then

X : = FALSE
else

X : = C

The evaluation of the expression will
always be left to right.

The following example demonstrates
logic which depends on the conditional
evaluation of the right operand of the
"and" operator.

type
RECPTR = ->REC;
REC = record

var

NAME: ALPHA;
NEXT: RECPTRi

end;

P RECPTRi
LNAME : ALPHA;

begin

while (P<>nil) and
(P->.HAME <> LHAME)

do
P := P->.NEXT;

end;

Example of a BOOLEAN Expression
that Depends on Order of Evaluation

Hotes:

• If you use a function in the right
operand of a boolean expression,
then you must be aware that the
function may not be evaluated.
Further, you should note that rely­
ing on side-effects from functions
is considered a bad programming
practice.

• Not all Pascal compilers support
th is i nterpretat i on of BOOL EAH
expressions. If you wish to assure
portability between Pascal/VS and
other Pascal implementations you
should write the compound tests in
a form that uses nested i f­
statements.

Expressions 67

+ ~.~ LOGICAL EXPRESSIONS

(~'+ Many of the integer operators provided
~t in Pascal/VS perform logical oper­

+ ations on their operands; that is, the
+ operands are treated as unsi gned
+ strings of binary digits instead of
+ signed arithmetic quantities. For
+ example, if the integer value of -1 was
+ used as an operand of a logical oper­
+ ation, it would be viewed as a string
+ of binary digits with a hexadecimal
+ value of 'FFFFFFFF'X.

+ The logical operations are defined to
+ apply to 32 bit values. Such an oper­
+ ation on a subrange of an INTEGER could
+ yield a result outside the subrange.

+ The following operators perform log­
+ ical operations on integer operands:

+ - '&' (and) performs a bi t-wi se and
+ of two integers.

+ -
+

'I' (or) performs a bit-wise inclu­
sive or.

+ - 'ii' (xor) performs a bit-wise
+ exclusive or.

o

o
68 Pascal/VS Reference Manual

+

+ -
+
+
+

+ -
+
+
+

+

+
+
+
+
+
+
+
+
+
+

+

+

+ - ,~, (not) performs a one's comple-
ment of an integer.

'«' shifts the left operand value
left by the amount indicated in the
right operand. Zeroes are shifted
in from the right.

'»' shifts the left operand value
right by the amount indicated in
the ri ght operand. Zeroes are
shifted in from the left.

257 & 'FF'X yields 1
2 I 4 I 8 yields 14
4 « 2 yields 16
-4 « 1 yields -8
8 » 1 yields 4
-8 » 1 yields '7FFFFFFC'X
'FFFF'X » 3 yields '1FFF'X
~1 & 'FF'X yields 'FE'X
~O yields -1
'FF'X && 8 yields 'F7 'X

Examples of Logical Operations

+

o

o

!l.,2 FUNCTION CAll

Syntax:

function-call:

--->(id:functionl--->(actual-parametersl-------------------------------------->

actual-parameters:

- __ r--> (
[---~~--:~:~:~~-------~---->~]--->) ---J~------------------------->

~--->

A function returns a value to the
invoker. A call to a function passes
the actual parameters to the corre­
sponding formal parameters. Each actu­
al parameter must be of a type that is
conformable to the corresponding
formal parameter. You may not pass a
field of a packed record as a var
parameter. You al so may not pass an
element of a packed array as a var
parameter.

The parenthesis list may be dropped if
the functions require no parameters.
Also, you may use an empty set of
parenthesis to show this.

var A,B,C: INTEGER;

function SUM
(A,B: INTEGER): INTEGER;

begin
SUM := A+B

end;

begin

C := SUM(A,B) * 2

end;

Function Example

Expressions 69

- ------ -- ------- - - - --,------ - - -------- ------- --- - -- ------- --------- --------- - ----- ------ - ---

+ 11 • .6. SCALAR CONVERSIONS

L--.l Pascal/VS predefines the function ORO
that converts any scalar value into an

+ integer. The scalar conversion func-
+ tions convert an integer into a speci­
+ fied scalar type. An integer expression
+ is converted to another scalar type by
+ enclosing the expression within paren­
+ theses and prefixing it with the type
+ identifier of the scalar type. If the
+ operand is not in the range 0
+ ORD(HIGHEST(scalar type», then a sub­
+ range error will result. The conversion
+ is performed in such a way as to be the
+ inverse of the ORO function. See
+ section 11.4.3 on page 114.

+ The definition of any type identifier

+ scalar conversion function. By defi­
+ ni ti on, the expressi on CHARCx) is
+ equivalent to CHR(x); INTEGERex) is
+ equivalent to x; and ORDCtypeCx» is
+ equivalent to x.

+

+
+
+
+
+
+
+

type
WEEK =

CSUH,MON,TUE,WED,THU,FRI,SAT);
var

DAY: WEEK;

.
+ e*The following assigns SAT to DAY*)
+ DAY:= WEEK(6);

+ Scalar Conversion Functions

+ that specifies a scalar type (enumer- +
+ ated scalars or subranges) forms a

o

o
70 Pascal/VS Reference Manual

o

o

11.1. SET FACTORS

Syntax:

set-factor:

-> [------~[~->{expr}--~c::--->----=----->-{e-x-p-r-}~---->~]--~--~J~->]

L-... __ <:::::::::::::::~_,_<_-_-_-_-_-_-_-,:-_-_-_-_-_-,:-_-_-_-_-.:-_--J __ >

A set factor ;s used to compute a value
of a set type within an expression.

The set factor is list of comma sepa­
rated expressions within square brack­
ets. Each expression must be of the
same type; this type becomes the base
scalar type of the set. If the set
specifies INTEGER valued expressions,
then there is an implementation
restriction of 256 elements permitted
in the set.

type
DAYS =' set of

(SUN,MON,TUES,WED,THU,FRI,SAT)i
CHARSET= set of CHARi

var
WORKDAYS,
WEEKEND: DAYS
NONLETTERS: CHARSETi

WORKDAYS .- [MON .. FRI];
WEEKEND .- ~ WORKDAYS;

NONLETTERS :=
~ ['a' .. 'z','A' .. 'Z']i

Set Factor

---->

Expressions 71

o

o

o
72 Pascal/VS Reference Manual

,--.......

u

+

+

+

o
+

o

.i . .Q. STATEMENTS

Syntax:

statement:

>{labelJ--> : ->,
-<

---->{assert-statementJ------------------------------------->-

--->{assignment-statementJ >-

--->{case-statementJ >

--->{compound-statementJ >-

--->{continue-statementl----------------------------------->-

--->{empty-statementJ >-

r--->{for-statementJ >-

r--->{goto-statementJ >-

r--->{if-statementl >

--->{leave-statementJ-------------------------------------->

r--->{procedure-calll >

--->{repeat-statementJ >

----> {return-statementJ------------------------------------->

--->{while-statement} >

--->{with-statementJ > >

Statements are your directions to per­
form specific operations based on the
data. The statements are similar to

those found in most high level program­
ming languages.

Statements 73

+ .2..1 THE ASSERT STATEMENT

+ assert-statement:

+ ---> assert --->{expr}--->

+

+ The assert statement is used to check
+ for a specific condition and signal a
+ runtime error if the condition is not
+ met. The condition is specified by the
+ expression which must evaluate to a
+ BOOLEAN value. If the condition is not
+ TRUE then the error is raised. The com­
+ piler may remove the statement from the
+ program if it can be determined that
+ the assert ion is always true.

o

o
74 Pascal/VS Reference Manual

+

+ Example:

+ assert A >= B

+ The Assert Statement

+

C)

o

2,.g THE ASSIGNMENT STATEMENT

Syntax:

assignment-statement:

L--->{variable} J > .- --->{expr}--------------------------------->
>{id:function}--->

The assignment statement is used to
assi gn a value to a vari able. Thi s
statement is composed of a reference to
a variable followed by the assignment
symbol (':='), followed by an expres­
sion which when evaluated is the new
value. The variable must be conformable
to the expressi on. The rules for
expression conformability are given in
section 5.2 on page 27.

'You may make array assignments (assign
one array to another array) or record
assignments (assign one record to
another). When doing this, the entire
array or record is assigned.

A result is returned from a function by
assigning the result to the function
name prior to leaving the function.
(See section 6.4 on page 55).

Pascal/VS will not permit the assign­
ment of a value to a pass by const
parameter.

Example:

type
CARD = record

SUIT : (SPADE,
HEART,
DIAMOND,
CLUB);

RANK 1 .. 13
end;

var
X, Y, Z : REAL;

LETTERS,
DIGITS,
LETTER_DR_DIGIT

: set of CHAR;

I, J, K : INTEGER;

DECK: array[1 .. 52 1 of
CARD;

X := y*z;
LETTERS
DIGITS
LETTER_DR_DIGIT
DECK[I].SUIT
DECK[J]

.- ['A' .. '2' 1;

.- ['0' .. '9' Ji

.- LETTERS + DIGITS;

.- HEART;

.- DECK[K Ji

Assignment Statements

Statements 75

~.1 THE CASE STATEMENT

o Syntax:

case-statement:

---> c:se --->{expr}---> of --->]

l<-_[_<:::>~{~r_a_~_g_~_~ _____ > ; -<==_>_{_s_t_a_t_e_m_e_n_t_}:_-:~-->l

<------------------~[-<:::--;--<-:::J--~----------------~

+
+
+ ':~~:-:~::::~::-~~~~~==~~:~:~!:~:~~===~~~~:]

---> end -->

()

The case statement provides you with a
multiple branch based upon the evalu­
ation of an expression. This statement
consists of an expression called the
selector and a list of statements. The
selector must be of scalar type (except
type REAL). Each statement is prefixed
with one or more ranges of the same
type as the selector; each range is
separated by a comma. Each range desig­
nates one or more values called ~
labels.

Pascal/VS evaluates the expression and
executes the statement whose case label
equals the value of the expression. If
no case label equals the value of the
expression, then the otherwise state-

+ ment is executed if it ;s present; if
+ there is no otherwise statement and the
+ Y.CHECK CASE option is on, then a
+ runtime error will result. If the
+ checking is not enabled the results
+ will not be predictable.

o

The range values of a case statement
may be written in any order. However,
you may not desi gnate the same case
label on more than one statement.

76 Pascal/VS Reference Manual

Example:

type
SHAPE = (TRIANGLE, RECTANGLE,

SQUARE, CIRCLE);
COORDINATES =

var

record
X,Y : REALi
AREA : REAL;
case S : SHAPE of

end;

TRIANGLE:
(SIDE: REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL)i

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS : REAL)

COORD : COORDINATES;

with COORD do
case S of
TRIANGLE:

AREA := 0.5 * SIDE * BASE;
RECTANGLE:

AREA := SIDEA * SIDEB;
SQUARE:

AREA := SQR(EDGE);
CIRCLE:

AREA .- 3.14159 * SQR(RADIUS)
end;

The Case Statement

o

o

Example:

type
RANK = (ACE, TWO, THREE,FOUR,

FIVE, SIX, SEVEN, EIGHT,
NINE, TEN, JACK, QUEEN,
KING) ;

SUIT = (SPADE,HEART,DIAMOND,CLUB);
CARD = record

var

R RANK;
S : SUIT
end;

POINTS : INTEGER;
A_CARD.: CARD;

case A_CARD.R of
ACE:

POINTS := 11;
TWO .. TEN:

POINTS := ORD(A_CARD.R)+1
+ otherwise
+ POINTS := 10

end;

The Case Statement with otherwise

Statements 77

c

o

o

.2..~ THE COMPOUND STATEMENT

Syntax:

compound-statement:

--> begin --~-->{statement}-~--> end l<_______ ; < ______ ~

The compound statement serves to brack­
et a series of statements that are to
be executed sequentially. The reserved
wo rds "beg in" and "end" del; mit the
statement. Semicolons are used to sepa­
rate each statement in the list of
statements.

Example:

;f A > B
begin

TEMP
A
B

end

then
(* swap A and B

= Ai
= B; = TEMP

Compound Statement

78 Pascal/VS Reference Manual.

----------------------------------->

c

o

+ .2. • .2 THE CONTINUE STATEMENT

+
+
+

Syntax:

+ continue-statement:

+ ---> continue --->
+

+ The continue statement permits the con­
+ tinuation of an iterative statement
+ (i.e. for, while and repeat). This
+ statement is effectively a goto to the
+ end of the innermost iterative state­
+ ment. The termination condition is
+ tested and the loop will terminate or
+ will iterate depending on the result of
+ the test.

+

+ Example:

+ repeat
+
+ if A > B then continue;
+
+ (* execution resumes here *)
+ until P = nil

+ The Continue Statement

+

Statements 79

o

o

o

.2.~ THE EMPTY STATEMENT

Syntax:

empty-statement:

--->

The empty statement is used as a place
holder and has no effect on the exe­
cution of the program. This statement
is often useful when you wish to place
a label in the program but do not want
it attached to another statement (such
as, at the end of a compound
statement). The empty statement is also
useful to avoid the ambiguity that
arises in nested if statements. You may
force a single else-clause to be paired

80 Pascal/VS Reference Manual

with the outer nested if statement (see
page 84) by using an empty statement.

if bl then
if b2 then

sl
else

else
52

(* empty-statement *)

C
'"

\
I

o

o

2..1 THE FOR STATEMENT

Syntax:

for-statement:

---> for --->{idJ---> .- ---->{exprJ---T~---» to J
'-- downto --->

> {exprJ--->]

L-[< _______ > do ---> {statement}----------->

The for statement repeatedly executes a
statement while the control variable is
assigned a series of values. The value
of the control variable is incremented
(to) or decremented (downto) for each
iteration of the loop. The increment
(decrement) is computed by the SUCC
(PRED) function. That is, the control
variable is changed to the suceeding
(preceeding) value of the type of the
control variable.

The for statement initializes the con­
trol variable to the first expression.
Prior to each execution of the compo­
nent statement, the control variable is
compared less than or equal to (to), or
greater than or equal to (downto) the
second expression. Pascal/VS computes
the value of the second expression at
the beginning of the for statement and
uses the result for the duration of the
statement. Thus the endi ng value
expressi on is computed once and can not
be changed during the for statement.

The control variable must be an auto­
matic variable which is declared in the
immediately enclosing routine. Also,
it may not be subscripted, field quali­
fied or referenced through a pointer.
The type of the control variable must
be a scalar type.

The executed statement must not alter
the control variable. If the control
variable is altered within the loop,
the resultant loop execution is not
predictable. The value of the control
variable after the for statement is
undefined (you should not expect the
control variable to contain any partic­
ular value).

Given the following statement

for I := exprl to expr2 do stmt

where I is an automatic scalar vari­
able; exprland expr2 are scalar expres-

sions which are type-compatible with I;
and 'stmt' is any arbitrary statement.
The following compound statement is
functionally equivalent:

begin
TEMP! := expr!i
TEMP2 := expr2;
if TEMP! <= TEMP2 then

begin

end

I : = TEMP! i
repeat

stmti
if I = TEMP2 then

leavei
I := SUCC(I)

until FALSEi (*forever*)
end

And given the following statement

for I := expr! down to expr2 do stmt

where I is an automatic scalar vari­
able; expr! and expr2 are scalar
expressions which are type-compatible
wi th I; and 'stmt' is any arbi trary
statement. The following compound
statement is functionally equivalent:

begin
TEMP! := exprl;
TEMP2 := expr2i
if TEMP! >= TEMP2 then

begin

end

I : = TEMP!;
repeat

stmti
if I = TEMP2 then

leave;
I := PRED(I)

until FALSE; (*forever*)
end

where 'TEMPI' and 'TEMP2' are compiler
generated temporary variables.

Statements 8!

o

o

Examples:

C* find the maximum INTEGER in
c* an array of INTEGERs
MAX := A[l];
LARGEST := 1;
for I := 2 to SIZE_OF_A do
if A[I] < MAX then

begin
LARGEST := I;
MAX := A[Il

end

c* matrix multiplication: C<-A*B *)

for I := 1 to N do
for J:= 1 to N do

begin
X := 0.0;
for K := 1 to N do

X := A[I,Kl * B[K,Jl + X;
C[I,Jl := X

.end

C* sum the hours worked this week *)

SUM := 0;
for DAY := MON to FRI do

SUM := SUM + TIMECARD[DAY 1

The For statement

82 Pascal/VS Reference Manual

o

o

.2. • .a THE GOTO STATEMENT

Syntax:

goto-statement:

--------> goto --->{label}--->

The goto statement changes the flow of
control within the program.

Examples:

goto 10
goto ERROR_EXIT

The Goto Statement

The label must be declared within the
routine that contains the goto state­
ment.

The following restrictions apply to the
use of the goto statement:

•

•

•

You may not branch into a compound
statement from a goto statement
which is not contained within the
statement.

You may not branch into the then­
clause or the else-clause from a
goto statement that is outside the
if statement. Further, you may not
branch between the then-clause and
the else-clause.

You may not branch into a case-al­
ternative from outside the case
statement or between case-alterna­
tive statements in the same case
statement.

• You may not branch into a for,
repeat, or while loop from a goto
statement that is not contained
within the loop.

•

•

You may not branch into a with
statement from a goto statement
outside of the with statement.

A goto statement that specifies a
label ina surroundi ng routi ne is
not permitted. This is a restric­
tion in Pascal/VS which is not in
standard Pascal.

The following example illustrates
legal and illegal goto statements.

procedure GOTO_EXAMPLEi
label

l1,
L2,
JUMPIH,
JUMPOUTi

begin
goto JUMPIHi

begin
JUMPIH:

goto JUMPOUTi

goto JUMPIHi
end;

JUMPOUT:

if expr then
l1:goto l2

else
l2:goto l1

(* not permitted *)

(* permitted

(* permitted

(* not permitted *)

(* not permitted *)

Goto Target Restrictions

Statements 83

o

o

o

,2.,2 THE IF STATEMENT

Syntax:

if-statement:

--> if -->{exprJ--> then -->{statementJ--~----------------------------~------>

~> else -->{statementJ-->J

The if statement allows you to specify
that one of two statements is to be
executed depending on the evaluation of
a boolean expression. The if statement
is composed of an expression and a
then-clause and an optional else­
clause. Each clause contains one state­
ment.

The expression must evaluate to a
BOOLEAN value. If the result of the
expression is TRUE, then the statement
in the then-clause is executed. If the
expression evaluates to FALSE and there
is an else-clause, then the statement
in the else~clause ; s executed; if
there is no else-clause, control passes
to the next statement.

Example:

if A <= B then
A := (A+l.0)/2.0

if 000(1) then
J:=J+l

else
J:=J div 2 + 1

The If Statement

Nesting of an if statement within an if
statement could be interpreted with two
different meanings if only one state-

84 Pascal/VS Reference Manual

ment had an else-clause. The following
example illustrates the condition that
produces the ambiguity. Pascal/VS
always assumes the first interpreta­
t ion. That is, the el se-clauses are
paired with the innermost if statement.

The following line could be
interpreted two ways.

if bi then if b2 then sl else s2

Interpretation I
(assumed by Pascal/VS)

if bl then
begin

if b2 then
sl

else
s2

end

Interpretation 2
(incorrect interpretation)

if bi then
begin

if b2 then
s1

end
else

s2

o

o

o

+ ,2.10 THE LEAVE STATEMENT

+
+
+

Syntax:

+ leave-statement:

+ ---> leave -->

+

+ The leave statement permits the termi­
+ nation of an iterative statement (i.e.
+ for, while and repeat) without the ter­
+ mination condition occurring. This
+ statement is particularly useful in
+ applications which search and in handl­
+ ing error conditions.

+

+ Example:

+ P:=FIRST;
+ while P<>nil do
+ if P->.NAME = 'JOE SMITH' then
+ leave
+ els9
+ P:=P->.NEXT;
+ (* P either points to the desired *)
+ (* da ta 0 r i 5 nil *)
+ The Leave Statement

+

Statements 85

o

o

THE PROCEDURE CAll

Syntax:

procedure-call:

--->{id:procedure}-----r--r----------------->
L-> [>{expr~---r---» _>J

<--- , <

The procedure statement causes the
invocation of a procedure. When a pro­
cedure is invoked, the actual parame­
ters are subst i tuted for the
corresponding formal parameters. The
actual parameters must be conformable
to the formal parameters. The rules for
expression conformability are given in
section 5.2 on page 27.

Parameters which are passed by
read/write reference (var) may only be
variables, never expressions or con­
stants. Also, fields of a packed record
may not be passed by var. Parameters
passed by value or read-only reference
(const) may be any expression.

A procedure invocation that requires no
parameters does not use the list of
operands.

86 Pascal/VS Reference Manual

Example:

TRANSPOSECAN_ARRAY,
NUM-Of_ROWS,
NUM-Of_COLUMNS);

MATRIX_ADD(A_ARRAY,
B ARRAY,
C:ARRAY,
N,M);

XYZ(I+J, K*L)

Procedure Invocations

o

o

o

~.12 THE REPEAT STATEMENT

Syntax:

repeat-statement:

---> repeat ------~--->{statement}--~---> until --->{expr}-----------------> L<______ i <------~

The statements contained between the
statement delimiters repeat and until
are executed until the control expres­
sion evaluates to TRUE. The control
expression must evaluate to type
BOOLEAN. Because the termination test
is at the end of the loop, the body of
the loop is always executed at least
once. The structure of the repeat
statement allows it to act like a com­
pound statement in that it encloses a
list of statements.

Example:

repeat
K := I mod Jj
I := J;
J := K

until J = 0

The Repeat Statement

Statements 87

+ ,i. 13 THE RETURN STATEMENT

C! Syntax:
+

+ return-statement:

+ ---> return --->
+

+ The return statement permits an exit
+ from a procedure or function. This
+ statement is effectively a goto to an
+ imaginary label after the last state­
+ ment within the routine being executed.
+ If the Y.CHECK FUNCTION option is ena-

o

o
88 Pascal/VS Reference Manual

+ bled, Pascal/VS will insure that a
+ function has been assigned a value pri­
+ or to the return from the function. If
+ a value has not been assigned, a
+ runtime error will occur.

o

0

o

.2.14 THE WHILE STATEMENT

Syntax:

while-statement:

----> while --->{expr}---> do --->{statementJ-------------------------------->

The while statement allows you to spec­
ify a statement that is to be executed
while a control expression evaluates to
TRUE. The control expression must eval­
uate to type BOOLEAN. The expression ;s
evaluated prior to each execution of
the statement.

,Example:

OE Compute the decimal size of N *)
c* assume N >= 1 *)
I . - 0;
J . - 1 ;
while N > 10 do

begin
I · - I + 1 ;
J · - J * 10;
N · - N div 10

end
c* I is the power of ten of the *)
c* original N *)
c* J is ten to the I power *)
c* 1 <= N <= 9 *)

The While Statement

statements 89

o

o

.2..15 THE WITH STATEMENT

Syntax:

with-statQmQnt:

--> with -~--->{variable}-~--> do --->{statement}---------------------> L<_____ , < ______ ~

The with statement is used to simplify
referQnces to a record variable by
eliminating an addressing description
on every reference to a field. ThQ with
statemQnt makes the fields of a record
available as if the fields were vari­
ables within the nested statement.

The with statQment effectively com­
putes the address of a record variable
upon QXQcuting the statQment. Any
modification to a variable which
changes the address computation will
not be reflected in the pre-computed
address during the execution of the
with statement. The following example
illustrates this point.

var A array[1 .. 10] of
record

FIELD : HHEGER
end;

I: =1;
with A[I] do

begin
K := FIELD;
I : = 2;
K := FIELD;
end;

(*K:=A[1].FIELD*)

C*K:=A[1].FIELD*)

The Address of A is Computed
on Entry to the statement

The comma notation of a with statemQnt
is an abbreviation of nested with
statements. The names within a with
statemQnt arQ scoped such that the last
with statement will take precedence. A
local variable with the same name as a
field of a record bQcomes unavailable

90 Pascal/VS ReferQnce Manual

in a with statement that specifies the
record.

Example:

type
EMPLOYEE =

var

record
HAME
MAH_NO
SALARY
ID NO

end;-

STRING(20);
o •• 999999;
IHTEGER;
O .. 999999

FATHER : -> EMPLOYEE;

with FATHER-> do
begin

HAME .- 'SMITH';
MAN_HO .- 666666;
SALARY .- WEEKLY_SALARY;
10 HO .- MAN_NO

end -

is equivalent to:

begin
FATHER->.NAME
FATHER->.MAH HO
FATHER->.SALARY
FATHER->.ID NO

end -

:= 'SMITH';
:= 666666;
:= WEEKLY_SALARY;
:=FATHER->.MAN_NO

Hote: The variable FATHER is of type
pointer to EMPLOYEE, thus the pointer
notation must be used to specify the
record pointed to by the pointer.

o

Example:

V : record
V2 : INTEGER;
V1 : record A
A : INTEGER

end;
A : CHAR;

with V,Vl
begin

V2 . -
A . -
V. A· : =

end;
A . - , A ' ;

do

1 ;
1.0;
1

Wi th statements

OE
c*
c*
c*
OE

c*
c*

Can

REAL end;

V.V2 · - 1 *)
V.V1.A · - 1.0 *)
V.A · - 1 *)
CHAR A is not *)
available here *)
CHAR A is now *)
available *)
Hide a Variable

Statements 91

o

o

o
92 Pascal/VS Reference Manual

C')

o

o

il . .Q. I/O FACILITIES

Input and output are done usi ng the
file data structure. The Pascal/VS Pro­
grammer's Guide provides more detail on
how to use the I/O facilities in a spe­
cific operating system. Pascal/VS pro­
vides predefined routines which
operate on variables of a file type.
The routi nes are:

• RESET

• REWRITE

• READ

• WRITE

• GET

• PUT

• EOF

+ • INTERACTIVE

+ • OPEN

+ • CLOSE

To facilitate input and output oper­
ations that require conversion to and
from a character representation, the
predefined file type TEXT is provided.
The type TEXT is predefined as a file
of CHAR. Each GET and PUT transfers one
CHAR of information. There are addi­
tional predefined routines that may be
executed on variables of type TEXT that
perform the required conversions.

• READlN

• WRITElN

• EOlN

• PAGE

+. COLS

il.! RESET PROCEDURE

Open a File for Input

definition:

procedure RESET(
F : filetype);

where:

F is a variable of a file type

RESET positions the file pointer to the
beginning of the file and prepares the
file to be used for input. After you
invoke RESET the file pointer is point­
i ng to the fi rst data element of the
file. If the file is associated with a
terminal, the terminal user would be
prompted for data when the RESET is
executed. This procedure can be thought
of as:

Closing the file (if open).

Rewinding the file.

Opening the file for input.

Getting the first component of the
file.

I/O Facilities 93

o

o

o

10.2. REWRITE PROCEDURE

Open a File for Output

definition:

procedure REWRITE(
F : filetype);

F is a variable of a file type.

REWRITE positions the file pointer to
the beginning of the file and prepares
the file to be used for output. This
procedure can be thought of as:

Closing the file (if open).

Rewinding the file.

Open i ng the fi Ie for output.

94 Pascal/VS Reference Manual

+
+

+

+
+

+

+

+

+ 10.~ INTERACTIVE PROCEDURE

Open a File for Interactive Input

procedure INTERACTIVE(
F : filetype)i

where:

F is a variable of a file type.

+ INTERACTIVE positions the file pointer
+ to the beginning of the file and pre­
+ pares the file to be used for input.
+ This procedure is similar to RESET
+ except that when a file is opened the
+ fi Ie is not posi ti oned at the fi rst
+ data element. If the file is a TEXT
+ file, then an explicit READ is required
+ after a READLN in order to advance the
+ file to the next line of data.

o

o

+ il.~ OPEN PROCEDURE

+
"+

+

+
+
+

Open a File

d~finition:

procedure OPEN(
F filetypei
S : STRING)i

+ wh~re:

+
+
+
+
+

+

F is a variable of a file type.
S is an optional parameter that is

used to supply implementation
dependent information about the
file.

+ OPEN opens the file for processing. The
+ optional string parameter is expected
+ to contain a file name or other system
+ dependent information. You should
+ refer to the Programmer's Guide for a
+ description of the available options.

+
+

+

+
+

+ 10 • .2 CLOSE PROCEDURE

Close a File

definition:

procedure CLOSE(
F : filetype)i

+ wher~:

+ F is a variable of a file type.

+

+ CLOSE closes a file; all processing to
+ the fi·le is completed. You must open
+ the f i I e p rio r to us i n g ita ga in.

I/O Facilities 95

o

o

10 • .§. GET PROCEDURE

Position a File to Next Element

definition:

procedure GETe F : filetype);

whQrQ:
~a variable of a file type.

GET positions the file pointer to the
next component of the file. For exam­
ple, if the fi Ie is defi ned as an array
of 80 characters, then each GET returns
the next 80 character record. A GET
invocation on a file of type TEXT
returns a single character. If the file
associated with the variable is not
opened for input, it L..Ji 11 be opened
implicitly.

96 Pascal/VS Reference Manual

li.1. PUT PROCEDURE

Position a File to Next Element

definition:

procedure PUTe F filetype);

where:

F is a variable of a file type.

PUT releases the current component of
the file variable by effectively writ­
ing the component to the associated
physical file. For example, if the file
is defined as an array of 80 charac­
ters, then each PUT transfers an 80
character record. A call to PUT with a
file of type TEXT transfers a single
character. The file associated with the
variable must be open for output.

("-"',
~I

c

o

!..Q..lt EOF FUNCTION

Test File for End Of File

dQfinition:

function EOFCF:filetype):BOOLEAN;

function EOF:BOOLEAN;

where:

F is a variable of a file type.

EOF is a BOOLEAN valued function which
returns TRUE if the end-of-file condi­
tion is true for the file. This condi­
tion occurs in an input file when an
attempt is made to read past the last
record element of the file. If the file
is open for output, this function
always returns TRUE.

If the file variable F is omitted, then
the function assumes the predefined
file INPUT.

Example:

C* The following will read all of *)
C* the records from File SYSIN *)
C* and write then out to SYSOUT *)

type FREC =
record

A,B:INTEGER
end;

var
SYSIN,
SYSOUT: file of FREC;

begin
RESETCSYSIN);
REWRITECSYSOUT);
while not EOFCSYSIN) do

begin
SYSOUT-> := SYSIN->;
PUTCSYSOUT);
GETCSYSIN)

end;
end;

10.,2. READ AND READLN (TEXT FILES)

Read Data from TEXT File

Definition:

procedure READC
f : TEXT;
v : see below);

procedure READLNC
f TEXT;
v : see below);

where:
~an optional text file

that is to be used for input.
v is a variable of one of the

following types:
- INTEGER Cor subrange)
- CHAR Cor subrange)
- REAL
- STRING
- packed array of CHAR

The READ procedure reads character data
from the TEXT file f. READ converts
character data to conform to the type
of the operand. The file parameter is
optional; the default file is INPUT.

READLN positions the file at the begin­
ning of the next line. You may use more
than one variable on each call by sepa­
rating each with a comma. The effect is
the same as multiple calls to READ.

READCf,vl,v2)

is equivalent to:

and

begin
READCf,vl);
READCf,v2)

end

READLNCf,vl,v2,v3)

is equivalent to:

begin
READCf,vl);
READCf,v2);
READCf,v3);
READLNCf);

end

Multiple Variables on READ or READLN

I/O Facilities 97

c~

o

o

Reading INTEGER Data

INTEGER data from a TEXT file is read
by scanning off leading blanks, accept­
ing an optional sign and converting all
characters up to the first non-numeric
character.

Read; n9 CHAR Data

A variable of type CHAR is assigned the
next character in the file.

Readi ng STRING Data

Characters are read into a STRING vari­
able until the variable has reached its
maximum length or until the end of the
1 i ne is reached.

Read; n9 REAL Data

REAL data is read by scanning off lead­
ing blanks, accepting an optional sign
and converting all characters up to the
first non-numeric character not con­
forming to the syntax of a REAL number.

Readi n9 packed array of CHAR Data

If the variable is declared as a
'packed array[l .. n] of CHAR', charac­
ters are stored into each element of
the array. This is equivalent to a loop
rang i ng from the lower bound of the

98 Pascal/VS Reference Manual

array to the upper bound, performing a
read operation for each element. If the
end-of-line condition should become
true before the variable is filled, the
rest of the vari able is fi lIed wi th
blanks.

Consult the Programmer's Guide for more
deta i 1 s on the use of READ and READLN.

var
I,J: INTEGER;
S: STRING(lOO);
CH: CHARi
CC: packed array[1 .. 10] of CHAR;
F: TEXT;

READLNCF,I,J,CH,CC,S);

assume the data is:

36 24 ABCDEFGHIHKLMNOPQRSTUVWXYZ

the variables would be assigned:

I
J
CH
CC
S
LENGTHCS)

36
24 , ,
'ABCDEFGHIJ'
'KLMHOPQRSTUVWXYZ'
16

The READ Procedure

o

o

10.10 READ (NON-TEXT FILES)

Read Data from Non-TEXT Files

D~f;n;tion:

procedure READe

where:

f file of t;
v : t);

~an arbitrary file variable.
v is a variable whose type matches

the file component type of f

Each call to READ wi 11 read one fi Ie
element from file 'f' and assign it to
variable 'v'. If the file is not open,
the READ procedure will open it prior
to assigning to the argument.

READCf,v) is functionally equivalent
to the following compound statement:

begin
v : = f->;
GET(f)

end

For more details consult the Program­
mer's Guide.

!.2..ll WRITE AND WRITELN (TEXT FILES

Write Data to FIle

Definitjon:

procedure WRITE(
f : TEXT;
e : see below);

procedure WRITELNC
f TEXT;
e : see below);

where:
~an optional TEXT file

variable.
e 1S an expression of one of the

following types: .
- INTEGER (or subrange)
- CHAR (or subrange)

REAL
- BOOLEAN
- STRING
- packed array[l .. n] of CHAR

Pascal/VS accepts a special para­
meter format which is only
allowed in the WRITE routine
for TEXT files.
See the following description.

The WRITE procedure writes character
data to the TEXT file specified by f.
The data is obtained by converting the
expression e into an external form. The
file parameter is optional; if not
speci fi ed, the default fi Ie OUTPUT is
used.

WRITELN positions the file to the
beginning of the next line. WRITELN is
only applicable to TEXT files. You may
use more than one expression on each
call by separating each with a comma.
The effect is the same as multiple
calls to WRITE.

I/O Facilities 99

o

o

WRITECf,e1,e2)

is equivalent to:

and

begin
WRITECf,e1);
WRITECf,e2)

end

WRITELNCf,e1,e2,e3)

is equivalent to:

begin
WRITECf,e1)i
WRITECf,e2);
WRITECf,e3);
WRITELNCf);

end

Multiple Expressions on WRITE

Pascal/VS supports a specialized form
for specifying actual parameters on
WRITE and WRITELN to TEXT files. This
provides a means by which you can spec­
ify the length of the resulting output.
Each expression in the WRITE procedure
call may be represented in one of three
forms:

1. e

2. e: 1 en1

3 . e: 1 en 1 : 1 en 2

The expression e may be of any of the
types outlined above and represents the
data to be placed on the file. The data
is converted to a character representa­
tion from the internal form. The
expressions len1 and len2 must evaluate
to an INTEGER value.

The expression len1 supplies the length
of the field into which the data is
written. The data is placed in the
field justified to the right edge of

+ the field. If len1 specifies a negative
+ value, the data is justified to the
+ left wi thi n a fi eld whose length is
+ ABSClen1). If len1 has the value zero,
+ the data will be placed in a field with
+ no padding or truncation.

o

The 1 en2 express ion (fo rm 3) may be
specified only if e is an expression of
type REAL.

If len1 is unspecified (form 1) then a
default value is used according to the
table below.

100 Pascal/VS Reference Manual

type of
expression e

INTEGER
REAL
CHAR
BOOLEAN
STRING
array of CHAR

default value
of len1

12
20 C E notation)
1
10
LENGTHCexpression)
number elements in

the array

Default Field Width on WRITE

Writing INTEGER Data

The expression lenl represents the
width of the field in which the integer
is to be placed. The value is converted
to character format and placed ina

+ field of the specified length. If the
+ field is shorter than the size required
+ to represent the value, digits are
+ truncated from the left Cmost signif­
+ icant position).

+

Examples:

Call:

WRITECI234:6)

WRITE(1234:-6)

WRITECI234:Q)

WRITECI234)

Result:

1234'

'1234

'1234'

1234'

+ WRITE(1234:3) '234'

Wr it i n9 CHAR Data

The value of lenl is used to indicate
the width of the field in which the
character is to be placed. If lenl is
not speci fi ed, a fi eld wi dth of 1 is
assumed. If lenl is greater than 1 then
the cha racter will be padded on the

+ left with blanks; if len1 is negative,
+ then the character will be padded on
+ the right.

Example:

call:

WRITEC'a':6)
WRITE('a':-6)

Wri t i n9 REAL Data

Result:
,
'a

a' ,

REAL expressions may be printed with
anyone of the three operand formats.
If len1 is not specified (form 1), the
result will be in scientific notation

o

o

o

in a 20 character field.

If len1 is speci fi ed and len2 is not
Cform 2), the result will be in scien­
tific notation but the number of char­
acters in the field will be the value
of len1.

If both len1 and len2 are speci fi ed
Cform 3), the data will be written in
fixed point notation in a field with
length len1i len2 specifies the number
of digits that will appear to the right
of the decimal point. The REAL expres­
sion is always rounded to the last dig­
it to be printed.

Examples:

Call: Result:

WRITEC3.14159:10)
, 3.142E+00'

WRITEC3.14159)
, 3.1415900000000E+OO'

WRITEC3.14159:10:4)
3.1416'

Writing BOOLEAN Data

The expression len1 is used to indicate
the width of the field in which the

+ boolean is to be placed. If the width
+ is less than 6, then either a 'T' or
+ 'F' will be printed. Otherwise, 'TRUE'
+ or 'FALSE' wi 11 be sent to the fi Ie.
+ The data is placed in the field and
+ justified according to the previously
+ stated rules.

+

+

Examples:

Call:

WRITECTRUE:10)

WRITECTRUE:-10)

WRITECFALSE:2)

WRITECTRUE:O)

Writing STRING Data

Result:

TRUE'

'TRUE

, F'

'TRUE'

The second expression is used to indi­
cate the width of the field in which
the string is to be placed. The data is
placed in the field and justified
according to the previously stated
rules.

+

+

+

+

+

+

Examples:

Call: Result:

WRITEC'abcd':6) abed'

WRITEC'abcd':-6) 'abcd

WRITEC'abcd':2) 'ab'

WRITEC'abcd':O) 'abcd'

Writ;ng Packed Array of CHAR Data

The second expression is used to indi­
cate the width of the field in which
the array is to be placed. The data is
placed in the field and justified
according to the previously stated
rules.

Examples:

var
A

.

packed
array[1 .• 4] of CHAR;

A .- 'abcd';

Call:

WRITECA:6)

WRITECA:-6)

WRITECA:2)

WRITECA:O)

Result:

abcd'

'abcd

'ab'

'abcd'

lQ.12 WRITE (NON-TEXT FILES)

Write Data to Non-TEXT Files

Definition:

procedure WRITEC

where:

f file of t;
e : t);

~an arbitrary file variable.
e is an expression whose type

matches the file component
type of f

Each call to WRITE will write the value
of expression e to file 'f'.

WRITECf,e) is functionally equivalent
to the following compound statement:

begin

I/O Facilities 101

o

o

f-> := e;
PUTCf)

end

For more details consult the Program­
mer's Gui de.

102 Pascal/VS Reference Manual

1]..13 EOLN FUNCTION

Test a File for End of Line

Definition:

function EOLNC f: TEXT):BOOLEAN;

function EOLN:BOOLEANi

f is a TEXT file set to
input.

The EOLN funct i on returns a BOOL EAN
result of TRUE if TEXT file f is posi­
tioned to an end-of-line character;
otherwise, it returns FALSE.

If EOLNCf) is true, then f-> has the
value of a blank. That is, when EOLN is
TRUE the file is positioned to a blank.
This character is not in the file but
will appear as if it were. In many
applications the extra blank will not
affect the result; in those instances
where the physical layout of the data
is significant you must be sensitive to
the EOLN condition.

If the file variable F is omitted, then
the function assumes the predefined
fi Ie INPUT.

__________ 4 __ • ______ • ___ 4_ • _________________________ ~ ________________________ ~ __ .. ~ ____ • __________________ _

o

o

10.14 PAGE PROCEDURE

Force Skip to Next Page

Definition:

procedure PAGEC var f: TEXT)j

where:

f is a TEXT file set to
output.

This procedure causes a skip to the top
of the next page when the text-file is
printed. The file parameter is optional
and defaults to the standard file vari­
able OUTPUT.

+
+

+

+
+

+ .!.Q..15 COLS FUNCTION

Determine Current Column

Definition:

function COLSC
var f: TEXT) INTEGER;

+ where:

+
+

+

f is a TEXT file set to
output.

+ This function returns the current col­
+ umn number (position of the next char­
+ acter to be written) on the output file
+ designated by the file variable. You
+ may force the output to a specific col­
+ umn with the following code:

+ if TAB> COLSCF) then
+ WRITE(F,' ':TAB-COLSCF»;

+ The file name is never defaulted on the
+ COLS procedure.

I/O Facilities 103

o

o
104 Pascal/VS Reference Manual

o

o

o

1!.~ EXECUTION LIB~ARY FACILITIES

The runtime library consists of those
routines that are predefined in
Pascal/VS. In addition to the routines
described in this chapter, Pascal/VS
provides routines with which to do
input and output. Consult the I/O chap­
ter for a descri pt i on of those rou­
tines. The predefined procedures and
functi ons are:

+ •

+ •

•
•
•
•

+ •

+ •

+ •

+ •

+ •

+ •

+ •

•
•

+ •

•
•
•
•

MARK Procedure

RELEASE Procedure

NEW Procedure

DISPOSE Procedure

PACK Procedure

UNPACK Procedure

LBOUND Function

HBOUND Function

MIN Function

MAX Function

LOWEST Function

HIGHEST Function

SIZEOF Functi on

ORD Function

CHR Function

Scalar Conversion

PRED Function

SUCC Function

ODD Function

ABS Function

+. FLOAT Function

•
•

+ •

+ •

•
•
•
•
•
•
•

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

+ •

TRUNC Function

ROUND Function

STR Function

LENGTH Function

SIN Function

COS Function

ARCTAN Function

EXP Function

LN Function

SQRT Function

SQR Function

RANDOM Function

SUBSTR Function

TRIM Function

LTRIM Function

DELETE Functi on

COMPRESS Function

INDEX Function

TOKEN Function

TRACE Procedure

HAL T Procedure

DATETIME Procedure

CLOCK Function

PARMS Function

RETCODE Procedure

Execution Library Facilities 105

li.1. MEMORY MANAGEMENT ROUTINES

These routines provide means by which you can control the allocation of dynamic vari­
ables.

+ li.1..1. MARK PROCEDURE

+ Mark Heap
+

+

+
+

+

+

+

definition:

procedure MARK(
var P pointer);

where:

P is a pointer to any type

+ The MARK procedure allocates a new
+ heap. All dynamic variables are allo­
+ cated from an area of storage called
+ the heap. The predefined procedure
+ RELEASE frees a heap created by MARK.
+ Thus, heaps are created and destroyed
+ in a stack fashion. The predefined pro­
+ cedure NEW allocates a dynamic variable
+ from the most recent heap. The prede­
+ fined procedure DISPOSE de-allocates a
+ dynamic variable from the heap.

o
106 Pascal/VS Reference Manual

+ ll.1. . .a RELEASE PROCEDURE

+ Release Heap
+

+

+
+

+

definition:

procedure RELEASE(
var P pointer);

where:

+ P is a pointer to any type.

+

+ RELEASE returns all heap storage that
+ was allocated since the matching MARK.
+ The parameter of RELEASE is the same
+ one as was specified on a previous call
+ to MARK; it is through this parameter
+ that the matching MARK is identified.
+ RELEASE permits dynamic variables to be
+ returned in blocks. RELEASE sets the
+ po inter to nil.

+

+ type
+ MARKP = ->INTEGER;
+ LINKP = ->LINK;
+ LINK = record
+ NAME: STRING(30);
+ NEXT: LINKP
+ end;
+ var
+ P MARKP;
+ Q1,
+ Q2,
+ Q3 : L INKP;
+ begin
+
+ MARK(P);
+
+ NEW(Q1);
+ NEW(Q2);
+ NEW(Q3);
+
+ (* Frees Q1, Q2 and Q3
+ RELEASE(P);
+
+ end;

+ Example of MARK and RELEASE

+

G

o

ll.1.1 NEW PROCEDURE

Allocate Dynamic Variable

definition:

form 1:
procedure NEW(

var P

form 2:
procedure NEW(

var Pl
t1,t2 ..•

where:

pointer);

pointer;
scalar);

P is a pointer to any type
except a dynamic array.

P1 is a pointer to a record
type with variants

P2 is a pointer to a dynamic
array.

tl,t2 ... are scalar constants
representing tag fields

The NEW procedure allocates a dynamic
variable from the most recent heap and
sets the pointer to point to the vari­
able.

form 1

The first form of procedure NEW allo­
cates the amount of storage that is
necessary to represent a value of the
type to which the pointer refers. If
the type of the dynamic variable is a
record with a variant part, the space
allocated is the amount required for
the record when the largest variant is
active.

type
LINKP = ->LINK;
LINK = record

NAME: STRING(30);
NEXT: LINKP

end;
var

P,
HEAD LINKP;

begin

NEW(P) ;
with P-> do

begin
NAME .­
NEXT .­

end;
HEAD := P;

end;

, , . ,
HEAD;

Example of using Simple Form
of Procedure HEW

form Z.

The second form is used to allocate a
variant record when it is known which
variant (and sub-variants) will be
active, in which case the amount of
storage allocated will be no larger
than necessary to contain the variant
specified. The scalar constants are tag
field values. The first one indicates a
particular variant in the record which
will be active; subsequent tags indi­
cate active sub-variants, sub-sub­
variants, and so on.

Note: This procedure does not set tag
fields. The tag list only serves to
indicate the amount of storage
requ ired; it i s the programmer's res­
ponsibility to set the tag fields after
the record is allocated.

Execution Library Facilities 107

c

o

o

type
AGE = 0 .. 100;
RECP = ->RECi
REC =

var

record
NAME: STRING(30);
case HOW OLD: AGE of

0 .. 18: -
(FATHER: RECP);

19 •• 100:

end;

(case MARRIED: BOOLEAN of
TRUE: (SPOUSE: RECP);
FALSE: ()

)

P : RECP;

begin

NEW (P ,18) i
with P-> do begin

NAME := 'J. B. SMITH, JR'
HOW OLD := 18;
NEWCFATHER,54,TRUE)i
with FATHER-> do begin

NAME := 'J. B. SMITH';
HOW OLD := 54;
MARRIED := TRUE;
NEWCSPOUSE,50,TRUE);

end (*with father->*);
end (*with p->*);

end;

Using NEW for Allocating
Records with Variants

108 Pascal/VS Reference Manual

11.A.~ DISPOSE PROCEDURE

De-allocate Dynamic Variable

procedure DISPOSE(
var P pointer);

where:

P is any pointer type.

DISPOSE returns storage for a dynamic
variable. You may de-allocate a dynamic
variable from any heap. This procedure
only returns the storage referred to by
the pointer and does not return any
storage which the dynamic variable ref­
erences. That is, if the dynamic vari­
able is part of a linked list, you must
explicitly DISPOSE of every element of
the list. DISPOSE sets the pointer to
nil. If you have other pointers which
reference the same DISPOSEd dynamic
variable, then it is your responsibil­
ity not to use these pointers because
the dynamic variable which they repres­
ented is no longer allocated.

c'

o

o

il.~ DATA MOVEMENT ROUTINES

These routines provide you with convenient ways to handle large amounts of data move­
ment efficiently.

ll.~.!. PACK PROCEDURE

Copy Unpacked Array to Packed Array

definition:

procedure PACKC
const SOURCE

INDEX
var TARGET

SOURCE is an array.

array-type;
index of source;
pack_array_type)

INDEX is an expression which is
compatible with the index
of SOURCE.

TARGET is a variable of type packed
array.

This procedure fills the target array
with elements from the source array
starti ng wi th the index I where the
target array is packed. The types of
the elements of the two arrays must be
identical. This procedure operates as:

Given:
A : array[m .. n] of T;
Z : packed array[u .. v] of T;

Call:
PACKCA, I, Z);

Operation:
k : = I;
for j := LBOUNDCZ) to HBOUNDCZ) do

begin
Z[j] := A[k];
k := SUCCCk)
end;

Where:
j and k are temporary variables.

It is an error if the number of ele­
ments in Z is greater than the number
of elements in A starting with the Ith
element to the end of the array.

ll.~.~ UNPACK PROCEDURE

Copy Packed Array to Unpacked Array

definition:

procedure UNPACK(
var SOURCE
const TARGET

INDEX

pack_array_type;
array-type;
index_of_target)

SOURCE is a packed array.
TARGET is a variable of type array.
INDEX is an expression which is

compatible with the index
of TARGET.

This procedure fills the target array
with elements from the source array
where the source array is packed. The
type of the elements of the two arrays
must be identical. This procedure oper­
ates as:

Given:
A : array[m .• n] of T;
Z : packed array[u .. v] of Ti

Call:
UNPACKCZ, A, I);

Operation:
k : = I;
for j := LBOUNDCZ) to HBOUNDCZ) do

begin
A[k] := Z[j];
k := SUCCCk)
end;

Where:
j and k are temporary variables.

It is an error if the number of ele­
ments in Z is greater than the number
of elements in A starting with the Ith
element to the end of the array.

Execution Library Facilities 109

ll.~ DATA ACCESS ROUTINES

These routines provide you a means to inquire about compile and run time bounds and
values.

+ ll.~.~ LBOUND FUNCTION

+
+

Lower Bound of Array

+ definition:

+
+
+
+

+
+
+
+

function LBOUNDC
V
I

function LBOUNDC
T
I

+ where:

arraytype;
integer-const)
scalar;

type-identifier;
integer-const)
scalar;

+ V is a variable which is declared
+ as an array type.
+ T is an type identifier declared
+ as an array.
+ I is an positive integer valued
+ constant expression and is
+ optional.

+

C,+ The LBOUND functi on returns the lower
+ bound of an index to an array. The
+ array may be specified in two ways:

o
110 Pascal/VS Reference Manual

+
+

+ -
+

+ - an i dent i fi er whi ch was declared as
an array type v i a the type con­
struct;

a vari able whi ch is of an array
type.

+ The value returned is of the same type
+ as the type of the index. The second
+ parameter defines the dimension of the
+ array for which the lower bound is
+ returned. It is assumed to be "1" if it
+ is not specified.

+

+ Example:

+ type
+ GRID = array[-10 .. 10,-10 .• 10] of
+ REAL;
+ var
+ A array[1 •. 100] of ALFA;
+ B array[1 .. 100] of
+ of array[O •• 9] of CHAR;
+
+
+ LBOUNDC A) is 1
+ LBOUNDC GRID, 1) is -10
+ LBOUNDC B, 2) is 0
+ LBOUNDC B[l]) is 0

+ The LBOUND Function

+

o

o

+ 11.~.~ HBOUND J:UNCTION

+
+

Upper Bound of Array

+

+
+
+
+

+
+
+
+

definition:

function HBOUND(
V
I

function HBOUND(
T
I

+ where:

arraytype;
integer-const)
scalar;

type-identifier;
integer-const)
scalar;

+ V is a variable which is declared
+ as an array type.
+ T is an type identifier declared
+ as an array.
+ I is an positive integer-valued
+ constant expression and is
+ optional.

+

+ The HBOUND function returns the upper
+ bound of an index to an array. The
+ array may be specified in two ways:

+ - an identifier which was declared as
+ an array type v i a the type con-
+ struct;

+ -
+

a variable which is of an array
type.

+ The value returned is of the same type
+ as the type of the index. The second
+ parameter defines the dimension of the
+ array for which the upper bound is
+ returned. It is assumed to be "1" if it
+ is not specified.

+

+ Example:

+ type
+ GRID = array[-10 .• 10,-10 .• 10] of
+ REAL;

GRID;
+ var
+ A
+ B
+

array[1 •. 100] of

+
+
+
+
+
+

+

+

of array[0 .. 9] of CHARi

HBOUND(A)
HBOUND(GRID
HBOUNDC B, 2
HBOUNDC B[l]

is 10
is 10
is 9
is 9

The HBOUND Function

+
+

+

+
+
+

+ l!.~.~ LOWEST J:UNCTION

Lowest Value of a Scalar

definition:

function LOWEST(
S scalar-type)

scalar;

+ where:

+
+
+
+

+

S is an identifier that has been
declared as a scalar type, or
a variable which is of a scalar
type.

+ This function returns the lowest value
+ that is in the scalar type. The operand
+ may be either a type identifier or a
+ variable. If the operand is a type
+ identifier, the value of the function
+ is the lowest value that a variable of
+ that type may be assigned. If the oper­
+ and is a variable, the value of the
+ function is the lowest value that the
+ variable may be assigned.

+ If the argument S refers to a record­
+ type which has a variant part, and if
+ no tag values are specified, then the
+ storage required for the record with
+ the largest variant will be returned.

+

+ Example:

+ type
+ DAYS = (SUN, MON, TUES, WED,
+ THU, FRI, SAT);
+ SMALL = 0 .. 31;
+ var
+ I INTEGER;
+ J 0 .. 255;
+
+
+ LOWESTCDAYS) is SUN
+ LOWESTCBOOLEAN) is FALSE
+ LOWEST(SMALL) is 0
+ LOWESTCI) is MININT
+ LOWESTCJ) is 0

+ The LOWEST Function

+

Execution Library Facilities 111

+ 11.~.~ HIGHEST FUNCTION

e+
+

+

+
+
+

+

+
+
+
+

+

Highest Value of a Scalar

definition:

function HIGHEST(
S scalar-type)

scalar;

S is an identifier that has been
declared as a scalar type~ or
a variable which is of a scalar
type.

+ This function returns the highest value
+ that is in the scalar type. The operand
+ may be ei ther a type i denti fi er or a
+ variable. If the operand is a type
+ identifier. the value of the function
+ is the highest value that a variable of
+ that type may be ass i gned. I f the oper­
+ and is a variable, the value of the
+ function is the highest value that the
+ variable may be assigned.

+

+ Example:

C~ type
+ DAYS = (SUN. MON, TUES, WED,
+ THU. FRI, SAT);
+ SMALL = 0 .. 31;
+ var
+ I INTEGER;
+ J 0 .. 255;
+
+
+ HIGHESTCDAYS) is SAT
+ HIGHESTCBOOlEAN) i s TRUE
+ HIGHEST(SMALL) i s 31
+ HIGHESTCI) is MAXI NT
+ HIGHESTCJ) is 255

+ The HIGHEST Function

+

o
112 Pascal/VS Reference Manual

+
+

+

+
+
+

+
+
+
+

+

+
+
+

+

+ 1l.~.2. SIZEOF FUNCTION

Allocation Size of Data

definition:

function SIZEOF(
S anytype)

function SIZEOF(
S

tl,t2, •..

where:

INTEGER;

recordtype;
tags) ;
INTEGER;

S is an identifier that has been
declared as a type. or any
variable.

+ The SIZEOF function returns the amount
+ of storage in bytes required to contain
+ the variable or a variable of the type
+ specified.

+ If Sis a record vari able or a type
+ identifier of a record, it may be fol­
+ lowed by tag list which defines a par­
+ ticular variant configuration of the
+ record. In this case the function will
+ return the amount of storage required
+ within the record to contain that vari­
+ ant configuration.

o

(J

o

11.~ CONVERSION ROUTINES

These routines allow for conversions between one data type and another. Other type
conversions must be programmed.

ll.~.J. ORO FUNCTION

Ordinal Value of Scalar

definition:

function ORD(
S

where:

scalar)
INTEGER;

S is may be any scalar type or
a pointer.

This function returns an integer that
corresponds to the ordinal value of the
scalar. If the operand is of type CHAR
then the value returned is the position
in the EBCDIC character set for the
character operand. If the operand is an
enumerated scalar, then it returns the
position in the enumeration (beginning
at zero); for example, if COLOR = (RED,
YELLOW, BLUE), then ORD(RED) is 0 and
ORD(BLUE) is 2.

If the operand is a pointer, then the
function returns the machine address of
the dynamic variable referenced by the
pointer. Although pointers can be con­
verted to INTEGERs, there is no func­
tion provided to convert an INTEGER to
a pointer.

11.~.2. CHR FUNCTION

Integer to Character Conversion

definition:

function CHR(
I INTEGER)

CHAR;

I is an INTEGER expression that is
to be interpreted as a character.

This function is the inverse function
to ORD for characters. That is,
'ORD(CHR(I»=I' if I is in the sub­
range:

ORD(LOWEST(CHAR» .• ORDCHIGHESTCCHAR»

If the operand is not within this range
and checking is enabled then a runtime
error will result, otherwise the result
is unpredictable.

Execution Library Facilities 113

+ 11.~.~ SCALAR CONVERSION

+

+
+
+

Integer to Scalar Conversion

definition:

function type-ide
I INTEGER)

scalar-type;

+ where:

+
+
+

+

I is an integer valued expression'
that is to be converted to an
enumerated scalar.

+ Every type identifier for an enumerated
+ scalar or subrange scalar can be used
+ as a function that converts an integer
+ into a value of the enumerated scalar.
+ These functions are the inverse of ORO.

+
+ Example:

+ type
+ DAYS = (SUN, MON, TUES, WED,
+ THU, FRI, SAT);
+
+

C! OAYS(O) is SUN
OAYS(3) is WED

+ DAYS(6) is SAT
+ DAYS(7) is an error
+ BOOLEAN(O) is FALSE
+ BOOLEAtH 1) is TRUE

+ The Enumerated Scalar Function

+

o
114 Pascal/VS Reference Manual

+
+

+

+
+
+

+ 11.~.~ FLOAT FUNCTION

Integer to Real Conversion

definition:

function FLOAT(
I INTEGER

REAL;

+ where:

+ I is an INTEGER valued expression.

+

+ This function converts an INTEGER to a
+ REAL. Pascal/VS will convert an INTEGER
+ to a REAL implicitly if one operand of
+ an arithmetic or relation operator is
+ REAL and the other is INTEGER. This
+ function is useful in making the con­
+ version explicit in the program.

C-')

o

~.~.2 TRUNC FUNCTION

Real to Integer Conversion

function TRUNC(
R

where:

REAL)
HHEGER;

R is a REAL valued expression.

This function converts a REAL expres­
sion to an INTEGER by truncating the
operand toward zero.

Examples:

TRUNCC 1.0) is 1
TRUNCC 1.1) is 1
TRUNC(1.9) i s 1
TRUNC(o .0) is 0
TRUNCC-1.0) is -1
TRUNCC-1.1) is -1
TRUNCC-1.9) is -1

11.~.~ ROUND FUNCTION

Real to Integer Conversion

definition:

function ROUNDC
R

where:

REAL)
INTEGER;

R is a REAL valued expression.

This function converts a REAL expres­
sion to an INTEGER by rounding the
operand. This function equivalent to

if R > 0.0 then
ROUND t- TRUNCCR + 0.5)

else
ROUND .- TRUNCCR - 0.5)

Examples:

ROUNDC 1.0) i s 1
ROUNDC 1.1) is 1
ROUND(1.9) is 2
ROUNDC 0.0) is 0
ROUND(-1.0) is -1
ROUND(-1.1) is -1
ROUNDC-l.9) is -2

Execution Library Facilities 115

+
+
+
+
+

STR FUNCTION

Convert to String

function STRe
X CHAR or packed

array[l .. n] of
CHAR)

STRING;

+ where:

+ X is CHAR or packed array[l .. n] of
+ CHAR expression.

+

o

o
116 Pascal/VS Reference Manual

+ This function converts either a CHAR or
+ packed array[l .. n] of CHAR to a STRING.
+ Pasca!/VS wi!! implicitly convert a
+ STRING to a CHAR or packed array[l •. n]
+ of CHAR on assignment, but all other
+ conversions require you to explicitly
+ state the conversion. You may assign a
+ CHAR to an packed array[l .. n] of CHAR
+ by either:

+ var
+ AOC : ALPHA;
+ CH : CHAR;
+
+ AOC . - STRCCH);
+ or
+ AOC . - , , . , AOC[l] . - CHi

o

o

il-a MATHEMATICAL ROUTINES

These routines defined various mathematical transformations.

+ il-a-! MIN FUNCTION

+
+

MINimum Value of Scalars

+

+
+
+
+
+
+

definition:

function MINe
EO,

En

+ where:

scalar-type)
scalar-type;

+ Ei is an expression of a scalar
+ type. All parameters must be
+ of the same type except where
+ noted below.

+

+ The MIN function returns the mlnlmum
+ value of two or more expressions. The
+ parameters may be of any scalar type,
+ including REAL. The parameters may be a
+ mixture of INTEGER and REAL expres­
+ sions, in which case, the result will
+ be of type REAL. In all other cases,
+ the parameters must be conformable to
+ each other.

+
+

+

+
+
+
+
+
+

+

+
+
+
+

+

+ !!-a.~ MAX FUNCTION

Maximum Value of Scalars

definition:

function MAX(
EO,

.
En

where:

scalar-type)
scalar-type;

Ei is an expression of a scalar
type. All parameters must be
of the same type except where
noted below.

+ The MAX function returns the maximum
+ value of two or more parameters. The
+ parameters may be of any scalar type,
+ including REAL. They may be a mixture
+ of INTEGER and REAL expressions, in
+ which case, the result will be of type
+ REAL. In all other cases, the parame­
+ ters must be conformable to each other.

Execution Library Facilities 117

o

o

o

ll . .2.~ PRED FUNCTION

Predecessor Value of a Scalar

definition:

function PRED(
S

where:

scalar)
scalar;

S is any scalar expression.

This function returns the predecessor
value of the parameter expression. The
PRED of the first element of an enumer­
ated scalar is an error. If the option
~CHECK is ON, a runtime error will be
raised if the PRED of the first element
is attempted. If the checking is not
performed, the results of the PRED of
the fi rst value is not defi ned.
PREDCTRUE) is FALSE and PREDC'B') is
'A'. The PRED of an INTEGER is equiv­
alent to subtracti ng one. PRED of a
REAL argument is an error.

118 Pascal/VS Reference Manual

ll • .a.~ SUCC FUNCTION

Successor Value of a Scalar

definition:

function SUCC(
S

where:

scalar)
scalar;

S is any scalar expression.

This function returns the successor
value of the parameter expression. The
SUCC of the last element of an enumer­
ated scalar is an error. If the option
~CHECK is ON, a runtime error will be
raised if the SUCC of the last element
is attempted. If the checking is not
performed, the results of the SUCC of
the last value is not defined.
SUCCCFALSE) is TRUE and SUCCC'B') is
'C'. The SUCC of an INTEGER is equiv­
alent to adding one. SUCC of a REAL
argument is an error.

il-a-a ODD FUNCTION

~ Test for Integer is Odd

o

o

definition:

function ODD(
I INTEGER)

BOOLEAN;

I is an-INTEGER to be tested
for being odd.

This function returns TRUE if the
parameter I is odd, or FALSE if it is
even.

ABS FUNCTION

Absolute Value

definition:

function ABS(
I

function ABS(
R

INTEGER)
INTEGERi

REAL)
REALi

I is an INTEGER expression.
R is a REAL expression.

The ABS function returns either a REAL
value or an INTEGER value depending the
type of its parameter. The result is
the absolute value of the parameter.

Execution Library Facilities 119

o

11_2-1 SIN FUNCTION

Compute Sine

definition:

function SIN(
X

where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The SIN function computes the sine of
parameter X, where X is expressed in
radians.

120 Pascal/VS Reference Manual

ll . .a.li COS FUNCTION

Compute Cosine

definition:

function CaS(
X

where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The cas function computes the cosine of
the parameter X, where X is expressed
in radians.

- -- - -~ --_.- - -- - - - --_.- .- - - - - - - - - - - ._-- - - - - - - - - - -- -

c

o

o

ll . .a . .2 ARCTAN FUNCTION

Compute Arctangent

function ARCTAN(
X

where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The ARCTAN function computes the
arctangent of parameter X. The result
is expressed in radians.

ll . .a.!Q EXP FUNCTION

Compute Exponential

function EXP(
X REAL)

REAL;

X is an expression that evaluates
to a REAL value.

The EXP function computes the value of
the base of the natural logarithms, e,
raised to the power expressed by param­
eter X.

Execution Library Facilities 121

- - - - -~-.-- _._----_._--- - -------- -- -_.- - - ------- -- ----- - - - -- --- - - - - - --------- ----- - -- - - - - - --- - - --

c

c

o

1l.,2.11 LN FUNCTION

Compute Natural Log

definition:
function LH(

X REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The LN function computes the natural
logarithm of the parameter X.

122 Pascal/VS Reference Manual

ll.,2. 12 SQRT FUNCTION

Compute Square Root

definition:

function SQRT(
X

where:

REAL)
REALi

X is an expression that evaluates
to a REAL value.

The SQRT function computes the square
root of the parameter X. If the argu­
ment is less than zero, a run time
error is produced.

c

o

ll.a,.13 ~ FUNCTION

Compute Square

definition:

function SQR(
X

function SQR(
X

REAL)
REAL

INTEGER)
INTEGER

X is an expression that evaluates
to a REAL or INTEGER value.

The SQR function computes the square of
the argument. If the argument is of
type REAL, then a REAL result is
returned, otherwise the function
returns an INTEGER.

+
+

+

+
+
+

+

+ 11.a,.14 RANDOM FUNCTION

Compute a Random Number

definition:

function RANDOM(
S INTEGER) ;

REAL;

+ S is an expression that evaluates
+ to an INTEGER value.

+

+ The RANDOM function returns a pseudo
+ random number in the range >0.0 and
+ <1.0. The parameter S 1S called the
+ seed of the random number and is used
+ to spec i fy the beg inn i ng of the
+ sequence. RANDOM always returns the
+ same value when called with the same
+ non zero seed. If you pass a seed value
+ of 0, RANDOM will return the next num­
+ ber as generated from the previous
+ seed. Thus, the general way to use this
+ function is to pass it a non zero seed
+ on the first invocation and a zero
+ value thereafter.

+ It is suggested that you chose an
+ inital value for the seed which is odd.

Execution Library Facilities 123

11.~ STRING ROUTINES

C These rout i nes prov ide conven i ent means of operat i ng on str i ng data.

+ ll.~.l. LENGTH FUNCTION + 11.~.~ SUBSTR FUNCTION

+
+

+

+
+
+

Length of String

dgfinition:

function LENGTH(
S STRING)

O •. 255 ;

+ where:

+ S is a STRING valued expression.

+

+ This function returns the current
+ length of the parameter. The value will
+ be in the range 0 .. 255.

o

o
124 Pascal/VS Reference Manual

+
+

+

+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+

Obtain Substring

definition:

function SUBSTR(
const SOURCE

START
LEN

where:

STRING;
INTEGER;
INTEGER)
STRING;

SOURCE is a STRING expression from
which a portion will be
returned.

START is an INTEGER expression that
designates the first position
in the SOURCE to be returned.

LEN is an INTEGER expression that
defines the number of
characters to be returned.

+ The SUBSTR function returns a specified
+ portion of the first parameter. The
+ source is indexed from 1 to the LENGTH
+ of SOURCE. The function treats the
+ source as if it were surrounded by
+ blanks on either side, thus if the LEN
+ exceeds the LENGTH of the source, the
+ returned value will be padded on the
+ right with blanks. Similarly, if the
+ START expression is less than one,
+ blanks will be supplied on the left.

+ Examples:

+
+
+
+
+
+
+
+

var
S STRING;

S : = 'ABCDE';

SUBSTRC'ABCDE',2,3) yields 'BCD'
SUBSTRCS,2,5) yields 'BCDE '
SUBSTRCS,0,8) yields' ABCDE

c

C)

o

+ ll.Q.~ DELETE FUNCTION

+
+

+

+
+
+
+
+

+

+
+
+
+
+
+
+
+
+

+

Delete Substring

definition:

function DELETE(
const SOURCE

START
LEN

STRING;
INTEGER;
INTEGER)
STRING;

SOURCE is a STRING expression from
which a portion will be
returned.

START is an INTEGER expression that
designates the first position
in the SOURCE to be returned.

LEN is an INTEGER expression that
defines the number of
characters to be returned.

+ The DELETE function removes a specified
+ portion of the value of the first
+ parameter and returns the result. The
+ source is indexed from 1 to the LENGTH
+ of the source. An attempt to delete a
+ portion of the source beyond the length
+ i s ignored.

+ Examples:

+
+
+
+
+
+
+
+

var
S STRING;

S : = 'ABCDE' j

DELETE('ABCDE',2,3) yields 'AE'
DELETE(S,5,3) yields 'ABCD'
DELETE(S,O,3) yields 'CDE'

+
+

+

+
+
+

+ 11.Q.~ TRIM FUNCTION

Remove Trailing Blanks

definition:

function TRIM(
const SOURCE STRING)

STRINGj

+ where:

+ SOURCE is the STRING to be trimmed.

+

+ The TRIM function returns the parameter
+ value with all trailing blanks removed.

+ Example:

+ TRIM(' A B ') yields' A B'
+ TRIM(' ') yields "

Execution Library Facilities 125

+ ll.~.~ L TRIM FUNCTION

+

+
+
+

+

+

+

Remove Leading Blanks

definition:

function LTRIMC
const SOURCE STRING)

STRING;

SOURCE is the STRING to be trimmed.

+ The LTRIM function returns the parame­
+ ter value with all leading blanks
+ removed.

+ Example:

+ LTRIMC' A B ') yields 'A B
+ LTRIMC' ') yields "

()

o
126 ,Pascal/VS Reference Manual

+
+

+

+
+
+

+

+
+

+

+ ll.~.~ COMPRESS FUNCTION

Remove Multiple Blanks

definition:

function COMPRESSC
const SOURCE STRING)

STRING;

SOURCE is a the STRING expression
to be compressed.

+ The COMPRESS function replaces multi­
+ pIe blanks with a single blank.

+ Example:

+ COMPRESS('A B CD ') yields 'A B CD '

I, 0
,

o

o

+ ll.~.l INDEX FUNCTION

+
+

+

+
+
+
+

+

Lookup String

definition:

function INDEXC
const SOURCE
const LOOKUP

STRING;
STRING)
o .. 255;

+ SOURCE is a STRING that contains
+ the data to be compared against.
+ LOOKUP is the data to be looked
+ up in the SOURCE.

+

+ The INDEX function compares the second
+ parameter against the first and returns
+ the starti ng index of the fi rst
+ instance where LOOKUP begins in SOURCE.
+ If there are no occurrences, then a
+ zero is returned.

+ Examples:

+
+
+
+
+
+
+

var
S STRING;

S . - 'ABCABC':

INDEXCS,'BC') yields 2
INDEXCS,'X') Yields 0

+
+

+

+
+
+
+

+

+
+
+
+
+
+
+
+
+
+

+

+ 11.~ • .§. TOKEN PROCEDURE

Find Token

definition:

procedure TOKENC
var pas
const SOURCE
var RESULT

INTEGER;
STRING;
ALPHA);

pas is the starting index in SOURCE
of where to look for a token, it
is set to the index of where to
resume the search on the next
use of TOKEN.

SOURCE is a STRING that contains
the data from which a token
is to be extracted.

RESULT is the variable which will
be returned with token found.

+ The TOKEN procedure scans the SOURCE
+ string looking for a token and returns
+ it as an ALPHA. The starting position
+ of the scan is passed as the fi rst
+ parameter. This parameter is changed to
+ reflect the position which the scan is
+ to be resumed on subsequent calls.
+ Leading blanks, multiple blanks and
+ trailing blanks are ignored. If there
+ is no token in the string, pas is set
+ to LENGTH(SOURCE)+1 and RESULT is set
+ to all blanks.

+ A token is defined to be any of:

+ • Pascal/VS identifier 1 to 16
+ alphanumeric characters, '$' or an
+ underscore. The first letter must
+ be alphabetic or a ' $' .

+ • Pasca!/VS unsigned number see
+ page 14.

+ • The following special symbols:

+ + * / -> { ¢
+ = <> < <= >= >
+) [] " y.
+ & && II -o- tt
+ ; . - . ,
+ { } C* *) /* *./

Execution Library Facilities 127

+ Example:

+ c
+
+

+
+
+

o

o

I : = 2;
TOKEH(I,', Token+', RESULT)

I is set to 8
RESULT is set to 'Token

TOKEH would return the same if
I were set to 3, that is,
leading blanks are ignored.

128 Pascal/VS Reference Manual

11.1 GENERAL ROUTINES

c=) These routines provide several useful features of the Pascal/VS runtime environment.

C~

+ ll.1.1. TRACE PROCEDURE

+
+

+

+

+

Routine Trace

definition:

procedure TRACE;

+ This procedure displays the current
+ list of procedures and functions that
+ are pending execution (i.e. save
+ chain). The statement numbers of the
+ statement that contained the call are
+ also displayed. The information is
+ written to OUTPUT.

+
+

+

+

+

+ 11.1.~ HALT PROCEDURE

Halt Program Execution

definition:

procedure HALT;

+ This routine halts execution of an
+ Pascal/VS program. That is, this can be
+ considered to be a return from the main
+ program.

Execution Library Facilities 129

ll.l! SYSTEM INTERFACE ROUTINES

o These routines provide interfaces to system facilities: in general they are dependent
on the implementation of Pascal/VS.

+ ll.l!.1. DATETIME PROCEDURE

+ Get Date and Time
+

+ definition:

+ procedure DATETIME(
+ var DATE,
+ TIME : ALFA)j

+ where:

+ DATE is the returned date.
+ TIME is the returned time.

+

+ This procedure returns the current date
+ and time of day as two ALFA arrays. The
+ format of the result is placed in the
+ first and second parameters respec­
+ tively:

+
+

+

C'!
+
+
+
+
+
+
+

o

where:
mm

dd
yy

HH

MM
SS

mm/dd/yy
HH:MM:SS

;s the month expressed as a two
digit value.
is the day of the month.
is the last two digits of the
year.
is the hour of the day expressed
in a 24 hour clock.
is the minute of the hour.
is the second of the minute.

130 Pascal/VS Reference Manual

+ 11.l!.~ CLOCK FUNCTION

+ Get Execution Time
+

+ definition:

+ function CLOCK INTEGERj

+

+ The value returned is the number of
+ microseconds the program. has been rUn­
+ ning. Note: In an MVS system: the time
+ i s "TASK" time j and ina CMS system:
+ the time is "CPU virtual" time.

c

G

o

+ ll.~.~ PARMS FUNCTION

+
+

+

+

+

Get Execution Parameters

definition:

function PARMS STRING;

+ The PARMS function returns a string
+ that was associated with initial invo­
+ cation of the Pascal/VS main program.

+
+

+

+
+

+

+
+
+
+

+

+ 11.~.~ RETCODE PROCEDURE

Set Program Return Code

definition:

procedure RETCODE(
RETVALUE : INTEGER);

where:

RETVALUE is the return code to be
passed to the caller of the
Pascal/VS program. The value
is system dependent.

+ The value of the operand will be
+ returned to system when an exit is made
+ from the main program. If this routine
+ is called several times, only the last
+ value specified will be passed back to
+ the system.

Execution Library Facilities 131

c

o

o
132 Pascal/VS Reference Manual

c;

c'

o

+ 12 • .2. THE ~ FEATURE

+
+
+

+

+
+

+

+
+
+
+
+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

Syntax:

include-statement:

---> Y. ---> INCLUDE ---> id ---T:::;-C-:::;-id-:::;-;-:::;r--------->

check-statement:

---> Y."---> CHECK

print-statement:

l
:::;-P~IN~~R-:::::;J---l:::~
---> SUBSCRIPT --->
---> SUBRANGE ---->
---> FUNCTION ---->
---> CASE -------->

ON -----r--------->
OFF --->

---> Y. ---> PRINT ---T:::~ g~F-:::;r-------------------------------->

list-statement:

---> Y. ---> LIST ---T:::~ g~F-:::;r--------------------------------->

page-statement:

---> Y. ---> PAGE --->

title-statement:

---> Y. ---> TITLE ---> any-character-string ------------------------>

skip-statement:

---> Y. ---> SKIP ---> unsigned-integer ----------------------------->

+ The Y. feature of Pascal/VS is used to
+ enable or disable a number of compiler
+ options and features. The compiler
+ treats a Y. command as a trigger symbol

+ which causes the compiler to ignore all
+ text between the Y.statement and the
+ end-of-line.

The Y. Feature 133

+ 12.1. THE "INCLUDE STATEMENT

eft' The INCLUDE statement provides you with
a means to include source code from

+ another source file or library.

+ The 'id' is the name of a file to be
+ inserted into the input stream. If an
+ identifier enclosed in parentheses
+ follows the fi Ie name, then that
+ represents a member of a library file.

+ 12.~ THE %CHECK STATEMENT

+ The CHECK statement gives you the abil­
+ ity to enable or disable the runtime
+ checking features of Pascal/VS. The
+ checking may be enabled for part or all
+ of the program. The compiler will check
+ the following:

+. use of a poi nter whose value is NIL
+ (POINTER) .

+. use of a subscript which is out of
+ range for the array index (SUB-
+ SCRIPT),

+ •
+
+

+ •
+
+
+
+

+ •
+
+

lack of an assi gnment of a value to
a function before exiting from the
function (FUNCTION).

assignment of a value which is not
in the proper range for the target
variable (SUBRANGE).

use of the predefined functions
PRED or SUCC where the result of
the function is not a value in the
type, i.e. underflow or overflow of
the value range (SUBRANGE).

the value of a CASE statement
selector which is not equal to any
of the CASE labels (CASE).

+ If the check option is missing, then
+ all of the above checks wi 11 be assumed
+ applicable. For example, '~CHECK ON'
+ activates all of the checks. '~CHECK
+ POINTER OFF' will disable the check on
+ pointer references. The default is:

+ ~ CHECK ON

o
134 Pascal/VS Reference Manual

+ The ~CHECK statement, like the other
+ statements in thi s sect ion, . is a
+ direction to the compiler. Its effect
+ is based on where it appears in the
+ text and is not subject to any struc-
+ turing established by the program.

+ 12.~ THE %PRINT STATEMENT

+ The PRINT statement is used to turn on
+ and off the printing of source in the
+ listing. The default is:

+ ~ PRINT ON

+ 12.~ THE %LIST STATEMENT

+ The LIST statement is used to enable or
+ disable the pseudo-assembler listing
+ of the Pascal/VS translator. The
+ default is:

+ ~ LIST OFF

+ 12 • .2 THE %PAGE STATEMENT

+ The PAGE statement is used to force a
+ skip to the next page on the output
+ listing of the source program.

+ 12.~ THE %TITLE STATEMENT

+ The TITLE statement is used to set the
+ title in the listing. It also causes a
+ page skip. The title is printed as
+ specified on the statement, there is no
+ change from lower case to upper case.
+ The default is no title.

+ 12.1 THE %SKIP STATEMENT

+ The SKIP statement is used to force one
+ or more blank lines to be inserted into
+ the source listing.

()

(--"
j

o

+ A • .! THE SPACE DECLARATION

+
+ Syntax:
+

+ space-type:

+ ---> space ---> [--->{constant-exprl--->] ---> of --->{typel------------->

+

+ The need arises to represent data with­
+ in storage areas which do not have the
+ same fixed offset within each instance
+ of the area. Examples of this include
+ entries within a directory, where each
+ entry may be of variable length, and
+ processing variable length records
+ from a buffer. To solve this problem,
+ Pascal/VS provides the space struc­
+ ture.

+ A variable declared with the space type
+ has a component which is able to
+ 'float' over a storage area in a byte
+ oriented manner. Space variables are
+ accessed by following the variable's
+ name with an integer index expression
+ enclosed in square brackets. The index
+ represents the offset (in bytes) within
+ the space storage where the data to be
+ accessed resides. The offset is speci­
+ fied with an origin of zero.

+ The constant expression which follows
+ the space qualifier in the type defi­
+ nition represents the size of the stor­
+ age area (in bytes) associated with the
+ type.,

+ The component type of the space may be
+ of any type except a file type.

+ An element of a space may not be passed
+ as a var parameter to a routine. Howev­
+ er, an element may be passed as a const
+ or value parameter.

+ A.~ SPACE REFERENCING

+ A' component of a space is selected by
+ placing an index expression, enclosed

+ within square brackets, after the space
+ variable (just as in array references).
+ The indexing expression must be of type
+ INTEGER (or a subrange thereof). The
+ value of the index is the offset within
+ the space at which the component is to
+ be accessed. The unit of the index is
+ the byte. The index is always based
+ upon a zero origin. The component will
+ be of the space base type.

+ If the 'Y.CHECK SUBSCRIPT' option is
+ enabled, the index expression will be
+ checked at execution time to make sure
+ that the computed address does not lie
+ outside the storage occupied by the
+ space. An execution time error diagnos­
+ tic will occur if the value is invalid.
+ (For a description of the CHECK feature
+ see section 12.2 on page 134.>

+

+ var
+ S: space[100] of
+ record
+ A,B: INTEGER
+ end;

+ begin
+ (*base record begins
+ at offset 10 within
+ space *>
+ S[10].A·- 26;
+ S[10].B:= 0;
+ end;

+ Space Referencing Examples

+

The Space Type 135

(" "
/

o
136 Pascal/VS Reference Manual

o

r-',
~J

o

+
+
+
+

+
+
+
+

+
+

+

+
+
+
+

+
+
+

+
+
+
+

Il . .Q. STANDARD IDENTIFIERS IN PASCAL/VS

A standard identifier is the name of a
constant, type, vari able or routi ne
that is predefined in Pascal/VS. The
name is declared in every module prior
to the start of your program. You may
redefine the name if you wish; however,

it is better to use the name according
to its predefined meaning.

The identifiers that are predefined
are:

identifier

ABS
ALFA
ALFALEN
ALPHA
ALPHALEN
ARCTAN
BOOLEAN
CHAR
CHR
CLOCK
CLOSE
COLS
COMPRESS
COS
DATETIME
DELETE
DISPOSE
EOF
EOLN
EXP

FALSE
FLOAT
GET
HALT
HBOUND
HIGHEST
IUDEX
INPUT
INTEGER
INTERACTIVE
LBOUND
LENGTH
LN
LOWEST
LTRIM
MARK
MAX
MAXINT

form

function
type
constant
type
constant
function
type
type
function
function
procedure
function
function
function
procedure
function
procedure
function
function
function

constant
function
procedure
procedure
function
function
function
variable
type
procedure
function
function
function
function
function
procedure
function
constant

Standard Identifiers

description

compute the absolute value of an INTEGER or REAL
array of 8 characters, indexed 1 .• ALFALEN
HBOUND of type ALFA, value is 8
array of 16 characters, indexed 1 •• ALPHALEN
HBOUND of type ALPHA, value is 16
returns the arctangent of the argument
data type composed of the values FALSE and TRUE
character data type
convert an integer to a character value
returns the number of micro seconds of execution
close a file
returns current column on output line
replaces multiple blanks in a string with one blank
returns the cosine of the argument
returns the current date and time of day
returns a string with a portion removed
deallocate a dynamic variable
test file for end of file condition
test file for end of line condition
returns the base of the natural log (e)

raised to the power of the argument
constant of type BOOLEAN, FALSE < TRUE
convert an integer to a floating point value
advance file pointer to next element of input file
halts the programs execution
determine the upper bound of an array
determine the maximum value of a scalar
looks up one string in another
default input file
integer data type
open a file for interactive input
determine the lower bound of an array
determine the current length of a string
returns the natural logarithm of the argument
determine the minimum value of a scalar
returns a string with leading blanks removed
routine to create a new heap
determine the maximum value of a list of scalars
maximum value of type INTEGER

Standard Identifiers in Pascal/VS 137

o
+
+

+

+
+

+

+

+

+

+
+

+
+ o

o

identifier

MIN
MININT
NEW
ODD
OPEN
ORD
OUTPUT
PACK
PAGE
PARMS
POINTER
PRED
PUT
RANDOM
READ
READLN
REAL
RELEASE
RESET
RET CODE
REWRITE
ROUND
SIN
SIZEOF
SQRT
SQR
STR
SUBSTR
SUCC
TEXT
TOKEN
TRACE
TRIM
TRUE
TRUNC
UNPACK
WRITE
WRITELN

form

function
constant
procedure
function
procedure
function
variable
procedure
procedure
function
type
function
procedure
function
procedure
procedure
type
procedure
procedure
procedure
procedure'
function
function
function
function
function
function
function
function
type
procedure
procedure
function
constant
function
procedure
procedure
procedure

Standard Identifiers Continued

description

determine the minimum value of a list of scalars
minimum value of type INTEGER
allocate a dynamic variable from most recent heap
returns TRUE if integer argument is odd
routine to open and initialize a file
convert a scalar value to an integer
default output file
copies an array to a packed array
skips to the top of the next page
returns the system dependent invocation parameters
type to permit passing arbitrary pointers a routine
obtain the predecessor of a scalar
advance file pointer to next element of output file
returns a pseudo-random number
routine to read data from a file
routine to read the end of line character of TEXT file
floating point
routine to destroy one or more heaps
open a file for input
sets the system dependent return code
open a file for output
convert a floating point to an integer by rounding
returns the sine of the argument
determine the memory size of a variable or type
returns the square root of the argument
returns the square of the argument
convert an array of characters to a string
returns a portion of a string
obtain the successor of a scalar
file of CHAR
extracts tokens from a string
writes the routine return stack
returns a string with trailing blanks removed
constant of type BOOLEAN, TRUE> FALSE
convert a floating point to an integer by truncating
copies a packed array to an array
routine to write data to a file
routine to write end of line to a TEXT file

138 Pascal/VS Reference Manual

c

o

+
+
+
+
t
+

+

~ • .Q. SYNTAX DIAGRAMS

actual-parameters:

[---~~--:~:~:~~-------~---->-]--->) ---J~------------------------->
~-->

----..--> (

array-structure:

) ---------->

array-type:

l .> packed ~
[< -
-~------> array [-~-->{index-type}--~->] of --->{type} l<____ , < ________ ~ ----->

assert-statement:

---> assert --->{expr}--->

assignment-statement:

I >{variable}-------rJ-->.- --->{expr}-------------------------------->
L--->{id=function}--->

base-scalar-type:

E
>{enumerated-scalar-type}--->~

---+------>{id:scalar-typeJ >+-->
> {subrange-scalar-type}----->

Syntax Diagrams 139

" 0',

+
+
+

case-statement:

---> c:se --->{exprJ---> of --->1

[>{range}---~ 1--> <----- , <-----J
<-----------------------

--->{statementJ--~--->l

; <----------------~ -
<----------------------~[-<::=--i--<-:::J--~----------------~

:~~:-:~::::~::-~~~~~==~~:~:~!:~=~~===!~~~:]
> end --->

check-statement:

---> Y. ---> CHECK g~F-:::;J----------------> --l:::;-p~IN~~~-:::::;f---l:::~
---> SUBSCRIPT --->
---> SUBRANGE ---->
---> FUNCTION ----> ---> CASE -------->

compound-statement:

---> begin --~--->{statementJ--~---> end
L<------- ; <------~ ----------------------------------->

c=; constant:

>{unsigned-constantJ------------------~J~------------------------------>
~> + J >{unsigned-numberJ--->

+

1.-> ____ >

constant-dcl:

---> const ---T--->{idJ---> = --->{constant-exprJ---> --~---------------->

l<----------------I

continue-statement:

+ ---> continue --->

o
140 ,Pascal/VS Reference Manual

c

o

+
+
+
+
+

+
+
+
+

+

declaration:

---T---> {label-del} >

> {eonstant-del}---->

> {type-del}-------->

> {var-dcl}--------->

--->{def-dcl}--------->

--->{statie-del}------>

--->{value-dcl)------->

>{routine-delJ----->~-->

def-del:

---1---> def ----r---l---1 --->{idl---r---> : --->{typeJ---> ; ---r--------->
---> ref ---> <--- , ----

<--

empty-statement:

--->

enumerated-sealar-type:

-> ([>{id1=:J
<--- , <

expr:
eonstant-expr:

>) -->

--->{simple-expressionl--~--~-------->

factor:

> = [>{SimPle-expreSSionl--->
> <> --->
> < ---->
> <= --->
> >= --->
> > ---->
> in --->

--~--->{funetion-ealll--~------------>

>{variable}-->

>{set-faetorl--------------------------~---------------->

> (--->{exprl---> ------------------------------------>
--->{struetured-constantl-------------------------------->

> not --->{factorJ--------------------------------------->

>{unsigned-eonstantl------------------------------------>

Syntax Diagrams 141

c~

+

+

o

field:

--->{id}--~------------------------------------~~------------------------>
l ___ > (--->{constant-expr}--->) ___ >J

field-list:

>]
--~--->{fixed-part}--~---> ; --~--->{variant-part}--~---~---> ; ~ ___________________________ >J ---~-->

t.....-____ >J

file-type:

---> file of --->{type}-->

fixed-part:

l [---~~--:~:~~~~~-------~---->~]~->
--->{type}--~------------------------>

<-------------------- <----------------------~

for-statement:

---> for --->{idJ---> .- --->{exprJ--~~---» to J
L.- downto -->

> {expr J--->]

[~<-------------> do --->{statementJ--------------------->

formal:

> var ----Jr-----yL--{idJ-~-r---> : ->{id:type}------...--->
---> const --> <--- , <~

{i d} -~-----'r---->
<--- , <~

------->{id:type}------------------------->

>{procedure-heading}--->

>function-headingJ--->

formal-parameters:

--~---> (l >{formal}--~---» --~J----------------------------------->
<----- i <----~ t.....---_____ >

function-call:

--->{id:function}--->{actual-parameters}------------------------------------->

142 Pasca!/VS Reference Manual

o

c

o

+

+

function-heading:

---> function --->{id}--->{formal-parameters}---> --->{id:type}---------->

goto-statement:

--------> goto --->{label}--->

r-->
>{digit} >1-

--->{underseore}-->
--->{letter}--~----+--->{letter} > >1

if-statement:

--> if -->{expr}--> then -->{statementl--~----------------------------~------>

~> else -->{statementl-->J

include-statement:

---> ~ ---> INCLUDE ---> id ---I--------------------------r---------------->
---> (---> id --->) --->

index-type:

E
>{enumerated-sealar-typel--->~

---+------->{id:sealar-type} >+-->
> {subrange-sealar-typel----->

~:

L ___ ~~~~}~~~:~=~~::~:~:----->~]--->

label-del:

---> label [>{label~---~->
<----- , <

leave-statement:

--->

+ ---> leave -->

list-statement:

---> ~ ---> LIST ---I===~ g~F-:::;r-->

Syntax Diagrams 143

+
+

+
+

o

module:

l >{pro9ram-module}----~J--->
--->{segment-module}--->

page-statement:

---> Y. ---> PAGE -->

pointer-type:

---> -> --->{id:type}--->

print-statement:

---> Y. ---> PRINT ---T:::~ g~F-:::;J----------------------------~---------->

procedure-call:

--->{id:procedurel----~~------------------------------------~----------------->
L-> ([>{expr~--r---» _>J

<--- , <

procedure-heading:

---> procedure --->{idl-->{formal-parameters}------------------------------->

program-module:

---> program --->{idl--~---> (>{idl » l __________ ~~:::_~_~:::: _________ >J

c=
>]

; <------------------------------~-

~>{deClaratiOn)--->]
> {compound-statementl--> --->

range:

--->{constant-exprl--~----------------------------------r---------------------->
l ___ > --->{constant-exprl--->J

real-number:

~---> , ---T~::~~~~~:~~~~~~:::J---> 'XR ----------------->

1~ »{di 9 itl , I >. l< >{di9itl---~--~--+------------>

E > >{digit} >
C:::~ + ::::~1 l< ____________ ~

144 Pasca!/VS Reference Manual

Cj

o

+
+
+

record-structure:

--->{id:type}---> (---I---1:::~~:~~:~~~~::~~~~::;J---T--->) -------------> <____________ , < _____________ J

record-type:

----~-----------------~--> record --->{field-listJ---> end
L-> packed _>J

repeat-statement:

------------------>

---> repeat ------~--->{statement}--~---> until --->{expr}------------------> L<______ ; < ______ ~

repetition:

+ . ---> {constant-exprJ-->

return-statement:

+ ---> return --->

+
+
+
+

routine-dcl:

~>{procedure-headingJ »~
~>{function-heading}--------------------- I
<------------------ ; <--------------------~
---> EXTERNAL ---> ------------------------------->
---> FORTRAN ----> ; ------------------------------->
~::~-:~~~~-:::~-~-:::~]

> FORWARD ---> ; >

<--------------------~
>{declaration}--->J

> {compound-statement}---'> ------------------------~----------------->

Syntax Diagrams 145

+

C'~
A'
+
+
+
+
+
+
+
+
+
+
+
+
+
+

c
+

segment-module:

---> segment --->{id}--->

<----------------------
--->{constant-dcl}---->

--->{type-dcl}-------->

--->{def-dcl}--------->

--->{static-dcl}------>

--->{value-dcl}------->

--->{routine-dcl}----->

---> . -->

set-factor:

-> [--~--~[~->{expr}---rc:=--->----~---->-{-e-x-p-r-}~~->-]r-~~~J--->]

I----<:::::::::::::::::_'_<_-~~~~~~~~~~~~~~~~~~~:-->

---->

set-type:

--~---------~-> set of --->{base-scalar-type}------------->
L-> packed _>J

simple-expression:

--~--------~-~-->{terml--~------------------------------->

1=:> + ->~ I 1=:> + ->~
> - -> <_C:~-----,t& --~~

skip-statement:

---> Y. ---> SKIP ---> unsigned-integer ------------------------------------>

space-type:

+ ---> space ---> [--->{constant-expr}--->] ---> of --->{typel------------->

o
146 Pascal/VS Reference Manual

c

o

+

+

+

+

+
+

+

+
+

+
+

+
+

statement:

<
>{label1-> : ->]

--->{assert-statement1------------------------------------->

>{assignment-statementl------------------------------------>

> {case-statement 1-->

> {compound-statement1-------------------------------------->

--->{continue-statement1----------------------------------->

> {empty-statement1--->

> {for-statement 1--->

> {goto-statementl-->

>{if-statementJ-->

--->{leave-statement1-------------------------------------->

> {procedure-cal 1 1-->

> {repeat-statementJ-->

--->{return-statementJ------------------------------------->

>{while-statement1--->

>{with-statement1-->~---------->

static-dcl:

---> static ---I---1--->{id1---r---> : --->{typel---> ; ---1--------------->
<--- , ----

<--

string:

string-type:

structured-constant:

---T--->{record-structureJ---r--->
L_-->{array-structureJ---> .

Syntax Diagrams 147

+ c
+

+

+
+
+

G

o

subrange-scalar-type:

f~::;-~~:~~~-:::~]
>{constant}---> .. --->{constant-expr}----------------------r----->

---> range --->{constant-expr}--~> .. --->(constant-exprl--->J

term:

--~--->{factor}---,-->
* ----->
I ----->

> div --->
mod --->
» ---->
« ---->

---> I I ---->
> & ----->

<----------------------------~

title-statement:

---> ~ ---> TITLE ---> any-character-string ------------------------------->

.:D!.eg :

--~--->{id:type}--->

> {enumerated-scalar-type}--------------------------------------->

> {subrange-scalar-type}--->

> {array-type}-->

> {record-type}--->

> {set-type}-->

>{file-typel--->

>{pointer-type}-->~---->

type-dcl:

---> type --~--->{id}---> = --->{type}---> --~--------------------------> l< __________ ----I

unsigned-constant:

1
>{UnSigned-nUmber}--~-->

>{string} :>j
>{id:constant}------

> nil

148 Pascal/VS Reference Manual

o

o

+
+
+
+

unsigned-integer:

l::
>{digit}---,I--------------------------~~--------------------------->

---> ' ---T~::~~~~~~~~-~~~~:~:::r---> '8 --->

---> ' ---T~::~~~~~:~~~~:::::r---> 'X ------>

unsigned-number:

~>{unsigned-integer}--->TJ-->
~>{real-numberl >

value-assignment:

+ --->{variable}--->.- ---T--->{constant-expressionl----r------------------->
+ L--->{structured-constant}--->

+
+

+

value-del:

---> value ---T7--{value-assignment}---> ; ---r----------------------------> L< _____________________________ _

var-del:

---> var

l
[< ___ >{!d~---~--> --->{type}---> --~------------------>

<--~

variable:

--->{id}->
<--,

> [[>{expr}--~--->] ----->
<---- ,

> . --->{id:field}---------------->

> -> ------------------------------->
~-->

variant-part:

---> case
r----------------->]

--~~-_-_-_> __ {f __ ie __ Id __ }:::_> ________ >J >{id:type}

~>{range}--~--->
<---- , <-----"

<

while-statement:

(--~--->{field-list}--~-->) ~ ________________ >J ----r---->

; <---------------------------~

---> while --->{expr}---> do --->{statement}------------------------------->

Syntax Diagrams 149

with-stat~ment:

--> with --~--->{variabl~}--~---> do -->{statement}---------------------> l<____ < ___ ,

o
150 Pascal/VS Refer~nce Manual

c

o

Q • .Q. INDEX TO SYNTAX DIAGRAMS

actual-parameters 69
array-structure• 16
array-type .•................ 36
assert-statement•..... 74
assignment-statement 75

base-scalar-type•.... 42

case-statement ..•.........•. 76
check-statement 133
compound-statement 78
con stant. 14
constant-del 20
constant-expr•.•.•. 61
cont i nue-statement. • 79

declaration•..• 17
def-dcl. • . •. 24

empty-statement 80
enumerated-scalar-type .•.... 29
expr•...........••... 61

factor 61
field 38
field-list 38
file-type ..•..............•. 44
fixed-part•........ 38
for-statement•..•..... 81
formal. • 53
formal-paramaters 53
function-heading 53
function-call 69

goto-statement•... 83

i d. • • • • • • . • • • • • • • • • • • . • • . • •• 9
if-statement 84
i ncl ude- statement. • . •. 133
index-type .•................ 36

label•.......•..•...•. 19
label-del 19
leave-statement 85
list-statement•......•. 133

module .•...........•....•••. 17

page-statement .•.......•..•. 133
pointer-type ...•............ 51
print-statement •..........•. 133
procedure-call .•............ 86
procedure-heading•.... 53
program-module .•.......•...• 17

range. • • 38
real-number•............ 14
record-structure 16
record-type•............ 38
repeat-statement 87
repetition ...•.•...•........ 16
return-statement 88
routine-del•....• 53

segment-module .•....•.•..... 17
set-factor••......•....• 71
set-type•......... 42
si mple-expressi on.• 61
skip-statement•........ 133
space-type•............ 135
statement•......•....• 73
stat ie-del. • 23
string•......•..... 14
string-type 45
structured-constant 16
subrange-scalar-type 30

term ..•........•.....•....•. 61
title-statement •............ 133
type. • • 27
type-del. • 21

un signed-con stant. •. 14
unsigned-integer 14
unsigned-number •............ 14

va I ue-a ss i gnement.• 25
value-del•............ 25
var-dcl. 22
variable•.•............ 57
variant-part ...•.....•...... 38

with-statement .•............ 90
whi Ie-statement •.......••.•• 89

Index to Syntax Diagrams 151

o

o

o
152 Pascal/VS Reference Manual

o

o

o

g . .9. GLOSSARY

Actual parameter specifies what is to
be passed to a routine.

Array ~ is the structured type that
consists of a fixed number of elements,
each element of the same type.

Assignment compatible is the term used
to indicate whether a value may be
assigned to a variable.

Automatic variable is a variable which
is allocated on entry to a routine and
is deallocated on the subsequent
return. An automatic· variable is
declared with the var declaration.

Base scalar ~ is the name of the
type on which another type is based.

Bit is one binary digit.

Byte is the unit of addresability on
the System/370, its length is eight
bits.

Compatible ~ is the term which is
used to indicate that operations
between values of those types are
permited.

Component is the name of a value in a
structured type.

Constant is a value which is either a
literal or an identifier which has been
associated with a value in a const
declaration.

Constant expression is an expression
which can be completely evaluated by
the compi ler at compi Ie time.

Dynamic variable is a variable which is
allocated under programmer control.
Explicit allocates and deallocates are
required; the predefined procedures
NEW and DISPOSE are provided for this
purpose.

Element is the component of an array.

Entry routine is a procedure or func­
tion which may be invoked from outside
the module in which it is defined. The
routine is called entry in the module
in which is defined. An entry routine
may not be imbedded in another routine;
it must be defi ned on the outermost
level of a module.

Enumerated scalar.tv..e.g is a scalar that
is defined by enumerating the elements
of the type. Each element is repres­
ented by an identifier.

External routine is a procedure or
function which may be invoked from out­
side the module in which the routine is

defined.

Field is the component of a record.

File ~ is a data type which is the
mechan i sm to do input and output in
Pascal/VS.

Fixed part is that part of a record
which exists in all instances of a par­
ticular record type.

Formal parameter is a parameter as
declared on the routine heading. A
formal parameter is used to specify
what is permitted to be passed to a
routine.

Function is a routine, invoked by cod­
ing its name in an expression, which
passes a resul t back to the invoker
through the routine name.

Identifier is the name of a declared
item.

Index is the selection mechanism
applied to an array to identify an
element of the array.

Internal routine is a routine which can
be used only from within the lexical
scope in which it was declared.

lexical scope identifies the portion of
a module in which a name is known. An
identifier declared in a routine is
known within that routine and within
all nested routines. If a nested rou­
tine declares an item with the same
name, the outer item is not available
in the nested routine.

Module is the compilable
Pascal/VS.

unit in

Offset is the selection mechanism of a
space. An element is selected by plac­
ing an integer value in parenthesis.
The origin of a space is based on zero.

Packed record ~ is a record struc­
ture in which fields are allocated in
the minimum number of bytes. Implemen­
tation defined alignment of data types
will not be preserved in order to pack
the record. Packed records may not be
passed by read/write reference.

Pass .rut read only reference is the
parameter passing mechanism by which
the address of a variable or temporary
is passed to the called routine. The
called routine is not permitted to mod­
ify the formal parameter. If the actual
parameter is an expression, a temporary
will be created and its address will be
passed to the called routine. A tempo­
rary is also created for fields of

Glossary 153

o

o

packed records.

Pass ~ read/write reference is the
parameter passing mechanism by which
the address of a variable is passed to
the called routine. If the called rou­
tine modifies the formal parameter, the
corresponding actual parameter is
changed. Only variables may be passed
via this means. Fields of packed
records will not be permitted to be
passed in this way.

Pass ~ value is the parameter passing
mechanism by which a copy of the value
of the actual parameter is passed to
the called routine. If the called rou­
tine modifies the formal parameter, the
corresponding actual parameter is not
affected.

Pointer ~ is used to define vari­
ables that contain the address of dyna­
mic variables.

Procedure is a routine, invoked by cod­
ing its name as a statement, which does
not pass a result back to the invoker.

Program module is the name of the com­
pilable unit which represents the first
unit executed.

Record ~ is the structured type that
contains a series of fields. Each field
may be of a type different from the
other fields of the record. A field is
selected by the name of the field.

Reserved word is an identifier whose
use is restricted by the Pascal/VS com­
piler.

Routine is a unit of a Pascal/VS pro­
gram that may be called. The two type
of routines are: procedures and func­
tions.

Scalar ~ defines a variable that may
contain a single value at execution.

Segment module is a compilable unit in
Pascal/VS that is used to contain entry
routines.

/

154 Pascal/VS Reference Manual

Set ~ is used to define a variable
that represents all combinations of
elements of some scalar type.

Space ~ is used to define a variable
whose components may be positioned at
any byte in the total space of the var­
iable.

Statement is the executable unit in a
Pascal/VS program.

String represents an ordered list of
characters whose size may vary at exe­
cution time. There is a maximum size
for every string.

String constant is a string whose value
is fixed by the compiler.

Structured ~ is anyone of several
data type mechanisms that defines vari­
ables that have multiple values. Each
value is referred to generally as a
component.

Subrange scalar ~ is used to define
a variable whose value is restricted to
some subset of values of a base scalar
type.

Tag fi eld is the fi eld of a record
which defines the structure of the
variant part.

~ defines the permissible values a
variable may assume.

~ definition is a specification of a
data type. The specification may appear
in a type declaration or in the decla­
ration of a variable.

~ identifier is the name given to a
declared type.

Variant part is that portion of a
record which may vary from one instance
of the record to another. The variant
portion consists of a series of vari­
ants that may share the same physical
storage.

This page intentionally left blank.

o
Glossary 155

