
Systems

GC20-1752-0

OS/Virtual Storage 1
Features Supplement

This supplement discusses OS/Virtual Storage 1 (OS/VS1)
features and organization. Only concepts and functions
of OS/VS1 that are new to and significantly different
from those of OS MFT are presented in detail. Transition
from OS MFT to OS/VS1 is discussed also. Facilities
announced prior to the date of this supplement are included
in the discussions. Features that are not part of the first
release of OS!VSl are identified.

This supplement is an optional section that is designed to
be inserted in its entirety in anyone of the following base
publications, each of which contains the conceptual and
System/370 hardware information required to understand .
the OS/VSl discussion presented:

• A Guide to the iBM'System/370 Model 135 (GC20-1738)
• A Guide to the iBM System/370 Model 145 (GC20-1734)
• A Guide to the iEII! System/370]w.odeI158 (GC20-1754)
• A Guide to the iBM System/370Model168 (GC20-1755)

Readers who possess more than one of the above base
publications need add this module to only one of the
documents as the OS/VS1 information presented applies
to System/370 Models 135, 145, 158, and 168 unless
otherwise indicated in the text.

The contents of this supplement are designed to acquaint
the OS MFT knowledgeable reader with the new facilities
and the advantages of OS/VSl.

PREFACE

This supplement is stocked in the IBM Distribution Center,
Mechanicsburg as a separate form-numbered item and is not automatically
distributed as part of any other publication. Subsequent updates to the
supplement must also be ordered separately. Those who are familiar with
a System/370 model and OS MFT, and who require information about OS/VS1,
should obtain this supplement and insert it as Section 90 of one of the
appropriate base publications listed below.

Base publications for the OS/vs1 supplement are:

• A Guide to the IBM System/3?O Model 135 (GC20-1738-4 or later
editions)

• A Guide to the IBM System/3?O Model 145 (GC20-1~34-2 or later
editions)

• A Guide to the IBM System/3?O Model 158 (GC20-1~54)

• A Guide to the IBM System/3?O Model 168 (GC20-1755)

This supplement is self-contained. It begins with page 1 and
includes its own table of contents and index. The title of the
supplement is printed at the bottom of each page as a means of
identifying the optional supplement to which the page belongs.
Knowledge of information contained in other optional supplements that
can be added to the base publications listed above is-not required in
order to understand the OS/VS1 features as they are presente1. However,
comprehension of virtual storage concepts and dynamic address
translation hardware and terminology, as described in anyone of the
base publications, is assumed.

First Edition (August 1972)

This publication is intended for planning purposes only. It will be updated from time to time;
however, the reader should remember that the authoritative sources of system information are
the system library publications for OS/VSl. These publications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

Address comments concerning the contents of this publication to: IBM Corporation, Technical
Publications Department, 1133 Westchester Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1972'

CONTENTS (Section 90)

Section 90: as/Virtual Storage 1 Features •••••
90:05 Functions and Features Supported •••••

• • •• 1
• • •• 1

90:10 Organization and Initialization of Storage •••••
Virtual Storage Organization • •

• • •• 6

Real Storage Organization. • • • • •
External Page Storage Organization •
System Initialization. • • • • •

90:15 Major Components. • •••••••
90:20 Job Management ••••••••••••

Master Scheduler and Communications Task • • • • •

6
• 12
• 12

13
• 16
• 18
• 19
• 20 Job Entry subsystem.

Job Queue Management • •
Job Scheduler ••••••

• • • • • 28

Remote Entry Services.. ••••••
Conversational Remote Job Entry. • • • • •

90:25 Task Management ••••••
Interruption Supervisor. • •
Task Supervisor. • • • • • •
Virtual Storage Supervisor •
Program Fetch. • • • • •

90:30 Data Management ••••••••
Input/Output Supervisor •••
Virtual Storage Access Method. •

90:35 Page Management ••••••
General Functions. • • • • • • •
Real storage Management. • • • •
External Page Storage Management

90:40 Recovery Management ••••••

90:45

90:50
90:55

Recovery Management Support. • • • • • • • • • • •
OLTEP. • • • • • • • • • • • • •
Problem Determination Facilities

Language Translators, service Programs, and Emulators.
System Assembler _ • • • • • • • • •
Linkage Editor • • •
Utilities. • • • • •
Integrated Emulators

OS MFT to OS/VSl Transition. •
summary of Advantages. • •

Index (Section 90).

FIGURES (Section 90)

• 29
• 33
• 38
• 38
• 38
• 39
• 40
• 40
• 41
• 41
• 42
• 59
• 59
• 60
• 67
• 68
• 68
• 69
• 69
• 71
• 71
• 72
• 72

•• 73
• 73
• 76

• 80

90.10.1
90.10.2
90.10.3

Virtual storage organization in OS/VSl • • • • • • • • • • 7
Real storage organization in OS/VS1 •••••••••••• 12
External page storage. real storage, and virtual storage
relationship in as/VSl • • • • • • • ~ •• • • • • • • • • 1tt.

90.10.4

90.20.1
90.20.2
90.20.3
90.30.1

Page table entry contents for an initialized, inactive
problem program partition. • • • • . • • • • • • •
Components. functions. and data flow of JES. • • •
General flow of JES and job scheduling in OS/VS1 •
RES interface with JES • • • • • • • • • • •
organization of a control area for a VSAM key-sequenced

• 16
• 22
• 32
• 35

data set • 45

as/Virtual Storage 1 Features Supplement

90.30.2

90.35.1
90.35.2

Structure of the index for a VSAM key-sequenced
data set • • • • • • • • • • • • ~ • • • • • •
Flow of the real storage allocation procedure. •
Example of page activity measurement • • • • • • •

• • • • 48
• 62
• 65

TABLES (Section 90)

90.05.1
90.05.2

90.15.1
90.20.1

90.30.1
90.30.2

Standard and optional features of OS/VS1 •••
I/O devices r consoles r and terminals supported by
OS/VS 1 •
oS/VS1 control and process program components.

4

5
• 17

OS/VS1 operator commands that can be issued from an RES
remote work station. • • • • • • • • • • • • • • • • • • • 36
Types of access supported for VSAM data set organizations. 50
Comparison table of VSAM and ISAM facilities for as. • • • 55

as/Virtual Storage 1 Features Supplement

SECTION 90: as/VIRTUAL STORAGE 1 FEATURES

90:05 FUNCTIONS AND FEATURES SUPPORTED

as/VS1 is a growth operating system for as MFT and DOS installations.
os/VS1 includes features equivalent to and compatible with those of os
MFT and offers major new functions and feature enhancements. The most
significant new items of OS/vS1 are:

• Support of one virtual storage of up to 16,777,216 bytes using
dynamic address translation hardware

• More efficient peripheral I/O operations processing provided by the
new job entry subsystem (JES). which replaces OS MFT input readers
and output writers and incorporates many of the spooling features of
Mn ~~ II

• Improved remote job entry provided by the new remote entry services
(RES) facility, a logical and functional extension of JES. RES
replaces OS RJE and provides functions similar to those available in
HASP II RJE.

• Job scheduling enhancements that include elimination of small
partition scheduling and reduction in contention for the job queue

• An additional access method called Virtual Storage Access Method
(VSAM) that is designed to offer more function and to be more
suitable to online and data base environments than ISAM

• Operational enhancements

• Improvements in system integrity and data security protection, such
as additional protection of control blocks within a user partition

OS/VSl supports one partitioned virtual storage of up to 16 million
(16,111,216) bytes with segments of 64K and pages of 2K. The
organization of virtual storage in VSl is similar to that of main
storage in MFT. However. virtual rather than real storage is divided
into partitions. The management of virtual, real, and external page
storage, and the paging activity of the system are handled entirely by
the VS1 control program. and are transparent to the programmer.

OS MFT is upward compatible with OS/VS1 to the extent that moving to
OS/vS1 resembles moving from one release of MFT to another that contains
significant new features. (See Section 90:50 for a discussion of MFT to
os/vs1 transition.) Except for JES and RES, OS/VS1 is upward compatible
with os/Vs2 in the same way MFT is upward compatible with MVT. DOS
Version 3 and 4 users can make the transition to OS/Vs1 with the aid of
the OS/DOS emulator, which also operates under OS/vS1 control.
Compatibility that exists between DOS files and MFT data sets also
exists between DOS files and OS/VS1 data sets. Because of the
compatibility between OS/VSl and MFT, the effort required to convert
from DOS to OS/VS1 is similar to that required to convert from DOS to
MFT.

OS/VS1 is an intermediate-level operating system, classified as
system control programming (SCP) and hereafter referred to as VS1 or
OS/VS1, that supports System/310 Models 135, 145, 158, and 168 operating
in EC and translation modes. VS1 also supports purchased Models 155 and
165 with the optional Dynamic Address Translation Facility installed,
which are designated as Models 155 II and 165 II, respectively. Models

os/virtual Storage 1 Features supplement 1

158, 155 II, 168, and 165 II are not supported by the first release of
VS1. VS1 does not support System/370 models operating in EC mode
without address translation operative, System/310 models operating in BC
mode, or any System/360 models.

The following minimum system configuration and hardware features are
used by VS1:

• 144K of real storage for a Model 135, 160K of real storage for a
Model 145, and minimum real storage size for other System/37 0 models
supported by VS1 (configurations with less than 160R are subject to
certain restrictions)

• Byte multiplexer channel with associated I/O devices, including one
reader, one punch, one printer, and one console

• One selector or block multiplexer channel, or IFA for Models 135 and
145, with associated direct access devices that include 2314/2319,
3330-series, or 2305 (Model 1 or 2) direct access storage. The
preceding direct access devices are supported for system residence.
At least three 2314/2319 disk drives or three 3330-series disk
drives are required. In addition, at least one nine-track tape unit
is required in order to perform a system generation.

• Dynamic address translation and channel indirect data addressing

• Storage protection

• Interval timer (at location 80) and time of day clock

• Monitoring facility

• Program event recording

The following restrictions apply when VSl is used on a Model 135 with
144K:

• For most installations, the recommended maximum number of partitions
is one.

• The Generalized Trace Facility cannot be used if only one partition
is defined.

• If two partitions are defined, GTF can operate but the external
trace option cannot be used.

• OLTEP cannot be used (in the first release of VS1).

The standard features of VS1 and a minimal I/O configuration are
supported in a system with 160K of real storage. Inclusion of optional
featUres in the generated VS1 control program, support of a larger than
minimal I/O configuration, and improved system performance require a
system with more than 160K of real storage. Note that a Model 145 with
a GE storage size will have less than 160K of real storage available
when the control storage requirement exceeds 32K. The advantages and
functions offered by a VS1 virtual storage environment and optimal
system performance can best be attained for a Model 135 if 240K is
installed, and for a Model 145 if 256K or more is installed.

Table 90.05.1 lists the standard and optional features of as/VS1 and
Table 90.05.2 lists the I/O devices, consoles, and terminals supported.
Items that are not available in the first release of VS1 are identified.
Just as for an as MFT operating system, the desired installation­
tailored as/vs1 control program must be generated, at which time user­
selected optional features are included in the resulting system. More

2 as/Virtual Storage 1 Features Supplement

features are standard in VS1 than in MFT. This can reduce the number of
options that must be specified and. thereby, reduce system generation
preparation and execution time.

OS/vS1 is a functional extension of as MFT as of Release 20.1.
However, the following MFT features are not available in VS1:

• Storage hierarchies (2361 Core Storage cannot be attached to any
System/370 model). Hierarchy parameters are processed at link-edit
time but are ignored during program loading.

• TESTRAN

• QTAM (function provided by TCAM), Graphic Job Processor (GJP), and
satellite Graphic Job Processor (SGJP)

• RJE (function provided by RES)

• IEBUPDAT utility (replaced by IEBUPDTE)

• IMAPl'FLE and IMDMDMAP replaced by HMBLIST

• IFGUAP utility

The following I/O devices. some of which are suppported by MFT, are
not supported by VS1:

1017/1018 Paper tape reader/punch
1285 Optical Reader
2301 Drum
2303 Drum
2311 Disk Storage
2321 Data Cell Drive
7772 Audio Response Unit

as/Virtual Storage 1 Features Supplement 3

Table 90.05.1. Standard and optional features of OS/VS1. Standard features
are automatically included during system generation.
Optional features must be requested during system generation
or added after the generation is performed.

4

Standard Features

• One virtual storage of up
to 16 million bytes with
64K segments and 2K pages

• Up to 52 partitions
1-15 problem program
1-31 system task

• Demand paging for allocation
of real storage

• Execution of programs in
paged and nonpaged
(V=R) modes

• Independent job scheduling
• Job Entry Subsystem (JES)
• Multitasking (resident ATTACH)
• Storage protection
• Timing facilities
• Resident access methods
• Resident reentrant

SYS1.LINKLIB modules
• Resident BLDL table
• Resident IDENTIFY,EXTRACT,SPIE
• Standard Fetch and

Multiple Wait
• Operator communication at IPL
• Validity Checking
• Access methods:

BSAM, QSAM, BDAM, BPAM
• Direct access volume

serial number identification
• Dynamic Support System (DSS)*
• Online Test Executive Program

(OLTEP)
• Machine Check Handler (MeH)
• Channel Check Handler (eeH)
• Integrated emulator interface
• Linkage Editor/Loader
• System Assembler
• System Utilities

I EHDAS DR IEHPROG~ IEHMOVE
IEHIOSUP IFHSTATR IEHATLAS
IEHLIST IEHINITT

• Data Set Utilities
IEBCOPY IEBTCRIN IEBPTPCH
IEBGENER IEBCOMPR IEBEDIT
IEBUPDTE IEBISAM IEBDG

OS/VSl

J Optional Features

• Transient SVC Table
• Resident Type 3 and 4 SVC routines
• Resident ERP's
• PCI Fetch
• TRACE function
• Alternate or Composite Console
• Multiple Console Support (MCS)
• Device Independent Display

Operators Console Support (DIDOCS)
• Remote Entry services (RES)*
• Automatic Volume Recognition (AVR)
• Dynamic Device Reconfiguration (DDR)
• Alternate Path Retry (APR)
• Checkpoint/Restart
• Time Slicing
• system Management Facilities (SMF)
• Access methods: VSAM*. BTAM.

TeAM. GAM. BISAM. QISAM
• Shared Direct Access Storage Devices

(DASD) for 2314/2319, 3330. 2305-2
• Graphics Subroutine paCkage (GSP)
• Conversational Remote Job Entry

(CRJE)
• Integrated emulators (independent

component releases)
1401/1440/1460 emulator for Models

158*. 155 11*. 145. and 135
1410/7010 emulator for Models

158*. 155 11*. and 145
7070/7074 emulator for Models 158*,

155 11*, 168*, and 165 11*
7080 and 709/7090/7094/709411 emulators
for Models 168* and 165 11*

DOS emulator for Models 158*. 155 11*.
145. and 135

• Reliability Data Extractor
• Reduced error recovery for

magnetic tape
• System Log
• Volume statistics for magnetic

tape
• MSP/7 Host Program Preparation

Facility II (HPPF)

Access Method Services (for VSAM)*
• Independent Utilities

I BCDMPRS IBCDASDI ICAPRTBL
• Service Aids

HMAPTFLE HMASPZAP HMDSADMP
HMBLIST HMDPRDMP IMCJOBQD
IFCDIPOO IFCEREPO
Generalized Trace Facility (GTF)

*Not available in the first release of VS1

OS/Virtual Storage 1 Features Supplement

Table 90&0582. I/O devices, consoles, and terminals supported by OS/vS1

Readers and Punches

1442 Reader Punch, Models N1 and 2
2501 Card Reader, Models B1 and B2
2520 Card Read Punch, Models B1, B2, B3
2540 Card Read Punch
2596 Card Reader (96 column) as 1442 equivalent

Printers

1403 Printer, Models N1, 2, 3, 7
1443 Printer, Model N1
3211 Printer

Direct Access Storage

2314 Direct Access Storage Facility (Models 1, A, and B) and 2844
Auxiliary storage Control

2319 Disk Storage, A and B models
3330 Disk storage
2305 Fixed Head Storage Facility, Model 1* and Model 2

Magnetic and paper Tape

2400-series magnetic tape, all models, and 2816 Tape switching
3400-series magnetic tape, all models (2420 equivalent in first release)
2495 Tape Cartridge Reader
2671 Paper Tape Reader

Optical and Magnetic Character Readers

1287, 1288 Optical Character Readers
1419 Magnetic Character Reader (Dual Address Adapter and Expanded
Capability feature required)

Display Units

2250 Display unit
2260, 2265 Display Stations
3270 Display Systern*

Consoles

3210, 3215 Console printer-Keyboards
Display Console for the Model 158* (display console not available for

Model 155 II) - 3215 mode only in first release
3066 System Console for Models 168* and 165 11*
2150 Console with 1052 Model 7
Composite console (card reader and printer)
2250 and 2260 (local) display units (DIDOeS is required)
2740 Communication Terminal (MeS required)
3277 (DIDOCS is required)*
3213 Printer (for hard copy when the Model 158 display console is used)*

Transmission Control Units

2701, 2702, 2703, 2715 Transmission Control Units
2772 Multipurpose control Unit
2955 Data Adapter Unit
3271 Control Unit*
3705 Communications Control Unit*
7770 Audio Response Unit

Os/virtual Storage 1 Features Supplement 5

Table 90.05.2. (continued)

Terminals (Start/Stop)

1030 Data Collection System
1050 and 1060 Data Communication Systems
2260 and 2265 Display Stations
2121 Portable Audio Terminal
2140 Models 1 and 2, and 2741 Model 1 Communication Terminals
2760 Optical Image unit
83B3 AT&T Terminal
WU 115A Teletype
TWX-33/35** AT&T Teletype Terminal
System/7 Sensor-Based Information System

Terminals (Binary Synchronous)

2770 and 2790 Data Communication Systems
2180 Data Transmission Terminal
2972-8, -11 General Banking Stations
3270 Information Display System*
3670 Brokerage Communication System*
3735 Programmable Buffered Terminal*
1130 system (as a processor station>
1800 System (as a processor station>
System/3 (as a processor station>
System/360 Models 20 and up (as a processor station)
System/310 models (as a processor station)

*Not supported in the first release of VS1

**Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for the
impact that any changes to the IBM-supplied products or programs may
have on such terminals.

90:10 ORGANIZATION AND INITIALIZATION OF STORAGE

VIRTUAL STORAGE ORGANIZATION

The organization of virtual storage in VS1 is reflected in tables and
control blocks, similar to those used in MFT, that are established at
system initialization and maintained throughout system operation.
Virtual storage is organized, allocated, and freed in much the same way
as main storage is in MFT. However, in VS1, virtual storage allocated
to pageable programs does not require the allocation of real storage
until the virtual storage is actually referenced by executing code. The
size of the virtual storage supported, up to a maximum of 16,177,216
bytes, can be specified at system generation and can be changed by the
operator at IPL.

Virtual storage in VS1, like main storage in MFT, is divided into two
main areas: a nonpageable area in lowest addressed virtual storage and
a pageable area in highest addressed virtual storage, as shown in Figure
90.10.1. The two areas are divided by the V=R line. Storage
protection, functionally equivalent to that implemented in MFT, is
provided as a standard feature. Protect key values are assigned to
virtual storage areas. Each time a page frame is allocated, its protect
key is set equal to the protect key value assigned to the virtual

6 OS/Virtual Storage 1 Features Supplement

storage page to which the page frame is allocated. Fetch protection is
not supported.

The virtual storage in the nonpageable area is mapped on a virtual
equals real (V=R) basis with real storage. That is, each virtual
storage page has a page frame assigned such that virtual and real
storage addresses are equal. The nonpageable area contains the resident
control program, the system queue area, and the virtual equals real
(V=R) area. Included in the resident control program are the generated
nucleus, which is a minimum of 54K (for one partition and the minimum
I/O configuration), and RMS routines (MCH and CCH). The two RMS
routines require 6K of resident control program storage and 2K of
pageable supervisor area when less than 192K of real storage is present,
and 8K of resident control program storage when 192K or more is
available. The resident control program is assigned storage protect key
0, and is a multiple of 2K in size •

...--___________________ Virtual Storage __________________ --,
up to 16,384K

I Virtua
address
zero

Nonpageable Area \ jr------------pageable Area

I I I
RMS

!NuCleus 6K
S4K

minimum or
8K

Key 0 Key 0

'-------~
ReSident
Control Program
(fixed)

I

I I

t'
I
I

V=R Area

Pn-1 PO

V=R
SQA

job steps Highest
4K Lowest

min. SQA priority priority
expansion

Key 1 to 15 Key 1 to 15

Key 0 Key 1 to 15

~,
V=Rlme
(address of
end of real
storage­
maximum of
768K)

or
Key 0

or

J"
Key 0

n
....

Problem Program Area

Maximum 52 partitions

• 1-15 problem program
• 1-37 system task
• Multiple of 64K in size
• Begin on 64K boundary
• 1-15 job classes per problem

program partition

1\

JES
Routines

96K
minimum

Key 0

Figure 90.10.1. Virtual storage organization in OS/VS1

Optional Pageable

Resident Supervisor

Routines Routines

• BLDL Table

• SVC's

• RAM
Includes

• ERP's
SVC and I/O

• Other (System
transient areas

and user
reentrant 30K
from minimum
LlNKLlB)

Key 0 Key 0

"
Pageable Supervisor
Area

The system queue area (SQA) is adjacent to the resident control
program. SQA. with a protect key of zero, is used for control blocks
and work areas that are not job or job step related or that must have
virtual equals real storage addresses. The size of SQA is specified at
system generation and must be a minimum of 4K (for a one partition
system). An additional 2K of SQA should be allocated for each 64K of
real storage present in excess of 128K. The amount of SQA specified is
reserved in the nonpageable area of virtual storage during system
initialization. However, during system operation, SQA is dynamically

as/Virtual storage 1 Features Supplement

Page
supen:iscr
reserved
area

4K

Key 0
I

expanded and contracted as needed. a virtual storage page (and page
frame) at a time. When an allocated virtual storage page of SQA is no
longer required. it and its allocated page frame-are freed and become
available for reassignment.

The V=R area. located adjacent to SQA defined at system generation,
is used for SQA expansion. Any available virtual storage pages (and
their correspondingly addressed available page frames) within the V=R
area can be allocated to the system queue area, since SQA need not
consist of contiguous virtual storage pages. Dynamically expandable
system queue space is not supported byMFT. and system operations must
be terminated if the amount allocated during IPL is exhausted. The
approach implemented in VSl is designed to minimize system terminations
that occur because of a lack of SQA.

The size of the V=R area is variable by system. The V=R area
consists of all the virtual storage from the end of defined SQA to the
location of the V=R line. The V=R line is established during system
initialization when the amount of real storage present has been
determined. The address of the V=R line in virtual storage is 168K or
the address of the end of real storage. whichever is less.

The V=R area is used for the execution of programs that operate in
nonpaged (V=R) mode, as well as for SQA expansion. A nonpageable job or
job step is identified by the new ADDRSPC parameter in the JOB or EXEC
statement. When ADDRSPC=REAL is specified. the REGION parameter is used
to indicate the amount of virtual and real storage required. Storage
can be allocated on a job or a job step basis and a job can contain both
paged (ADDRSPC=VIRT) and nonpageable job steps. The ADDRSPC and REGION
defaults are specified in the PARM field of the EXEC statement in the
reader procedure.

A minimum area of 2K can be requested for execution of a nonpageable
job step. The maximum amount of real storage that can be allocated to a
nonpageable job step is a function of the amount of real storage present
in the system. the size of the resident control program, and the amount
of real storage allocated to fixed pages at the time the nonpageable job
step is initiated. The amount requested must be a multiple of 2K in
size. When a nonpageable job step is initiated, enough contiguous
virtual and real storage must be available at that time to satisfy the
REGION parameter request. More than one nonpageable job step can be
active concurrently, up to a maximum of 15, subject to the availability
of the contiguous virtual and real storage areas required.

Jobs containing one or more steps that are to execute in nonpaged
mode are scheduled (interpreted. initiated, terminated) using a pageable
problem program partition in the pageable area that handles the job
class indicated. That is, the scheduler operates paged in a pageable
partition even though the job steps it schedules operate nonpaged in a
contiguous area in the V=R area. Although V=R job steps are not paged,
they operate with translation mode operative. This is done because they
reference virtual storage addresses contained in the pageable supervisor
area. Page tables associated with a nonpageable job step are
established such that the real storage address that results from the
translation of an address contained within the V=R area allocated to the
job step is equal to the virtual storage address. Channel program
address translation is not performed on CCW lists contained in a
non paged program. A nonpaged job step must be restarted from a
checkpoint in the same V=R area that was used for the checkpoint.

The only Vsl SCP component that is not part of the resident (fixed)
control program and that must operate in nonpaged mode is OLTEP when it
is controlling execution of OLT·s. In addition, in VS1, a program must
operate in nonpaged mode if it:

8 Os/virtual Storage 1 Features supplement

• Contains a channel program that is modified while the channel
program is active

• Is highly time-dependent (involves time-dependent I/O operations,
for example, such as magnetic ink character reader programs)

• Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

• Must use the chained scheduling facility of BSAM or QSAM

• Uses the EXCP macro and executes user-written I/O appendages that
can encounter a disabled page fault (Section 90:25 discusses
disabled page faults)

• Uses the EXCP macro and has CCW chains with more the 240 CCW's

Existing user-written programs that are operating in MFT and that
must operate in nonpaged mode in VS1 need not be modified in order to
run in this mode. Existing optical character reader and certain types
of card reader programs can be run in V=R mode under VS1 to maintain the
performance currently achieved in MFT. A program that involves
operations on a 1287 or a 1288 optical character reader will run slower
in paged mode than in nonpaged mode. A program that accesses a card
reader directly (does not use JES) and that uses the CNTRL macro, say
for stacker selection, will probably run slower in paged mode than in
nonpaged mode. The reduction in performance is the result of additional
control program processing that is required to perform channel program
translation and page fixing.

Note that executing such programs in nonpaged mode can improve the
performance of that individual program but can also degrade total system
performance by making less real storage available for paging. Nonpaged
mode should be used only when really necessary, as indicated in the
performance discussion contained in the prerequisite base publications
for this supplement (Section 15:15 or 30:15).

The pageable area consists of all the virtual storage above the V=R
line. It contains a pageable supervisor area and a partitioned area for
the execution of pageable problem programs. The pageable supervisor
area contains control program routines that are resident in virtual
storage (have virtual storage allocated and are contained in external
page storage) and, therefore, are subject to paging. OptionallYr
certain control program functions can be made fixed instead of pageable.

The pageable supervisor area is located in highest addressed virtual
storage and has a protect key of zero. It has:

• An area of 4K reserved for the page supervisor

• The pageable supervisor routine area of 30K minimum, which contains
supervisor routines that can be paged instead of fixed with minimal
effect on system performance. The pageable supervisor routine area
contains ATTACH, the communications task, DISABLE, enqueue/dequeue,
EXTRACT, FIND/BLDL/CONVTTR, IDENTIFY, LINK/LOAD/XCTL/FINCH, the
master scheduler, standard program fetch (unless PCI fetch is
included), SEGLD/SEGWT, SPIE, SYNCH, and, if only one partition is
defined, TIME. This area also contains the SVC transient area,
which is 2K bytes (instead of 1K, as in MFT) and the I/O transient
area of 1K.

• The resident supervisor routines area, which contains certain access
methods, and the BLDL table. The BLDL table can be pageable or
fixed. Optionally, reentrant routines from SYS1.LINKLIB, Type 3 and
4 SVC routines, and ERP routines can be made resident in this area

as/virtual storage 1 Features Supplement 9

also. The contents of this area are indicated at system
initialization. The routines included can be pageable or fixed
except for ERP's which must be fixed.

• The job entry subsystem area, which contains JES routines and
buffers. The JES virtual storage area is a minimum of 96K (one
reader, one writer, one spool device, and minimum buffers) and is
pageable. At system initialization, the JES virtual storage area is
made large enough to support the maximum number of readers and
writers (for both JES and RES) that can be started for this IPL.

The problem program virtual storage area is divided into contiguous
partitions, just as in MFT. A maximum of 52 partitions (PO to P51) can
be defined: one to 15 problem program partitions, with a nonzero protect
key (1-15), and one to 37 system task partitions, with a protect key of
zero. PO, in the highest addressed portion of the problem program area,
has the highest execution (task dispatching) priority and P51 has the
lowest. A partition in virtual storage must be a multiple of 64K in
size (the segment size used) and begin on a 64K virtual storage
boundary. Small partitions, as defined in as MFT (those too small to
contain the job scheduler), do not exist in as/VS1.

Jobs are scheduled to execute in problem program partitions by job
priority within job class (A to 0), just as in MFT. However, a VS1
problem program partition can have up to 15 job classes assigned,
instead of the MFT limit of three. A given job class can be assigned to
more than one partition, as in MFT. The number of partitions, their
size, their type, etc., is defined at system generation. These
parameters can be altered by the operator at IPL or during system
operation as long as the maximum number of partitions or the maximum
amount of virtual storage specified at system generation or
initialization is not exceeded.

Problem program partitions are used for the scheduling and execution
of pageable job steps and direct system output (DSO) writers. A
pageablejob step can be initiated in a problem program partition as
long as the size of the program to be executed is at least 4K less than
the partition size. (The 4K is required for system control blocks and
tables.) paged job steps execute with storage addresses in instructions
translated by the DAT hardware and storage addresses in channel programs
translated by the control program. Direct system output writers in vs1
are functionally equivalent to those in MFT.

Virtual storage within a problem program partition consists of:

• Fixed protected queue area (PQA) of 2K minimum with a protect key of
zero

• Pageable protected queue area (PQA) of 2K minimum with a protect key
of zero

• Problem program area consisting of all virtual storage in the
partition not allocated to fixed or pageable PQA. This area has a
nonzero protect key.

The fixed PQA contains partition-related control information that is
not paged for system integrity and reliability reasons. For example,
the fixed PQA contains the page tables required for the partition and
request blocks (PRB's, IRB'S, etc.). When a partition is defined,
either during IPL or when the operator enters the DEFINE command, at
least one virtual storage page is allocated for PQA from the highest
addressed virtual storage in the partition, and a page frame is assigned
to it and fixed. The number of virtual storage pages required for fixed
PQA at partition initialization time depends on the size of the virtual
partition and whether or not PCI fetch is included in the control

10 as/Virtual Storage 1 Features Supplement

program. (The amount of fixed PQA required at partition initialization
in bytes is 500, plus 1600 if PCI fetch is present, plus one byte for
each 1024K bytes of virtual storage in the partition rounded to the next
multiple of 2048.) If additional fixed PQA space is needed during
problem program execution, it is taken, a virtual storage page at a
time, from the highest available problem program virtual storage in the
partition.

The pageable PQA contains control blocks that can be paged with
minimal effect on performance. No pageable PQA is allocated when the
partition is initialized. When a job step is initiate~ a 2K page of
pageable PQA is allocated from the highest addressed available virtual
storage in the partition. pageable PQA can be expanded during problem
program execution. Pages are allocated from highest available problem
program virtual storage in the partition.

At partition initialization time, the problem program area contains
all virtual storage in the partition below fixed PQA. When a job step
is initiated, virtual storage is allocated to it beginning with the
lowest addressed virtual storage in the partition. Virtual storage
above this is then available for a~location to the fixed and pageable
PQA's and to the problem program as needed. The maximum amount of
virtual storage available to a pageable problem program is, therefore,
at least 4K less than the size of the partition in which it operates.

Problem program partition organization in VSl offers integrity
advantages over MFT partition organization in that all control blocks
contained within a VS1 virtual partition are protected from modification
by the problem program.

system task partitions are designated with the identification STP
instead of with job classes. They have the same organization as problem
program partitions and operate in problem program statei however i system
task partitions have protect key zero assigned. Problem programs cannot
be executed in a system task partition. The Generalized Trace Facility,
the MOUNT command, START RDR/WTR. STOP RDR/WTR, and conversational
remote job entry readers are system tasks that are authorized to operate
in a system task partition.

Authorized system tasks can also be executed in problem program
partitions; hence, a system task partition does not have to be defined.
A system task partition can be defined for the purpose of executing
operator commands, such as MOUNT, START RDRfWTR, and STOP RDR/WTR r that
must operate in a partition. If a system task partition is available
when one of these commands is- issued, the command can be processed
immediately without waiting for a problem program partition to become
available.

Unlike main storage areas in MFT, certain virtual storage areas in
vsl need not be contiguous with each other. There can be undefined
virtual storage between PO, which must be a multiple of 64K located on a
64K boundary, and the pageable supervisor area, which is allocated from
the top of virtual storage down and need not be a multiple of 64K in
size. There cannot be any undefined virtual storage between virtual
partitions but there can be between the nonpageable area (V=R line) and
the pageable area (lowest priority pageable partition starting address).
This condition can occur when the real storage size of the system is
less than 768K and not a multiple of 64K in size (144K, 240K, for
example). In a Model 145, available real storage may not be a multiple
of 64K in size because more than 32K is required for control storage.

OS/Virtual storage 1 Features Supplement 11

REAL STORAGE ORGANIZATION

Real storage is also divided into a nonpageable and a pageable area.
The nonpageable area in lowest addressed real storage is allocated to
the nonpageable area of virtual storage on a V=R basis. It contains the
nonpaged (fixed) resident control program (nucleus, RMS, and defined
SQA). with a few exceptions, resident control program routines operate
with translation mode specified even though they are not paged. This
approach is taken because the resident control program accesses virtual
storage addresses at various times during its execution and address
errors would occur at these times if translation was not operative.

Page frames in the nonpageable area above the resident control
program up to the V=R line are allocated to both pageable and
nonpageable virtual storage pages. Page frames are allocated to SQA and
nonpageable job steps only from available real storage below the address
of the V=R line. However, available real storage below the V=R line can
also be allocated to pageable supervisor routines, pageable partitions,
and PQA, when necessary. Page frames above the V=R line are allocated
to pageable supervisor routines, pageable partitions, and PQA but cannot
be allocated to SQA or nonpageable job steps. (Real storage allocation
is discussed in more detail in Section 90:35.) Figure 90.10.2 shows the
organization of real storage.

Real Storage

Nonpageable Area Pageable Area
~ ______________ ~A~ __ ~ __________ v-________________ JA~ ______________ __

T

RMS
Nucleus SQA 6K

4K 54K
or

minimum SK min.

~~ ~
Allocation to:

• SQA expansion Allocated to:
• Nonpageable • Pageable partitions

job steps • Pageable control program routines
• Pages of pageable • PQA (fixed and paged)

partitions Not allocated to:
• Pageable control • Nonpageable job steps

program routines • SQA
• PQA (fixed and

pageable)

!S
address of V=R line~

5§

Layout shown assumes V=R line is not
at the end of real storage

Figure 90.10.2. Real storage organization in OS/VS1

EXTERNAL PAGE STORAGE ORGANIZATION

Optional
fixed
modules

• BLDL
Table

• SVC's

• ERP's

• Reentrant
routines

External page storage is used to contain the contents of the pageable
virtual storage area, which consists of all virtual storage between the
V=R line and the end of defined virtual storage. Only fixed PQA pages
and any fixed control program routines, such as SVC's, etc., allocated
within the pageable area are not written on external page storage. The
direct access devices supported as paging devices are the 2314/2319,
3330-series, and 2305 Model 2.

The direct access storage allocated as external page storage is
called the page file (SYS1.PAGE data sets). The page file can consist
of up to eight page data sets, each of which must be a single extent
only and totally contained on one direct access device. A maximum of

12 OS/Virtual Storage 1 Features Supplement

two direct access device types is supported for the page file. While
direct access devices that contain a page data set need not be dedicated
to paging, this approach is recommended for performance reasons. Page
file disk volumes must be permanently resident. The lOS priority
queuing option should be specified for direct access devices that
contain page data sets to ensure that paging I/O requests receive the
highest priority on their associated channels.

A track in a VS1 page data set contains a number of 2K record areas
called slots. Regardless of the direct access device type used, page
data set tracks are formatted with a dummy record written after each 2K
slot. The dummy records are added to increase paging performance by
allowing time for electronic head switching while accessing multiple
pages contained within the same cylinder using a command-chained channel
program. The track overflow feature is not used because, for a 2K
record size, it yields no significant space benefit on the supported
devices. The number of 2K slots available per device is shown below.

2314/2319 3330 2305-2

Slots per track 3 5 6
Slots per cylinder 60 95 -
Slots per pack 12,000* 38,285* 4,608

* Maximum number of 2K slots required is 8,192 (for 16 million bytes
of virtual storage) less 384 or the number of page frames in
real storage, whichever is less.

The page file must be able to contain a number of 2K slots equal to
or greater than the number of 2K virtual storage pages that exist
between the V=R line and the end of virtual storage as follows:

(defined virtual (real storage size or 768K,
Number of 2K = ~s~t~o~r~a_g~e __ s~i~z~e_) ______ =-__ w~h~i~c~h~e_v __ e~r~i_s~l_e~s~s~)
slots required 2K

External page storage is statically mapped on a one-to-one basis with
virtual storage above the V=R line. That is, the contents of any given
virtual storage page are always placed in the same slot and the first
virtual storage page is associated with the first slot in external page
storage, etc. (See Figure 90.10.3.)

SYSTEM INITIALIZATION

At the completion of the VS1 IPL procedure, which is much like that
required for MFT, Ee and translation modes are operative. During IPL,
virtual, real, and external page storage are initialized as follows.

Virtual Storage

At IPL time, a virtual storage of the size specified at system
generation is initialized, unless the size is smaller than 512K plus
real storage size or the operator overrides the system generation
specification. The operator can increase or decrease the amount
specified at system generation but cannot specify less than the size of
real storage plus 512K. If a virtual storage size is not specified at
system generation, the default is 1024K or real storage size plus 512K,
whichever is larger. Virtual storage size must be a multiple of 64K.

The initialization of virtual storage consists of building the
control blocks and tables required to define the various areas of
virtual storage that are shown in Figure 90.10.1. Virtual storage is
mapped according to system generation parameters and any additional

OS/Virtual Storage 1 Features SUpplement 13

definitions specified in SYS1.PARMLIB or overrides indicated by the
operator. Control program modules that are to be made resident in
virtual storage and paged are allocated virtual storage. fetched from
load module libraries. and paged out to external page storage as a
result of normal paging activity. There is no routine in Vs1 that
forces the page out of pageable load modules that are fetched during IPL
or thereafter. If real storage becomes full during the loading of
modules. pages are written out as per the page replacement algorithm.

External Page Storage

2314/2319
~330
2305-2

Available
direct access
storage

\
\

\
\

\
\
\

\
\

\
\
\

\
\
\

\
\
\
\

\
\

\
\

Fixed POA
not paged

Paging
activity

\ V=R line
~\- - - - - - --

\
\

\
\

\
\
\
\

\
\

\
\

\
\

\
\
\

\
\

\

\
\

\
\

POA

SOA

\
\

\
\
\

\
\
\

\
\
\

\
\

\
\

Real Storage

POA

POA

SOA

\
\

\

V irtual storage
is mapped 1: 1
on external
page storage

\
\ V=R line

POA

Resident Control Program > Fixed

,"--------,IJ

Virtual Storage

1
f-- ~ Control

Programs and
f-- ... Routines

I I

Partition 0 POA

Partition 1 POA

Partition 2 POA

Partition n POA

-

f-- I-- Nonpaged - ~
job steps

f-- ~andSOA - I---

>

Resident Control Program

L..------IIJ

Not mapped
on external
page storage
or paged

Figure 90.10.3. External page storage. real storage. and virtual storage
relationship in OS/VS1

14 OS/Virtual Storage 1 Features Supplement

During IPL, the segment table is built at the end of the nucleus.
The size of the segment table is dependent on the size of the virtual
storage established for this IPL. Virtual storage for page tables is
also allocated during IPL. The page tables for all virtual storage
areas except the problem program area (pageable partitions) are
allocated in SQA. Page tables for the pageable partitions defined are
allocated within the partitions themselves. One or more virtual storage
pages of fixed PQA are allocated in the high end of each initialized
partition with space reserved in them for the page tables required to
address the entire partition.

Real Storage

At the completion of IPL, real storage contains:

• The resident control program (in the nonpageable area in lowest
addressed real storage) and any resident supervisor routines that
are fixed (in the high end of real storage)

• 4K or more of SQA (adjacent to the resident control program)

• At least one page frame of fixed PQA for each partition defined and
initialized

• A minimum of three fixed pages for JES

The minimum VS1 control program (one partition and no fixed
supervisor routines) requires 12K of fixed real storage (S4K for the
nucleus, 6K for RMS, 4K of SQA, 2K of fixed PQA, and 6K of fixed real
storage for JES).

In VSi, a certain amount of real storage is reserved to be available
for paging, for SQA or PQA expansion, and for short-term fixing. A
minimum of eight page frames must be available for paging. TWO page
frames must be available to extend SQA or PQA, if necessary, and enough
page frames must be available to satisfy the largest expected I/O
request for short-term page fixing. In VS1, 36K of real storage is
always reserved to remain available for these operations, regardless of
the amount of real storage in the system.

Control blocks and tables are initialized to reflect the size and
organization of the virtual storage defined, as well as the real storage
present and allocated. The segment table in the nucleus reflects the
current size of virtual storage, and the segment entries have their
invalid bit off to indicate that page tables have been built and
initialized. The page table entries for the virtual storage that has
real storage allocated (resident control program, fixed PQA, etc.) have
their invalid bit off, while the entries for problem program virtual
storage have their invalid bit on.

A page table entry for a problem program partition is initialized as
shown in Figure 90.10.4. Bit 0 is on to indicate that bits 3 to 7
contain the nonzero protect key of the partition. The invalid bit is on
and the user bit is off. When off, the user bit indicates that a page­
in is not required after a page frame has been allocated to the virtual
storage page. The user bit is turned on the first time real storage is
allocated to this virtual storage page after job step initialization.
At job step termination, the user bit is turned off.

The first time any problem program virtual storage page is
referenced, a page frame is allocated without a page-in and cleared to
zeros (for security protection). The protect key value from the page
table entry is inserted in the protect key of the page frame allocated.
Bit 0 and the invalid bit are turned off and the user bit is turned on

OS/Virtual storage 1 Features SUpplement 15

in the associated page table entry. The high-order bits of the address
of the allocated page frame are placed in the page table entry.

Bits 0 3 8 13 14 15

1
Partition
protect 1
key

o When 1, bits 3 to 7 contain partition protect key
3-7 When bit 0 is a 1, these bits contain the partition

protect key
13 I nvalid bit on to indicate real storage page not

allocated
15 User bit off to indicate a page-in is not required

to allocate a page frame

0 0

Figure 90.10.4. Page table entry contents for an initialized, inactive
problem program partition

External Page Storage

The location, in terms of unit address(es) or volume serial
number(s), and the size of the page data sets in the page file must be
specified at system generation. The operator can override this
specification at IPL. The first time a given volume is used for a page
data set, space is allocated and slots are formatted. Thereafter, the
page data set can be used without reformatting as long as the same or a
lesser amount of space is allocated. Formatting can be requested by the
operator.

If a specified page data set volume is found to be unmounted during
IPL, it is bypassed with a message to the operator indicating the volume
was not mounted. The operator is notified if the page file space
allocated is not large enough to contain the virtual storage space above
the current V=R line.

At the completion of IPL, external page storage may contain some of
the pageable control program load modules that are resident in virtual
storage (if any were paged out during IPL).

90: 15 ~ COMPONENTS

The major control and problem program components of os/vs1 are shown
in Table 90.15.1. Except for the integrated emulator programs and TCAM,
components identified as SCP are distributed as part of VS1. Integrated
emulators and TeAM are distributed separately. Type I programs and
program products are not distributed as part of VS1 and must be obtained
individually.

The division of control program routines in VS1 and MFT is similar.
Both have job, task, data, and recovery management functions. However,
OS/VSl also has a page management function that is responsible for
managing both real and external page storage. Virtual storage is
allocated and maintained by the storage supervisor of task management
that manages main storage in an MFT environment.

16 OS/virtual Storage 1 Features Supplement

Table 90.15.1 OS/VS1 control and processing program components

OS/vS1

CONTROL PROGRAM COMPONENTS (SCP)

Job Management

• Master scheduler and
communications task

• Job Entry Subsystem (JES)
Job entry peripheral services

(JES readers, JES writers)
Job entry central services

• Job queue manager
• Job scheduler

Initiator
Interpreter
Allocation
Terminator
Direct SYSOUT writers

• System Management Facilities (SMF)
• Remote Entry Services (RES)

Task Management

• Interruption supervisor
• Task supervisor
• Virtual storage supervisor
• Contents supervisor
• Timer supervisor
• Overlay supervisor

Page Management

• Page exception handler
• page supervisor

Real storage management
External page storage management

• Conversational Remote Job Entry (CRJE)

Data Management

• Input/output supervisor
• Access methods

QSAM, BSAM, QISAM, BISAM, VSAM,
BDAM, BPAM, BTAM, TCAM, GAM

• Catalog management
= Direct Access Device

space Management (DADSM)

Recovery Management

• Machine Check Handler (MCH)
• Channel Check Handler (CCH)
• Alternate Path Retry (APR)
• Dynamic Device Reconfiguration (DDR)
• Online Test Executive Program

(OLTEP)*
• Problem determination facilities

PROBLEM PROGRAMS (SCP AND PP)

Language Translators

• system Assembler (SCP)
• Assembler H (PP)
• Full ANS COBOL V3, V4, and

Libraries (PP)
• PL/I Optimizing Compiler (Pp)
• PL/I Checkout Compiler (PP)
• PL/I Resident and Transient

Libraries (PP)
• FORTRAN IV G (PP)
• FORTRAN IV H Extended (PP)
• FORTRAN IV Libraries - Models

1 and 2 (PP)
• Code and Go FORTRAN (PP)
• ITF PL/I - Release 2 (PP)*
• ITF BASIC - Release 2 (pP)*
• System/7 FORTRAN IV System/370

Host Compiler and Library

General

• Application-oriented program
products (some operate in paged
mode and some in nonpaged mode)

*Must operate in nonpaged mode

OS/Virtual storage 1 Features Supplement

Service Programs

• Linkage Editor (SCP)
• Loader (SCP)
• Utilities

System and data set utilities (SCP)
Data set utilities with ASCII (PP)

• Basic Unformatted Read System (PP)
• Sort/Merge 5734-SM1 (PP)

Integrated Emulators

• DOS Emulator (SCP)
• 1401/1440/1460 (SCP)
• 1410/7010 (SCP)
• 7070/7074 (SCP)
• 7080 (SCP)
• 709/7090/7094/709411 (SCP)

17

Table 90.15.1 (continued)

PROBLEM PROGRAMS - TYPE I AND USER-WRITTEN

Language Translators

• COBOL to ANS COBOL LCP (360-CV-713)
• COBOL F (360S-CB-524)
• COBOL F Library (360-LM-52S)
• PL/I Syntax Checker (360S-PL-552)
• Full ANS COBOL Version 2

(360S-CB-545) and Library
(360S-LM-546)

• FORTRAN G (360S-FO-520)
• FORTRAN H, version 2 (360S-FO-500)
• FORTRAN Library (E,G,H)

(360s-LM- 501)
• FORTRAN Syntax Checker

(360S-FO-550)
• PL/I F (360S-NL-511)
• PL/I Subroutine Library

(360S-LM-512)
• PL/I syntax Checker

(360S-PL-552)

Service Programs

• Sort/Merge (360S-SM-023)

General

• User-written programs
compiled using the Type I
language translators listed

• User-written programs compiled
using program product language
translators

The new features of VS1 and the most significant differences between
VS1 and MFT components are presented in the discussions that follow.
VS1 uses the same system data sets and libraries as are used in MFT.
VS1 also uses one new required library, SYS1.DSSVM, which is required by
DSS and discussed in Section 90:40, and new required data sets-­
SYS1.PAGE (for the page file), SYS1.SYSPOOL (for JES spool data sets),
and SWADS (a scheduler work area data set for each initiator). If RES
is used, the new SYS1.UADS and SYS1.BRODCAST data sets are required
also. All the direct access devices supported by VS1 for disk data sets
are also supported as system residence devices.

VS1 supports all the primary operator console devices required for
Models 135 to 168. The DIDOeS option with 3210 support must be inCluded
in a VS1 control program to support 3210 (display) mode operations on
the Model 158 display console. DIDOCS is also required to support the
display console contained in the 3066 standalone console unit for the
Models 168 and 165 II. The 3213 printer is supported only as a hard­
copy output device for the Model 158 display console and not for input
operations.

90: 20 JOB MANAGEMENT

VSl and MFT job management functions are logically the same, and
externally the VS1 job management interface with the operator is upward
compatible with that of MFT. The internal organization of job
management in vs1 and MFT differs considerably, however. VS1 job
management has been modified to operate in a paging environment, and it
is designed to offer reduced real storage requirements, improvements in
performance, and new Tunctions. The organization and new features of
VS1 job management are designed to provide the following:

• More efficient handling of peripheral I/O operations (JES)

• Enhanced support of remote job entry (RES)

• More system configurability without regeneration

• Enhanced operator command processing

18 OS/Virtual storage 1 Features Supplement

• Additional operator control (WRITER command)

• Improved job scheduling via elimination of small partition
scheduling and significant reductions in contention for the job
queue (implementation of SWAOS)

MASTER SCHEDULER AND COMMUNICATIONS TASK

As in MFT, the master scheduler and the communications task in VSl
handle initialization functions at IPL, and operator/system
communication. These routines operate in the pageable supervisor area.
Most commands are processed in the 2K SVC transient area, which is
pageable. Certain of these command processing routines are repackaged
in VSl to execute in 2K multiples (instead of lK) to increase their
performance. SOme commands must operate in a partition (as in MFT) and
a system task partition can be defined for this purpose, as indicated
previously.

All MFT operator commands and parameters and their formats are
accepted in VSl except those associated with MFT features that are not
supported in VS1. Only the SET command has an additional parameter,
SPOOL, which can be used to change the spool configuration specified at
system generation and to cause formatting of spool volumes. In VS1, the
SET command is issued after IPL to change the time or date, but not
during IPL.

Modifications or extensions to the functions performed by the
following commands have been made:

• DEFINE - This command handles virtual storage partition allocation
as defined for VS1.

• MODIFY - Up to 15 job classes are accepted.

• DISPLAY - The class, priority, queue location, and position on the
queue for an active job are displayed (not given in MFT for active
jobs).

• MODE - ~ simplified format is used that is applicable to all
System/3?O models. The operator can no longer establish threshold
values for Eec errors and instruction retry errors.

• START - This command provides the capability of specifying a reader
or a writer procedure without a partition indicated. The procedure
is initiated using the next available partition.

VSl supports new commands associated with RES (discussed under
"Remote Entry services" later in this subsection). One other new
operator command, WRITER, is supported that enables the operator to
communicate requests to a JES writer. Like DEFINE and HALT, a WRITER
command can be entered only via the operator console (not via an input
stream). The WRITER command gives the operator significantly more
control over executing writers than is provided in MFT. Using the
WRITER command, the operator can:

• Request up to 255 additional copies of output (printed, punched, or
written to tape), on a data set or a job basis

• Stop the writing (to printer, punch, or tape) of a data set
immediately and begin writing it again from the beginning

• stop the writing (to printer, punch, or tape) of a data set and have
the writer continue with the next data set

OS/Virtual Storage 1 Features Supplement 19

• Request that printing continue up to 255 pages ahead of the current
logical page (forward space) or up to 100 pages before the current
logical page (backspace)

• Terminate the printing of a data set and reenqueue it on the class
queue from which it was dequeued or on a different SYSOUT queue.
Printing can be resumed at the beginning of the data set or at the
point at which it was terminated.

• Alter printer line spacing (single, double, triple) for the current
data set

JOB ENTRY SUBSYSTEM

The job entry subsystem (JES) is a significant new feature of VS1.
It replaces MFT readers and writers and HASP II. JES provides
centralized management of system input and system output data. It
handles local system input and system output streams, allocates and
manages intermediate direct access storage for this data, and interfaces
with RES to handle remote input and output streams. JES is designed to
maximize utilization of the unit record and direct access devices
involved in peripheral I/O processing. It also supports a full
checkpoint/restart capability.

In VS1, JES places system input and output on direct access volumes
called the SYS1.SYSPOOL data set. Logically, the data stored in
SYS1.SYSPOOL is placed in spool data sets. However, as discussed later,
a spool data set within the SYS1.SYSPOOL data set does not have the same
characteristics as an OS data set, and it is processed by JES routines
instead of OS access methods. Reading input streams and writing the
data onto spool volumes, and reading system output data from spool
volumes and writing the data to system output devices is called spooling
in VS1.

Spooling operations in JES are centralized such that all system input
reading, system output writing, and spool volume processing are
controlled by one set of modular routines. Centralization eliminates
duplication of functions within the system and improves the performance
of spooling operations. JES reader code and writer code are reentrant,
which reduces the amount of storage (both virtual and real) required to
service multiple input and output streams. Because all JES routines are
totally pageable, real storage is allocated only to active JES tasks and
without operator intervention. (In MFT, for example, main storage
allocated to an inactive reader or writer partition cannot be used by
other active partitions unless the operator intervenes to redefine
partition allocation or to change the type of the reader/writer
partition.) The entire JES area is pageable, except for two or more
pages that contain tables required by JES. TWo pages are fixed in the
JES area when one reader and one writer are active. Additional pages
are dynamically fixed as required when more readers and writers are
started. JES also requires one page of fixed PQA.

Centralization of control also enables JES spooling operations to be
performed more efficiently. Buffer storage for all readers and writers
is contained in one pool, buffer storage for all spool volumes is
contained in one pool, and direct access spool space (SYS1.SYSPOOL data
set) for all system input and output data is shared. Buffer storage and
spool space are managed (allocated, opened, closed, and deallocated) by
JES routines that are tailored to provide efficient spooling operations
in a paging environment. Buffer storage is allocated for JES operations
such that the number of page faults incurred is minimized, and direct
access storage is allocated such that data transfer time for JES
operations is minimized.

20 OS/virtual Storage 1 Features Supplement

JES readers do not interpret job control statements as do MFT reader
interpreters. The interpreter in VS1 is a subroutine of the initiator.
This organization, together with support of command chaining, can allow
a card reader to operate near its rated hardware speed, since reading is
not delayed by interpretation. Therefore, jobs can be placed in the job
queue more quickly.

Any number of readers and writers are supported by JES, subject only
to the availability of system resources. MFT supports three readers and
36 writers maximum. The maximum number of readers and the maximum
number of writers that can be started for a given VS1 control program
(both JES and RES requirements) can be specified at system generation.
The size and number of spool buffers and the number of spool volumes can
also be indicated at system generation. Defaults are assumed for
parameters not specified. At IPL. the system generation JES parameters
are used unless overridden by the new JESPARMS entry in SYS1.PARMLIB.
Thus, the number of readers and writers supported can be increased or
decreased without a system generation. During IPL, enough virtual
storage is allocated to the JES area to support the maximum JES
configuration indicated during IPL. Virtual storage from this JES area
is allocated as readers and writers are started.

The virtual storage requirement for the minimum JES configuration
(one reader, one writer, one spool volume, and minimum buffering>
handling one partition is 96K.

In summary, JES offers the following significant overall advantages
when compared with MFT readers and writers:

• More efficiently managed peripheral I/O operations through
centralization of control and use of resource allocation algorithms
that are specifically designed to improve spool performance

• Reduced virtual and real storage requirements for spooling
operations involving multiple readers and writers

• More efficient use of real storage for peripheral operations since
real storage is allocated to a JES component only when it is active

• Ability to handle more readers and writers

• Ability to increase the number of readers and/or writers handled by
a VSl control program without generating a new system

• Continuously available reader for unit record SYSIN devices

• Additional operator control over writers

JES functions are performed by job entry peripheral services (JEPS)
and job entry central services (JECS> routines. The components of JEPS
and JECS are:

JECS

• Monitor task • spool management
• JES readers • Buffer management
• JES writers • DASD work area management

The components, functions. and data flow of JES are shown in Figure
90.20.1.

OS/virtual Storage 1 Features Supplement 21

Problem
program

SYSIN Devices

buffers

Buffer
Management

Management
block/deblock

Free Free
buffer spool space

Write Read
request request

Buffer
pool

DASD

Work Area
Manager

Writes Reads
Spool data sets

~:p~ {I-------II .. ____ .-

Spoo·' configuration
up to ten volumes

(2314/2319,3330, 2305-2)

SYSOUT Devices

GET
logical
record

DASD
Work Area
Allocation

Figure 90.20.1. Components, functions, and data flow of JES

22 OS/Virtual Storage 1 Features Supplement

JECS

J

JEPS Monitor Task

The monitor task is responsible for initializing JES readers and
writers. When a START or a STOP command for a reader or a writer
procedure is entered, an initiator or terminator is brought into the
first partition available in order to invoke the monitor. The monitor
task is also automatically invoked to terminate a reader task when end­
of-file occurs on a SYSIN device other than a card reader. The monitor
task obtains or releases buffers for the reader/writer from the
reader/writer virtual storage area allocated in the JES area during IPL,
and attaches or detaches the reader/writer task. A reader/writer is
started as long as this request does not cause the maximum number of
readers/writers specified at IPL to be exceeded. OS MFT reader and
writer procedures are not compatible with those of JES.

JES Readers

An input stream can be contained on any card reader or tape unit
supported by VS1 or on disk (2314/2319 and 3330-series). Card input
streams are read by a special JES access method (JAM). Column binary
reading is not supported. Tape and disk input streams, which can be
blocked, are read using a special interface to QSAM. Command-chained
reads are initiated for a card SYSIN device if the bl~ck size specified
is a multiple of the logical record length or if block size is not
specified in the reader procedure. For example, if a block size of 400
is specified, a channel progr~m designed to read five cards is initiated
for each I/O operation to the card SYSIN device.

SYSIN reading starts a~ the beginning of the input stream or at the
job name indicated in the START command. Reading continues until a STOP
RDR command is issued by the operator or, for tape and disk SYSIN only,
until end-of-file occurs. A reader task that is handling a tape or disk
SYSIN device is terminated on an end-of-file condition. When end-of­
file occurs on a card reader, the JES reader enters the wait state (and
the real storage assigned to it tends to become available for allocation
to other tasks>. When the card reader is made ready again, reading
automatically continues. This continuously available reader facility is
not provided in MFT for card SYSIN devices.

Input stream data can consist of job control statements (including
in-stream procedures and requests to execute procedures), input data
sets (multiple per job step>, and operator commands. A JES reader
inspects the JOB statement, and defaults for job class and priority are
supplied, if necessary. A unique job number is appended to the job name
specified to eliminate the possibility of duplicate job names. This job
number is used internally only. Job control statements, commands
contained within jobs, input data, and any requested procedures from
user procedure libraries are passed to the spool management routine of
JECS to be written in spool data sets. Procedures that are contained in
SYS1.PROCLIB are not written in spool data sets. Commands not contained
within a job are processed when encountered.

When a job has been completely read, the JES reader builds a disk
entry record (DER) that describes the job and passes it to the job queue
manager, which places the DER in a job class queue or in the hold queue,
as indicated in the JOB statement. The total number of statements read
and the real time taken to read the job is made available to SMF, if SMF
is included in the control program.

JES Writers

A JES writer writes SYSOUT spool data sets created by job steps and
system message spool data sets that contain job scheduler messages and

OS/Virtual Storage 1 Features Supplement 23

job control statements. The SYSOUT devices supported are printers,
punches, and tape units supported by VS1. A special JES access method
is used to support printers and punches. Column binary punChing is not
supported. An interface to QSAM is used to handle a tape SYSOUT device.
As with card readers, command chaining is used for print and punch
operations when the block size specified is a multiple of the logical
record length or if block size is not specified in the writer procedure
to enable these devices to operate near rated speeds.

A JES writer is initiated using a START command and terminated using
a STOP command. Each JES writer can handle up to eight SYSOUT classes
and more than one writer can be assigned to the same SYSOUT class.
Thirty-six output classes (A-Z, 0-9) are supported, as in MFT. The
writing of SYSOUT data for a job does not begin until the job itself is
terminated, just as in MFT. A JES writer handles all the SYSOUT spool
data sets of the same class that are present for a given job before
attempting to process SYSOUT spool data sets of the same class that
belong to another job. All the job control statements and system
messages for a job are printed before all the SYSOUT spool data sets for
the. job. (MFT writers intersperse the printing of job control
statements and system messages with the printing of SYSOUT data sets.)
After al1 the SYSOUT data for a job has been written, the job is purged
from the system, accounting data is supplied to SMF, if appropriate, and
the spool space allocated to its SYSOUT spool data sets is released.

Multiple copies of a given SYSOUT spool data set can be requested via
the new SYSOUT DD statement parameter COPIES, in addition to via the
WRITER command.

User-written output writers that use BSAM/QSAM and job separator
routines that operate with MFT do not require modification for operation
under VSl.

Problem Program Access to SYSIN and SYSOUT Data

In VSl, problem programs access SYSIN and SYSOUT spool data sets via
QSAM and BSAM, as in MFT. However, in VS1, these sequential access
methods interface with a device independent JES translator which
interfaces with JECS to access SYSIN and SYSOUT spool data sets on spool
volumes. The JES translator module is automatically invoked when a
SYSIN/SYSOUT data set is specified by a job step. The translator module
is entered each time the problem program requests the reading of a SYSIN
record or the writing of a SYSOOT record. The JES translator reformats
the request as necessary and passes it to JECS. When JECS has processed
the request, this fact is indicated to the JES translator which posts
the appropriate control blocks and, in the case of a SYSIN request,
makes the record available to the problem program.

The interface to the JES translator is transparent to the problem
program. Thus, the MFT approach of using QSAM or BSAM to access SYSIN
and SYSOUT spool data sets is valid in VS1, and modifications to the
SYSIN/SYSOUT data set processing contained in existing MFT programs are
not required in order to execute these programs under VS1. SYSIN and
SYSOUT spool data sets cannot be accessed via the EXCP macro in VS1
because there is no interface to the JES translator from this macro.

JECS Spool Management

Spool management is the central facility that controls all access to
spool data sets, as was shown in Figure 90.20.1. It receives and
processes service requests from JES readers, JES writers, job scheduler
components, and executing problem programs. Spool management processing

24 OS/Virtual storage 1 Features Supplement

consists of blocking and deblocking system input and output records and
requesting services from other JECS components.

Spool management interfaces with JECS buffer management to obtain the
I/O buffers required to read and write spool data sets. Spool
management interfaces with DASD work area management to obtain and to
free direct access space for spool data sets and to request I/O
operations on spool data sets.

The OUTLIM facility, available to MFT users only via SMF, is a
standard feature of JES. This facility allows the user to indicate the
maximum number of logical records that are to be placed in a SYSOUT
spool data set. spool management also ensures that the OUTLIM quantity
for SYSOUT spool data sets is not exceeded and maintains control blocks
that indicate all the system input and output data sets associated with
each job.

JECS Buffer Management

The pool of I/O buffers available to be used for reading and writing
all spool data sets is maintained by buffer management, which services
requests from spool management only. The buffer pool is contained in
the pageable JES area of virtual storage. The pool is allocated during
IPL and its size cannot be increased without a re-IPL. The size and
number of buffers can be specified at system generation and these values
can be overriden by changing the JESPARMS member in SYS1.PARMLIB.

The number of buffers required for optimum spool performance is a
function of the number of JES readers, JES writers, partitions, and
opened spool data sets that can be active concurrently. If too few
buffers are provided, loss of spool performance can occur. Hence, it is
better to overestimate than to underestimate buffer requirements. The
allocation of more spool buffers than are actually required does not
affect system performance since real storage is allocated to spool
buffers only if they are used. A maximum of 999 buffers can be
specified. (See OS/VSl Storage Estimates, GC24-5094, for estimating
spool buffer needs.)

The formula given for estimating buffer requirements provides one
buffer for each spool data set possible. The buffer is allocated when
the spool data set is opened and, normally, is released when the spool
data set is closed. When allocating a buffer, buffer management always
looks first for an available buffer that is contained in a virtual
storage page that already has buffers allocated. This is done to ensure
that the minimal number of virtual storage pages are used for allocated
spool buffers. This approach minimizes both page faults and the amount
of real storage allocated for buffers at any given time during JES
activity.

If the buffer pool is empty, buffer management attempts to obtain a
buffer that is assigned to another spool data set. However, if all
assigned spool buffers are currently in use, the buffer request cannot
be satisfied until an assigned buffer becomes available or until a
buffer is freed and returned to the buffer pool. This buffer preempting
for the purpose of buffer sharing can occur only if the total spool
configuration is active and the number of spool buffers allocated is
less than the number calculated using the spool buffer requirements
formula.

DASD Work Area Management

The allocation and deal location of direct access space to spool data
sets, and the reading and writing of spool data sets are handled by the

os/Virtual Storage 1 Features Supplement 25

DASD work area manager and the DASD work area allocation routine,
respectively. Spool volumes contain JCL, SYSIN, PROC, SYSOUT, and
system message spool data sets, write-to-programmer messages, and the
two system log data sets.

The spool volume configuration (DASD work area) can consist of up to
ten permanently mounted direct access volumes. Any mixture of the
following direct access device types can be included in the spool
configuration (SYS1.SYSPOOL data set): 2314/2319, 3330-series, 2305-2.
The volume serial numbers of the volumes in the spool configuration are
indicated at system generation. Spool volumes are mounted prior to IPL.
If the specified volumes are not mounted, they are deleted from the
spool configuration during IPL. The new SPOOL parameter of the SET
command permits the operator to alter -(add to, delete from, change) the
spool configuration at IPL, after which a re-IPL is required to alter
the spool volume configuration. spool devices need not be dedicated to
spooling; however, arm movement can be minimized and increased
performance obtained when spool devices are dedicated.

spool data sets are sequentially organized and contain variable
length blocked spanned records. For card input, blanks after the last
character punched are deleted from the resulting logical record. For
printer and punch output, blanks after the last character to be printed
in a line or punched in a card are deleted from the logical record.
This truncation eliminates using spool space to store insignificant
blank characters.

Spool volumes must be pre formatted with physical records the size of
the spool buffers. Preformatting is done during an initial IPL when the
operator requests spool volume formatting, or because it is determined
that spool volumes require formatting. Reformatting is not required
thereafter unless spool buffer size is changed. The buffer size chosen
must be a minimum of 436 bytes and cannot be larger than the full track
capacity of the smallest capacity track in the spool device
configuration. Therefore, if a 2314/2319 is part of the spool
configuration, buffer size cannot exceed 7294 bytes regardless of the
other direct access device types in the spool configuration. The track
overflow feature is not supported for spool data sets, but rotational
position sensing is used when it is present for a spool device.

Direct access space on spool volumes is allocated to spool data sets
in terms of a logical cylinder instead of a physical cylinder. A
logical cylinder consists of a number of tracks, all of which need not
be contained in the same physical cylinder. The number of tracks in a
logical cylinder is fixed by device type in VSl and is shown below. The
logical cylinder sizes assigned in VSl result in a logical cylinder
having a comparable amount of space regardless of the device type. The
number of tracks allocated to spool space on a given direct access
volume should be a multiple of the number of tracks per logical cylinder
to avoid wasting tracks.

Device

2314/2319
3330-series
2305-2

Number of Physical Tracks
in a Logical Cylinder

5
3
3

Logical Cylinder
Capacity in Bytes

36,460
39,090
43,980

The DASD work area allocation routine maintains a logical cylinder
bit map of the spool space defined. This map is contained in virtual
storage. It indicates which logical cylinders are allocated and which
are available. When a permanent I/O error occurs on any track in a
logical cylinder, the logical cylinder is marked unavailable for
allocation.

26 OS/Virtual Storage 1 Features Supplement

The DASD work area allocation routine allocates spool space such that
the spool I/O load is balanced across the available spool volumes as
much as possible. During processing, a count of the number of accesses
and the total spool access time are maintained for each spool volume.
When a spool space request is received. average access time is
calculated for those spool volumes that have available space. The spool
device chosen to satisfy a request is the one with available space and
the smallest average access time.

One logical cylinder at a time is allocated to, a given spool data
set, and each time this space becomes filled, one additional logical
cylinder is allocated. Because of the I/O load balancing approach used,
the logical cylinders assigned to any given spool data set can be
contained on more than one spool volume. The available logical cylinder
allocated on the spool device selected is the one that is closest (on
either side> to the current location of the access arm on the device.
This is done to group allocated logical cylinders together so that
access arm movement is minimized. Therefore, the logical cylinders
allocated to a given spool data set on a given spool volume are not
necessarily contiguous.

At system generation. a threshold value percentage for spool capacity
can be specified or the default percentage of 80 can be used. The
operator is notified when the threshold percentage of spool capacity
becomes allocated during system operation. At this time, the operator
should hold the input queue. ensure that writers are started to those
SYSOUT classes that have data, and start another writer, if possible.
When the operator indicates that these" operations have been completed,
the control program stops the operation of all active readers. The
remaining spool space is then allocated only for starting another
writer, processing jobs currently initiated, and terminating problem
programs and system readers.

If the percentage of spool allocation continues to rise above the
threshold value, the operator is informed of every five percent
increase. When the spool volumes become so full that only a special
reserve of logical cylinders is available, the operator is asked if the
job currently requesting spool space should be canceled. Depending on
the reply. the job is canceled or placed in a wait state until a logical
cylinder becomes available. The reserve cylinders are allocated only
for the purpose of starting another writer or canceling a job as a
result of an affirmative operator reply to the cancel request.

The operator continues to be informed of the percentage of allocated
logical cylinders until the percentage is reduced to the threshold
value. When the allocation percentage decreases to a value of ten
percent less than the threshold value, the operator is informed that
spool space is no longer critical. JES readers that were stopped can be
restarted and the input queue can be released.

The. advantages of the spool techniques used by DASD work area
management routines are:

• Spool space is allocated and deallocated more quickly via use of an
in-storage map rather than by DADSM routines, which must process
VTOC's to locate and return direct access space. OPEN and CLOSE
processing is also eliminated.

• Spool space is allocated to minimize direct access device arm
movement.

• Spool space for a given spool data set is allocated across I/O
devices if possible to enable spool I/O operations to be overlapped
and to help balance the I/O load.

as/Virtual Storage 1 FeatUres Supplement 27

• space is allocated a logical cylinder at a time as required so there
is less chance of wasting direct access space because of
overestimating the requirement for a given spool data set •

• The operator is automatically informed that spool space is running
out prior to a full condition that causes job cancellation. The
operator can take steps to prevent a full spool condition.

JOB QUEUE MANAGEMENT

The job queue organization and management implemented in VS1 is a
modified version of that used in MFT. It is designed to reduce
contention for the job queue (SYS1.SYSJOBQE) and to eliminate duplicate
job queue processing code through centralization of job queue
processing, which also reduces paging activity.

The basic difference between job queue organization in MFT and VS1 is
that much of the information for problem program jobs that is contained
in the SYS1.SYSJOBQE data set in MFT is placed in other data sets in
VS1. Specifically, SYS1.SYSJOBQE in VSl does 'not contain system message
blocks and the job scheduler control blocks (JFCB's, SCT's, SIOT's,
etc.) created by the interpreter from the job control statements for
problem program jobs Cunless they have been initiated via a START
command). system messages are placed in spool data sets on spool
volumes, and scheduler control blocks are placed in new data sets called
scheduler work area data sets (SWADS). The control blocks in the job
queue are primarily job related, instead of job step related, and are
not updated as frequently as scheduler control blocks. The job queue
contains scheduler control blocks only for system tasks and generalized
start jobs. Records in SYS1.SYSJOBQE are 116 bytes, as in MFT.

There is one SWADS for each active initiator. A SWADS is allocated
and formatted when the initiator is started. Parameters in the SWADS DD
statement in the initiator ~rocedure are used. They can be overridden
by the operator. The SWADS for a given initiator contains the scheduler
control blocks for the job currently being handled by the initiator.
The control blocks are placed in the SWADS by the interpreter at the
time the job is selected for initiation and interpreted. Thereafter, a
job scheduler routine accesses its SWADS to initiate and terminate job
steps rather than the job queue, as is done in MFT, thereby eliminating
much of the contention for the job queue. The scheduler control blocks
for successive jobs processed by the same initiator overlay one another
in the SWADS assigned to the initiator.

Scheduler work area data sets (up to 15) and SYS1.SYSJOBQE are
maintained by job queue management routines which allocate and
deallocate disk space in the job queue, enqueue and dequeue work
entries, delete work queue entries, and read and write queue records.
All system routines that access the job queue and the SWADS (JES readers
and writers, job schedulers, master scheduler, etc.) do so via
centralized job queue management. The job queue manager is contained in
the pageable area of virtual storage.

SYS1.SYSJOBQE and SWADS can be contained on 2314/2319, 3330-series,
2305-2, or 2305-1 direct access storage. RPS is supported when present
for the device. All SWADS must be allocated to the same device type
(which can be different from the job queue device type) in order for
automatic restart and system start to function correctly. If channel or
device separation is requested for the SWADS, contention among
initiators can be further reduced.

28 OS/Virtual Storage 1 Features Supplement

JOB SCHEDULER

The basic design changes embodied in the VSl job scheduler are
inclusion of the interpret function as part of job scheduling and access
to a SWADS instead of the job queue for job step scheduling.

The components of the job scheduler (initiator, interpreter,
allocation, terminator) have been modified to operate in a paging
environment, interface with JES, support modifications to other system
routines, and provide some functions not available in MFT. All
scheduler components can operate paged in 6qK of virtual storage and are
structured to minimize the occurrence of page faults.

Initiator

A VSl initiator is pageable and a large portion of it is reentrant.
As in MFT, the initiator operates in a partition to perform its
scheduling function. Initiators schedule problem program job steps
(both page able and nonpageablel, system tasks, and JES readers and
writers. Initiators interface with the job queue manager to access
SYS1.SYSJOBQE and SWADS.

The VSl initiator supports a queued problem program start facility
which enables the operator to start more than one cataloged procedure to
the same partition. The started procedures are queued and initiated on
a first-in, first-out basis. System task starts must be single-step
procedures while problem program starts may be multistep procedures.

The VSl initiator also supports an operator option that is not
provided in MFT. If all the data sets required by the job that is being
initiated are not currently available, the operator can request that the
job be placed in the hold queue. The operator can then release the job
at a later time when the data sets become available. In MFT, the
operator can only cancel the job or request another allocation attempt.

Interpreter

The interpreter is pageable and a large portion of it is reentrant.
It operates as a subroutine of the initiator. The interpreter is
invoked at the initiation of each job. The interpreter reads procedures
directly from SYS1.PROCLIB (via data managementi and interfaces with
JECS spool management to read all the JCL and any PRoe spool data sets
associated with the job to be scheduled. It interprets all the job
control for the job, constructs the required scheduler control blocks,
and writes them in the SWAnS (using job queue management) for use by the
other job scheduler components. Interpreter messages are placed in
system message spool data sets. Commands are sent to the master
scheduler for processing when they are encountered. Jobs that were
being interpreted when abnormal system termination occurred do not have
to be resubmitted during the warm start procedure, as they do in MFT.
The interpreter accepts all job control statements supported in MFT, as
well as the following new parameters:

• ADDRSPC=VIRT or REAL and the REGION parameter on JOB and EXEC
statements (discussed in section 90:10)

• TYPRUN=SCAN on a JOB statement to indicate that the job control for
the job is to be analyzed for errors but that the job is not to be
executed

• COPIES=nnn on SYSOUT DD statements to request multiple copies of
system output data sets

OS/Virtual Storage 1 Features Supplement 29

• DLM=cc on SYSIN data set DD statements (DD* and DD DATA). This
parameter can be used to specify a delimiter other than /* or //
to indicate the end of job step data in the input stream.

• DEST and HOLD parameters on SYSOUT DD statements submitted via RES
(see Remote Entry Services discussion)

UNIT and SPACE parameters on a SYSOUT DD statement are ignored as
they are no longer required. New DO statement parameters for VSAM have
been added to the job control language as well (discussed in Section
90:30).

Allocation

The allocation routine operates as a subroutine of the initiator to
allocate and deallocate I/O devices to job steps, issue mounting
messages to the operator w etc. w as in MFT. In addition, the allocation
routine supports dedicated work data sets (supported in MVT but not in
MFT). This facility enables a job step to use disk data sets that are
assigned to the initiator that schedules their execution. Job
scheduling time is reduced by the elimination of temporary disk data set
allocation and deallocation processing.

Terminator

The terminator is pageable and a large portion of it is reentrant.
Like the initiator, the terminator places messages in system message
spool data sets. No other functions different from those of MFT are
supported by a VSl terminator (except those related to supporting a
paging environment).

Direct SYSOUT (OSO) Writers

The same functions are supported by OSO writers in VSl as in MFT,
except that a Vsl DSO writer can handle up to eight job classes instead
of three.

system Management Facilities (SMF)

SMF provides all the same functions it does in MFT and is expanded to
include new accounting data provided by JES and page management. The
SMF option desired is chosen at system generation from the following:

• NOTSUPPLIEO - no SMF data is provided. However, the OUTLIM facility
is still available (without the OUTLIM exit which is supported only
if SMF is present).

• BASIC - user-written accounting routines are to be provided. These
routines can be newly written or those currently being used with
MFT. The latter need not be modified for operation in VS1. The new
JES accounting information is made available as are two user exits
not provided in MFT.

• FULL - SMF routines are to be included. This option should be
selected if SMF is currently being used in MFT. The same options
are supported as in MFT. New accounting data and two new exits that
are not available in MFT are provided also.

SMF records can be written only on direct access volumes in VS1.
They cannot be written on tape, as in MFT. The SMF record types and
formats produced by SMF routines in vsl are compatible with those

30 OS/Virtual Storage 1 Features Supplement

produced in MFT, for the most part. Additional accounting information
is supplied, minor changes to existing fields have been made, and
certain fields have a different meaning in VS1. For example, in the job
step termination record the storage-requested and storage-used fields
reflect the virtual storage used. If the job step ran in nonpaged mode,
these fields also reflect the real storage used. SMF records that are
modified in vs1 are the system measurement record (Type 1), the step
termination record (Type 4), and the end of day record (Type 12).

The additional job accounting information provided by JES at job
purge time is the following:

• Time required to read the job (elasped time calculated from JES
reader start and stop times)

• Number of cards read

• Job priority and job class

• Elapsed time for SYSOUT print processing and number of lines printed

• Elapsed time for SYSOUT punch processing and number of cards punched

• Elapsed time for SYSOUT tape processing and number of SYSOUT records
written to tape

The page supervisor provides the following new data to SMF:

• Number of page-ins per job step (including user and system page-ins)
and number of page-ins for the entire system (reclaimed pages are
not included in this count)

• Number of page-outs per job step (including user and system page­
outs> and number of page-outs for the entire system

• Number of reclaimed pages for the entire system

General Flow of Job Scheduling

Figure 90.20.2 illustrates JES and job scheduling flow in VS1.
Active JES readers read input streams. Data read (job control
statements, procedures, input data, commands) is passed to spool
management without interpretation of job control statements. Spool
management requests the allocation of spool space (one logical cylinder
is allocated per spool data set) and blocks input stream data which is
written in spool data sets by the DASD work area manager. Whenever a
complete job has been read, the JES reader creates control blocks to
describe the job and passes them to the job queue manager. Queue space
is allocated for the job, and the job is enqueued in SYS1.SYSJOBQE by
priority within job class or placed in the hold queue. The JES reader
continues reading its input stream.

started initiators inspect the job queue for a job with a job class
they are assigned to handle. When an initiator selects a job, it passes
control to the interpreter routine. The interpreter obtains the job
control statements for the job from the appropriate JCL spool data set
via spool management. Job control statements are interpreted ~nd
scheduler control blocks are built for the job which are placed (by job
queue management) in the SWADS associated with the initiator. Spool
space for SYSOUT spool data sets is allocated. One logical cylinder is
allocated to each SYSOUT spool data set at this time. commands within
the job are routed to the master scheduler and interpreter mess.ages are
placed in a system message spool data set. Control is given to the
allocation routine which attempts to allocate I/O devices to the first

OS/Virtual Storage 1 Features SUpplement 31

step. Allocation messages are written in a system message spool data
set and the job step is begun.

Spool
Volumes

Spool
Management

Initiator A
• Select job

~ R~ad Interpreter

~~--aI .lnterpretJCL

for job
~ • Build blocks

~- W~~ite---~ _____ ~ ____ ~

~ Allocation r-----· l . Allocate job

~
step 1/0

• Attach job step

SYSMSG Wr~it-e ----i'--____ """T"" ____ ---'

Problem program
execution

r==1~ Terminator
(job step)

SYSMSG wr~ite--~ __ ~~ __ ~

Job
Queue
Manager

Write scheduler
control blocks via job

control blocks

Spool

Figure 90.20.2. General flow of JES and job scheduling in OS/VSl

During job step execution. the problem program obtains SYSIN data
using QSAM or BSAM, which interfaces with spool management via the JES
translator to read the appropriate SYSIN spool data sets. The problem
program can write SYSOUT spool data sets in the same way. When the job
step completes, the terminator performs I/O device deallocation and
places messages in a system message spool data set.

Initiation of successive steps of the job continues until end of job
occurs. The job terminator requests that the job queue manager enqueue
the SYSOUT spool data sets for the job in the job queue by priority

32 os/virtual Storage 1 Features Supplement

within SYSOUT class. The spool space allocated for SYSIN spool data
sets for the job is released. The initiator attempts to select another
job.

started JES writers interface with job queue management to select a
SYSOUT spool data set with a class they are assigned to handle. A JES
writer obtains SYSOUT logical records via spool management. When all
the SYSOUT spool data sets for a job are processed, the job queue
manager purges the job from the system and spool management frees the
SYSOUT spool space allocated to the job.

REMOTE ENTRY SERVICES

Remote entry services (RES) is a fully integrated functional
extension of JES. Using binary synchronous communications, RES enables
remote users to submit jobs to a central computing system via a work
station (terminal) and to receive the output' from these jobs. RES
presents remotely submitted jobs to JES readers, which in turn place the
jobs in the system input queue. JES writers present output from
completed remotely submitted jobs to RES, which transmits the output to
remote work stations. Hence, the unit record devices at remote work
stations (readers, printers, punches) are logically operated by JES as
if they were part of the central system.

The following terminals are the remote work stations supported by
RES:

• 1130 System
• System/3
• system/360 Models 20 to 195
• System/310 Models 135 to 16~ (operating in BC mode only)
• System/370 Model 195
• 2110 Data Communications System
• 2780 Data Transmission Terminal

The maximum number of terminals supported is equal to the maximum
number of tasks supported in the VS1 control program. USASCII code is
supported only for the 2770 and the 2780. Terminals can be attached to
point-to-point leased and point-to-point dial-up lines. Multidropped
leased lines and dial-up lines are not supported. Lines can be two-wire
half-duplex or four-wire half-duplex. Full duplex lines are not
supported. A 2701 or 2703 is required in the central system
configuration. A Model 135 can use the integrated communications
adapter (ICA) instead of a 2701.

Intelligent remote work stations (those that include a CPU) operate
under the control of standalone work station programs. Work station
programs are distributed with the VS1 control program. Generation
procedures must be performed to tailor a work station program to the
configuration of each intelligent work station to be supported by RES.
The standalone programs provided for RES remote work stations are the
same ones that are provided for HASP II RJE remote work stations.

RES enables a user at a remote work station to:

• Transmit jobs to a central system for processing, using standard VS1
job control statements and operator commands. Two additional job
control parameters and five additional operator commands are
provided also.

• Route the output from each completed job to the central system or a
specific remote work station, which need not be the one from which
it was submitted. Output destination can be indicated in job
control statements or via a new RES command.

OS/Virtual Storage 1 Features Supplement 33

• Display the status of his work station and the status of his
submitted jobs

• Send messages to and receive messages from other remote work station
users and the central system operator

RES functions are provided by the following components of VS1:

• The remote terminal access method (RTAM)r which handles all data
transmission to and from remote work stations

• New data sets r SYS1.UADS and SYS1.BRODCAST r which define the
attributes of RES work station users and contain work station
messages

• New commands (LOGONr LOGOFF, ROUTEr SEND, LISTBC), which enable
remote users and the central operator to control remote job
processing and to communicate with each other. WTO and WTOR macros
are extended to allow system tasks to support remote users.

• JES readers and JES writers that interface with RTAM and support
remote input and output streams. (Column binary is not supported.)

Figure 90.20.3 shows how RES components interact with each other and
interface with JES to support high-speed remote job entry.

RTAM

If RES is to be used r this fact must be indicated during system
generation. The RTAM module required to support the RES terminal
configuration must be generated via a separate RTAM generation procedure
that can be performed any time after STAGE I of the VSl generation
procedure is completed.

RTAM is the only access method used by RES. RTAM executes in the
pageable supervisor area in VS1. It supports only the RES terminal
network and does not interface with any other terminal networks (TCAM or
BTAMr for example) that may be included in the system configuration.
RTAM directly controls work stations without CPU's (2770 and 2780
terminals) and interfaces with intelligent work stations using a MULTI­
LEAVING technique that is not supported by OS RJE.

MULTI-LEAVING is a more efficient way to transmit data between two
computers using binary synchronous communication facilities because it
reduces the number of line turnarounds required and enables more data to
be transmitted before line turnaround occurs. MULTI-LEAVING permits
data from more than one unit record device in a work station
configuration to be sent during a single transmission r and allows
transmission acknowledgment to be sent together with data in the- same
record. For example r a work station can transmit a record containing
text from two or more input stream unit record devices to the central
system. The central system can respond by sending a record that
acknowledges receipt of the text and that includes text for one or more
output stream unit record devices in the work station configuration.
This eliminates an individual transmission for each text record and each
acknowledgment.

Multitasking support must be included in RTAM when intelligent work
stations are part of the RES terminal configuration. MULTI-LEAVING
support is a standard feature of the standalone programs provided for
intelligent work stations.

34 OS/Virtual Storage 1 Features Supplement

Remote
Work Stations

Unintelligent

Remote
user

Intelligent

Remote Standalone

user Work Station
Program

Binary
Sy nchronous
Communication
Lines

SYS1.UADS

RTAM

Command
Processing
Routines

Figure 90.20.3. RES interface ~ith JES

Started for
local job submission

JES writers

JES readers

Started for
remote users

JES writers

JES readers

SYS 1.BRODCAST

SYS 1. SYSPOO L

SYS 1. SYSJOBQE

(locally and
remotely submitted
jobs)

The user attributes data set, SYS1.UADS, is a new partitioned data
set that is required when RES is included in the VSl control program.
It is used to control remote user access to the central system via RES.
SYS1.UADS contains one or more members for each user authorized to
access the central system. Members contain control information,
identifying attributes, and SMF accounting data for each user (such as
user-id, passwords, account numbers, and log-on procedures).

When a remote user attempts to log on the system, SYS1.UADS is
accessed if verification of the password or the log-on procedure is
required. If an entry does not exist for the user, or if an invalid
parameter is supplied (such as user-id or password), the log-on request
is denied. The SYS1.UADS data set must be created and maintained using
the IBM-supplied ACCOUNT utility which provides the capability of adding
or deleting users, changing fields in existing user members, and listing
user members.

os/Virtua1 Storage 1 Features Supplement 35

The SYS1.BRODCAST data set is also required when RES is used. It is
used to hold messages that have been issued by remote users and the
central operator using the SEND command, and that have not yet been
sent.

SYS1.BRODCAST is divided into a notices section and a mail section.
The notices section contains messages that are available to all remote
users and the central operator. Themail section contains messages
issued only for specific users. Themail section can be accessed by the
central operator as well.

RES Commands

Five new commands are included in the set of VSl operator commands,
and new parameters have been added. to some existing commands to control
RES functions. Table 90.20.1 lists VS1 commands that can be issued by a
remote work station user in addition to the new commands for RES.
Commands not shown are rejected as invalid with a diagnostic message if
issued from a remote work station. A remote user can issue commands to
control only his jobs and output data. The central operator can use all
Vsl operator commands.and has access to all remotely submitted jobs.

Table 90.20.1. OS/VS1 operator commands that can be issued from an RES
remote work station

CANCEL
DISPLAY
HOLD

L~

MODIFY
MONITOR

RELEASE
REPLY
RESET

STOP
STOPMN
WRITER

A user at a remote work station issues a LOGON command to establish
connection with the central system. During the log-on procedure, user
identification, terminal identification, and password (if any) are
verified using information contained in SYS1.UADS. The JES readers and
writers identified in the log-on procedure specified in the LOGON
command are started. (A remote user cannot start JES readers and
writers directly but the central operator can.) If they were requested
in the LOGON command, mail and notices contained in SYS1.BRODCAST are
retrieved and sent to the user. If the LOGON command is valid, the user
can begin transmitting jobs and messages.

The LOGOFF command is issued by a remote user to indicate that
communication with the central system is finished. This command can be
entered via an input stream between two jobs. The central operator can
also issue the LOGOFF command to terminate operations at a remote work
station. Log-off processing includes the stopping of readers and
writers started for the remote user.

The ROUTE command is provided to allow a remote user to route SYSOUT
data sets associated with his jobs to a particular work station or to a
queue (class or hold queue) different from the one they are presently
in. This command can be used to override the destination indicated in
the DEST parameter on theSYSOUT DD statement submitted, or to specify
the destination if the SYSOUT DO statement has a HOLD parameter to
indicate the job is to be held until a ROUTE command is issued. The
ROUTE command can be issued any time after the job is submitted and
before the SYSOUT data set to which it refers is processed.

Messages can be transmitted among remote users, and between the
operator and remote users via the SEND command. A given message can be
sent to one or more remote users or to all of them. The central
operator can request that a message be saved in the SYS1.BRODCAST data
set instead of being transmitted immediately. The SEND command can also

36 OS/Virtual Storage 1 Features Supplement

be used to delete previously saved messages from SYS1.BRODCAST. The
LISTBC command enables a remote user to list all notices and only mail
belonging to him. The central operator can list mail belonging to any
user as well as all notices.

RES Initialization

During system initialization, the RTAM module is brought into the
pageable supervisor area after JES routines have been loaded. The user­
specified maximum number of readers and writers that JES can support
must include those required for RES work stations. In order to initiate
RES processing, the central operator must enter a command to start RTAM.
This causes RTAM to be activated and the lines indicated in the RTAM
procedure are enabled. The central operator can issue the MODIFY
command any time thereafter to enable additional lines, disable enabled
lines, or reenable lines.

As part of the RTAM initialization procedure, work stations
identified as belonging to the permanent log-on group are logged on.
The optional permanent log-on facility allows nonintelligent terminals,
such as 2110 and 2780 terminals that are connected to leased lines, to
be automatically logged on whenever RTAM is started. These terminals
remain logged on until a LOGOFF is issued for them.

Once RTAM is started, any terminals attached to the enabled lines
that are not part of the permanent log-on group must be connected to the
system via execution of the log-on procedure. During this procedure,
JES readers and writers are started for the remote terminal, as
indicated in the log-on procedure specified. Once operations at a work
station connected to a switched line are finished, the user can log off
and, thereby, release the line and make it available for use by another
remote work station connected to it.

Virtual storage Requirements

Assuming one terminal on one line, one reader, one punch, and one
printer, the minimum virtual storage requirement for RES (RTAM and JES
readers and writers) is approximately 18K without MULTI-LEAVING and 20K
with MULTI-LEAVING. ~nother 6K is required, whether or not MULTI­
LEAVING is included, for each additional line supported.

RES Advantages Over RJE

As a replacement for -RJE, RES supports facilities equivalent to those
of RJE and offers the following advantages:

• RES is fully integrated within VS1 and uses the normal system job
scheduling facilities (such as JES readers and writers, scheduling
routines, and the job queue manager). Only the RTAM module is
optional.

• RES is designed to operate in a paging environment and can provide
better performance than RJE partly because of MULTI-LEAVING support.

• RES requires less real storage for its operation.

• RES SYSOUT classes are independent of the central SYSOUT classes and
more flexible SYSOUT routing is provided by RES (a unique set of
queues is associated with each remote RES user that represents the
SYSOUT data sets only for that remote user).

Os/virtual storage 1 Features Supplement 37

• The RES remote user command language is a compatible subset of the
OS/VSl central operator command language (the job entry control
language of RJE is not). Jobs can be submitted locally or remotely
using the same job control statements and commands.

• System/3 is supported as a remote work station.

CONVERSATIONAL REMOTE JOB ENTRY

The facilities offered by CRJE are the same in MFT and VS1. CRJE can
operate in paged mode in a minimum partition of 128K. However, a
minimum of 60K of real storage is fixed by CRJE. Therefore, a system
with more than 160K of real storage is required to operate CRJE.

90: 25 TASK MANAGEMENT

VSl task management routines have been modified as required to
operate in a paging environment, interface with other modified control
program routines, and support EC instead of BC mode of system operation
(different PSW format, interruption codes in permanently assigned
locations above 127, for example).

VSl and MFT task management routines are functionally identical for
the most part. There are no functional changes to the contents
supervisor, the overlay supervisor, the timer supervisor, or
checkpoint/restart and warm start routines. (Note that checkpoint
records are always 2K in size in VS1, and that MSGLEVEL=l is no longer a
required parameter on the JOB statement.) The timer supervisor supports
timing facilities equivalent to those of MFT using the interval timer at
location 80 and the time of day clock. It does not support the CPU
timer and the clock comparator. The following identifies the
significant functional differences between VSl and MFT task management
routines.

INTERRUPTION SUPERVISOR

Interruption handling is essentially the same in VSl and MFTi
however, a few additional interruptions are recognized and the SVC
transient area is 2K instead of lK. Specifically, segment and page
translation exception, translation specification exception, monitor
call, program event recording, and SET SYSTEM MASK (SSM) instruction
interruptions are handled.

The SPIE facility has been expanded to allow the user to gain control
after a segment translation exception (invalid bit is on in the
addressed segment table entry), which is treated as an addressing
exception. Authorized routines can gain control after a page fault
(page translation exception caused by invalid bit on in the page table
entry for the referenced virtual storage page), which normally is
handled by page management. An authorized routine gains control after
both disabled and enabled page faults and the system lock (described
under wTask supervisorW) is not turned on. Therefore, the SPIE facility
should be used carefully. A routine is considered authorized if it has
the Characteristics of a subsystem as defined in VS1: operates in
supervisor mode with protect key 0 and is identified as a subsystem in
the required control block. The data presented to a user-written SPIE
routine has the same format in VSl as in MFT so that SPIE routines that
operate in Be mode will operate in EC mode without modification.

MONITOR CALL instructions are contained in various portions of the
control program in order to alert the control program to the occurrence
of certain events. For example, lOS uses the monitoring facility to

38 OS/Virtual Storage 1 Features Supplement

collect statistics about paging operations that are presented to SMF and
to monitor the I/O events requested via the generalized trace facility
(GTF). When appropriate. GTF is given control after a monitor call
interruption occurs. When program event recording is operative, the
dynamic support system (055) is entered after a PER interruption. (GTF
and DSS are discussed in Section 90:40.)

The interruption supervisor also recognizes an SSM special operation
exception that occurs when an SSM instruction is executed. Control is
given to a routine that analyzes the masking requests indicated, which
are assumed to be in BC mode format. This routine then puts the system
in the requested state. (The new supervisor lock. described below, is
tested prior to altering the system mask. if necessary.) A new
supervisor macro, MOOESET. is implemented that is designed to be used in
Vsl in place of the SSM instruction. MOOESET can be used to request a
system mask setting, storage protect key alteration, and the setting of
problem program or supervisor state in the PSW.

TASK SUPERVISOR

Two lock fields are implemented in the task supervisor to ensure
proper system operation when a disabled page fault occurs. In VS1, a
page fault can occur during the execution of a routine that has disabled
the CPU for interruptions (I/O and/or external). This is called a
disabled page fault. A routine normally operates with the CPU disabled
for interruptions because it is not reentrant and, therefore, should not
be reentered before its completion, or because it modifies or references
a serially reusable resource. The processing of a page fault, which
requires I/O interruptions to be enabled to allow the I/O interruption
for a completed page-in operation to be presented, can allow code that
operates with the CPU disabled to be reentered, with improper processing
the result.

To prevent this situation, two lock fields are implemented in VS1, a
system lock and a supervisor lock. which can be set on (locked) or off
(unlocked). When a disabled page fault occurs in an executing task, the
appropriate lock, system or supervisor, as indicated by the task, is
turned on. When the system lock is on. no task can be dispatched except
one that is related to paging operations. When the supervisor lock is
on, ready tasks that are to operate with the CPU enabled for
interruptions can be dispatched but no code that operates with the CPU
disabled can be executed except that which is related to paging and task
dispatching operations. The lock used remains on until the disabled
page fault is resolved. Code is included within the control program to
recognize an attempt made by code to enter the disabled state by
executing an SSM instruction or a MODESET macro, and to place such a
task in the wait state, when necessary (the appropriate lock is turned
on).

Certain resident control program routines (lOS, page supervisor, task
dispatching routines, for example) are structured to avoid disabled page
faults in VS1. User-written Type 1 and Type 2 SVC's that are to be
added to a VSl control program should avoid disabled page faults, if
possible. If disabled page faults are incurred by a user-written Type 1
or 2 SVC routine, the system lock will be used.

The lock approach implemented in VSl has the advantage of allowing
routines to encounter disabled page faults when necessary, in order to
avoid fixing a large number of pages, and when the supervisor lock is
used, the approach taken also avoids delaying total system operation
while a disabled page fault condition is handled.

OS/Virtual Storage 1 Features Supplement 39

VIRTUAL STORAGE SUPERVISOR

The virtual storage supervisor is responsible for allocating and
deallocating virtual storage in response to user (GETMAIN and FREEMAIN)
and system requests for storage. Except for V=R requests, real storage
is not assigned to allocated virtual storage until the virtual storage
is referenced during processing. When a FREEMAIN is issued for the last
allocated area in a virtual storage page, the appropriate page table
entry user bit is turned off. If a page frame is allocated to that
virtual storage page, it is released and made available for
reassignment. The virtual storage supervisor is functionally equivalent
to the main storage supervisor in MFT except tor the following
modifications:

• Support of dynamically expandable SQA instead of a fixed SQA to
minimize system terminations because of the lack of SQA space

• Implementation of a protected queue area (PQA) in problem program
partitions to enhance system integrity

• Allocation of virtual storage to minimize or eliminate page faults
during virtual storage supervisor execution. For example, the
control blocks that describe the virtual storage available in a
problem program partition are contained in the fixed PQA.

• Expansion of the GETMAIN macro to request allocation of virtual
storage on a page boundary and to specify a subpool number. The
FREEMAIN macro in VS1 can specify the number of the subpool to be
freed.

PROGRAM FETCH

Load modules in VS1 have a starting virtual storage address of zero
and are stored in partitioned data sets in the same format that is used
in MFT. Hence, when a load module is fetched in VS1, it must be
relocated to the beginning address of the virtual storage area to which
it is assigned and virtual storage address constants must be modified,
just as in MFT.

The standard program fetch routine in VS1 is identical to its MFT
counterpart, and it uses the channel program translation and page fixing
facilities of lOS. Load module record loading and virtual storage
address constant relocation are performed serially (the text record is
read in and then the address constants are modified), as in MFT.

The optional PCI fetch routine is modified for operation in a paging
environment. PCI fetch does not use the channel program translation
facility of lOS. It uses the new EXCPVR macro (discussed in section
90:30) instead of EXCP. In VS1, PCI fetch requests the allocation and
fixing of up to six page frames (12K) for the execution of each read
operation (SIO). Text records are read into these page frames. During
execution of the CCW chain, PCI chaining is suppressed if it is
determined that execution of the next CCW list with a text ccw will
cause the fixed real storage area associated with the I/O operation to
be exceeded. The channel program then terminates and the page frames
used during the operation are unfixed. PCI fetch performs address
constant relocation during read operations (adds the relocation factor
to virtual storage address constants contained in text records), just as
in MFT.

When a program is loaded by PCI fetch, its pages are not
automatically written on external page storage as part of the program
loading procedure. Page-outs of one or more pages of a program that is
being loaded (or that is loaded) occur for the first time when the real

40 os/virtual Storage 1 Features Supplement

storage any pages of the program occupy is required for allocation to
other pages, and the page supervisor considers these pages to be
eligible for replacement as per its page replacement algorithm. The
change and reference bits for each page frame that contains program text
are on as a result of the I/O operation that read in the text. Hence,
before the page frames allocated to a program that is being loaded (or
to a recently loaded program) can be reassigned, a page-out will be
performed. The fact that the change bit is turned on by the fetch
operation is what causes the first and only page-out of pages that do
not modify themselves.

90:30 DATA MANAGEMENT

Data management components are altered where necessary to operate in
a paging environment and to interface with JES and the modified VSl
input/output supervisor (lOS). The significant functional differences
between data management in VSl and MFT are changes in lOS to handle
channel program translation and page fixing, and the availability of a
new access method called virtual storage access method (VSAM).

OPEN, CLOSE, EOV, and DADSM routines for VSl and MFT are functionally
equivalent. vsl supports all the access methods provided in MFT except
QTAM. The same functions the access methods provide in MFT are also
supported in VS1. Programs that use these access methods can be
executed in VSl either in paged or nonpaged mode with one exception. A
program that is to use the chained scheduling facility of QSAM or BSAM
must execute in nonpaged mode. If a job step with chained scheduling
specified is initiated to execute in paged mode, regular scheduling is
automatically substituted.

All the VSl access methods except TCAM and VSAM interface with ros
via the EXCP macro and, therefore, use the channel program translation
and page fixing facilities of lOS. TCAM can operate in a pageable
partition but requires certain of its message control program elements
(such as control blocks and the buffer pool) to be long-term fixed in
real storage during the entire time TCAM is in operation. TCAM
interfaces with lOS via the new EXCPVR macro and performs its own
channel program translation. TCAM does not require long-term fixing of
any portion of the message processing programs that it services.

For performance reasons, certain access methods have also been
modified to reduce the total amount of code they contain that operates
with the CPU disabled for interruptions or to prevent page faults in any
such code. rSAM requires an additional 2K of virtual storage because of
the inclusion of new required I/O appendages.

The access methods do not support a parameter that can be used to
cause buffers to be aligned on page boundaries when buffers are
allocated by the access method. If an Assembler Language programmer
wishes to have buffers aligned on a page boundary and/or ensure that
buffers are packaged such that they do not cross page boundaries,
buffers must be defined and aligned by the programmer.

INPUT/OUTPUT SUPERVISOR

In VS1, lOS has the following additional functions:

• Translation of the virtual storage addresses contained in CCW lists.
The ccw translation routine performs this function prior to the
issuing of the SIO instruction for each I/O operation requested by a
pageable routine via the EXCP macro. A new CCW list with translated
addresses is built in SQA. This new list is used for the actual I/O
operation. A CCW list with up to 2QO CCW's can be translated.

OS/Virtual Storage 1 Features Supplement Ql

• Construction of indirect data address lists (IDAL's), when
necessary. If the buffer specified in a CCw crosses a virtual
storage page boundary or if the buffer is larger than 2K, the
appropriate IDAL's consisting of indirect data address words
(IDAW's) are constructed in SQA also. (Checking to determine
whether a buffer that crosses a virtual page bbundary is assigned
contiguous page frames is not performed.)

• Short-term fixing of the pages associated with an I/O operation to
prevent the occurrence of page faults during I/O operations. Each
time an I/O request (EXCP) is received, lOS ensures that pages it
will reference to service the I/O request are short-term fixed.
This includes pages that contain control blocks (lOB, DCB, DEB,
ECB/DECB, and AVT), required lOS appendage routines, and buffers.

• Translation of the real storage address in the channel status word
to a virtual storage address at the completion of the I/O operation.
In addition, pages that were short-term fixed prior to the I/O
operation are unfixed.

The same five I/O appendage interfaces that are provided in MFT are
supported in VS1 and one new appendage interface is defined. There also
are new returns from the SIO and the PCI appendages. The new page fix
appendage is actually part of the SIO appendage and it is entered using
a new entry point into this appendage. The page fix appendage is
provided to enable an EXCP user to request short-term fixing of up to
seven different virtual storage areas that will be referenced during an
EXCP request but that are not automatically fixed by lOS. A user­
written EXCP program with user-written I/O appendages that can incur
page faults can use the new appendage to short-term fix the areas
referenced by the I/O appendages. The new PGFX parameter for the EXCP
data control block (DeB) is provided to indicate that the page fix
appendage is to be used.

In addition to the EXCP macro, VS1 lOS supports a new macro, EXCPVR,
that can be used to request an I/O operation. This macro can be issued
only by the page supervisor or by subsystem routines, such as JES
components and TeAM. A routine is identified as a subsystem via a bit
in the TCB or the JSCB. A problem program can use the EXCPVR macro if
it identifies itself as a subroutine or if the appropriate bit in the
data extent block (DEB) for the data set is turned on by the user. When
lOS receives an EXCPVR macro, it does not perform channel program
translation, page fixing, or validity checking. It is assumed that,
where necessary, these functions have been performed by the requester
prior to issuing the EXCPVR macro.

When the EXCPVR macro is used instead of EXCP, the time required for
lOS to initiate an I/O operation is reduced. The EXCPVR macro should be
used carefully, however, because the I/O supervisor. does not perform any
of the storage protection functions it provides when the EXCP macro is
issued (checking to determine whether all the control blocks, buffers,
etc., associated with the I/O request belong to the requesting task).
Hence, a task that uses EXCPVR could inadvertently store information
outside its partition and impair the integrity of the system.

VIRTUAL STORAGE ACCESS METHOD

General Description

Virtual Storage Access Method (VSAM) is a new component of OS data
management that is supported in VS1 and VS2. VSAM provides a data set
organization and access method for direct access devices that is
different from existing OS data set organizations and access methods for

42 OS/Virtual Storage 1 Features Supplement

direct access devices (Sk~. IS~~. DAM, ~~~). In a VS1 environment, VSA~
supports 2314/2319, 3330-series, and 2305 (Models 1 and 2) devices and
uses rotational position sensing when the feature is present.

VSAM for VS1 and VS2 uses System/310 instructions and is designed to
operate efficiently in a paging environment. VSAM uses the EXCPVR macro
for I/O requests. Hence, like VSl and VS2, VSAM can operate only on
System/310 models with dynamic address translation hardware and cannot
run on System/360 models.

A subset of OS/VS VSAM is supported by DOS/VS. The VSAM Assembler
Language macros used in OS/VS and DOS/vS are compatible, except for OPEN
and CLOSE. In addition, a VSAM file contained on a DOS volume can be
processed by OS (VS1 or VS2) programs. Similarly, a VSAM data set
contained on an OS volume can be processed by DOS/VS programs as long as
facilities are not used that oOS/VS VSAM does not support. This
compatibility enables VSAM data sets or files to be processed by both
OS/VS and DOS/VS, and aids in the transition from DOS/vS to OS/VS1 or
OS/VS2.

VSAM supports both sequential and direct processing and is designed
to supersede ISAM, although the two access methods can coexist in the
same operating system. VSAM supports functions equivalent to those of
ISAM and offers new features. VSAM also can provide better performance
than ISAM, particularly when the number or level of additions in the
data set is high. The new structure and features of VSAM make it more
suited than ISAM to data base and online environments.

VSAM support consists of the following:

• Access method routines with which the user interfaces to process
logical records in VSAM data sets. These routines are reentrant.

• VSAM catalog/DADSM routines that manage direct access volumes and
space used by VSAM data sets and catalogs. VSAM data sets are
cataloged in the new required VSAM catalog.

• The access method services multifunction service program, which
provides required VSAM services, such as data set creation,
reorganization, and printing, and VSAM catalog maintenance.

• ISAM interface routine that enables the transition from ISAM to VSAM
to be made with little or no modification of ISAM programs. This
routine is reentrant.

Data Set Organizations

VSAM supports two different data set organizations,key-seguenced
organization and entry-sequenced organization, both of which allow
sequential and direct processing. record addition without data set
rewrite, and record deletion. Key-sequenced organization is logically
comparable to ISAM organization in that logical records, either fixed or
variable in length, are placed in the data set in ascending collating
sequence by a key field value. Records added after the data set is
created are inserted in sequence and existing logical records are moved
when necessary. In VSAM organization, as in ISAM, each logical record
in a key-sequenced data set must have an embedded, fixed-length key
located in the same position within each logical record. A key­
sequenced data set also has an index containing key values. The entire
index is used to process records directly and a portion is used to
process records sequentially.

An entry-sequenced VSAM data set, which has no ISAM counterpart,
contains records sequenced in the order in which they were submitted for

Os/Virtual Storage 1 Features Supplement 43

inclusion in the data set. Records added to an existing entry-sequenced
data set are placed at the end of the data set after the last record.
Therefore, records are sequenced by their time of arrival rather than by
any field in the logical record. In addition, there is no index for an
entry-sequenced data set.

Key-sequenced Data Set Organization

The physical structure of a key-sequenced VSAM data set is very
different from that of an ISAM data set. The index and the logical
records in key-sequenced organization are two distinct data sets with
separate data set names, although a portion of the index may be placed
within the logical record data set area to improve performance. A key­
sequenced data set does not have a separate additions (overflow) area,
as can be defined for an ISAM data set, and additions to a key-sequenced
data set are always blocked.

Like an ISAM data set, a key-sequenced VSAM data set can be multi­
extent and multivolume. secondary space allocation can be specified
when the key-sequenced data set is defined so that the data set can be
extended when logical records are added, if necessary. (This facility
is not supported in ISAM.) All extents of logical records must reside
on direct access volumes of the same type, and a data set can consist of
a maximum of 255 extents. The index data set, however, can be placed on
a device type that is different from that of the logical record data
set. Unlike ISAM data set volumes, all volumes of a key-sequenced data
set that contain logical records need not always be mounted at OPEN
time. VSAM data sets can be placed on disk volumes that contain data
sets with other organizations.

Each extent of a key-sequenced data set that contains logical records
is divided into a number of control areas. Each control area contains a
number of control intervals that are on contiguous direct access tracks.
A control interval is composed of one or more fixed-length physical disk
records. Unlike physical records in an ISAM data set, the physical
records in a key-sequenced data set can be 512, 1024, 2048, or 4096
bytes in size only, and they are written without a key (count and data
disk record format). The access method chooses the physical record size
based on the user-specified buffer size and the device characteristics.
When buffer size is large enough, the physical record size chosen is
that which makes best use of the track capacity of the direct access
device used. A control interval can be a maximum of 65,536 (64K) bytes
in size.

A control interval contains logical records in ascending key
sequence, free space, and system control information about the logical
records and free space, in that sequence. Logical records must have
unique keys. A logical record and its control information (record
definition field), although not contiguous within a control interval,
are ca1led a stored record. A logical record can span physical records
within a control interval, but it cannot span control intervals. A
complete control interval is the unit of data transfer between the VSAM
data set and real storage. Hence, command-chained reads/writes are used
when a control interval contains more than one physical disk record.

Figure 90.30.1 shows an example of a control area that consists of
three control intervals. There are three physical records in each
control interval. The number of control intervals in a control area is
determined by the access method and is optimized, based on direct access
device and index characteristics. The maximum size of a control area on
disk is one cylinder, and a control area contains an integral number of
control intervals. The size of a control interval can be specified by
the user and is used as long as it is within the limits defined by VSAM;
otherwise, a user-specified control interval size is ignored.

44 OS/Virtual Storage 1 Features Supplement

Control Area N

(~-----------c-on-tr-o-I --------------------------c~~ro-I-------------------------co-n-tr-ol----------~,

Interval 1 Interval 2 Interval 3

r~-----------~-----------~ rr----------~~------------, rr----------~~------------)

[][][B[][][]oorn
Physical 1
record
withing
control
area

4

LR = Logical record
FS = Free space

6

SC = System control information

Figure 90.30.1. Organization of a control area for a VSAM key
sequenced data set

A key-sequenced data set is divided into control areas and control
intervals in order to distribute free space throughout the data set for
the addition of logical records. When a key-sequenced data set is
defined, the user can specify the percentage of unused control intervals
that are to be left in each control area, and the percentage of free
space to be left at the end of each control interval. For example, if
30 percent free control intervals in control areas and 20 percent free
space in control intervals are specified, 10 percent of the total number
of control intervals in each control area will be used for data when the
data set is created. Each of the control intervals actually used for
data will be 80 percent filled at load time. The unused space in
control intervals and the unused control intervals in each control area
are available for making additions.

The use of control intervals also reduces the amount of record
processing that must be done to add a record and to retrieve an addition
compared to what can be required in ISAM, since there are no overflow
chains in VSAM organization. When a record must be added to a control
interval, records are Shifted to the right within the control interval
to make room for the new record (if the record does not belong at the
end of the control interval)~ As long as there is enough free space in
the control interval, no other control interval is involved in the
addition process.

If a control interval does not contain enough space to add another
logical record, control interval splitting occurs. Some of the logical
records and their control information are taken from the full control
interval and moved to an empty control interval at the end of the same
control area, if a control interval is available. The logical record is
added to the appropriate control interval in key sequence.

When control interval splitting occurs, the physical sequence of
control intervals within a control area no longer represents the correct
sequence of logical records within the control area. Therefore, the
index must be updated to reflect this condition. The only times the
lowest level index must be updated are when control interval splitting
occurs and when a record is added to the end of the data set. Hence,
less index maintenance is required for a key-sequenced VSAM data set
than for an ISAM data set.

If there is no free control interval within a control area when one
is required, control area splitting occurs if there is free space at the
end of the extent or if secondary allocation was specified at the time
the data set was defined. A new control area is established and the

as/virtual Storage 1 Features Supplement 45

contents of approximately half of the control intervals in the full
control area are moved to the new control area. The new logical record
is inserted in the appropriate control area in key sequence. The time
required to sequentially retrieve records is only slightly affected by
control area splitting. Since the amount of space allocated to the data
set is affected by control area splittingr the number of split control
areas in a key-sequenced data set should be a factor that is considered
when determining whether or not to reorganize the data set.

Logical records can be physically deleted from a key-sequenced data
set (using the ERASE macro), and the length of a logical record can be
increased or decreased. When space becomes available as a result of
deleting or shortening a record, records within the control interval are
shifted toward the beginning of the control interval to reclaim the free
space and make it available for additions. The way in which free space
can be distributed throughout a key-sequenced data setr support of space
reclamationr and implementation of control interval and control area
splitting are all factors that can minimize or possibly eliminate, in
some cases r the need to reorganize a key-sequenced data set. This makes
VSAM organization more suited than ISAM to an online environment.

Index Data set for Key-sequenced organization

Like the index for an ISAM data setr the index for a key-sequenced
VSAM data set contains key values and pointers. It is built when the
key-sequenced data set is initially loaded. Unlike an ISAM index r a
VSAM index also contains information regarding available space in the
key-sequenced data set index.

The index for a key-sequenced VSAM data set also has a totally
different structure from that used for an ISAM index. A VSAM index data
set consists of two or more levels of index records structured as a
balanced tree r and the highest index level contains only one index
record (physical disk record). The one exception to this organization
is discussed later. Index records are fixed length and of system­
determined size. Each index record contains a number of index entries
and a pointer to the next index record at the same index level. (The
last index record in a level does not have such a pointer.)

The lowest level of the index is called the sequence set. All levels
above the lowest are collectively referred to as the index~. The
sequence set index level points to all the control intervals in the key­
sequenced data set and contains the high compressed key value in each
control interval. Since the sequence set index does not contain an
entry for each logical record in the VSAM data set, it is a nondense
index level.

Each index record in the sequence set contains a number of index
entries that is equal to the number of control intervals in a control
area. Hence r there is one sequence set index record per control area in
the data set. An index entry in a sequence set index record consists of
a key valuer control informatio~r and a pointer to the control interval
that contains that key. The key in the index entry is the highest
compressed key in the control interval.

When the logical record data set has few enough control intervals
that one index record can contain all the required index entries r there
is only one level of index and it consists of one sequence set index
record.

When a key-sequenced data set is processed sequentiallYr the sequence
set index level is used to indicate the order in which control intervals
are to be accessed. To improve performance during sequential
processing r the sequence set index level can be separated from the rest
of the index data set (index set levels) and stored with the logical

46 Os/virtual Storage 1 Features Supplement

records. When this option is chosen, the index records for a control
area are placed on the first track(s) of the control area so that both
index and logical records can be accessed without moving the disk arm
(similar to the location of the track index within the prime area in
ISAM).

When the sequence set index level is stored within the logical record
area, sequence set records are also replicated. That is, each sequence
set index record is allocated one track at the beginning of the control
area. The index record is duplicated on the track as many times as it
will fit. This technique significantly minimizes the rotational delay
involved in arriving at the beginning of an index record. If there is
only one control area in a cylinder, sequence set index records will be
replicated beginning with track O. If there are two control areas in a
cylinder, initial tracks of the first area will contain replicated index
records for the first area, while initial tracks of the second area will
contain replicated index records for the second area.

Index set index records, like sequence set index records, contain
blocked index entries. The index entries in each level of the index set
pOint to index records of the next lower index level. An index entry
within the index set contains a pointer to an index record, the highest
key in that index record, and control information. Index set index
levels can also be replicated. When this option is chosen, one track is
required for each index record in the entire index set. An index record
is duplicated on its assigned track as many times as it will fit. The
index set mayor may not be replicated when the index set and the
sequence set are physically separate (sequence set stored with logical
records). However, when the index set and the sequence set are stored
together, both are replicated or neither is replicated.

The entire index (index and sequence sets) is used to process a key­
sequenced data set directly by a user-specified key value. Each index
level is inspected beginning with the highest level. One index block in
each level must be inspected to obtain a pointer to the next lower
level. An advantage of this structure over that of ISAM index structure
is the fact that the time to locate any record directly is based on the
number of levels in the index and on the location of the index records
to be inspected (on the direct access device or in real storage).
Therefore, the same time is required to locate an addition as an
original record. In ISAM, additional rotation time is required to
locate an addition that is not the first addition in the chain in the
cylinder overflow area of a prime cylinder.

The index of a key-sequenced data set is designed to require as
little direct access space as possible. In addition to being nondense,
the index entries contain front and rear compressed keys. Compression
is done to eliminate redundant characters in adjacent keys and thereby
reduce the amount of key data that must be stored.

Since physical index records are written without a key, index entries
are blocked within index records, and keys are compressed, an index
record must be present in real storage in order for the user-supplied
key value to be compared with the key values contained in an index
record. As much of the total index set as possible, up to the entire
index set, can be resident in virtual storage if enough buffer storage
is specified by the user. Note that the access method does not preload
index record buffer(s) with as many index records as will fit. Index
records are allocated space in a buffer and loaded when required.

The index records that are resident in virtual storage are pageable;
however, heavy referencing of an index record can tend to cause the page
containing the index record to remain in real storage. (Index records
cannot be fixed in real storage.) If an in~ex entry that is not
resident in virtual storage .is required, and there is not enough room in

as/virtual storage 1 Features Supplement 47

the buffer area provided to add the index record, the access method
deletes an existing index record to make room. In general, an index
record is selected that has been in the buffer the longest time and that
belongs to the lowest level index represented in the buffer.

The index entries in an index record are not inspected sequentially.
Entries are divided into sections (zones) for the purpose of searching.
This reduces the time required to locate the desired entry. The
structure of an index for a VSAM data set is shown in Figure 90.30.2.

Index
Data
Set

~;~enced [
Data Set

Index

Set

Sequence level

{

Lowest

Set index

'--__ ---l

~~-----~-----~/ ~---------~---------/
Control Area 1 Control Area 2

~~------~_----_--I
Control Area N

Figure 90.30.2. Structure of the index for a VSAM key-sequenced data set

Key-sequenced Data Set Processing

The records in a key-sequenced data set can be processed sequentially
or directly by key, using the index, or by relative byte address, not
using the index. In the latter case, the volume containing the index
need not be mounted unless it also contains logical records that are to
be processed.

The data in a VSAM data set is considered to be mapped into a byte
space which can be over 4 billion bytes in size. The relative byte
address (RBA) of a logical record or an index entry is the byte
displacement of the logical record or index entry relative to the
beginning of the data set. The RBA of a record or index entry,
th~reforer is independent of the physical characteristics of the direct
access device type on which the logical record or index entry resides,
the number of extents in the data set, the size of a control interval,
etc. All pointers to data that are contained in the index and in
control intervals are in terms of relative byte address instead of the
record address (CCHHR) that is used in ISAM pointer fields.

In order to locate a desired index or logical record, the access
method calculates the disk address of the physical record using the RBA
of the record. Hence, a key-sequenced data set is device independent.
It can be moved from one direct access device type to another and its
index data set need not be re-created. The RBA of a logical record in
an existing key-sequenced data set can change only when a record is
inserted or deleted, or if the size of a record is altered. A user­
written routine should be included to record changes in RBA's when RBA
is used for update. This routine is entered from VSAM when appropriate.
Hence, programs that process a key-sequenced data set by RBA need not be
modified if direct access device type is changed. Processing a VSAM

48 OS/Virtual Storage 1 Features Supplement

data set by RBA is called addressed accessing. When addressed
sequential retrieval is used. records are retrieved in ascending RBA
sequence. Thus, logical records will not be presented in key sequence
if there have been any control interval or control area splits.

Entry-sequenced Organization and Processing

An entry-sequenced data set is physically structured just like a key­
sequenced data set except that (1) a control area always contains a
minimum of two control intervals, (2) no index is provided, and (3) free
space cannot be left within control areas or intervals when the data set
is defined. Records can be retrieved directly by RBA or sequentially.
Additions are placed in any available space left at the end of the
entry-sequenced data set. This free area is also used if the size of an
existing record is to be changed. The existing record must be marked
deleted by the user with an installation-determined deletion
identification, and the lengthened or shortened record must be written
at the end of the data set. Space made available by marking a record
deleted (because its size is changed or it is no longer required) is not
reclaimed, and the ERASE macro is not effective for entry-sequenced data
sets. The space occupied by a deleted record can be reused only by
storing a new record of the same size in this space.

The only time a change is made in the RBA of a logical record in an
entry-sequenced data set is when the size of the logical record is
changed. Other records are not affected since the changed record is
moved to the end of the data set. Hence, a program can maintain a table
of RBA values for the logical records in an entry-sequenced data set
that is used for direct record retrieval. The table must be updated
only when records are added to the data set and when a record size is
increased or decreased. An entry-sequenced data set can also be moved
from one direct access device type to another and programs need not be
modified because the RBA's of the logical records do not change.

An entry-sequenced data set can also be used like a EDAM data set.
Instead of using a table of RBA and control field values, a randomizing
routine can be used to associate the control field of a logical record
with an RBA. The entry-sequenced data set must be preforrnatted with
dummy records before the logical records are placed in the data set.

Processing summary

Table 90.30.1 summarizes the types of access supported for key­
sequenced and entry-sequenced data sets. All requests are made via GET
and PUT macros. VSAM supports processing capabilities that are not
provided by ISAM as follows:

• A group of additions that are in ascending sequence can be mass
inserted in a key-sequenced data set using sequential instead of
direct processing. Mass insertion should be used when the records
to be added will be placed between two existing logical records or
after the last record. The access method takes advantage of the
fact that the additions are in sequence by not writing a control
interval (and its sequence index record, if control interval
splitting occurs) until the control interval has been packed with
all the additions that will fit. The time required to make the
additions and update the index is significantly reduced, and the
index need not be searched to determine where each new logical
record is to be placed.

• Records can be retrieved directly from a key-sequenced data set
using a skip sequential technique. When a relatively small number
of transactions that are in sequence are to be processed, skip
sequential processing can be used to directiy retrieve the records
by key. Since the keys presented are in sequence, the access method

OS/Virtual Storage 1 Features Supplement 49

uses only the sequence set index level to locate the desired
records. Skip sequential processing can be used to avoid retrieving
the entire data set sequentially to process a relatively small
percentage of the total number of records, or to avoid using direct
retrieval of the desired records, which causes the entire index to
be searched for each record.

• Both sequential and direct processing can be performed on a key­
sequenced or an entry-sequenced data set using one OPEN and one
access control block (ACB). The ACB is the equivalent of a DeB for
VSAM. Closing and reopening of the data, as is required for an ISAM
data set, is not necessary.

Table 90.30.1. The types of access supported for VSAM data set
organizations. An entry indicates whether the function
is supported using sequential or direct processing,
whether or not a key or RBA is required, and whether or
not keys or RBA's must be presented in sequence.

Key-Sequenced Data Sets

Entry-Sequenced
Data Sets

Types of Keyed Keyed Addressed Addressed
Access sequential Direct Sequential Direct

Retrieval only X X X X
No key presented Keys not in No RBA RBA's not

sequence presented in
sequence

Skip sequential X
retrieval, update Keys in
and addition sequence

Retrieve and X X X X
update, No key presented Keys not in No RBA RBA's
including sequence presented in
changing record sequence
size

Add
Mass X
insertion Keys in sequence

Direct X X
insertion Keys not in No RBA

sequence presented

Delete X X (User must flag X
records)

Keys in sequence Keys not in RBA's
sequence not in

sequence

• several parts of a key-sequenced or an entry-sequenced data set can
be processed concurrently by a program or its subtasks using the
same ACB. This facility is called multiple-request processing~
several requests for the same data set can be grouped and issued as
one request with a single macro. Sequential-processing requests and
direct-processing requests can be mixed within the same multiple­
request group. A multiple-request can specify synchronous or
asynchronous processing. If synchronous processing is indicated,
one request in the group is processed at a time and control is

50 os/virtual Storage 1 Features Supplement

returned to the user (next instruction after the request) after the
access method has processed all requests in the group. If
asynchronous processing is specified, control is returned to the
user as soon as the multiple-request is accepted. Requests in the
group are processed one at a time and the programmer must check for
the completion of each individual request. Several asynchronous
multiple-request processing requests can be active concurrently for
the same data set. The access method processes each multiple­
request independently and asynchronously from all other outstanding
multiple-requests. Concurrently executing requests from different
multiple-requests can access the same logical record simultaneously
unless exclusive control has been specified. Within a partition,
exclusive control for update and insert requests is supported.

• Records can be retrieved directly from a key-sequenced data set by
RBAr generic key, or key greater than supplied key, as well as by
equal key. ISAM permits positioning by record ID, by generic key,
or by key greater than supplied key but the record must be retrieved
in sequential mode via a separate operation.

VSAM Catalogs

Unlike ISAM data sets, all VSAM data sets (index as well as those
with logical records) must be cataloged in a VSAM catalog, which is
formatted as a key-sequenced VSAM data set. Information required to
process a VSAM data set, such as its location and characteristics, is
contained in the VSAM catalog.

There must be one VSAM system catalog for a VSl operating system and,
optionallYr one or more VSAM user catalogs can be defined. Each catalog
is an individual data set. The VSAM system catalog data set is
cataloged in the VSl data set catalog (SYSCTLG), and each VSAM user
catalog has an entry in the VSAM system catalog. Each VSAM data set is
cataloged in the VSAM system catalog or a user catalog, but not both.
All VSAM data sets on the same volume must be cataloged in the same VSAM
catalog.

VSAM user catalogs can be used to reduce the size of the VSAM system
catalog (to reduce catalog processing time), minimize the effect of a
damaged catalog, and enable a VSAM data set to be portable from one
system to another without having to use the access method services
program to process VSAM catalogs.

The following information is recorded in the catalog entry for a VSAM
data set:

• Device type and volume serial numbers of volumes containing the data
set

• Location of the extents of the data set

• Attributes of the data set r such as control interval size, number of
control intervals, etc.

• Statistics such as the number of insertions, the number of
deletions, and the amount of remaining free space

• Password protection information

• An indication of the connection of a key-sequenced data set and its
index

• Information that indicates whether a key-sequenced data set or its
index has been processed individually (without reference to the other)

as/Virtual Storage 1 Features Supplement 51

A VSAM catalog also contains information regarding the available
space on volumes that contain VSAM data sets. Therefore, a volume
containing a VSAM data set need not be mounted in order to determine
whether or not it contains available space. VSAM catalog/DADSM
routines, instead of OS catalog and DAOSM routines, are used to process
the catalog and to allocate space in VSAM catalog and data set volumes.
Generation data groups of VSAM data sets cannot be defined in a VSAM
catalog. In addition, temporary and concatenated VSAM data sets are not
supported.

Access Method Services program

The access method services general purpose, multifunction service
program is provided to support functions required to create and maintain
VSAM data sets. Facilities to convert ISAM and SAM data sets to VSAM
organization are also included. The access method services program is
invoked via a calling sequence and the functions desired are requested
via a set of access method services commands. In VS1, the calling
sequence and commands can be placed in the input stream or issued within
a processing program.

The access method services program is used to:

• Define and allocate direct access space for all VSAM data sets and
all VSAM catalogs. The DEFINE function must be used to describe a
VSAM data set or catalog before any data is placed in the data set
or the catalog. A key range can be specified for each volume in a
key-sequenced data set.

• Create, reorganize, and back up VSAM data sets. Input to the copy
function can be an ISAM, SAM, or VSAM data set. The output can be a
VSAM or SAM data set. When the input and the output organizations
are different, conversion occurs. The COPY function, therefore, can
be used to convert an ISAM data set to VSAM format, initially create
a VSAM data set from sequenced records, merge new logical records
into an existing VSAM data set, and reorganize a VSAM data set.

• Print all or some of the logical records of a SAM, ISAM, or VSAM
data set. Three formats are supported: each byte printed as a
single character, each byte printed as two hexadecimal digits, and a
combination of the previous two (side by side).

• Maintain VSAM catalogs (alter, delete, or list catalog entries),.
Certain characteristics of a VSAM data set can be modified by
altering the catalog entry for the data set.

• Perform processing required to make a VSAM data set portable from
one System/370 to another if a user VSAM catalog is not available.
This involves extracting required information about the VSAM data
set from the VSAM system catalog of one operating system and
inserting this data in a VSAM catalog of another operating system.

• Verify the accessibility of an existing VSAM data set. This
function involves checking for a valid end-of-file indication and
reestablishing the EOF record when necessary.

Since VS~M data sets must be cataloged, and the access method
services program must be used to define and allocate space for VSAM data
sets, a minimum number of job control parameters for 00 statements are
used by VSAM. Three new 00 statement parameters are defined for VSAM:
JOBCAT and STEPCAT for specifying VSAM catalogs, and AMP for overriding
parameters specified in the processing program.

52 Os/virtual Storage 1 Features Supplement

Password Protection

An expanded password protection facility is supported for VSAM.
Optionally. passwords can be defined for logical record data sets, index
data sets. and VSAM catalogs. Passwords are kept in VSAM catalog
entries. The operator must supply the correct password in order for a
data set to be opened. Up to seven retries can be made.

Multiple levels of protection are provided:

• Master access. which allows access to a data set, its index, and its
catalog entry. Any operation (read, add, update, delete) can be
performed.

• Control interval access. which allows the user to read and write
entire control intervals instead of logical records. This facility
is not provided for general use and should be reserved for system
programmer use only.

• Update access. which allows logical records to be retrieved, updated,
deleted. or added. Limited modification of the catalog entries
for the data set is permitted, but an entry cannot be deleted.

• Read access. which allows access to a data set for read operations
only. Read access to the catalog entries of the data set is
permitted also. No writing is allowed.

Authorization to process a VSAM data set can be supplemented by a
user-written security authorization routine. If supplied, such a
routine is entered during OPEN processing after password verification
has been performed. unless the master-access password was specified. A
user-security authorization record can also be added to the catalog
entry for the data set. This record can supply data to the user=written
security authorization routine during its processing.

ISAM Interface Routine

The ISAM interface routine is provided as an aid in converting from
ISAM organization to VSAM organization,. It enables existing programs
that process ISAM data sets to be used to process key-sequenced VSAM
data sets without modification of ISAM macros. The VSAM data sets can
be newly created or those that have been converted from ISAM format to
VSAM key-sequenced format. The ISAM interface routine permits VSAM key­
sequenced data sets to be processed by both ISAM programs and VSAM
programs. This allows existing ISAM application programs to be used and
additional applications that take advantage of new VSAM facilities to
process the same VSAM data sets.

The ISAM interface routine operates in conjunction with VSAM access
method routines. The interface routine intercepts ISAM requests and
converts them to equivalent VSAM requests. Hence, only functions of
ISAM that are equivalent to those of VSAM are supported by the ISAM
interface routine. There are a few ISAM facilities that the ISAM
interface routine does not support. These are discussed in OS/VS
Virtual Storage Access Method Planning Guide, GC26-3199. Similarly, if
VSAM facilities that are not supported by ISAM are to be used, an
existing ISAM program must be modified to define a VSAM data set and to
use VSAM macros. Assembler Language macros for ISAM and VSAM are not
compatible.

When the ISAM interface routine is used by an ISAM program, existing
job control for the ISAM data must be modified as appropriate. The ISAM
interface routine and the access method services program simplify the

os/virtual Storage 1 Features Supplement 53

amount of effort required to replace ISAM data set organization with
VSAM organization within an installation.

summary

Highlights of VSAM when it is compared with ISAM are as follows.

VSAM provides new features:

• Two data organizations are supported, one with records in key
sequence and one with records in time-of~arrival sequence.

• Data sets are device-type independent.

• Direct access space utilization is maximized by device type by using
spanned blocked logical records within a control interval.

• Additions and index entries are blocked, which also reduces disk
space requirements.

• Secondary space allocation is supported so that an existing data set
can be extended.

• Free space for additions can be allocated at more frequent intervals
throughout the allocated extents when the data set is created.

• Free space reclamation capabilities are expanded considerably, which
can eliminate or significantly increase the time between data set
reorganizations.

• Password protection is extended to provide more levels of protection,
and user-written security protection routines are supported.

• Disk volumes containing VSAM data sets are portable between DOS/VS
and OS/VS when VSAM features supported by both OS and DOS are used.

VSAM provides performance enhancements:

• Mass insertion processing reduces the time required to insert a
group of new sequenced records between two existing logical records
or at the end of the data set.

• Skip sequential processing reduces the time required to sequentially
process a low volume of transactions.

• Total index size is reduced by compressing keys and blocking index
entries. This minimizes index search time.

• Overflow chains are eliminated, which reduces the time required to
make an addition.

• The same time is required to retrieve an added record as an original
record.

• Index set and sequence set index records can be replicated to
significantly reduce rotational delay when accessing index records
on disk.

• Index set records, up to a maximum of all index set records, can be
resident in virtual storage.

Table 90.30.2 compares the features of VSAM and ISAM as supported in
OS/VS1 and OS/VS2.

54 as/Virtual storage 1 Features Supplement

o
en
......
<:
~.

I'i
rt
c:
OJ
I-'

en
rt o
I'i
Q.I

I.Q
(1)

.....
I-lj
(1)
Q.I
rt c:
I'i
(1)
en
en
~ :g
I-'
(1)

~
l:'
rt

U1
<.J1

Table 90.30.2. Comparison table of VSAllil and ISAM facilities for OS

Characteristic

1. supporting os environments

2. Direct access devices
supported
a. RPS supported
b. Track overflow supported

3. Types of organization
a. Key-sequenced

b. Entry-sequenced

4. Multiple extents and volumes
for a data set
a. secondary space allocation

indicated at creation

b. Volumes of the same device
type required

c. All volumes must be online
at OPEN regardless of the
type of processing

d. Free space available
within the logical record
area

e. Data set is device
independent

5. Key-sequenced organization
data set characteristics
a. Fixed and variable length

logical records

b. Key field is written on
disk

VSAM - OS

VS1 and VS2

2314.12319, 3330-series~ 23105 Models
1 and 2
Yes
No

Yes
Records are m~intained in ,ascending
sequence by key. An index is provided.
The logical records and the index are
two separate data sets. The key­
sequenced data set contains logical
records, distributed free space for
additions (as an option), and,
optionally, the sequence set index
level.
Yes
Records are sequenced by the order in
which they are placed in the data set.
Records are added to the end of an
existing data set. No indlex is provided.

Yes

Yes

Yes for logical record extents. The
index set can be on a device type that
is different from that whh::h contains
the key-sequenced logical records.

NO

Yes (for key-sequenced data sets)
within control intervals and control
areas. Free space is distributed within
the tracks of a cylinder.

Yes
RBA pointers are used in the control
interval and in the index

Yes
Spanned blocked record format is used
within a control interval. Original
records and additions are blocked.

No
Records are written in count and data
format.

ISAM - os

PCP, MFT, MVT, VS1 and VS2

Same as VSAM plus 2301, 2302, 2303,
2311, and 2321
Yes
No

Yes
Records are maintained in ascending
sequence by key. An index is provided
that is part of the ISAM data set. The
prime area contains logical records, the
track index, and optionally overflow
tracks in each cylinder for additions.
A separate additions area can exist also.
The cylinder and master index levels are
a separate extent.
Not supported

Yes

No
The space originally specified cannot be
extended
Yes for all the volumes containing prime
and separate overflow area extents. Index
levels can be on a device type that is
different from that which contains prime
and overflow areas.
Yes

Yes, optionally. at the end of each prime
cylinder. Free space on tracks within
the prime cylinders can be created only by
including deleted records when the data
set is created.
No
Record address ID (CCHHR) is used in
index pointers

Yes
Fixed or variable, blocked or unblocked
record formats are used for prime records.
Records in an overflow area are always
unblocked.
Yes
Records are written in count, key, and
data format.

V'I
CI'\

o
en
.....
<:
~.

Ii
("t
~
III
I-'

en
("t
o
Ii
III

t.Q
Cl)

....
t-zj
Cl)
III
("t
~
Ii
Cl)
en
en
~
ro
ro
I-'
Cl)

~
Cl)
~
("t

Table 90.30.2. Comparison table of VSAM and ISAM facilities for OS (continued)

Characteristic

c. Key field must be embedded
within each logical record

d. Key must be fixed length
e. Logical records with

duplicate keys permitted
f. Physical record sizes

supported

6. Index structure
a. Number of levels

b. Nondense index
c. Key field written

d. Index records are blocked
e. Index record size

f. Keys are compressed

g. Index record replicated
on track to reduce
rotational delay

h. Sequence set index level
adjacent to logical records

i. Index resident in Virtual
storage

j. Multiple indexes for the
same key-sequenced data set

7. Types of processing supported
for key-sequenced data sets
a. sequential retrieval and

update without presenting
key

b. Skip sequential retrieval
and update (by keys
specified in sequence)

VSAM - OS

Yes

Yes
No

512, 1024, 2048, and 4096 bytes only

Two to N based on the number of index
entries required and their size. Index
is a balanced tree with one index record
in the highest level index.
Yes
No
Index records are written in count
and data disk record format.
Yes
Fixed length and determined by
system.
Yes
Both front and rear compression is
performed to eliminate redundant
characters.
Yes, as an option.

Optional
If chosen, sequence set index records
are replicated at the beginning of
each control interval area.
Standard
As many index records as will fit in
the user-specified buffer can be
resident, up to a maximum of all index
set records.
No

Yes
Each logical record is presented in key
sequence. The sequence set index level
is used.
Yes
Only the sequence set index level is
used.

-

ISAM - OS

Yes, except for unblocked fixed length
records
Yes
No

Block size specified by the user up to a
maximum of the track size.

Track and cylinder index levels are
required. Up to three master index
levels are optional.

Yes
Yes
Index records are written in count, key,
and data disk record format.
No
Data field is always 10 bytes. Key field
is key size.
No
Full key is always written

No

Standard
Track index is always on the first track(s) of
prime cylinders.

Optional
Only the highest level can be made resident.
Residence of part of an index is not supported.

No

Yes
Each logical record is presented in key sequence.
The track index is used.

No

....-....

o
~

~
Ii

S'
III
en
('t
o
Ii
III

I.Q
(i) -
I-%j
(i)

~
Ii
(i)
CI)

~
~

I

U'I
..,J

Table 90.30.2. Comparison table of VSAM and ISAM facilities for OS (continued)

Characteristic

c. sequential retrieval and
update by record address

d. sequential updating by
sequenced keys without
retrieving records

e. Direct retrieval and
update by generic key.
equal key, or key-greater­
than the specified key

f. Direct retrieval and
update by record address

g. Additions by direct
processing

h. Additions by mass insertion
using sequential processing
and key sequenced additions

i. Concurrent sequential and
direct processing of the
same data set with a single
OPEN

j. Deletions physically
removed

k. Logical records can be
lengthened or shortened

1. Multiple-request processing
is supported within a
single program or a program
and its subtasks.

m. write check after a write
n. Locate and move mode

processing
o. OPEN validation of end-of­

data indication

8. Checkpoint/restart facilities

9. Password protection

VSAM - os

Yes, via presenting RBA's in sequence

No

Yes

Yes, via RBA

Yes

Yes

Yes

Yes
Records are shifted and free space
is reclaimed.

Yes, and space is reclaimed for a
shortened record.
Yes, with one ACB.

Optional
Locate mode for read-only operations and
move mode supported
Yes
AbnOlrmal termination never occurs
during OPEN processing.

Yes, same as for ISAM

Yes
Levels supported for the UBer are:
• Master access - allows access to the

da1:a set, its index data set, and
its catalog entry for all operations

ISAM - os

Positioning via a SETL macro using record ID
(CCHHR) is supported. Record must be
retrieved sequentially after positioning.
Yes

Yes for equal key. Generic key and key
greater than specified key can be used in a
SETL macro for positioning. The record must
be retrieved separately using sequential mode.
Yes, via record ID (CCHHR)

Yes

No

No
The data set must be closed and reopened to
change modes. Alternately two DCB's,
one for sequential and one for direct
processing, can be used.
Limited
Records are flagged when deleted.
Deletions are physically removed only if
they are forced off a prime track or when a
full track of variable length records is
reorganized for an addition. A record that
is marked deleted can be replaced with a
record of the exact same size.
Yes

Yes, using multiple DCB'·s.

Optional
Yes

Yes
Abnormal termination can occur during OPEN
processing.

Yes

Yes
Two levels of protection are provided. If the
current password is presented, the data
set can be opened for read only or for read
and write processing.

U1
00

o en ,
<:
1--1'

:+ c:
III
1-1

en
rt
o
Ii
III

l.Q
(!)

.....
t'%j
(!)
III
rt c:
Ii
(!)
en

en
~

"'0
"'0
1-1
(!)

S
(!)

~

.-.

Table 90.30.2. Comparison table of VSAM and ISAM facilities for OS (continued)

Characteristic VSAM - os

• Control interval access - allows
read/write of entire control
interval instead of individual
logical records.

• Update access - allows access to the
data set and its index for retrieval,
updating, deletions, and additions.
Limited modification of catalog entries
for the data set is permitted but an
entry cannot be deleted.

• Read access- allows retrieval of
data records and catalog entries
(no writing of any kind).

a. User written authorization Yes
routines supported

10. Da.ta set sharing
a. Within a partition
b. Across partitions

(DISP=SHR)
c. Across systems

11. Data set cataloging

12. Languages supporting VSAM

13. VSAM data set direct input
to sort/merge

14. Utility program fUnctions

Yes, with exclusive control support
Yes, without exclusive control support

Yes, exclusive control can be achieved
using the RESERVE macro

Required
The VSAM system catalog or a
VSAM user catalog must be used.

Assembler
COBOL (via ISAM interface routine)
PL/I (via ISAM interface routine)

No

Access method services program can
perform the following:
• Define direct access space for a

VSAM data set
• List, alter, or delete an existing

VSAM catalog entry
• Create new and reorganize existing

VSAM data sets
• Copy a VSAM, ISAM, or SAM

disk data set to a new
SAM data set or into an
existing VSAM data set

• List some or all of the records in a
VSAM, an ISAM, or a SAM data set

• Perform functions required to make a
VSAM data set portable from one system
to another

• verify and reestablish, if necessary,
the end-of-file marker in one VSAM
data set

.-.

ISAM - OS

No

Yes, with exclusive control support
Yes, with exclusive control support

Same as VSAM

Optional
The OS data set catalog is used. There is
no special catalog for ISAM data sets.

Assembler
COBOL
PL/I
RPG

NO

IEBISAM utility can perform the following:
• Copy an ISAM data set from one disk

volume to another, dropping deletions and
merging additions into the prime area

• Unload an ISAM data set onto a tape or
a disk volume, dropping deletions and
creating a backup sequential data set
suitable for input to the load operation
to re-create the ISAM data set

• Load a previously unloaded ISAM data
set from tape or disk onto a disk
volume merging additions into the
prime area

• Retrieve and print the records of an
ISAM data set, except deletions, or
create a sequentially organized data
set from active records

.-...

90:35 PAGE MANAGR~ENT

GENERAL FUNCTIONS

Page management consists of a set of routines that manage real
storage and external page storage. Page management implements demand
paging and provides the program support required by dynamic address
translation hardware for implementation of a virtual storage
environment. The following routines are part of the page management
function and are contained in the resident nucleus:

• Page exception handler
• service interface routine
• Task switch analysis routine
• Real storage management routines
• External page storage management routines

The page exception handler and service interface routines channel
requests to the task switch analysis routine, which processes certain
types of requests and passes others to real storage management and
external page storage management routines for servicing. The last two
routines are referred to as the page supervisor, and operate as a task.
The page supervisor has the highest priority of any task in the system.

The page exception handler (PEH) is entered after an implicit request
for a page management service occurs (page translation exception). The
PEB constructs a control block to describe the request ,and passes it to
the service interface routine as an explicit request.

The service interface routine receives all explicit requests for page
management services. The following services can be requested via page
management macros:

• Make one or more virtual storage pages addressable and mark them
fixed (PGFIX macro). Available page frames are allocated to the
virtual storage pages and, if necessary, page-in operations are
scheduled to cause the contents of the virtual storage pages to be
loaded. A release parameter can be specified to indicate that a
page-in is not required, such as when page frames are allocated for
buffer space. Pages marked fixed cannot be paged out until a PGFREE
macro is issued. PGFIX requests can also request that the real
addresses of the page frames assigned be made available to the
requester.

• Make one or more virtual storage pages add~essable (PGLOAD macro).
The service performed is like that for PGFIX except that the page
frames allocated are not fixed. The PGLOAD macro provides a page­
ahead facility.

• Mark the page frames allocated to the virtual storage pages
indicated unfixed (PGFREE macro). A release parameter can also be
specified to indicate that the contents of the unfixed pages are no
longer required so that a page-out is avoided.

• Deallocate the page frames allocated to the virtual storage pages
indicated (PGRLSE macro). The page frames are made available for
allocation without a page-out. The virtual storage pages specified
are marked invalid in the appropriate page table entries.

Page management services are implemented primarily for use by control
program routines. The PGRLSE macro is the only page management macro
that can be issued by a problem program. The other page management
macros can be issued by a task if the task operates in supervisor state
or has a protect key of zero.

OS/Virtual Storage 1 Features supplement 59

REAL STORAGE MANAGEMENT

Real storage management routines process requests for the allocation
and deallocation of real storage (page frames). The technique
implemented is designed to keep real storage allocated to the pages that
are deemed to be the most active at any time. Real storage management
also monitors the availability of real storage and, when it is about to
become totally allocated such that thrashing will occur, takes steps to
prevent this condition.

The status of all real storage in the system is reflected in the real
storage page table (RSPT), which is located at the end of the resident
control program in the nonpageable area of real storage. The RSPT
contains one 16-byte entry for each 2K page frame in the system. The
entries in the RSPT are arranged in several page status queues. That
is, entries are connected by pointers to form various queues. The RSPT
entries are initialized at IPL and thereafter always reflect the current
status of each page frame.

An RSPT entry contains identification of the task to which it
belongs, the number of the virtual storage page to which it is assigned,
flags to indicate its status (short- or long-term fixed, being paged in
or out, allocated to a nonpageable job step, etc.), and queue pointers
to indicate the page status queue of which it is a part.

Logically, the following page status queues are maintained:

• Available page queue that indicates the page frames that are
available for allocation when page faults and page load/fix requests
occur. When page frames are released, such as at end of job step,
they are placed in this queue. Allocated page frames that become
inactive can be placed on this queue. An available page count (APe)
is maintained that always reflects the number of page frames in this
queue.

• In-use queues that reflect the allocated page frames that are not
fixed. As page frames in the in-use queues become inactive, they
are subject to being placed in the available page queue.

• Logical fix queue that indicates the page frames that are currently
in long- or short-term fixed status (SQA, fixed PQA, nonpaged job
step pages, nucleus pages, I/O buffer pages, etc.). RSPT entries
for fixed pages are not actually connected to form a queue.

• Malfunctioning page queue that contains the page frames that cannot
be assigned because the MCH routine indicated they are
malfunctioning (see discussion in Section 90:40)

The dynamic storage allocation routine is responsible for serv1c1ng
real storage allocation requests. The allocation technique implemented
attempts to (1) minimize paging requirements associated with the real
storage allocation process itself, (2) minimize task wait time
associated with real storage allocation, and (3) keep real storage
assigned to the most active pages to reduce paging activity for
executing tasks.

Real storage is allocated from the available page queue, which
contains unassigned page frames. Frequently referenced page frames are
normally not taken from one task to be allocated to another. If a
situation arises in which there are no unassigned page frames avail~ble
for allocation to a task, the real storage release routine is entered to
make real storage available. If there are not enough allocated page
frames that were not recently referenced to satisfy the request, a
deactivation procedure is entered to make real storage available.

60 OS/Virtual Storage 1 Features Supplement

Tasks execute on a priority basis and, therefore, requests for page
frames are received and serviced on a priority basis. However, page
management does not ever attempt to ensure that a given number of page
frames are allocated to each task (page frames are allocated to the
currently most active pages without regard for the task to which they
belong). Unauthorized pageable problem programs do not have any control
over when or how many page frames are allocated to their pages.

Real Storage Allocation Procedure

The following is done to service a real storage allocation request
(refer to Figure 90.35.1). The real storage reclamation routine, a
subroutine of the dynamic storage allocation routine, determines whether
a page-in can be avoided because the contents of the referenced virtual
storage page are still in real storage. This condition exists when the
page frame last assigned to the virtual storage page has not yet been
reassigned. It can also ocCur when a page-in that was initiated by a
previous request for the same page makes the page available after the
second page fault occurs. If the RSPT entry for a desired page frame is
still in the available page queue, an in-use queue, the page-out queue,
or the logical fix queue, page reclamation is possible and the page
frame is reassigned without a page-in.

If reclamation is not possible. the dynamic storage allocation
routine attempts to allocate the requested number of page frames from
the available page queue. If the number of page frames requested can be
allocated from this queue, their RSPTentries are removed from the queue
and the available page count is decremented. If a page-in is required
for a page (user bit in the page table entry is on), the RSPT entry of
the page frame assigned is placed in the appropriate page-in device
queue. Otherwise, the RSPT entries are placed in an in-use queue or in
fixed status and the allocated page frames are initialized to zero (for
data security protection). The appropriate page table entries are
updated to reflect the al~ocation of real storage.

If the allocation request does not indicate long-term fixing, page
frames are allocated from the beginning of the available page queue. If
the request does indicate long-term fixing, an optimization routine is
entered to select a page frame that will least fragment real storage.
This is done to leave as much contiguous real storage available as
possible for allocation to nonpageable job steps. A page frame close to
the end of the resident control program or the V=R line that is not
currently fixed, or conditionally allocated to a nonpageable job step,
or in a page-in operation is chosen as the optimum page frame. If the
optimum page frame chosen is currently allocated to a virtual storage
page, an available page frame is obtained and the contents of the
selected optimum page frame are moved to it.

A request for SQA has the highest real storage allocation priority.
If an SQA request cannot be satisfied, the requesting task is terminated
or system processing terminates, depending on the reasons for the SQA
request.

If the available page queue does not contain enough page frames to
service a request, or if the available page count (APe) reaches or falls
below an APe low threshold value as a result of page frame allocation,
the dynamic storage allocation routine gives control to the real storage
release routine. The APe low threshold is used to indicate the point at
which the available page queue should be replenished with least-recently
referenced page frames from the in-use queues. The real storage release
routine performs the replenishment function.

as/Virtual Storage 1 Features Supplement 61

Page

translation

exception

interrupt

Page Exception

Handler formats

control blocks

for request

Service Interface

Routine

Task Switch

Analysis Routine

Real Storage

Reclamation

Routine

Dynamic Storage

Allocation

Routine

Figure 90.35.1.

62

Yes

Yes

Explicit

real storage

request via a
macro

Place in page-out

queue

Allocate page

frame

A Ilocate page
frame and schedule

page-in if necessary

No

Dynamic
Allocation Routine

calculates number
of page frames

requ ired to meet
APC high
threshold

Request

Satisfied

Page

Replacement
Algorithm

I nspect level 0

in-use queue

Request

satisfied

Turn reference bit

off and move RSPTE

to level N queue

Place in available
queue

No

Task Deact ivation

Routine

Flow of the real storage allocation procedure

os/virtual Storage 1 Features Supplement

The aim of the real storage release routine is to keep enough page
frames in the available page queue to enable the dynamic storage
allocation routine to allocate real storage without the necessity of a
page-out operation. This routine calculates the number of page frames
that should be placed in the available page queue in order to satisfy a
request and raise the APC to a satisfactory level (a high threshold
value for the APC). A request for the number of page frames calculated
is passed to the page replacement algorithm.

The function of the page replacement algorithm is to replenish the
available page queue by enqueuing on it least-recently referenced page
frames taken from the in-use queues. If a page~out operation is
required (change bit for the page frame is on), the RSPT entry is routed
to the appropriate page I/O device queue. The technique used to
determine which page frames to remove from the in-use queues is designed
to ensure that the most recently referenced pages remain in real
storage.

In order to determine the activity of pages, a series of in-use
queues that contain RSPT entries are maintained. The number of active
in-use queues at any given time is determined by the number of active
partitions and system functions. Each in-use queue is assigned a
reference level sequence number 0 to N. The reference level 0 in-use
queue contains entries for the page frames referenced longest ago and,
hence, tends to identify the least active pages. The reference level N
in-use queue contains entries for the page frames most recently
allocated and referenced ahd tends to identify the most active pages.
The reference level N-l queue indicates the next most active pages, etc.

An RSPT entry is placed in the level N in-use queue when it is
assigned to a virtual storage page. If the RSPT is taken from the
available page queue, its reference bit is turned on. If a page-in
operation was required prior to placing the RSPT in the level N queue,
the reference bit is already on as a result of the I/O operation. Page
management ensures that the reference bit is turned on when a page frame
is allocated so the RSPT entry will cycle through the in-use queues at
least twice before it becomes eligible for placement on the available
page queue. This technique allows a task to use a page frame it has
been assigned before the page frame becomes eligible for assignment to
another page.

The activity (frequency of reference) of a page frame is determined
by inspecting its reference bit setting at certain intervals. The
frequency of reference of page frames in the in-use queues is measured
at problem program task switch time by the page replacement algorithm.
Activity measurement is not performed every time a task switch takes
place. The frequency of measurement is based on the number of active
initiators. As the number of active initiators increases, the frequency
of measurement decreases. As the number of active initiators decreases,
the frequency of measurement increases. Hence, the number of problem
program task switches that occur between measurements can vary.

At measurement time, all the RSPT entries from the reference level 1
queue, if any, are moved to the end of the level 0 queue. Then, the
RSPT entries in all reference level queues except the level 0 queue are
shifted to the next lowest reference level queue (all level 2 entries
are placed in the level 1 queue, all level 3 entries are placed in the
level 2 queue, all level N entries are placed in the level N-l queue).
Reference bits are not reset. Once the level shifting is complete, the
reference bit of each RSPT entry in the reference level 0 queue, up to a
maximum of 20 entries, is inspected from top to bottom. Only 20 ent'ries
are inspected in order to limit the time required to process the level 0
queue. If the reference bit in the page frame associated with an RSPT
entry is on, indicating the page was referenced during processing that
occurred since frequency of reference was last measured, the RSPT entry

os/virtual storage 1 Features Supplement 63

is placed at the end of the level N queue and its associated reference
bit is turned off. Level 0 then contains entries only for pages that
have not been referenced since the last measurement (if it contains
fewer than 21 entries).

Using this technique r page frame entries move toward the level 0
queue. If the page to which an RSPT entry is assigned has not been
referenced during the period of time it takes the entry to get to the
level 0 queue r the entry is considered to be assigned to an inactive
page and is subject to being placed in the available page queue. The
available page queue is not replenished at measurement time. (Figure
90.35.2 illustrates page activity measurement processing.)

When the page replacement algorithm receives a replenish request r it
attempts to satisfy the request by placing the indicated number of page
frames in the available page queue. Initially, only page frames
contained in the reference level 0 queue are eligible to satisfy a
replenish request. To determine the activity of the pages represented
in the level 0 queue r the page replacement algorithm inspects the
reference bits associated with the RSPT entries in this queue, starting
with the first RSPT entry in the queue. If the reference bit is on for
a page frame, its RSPT entry is placed in the reference level N queue
and the reference bit is turned off. If the reference bit is off, the
change bit determines where the entry is placed. If the change bit is
off, the entry is placed in the available page queue. If the change bit
is on, the entry is placed in the appropriate page I/O device queue so
that the contents of its associated page frame can be written out before
the entry is placed in the available page queue. Inspection of the
level 0 queue RSPT entries continues until enough unreferenced page
frames to satisfy the request are selected or until the entire queue has
been searched.

The page replacement algorithm returns control to the real storage
release routine and r if the replenish request could not be satisfied,
indicates how many of the page frames requested could not be released
(placed in the available page queue or a page I/O device queue). This
data is returned to the dynamic storage allocation routine. If the
request was satisfied r the next queued real storage request is
initiated. If the request was not satisfied, which signifies that real
storage could not be allocated unless it was taken away from other
active pages r the task deactivation/reactivation module is entered.

The primary function of the deactivation/reactivation module is to
adjust the paging activity of the system to the availability of real
storage so that throughput is optimized. When real storage is totally
allocated and a real storage request must be satisfied r the deactivation
routine attempts to select active page frames to satisfy the request
such that paging activity is reduced. Similarly, the reactivation
routine does not attempt to reactivate a deactivated partition until it
determines that real storage is not being fully utilized so that
reactivating a partition will not cause excessive paging to recur.

The task deactivation routine attempts to suspend the processing of a
pageable problem program task (mark it nondispatchable) so that the real
storage currently allocated to the task can be released and made
available for allocation. Only dispatchable pageable partitions that
are not in a disabled state and that do not have system-must-complete­
ENQ's outstanding are eligible for deactivation. A partition is not
deactivated if it currently is the only dispatchable partition and PO is
never deactivated.

64 OS/Virtual Storage 1 Features Supplement

I

Status of page queues and page frames at activity measurement time

I n-use queues
~ ____________________ ~A~ ____________________ ~

0 Page 18 0 Page 0 0 Page 7 0 Page 9 Page 14

0 Page 19 0 Page 1 0 Page 8 0 Page 10 Page 15

0 Page 20 0 Page 2 0 Page 5 Page 12 Page 16

0 Page 21 0 Page 3 Page 6 Page 13 Page 17

0 Page 22 Page 4 Page 11

t
Page frames ~ 0 ~ P'!l' lcom' "I,,,",, b;' ;; off
available

for allocation 1 = page frame reference bit is on

Status of page queues and page frames after activity measurement time

Available Reference

queue I I ievei 0

l l
0 Page 18 0 Page 0

0 Page 19 0 Page 1

0 Page 20 0 Page 2

0 Page 21 0 Page 3

0 Page 22 0 Page 7

0 Page 8

101 Page 5

Reference

I I ievei 1

1
0 Page 9

0 Page 10

1 Page 12

1 Page 13

1 Page 11

Reference

i

Page 14

Page 15

Page 16

Page 17

Reference

level N

Measurement Steps

} RSPTE,

1. Append RSPT entries (RSPTE's) from the level 1 queue to the level 0
queue (RSPTE's for pages 7, 8, 5, 6).

2. Shift RSPTE's on all reference level queues one level to the left,
except for RSPTE's on the level 0 queue, placing shifted RSPTE's at
the end of the new queue.

3. Move all RSPTE's from the level 0 queue to the level N queue that
have their reference bit on in the associated page frame, and reset
the reference bit to zero (RSPTE's for pages 4 and 6).

Figure 90.35.2. Example of page activity measurement

OS/Virtual Storage 1 Features Supplement 65

The lowest priority eligible partition is selected for deactivation
first. After a partition has been suspended, the task deactivation
routine makes the page frames assigned to the deactivated partition
available by queuing their RSPT entries in the level 0 reference queue
and turning off their reference bits. Control is returned to the
dynamic storage allocation routine which attempts to satisfy the
allocation request. If deactivation of the partition did not release
enough page frames to satisfy the request, the next lowest priority
partition is deactivated if it is eligible.

If no partitions are eligible for deactivation or if deactivation
fails to make the required number of page frames available, a
determination of whether any deferred V=R allocation requests are
pending is made. If such a request is pending, it is overridden, and
any page frames conditionally assigned to the V=R request are made
available. The operator is notified and can request cancelation of the
nonpageable job. If this procedure does not make enough page frames
available, the in-use queues are inspected in lowest to highest level
sequence and page frames are taken from the lowest level in-use queues
first. This process continues until the request is satisfied.

The determination of whether or not partition reactivation can take
place is made when the system is about to enter the wait state, a
situation that could indicate a reduction in paging activity. At that
time, the reactivation routine checks to see if there is paging I/O
currently in progress (which could indicate that high paging activity
has caused the system wait), there is pending I/O activity, or a
significant portion of real storage is fixed (which temporarily makes
less real storage available for paging). Reactivation does not occur if
anyone of these conditions exists or if there is not enough real
storage available to reactivate the task. Reactivation also occurs if
no paging activity has occured for the last six seconds and enough page
frames are available, or if a partition runs out of work and enough page
frames are available. When partition reactivation is performed, the
highest priority deactivated partition is reactivated first. Only one
deactivated partition is reactivated at this time.

Allocation of ~ V=R Area to ~ Nonpaqeable Job Step

Real storage allocation requests for nonpageable job steps have the
lowest allocation priority if they must be enqueued because they cannot
be satisfied immediately. Real storage allocated to a nonpageable job
step must be contiguous and if a nonpageable job step is being
restarted, the same page frames previously allocated must become
available before the allocation request can be satisfied.

Prior to passing a V=R storage allocation request to the V=R
allocation routine, the task switch analysis routine determines whether
the request is too large to be satisfied. If allocation of the number
of page frames indicated in a V=R request would cause the number of page
frames available for paging operations to be reduced below the minimum
requirement, a message is given to the operator indicating that the
request cannot be satisfied.

The V=R allocation routine inspects the RSPT for a contiguous area
within the V=R area that is large enough to satisfy the request (areas
between long-term fixed pages). If long-term fixed pages have
fragmented real storage within the V=R area to the extent that there is
not enough contiguous real storage to satisfy the request, the operator
is informed and can reply with a cancel or a retry request.

If the required contiguous space is conditionally available (the area
contains only page frames that are available, that are allocated but not
fixed, or that are short-term fixed), the RSPT entries for the area are

66 OS/Virtual Storage 1 Features Supplement

considered conditionally available and are marked for interception and
allocation to the current V=R request. Available page frames in the
area selected are allocated to the V=R request immediately and the
residual allocation count, which indicates the number of additional page
frames required to satisfy the request, is updated. As RSPT entries
that are flagged as conditionally assigned are intercepted (when a
PGRLSE is processed, when the available page queue is replenished, for
example) and allocated to the V=R request, the residual count is
decremented. When the count reaches zero, the V=R allocation request is
satisfied.

Real Storage Release

The task switch analysis routine processes PGRLSE requests. The
entries for the page frames allocated to the virtual storage pages being
released are taken from the queue on which they reside (in-use or page­
out) and placed in the available page queue. The appropriate page table
entries are invalidated and the user bit in these entries is turned off.
A page-out is not required. In addition, the storage protect key is
stored in the associated page table entry.

EXTERNAL PAGE STORAGE MANAGEMENT

External page storage management routines initiate I/O operations on
paging devices in response to page-in and page-out requests. They also
perform required processing after paging I/O operations terminate. Two
sets of queues are used to maintain control over paging operations: the
page I/O device queues and the page I/O in-progress queue.

The page I/O device queues are constructed by real storage management
routines and they contain page-in and page-out requests. There is a
page-in and a page-out queue for each direct access device that contains
a page data set. First-in, first-out queuing is used within the page-in
queue and the page-out queue for a device. The page-in queue for a
paging device has priority over the page-out queue for the device.

All page-in queues have priority over all page-out queues. The page­
in queues for paging devices are arranged in priority sequence according
to the virtual storage addresses mapped on the paging devices, and are
followed by page-out queues arranged in the same priority sequence.
That is, the page-in queue for the paging device whose page data set is
assigned to the highest addressed paged virtual storage has the highest
initiation priority. The page-in queue for the paging device assigned
to the lowest addressed paged virtual storage (immediately above the V=R
line) has the lowest initiation priority within the page-in queues. The
page-out queue for the paging device that is to contain the highest
addressed paged virtual storage is next in the total paging queue, etc.
When different direct access device types are allocated as paging
devices, the highest addressed virtual storage is associated with the
fastest direct access device types. Hence, the faster paging devices
are associated with the pageable supervisor area and the higher priority
partitions, and they have priority over the slower paging devices for
the initiation of paging requests.

The page I/O in-progress queue indicates the page-in and page-out
requests that have channel programs constructed. Requests are moved
from the page I/O device queues to this queue as they are selected and
initiated.

The page I/O processor routine initiates paging I/O operations in the
sequence indicated by the page I/O device queues. Page-in requests for
a given page device with a movable arm have priority over page-out

os/virtual storage 1 Features Supplement 67

requests unless the requests can be merged into a single channel program
because they refer to the same cylinder.

A nonstandard interface to lOS for page I/O processing is required
because of the specialized organization used for the page file.
Therefore. the page I/O processor uses a tailored EXCPVR level to
initiate paging I/O operations. It constructs its own ccw lists and
performs channel program translation using the page device descriptor
tables. which are located at the end of the resident control program in
the nonpageable area of real storage. Channel programs are constructed
such that the time taken for paging I/O operations is minimized.
Rotational position sensing is supported when present for the paging
device.

The number of requests in a paging channel program varies by paging
device type. Up to three page requests are combined in 2314/2319
channel programs to ensure that the channel is not busy for too long
when servicing a paging I/O request to this device type. Up to five
page requests are chained together in 3330-series channel programs. Up
to six page requests are placed in a 2305 Model 2 channel program.
Three nondedicated exposures per 2305 volume are used for paging so that
three paging channel programs can be active concurrently. For
performance reasons. page-out write operations are not verified by
reexecution of the CCW list.

When a page-in operation completes successfully. its associated RSPT
entry is placed in the level N queue or in fixed status. The reference
bit for the real storage page frame is left on but the change bit is
turned off. The invalid bit in the page table entry for the virtual
storage page whose contents were paged in is turned off. If a permanent
I/O error occurs during a page-in I/O operation, the task that required
the page-in is abnormally terminated.

When a page-out operation completes successfully. its associated RSPT
entry is placed in the available page queue, unless it was reclaimed
during the page-out operation or flagged as part of a deferred V=R
allocation request. The change bit associated with the page frame is
reset. An unsuccessful page-out operation causes the affected page to
be long-term fixed so that no further attempts are made to write out the
page. (Since virtual storage and external page storage are mapped on a
one-to-one basis. no other slots on external page storage are available
for allocation to the page.) The invalid bit in the page table entry
for the affected virtual storage page is turned off so that address
translation can be performed.

Requesting tasks that were placed in the wait state awaiting
completion of a page-in operation are made ready after the successful
completion of a paging operation.

90:40 RECOVERY MANAGEMENT

RECOVERY MANAGEMENT SUPPORT

The routines included in recovery management support are machine
check handler (MCH), channel check handler (CCH), alternate path retry
(APR). and dynamic device reconfiguration (OOR). MCH and CCH are
standard. APR and DDR routines are optional.

The facilities provided by the MCH and CCH routines are functionally
equivalent to those supported by OS MFT RMS routines for System/3?0
models except for a few new features. MCH routines are structured such
that a VS1 control program generated for one System/370 model can be
executed on other System/370 models. When MCH recognizes that it is

68 OS/Virtual Storage 1 Features Supplement

operating on a model other than the one for which it was generated,
error conditions that require processing by model-dependent routines are
handled by model-independent routines.

Extensions to recovery processing after real storage errors occur
have been made also. When an uncorrectable real storage failure occurs
after the IPL procedure has been completed, the MCR routine attempts to
isolate the page frame involved and place it in the malfunctioning page
queue so that it is not allocated by real storage management. An
attempt to recover the contents of the damaged page frame is made. If
the page was unchanged prior to the uncorrectable storage error, it is
allocated another page frame and paged in again. If the page was
changed and it belongs to a user task, the task is abnormally
terminated. If the page is changed and it belongs to the system or a
system task, recovery procedures are invoked.

CCH, APR, and DDR routines are alike in VS1 and MFT. DDR does not
support the swapping of direct access volumes contained on paging
devices or spooling (JES) devices in VS1.

OLTEP

OLTEP is a standard feature of VS1 and it supports the same functions
provided by MFT OLTEP. OLTEP must operate in nonpaged mode in VS1 to
control the execution of OLT's. OLTEP can execute in a paged mode,
however, when it is controlling execution of the logout analysis program
for a Model 158, 155 II, 168, or 165 II. A pageable partition of 192K
minimum is required to execute a logout analysis program under OLTEP.

OLTEP can be invoked via job control or an operator command. It
requires a minimum V=R area of 36K when OLT's no larger than 4K are
executed. If additional real storage is allocated above the requirement
for OLTEP and the particular OLT, it is used to increase OLTEP
performance.

In the first release of VS1, OLTEP cannot be executed in systems with
less than 160K of real storage. Thereafter, OLTEP can operate in a 144K
system but not concurrently with another problem program.

PROBLEM DETERMINATION FACILITIES

service Aids

The service aids in VS1 are designed to help diagnose a control or
problem program failure by gathering information about the cause of the
failure, formatting and printing the information in a readily usable
form, and aiding in the development and application of an immediate fix
for a given problem.

The following service aids are provided, all of which can operate in
a pageable partition under VSl control except IMCOSJQD (which is a
standalone program):

• HMAPTFLE is used to apply PTF·s to a system. This aid also produces
the job control required to apply the fix. Independent component
releases of VSl are supported (not supported in MFT).

• HMBLIST replaces the lMAPTFLS and IMDMDMAP service aids of MFT and
produces formatted listings that can be used for system
serviceability and diagnostic purposes. It can print the following:

Formatted load module listings
Formatted object -module listings

OS/Virtual Storage 1 Features Supplement 69

10

Load module map and cross-reference listings
Map and cross-reference listings of the system nucleus
Listings of the data stored in the CSECT Identification records

of load modules
Load module map and cross-reference listings showing relocated

addresses
Load module summary data including entry point addresses. module

attributes. and the contents of the module's system status index
Program modifications to a load module library

• HMASPZAP provides the capability of inspecting and modifying any
load module in a partitioned data set (PDS) or any specific data
record on a direct access device. It also can be used to dump an
entire data set. a specific member in a POS. or any portion of a
data set on a direct access device.

• IMCOSJQO can be used to print the contents of SYS1.SYSJOBQE and
scheduler work area data sets (SWADS).

• HMOSAOMP is a macro instruction that enables a user to generate a
standalone, high-speed or l~speed real storage dump program. The
high-speed version writes the contents of the control registers.
real storage (including the seven-bit protect key), and, optionally.
the page file to tape in large blocks (to be printed by HMDPRDMP).
while the low-speed version prints the contents of the control
registers and real storage or writes them to tape in unblocked
printable format so it can be printed by IEBGENER or HMDPRDMP. The
store status function must be performed by the operator prior to
loading a standalone dump program.

• HMDPRDMP formats and prints a dump tape produced by a high-speed or
low-speed version of HMDSADMP and the trace data gathered by the
generalized trace function of GTF. It also can be used to print
selected pages from the page file. The VS1 HMDPROMP service aid
formats a dump produced using a VS1 HMDSAOMP dump routine only. It
will not format a dump produced using a VS2 dump routine.

• IFCDIPOO initializes, reinitializes, and reallocates the SYS1.LOGREC
data set, as in MFT.

• IFCEREPO formats and prints records contained in SYS1.LOGREC and
creates a history tape, if desired, as in MFT.

• The Generalized Trace Facility (GTF) supports the same functions in
VS1 as those supported by GTF operating under os MFT or MVT. The
full function offered by GTF can be used only in systems with 160K
or more of real storage. When executing under VS1 control. GTF uses
the hardware monitoring facility and supports tracing of page fault
interruptions.

The generalized trace function of GTF is initiated via a START
command. It is a system task and can be executed in a system task
or a problem program partition of 64K minimum. Parameters (events
to be traced, definition of trace output data set. for example) can
be supplied to GTF via the START command or a SYS1.PARMLIB member.
During its execution, the trace function requires a minimum of 22K
of fixed real storage when trace data is contained in real storage
and a minimum of 36K of fixed real storage when the data is written
in a trace data set. If additional trace buffers are defined. more
real storage is fixed.

The trace EDIT function of GTF is a part of the HMDPRDMP service aid
and is invoked as a problem program via job control. A minimum 64K
pageable partition is required for its execution. The trace EDIT
function of VS1 will format only the trace data produced in a VS1

OS/Virtual Storage 1 Features Supplement

environment. It will not format data traced using GTF in VS2, MFT,
or MVT environments. However. MFT programs that use the GTRACE
macro can be executed under VS1 control without modification. If
user-written EDIT exit routines are being used in MFT, they may
require modification for operation in a VS1 environment because of
differences in the format of trace data for system events.

While GTF and the current MFT resident trace facility coexist in a
VS1 control program, only one can be active at a time. GTF disables
the trace facility whenever it activates its own tracing function
and reenables the trace facility whenever GTF tracing is suspended.

The storage dump facilities available in MVT are also provided in
VS1. Real storage and/or the contents of selected areas of virtual
storage can be dumped in VS1.

Dynamic Support System (DSS)

The dynamic support system is a general purpose debugging tool that
is designed to help locate and temporarily repair a failure in most
components of the VS1 control program. DSS uses program event recording
hardware in its interface with the operational VS1 operating system.
DSS is designed to be used by authorized personnel, such as an IBM FE
Programming systems Representative.

The DSS user can interface with DSS only via a required primary
console device type (3210 Modell, 3215 Modell, 3066, Model 158 display
console) and communicates requests using a DSS language that consists of
several commands. Secondary input can be entered via card readers and
tape units. The SYS1.DSSVM data set is used to contain such things as
DSS language processing routines, the paging data set for DSS, space for
the DSS internal dump# and a nucleus swap area.

The DSS user can:

• Display any portion of real storage or virtual storage and any
register or system control block during system operation under DSS.
Any of the preceding can also be altered except DSS, IPL, NIP, the
resident portions of MCH, and interruption handlers.

• Monitor hardware events recognized by the PER feature and certain
program events that are detected using the monitoring feature

• Stop the operation of the system at a given point, perform
maintenance procedures, and then continue system operation

• Save data (register or real storage contents etc.) accessed during
DSS activation on sequential devices for later use

Unauthorized use of DSS must be prevented by installation designed
procedures. The primary protection that DSS offers is the fact that
only the primary system console device can be used for DSS operations.

90:~5 LANGUAGE TRANSLATORS, SERVICE PROGRAMS, AND EMULATORS

SYSTEM ASSEMBLER

The System Assembler is a standard component of vs1 and is the same
assembler provided in VS2. It is the only language translator that is a
standard component of VS1. Program product and Type I language
translators that are to be used with VS1 must be obtained and added to
the VS1 system after the VS1 control program desired has been generated.

OS/Virtual Storage 1 Features Supplement 71

The System Assembler offers the same functions as OS Assembler F and
many enhancements, including improved diagnostics and extended language
capabilities. The System Assembler is compatible with OS Assemblers E
and F, with a few minor exceptions (see OS/VS System Assembler Language,
GC33-4010). Except for its support of certain new System/3?O
instructions, the System Assembler is a compatible subset of
Assembler H.

The System Assembler supports all the new standard and optional
System/370 instructions. It is the only OS Assembler that supports the
following System/370 instructions:

LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER

STORE CLOCK COMPARATOR
STORE CPU TIMER
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

The System Assembler is packaged to cause fewer page faults in a
paging environment than does Assembler F. The System Assembler can
operate in a partition of 64K, however, for more efficient operation, a
partition 128K or larger in size is required.

The System Assembler is reentrant. Therefore, it can be made
resident in the pageable supervisor area and shared by concurrently
executing tasks.

LINKAGE EDITOR

The VSl Linkage Editor program is a standard component of VSl (and
VS2). It also can operate under OS MFT and MVT. A minimum pageable
partition of 64K is required for its operation under VS1; however, a
192K partition is recommended for better performance.

The VSl Linkage Editor supports the same facilities as as Linkage
Editor F; however, it is designed to operate in a paging environment and
it also supports two new features that can be used to reduce the paging
and real storage requirements of programs.

One new function supported is control statements to indicate the
order in which control sections (CSECTS) and common areas appear in a
program (load module). By the reordering of control sections, existing
OS MFT programs can be restructured (without a rewrite) for more
efficient operation in a paging environment, if desired.

The other new feature of the Linkage Editor is the ability to specify
which control sections and common areas of a load module are to be
aligned on a page boundary in virtual storage. This new facility, like
CSECT reordering, can be used to minimize page faults.

The VSl Linkage Editor accepts as input all load modules produced by
OS Linkage Editors E and F and the object modules that are produced by
alIOS language translators. Existing job control statements and
Linkage Editor E and F control statements are accepted without
modification except for the SIZE option.

UTILITIES

The same utilities that are provided in MFT are available in VS1.
The IEBCOPY system utility is enhanced to allow a partitioned data set
to be unloaded to a removable volume (tape or disk) and later reloaded
to the same or a different type disk volume. This utility is to be used
during a system generation to place distribution libraries supplied with

12 as/Virtual Storage 1 Features Supplement

the VSl starter system on direct access volumes. The starter system,
therefore, is independent of the direct access devices that will be used
during a system generation.

The IEHDASDR utility is modified to place a user-written or user­
supplied IPL program on track 0 of an IPL volume, after the required IPL
records and volume label(s). This function can be used to place an
HMDSADMP dump program on disk so that it need not be IPLed from cards or
tape. The disk volumes used to contain any user-written or user­
supplied IPL program must have a track size that is large enough to
contain the entire IPL program and the IPL records. (The IPL program
must be totally contained on track 0.)

INTEGRATED EMULATORS

The functions supported by the integrated emulator programs that
operate under VS1 are identical to the functions supported by these
emulators when they operate under MFT. These functions are discussed in
appropriate system library publications and in section 40 of the
following System/370 guides:

• A Guide to the IBM System/370 Model 135
• A Guide to the IBM System/370 Model 145
• A Guide to the IBM System/370 Model 155, GC20-1729
• A Guide to the IBM System/370 Model 165, GC20-1730

All the integrated emulator programs for VS1 are pageable. The DOS
emulator can emulate DOS Version 3 or 4 but does not emulate DOS/Virtual
Storage. An emulator program generated to operate on a Model 135, 145,
155, or 165 under OS MFT control can operate on a Model 135, 145,
158/155 II, or 168/165 II, respectively, under VS1 control. Emulator
regeneration is not required.

90:50 OSMFT TO OS/VS1 TRANSITION

VSl is designed to be upward compatible with MFT as of Release 20.1
and, therefore, migration from MFT to vs1 should involve minimal
conversion effort. SOme additional education of installation personnel
is required. For the most part, this involves their becoming
knowledgeable about the additional facilities and new environment
offered by VSi. System programmers must become aCquainted with new
interfaces to VSl (SMF exits and JES reader and writer procedures, for
example). operators must learn how to use the new operater command
(WRITER), the new RES commands (if RES is used), and how to respond to
new system messages, such as those related to paging and spool devices.
Application programmers should learn how to use program structuring
techniques that are designed to minimize page faults. System designers
must become familar with the factors that affect system performance in a
VS1 environment so that the system can be designed and operate in a
manner that will achieve the results desired.

Once the VSl environment to be supported has been determined, a
system generation must be performed. A VS1 system control program is
generated via a two-stage procedure, in function, much like that
required to generate an MFT control program. The system generation
macros used to describe the desired control program are identical for
MFT and VSl for like functions. Some of the macros and parameters used
in MFT are not required in VSl while new macros are provided to describe
additional or different functions of VSl (JES and page devices, for
example). As in MFT, a complete. nucleus-only, or I/O-device-only
generation can be performed. AlIOS program products and Type I and
Type II components that are to be used with the generated VSl SCP must
be added to the VSl operating system after its generation. Processor

OS/Virtual Storage 1 Features supplement 73

generations for language translators cannot be performed using a VS1
system and must be done using OS MFT or MVT.

The VS1 starter system operates on any System/370 model with the
minimum real storage size stated in Section 90:05 that has dynamic
address translation, one nine-track tape unit, one SYSIN device, one
SYSOUT punch device, one SYSOOT print device, and three 231q/2319 or
3330-series direct access devices. The VS1 starter system can be used
to generate only a VS1 control program and is required only for the
first generation. Thereafter, an existing VS1 control program can be
used. The generated VSl system can operate on any System/370 Model 135,
145, 158, 155 II, 168, or 165 II that has the hardware features and I/O
devices required by the control program. The SECMODS parameter should
be specified on the CENPROCS macro at system generation to cause
inclusion in the generated VS1 operating system of the model-dependent
EREP for the secondary models on which the VS1 control program is to be
run, if any.

A new feature of the VS1 generation process is the installation
verification procedure (IVP), which is designated to be performed after
the VSl control program is generated. The IVP involves executing an
IBM-supplied job stream (maintained in the SYS1.SAMPLIB data set) under
control of the generated VS1 operating system. The function of the IVP
is to exercise the generated SCP system components to the degree that
general operation of the VS1 operating system and support of the system
hardware configuration specified is assured.

Existing user-written programs that operate under MFT on a System/370
model must be modified for correct operation under VS1 if they do any of
the following. otherwise, existing user-written executable programs
(load modules) can be used without change.

74

• Reference permanently assigned locations in lower real storage whose
contents vary depending on whether BC or EC mode is specified

• Issue the LPSW instruction or directly reference fields in old or
new PSW locations whose function or location is affected by which
mode, Be or EC, is specified (such as the system mask field and the
interruption code field). The MODESET macro should be used to
selectively enable or disable the system for interruptions.

• Access SYSIN or SYSOUT data sets using the EXCP macro. BSAM or
QSAM must be used. In addition, DSCB's and user labels are not
supported for SYSIN and SYSOOT spool data sets.

• Use the trace EDIT exit of GTF, if fields are accessed whose
location varies between MFT and VS1

• Depend on a nonstandard interface to the MFT control program. These
programs may require modification, based on the specific dependency.
(Note that HASP II for MFT depends on interfaces that are changed in
VSl and, thus, MFT HASP II cannot be included in a VS1 operating
system. Conversion from an MFT HASP II environment to an OS/VSl JES
environment will require some additional conversion effort,
particularly if user modifications to HASP II have been made.)

• Use QTAM to support teleprocessing operations. These programs must
be altered to use TCAM since QTAM is not supported in VS1. Minimal
effort is required for this modification. (see os TCAM Programmer's
Guide. and Reference Manual, GC30-2024, for a discussion of running
QTAM application programs under TCAM.)

• Modify an active channel program with data being read (channel
program contains self-modifying CCW's) or by executing instructions,
if the program is to be run in a pageable partition. Program

OS/Virtual Storage 1 Features Supplement

modification is not required if such programs operate in nonpaged
mode. This situation can apply to programs that use the EXCP macro
instead of an access method. Such programs do not operate correctly
because the modification affects the virtual channel program rather
than the translated channel program that is actually controlling the
I/O operation. (See OS/VS Data Management for System Programmers,
GC28-0631, for a discussion of how to modify an EXCP program that
contains dynamically modified channel programs so that the program
can operate in paged mode.)

• Use the EXCP macro and user-written I/O appendages that can
encounter a disabled page fault, if the program is to operate in
paged mode. These programs do not require modification in order to
run in nonpaged mode. These programs can operate in paged mode if
they are altered to use the new page fix appendage in order to fix
the required pages and avoid disabled page faults.

In addition, the following must be done, if applicable to the
existing MFT installation:

• Programs that issue the SET STORAGE KEY (SSK) or the INSERT STORAGE
KEY (ISK) instruction should be inspected to determine whether
implementation of a seven-bit protect key instead of a five-bit
protect key affects the processing being performed. If the INSERT
STORAGE KEY instruction is used, it should be used with the
understanding that it causes the reference and change bits in the
storage protect key to be set also. Alteration of these bits,
particularly the change bit, can impair system integrity. Note also
that these instructions use real and not virtual storage addresses.

• PL/I F programs compiled using an OS release prior to 20 that use
the teleprocessing facilities of this language translator must be
recompiled and relink-edited.

• TCAM message control programs and message processing programs must
be reasssembled and relink-edited in order to include the coding
required for them to operate in a virtual storage environment.
Modification of the source statements is not required.

• User-written SMF exit routines should be inspected to determine
whether they are affected by SMF record changes.

The job control statements for existing user-written programs do not
require alteration except for those that must operate in nonpaged mode.
The ADDRSPC=REAL parameter must be added to the appropriate JOB or EXEC
statements. If I/O device type changes are made and/or if unsupported
device types, such as those listed in Section 90:05, are currently being
used in an MFT environment, program and/or job control changes may be
required to specify the supported I/O device that is used in a VS1
environment.

Existing data sets can be used without alteration, assuming that
device type or access method changes are not made. If VSAM is to be
used to replace ISAM, the affected data sets must be converted from ISAM
format to VSAM format, as discussed in section 90:30, and appropriate
changes to existing ISAM job control statements must be made.

VS1 does not support System/370 models that are part of an ASP
multiprocessing configuration. However, a system under VS1 control and
a system under MFT or MVT control can share direct access devices using
shared DASD support.

If desired, the structure of existing user-written MFT programs can
be modified to minimize the occurrence of page faults and the use of
real storage (as discussed in section 15:15 or 30:15 of the base

OS/Virtual Storage 1 Features Supplement 75

publication of which this supplement is a part). Such modification may
improve system performance but is not required to enable existing
programs (load modules) to operate correctly in a VS1 environment.

For transition from a System/360 MFT environment to a Systern/370 VS1
environment, the considerations discussed in Section 60 of one of the
following publications apply in addition to the preceding discussion:

A Guide to the IBM System/370 Model 135
A Guide to the IBM System/370 Model 145
A Guide to the IBM System/310 Model 155
A Guide to the IBM System/370 Model 165

90:55 SUMMARY OF ADVANTAGES

As a growth system for OS MFT users, OS/VS1 offers many new
facilities. Some are changes in the internal structure and organization
of the operating system control program to make its operation more
efficient. Some new facilities improve operational aspects by
simplifying the job of the operator and by reducing causes of total
system termination. others provide functions not available to MFT
users. VS1 can be more responsive to a dynamically changing daily
workload than MFT, and it supports an environment in which design
changes can be made more easily to accommodate maintenance changes and
the addition of new functions or applications.

While OS/vS1 supports many new features, including functions
exclusive to Systern/370 (not provided in System/360), such as EC mode
and dynamic address translation, VS1 remains upward compatible with MFT.
Required control program modifications to handle new features are
transparent to the user so that operators and programmers interface with
Vsl using basically the same operator commands, job control statements,
data sets, and programs they use in an MFT environment.

The single most important new feature of VSl is its support of a
virtual storage environment. The general advantages that can result
from using a virtual storage operating system are discussed in the
System/310 guide base publication of which this supplement is a part
(either in Section 15:05 or 30:05). In addition to these, VSl offers
other specific advantages over MFT, several of which also result from
the implementation of virtual storage. These are summarized below.

Improved Job scheduling

76

• Small partition scheduling and transient readers and writers are
eliminated.

• Job queue contention is reduced (by implementation of SWADS) and a
given size job queue can contain more jobs since scheduler control
blocks are maintained in SWADS.

• Dedicated work files for initiators are supported and can be used to
eliminate allocation and deallocation time for temporary disk data
sets.

• A job can be placed in the hold queue during initiation when data
sets it requires are not available.

• An initiator can handle up to 15 job classes instead of a maximum of
three.

• More readers and writers can be active concurrently (the limitation
of three readers and 36 writers is removed).

OS/Virtual Storage 1 Features Supplement

• All partitions can be of equal size and large enough to contain the
largest existing application to enable an application to execute in
any available partition when priority is not important. Job class
need not be related to partition size. In addition, job priority
need not necessarily be associated with partition size so that
priority can be assigned on the basis of job characteristics rather
than real storage requirements.

• A larger number of partitions can be defined to handle periods
during the day when the job queue contains many jobs with relatively
small virtual storage requirements, if this situation exists. As
long as enough resources are present (I/O devices, available compute
time, and real storage), a higher level of multiprogramming can
automatically occur during these periods, through proper use of job
classes, to caUse all available partitions to be used. The system
can automatically adjust to the change in the workload without the
operator having to intervene to change partition sizes.

operational Enhancements

• Significant new operator control over system output (SYSOUT data
sets) processing is provided by the WRITER command.

• The operator is relieved of most real storage management functions
(such as changing partition sizes and altering partition types for
the purpose of managing real storage).

• The JES configuration can be modified at IPL (via prior modification
of the JESPARMS member) and does not require another system
generation.

• The operator need not keep track of reader and writer partitions.

• A reader handling a card SYSIN device remains active when end of
file occurs on the card reader (so the operator need not restart the
reader from the console each time the card reader runs out of
cards).

• High-priority jobs can be handled more easily. A high-priority
partition can be established in virtual storage that is used only
for these jobs. While this partition requires dedicated virtual
storage (and w therefore# external page storage), real storage
(except that required for fixed PQA) is required only when a job
step is active in the high-priority partition.

• Remote users entering jobs via RES use standard os commands instead
of a special job entry control language (as is used in RJE) and a
job can be submitted remotely or locally without changing job
control or operator commands.

• The VS1 starter system is independent of the direct access device
types to be used during a system generation.

Improved System Integrity and Availability

• More control blocks (specifically, those in a problem program
partition) are protected from accidental or intentional modification
by a problem program.

• Loss of an ABEND dump because of the lack of available storage in a
partition can be eliminated. (Partitions can be made large enough
to ensure the availability of enough virtual storage to perform
ABEND dump processing.)

as/Virtual storage 1 Features Supplement 11

• Total system terminations that result from a lack of available SQA
space are minimized because SQA is now dynamically expandable and
two page frames are held in reserve for allocation to SQA and PQA.

Improved Utilization of Real Storage

• Inefficient use of real storage caused by unused storage within
defined partition sizes and/or residence of inactive portions of the
program is minimized. Unused virtual storage in a pageable
partition does not have real storage assigned, and real storage
allocated to inactive pages of a program is released and allocated
to active pages when necessary.

• JES and RES are pageable so that during any time interval, they use
only the amount of real storage required to handle the current
activity. The operator need not perform any function to make real
storage assigned to inactive readers or writers available for
allocation to other programs.

• The amount of real storage used by reentrant routines (such as SVC's
and access methods) made resident in the pageable supervisor area is
automatically increased and decreased based on the activity of these
routines. The most active modules at any given time will tend to
remain resident in real storage without the necessity of preplanning
on the part of system designers.

• The amount of storage allocated to SQA dynamically expands and
contracts as required. SQA size cannot be varied during processing
in MFT.

• Dynamic real storage management is provided for all programs that
operate in paged mode in a VSl environment, regardless of the
language in which they are written. Dynamic serial program
structure implemented via the use of LINK, LOAD, and XCTL macros and
dynamic storage allocation supported via GETMAIN and FREEMAIN
macros, all of which are supported by the Assembler Language in MFT,
are not supported by all high-level languages.

• The practice of leaving unused real storage between the end of the
resident control program and the lowest priority partition in order
to leave room for control program expansion can be avoided.

Performance Enhancements

78

• Job scheduling improvements (as listed previously) are provided

• Improved utilization of real storage (as listed previously) may
enable a higher level of multiprogramming to be supported in a given
amount of real storage in some environments.

• JES is implemented to provide more efficient data spooling
operations. Unit record devices can be operated near rated speeds
and intermediate disk storage is allocated and used more
efficiently. Less real storage is required for multiple readers and
writers.

• Contention for the SVC transient area (and the reSUlting
serialization of processing that can occur) can be minimized by
making the most frequently used SVC routines resident in the
pageable supervisor area. Task wait time spent waiting to use the
svc transient area is eliminated for these routines.

as/Virtual Storage 1 Features Supplement

• SVC area size is increased to 2K (page size) and Type 4 SVC routines
are 10aded in 2K multip1es, instead of lK, to reduce the time
required to load Type 4 SVC routines.

• Improved processing of certain operator commands is provided via use
of the pageable 2K SVc transient area.

• Since real storage management is provided by the VSl control
program, problem programmers need not use LOAD, LINK, XCTL, GETMAIN,
and FREEMAIN macros in new applications to efficiently manage real
storage for partitions and can avoid the control program execution
time required to service these requests.

New Features

• VSAM, a new access method designed to provide better performance and
more function than ISAM, is provided.

• Expanded system debugging capability is provided by the dynamic
support system.

The new facilities of OS/vSl make it a desirable growth operating
system for any MFT user. However, many of the new features of VSl make
it more suited to an online environment than MFT, as follows:

• Reduction of real storage restraints made possible by the
implementation of virtual storage can be a significant advantage
when designing, coding, and testing online applications that are
typically larger and more complex than most batched jobs.

• New fun~ions may be added to existing online applications more
easily because the design of a progra~ can be straightforward and
need not involve the use of a complex dynamic or planned overlay
structure.

• Dynamic storage management is provided automatically by the system,
and real storage can be more efficiently used. Storage management
no longer need be the major effort in online application design, as
it often is in MFT.

• More freedom in program design and better utilization of real
storage may a~able lower cost entry into online applications
processing.

• VSAM is designed to be more suitable than ISAM for an online or a
data base environment.

• A system operating with VSl should be less susceptible to the total
termination of operations because of certain improvements made in
the VSl control program. System integrity enhancements have also
been made.

• A system with a large online application need not be backed up with
a system having the identical amount of real storage. A smaller
amount can be used, assuming it provides acceptable performance.

OS/Virtual Storage 1 Features Supplement 79

INDEX (Section 90)

access method services program 52
access methods

BDAM 4
BISAM 4
BPAM 4
BSAM 4,. 41
BTAM 4
GAM 4
QISAM 4
QSAM 4,. 41
QTAM 3
TCAM 4,. 41
VSAM 4,. 41,. 42-58

~DDRSPC parameter 8,. 29
advantages summary 76-79
allocation routine 30
alternate path retry (APR) 68, 69
~SP 75
authorized program 38
automatic volume recognition (AVR) 68,. 69
available page count 61, 63
available page queue 60, 61

BDAM 4
BISAM 4
BLDL table 9
BPAM 4
BSAM 4
BTAM 4
buffer management,. JECS 25

channel check handler (CCH) 7,. 68, 69
channel program translation 8, 10, 41-42
checkpoint/restart 38
clock comparator 38
CLOSE routine 41
communications task 19
configuration,. system

minimum 2
for system generation 74

contents supervisor 38
control and processing program components 17-18
conversational remote job entry 38
COPIES parameter 29
CPU's supported by VS1 1
CPU timer 38

DADSM 41
DASD work area allocation routine 27
DASD work area manager 25
data management 41-58

access methods 41
CLOSE routine 41
DADSM routine 41
EOV routine 41
OPEN routine 41
VSAM. 42-58

dedicated work data sets 30
direct SYSOUT writers 30

80 as/Virtual storage 1 Features Supplement

DIOOCS 18
disabled page faults 39
dynamic address translation 2, 8, 10
dynamic device reconfiguration 68, 69
dynamic support system 11

emulators 17, 13
EOV routine 41
EXCP macro 41, 42
EXCPVR macro 40, 41, 42, 68
external page management

page I/O device queues 61
page I/O in-progress queue 61
page I/O processor routine 67

external page storage
direct access devices supported 12
initialization 16
organization 12-13
page capacity by device type 13

features
optional 4
standard 4
unsupported 3

fetch protection 1

GAM 4
general functions 1-6
generalized START 29
generalized trace facility (GTF) 39

HASP II 20, 75

indirect data address list (IDAL) 42
indirect data address word (IDAW) 42
initialization of storage

external page 16
real 15
virtual 13

initiator 29
input/output supervisor (lOS) 41-42
installation verification procedure (IVP) 74
interpreter 29
interruption supervisor 38
interval timer 22, 38
in-use queues 63
I/O appendages 42
I/O devices supported in VS1 5-6
I/O transient area 9
IPL (see system initialization)

JES monitor task 23
JES readers 23
JES writers 23
job control 29
job entry central services (JECS) 24-28
job entry peripheral services (JEPS) 23-24
job entry subsystem (JES) 20-28

advantages 21, 21
allocation of spool space 26
buffer management 25
DASD work area management 25
general description 21
general flow of processing 22, 31-33
location in virtual storage 10

OS/Virtual Storage 1 Features SUpplement 81

monitor task 23
organization 21, 22
problem program access to SYSIN and SYSOUT data sets 24
readers 23
spool data sets 20, 26, 27
spool devices and capacity 26
spool management 24
storage requirements 21
writers 23

job management 18-38
allocation routine 30
CRJE 38
direct SYSOUT writers 30
initiator 29
interpreter 29
JES 20
master scheduler 19
RES 33
terminator 30

job queue management 28
job scheduler 29
job scheduling flow 31

language translators supported 17. 18
libraries 18
linkage editor 72
logical cylinders 26

machine check handler (MCR)
description 68, 69
storage requirements 7

master scheduler 19
minimum system configuration 2
MODESET macro 39
MONITOR CALL instruction 38
multiple console support (MeS) 4
multiprocessing 75
multitasking 4

nonpageable area 7-9
nonpageable program execution 8

OLTEP 8, 69
OPEN routine 41
operator commands 19
operator communication at IPL 4
optional features 4
OUTLIM facility 25
overlay supervisor 38

page activity measurement 63
page data set 12, 13
page fault, disabled 39
page file 12
page fix I/O appendage 42
page fixing 42
page I/O device queues 67
page I/O in-progress queue 67
page I/O processor routine 67
page management 59-68

accounting data provided 31
external page storage management 67
macros 59

82

page exception handler 59
queues 60

OS/Virtual Storage 1 Features Supplement

real storage management 60
service interface routine 59
task switch analysis routine 59

page reclamation 61
page replacement algorithm 63, 64, 65
page supervisor 59
page tables 15
pageable area 9-11
pageable partitions 10
pageable supervisor area 9-10
paging devices 12
planning considerations 73
problem determination facilities

DSS 71
service aids 69

problem program area 10
problem program partitions 10-11
program event recording 2, 39, 71
program fetch 40
protected queue area 10, 11, 15

OISAM 4
QSAM 4, 41
QTAM 3

real storage
allocation procedure 61
initialization 15
management 60
minimum fixed requirements 15
minimum system requirements 2
organization 12
page table 60
release routine 67

recovery management
APR 68, 69
CCH 68, 69
DDR 68, 69
MCH 68, 69
OLTEP 69

REGION parameter 8
remote entry services 33-38

advantages over RJE 37
functions provided 33-34
initialization 31
MULTI-LEAVING 34
new commands 36
new data sets 35
RTAM 34
storage requirements 37
work stations supported 33

remote job entry 3
resident control program 1, 12
RTAM 34

scheduler work area data sets 28
SET SYSTEM MASK instruction interruption 39
segment table 15
service aids 69
shared DASD support 4
short-term fixing 42
sort/merge 18
SPIE facility 38
spool buffers 25, 26
spool data sets 20, 26

as/Virtual storage 1 Features Supplement 83

spool volumes 26
standard features 4
storage hierarchies 3
storage protection 2, 6
supervisor lock 39
SVC routines 39
SVC transient area 9, 38
SWADS 18, 28, 29
SYSIN 23
SYSOUT 24
system Assembler 71
system components 11
system data sets 18
system generation 13
system initialization 13-16
system lock 39
system log 4
system management facilities (SMFl 30
system queue area (SQA) 7, 8, 15, 61
system task partitions 10, 11
system/370 models supported 1
SYS1.BRODCAST 18, 36
SYS1.DSSVM 18, 71
SYS1.PAGE 12, 18
SYS1.SYSJOBQE 28, 29
SYS 1 • SYSPOOL 18
SYS 1 • UADS 35

task deactivation 64
task management 38-41

contents supervisor 38
interruption supervisor 38
overlay supervisor 38
task supervisor 39
timer supervisor 38
virtual storage supervisor 40

task reactivation 66
TCAM 4, 41, 42
terminals supported 6
terminator 30
TESTRAN 3
time of day clock 38
time slicing 4
timing facilities 38
tracing facility 4
transient areas 9
transition from MFT to VS1 13-16
Type I language translators supported in VS1 18
TYPRUN parameter 29

utilities 12

virtual storage
initialization 13
organization 1-12
size supported 6, 13
supervisor 40

VSAM 42-58
access method services program 52
advantages 54

84

catalogs 51
comparison with ISAM 55-58
compatibility with DOS/VS VSAM 43
control area 44
control interval 44

Os/virtual Storage 1 Features Supplement

devices supported 43
entry-sequenced organization 49
genera1 description 42
index data set structure 46
ISAM interface routine 53
key-sequenced organization 44-49
password protection 53
processing summary 49-51
types of access supported 50

V=R area 8, 66
V=R line 6, 12, 61
V=R mode

description 8
performance 9
programs that must run in 8, 9

WRITER connnand 19

Os/Virtual Storage 1 Features SUpplement 85

GC20·1752·0

International BUllness Mac;hlnes Corporation
Da .. Processing Dlvilion
1133 Westchester Avenue, White Plalnl, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Natlonl Plaza, New York, New York 10017
(International)

TI
(1)
III ...
~
~
CJ)
c:::
"0
"0
CD
3
CD
:::J ...

