
Dynamic address translation equipment is key to the design 
of System/ 370 central processing units, and dynamic relocation 
is key to the design of Operating System / Virtual Storage J. 

Discussed are the significance and implementation of these 
key facilities in the supervisor and job scheduler functions of 
virtual storage operating system. 

Within the supervisor are presented system initiation, page 
management, input/output supervisor, and storage manage­
ment. Within thejob scheduler are discussed queue management, 
the job entry subsystems, and remote job entry services. 

OS/VS1 concepts and philosophies 
by T. F. Wheeler, Jr. 

During the past two years, a number of users have been intro­
duced to the dynamic relocation function in the IBM Operating 
System/Virtual Storage 1 (os/VSI). Therefore, it is appropriate 
to investigate in this paper many of the design concepts that have 
proved fundamental to the structure of the OS/VSl operating 
system. 1 

In a significant earlier resolution of storage management prob­
lems, the designers of the Ferrante-Atlas computer incorporated 
dynamic address translation and a mechanism for expanding 
fixed storage capacity. 2,3 Additional innovations in storage tech­
nology throughout the industry made possible variations and 
extensions of system design. The introduction of multiple address 
spaces4

,5 and segmentation6
,7 also advanced the state of the art. 

With this background available to them, the designers of OS/VSl 

used virtual storage concepts to significantly extend the ca­
pabilities of the Operating System/ Multiprogramming with a 
Fixed Number of Tasks (OS/MFT). In addition to the extended 
capabilities themselves, a salient philosophy of the design and 
structuring of the system was to cause the user of OS/VSl the 
least possible disruption in their use of these capabilities. This 
objective has been achieved by stabilizing system interfaces and 
by reducing the extent of the changed areas as shown in Figure 1. 

The use of the enhanced capabilities requires that System/ 370 
central processing units have a facility for Dynamic Address 

NO.3' 1974 OS/VS I CONCEPTS AND PHILOSOPHIES 213 



214 

Figure 1 OSjVSl viewed as modifications of OSjMFT 

COMPILERS 
OBJECT PROGRAMS 
SERVICE ROUTINES 
APPLICATIONS 
LIBRARIES 
DATA 
CONTROL LANGUAGE 
PROCEDURES 

VSAM 

DATA MANAGEMENT 
SOME SERVICE ROUTINES 

SUPERVISOR 
JOB SCHEDULER 

Translation (DAT). The DAT is a hardware device that auto­
matically makes address adjustments that permit all references 
to storage to be made to the virtual range of storage. In effect, 
the DA T provides a mapping between a virtual address and the 
current physical storage location independently of and trans­
parent to the operating system. The DA T hardware passes control 
to the operating system when the data or instructions addressed 
are on secondary storage and not in real storage. 

Reflecting a significant change to storage management, the job 
scheduling mchanisms have been modified to use a technique of 
dynamic relocation.8 The concept of job management in OS/MFT 

has been broadened to become resource management in OS/VSl. 

Perhaps the single most important addition is the incorpora­
tion into the system of the Job Entry Subsystem 1 (JESl) with 
Remote Entry Services, which simplify the control paths through 
the system.9 

Changes have been made to portions of the OS/MFT data man­
agement routines to implement the I/O capability in the virtual 
partitions. Also portions of data routines that handle input and 

WHEELER IBM SYST J 



output (SYSIN and SYSOUT) have been modified to ease job entry 
interface transparency. 

New data and terminal access methods have also been intro­
duced into the system to make use of the dynamic relocation 
capabilities. Because both the Virtual Storage Access Method 
(VSAM)10 and the Virtual Telecommunications Access Method 
(VT AM) require special treatment, they have not been included in 
this article. 

Supervisor 

Virtual storage provides an expansion of address space, thereby 
making the total address space appear to be larger than that of 
real storage. In OS/VSl, the total address space can be as great as 
16,777,216 bytes, which contain the control program, data, and 
normal application jobs within partitions. Virtual storage ad­
dresses are not mapped directly to real storage addresses, but 
both are broken down into 2,048-byte sections called pages ll in 
virtual storage which, in turn, are stored in page frames in real 
storage. A collection of pages is called a segment, and, in OS/VSl, 

segments are 64K bytes in length. 

A study was made to determine the optimum page size for an 
OS/VSl environment to be used with a range of real storage sizes 
greater than 160K bytes. Involved in the study was a determina­
tion of the effective CPU time for instructions and data within a 
page, measurements of interpage and intrapage reference activi­
ties, and the time required to move a page from real storage to 
secondary storage. The 2K-byte page size was found to be an 
optimum balance among these considerations. 

Similarly, the Direct Access Storage Device (DASD) mapping 
algorithm was considered to be a critical parameter for achieving 
both the extended capabilities and performance in the midrange 
of System / 370 computer systems. The direct one-to-one map­
ping of virtual storage space into secondary storage space was 
found to greatly simplify the movement of data from real to 
secondary storage and to reduce the logic size of the paging 
input/ output routines. The DASD paging space has its origin at 
the upper boundary of the resident supervisor nucleus, and the 
virtual space has its origin at zero. 

In the following sections we discuss the implementations of 
algorithms in the principle supervisor nucleus subcomponents 
that are resident in main storage. 

The Nucleus Initialization Program (NIP) performs many of the 
basic housekeeping requirements for the OS/VS 1 system, which 

No.3· 1974 OS/VS I CONCEPTS AND PHILOSOPHIES 

system 

initialization 

215 



page manage­

ment 

216 

include the calculation of initial values for the paging tables (such 
as the real storage page tables) and the completion of resident 
parameter lists. Information for NIP processing comes largely 
from system generation options and from variations of those 
options that are entered by the operator. 

Early in the design of the system, it was decided to make more 
effective use of parameter entries during the execution of the NIP. 

This has made it possible to assign addresses for many of dy­
namic relocation and JESl related options after the Initial Pro­
gram Loading (I PL). Thus it is aiso possibie for modificaiions 
to be made to the tailored system during the early stages of ini­
tialization. Also, the automation of the initialization program 
reduces the role of the operator, thereby speeding up the initial­
ization process. 

Computer configurations that use OS/VSl as their operating 
system are termed demand paging systems in the sense that new 
pages are read into real storage when the OAT detects that a 
referenced item is not present in real storage. Page management 
is the key component in the management of storage in a demand 
paging system. The page management component is accessed 
directly by the System / 370 hardware when a paRe exception 
(or page fault) occurs. A page exception occurs when the Dy­
namic Address Translation (OAT) feature is unable to resolve a 
virtual address to a real storage location. At this point of the page 
exception procedure, page management assumes responsibility 
for further storage management operations. A key objective of 
a paging system is to reduce page exceptions (faults) to a 
minimum level, and simultaneously to optimize the use of real 
storage. 

OS/VSl uses an algorithm12 that maintains a list of page frames 
that are available for replacement by a demanded page. To do 
this, the system uses several pointer queues to manage a least­
recently-used page replacement algorithm. The pointer queues 
also regulate the flow of pages to and from external page storage. 
Storage management of this kind implicitly requires the capability 
of predicting the hit ratiol~ of the system, i.e., the probability 
of finding the referenced frame. We summarize the capabilities 
of the following four pointer queues that are involved in carrying 
out the page replacement algorithm. 

I n-use queues contain the addresses of currently active page 
frames. 14 These queues are arranged in the order of ascending 
activity of frame references to the frames located in each queue. 
The number of in-use queues is a variable that depends on the 
number of active partitions and active tasks, including system 
tasks. Included among the in-use queues are the following types: 

WHEELER IBM SYST J 



Figure 2 Page supervisor queues 

AVAILABLE LOW ACTIVITY QUEUES HIGH ACTIVITY QUEUES 
QUEUE -" 

n-3 n-2 n-l 

R C AOOR R C AOOR R C AOOR R C AOOR R C AOOR 

a a A6 I a 11 DO I I a I a I B2 1 1 Cl I I 1 11 I A2 

a a A7 I 1 a Al I I a 11 I A8 a a A4 I I a 11 I C3 

a a 01 I a a C2 I I 1 11 I B4 1 1 B7 I I 1 11 I B6 

a a C4 I a a Bl I I 1 I a I B8 1 a 02 I I 1 11 I C6 

a a CO I a 1 06 I a a C9 I 
a a A9 I a a A5 I 1 a 04 I 
a I a I 80 

OUTPUT LOGICAL FIX 
QUEUE QUEUE 

INPUT QUEUE R C AOOR R C AOOR 

R C AOOR I a 11 I 83 I 1 11 I C5 

I a I 0 I A3 I a 11 I 85 11 I a I 03 

I a I 0 I Al I a 11 I C7 I 1 I a I C8 

I 1 I a I 05 

available (for replacement), activity (ranged from low to high), 
input, output, and logical fix. Figure 2 shows these in-use queues, 
with the queue containing the highest activity frames in the sys­
tem at a given time. 

Available page frame queue contains addresses of frames that 
are available for program replacement when a page exception 
occurs. During execution of the NIP, all Real Storage Page Table 
Entries (RSPTES) that represent real storage block addresses that 
are greater than the fixed supervisor nucleus are entered into this 
queue. As the NIP is executed, the Available Page Queue is 
maintained at a threshold that is just sufficient to minimize the 
conditions of no replacements possible (lockout) and excessive 
replacements (thrashing) .15 

Page input / output device queues contain the addresses of frames 
that are being used for page I/O. The input queue represents the 
list of frame addresses that are currently being filled from ex­
ternal page storage (SYSl.PAGE). This process has been called 
pulling (or "creation"). The output contains the addresses of 
the least referenced pages that are about to be stored on external 
page storage (SYSl.PAGE), and has been called pushing (or 
"annhilation"). The management of I/O page frames in a timely 
fashion reduces the backing storage delay referred to by Joseph.3 

Logical fix queues contain the addresses of both short-term fixed 
page frames and long-term fixed page frames, and derive from the 
fact that some components cannot tolerate a page exception. 
Therefore some pages are fixed or locked in real storage with a 
duration based upon the content of the pages and the time re­
quirements of the system. With the availability of Release 3 of 

No.3· 1974 OS/VS I CONCEPTS AND PHILOSOPHIES 217 



218 

OS/VSl, the user can force some of his application pages on this 
queue by means of the applicable macroinstructions.16 

Fundamental to page frame management are the change bit and 
the reference bit in the page and segment mapping tables. Both 
bits are originally set by hardware, and they are reset in the pro­
cess of paging by the page management routines. The change bit 
indicates whether the contents of a given page frame have been 
modified since the page was brought into real storage. This bit is 
reset only when the page is moved to the external page file. The 
reference bit is turned on when reference is made to the contents 
of a page frame, and it remains on until the bit is reset as a result 
of a new page measurement process. 

, 
At periodic intervals, based on task switches or a set time value, 
the status of the in-use queue frames is adjusted. This process 
involves the migration of all unreferenced page frames to the 
next lower queue and all referenced frames to the highest level 
queue. Page frame migration enables the low reference level 
frames to move to the lowest level queue and eventually enables 
their replacement. OS/VSl uses a single stepwise downward 
bubbling mechanism to the lowest level of the queue, and a direct­
jump upward mechanism to the highest level queue for all 
referenced pages. Because this mechanism keeps the referenced 
frame on the queue for a longer period of time, the critical effects 
of input/output operations on paging performance are re­
duced. 

When a referenced page is not contained in real storage, the DA T 

hardware facility turns control over to page management. Page 
management immedicately attempts to free the necessary frames 
from the available queue. A request to page management is 
frequently for a number of frames. If an adequate number of free 
frames is available, the request is immediately satisfied. If there 
are not enough frames to satisfy the request and to maintain an 
adequate threshold, the page replacement routine is entered. The 
page-frame-release request formula is applied as follows: 

R=A+H-C 

where 

R is the release request amount 

A is the page allocation request 

H is the high threshold on available page queue (The formula 
uses the high threshold to reduce the number of entries into the 
page replacement algorithm.) 

and 

C is the available page frame count 

WHEELER IBM SYST J 



This calculation provides the number of additional page frames to 
be released to maintain the available queue at an acceptable 
level. The page replacement routine interrogates the low usage 
queues to determine the frames that may be freed. Page frames 
with their reference bits turned off can be released to the avail­
able queue. If a change bit is turned on, the frame must first be 
moved to the output queue, where it is placed on the external 
page storage. Unchanged frames are moved directly to the avail­
able queue. 

Refering again to Figure 2 and Reference 14, an entry in the page 
measurement routine moves all frame addresses to the next lower 
level queue, where n - 2 is the lowest possible level. All frames 
that have been referenced are moved to or remain on reference 
level n in the queue structure. (This includes frames AI, B4, 
B8, C 1, B7, D2, D4, A2, B6, C6). The reference bits are reset 
to ° on all frame indicators on the n queue, so as to maintain the 
stepwise downward bubbling movement. The change bit is not 
modified at this time, nor is the reference bit pattern on the log­
ical fix queue altered. 

Since the lowest activity queue contains the Least Recently Used 
(LRU) frames, the process of page release concentrates on the 
low-activity queues by moving in a right-hand scan in the ex­
ample, from the lowest to the highest queue. Once again, Figure 2 
shows that frames DO, C2, B 1, D6, AS are currently available on 
queue n - 3 and are thus available for release if required. If we 
establish the low threshold as 3 and the high threshold as 6 for the 
available queue, any request that causes the number of available 
frames to fall within the threshold range causes the page release 
routines to be entered. The frames on the output queue are 
moved directly to the available queue when an output comple­
tion is returned, and the change bit is reset to 0. 

A detailed study of the hit ratio function during the develop­
ment of OS/VS1 has enabled the developers to build a number of 
mechanisms into the system to resolve potential performance 
problems. Of these mechanisms, task deactivation is the most 
qramatic, and, therefore, it should be discussed. The page release 
routines normally scan only the low activity queues. If an in­
adequate number of frames can be obtained from the low ac­
tivity queues, then the task deactivation routine is entered. Parti­
tions are then deactivated one at a time to make their frames 
available for additional page requests. Since partition pages are 
scattered throughout real storage, task deactivation frees up 
frames throughout real storage. Partitions are deactivated from 
low to high order of priority /6 as defined by the installation sys­
tem programmer. 

Deactivation controls excessive paging rates known as thrashing, 
a vexing problem in paging systems that is caused by hypercon-

No.3· 1974 OS/VS 1 CONCEPTS AND PHILOSOPHIES 

task 

deactivation 

219 



task 

reactivation 

input/output 

supervisor 

220 

tention for available real storage. The end result of thrashing is a 
very high page I/O rate. Thrashing often occurs when a program 
runs with reduced system capability. Deactivation reduces con­
tention by reducing the number of active tasks when a task 
threshold level is detected. Severe contention is thus eliminated 
and performance is maintained at an adequate level for a minimal­
ly reduced number of tasks. As a guide to understanding paging 
behavior, Denning discusses a three-way relationship among 
program behavior, paging algorithms, and system hardware 
configurations.15 

The opposite performance problem is that of an insufficient 
number of active partitions. In this case, task reactivation rou­
tines must be entered in time to permit a properly balanced range 
of CPU loading. Periodic checks are made to determine the avail­
ability of resources for task reactivation and to maintain a proper 
CPU load balance. 

These checks are based on analyses of available pages versus 
minimum required page partition activation. Deactivated parti­
tions are reactivated in order of decreasing priority (with highest 
priority first) when a task switch occurs. OS/VS 1 has expanded 
the facility by which a user installation monitors and controls 
some of the deactivation parameters that enable an operator to 
force the activation of particular partitions. PAGETUNE is the 
command that allows a system programmer to control certain 
values used in the paging algorithm, including the following 
categories: 

• Alteration or suspension of the deactivation function. 
• Alteration or suspension of page measurement functions. 
• Alteration of the timing and paging criteria used by task de-

activation. 
• Display alterable values. 

Excluded from deactivation are the following categories: 

• System functions necessary for continuous execution, since 
their deactivation stops the system. 

• Jobs executing in the virtual-equals-real mode, since the 
required real storage is defined as not available to paging. 

• The last active user job, since this is the object of system 
execution. 

• Pages currently in a locked condition. 

In summary, the page management routines play a vital role in 
the achievement of an installation's goals. The adequate allot­
ment of storage to these routines is therefore extremely im­
portant. 17 

Automatic address translation is not performed on channel com­
mand word addresses of the System/370 channels. Since the ad-

WHEELER IBM SYST J 



dresses are virtual addresses, they must be converted to real 
addresses before program execution can take place. In OS/VS1, 

the input/output supervisor performs the additional address 
translation. Moreover, certain information must be fixed in real 
storage to avoid page contention during an operation. 

Thus, in the normal execution of an I/o request, the I/O super­
visor first fixes the frames that contain fields for tables, buffers, 
and work areas. Since short term fixing is part of the I/O execu­
tion, the I/O data fields need not be totally contained within main 
storage, but are brought into main storage by the interaction be­
tween page management and the I/O supervisor. When this in­
formation is fixed in storage, the real addresses are placed in the 
appropriate locations in the channel control word. The START I/O 

instruction is issued to a single channel command word or to a 
chain that contains real addresses that are located in protected 
system storage. Upon the completion of the I/O operation, the 
fixed frames are unfixed and returned to the normal processing 
queues. Since the address of the real channel control word chain 
is different from the virtual address (that has been built by Data 
Management), self-modifying channel command words do not 
execute in a virtual partition. 

To provide a capability to run real-time or self-modifying channel 
programs, OS/VS 1 provides a mode of operation known as 
virtual = real (V = R). In this mode, the address space that is as­
signed to a job step is placed in contiguous real locations below 
the user-designated V = R line. 18 For a given program, the size of 
the V = R area is specified on the REGION parameter of the Job 
Control Language, and it represents the actual size of the pro­
gram to be executed. Since the V = R area must be totally con­
tiguous, the job step execution waits for an unused contiguous 
space to be freed. As soon as, the job execution is initiated, the 
address space is not available for paging, and the real job is not 
deactivated. 

Although the DAT feature is in use during the execution of the 
V = R job, the address translation is the identity translation for 
the CPU program. Channel programs are not translated. 

The virtual = real address space permits the execution of highly 
time-dependent programs and self-modifying programs. In ad­
dition, certain high I/O activity job steps may be run in V = R 
mode to avoid channel command word translation. It is apparent, 
however, that the effect of V = R on real storage may be to ad­
versely affect other areas of the system. 

The storage management algorithms of OS/MFT have been modi­
fied to use virtual address space, by having a page supervisor 

No.3· 1974 OS/VS 1 CONCEPTS AND PHILOSOPHIES 

virtual = 
real 

storage 

management 

221 



protection 

222 

assume the role of real storage management. It was recognized 
early in the design of OS/VS 1 that the relatively large addressing 
capability of virtual storage could be used to make many of the 
options of OS/MFT resident in virtual storage. Figure 3 shows a 
number supervisor options that have been made resident through 
the paging capability. Conversely, many formerly main-storage 
resident routines can now be loaded into pageable system 
modules, thereby reducing contention on critical real storage and 
still permitting ready access to the routines. As a result, portions 
of the control program as well as many critical control blocks 
have been placed in protected portions of virtual storage, thereby 
making OS/VSl more secure than its predecessors. 

OS/VSl has a protection system that is based on keys that provide 
security of one partition from another. The keys are transparent 
to the user and are maintained by the storage management por­
tion of the supervisor. The addition of the Authorized Program 
Facility (APF) further enhances the system security capabilities 
by controlling access to the system and to user functions. A num­
ber of services thus fall under the protection of installation 
management on a job step level. Similarly, the System Queue 
Space (sQS), which had become a critical resource in OS/MFT, has 
been broken into the foil owing four portions that depend on the 
area of required information: 

• Fixed System Queue Area (SQA) is a permanently fixed table 
space (adjacent to fixed resident supervisor space) and is 
used for the executiori of system functions. The size of SQA 

is initially established during system generation, but it can be 
extended or contracted, depending upon its level of usage. 
Examples of SQA usage include translation areas for real 
channel command words and tables oriented to task execu­
tion, such as, enqueue and dequeue (ENQ/DEQ) control blocks. 

• Pageable system queue area is an area used by system tasks 
for their pageable storage requirements. 

• Fixed Partition Queue Area (FPQA) is a permanently fixed 
area, generally of 2K bytes or less, that is used primarily for 
partition page tables and for other tables that are used for par­
tition management. Such tables cannot be paged for reasons 
of reliability and integrity. 

• Pageable Partition Queue Area (PPQA) is a protected portion 
of each partition that contains tables that are used for parti­
tion management, and its paging has little impact on system 
performance. 

There is a main storage resident nucleus of the OS/VSl supervisor 
that is brought permanently into real storage during execution of 
the Initial Program Load (IPL) to perform the normal control 
program functions. Strict control should be exercised over the 
generation of such a nucleus in small systems so that an adequate 

WHEELER IBM SYST J 



Figure 3 OS/VS 1 storage map 

LOW HIGH 
ADDRESS ADDRESS 

UNPAGED SYSTEM VIRTUAL= REAL 
SUPERVISOR QUEUE 
NUCLEUS AREA 

PARTITIONS 

~ 

n-1 0 

PAGEABLE SUPERVISOR 

JOB ENTRY SUBSYSTEM 1 
PAGEABLE SYSTEM QUEUE AREA 
RESIDENT ERROR RECOVERY 
STORAGE DUMP AREA 

RESIDENT REENTERABLE ROUTINES 

I/O SUPERVISOR TRANSIENT AREA 
DUMP AREA 

~------------~~~--------------~ 
PAGEABLE STORAGE AREA 

amount of real storage remains for the paging process. Caution 
should be used to avoid the generation of unnecessary resident 
options. 

A maximum of fifteen user partitions may be defined in OS/VS 1 

with each partition in 64K byte increments of virtual storage. In 
addition, up to thirty-seven system task partitions may be de­
fined. Priority is determined by the partition in which each task 
resides, wherein partition priority is entered into the system by 
the CLASS parameter on the JOB card. Normally, system support 
modules, such as data management, are located in the user's 
partition. A user may define a resident re-entrant load module in 
a pageable resident re-entrant routine area for space and per­
formance considerations, and he may similarly use the partition 
definition as a means of controlling performance. 

We have discussed the major areas of change made necessary by 
the dynamic job relocation function. Dynamic task dispatching 
has also changed the system task dispatching techniques, so as to 
prevent a CPU dominant task from overriding I/O task dispatch­
ing. The calculation of dynamic dispatching priorities has aided 
performance in some cases by using a time slice algorithm to 
classify and order tasks. 

The OS/VS1 scheduler, as the earliest implementation in the 
OS/VS1 relocation environment, has been especially packaged in 
certain portions to optimize the programming of virtual storage. 
The value of reducing the number of branches and of clustering 
the subroutines in the job scheduler has a demonstrable effect 
on optimization. 

Job scheduler 

We now investigate the major areas of change in the job schedul­
er. Based on the need to support expanded supervisor functions 
and the ability to take advantage of dynamic relocation, a 

No.3· 1974 OS/VS 1 CONCEPTS AND PHILOSOPHIES 223 



central 

queue 

manager 

224 

number of design decisions have changed much of the OS/MFT 

job scheduler. These decisions include those to repackage 
modules and to make major algorithmic changes within the job 
scheduler framework. Many of the changes improve user ac­
cessiblity to the system and remove performance bottlenecks. 
Other decisions, such as that of rewriting the job initiator, are 
intended to provide performance improvements. Individual 
module repackaging attacks local performance problems; 1/0 

load balancing provides performance improvement to specified 
areas. The end result is a faster and more usable job scheduler, 
a strong base for the total system. 

The support scope of the dynamic relocation function could 
have limited the scheduler changes to control card modifications 
and some internal changes in the Program Status Word and Set 
System Mask areas. It was recognized, however, that additional 
benefits could derive from tailoring the OS/VSI job scheduler to 
make use of dynamic relocation. The OS/MFT job scheduler uses 
the two basic options of small partition scheduling and normal 
job scheduling to provide program scheduling. Investigation 
demonstrated that performance and maintainability improve­
ments would result from changing the scheduler to execute in 
a 64K byte virtual partition. Dynamic relocation thus alleviated 
the need for small partition scheduling, and, as a result, jobs can 
be scheduled into available partitions of their requested class. 

Portions of the OS/MFT job scheduler, such as termination rou­
tines, were in part repackaged and in part reprogrammed to bet­
ter support dynamic relocation. This was done by moving high­
usage subroutines in line so as to avoid excessive paging activity. 
In addition, a regrouping of tables that is based on reference 
rate and location of reference has further reduced paging ac­
tivity. 

The initiation portion of the OS/VSI job scheduler has also been 
rewritten to provide faster and consolidated job initiation. More­
over, the initiator has been tied to the interpreter instead of the 
reader as a part of the Job Entry Subsystem 1 work.19 

These changes do not affect the basic execution order of the job 
scheduler. However, other enhancements have modified the 
functional structure of the OS/VSI job scheduler, although the 
outward interface has been maintained. 

We now consider some of these major enhancements to the oSI 
VSI job scheduler in detail. An early analysis of job queue usage 
indicated the need for a redefinition of the contents and structure 
of the central queue manager. The OS/MFT Job Queue Data Set 
(SYSl.SYSJOBQE) contains various forms of job control informa­
tion in addition to the actual job queue. Access to this queue is 

WHEELER IBM SYST J 



spread through a number of in-line routines to 176-byte chained 
records. As a better reflection of virtual storage OS/VSl has re­
tained the 176-byte queue records, but has broken the job queue 
into a number of specialized data sets that include the following. 

Job Queue Data Set (SYSl.SYSJOBQE) retains the name of the 
OS/MFT data set, but it is much smaller in size. The SYSl.SYSJOBQE 

format is specified when the system is generated and is altered 
during system start if desired. Relevant information created by 
the reader, interpreter, and initiator is stored in this data set. 
Disk entry records and accounting records are placed on the 
data set according to class and priority. When jobs terminate, an 
entry is made for SYSOUT information, according to class. The 
jobe queue information is deleted, following the processing of 
last SYSOUT record. The Job Queue Data set is dynamically ex­
tendable in OS/VS 1 Release 3. 

Scheduler Work Area Data Set (SWADS) is created when an 
initiator is started on a partition basis. A SW ADS contains the 
scheduler work tables that are created and maintained throughout 
the scheduling routines. Since the SWADS are allocated on a parti­
tion basis, the file can be accessed in parallel by each partition. 
In OS/VS 1 Release 3, SW A can reside in virtual storage. 

Spooling Data Set (SYSl.SYSPOOL) contains the Job Control In­
formation, commands, and input data from the JESl input reader. 
On the output side, the Spool Data Set contains output and mes­
sages related to eachjob execution. 

We now discuss the relationship of the spooling data set to the 
Job Entry Subsystem. It is apparent that the division of queue 
information into a number of parts has reduced contention 
problems. The incorporation of an embedded spooling capability 
into OS/VSl is one of the broadest functional changes to the Os/ 

VSl job scheduler. The Job Entry Sybsystem 1 (JESt) incor­
porates a high-speed spooling mechanism into a pageable 
centralized routine for scheduler usage. JESl is so structured that 
apart from a page that is fixed in real storage for a long time after 
the Nucleus Initialization Program, JESl is pageable, all or in 
part, depending on its frequency of use. 

The normal introduction of ajob stream to OS/VSl is through the 
JESl input reader. The Job Entry Peripheral Services (reader and 
writer) handles all the system input (SYSIN) and output (SYSOUT). 

The J ES 1 reader is designed to read job control statements and 
data, which are passed immediately to the appropriate data sets 
owned by the Spool Manager. This action changes the sequence 
of interpretation so that the Job Control Language (JeL) interpret­
er in OS/VSl runs as a subroutine of the initiator. Delayed in­
terpretation can be prevented by entering a new parameter 

No.3· 1974 OS/VS 1 CONCEPTS AND PHILOSOPHIES 

pageable 

job entry 

subsystem 

(JES1) 

225 



remote entry 

services 

226 

TYPRUN = SCAN on the job card. In this case, a diagnostic error 
scan is performed as the job passes through the reader. When the 
errors have been corrected, the job must be resubmitted. 

A minimum of input scanning is done by the JESI reader before 
the input is submitted to the Job Entry Central Service routines. 
An internal job identifier is assigned at this time, which is a com­
bination of the user job name plus a unique system number. The 
central service routines separate the input from the JCL and write 
both to the SYSl.SYSPOOL data set. Similarly, in-line proce­
dures and entries from the procedure library (SYSl.PROCLIB) 

are placed in a special procedure SPOOL area. 

Division into separate areas enables the JES 1 routines to mini­
mize disk-access contention and improves system performance .. 
JESI maintains an information directory to allow rapid retrieval 
from all areas of the spool file. 

The JESI reader for card devices does not terminate at the end of 
file as in OS/MFT. This facility has become known as a hot reader 
facility because it reduces operator intervention and reads data 
into the computer more quickly. Another advantage of the JESI 

readers and writers is the single re-entrant copy that is maintained 
in the pageable system area to assure user access to all partitions. 

The JESI output writers reside in the JESI portion of the pageable 
supervisor. They write the output data sets created by problem 
programs as well as the messages created during the initiation / 
termination tasks. The user may specify the number of writers, 
each of which may hold up to eight classes of data. In addition to 
the output of JESI writers, the user may decide to send his output 
directly to output devices by means of the direct system output 
writer. Unlike the JESI writers, the direct system output writers 
reside in a problem-program partition. 

To provide greater flexibility of use, the JESI options and default 
values (parameters) are stored in the JESPARM member of the 
parameter library (SYSl·PARMLIB). JESI options and default 
values may be modified during the Initial Program Load (IpL) 

process. This capability is used for modifying the number and 
size of the JESl buffers, and it greatly reduces the need for new 
system generation. 

An important extension to the job entry environment is that of 
Remote Entry Services (RES), which provide a logical terminal 
extension of job entry by using the Remote Terminal Access 
Method (RTAM) to drive batch terminal devices. RES permits 
jobs to be routed from remote work stations, and permits the 
output to be returned to the same or different work stations. 

WHEELER IBM SYST J 



Since RES is a true extension to JES1, RES commands are identical 
to those used by the local JES 1 support. Additional optional data 
sets have been added that perniit the proper authorization and 
storage of broadcast information. RT AM is the only portion of 
RES that is not present unless specifically generated. 

Since the RES design is totally integrated into the JESI structure, 
RES is treated as a logical extension of the JESI reader and writer, 
and communicates to the system in the same manner as the 
reader and writer. 

Concluding remarks 

One of the major concerns of users of virtual storage systems has 
also been a major objective of system designers, that is, ease of 
moving programs from OS/MFT systems to OS/VSl systems. Dis­
cussed in this articie have been supervisor and job scheduling 
operations that make such a move possible, whereby programs 
remain wholly or largely intact. The major innovation of virtual 
storage systems is that of dynamic relocation. Effects of dy­
namic job relocation on the supervisor and the job scheduler 
have been discussed. 

Some functional aspects of the os/vs 1 system generation 
(SYSGEN) process have also been related to the supervisor and 
job scheduling functions. SYSGEN in OS/VSl is a simplified derivi­
tive of that in OS/MFT. 

As in the case of SYSGEN, the operator interface to OS/VSl is sub­
stantially the same as that to OS/MFT. 

Aspects of the OS/VSl control program have been discussed. 
Many of the OS/MFT optional control program functions have 
been incorporated into the OS/VSl control program portion of the 
pageable supervisor space, and have thus been removed from the 
option process. 

Because of the extended directly addressable storage (virtual 
storage), the movement of programs to OS/VSl systems is simpli­
fied. Virtual storage largely removes problems of storage manage­
ment and the overlaying of application program substructures in 
moving from OS/MFT to OS/VS1. When designing and coding new 
applications, dynamic relocation provides system enhancements 
for improving performance in those cases. 

CITED REFERENCES AND FOOTNOTES 

1. S. J. Shields, "How one company went to VS," Computer World, January 23, 
1974 and January 30,1974. 

No.3' 1974 os/vs 1 CONCEPTS AND PHILOSOPHIES 227 



228 

2. J. Fotheringham, "Dynamic storage allocation in the Atlas computer, in­
cluding an automatic use of a backing store," Communications of the ACM 
4,10,435-436 (November, 1961). 

3. M. Joseph, "An analysis of paging and program behavior," Computer 
Journal 13, 48-54 (February 1970). 

4. R. J. Adair, B. V. Bayles, L. W. Comeau and R. J. Greasy, A Virtual Machine 
System for the S /360/40, TR 320 - 2007, IBM Scientific Center Report, 
May 1966. May be obtained from the IBM Scientific Center, 545 Technology 
Square, Cambridge, Massachusetts 02139. 

5. G. E. Hoernes and L. Hellerman, "An experimental S / 360 /40 for time 
sharing," Datamation 14, 39 - 42 (April 1968). 

6. S. E. Gluck, "Impact of scratchpads in design: Multifunctional scratchpad 
memories in Burroughs B8500," AFIPS Conference Proceedings, Fall Joint 
Computer Conference 27, 661-666 (1965). 

7. F. B. MacKenzie, "Automated secondary storage management," Datama­
tion 11, 24-28 (November 1965). 

8. In the early design of OS /VS 1, it was decided to treat the scheduler as the 
first user of dynamic relocation and to optimize critical routines accordingly. 
Some useful references to optimization are the following: 

• G. S. Shedler and S. C. Yang, "Simulation of a model of paging system 
performance," IBM System Journal 10, 2, 113 -128, (1971). 

• L. W. Comeau, "A study of user program optimization in a paging sys­
tem," ACM Symposium on Operating System Principles, Gatlingburg, 
Tennessee (October 1967). 

• J. E. Morrison, "User performance in virtual storage system," IBM Sys­
temsJournal12, 3, 216-237 (1973). 

• D. R. Slutz and I. L. Traiger, A Note on the Calculation of Average Work­
ing Set Size, IBM Technical Report, RJ 1209, April 27, 1973, may be 
obtained from the IBM T. J. Watson Research Center, Yorktown Heights, 
New York 10598. (To be published in Communications of the ACM.) 

9. Discussed in the article by J. G. Baily, J. A. Howard, and T. J. Szczygielski 
in this issue. 

10. Discussed in the article by D. G. Keehn and J. O. Lacy in this issue. 
11. OS/VSl and DOS/VS use a 2.048-byte page and page frame size. TSS/360, 

OS/VS2, and VM/370 and a 4,096-byte page and page frame size. 
12. L. A. Belady groups replacement algorithms into the following three classes 

in his article "A study of replacement algorithms for a virtual storage com­
puter," IBM Systems JournalS, 2, 78-101 (1966): 
Class 1 for storage blocks that are equally referenced but with no algoithmic 
basis in storage usage; essentially a type of first-in-first out algorithm. 
Class 2 for storage blocks that are classed by their most recent history; status 
bits serve as prime movers. 
Class 3 for storage blocks that are classed by an intensive history of pages. 

13. The hit ratio function applies to the optimal behavior of a page referencing 
pattern. A high hit ratio indicates a high availability of the referenced frames. 

14. T. F. Wheeler, "IBM OS/VSI-An Evolutionary Growth System" Pro­
ceedings of the NationaL Computer Conference, 395-400 (1973). 

15. P. J. Denning, "Thrashing: its causes and prevention," AFIPS Conference 
Proceedings, Fall Joint Computer Conference 33, Part 1,915 -922, (1968). 

16. PGFIX fixes virtual storage contents in page frames. 
PG FREE frees page frames. 
PGLOAD loads virtual storage into page frames. 
PG RLSE releases page frame contents. 
For a more complete description see IBM Systems/370, OS/VSI Planning 
and Use. Guide VSI ReLease 3, Form GC24-5090-2, IBM Corporation, 
Data Processing Division, White Plains, New York 10604. 

17. In an attempt to identify performance characteristics, Morrison (in Refer­
ence 8) identifies a number of interrelationships between working set and 
parachor curves. Morrison defines a parachor curve as a graph of the total 

WHEELER IBM SYST J 



number of page exceptions that a program causes to access when paging 
against itself in a fixed amount of real storage, versus the amount of storage 
available to it for execution. 

18. The virtual = real line defines the upper limit of address space available for 
contiguous allocation in blocks. The system default for V = R is the smaller 
of either 512K bytes or the real main storage size of the computer mode. The 
actual amount of storage available for the virtual = real mode varies with the 
options chosen for the system. 

19. Job Entry Subsystem is based to a large degree on technology that has 
evolved from the Houston Automatic Spooling Package system (HASP), 
which was developed for OS /MFT and OS /MVT. JES 1 incorporated many 
of the mechanisms of HASP directly. 

NO.3· 1974 OS/VS 1 CONCEPTS AND PHILOSOPHIES 229 


