IBM NAS 9-9% Real Time Comﬁuter Cnmplex

Foreword
Date 3/20/72
_ Rev
Book : High Level Assembler Language User's Guide Page iof i

FOREWORD

This User's Guide discusses High Level Assembler Language (HLAL) as
an effective programming tool for developing computer software more
efficiently. It is intended for all programmers having basic knowledge of
0S/360 Assembler Language. :

Part I of this guide presents some of the basic ideas of Dr. Harlan Mills
on structured programming. However, only those ideas applicable to the
RTCC environment have been incorporated in HLAL. Therefore, this section
is intended only to provide general background information supportive of the
guidelines and detailed formulation of HLAL.

Part II discusses these guidelines in detail and provides a functional
description of HLAL components. Included in the discussion are MACRO
formats since HLAL makes extensive use of the OS/360 Assembler MACRO
facilities and is essentially a MACRO language. ' :

All sections are identified by a one-digit number in the upper righthand
corner of the page. In Section 3 of Part II, the appropriate MACRO name has
been added. These MACRO definitions are filed alphabetically and are page-
numbered within to facilitate updating. Pages in all other sections are
~numbered consecutively. /

Only current documentation is maintained in this book. All previous
versions will be deleted as they become obsolete and filed in Records
Retention. Any additions or changes to this guide may be directed to Will
Taylor at 333-3300, extension 3519.

IBM.... | Real Time Computer Complex

Table of Contents

Date 3/20/72
Rev

Book : lligh Level Assembler Langunage User's Guide » Poge i ofi

TABLE OF CONTENTS

PART I, STRUCTURED PROGRAMMING

PRECISION PROGRAMMING

Complexity and Precision in Programming
Key Technical Principles

Standards, Creativity and Variability
Controlling Complexity Through Technical Standards
STRUCTURED PROGRAMS

The Idea of Structured Programs

Segment Structured Programs

Creating Structured Programs

Reading Structured Programs

THE STRUCTURED PROGRAMMING PROCESS
Functional Specifications

Function Expansions

Program Design

Program Coding

VNN = = e e
e e e s o e
W NV - > W -

W W W W NN
W IN e

PART II. HIGH LEVEL ASSEMBLER LANGUAGE

CONCEPTS

GUIDELINES

MACRO FORMATS, DEFINITIONS AND EXAMPLES
USE WITH RTPM

Pre- and Post-Assembly Processors

Invoking the HLAL MACROS

EXAMPLE

BIBLIOGRAPHY

N -

- IBM NAS 9-998 Real Time Computer Complex

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part I Poge

PART I. STRUCTURED PROGRAMMING

IBM | Real Time Computer Complex

1.

Date 3/20/72

Rev '
Book: High Level Assembler Language User's Guide - Part I Page -1 (of 5)

1. PRECISION PROGRAMMING
o1 COMPLEXITY AND PRECISION IN PROGRAMMING

The digital computer has introduced a need for highly complex, precisely
formulated, logical systems on a scale never before attempted. Systems may
be large and highly complex, but if human beings, or even analog components,
are intrinsic in them, then various error tolerances are possible, which such
components can adjust and compensate for. However, a digital logic system,
hardware and software, not only makes the idea of perfect precision possible - -
it requires perfect precision for satisfactory operation. This complete
intolerance to the slightest error gives programming a new character, unknown
previously, in its requirements for precision on a large scale.

The combination of this new requirement for precision, and the commercial
demand for computer programming on a broad scale has created many false
values and distorted relationships in the past decade. They arise from intense
pressure to achieve complex and precision results in a practical way without
adequate theoretical foundations. As a result, a great deal of programming
today uses people and machines highly incfficiently, as the only means presently
known to accomplish a practical end.

It is universally accepted today that programming is an errof-prone activity.
Any major programming system is presumed to have errors in it. Only the
very naive would believe otherwisec. The process of debugging programs and
systems is a mysterious art. Indeed, more programmer time goes into
debugging than into program desighing and coding in most large systems. But
there is practically no systematic literature on this large undertaking. While
a source of constant and deep frustration, such errors are nothing new in
programming. They have always been there, from the very first days.

 Yet, even though errors in pi—ogram logic have always been a source of
frustration, even for the most careful and meticulous, this may not be neces-
sarily so in the future. Programming is very young as a human activity - -
some twenty years old. It has practically no technical foundations yet. Imagine
engineering when it was twenty years old. Whether that was in 1620 or 1770,
it was not in very good technical shape at that stage either! As technical
foundations are developed for programming, 1ts character will undergo radical
changes. :

Approval Approval

(W hcim N Gl . & Feecrma

IBM... © Real Time Computer Complex
| " |

Date 3/20/72
Rev

Bcgik': High Level Assembler Language User's Guide - Part I Poge 1-2

We contend here that such a radical change is possible now - - that the
techniques and tools are at hand to permit an entirely new level of precision
in programming. This new level of precision will be characterized by programs
that ordinarily execute properly the very first time they are ever run. But to
accomplish that level of precision, programming standards and disciplines will
be required of an entirely new scope and depth, as well.

Note, here, the objectives of such precision in programming deal with
execution, rather than assembly/compilations. Some improvement may be
noticeable in reducing syntax errors, but assemblers/compilers can find syntax
errors already. It is the program logic errors at the system level which can
be practically eliminated from programming today. :

1.2 KEY TECHNICAL PRINCIPLES

There have been, from the beginning of programming activities, certain
principles from general systems theory that good programmers have identified
~and practlced,m one way or another. These include developing systems designs

from a gross level to more and more detail until the detail of a computer is
reached, of dividing a system into modules in such a way that minimal inter-
action takes place through module interfaces, of creating standard subroutine
libraries, and using high level programming languages for the coding process.

Precision in programming will see a reapplication of these classical
ideas, such as prégram modularity and clean interface construction. However,
there are also two key principles, which are new in their application to
programming, that will play a major role in the implementation and exploitation
of these ideas. These principles are based on new mathematical results, one
graph-theoretic, one function-theoretic in character.

The first key technical principle is that the control logic of any program
can be designed and coded in a highly structured way. In fact, we shall see
that arbitrarily large and complex programs can be represented by iterating
and nesting a small number of basic and standard control logic structures.

‘Thiis principle has an analogue in hardware design where it is known
that arbitrary logic circuits can be formed out of elementary ''and', '"or",
and ''not'" gates. This is a standard in engineering so widespread it is taken

|IBM .. 5-om0 | Real Time Computer Complex

1.
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - part 1 Fo@® 1-3

for granted. But it is based on a theorem in Boolean algebra that arbitrarily -
complex logic functions can be expressed in terms of "and'", "or'" and '"not"
operations. As such, il represents a standard based on a solid theoretical
foundation. It does not require add hoc justification, case by case, in actual
practice. Rather, it is the burden of a professional engineer to design logic
“circuits out of these basic components. Otherwise, considerable doubt would
arise about his competence as an engineer.

A practical application of this first principle is writing "structured"
programs - - e.g. GOTO-free PL/I programs (Dijkstra 1968). In PL/I,
the branching control logic can be defined entirely in terms of DO loops, IF-
THENELSE and ON statements. The resulting code can be read strictly from
top to bottom, typographically, and is much easier understood thereby. It
takes more skill and analysis to write such code, but its debugging and main-
tenance is greatly simplified. Even more importantly, such structured
_programming can increase a single programmer's span of detailed control
and productivity by a large amount. Here as in circuit design, a theoretical
result puts the burden on the programmer to produce GOTO-free code, rather
than on case by case demonstrations by technical management.

The second key technical principle is that programs can be coded in a
schedule that requires no simultaneous interface hypotheses. That is, programs
can be coded in such a way that every interface is defined initially and uniquely
in the coding process itself, and referred to thereafter only in its prevnously
coded form.

This principle has an analogue in the theory of computable functions. A
key point in characterizing a computable function is that its valuation can be
accomplished in a sequence of elementary computations, none of which involves
solving a simultaneous system of equations. Any program which is to be
executed in a computer can be coded in such an execution sequence. And the
very fact that the computer evaluates only computable functions means that
no interfaces can be defined hypothetically and simultaneously in computation.

In practical application, this second principle leads to 'top down'' pro-
gramming where code is generated in an cxecution precedence form. In this
‘case, programmers write job control code first, then linkage editor code,
" then source code. The opposite (and typical implementation procedure) is
""bottom up' programming, where source modules are written and unit tested

IBM 3 | Real Time Computer Complex

1.

Date 3/20/72
: g Rev
Book: High Level Assembler Language User's Guide - Part I Page 1-4

to begin with, and later integrated into subsystems and, finally, systems. This
latter integration process, in fact, tests the proposed solutions of simultaneous
interface problems generated by lower level programming; and the problems

of system integration and debugging arise from imperfections of these proposed
solutions. In a real sense, the usual system integration and debugging process
seeks to solve sets of complex simultaneous interface equations which are
created by the very system development process! Top down programming
circumvents the integration problem by the coding sequence itself.

1.3 STANDARDS, CREATIVITY AND VARIABILITY

Many reactions to technical standards in programming make a basic
confusion between creativity and variability. Programming these days is a
highly variable activity. Two programmers may solve the same problem with
very different programs. Two engineers asked to design a "half adder' with
economical use of gates will be much less variable in their solutions, but, in
fact, no less creative than two programmers in a typical programming project.
Carried to an extreme, two mathematicians asked to solve a differential
equation may use different methods of thinking about problems, but will come
up with identical solutions and still be extremely creative in the process.

The present programming process is mostly writing down all the things
that have to be done in a given situation. There are many different sequences
which can accomplish the same thing in most situations. And this reflects
itself in extreme var1ab111ty A major problem in programming at the present
time is simply not to forget anything - - that is, to handle all possible cases
and to invent any intermediate data needed to accomplish the final results.
Thus, as long as programming is primarily the job of writing everything down
in some order, it is, in fact, highly variable - - but that, in itself, is not
creative. ‘

It is possible to be creative in programming and that deals with far more
ill-defined questions, such as minimizing the amount of intermediate data’
required, or the amount of program storage, or the amount of execution time,
etc. Finding the deep stmphcxtles in a complicated collection of things to be
done is the creativity in programming. Getting a program to run correctly,
handle all error conditions, etc., is like getting the ball in all 18 holes on a
golf course. If you debug long enough, or hit the ball often enough, you get
done.. Only nobody asks in the clubhouse, '"Did you get the ball in all 18 holes
today 2" :

IBM as 9-9% | Real Time Computer Complex

1.
Date "3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part 1 Page 1-5

1.4 CONTROLLING COMPLEXITY THROUGH TECHNICAL STANDARDS

A major purpose in creating new technical standards in programming is to
control complexity. Complexity in programming seems sometimes to be a
"free commodity". It does not show up in storage or in throughput time, and
it always seems to be something that can be dealt with indefinitely at the local
level.

In this connection, it is an illuminating digression to recall that 500 years
ago, no one knew that air had weight. Just imagine, for example, the
frustrations of a water pump manufacturer then, building pumps to draw
water out of wells on the 'theory' that '"nature abhors a vacuum'. By
tightening up seals, one can raise water higher and higher - - five.feet, ten
feet, then 15 feet, and so on, until one gets to 28 feet. But then, mysteriously
and without seeming reason, no amount of effort avails to go higher. As soon
as it is known that air has weight and it is, in fact, the weight of a column of
some 28 feet of water, then the frustration clears up right away. Knowing
the weight of air allows a better pump design, for example, in multlple stage
pumps if water has to be raised more than 28 feet.

We have a similar situation in programming today. Complexity has a
"weight' of some kind, but we do not know what it is. We know more and
more from practical experience that complexity will exact its price in a
qualitative way, but we cannot yet measure that complexity in operational

~terms. For example, we are soldom able to intelligently reject a program
module because it has '""too many units of complexity in it'". These units of
measure will, in all probability, be in '"bits of information'. But just how
to effect the measurements still requires development and refinement.

Nevertheless, we have qualitative notions of complexity, and standards

can be used to control complexity in a qualitative way, whether we can

- measure them precisely or not. One kind of standard we can use to control
complexity is structural, as in the first principle noted above. Then we can
require that programs be written in certain structural forms rather than
simply arbitrary complex control graphs generated at a programmer's fancy.
The technical basis for the standard is to show that arbitrarily complex
flowcharts can be reformulated in equivalent terms as highly structured
flowcharts which satisfy certain standards. '

IBM NAS -6 | Real Time Computer Complex

2.
Date 3/20/72

Rev
Book: High Level Assembler Language User's Guide - Part I Page 2-1 (of 8)

2. STRUCTURED PROGRAMS
2.1 THE IDEA OF STRUCTURED PROGRAMS

We are interested in writing programs which are highly readable, whose
major structural characteristics are given in hierarchical form. In fact, we
are interested in writing programs which can be read sequentially in small
segments, usually under a page in length, such that each segment can be
literally read from top to bottom, with complete assurance that all control
paths are visible in the segment under consideration.

There are two main requirements through which we can achieve this goal.
The first requirement is GOTO-free code, i.e., the formulation of programs
in terms of a few standard and basic control structures, such as IF-THEN-
ELSE statements, DO loops, CASE statements, DECISION tables, etc., with
no arbitrary jumps between these standard structures. The second requirement
is library and macro substitution facilities, so that the segments themselves
can be stored inder symbolic names in a library and the programming language
permits the substitution of any given segment at any point in the program
by a macro-like call.

PL/I in OS/360 has both the control logic structures, and the library and
macro facilities necessary. Assembler Language in OS/360 has the library
and macro facilities available and a few standard macros can furnish the
control logic structures requlred

We will develop later a theoretical basis for programming without
arbitrary jumps (i.e., without GOTO or RETURN statements) using only a set
of standard programming figures, such as mentioned at-:ve. At the presect
time, we take such a possibility for granted, and note that any program,. hether
it be one page or a hundred pages, can be written using only IF THEN ELSE
and DO loop statements for control logic.

The control logic of a program in a free form language, such as PL/I or
PL360, can be displayed typographically, by line formation and indentation
conventions. A Syntax-Directed Program Listing - - a formal description for
such a set of conventions - - is given in (Mills 1970). Conventions often used
are to indent the body of a DO-END block, such as

IBM..... Real Time Computer Complex

2.

Date . 3/20/72
Rev ’

Book : High Level Assembler Language User's Guide - Part I Poge 2-2
DO I=J TOK;
statement 1

k statement 2

statement n

END;
and the clauses of IF-THEN-ELSE statements, such as
IF X > 1 THEN
statement 1
'ELSE
statement 2.

In thévlatter case, if the statements are themselves DO-END blocks, the DO,

END are indented one level, and the statements inside them indented further,
such as

IF X > 1 THEN
DO;
s.tatement 1

statement 2

statement k

 END;

IBM ... - Real Time Computer Complex

2. ,
Date 03/20/72
: Rev
Book: High Level Assembler Language User's Guide - Part I Page 2-3

ELSE
DO;

statement k + 1

statement n
END;

In general, DO-END and IF-THEN-ELSE can be nested in each other indefinitely
in this way.

2.2 SEGMENT STRUCTURED PROGRAMS

Imagine a hundred page PL/I program written in GOTO-free code. Although
it is highly structured, such a program is still not very readable. The extent
of a major DO loop may be 50 or 60 pages, or an IF-THEN-ELSE statement
take up ten or fifteen pages. There is simply more than the eye can comfortably
take in or the mind retain for the purpose of programming. '

~ However, with our imaginary program in this structured form, we can
begin a process, which we can repeat over and over until we get the whole
program defined. This process is to formulate a one-page skeleton program
which represents that hundred page program. We do this by selecting some of .
the most important lines of code in the original program and then filling in
what lies between those lines by names. Each new name will refer to a new
segment to be stored in a library and called by a macro facility. In this way,
we produce a program segment with something under 50-lines, so that it will fit
on one page. This program segment will be a mixture of control statements
‘and macro calls with possibly a few initializing, file, or assignment statements
as well, ‘ '

The programmer must use a sense of proportion and importance in

identifying what is the forest and what are the trees out of this hundred page
program. It corresponds to writing the '"high level flow chart' for the whole

program, except that a completely rigorcus program segment is written here.

IBM NAS 9:9% _ ‘ Real Time Computer Complex

2.
Date 3/20/72
| | Rev |
Book : High Level Assembler Language User's Guide - Part I Page 2.4

A key aspect of any segment referred to by name is that its control should
enter at the top and exit at the bottom, and have no other means of entry or
- exit i'ijom other parts of the program. Thus, when reading a segment name,
at any point, the reader can be assured that control will pass through that
segment and not otherwise affect the control logic on the page he is reading.

In order to satisfy the segment entry/exit requirement, we need only be
sure to include all matching control logic statements on a page. For example,
the END to any DO, and the ELSE to any IF ... THEN should be put in the
same segment.

For the sake of illustration, this first segment may consist of some 30
control logic statements, such as DO-WHILE's, IF-THEN-ELSE's, perhaps
another 10 key initializing statements, and some 10 macro calls. These 10
macro calls may involve something like 10 pages of programming each,
although there may be considerable variety among their sizes.

Now we can repeat this process for each of these 10 segments. Again,

we want to pick out some 50 control statements, segment names, etc., which
best describe the overall character of that program segment and relegate
further details to the next level of segments. We continue to repeat the process
until we have accounted for all the code in the original program. Our end '
result is a program, of any size whatsoever, which has been organized into a
set of named member segments, each of which can be read from top to bottom
without any side effects in control logic, other than what is on that particular
page. A programmer can access any level of information about the program,
from highly summarized at the upper level segments to complete details in the
lower levels. '

In our illustration, this one hundred page program may expand into some
hundred and fifty separate segments, because (1) the segment names take up
a certain amount of space, and (2) the segments, if kept to a page maximum,

‘'may average only some two-thirds full on each page. FEach page should
represent some natural unit of the program, and it may be natural to only {ill
up half a page in some instances.

IBM ... | Real Time Computer Complex

2.
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part I Page 2-5

In the theoretical development carried out below, it will be apparent that
it is possible to structure any given program much more deeply than that
called for in maintaining segments to page sizes or less. The additional
latitude in expanding a necessary half-dozen lines or so into some fifty,
requires programmer creativity and perspective. It formalizes a process that
good programmers do well instinctively and poor programmers do not so well,
But it also standardizes this process of the selection of major from minor
aspects of a program and allows all programmers to operate on a common base.

2.3 CREATING STRUCTURED PROGRAMS

In the preceding section, we assumed that a large size program somehow
existed, already written with structured control logic, and discussed how we
could conceptually reorganize the identical program in a set of more readable
segments. In this section, we observe how we can create such structured

programs a segment at a time in a natural way.

, We suppose that a program has been well designed and that we are ready
to begin coding. We also note a common pitfall in programming is to 'lose
. our cool'" - - i,e., begin coding before the design problems have been thought .
through well enough. In this case, it is easy to compromise a design because
code already exists which is not quite right, but '"seems to be running
correctly'’; the result is that the program gets warped around code produced
ad hoc. We assume that has not happened here. :

Our main point is to observe that the process of coding can take place in
~ practically the same order as the process of extracting code from our

imaginary large program in the previous section. That is, armed with a
program design, one can write the first segment which serves as a skeleton
for the whole program, using segment names, where appropriate, to refer
to code that will be written later. In fact, by simply taking the precaution of
inserting dumumy members into a library with those segment names, one can
compile or assemble, and even possibly execute this skeleton program, while
the remaining coding is continued. Very often, it makes sense to put a
temporary write statement ''got to here OK' as a single executable statement
in such a dumimy member.

IBM..... - | Real Time Computer Complex

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part I Page 2-6

Now, the segments at the next level can be written in the same way,

referring as appropriate to segments to be later written (also setting up

- dummy segments as they are named in the library). As each dummy segment
becomes filled in with its code in the library, the recompilation of the segment
that includes it will automatically produce new updated, expanded versions of
the developing program. Problems of syntax and control logic will usually be

- isolated within the new segments so that debugging and checkout goes
‘correspondingly well with such problems so isolated.

It is clear that the programmer's creativity and sense of proportion
can play a large factor in the efficiency of this programming process. The
- code that goes into earlier sections should be dictated, to some extent, not
only by general matters of importance, but also questions of getting executable
segments reasonably early in the coding process. For example, if the control
logic of a skeleton module depends on certain control variables, their declara-
tions and manipulations may want to be created at fairly high levels in the '
hierarchy. In this way, the control logic of the skeleton can be executed and
~debugged, even in the still skeleton program.

Note that several programmiers may be engaged in the foregoing activity
concurrently. Once the initial skeleton program is written, each programmer
could take on a separate segment and work somewhat independently within the

_ structure of an overall program design. The hierarchical structure of the
programs contribute to a clean interface between programmers. At any point
in the programming, the segments already in existence give a precise and
concise framework for fitting in the rest of the work to be done.

2.4 READING STRUCTURED PROGRAMS

Ré‘a‘dihg programs is as much an art today as writing them. There are as
‘many ways of reading programs as thef'e are programmers. Our objective is
to develop a systematic basis for reading, so that the process is as nearly
repeatable as possible; that is, so that two programmers would go through
nearly the same activity in reading a given program and record the same set
of observations about it. ‘

| IBM NAS 5-99% Real Time Computer Complex

2.
Date 3/20/72
Rev :

Book: High Level Assembler Language User's Guide - Part I Page 2-7

As long as programs are the proverbial '""bowls of spaghetti', there is
little systematic that can be introduced into reading. It is simply a question
of following threads of control and an a priori enumeration of that control is
usually not practical. But when programs are structured as described above,
then it is, indeed, possible to give a systematic sequence in which reading
can be done. This sequence within each segment is strictly from top to bottom,
noting, of course, the programming effect of the various figures encountered
which cause branching and looping. The sequence between segments has more
possible variety. These sequences correspond to alternatives available in
conducting a tour through a tree. Systematic tree tours can be easily imagined
in top down, bottom up, left to right forms, etc. For example, in a top
down tour, one examines first the top node, then the nodes connected to that
top node, then each of the nodes connected to the latter nodes, etc., until one
has found all the nodes of the tree.

It is likely that both top down and bottom up tours will be useful in reading

‘structured programs. When a programmer is trying to get acquainted with

a program it seems that a top down reading sequence will be most instructive,

so that the program unfolds much as it does in the writing process. However,
- when a programmer, or set of programmers, wants to do a thorough job of

validating a program through reading, then it appears that a bottom up tour

may be an effective way of proceeding. Each segment so réad in the bottom
"up- tour can be characterized as a checkpoint in the reading process so that

the segments above which call on it will then be verifiable by using checkpoint

information on the segments they name.

In this connection, it is important to observe that because of its one-in,
one-out control character, a segment induces a change of state in the programming
system and transfers control to the next line in the segment naming it. This
change of state will be represented in changed data values in two categories
of data; those internal to the segment (and therefore of no interest to the segment
naming it) and data external to the segment. It is this external data that, when
characterized, permits the segment to be read and its effects noted simply by
name.

It is also evident that program segments, as we have defined them, are
“natural units of documentation and specification. In fact, the specification of
a segment is the best means of accessing its function at higher levels in the

IBM ... o * Real Time Compurter Complex ;

2.

Date 3/20/72
, Rev

#Book: High Level Assembler Language User's Guide - Part I Page 2-8

programming system. In this case, a reading checkpoint should contain the

assertion that the segment carries out its specification correctly, subject, of

course, to its named segments carrying out their specifications correctly as

well. Now, if one begins at the bottom, verifies each segment carries out its

specification and progresses upward, one can finally arrive at the full program
" as it has been checkpointed, and an opinion about its correctness.

Note again, as in the programming process, that this reading process
can involve several programmers concurrently with the joint results being
aggregated at higher levels into a final opinion about the program's correct-
ness. Note also, unlike writing programs which seemingly have to be done
by a single programmer, several programmers can be reading the same
segments simultaneously to arrive at independent conclusions about their validity.

|IBM " Real Time Computer Complex

3.

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part I Page 3-1 (of 4)

3. THE STRUCTURED PROGRAMMING PROCESS
3.1 FUNCTIONAL SPECIFICATIONS

We define a functional specification to correspond to the mathematical
idea of a function, namely, a mapping of inputs into outputs, without regard to
how that mapping is to be accomplished. In practical terms, of course, one
has to have some underlying ideas on techniques and algorithms that are
possible, in order to write a feasible functional specification. For example,
we simply cannot formulate impossible computing processes as functional
specifications without any hope of implementing them.

However, the general situation in programming system development is
that the functional specifications are rather large and complex, simply to
write them down. In illustration, the input and output messages and codes of
a large information retrieval system may run to hundreds, or even thousands
of pages. Because of this, functional specifications are seldom complete as
mathematical descriptions, but nevertheless, the mathematical model is an
ideal that we have in mind when we speak of functional specifications.

There is an additional advantage in defining a functional specification to
correspond to the idea of a mathematical function. It represents a platform
from which several independent alternative algorithmic approaches might be
explored, even by différ_ent groups for later comparison and selection. It
permits parallel efforts to an objective that is independent of the means.

Ordinarily, the development of functional specifications interact with the
process of program design to achieve those specifications. In unique, highly
specialized systems, program design may have a significant feedback to _
functional specifications to reflect certain opportunities available in hardware
architecture or in a programming technique which the ultimate user can adapt
to his needs in the programming system. For example, ultimate users can

 often view information systems in various, almost equivalent ways. In such
cases, a particular indexing system already available may well affect the
functional specifications for that user system.

IBM ... Real Time Computer Complex

3. o
Date 3/20/172,

: : Rev
Book: High Level Assembler Language User's Guide - Part1 ~Page 3.2

3,2 FUNCTION EXPANSIONS

We have noted above that the top down programming process represents
a step by step expansion of a mathematical function into simpler mathematical
functions, using BLOCK, IF-THEN-ELSE, DO-WHILE, CASE, or DECISION
‘statements as elementary structural devices. Such a programming process is
easy to visualize with these constructs. Given a functional specification to be
expanded by one step, we ask the question, "What elementary program state-
ment can be used to expand the function?' The expansion chosen will imply
one or more subsequent functional specifications, which arise out of the original
specification. These new functional specifications can each be treated exactly
" as the original functional specification and the same questions posed about them.

As a result, the top down programming process is an expansion of.
functional specifications to simpler and simpler functions until, finally, state-
ments of the programming language are reached. The beginnings of such a
process is shown below, expanding the functional specification '"Add member
to library'. Such a functional specification will require more description,
but the breakout into subfunctions by means of programming statements can
be accomplished as.indicated here.

f = "Add member to library" - (specification)
£ = (BLOCK g,h) | B (expansion)

g = "Update library index" : ‘(subspecivﬁcation')
il = ”Add member text to library text”’ ' (subspecification)
g = ’.(IF-THEN— ELSE, psi,j) | (expansion)

p #’“‘Merbnber name is in index" ' (subspecification)
= ""update text pointer!’ .‘ (subspecification)
j = "Add name and text pointer to index" o . (subspecification)

IBM NAS 9-9%6 Real Time Computer Complex

3.
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part I o¢ 3-3

f = IF "Member name is in index" THEN (restatement of two
"Update text pointer" levels of expansion)
ELSE

""Add name and text pointer to index'
"Add member text to library text"
3.3 PROGRAM DESIGN

Good programmers have always organized large programming systems into
a succession of subsystems of increasing detail with minimal interconnections
between the subsystems. They also identify common subprocessing activities,
if present, and formulate these as subroutines to be called throughout the
programming system. We follow these ideas, sharpen them in some ways,
because of the structured programs we intend to create.

First we make a distinction between subprograms which are created
for structuring the system, and subprograms which carry out common low-
level processing functions in many places in the system. The latter set of
subprograms we isolate first, and append to the programming language itself,
just as sine or exponential routines are regarded as part of PL/I or Fortran.
These subprograms are documented and considered as part of the language .
description in which programmers write the programming system. Itis
natural to make these subprograms completely self-sufficient with respect to
data, that is, to use no data from their environment except that passed explicisl+
in the arguments of their calls, Such subprograms may, in fact, be extensive
and have their own private environment, e.g., it is conceivable that a sub-
program accessed only by calls with explicit arguments may still access large
masses of data in their execution, and that even large masses of data be
identified in their argument list. But, nevertheless, the concept of data
independence from the rest of the programming system is held.

The other type of subprogram which is used to help structure a system will
ordinarily appear only once as a call from some other program. In this case,
we use no arguments for the subprogram call, but let the communication between

IBM NAS 9-996 ' S Re'l Time mm * . .
f s I

Date 3/20/72
Rev '

Book : High Level Assembler Language User's Guide - Part I Page 3.4

programs be based entirely on data structures that both programs are aware
of. Ordinarily, these data structures will be nested to correspond to the
nesting structure of the programs themselves, and data scopes will be made as
low as possible to localize their range of validity.

The process of program design is much influenced by the structured
‘programs that are to result. For example, in defining a subsystem and the
immediate constituents of that subsystem as smaller subsystems, one seeks
enough control logic to fill up a page of conventional code, but not so much
as to overflow pages. It takes some practice to accomplish this, but after
some practice, it becomes easier than it might look to organize an entire
programming system into a hierarchy of subsystems which are page-like
segments in their final code. 1If, in the coding process, the coding estimates
are greatly missed, some rethinking on the program design should be done
and recoding carried out accordingly.

3.4 PROGRAM CODING

At the point in time when one is coding a segment, one has, in top down
programming, sufficient information to write that segment correctly from
code in higher levels which have already been written in order to reach this
point of the coding. It is good practice to verify the code as it is written, for
logical consistency, with previous code in terms of definitions, exact names,
etc., line by line. Ordinarily, programmers do not imagine this kind of
verification is really necessary, and rely on their short-term memories to
put together and integrate sections of code written in a non-time-structured
way. But there is nothing so sobering as programming in this way, discovering
how often the short-term memory fails, and reflecting on how much additional
debugging would have been necessary because of these failures. Programming
today takes such additional debugging for granted, but it is not a necessary
activity. ‘

| IBM NAS 9-99% | Real Time Computer Complex

Date .3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page

PART II., HIGH LEVEL ASSEMBLER LANGUAGE

| IBM ma’-m. Real Time Computer Canlex

1.
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Poge 1-1 (of 4)

1. CONCEPTS

All frequently used segments of code are generated by MACROs. These
include those that are common to all applications and those that fulfill individual

requirements of each application. All MACROs are coded such that:
(a) They are self—docum‘enting
(b) They are written to process higher level language type statements
(c) The code that is generated to perform a given function is optimized
and debugged when the MACRO is originally written, such that coding

errors are reduced, resultant code is more efficient and the fun_ction
does not have to be redesigned and rewritten each time it is used.

IF BIT, X, IS, ON, THEN
ELSE

ENDIF

The common set of MACROs contains MACROs that define the beginning
and ending block segments used for programming in the structured form.

IF P THEN =~ - ' typ'e: dual path decision logic
ELSE j <&

B A B
ENDIF

IBM... Real Time Computer Complex

1.
Date 3/20/72 ‘

B Rev
Book : High Level Assembler Language User's Guide Page 1.2
! UNTIL type: looping logic
WeILE P DO .
R !
ENDDO i3 A

s UNTIL
STRTSRCH (WHILE) P DO

A

type: table search logic

EXITIF ¢ ' '
ORELSE

. C
ENDLOOP

D
ENDSRCH

: %
A .
. type: common code
DO X yP
B
? ,
BGNSEG X ° D
D - '
ENDSEG (Y? - Y

L2 “@ @ =

IBM NAS9-me Real Time Computer Complex

1.
Date 3/20/72
Rev ‘

Book: High L.evel Assembler Language User's Guide - Part II Poge 1-3

CASE $5,AT=(A, B, C, D) type: multiple path decision logic
A B C D
\

The common set of MACROs also contain MACROs that will perform both the
standard logical and mathematical operations.

OIBIT X : | - NIBIT

, % - XIBIT
- TMBIT

X BIT 0,ON I

Y BYTE

After dgta base is defined, bit manipulation is done without the need of byte
masks (X '80')

- MATH '((A-B) * (C-D)/E=F'
mathematical operations.

The individual application set of MA CROs will include MA CROs which
mterface with supervisor services. :

GWORK
RTWRITE
OPEN

All application -MACROs are tailored to the formats, acronyms and
language of that application.

' GMCECNTL NAME = SING, INTERVL = 5, CHAIN = LAST |

This is a spectahzed GSSC Skylab MACRO for resettlng execution mterval
of a load module. ‘

IBM NAS 9-996 Real Time cw‘m W |

1,

Date 3/20/72
Rev :

Book: High Level Assembler Language User's Guide - Part ;I Poge 1-4

Except for the guidelines imposed by HLAL any code that can be written
in basic Assembler Language can be generated with the block structured
MACROs. :

IF F,($5), EQ, ($6), THEN

- Register notation in IF MACRO

IF *,,1S, ZERO, THEN

Condition code has already been set.

All frequently used functions too large to expand directly into MA CROs

are designed and programmed as re-entrant routines which are invoked through
tailored interface MACROs.

The set of MACROs needed to program a given area of an application‘are‘_
“of such number that the learning time is relatively short.

Some form of block structured listing will be automatically produced
each time a program is updated. (Pre- and post-Assembler Processors)

The use of HLAL requires as initial investment effort:

a. Generate the application oriented subset of MACROs (the common
set are operational)

b. ° Educate all application programmers in their use and
c. Define the user data base and all interfaces with DSECTs and labels.

Experienced programmers (2 or 3) with extensive knowledge in the basic
Assembler MACRO Language are needed to perform item a.

IBM Real Time Computer Complex

2.
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Poge 2-1(of 1)

2. GUIDELINES

These following guidelines will be followed unless they result in gross
inefficiencies in code. Any deviations will be discussed with and approved
by the designated HLLAL coordinator.

a. Should not modify executable code, except for moving a length
field into a storage to storage instruction.

b. No conditional or unconditional branching. (The block structured
MACROs generate all branching instructions.)

c. No programmer generated labels should be used for branching (the
block structured MACROs generate all branching labels).

oo Code in straight forward, readable manner. (Do not get tricky.)

e. Do not use relative addressing (*+8). Do not use absolute
displacements 28($5, $6) , use symbolic expressions X -~ Y ($5, $6)

or Y($6) .

~ f. Reference reg_isfers by labels EQUed by HEADC or EQUATE MACROs:
$0 - $15 for general purpose registers and FPRO - FPR6 for floating
‘point registers. '

g. Data bésevand interfaces are referenced by labels defined in DSECTs.

These restrictions cause a programmer to generate straight forward code and
avoid some features of basic Assembler Language that usually cause more
trouble (excess debugging and non-readability) than they are worth in increased
execution time efficiency. ’

| IBM NAS 9-9%6 | Real Time Computer Complex

3.
Date - 3/20/72
‘ Rev
Book: High I.evel Assembler Language User's Guide - Part II Page

3. MACRO FORMATS, DEFINITIONS AND EXAMPLES
The common HLAL MACROs are sub-divided into ten function groups:

a. Dual-path decision logic: b. Looping logic:

IF _ UNTIL
ELSE WHILE
ENDIF BGNWHILE
ENDDO

c. Error checking logic: d. Table search logic:
ERREXIT - : STRTSRCH
ERRENTER- EXITIF
ERRMSG ‘ : ORELSE

" ERRETURN : ENDLOOP
ENDSRCH

e. Common code logic: "f. Multi-path decision logic:
DO CASE
BGNSEG
ENDSEG

g. Entry, exit logic: h. Bit manipulation:
HEADC NIBIT
ENTER OIBIT
EQUATE - TMBIT
GRETURN ‘ , _ XIBIT

i. Mathematical equations: j. Data base definition:
MATH B BIT

LENGTH MATH

PRN ‘invoked by BYTE
PARM

Real Time Computer Complex
3.
Date 3/20/72
Rev :
Book: High Level Assembler Language User's Guide - Part II Poge

The formats, definitions, and examples of the MA CROs follow, the
MA CROs ordered alphabetically. At the end of the MA CRO definitions is a

one page coding reference sheet for quick referral once a basic understanding
of the MACROs is attained.

‘. IBM NAS 9-996 Real Time cmm cmphx

3. BGNSEG
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-1 (of 2)

NAME - BGNSEG-

DESCRIPTION

The BGNSEG MACRO generates a label for a section of code to be branched to
by the DO MACRO,

The forn‘lat is:

BGNSEG SEGMENT,REG
+SEGMENT DS OH

where SEGMENT is the name of the label to be generated and REG is the
register to be used in returning from this segment of code.

When the BGNSEG MACRO follows a DO MACRO which references it, it will

use the register specified in the DO macro. If the register is specified in the
BGNSEG MACRO and it does not agree with the register specified in the previouo
DO MACRO, an error message will be written.

When the BGNSEG MACRO precedes any DO MACRO reference to it, the
register will default to $14 unless a register is specified.

A maximum of 50 segments may appear in an aasembly. Registers need to be
expressed in notation $1, $2 etc. ‘

EXAMPLES *
Example 1
: BGNSEG - COMPUTE
. +COMPUTE l;S : . OH
ENDSEG COMPUTE

+ _ BR . - $14

' IBM NAS 9-996

Real Time Computer Complex

3. BGNSEG
Date 3/E2:0/72
Rev

Book : Hig’h Level Assembler Language User's Guide - Part II g 3-2

Example 2

+CODE

DO
BAL

:

BGNSEG
DS ‘

ENDSEG
_BR

CODE, $6
$6, CODE

CODE

- OH

CODE
$6

Book: High Level Assembler Language User's Guide - Part II

IBM ... o Real Time Computer Complex

3. BGNWHILE
Date 3/20/72
Rev

Poge 3-1 (of 2)

NAME - BGNWHILE

DESCRIPTION

(BGNWHILE (no operands))

The BGNWHILE macro will cause execution of a WHILE loop to begin at the
instruction immediately following the BGNWHILE macro. This macro should

be preceded by a WHILE macro and succeeded by an ENDDO macro. Normally,
a WHILE loop begins at the ENDDO macro by checking the condition specified

in the WHILE macro. ‘

The following example illustrates how a BGNWHILE would be used to start
execution of a loop between the WHILE and ENDDO macros.

Without BGNWHILE . With BGNWHILE

Instruction Sequence

A
'WHILE (|B |), DO | wHILE ([B]), DO
c - C
fa | - BGNWHILE
ENDDO ‘ | | A

ENDDO

IBM... Real Time Computer Complex

3. BGNWHILE
Daie 3/20/72 -
Rev

Book: High Level Assembler Language User's Guide - Part II Poge 3.2

A v]
| C
"
C
A
A
0 Yes

o 3
IBM ... Real Time Computer Complex

3. BIT
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 3)

NAME - BIT

DESCRIPTION

The purpose of the BIT macro is to generate a data base definition whose length
can be used as a key to test or manipulate a specific bit in a byte,

DEFINITION
symbol | BIT ' Bit nurriber, or list of bit
numbers, or binary 8-bit
configuration
[on]
where
e symbol -- ‘any valid non-blank label. If omitted, an error
- condition will be raised with a condition code of 12.
o bit number -- ~ an unsigned decimal mteger, 0 through 7 representing

standard b1t notatxon.

e list of bit numbers -- a list of bit numbers separated by commas,
The entire list must be enclosed by parenthesis.

e binary B-bit configuration -- notation of the form B'XXXXXXXX', where
X is 1 if the corresponding bit is to be represented

by this label and X.is 0 if the corresponding blt is
not to be represented by this label.

e ON -- ‘indicates the bit or bits indicated in the first
' . operand are to set to 1 in a global variable which
is passed to the BYTE macro,

IBM.... _ | Real Time Computer Complex

3. BIT
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Poge 3-2

FUNCTION

'The BIT macro performs its operations as follows:
‘® checks to see if there is a valid non-blank label attached to the macro.

e processes the information passed by the first operand, checking each
time for an invalid bit number or binary character.

e ‘generates a DS and ORG statement to establish a length which can be

. used to test or manipulate bit(s), and reset the location counter setting.
(There is an exception to this -- if the name of the CSECT currently
being processed starts with SCDB, the DS and ORG
statement will not be generated.

EXAMPLES OF THE USE

The following are included to give the user a feeling of what can and cannot
be done with the BIT macro:

Example 1 ‘ _
r T
 NAME , OPERATION ! OPERANDS ‘
v 1 ! : L
| FIRST 1 BIT ' | 0 '
I ' |
| HFIRST | ps | XL(B'10000000') |
|+ I ore | *-B'10000000' .
v) . J
Example 2
i | ' 4 |
INAME | OPERATION) OPERANDS)
T r |
lSECOND | BIT | (0, 1,5 7)), ON |
i ;_
| +SECOND | DS ' XL(B'11000101") |
s | ORG ' ~ *-B'11000101" |

Note: In the above example, specifying 'ON' had n.: effect upon the
- expansion of the macro.

N

IBM NAS 9-996

Real Time Computer Complex

3. BIT
Date .
Rev

3/20/72

Book: High Level Assembler Language User's Guide.- Part 11 Page 3-3

Example 3
ILNAME], OPERATION : OPERAND —:
';THIRD 1| BIT l B'00111100' ;
| +tHIRD | ‘Ds : XL(B'00111100') l
' ' oRra | *B'00111100° :

The following examples would raise error conditions:

CODING CAUSE OF ERROR
NAME OPERATION OPERAND
" BIT 0 name field blank
ONE BIT 0,1,2 operand not enclosed in
o parentheses
TWO BIT. 8 operand is greater than 7, does
not satisfy standard bit
notation
: _ —
THREE BIT '01010101" improper binary notation,
: should be B'01010101"' - _4
FOUR BIT ,ON first operand missing

GENERAIL NOTES

e Al errors detected by the BIT macro will raise a'condition code of 12

e Specifying 'ON' is used only in conjunction with the BYTE macro., Nothing

-and result in the termination of processing by the macro.

No DS and ORG

will be generated unless the operand(s) are valid.

is gained by the user in using this if the BYTE macro is not also included|

in his program,™

A

P

IBM NAS 9996 | | Real Time Computer Complex

3. BYTE
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3_-1‘(of 2)

NAME - BYTE

DESCRIPTION

The purpose of the BYTE macro is to generate a data base definition using
" either information passed from previous calls of the BIT macro or a parameter
on the BYTE macro.

DEFINITION

~ symbol BYTE one byte hex value

where
e the operand may be blank, or

e the operand is a value hexadecimal number (range is from 0;0 to 25510)
i.e., X'FF'. ‘

FUNCTION

The BYTE macro performs its operations as follows:
° exainines the operand to determine whether or not it is null.

- e if the operand is null, the BYTE macro builds a DC using information
‘ passed from previous calls of the BIT macro. :

e if the operand is present, BYTE generates a DC statement using this
parameter. ‘

s

| IBM | | Real Time Computer Complex

3. BYTE
Date 3/20/72
Rev

Book : ‘Hifgh Level Assembler Language User's Guide - Part II Page 3-2

EXAMPLES OF THE USE

Use with a non-blank parameter.

| ; | L m
| NAME | OPERATION I OPERAND 1
I . 4 1 ;
| FIRST | BYTE l X'CF' !
| +FIRST | DC I X'CF' |
! ' I 1 —
Use in conjunction with the BIT macro
l |] | | . 1
l NAME 1 OPERATION | - OPERAND |
R | 1
BIT1 | l BIT 0 A |
+ BITI DS l XL(B'10000000') |
+ | ORG *-B'10000000' | |
BIT3 BIT | 2, ONa ‘
+ BIT3 | DS XL(B'00100000') |
+ ' ORG | *-B'o0100000 AR
| BITS | BIT B'00001000', ONé.. R
+ BITS DS | xL(B'00001000') |
| + | ORG *-B'00001000')
BIT78 BIT | | (6.7),0NB : |
+ BIT78 | Ds XL(B'00000011')
+ | ' ORG *-B'00000011' |
| ALL BYTE | |
+ ALL DC | Broololonr’ |

IBM NAS 9-99%¢

NAME - CASE

DESCRIPTION

Book : High Level Assembler Language User's Guide - Part II

Real Time Computer Complex

3. CASE
Date 3/20/72

Rev .
Poge 3-1 (of 4)

The purpose of this macro is to generate the code necessary for certain,
frequently encountered, decision table type processing logic. In this type of
processing one usually has a case (index) number in some GPR and desires
to execute one of a list of options (cases) based upon the value of the case
number in the GPR. The following block diagram shows the basic flow of this

type of logic:

case
number
< ?

+Case #0 i + Case #1 , ;C;s?ﬂ
Processing Processing Processing
for for for
case #0 case #1 case #2
Continue

Processing

7z

IBM ... 2 Real Time Computer Complex

3. CASE
Date 3/20/72
Rev

Book : I{i’gh Level Assembler Language User's Guide - Part II Page 3-2

In this macro it is assumed that the increment between the case numbers is

a power of two (i.e., 1, 2, 4, 8, . . .) and that the cases are numbered
starting with zero. It should be noted that CASE loads the specified RETREG
with the address of the instruction following the macro before branching to the
determined case; and, it is the responsibility of each case to return to the
address specified in'the RETREG (if the requirements of structured coding
are to be fulfilled). The following shows the formats of the CASE macro:

[symbol] | CASE | case register, A AT = (address list)

- (address list) [INDX=number]

(R)
LAT = addr. _ : 1
(R) ERETREG-regutez]
L BT = addr.

case register -

is the register number (or symbol equated to the register number) of the
GPR that contains the desired case number. This must not be the same '
register that is used as the RETREG. '

= (address list) - .
is a list of up to 255 case labels. This list of case labels is used to
generate a corresponding list of address constants. When this form of the
CASE macro expands the case register will be used to index into this list of
ADCONS inorder to determine which case 1s to be branched to. There is a
“one-to-one correspondence between a la\e-ﬁ/p;sttlon in the list and its
associated case number (i.e., the first label in the list is the name of the
case which is to receive control when the case register contains a zero. Ifa
‘label is left null an address of zero will be generated for the associated case
number. (This should be used for any embedded cases numbers, which are
not expected to occur and which a program check is desired if it ever does
occur). An * may be coded in place of any of the labels to signify that processing -
is just to continue at the instruction following the macro when the associated
case(s) occurs. It should be noted that by specifying one or more of the labels
(used in an AT type expansion) in an EXTRN statement, the CASE macro becomes
effectively an indexed CALL macro.

IBM o Real Time Computer Complex

3. CASE
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-3

= (address list) -

is a list of up to 255 case labels, as defined for the AT type expansion.
The only difference between the AT and the BT type expansions is that BT
generates a branch table instead of an address table for the labels 8pec1£1ed
“This permits the use of case labels that are not in the same CT nor~
callable, but for which a base register is set up.

(R)
LAT = addr. -
""" is the address of a remote list address table to be used by CASE in
determining where to branch for each value that can be placed in the case

register. This address may be specified in a register as (R) where R is some
register number (not being used as a case register or a RETREG).

(R)
LBT = addr. -
is the address of a remote list of branch instructions to be used by the
CASE in branching to the case designated by the value in the case register.
As in LAT this address may also be specified in a register form.

INDX = number ,

is used to specify the increment used in counting the cases. This must
be some power of 2 (i.e., 1, 2, 4, 8, 16, 32, . . .). The default for INDX
is 4. (This says that the cases are numbered 0, 4, 8, 12, 16, . . .).

RETREG = register -

is used to specify the register to be setup as the lmkage reglster on the
branch. This is specified as any register number or symbol equated to a
register number. The default for RETREG is 14.

EXAMPLES OF USE

In the following examples NUM is equated to a GPR that contains the case number.

IIBM ... 4 Real Time Computer Complex

3. CASE
Date 3/20/72
Rev
Book: Ijigh Level Assembler Language User's Guide - Part II Page 3-4

XXX CASE NUM, AT=(*, MUD, , GARB)

+ CNOP 0,4

+xxx BAL 14, %420

+ DC A (%+10+4%(4-1))

+ DC A(MUD)

+ DC A (0)

e DC A(GARB)

+ L 15, 0 (14, NUM)

+ BALR 14, 15

XXX CASE NUM, BT=(*; MUD,,GARB)

+XXX " LA 14, *+4+420

+ B *+4(NUM)

+ B *4+4+4%(4-1)

+ B MUD

+ DC A (0)

+ B "GARB

XXX CASE NUM, LAT=($10) RETREG=$8, INDX=1

+XXX SLL NUM, 2

+ : L 15, 0(NUM, $10)

+ BALR $8, 15

XXX ‘CASE . NUM, LBT= MUD, INDX= 32, RETREG=$9

+XXX 'SRL NUM, 3

+ ~ BAL ~ $9, MUD(NUM)

|IBM | o Real Time Computer Complex

3. DO

Date 3/20/72
Rev

Poge 3-1 (of 2)

Book ‘ High Level Assembler Language User's Guide - Part II

NAME - DO

DESCRIPTION

The DO MACRO generates a branch-and-link to a segment of code, defined by
the BGNSEG and ENDSEG MACROs.

The format of the DO MACRO is:

DO SEGMENT,REG
+ BAL REG,SEGMENT

where SEGMENT is the label of the section of code to be branched to and
REG is the register to be used. If the register is not specified, register 14
will be used. » ~

If the register to be used in branching to and from a segment has already been
defined by a previous DO or BGNSEG MACRO, issuing a different register will
cause an error message to be printed. Registers need to be expressed in
notation $1, $2 etc. A maximum of 50 segments may appear in an assembly.

EXAMPLES
Example 1
| DO COMPUTE
o+ _ .~ BAL ~ $14, COMPUTE
_ BGNSEG , COMPUTE
+COMPUTE DS OH :
ENDSEG COMPUTE

+ ' BR 814

, IBM NAS 9-996

Book : t1ioh Level Assembler Language User's Guide - Part I

Example 2

+

+CODE

+ :

4, Wkkk

DO

BAL

X

BGNSEG
DS

|

ENDSEG
BR

§

DO

‘Real Time Computer Complex

3. DO

Date 3/20/72
Rev
Page 3-2

CODE, $6
$6, CODE

CODE
OH

CODE
$6

CODE, $7

WRONG REGISTER HAS BEEN SPECIFIED

IBM NAS 9-99¢

Real Time Computer Complex

3. ELSE

Date 3/20/72

Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 1)

NAME - ELSE

DESCRIPTION

The function of the ELSE macro is to generate the branch and labels that
correspond with the branch instructions generated by the IF macro and the
labels generated by the ENDIF macro. See the IF macro.

%

IBM NAS 9-9% | ~ Real Time Computer Complex

3. ENDDO
Date 3/20/72

Rev

Book: High Level Assembler Language User's Guide - Part 11 Poge 3-1 (of 3)

NAME - ENDDO

DESCRIPTION

The function of the ENDDO macro is to generate the labels that correspond

to the labels and instructions generated by the WHILE/UNTIL macros. See
the WHILE or UNTIL macros,
0
UNTIL A,DO WHILE A,DO
X X
X
ENDDO ENDDO

UNTIL A,OR i | WHILE A,AND |

UNTIL B,DO X WHILE B,0O | [_

X

X

ENDDO ENDDO '

IBM NAS 9-996

Real Time Computer Complex

Book : High Level Assembler Language User's Guide - Part II

UNTIL A,AND

WHILE B, DO

UNTIL A,OR

WHILE B,DO

14...'_’._.

-0

WHILE A,AND
UNTIL B,DO
X

ENDDO

UNTIL A,AND
UNTIL B,DO
X

ENDDO

3. ENDDO *

Date 3/20/72
Rev

Page 3-2

——— e]

—

<>

Y
Y

1

Real Time Computer Complex

| IBM NAS 9-99 |
' 3. ENDDO

Date 3/20/72
Rev

Page 3_3

Book: High Level Assembler Language User's Guide - Part II

—~————0O0
WHILE A,OR WHILE A,OR

WHILE B,DO

{ UNTIL B,DO | { ' '

X

X

ENDDO ENDDO

NO'I‘ES: In an UNTIL a BCT =
In a WHILE a BCT

'yes when the register = 0 after execution of BCT.

no when the register = 0 after execution of BCT.

|IBM ... Real Time Computer Complex

3. ENDIF
Date 3/20/72
Rev

Book: High Lievel Assembler Language User's Guide - Part II 4709. 3-1 (of 1)

NAME - ENDIF

DESCRIPTION

‘The function of the ENDIF macro is to generate the labels that correspond
with the branch instructions generated by the IF macro. See the IF macro.

i0--

| -)5
IBM NAS 9.9 Real Time Computer Complex

3. ENDLOOP

Date 3/20/72
Rev
Book : High Level Asscmbler Language User's Guide - Part II Page 3-1 (of 1)

NAME - ENDLOOP

DESCRIPTION

The function of the ENDLOOP macro is to define the end of the loop. See the
STRTSRCH macro.

7

IBM ... Real Time Computer Complex

3. ENDSEG

Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part IT Page 3-1 (of 1)

NAME - ENDSEG

DESCRIPTION

The ENDSEG MACRO generates a BR instruction. It is used to return from a
segment of code that has been branch-and-linked to by the DO MACRO,

The format is:

ENDSEG SEGMENT
+ R BR | REG

where SEGMENT is the name of the segment to be terminated and REG
is the register to be used. The register is determined by either a previous
DO or BGNSEG MACRO.

EXAMPLES
Example 1 »
~ BGNSEG COMPUTE, $6
+COMPUTE DS | OH '
ENDSEG COMPUTE
+ BR $6
Example 2
| DO - CODE, $7
+ ' BAL $7, CODE
BGNSEG CODE
+CODE DS : OH
ENDSEG 'CODE

+ BR ’ $7

IBM NAS 9-9% , Real Time Computer Complex

3. ENDSRCH

Date .3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part 11 Page 3-1 (of 1)

NAME - ENDSRCH

DESCRIPTION

The function of the ENDSRCH macro is to indicate the end of the complete macro
set. See the STRTSRCH macro.

IBM Real Time Computer cmlex

Book: High Level Assembler Language User's Guide - Part II

3. ENTER
Date 3/20/72
Rev

Page 3-1 (of 2)

NAME - ENTER

DESCRIPTION

The 'ENTER' macro is used to generate multiple - entry point .codeit The
macro generates: .

1.

One CSECT card (CSECT name = lst subparameter of the first
operand.’) ' '

An "ENTRY" card for each entry point ,
One save area (22wds if 'INTP' appears in col. 1-4)¢ and 'SAVE!'
code which establishes R13 as a base register.

A label to branch to 'RETURN' (label = an 'R' concatenated with
the CSECT name)

'$0 EQU 0', ..., '$15 EQU 15' so that an XREF is given of Register
usage if the $XX symbols are used to specify registers. (The
'EQU's are generated only once per assembly even though more
than one' 'ENTER' is coded.)

Register 15 is loaded with the address of the code associated

‘with the resp. entry point (i.e., the resp. name specified in the

second operand sublist - if left blank, '$' is concatenated with the
resp. entry point specified in the first operand sublist) so that one
executes 'BR $15' after executing code which is common for all
entry pomts.

EXAMPLE OF USE

INTP

ENTER (X,Y,2), (, ZINTRNAL)

SR $7, $7 * FOR LATER USE
L $12, ‘V(MGLBAT)

L $12,$12, 0($12)

L $10,4*X'2D' ($12)

USING SBL2DA, $12

TC INTP

BR $15

% See Reference 4, for discussion of INTP.

/e

IBM NAS 9% | Real Time Colnpqter cdmplex

3. ENTER
Date 3/20/72
Rev :

iBook High Level Assembler Language User's Guide - PartII Page 3-2°

$X '~ DS OH

GSIN ~ A
STE 'O, B
B ~ GOTIT

$Y GSIN - AA
STE O, B
ST $7.Q Q=0
B GOTIT

ZINTRNAL GSIN AA

< STE - O,B

GOTIT EQU *

IBM NAS 9-99 ’ Real Time complltel’ Complex

3. EQUATE
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide -~ Part II Page 3-1 (of 1)

‘NAME - EQUATE

DESCRIPTION

The 'EQUATE' macro is used to generate '$0 EQU 0' . . .
'$15 EQU 15' and 'FPRO EQU 0' ... 'FPR6 EQU 6' statements
by both the 'HEADC' and 'ENTER' macros. In a CSECT which does
not require a save area (and hence wouldn't use' HEADC' or 'ENTER').
one may use 'EQUATE' itself to get the EQU's generated.

EXAMPLE OF USE

X CSECT
EQUATE
+$0 EQU 0
+$1 EQU 1
+$15 - EQU 15
+FPRO EQU 0
+FPR2 EQU 2
+FPR4 EQU 4

+FPR6 EQU 6 ,
- STM $14, $12, 12 ($13)
USING X, $15

END

i l

/%

IBM..... Real Time Computer Complex .

Book : High Level Assembler Language User's Guide - Part II

3. ERRENTER
Date 3/20/72
Rev

Page 3-1 (of 2)

NAME - ERRENTER

DESCRIPTION

ERRENTER &A

&A = a symbol not greater than four characters in length.

The ERRENTER macro should be used to begin a segment of special
error processing for a particular error designated by &A, which should
have been specified in an ERREXIT macro. The segment should end with
(1) an ERRMSG macro for an error message if one is required, (2) another
ERRENTER macro for a different error condition, it (3) the ERRETURN
macro,

If the ERRENTER macro is preceded by another ERRENTER macro (with
no ERRMSG macro between the two), it will expand to a branch to ERRETURN
prior to defining the error symbol. Otherwise, it will inerely expand to a
definition of the error symbol, '

The following example shows how ERRENTER would be used to- process
special error conditions.

Suppose there are three error conditions (ER1, ERZ2, ER3), one which
requires an error message only, one which requires special processing only,
and one which requires special processing and an error message. The
following code demonstrates the use of ERRENTER in conjunction with the
‘other ERROR MACROS to accomplish these results:

body of csect with ERREXIT macros
to ER1, ER2, ER3)

GRETURN
ERRMSG ERI
DC C'(error message for erl)'
ERRENTER ERZ2

(special proce351ng for er2)
ERRENTER ER3

A (special processing for er3)
ERRMgG’ _
DC C'(error message for er3)’
ERRETURN

- (common error processing)
GRETURN ’

|IBM ... | Real Time Computer Complex

3. ERRENTER
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Poge 3-2

This code would expand as follows:

(body of csect with ERREXIT macros to ER1, ER2, ER3)

» GRETURN
+ B R&SYSECT
ERRMSG ERI
+ERXTERI1 BAL O0,ERREXIT$
' DC C' (error message for erl)'
, ‘ ERRENTER ER2
- +ERXTER2 DS OH ‘
' % . (special processing for er2)
ERRENTER ER3
+ B ERREXITS$
+ERXTER3 DS OH
S A (special processing for er3)
EKRMSG
+ BAL 0, ERREXIT$
DC C' (error message for er3)'
ERRETURN
+ERREXIT$ DS OH ‘
S % (common error processing)
GRETURN
+ B R&SYSECT

i

| IBM NAS 9996 | Real Time Computer Complex

3. ERRETURN

Date 3/20/72
Rev
Book: High Level Assembler Language User's Guide - Part II Poge 3-1 (of 1)

NAME - ERRETURN

DESCRIPTION

ERRETURN

The ERRETURN macro expands to a definition of the symbol ERREXITS$.
The ERRETURN macro should be used to begin common error processing.
See the ERRENTER macro for examples of its use.

IBM T - " Real Time Computer comme;(_

3. ERREXIT
Date 3/20/72

Rev)
Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 2)"

NAME - ERREXIT

DESCRIPTION

ERREXIT &A,&B,&C,&D, &E, &F, &G

'IF'
. SYMBOL
If a symbol is coded for &A, it mwust be not greater than 4 characters long
and it should be the operand of an ERRENTER or ERRMSG macro elsewhere
in the CSECT. &B - &G will be ignored, and the macro will generate a BC 15,
ERXT (symbol).

&A

If &A = IF, then the operands &B - &G should be coded exactly as they were
operands of an IF macro with the exception of &F. &F is normally 'THEN',
'AND', or 'OR' in the IF macro, but it should be a symbol not greater than
four characters long in the ERREXIT macro and the same symbol should be
the operand of an ERRENTER or ERRMSG macro elsewhere in the program.

- Using ERREXIT in case 2 will expand into the same code that the IF macro
does except for the BRANCH instruction generated by IF. Instead it will
‘generate a BRANCH to the symbol ERXT(symbol)on the condition specified

by the operands &B - &E. (No ENDIF should be associated with an ERREXIT.
macro).

Example 1:

 ERREXIT IF,F,($3),1S, ZERO,REGZ
+ | LTR $3,8%3
+ BC 8, ERXT REGZ

04
EgRMSG REGZ
+ ERXTREGZ BAL 0, ERREXITS$
. DC C'cannot specify zero reg' (error message)

iBM ... | | Real Time Computer Complex

_, 3. ERREXIT
3 | Date 3/20/72
: Rev

1 Book: High Level Assembler Language User's Guide - Part II Poge 3-2

| ERRETURN
+ERREXIT$ DS OH
PUT ERDCB, (0)

, GRETURN
o+ B R&SYSECT
Example 2: %

ERREXIT ERR2
£ BC 15, ERXTERR2

(4

| ERRENTER ERR2
+ERXTERR2 DS OH

; do special error processing

, : ERRMSG
+ BAL O, ERREXIT$
DC C!' (error message)'
R ERRETURN
+ERREXIT$ DS OH
. % do common error processing

GRETURN
+ - B R&SYSECT

IBM | Real Time Computer Complex

3. ERRMSG
Date "3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-1 (of 1)

NAME - ERRMSG

DESCRIPTION

ERRMSG &A [, &B]

&A = a symbol not greater than 4 characters in length
&B = a register number (defaults to 0)
The ERRMSG macro should be used to define an error message for
~the error condition designated by &A. &A should be left blank if the
error condition was designated by an ERRENTER macro (with the associated
special error processing) immediately preceding the ERRMSG macro.

The error link register is specified by &B and should be specified only
by the first ERRMSG macro in the CSECT. &B will then default to that of
the first ERRMSG macro for subsequent ERRMSG macros and will default

to 0 on the first ERRMSG macro if not specified.

. The ERRMSG macro expands to a BAL off the error link register to
ERRETURN, defining the BAL instruction with the error symbol, if one is
specified. '

See the ERRENTER macro for examples.,

g

| IBM As 5.9 Real Time Computer Complex

3. EXITIF

Date 3/20/72
Rev

Book: High Lievel Assembler Language User's Guide - Part II Page 3-1 (of 1)

NAME - EXITIF

DESCRIPTION

The function of the EXITIF macro is to test a condition to see whether to
~ continue the loop or exit out of the loop. See the STRTSRCH macro. The
following shows the format of the EXITIF macro.

OR

EXITIF [condition] , { AND [REG=]
| THEN

The condiﬁon format is the same as the IF macro except that the label IF is
not specified. '

IBM NAS 9996 Real Time Computer Complex

3. GRETURN

Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Poge 3_1 (of 1)

NAME - GRETURN

DESCRIPTION

The GRETURN macro expands to a B R&SYSECT,. It should be used in
conjunction with the HEADC and ENTER macros.

‘F

~r

IBM NAS 9-99 S Real Time COInpllter Complex

3. HEADC

Date 3/20/72
: Rev
| Page 3-1 (of 2
Book : High Level Assembler Language User's Guide - Part II ()

NAME - HEADC

 DESCRIPTION

HEADC will generate the CBECT cardj save area, eniry coding, and return
coding#for a single entry point Assembler Language program. It will also
invoke the EQUATE macrod%

The HEADC macro is written as follows:
CSECT name HEADC [INTP - -YEST [RET = YES |

"CSECT name'' will be the name on the generated CSECT card and the entry point
for the program. If INTP = YES is coded, a 22-word save area will be gen-
erated-in place of the standard 18-word save area. A 22-word save area is
needed if the program INTP is used

If RET = YES is coded, register 15 will not be restored as
part of the return logic, allowing the programmer to store a return code in
that register. INTP = YES and RET = YES are not positional parameters;
they are keyword parameters,

HEADC will point GPR 13 to the save area and do a 'USING!' on GPR 13 so
that it will serve as the base register for the program, The return logic can
be reached by branching to the label RCSECT name. If this label is more
than eight characters, the right-most character is truncated in the generated
macro label, and an assembly error is flagged in the 'B RCSECT' statement.
To avoid the error message, the programmer should truncate RCSECT to
eight characters in coding the 'B RCSECT' statement.

EXAMPLE OF USE

Example 1
. MUD HEADC
other code

B RMUD

e ‘See Reference 4, for discussion of INTP.

IBM Real Time Computer Complex

3. HEADC

Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-2

Example 2

MUDAGARB - HEADC INTP = YES
| TC INTP
B. RI:‘IUDAGAR
Example 3
MUD3 HEADC RET = YES
| L $15,=F'2'

B RMUD3

IBM ... | Real Time Computer Complex

3. IF

Date 3/20/72
_ Rev
Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 17)

NAME - IF

DESCRIPTION

- The function of the IF macro is to generate the labels and instructions that
" branch to these labels to accomplish the IF-THEN, IF-AND-THEN,
IF-OR-THEN, IF-THEN-ELSE, IF-AND-THEN-ELSE, and IF-OR-THEN-ELSE
programming functions. '

THE IF MACRO SPECIFICATIONS

‘There are six different IF stateme.nts. They are: IF-’I‘HEYN, IF-AND-THEN,
IF-OR-THEN, IF-THEN-ELSE, IF-AND-THEN-ELSE, and IF-OR-THEN-ELSE,

The format.for the IF-THEN is:
" IF condition
code - body
ENDIF _
which reads "IF the tested condition is true, then execute the code-body. "

The format for the IF-AND-THEN is:

IF condition, AND
IF condition, THEN -

code - body
ENDIF ; :
- which reads "IF both conditions are satisfied, then execute the code-body. "

The format for the IF~-OR~-THEN is:

'IF condition, OR
IF condition, THEN

code -~ body—
- ENDIF

which reads "IF either condition is satisfied, then execute the code-body. "

IBM NAS 9198 - | o Real Time cu“m Cllllplex

3. IF
Date 3/20/72

Rev

Book : High Level Assembler Language User's Guide - Part II Page 3'72

The format for the IF-THEN-ELSE is:

IF condition, THEN

~code - bodyl
ELSE

code - body2
ENDIF

which reads "IF the condition is true, THEN execute code-bodyl,
ELSE execute code-body2.

The format for the IF-AND-THEN-ELSE is:

IF condition, AND
IF condition, THEN

code - bodyl
:ELSE

§'ode - body2
ENDIF

whech reads "IF both conditions are satisfied, THEN execute code-bodyl
ELSE execute code-body2.

The format for the_ IF—OR-THEN-ELSE is:

IF’condition, OR
IF condition, THEN

 ¢od¢-body1
 ELSE

‘ | code-bodyZ,

| IBM NAS 9-99% : ‘ k Real Time cclllwtcl' cmpm
3. IF

Date 3/20/72°
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-3

ENDIF

which reads "IF elther condltlon is satisifed, THEN execute code bodyl
ELSE execute code-body?2.

THE IF MACRO FLOWCHARTS

IF A, THEN

ELSE

ENDIF

IF A, AND

IF B, THEN

ELSE

ENDIF : o e

IBM s e | Real Time Computer c-omplex'

3. IF
Date 3/20/72

s ‘ , Rev
Book: High Level Assembler Language User's Guide - Part II Poge 3-4

IF A, OR

IFF B, THEN

X

ELSE

Y

ENDIF

The following shows the format of IF.

_
(R2) ' W
LABEL?2
ONE(S)
: - |OVERFLOW B
) Is PLUS |
BIT GT) MINUS AND)
| B. (R1) LT z MIXED OR ‘
IF H ,LABEL1,{ GE , ﬁZERO‘(S) , | THEN EREG{]
; 115103 NMINUS R
Y NE NPLUS
| NONE(S)
T | NZERO(S)
| C |oFF -
| lon J
oy , | AND |
IF Epyppgl ,LABEL, OPERATION, CONDITION,{T%I}SN} [REG%—]

€

IBM ... I Real Time ComputerComplex |

3. IF
Date 3/20/72
Rev '
Book: High Level Assembler Language User's Guide - FPartII Page 3-5

The different types are:

1. An * in the type field stands for the condition is already set. When
using the * type, the Operation and Condition Fields cannot be omitted.

Examples:

~ IF *,,IS,PLUS, THEN
+ BC 13,LABEL
CODE-BODY
~ ENDIF
+LABEL EQU *

IBM... Real Time Computer Complex

3. IF
Date 3/20/72
i o Rev .
Bock: High Level Assembler Language User's Guide - Part II Page 3-6

I(v

IF *,,EQ,LABEL, THEN

'+ BC "7, LABELI :
CODE-BODY1
, ELSE '
+ B LABEL2
+LABEL1 EQU *
- CODE-BODY2

'ENDIF

+LABEL2 EQU *

2. Bit type: will generate a test under mask. The only valid operation
parameter is (IS) and the only valid condition parameters are: ZERO,
ONE, ON, OFF, MIXED, NONES, NMIXED, and NZERO,

(ZERO)
: ONES {SND
IF BIT, LABEL, IS, {(ON >, {OR
s | oFF THEN
MIXED
| NONES
Examples: NMIXED
P NZERO |
IF BIT,A,IS, ZERO, THEN
+ TM A,L'A
+ 'BC 17,LABEL
CODE-BODY
ENDIF ‘
+LABEL EQU *
3. B - type: .
' ZERO(S)
PLUS
o . MINUS AND
3 ' NPLUS - ND.
IF , B, LABELI, IS, JNMINUS ' {'?I%EN}
NZERO(S)

IBM NAS 9-996

Book: High Level Assembler Language User's Guide - Part 1I

Real Time Computer Complex

3. IF

Date
Rev

Page 3.7

3/20/72

REG = DEFAULTS TO $0 .
Examples:

IF B,A,IS, ZERO, THEN

+ CLI A,X'00'

+ BC 7,LABEL
CODE-BODY
ENDIF

+LABEL EQU =

+ + 4+ +

+LABEL EQU =

+ STC $1, %45

+ CLI A,X'00'

+ BC 7,LABEL
CODE-BODY
ENDIF

+LABEL EQU =

‘CLI A,X'00'

CODE-BODY

- IF B,A,EQ, ($1), THEN

IF B,A,EQ,BBB, THEN, REG’$i\

IC $1, BBB
STC $1, %45

BC 7,LABEL

ENDIF

f T ! 3
1L
oT X '4F"
| LT C'FF'
IF B, LABELI EQ { B'ol') oR® EREG]
NE capLe| | |THEN
‘ R2
LE gxfmv?BER)

These B forms of the IF statement

alters executable code and are not
usable if the program is to be re-
entrant.

#0

\I]!h[rm%m | | HNHTWWGCGMNMMrCMMMH(‘

3. IF
Date 3/20/72
: - ; Rev -

Book: High Level Assembler Language User's Guide - Part II Page 3-8

IF B,A,EQ,B, THEN
' CLC 0+A,B
+ BC 17,Ll

+

CODE-BODY

ENDIF
L1 DS OH
: ~ Reentrant B Type
IF B, B,EQ, ($1), THEN ,
EX $1,*+8
B %48
CLI B,0
BC 7,Ll

+ + + +

CODE-BODY

"ENDIF
L1 DS OH

IF B,A,GT,X'4F', THEN

CLI A,X'4F' ’

+ BC 13,LABEL
CODE-BODY

. ENDIF

+LABEL EQU *

-+

IBM NAS 9-9%

Book :

IF B,A,GT,138, THEN
CLI ~A,138

BC 13, LABEL
CODE-BODY

ENDIF

+LABEL EQU *

IF B,A,GT, 0+MUD, THEN
CLI A,0+MUD ‘
BC 13, LABEL
CODE-BODY

ENDIF

+LABEL EQU *

MUD

?

EQU 186

&7

Real Time Combuter Cdnplex

3. IF
Date 3/20/72
Rev

High Level Assembler Language User's Guide - Part II Page 3.9

IBM NAS 9-996 Real Time Compllter cmpkx
_ 3, IF

Dote - 3/20/72
T _ Rev
Book : Hi‘jgh Level Assembler Language User's Guide - Part II Page 3-10

4. Fixed-Point (H or F):

(ONE(S)
PLUS
. - MINUS AND
' JH (R1) ZERO(S) JOR |
IE: {F} ' LABEL] ' ™ '<NZERO(S){ ' |THEN »REG
: ' NMINUS
NPLUS
| NONE(S)
oT t{az};’,su o
' H (R1) LT S AND r
- OR =
IF (L} » LABELL{GE) ,{ ., , » \9Ren LRE(:“
EQ =x
[REG{] Defaults to $0

IF H,A,IS, PLUS, THEN
+ LH $0,A ‘
+ LTR $0,$0
+ BC 13, LABELws,
' BODY-CODE
~ ENDIF
+LABEL EQU *

IF H, ($1),1S, ZERO, THEN, REG=($1)
+ LTR $1,$1
+ BC 7, LABEL

BODY-CODE

ENDIF
+LABEL EQU *

Book :

+

IBM NAS. 9-996

Real Time Computer Complex

3. IF
Date 3/20/72
Rev :

High Level Assembler Language User's Guide - PartII Poge 3-11

IF H,A,GT, B, THEN REG=$5
LH $5 A

CH $5,B

BC 13,LABEL

BODY-CODE

ENDIF

+LABEL EQU =

+

IF H,A,EQ, ($1), THEN

CH $1,A

BC 7, LABEL
BODY- CODE
ENDIF

+LABEL EQU *.

+ .

IF H,($1), EQ,($2), THEN, REG=($1)

" CR $1,$2

BC 7,LABEL
BODY-CODE
'ENDIF

+LABEL EQU =x

+ +

~ IF F,A,IS, PLUS, THEN .

L $0, A

LTR $0,$0
BC 13,LABEL
BODY-CODE
ENDIF

+LA BEL EQU *

IF F,($1), IS, ZERO, THEN, REG=($1)

LTR $1, $1
BC 7, LABEL

 BODY-CODE

ENDIF

+LABEL EQU *

IBM NAS 999 | Real Time Computer complex'

3. IF

Date 3/20/72

: Rev :
Book: High Level Assembler Language User's Guide - Part II Page. 3-12

IF F,A,GT, B, THEN, REG=($5)
L $5A
+ C $5,B
'+ BC 13,LABEL
BODY-CODE
ENDIF
+LABEL EQU

4+

IF. F, ($1),GT, B, THEN, REG=($1)

+ C $1,B

+ BC 13,LABEL
BODY-CODE
ENDIF

+LABEL EQU *
IF F,A,EQ, ($1), THEN

+ C $1,A

+ BC 7,LABEL
BODY-CODE
ENDIF

+LABEL EQU *

IF F, ($1), EQ, ($2), THEN, REG=($1)
+ CR $1,$2) :
+ BC 7, LABEL '
' BODY-CODE

ENDIF
+LABEL EQU *

5. Floating-Point (E or D):

(ONE(S)
- |PLUS

. ‘ MINUS - | o ‘
ir (E LA(I];IIE)LI 15, <ZERO(S) = R REG=
SRR o] "7 YNZERO(S)| PRen] |

| NMINUS :
NPLUS

NONE(S)
- o

Book :

+

IBM : Real Time Computer Complex

3. IF
Date 3/20/72
Rev

‘High Level Assembler Language User's Guide - Part II Poge 3-13

GT
: 2
E (R1) LT I(";Z?EL AND
IF » L ELL, G ’ ’ OR =
Dl ABEL E sE ' THEN [REG]
EQ :D ' 1 '
NE J
) LE
REG= Defaults to FPRO

IF E,A,IS, PLUS, THEN
LE FPRO,A

LTER FPRO, FPRO
BC 13,LABEL
BODY-CODE

-ENDIF

+LABEL EQU

+

- IF D, (FPRO),IS ZERO, THEN, REG= (FPRO)

LTDR FPRO, FPRO
BC 7, LABEL

. BODY-CODE

ENDIF

+LABEL EQU *

+

IF E,A,GT, B, THEN, REG= (FPR4)

"LE FPR4 A
- CE FPR4,B
BC 13, LABEL

BODY-CODE

-ENDIF

+LABEL EQU

+

+

" IF D, (FPRO), GT, B THEN, REG (FPRO)

CD FPRO, B
BC 13, LABEL
BODY-CODE

| >+LABEL EQU *

IBM ... | Real Time Computer Complex

3. 1IF
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-14

IF E,A,EQ, (FPR2), THEN

CE FPR2,A
+ BC 7,LABEL

BODY- CODE

ENDIF
+LABEL EQU *

IF D, (FPRO), EQ, (FPR2), THEN, REG= (FPRO)
+ CDR FPRO, FPR2
'+ ILC 7,LABEL.

BODY- CODE

ENDIF
}LABEL EQU

Type Field Omitted:

ol

IF ,LABELI, IS ZERO, THEN, REG= (F PRO)
+ LE FPRO,LABELI
+ LTER FPRO,FPRO
.+ BC 7,LABEL2
BODY-CODE
ENDIF
'LABELZ EQU *

L& BELL DC E'0

(LT
Character (C): g:—; AND
. OR =]
IF C,LABELI1,{ [~ >, LABEL2,¢ OR_ [REG
' LE
\ NE }
Ixample: |
T C, ABLE, EQ, BETA, THEN

~ ¢LC ABLE,BETA
LTRC 7, LABEL

CODE-BODY

CEMDIF
+LAHAGEL EQU ¥

IBM ... | ~ Real Time Computer Complex

3. IF

Date 3/20/72
Rev

Page 3-15

Book : High Level Assembler Language User's Guide - Part II

. 8. Test Under Mask (T)

" ZERO)
ONES {AND

0 OR

OEF THEN} [REG{I
MIXED '
NONES

_ NMIXED J

IF T, LABELI, {MASK} .g

Example:

IF T,A,X'll', ZERO, THEN

+

T™ A,X'I1!
+ BC 17,LABEL
CODE-BODY

ENDIF

+LABEL EQU *

IBM... | | Real Time Computer Complex

3. IF

Date 3/20/72
Rev

Page 3-16

Book : Hi'éh Level Assembler Language User's Guide - Part II

PROGRAMMING NOTES

1. There can be as many as 20 nested IF statements. Each IF statement
has to have a corresponding ENDIF statement.

2. The level of a nested IF statement can be found in the LABELS that are
generated. , ‘ :

Example:
IF condition, THEN
+ BC L,IF 5 0025
ENDIF
+4IF 5 0025 EQU *

.vThe 5 stands for the level of this nested 1F statement.

3. There is no limit on the nuniber of IF-OR/IF-AND statements but aftef
“the last IF-OR/IF-AND statement there has to be an IF-THEN statement.

4. Any time a register notation is used in an IF statement the register must
‘be in parentheses. If the parentheses are left off the IF macro would
‘treat the register number as a label.

5. 'Misspelling and abbreviation of '"conditions' mnemonices is not allowed.

6. . The default register for fixed-point instructions is $0 and for ﬂoating-’ .
point instructions is FPRO, '

-l
2

In using the structured code macros

. GT ‘ ,

~—-1lakel, LT, ZERO,~~— generates more inefficient code than does
' EQ ’

the equivalent statement using the IS opcode.

: PLUS
~i.e., ~~—label, IS, ZERO v
MINUS

| IBM NAS 5-996 Real TimeZComputer Complex

3. IF
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-17

8. Reentrant programs that use the B TYPE (BYTE) IF statements should’
set the global flag &$RENT to 1, This flag will assure that the code
generated by the IF macro is reentrant. This reentrant code is slower

35

than the none reentrant code and should be used only in reentrant programs.

The global flag has to be defined and set before a CSECT statement.
See the examples of the B TYPE IF statement.

Example:

GBLB &$RENT
&$RENT SETB 1
XXXXXX CSECT

37

IBM ... | | Real Time Computer complex

3. MATH
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 28)

NAME - MATH

' DESCRIPTION

This macro can be used to save coding time when coding equations in
Assembler Language, by translating an equation oriented language into
Assembler Language. Basically, the MATH macro is similar to the RTFMT
macro in that it translates character strings into Assembler Language instructions.

The following is an attempt té describe how MATH works and how to
use it effectively,

INTRODUCTION

"The MATH macro can be used to convert a ''quoted-character-string', of
valid "OPERANDS', separated by valid ""OP- CODES'", into their corresponding.
Assembler Language instructions. The main purpose of this macro is to let
the user write a floating point equation or expression in a manner similar to
that used in FORTRAN. It therefore has been designed around the floating
point instruction set; though, by correct choice of options many of the fixed
point instructions may be utilized.

Before considering any of MATH's advantages, disadvantages, applications,
etc., certain definitions should be presented and a description given of how

MATH processes an expression.

DEFINITION

OP-CODE - An OP-CODE is a special character or combination of
~characters which designates the operation to be performed using the
~ following "OPERAND'. In general there exist a one-to-one correspondence
between each OP-CODE and some Assembler Language instruction. -

All OP-CODES must be imfnédiately preceeded and followed by atleast
- one blank, The following is a list of the valid OP- CODES and their
correspondence machine operation: :

IBM NAS 9-996 -

Real Time Computer Complex

3. MATH
Date 3/20/72
Book : High Level Assembler Language User's Guide - Part II Page 3-2
”‘QP-CODE Operation
B + Add
~ PLUS Add
- Subtract
INU ac
M S Sl.lbf’rld < Mathematical OP -CODES
/ Divide
OV ER Divide
¥ Multiply
TIMES Multiply L
= Store
STORE Store
STORE-IN Store Store OP-CODES
"SAVED-IN Store
C Compare '
WITH Compare S .
" COMPARE Compare ' Compare OP-CODES
TO Compare .
$ Place label on next instfuction ;
EQU Place label on next instruction s ~
, HERE= Place label on next instruction ' Equate OP-CODES
. LABEL:= I’lacec label on next instruction
giR g:dus“’e OR (| sgical OP-CODES (may only be used
AND And } in fixed p‘omt mode)
. Load
LOAD Load ' Load OP-CODE
RELOAD Load

‘Besides the abové OP-CODES therc is also a set of OP-CODES which
- correspond to many of the extended mnemonics for branch on conditions.
~ The list of these OP-CODES and therc correspondmg branch condxtlons

are listed on the next page

55

IBM NaS 9;9% ' | | Real Time co'hputer Complex
3. MATH

Date 3/20/72
Rev

1Book: High Level Assembler Language User's Guide - Part II Poge 3.3

¢

| OP-CODES | Condition
— —+

B
BH
BL

BE
BO
BP
BZ
BNH
BNL
BNE
BNP
BNZ

)

—

=W 00N = 00 ¥ VWU

‘Branch-on-condition
OP-CODES

—

,_.
N W

~NUMBER - Any combination of characters which begins witha -, . , or

a 0 - 9, will be placed in the corrected precision floating point literal. There
may be no internal blanks in the character combinations making up the

" NUMBER. :

" Note: Further information on valid NUMBER character combination may -
. be found under floating point constants in the Assembler Language
Manual (C28-6514),

Note: NUMBERS may not be used in fixed point mode. Instead LITERALS
' should be used in their place. (see page 3-4 for definition of a
LITERAL,) ' '

"Examples:
1, ‘-400,, .100, 1.0 E-10, .0001E5, 0. 100, 0, 1.054, 100, etc.

"TERM - A TERM is any combination of characters which 'begins with a
~letter (A = Z, $, @). Each TERM is assumed tc be a valid Assembler

Language operand. There may be no internal blanks in the character
- combination making up a TERM, '

IBM NAS 9-99 Real Time Computer c«nplex

3., MATH
Date 3/20/72
Rev

Book : High‘ Lievel Assembler Language User's Guide - Part (I Page 3-4

SYMBOL - In writing a symbol the fol].owir\gr rules must be conformed to:

l. A symbol must consist of one to eight characters. . The first
character must be a letter. The other characters may be letters
or digits (0 through 9).

2. No special characters or blanks are allowed in a symbol.

REG - Any combination of Characters beginning with a " (' is assumed to
specify a Register (REG). The last character in this character string
should be a "), There may be no internal blanks in the character com-
bination making up the REG. The characters between the first and last
paren in the string must either be a valid register number or a symbol
which has been previously equated to a register number.

Note: The macro will set up the following equates in each assembly in
which it is used:

- FPRO - EQU 0 These are therefore special symbols
FPR2 EQU 2 and should not be used as statement
FPR4 EQU z symbols in an assembly.

FPR6 EQU

LITERAL - A LITERAL has the same definition here as it has in-Assembler
Language except that as in all character strings all quotes must be replaced
by double quotes. '

Examples:

Literal as written in ‘ Its Corresponding
Assembler Language Literal In Math
-X'46000000" | =X"46000000"

SRt o :FIILH
AA-BY =A(A-B)

IBM Nm;m ' : Real Time Computer Compléx

3. MATH
Date 3/20/72
Rev

B°°|(=:High Level Assembler Language User's Guide - Part II Page 3.5

OPERAND - An OPERAND is any valid SYMBOL, TERM, LITERAL,
NUMBER, REG, EXP, or PREFIXED-EXP (see definition below of EXP
and PREFIXED-EXP).

EXP - An EXP expression is a combination of OPERA NDs se'parated b‘y the

desired OP-CODES. Before the first OPERAND in each EXP must be a
"('"" followed immediately by at least one blank. After the last OPERAND
. in each EXP must by a '")", which may be preceded by as many blanks as
-desired.

EXP-REG - In evaluating each EXP, one register is used to contain all

intermediate results such that when the last OP~- CODE in the EXP has been

processed this register will contain the value of the expression. This
‘register is called the expression's register, "EXP-REG'",

‘« Example:

In FPRO was the EXP-REG for the following EXP, FPRO would contain a
+2 when the last OP-CODE is processed. ‘

(1 +4-3)
- LE FPRO, =E'l"
AE ~ FPRO,=E'4' } Code generated by above EXP

SE FPRO =E'3!

PREFIXED-EXP - A PREFIXED EXP is any EXP which is xmmedlately
preceded by a special operation prefix. This prefix will cause the
corresponding special operation to be performed on the EXP-REG, of the
associate EXP, immediately after the last OP-CODE in the EXP has been
processed. All the special operations are register to register operations

"with the EXP-REG being but the first and second operand. The following is

a list of the valid prefixes and the operatlons they cause to be performed
on the EXP-REG. :

¢

IBM NAS 9-99% o Real Time Computer Complex

3.

Dun TH20/72 |
Book: High Level Assembler Language User's Guide - Part II Page 3-6

PREFIX OPERA TION

ABS S Load Positive

NEG Looad Negative

TEST Load and Test

COMP » Load Compliment
HALF Halve

DUBL Add it to itself .

SQAR Multiply it times itself
Example:

If the following EXP were encountered with the EXP-REG = FPR2, then
the following code would be generated; if TYP=E

.SQAR (A - B)

LE FPR2,A |
SE FPR2,B code generated by above EXP
MER FPR2, FPR2

MAIN-EXP - The entire character-string to be converted by MATH is
called the MAIN-EXP. It is just like any other EXP, except the beginning
card and the ending parenthesis are replaced with single quotes.

Example:
EXP ‘ Corresponding MAIN- EXP
(A * (A -B+CQC)) 'A*x(A-B+C)

INNER-EXP - Any EXP contains characters which are a subset of the
- characters of another EXP, is an INNER—EXP with respect to this other EXP,

~OUTER-EXP - An expressmn which contains one or more INNER-EXPs
is outer to each of them.

REG-LIST - The register symbols specified in the field of the REG parameter
is Called the REG-LIST (see the macro definition on page 3-13).

- |IBM...... o Real Time Computer Complex

3. MATH
Date 3/20/72
Rev ,

Book : Htgh Lével Assembler Language User's Guide - Part 11 Poge 3-7

. SYSPARM-TERM - It is often necessary to reference a number stored as
a system parameter in processing an equation. This may be done in the
- MATH macro in the following manner. :

‘If MXXXXX is the system parameter you wish to use, code: E

SYSPARM(MXXXXX]}_I},\I)
System number (optiohal)
parameter
- name

MXXXXX = 'six.character system parameter name.

NN = one or two digit number to be used as a displacement of the
system parameter in referencing it. This will probably only
be needed when referencing a system parameter which is an
array such as MHRSYT. ‘

v ‘Note: As in all TERMS, there may be no imbedded blanks.

”Note: In picking up the address of the system parametér, register 1
will be used. : '

‘Examples:
'MATH 'A * SYSPARM(MCRFMN)', TYP=E

\chde generated
LE FPRO,A
L 1, =V(MCRFMN)
ME FPRO, 0(1) '

MATH ' A * SYSPARM(MHRSYTS)', TYP=E
' | ‘l’code generated B
LE FPRO,A

L 1,=V(MHRSYT)
ME FPRO, 8(1)

~For more examples, see pages

IBM NAS 9-9% | ~ Real Time Computer complex

3. MATH
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-8

SPECIAL CAPABILITIES

A special capability exists which lets any valid Assembler Language
instruction, which does not contain any quotes, be coded as a Math OP-CODE
and OPERAND. This is accomplished by coding a # sign immediately before
the Assembler Language mnemonic, skipping at least one blank after the

mnemonic, and then coding the OPERAND exactly as it would in the Assembler
‘Language instruction.

- Examples:
MATH MATH ASSEMBLY LANGUAGE
OPCODE OPERAND STATEMENT GENERATED
#ST 3, XYZ —> ST 3, XYZ
#TM 0(4), 1 — T™M 0(4), 1
#SLL, 3, 0 (4) ——> SLL 3, 0(4)

#sT ~ ONE, A +3(5) ———> ST ONE, A + 3(5)

Note: This capability lets the user embed special operations within the code
~ generated by the macro without having to break the equation up into
several parts.

The ability also exists to raise a floating point number to a floating point power
via the MATH Macro. This greatly simplifies the coding needed to accomplish
this use of the FRXPR# and FDXPD# "power'' routines. Also if the "power" 4

~ routine must be used more than once per assembly, space will be saved by
using MATH rather than the CALL Macro because MATH uses the same
argument list each time.

Note: The '"power'' routine will use all four floating point registers. Therefore,
it is not possible to save values in these registers across any MATH
expansion in which the "power'' facility is used. Also since these
registers are used by the '"power' routine, the power OP-CODE may
not be used except in the MAIN-EXP,

To use this facility one need only use the '"**'' symbol within the
" MAIN-EXP., This will cause the value currently contained by this »
Expression's EXP-REG to be raised to the power stated by the OPERAND
immediately following the ** symbol. (See the following examples).

IBM.... - Real Time Computer Complex

3. MATH
Date 3/20/72
. _ : Rev
1Book: High Level Assembler Language User's Guide - Part II Page 3-9

Examples:

The followmg are examples of a few of the possible uses of the power
OP-CODE and the’ Assembler Language code which will be generated in each

case.

59

"6 14+FPRO
62+FPR2
63+FPRG.
64+FPR6

Mot e e e e

AT+
68+ .

T 69+PARGONO1
70+PARG0002

TT71+APARGOOT

72+SVFPROXX
73+ :
T4s
C75e T
76+
Syt T
78+
79+
80
S1+%
B2+ %

‘G3+ Ehkhk END wkkkk OF t*ttt”gouarxou,tttt*t:t*t#ttttttt:tt*t«ttttttttt:t¢¢

"MATH * A #*x B = A+l6"

EQU D *an , o

EQU 2 . ##¢ SET UP EQUATES FOR THE

EQU 4 ' ##=& FLOATING POINT REGS

EQU 6 2y

LE FPRO,A A SYMBOL

B *+36 | BRANCH PAST PARM LIST

oc DUO° FIRST ARG TO POWER ROUTINE ~

oC D*O* | SECND ARG TO POWER ROUTINE
“BC T TKUPARGOOD L) 4 X8O, AL3(PARGO002) PGWER ARG LISY™

DC nrov ~ WHERE PWR SAVES FPRO

STE ~ " FPRO,PARGOCOL ~ IST ARG TO POWER ~

LE FPRO, B A SYMBOL
“§TE " TFPRO,PARGOCOZ - " 2ND ARG TO POWER

L 15,=VIFRXPR=) Al REAL*4 POWER ROUTINE)

LA T1,APARGOOL A(ARGUMENT LISY)

BALR 14,15 FPRO = ARGL ** ARG2

STE FPRO,A¢16 | A SYMROL

Ky EEG = FPRO WAS USED IN EVAI.UATING THE EQUATION

5%

*
%

:[lBIVI NAS 9-99

35¢ MATH * (A
3152+ LD
3534 AD
354+ DD
355+ STD
356+ [4)
357+ AD
358+ 0D
359+ STD
360+ L
ele T T
3424 BALR
36 3+ STD
364

3654

3664 @

Book : High I.evel Assembler l.anguage User's Guide - Part II

+ 1)/ 8B *=x
FPRO A)
FPRO,=D'1Y
FPRO,B o

TFPROLPARGOOOL
FPROgB
FPROy=D'1"?
‘FPR01A
FPRO,PARGO002

15,=V(FDXPD=)

"1y APARGOOL
14,15
FPRO,C

#,--- REG = FPRO WAS USED IN EVALUATING THE EQUATION

_FPRO = ARGl ** ARG2

RnalTun.(hHupﬂnrthnuphm
" MATH
oun 3/20/72
Rev
Page 3-10
({ B+ 1)/ A) =C'TYP=D
A SYMROL
_ NUMRER TYPE
A SYMBOL
' 1ST ARG .TO POWER
A SYMBOL
NUMBER TYPE
A SYMBOL
2ND ARG TO POWER
A(DOUBLE PRE POWER ROUTINE)

A{ ARGUMENT LIST)

A SYMBOL

*

“Jh7ekdnen END ®®esk (F £xx&® EQUATION EREEXRRRBAARRBREERXERE RN AR ESERAR R XA RN

L9y MATH
20+ LD
202+ AD
203+ STD
204+ . LD
205+ - MD
20454 STO_
207%s L
203+ ‘ LA
209+ BALR
210+ -~ S§TO
211

212+%

2150 %

(4 +4,0) % (B % ,518) = C 9,TYP=D
FPRC, A A SYMBOL

FPRO,=D"4.0" NUMBER TYPE

FPRO,PARGOOO1 1ST ARG 710 POWER

FPRO,B A SYMBOL '
FPRO,=D?.518" NUMBER TYPE

FPRO 4 PARGO00O2 2ND ARG TO POWER
15,=VI(FDOXPD=) A({ DOUBLE PRE POWER ROUTINC
1, APARGOO1 Al ARGUMENT LIST)

14,15 FPRO = ARGl ** ARG2

FPRO.C A SYMBOL

%,--- REG = FPRO WAS USED IN EVALUATING THE EQUATION

*
%

2144 0kk END *2k%% (OF #2%%% EQUATION FERXRRRESRLABRRERERRRESRRRERAEREAR KRS -

.58) = C *

5.6 MATH '(A + 4.0) *%x (B =

218+ i E . FPRO, A A SYMBROL

2108 AF FPRC,=£'4,0" - NUMRER TYPE

AN STE FPRO,PARGDOOY 1ST ARG TO POWER

22 S LUF FPRO,HB A SYMAOL-

22 . ME FPRO,=E",518" NUMBER TYPE

PR S . STE FPRO,PARGOOO2 2ND ARG TO POWER

PR & 15s=VI{FRXPR=) Al RFAL*4 POWER ROUTINE)

275+ LA 1yAPARGGO] Al ARGUMENT LIST)

T2or S RALR 0 14,15 FPRO = ARGl *=* ARG?

2270 STE FPRO,C_ ' A SYMBOL .
i ®,~-- REG = FPRO WAS USED IN EVALUAT!NG THE EQUATXON -
)1wu\ . : L

23(\‘; . ” ’ : .) o . *

231+ kk ENO Skkhg OF %85k FOUATINN Sttt dhdddbbdabadadsanas P

IBM - | Real Time Computer Complex

3. MATH

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - PartII Poge 3-11

RULES MATH USES IN PROCESSING AN EXPRESSION

10

2.

All processing is performed left to right.

Each time an INNER-EXP is encountered, the following steps take
place: ,

An EXP-REG is determined for this INNER-EXP.
b. The INNER-EXP is evaluated in this EXP-REG.

c. Any special operation, specified by a prefik on the INNER-EXP,
is performed on its EXP-REG.

d. The EXP-REG is used as the operand for the OP- CODE
preceding the INNER-EXP,

The first OPERAND in each expression is loaded into its EXP-REG
unless the first operand is a REG which has the same character
structure as the EXP-REG.,

Example: If, in the following expression, the macro was specified as:

MATH ' (4) +A * ((FPR2) + (6))', REG = (4, FPR2), TYP=D

code generated

AD 4, A
ADR FPR2,6
MDR 4,FPR2

In determining which register will be the EXP-REG for an expression,
it follows the procedure below: '

S

|IBM

first INNER -

EXP?

registers in

used?

EXP in an OUTER-

the REG-TEST being

Usve the next REG
in the REG-LIST
as the EXP-REG

i

o (B YrT w

Real Time Computer Complex
3, MATH

Dete '3/20/72
Rev :

Book: High Level Assembler Language User's Guid_e - Part II Poge 3"12

Uses the EXP-REG
of the OUTER -EXP
for the EXP-REG

of the INNER-EXP

!
(Exnr—)

ave the EXP
4 REG of the
OUTER-EXP

IBM ... | Real Time Computer Complex

3. MAT
Date 3};20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Poge 3-13

5. The character from the TYP parameter (see the macro definition
below) is used in forming all instructions.

Example: If, in the following EXP, the EXP-REG was 0, then the
following code would be generated for each TYP.

EXP=(A*¥B=C)

TYP=E: LE 0,A
ME 0,B
STE 0,C
TYP = H: LH 0,A
MH 0,B
STH 0,C
TYP = L 0,A
M 0,B
ST 0,C
MATH MACRO DEFINITION
‘ [Symbol] MATH MAIN-EXP [, REG=register l.ist]

[, TRA CE=ON or OFF]
‘[:ANS = where to put answer]
[TYP=character or null]

L

MAIN-EXP - as described on page 3-6. There may be a maximum of 255
characters in a MAIN-EXP. :

r] - optional

"TYP - the type of instruction to be generated. (The character to be in each
instructions, i.e., E, D, H, null, etc.) Defaultis TYP = E,

IBM ... - Real Time Computer complex

3. MATH
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Pa et IL Poge 3-14 °

"TRACE - On causes the expression and its EXP-REG to be printed when
the last OP-CODE in the EXP has been processed. Default is '
TRA CE=0OFYF. Thes¢ intermediate expressions can sometimes make
following the generated code much easier.

ANS - any valid SYMBOL or REG.

_Default is to leave the answer in the first register specified in the
REG-LIST.

REG - a single register 1}abe1 or nuinber, or a sublist of one or more
register labels or numbers. ‘

Default: REG = (FPRO, FPR2, FPR4, FPR6)

NOTE: The registers specified in this REG-LIST tell the MATH macro

which registers it can use to do the calculations in, and what order to
use the registers in as it needs new EXP-REGs.

PROGRAMMING NOT ES

1._, Al Equate and Branch OP-CODES must be followed by a valid SYMBOL.

"~

- The Equate OP-CODE causes the SYMBOL following the OP-CODE to
- be equated to the address of the next 1nstruct10n ‘

3. The Branch-on-condition OP-CODE causes an immediate generation
of the same branch on condition to the SYMBOL following the OP-CODE.

4. The HALF and SQAR prefix is invalid in the fixed point mode.

5 The multiply and divide OP-CODES are not valid in the fullword fixed
point mode. '

6. Thy XCR, AND, and OR OP-CODES are invalid in the ﬂoatmg

pomt e,

7. . The Divide OP-CODE is invalid in all fixed point modes.

IBM ... | Real Time Computer Complex

3. MATH
Date 3/20/72
Rev :

B°°|‘F High Level Assembler Language User's Guide - Part II Page 3-15

10,

11,

12,

FRSAVEON N = l1-——

Whenever a STORE-OP-CODE appears in an EXP, the value currently
in the EXP-REG is stored in the TERM following the OP- CODE for
later use-in the program.

Whenever a LOAD-OP-CODE appears in an EX, it causes the
EXP-REG to be loaded with the next OPERAND in the EXP,

It should be noted that the hierarchy of operations which exist in fortran

does not exist in MATH.

Example:

Fortran instruction: C=A-B/D

MATH equivalent: 'A -(B/D)=cC'
or COMP (B/ B) +A = C'

Since MATH is only an interpreter and not a compiler, it can only do
what it is told in the same order it is told to do it. Therefore, if
proper care is taken in arranging the operations in a floating point
MATH expression, the floating point operations generated will be as
tight as can be generated by coding each instruction separately. The
following is an example of how to code tighter in MATH. Both of the
following MATH expressions will do the same thing except the second
expression requires one register instead of two like the first, and the
second expression requires one less instruction. '

Example .1: MATH'C * (A + B) = D'
Example 2: MATH'A + B * C = D'

The MATH macro may need storage space whenever it runs out of
registers and encounters another level of INNER-EXP. For this
reason, MATH will set up, and keep track of, any save areas it
needs. There will be special labels on these save areas as follows:

9 zud MATHTSVR

‘These labelrs should not be used in any assembly in which the MATH

Macro is used.

#i

IBM NAs 54 | " Real Time‘Comwter Compla

3. MATH |
Date 3/20/72
Rev

Book : ngh Level Asgsembler Language User's Guide - Part II Page 3-16

213,

14,

15,

Though I have tried to list most of the major uses and limitations of -
MATH, I am sure there still exist several other possible uses and
probably still more limitations. However, once the basic mechanics
of MATH are fully understood, both its faults and attributes should
become almost obvious.

MATH will perform special error checking for conditions not checked
by the assembler. When it encounters one of the errors, it will flag
it with a MNOTE statement having a condition code of 12. '

The Branch-on condition OP-CODES will accept any combination of
eight or less characters as a valid address and let the assembler
perform the error checking on them.

IBM NAS 9-99% Real Time Computer Complex

3. MATH

Date 3/20/72
Rev

Book: High Lievel Assembler Language User's Guide - Part II Page 3-17

- EXAMPLES

The following is an example of an expansion of the MATHSAVE macro:
of MATH's OP-CODES and OPERANDS.

CTESTL MATH ' A % B / (2) + A+4 - 991

 MATH % DUBL(A) - B!

TEST3 MATH * A+8 * B(5)',ANS=(FPR6)

TEST4 MATH ' A+4 / B',ANS=B+8(85) ;

TESTS MATH * A % (B - A% (A48 - 8))

TEST6 MATH ' A % (B = A % (A+B - 10)) ' ,REG=2

TESTT . MATH ' (2) / (&) % (6) + .01 = A(5)*,REG=0,ANS=Bs TRACE=OFF

TESTS MATH ¢ A %

1+ A * (1 +A % (1+Aa=x X
(1 + AN

'y ANS=B,TRACE=0FF,TYP=D

TESTO MATH ¢ A - (A + B - A+8(s5) % .0199E=24)*,ANS=(FPR6)
TESTI0O MATH ' ABS(A = B) - 1,99

TESTLL MATH ' A = ABS(A - B + (2))

MATH ' NEG(A - B PLUS (2)) PLUS A'yTRACE= OFF, TYP=
TEST12 MATH ¢ A+ ABS(A - ABS(A - B))!

“MATH 'ABS(NEG(A MINUS B) + A) PLUS A!

TEST1I3 MATH ¢ A/ ABS(A - &) + ABS((B - 100) /7 (A - .99
-)) ' yREG=449ANS=B . :

TESTI4 MATH ‘A + “ABSC A - B - 1000 4
| | (A % A % A% A% A)',REGE6

MATH *SQOAR(SQAR(Aj) TIMES A + ABS(A - B - 100) + A®',REG=6

IBM NAS 9-996

Book : Hi‘:ghﬁ Level Assembler Language Uscr's Guide - PartII

TESTALL MATH '1 + ABS{ A / B) +
S ABS((A - B) — (A+4 ~ B
ABS((A+16 - B+16) -
REG=(246) 4 ANS=A+4
~ MATH "1 + ABS({ A / B) +
ABS((A — B) = (A+4 ~ B
ABS((A+16 - B+16) - |
REG=3,ANS=A+4, TYP=0, TRACE=0
MATH ' ABS(ABS(A = B) - A)?
~ MATH ' NEG(A - B)?
MATH * DUBL(A - B)?
C MATH ' SQAR(A - B)?
MATH ' CUMP(A = B)°
MATH ' HALF(A)!
MATH ' COMP(A)!
 MATH ' DUBL(A)!
~ MATH 'SYSPARM(MCRFMN) -
' STURE B+8 aTYP=D, TRA
MATH YA / (TEST(A - 100) BZ ZE
*A MINUS B($5) TIMES 100 OVER -400

MATH
- BM ZERO LABEL=

UMATH !

ABS({ A - (ABS(A - B)
MATH ' ABS(NEG(DUBL(A;) / COM
CMATH ' ((4) / (6) = (2)) - A+
MATH YA+ B)C (A= 299) BP
MATH v ((((A+ B)))) - B+4
CMATH C (4)) E
1ﬁAIHk 'T§§T£LA - B(s5) = 100 /

BP201 BZ ZERU STORE B+H LOAD

Real Time Computer Complex
3. MATH

Date 3/20/72
Rev T

Page 3-18

+4)) / :
A+20 - B+20))Yy

+4)) /
A+20 - B+20))*,
FF

CE=0FF+REG=FPR6

RO) * (A - B) BZ ZERO!

PLUS (2) HERE= BP200
A -8 = 8

~ A) =B) 'yREG=6

P(HALF(B)) * SQAR(A))?

10 ' yREG=0
POSITIVE BZ ZERU * =400'

-400 % (2))

> ¥ XX

> X X

12 WITH A BNE ZERU * SYSPARM{MCCFCU) X

IBM ‘ - Rezl Time Computer Complex

3. MATH
Dute 3/20/72
Rev
) Page 3-19
Book: High Level Asser tler Lan-uage User's Guide - Part II
TESTER MATH ! A+R ¢ LOAR(L A - B) - SOAR(HAalLF(HALF((6)))) X
. o= ABSE Lo JFPR6, 4+ @ A= H4) ¢ B(5) / ~-1000 X
* (A+16(5) - DUBL(A - .,00i) -+ ABS(A - «1E-10)) =*X
COomMp{ DUBLL A * B) = (FPR2)) £QU BFr300 /X
NEG(HALF(SQAK(L B # 9.5)})) "' REG=FPR4,ANS=(FR4), X

TYP=D, TRACH-UFE

TESTER2 MATH ! A+y 4 508RC A - 3)} -~ SQAR(HALF(HALF((6)))) X
R - ABSE A %X (FPRE))+ (A - ®j / B(5) / ~-1000 X
ol A+16(5) - 1ruBLy s - L00V) + ABS(A - ~1E+10)) *X

COMP(JBL.. A % B) - {FFR2)). EQU BP3.1 /X

NEG(HaL™t SCAR(E B * 9.2 1)) «REG=(FPR4yFPRO) X

TYP=D, TRACE=0FF ANS= (FPR4
MATH ' S@AR(SOAR(SOAR(SQAX(S@AR(SOAR(SOAR(B)))))))' = B*x128
| MATH (A % B = B+4 % B+B = B+l6 * B+20) L 100 X
BH PUSITIVE BE ZERQ = B+24° |
MATH '(A % B = B+4 * B+8 = B+16 * B+20) WITH 100 | X
BH POSITIVE BE ZERQ = B+24',TRACE=0FFyTYP=HyREG=7
MATH ' A PLUS B MINUS 100 OVER (2) STORE B+4 TIMES SYSPARM(MCRFMNS)'
MATH ' SYSPARMIMKTYPE) ',REG=5,TYP=H
MATH 'A / (A+4 = 0.001 BNP ZERQ . 10 * A}

MATH * A % SYSPARMI(MCRFMN) / SYSPARM(MHRSYTO04) "' -

MATH * A * SYSPARMIMCRFMN) = B',TYP=0
MATH ' SYSPARM(MHRSYT16) STORE A',TYP=yREG=5

MATH ' SOQAR(SYSPARM(MCRFMN)) = A',TYP=D

MATH * SOAR(SYSPARM/MCREMN)) STORE A',TYP=D
MATH ' A - B BP BP1 . 100 EQU BPL * (A ~ SOAR(A)) = B+4!

MATH 'AC S5 BE ZERO C 10 RE POSITIVE C 15 BE ZERO X
C 20 8L ZERO = B LOAD 100 STORE B',TRACE=0FF

MATH * TEST(A) BZ ZERD C (3) BE POSITIVE + B = B'yTYP=, X
REG=T ' ‘ o

IBM NAS 9-998 ‘Rea| Time Computef C(lllplﬂ ;

3. MATH

Date 3/20/72
Rev :
Page 3-20

Book : nghLevel Assembler Language User's Guide - Part II

MAIH VA + Atk + A48 + A+12 + A+16 = B, TYP=,REG=S
MATH fﬁ'sySPARM(MGJaAT)'LOAD $0+16(3) STORE=IN B'yTYP=REG=3
MATH ' A HERE= ASDFASOF * (A - B)'
MATH ' A S GHUKFGHJ * (A = B)*
MATH ' A TO B BE ZERO®
'MATH ' A COMPARE B BNE ZERO'
MATH ' A COMPARE B BNE ZERD',TYP=D
MATH ¢ A CUMPARE B BNE ZERD',TYP=
MATH ' A - B BNM BPB - B LABEL= BPB * { A * B)*

MATH 'A WITH B BNE NOTEQ = B B ZERO LABEL= NOTEQ LOAD =F''100X
vt STORE B B 2ERU',TYP=,TRACE=OFF

MATH ' A AND B BZ ZERO OR (A + B} XOR =X''OFOFOFOF*! X
'SAVED-IN B+4 WITH A BE ZERO OR (3) XOR (5) = B 'y X
REG=(7+9) s TRACE=UFF 4 TYP= '

C MATH ' (FPRO) * (2) OVER ((&) = A)*,REG={FPROy4)

The fbllowing examples are expansions of some of the above MATH

expressions: - ‘ ’
1240 MATM YA / (A*6 = 0.001 BNP ZERO . 10 & AY?
1242+ LE FPRO A ’ A SYMROL
1243+ O LE FPR2,A44 A SYMBOL
1244+ St TPR2,=£'0.,001" NUMBER TYPE
1265+ - BNP IFROY BRANCH ON CONDITION
1246+ . LE FPR2,=E*10" . ~ NUMBER TYPE
1247+ ME FPR? 4 A A SYMROL s o o
12487 7 0 T T My mmeem e ---=- REG = FPR2 NOW CONTAINS ——===~===———e-%X
Cl Y A+4 - 0.00L BNP ZERO 10 * A? ,

12454 % PR B e e e ———— --2
1250+ . DER FPROFPR? _ , VL
1251 P Ky e “REG = FPRN NOW CONTAINS ===-cemmeaee -ox

. e A /L A+4 - 0,001 BNP 7FRQO , 10 = A
12524% B e e e e e e e e .
1253 Lo ¥y=== REG = FPRO WAS USED IN EVALUATING THE EQUATIUN
(254 aE *y=~=~ REG = FPR2 WAS USEN IN EVALUATING THE EQUATION
255 +x% ORI o ‘ .
12564+ % L ’ o ‘ : .

1257+ 45 %%s END ®daxs (OF *&kxx EQUATION Nf#***gfgyttnittutuwunuun'.:....‘..‘

1229

1231+
1232+
1233

12346¢%x

1235
1236¢¢

1Z3T7e% ~

IBM ...

MATH

R T h

e ke o

Book : High Level Assembler Language User's Guide - PartII

Real Time Computer Complex

3. MATH
Date 3/20/72

Rev
Page 3-21

' SYSPARMIMKTYPE) *,REG=5,TYP=H
1y=VIMKTYPE) LOAL PEGL WITH ADNDR OF SYSPARAM

6,0(1) 0P USING VALUE OF SYSPARM
T it -=== REG = 5 NOW CONTAINS ==—=====—— ————X
* SYSPARM(MKTYPE) ! |
B e e e e e e e e e e e e e e i 0 e e 2 -
%,-~- REG = 5 WAS USED IN EVALUATING THE EQUATION
*
L]

1238e83¢e8 END *588s OF ssxss EQUATIUN S90S33800¢0S008 008800880008 00000000e R

1628

1630+
1631+
1632+
1632+
1634+
1635+
1636+
1637+
1638+
1639+
L64C+
1641+
1642+
1643

1664

1645+
1646+ =

1647422208 END S2084 OF #8ees EQUAT (ON CERNEEESESSELEIO2ESMNEELL SIS SES2EOR S

MATH

» A AND B BZ 2ERO OR (A + B) XOR =X*°OFOFOFOF®?
SAVED-IN B+4 WITH A BE ZERO OR (3) XOR (S) =8 ¢,
REG=(T799)y TRACE=0FF,TYP=

TeA A SyYMgot
7,8 A SYMBOL
ZERQ BRANCH ON CONDITION
9,A A SYMBOL
9,8 .. A SyMmBOL
7,9 , »
Ty=X*0FQOFOFOF ¢ o A SyMsOL
T.8+4 - A SYMBOL
TeA ' . A SYMAOL
- ZERQ - . BRANCH ON CONDITION
Ty2 N - A REG TYPE
7¢5 _ A REG TYPE
T.R . ' A SYMBOL . :
¥g=== REG WAS USED IN EVALUATING THE EQUATION

7
9 WAS USED IN EVALUATING THE EQUATION

i n

*,—<- RFG
h x
s

6GC TESTL

62+FPRO
63+FPR2
64+FPR4
65+FPR6

6T+TESTL

69+
70+
Ti+
72+
T3+
T4

e TPIEE
76 :
T7+%
78¢%

I]BIVI NAS 9-996

RealThne(hunpuhu'Conuﬂaxf?

3. MATH

Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - PartII Poge 3-22

CMATH VAR B/ (2) + Ave - 999 o - o¢
EQu 0 kA
EQU 2 k& SET UP EQUATES FOR THE
_EQu 4 *#% FLOATING POINT REGS
EQUT 6 e FL ING POINT RE(
CEQU *
__LE ___FPRO,A A SYMBOL
TME FPRC,B ‘ A SYMBOL
~ DER FPRQ,2 A REG TYPE
"AE FPROyA+4 A SYMBOL
St FPROy=E*99" NUMBER TYPE
*y e —————— REG = FPRC NOW CONTAINS ===co—eemc—ee—kX
" A X B / (2) + A+4 - 990
T T o e e e e e e e e e e e e e e e i e 2 A e et e e o e 22 2 o o o o e o =
' %y--- REG = FPRO WAS USED IN EVALUATING THE EQUATION
, e N
[]

79esdséd END #e%kx OF %axxs EQUATION RXEBEXEKXERERNAEAEE X SREEOES SRS SFERR S

1260

1262+
12A3+
1264+
1265+
126A+
1267

1268+%
1269
127C+%
1271 +%
1272 ¢%¢xnxk

. MATH

LE
Lo
ME
L
DE

* A % SYSPARMIMCRFMN) / SYSPARM(MHRSYT04) | o

FPRO 4 A A SYMBOL . |
1,=V{MCREMN) LUAD REG1 WITH ADDR OF SYSPARAM
FPRO,O(1) | OP USING VALUE OF SYSPARM
" 19=VIMHRSYT) LOAD PEGL WITH ADDR OF SYSPARAM
FPRO,N&(T) UP USING VALUE OF SYSPARM o
fymmm e REG = FPRO NOW CONTAINS ==~--=c-—--——#X
* A % SYSPARM(MCRFMN) / SYSPARM(MHRSYTQ4)® »
B e o e e e e e e e 2 o 2 o 2 e i e o o o = %
#,--- REG = FPRC WAS USED IN EVALUATING THE EQUATIUN
PE

CEND XeExx

OF *tas% EQUATION &A% A%fs xssxaassARtd X% 2422 GAE ARSI

4s

IBM NAS 9996 Real Time Computer Complex
3. MATH
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-23

857 MATH ?* ABS(NEGI DUBL(A)) /7 COMP(HALF(B)) = SQAR(A))?

R59+ " LE FPRO,A A SYMBOL

850 - L REG = FPRO NOW CONTAINS ~——ecemmme——— X

e S ,

" 3614¢% B e e e e e e e e e e e s e e e e e e e e o *

BH2+ . AER FPRD,FPRC SPFCIAL OPERATION

B63 ' L e REG = FPRO NOW CONTAINS ~——cccaacca—-#)x

, T ' * DUBLL ALY ' '

864 +% ‘ gy gy S P ————————— *

865+ 777 T LNER T FPRO,LFPRO SPECIAL OPERATION

R66+ LE. FPR2,B A SYMBOL ' :

et | ¥ymeeemeeeee- REG = FPR2 NOW CONTAINS - —— *X

| [] B]

“868+% " | Rmm e m——— e —————————— e e e e ——————————

R69+ HER FPR2,FPR2 - SPECIAL OPERATION

-) £ R A . REG = FPR2 NOW CONTAINS —— ~ %)

. ' HALF(B)* ,

B71+% Comm T e e o o e o e o o e o 2 o e o o o e o e o e 0 2rm cm m m

872+ LCER FPR2,FPR2 SPECIAL OPERATION

873+ 7 T'DER’ "FPRO,FPR2 ‘ B

874+ LE FPR2,A A SYMBOL

TBYS T T TR SR eedtlene s REG = FPRZ T NOW TONTAINS c-eceea- - X

I , .

876+% ' o K e e e e e e - - ———— ceecee--®

877+ MER FPR2,FPR2 ' SPECIAL OPERATION

878+« 7 MER™T FPRO,FPR2 ' ‘

379 : e ———— REG = FPRO NOW CONTAINS ——-mcememeee e =X

N I || (] DUBL(A)) / COMPU HALFUT BY)Y * SQAR(A)* -~

330+% - e e c e —————————— e D

881+ " 'LPER FPRD,FPRO . SPFCIAL OPERATION

832 ' ¥ymm——mweme——e REG = FPRO NOW CONTAINS —=-comceeeee- X
T ' ABS(NEG(DUBL(A)) / COMP(HALF(B)) * SQAR(A))*

88 34¢% : B e e e o e e e e e i e e 2 e e e . o e St e e e e e e *

A9y T T 0 7 #,~Z- REG = FPRO WAS USED IN EVALUATING THE EQUATION

885 , ‘ © %y,-=—= REG = FPR2 WAS USED IN EVALUATING THE EQUATION

‘BR&+E S _ - *

BR7+% : - _ -

BAB+xxek END #&dkk OF *xkkk EQUATION tt*a**#ttttttitttttttﬁ..t.tooooct‘ooo

IBM ...

Real Time Computer Comglex -

3. MATH
Date 3/20/72
Rev

.Book:High;Lefvel Assembler Language User's Guide - Part II Page 3-24

.- e+ ey — et A | SO s <1 o e - ——

1435 MATH YA + A+4 ¢ A48 + A4]12 + A+16 = B ,TYP=,REG=S

1437+ LT 5,A A SYMBOUL

1438+ A SyA+4 A SYMBOL

1439+ AT USR8 A SYMAOL

1440+ A SeA+12 A SYMBOL

la4l+ A T 5,A+16 A SYMBOL

1442+ .. ST 5,8 A SYMBOL

1443 R REG = 5 NOW CONTAINS —=--——ee—meeo&)
o "A ¢+ Avs + A+8 + A+12 + A+16 = B

Lg4b¥x "~ T T TR LS e e e e e e e e e e e e e ——————————————
L5 = #y=== REG = 5 uAs USED IN EVALUAT[NG THE EOUAT!ON

1446+% : T &
144T+% *

L448+%exke END 4:&.1 OF *xéxd

1213 MATH " A PLUS B nxnus 100 OVER (2)

1215+ T LE EPRO,A

A SYMBOL

1216+ ~ AE "FPR0,B A SYMBOL

1217+ © ~ TTGE T FPRO,=Ev1000 " NUMBER TYPE

12138+ DER FPRN,2 A REG TYPE -

1217+ STE FPRC,B+4 A SYMBOL |

1220+ L 11 =VIMCRFMN) LOAD REGL WITH ADDR UF SYSPARAM

1221+ ME FPRC,R(1) OP USING VALUE OF SYSPARM |

1222 #y=--=-----—= REG = FPRO NOW CONTAINS —=—=——————a—_xX

: TR T T A PLUS B MINUS 100 OVER (2) STORE B+4 TIMES svspagntx
. MCRFMNB)®

1223+ % e e s e e o e - ---...-.._--...._._-*

1226 . *,-=- REG = FPRO WAS USED IN EVALUATING THE EQUATION

122562 | *

12264% -

27T+ Ek kR ENO ctitwwnr wdkkok

EQUAT ION t#t*’lﬂh*#‘t&#i****#*#”#‘#*t#t.‘t**t#*

STORE B+4 TIMES SYSPARM(MCREMNS)® (

EQUATION tttt#gt##ttt#titt*#ﬁa*atatyt*tatyii#t ’

IBM Real Time Computer Complex

3. MATH
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3'215

445 TESTALL MATH *1 + ABS{ A / R) + x¢
P ABSU { A - B) - (At4 - Besa)) / XC
ABS{ (A+16 - B+16) - (A+20 - B+20))°, : (o
" "REG=({2y6)yANS=A®+4 C
- 546+ TESTRLL - "EQU ~ # ! ,) .
448+ o LE = 2,=€'1? NUMBER TYPE
449+ LE 64.A A SYMBOL
450+ " DE “64B A SYMBOL
451 : ym—mmmmmeeee REG = 6 NOW CONTAINS —=--cc-eae—ao * X
P e TR vu _
4524 % W oo e e e o o e e o e e e e e e e o W o o e o e e o B
453+ T U LPER T B.6 SPECIAL OPFRATION
4544+ AER 2,6 .
455+ T LE T 6,A ' A SYMBOL
456+ SE 648 A SYMBOL
TRYY T T ""’“"‘"r;:’.‘.‘-g. REG = & o ""NOW CONTAINS - e xX
' : * A - B .
BT T R e VS e - - e e e e e e 0 o *
459+ STE 69 FRSAVED1 SAVE REGS CUNTENTS .
460+ T T TLE T 6yA%e ' A SYMBOL
461+ SE 6,B+4 : : A SYMBOL
TG T S g =—==== REG =76 WOW CONTAINS ====eeeeam—e- *X
' AL - B4
N ""1’635"' T e e e - . - *;----_‘_--..---‘_-‘-—-.--‘.-_ -------------------- - - —— - > o *
464+ STE 6y MATHTSVR SPECIAL SAVE FOR NUN-CUMMUYE OPS
465+ 0 T T UTLETTT 6y FRSAVED L RETRIEVE SAVED DATA ‘
4664+ - SE 69 MATHTSVR PERFORM OPERATION
55T - RIiiiilio——- REG =& © ~ NOW CONTATNS ==c--momoeoco kX
Y (A =8B) - (A*s - Be) ° _
T a46Be® T T Fdanm e e el e 0 e s o e e e e e e e i e S T e o S e e e e — e o 2 i S B *
469+ LPER 646 SPECIAL OPERATION
C4TOs T AER 206 | |
471+ LE 6yA+16 A SYMBOL
TRTIZE TSR T 6L, BRI S " ATSYMBOL o _
4«73 ' By ———— REG = 6 NOW CONTAINS =v=-—- ——%X
e e 1 ANLB - Bels 0 -
4T44% R et
475+ "7 STE - &,FRSAVEC1 SAVE REGS CONTENTS
476+ LE 64, A+20 ' A SYMBOL
THITETTT TUSETTT 64,B420° _ A SYMBOL’
478 Xy—emememaese REG = 6 : NOW CONTAINS e k)
Rl 8 Ae2D - Be20 W | |
47%% M e ———— ——————————— - ————— -———=%
4804 77 T STE T 6,MATHTSVR. SPECIAL SAVE FOR NON-COMMUTE OPS
431+ o LE 6+FRSAVEOL RETRIEVE SAVED DATA
TTRBZ¥ T T SETTTTTByMATHTS VR PERFORM OPERATION
483 Myeemmeeeeem= REG = 6, NOW CUNTAINS =—=meemccacae- X
TR T T AML6 - B416) - | A+20 - B#20 IV ’
4844 ‘ B e e e e ——— e e
T HES+ CUTTTLPER 6y 6 SPECIAL OPERATION '
486+ ~ DER 2,6 N : :
----- ABT T ey —iieeieeee REG E 2 " 'NOW CONTAINS ==—==——oeeee--#X
o 1 +# ABStL A /7 3) "+ : ’ X

X

’ ‘ - v e
IBM NAS 9196 Real Time Computer

3. MATH
Date 3/20/72
Rev o

Book : " High Level Assembler Language U;er's Guide - Part ‘II - Page 3-26

CONCLUSION

"~ The number of possible combinations of options, OPERANDS, and OP-CODES
is too large to discuss each one, even briefly. Therefore, as in learning any
new language, probably the best way to learn how to write expressions is to
' u.se.t.he definition and examples as a guide in coding up a few test cases.

IBM ...

Real Time Computer Complex

Book: High I.evel Assembler Language User's Guide - Part II

MATH REFERENCE INFORMA TION

- Page

3. MATH
Date 3/20/72
Rev

3-27

OP-CODE OPERATION _ " OP-CODE OPERATION
+, PLUS ADD ” C,WITH COMPARE
-, MINUS SUBTRACT TO, COMPARE | COMPARE
/., OVER DIVIDE
*, TIMES MULTIPLY . s LOAD LOAD
oK POWER ROUTINE RELOAD LOAD
- =,SAVED-IN| STORE
52231“2;:_11‘1 STORE XOR Exclusive OR
OR OR J AND AND
L
OP-CODE OPERATION
 $,HERE= Place label on next instruction
- EQU, .
LABEL= Place label on next instruction
B Branch on Condition 15
BH, BP Branch on Condition 2
" BL,BM Branch on Condition 4
-~ BE,BZ , Branch on Condition 8
BO Branch on Condition 1
BNH, BNP | Branch on Condition 13
BNL, BNM ‘Branch on Condition 11
BNE, BNZ Branch on Condition 7

VALID OPERAND

Any valid TERM
Any valid NUMBER
Any valid EXP

- Any valid SYMBOL
"~ Any valid LITERAL
- Any valid REG ,
Any valid PREFIXED-EXP.

T/

IBM... Real Time Computer Complex

3. MATH
Date 3/20/72“
Rev v

Book: High Level Assembler Language User's Guide - Part 1 Poge 3-28

OPERAND ~ STARTING CHARACTERS
NUMBERS © =, 0 =9
‘S’YI.\/{I_B'OL‘ A—s2Z,$, and @ |
- (only 8 characters at maximum)
TERM A— 2, %$, and@
o (any assembly language operand)
REG "(" followed immediately by a symbol or number
o . .
EXP "('" followed by at least one blank
LITERAL ’ = sirgn (like in assembly language except

quote doubled)

SPECIAL TERM FOR SYSTEM

VALID PREFIXES FOR EXP'S ___ PARAMETERS
 ABS HALF | SYSPARM (MXXXXXNN)
NEG DUBL ~ MXXXXX = SYSPARM NAME

" TEST "~ SQAR , NN = null or 0 —— 99
COMP ,

IIBM ... | Real Time Computer Complex

3. NIBIT

Date 3/20/172
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-1 (of 1)

NAME - NIBIT

DESCRIPTION

The function of the NIBIT macro is to generate an AND IMMEDIATE instruction
which utilizes the length code of the symbol specified to 'turn off' a desired
bit in a byte.

DEFINITION

Eymboﬂ NIBIT Symbol

where Symbol is the label of a data base definition which has an associated‘
length code.

EXPANSION
' - T , 2
| NAME OPERATION OPERAND | » |
- | L | 4
: Es ymboﬂ \ NIBIT | LABEL |
. ' . N . . . ‘
| +Eymbo£l NI | LABEL,X'FF'-L'LABEL O
| L

| GENERAL NOTES

e The NIBIT macro will be utilized most often in conjunctwn with the
- B IT macro, since BIT generates -a desired length code aatoc:.ath with
a valid label ai ‘ : :

IBM.... " Real Time Computer Complex

3. OIBIT

Date .3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Poge 3-1 (of 1)

NAME - OIBIT

DESCRIPTION

(See XIBIT)

7

|IBM Real Time Computer Complex

3. BIT
Date 3/20/72
_ Rev
Book: High Level Assembler Language User's Guide - Part I Page 3-1 (of 3)

NAME - BIT

DESCRIPTION

The purpose of the BIT macro is to generate a data base definition whose length
can be used as a key to test or manipulate a specific bit in a byte.

DEFINITION
symbol BIT ' Bit number, or list of bit
numbers, or binary 8-bit
configuration
[.on]
where
e symbol -- -any valid non-blank label. If omitted, an error
- condition will be raised with a condition code of 12,
e bit number -- ° -an unsigned decimal 'integer, 0 through 7, representing

standard bit notation.

° hat of bit numbers -- a list of bit numbers separated by commas,
The entire list must be enclosed by parentheus.

e binary 8-bit configuration -- notation of the form B'XXXXXXXX', where
’ X is 1 if the corresponding bit is to be represented

by this label and X.is 0 if the corresponding bit is
not to be represented by this label.

e ON -- indicates the bit or bits indicated in the first
' operand are to set to 1 in a global variable which
is passed to the BYTE macro.

IBM ... | | Real Time Computer Complex

3. BIT
Date 3/20/72
Rev

Booki‘High Level Assembler Languaye User's Guide - Part II Poge 3-2

FUNCTION

The BIT macro performs its operations as follows:
vo checks to see if there is a valid non-blank label attached to the macro.

- e processes the information passed by the first operand, checking each
' time for an invalid bit number or binary character.

~e® generates a DS and ORG statement to establish a length which can be

- used to test or manipulate bit(s), and reset the location counter setting.
(There is an exception to this -~ if the name of the CSECT currently
being processed starts with SCDB, the DS and ORG
statement will not be generated. '

EXAMPLES OF THE USE

The followingvare included to give the user a feeling of what can and cannot
be done with the BIT macro: '

Example 1 ' v
I ! | |
(NAME , OPERATION . OPERANDS .
Lo 1 _ - F -1
| FIRST 1 BIT ' 0 |
| , ’ _
| HFIRST | ps | XL(B'10000000') |
I+ ! ORG | *.B'10000000' |
Example 2
R | { |
| NAME | OPERATION ‘ OPERANDS X
— BJ] . 1
ISEcOND | BIT | [(0, 1, 5, 7), ON '
| 1 .
~ |48ECOND | DS ' XL(B'11000101") |
Ay | ORG ' ~ *-B'11000101' 1
1 . — — J

3 Note: In the above example, specifyiﬁg 'ON' had nu effect upon the
. expansion of the macro.

N

b0

IBM ... | Real Time Computer Complex

3. ORELSE
Date .3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Po@® 3-1 (of 1)

NAME - ORELSE

DESCRIPTION

The function of the ORELSE macro is to generate the branch and labels that
‘correspond with the branch instructions generated by the EXITIF macro and
the labels generated by the ENDLOOP macro. See the STRTSRCH macro.

S

71

IBM NAS 9-996 - : o Real Time cmmef cmphx

3. STRTSRCH

Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-1 (of 2)

NAME - STRTSRCH

DESCRIPTION

The search macros are used to generate the logic which is typical to what a

programmer does when he sets up a loop to search through a table. The

programmer's intent is to exit when he finds what he is searching for and

perform process B. If he does not find what he is looking for, he executes

process D before joining the alternate path. The ORELSE is optional and if

it is omitted, box C does not appear in the flowchart. The following shows
the format of the STRTSRCH format.

WHILE ' " ' []
STRTSRCH UNTIL , (condition), AND REG=
The STRTSRCH macro used the WHILE/UNTIL held to generate a WHILE
or UNTIL macro statement. The condition format is the same as the

v WHILE and UNTIL macro.
EXAMPLE

- STRTSRCH condition p
Process A '
EXITIF condition q
Process B
ORELSE
Process C
ENDLOOP
- Process D
ENDSRCH

3. STRTSRCH
Date 3/20/72
Rev e

Book : High Level Assembler Language User's Guide - Part II Page = 3.2

Noté

.When using these macros care should be taken not to confuse the ENDLOOP
and ENDSRCH macros. The ENDLOOP is used to define the end of the loop
and the ENDSRCH indicates the end of the complete macro set.

~If a programmer is nesting these macros, he must be certain that each macro
‘set is completely embedded within the process boxes of the higher level ones.
If the user does not do this the following sequence of code would generate
incorrect branching because of the manner in which the stacks are manipulated.

5o

IBM NAS 9-99% | ‘ Real Time Computer cmp‘ex

3. TMBIT
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3-1 (of 1)

NAME - TMBIT

PURPOSE

The function of the TMBIT macro is to generate a fest under mask instruction
which utilizes the length code of the symbol to be tested as the mask byte.

DEFINITION

[symbog TMBIT Symbol

where Symbol is the label of a data base definition wh1ch has an associated
length code,

EXPA NSION
l"' — ~ T . ; =
ik NAME | OPERATION OPERAND N
ot T oo T — T T T T
|[symbol] b TMBIT | - LABEL , |
| _ o !
I_symbo] I 'LABEL, L'LABEL - I

GENERAL NOTES

e The TMBIT macro will be utilized most often in conjunction with the BIT
macro;, since BIT generates a desired length code associated with a valid

‘label.

IBM ... - Real Time Computer Complex

3. UNTIL
Date 3/20/72
Rev

Book : High Leevel Assembler Language User's Guide - Part II Page 3-1 (of 17)

NAME - UNTIL

DESCRIPTION

The function of the UNTIL macro is to generate the labels and instructions
that branch to these labels to accomplish the programming function of iteration.
- The UNTIL macro supports both instruction for incrementing/decrementing
indexes and instructions for terminating the loop based upon a change in a
~ logical condition. The UNTIL statements support loops in which the indexing/
condition-testing instructions are executed after the first pass through the
code- body.

The UNTIL MACRO specifications: There are three difference UNTIL state-
ments, the UNTIL-DO, UNTIL-OR-DO, and the UNTIL-AND-DO. For the
flowcharts of the UNTIL statements, see the ENDDO macro writeup.
The general format for the UNTIL-DO is:
a. Indexed - UNTIL-DO:
UNTIL (index-instructions), DO
‘code-body
- ENDDO

~which reads "UNTIL the fqilowing in&ex-instructions fail to branch,
continue to execute the code-body. "

b. Logical - UNTIL-DO:
UNTIL (condition), DQ
code-body
ENDDO |

Whlch reads "UNTIL the following condlttons are true, contume to
execute the code-body. "

IBM oo o Real Time (:mputerl c«nplex

'3. UNTIL |
Date 3/20/72
Book : High Level Assembler Language User's Guide - Part II v 3-2

The general format for the UNTIL-OR-DO is:

~ UNTIL (index-instruction), OR
"UNTIL (index-instruction), DO

.code-body
~ENDDO

UNTIL (condition), OR -
UNTIL (condition), DO

code-body
- ENDDO

- UNTIL (index-instruction), OR
 UNTIL (condition), DO

cody-body

ENDDO

IBM ... | Real Time Computer Complex

3. UNTIL
Date 3/20/72
Rev

¥ Book: High Level Assembler Language User's Guide - Part 11 Poge 3-3

The general format for the UNTIL-AND-DO is:

UNTIL (index-instruction), AND
UNTIL (index-instructions), DO

code-body
ENDDO

UNTIL (condition), AND
UNTIL (condition), DO

code-body
ENDDO

UNTIL (index-instruction), AND
- UNTIL (condition), DO

code;body
ENDDO

The following shows the formét of UNTIL:

SR ' (we))

BCT . LABEL2

BXH | ‘ | ONE(S). .

BXLE | ((R3)\ | OVERFLOW

* IS PLUS
| BIT . GT MINUS OR .
» B ~ (R1) { LT MIX ED D N
UNTIL (| "LABEL1,\ GE >< ZERO(S)) DO [’REG‘]

F | LE NMINUS - :

E | EQ NPLUS

D \ NE / NONE(S) |

c , - | NZERO(S)

T | : OFF

-] | | on /

OR

UNTIL ([TYPE] , LABEL, OPERATION, CONDITION) ,{ADND} [REG:]

3. UNTIL
Date 3/20/72
Rev

Book : ngh Level Assembler Language User's Guide - Part II Poge 3-4

INDEXED UNTIL

The diffe rent types are:

1. BCT:
' (aND
UNTIL (BCT,R1), DO
Example:

. UNTIL (BCT,$1),DO
+LABEL1 EQU *

CODE-BODY
ENDDO
+ BCT $1,LABELIL

2. BXH and BXLE: '
L OR
i BXH
AND
Examples:

UNTIL (BXH,$1,$3),DO
+LABELl EQU *

 CODE-BODY

ENDDO
+ BXLE $1,$3, LABEL1

\'?"1

| IBM NAS 9-9% | Real Time cmm cm

3. UNTIL
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II e 3-5

LOGICAL UNTIL

‘The different types are:

1. An * in the type field stands for the condition is already set. When using
the * type, the Operation and Condition fields cannot be omitted. ’

Example:

UNTIL (*,,IS,PLUS),DO
+LABEL EQU *

CODE-BODY

- ENDDO
+ BC 13, LABEL

2. Bit type: will generate a test under mask. The only valid operation
parameter is (IS).

(ZERO
ONE
ON oR
UNTIL (BIT, LABEL,IS,{ S XED ?), {AND}-
| NONE B
NZERO
\NMIXED |

Example:

UNTIL (BIT,A,IS,ZERO),DO
+LABEL1 EQU * '

CODE-BODY
ENDDO

TM A,L'A
+ BC. 17,LABELl

+

Y WA ———
| | Dare 20772

B°°k High Level Assembler Language User's Guide -~ Part II Page 3'6'

3. B Type

[ZERO(S)
PLUS

. MINUS
 NPLUS

' UNTIL (B,LABELL,IS, (NMINUS

NZERO(S)

\ |)

Li
i',f, X14F"
i ' o C'FF" OR
UNTIL (B, LABELI, ,{ Bl), {AND} [,REG:]
L1, { NE 5Ye)
LABEL2
GE (R2) |
LE \

[REG:], DEFAULTS TO $0.
Examples:

. UNTIL (B,A,IS,ZERO),DO
+LABEL EQU *

CODE-BODY
ENDDO
'+ cLI A, X'00'
+ BC 7, LABEL

'~ UNTIL (B,A,EQ,AAAAAAAA+16), DO
+LABEL EQU * |

' CODE-BODY

IBM

2l

Real Time Computer Complex

3. UNTIL

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Po@® 3-7

+ + + 4+

ENDDO

1C $0, AAAAAAAA+16
STC $0, *+5

CLI A, X'00'

BC 7, LABEL

UNTIL (B,A,EQ, ($1)), DO

+LABEL EQU *

+L1

- +L1

+ + + +

CODE-BODY
ENDDO

STC $1,%+5
CLI A,X'00!
BC 7, LABEL
DS OH

CODE-BODY

ENDDO
CLC O+ABLE, BAKER

BC 8, L1

UNTIL (B,ABLE, EQ, ($1)), DO
DS oH

CODE-BODY

ENDDO

EX $1, %48

B *+8

CLI ABLE,0

BC 8,Ll

) _

UNTIL (B,ABLE, EQ, BAKER), DO)

These B forms of the UNTIL state-
ment alters executable code and are
not usable if the program is to be
reentrant. :

BReentrant B TYPE

IBM NAS 9-99%

UNTIL (B,A,GT,138), DO

+LABEL EQU '*

+

‘CODE-BODY

~ ENDDO
CLI 4,138
BC 13, LABEL

UNTIL (B,A,GT,0+MUD), DO

+LABEL EQU *

-+

~ CODE-BODY

ENDDO

‘CLI A,0+MUD

BC 13, LABEL

UNTIL (B,A,GT,X'4F"), DO

+LABEL EQU *

' CODE-BODY

"ENDDO ,
CLI A,X'4F'

BC 13,LABEL

Real Time Computer Complex

3. UNTIL |
Date 3/20/72
Rev

Book : Htgh Level Assembler Lahguage User's Guide - Part II P"‘ 3-8 _

IBM NAS 9-99

Book: High Level Assembler Language User's Guide - Part II

- l'

Real Time Computer Complex

3. UNTIL

Date 3/20/72
Rev

Page 3-9

4, Fixed-Point (H or F)
{ONE(S) \
PLUS
MINUS
: . (R1) OR
H . ZERO(S) AND _
‘ NMINUS
NPLUS
\NONE(S)
GT LABEL2
PRI LA R
UNTI;. (<F> ,LABEL]1, g - »{po [,REG-.—]
‘ NE =X'
LE =C' !
REG= - Defaults to $0.
UNTIL (H,A,IS, PLUS), DO
+LABEL EQU . *
CODE-BODY
| ENDDO ,
+ LH $0, A
o+ LTR $0,$0
+ BC 2, LABEL
~ UNTIL (H,($1),1S,ZERO),DO
+LABEL EQU *
CODE-BODY
o ENDDO
+ LTR $1,$1
+ BC 7, LABEL

N 3) I
IBM

Book : ""High':'zll_.evel Assembler ‘L’é.nguafg‘e User's Guide - Part II “

UNTIL (H,A,GT,B),DO

+LABEL ~EQU *
CODE-BODY
. ENDDO _
+ 'LH ~$0,A
+ CH $0,B
+ BC 13, LABEL
UNTIL (H,A,EQ, ($1)),DO
+LABEL EQU * - ,
CODE-BODY
ENDDO
+ CH $1,A
+ BC 7, LABEL
. UNTIL (H, ($1), EQ, ($2)),DO
+LABEL EQU * ‘
CODE-BODY
ENDDO
+ CR $1, $2
+ " BC 7, LABEL
. UNTIL (F,A,IS,PLUS),DO
+LABEL EQU *
CODE-BODY
ENDDO
o+ L $0,A
+ LTR $0, $0
+

BC 13, LABEL

3. UNTIL
Date 3/20/72
Rev §

Poge 3-10

IBM ...

Book : High Level Assembler Language User's Guide - Part II

- UNTIL (F,($)),1S,ZERO),DO
+LABEL EQU *

CODE-BODY

ENDDO .
+ LTR $1,9%1
+ BC 7, LABEL

UNTIL (F,A,GT,B),DO
+LABEL EQU *

CODE-BODY

ENDDO
+ L - $0,A
+ .C $0,B
+ BC 13, LABEL

, UNTIL (F,($1),GT,B),DO
+LABEL EQU * ‘ ‘ '

CODE-BODY
ENDDO

| C $1,B
+ BC 13, LABEL

+

| UNTIL (F,A,EQ, ($1)),DO
+LABEL EQU * -

CODE-BODY - .
ENDDO

+ c . $1, A
+ BC 7, LABEL

Real Time Computer Complex

3. UNTIL

Date 3/20/72
Rev

3-11

IIBM ... " Real Time Computer Cony

3. UNTIL
Date 3/20/72
. Rev o
iBook: High Level Assembler Language User's Guide - Part II Poge 3_12

UNTIL (F,($1), EQ, ($2)),DO
+LABEL EQU *

CODE-BODY

- ENDDO .
+ CR $1, %2 }
+ : BC 8, LABEL

5. Floating Point (E or D)

/[ONE(S)
PLUS
MINUS
ZERO(S)
NZERO(S)
NMINUS
NPLUS

\ NONE(S)

(R1)

UNTIL ({ﬁ,},LAEELl,IS,{

e~

¢ OR
L

GT |
LT LABEL?2 OR
{

1) o |
GE (R2) %1\:)1)} [’ REG:] |

E

unTIL ({pb LABELL{ Ga b (0
| |Ne | |-D

LE

D

[REG=] Defaults to FPRO.

UNTIL (E,A,IS,PLUS),DO
+LABEL = EQU o

CODE-BODY

o ENDDO
+ LE FPRO, A

e LTER FPRO,FPRO
+ BC 13, LABEL

-+

IBM NAS 9-99%

UNTIL
+LABEL EQU *
CODE-BODY
ENDDO .
+ LTDR FPRO,FPRO
+ BC 7, LABEL
» _ UNTIL (E,A,GT,B),DO
+LABEL EQU *
CODE-BODY
, ENDDO
+ LE FPRO, A
+ CE FPRO,B
+ - BC 13, LABEL
UNTIL (D, (FPRO),GT,B),DO
+LABEL EQU = *
CODE-BODY
ENDDO
+ CcDh FPRO,B
+ : BC 13, LABEL
- UNTIL (E,A,EQ, (FPR2)),DO
+LABEL EQU * ‘
CODE-BODY
: . ENDDO
+ . CE FPR2,A
+ - BC 7, LABEL

(D, (FPRO),1S,ZERO),DO

Real Time Computer Complex

3. UNTIL

Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II = Page 3- 13

IBM

Book : ngh Level Assembler Language User's Guide - Part II

+LABEL

6. CHARACTER(C)

+LABEL

7, LABEL

'Real Time Computer }' cm

3. UNTIL
Date 3/20/72
Rev

UNTIL (D, (FPRO),EQ, (FPR2)),DO
EQU * :
CODE-BODY
~ ENDDO
CDR 'FPRO,FPR2
BC 7, LABEL
(LT)
. GT A%Fb
UNTIL (C,LABEL1,< GE) , LABEL2), .
DO
EQ
LE
\NE,
UNTIL (C,ABLE,EQ,BETA),DO
EQU * o
CODE-BODY
ENDDO
CLC. ABLE,BETA
‘BC 7, LABEL
UNTIL (C,=C'SED!, EQ, 0($3)),DO
EQU * '
CODE-BODY
ENDDO
CLC =C'SED!, 0($3)
BC '

IBM ... f Real Time Computer Complex

3. UNTIL
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Page 3.15

7. Test Under Mask (T) (ZERO 1

ONE
ON

{ FFE .AONRD

UNTIL (T,LABEL]1 , { MIXED

(» { MASK 2 r),
NZERO

NMIXED
. p

UNTIL (T,A,X'l1l', ZERO), DO
+LABEL EQU * : :

CCDE- BODY

+ ™ AX'110
b BC 7, LABEL

VIII, Type Field Omitted:

| UNTIL (,A,IS,ZERO),DO
+LABEL EQU *

CODE-BODY
| ENDDO
y LE FPRO,A
+ LTER FPRO,FPRO

+ BC. 7, LABEL

A ' ’DC 0"

IBM... RealTumeComputer

3. UNTIL N
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II . Poge 3-16

o

PROGRAMMING NOTES -

Also see programminé notes for IF macro.

1. "Index-Instruction' can be’ any one of the following:
a. BCT,rl

b. BXH,rl,r3
c, BXLE,r1,r3

2. "Code-Body' can be any group of valid machine and/or macro instructions,
including a maximum of twenty nested WHILE/UNTIL's, Multiple index-
~ instructions in the same loop are also supported.

3. The expansion of the UNTIL macro causes the indexing and/or iogical
instructions to be assembled after the code-body and executed after the
first pass through the code body.

4. ,The level of a nested WHILE/ UNTIL statement can be fou.nd in the LABELS
that are generated.

: UNTIL (condition), DO
+UN/5/x0x EQU % '

The /5/ stands for the level of this nested UNTIL statement.

5. Any time a register notation is used in a logical-UNTIL statement, the
register must be in parentheses. It does not make any difference whether
a register is in parentheses or not with an Indexed-UNTIL statement.

6. Mis spelling and abbreviation of ""conditions" mnemonices is not allowed.

. Réttrietion’: Expressions cannot be over sixteen characters in length.

Wi
IBM Real Time Computer Complex

3. UN
Date 3%0/72
_ Rev ‘
Book: High Lievel Assembler Language User's Guide - Part II Page 3-17

8. Reentrant programs that use the B TYPE (BYTE) UNTIL statements

‘ should set the global flag &$RENT to 1. This flag will assure that the
code generated by the UNTIL macro is reentrant. This reentrant code
is slower thanthe none reentrant code and should be used only in reentrant
programs. The global flag has to be defined and set before a CSECT
statement. See the examples of the B TYPE UNTIL statement. ’

Example:
GBLB &$RENT

&$RENT SETB 1
XXXXXX CSECT

!BM NAS 9-9% Real Time Computer Complex

3. WHILE
Date ~3/20/72
Rev

Book: High Level Assembler Language User's Guide - PartII Page 3-1 (of 19)

NAME - WHILE -

DESCRIPTION

The function of the WHILE macro is to generate the labels and instructions
that branch to these labels to accomplish the programming function of
iteration. The WHILE macro supports both instructions for incrementing/
‘decrementing indexes and instructions for terminating the loop based upon
a change in a logical condition. The WHILE statements support loops in
which the indexing/condition-testing instructions are executed before the
first pass through the code-body.

IBM NASo-0% | Real Time Computer complex

3. WHILE

Date 3/20/72
) Rev '
Book : High Level Assembler Language User's Guide - Part II Poge 3-2

’Ihé ’WHILE MACRO specifications.
Thér‘é are three different WHILE statements, the WHILE-DO, WHILE-OR- DO,‘
and the WHILE-AND-DO. For the flowcharts of the WHILE statements, see
the ENDDO macro writeup.
The general format for the WHILE-DO is:
1. Indexed WHILE-DO:
‘:WHILE (index-instruction), DO
code-ﬁody
' ENDDO

~which reads, "WHILE the index- mstructlon branches, continue to
execute the code-body. "

2. Logical WHILE-DO:
| W}ﬂLE (condition), DO
| code-body |
iENDDo

, Whlch reads, '"WHILE the indicated condition is true, continue to
execute the code-body. "

The general format for the WHILE-OR-DO is:

:WI-IILE (index-~-instruction), OR
WHILE (index-instruction), DO

code-body
ENDDO

 WHILE (condition), OR
‘WHILE (condition), DO

IBM Real Time Compurter Complex

3. WHILE
Date 3/20/72
Rev

Book: High Level Assembler I.anguage User's Guide - Part II Poge 3-3

code-body
ENDDO

WHILE (index-instruction), OR
- WHILE (condition), DO

code-body
ENDDO
The general format for the WHILE-AND-DO is:

- WHILE (index-instruction), AND
- WHILE (index-instruction, DO

code-body

ENDDO

IBM ... | * Real Time Computer Complex

3. WIILE
Date 3/20/72
Rev

Book : Hﬂijgh Level Assembler language User's Guide - Part II Page 3-4

WHILE (condition), AND
WHILE (condition), DO

~‘code-body
ENDDO

‘W_HILE (index-instruction), AND
WHILE (condition), DO

- code-body
ENDDO

| The following shows the format of WHILE:

p \ » ((R2)
BCT - | 1.ABEL2
BXH | | oNE(s)
BXLE ((R3)) | OVERFLOW
* | 1S PLUS
BIT Ry | T | | Mmus oR
B LT g MIXED AND
WHILE (o &,LABEL1,< GE [ZERO®S) 1 {bot [RECT
F LE | | NMINUS
E FQ | | NPLUS
D \NE / | NONE(S)
lc | NZERO(S)
T) OFF
) - \ON)
| - (OR
WHILE ([TYPE|, LABEL, OPERATION, CONDITION) ,{‘;NOD} [REG=]

INDEXED WHILE
The different types are:
1. BCT -
. | or
AND)

WHILE (BCT,R1),| g

IBM NAS 9-996

Book: jigh Ievel Assembler Language User's Guide - Part II

~ Example:
WHILE (BCT, $1), DO
+ B LABELI
+LABEL2 EQU *
CODE-BODY
ENDDO
+LABEL1 EQU *
+ BCT $1, LABEL2
2. BXH and BXLE
BXH AND
WHILE (3 p »R1, R3), |00
Examples:
WHILE (BXH, $1, $3),DO
+ B LABEL1
+LABEL2 EQU ok
CODE-BODY
ENDDO
+LABEL1 EQU * |
+ BXH $1,$3, LABEL2
WHILE (BXLE,$l, $3), DO
T+ B LABELL]
+LABELZ EQU *
. CODE-BODY
_ ENDDO
+LABEL1 EQU *
o+ BXLE

$1,$3, LABEL2

Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev

Poge 3-5

IBM ...

LOGICAL WHILE

The different types are:

1. ~An * in the type field stands for the condition is already set.

 Real Time Computer Complex
3. WHILE

Date 3/20/72
Rev '

Book : ngh Level Assembler Language User's Guide - Part II - Page 3-6 '

When

using the * type, the Operation and Condition fields cannot be omitted.

Example: .
‘ " WHILE (*,,1S, PLUS),DO
+ . B LABEL]
+LABELZ2 EQU *
CODE-BODY
, . ENDDO
+LABEL1., EQU *
+ BC 2, LABELZ2
2. . Bit type: will generate a test under mask. The only valid opetétion
parameter is (IS).
(ZERO
ONE
ore | [
WHILE (BIT,LABEL,IS,{ o M, (00
NONE
NMIXED
\NZ ERO /
Example:
WHILE (BIT, A, IS, ZERO), DO
+ B LABEL]1
+LABEL2 EQU *

' CODE-BODY

|IBM ... o " Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3-7

ENDDO
+LABEL] EQU s
+ T™M A, L'A
+ ~ BC 8, LABEL2
3. B Type | (ZERO(S)
PLUS Aﬁ%
'WHILE (B, LABELI, IS, | MINUS 14 Do
< NPLUS >
NMINUS
ONE(S)
NZ ERO(S)
\ NONE(S) /
/T‘ N
. LI
GT X'4F"
| LT piell
WHILE (B, LABEL1,{ 22) ! por L), AND [,REG:]
NE DO
LABEL2
GE (R2)
LE)
[REc;:] DEFAULTS TO $0
Examples:
WHILE (B, A,IS, ZERO), DO
+ B LABELI1
+LABEL2 EQU * -
CODE-BODY
~ ENDDO
+LABEL1 EQU o
+ . cLI A, X'00'
o BC 8, LABEL2
WHILE (B,A, EQ, AAAAAAAA+16), DO
e B LABEL]

+LABEL2 EQU *

IBM - | | Real Time Computer Complex

3. WHILE |
Date 3/20/72
Rev :

Book : ngh Level Assembler Language User's Guide - Part II Page 3-8

'\
CODE-BODY
‘ ENDDO
+LABELI1 EQU %
+ IC $0, AAAAAAAA+16
+ STC - $0, *+5
+ CLI A, X'00'
+ BC 8, LABEL2
| WHILE (B, A,EQ, ($1)), DO
+ " B LABEL1
+LABEL?2 EQU ok .
. These B forms of the WHILE
CODE-BODY > statement alters executable
. . code and are not usable if the
; ENDDO ' program is to be re-entrant
+LABEL1 - EQU *
+ STC $1, %45
+ + CLI A, X'00'
+ BC 8, LABELZ2
~ WHILE (B,A,GT,138),DO
+ > B LABEL]1
+LABELZ2 EQU *
CODE-BODY)

w

IBM ... Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II Page 3.9

\
WHILE (B,ABLE, EQ, BAKER), DO
+ B LABELI
+LABEL2 DS OH
CODE-BODY
+LABELI DS OH
+ CLC - 0+ABLE, BAKER
+ BC 8, LABELZ2
WHILE (B,ABLE,EQ, ($1)), DO ? Reentrant B TYPE
T+ B LABELl
+LABEL2 DS OH
CODE-BODY
+LABELI DS OH
+ EX $1, %48
+ B *+8
+ CLI ABLE, 0
+ BC 8, LABEL2
/
ENDDO
+LABEL]1 EQU =
+ CLI A, 138
+ BC ' 2, LABEL2
WHILE .~ (B,A,GT,0+MUD), DO
+ B ‘ LABELI
+LA BEL2 EQU o
CODE-BODY
ENDDO
+LABELIL EQU *
+ ~ CLI | A,0+MUD

+ : BC ' ' 2,LABEL2

IBM NAS 999

Book : Hr.gh Level Assembler Language User's Guide - Part II

, WHILE
+ B - LABEL1
+LABEL?2 EQU *
CODE-BGCDY
i ENDDO
+LABEL1 EQU *
+ CLI A, X'4F!
2, LABEL2

+ BC

4. ' Fixed Point (H or F)

i R
" WHILE (<F>,LABEL1,IS,<
GT
al @R | op
WHILE (<F>,LABEL1, e
NE
LE

[REG:] | Def'aulte ‘to u%o.

[ONE(S)
PLUS
MINUS
ZERO(S)
NZERO(S)
NMINUS
NPLUS

\NONE(S)

¢ LABEL2 \

Ton
A} [omeoe)

(R2)
=F"
Nl
=X
=C!

(B,A,GT,X'4F"), DO

&’f

1
'
'
t

Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev :
Page 3-10
AND
DO} [,REG:]

-

IBM ... Real Time Computer Complex

3. WHILE
Dqto . 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II o 3-11

~ WHILE (H,A,1S,PLUS),DO
+ B LABEL] '

+LABEL2 EQU *
CODE-BODY
ENDDO
+LABELI1 EQU *
+ LH . $0,A
+ LTR $0, %0
+ BC 13, LABEL2
WHILE (H, ($1), IS, ZERO), DO
+ B " LABELI1
+LABEL2 EQU *
CODE-BODY
_ ENDDO
+LABELL1 EQU *
+ LTR $1, $1
+ ~ BC - 8, LABEL2
, WHILE (H,A,GT,B),DO
+ B LABEL1

+LABEL2 EQU = *

CODE-BODY

. - ENDDO
+LABELI1 EQU *

+ LH $0, A
4 CH $0,B

+ BC . 2,LABEL2

| WHILE = (H, A,EQ, ($1)),DO
+ B ~ LABEL1l :
+LABEL2 EQU * .

Wi

IBM NAS 9-99 . o | | Rea'Time cmer ' ¥ cﬁlllpl .; ‘

3. WHILE
Date 3/20/72
Rev

Book : ‘H_i'gh Level Assembler Language User's Guide - Part II Poge 3-12

CODE-BODY

FRR ENDDO
+LABELl EQU s’

‘ + . BC . 7, LABEL?2
| WHILE (H, ($1), EQ, ($2)), DO
+ B LABELI]

+LABEL2 EQU *

CODE-BODY
‘ ENDDO

+LABEL1 EQU *

+ CR $1,‘$2

4 . BC 8, LABEL2
WHILE (F, A, IS, PLUS), DO

+ B LABEL]1

+LABEL2 EQU *
CODE-BODY

B ~ ENDDO

+LABEL1 EQU *

+ L $0,A

+ LTR $0, $0

+ . BC 2, LABEL2
WHILE (F,($1),1S,ZERO), DO

v B LABEL1

+LABEL2 EQU o
CODE-BODY
ENDDO

+LABEL1 EQU *

v ~ LTR $1,$1

+ "~ BC 8, LABEL2

®d

“ IBM NAS 9-996 Real Time COmputer cmhx

3. WHILE
Date 3/20/72
Rev

L. : Page 3-13
Book: High Level Assembler Language User's Guide - Part II 3

WHILE (F,A,GT,B),DO
+ B LABELI1
+LABEL2 EQU *
CODE-BODY
ENDDO
+LABEL1 EQU %
+ L : $0,A
+ C $0, B
+ BC 2, LABEL2
WHILE (F, ($1),GT,B),DO
o+ B LABELI1
+LABEL2 EQU *
CODE-BODY
ENDDO
+LABELI1 EQU *
+ C $1,B
+ BC 2, LABEL2
WHILE (F,A,EQ, ($1)),DO
¢ B LABELI
. +LABEL2 EQU %

CODE-BODY

. ENDDO
+LABELI1 EQU o %
+ C $1,A
+ BC 7, LABEL?2
. WHILE (F, ($1), EQ, ($2)),DO
4 B LABEL]
" +LABEL2 EQU *

CODE-BODY

IBM NAS9-99%8 ' | Real Time Computer Oomplex

3. WHILE
Date 3/20/72
Rev

Book : - High Level Assembler Language User's Guide - Part II '00‘1 3-14

, ENDDO
+LABEL2 EQU *
+ CR - $1,%$2
+ BC 7, LABEL2

5.: "Floating Point (E or D)

(ONE(S) \

PLUS

o g @D 32233& 38,

WHILE (gni ,.LABELI.IS, NZERO(S)F)s DO} [,_REG:]
S NMINUS ' '

NPLUS

\NONE(S))

S

GT
LT
GE\
EQ
NE
LE)

E (R1)
,LABELI,

LABEL2| (oRr
WHILE (D).{

.,iig’ , §§§$ [,REG:]

=D' t

| [REG:] Defaults to FPRO.

WHILE (E, A,IS, PLUS), DO

+ B LABELIL
+LABELZ EQU *
CODE-BODY
o ENDDO
+LABELl EQU * |
+ LE FPRO, A
+ LTER FPRO, FPRO

+ BC 2, LABEL2

Book :

IBM

+
+LABEL2

+LABEL1
+
+

+ .
+LABEL?2

+LABEL]

B

+

+

+

+LABEL2

+LABELI
+
+

i

 +LABEL2

Real Time Computer Complex

3. WHILE
Date 3/20/72
R.v . .

High Level Assembler Language User's Guide - Part II Page 3-15

WHILE (D, (FPRO),IS,ZERO), DO
B LABELI

EQU *

‘CODE-BODY

ENDDO

EQU * o

LTDR FPRO, FPRO

BC 8, LABEL2

WHILE (E,A,GT, B), DO

B LABEL1

EQU *

CODE-BODY

ENDDO

EQU *

LE FPRO, A

CE FPRO,B

BC 2, LABEL2

WHILE (D, (FPRO),GT, B),DO
B LABELI

EQU *

CODE-BODY

ENDDO

EQU R

CD FPRO, B

BC 2, LABEL2

WHILE (E,A,EQ, (FPR2)),DO
B LABELL1 ' .
EQU L

CODE-BODY

b/

IBM

Book ’;‘;_’High Level Assembler Language User's Guide - Part II

" +LABEL2

At
Feh o

| Real Time Computer Complex
3. WHILE

Date 3/20/72
Rev
Page 3-16

: - ENDDO
+LABELl EQU *
+ CE FPR2, A
+ BC 7,LABEL2
WHILE (D, (FPRO), EQ, (FPR2)), DO
B LABEL] o
+LABEL2 EQU *
CODE-BODY |
~ ENDDO
+LABEL1 EQU *
+ CDR FPRO, FPR2
+ BC 8, LABEL2
6. Character (C) LT OR
GT " JAND
WHILE (C,LABELL, | o |,LABEL2), ("
EQ
LE
NE
S WHILE (C,ABLE,EQ,BETA), DO
o B LABEL1
+LABEL2 EQU *
CODE-BODY
S ENDDO
+LABEL1 ' EQU * |
+ CLC ABLE,BETA
+ 'BC 8, LABEL2
WHILE (C,=C'SED', EQ, O($3)), DO
+ B LABEL] |
EQU *

‘CODE-BODY

1IBM S Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev ‘

Book: High Level Assembler Language User's Guide - Part II Poge 3-17

ENDDO
+LABEL1 EQU *
; CcLC =C'SED', O($3)
+ BC 8, LABEL2
7. Test Under Mask (T)
‘ : (ZERO
ONE
ON
OFF OR
WHILE (T,LABELI, {MASK}, | NIXED), {ggn}
NMIXED .
NZERO
| WHILE = (T,A,X'll', ON), DO
+ . B LABEL1
+LABEL2 EQU %
CODE-BODY
ENDDO
+LABEL1 EQU - %
-+ ™ AX'1D
+ BC - 8, LABEL2
8. Type Field Omitted
» WHILE (,A,IS,ZERO),DO
+ B LABEL1
+LABEL2 EQU *
CODE-BODY
: - ENDDO
+LABELl EQU %* :
+ LE FPRO,A
+ LTER = FPRO,FPRO
L+ ' BC 8, LABEL2

{

A - DC - EO

v

IBM worm | | | Real Time Computer Complex

3. WHILE
Date 3/20/72
Rev

.Bool(: Hi’gh Level Assembler Language User's Guide - Part II Page 3-18

'PROGRAMMING NOTES

Also see programming notes for IF macro.

1., "Index-Instruction' can be any one of the following:

a., BCT,rl
b, BXH, rl, r3
c. BXLE, rl,r3

2. "‘Code-Body” can be any group of valid machine and/or macro-instructions,
including a maximum of twenty nested WHILE/UNTIL's, Multiple index-
instructions in the same loop'are also supported,

3. The WHILE function causes the indexing instructions to be assembled at
the end of the loop but generates a branch past the code-body to cause
the indexes to be incremented/decremented before the first pass through
the code-body. -

4, The level of a nested WHILE/UNTIL statement can be found in the LABELS :
that are generated. ' :

WHILE (condition), DO
T+ B. W1/5/30exx
+W2/5 /xxxx
The /5/ stands for the level of this nested WHILE statement.
5. Any time a register notation is used in a logical-WHILE statement, the
register must be in parentheses. It does not make any difference whether
~a register is in parentheses or not with an Indexed- WHILE statement.

6. MissPelling and abbreviation of "'conditions" mnemonices is not allowed.

7. Restriction: Expressions cannot be over siXteen characters in length.

IBM ... Real Time Computer Complex

3. WHILE
Date ' 3/20/72
Rev

Book: High Level Assembler Language User's Guide - Part II ge 3-19

8. Reentrant programs that use the B TYPE (BYTE) WHILE statements should

set the global flag &$RENT to 1. This flag will assure that the code
generated by the WHILE macro is reentrant. This reentrant code is

slower than the none reentrant code and should be used only in reentrant
programs. The global flag has to be defined and set before a CSECT
statement. See the examples of the B TYPE WHILE statement.

Example:

GBLB &$RENT
&$RENT SETB 1
XXXXXX CSECT .

| IBM P | . Real Time Computer Complex

3. XIBIT-OIBIT
Date 3/20/72
, Rev
Book : High Level Assembler Language User's Guide - Part 11 . Page 3-1 (of 2)

NAME - XIBIT-OIBIT
PURPOSE

The purpose of the XIBIT and OIBIT macros are to generate an EXCLUSIVE OR
IMMEDIATE instruction to invert a specified bit, .and an INCLUSIVE OR IMMEDIATE
instruction to "tu¥p on'' a specified bit,: reapectlvely. Both utilize the length

code of the symbol to be operated upon.

DEFINITION
Eymbol] XI1BIT Symbol
‘ [:symboﬂ OIBIT - | Symbol

where Symbol is the label of a data bé.se definition having an associated length
code.

EX PANSION
NAME OPERATION '~ OPERAND

| symbol XIBIT | ~ LABEL
i - ~ OIBIT

“+| symbol L XI | LABEL, L'LABEL
- -4 o1 |

IBM Real Time computer Complex

3. XIBIT-OIBIT
Date 3/20/72
Rev

Book: "High Level Assembler Language User's Guide - Part II Page 3-2

GENERAL NOTES

e The XIBIT and OIBIT macros will be utilized most often in conjunction
~with the BIT macra,, since BIT generates a desired length code associated
with a valid label,

IBM NAS 9% | Real Time Computer Complex

4.

Date 3/20/72
: Rev
Book: High Level Assembler Language User's Guide - Part II Page 4-1 (of 3)

4. USE WITH RTPM
4.1 PRE- AND POST-ASSEMBLY PROCESSORS

The concept of structured programming involves a physically structured
program listing as an integral part. In order to automate this (permit source
coding to be aligned as per OS standards: columns 1, 10, 16), two processors
were written to generate either a structured source listing or a structured
assembly listing. The post-assembly processor also optionally deletes
unreferenced labels from DSECTs and assembly cross-references.

The pre- and post-assembly processors are invoked by coding the following
PARM keyword parameter on the EXEC card which invokes RTPM:

PARM. STEPNAME=", , ,, SMT PGASM, SMXR PASM'
and adding the following DD card:
//GSSCPRNT DD UNIT=DISK, SPACE=(TRK, (X, Y))

~ where X is typically 50 - the largest assembly listing that is expected. This
is not the total amount of assembler output that the jobstep will generate.

The program SMTPGASM serves as the linkage between RTPM and the
pre-assembly processor. When SMTPGASM receives control from RTPM
(this occurs when a GASM control card is used in place of a ASSM control
card) register 1 points to the same parameter list that will be passed to the
assembler following the LINK to SMTPGASM, Upon receiving control
SMTPGASM issues an OPEN (a QSAM get-locate type) on the input source
member. It then reads the source member for a card that begins with a')"
‘pattern. - Upon finding this card it scans this card looking for a valid (whose
name is in a table) control ID, If a wvalid ID is found it LINKs
to the associated module, defined in a JOBLIBXX DD card added to the RTPM
stepf" Otherwise it will continue reading the source cards for a valid ID, If
a valid ID is never found SMTPGASM will return to RTPM without any special
error condition set. :

* This capability is not part of HLAL.

[
{0

IBM NAS 9996 Real Time comp"tef Complex

4. , ‘
Date 3/20/72
Rev

Book : High Level Assembler Language User's Guide - Part II Po@® 4-2

When used to generate a structured source listing, no %) cards need to be
included in the source member, but an additional DD card must be added to
the step for the pre-assembly processor to place the structured source listing:

//STRUCTUR DD UNIT=DISK, SPACE=(TRK, (X, Y))
Wheré'X is typically 5 - the largest single source member that is being used.

If no STRUCTUR DD card is included in the jobstep, no structured source
listing will show up on ASMPRINT., Note that when the STRUCTUR DD card
is used, ./ GASM must be used in place of . / ASSM,

The post-assembly processor is used to indent assembled code and eliminate
non-referenced labels from assembly listings and cross reference only if
SMXRPASM is specified in the PARM field of the EXEC card. REHDRTPM
will link to SMXRPASM just after linking to the assembler and prior to a BALR
to the collection tape writer. SMXRPASM will be passed the DDNAME of the
assembler - written print data set and the DDNAME that the assembler would
have used if RTPM was not in post-assembly user exit mode. After execution
of SMXRPASM, assembly print will be located on the data set that would have
been used if no post-assembly exit has occurred; thus normal RTPM processing
can.resume after the exit. '

SMXRPASM will always produce a structured listing unless a $$$$$$$# is
found in the cross-reference. The structured listing will be indented three
spaces for each new logical section of code and restored three spaces for each
logical section of code that is terminated. In addition a level number will be
output to indicate the level of indention on all statements. Wrap-around will
occur after the level of indention exceeds three levels.

To initiate the non-referenced labels deletion function of SMXRPASM a
$ EQU * card must be included in the source listing at the location the deletion
is desired to start. A $$ EQU * would stop the deletion function, a $$$ EQU *
would start it again, and a $$$$ EQU * would stop it. At this point it could not
be started again. SMXRPASM reads through the assembly listing until finding
the cross-reference. If a $ EQU * card has been included in the source listing
it will be the first label in the cross-reference. If this $ card is found SMXRPASM
builds a table of all cross-reference labels that are referenced or whose
definition statement number is outside the $ cards limit. It also builds a table

IBM ... Real Time Computer Complex
4,
Date 3/20/72

Rev
Book: High Level Assembler Language User's Guide - Part II Page 4-3

of the definition statement numbers of all cross~-reference labels that are not
referenced and whose definition number is in the $ cards limit. Once these
tables are built SMXRPASM goes back to the beginning of the assembly listing
and deletes all statements whose numbers are in the table built above. In
addition if the statement following the deleted statement has a blank or an
asterisk in card column one it will also be deleted. In the cross-reference

it deletes all labels whose name does not appear in the other table built above.

4.2 INVOKING THE HLAL MACROS

To invoke the HLAL common MA CROs, the following SYSLIB concatenation
is suggested:

//SYSLIB DD DSN=&TMPSRC, DISP=(SHR, PASS), VOL=REF=%, SYSTEMPS

// DD DSN=SYSl.MACHAL, DISP=(SHR, PASS), UNIT=DISK, X
!l VOL=SER=PRODSK :

!/ DD DSN=(User MACRO Library)

/1 DD DSN=SYSl.MACLIB, DISP=SHR

The HLAL MACROs reside on PRODSK (SYSl. MACHAL) and the
pre- and post-assembly processors are in SYSl RTPMLIB.

IBM HLAL Coding Reference Data
{ REF. SKYLAB USERS'‘GUJIDE)

STRUCTURED CODE M FOS:

o o] s et

HLSE' {r2) .
ENDIF
(BCT, 'Ri}) .
BXH L - ioat
. {sxc.?;’"m"‘”'['(””’);ggi
WHILE ARD

| jtyoe {label 1\ foperation:
I e ity Rigutin §

bieg

STRTSRCH {"J:;:E}‘ {zm'zz./wuz;.z op

EXITIF {IF operanc}
ORELSE

ENDLOOF
ERDSRCH

'g“i.f‘g,,“‘ {85681
AND) .

20 segmer: {,;;‘ B
4

- BONSEG segment{,reg]
ENDSEG segment

{symbol] CASE cese reg,

AT=address 1ist
BT=add:ess list
()

LAT=address f,

{ IMDX=numbe =]

TREG=register]
(R)

Z.B’J%aédress

iype operaiion/mask copditicn/label 2/(R2)

3 13 ONE, DVERFLOW, F1i°S
RMINVE,NPLUT
. 299 E,IQ,NE label 2{ix

By amr i elT,iRRY,literal

LATA PASE DYF

tit number
[symbcl ! BIT {(xisv. of bit numbers) } {,0R]
. binary B8-bit configuration

(symbol] BYTE [one byte hex value}

WNTIL A,00
x

£,000

UNTIL A, 0R
WNTIL 8,00
%o
ENDCO

WL A AND
WHILE B,DC
x,

ENCOO

INTIL A, 0R
WHILE 8,00
X

BO0O

WHILE A, O
- WelE 3,00

 ENDDO

WHILE A
WHILE * B,

WHILE
WNTIL

WHILE
UNTIL

YES WHEN TE RECISTIR
N0 WHEN E REGISTEP -

STRTSRON muz,A,n1

"
EXITIF & ™eN i
x

[EISFh 3
z

INORRDN

STKISROM UNTIL,A, D0

»
EXITIS 8 DEN
»

MISCELLANEOUS MACROS
csectname HEADC {INTP=YES][.KET=YLS]
[INTP] ENTEF (csectname,entryl{ ,entry3,entryb,...]J)

!, (1abell,Tabeld,labeld, ludell, .)]}

FORMAT OF MATH MATRO
[symbol} MATH

(Axs=s§,',§§{1 {,TYPeE,D,H, or null]

MATH REFERENCE SHEET

OP-CODE

OPERATION

QP-CODE

OPERATION

+. PLUS
-, MINUS
/. OVER
*. TIMES

2, SAVED-IN
s 3

STORE-LN
og

ADD
SUBTRACT
LIVIDE
MULTIPLY
STORE
STORE

OR

TO,COMFAR

.+ LOAD

1
C,¥ITH]
E
|
i
RELOAD t

xox
AND

COMPARE
COMPARE

Exclusive OR
AND

i
I

QPERA JTON

Place !abel 58 next Instructioe.

Place label oo sext wnstruction
Brasch on Conlition 1§
Brasch or Conaition 2
Brasch on Condition 4
Branch oa Conditiom
Branch oa Concition 1
B ragch on Cordition 13
Braach on Conditiza 11
Brasch oa Co- hitioe 7

VALLD OPERAND

Any vahid STMBOL

Anv vaiiy LITERAL

Aoy valid REC

Al va: PAFFIXEL-ZXP

Ay valid TERM

I & -— 2. 8. ande
fvolv B characters at avim o

TERM ;A= 2.8.and@
famy assembiy fang age b ded

U aolow i L i diaicly by 4 cymBCi OF umbe:
"o rellew o1 by ot least une Slark
sigh ilke 1 asne wbly Taag e ge exeept

Quuts doublea;

SI'ECIAL TERM FOR SYSTEM
- PARAMETERS

VALID PREFIXES FOR EXP'S

ABS HALF SYSPARM (MXXXXXNN}Y
NEG ousL MXXXXX = STSPARM NAME
TEST SQAR . NN = null or O —— 99
coMP

—_—

*wath expression'!,REG=register list][,TRACE=ON/OFF)

II 34rd - 9pIny s, x9s() a8enfue uojquassy 19A9r-["q3;H joog

y-p eBog

Ay

aioQ

2L/02/¢

14

xajdwo) Janduiod aunj jeay

e "a!

IBM... | Real Time Computer Complex

5.

Date '3/20/72
Rev :

Page 5-1 (of 10)

Book : High Level Assembler Language User's Guide - Part II

5. EXAMPLE

' The following pages present an example of the use of HLAL. First, is the
CSECT's structured source listing and second is the same CSECT's structured
assembly listing. As discussed previously, both or either the assembled or
~ source structuring may be obtained using the pre- and post-assembly processors

-with RTPM,

In looking at the source statements, note the effective use of comments
with HLAL MA CRO statements, producing a much more readable listing.

IBM o " Real Time Computer

Complex

5.
Date 3/20/72
_ Rev
Book: High Level Assembler Language User's Guide - Part II Page 5-2
1 23 ELSF sevecevcses THIS 1S A NEW POSITION CONTROL WORD 06300000
1 2 3 & i $0,0(8IN) LOAD THE NPDOW INYO GPRO 06400000
T2 3% RI$0%8 - 065 -
1 2 3 4 SRNL $0,5 06600000
e SERAY SERAN: REa «tr $T23 “CPRE - NOW—CONTATNG - - —
1 2 3 4 N $0,=X*Q0000LFF* GPRO NOW CONTAINS THE NEw Y POSITIN 06800000
T 3% S SOTREYT2Y Y12 8¢
1 2 3 & <RI $043) (v-121/8 07000000
- I 73 7% M SO TRAL Z CtMARC FRCCLP RMARG Y 23100
1 2 3 4 " LR $3,80 07200000
e o g ey ; ¥ - 033000660
1 2 3 4 IF Fy($0) ,GTy (SYMAX) ,THEN THIS IS NEW YMAX 07400000 -
TS v STYMAXVS T 93500
1 2 3 4 NP TE 07600000
BERFERas Gl amay. mans PCTR—$ 170 X1 -3-3700000-
. 12 3 4 S $0,+$0 . 07800000
- T~ 23 % 19} SO A g A RS 939600006
1 2 3 4 L4 $3,81 ((Y=12)78)#(LINE WIDTH)+LMARGe(X~1)/7 08000000
1 773 A 1+ Ty UP3T e ’ .
1?2 3 4 5 LA $15,16 FRRCR = BAD X.Y COURDINAYE 08200000
TN T3 WS - RICOURNE * REFIRY -0 ‘
123 4 ENDIE 08400000
..... k l 2,_.._3 - W —— ———— ———— e s - %sﬂ
01 2 3 4% PR3 NOW EQUALS THE STARTIANG DISPLACEMENT INTQ THE BUFFER OF THE 08600000
| S N NEXTCHARACTER 06700660
1 2 3 &% . 08800000
) gy PR = e] N R
1?2 3 LA $Y'\'v‘¢($lN) eevee POCINT SIN TO NFXT WORDneweo- - 09000000
1. 7" COTENDYY T : 09196606~
1) FLSE 09200000
T 7% 09360
1 * . 09400000
1 7% PTT VIrTrRTIOGTCHERE G95-0600¢€ -~
1 A 09600000
1 r% e e e - Bt b T T C ISP, - & 7 V. V; ¥, ¥': WA —— .
1 FNNE - : 09800G0OC .
S .) 3 TS v ra ————————— e 3G GHQ G e
1 2 1A SIN,yalsTM) : wkw TEMD 10000000
1 TN Rt 18] 09096— —— e e
F\"?m" 10200000
SE RIS TS T T T T e N BRRORS N ORMAFFING PR A - — —$0380000——— e e
R BGLOWNHE ®-—tmkmbkeokak RETURN -8Rkl f e R R R & 10600000
SWEUFETH KUvavvv
- MEYRERTD nr X900t *skuknhex MCVG TO FRCDIC TR TABLE #sssdkdssssssa®x 10600000 .
N VTG SE TE GO e e ——EOFe0800—— - ——
ne Y 'QDO: . 10800000
!)‘f’ [anncs o 2h e slenelietenliobid W TWFLA CotT T T T e e ““i‘o‘w =T G TEm——— e e
ne X110 : 11000000
™ TS TUVH XY 20 7 TN TRUMNT POR-t St 11100606
ala X' 2N2F2F 11200000
AT - T A RCPEFAREt - e e} 3300000 — . ——
ne roare) 11400000
e A gt — 1 }5680008— — ——
CEAREERERRREE CRARSEROAE RS IRBRBARE SRR SRR A A DBR S S4 204 SAKDNAS R4 R S2000%E 11600000
hJRAAS N 1180600
* : , . 11800000
& EERL (1 THEE A TAPY Y= - - 11900086
x . 0AMA = 0 ‘ ’ 12000000
#* o rrpTw bl g 7 Bt ——— ————
& THETA (FAPS) = T 12200000 .
T oV LR BANAD | L 12300660
e A R L = D E 12400000
@ I3 rﬁ-»vy AL weERTy = e g e S e et e D e e o - b o i s —%99-99-— ar i e e e
w o ONINTER = - 12600000
LI 1o R =t e +77100060
& LAMANA (LOWTG) = L 12800000
LML (LW) = X 12900000
* nEonrne = & 13000C00)
R LR TR RRT AR TR RN RN S b d 0 b S-S gt oot it e—-13106000— —— ——— e e
gpace 3 . , 13200000
THERWIAT T mege— o - = 13360605
SPATT 3 E 13400000
TG 1+3-5600-00

ENT ~ 13600000

~

IBM NAS 9-99%

qukt High Level Assembler Language User's

Real Time Computer Complex

5. _
Date 3/20/72
Rev

Guide - Part II Poge 5-3

¥ ey b i ddd il d bl d oy e L d L g g g YU TUOUOT
- * 00200000
. cACRL- ENRM, IN THE DUTPUT AUFFER AREA « 00400000
- - - - _ —— ——
& INPUTS w—ee (PRY PPINTS TN DCUBLF WORD = ADDR INPUT DATA * 00600000
.) * 00800000
—w= == = OO
- 01000000
ST RN R Tt Ty e 91100060
RMARG €01 10 = NCo COLUMKS TO RIGHT 0OF DISPLAY 01200000
TR o 10 N5 aF—BS-PHAY—
NenL ey 72 = NOs COLUMAS/LINE IN DISPLAY 01400000
“RUIN Oty .74 T NET—TINES
1Mncw EqQu x*'80¢* eee INSERT MEMQOR NEVIDE 01600000
TR RO X o :
=M CW EQu X*08* ees ERASE MEMORY SUBSECT ION 01800000
TS TINTTTTTTTEN K] R -
LCrw ENU X*Q2¢ eea START LARGE CHARACTERS 02000000
vTw T T o STRRT—yECrORS 924066006
cCOMMANN FQL) Xt 30 COMMAND WCRE 02200000
TTTNIINT Fty L R0 —— 0 .
STRTRLNK EQU) X'one START RLYINK 02400000
" Xrger ST oP—RtNK \g's
$In EQu $10 02600000
SYWEX =0 2 X 6 o A ¢ I ok N 3
SPArCE 3 02800000
- e TTNSOTSTY 0 06
L $ll,4l8) sae AL CLTPUT BYFFER) 03000000

g

SYRNT X,y X

83106600

; SPAFE 3 g ’ 03200000 ’
= v 0 g

-
1 " A $IN LIS IN) 03400000
e pmntm . ~03560600
SPACE 3 03600000
’ v L] ’
1 e Re3($IN),NE ,0+VCW,THEN THIS IS NOT A START VECTOR MODE 03800000.
4 0} YFO TTHEN 03900000
1 2 3 vyl CHARWID T+ 3,1 04000000
B S S FUSE
1 2 3 1F Be3(SINIHyEQ,0+LCC U, THEN STZE = LARGE NOW 04200000
T T —CHARNIDTFI T2 ST v 2 e
1 2.3 END IF ’ 04400000
e FUTE : 84560066
1 2 1A $IN,4(STN) RUMP $IN PAST CONTROL WNRD 24600000
S g 5 N 5 — 04306606 —
12 Ie Ty3(8INYX*10"°,2FQC,CR 04800000
17 T N N TNTE 1%, > B
1 2 3 4 t $44CISIN) 05000000
12 T 27 3% . § $E7Y R AX OS5 CHARTANORD 85100000
1 1 2?2 3 4 INTIL (BCT,86),017 05200000
10 7 | S sl s T SROT— 345 - ©
9 1 2 3 &4 5 SRL $5+26 B 05400000
8 1T~ 2773~ &% % *_‘T*WMWM%MW%~
y .V 2 3 .64 -5 6 LA $691 : 05600000
6 T 7 3 %5 5 TSE "
5 L2 3 &4 5 6 1c $5,MC VGEBTP ($5) 05800000
PR - S - W STC $570 83581y — ’
3 1 2 3 4 5 & A $3,CHAPHINT 06000000
I 2 3 % % ENDT® y 96100606——
1 2 3 & ENDNN 06200000

FABE- 2

SOURCE STATEMENT

ASM H V02 05.89 C2/31/72

0C DBIECT CADE ADDRL ADOR2 ~STMT .

1 S9SRSEREELASRAT I LLRBNS: . . . * e esse CO100000
2= - %
3 ¢ FUNCTION -~ T0O FORMAT THE INPUT MCVG MESSAGE D:TA INTO THE CORRECT * (€63€0600
- EBCOIC—FORMY—IN—FHE—OUTFPYTRUFFER—AREA *
5% * 00500000
7 % ADDR OUTPUT BUFFER * 00700000
-2 &
9 ® ---¢ 089500000
) S
11 SCCWDHCF HEADC RET=YES CL1CC000
V00TV0 - T2+ SCONONCF CSECT = _—
000000 47F0 F007T 00coC 13+ B 12(0,415) o ROUT INE ENTRY PO INT REQUIRED IN REGLS CT-HEACC
PO000% OTE2CINESTHLLAT BRCS - 1o Dt~ —AL T LTS EONBHERS - —_—
+ : PROVIDES ROUTINE NAME IN FORMATED DUMF
—TUTTOrSUFT T30 viert
. DOCO10 4SEQ FOed 0CChA 16+ -BAL- - 144106(0915) C1-MEACC
TGS T0000200000000000 T j 1EF-4 e —— -
000017 F2C306T6M4CHM 376 : + FRLS SAVE WITH CSECT NAME
- ONOtET RN TOYE . T T toy s ; - -
206060 SB8EC no~n) accee 19+ v 14,12013) » RESTORES ALL REGISTERS Ol -HEACC
A .. ~] k) - L XA
000063 OTFE 21+ BR 14 o RETURN TO CALLER WITH B8 R{CSECT NAME) Ol -HEACC
TN SOy =07t ~ ° I ¢ 1vi o> S o J 7 5 g A —Ch-WEALL——
20006 SOF0."008 occeces 23+ ST 14,8(0,13) o STORES NEW SAVE ARFA ADDRESS IN OLD Gl-HEATC
S TO00TZ 18UT C T C e St : - — —
00000014 25+ USING SCOWDHCF+20,12 ¥CL-HEACC
+ ' . T ES AP LS HESREGIIAS—THEBASEREGISTER
!}s GDES THRU REGISTER EQUATE NNLY ONCE
POl0003T T - - T g . 2 1M 0 14 +¢ —_ - - . £
00000001 29+81 . EQU. .1 had 02-2CUAT
TTTBOT00007 EA R T4 T2 hind -
0016003 o 3183 EQUu 3 s C2-ECuAT
e Jalal ko v 1ok 3 - -] I2F$E 13-4+ aam— *e - —_——— £ —
90000095 33485 EQU 5 b C2-ECLAY
TOUTCOIUTATT e 15 2 - 4~ v S . R S R~ -— - —— GR=ECLAY- -
ety LT : 35+87 EQU 7 #*REGISTER NUYMBFRS THE CROSS-REFERENCE c2-ggleT
— oo 2 —ER—E AT —
00000029 : 37489 gOU 9 **FACH REGISTER WAS USED C2-ECUAT
o ooTegany - T SEFSLO Q10 Nad — — - —- - GR=ELLAT
00000018 39+$11 EQU 11 . 2-cqLat
T TTQoooueYT T T T *0¥$12 to—12 hod - —— —GR-ELYLT -
£u00I3N “1+813 EQU 13 o C2-ECL2T
000000 AT D A2 T So-
00000095 43¢315 EQU 15 e 02-ECtaTY
=Yooy . T WP PRC £ou—0 —— B LAY —
00000002 - 45+4FPR2 EQU 2 G-Equey
S QOODU00%GT T T TT T T e P PR P OU 4 - - GR=EQUAT .
00000096 4T+FPR6 €QU 6 C2-ECUAT

I 11ed - opInD 8,105 sdenfue I0[quossy {aAaq’t‘{Sx_: |

yoog

2L/02/¢€

T NEI

xojduiog soynduiod i) |e3Yy

SCOWDHCF

=<<=STITWUW.*

LAC CRIFCT CONE.

" ADDR1 ADDRZ STMT SOURCE STATEMENT - ASM H ¥ 02 05.CS 02/21/72
S1+e,80 * . ® 01 -HEALC
L7 SR AL aadg o 44 ddd (g :
53e%,88 CONTROL SECT1ON as, s €1 -HEACC
_——— L ha Rl SCONOHCF had A
55¢+%, .""“"“‘”“'“"'”mt”, 01 -HEADC
- T S6ve,; ¥ ot
2000 0N%A 58 RMARG EQU 10 = NO, COLUMNS TO RIGHT OF DISPLAY Cx20C0CO
——pooogore —— —— 30 NE-
00000048 60 NCCL £Qu 12 = NO, COLUMNS/LINE IN DISPLAY C140C0C0
21014101070k 1 2 ST NLIN £y 2 NO+—HINES— -
00000080 62 IMDCY EQU X'80* ' ees INSERT MEMOR DEVIDE €1 60€000
e EONCH -2oY XG0+ vvv—ENBOFMESSAGE GII66066
M00Nees 64 EMSCHW EQU xso8¢ evs ERASE MEMORY SUBSECTION OIOOCOCO
T OUo000nsE T T T 3 SC W £0Y LA v SFAPF —
00000002 66 LCCW " EQU X'02° see START LARGE CHARACTERS 200c000
“OU0000Tt I RS-
000000130 68 COMMAND EQU X'30¢ COMMAND WORD c220€0C0
[o]eialoiozsn gog TT-NEINEC SoU——%* 10
00000001 7C STRYBLAK EQU X' Q0" START BL INK €240C000
000000)" Lo 72 $IN EQU $10 C2600000
oogogony - 0 T ——— - — ——“———-73—sii:r———4anr——1z———————~—————————f1T1~e4s0T—+u;e—eu#sfaues—L&ss—&4++——-—eazeeoso————-
o000 7% SBAT U000 00000 — 75— —t—
00017r S8R1 0004 00C04 76 L $11,4(81) eese Al OUTPUY BUFFER) @3 cocace
PLL LRl oy o S T & S MR A _— —_
: T T P WHHE AT S O NET O COMMAND 1 IR ——F- IND-—FHR ST EMB-—WORD - ———(3306060———
. 90007 4T%0 "072 occes 1 80+ [} ¥w210003 01-HILE
JONNRY - - - T FTFNTT 0003 — NSOt ——— e — - — -
ATNNCD 41AA DOD 00004 1 82 LA $IN,4(SIN) 03400000
o -3 eNOO T
ol LET Y 84+%210003 DS cu OoL-EMDCC
20NMAR 83T AQ00" T —00000 — — — 8% ——————Ct+ Ot SN rOHEOMMANE ——— - - — = —BL=EMEC———
2007=* 4770 N06” 0oce2 86+ : - 8C 7,%110003 01 -ENDCC
88 WHILE (T ,3(SIN), X0 ¢EMSCN4EOMCHZERO1¢ DO LOOP THROYGH uA-rA C370COCO
TO0D TS ZTRY TS ———— - —0Oter—t 8 “2£8605 ———
000002 1 90‘“110005 98 OH ' 0l=wHILE

e AN NEy O+ FHEN—THIS £ 5-NOT— A—STAR T VEG TOR- MODE-— 03800000

T et

000092 9501 A003 00093 | 2 92+ cLt 31 SYNhO#VCﬂ 01-1IF
—YOU0TE HTRU TIES —0CTtor 4 v -3 8vift0006 D e A

. : . 2 94 1 By3{S$IN)oEQ, 0+SCCW, THEN SIZE = SMALL NOW €390000(

000092 950% X003 ———0000% - —- G e e e Ol=f4

00009 4770 N0%& 000AA 3 9%+ AC 7, 1F20007 or-I¢

II 3ied - 2pInD 8,I9s() aden3uer] I9[QUUAsSSYy [2A97] quH

:)oog

= NEI

A0y
einQ
g

G-g eBog

zL/0z/¢e

xeyduiog seyndwog oui) jeey

151

T =SS MNP s==s==9f. Y 3F SCANDHE P SEONOHEF S COMBHER . PAGE A
LOC NRYEST COTE ACDR1-ANOP2 3 STMT SOURCE “STAT EMENT . A'SM M\ 02 05009 02721772
- 0000A2 9201 n14R 001RF 3 97 eVl CHARNIDT +3,1 04000000
TR T T T . 298~ +tS€
000046 4TFO NOA2 0COR6 .3 994+ 8 © 1F20008 01-ELSE
NUDUAY 3 OO 1™ 20U0Y i BS—O0+ Ol=ELSE
— ' ' 3 101 IF By3(SIN),EQeO¢LCCW, THEN SIZE = LARGE NOW 04200000
—OUONAY SS02 A003 00002 4102+ IS Ny O+ 66 el — e Ql=lf
0000AF 4770 NOA? - 0CCR6 : 4 103+ 8C Ty 1730009 ol-If
| TOONUR? 9G2S T T OOIRF T €00 1O —My-¢ -t ARGE———— - - - — - -
o 3 105 . ENDIF . 04400000
TOUTNG T—1 08+ 1530009 —oH 03=ENDIF--
: 2 107 ENDIF ’ 04500000
TUNTARE e R e e 21 08v 1 #20008 B5—oH- -
00N0Re 41A% 0004) 00CC4 2 109 LA SIN&{SIN) BUMP $TN PAST COANTPOL WORD C4600000
T T TT e T e ’ SRS & & ¢ An— ——— GAT00000— —-
3CO0Re «7FC N13° 0rl4g 3 1ll+ 8 w220012 OL-WHILE
TOTO0RT Trresut200i2 0% Ot Of =Wl E
3 113 R Te3(SINI,X¢10',2 ERO,OR 04800000
00CDRF "GYIIN A3 7 T T 3—1iée T SR Fai s m e gian - - == —
0000C2 4789 mOR* agccs 3. 115+ o 8,0R20013 01-IF
. - T —— et F57 3t — e 04800000
2090076 Q12F 003 00003 : 4 117+ TM 3(SIN)yX*2F* o1-IF
BOUTT T TRy T OF oCIC2 18 3¢ A 20013 GialE
20000 " o 4 1194NR20013 25 OH 0l1-IF
J090T T T594X)00 . UCTTOC00 ——126 t Sty 5N —— B —— LY,]
Inrn2 4160 nnle 0CCCs SO0 4 121 LA $h, 5 = A MAX OF 5 CHAR. /WORD 05100
’ . TTCOOTTT TR > o — —— e e - - — —05200--
000005 -UNTIL &5 123+UN30015 05 OM o1
TR RLETY T [SAPAM P T Suivivin o T2y STROL—$4v o 35
0000 . 8850 Q01" - 'NCClA 4COC00 5 125 SRL $5,26 05
ot T s TS0t 12— 55y F O e X000 10y FHEN-—STOP PROCESSING- THAS -WERD— ———— 05—
{7NONZ 49570 O LR7T aC170 Cl-~1f - 6 127+ CH $5,=X'0010"* :
NO0D%F2 4770 O - OCCFE-OT=TF 12— R ——— 130016 — — - — = -—— ———iee
0000%A 4160 0001 - 0CCCl £56C€020¢C 6 - 129 LA $691 :
- TCOCTT —13¢C —E-8€ o5
3000FA 470 NOFs S0CC™A . Cl-SLSE . 6 131+] 1F30017
1000F . 1 A ————B5 O~ S - —— s Tt
J000F: 4355 T1lke 0C178 €580000C 6 133 1C $5,MCVGEBTR($5)
ATROT2 4753 OO0 RO o og of o1 ¢ > — 13— - ———— _— —_——— -
o0007n 5439 "1t QClRC ~ 06000000 6 135 A $3, CHARW IDT
T jgeitatiny S 6 ENDH- 26
RPrpTt -ENDIF S 137+1F30017 DS OM oL
T L : cCo0— — ¢ 13— ENDDE - c— e -- 06200
IN0NTA 4660 TOC? . 0GCne °hN 4 139+ sCT $6,UN30015 01-EN
. o i - - —i%0— —EtSE FHES—FS5—A—NEW ROSTITION-CONFREL WORO— 06300000
0000F= 47F0 "13A 0Cl4a SF 4 lél+ L] 1F20020 . 01-EL
{8103 xopd <€ o2 F20013 H5—+ QL=EL
009192 S80A 000V ACCCO Coo 4 143 L $0,0(8IN} LOAD THE NPOW INTO GPRO 06400
00D1DA BBOO 000%° ~ — ° 0CTCE COO— % 1¥r— r6- e - e 06500
007107 B8CCO 000D 20¢C9 Co0 4 145 SROL $0,9 \ - 06600
OrrTCR RAIN 7 o lrr T C0— 4 — Y ————— - - INS THE AES X SCSITION-06700—
000112 5400 "I~ 0C170 c00 4 147 N $0,=X*000001FF? GPRO NOW CONTAINS THF AEW Y FOSITIN 06800
TOUOTTR SROT I T Tt CCO 4148 4 - - -06900—
0001 t4 8800 0003 RIS I o of o] 4 149 SRL $043 (v-12)/8 07000
00NITS 4T.ON TInF T JOY2 000 4150 - = . - - 07300
000127 1R30 coo 4 ~LR $3, 80

doog

.
.

II 311ed - opInD s,Ias() oSendue] I9[qUasSsy [0AdT YSIH

9-G eBog

Aoy
eidQ

2L/02/¢

S

e "al

xayduwio) seyndwio) awiy jeaa

===SCTWDHCF ==

FAGE 3

LPC CBIFCT COPE ADDRY ADDR2

STMT SOURCE STATEMENT

ASM H ¥ 02 05.CS 02/21/72

Oz -HEACC

II 31ed - 9pIND §,32s() a8enfueT 1aiquiessy (0491 YSIH

S1e%, 8% L o ®
b Y4 dadt) 0 i T
53+8 488 CONTROL SECTION s, & Cr -HEACC
— TEEOox —SCONDHEF 4y
5548 , SRS S IRESHIBL SR LR EGEE 4, & 01 -HEACC
- == - SEve; *eee Lad re v
2000 00%4 58 RMARG Eou 10 = NO, COLUMNS TD R IGHT OF DISPLAY cx20c0Co
B 2 1414171 ¢ 10 5 5 i 30 N
00000048 60 NCCL €ou T2 = NO, COLUMNS/LINE IN DISPLAY C140C0CO

MONYONIE T T T T T -

00000080 - 62 IMDCYW EQU 'X*80° eee INSERY MEMOR DEVIDE C160C000
ANNONCeS8 64 EMSCH EQU Xe08¢* ees ERASE MEMORY SUBSECTION 0180C0CO

T Ouoo00NE T T §3—SCiw 4147 L3 A 2 sre—SFARF —

00000092 66 LCCH EQU X*02° ese START LARGE CHARACTERS @00C000
gogoogNt T Tt T T RS-

00000030 68 COMMAND EQU X*'30¢ COMMAND WORD c220¢0C0
eltidlvision gy sTNEINE 00 L 3]

0000000 7C STRYBLAK EQU X'0D' START BL INK €240C000

.000000)" 72 $IN EQU $10 C2600000
00007g0N 7 - — = ‘ —G216C060———
oU00 7% SBAT U000 T TTO00000 7 5 ———t—

000972 S8R1 N004 00C04 74 L s11,4(81) eee Al QUTPUY BUFFER) @ cccoco
nonnTt ®2r T T T 1T 1.3 M S NAY: —_— -
: - - — g E A0t SN NE T O C COMMAND Sy DR —F INB—F RS F—EMB-—WORD -

Q000" 4TFQ TCT2 occes 1 80+ [} w210003 Ol=-WwHILE
plsiaial. b4 - o Y TTFNTT000S NS —OH m————e— - - -
adnnaer 418a 0004 . 00004 1 82 LA $IN,4($TN) 03400000

o 83 SNDOT -
N0NORE 8444210003 0s cH oL-EMOCC
M AL 9837 2000~ T 00000 - - - — - — G mEADEE———
200N~ ATTO 06~ 0ocaz2 86+ - - 8C T,%110003 0L -ENDCC
88 WHILE (T,3(SINI X0 ¢EMSCW4FOMCW,ZERO1¢D0 LOOP THROYGH DATYA €3 7CCOCO

7000 = *_z‘r’v ey —— 00t

T

oas
O -2 ——WLTUUUY”

00009? 1 90+Wl10005 7S OH . Ol-wHILE
- e e e 9t 1 S S AN NEy O CHy FHEN—TFHES 5 NOT- A STARTVEC TOR - MEGE - --03800000——

000082 9501 A003 00093 2 92+ CLt 3(S$IN)yO+VCH : Q1-IF

QU00UYE &TRU 146 oCTSr re v 8¢ v 1F10006 01L&
. 2 9% 1 By3(SIN)oEQyD¢SCCW, THEN SIZE = SMALL NOW €390000(
000094 950% 1003 —g000%" T G e s e e s e Gl=14
00009F 4770 n09%6 000”A 3. 9%+ AC 7, 1F20007 or-It¢

: Joog
946-6 SYN ‘ "al S

§-6

2L/02/ ¢

oBoyg
Aoy
ojoQg
‘q
xajdwos) s3)ndwio) auwi) |edy

B L W1~--d===€fftrm"—~*———3f'---36ﬁiﬁﬂff~—-———-§€ﬁwﬁHeF——————-5€BH€HGF—-—~—-——~‘ e BAGE A
LOC NRJECT-CNF - " A[DR1 ADOP2 3 STPT', SOURCE STAT EMENT : - e . CASM MO N 02 05009 02721472
" 0000A2 9201 149 001RF 3 97 . MVYI - CHARWIDT+3,1 : . 04000000
T : 2——98 FL3E . —— 04300000
000046 &7FO LDA2 0COR6 .3 99+ 8 © 1F20008 . 01-ELSE
UOTAY 3T 00vi#20007 0S50 Ol=ELSE—
i ' 3 101 IF By3(SIN),EQ.O+LCCW, THEN SIZE = LARGE NOW . : 04200000
TOUOUAY SS02 RON3 T T 0000 102 ¢ €t -3 HN IO -66d- I e
‘0000AL 4770 NOA? 0CCRS . 4 103+ 8C 7, IF30009 ol-1F
| TTODDURZ 92U TTIAST OOTRF— — TO0 YO —— YT EHARWI BT +Iy 2 — S 12 E-NOW—= LARGE—— - —— -~ —————04-300--.
:)) 3 105 ENDIF : . . 04400000
JUU0URE ; T I06F 130007 — 88—+ O =ENOLF-
) 2 107 ' ENDIF) 04500000
TNTAORE T T ittt 2108120008 BS—0+— ——O1=ENDEF—— -
0000R6 418*% 0004 v 20ccs 2 109 tA SINy&{SIN) BUMP SN PAST CONTPOL WORD €4600000
T s e e e W E— BTO SN N Ey O+ EOMAND - B0 ———— GATO0000— —-
3CO0Re 47FC N13° 0 l4E 3 1lll+ 8 W220012 O1l=-WHILE
TOUO0RT TTizewi2o0t2 o% Ot - Ol =WElLE
. : 3 113 R Te3(S$INI,X210%,2 ER0,OR " 04800000
GODDRT "G1Ir AUTI T TUTINIF T - 3 1ise T AR 2o A AT mer 2ian - _—— — e e e =l
0000C2 4780 ~op* : . JOC"‘: 3115+ BC 8,0R20013 01-1F
) I T —3— 116 3 TN RS R F e N ER Oy THEN—FHI S 154 DA TA-WORD - —— —— — 04800000
2093076 Q127 003 00003 4 117+ ™™ 3(S$IN)eX*2F"* o1-1F
OO T Z TR~ JF" 13108 3 o7+ 118 3¢ A5-+=200-13 - R
22007 . ' 4 11947R20013 DS OH ol1-IF"
20007 T8R4 A QNN R 0 £0 9008 ¢k 01 Lo i 4120 t Sty 5N - ——— e - —— 08000
nrn 4160 NNCE Qeces 900 4 121 LA $h, 5 = A MAX OF 5 CHAR, IVO‘?"‘ 05100
. . e 12— GNFH s ——— - — e — e - - — —05200--
0n00Ne 7 =UNTIL * 123 +UN3001L5S 0S OH o1
TR RCED TTTTE - T3ttt - B . g TSRO STt 95—
Q00"+ 8850 QO1* 9CCl4a 4C0CO0) 5 12= SRt $5, 26 0S
: . oo T Tt o S0ty 5126 — 5 5 F T e 008y FHEN-—STOP PROCESSING- THES -WERD—~ —— 05—
(7AGNT 495N DR aCivo C1-IF 6 127+ CH $5,=X°0010" '
n1000%2 4770 "Qr? - : VCCFEOT=TF 128y — ————PRE—— ¥ It —— —m—— - - —- - ~— - —
0000%A 4160 0001 : 0CCCl C56C€000C 6 129 LA $6s 1 ' i -
- TCOTCT $—13C ~Er-4-£ - 95
B3000FA 470 TOF4 | QCCTA Cl=-ctSE 6 131+ A IF30017
N000F~ - - Pr=TtSE & 132+ 1F390te—— H5—0H e —_ e e e
2000F: 4355 T1lke oc178 €580000C 6 133 Ic $S.MCVGEBTR($5) . .
ATRCEZ 4753 <000 T T QTTO0T 0% ST0000 BB A3 STy By S ——— — - : —_—— e -
000" S439 N1t s . CCLlRC - (6000000 6 135 A $3, CHARW IDT
o 100CTT 1% END 06
nercTt . -ENCIF 5 137+¢1F30017 DS OM - ol
B - 00 138 ENDDO- - - - — e . - 06200-
2004 4660 "OC? VCGlne nnN 4 139+ 3CT $6,UN30015 O01-EN
COONFF 4T7FQ " 134 0clea SF 4 l4le+ 3 1£20020) 01-EL
OOUT07 <E 2w F 2003 B5—OH O4=EL-
009192 SR0A 09209 ACCCO Coo 4 143 L $0,0($IN) L2AD THE NPOW INTO GPRO 06400
00010% BBOO 0005 ~ —" ~ 0OCCC6& TOO LR % SRt $0v 6 e e - = = e — 06500
00010A . 8CCC 0007 20C¢C9 COo0 4 145 SRDL %0,9 - 06600
LATTGT RELN CT17 s *f*rr-cco-~~———~t—*1ﬁt——-*~————iHﬂ:-—srrza——«—~———-—-————saa&—aoa—Ggﬂx&th-Jus AEs % 2ESTTION-06700—
000112 5400 N1ar 0cy1~0 coo 4 167 N $0, =X*000001FF? GPRO NOW CONTAINS ms NEW Y FOSITIN 06800
TOIOTY TS SROT I T T OICE O T e 30y A2 ~¥—12 - —06500—
50011 BR800 0003 RECENC R B of of o] 4 149 SRL $043 (Y-IZ)IG 07000
00NIIT &0 TIPS T T FOLN2 0004159 —MH———POy=ALZHLMARGHNCOLRMARGY - - ———e 07300

000127 1830)) €00 4 151 Le $3, 80 . ~ 07200

joog

- NEI

II 3aed - opIny) s,I19s(] oFendue T J9[qUIISSY [3A8'T t{S?H

S

xojdwio) sayndwo) awi| jedy

ADY

9-G eBog
ejoQq

20/02/¢

===SCTWOHCF=

mﬂ.r

LNC ‘ORJFCT CONE ADNRL ADDR2 STMT SOURCE STATEMENT ASM H ¥ 02 05,CG Q2/21/72
S1e0,08 bbb " 0z -HEACC
742) Cod e
534‘ *8 CONTROL SECT!ON s, & Cl -HEACC
- ﬂvv"‘ —SCONONC A A
55+%, .Ot."‘.‘“’”.‘*”00'.‘”““, 01 -HEACC
- - 1 b d] - O T e CL~HEACC
20000074 58 RMARG EQU 10 = NO, COLUMNS TO RIGHT OF DISPLAY Cr20€0CO
R ¢ 1410101413 &l 59 MARG——EO0U— 30 NB— €0t
00000048 60 NCCL EQu 72 = NQ, CGLUHNSIL INE IN DISPLAY C140CQC0
nenoon3I® T T e ST NLTR +oY—62 A — G2 506060—
00000080 ‘ 62 1MDCYW EQU X*80°* ese INSERY MEMOR DEVIDE Cr60C000
BN ¢ 1414141010230 0 61-766066
MCN0NCe8 64 EMSCW EQU X408°* ese ERASE MEMORY SUBSECTION OlOOCOCO
.- Uﬁcm — — e —— " -
00000002 . 66 LCCW: EQU x*02¢ ese START LARGE CHARACTERS 200C¢0C0
‘goooooYt T Tt T T i
00000030 68 COFNANO EOU X*'3p¢ COMMAND WORD €220C0C0
UUDUULTIU TTNEINC 0 LR 34
0o0o00000" 7C STRTBLAK EQU X100 START Bt INK €240C000
| TOONYF T NH — . —G25086060———
.000000)" 72 $IN EOU s$10 €2600000
Redofrindeloior —— T WWW—W—Q—%@%——
OU0N 7% SBAT OUO0 T TTU0000 IS ——t—
000772 §8R1 0004 00CC4 76 L $1l,4(81) ese Al OUTPUY BUFFER) @ cococo
anuoTT 1™2Y TTTLOTTT T T IR SV MAX S Y-MAY —_— - —-031-06080—-—
- - e e HE AT O SO NET O T COMMAND 4y IR —F-INB-—F RS T—CMB-—WORD -
Q0007 4TR0 TC72 occes 1 80+] w210003 O1=-wHILE
Jjonney - - - T ETFNRIT0003— DS O ——— e — - -
adnae? 4184 0o00n 00004 1 82 LA $IN,4($IN) . 03400000
- L- -2 CVUUL
BRI LET 84+%210003 oS c4 OL-EArDCC
J09M R4 9830 000" T z - ————— _
2000 =* 4770 "0567 0o0cse2 86+ - BC 7,%110003 0L -ENOCC
88 WHILE (T,3(SIN), X0 ¢EMSCN+EOMCWZERD)¢DO LOOP THROUGH DAYA C37CC0CO
n000YT TR0 TISs T 0ot t L as B #218-065 R
000097) 1 S0+4W110005 2s OH . Ol-wHILE
Rl - —— 9t - 8 A—STARTVECTOR-MEGE-—-03800000—
000092 9501 A003 00093 2 92+ cLt 3(SIN),0+VCH 01-1IF
JOOUYs &TRU T I%6 OTTSE 2 127 $v1F1000¢6 1k
) o . : 2 9% 1F By3(SIN)oEQyO+SCCW, THEN SIZE = SMALL NOW €390000¢
‘000092 950% 1003 0000Y" T W T T e T T
00009¢ 4770 NO9%¢ 000AA 3 96+ AC 7, 1F20007 o1—-1I¢

joog

ooy

.U]

G-g

II 11ed - 9pInD 8,195 a8enduerT toquassy (2497 Y31H

YY)

zL/0z/¢

g

xajdwo) sonduios owiy [eay

.

= INEI

N R =SSN P s S === St T RIHN TF SCIWOHEF ‘-scmﬁ—"———sm"%“‘———————-v—w-—- —— e RAGE A
Loc. nngc ST CNmE . ALDRL ANOP2 . '3 STMT 'SOURCE ‘STATEMENT . = . o T.UASMH v 02 0509 02721772
_onooaz 9201 niaR 001RF 3 97 MVT CHARWIDT 43,1 o 04000000
e 2—9¢ FLSE .. ———04200000-—
‘000046 4TFO NHOL2 JCOR6 3 99+ 8 " 1F20008 01-ELSE
TOUUAY 3100 ¥ 1# 20007 DO e O)=ELSE
3 101 IF By3(SIN),EQ.O¢LCCW, THEN SIZE = LARGE NOW : 04200000
—OUUTAY$S02 003 T 0000 - 102 CE—3H$ Ny 0+ t664 e — —_
‘0000AF 4770 NDOA2 OCCRS 4 103+ 8c 7, IF30009 ol-IFf
| THONORZTICZ IS T T OOIRF— TOO 104 -+ EHARMADT+Iy 22— S 1 2E-NOW—= LARGE—— - —~ -~ ———————04300--.
’ o o 3 105 . ENDIF) 04400000
OUU0™E - T 105+ 193000 ———85—oH 03=ENOLE -
' i 2 107 ENOIF | 04500000
TINTARE - - e o T2 T O R 20008 B5—oH- ——Gi=ENQIE—— -
Q0000Re 4184 000’9 . 90CC4 2 109 LA $IN&ISINY BUMP STIN PAST CONTPOL WORD C4600000
cTos T T T T e ' T 1O WL E Ao SN NEy O COMMAND 80— — ——— GAT00000— —-
ACOORE "W7FC D13 0 laE 3 1lli+ 8 W220012 O1=-WHILE
TUOOU0RT 3rzewr2o0t? 22 Ot —Oi=MEILE
. 3 113 1k Te3(S$INI,X*10%,7 EROLOR T 04800000
OOMMRT "gIIN AT~ T3 - 3 —1i%e T N et - —_ - — e e O
0000C2 4780 ~OR* : . 300"‘3 3. 115+ BC 8,0R20013 01-1F
. =T e e e - 116 e F 38 TN A2 E Ay N ER Oy THEN-FHE S 15 A DATA-NORD— —
9093076 Ql2F 003 00003) . 4 117+ TH 3(SIN).X'2F' o1-1F
TOUOT Y TRy T TITC2 10 e 2+H520013— Qi=1F.
3000° " ’ 4 11947R20013 S OH OL-IF
J0J0T T T8R4 8 N0 ST TOCCTOTC00T T 20— -+ S L amea 2o s - e e = 05000
Iaala P AN S ¥- AN O ' gcces 000 4 121 LA $6, S = A MAX ©F S5 CHARe /WORD 05100
; : : D> S -5 - SN ST SO S—— i - .- 05200
onoane S ~UNTTL @5 123+UN300L5 DS oM o1
DROMARAT - 0T AR ERSISLS - et 3ottt S——t2w SROL— 9476 - 35—
00002 8050 QO1* - "CCV 4C0C00 5 12= SRL $5, 26 05
’ B e A s - seotry 9125 —H S S EOT =X 8OOy FHEN-—STOP PROCESSING- 1S -WERG—- ———— 05—
f7AGNT 49870 [RT aCc170 Cl-IF 6 127+ CH $5,=X°'0010" ‘
n000%7 4770 NOTr JECFE- 0T =TF 12ty R —— It — — - o e R
0000%A 4160 0001 0CCCl (©56C000C : 6 - 129 La $6¢ 1 T
T TCOCCY R -1 32y -85
3000FA 4T7€0 NOF4 OCCT™A . Cl=ELSE . 6 131+ 2] !F30017
N000F~ . . - =ttt 132+ R3O 6—— B5— O+ T e —_— e e e
2000%: 4355 Tlad 0C173 (€580000C 6 133 (o $5,MCVGEBTR($5}
ATRCOEZ 4753 <000 T pTTCOTTU8SCU000 - -4 S 5y Sy S ——— — - : —— e = - -
00007 5430 "1t . 0CLlRC 06 000000 6 135 A $3, CHARW IDT
- TCOCCC 19 ENO1 - 06
nrecTt - -ENCIF 5 137+1F30017 DS OM ol
- o co00— — 13— ENDDO - - f—e . 06200
IN0NTA 4660 TOr? 0COns nhN 4 139+ sCT $6 ,UN30015 01-EN
. Bty - i 10— Bl T T HS 15— ANEW ROSITION-GONFROL WORD—— 06300000
000NF® &47FQ ~13A 0cl4a SE 4 141+ 3 t1F20020 01-EL
UTOTO7 o 2t F 20613 —H5—o+ QL=EL
009192. 5804 09009 ACCCO COo 4 143 L $0,0(SINY LOAD THE NPDW INTO GPRO 06400
00010D% B80T 000% - 0CCCE COO—— — & {5 Rt—S0vC - - e e 06500
00010A 3_"00 Q00? 2a¢C9 CO0 4 145 SROL 80,9 - 06600
COCTCT WRIC TTIT T LT CCO &4ty ——S5Rt—$ty23——— -———-—so«-{—O&GH—MWS IHE NEn X RESTTION-06700—
000112 =400 "Ir~ . OCl"Q Cc00 4 147 N $0,=X 00000 1FF? GPRO NOW CONTAINS THE AER Y FOSITIN 06800
TTIO0TTE SROT T OrtE CCo0 4148 : 4 - -~ < —06500—
500111 8800 0003 J..cw cco 4 149 SRL $0,3 (vy-12)/8 07000
0071I1IT 40N TINT T 0172000 %150 —= - =4 = - e 07400--
000127 1830 ‘ [ofe]0] 4

151 Le $3,80 ' 07200

joog

e "al

II 3aed - epmn s',.t‘asn oJen8uer] I9JqWosSsy [2A97] qﬁin:

b

xaiduwo,lawmoo auj jeay

Ay

9-G eBpg
.

2L/02/¢

T=STTCAWITHCF

SCWOHRC S

—#ﬂnmmﬂﬂﬁﬁﬁﬁ%mww_,__ e

G PAGE———

] RQCGHT HC o P t—-8—-% RETYRN E F BN R R B R PN P Y BN B P

Lic NRJECT CONE ATNRL ANDR2 /72 4 STeY SOURCE STATEMENT ASH + V.02 C5o09 oz/21
000124 4133 001° 0CClE CO0 4 152 La SB.LHARG($3) 07300
T % 19— - FS-NEW¥MAK — — - —— - -
000128 1902 -IF 5 154+ CR $0, SYMAX o1
-+ - lU';I'ZW(l 4{-—
00012F 1820 5000C0 5 156 LR SYMAX, $0 o7
- 000 157 ENOTF o
0060139 nIF 4 158¢1F30021 DS OH O1-EN
“UU0I30 UsT0 000 4199 BEHR— Sy O 14 — ——01700-
000132 1800 coo 4 160 . SR $0, $0 07800
TOUT3% S000U N TRE oo 000 L2 -2 o -0 y=F7s {-%—1 -4+ 07900-
0001138 1431 (o0} 4 162 AR $34 81 ((7-12)18)‘(L1NE WIDTH)+ LMARGH (X-1) /7 09000
e -— e 48— FT T G r e AN N MAR G HNC O P MARG H y THEN— ————- 08100
000134 5930 N1r8 0CLCC =IF 5 164+ c $3, 'M(NLlN—l)*fLHAﬁGONCﬂLOR“ARG” o1
00013 B TOO IS - = - 137 130023 - - — 0
0C"142 «1IF0 201G 0CC1C 2c¢0¢cCC 5 166 LA $is. 16 FRROR = BAD X,Y CNORDINATE 08
“U0UT%S &7F0 T O OCTST 300000 2 2 N =08
‘ 000 4 168 ENOTF 08400
oontan - — - - 41O 002 B ———— — e e e e e - —OL=EN-
170 * 00500000
172 & NEXT CHARACTER c87¢COCO
L LI ' £8666600
3 176 ENDIF 08900000
009%138 - - e $ —— e —_— Ceee O1=ENDIE-
"AQ14A 612 OO0 ’J" *"6 . 3 176 La SIN,4(SIN) 2200sPCINY SIN YO NEXT WORDescse 09000000
-) - 2t TNOLT - T e -
000147 2 178+wW220012 s OH Cl-ENDDG
YIS 3TOTT Ty 2— 1ot —C 04N T O+ COMMAND— Cl-ENDBO
300183 4770 " QA ’)CC“F 2 180+ 8¢C- Ts¥W120012 OI’ENDOQ
: : ’ I S 1:2 3 SLSF - — 4—-06360000— - -
000154 4TFQ Lok ac154 2 182+ 8 1710627 O1-ELSE
000151 - - S e e e - Q) ELSE -
184 * €93CC000
- e £94LL066
186 ® PUT VECTCR LNGIC HERE C95CC0COo
- T —- - —- - - — - -— 69666006 — - -
188 » €97CCOCC
- - 189 - ENDTF —— - — - - 85860000
00015¢ 1 190+¢IF10027 nS OH Cl=-ENDIF
- 191 ——£$566000————
ANLISL &4TFD NG [eX RN Y 2 192+ a w220029 O1-WHILE
300157 : - - T =21t 20029 — 55— 0H- —— - -~ - Ol=NHILE. -
000155 41AA 0004 0CCo% 2 194 [SINy4(SIN) “es TEMP 10000000
: me — - —+-—195— —————ENBBG- ———— . - - - --1C1C0000 -
000162 1 1964%220029 DS OH 01-ENDDO
JOUTE2 OUSIT A 000 00000 197 €t 5Ny O-+-CAMMAND- G1-~EADBG
0C 166 &4TTO "1a° No1SF 1 198+ AC 7,W120029 Ql-ENDDO
: - et - 19— — — e - e — 30200060 - - —_—
000154 : : 200¢w210005 NS OW OL-E NDEC
"DOOTAr A XOOF sooy ROy T 3N RO ENS CHEOMEN— —_—— - Ch~3tpEC -
000146 4780 ~07° 00cs2 202+ 8c 8.+W110005 C1-=ANDCC
OO T77 IRFE 203 ST S — e
000174 4750 T04% 3005 2C4 104CCCCO

II 3aed - opind 5,198 28enfuer] zoquessy 19497 YS1H

1 joog

eBog

L=g

Ay

9jog

7L/02/¢

'S

Xaydusog saynduiog su jeay

~————— S==STOWDACF

LNC N3y=ryY CODE APDR] ADNRZ SVFT

SOURCE STATEMENT

ASM H V 02 05,09 02/21/72

00N178 0OC 2086 MCVGEBTR OC X'00* s3ssssdss MCYG TD EBCDIC TR TABLE ssesssrstsssssss 1060C000
V00T TS TIF2C3C4TSFESTTPS 20— —0E— €4+-1234567690¢ 2 18760000
000185 0DOF 2C8 oC X*QpoE* 16800000
QOCTBT TR ras 43 €0 -HME-Gk 10646000
000188 10 210 oc . X*10¢ . 11 00C0C0
‘0001AS 2N2F2F 212 oc Xt 2D2E2F* 112CC000
O ¥ = KL% o €t +HHatt -113 56000
0001R5 =304 214 Dc ce3ne 1140C000
DOOTR 7 SCS™: 2Ty ot Ceet - . 11556666
. 216 EFEEREXEEERRARERLERRREE S4B ORAEE S L S EILSFLESEFREEEAE L2 XE LB SR ES RS20 892 1] 50C0CO
— - —_— 2HT—+—NCTES - 11766060
) 218 = 118¢CGCC
ST e o - - —— 21 AP ECA L ONER AP ———————— N - ——
220 GAMA = G 12€0C000
22T CToLeN = 26666
. 222 THEYA (CAPS)- = T 122c¢cC000
T — 223 Viad tCOWERY = 12366060 — ——
2246 NELTA (CAPS) = D 1240C0CC
- 7 - 223 STOPRA—HEGUERY =5 12566066
226 PCINTER s - 126CC0GC
227 ANGLE =t 1235060
228 LAMBDA [LOWER) =t 128200C0
— e 229 231 HOWERY =X —12566060 - - —
23¢C DEGREE = ¥ 13cccoco

- ~guOT3T guoguy T T T

II 33ed - ap1ny) s,198) aenfueT Jo[quassy (24T yS1H i:)'OOg

000187 00000000 233 CHARWICTY CC FiQr 1330CQCC
01 . 235 LTORG 135¢¢0CC
0001CH 00000 1T T T T s T e S e e
000174 00000007 237 =F*12' .
00ICS DNODTTNOY ——2¥—— — ——— —F —— - - —
00017~ A200:° 8" 239 SACINLIN-1) *{LMARG+NCOL +RMARG))
OO oY Y 2%°C =X+ 0010+
0001770079 241 = AL2 (LMARG#NCDL +RMARG)
r4.r4 END ; T T + -

- NEI

S

¥odwo) soynduio) wi) [eoy

Aoy

8-G eBog
9oioQ

L/oe/¢€

. : Aman o s .
CROSSREFERENCE

PASE — 32

SYMRNL LEN VAL UT DEFN REFERENCES ASM H V 02 05,89 02/21/72
FHARWINT 00004 0001RC. 0233 00$7 0104 013S
” A - 3~ — 098 008 CIT9 0197
EMSCW 00001 000000C8 0064 02C1
FPRO 000C1 00000000 0C4%
— “OU001 0UT00002 00%Y -
cpp4 00001 00000004 CO046
—<PRE VUL TOVOVOOE 00T ——— i —
TF10006 00002 O0UO154 C183 00S3
s OT90 01?2
[F20007 00002 0000AA C100 0056
TTIF2OYTET 00T C © C108— —00SY _ =
[F20013 00002 0001C2 0l42 oOlles
"TTFP0020 00007 b - —-- —
130009 0Q0C02 0C€086 0106 olc3
154
130017 00002 0000FA 0137 o131
T TF3I0ONZI 00OTZ OTOTYO T JISs 0199 - ——
130023 - 00002 000l4a 0169 0165
T IRRTW . " QU00T U0000080 0USY - e —
LCew 00001 700000C2 0066 OlC2 .
- A*L g3
SrVRESTE 00001 000178 C206 0133
TONET ouU0! INNCOUES 0080 T0TI 24t - _ —
Nt IN Q0r.cy 70037 CO61 023¢ ’
T NT goort TICCOl0 TO008S . T T T - = .
ne2001 0000> 0200CF Cl19 ol1s
£ 3 LT Qs &9 *T4.29
LAY sl Lale s T+ LD 10 0000 % coi8 0167 0204
|erw 00021 TTO00U0E - CC5% 0SS —_— - = e
SCrWNErE ATAFY TAgTC0C0 0312 0025
-SYNony MK oPOYT ODJ0000T T TOTT - -— - ——
STeraiww QO0NN1 00000000 0070
TOIgoTS 000 T OTnUTNE Tz O3S
vrw 00071 J00V0CCL CJ67 0062 -
4110002 QOINT7 T ONOOEZ T COBT ——O00¢E — —_—— - —— - -— - —————
41101005 00002 000052 0090 0202
41207717 . OCTTTZ QCOUWE - VT2 T OTeU _ —_——— -
4120029 000N2 20015 7193 olse
y TOSE 00?0
210085 0 2 o6 164 0200 008s
W22001> 00002 ~O0UT%e €178 OTtY —— — —
4220079 00002 000162 Q196 0192
B s ooUoT o —_— —_————e
(13 00001 Q0000001 - CU29 0075 0076 0146 0159 0162
L2134 0000 0000000 00380072
$i1 00001 0000000 Ic39 0076 C134
T %12 VO00T 000000 COS0™ — ———————
s13 00001 00030000 0041
‘814 00071 0U00C00e— TO82?~ — — - - -
$1< . 00C01 0000000F 0043 0l16¢ 0203 0203
7 UOUOT 00000002 0030 00Ty -
$3 00001 00000003 0731 0134 C135 01%1 0152 0152 0lé2 0164
$a oYL 0000 MMS? 012t - t12w - ——— — ————
$5 00001 00000005 0033 0125 0127 0133 0133 0134

II 11ed - apInn) 8,198 ofenlueT Jo[quossy (0487 YIIH 1)oog

6-5 eBog

AeY

ojoQ

2L/02/¢

g

xajduio) Jaynduto) aunj [eay

e "al

CROSS REPERENCE

FADE———8—

VAL UF NFFEN REFERENCFS

TASM H vV 02 05.09 (2/21/72

Symant LFN

$6 00001 00000006 0034 cil2F 0129 0139
VT TOeTOTTOeTNCToT L1225

$8 00001 00000008 0036

—39 0050027

- $IN poool 000000 0072 0075 0082 0082 0085 0092 0095 9i02 0109 0SS Ol14 0117 0120 Oi143 OlM Cl76
- et -—otre—0tev— 01901976261 . i

syMAX Q0791 00000002 0073 0077 0077 (154 0156 '

. v L8 1 acs g -

onc2 0001n2 0241 L()).50

—ETTTNT TR T e R e

_ 00994
—wFerzY. orw
eyl 31904
—ErrgooneTT Y
OM ~'>‘

0001CC 02?35 Olés

COCTIrE 23Ot

0001C8 0238 oiél

0081C0 - 0236 0147

JyieT

§,198() o8endue 1a[quossy [9497T YySH

yoog

II 3xed - 2pIn

oBoyg
Aoy

01-§

2L/02/¢€

eing

G
xojdwiog seynduiog awny ¥y

IBM '- Real Time Computer Complex
| Bibliography
Date 3/20/72

Rev
Book : High Level Assembler Language User's Guide Page 1',1

BIBLIOGRAPHY

Dijkstra, E, W., "A Constructive Approach to the Problem of Program
Correctness', BIT, 8, (1968) pp. 174-186.

Dijkstra, E., W., "GO TO Statement Considered Harmful", Letter to
Editor, Comm. ACM, 11, (March 1968) pp. 147-148. ’

Mills, H, D., Structured Programming (manuscript), FSD-IBM Gaithersburg,
Maryland, October, 1970.

“Mills, H, D., "Syntax - Directed Documentation for PL360", Comm. ACM,
13, (April 1970) pp. 216-222.

Skylab Simulation Programming Systems User's Guide, FSD-IBM Houston,
Texas, March, 1972.

IBM o | Real Time Computer Complex

Date 4/26/74
Book : High Level Assembler Language User's Guide - Part III Page

PART III STRUCTURING INTERPRETER FOR A MACRO
PROCESSING LANGUAGE EXTENSION (SIMPLE)

IBM ... Real Time Computer Complex

lo

Date 4/26/74
Rev

Book: High Level Assembler Language User's Guide - Part III Page 1 of 1

STRUCTURING INTERPRETER FOR A MACRO
PROCESSING LANGUAGE EXTENSION (SIMPLE)

1. PURPOSE AND SCOPE

It is the purpose of SIMPLE to reduce the CPU and elapsed time required to
expand the HLLAL macros, and to extend the capabilities of the present HLAL
macros.

. SIMPLE is a pre-assembly processor which expands the HLAL statements
before they are passed to the Assembler, thus eliminating many accesses of the
macro library by the Assembler.

- SIMPLE also creates a structured source listing simultaneously with the
expansion of the HLAL statements.

‘The table below is a list of macros supported by the basic SIMPLE pre-as
‘semble processor.

BGNCASE | ENDSRCH
BGNSEG ERRETURN
BGNWHILE ‘ ERREXIT
BSEG ERRMSG
CASE ESEG
DO EXITIF
ELSE IF
ENDALL INSERT
ENDCASE ORELSE
ENDDO STRTSRCH
ENDIF UNTIL
ENDLOOP WHILE

- ENDSEG

Approval

»APpl;;O\/ral P F W

S 4

IBM NAS 9-13881 RQﬂ Tim cm cm'ex
2.

Date 4/26/74
Rev

Book: High Level Assembler Language User's Guide - Part III Poage 1 of 2

2, BACKWARD COMPATIBILITY

All HLAL statements will expand via SIMPLE in exactly the same manner
as they would via the macro processor, with these exceptions.

a. The Combination Statement

UNTIL (A), AND

WHILE (B), DO
X.

ENDD

is expanded by the macro processor as,

X
Y(a | NOTE: This logic is the same as
N
. UNTIL (A), OR
B " WHILE (B), DO
N

But will be expanded by SIMPLE as,

b

O,

N

IBM .. . - " Real Time Computer Complex

2.,

. Date ,‘/2(;’74
- _ : : : } Rev '
Book: High Level Assembler Language User's Guide - Part III Page 2

" b. :The older 'T' type macro is not supported, but the newer, more
~commonly used 'T' type is supported.

i.e., OLD - IF T,MUD, EQ, '3', THEN
~ NEW - IF T,MUD, X'3', ZERO, THEN

c. - The default registefs used in 'IF' type statements are now $0-$15
and FPRO-FPR6 rather than 0-15 and 0, 2, 4, 6.

(e.g., L $0, X rather than L 0, X.)

This notation may be changed via the REG control card (Section 5.2),
- Equates for the $ and FPR must be furnjshed by the programmer.

(e.g., HEADC macro.)

d. : If the macros are used incorrectly, the code generated by the -
HLAL Interpreter Extension may not coincide with the expansion
of the HLLAL macros. The pre-processor will attempt to create
executable structured code by making logical assumptions such
as the generation of needed endings (ENDIF, ENDDO, ENDSRCH,
ENDLOOP) and the rejection of macros that are out of sequence.

IBM Na o 13501 Real Time Computer Complex
| 3.
Date 43¢ -
. Rev
Book: High Level Assembler Language User's Guide - Part III Page 1 of 7

3. ADDED CAPABILITIES

3.1 USE OF PARENTHESIS

a. Parenthesis may be used or omitted when coding the IF macro.

e.g., IF (F,A,GT,B),THEN. or
IF F,A,GT, B, THEN

b. Parenthesis méy be used to form any legal chain of Boolean
- operations using the IF, WHILE, UNTIL,STRTSRCH macros.

(e.g., the operation (AB) + ((C + D)E) could be coded,

IF (A, AND
IF B),OR -
IF ((C,OR
IF D),AND
IF E), THEN
X
ENDIF

c. Since parenthesis grouping is not supported via the current macro
processing, Boolean operations have always expanded in a

seguentla manner.

e.g., AB+ CD s expanded as A(B + CD)

- The logical expansion would be '(AB)'+ (CD). In order to maintain
- backward compatibility, SIMPLE will expand operations without

parenthesis in a sequential mode unless 10g1ca1 is spec1f1ed on an
HLALEVEL control card (Sechon 5.3).

IBM Real Time Computer Complex
| 3.

Date 4/26/74
: : Rev
Book: High Level Assembler Language User's Guide - Part III Page 2

3.2 CONDITION CODES AND MASKS

For those occasions when the standard set of HLAL condition code mne - »
monics (EQ, LE,,, etc.,) do not describe the condition to be tested, a complete _

set of condition code and mask mnemonica has been added. They are MO0O thru
M15 and CCO, CCl, CC2, CC3. o : —

e.g., The statement IF (%,,IS, MO4)_, THEN
Expands to BC 11, FALSELAB

S 3.3 ERROR PROCESSING STATEMENTS

One additional parameter has been added to the‘three’error processing |
macros ERRMSG, ERRENTER, and ERRETURN, This allows the programmer
SArs alows the programmer
o _create more than one entr int for error handlin The new parameter
must begin with the character $,and is of the form $X where X is the name of an

additional error entry point (maximum lentgh of X ?’7 characters).

The new macro formats and expansions are:

| ERRENTER $A, $X .
+ B : ERREX$X (if generated)
+ERXTS$A DS 0H |
ERRMSG $A,$B, $X
+ERXT$A BAL $B,ERREX$X
ERRETURN $X

+ERREX$X DS . OH

NOTE: All other rules préyiously established for these macros remain
' unchained. ’

IBM o - Real Time Computer Complex

Date 4/2t/714
L ; Rev
Book: High Level Assembler Language User's Guide - Part III Page 3

Example:

* Count a million one dollar bills from an input file.

WHILE
ERREXIT (F, (COUNT), LT, MILLION), DO
'GET A, DOLLAR -

ERREXIT IF, B, DENOMINATION, GT, ONEDOLLAR, TOOBIG
ERREXIT IF, TYPE, EQ,SILVERCERTIFICATE, RECALL
ERREXIT IF, PICTURE, NE, WASHINGTON, COUNTERFEIT

LA COUNT, 1(COUNT)
“BCTR DOLLARSLEFT, 0
ENDDO
RETURN

*

% ERROR PROCESSING

ERRENTER RECALL

CALL ~ RAREBILLCOLLECTOR
ERRENTER COUNTERFEIT

CALL TREASURYAGENT
ERRETURN

DISABLE INPUT

RETURN

I

ERRMSG OUTOFMONEY, $MSGEXIT

[DC . CL50'FILE HAS LESS THAN ONE MILLION DOLLARS'
| _ERRMSG TOOBIG, $MSGEXIT ‘
- DC CL50'WRONG SIZE BILLS IN FILE'
__»ERRETURN $MSGEXIT
. MVC MSGAREA(50), 0($0)
PUT OUT, MSGAREA

RETURN

» IBM *98%9 1386) . ' : R“l Tillle cnmmtef cwex
’ 3.

Date 4/26/74
8 ‘ Rev
Book : ‘Hi"/gh Level Assembler Language User's Guide - Part III Page 4

3.4 CASE/BGNCASE/ENDCASE
3,4.1 CASE

The CASE macro has the capability of having inline segments. This modifi-
cation is invoked by the keyword BEGIN which causes a return label to be gener-
rated. The BGNCASE and ENDCASE macros have been added to generate both
the inline segments and the return label.

3.4.2 BGNCASE and ENDCASE

These macros are required for the extended CASE capability. The syntax
for these macros is: ~

a. BGNCASE casename
which will generate -
+casename DS OH

ALL
casename g
“which will generate -

+genlabel DS OH - for the ALL option

b. - ENDCASE 3

+ : B genlabel for the '"casename' option
Example: ~ CASE . $5, BEGIN, BT=(X, Y, Z)
+ LA 14, GENLABO1
+ B ‘ *+4($5)
+ B X
+ B Y
+ B Z
+ BGNSEG X
+X DS OH
- ENDSEG X

+ BR $14

‘ BGNCASE Y

+Y Ds OH

IBM ... - Real Time Computer

AJ

bate 4/26/74
' : ‘ ~ Rev
Book: High Level Assembler Language User's Guide - Part III Poge 5

ENDCASE Y

+ B GENLAGO01
BGNCASE y2

+Z DS OH
ENDCASE ALL

+GENLAB 1 DS 0H

3.5 INSERT, BSEG, And ESEG

These macros allow the user to segment his code, creating a page effect in
his structured source listing. The conditional assembly instructions, AGO and
ANOP, are employed to achieve this effect, The syntax for these macros is:

a. INSERT segname
which will generate -
+ ' AGO .segnamel
+. seghame?. ANOP

b. BSEG segname
which will generate -
+ AGO . segname3
+. segnamel ANOP

c. ESEG segname
which will generate -
+ AGO . segname2 .
+. segname3 ANOP '

Example: Listihg page 1 -

IF A, THEN
INSERT ‘CODE
+ ~ AGO . .CODE1

IBM | | Real Time Computer Compleéx
| | | 3, | .

Date 4/26/74
. " Rev
Book: High Level Assembler Language User's Guide - Part III Page 6

+. CODE2 ANOP

ENDIF
Exarnple: Listing page 2 -
BSEG CODE
+ AGO .CODE3 -

+..CODE! ANOP
ESEG CODE

+ AGO . CODE2
+. CODE3 ANOP

END

NOTE: The segmented code will be assembled inline but will appear
- separately in the structured source listing.

IBM .. Real Time Computer Complex

%4

Wt 5
: Rev
Book: High Level Assembler Language User's Guide - Part III Poge 7

3.6 ENDALL
M

The ENDALL statement generates, without printing on the structured listings,
closings (ENDIF's, ENDDO's, etc.) for previous IF's, WHILE's, etc.

The étatement format is:

" ENDALL X where X is the number of logic levels
to close. (X = blank, closes all levels.)

Example:

IF (A), THEN
WHILE (B), DO
UNTIL (C),DO
IF (D), THEN
X
ENDALL 3 (generates ENDIF, ENDDO, ENDDO)
WHILE (E), DO '
IF (F), THEN
: . X .
- ENDALL (generates ENDIF, EDDDO, ENDIF)

IBM | " Real Time Computer Complex

{

Date 1/26/ (4
Rev
Poge 1 of1

Book: High Level Assembler Language User's Guide - Part III

4. PROCESSING ASSEMBLER CONTROL INSTRUCTIONS

The ICTL statement is always honored if it is the first statement in the input
stream. At the user's option the SPACE, TITLE, and EJECT assembler instruc-
tions will also be honored. If they are honored, then spacing or page ejection
will occur in the structured data set, and the words SPACE or EJECT will not

appear. (See Section 5.1,)

IBM. . Real Time Computer Complex
. 5.

Dote 4/26/74
. . Rev K
Book: High Level Assembler Language User's Guide - Part III Page ! of 4

5. SIMPLE CONTROL STATEMENTS
' SIMPLE control statements may be placed anywhere in the input stream.

They are of the format ¥*) OPERATOR OPERAND and consist of several com-
mands.

5.1 PRINTER CONTROL FOR THE STRUCTURED DATA SET

*) SPACE {9-15—}

ON
* r—————
) EJECT {OFF}
* ON __
+) TITLE { OFF}

- If ON is selected, the SPACE, EJECT, or TITLE cards will be honored for
the structured listing; otherwise, these cards will be ignored.

: START
*) STRUCTUR{ STOP

When the structured listing becomes so deeply nested that one statement
will not fit on one print line (120 characters) the remainder or overflow will be
printed, right adjusted, or: the next line. If the overflow becomes too large, the
structured listing may become unreadable. STRUCTUR STOP causes the struc-
ture level to be frozen at its current level. The level continues to be maintained
1nternally and structuring will resume at the proper level when the STRUCTUR
START command is received.

5.2 REGISTER CONTROL

The user may define, for use by the SIMPLE macro processor, symbolic
names for any of his general purpose or floating point registers. A prefix sym-
bol(s) may be specified for any or all fixed-point or floating-point registers. It
will be the user's respon31b111ty to set up the equates needed for these symbolic
parameters.

Operator = REG

Operands = 0 - 15, FPRO* FPR6, FIX, FLOAT, :
where: 1. 0- 15 is one of the 16 general purpose registers

o 2. FPRO - FPR6 is one of the 4 floating-point registers

IBM Real Time Computer Complex

l,.'

Date 4/26/74
Rev

Book: . ; ~ Page 2

S 3. FIX spemﬁes a preflx for all 16 general purpose registers
o4, FLOAT specifies a preﬁx for all floating-point registers

Examples:

*) REG 1=ONE, 2=TWO, 3=THREE

%) REG FIX=GPR, FLOAT=FP

*) REG 0=RI1, 1=F1, FLOAT=POINT
Example | equates fixed-point registers 1,2, 3 to
ONE, TWO, THREE respectively.
Example 2 equates prefix GPR to all 16 fixed-point
registers as follows: GPRO, GPR1l, GPR2Z2,.....
GPR 15 and FP is prefixed to all floating-point registers
Example 3 is a combination of examples 1 and 2.

NOTE: The defaull es are $1,$2,$3...$15 and FPRO, FPR2, FPR4, FPR6.
5.3 UIF-TYPE'" MACRO PROCESSING

- The HLALEVEL macro control card allows the user to specify whether he
wants SIMPLE to perform logical or sequential processing on the "IF-TYPE"
macros (IF, EXITIF, WHILE, UNTIL, and STRTSRCH)

Ope rator = HLALEVEL

EQ }
Operand {LOG

where: SEQ = sequential processing
LOG = logical processing

"IF-TYPE'" statement AB + CD would be handled one of two
ways depending on whether the user specified LOG or SEQ.

if SEQ AB+CD=A(B+CD)’
~if LOG , : AB+CD=(AB) + (CD)

NOTE: Default is SEQ."

