
--- -- --------- - ---- - - ---

RC 7268 (#31339) 08/25/78
Computer Science 47 pages

Research Report

EXEC 2

A Comp.uter Language for Word Programming

W. E. Daniels
RoW. Ryniker II

Adapted from a document by: C. J. Stephenson

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

---- Research Division
----- Yorktown - San Jose - Zurich --_.­

/

EXEC 2

A Computer Language for Word' Programming

W. E. Daniels .
R. W. Ryniker II

. adapted from a document by
•

C. J~ Stephenson

',\This document deftnes the EXEC 2 language, which is designed for writing
I

command language programs.· The language is system-independent in nature, . , 1

Jand there are embodiments for VM/CMS, MVS/TSQ, experimental operating
systents and text editors.

This report supersedes RC6292, which defined the previous version of EXEC 2.

•
Q l

)

~;

rt.
\
J

IBM: Thomas J. Watson Research Center
Yorktown Heights, New YOfk 10598

~,

RC 7268(#31339) 8/25/78

)

Copies may be requested from:

IBM Thomas J. Watson Research Center

Post Office Box 218

Yorktown Heights, New York 10598

/

'\,
-1

I
I

Contents

-~

,p

!"'~

c/

Introduction

EXEC Statements

Predefined Variables

Examples of EXEC Files

Control Statements

Predenned Functions

User-defined Functions

Name Substitution

MisceDaneo\ls Notes

Error Codes, Messages and Abnormal Termination

BNF Description of the Gross EXEC 2 Syntax

HistorY and Acknowle<lgements

Appendix I .,.. CMS Implementation

Appendix II - TSO Implementation

Index

1

3

4

6

8

19

24

25

27

36

37
_ i

38
I

~ !
40

44 . I
I

46

)

j
I

. J
\

I
- I

iii

~ f

~__~~____~~______~~______________~1

.'

EXEG2

A Computer Language for Word Programming

EXEC 2 is intended for manipulating English-like words as they appear in
computer command languages. It is also capable of performing integer
arithmetic and simple string manipulation. The EXEC 2 Language is derived
in spirit from CMS EXEC; however, one of the objectives of EXEC 2 is that it
should be usable in almost any host system, for programming a variety of
command environments. EXEC 2 is hereinafter referred to simply as 'EXEC',

EXEC programs reside in EXEC files, and are executed by the EXEC
interpreter. The EXEC interpreter is invoked by issuing a command such as:

EXEC filename <argl <arg2 .,_»

where 'filename' is the name of the EXEC file to be executed, and 'argI', 'arg2',
... , are arguments which are passed to it. In some command environments (such
as EDITOR) the word 'EXEC' is omitted, arid in others (such as eMS console
command mode) it is optional,

EXEC files can have any filename. The command environments from which
they are invoked may, however, impose some restrictions on the names which
can be used in commands.

Each command environment from which EXEC files are to be invoked is
expected to claim a filetype (or some distinguished subset of filenames) which is
to be used for its EXEC files. In CMS, for example, the filetype EXEC is used
for files which are invoked from CMS command mode, and the filetype EDITOR
is used for edit macros.

EXEC files can have either 'F' or tV' format, and a line length which does
not exceed the implementation maximum for the host system.

Introduction to EXEC Files

EXEC files contain EXEC statements, An EXEC statement occupies one line,
and may be a comment or an executable statement. A comment is a line in which
the first non-blank character is an asterisk, and is ignored during execution,.
An executable statement consists of a sequence of words the first of which does
not begin with an asterisk. A word is a string of contiguous non-blank charac­
ters. Words are separated from each other by one or more blanks,

2 EXEC 2

An executable statement may be:

(a) 	 a null statement (which has no effect),

(b) 	 a command (which is issued to a command interpreter),

(c) 	 an assignment (which manipulates EXEC variables),

or (d) 	 a control statement (which manipulates EXEC variables,
controls execution or flow through the file, or performs
console input or output).

Assignments start with the name of an EXEC variable, and control statements
start with an EXEC control word. EXEC variables and control words begin with
an ampersand.. Variables are local to the current EXEC file. Most variables are
initially unset, and have an apparent null value. The variables &1, &2, ..., are
special, and are initialized to the arguments 'argl', 'arg2', ... which are passed to
the EXEC file.

. A label, appearing as the first word of a line, may be attached to an execut- .
able statement, but does not form part of the statement. A label is distin­
guished by its first character, which is a hyphen.

When an EXEC file is invoked, execution starts at line number 1, and
proceeds sequentially, except when otherwise directed by control statements.

Executable statements are interpreted, one at a time, according to. the
following general rules. (There are a few explicit exceptions, which are noted
elsewhere.)

(1) 	 The statement is scanned: This discards leading, trailing and other
surplus blanks, leaving a sequence of words separated from each other by
a single blank.

(2) 	 The. words forming the statement are searched for the names of any
EXEC variables, which are replaced by their values; except that if the
variable is the target of an assignment, its name is retained. (A precise
description is given later under Name substitution.) During this process,
the words may grow or shrink in length.

(3) 	 If as a result of (2) a word is reduced to the null string, it is discarded
from the statement, so that the next word is deemed immediately to
follow the previous one. With this exception, the words retain their
identity: if for example the value of a variable contains an' embedded
blank, the word containing it is still treated as one word, even though if
printed it might appear as two.

R
~.

'.

EXEC 2

(4) 	 The statement is analysed syntactically, and executed, according to the
rules which follow. Note that, except for identifying the' targets of
assignment, the syntax analysis is done after steps (1), (2) and (3) above.

,EXEC Statements

(a) Null statement.

- A null statement'is an executable statement in which the number of
words is zero.

(b) Commands.

An executable statement is deemed to be a command if it contains at
least one word, and its first word does not start with an ampersand~ It is
issued immediately to the host system (such as CMS), or to a subcom~
mand environment (e.g. an editor). When it is finished, control returns to
the EXEC file, and its return code can be obtained: from the predefined
EXEC variable &RC.

(e) Assignments.

An executable statement is an assignment if the first word starts with
an ampersand and the second word is an equal sign. The first word is
taken as the name of an EXEC variable, and assigned the value of the
expression which follows the equal sign. The expression may be any of
the following:

(i) 	 null

(ii) 	 a single word, e.g. ABC

(iii) 	 an arithmetic expression, consisting of a sequence of words which
represent positive or negative integers, sepanted by plus or
minus signs, e.g. 3 - 4 + -11 - 00

(iv) 	 a function invocation, e.g. &PIECE OF &1 2 1

(v) 	 an arithmetic expression (as in (iii» in which the last term is
replaced by a function invocation which yields a numeric value,
e.g. -1 	+ &LENGTH OF &1

A variable of the form &j, where j is an unsigned integer without lead­
ing zeros, cannot be set with an assignment statement if j exceeds the
number of EXEC arguments which are currently set.

---------------------------------------'-----------~ ~--;I

4 EXEC 2

The value of the variable on the left-hand side of the assignment state­
ment is not modified until the expression on the right-hand side has been
evaluated. If an assignment statement is syntactically invalid, or if
evaluation of the expression results in numeric overflow, execution stops
abnormally with an error message, without further evaluation.

(d) Control statements.

An executable statement is a control statement if the first word is an
EXEC control word and the second word either is absent or is not an
equal sign. Examples of control words are &GOTO, &EXIT, &IF,
&PRINT.

Predefined Variables

The following EXEC variables are initialized or maintained automatically.

&0 Initialized to the first word of the command string which
is passed to the EXEC interpreter; normally has the
_same value as &FILENAME, but may be different if the
EXEC file was invoked via a synonym.

&1, &2, ... 	 These are the EXEC arguments. They are initialized to
the arguments 'argl', 'arg2', ... , which are passed to the
EXEC file; they are reset by &ARGS or &READ ARGS;
and they are temporarily reset by invocation of user­
defined subroutines and functions. EXEC arguments
beyond the last which is set have an apparent null value,
and cannot be set explicitly. (See &N, below.)

&ARGSTRING 	 Initialized to the command string which is passed to the
EXEC file, treated as a single literal string starting with
the character following the blank which terminates &0,
and including any leading, embedded or trailing blanks.
The initial value includes the EXEC arguments &1, &2,
... ,. but &ARGSTRING is not affected by changes to
them.

&BLANK 	 A word which has the value of a single blank.

&BLANKS 	 A word which has the value of 255 blanks.

&COMLINE· 	 Initialized to zero, and maintained as the number of the
line from which the last command (or subcommand) was
issued from the EXEC file.·

&DATE

&DEPTIl

." . &FILEMODE

&FILENAME

&FILETYPE

&FROM

&LINE; &LINENUM

&N, &INDEX

&RC, &RETCODE

&TIME

EXEC 2 5

The true date on the primary meridian (GMT) in the
form YY /MM/DD, evaluated when the statement con­
taining it is executed. (See &TIME.)

Maintained as th~ number of user-defined function and
subroutine invocations to which return has not yet been
made.

Initialized to the file mode (third qualifier) of the EXEC
file.

Initialized to the name (first qualifier) of the EXEC file;
normally has the same value as &0.

Initialized to the type (second qualifier) of the EXEC file
(e.g. 'EXEC').

Initialized to zero, and maintained as the number of the
line i~ the EXEC file from which the last &GOTO state­
ment was executed.

Maintained as the number of the current line in the
EXEC file._

'­

Maintained as the number of EXEC arguments which
are set. Initially this is the· number of arguments which
are passed to the EXEC file. It is reset as a side effeet of
&ARGS and &READ ARGS, and it is temporarily reset
by invocation of user-defined subroutines and functions.
(See &1, &2, ..., above.)

Initialized to zero, and maintained as the return code
.' 	from the last command (or subcommand) issued from the

EXEC file.

The true time-of-day on the primary meridian (GMT), in
the ~form HH;MM:SS; evaluated when the statement
containing it is executed. (See &DATE.)

,~
f

I

6 EXEC 2

. Examples of EXEC Files

(1) 	 The following is a sample EXEC file called GRAB EXEC, which copies a
file from any eMS disk to the user's A-disk.

&TRACE OFF

SIF &N = 0 &GOTO -TELL

&IF &N < 2 &GOTO -BAD

&IF &N > 3 &GOTO -BAD

&IF &N = 2 &ARGS &1 &2
 *
COPYFILE &1 &2 &3 &1 &2 A

&EXIT &RC

-BAD &PRINT INVALID GRAB COMMAND

&EXIT 101

-TELL &PRINT'COMMAND IS: GRAB FN FT <MODE>

&PRINT COPIES THE GIVEN FILE TO THE A-DISK,

&PRINT AND PASSES BACK THE RETURN CODE FROM

&PRINT 'COPYFILE'.

&EXIT 100

(2) 	 The following example is called SEND EXEC, and sends a specified eMS
file toa specified user. The eomments are included for tutorial purposes.

&TRACE 	 OPF
* COMMAND IS: SEND USER FILENAME FILETYPE <MODE>
* IF 	THERE ARE NO ARGUMENTS GIVEN, TELL HIM HOW ...

&IF &N 	 = 0 &GOTO -TELL

* CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
* OF 	 '*' IF IT IS NOT GIVEN ...

&IF &N < 3 &GOTO -BAD

&IP &N > 4 &GOTO -BAD

&IF &N 3 &ARGS &1 &2 &3 *

* SPOOL PUNCH TO RECIPIENT'S CARD-READER, OR
* COMPLAIN IF RECIPIENT IS NOT KNOWN TO SYSTEM ...

CP SPOOL PUNCH TO &1 CLASS A

&IF &RC ,= 0 &GOTO -BADUSER

. "' ,.

7 EXEC 2

* PUNCH THE FILE, OR COMPLAIN IF FAILURE ...

PUNCH &2 &3 &4
&IF &RC -,= 0 &GOTO -ERROR

* TELL RECIPIENT WHAT HAS BEEN DONE; THEN UNSPOOL
* THE PUNCH.. AND RETURN WITH SUCCESS ...

CP MSG &1 I HAVE PUNCHED YOU MY FILE &2 &3 &4
CP SPOOL PUNCH TO * CLASS A
&EXI'!'

* TELL HIM INVALID SEND COMMAND, AND RETURN
* WITH ERROR ...

-BAD &PRINT INVALID SEND COMMAND
&EXIT 101

* TELL HIM GIVEN USERID IS NOT VALID, AND
* RETURN WrTM ERROR...

-BADUSER &PRINT &1 IS NOT A VALID USERID
&EXIT 102

* TELL HIM ERROR WHEN PUNCHING FILEi THEN
* UNSPOOL PUNCH AND RETURN WITH ERROR ...

-ERROR &PRINT ERROR &RC FROM 'PUNCH' (WHILE IN SEND)
CP SPOOL PUNCH TO * CLASS A
&EXIT 103

* TELL HIM HOW ...

-TELL &PRINT COMMAND IS.: SEND USER FN FT <PM>
&EXIT 100

EXEC 28

Control Statements

Control statements begin with a control word, which is usually followed by one
or more arguments. The control words, and the rules for their use, are as
follows. The symbols '<' and '>' are used to indicate optional arguments.

&ARGS <word! <word2 ... »

Assign 'wordl', 'word2', ... , to the arguments &1, &2, ... , and discard any
other EXEC arguments which were previously set. The number of
arguments now set is the number of words given in the &ARGS state­
ment, which may be less or greater than the number of arguments
previously set.

(See &READ ARGS; also see the predefined variable &N.)

&BEGPRINT <n <k»
&BEGTYPE label *

1
line1
line2

Print at the console 'linel', 'line2', ..., truncated if necessary at column k,
without removing surplus blanks or replacing any EXEC variables.
Printing of the lines is terminated (a) by the end of file, (b) by the
exhaustion of the count n (if given), or (c) by a line which contains the
given label and nothing else. In this last case, the label must be wholly
contained within the columns which would otherwise be printed (and it
must be the only word within these columns): this line is not itself
printed, and execution continues on the next line. The first character of
a label must be a hyphen.

If the truncation column is not given, or is given as '*', the lines are not
truncated.

This and '&BEGSTACK' are the only statements which can occupy more
than one line, and are the only statements which permit the lines of an
EXEC file to be handled literally, i.e. without removing surplus blanks or
replacing EXEC variables.

(See &PRINT.)

~~~~----~~--~~~~~~~~----~~------~~----~----~~~~~ 



9 EXEC 2 

&BEGSTACK <n <k <FIFO »> 
label • LIFO 
1 

line! 
line2 

Stack in the console input buffer 'liner, 'line2', ..., truncated if necessary 
at column k, without removing surplus blanks or replacing any EXEC 
variables. Stacking is terminated (a) by the end of file, (b) by the ex­
haustionof the count n (if given), or (c) by a line which contains the 
given label and nothing else. In this last case, the label must be wholly 
contained within the columns which would otherwise be stacked (and it 
must be the only word within these columns): this line is not itself 
stacked, and execution continues on the next line. The first character of 
a label must be a hyphen. 

If the truncation column is not given, or is given as '.', the lines are not 
truncated. The lines ar~ by default stacked FIFO (first in, first out), but 
this can be changed by giving 'LIFO' (last· in, first out) as the third 
argument. 

This and '&BEGPRINT' are the only statements which can occupy more 
than one line, and are the only statements which permit the lines of an 
EXEC file to be handled literally, i.e. without removing surplus blanks or 
replacing EXEC variables. 

(See&STACK.) 

&BUFFER n <comment> 
• 

Discard the lookaside buffer (if any) together with its contents, and 
create a new buffer with the capacity to hold up to n lines, or (if '.' is 
specified) to hold the entire EXEC file. If n is given as zero, the buffer 
and its contents are simply discarded. 

The lookaside buffer is.a contrivance which enables the EXEC interpret­
er to maintain a private copy of some of the more recently executed lines 
from the EXEC file, and to remember the whereabouts of labels to which 
reference has already been made. It thereby improves the performance 
of EXEC loops, in which the same lines and labels are used repeatedly. 
For maximum effect, the buffer should be large enough, to contain the 
longest loop in its entirety, and should be set up before entering the first 
loop. An even larger bqffer may be advantageous if user~defined func~ 
dons or subroutines are invoked from within a loop.. 



10 EXEC 2 

A lookaside buffer should not be used if the EXEC file is subject to 
modification during execution; if it is, the results are unpredictable. 

&CALL 	 line-number <arg1 <arg2 ... » 

label 


Create a new generation of the EXEC arguments &1, &2, ..., initialized 
to 'argl', 'arg2', ..., and invoke the specified subroutine by transferring 
control to the given line, or to a line starting with the given label, in 
such a way as to allow control to be returned with the &RETURN state­
ment. 

The new generation of arguments supersedes the arguments which were 
previously set, making the previous values, and the number previously 
set, temporarily inaccessible. On entry to the subroutine, the values of 
the arguments, and the number set, are as given in the 8;;CALL state­
ment. Their values, and the number set, can be changed inside the 
subroutine in the sa~El way as outside, such as by assignment or with the 
&ARGS or &READ statement. 

On return, the new generation of arguments is discarded, making the 
previous values, and the number previously set, again accessible. Execu­
tion resumes on the line following the &CALL statement. 

The first character of a label must be a hyphen. The search for a label 
starts on the line following the &CALL statement; then, if a match is 
not found before the end of the file, the search resumes at the top. If a 
matching label does not exist, execution stops with an error message. 

(See &RETURN; also see User-defined Functions.) 

&CASE <U <comment> > 
M 

Translate to upper-case any lower-case alphabetic characters which are 
read in response to subsequent &READ statements, or do not translate 
them (allow 'mixed' cases), or (if no argument is given) do not change 
the setting. Initially the translation is set to 'U'. 

(See &UPPER.) 

&COMMAND <wordl <word2 ... » 

Issue to the host system the command comprising 'wordl', 'word2', ..., 
separated from each other by a single blank. . When it is finished, its 



EXEC 2 	 11 


.t 

.

• 

return code is obtainable from the predefined EXEC variable &RC. The 
statement normally has the same effect as: 

word1 word2 .., 

There are howeyer the following differences. 

(a) 	 A command the first word of which begins with an asterisk, a 
hyphen or an ampersand can be issued by giving it· as the argu­
ment to &COMMAND; otherwise it is interpreted as a comment, a 
labelled statement, an assignment or a control statement. 

(b) 	 &COMMAND overrides any presumption of a subcommand 
environment (see &PRESUME), and always issues the command 
to the host system. 

(See &SUBCOMMAND; also see the predefined variables &COMLINE 
and &RC.) 

&DUMP 	 ARGS 
VAR<S> <varl <var2 ... » 

Print at the console lines of the form: 

var = value 

either one for each EXEC argument &1, &2, ... which is set, or one for 
each of the variables 'varl', 'var2', .,.. The lines are truncated if their 
length exceeds the implementation limit for printed output. 

&ERROR action 

Set the action which, until further notice, is to be invoked automatically 
on return from any commands (and subcommands) which yield an error 
return code (i.e. a return code which is not zero). The action may be any 
executable statement. . 

The action is not inspected at the timethe &ERRQR statement is execU­
ted. Instead, the search· for and replacement of any EXEC variables 
takes place each time the action is executed; The action is executed as if 
it occupied the same line in the EXEC file as the command (or subcom­
mand) which yielded the non-zero return code. 

What happens after the action depends upon the type and"consequences 
of the action. If it is itself a command (or subcommand) which also 
yields an error return code, execution stops abnormally with an error 
message; otherWise (unless the action causes a transfer.of control) execUe 

http:transfer.of


12 	 EXEC 2 


tion resumes at the line following the command which caused the action 
to be invoked. 

Initially, the error action is set to the null statement. 

&EXIT <return-code <comment» 
o 

Stop execution of the EXEC file, and yield the given return code. 

&GOTO 	 line-number <comment> 
label 

Transfer control to the given line, or to the line starting with 'label'. 

The first character of a label must be a hyphen. The search for a label 
starts on the line foilowing the &GOTO statement, then, if a match has 
not been found before'the end of the file, the search resumes at the top. 
If a matching label does not exist, execution stops with an error message. 

(See &SKIP and &CALL; also see the predefined variable &FROM.) 

&IF wordl 	 =,EQ <word2 executable-statement>· 
-.=,NE 
<,LT 
<=, .... >,LE,NG 
>,GT 
>=, .... <,GE,NL 

If the condition is satisfied, execute the given executable statement; 
otherwise proceed to the next statement. The comparator may be given 
in any of the forms shown (e.g. '=' or 'EQ'). The comparison is numeric if 
both comparands are numeric; otherwise both comparands are treated as 
character strings, and the shorter one is (for the purpose of the compari­
son) padded on the right with blanks. If 'word2' is absent, a null string 
is used in its stead. 

(See &SKIP.) 

\ 
~--------------------



13 EXEC 	2 

&LOOP n m 
label 	 '" 

WHILE condition 
UNTIL 

Loop through the following n lines, or down to (and including) the first 
line starting with 'label', for m times, or indefinitely, or while (or until) 
the given condition is satisfied. 

The values of nand m (if given) must be numeric; also n must be posi­
tive, and m must not be negative. 

The first character of the label (if given) must be a hyphen, and the label 
must be attached, as the first word of the line, to an executable state­
ment which lies below the &LOOP statement. 

The form of the condition (if given) is the same as in the &IF statement; 
viz. 

wordl . =,EQ <word2> 
~=.NE 

<,LT 
<=.... >,LE,NG 
>,GT 
>=,... <,GE,NL 

The condition is evaluated before each iteration of the loop, including the 
first. If 'word2' is absent, a null string is used in its stead. The compari­
son is numeric if both comparands are numeric; otherwise both compa­
rands are treated as character strings, and the shorter one is (for the 
purpose of the comparison) padded on the right with blanks. 

&PRESUME <&COMMAND> 
&SUBCOMMAND environment 

Presume that any executable statements which have the syntax of a 

< command (i.e. the first word of the statement does not begin with an
. 

ampersand) are to be issued to the host system; or presume that they are 
to be issued to the given subcommand environment. 

The name of the subcommand environment is not checked when the 
&PRESUME statement is executed. If, when a subcommand is subse­
quently issued, the environment does not exist, the only effect is to set a . 
special return code (e.g. -3 when running in CMS). 

'&PRESUME' with no arguments is equivalent to '&PRESUME 
&COMMAND'. 



14 EXEC 2 

By convention, the presumption is initially set to '&COMMAND' if the 
EXEC file has filetype EXEC; otherwise it is set to '&SUBCOMMAND . 
filetype', where 'filetype' is the type of the EXEC file . 

. The presumption has no effect on &COMMAND or &SUBCOMMAND 
statements, since these do not have the syntax of a command. 

&PRINT <wordl <word2 ... » 
&TYPE 

Print at the console a line containing 'wordl', 'word2', ... , separated from 
each other by a single blank, or print a blank line if there are no words 
given. The line is truncated if necessary. 

Unlike &BEGPRINT, the words to be printed are searched in the normal 
way for the names of EXEC variables, which are replaced by their 
values. 

&READ <n> 
1 

* 
ARGS 
VAR<S> <var1 <var2 ... > > 
STRING var 

Read from the console, and execute or assign what is read, according to 
the following rules. 

n,l., * 	 Read n lines, or read an indefinite number of lines, and 
execute them individually as if they had occupied the 
current line in the EXEC file. Reading from the console 
stops when n lines have been read, or when a 
&BEGPRINT, &BEGSTACK, &GOTO, &LOOP or &SKIP 
statement is encountered, Reading from the console is 
suspended if a user-defined function or subroutine is in­
voked, and is resumed when control returns from that 
invocation. If another &READ statement is encountered, 
the number of lines to be read by it is added to the num­
ber outstanding. The value of n may be negative. 

ARGS 	 Read a single line, assign the words in it to the EXEC 
arguments &1, &2, ..., and discard any other EXEC argu­
ments which were previously set. . The number of argu­
ments now set is the number of words in the line, which 
may be less or greater than the number of arguments 
previously set. (See &ARGS, and the predefined variable 
&N.) 



15 EXEC 2 

VARS 	 Read a single line and assign the words iiI it to the variaQ 

bles 'varl', 'var2', .... If the number of words in the line 
read exceeds the number of variables given in the state­
ment, the surplus words are discarded; or if the number of 
variables exceeds the number of words, the remaining 
variables are set to the null string. Therefore '&READ 
VARS" (without any variables) can be used to read a line 
and discard it. Asterisks may be used in lieu of variable 
names to indicate that the corresponding words in the line 
read are to be discarded. 

STRING 	 Read a single line and assign it, as a literal string, to 
'var', without removing any surplus blanks or replacing 
any EXEC variables. 

In the case of &READ ARGS and &READ V ARS ..., the line which is 
read is scanned for wprds (i.e. leading, trailing and other surplus blanks 
are discarded), but the words are treated as literals (i.e. there is no 
replacement of EXEC variables). 

The names of the variables in &READ VARS and &READ STRING are 
treated in the same way as on the left-hand side of an assignment 
statement (see Name Substitution). A variable of the form &j, where j is 
an unsigned integer without leading zeros, cannot be set with &READ 
V ARS or &READ STRING if j exceeds the number of EXEC arguments 
which are currently set. 

Lines which are read from the console are not truncated by the EXEC 
interpreter, i.e. they are unaffected by the setting of &TRUNC. 

&RETURN <word> <comment> 

Return control to the most recent subroutine invocation (&CALL state­
ment) to which return has not yet been made; or return 'word' (or the 
null string) to the most recent user-defined function invocation to which 
a value has not yet been returned. 

The generation of EXEC arguments which was created at invocation is 
discarded; the previous values, and the number previously set, become 
accessible again. The number of lines (if any) which remain to be read 
from the console in response to a previous '&READ n' statement is reset 
to the number outstanding at the time of the invocation. Any loops 
which have been opened in the subroutine or function, and not closed, are 
aborted; any loops which were open at the time of invocation are reins­
tated. 



16 EXEC 2 

If there is both a subroutine invocation and a function invocation to 
which return has not yet been made, return is to the more recent point of 
invocation. If there is neither, execution stops with an error message . 

. (See &CALL; also see User-defined Functions.) 

&SKIP <n <comment> > 
1 

If n > 0, skip the next n lines of the EXEC file. If n < 0, transfer 
control to the line which is -'n lines above the current line. If n = 0, 
transfer control to the next line. 

If an attempt is made to transfer control to a line the number of which 
is zero or negative, execution stops abnormally with an error message. If 
control is transferred to a line below the last in the EXEC file, execution 
stops normally with a: return code of zero. 

(See &GOTO.) 

&STACK <FIFO> <wordl <word2 ... » 
LIFO 

Stack a line in the console input buffer containing 'wordl', 'word2', ..., 
separated from each other by a single blank, or stack a null line if there 
are no words. The line is by default stacked FIFO (first in, first out), but 
this can be changed by giving 'LIFO' (last in, first out) as the first 
argument. 

Unlike &BEGSTACK, the words to be stacked are searched in the nor­
mal way for the names of EXEC variables, which are replaced by their 
values. 

&SUBCOMMAND environment <wordl <word2 ... » 

Issue to the given subcommand environment the subcommand compris­
ing 'wordl', 'word2', ..., separated from each other by a single blank. 
When it is finished, its return code is obtainable from the predefined 
EXEC variable &RC. 

If the given environment does not exist, the only effect is to set a special 
return code (e.g. -3 when running in CMS). 

Normally it is convenient to 'presume' the first two words of this state­
ment, so that they do not have to appear at the beginning of every 
subcommand (see &PRESUME). The explicit use of the 



o 

.
. 


EXEC 2 17 

&SUBCOMMAND statement does however permit the issue of subcom­
mands which start with an asterisk, a hyphen, or an ampersand (c/. 
&COMMAND). Also note that the statement '&SUBCOMMAND 
environment' (without any additional arguments) is the only way of 

. issuing a null subcommand. 

(See the predefined variables &COMLINE and &RC.) 

&TRACE <ON <comment> > 
ERR 
ALL 
OFF 

Print at the console commands (and subcommands) which are issued 
from the EXEC file; or print commands (and subcommands) w~ich yield 
an error return (i.e. a return code which is not zero); or print all executa­
ble statements; or do not print any statements; or (if there is no argu­
ment) do not change't.\le setting. The setting remains in effect until 
reset. Initially it is OFF. 

When tracing is ON, each ~ommand is printed before it is executed, and 
subsequently the return code is printed if it is not zero. When ERR is in 
effect, commands which yield a non-zero return code are printed after 
ex~cution, followed by the return code. The return code is printed on a 
line by itself, in the form '+++ E(nnn) +++'. 

When ALL is in effect, every executable statement, preceded by its line 
number, is printed before it is executed; non-zero return codes are print­
ed (as for ON and ERR); and loop conditions and lines which are read 
from the console are also printed. The statement following an &IF 
clause, the action given in an &ERROR statement, and the conditional 
phrase in a &LOOP statement are printed as literal words (i.e. without 
replacement of any variables). These statements and phrases are print­
ed again, with the normal replacement of variables, at the time of their 
execution. A statement which is executed as a consequence of a satisfied 
&IF clause is preceded in the trace by an ellipsis. Words which exceed 24 
characters in length are truncated in the trace at 21 characters and 
followed by an ellipsis. Statements which exceed 80 characters in length 
(with the line number and preceding ellipsis, if present) are truncated in 
the trace at an integral number of words and followed by an ellipsis . 

I 



18 EXEC 2 

&TRUNC 	 <k <comment» 
,.. 

Set the truncation column for EXEC statements to k, or set it to the 
maximum value, or (if no argument is given) do not change it. Initially 

. it is set to the maximum value. 

This setting affects only the reading of EXEC statements from a file and 
the search for labels: it does not affect lines read from the console (which 
are not truncated), or lines appearing within a &BEGPRINT or 
&BEGSTACK statement (which are separately controlled); and it does 
not affect the length to which a st.atement can grow during or after 
replacement of EXEC variables. 

Changing the truncation column has the side-effect of purging the 
lq,okaside buffer (if there is one), and may consequently degrade per­
formance if done within a loop (see &BUFFER). 

&UPPER 	 ARGS 
VAR<S> <varl <var2 ... » 

Translate to upper-case any lower-case alphabetic characters in the 
values of the EXEC arguments &1, &2, ... ; or translate to upper-case any 
lower-case alphabetic characters in the values of 'varl', 'var2', .... 

A variable of the form &j, where j is an unsigned integer without lead­
ing zeros, cannot be translated with &UPPER V ARS if j exceeds the 
number of EXEC arguments which are currently set. 

(See &CASE.) 



EXEC 2 19 

Predefined Functions 

A predefined function can be invoked only in the last term on the right-hand 
side of an assignment statement. The invocation takes the form: 

function-name OF <arg! <arg2 ..,» 

The names of the predefined functions, and the rules for their use, are as 
follows. The symbols '<' and '>' are used to indicate optional arguments. 

&CONCATENATION OF <word! <word2 ... » 
&CONCAT 

Concatenates 'wordl', 'word2', "'J into a single word, without intervening 
blanks; or yields the n~ string if there are no words. Example: 

&A == ** 

&B = &CONCAT OF xx &A 45 
&PRINT &B 

This results in the printed line: 

XX·*45 

&DATATYPE OF <word> 
&TYPE 

Yields the value NUM if 'word' represents a valid number; otherwise 
yields the value CHAR. 

&DIVISION OF dividend divisor 
&DIV 

Yields a numeric value representing the integral part of the division of 
the dividend by the divisor, both of which must be numeric, and the 
latter of which must not be zero. Example: 

&X = &DIV OF 7 2 

This sets &X to 3. 



20 EXEC 2 

&LEFT OF word j 

Yields a string of length j in which 'word' is left-justified and either 

padded with blanks, or truncated, on the right. 


(Cf. &RIGHT OF.) 


&LENGTH OF <word> 

Yields a numeric value representing the length of the word (i.e. the 

number of characters in it); or yields zero if the word is absent. 


&LITERAL OF <string> 

Yields the literal string whieh begins with the character following the 

blank which termin~tes 'OF', and ends with the last non-blank character 

before or at the trunc~tion column. Any leading or embedded blanks are 

retained, and the search for and replacement of any EXEC variables 

which may appear in the string is suppressed. Example: 


& = &LITERAL OF &X = 

&X = ** 
&PRINT & &X 

This results in the printed line: 

&X = ** 

(Cf. &STRING OF.) 

&LOCATION OF needle <haystack> 

Searches 'haystack' for the first occurrence of 'needle', and yields a 

numeric value representing its ordinal position, or yields zero if there is 

no occurrence (or if the length of 'needle' exceeds that of 'haystack'). 

Example: 


&X "" &LOCATION OF IT GRAVITATION 
.. 

This sets &X to 5. 


(See &PIECE OF and &POSITION OF.) 




21 EXEC 2 

&MULTIPLICATION OF j <k <0. > 
&MULT 

Yields a numeric value representing the result of mUltiplying the given 
arguments,all of which must be numeric, and of which there must be at 
least two. Example: 

&X ~ &MULT OF 4 5 6 

This sets &X to 120. 

&PIECE OF word <j> 
&SUBSTR * 

Extracts that piece of 'word' which starts at character i, with length j; or 
which starts at character i and runs to the end of the word. 

The value of i (and j if given) must be numeric; also i must be positive, 
and j must not be negative. 

If the value of i exceeds the length of the word, the value of the function 
is the null string. If j is given, but exceeds the remaining length of the 
word, the remaining length is used instead, 

Example: 

&A &PIECE OF ABCDE 2 3 
&B &PIECE OF ABCDE 2 999 

&C &PIECE OF ABCDE 33 2 

&PRINT &A &B &C *** 

This results in the printed line: 

BCD BCDE *** 

(See &LOCATION OF.) 



22 . 	 EXEC 2 

&POSITION OF word <word1 <word2 ... » 

Compares 'word' with 'wordl', 'word2', ... , looking for the first match, and 
yields a numeric value representing 'its .ordinal position, or yields zero if 
'word' does not match any of the. other words (or if there are no other 
words given). Example: 

&X == &POSITION OF THE NOW IS THE TIME 

This sets &X ·to 3. 

(Cj. &LOCATION OF.) 

&RANGE OF 	stem i j 

Yields a string consisting of the words which are composed by appending 
to the given 	stem the ~umbers i, i+1, ..., j, the words being separated 
from each other by a single blank; or yields the null string if i > j. 

The stem is treated as a literal until after the composition is performed. 
The numbers 	which ate appended to it are stripped of any plus sign or 
redundant leading zeros. 

The composed names ate searched for any EXEC· variables, which are 
replaced by their values in the usual way. If: as a result a word is re­
duced to the null string, it is discarded from the result, and the next 
word is deemed immediately to follow the previous one. 

Examples: 

(a) 	 Irrespective of the values of &A, &A3, &A4 and &A5, the sequence: 

&X = &RANGE OF &A 3 5 
&PRINT &X 

produces the same result as: 


&PRINT &A3 &A4 &A5 


(b) The sequence: 

&ARGS A Be DEF GHIJ KLMNO 

&X = &RANGE OF & 1 &N 
&PRINT &X 

~----------------------------------------------------------.--~--------~------------------------~) 



23 EXEC 2 

yields the printed line: 


A BC DEF GHIJ KLMNO 


. (c) . The sequence: 


&X = &RANGE OF AB -2 +2 

&PRINT &X 


yields the printed line: 


AB-2 AB-l ABO ASl AB2 


&RIGHT OF word j 

Yields a string of length j in which 'word' is right-justified and either 

extended with blank~, or decapitated, on the left. 


(C/. &LEFT OF.) 


&STRING OF <string> 

Yields the string which begins with the character .following the blank 
which terminates 'OF' and ends with the last non-blank character before 
or at the truncation column, suppressing the removal of any leading or 
embedded blanks in the string. 

Each word in the string is searched in the usual way for the names of 
EXEC variables, which are replaced by thejr values; however blanks are 
not removed from the string, even if they are adjacent to a word which 
is reduced to the null string. . 

Example: 

&A :: STRING 
&B "" ENDS 
&X "" &STRING OF A PIECE OF &A HAS TWO &B 
f;PRINT &X 

This yields the printed line: 

A PIECE OF STRING HAS TWO ENDS 

(C/. &LITERAL OF.) 

(' 



24 EXEC 2 

User-defined Functions 

A user-defined function can be invoked only in the last term on the right-hand 
side of an assignment statement. The invocation takes the form: 

line-number OF <argl <arg2 ... > > 
label 

The effect is to create a new generation of the EXEC arguments &1, &2, ... , 
initialized to 'argl', 'arg2', ... ; and to invoke the given function, i.e. to transfer 
control to the given line, or to a line starting with the given label, in such a way 
as to allow a value to be returned with the &RETURN statement (q.v.). 

The new generation of arguments supereedes the arguments which were 
previously set, making the previous values, and the number previously set, 
temporarily inaccessible. On entry to the body of the function, the values of the 
arguments, and the number set, are as given in the function invocation. Their 
values, and the number set, can be changed in the body of the function in the 
same way as outside, such as by assignment or with the &ARGS or &READ 
statement. On return, the new generation of arguments is discarded, and the 
previous values,and the number of arguments previously set, become accessible 
again. 

The first character of a label must be a hyphen. The search for a label 
starts on the line following the function invocation; then, if a match is not 
found before the end of the file, the search resumes at the top. If a matching 
label does not exist, execution stops abnormally with an error message. 

Examples: 

(a) The user-defined function 

-OVERLAY OF layee layer 

is to return the string 'layee' overlaid by 'layer'. (This is different 
from 'layer' as given only if 'Iayee' is longer than 'layer'.) Here is 
the body of the function, preceded by an example of its invoca­
tion: 

&S = -OVERLAY OF &S * 

* THIS FUNCTION USES '&' AS A TEMPORARY ... 
-OVERLAY & = 1 + &LENGTH OF &2 
&1 = &PIECE OF &1 & 
&1 = &CONCAT OF &2 &1 
&RETURN &1 



I 

I 

EXEC 2 	 25' 


(b) 	 Suppose there is an external program TIME which stacks the 
CPU time 'consumed in, (say) micros'econds. The user-defined 
fUnction -TIME OF is to return this number as its value, reliev­
ing its caller of the need to issue the external command, check 
the return code, and read the answer. Here is the body of the 
function, preceded by an example of its use: 

&T = -TIME OF 
(sequence to be timed) 

&T = 0 - &T + -TIME OF 
1 , &PRINT 	 TIME CONSUMED WAS &T 

-TIME &COMMAND TIME 
&IF &RC ~= 0 &GOTO -UNEXPECTED 
&READ ARGS 'I 

&RETURN &1 I
-UNEXPECTED SPRINT UNEXPECTED ERROR FROM TIME 
&EXIT &RC 

Name Substitution 

In the Introduction to EXEC Files, it was stated that the words forming an 
executable statement are searched for the names of EXEC variables, which are 
replaced by their values. This is done according to the following steps. 

(1) 	 Each word is inspected for ampersands, starting with the rightmost 
character of the word, and proceeding to the left. 

(2) 	 If an ampersand is found, then it, with the rest of the word to the right, 
is taken as the name of an EXEC variable, and replaced (in the word) by 
its value. This may increase or decrease the length of the word. Initially 
all variables have a null value, except: 

(a) 	 the variables which represent the EXEC control words and 
predefined functions, which are initialized to their own names 
(e.g. the value of '&IF' is '&IF'); and 

(b) 	 the EXEC arguments, and the other predefined variables, which 
0, have the values specified in the section Predefined Variables. 

(3) 	 Inspection resumes at the next character to the left, and the procedure is 
repeated from (2) above, until the word is exhausted. " 

There is an exception if the word is the target of an assignment: in this case 
inspection for ampersands stops on the second character of ,the word. 

r---------------~--------~__________________________________~______~________________________~__ ) 



26 EXEC 2 

Note that any characters which are substituted are not themselves inspect­
ed for ampersands. They are however included in the name of the next variable 
if another ampersand is found to the left. 

These rules make it possible to construct arrays of subscripted variables. 

Examples: 

(a) 	 The sequence: 


&X = 123 

&PRINT ABC &X ABC&X OOO&X 


yields the printed line: 


ABC 123 ABC123 000123 


(b) The sequence: 

&I = 2 

&X&I = 5 

&1 = &1 ­
&X&I = &1 + 


&X = &X&1 + &X&X&I 

&PRINT ANSWER IS &X 


yields the printed line: 


ANSWER IS 7 




27 EXEC 2 

Miscellaneous Notes 

(1) Recursive execution 
(2) Termination of an EXEC Dle 
(3) , Console input buffer 
(4) Assignment statement 

r - (5) Evaluation of &DATE and &TIME 
(6) Sh:e and treatment of numbers 
(7) Removing plus signs and leading zeros 

'.. 
(8) Syntax of conditional phrases 
(9) Embedded blanks 

. (10) &LOOP statement 
(11) Closing of loops 
(12) . Search for labels 
(13) Performance of label searches 
(14) EXEC words are not reserved words 
(15) Example of &TRACE ALL 

(1) Recursive execution. 

An EXEC file may invoke itself recursively, or may invoke other 
EXEC files. by issuing the appropriate command or subcommand. EXEC 
files which have the filetype EXEC can, for example, be invoked by 
means of the statement: 

&COMMAND 	 EXEC filename <argl <arg2 ...» 

(2) Termination of an EXEC file. 

An EXEC file stops execution and returns to its caller: 

(a) when an &EXIT statement is executed; 

or (b) 	 when an attempt is made to pass control to a line beyond the 
last (e.g. by tfalling off' the end of the file), in whieh case a 
retu~ code of zero is used; 

or (e) 	 When an EXEC error is encountered, in which case a message 
is printed, and execution stops abnormally with a return code 
in the range 10001 to 10099 (see Error Codes and Messages, 
below). 



28 EXEC 2 

(3) Console input buffer. 

The EXEC interpreter requires the host system to support a console 
input buffer. This is a conceptual area in which lines can be deposited 
FIFO (first in, first out), or LIFO (last in, first out), and subsequently 
retrieved by attempts to read from the console. It provides a simple 
mechanism for communicating between programs. In EXEC files, lines 
can be deposited in the buffer with the &STACK or &BEGSTACK state­
ments, and can.be retrieved with the &READ statement. 

(4) Assignment statement. 

The word immediately following the target of an assignment must 
be a literal equal sign, and not an EXEC variable which has the value of 
an equal sign, nor an EXEC variable which is discarded from the state­
ment due to having a null value. Conversely, if an equal sign is to be the 
first word following a control word, either it must be given as an EXEC 
variable which has the value of an equal sign, or there must be an inter­
vening word which reduces to the null string; otherwise the statement is 
interpreted as an assignment, and (if it is valid as such) the control word 
is assigned a new value (see below, under 'EXEC words are not reserved 
words') .. With this exception, a. word which is discarded due to having a 

. null value has no effect on whether a statement is interpreted as an 
assignment, even if it occurs at the beginning of the stateItlent. For 
example, in the sequence: 

gx = 

&LOOP 2 2 
&X &Y = 2 + 1 
&X = &PRINT 

the first statement in the loop is executed as an assignment to &Y, and 
then (the second time) as a &PRINT statement, resulting in the line: 

(5) Evaluation of &DATE and &TIME. 

The time is taken once for each execution of a statement which 
refers to the predefined variable &DATE or &TIME. Therefore multiple 
references to these variables within a statement yield the same values. 
If consistency (rather than currentness) is required over a range exceed­
ing one statement, then the values of &DATE and &TIME must be 
assigned to ordinary variables, e.g. as follows: 

&STACK LIFO&DATE &TIME 
&READ VARS &D &T 



29 EXEC 2 

(6) Size and treatment of numbers. 

Words which are treated as numbers must represent integers in the 
range '-2,147,483,648 to +2,147,483,647 i.nclusive. An attempt to interpret 
or derive a number outside this range causes numeric overflow, which 
results in execution stopping abnormally with an error message. 

A word which represents a number is treated no differently from a 
word which does not represent a number except: 

(a) 	 when it appears in a context which requires a numeric value, 
at which point the value is obtained by conversion; 

or (b) 	 when it appears as one of the comparands in an &IF clause 
or a &LOOP condition, in which case its numeric value is used 
if both comparands represent numbers; 

or (c) 	 when it is given as the argument to &DATATYPE OF. 

(7) Removing plus signs and leading zeros. 

A plus sign, and any redundant leading zeros, can be stripped from 
a numeric quantity by performing an arithmetic operation on it. Exam­
ple: 

&X = 0000000000000000000012 

&y == &X + 0 

&PRINT &X &Y 

This yields the printed line: 

0000000000000000000012 12 

(8) Syntax of conditional phrases. 

In the conditional phrases which occur in the &IF and conditional 
&LOOP statements, a missing second comparand is regarded as a null 
string. The first comparand and the comparator must always be present: 
otherwise execution stops abnormally with an error message. If there is 
a risk of the first comparand having a null value, syntactic validity can 
be ensured by prefixing both comparands with the same character. For 
example, the clause 

&IF 	 /&1 == / 

is satisifed if and only if &1 is null or blank; and 



30 	 EXEC 2 

ElF /&1 = /PRINT 

is syntactically valid even if &1 is null. 

A similar trick can be used to force character-string comparisons 
even if both of the comparands are numeric. (In this case the prefix 
must not be numeric.) For example, if it is known that & 1 has a numeric 
value, the clause 

ElF /&1 < /0 

is satisfied if and only if &1 begins with a plus or minus sign. (For the 
relative values of characters, refer to the internal codes for the EBCDIC 
character set, given on the IBM System/370 Reference Card.) 

(9) 	 Embedded blanks. 

With a few exceptions, EXEC does not embed blanks in the values 
'of variables. The exceptions are as follows. 

(a)· 	 &ARGSTRING is initialized to the command string exactly as 
passed to the EXEC 'file, and may therefore contain embedded 
blanks. 

(b) 	 The '&READ STRING var' statement assigns to the given varia­
ble the complete line exactly as read, which may contain embed­
ded blanks. 

(c) 	 The predefined variables &BLANK and &BLANKS can be used to 
embed blanks in the value of a variable, e.g. 

EX &FlECE OF &BLANKS 1 80 
&Y &CONCAT OF A &BLANK B 

(d) 	 The predefined function &RANGE OF inserts a blank between 
the constituent words; and the predefined fUnctions &LITERAL 
OF and &STRING OF retain embedded blanks which are given 
in their arguments. 

(e) 	 Embedded blanks can be transmitted from one variable to anoth­
er with the assignment statement, and to the EXEC arguments 
&I, &2, ... with the &ARGS statement or by invocation of user­
defined subroutines and functions. 

Embedded blanks are always significant. For example, '&IF ' is 
not recognized as '&IF'; and '10 ' and' 10' cannot be used as numbers. 



31 EXEC 2 

Embedded blanks can be removed from the value of a variable by 
stacking it and rereading it as a sequence of words. Suppose, for exam­
ple, that a line to be read from the console is required both in its literal 
form (with embedded blanks, if any) and as a series of normal words 
(without embedded blanks). The following sequence achieves this: 

&READ STRING &S 
&STACK LIFO &5 
&READ ARGS 

Now&S contains the literal string, and the EXEC arguments &1, &2•... , 
contain the constituent words. 

(10) &LOOP statement. 

The first three words of the &LOOP statement are searched for 
EXEC variables (in the normal way) when the &LOOP statement is 
executed; however the r~mainder of the statement (which is present only 
if WHILE or UNTIL is given) is saved without inspection. This saved 
phrase is then interpreted as a condition each time around the loop 
(including the first time). Example: 

&J = 3 
&LOOP 2 UNTIL &J 5 

&J=&J+1 
&PRINT &J 

This results in the printed lines: 

4 

5 

(11) Closing of loops. 

A loop may be in any of three mutually exclusive states, viz. active, 
suspended or closed. A loop becomes active when execution of its 
defining &LOOP statement begins. It is suspended if another loop 
becomes active before the first is closed, or if a user-defined subroutine or 
function is invoked; and it becomes active again when the second loop is 
closed, or when a corresponding &RETURN statement is executed. A 
loop is closed when it is active, and when: 

either (a) 	 the requirement for termination, given in the &LOOP state¢ 
ment, is met; 

or (b) 	 control is transferred to a line outside the scope of the loop 
by any means other than invocation of a user.defined func­
tion or subroutine. 



32 EXEC 2 

In addition, the &EXIT statement closes all loops, and the 
&RETURN statement closes any loops which have been opened during 
execution of a user-defined subroutine or function. 

Examples: 

(a) 	 In the following sequence, the &SKIP statement closes the 
loop after ten iterations, since it transfers control to a line 
below the last in the loop. 

&J = 0 

&LOOP 	 2 * 
&J=&J+l 

&IF &J > 9 &SKIP 0 

(b) 	 In the following sequence, the second loop closes the first 
loop since it causes control to be transferred to a line out­
side the scope of the first loop. 

&LOOP 1 * 
&LOOP 1 1 

& = 

The first loop would similarly be closed, for the same rea­
son, if the second loop statement were replaced by a 
&BEGPRINT or &BEGSTACK statement which occupied 
more than one line. 

(12) 	 Search for labels. 

The search for a label which is referred to in a &CALL, &GOTO or 
&LOOP statement, or in the invocation of a user-defined function, 
involves examination of the first word on each line, without heed of its 
context, or what follows it. It is therefore necessary to avoid using labels 
which would be matched by the first word of a line within the scope of a 
&BEGPRINT or &BEGSTACK statement. 

Labels which are attached to statements are treated literally: they 
are not searched for EXEC variables. Labels need not be unique. 

(13) 	 Performance of label searches. 

(a) &CALL, &GOTO, and user-defined functions 

A &CALL or &GOTO statement, or an invocation of a user­
defined function, which transfers to a label above the current 
statement tends to be inefficient,especially in long EXEC files. 



33 EXEC 2 

It is preferable to use the &LOOP statement in place of an up­
ward '&GOTO label' statement. 

(b) &LOOP label ... 

A '&LOOP l~bel .. .' statement is converted, at the time of its 
execution, into the equivalent '&LOOP n ...' statement. Therefore 
the overhead for finding the label is incurred only once, when the 
loop is entered, irrespective of the number of iterations. 

(14) EXEC words are not reserved words. 

EXEC control words, predefined functions and predefined variables 
are known as EXEC words. EXEC words begin with an ampersand, but 
unlike ordinary variables, they have an initial value which is not null. 

The initial value of EXEC control words and predefined functions is 
the word itself (e.g. th'e value of '&IF' is '&IF'). If one of these words is 
assigned a different value (e.g. &IF = ABC), then the feature which it 
represents in the language is lost to the EXEC file unless it, or another 
variable, is reset to the old value (e.g. &IFX = &LITERAL OF &IF) and 
used appropriately. 

In the case of predefined variables other than the EXEC arguments, 
the special properties of a variable disappear if an explicit assignment is 
made to it. For example, the statement: 

&TIME = &TIME 

inhibits further automatic updating'of the variable &TIME. 

Words of the form &j, where j is an unsigned integer without 
leading zeros, are reserved for the EXEC arguments, and can be set 
explicitly (e.g. &2 = 1) only if they are within the range of arguments 
which are currently set. With this exception, EXEC words are not 
reserved wo'rds, and can, if desired, be used like ordinary variables. 

&READ VARS, &READ STRING and &UPPER V ARS are treated 
as explicit assignments to the variables given; &ARGS, &READ ARGS 
and &UPPER ARGS are not treated as explicit assignments to &N or 
&INDEX, 

If a feature, function or value is accessible through more than one 
name (e.g. &PIECE and &SUBSTR), an assignment to one of the names' 
does not affect the other name or names. 

It is intended that, with the exception of the arguments &1, &2, .." 
EXEC words which end with a numeral will not be introduced into the 



34 EXEC 2 

EXEC 2 Language. Therefore variables such as &Al, &A2, .." can be 
relied upon to have an initial value of null. Variables the names of which 
do not end with a numeral should not be used in a way which relies upon 
their initial values, since their names may conflict with new EXEC words 
which are added to the language at a later time. 

(15) Example of &TRACE ALL. 

Assume that an editor accepts the requests NEXT (which moves 
down the file, and yields a return code of zero unless the end of file is 
reached), and LENGTH (which stacks the length of the current line). 
The following sample edit macro (called LONGER) searches for the next 
line which is longer than the given length. 

&TRACE ALL 
NEXT 0 
&IF &RC',= 0' TOP 
NEXT 
&LOOP 4 WHILE &RC 0 

LENGTH 
&READ VAR &L 
&IF &L > &1 &EXIT 
NEXT 

&EXIT&RC 

If the macro is invoked at the end of the file, the search starts from the 
top. 

Suppose that the macro is invoked with the parameter 40 at~the end 
of a file containing two lines, both of length 30. This is the trace: 

2. NEXT 0 

+++ E( 1) +++ 

3. &IF 1 ,= 0 TOP 
3. . •. TOP 
4. NEXT 
5. &LOOP 4 WHILE &RC 0 
--- LOOP WHILE 0 = 0 
6. LENGTH 
7. &READ VAR &L' 
30 
8. &IF 30 > 40 &EXIT 
9. NEXT 
--- LOOP WHILE 0 = 0 

6. LENGTH 
7. &READ VAR &L 
30 
8. &IF 30 > 40 &EXIT 



35EXEC 2 

9. NEXT 

+++ E(l) +++ 

LOOP WHILE = 0 
10. &EXIT 1 

d:" 

,., 

) 



36 EXEC 2 

Error Codes, Messages and Abnormal Termination 

If the EXEC interpreter finds an error, it prints a message of the form: 

MISTAKE IN fn ft fm, LINE n - description of error 

Execution of the EXEC file then stops abnormally with one of the following 
return codes. 

10001 FILE NOT FOUND 

10002 WRONG FILE FORMAT 

10003 WORD TOO LONG 

10004 STATEMENT TOO LONG 

10005 INVALID CONTROL WORD 

10006 LABEL NOT FOUND 

10007 INVALID VARIABLE NAME 

10008 INVALID FORM OF CONDITION 

10009 INVALID AsSIGNMENT 
< 

10010 MISSING ARGUMENT 

10011 INVALID ARGUMENT 

10012 CONVERSION ERROR 

10013 NUMERIC OVERFLOW 

10014 INVA:r:,ID FUNCTION NAME 

10015 END OF FILE FOUND IN LOOP 

10016 DIVISION BY ZERO 

10017 INVALID LOOP CONDITION 

10018 NUMERIC OVERFLOW IN LOOP CONDITION 

10019 ERROR RETURN DURING &ERROR ACTION 

10020 ASSIGNMENT TO UNSET ARGUMENT 

10021 STATEMENT OUT OF CONTEXT 

10097 INSUFFICIENT STORAGE AVAILABLE 

10098 FILE READ ERROR nnn 



EXEC 2 	 3'7 

BNF Description of the Gross EXEC2 Syntax 

The symbols < and> are used here to delimit metalinguistic variables. 

<exec file> 	 <statement> 
<exec file> <statement> 

<statement> ....-- <comment> 
<label> <executable stmt> 
<executable stmt> 

<comment> .." ­-	 * <anything> 

< executable stmt> ..... -- <unconditional stmt> 
<if clause> <executable stmt> 

<unconditional stmt> .::= • 	 <null> 
<command> 
<assignment> 
< control stmt> 

<if clause> 	 &IF <word> <comparator> <word> 

<assignment> 	 <variable> = <rhs> 

<rhs> ::= 	 <null> 
<word> 
<function .infocation> 
<arithmetic rbs> 

<arithmetic rhs> ::= 	 <arithmetic expr> 
<arithmetic expr> + <function invocation> 
<arithmetic expr> <function invocation> 

.a __<arithmetic expr> ..- <number> 
<arithmetic expr> + <number> 
<arithmetic expr> <number> 

<number> 	 <unsigned integer> 
+<unsigned integer> 
-<unsigned integer> 



38 EXEC 2 

History and Acknowledgements 

EXEC 2, as a language, derives from CMSEXEC, which began in Cambridge, 
Massachusetts, in the early days of CMS. Nobody seems to want credit for the 
first version of CMS EXEC, which appears to have been written at the IBM­
Cambridge Scientific Center around 1966. It was modelled after 'RUNCOM' in 
CTSS (Compatible Time~Sharing System of Project MAC at M.LT.), and provid­
ed a way of issuing a sequence of commands, each made up of eight-byte tokens, 
with parameter substitution via &1, &2, .... 

This facility already exhibited two of the enduring properties of the EXEC 
language, viz. (a) the use of blank as the essential delimiter, and (b) the use of a 
special symbol (ampersand) to distinguish non-literals, instead of distinguishing 
literals as in most computer languages. 

The transition to a prog;ramming language took place in 1967-68 at M.I.T.'s 
Lincoln Labs, during a joint ,study with the Scientific Center. The principal 
designers were Francis Belvin, Harold Feinleib, Oliver Selfridge and Joel 
Winnett; and the programming was done by Roger Banks during summer 
employment. They added user-defined variables, the assignment statement, and 
most of the control words (&IF, &GOTO, &LOOP, &STACK, &READ, etc.). 
These improvements were installed in IBM's second release of CMS by Thomas 
Rosato at the Scientific Center. 

During this time, the work in IBM, and the joint study with Lincoln Labs, 
were nurtured by Norman Rasmussen, who was manager of the Scientific 
Center. 

The EXEC language was extended and formalized in 1971 by Christopher 
Stephenson at IBM Research, Yorktown Heights. The general rules for replace­
ment of EXEC variables were laid down, and predefined functions were intro­
duced. This work was supported by Donald Rozenberg. The resulting language 
was described in a document written jointly with David MaineYi and the exten­
sions were incorporated into VM/CMS by James Walsh in Cambridge. 

EXEC 2 derives its. overall syntax and flavour from CMS EXEC; however, it 
is system-independent in nature. .It handles words exceeding eight bytes in 
length, it supports more general string handling, it extends the form of arith­
metic expressions, and it enables commands to be issued to divers 'subcommand' 
environments. The language. was proposed by Christopher Stephenson in a 
paper presented at the Fourth Symposium on Operating System Principles in 
1973. It was defined, and first implemented, in 1976. User-defined subroutines. 
and functions were added in 1977.. Credit is due to Craig Fr~nklin (when at 
Stanford University), and to Marc Auslander, W~lter Daniels ~nd Paul Kosin­
ski (all at IBM Research), for contributions made in conversations during 
1973-77. 



39 EXEC 2 

The original EXEC 2 interpreter was written for System/370 as part of an 
experimental programming system at IBM Research, Yorktown Heights. It has 
subsequently been installed in CMS by Walter Daniels, and in TSO by Burn 
Lewis. It has also been incorporated in editing systems by Gordon Barnard, at 
the IBM Technology Data Center, Poughkeepsie; and by G. Mack Hicks and 
Gary Hauser at the IBM Santa Teresa Laboratory, California. A second inter­
preter has been written for the 801 Research Minicomputer by Albert Chang. 

The EXEC 2 Language, as defined here, was revised in January, 1978, by 
vote of Marc Auslander, Walter Daniels, Michel Hack, Burn Lewis, Richard 
Ryniker and Christoph~r Stephenson. 

This document was prepared and edited by Richard Ryniker; based on 
material originated by Christopher Stephenson. 



40 EXEC 2 

APPENDIX I 

EXEC 2 in CMS at Yorktown Heights 

The EXEC 2 interpreter reSIdes on tne CMSSYS 19F minidisk at Yorktown 
Heights. It is loaded by issuing the command 

FREELOAD EXEC EXEC2 SYS 

after accessing that disk. This must be done before attempting to execute an 
EXEC file written in the EXEC 2 Language. 

In order to provide the ability to execute both EXEC 2 and CMS EXEC files, 
some device is required to distinguish between them. If the EXEC 2 control 
word &TRACE starts within the first 32 characters of the first line of an EXEC 

, file, the file is deemed to be w'ri~ten in the EXEC 2 Language and is executed by 
the EXEC 2 interpreter; otherwise, the file' is executed by the CMS EXEC 
interpreter. . 

Note that the CMS EXEC interpreter tokenizes its arguments, even when 
called from EXEC 2. Conversely, if an EXEC 2 file is invoked from a CMS 
EXEC file, all arguments (&1, &2, ...) are truncated to ~ characters by the CMS 
'EXEC interpreter before the EXEC 2 interpreter is entered. In such a case, the 
predefined variable &ARGSTRING is initialized to the string consisting of the 
arguments &1, &2, ... separated from each other by a single blank, with no 
leading or trailing blanks. 

The maximum line-length of an EXEC file is 255. The maximum length of a 
line read from the console is 130, although stacked lines and lines read from the 
console input buffer may be as long as 255 characters. The maximum length of a 
word, after replacement of variables, is 255. The maximum length of a printed 
line is 255. The maximum length of a statement, after replacement of variables, 
is 511 characters (This limit is enforced only as needed for practical reasons by 
the interpreter, and some statements can grow to a greater length.) 

Initially, if the EXEC file has a mode number of '2', there is a look aside 
buffer with a capacity of 32 lines; otherwise there is no lookaside buffer (see 
&BUFFER). 

If a nonexistent command is issued to CMS, or if a subcommand is issued to 
a nonexistent subcommand environment, the return code ;.:3 in generated. 

There are many programs available in the Yorktown CMS which are useful 
to writers of EXEC files. Here is a list of some frequently used programs, with 
brief descriptions of their purposes. 

I 
'\ 

I 
I 

, i 



I 

I 

STACKIO 

GLOBALV 

MAKBUF 

DESBUF 

LOCALTIM 

SUID 

OBEY 

FINDSTAK 

SADT 

WAITDEV 

SENTRIES 

SUBCOM 

NAMEINT 

CONVERT 

XPARSE 
TOKENIZE 
PAREN 
SELECT 
ABBREV 

.. ~, 

, 'f. 

41EXEC 2 

Read and write lines from and to disk files, tape, console input 
buffer, printer, card reader, console, .... There is a limited ability 
to select lines which meet designated criteria concerning their 

• 

contents. 

A general global value mechanism which allows passing values 
from one program to another and can remember values from 
previous invocations. of programs and from previous terminal 
sessions. 

Establish a new level in the console input buffer. 


Delete level(s') from the console input buffer. 


Stack the local time and date, in the same format as &TIME and 

&DATE. 


Stack userid and system information. 


Resolve and execute a command according to the CMS command 

search order. 


Selectively stack lines from a disk file. It offers more complete 

selection criteria than STACKIO. 


Stack information about an accessed disk. 


Define, poll, wait for interrupt, or delete pseudo-devices or named 

interrupts; poll or wait for I/O interrupts from virtual devices. 


Set the return code equal to the number of stacked lines currently 

in the console input buffer. 


Establish, delete, or query the existence of a subcommand envi­

ronment. 


Establish or clear a named interrupt. 


Perform binary, decimal and hexadecimal conversions. 


Aids for parsing command strings. 


Comparison with Previous Version of EXEC 2 

Readers who are familiar with the previous version of EXEC 2, described in 
RC 6292, may wish to note the following principal differences in the version 
described here. 

1. 	 What were previously referred to as 'special' variables are now called 
predefined variables, and what were previously referred to as 'built-in' 
functions are now called predefined functions. 



~ 	 EDC2 

2. 	 It is now possible to write user-defined subroutines and functions. 

3. 	 A variable of the form &j, where j is an unsigned integer without 
leading zeros, cannot be set explicitly if j exceeds the number of EXEC 
arguments (&1, &2, ...) which are currently set. 

4. 	 The predefined variable· &ARGSTRING is now set to the equivalent of 
'&RANGE OF & 1 &INDEX' when called from CMS EXEC. 

5. 	 CP requests are now passed to CMS for interpretation. (The previous 
version of the interpreter called' CP directly with untokenized argu­
ments). In order to avoid 8-byte tokenization, the CMScommand 'CP' 
will have to be fixed to recognize the untokenized string passed by the 
EXEC 2 interpreter. An alternative is to call 'CPX MODULE', or, better 
yet, to issue 'FREELOAD CP CPX SYS' at the same time 'FREELOAD 
EXEC EXEC2 SYS' is issued (e.g. in 'PROFILE EXEC'). 

Note also that, due to a change in the way the System/370 clock is set at 
Yorktown, the predefined variables &DATE and &TIME now contain Greenwich 
Mean Time (GMT) instead of local time. 

Comparison with CMS EXEC 

Readers who are familiar withCMS EXEC may wish to note the following 
differences of the EXEC 2 Language compared with the EXEC of VM/CMS, 
Release 2. 

1. 	 Eight-byte tokenization, and special handling of parentheses, have been 
done away with, except as needed for interfacing with CMS. In EXEC 2, 
statements are composed of 'words' of up to 255 characters each. 

2. 	 Commands may be issued either to CMS or to specified 'subcommand' 
environments (such as an editor). The destination is controlled with the 
&COMMAND, &SUBCOMMAND and &PRESUME statements. 

3. 	 The &BEGPUNCH,. &PUNCH, &SPACE and &TI:ME statements have 
been eliminated. 

4. 	 The &CONTROL, &TYPE and &BEGTYPE control words have been 
renamed &TRACE, &PRINT and &BEGPRINT. 

5. 	 The syntax of the &BEGSTACK, &BEGPRINT, &LOOP, &TRACE and 
&TRUNC statements has been changed. 

6. On entry to an EXEC file, tracing is off, and the truncation column is set 
to the limit. 



I 

EXEC 2 	 43 

7. 	 The percent sign (%) and the single quotation mark (') do not have any 
specialef£ects if assigned to the EXEC arguments&l, &2•.... 

8. 	 There are new &CASE and &UPPER statements, for controlling uppere . 
. case translation. 

9. 	 There are no global variables. 

10. 	 The special variables &$, &*, &EXEC, &READFLAG and &TYPEFLAG 
have been eliminated. 

11. 	 There are new predefined. variables &ARGSTRING, &COMLINE, 
&FROM; &DATE; &TIME, &BLANK and &BLANKS. 

12. 	 The word 'OF' is included in references to predefined functions. 

13. 	 The predefined function &LITERAL OF may be used only on the right­
hand side of assignment statements (thus conforming to the same 
context rules as tlie other built-in functions). , 

14. 	 If an assignment is made to a predefined variable, its initial value is lost 
through the remainder of that EXEC file, irrespective of subsequent 
assignments. 

15. 	 There are new predefined functions &LOCATION OF, &POSITION OF, 
&RANGE OF, &LEFT OF, &RIGHT OF and &STRING OF for string 
manipulation. 

16. 	 There are new predefined functions &DIVISION OF and 
&MULTIPLICATION OF for integer arithmetic. 



________ 

EXEC 244 

APPENDIX II 

EXEC2 in TSO at Yorktown Heights 

EXEC files are stored as members of a partitioned dataset, and may have either 

fixed or variable format records. The PDS, or concatenation of partitioned 

datasets, must be allocated with the data definition name SYSEXEC. If there is 

a concatenation of partitioned datasets, the block size of the second and any 

subsequent PDS must not exceed the block size of the first. 


To activate the EXEC 2 interpreter in Yorktown TSO, issue the following 

commands: 


ALLOC DD(EXEC2DD) DS( 'BURN.EXEC2LIB.LOAD') SHR 

USERDEF TASKLIB(EXEC2DD) EXEC(EXEC2) 

If the EXEC2 load module is placed in. one of the system libraries, then the 

ALLOCA TE command is not needed and the 'tasklib' option should be omitted 

from the USERDEF command. 


To deactivate the EXEC 2 interpreter, issue the command 

USERDEF NOTSKLIB EXEC(EXEC) 

When EXEC 2 is active in TSO, the precedence of EXEC files is before 

CLISTs but after system commands. 


The maximum data length of a record in an EXEC file is 130 bytes. The 

maximum length of a line which may be stacked or read from the console or 

console input buffer is 130; The maximum length of a word is 255. The maxi­

mum length of a statement, after replacement of variables, is 511 characters. 

(This limit is enforced only as needed for practical reasons by the interpreter, 

and some statements can grow to a greater length.) 


On entry to an EXEC file, the predefined variable &FILENAME is set to 

the PDS member name, &FILETYPE is set to 'EXEC', and &FILEMODE is null. 


An initial look aside buffer with a capacity of 100 lines is always allocated 

(see &BUFFER). The meaning of the statement '&BUFFER .' is the same as 

for the statement '&BUFFER 100'. 


The return code generated for a non-existentTSO command is 12; for an 

illegal TSO command, 104. The return code generated for an unknown subcom­

mand environment is -3. (There is no mechanism currently implemented for 

establishing subcommand envir~nments in TSO.) 


:1 

~--------------------------------------------------~----~--~-----------I 



; 

I 

EXEC 2 45 

An attempt to dynamically modify an EXEC file by replacing or deleting a 
member which is in the process of being interpreted has unpredictable results .. 

~. 

. . ...) 

; 

. '? 

/ 




46 EXEC 2 


Index 

&0 .................................... 4 

&1, &2, ................................... 4 

&ARGS ................................ 8 

&ARGSTRING........ _..-................ 4 


&BEGPRINT ........................... 8 

&BEGSTACK...•............. '.......... 9 

&BEGTYPE .......... ; ..................8 

&BLANK ...•..•..................•..•. 4 

&BLANKS ............................. 4 

&BUFFER ........... , ................. 9 

&CALL ............................... 10 

&CASE; .................•............ 10 

&COMLINE ................... , ........ 4 

&COMMAND ............. , ............ 10 

&CONCAT OF ......................... 19 

&DATATYPE'OF ...................... 19 

&DATE ...... : ...................... 5,28 

&DEPTH ........ , , ..... , .............. 5 

&DIV OF ... ,. , ....................... -19 

&DIVISION OF .. =............... ~ ..... 19 

&DUMP ............ " ................ 11 

&ERROR , ...... ,. ,.. ,.................. 11 

&EXIT . ~ , .........................-. .. 12 

&FILEMODE... , ....................... 5 

&FILENAME.. , .... , ................... 5 

&FILETYPE ................. , ......... 5 

&FROM .................. , ............ 5 

&GO:rO ............................... 12 

&IF ................................... 12 

&INDEX................................ 5 

&LEFT OF ............... ". , ......... 20 

&LENGTH QF. , ....................... 20 

&LINE ..... '.. ; .. : ..................... 5 

&LITERALOF ........................ 20 

&LOCATION OF .......•........ , ...... 20 

&LOOP .............. ; . . . . . . .. . . . .. 18,31 

&MULT OF ........................... 21 

&MULTIPLICATION OF, ............... 21 

&N.............. ; ........... , ....... , . 5 

&PIECE OF ........................... 21 

&POSITION OF...................... " 22 

&PRESUME. . . . . . . . . . . . . . . . . . . . . . . . . .. 13 

&PRINT ............................. _. 14 

&RANGE OF .......................... 22 


&~C ...................... ~ ... , .'....... 5 

&READ............................... 14 

&RETCODE ............................ 5 


, .!: 

. -' 



EXEC 2 

Index 

&RETURN 15
< ••• < ••••••••• < • • • • • • • • • • • • • 

&RIGHT, OF......................... 23
< • 

&SKIP < < ••••••••• ',' •••••••••••••••••• 16 

&STACK.............................. 16 


, &STRING OF........ 23
< ................. 


&SUBCOMMAND . . . . . . . . . . . . . . . . . . . . . . 16 

&SUBSTR OF ......................... 21 

&TIME . . . . . . . . . . . . . .. . .. . . . . . . . . . . .5, 28. 


, &TRACE. . . . . . . . . . . . . . . . . . . . . .. .... 17, 34 

',&TRUNC ............. " .............. 18 


&TYPE ..... ; ............ ,~ .. '..... ". . . . 14 

&TYPE OF ............................ 19 

&UPPER, .............. , .............. 18 

Assignment statement. . . . . . . . . . . . . . 2, 3, 28 

BNF description ....•.................. 37 

Comments.................'....... '...... 1 

Conditional plrrases. . . . . . . . . . . . . . ... . . . . 29 

Console stack .. '........................ 28 

Control statements ...................... 8 

Embedded blanks ...................... ·30 

EXEC words ........................... 33 

Ettor codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Executable statement .................... 1 

History ............................... 38 

Labels ................... 2, 10, 12, 13, 24, 32 

Leading zeros ........... , . . . . . . . . . . . . . . 29 

Name Substitution ..................... 25 

Null statement.......................... 8 

Numbers ............................. .' 29;~ , 

Predefined Functions ........... ; . . . . . . . 19 

Predefined Variables ............... " .... 4 

Recursion .. . . .. . . . . . . . . . . ; .. . . . . . . . . . . 27 

Termination, ............ ; . , ........... 27 

User-defined Functions .. , ... ~ . , : . . . ... . .24 


47 


/ 



