

(8.3

3]

(b

The REX Exceuter - 6RReFaAL bocumentation

Document Number REX/3.00

4th July 1982

Mike Cowlishaw

Mail Point 182

IBM UK Laboratories
Hursley Park
Hinchester, $021 2JN
United Kingdom

MFC at WINPA

http:REX/3.00

40

IBM Internal Use Only

PREFACE

Major changes and enhancements for REX 3.00.
-{(since vearsion 2.50.)

This manual describes thae first release of the REX 3 languaga. Most of
the new features for REX 3 have been available for somae time, in the REX
2.50 releases, houwever since then there have been some significant
enhancements and (primarily as a result of the REX Internal Technical
Exchangae hald in San Jose in March 1982) some changes and simplifications.
Note that REX 3.00 has no "compatibility mode™, and is therefore not
affected by TRACER TEST.

. The variables access method is now a balanced binary tree, based on
algorithms and code by Laurie Griffiths. This has made it possible to
implement the following extensions, which have bean planned for a very
long time:)

- "PROCEDURE EXPOSE namalist®™ sets up a new level of variables, but
exposes all those named. Individual names can be exposed, or an
entire collection of variables can be exposed if their "stem” is
given. (A "stem" is the first part of the name, up to and includ-
_ing the first period.) Example:

PROCEDURE EXPOSE I J X.I A. B.

Exposes I, J, X.I (which depends on tha value of I), and all vari-
ables starting with "A." or "B.".

- Use of a "stem™ in a DROP instruction drops all variables starting
with that stem. Use of a stem on the left of an assignment (etc.)

is currently invalid.

. D0 loop control variables are no longer restricted to integers. Thus
the following is now allowed: 7DO I=-1 to 2.5 by 0.33"

. D0 clausae supports FOR phrase which specifiaes number of itarations.
e.g: DO I=1 by 0.1 for 50 /% loops 50 times ¥/

. Naw "%%"™ gperator raises numbers to an integer powar (e.g: 2%x3 == §,
'1**2 == 1, etc.)

® LN and "><¥ gperators are synonyms for "-=" and /="

® Variables may be used as triggers in parsing, using the notation
"{var)®

® SIGNAL ON HALT traps use of the "he™ external interrupt.

-_.
-te

Praface

IBM Internal Use Only

SIGNAL OFF SYNTAX is unaffected by higher-level SIGNAL 'ON SYNTAXs.
i.e. if SIGNAL ON/OFF SYNTAX is currently OFF, then a syntax error
will terminate the Exec with error traceback etc.

Eleven new error messages have been added to replace the rather vague
message "Syntax Error™.

SIGNAL ON EXIT, and DROP with no variable-~list, are no longer sup-
ported.

CALL can invoke external EXECs and MODULEs with multiple arguments.
(It uses the same interface as functions, except that it need not
return data.) PARSE SOURCE may therefore now have SUBROUTINE as the
second token.

ADDRESS and NUMERIC settings are saved across internal
subroutine/function calls.

RETURN with no expression after CALL causes RESULT to be dropped (i.e.
become uninitialised) rather than just being unchanged.

RETURN no longer sets SISL.

PARSE EXTERNAL accessas data on a system asynchronous interrupt
queue, and EXTERNALS() returns the current number of items in that
queue. Under CMS, thaese both raefer to tha console input buffer (as
opposed to the program stack): nota that these functions are only sup-
ported under YM/CMS/SP.

Subtraction is dona with correct rounding, and numeric comparisons
are now done by subtracting the two numbers and comparing the result
with 0. (Instead of rounding the two numbers then making a direct
comparison.) Thae default FUZ2Z value is therefore now 0.

Interaction between external trace bit and internal trace settings
has been improved (again).

The Exec SOURCE string is traced on entry te the program if external
tracing is activa.

The Old=-format Plist is translated to upper casa if full "Address CMS™"

resolution is in effect. Thus literals for CMS commands may usually
be given in mixed case. @.g: ‘erase profile exec a';

There have bean a variety of anhancemants to the built-in functions, too:

INDEX, PO0S, and LASTPOS allow & third argument which specifies tha
start position for tha search. Q@.G. POS('a’, 'amaa®,3) == 3,
LASTPOS(® *',"A B CDE*,5) == ¢ ' g
DATE("Month') returns full name of current month. ae.g. "March?

TIME('Long') raturns a timestamp which includes microseconds.

Praface ' iii

2]

Y]

IBM Internal uUse Only

TIME('Elapsed’) and TIME('Reset') control an elapsed real time clock.
SIGN(num) returns -1, 0, 1 according to the sign of the number.

COPIES(string,n) returns "n" copias of the string. REPEAT has been
moved to REXFNS2.

CENTER is a valid synonym for CENTéE. and RANDOM is the new name for
RND. RND is temporarily preservad as a synonym.

ERRORTEXT(n) returns tha text of the aerror maessage associated with
arror n.

SOURCELINE(n) returns the nth lina of the program, or (if n is'not
spacifiad) returns the numbaer of lines in the program.

VALUE(symbol-name) returns tha valua of the symbol specified e.g.

do i=1 to 10; say valua('NAME'i); end;

New BITAND, BITOR, BITXOR functions provide Bit-orientaed operations
as in REXFNS2 AND/OR/XOR.’

MAX and MIN return result in standard REX format, and always compare
with FU22=0.

DATATYPE is aextendad such that specifying a second argument will test
whaether the first is of that type. a.g: DATATYPE(3.3,'Num') == 1
Supported types ara:

Alphanumeric (consists of just a-z, A-Z, 0-9)
Bits (just 1's and 0's)

Lower case (a-=2)

Mixed case (A-Z, a-2)

Numeric (is a valid REX number)

only contains characters which would be valid in a
REX symbol

Upper case (A-2)

Whole Number (is a valid REX "Whole Number™, i.a. 0
decimal part, and doas not require exponent)

X = Hex (A-F » a=f, 0-9)

VWZIrw>
i u i unwu

ECc
([T

Optional pad character may be specifiad on: SUBSTR, SPACE, LEFT,
RIGHT, CENTRE, and JUSTIFY. -

Tha definitiona of the conversion functions X2D, C2X, D2C, etc. havea
been generalised and enhanced.

XRANGE function no lonéﬁr allous "unpacked™ two-byte arguments, and

VERIFY (as documented for some time) no longar permits '=' as theae

final argument. .
- Gy ~

STORAGE now returns the current VM size if called with no arguments,

and has been movad to REXVMFNS.

Preface ' v

Praface

BN Internal Use only

e

@*

IBM Internal Use Only

CONTENTS

Introduct i oh L] * L] * ® ® ® ® ® ® ® ® o * ® * ® * o ®
What is REX? e e e e e e e e e et e e e e e .« .
Why REX was designed e e o o o o o o o o o

Applications for REX e e o o o o o o o o o e e e e e

e e
.« s
HWN -0

The 1ansuase *eatures Ll L] L] Ll Ll * Ll L Ll . * L] L] - Ld

2.0

2.1 Structured flow control statemants e e o s e s e e
2.2 Case translation e e o o s o e e o s s o o o o s . .
2.3 Complex expressions e 6 o o o o o o e o o o o o o o
2.4 In-line function calls e s o s o 4 s e e o 6 o o o o
2.5 Free format: not line-by-line e 6 e o o 6 o & o o s
2.6 Literal shorthand & Blank operator e e e e s s e e
2.7 String parsing e e e e a7 e e s e s e e e e e
2.8 No requirement for self-modifying Execs e e e e e e
2.9 Peer Exec/Program communication e o o o o o s o &

REX laﬂguage de*initioﬂ ’ © @ © © o © o © & ¢ o © © o
Structure and general syntax e o e o o s o o o o o

Ulbl
°

“NUAMMUMU“MMUMMU‘M(MUJUIOAMUMUGMOU!-&UJNU‘U‘O—'O
.

.1.2 Implied semicolons and continuations e 6 o o o

. Expressions and operators e o o o o o o & s o o e
. Clauses and instructions e e e e e e e e e s e e e
Assignments e o o s o o o s o o o o .

.

WL
.

Instructions e e e e s e s e s e e e s e e e e e e

6. ARG e o e o s e e o s s o e s e e b e s s o o v s
.6. CALL e e o 8 o s e o s o s s a6 e e s s o s s o
.6. 1

DROP c e e e e e e s e s 6 e o 6 o e e e o 8 o e

.
°

o
o

INTERPRET . & & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o
ITERATE e 4 e e e s 4 e e e 6 s e e e e e ee e e
LEAVE e e e e e o 4 s e s e e s e e e e e s e
NOP e e o o o 6 6 s s s e 8 s s 0 e e s e e e
NUMERIC e o o © s o 8 o s v s e s e e o e s b e
PARSE e e o e o e s e e s o 4 s s e s s e o s s
PROCEDURE © e e o 6 6 e o o e o e o o s o o o o
PULL e e o 6 o o s e s o s e s o 6 e 6 6 o 6 o o
PUSH e e e o s o 5 s o 6 s 6 e o s s e e o e o
QUEUE e ¢ o e e o s o o 6 e e o o o & o a o o
RETURN e 4 o o o 8 o 6 o s o & o e o 8 6 & & o o
SAY e o 5 o o o 6 o o o 6 s 8 o 6 6 o s o e e .
SELECT e c e o6 s o o 6 o e o s o 6 o o o o s o e
SIGNAL and Labels e 2 0 o o o o s o6 e s s e v
TRACE o e e o o o e o o o o o o o o
UPPER e e e o o o s s e o s 6 e s s o s 6 o o o
unctloncalls c e 6 o a o s s e e v o b e
uilt-in Functions c o o 6 o o s a s o o 5 6 8 s e o

. e o 0} o °
. ® . . ° . .

©
©

L)

- - - - - - - - - N - N NI N . NI NI N S S NI S -
L]

NN N N 0o ot fud b Bud b b o Jot (ot o OO 8 ON UT B N b

2 me.

.
¢

. ° °
. . 0

[2
°
NN FOD WO NAARHLN -~

Contents

oooooo

oooooo

oooooo

.
Gl = =

-
oo vw~N~NOOCUN

< 12

.1.1 Tokens T o o o o o 5 o o o o o o o o o o s 12

. 15
. 16
. 20
. 21

Commands to the host e e o e o o s e o o o e o e s e e e e e s e 22

. 24

ADDRESS e e e 4 e o e e s s s s e e e e s s e e e s s e e e e 26

. 26
. 27
. 29
. 34

EXIT o e o e o o o e e e e s e e e e e e e e e e e e e e 35
1 36

. 37
. 38
. 39
. 40
. 40
. 61
. 44
. 46
. &7
. &7
. 48
. 49
. 49

. 50

. 53
. 57
. 58
. 61

IBM Internal Use Only

3.9 Interactive debugging of REX programs
3.10 Parsing for ARG, PARSE, and PULL
3.10.1 Introduction to parsing

3.10.2 Parsing definition

3.10.2.1 Parsing with literal patterns

3.10.2.2 Use of the period as a placeholder

3.10.2.3 Parsing with positional patterns
3.10.2.4 Parsing with variable patterns

3.10.2.5 Parsing multipla strings

3.11 MNumerics and REX Arithmetic
3.11.1 Introduction

e & o o o o

3.11.2 Definition . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o @
3.12 Variables and Compound Symbols (array handling) e o e e o o e
3.13 Reserved Keyuwords and Language extendability

3.14 Special Variables

The CMS implementation

oo gt

o

.2.1 REXFNS2
.2.2 REXVMFNS

Writing Bilingual Execs .
REX program structure o .
REX maintenance strategy .
Performance considerations

0
1
4
6
2
4%
4
3
4
.5 System Interfaces
%
A
4
G
4%
6
7
8
9
5.0 The TS0 implementation . e
6.0 Acknouledgements e o o o o

A.0 The Subhcommand concept o o

B.¢ Example Exacs for CMS using REX

€.0 Error numbers and messages

Extended Plist interfacea

Installing REX and executing REX Execs
.1 1Installation and Help: the REX EXEC
.2 Executing programs written in REX
Standard external function packagas

e ®© e o e ® © © e ® o © © o

.

o

Index © ®© ® e & © ® © @ ¢ © & & © ©

Contents

5.1

5.2 Direct Interface to REX variables
-5.3 1Interface to external routines
5.4 Non-SVC subcommand invocation
5.5 EXECFLAG external control byta

°

-

e

o o

Using service programs with REX (I0X, FSX, etc.)
Interrupting exacution and controlling Tracing

o e

oooooooooo

@ o @ © e o o o o o

@ @ o e © e © e ® e e e & o o & e © e e o o o

ooooooo

14
83
83
85
86
87
87
89
90
91
91
92
101
102
103

105
105
105
106
108
108
111
113
115
117
1138
121
125
128
129
130
131
133
134

135
136
138
140
144

156

vii

w

¥

IEM Internal Use Only

1.0 INTRODUCTION

1.1 WHAT IS REX?

REX is a command programming (macro) language. 1t can be used as a direct
replacement for or alternative to thae CMS EXEC and EXEC 2 languages, and
as a "Macro processor”™ for editors, languages, etc.

Compared with EXEC 2, REX has suparior control structures, string
parsing, arithmetic, and expression evaluation. It also has better trac-
ing facilities (including a powaerful interactive debug mode), and is very
much easier to learn and use. It seems that both "end users"™ and program-
mers find REX a simple and effective language.

Like EXEC 2, it has several advantages over the original CMS EXEC
language: it has considerably enhanced function, it does not tokenise
data, and if the Exec involves loops of any kind, then it is significantly
faster. ’

Maintaining a program written in REX is much easier than for the other two
languages, sinca REX is a higher leval language and is more readabla.

The languagae itself is PL/I-like, and essentially system independent. In
its CMS implementation it is easily installed as a Nucleus Extension,
either under its own name or more usefully under the name EXEC. In this
mode you may write Execs or Editor Macros in one of three languages: EXEC
(standard CMS), EXEC 2 (its replacement), or REX.

Tha REX interface will examine the file and pass it on to the appropriate
interpreter. (If the file begins with a REX comment it will be interpreted
by REX, atc.). This means that REX can coexist with both EXEC and EXEC 2
and you may gradually convert to REX without having to change any of your
existing Execs or Macros. (See page 117 for the section on System Inter-
faces.) You may, too, invoke the REX interpreter from a program with the
data to be interpreted held in storage, so avoiding Fila System overheads.

REX is also available undar MVS (TS0).

1.2 UHY REX WAS DESIGNED

Tha CMS Exee language (which has since been extended and improved upon by
EXEC 2) is based on the common macro language principle that variables and
controls should be distinguished (by "™&") and literals should exist in
plain text.

When Execs consisted mainly of strings of commands, with very little logic
in betuween, this was a fair and sensible choice: however a quick scan

Introduction 1

IBM Internal Use Only

through the Execs of almost any modern user quickly shous that the majori-
ty of words in use are symbolic (that is, they begin with ™"). This
observation must cast some doubt on the validity of using this syntax.

A further argument is the increasing use of "complicated" strings in
Execs: for example embedded blanks are heavily used in Editor Macros; full
sereen displays; and so on. EXEC 2 handles these only fairly well, where-
as EXEC cannot manipulate them at all - the user is reduced to unreadable
manipulations of the underscorae character or othar machinations to
achieve the desired rasult.

Thirdly, tha necassity of using upper casa characters throughout the EXEC
languages makes them awkward to type and difficult to read: it is clear
that programs typed in mixad case are, like this document, easier to fol-
low.

Finally, the underlying syntax of the Exec languages makes the efficient
interpretation (and, perhaps, compilation) of modern control structures
extremely difficult, if not impossible. However, such facilities are nee-
essary in order to easily enhance and maintain Execs and macros once they
have been writtan. .

Therefore there is justification in investigating an alternative macro
language which uses the "more conventional™ notation used by the higher
level programming languages such as PL/I, PL/S, Pascal, and so on. Expe-
rienca suggests that a language with this type of syntax will be easier to
learn and use than that which more resembles a programmers' Macro
languagae. Although REX is especially attractive to those who are used to
programming, many paople who before would not learn a command or program-
ming language now usa REX.

The usa of this notation will naturally cause users to draw comparisons
with the normal programming languages. This inaevitably will lead them to
expect a corresponding improvement in tha facilities available in their
macro language. This in turn would seem to imply that the interpreter
might be larger and probably slower than either EXEC or EXEC 2. Size
(within reason) is not often a problem on modern virtual machines, however
a sevare performance penalty would be unacceptable in most environments.
Considerable effort has therefore been made to ensure good performance.

During implementation it has been found that REX is rathaer larger than tha
existing interpreters (currently about 31000 bytes, 10% of which are the
error messages and 30% ara the built-in functions). The various versions
of EXEC 2 vary batuween 15500 and 19000 bytes.

The REX interpretar is somewhat slowar than EXEC 2 for trivial operations,
but for some tasks it is fastar. It is usually very much fastar than EXEC.

Introduction ' 2

N

[¢]

s

~

IBM Internal Use Only

1.3 APPLICATIONS FOR REX

REX is adept at manipulating objects which are character strings (but

which may be interpreted in other ways, just as people interpret certain
character strings as numbers). It is therefore a general purpose macro
language, in the loosest sense of the phrase, and may find applications in
a variety of areas:) ’

Command Procedures

This is REX's main application area at tha moment - binding
together system commands with logic to tailor a system to iqdi-
viduals or applications.

Editor Macros

This is another major application area for REX: the command set
supplied by an Editor can be radically extended with the aid of
a powerful macro language.

’

Word Processing Macros ¢

Word processing programs (such as SCRIPT/VS) have thair own
interpreted language built-in. These languages ara less gener-
al purpose than that provided by REX, and in the case of
SCRIPT/VS has worse performance. Provision of suitable inter-
faces would allow users to write their SCRIPT macros in the same
language that they use for Execs and Editor macros.

Language Processor Macros

REX is clearly suitabla for writing macros for languaga
processors such as HASM, PL/I and so on; and its performance is
comparable with that of the HASM macro processor. Again the
benefits of a common language for these applications are obvi-
ous.

Prototyping

Since REX is implemented as an interpreted language, it offers
excellent program development and debugging facilities. It is
therefore especially suitable for prototype code and (together
with device interface programs) for prototyping other applica-
tions.

Personal Computing

Many peoplae have found that REX is an effective personal lan-
guagae, being comparable in powaer and application to tha BASIC
language but with the benefits of modern control structures and
other advanced facilities. N

Introduction . 3

e m e e amio aime i v e o el e

IBM Internal Use Only

Education

REX has proved to be a useful language for educating new users
in the principles of structured programming and higher-lavel
languages. Many users find that REX offers all they need for
most programs.

The list above is just a selection of the areas in which a modern inter-
praeted language can be applied. As the performance of procassors and the
techniques for efficient interpretation of languages improve, we shall
certainly find that more and more applications will be based on sophisti-
cated interpreted languages. REX is just a start in this direction.

Introduction . 4

N

IBM Internal Use Only

2.0 THE LANGUAGE FEATURES

What ara the major desirabla features for a genaral purposa macro
languagae? My choices included:

1. Structured flow control statements, some equivalent of If-then-alse,
Do (Iterations/Until/UWhile/Forevarl-end, Select-when-end baeing tha
most important.

2. Effactive mixad-case support - no requiremant that kaeywords and vari-
able names ba typed in uppaer case, ete.

3. "Complex™ expressions (i.e. parenthases, multiplae operators)

4. In line "function" calls to other Execs, Modules, or internal
routines.

5. Freae format, vet not requiring a terminator for every statement.
6. Literal shorthand: unknown’' "tokens™ assumed to be enclosed in quotes,
with a natural concatenation mechanism. :

7. Built-in parsing facilities for charactaer strings.
8. No requiremaent for self-modifying Execs.
9. "Peer™ communication batween Execs and programs.

The rest of this section discusses these topics in more detail, however
tha busy (or impatient) readar may prafer to skip to the language dafi-
nition in saction 3.

Tha following items are not intended to be rigorous definitions of the
language features (which may be found in section 3), they are rather gen-
eral descriptions of the syntax and the decisions leading to each choice.
Soma implicit assumptions about tha languaga syntax and the host system
will be apparant.

2.1 STRUCTURED FLOW CONTROL STATEMENTS

Tha neaed for structured flow control is accapted by most programmers. The
threa main classas of structured flow control are the If-then-else; Do
(itaration/uhile/until/forever)-End; and Select-whan-end. (The use of
IBM (PL/I) constructions rathar than any of the possibly superior alterna-
tives daescribed in tha literature is puraly for consistency.)
If-then-elsa has bean implemented for EXEC by using axternal (and rather
devious) programs, EXEC 2 has Do-While and Do-Until; but neither has any
form of Select (Case) structura, or loop control variables, or structured

Thae language featuras . 5

IBM Internal Use Only

ways of leaving a loop.

All these features are highly desirable for any modern language, even if
in a simplified form, and it is these features of REX that are probably
its greatest advantage over EXEC and EXEC 2.

2.2_CASE TRANSLATION

In the vast majority of cases, humans maka no distinction between strings
which differ only by alphabetic casa: we all understand "yes" to mean the
sama as "Yes". Ideally, the REX language would hava been defined such
that the comparison operator was "casaless™,

Houwever, few (if any) computer architectures support even a reasonably
afficient way of effecting caseless compares, and so (with some
reluctance) the language currently achieves this by instead biassing
character manipulations towards upper casa.

The current implementation therefore translates symbols to upper case
before being used. This means that keywords and variable names may be
entered in mixed case (highly desirable), but unfortunately implies that
uninitialised variables (literal shorthand) strings are alsc translated.
Similarly there is a strong but undesirable tendency for users to use the
PULL instruction (for example) so ensuring that a string is in a knoun
(upper casa) stata.

Daspite the disadvantages, tha rules defined do meaan that programs may be
entered and edited in mixed case. Mixed case programs are of course more
readable and less prona to have errors and bugs, since we all are trained
in reading lower case characters from childhood. Professional studies
have indicated that we read mixed case data about 12% faster than monocase
data for a given accuracy: this is a siognificant improvement.

It should be emphasised here, however, that a "correct™ definition of the
language would differ in two important respects.

1. Uninitialised symbols should not be.translated to upper case.
2. The normal string comparison operators (and probably alsoe thae pat-
terns in parsing templates, label matchas, etc.) should be independ-

ent of casa.

These tuwo changaes would give greatly improved human facters; and would
obviate the main need for tha PULL and ARG instructions.

The language features) ‘)

o

Ik

IBM Internal Use Only

2.3 COMPLEX EXPRESSYIONS

Compound character and arithmetic expressions ara being used more and more
in current Execs: they unfortunately have to be spread over several lines.
(Up to ten lines for one logical manipulation is not unknown.) REX there-
fore permits "complex™ expressions.

Therae ara three popular implementations of compound expressions:
1. simple Left -> Right (or APL Right => Laft) scanning;

2. Reversa Polish notation (e.g. FORTH);

3. full algebraic, with parentheses and operator priorities.

Cption (1) is a considerable improvement on no compound expressions at
all, but is not ideal - especially as logical operations should be treated
as normal operators, rather than special cases.

Option (2) is probably unaccéptable to the IBM user, and is also somewhat
outdatad as a solution.

Option (3) is preferred, and is not significantly more complicated to
implement than (1). The algorithms and techniques are well understood,
and an Exec interpreter necessarily includes storage management routines
which normally are able to handlae stack(s).

I consider the minimum set of primitiva dyadic oparators to includa: + - %
7 || and blank as dafined abova, together with the logical operators = ==
> < >3 <= ¢ | &&. Important monadic operators are: =~ - + (Prefix Not,
Minus, and Plus).

"(" and ")" have special rules affecting their usa, since in addition to
forcing priorities within expression aevaluation, they are also used for
the invocation of functions. Therefore blanks immediately outside of the
parenthdses are not ignored, and so the blank operator may act directly on
a bracketed sub-expression.

2.% IN-LINE FUNCTION CALLS

Tha ability to execute in—expraession functions greatly increases the pou-
er of a languaga. REX supports user-uwritten internal functions (identi-
fied by a label), a rich set of built-in functions, and external
functions.

For the external functions, the host system is assumed to include at least
one command executor and some storage allocation routines. ‘A sub-class of
commands are those which accept data and/or arguments from REX, and return
their result in a storage block which is usable by REX. This subclass can
be termed external functions and are included in the REX language using

The language features ' 7

IBM Internal Use Only

the conventional notation of parentheses, with commas teo separate the
argument expressions.

For example the CMS function "QDISK™ is implemented as an entry point to
an external module, since it would be inappropriate to include
system-dependent routines as built-in functions.

The syntax description would therefore be: If a symbol is followed imme-
diately by a ™(" then it is taken as a constant function name. Each
axprassion following the "(" and separated by "," is evaluated, and the
function is invokad when the final ")" is interprated. A string may also
ba used for the function name.)

This gives a "hormal™ syntax for function calls, without the need for a
new clause for every command.

The same syntax is used for all types of functions, and therae are some
external packages of useful additional functions supplied with the CMS
version of REX: these will be loaded automatically if any function con-
tained in them is invoked.)

REX also supports a CALL macﬁanism for subroutines. It uses the same
interfaces as functions, and hence internal, built-in, and external func=
tions may all be invoked via the CALL instruction.

2.5 FREE FORMAT: NOT LINE-BY-LINE

A free format statement is more flexible and rather more general than
fixed (line-by—-line) format. The latter option implies a record oriented
filae system, whereas the former is applicable both to record and character
stream files or input devices. By the same token, a free format structure
generally permits better self-documentation of Execs, since comments may
occur almost anyuwhera in the input stream.

Although the language is by nature and syntax a stream language, most
users will tend to adhere to a line-by-line format, with only a few
multi-statement lines. Therefore REX terminates each line (except when
within a string or comment, or when inhibited by the continuation charac-
ter ",") with an implicit clausae dalimiter as a servica to the user.
Clause delimiters therefore need only be added when there is more than one
clause on a line. Since REX is aware of lina~ends it can indicate the line
number in error messages and diagnostics.

The obvious clause delimitaer to use was ";%, with /%...%/ for comments.

The language features) 38

IBM Internal Use Only

2.6 LITERAL SHORTHAND & BLANK OPERATOR

A convenient convention for a command programming language is that of
literal shorthand. My definition of this is: If a symbol is unknown
(i.e. not a variable, REX kayword, or function call) then it is assumed to
represent a literal string consisting of the characters of the symbol
(translated to upper case, in the current implementation).

A further convenience is the concept of the "Blank™ operator. This may be
dafined verbally thus: If two expraessions (i.a. symbols, literals, etc.)
arae separated by one or more blanks and no other operator then tha opera-
tion of "concatenata with a blank in batween™ will be performed. Similar-
ly, tha abuttal of two dissimilar data itams (e@.g. a string and a symbol)
causes them to be concatenated directly.

The effect of these conventions allows a syntax that combines the advan-
tages of both Exec/macro languages and tha PL/I likea model. Consider the
following excerpt from a REX Exec (assuma that Fn, Ft, Fm are symbols
representing variables previously set up by assignments etc.):

State fn ft fm'3" .
If rc=0 then Erase fn ft fm

which is more raadable than the equivalent "Strict PL/I" form:

'STATE "|Ifnll" *|Iftll" *IIfmlI*3";
If rc=0 then 'ERASE *[{fnl|" *1I€t]]|" "||fm;

or the EXEC languagae form:

&TEMP = &CONCAT &FM 3
STATE &FN &FT &TEMP
$IF GRETCODE = 0 ERASE &FN &FT &FM

(In REX, an instruction which is an expression on its own is passed to the
host system as a command.)

2 STRING PARSING

Onae of the main functions of Execs and editor macros is to break down com—
mand strings into component parts, or parse them.

REX providas a simple but powerful string matching mechanism which can be
usad to parse any character data. The argument string passed to the Exec
may also ba parsed - repeatedly if necaessary - in order to break the
string down into useful piaces. For example a CMS-like command string may
trivially ba separated into parameters and options.

These facilities are provided by allowing a parsing template to be speci-

fiad on the instructions which manipulate the various typas of data.

The language featuras . 9

IBM Internal Use Only

2.8 NO REQUIREMENT FOR SELF-MODIFYING EXECS

EXEC and EXEC 2 both permit self-modifying Execs. This is a "nice™ facil-
ity which however is typically not used. In fact, the only time it
normally occurs is when ona edits an "EDIT™ Exec: and then it is usually
more of an embarrassment than a help.

REX therafore acts as though all Execs are READ ONLY by taking a
T"snapshot™ of the Exec bafore execution begins. This implies that: a) the
antire Exac is read initially (inefficient for long files, paerhaps); and
b) instructions that might be re-interpraeted (a.g. in loops) need only be
parsed once, for improved performance.

In addition, it can intarpret data directly from storaga: so avoiding the
overhead of loading programs (Execs) from Disk.

The "read/only™ restriction also opens up the attractive possibility of
compilation or part compilation of the language: a possible implementa-
tion might therefore consist of a "compiler" which produces an "object
file™ which could then be very efficiently interpreted by the REX Exec
processor, wuWwith real performance improvements (a factor of at least 4
might be expected). However, thare is an identifiable need for the "fully
interpretive™ method of axecution, and this has been implemented first.

A suggestion by M. Hack is that the "object code™ of a compiled REX Exec be
appended to the source, with the final record in the fila acting as an
Indax. This idea at once solves tha problems of source/object separation
and avoids the tricky problems associatad with search order.

2.9 PEER EXEC/PROGRAM COMMUNICATION

It is often desirable to suspend the execution of an Exec in order to car-
ry on a dialogue with another Exec or Program, without having to enter the
Exec "at the top"™ for each invocation. An obvious example of this is Edi-
tor Macros, where the Exec needs to get additional or feedback information
from the caller.

The YKTSVC CMS packaga implements an effective subcommand handler, now
also implemented in tha VM System Product, s¢ REX uses this mechanism.

One REX instruction is used to control the facility: "Address ccc" will
cause any following . commands to be routed to the environment named CCC,
and "Address" (no namae) will re-route all following commands to the pravi-
ocusly selected environment. Similarly "Address ccc expression™ will send
just the one command to the identified environment.

*

REX interfaces are fully compatible with EXEC 2, and programs which suc~

Tha languagae features ’ 10

IBM Internal Use Only

cessfully interface with EXEC 2 should be able to use REX without any
changes being necessary. An -example is the new CMS Editor, XEDIT, for
which it is possible to write REX macros without any changes to the system
or to XEDIT itself.

The language features . 11

~

IBM Internal Use Only

3.0 REX LANGUAGE DEFINITION

Language definition for hEX Version 3.00.

Nota: This dafinition attempts to be a complete
description of thae syntax, which is now "frozen™ in the
sensa that incompatibla changas will not be made except
in extra-ordinary circumstances. Please bring any
errors, omissions, or necessary clarifications to the
attention of the Author: seae address on the front of
this document.

3.1 STRUCTURE AND GENERAL SYNTAZ

A REX program is built up out of a series of clauses which are composed of:
zero or more blanks (which are ignored); a sequencae of tokens (see below,
page 12); =zero or more blanks (again ignored); and the delimiter ";"
(semicolon) which may be implied by line-end, certain keywords, or the
colon ":" (if it follows a singla symbol). E£ach clause is scanned bafora
execution from laft to right and the tokens composing it are identified.
Instruction keywords are recognised at this stage, comments are removead,
and multiple blanks (except within strings) ara converted to single
blanks. Blanks adjacent to special characters (including operators, see
below on page 14) ara also removed.

3.1.1 Tokens

The language is composad of tokens (of any langth, up to an implementation
rastricted maximum) which are separated by blanks or by the nature of the
tokens themsaelvas. The clgssas of tokens ara:

comments: Any sequencae of characters on ona or mora lines which are dalim=
ited by "/%" and "%/". Commants may be naested; which is to say
that "/%" and "%/" must pair correctly. Comments are ignored by
the interprater (and hance may ba of any length), but do act as
saparators.

/% This is a valid comment %/
Note: Undar CMS, REX Execs must start with a comment (which dis~

tinguishas thae language from EXEC and EXEC 2).

REX language dafinition ' 12

~

strings:

IBM Internal Use Only

a string including any characters and delimited by the single
quote character (') or the double-quote (7). Use "7 to include
a " in a string delimited by ", and similarly use two single
quotes tc include a single quote in a string delimited by single
quotes. A string is a literal constant and its contents will
never be modified by REX. A string with no characters (i.e. a
string of length 0) is called a null string.

Thaesa are valid strings:

'"Fred®
"Don't Panic!™

Implementation maximum: A string may contain up to 250 charac-
ters.

Note that if followed immediately by a "(", the string will be
taken to be the name of a function; and if followed immediately
by an "X" symbol then it will be a hexadecimal-defined string...

Hex Strings: any sequence of pairs of hexadecimal digits (0-9, a-f, A-F)

symbols:

optionally separated by blanks, delimited by single- or double-
quotes and immediately followed by the character "x" or "X".
(The X may not be part of a longer symbol.) This represents a
character string constant formed by packing the hexadecimal
codes given. The blanks, which may only be present at byte
boundaries, are to aid readability and are ignored.

These arae valid hex strings:

YABCD'x
"id ec f8"X

Implementation maximum: The packed length of a hex string may
not exceed 250 bytes.

groups of any EBCDIC characters, selected from the alphabetic
and numeric characters (A-Z, a-z, 0-9) and/or from the charac-
ters a#$¢.!?7 and underscore, are called symbols. Any lower case
alphabetic character in a symbol is translated to upper case.

These are valid symbols:

Fred
Albert.Hall
HI!

If tha symbol is at thae beginning of a clausae and is not fol-
lowed by an "=" or a ":", then if it matches a REX keyword then
it is interpreted specially. Otherwise if it cannot be a number
(i.a. does not begin with a digit, 0-9, or a pariod) then it is
potentially a variable and may have a value. If it does not
hava a value then it is interpreted as: the character string con-
sisting of the charactars of thae symbol translated to upper

REX language definition . 13

IBM Internal Use Only

casa.

Implementation maximum: A symbol may consist of up to 250 char-
acters.

Numbers: These are character strings consisting of one or more decimal
digits optionally prefixed by a plus or minus sign, and
optionally including a single period (".") which then repres-
ents a decimal point. A number may also have a power of ten
suffixed in conventional exponential notation: an "E" (upper or
lower case) followaed optionally by a plus or minus sign then
followad by one or mora decimal digits dafining the power of
ten. Whenever REX uses a character string as a number it is
possible that rounding will occur, to a precision specified by
NUMERIC DIGITS instruction (default nine digits). Please see
pages 91-100 for a full definition of numbers.

Numbers may have leading blanks (before and/or after the sign,
if any) and may have trailing blanks. Embedded blanks are not
paermitted. Note that a symbol (see above) may be a number and
so may a string coﬁqtant. A number cannot be the name of a var—
jablae.

These are valid numbers:

12

=-17.9
127.0650
73e+128

¥+ 7.9E5 !

A Whole Number is a numbar which has a zero (or no) decimal
part, and which would not normally be expressed by REX in expo-
nential notation. i.e. it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is
9.

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

Operators: The special characters: + =/ % ¥ | & = = > < and tha sequences
D3 KT =3 =< == /= > <> == /s && || %% (which may
have embedded blanks) ara operator tokens (see page 16). One or
more blank character(s), where they oeccur in expressions but
are not adjacent to anothar operator, also act as an operator.

Special Characters: The characters , ; :) (together with the individ=-
ual characters from the operators have special significance
when found outside of strings, and constitute the set of
"Spacial™ characters. They all aet as token delimiters, and
blanks adjacent to any of these are removed, with the exception
that a blank adjacent to the outside of a parenthesis is only
deletad if it is also adjacent to another special character.

REX language definition ’ 14

w

IBM Internal Use Only

For example the clause
'REPEAT?® B + 3;

is composed of five tokens: a string, a blank operator, a symbol (which
may have a value), an operator, and a second symbol (which is a number).
The blanks between the "B"™ and the "+" and between the "+" and the "3" ara
removed, however one of the blanks between the "REPEAT" and the "B"
remains as an operator. Thus this is treated as though it ware writtaen:

*REPEAT' B+3;

Implementation maximum: During parsing of a clausae, the internal form of
a clause (which is approximately the sama length as the visibla form,
except that aextra blanks and comments are removed) may not aexceed 500
characters. Nota that this does not limit in any way the length of data
which can be manipulated, which is only dependent upon the amount of stor-
age (memory) available to tha interpreter.

3.1, Implied semicolons and econtinuations

REX will normally assume (imply) a samicolon at thae end of each lina,
except if:

. the line ends in tha middle of a string.
o the linea eﬁds in the middle of a commant.

o naither of tha above cases hold, but tha last non-comment token was a
comma. In this case the comma is functionally replaced by a blank,
and hence acts as a gontinuation character. Note that the comma will
remain in exacution traces.

This means that semicolons need only be included when there is more than
one clausae on a line.

Nota: Semicolons are added automatically by REX after colons (when fol-
lowing a singla symbol) and after cartain keyuwords when in the correct
context. The keywords that may have this effect arae: ELSE OTHERWISE
THEN. Thase spacial cases reduca typographical errors significantly.

Note: Tha two characters forming a double quote within 2 string, or the
comment dalimitars "/%X" and "%/" should not be split by a line-end sincea

thay could not then be recognisad correctly: an impliad semicolon would be
added.

REX languagae definition . 15

IBM Internal Use Only
3.2 EXPRESSIONS AND GPERATORS

Many clauses may include expressions which can consist of Terms (symbols,
strings, or function calls), interspersed with operators and parentheses.

A string, or any symbol uwhich starts with a digit or period (and hence may
be a valid number), is always taken to be a literal constant.

Other symbols may ba tha name of a variable, in which case they are
replacad by the value of that variable as soon as they are needed during
evaluation. Otherwise they are translated to upper case and treated as a
literal string. A symbol may also ba compound - see later in this docu-
ment.

Evaluation of an expression is left to right, modified by parentheses and
by operator precedence in the usual "algebraic™ manner (see below).
Expressions are always wholly evaluated, unless an error occurs during
evaluation. ,

Sinca all data is in the form o% typeless character strings, the result of
any expression evaluation is itself a character string. All terms and
results may be the null string (a string of length 0). Note that REX
imposes NO restriction on tha maximum length of results, though there will
usually be some practical limitation dependent upon the amount of storage
available te the REX program.

The operators (except the prefix operators) act on two taerms, which may be
symbols, gtrings. function calls, intermediate results, or
sub-axpressions in parentheses. Prefix operators act on the following
term or sub-exprassion. Thera are four types of operator:
string Concatenation:
The concatenation operators are used to combine two strings
to form one string. The combination may occur with or without
an intervening blank:
(blank] Concatenate terms with onae blank in between
It Concatenate without an intervening blank
{abuttal) Concatenate without an intervening blank
Concatenation without a blank may be forced by using the ||
oparator, but it is useful to know that if a string and a sym~

bel are abutted; then they will be concatenated directly.

a.g: If the variable "FRED® had tha value '37.4°,
then Fred'X%" would evaluatae to "37.4X°.

REX language definition . ’ 16

[

IBM Internal Use Only

Arithmetic:

Character strings which are valid numbers (see above) may be
combined using the arithmetic operators:
+ Add
- Subtract
% Multiply
7/ Divide
% Divide and raturn the integer part of the result
Vo4 Divide and return the remainder (NOT Modulo, since
the result may be negative)

%3 Raise a number to a whole power
Prefix = Negate the following term (must be numeric)
Prefix + Take following term (must be numeric) as is.
See the section on "Numerics"™ (page 91) for details of accura-
cy, the format of valid numbers, and tha combination rules for
arithmetic. Note that if an arithmetic result is shown in
exponential notation, it is likely that rounding has
occurred.

comparatives

The comparative operators return the value '1' if the result
of the comparison is trua, or '0' otherwisa. If both the
terms involved are numeric, then a numeric comparison (in
which leading zeros are ignored, etc.) is effected; otherwise
both terms are treated as character strings (leading and
trailing blanks are ignored, and then the shorter string is
padded with blanks on the right). The "==" operator may be
used to test for an exact match between two strings - in this
case the two strings must be both the same length and identi-
cal for a result of '1' to be given.

s= True if terms arae exactly equal (identical)

= True if the terms are aequal (numerically or when
padded etc.)

“S, /= Not equal (inverse of =)
> Greater than
< Less than

REX language definition . i7

IBM Internal Use Only

)¢, O Greater than or less than (same as "Not equal®™)
S, =< Greater than or equal to, Not less than
<=y =) Less than or equal to, Not greater than

Logical (Baclean):

A character string is taken to have the value "false™ if it is
f0', and "true" if it is a '1'. The logical operators take
one or two such valuas (valuaes other than '0' or '1' are not
allowed) and return '0' or '1' as appropriate:

) AND. Returns '1' if both tarms are "true™
i Inclusive OR. Returns '1' if either term is "true"
%) Exclusive OR. Returns '1' if either (but not both)

is "true”

Prefix = Logicai, NOT. Negates: '1' becomaes '0' and
vice-versa.

Operator Priorities:

Expression evaluation is from left to right and modified by parentheses
and by operator precedence. For example, "%" (multiply) has a higher pri-
ority than "+" (add), so 3+2%5 will evaluate to "13" (rather than the "257
whieh would rasult if strict left to right evaluation occurred). The
order of precaedence of the operators is (highast at tha top):

Prefix =, - and + (prefix operators)

%3¢ (exponentiation)

* /7 % /7 (multiply and divide)

= (add and subtraet)

™, ||, abuttal (concatenation, with/uithout blank)

ST @S /2 > € €) ¥C X2 K= a) 2 (comparison operators)
& (and)

| &8 (or, exclusive or)

REX language definition ' 18

R

o

IBM Internal Use Only

Examples: Suppoéé:that the following symbols represent variables; with
values as shoun:

A has the value '3’
DAY has the value '"Monday'

Then:

A+5 => '8

A~G%2 => =57

As72 s> '1.5"

0.5%%2 = '0.25"

(A+1)>7 => 0 /% i.a. Falsa %/
vy = 0 /7% i.e. False %/
(A+1)%3=12 = 1 /7% i.a. True ¥/
Today is Day => 'TODAY IS Monday'

"If it is' day => 'If it is Monday'

Substr(Day,2,3) => ‘'ond' /7% Substr is a function ¥/
Tl 0%exx'!? => TIXXXtY

REX language definition . 19

N

IBM internal Use Only

3.3 _CLAUSES AND INSTRUCTIONS

The clauses may be subdivided into five types:

Null clauses:

A clause consisting of only blanks and/or comments, or the
keyword "THEN" (in valid context) alone, is completely ignored
by REX (except that if it includes a comment or "THEN" it will
be traced, if appropriata). .

Note:s A null clause is not an instruction, so (for example) put-
ting an extra semicolon aftaer the THEN or ELSE in an IF instruc-
tion is not equivalent to putting a dummy instruction (as it

would be in PL/I). The NOP instruction is provided for this

purpose.

Labels:
A clause which conéi;ts of a single symbol followed by a colon
is a8 labal. The colon acts as an implicit clause terminatOF) 50
no semicolon is required. Labels are used to identify the tar-
gets of CALL instructions, SIGNAL instructions, and internal
function calls.. They may be traced selectively to aid
debuaging.

Assignments: B,
Single clauses with the form Symbol=expression are assignments.
An assignment gives a variable a (new) value.

Instructions:
An instruction is one or more clauses, the first of which starts
with a keyword which identifies the instruction. These control
the external interfaces, ¢the flow of control, etc. Some
instructions can include nested instructions.

commands:

Single clauses consisting of just an expression are Commands.
The expression is evaluated and passed as a command string teo
some external environment.

REX language definition ' ' 20

. e

[

IBM Internal Use Only

3.6 ASSIGNMENTS

Any clause of the form:

symbol=[exrressionl;

is taken to ba an assignment.

The symbol is any symbol that is valid as a variable name (as described
above on page 13) i.e. excluding thosae beginning with a digit (0-9) or a
period. It may be compound (see below, page 101). By being the target of
an assignment in this manner, it is contextually declared as a variable:
in other words, in succeeding instructions this particular collection of
characters within an expression represents the string in storage result-
ing from the evaluation of the expression in tha assignment.

Example: '
/7% Next line gives "FRED"™ the value "Frederic® ¥/
Fred='Frederic!'

If no expression is given, tha variable is set to the null string.

Note: Without the restriction on the first character, it would be possible
to redefine a numbaer, in that for example 3=%; would give a variable
called "3" the valua "§".

Note: Since an expression may include the operator "=", and an instruction
may consist purely of an expression (see next section), there is a possi-
ble ambiguity here. REX therefore takes any clause which starts with a
symbol and whose second token is "=" to bae an assignment, rather than an
expression (or an instruction). This is not a restriction, since the
clause may be executed as a command in several ways, such as by putting a
null string before the first name, or by enclosing the first part of the
expression in parentheses.

Similarly, if a programmer unintentionally uses a REX keyword as the vari-
able name in an assignment, this should not cause confusion - for example
the clause:

Address='10 Douwning Street’;

would be an assignment, not an ADDRESS instruction.

Note: The target of the assignment may not ba a stem: i.e. it may not be a
symbol which has only one period, as tha last character.

REX language definition . 21

IBM Internal Use Only
3.5 COMMANDS TO THE HOST

The Host System for REX is assumed to include at least one active environ-
ment for executing commands. One of these is selected by default on entry
to a REX program, and may be changed using the ADDRESS instruction.

Executing commands using the currently addressed environment may be
achieved using an instruction of the form:

exprassion;

The expression is evaluated, resulting in a character string (which may be
the null string) which is then prepared as appropriate and submitted to
the host.

The host will then execute the command (which may have side-effects such
as placing data on the system data queue, or altering REX variables). It
will eventually return control to REX, after setting a "return code™ (usu-
ally an integer, passed in an implementation dependent way). REX will
place this return code in the special variable called "RC".

For example, if the host were CMS, then both an 8-byte tokenised Plist and
an Extended Plist would be built from the string. e.g. the sequence:

fn=Jack; ft=Rabbit; fm=Al
State fn ft fm

would result in the Extended Plist: "STATE JACK RABBIT Al™ being submitted
to CMS. Of course, the simpler expression

*STATE JACK RABBIT AL’
would have the same effect in this case.

On return, the return code would be placed in "RC" which would probably
then have the value '0'" if the file JACK RABBIT Al existed, or '28° if it
did not. By convention, a return code of 0 normally means successful com-
pletion, and a negative return code indicates a sevare error (such as a
command not baing found). Positive return codes may indicate errors or
convey other information, depending upon the command and environment.

The default environment will depend on the caller of REX: for example if
an Exec is called from CMS, then the default environment would be CMS, if
called properly from an editor, then the default environment would be that
editor. A discussion of this mechanism is included below in an Appendix.

REX language definition) 22

IBM Internal Use Only

Note for CMS users: When the environment selected is "CMS™ (i.e. as is
default for EXECs) REX will translate tha "old-form" (tokenised) Plist to
upper case, and then ask CMS to execute the command. The search order
used is the same as that provided for a command entered from the CMS
interactive command environment, i.a. tha first token of the command is
taken as the name, and then:

1. 1If the name matches tha name of an Exec then that Exec is invoked.

2. If the name is a synonym or abbraviation for tha name of an Exec then
that Exec is invoked.

3. SVC 202 is invoked: i.a. CMS now tries for:
a. a transient already loaded with the given name.
b. a nucleus extension.
c. a nucleus function.

d. a user MODULE. ,
@. if none of these, then try for a synonym or abbreviation again,
and if one is found then retry the last four steps (a through d).

4. If the command is not known to CMS (i.e. all the above fails) then try
and execute it as a CP command.

Since Execs are often used as "covers" or extensions to existing modulas,
REX makes one exception to this order. A command issued from within an
Exec will not implicitly invoka that same Exec and hence causa a possible
recursion loop. If self recursion is desired then you must explicitly
request it by preceding the command name with the token 'EXEC' (or the
abbreviation 'EX' or 'EXE'). To invoke an Exec or a CP command
explicitly, use the prefixes 'EXEC' or 'CP' respectively (but note that
these may be issued via an Exec of that name, should one exist).

If you wish to issue commands without the search for Execs or CP commands,
and without the tokenised Plist being translated (i.e. in the way EXEC and
EXEC 2 issue commands), then you may use the environment called "COMMAND™
which is provided by REX. Simply include thae instruction "Address
Command™ at the start of your Exec (see page 25).

The COMMAND environment name is racommended for use in "system™ Execs
which make heavy use of MODULEs and nucleus functions. This makes such
Exacs more predictable (commands cannot be usurped by user Execs, and
operations can ba independent of tha user's setting of IMPCP and IMPEX),
and faster (the EXEC and first abbreviation searches are avoided).

Note: The searchas for Execs, Synonyms, and CP commands are all affected

by the CMS SET command (IMPEX, ABBREV, and IMPCP options). The full
search order given above assumes these are all ON.

REX language definition i 23

IBM Internal Use Only
3.6 INSTRUCTIONS

Several of the more powerful features of the language (notably functions)
reduce the number of primitive REX instructions needed.

In the following diagrams, symbols (words) in capitals denote kevwords,
other words (such as "expression™) denote a collection of symbols as
defined above. Note however that the keywords are not case dependent: the
symbols "if" "IfT" and "iF" would all invoke the instruction shoun below
as "IF". Note also that most of the dalimitars shown may usually be omit-
ted as thay will be implied by the end of a lina. A "THEN"™ in the context

of a clause (i.e. as the first and only symbol) acts as a semicolon and is

therefore ignored, providing that it is in a valid context (i.e. follous
an IF or WHEN clause).

The brackets [and] delimit optional parts of the instructions.

3.6.1 ADDRESS

ADDRESS l[environment [expressionll;
{VALUE] expression;

where "environment"™ is a single symbol or string, which
is taken as a constant.

This instruction is used to affect a temporary or parmanent change te the
destination of command(s). The concept of alternative subcommand envi-
ronments is described in an Appendix.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the
resulting command string is routed to the given environment. After exe-
cution of the command, the environment will be set back to whatever it was
before, thus giving a temporary change of destination for a singlae
command.

Example:

Address CMS 'STATE PROFILE EXEC'
If only an environmant name is specified, then a lasting change of desti-
nation occurs: all following commands (expressions not preceded by a REX
keyword) will be routed to the given command environment, until the next

ADDRESS instruction is executad. Tha previously selected environment is
saved.

REX language definition ' 2%

G

2

IBM Internal Use Only

Example:

address CMS

'STATE PROFILE EXEC'

if re=0 then 'COPY PROFILE EXEC A TEMP = =!
address XEDIT

Similarly, thae VALUE form may be used to make a lasting change to the
environment - hare the expression (which of course may be just a variable
name) is evaluated, and thae raesult forms the name of tha environment. The
kayword TVALUE™ may bae omitted if tha expression does not begin with a
symbol or string.

If no arguments are given, commands will be routed back to the environment
that was selected before thae previous lasting change of environment was
made, and the c¢urrent environment name is saved. Repeated execution of
just T"ADDRESS™ will therefore "toggle™ the command destination between
two environments.

The two environment names maintained by REX are automatically saved across
subroutine and internal function calls. See under the CALL instruction
(paga 27) for mora details.

If the null string or a blank string is given as the environment name then
a default environment, which depends upon the implementation, is implied.

The current ADDRESS setting may be retrieved using the ADDRESS built-in
function. See page 62. ’

Note for CMS users: In the CMS implementation, three environment names
havae a special meaning:

cns This environment name, which is the default for Execs, impliaes
full command resolution just as provided in normal interactive
command (terminal) mode. (See page 23 for details.)

COMMAND This implies basic CMS SVC 202 command resolution. To invoke an
Exec, the word "EXEC" must prefix the command, and to issue a
command to CP, the prefix "CP™ must be used (see page 23).

" (null) Same as "COMMAND™. Nota that this is not the same as ADDRESS
with no argumaents, which will toggle the environmant.

REX language dafinition . 25

IBM Internal Use Only

3.6.2 ARG

ARG [templatel;

Where "template™ is a list of symbols separated by
blanks and/or "patterns"™

ARG is usad to raetrieve the argument strings provided to a program or
internal routjne. and is just a short form of the instruction

PARSE UPPER ARG [templatel;

Unless a subroutine or internal function is being executed, the input
parameters to the program will be read as one string, translated to upper
case, and then parsed into variables according to the rules described in
the section on parsing (page 83). Use the PARSE ARG instruction if upper
case translation is not desired.

If a subroutine or internal function is being executed, then the data used
will be the argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions may be executed as often as desired
(typically with different templates) and will always parse the same cur-
rent input string(s). There are no restrictions on the length or content
of the data parsed except those imposed by the caller.

Example:

/% String passed to FRED EXEC is "Easy Rider™ ¥/
Arg advarb noun .

/% Now: TADVERB"™ contains "EASY' 74
7% T"NOUN™ contains 'YRIDER®' */

If more than one string is expected to be available to the program or rou-
tine, then each may be selected in turn by using a comma in the parsing
template.

Example:

/¥ funetion is invoked by FRED('data X',1,5) */
Fred: Arg string, numl, num2

/% Now: "STRING™ contains °'DATA X°* %/
/% WNUML™ contains '1" L 74
/7% TNUM2" contains '5¢' */

Note: The source of the data being interpreted is also made available on
entry to the program. Seae the PARSE instruction (SOURCE option) on page
42 for details.

Note for EXEC users: Unlike EXEC and EXEC 2, the arguments passed to REX
Execs can only be used after executing either the ARG or PARSE ARG com-

REX language definition ' 26

IBM Internal Use Only

mands. They are not immediately available in predefined variables as in
the other languages.

Notae for CMS users: A string passed from CMS command level is restricted

to 130 characters, and prior to VM/SP Release 2 will be wholly translated
to upper case by CMS.

3.6.3 catl

CALL namae [expression] [,[expressionll]...;

CALL may be used to invoke an internal, built-in, or external routine,
which may optionally return a result. It is functionally identical to the
clause:

resultsname([expression] [,[expressionl]...);
where the variable RESULT will become uninitialised if no result is
returned by the routine invoked.

Up to ten expressions, separated by commas, may be specified. Thase are
evaluated in order from left to right, and form the argument string(s)
during execution of the routine (i.e. the ARG and PARSE ARG instructions
will access thesa strings rather than those active previously).
Exprassions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the
sama mechanism as function calls. Therefore the CALL instruction may be
used to invoke internal routines, external routines and programs, or even
built-in functions. The order in which these are searched for is
described in the section on functions (page 58), but briefly is as
followus:

Internal routines (unless the routine name is specified in quotes) These
are sequences of REX instructions inside the same program,
which start at the label which matches the name in the CALL
instruction.

Built-in routines These ara routines built in to the interpreter for pro-=
viding various functions. They always return some result. (See
page 61.)

External routines These are routines which are external te the program and
the interpreter. They may be written in REX (i.e. @ REX program
may be invoked as a subroutine by the CALL instruction, and in
this case may be passed more than one argument string - see page
125.) ’

During execution of an internal routine, all variables previously known

REX language definition . 27

IBM Internal Use Only

are normally accessible. However, the PROCEDURE instruction may be used
to set up a local variables environment to protect the subroutine and
caller from each other. The EXPOSE option on the PROCEDURE instruction
may further be used to expose selected variables to a routine.

When control reaches the internal routine, the line number of the CALL
instruction is available in the variable "SIGL"™ (in the caller's variable
environment). This may be used as a debug aid, as it is therefore possi-
ble to find out how control reached a routina.

Eventually the subroutine should execute a RETURN instruction, and at that
point control will return to the clause following the original CALL. If
the RETURN instruction specified an expression, then the variable
"RESULT" will be set to tha value of that expression. Otherwise the vari-
able "RESULT™ is dropped (becomes uninitialised).

Internal routines may include calls to other internal routines.
Example:
/% Recursive subroutine exéecution... %/
arg x)

call factorial x
say x'! =' result

exit
factorial: procedure /7% calculate factorial by.. ¥/
arg n /% .. recursive invocation. ¥/

if n=0 then return 1
call factorial n-1
return result % n

During internal subroutine (and function) execution all important pieces
of information are automatically saved and are then restored upon return
from the routine. These are:

U The status of DO-loops and other structures - executing a SIGNAL while
within a subroutine is "safe™ in that DO-loops etc. that were active
when the subroutine was called are not deactivated (but those current-
ly active will be).

L Trace and debug mode settings - once @ subroutine is debugged, you may
insert a "Trace 0ff" at the beginning of it, and this will not affect
the tracing of the caller. Conversely, if you only wish to debug a
subroutine, you could insert a "Trace Results"™ at the start - tracing
will automatically be restored to the conditions at entry (e.g. "O0ff")
upon return. Similarly, debug moda and command inhibition are saved
across routines.

® NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations
- see page 40) are saved and are then restored on RETURN. A subrou-

tine may therefore set the precision etc. that it needs to use without
fear of affecting the caller. ’

REX languagae definition . 28

IBM Internal Use Only

° ADDRESS settings (the current and secondary destinations fo#;éémmands
- see the ADDRESS instruction on page 24) are saved and are then
restored on RETURN.

° Exception conditions (SIGNAL ON xxx) are saved and are then restored
on RETURN. This means that SIGNAL ON and SIGNAL OFF may be used in a
subroutine without affecting the conditions set up by the caller.

. Elapsed time clocks A subroutine inherits the elapsed time clock from
its caller (see the TIME function on paga 74), but since the time
clock is saved across routine calls a subroutine or intaernal function
may independently restart and use the clock without affecting its
caller. For the same reason, a clock started within an internal rou-
tine is not available to the caller.

Note: The name given in the CALL instruction must be a valid symbol, which
is treated literally, or ' a literal string. If a string is used for the
name (i.e. the name is specified in quotes) then the search for internal
labels is bypassed, and only built-in or external routines will be
invoked. Note that the names of built-in functions (and generally the
names of external routines too) are in upper case, and hence the name in
the literal string should be in upper case.

Implementation maximum: The total nesting of control structures, which
includes internal routine calls, may not axceed a depth of 2590.

3.6.4 DO

DO [repetitor] [conditionall; [instruction-list]
END [symboll;

where repetitor is one of:
name = expri [TO0 exprt] [BY exprbl [FOR exprfl
FOREVER
exprr
and conditional is either of:
WHILE expru
UNTIL expru
and instruction-list is: any sequence of instructions

;ﬂotes:

® exprr, expri, exprb, exprt, and exprf (if present) may be any
expression which evaluates to a number. exprr and exprf are further
restricted to result in a non-negative wholae number. If necessary,
the numbers will ba rounded according to the setting of NUMERIC
DIGITS. i

® expru or expruy (if present) may be any expression which evaluates to

REX language definition ‘ 29

[P = S s ve e aoww s R . e~ m e s D T T

IBM Internal Use Only

1 or '0°.
o the T0, BY, and FOR phrases may be in any order, if used.

° the instruction(s) in instruction-list may include any of the more
complex constructions such as IF, SELECT, or the DO instruction
itself.

° the sub-keywords 70, BY, FOR, WHILE, and UNTIL are reserved within a
D0 instruction, in that they cannot name variables in tha
expraession(s) but they may be used as the name of the control
variable. FOREVER is similarly resaerved, but only if it immediately
follows tha keyword DO.

. exprb defaults to "1', if relevant.

The DO instruction is used to group instructions together and optionally
to execute them repetitively. During repetitive execution, a control var-
iable may be stepped through some range of values.

y

¢

Simple DO group.

If neither repetitor nor conditional is given, then the construct merely
groups a number of instructions together: these are axecuted once.

Examples

7% The two instructions between DO and END will both ¥/

/% be executed if A has the value 3. */
If a=3 then Do

a=a+2

Say '"Smile!"

End

Otherwise the group of instructions is a repetitive D0 loop, and the
instruction-list is executed according to the repetitor phrase,
optionally modified by the conditional phrase.

Simple Repaetitiva Loops.

If no repetitor is given (so there is only a conditional, see below) or
the repetitor is "FOREVER™, then the instruction-list will nominally be
executed "forever™ i.e. until the condition is satisfied or a LEAVE or
SIGNAL instruction is aexacuted.

In the simple form of the repetitor, the expression exprr is evaluated

immediately (and must result in a whele number which is zero or positivel,

and the loop is then executed that many times:

REX language definition S 30

[

[

IBM Internal Use Only

Example:

/7% This types "Hello"™ five times X/
Do 5

say 'Hello'

end

Note that, similar to the distinction between a command and an assignment,
if the first token of exprr is a symbol and the second token is an "=",
then the controlled form of repetitor will be expected:

controlled Repetitive Loops.

The controlled form specifies a control variable; name, which is given an
initial value (the result of expri), and which is then stepped (by adding
the result of exprb) each time the instruction-list is executed, while the .
end condition (the result of exprt) is not exceeded. If exprb is
positive, then the loop will be terminated when name is greater than
exprt. If negative, then tha loop will be terminated when name is less
than exprt. '

The expressions expri, exprt, and exprb must rasult in numbers. They are
evaluated once only, before the loop begins and before the control vari-
able is set to its initial value. The default value for exprb is 1. If no
exprt is given then the loop will executae indefinitaely unless soma other
condition terminates it.

Example:

Do I=3 to -2 by -1
say i
end
/7% Would type out: 3, 2, 1, 0, -1, -2 %/

Note that the numbers do not have to be whole numbers:
Example:

X=0.3
Do Y=X to X+4 by 0.7
say Y
end
/% Would type out: 0.3, 1.0, 1.7, 2.6, 3.1, 3.8 %/

The control variabla may be altered within the loop, and this may affect
the iteration of thae loop. Altering the value of the control variable is
not normally considered good programming practice, though it may be appro-
priate in certain circumstances. Nota also that the control variable is
referenced by name. If (for example) the compound name "A.I"™ was used for
the control variable, then altering "I™ within the loop will cause a
change in the control variabla. ’

The execution of a controlled loop may further be boundad by a FOR phrasa.

REX language definition . 31

. . g - claan T

IBM Internal Use Only

In this case, exprf must be given and must evaluate to a non-negative
whole number. This acts just like the repetition count in a simple repet-
itive loop, and sets a limit to the number of iterations around the loop
if no other condition terminates it. Like the T0 and BY expressions, it
is evaluated once only when the DO instruction is first executed and
before the control variable is given its initial value. Like the TO con-~
dition, the FOR count is checked at the start of each iteration.

Examplie:

Do Y=0.3 to 4.3 by 0.7 for 3
say Y
end
/% Would type out: 0.3, 1.0, 1.7 %/

In a controlled loop, the symbol describing the control variable may be
specified on the END instruction. REX will then check that the symbol
exactly matches the symbol in the DO clause (note that no substitution for
compound variables is carried out), and will raise an error if the symbols
do not-match. This enables the nasting of loops to be checked automat-
ically, with minimal overhead. '

€

Example:

Do K=1 to 10

End k /% Checks that this is tha END for K loop ¥/

Note: The values taken by the control variable may be affected by the
NUMERIC settings, since normal REX arithmetic rules apply to the computa-
tion of stepping the control variabla.

conditional Phrases (WHILE and UNTIL).

Any of the forms of repetitor (none, FOREVER, simple, or controlled) may
be followed by a conditional phrase, which may cause termination of the
loop. If "WHILE™ or "UNTIL"™ is specified, the expression following it is
evaluated each timz around the loop using tha latest values of all vari-
ables (and must evaluate to either '0' or '1'), and the instruction-list
will be repeatedly aexecuted either while the result is '1', or until the
result is "1°'.

For a "WHILE™ loop, the condition is evaluated at the top of the instruc-
tion list, and for an "UNTIL™ loop the condition is evaluated at the bot-
tom ~ before the control variablae has been stepped.

Example:
Do I=1 to 10 by 2 until i>6
say i

end
7% Would type out: 1, 3, 5, 7 ¥/

REX language definition ' 32

rY-3

IBM ,Intgrnal Use Only

Note that the execution of repetitive loops may also be modified by using i

the LEAVE or ITERATE instructions.

Programmer's modal - how a typical DO loop is executed:

For the following DO:

D0 name=expri TO0 exprt BY exprb WHILE expruw
instruction-list

® 06 o

End

REX will execute the following:

Stempi=expri 7% ($variables are internal and */
Stempt=exprt /% are not accessible.) */
S$tempb=exprb ’
name=$tempi

$loop: ,

if name > $tempt then leave /% leava = "quit loop™ %/

7% A FOR count would have been checked here %/

if -expruw then leave
instruction-list-‘

/% An UNTIL expression would have beén taestaed hera ¥/

namesname + $tempb -

Transfer control to label $loop

Note: This example is for exprb >= 0. For naegative
exprb, the test at the start of the loop would be
<" pather than "%,

REX language definition

33

IBEM Internal Use Only

3.6.5 DROP

DROP variable-list;

Where variable~list is a list of symbols separated by
blanks. :

DROP is used to "unassign™ variables i.e. to rastora them to their ori-
ginal uninitialised stata.

Each variable in tha list will be dropped from the list of known
variables. The variables are dropped in sequence from left to right. It
is not an error to specify a name more than once, or to DROP a variable
that is not known. If an EXPOSEd variable is named (see the PROCEDURE
instruction), then the variable itself in the older generation will be
dropped.

Examples

j=4

Drop a x.3 x.3 .

/% would reset tha variables: AW, "X_3", and "X.4"™ X/
If a variable is specified as the stem of a compound variable (i.e. it is a
symbol which contains only one period, as the last character), then all
variables starting with that stem are dropped.

Example:

Drop x.
/% would reset all with names starting with "X.% %/

T~

REX language definition ' 34

(2

wo

IBEM Internal Use Only

3.6. EXIT

EXIT (expressionl;

EXIT is used to unconditionally leave a program, and optionally return a
data string to the caller. The program is terminated immediately, even if
an internal routine is currently being executed. If no internal routine
is active, then RETURN (sea pagae 48) and EXIT havae the same function.

If an expression is given, it is evaluated and the string resulting from
the evaluation is then passed back to the caller when the program termi-
nates.

Example:

i=3

Exit jx¢

7% Would exit with the atring '12' *%/
If no expression is given, no data is passed back to the caller. If the
program was called as an external function this will be detected as an
error - either immediately (if RETURN was used), or on return to the call-
er (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruc-
tion PEXIT;"™, in that it terminates the whole program and returns no
result string.

Note: Undar CMS, REX does not distinguish between invocation as. a command
on the one hand, and invocation as a subroutine or function on the other.
If in fact the program was invoked via the more primitive command inter-
face (which only allows a numeric return coda), an attempt is made to con-
vert the returned value to a return code acceptable by the host. The
returned string must then be a whole number whose value will fit in a
S/7370 register (i.e. must be in tha range -(2%%31) through 2%%31-1). If
the conversion fails, it is deemed to be a failure of the REX host inter-
face and is thus not subject to trapping by SIGNAL ON SYNTAX. Note also
that only the last four or fiva digits of the return codae will be dis-
played by the standard CMS "Ready messaga™.

REX languaga definition . 35

IBM Internal Use Only

3.6.7 IF

IF expressionf;] THENL;] instruction
[ELSEL;] instruction]

The IF construct is used to conditionally executa an instruction or group
of instructions.

The expression is evaluated and must result in '0' or '1'. Tha first
instruction is executed only if the result was '"1'. If an ELSE was given,
then the instruction after the ELSE is executed only if the result was
0.

Example:

if answer='YES' then say '0K!°*
elsa say 'Why not??

Remember that if the ELSE clause is on tha same lina as the last clause of
the THEN part, then you need a semicolon to terminate that clausa:

Example:
if answer='YES' then say '0K!'; else say 'Why not?'

The ELSE binds, to the nearaest IF at the same leval. This means that any IF
which is used as the instruction following the THEN in an IF construct
which has an ELSE clausae, must itself hava an ELSE clause (which may be
followed by the dummy instruction, NOP).

Example:

if answer='YES' then if namae="FRED' then say '0K, Fred.'
alse say '0K.°?
else say "Why not??'

Note: An instruction includes all the more complex constructions such as
DO groups and SELECT groups, as waell as the simpler ones and tha "IFW
instruction itself. A null clause is not an instruction however, so put-
ting an extra samicolon aftar thae THEN or ELSE is not equivalent to put-
ting a dummy instruction (as it would be in PL/I). The NOP instruction is
providad for this purposae.

Note: Tha keyuword "THEN™ is treated spaecially, in that it need not start a
clause. This allows the expression on the IF clause to be terminated by
thae THEN, without a ";"™ baing requirad - were this not so, people used te
other computer languages would experience considerable difficulties:
Hence a variable called "THEN™ cannot be used within the expression.

Note: In the CMS implementation, the presence of the keyword "THEN® is not
enforced, provided that an axplicit semicolon or line end is present at

REX language definition ' 36

~

a0

IBM Internal Use Only

that position in the construct.

3.6.8 INTERPRET

INTERPRET expression;

INTERPRET is used to execute instructions which hava been built dynam-
ically by evaluating an expression (rather than which exist permanently in
the program).

The expression is evaluated, and will then be executed (interpreted) just
as though the resulting string were a line inserted into the input file
(and bracketed by a DO; and an END;). Any instructions (including INTER-
PRET instructions) are allowed, but note that constructions such as DO ...
END and SELECT ... END must be completa.

A semicolon is implied at the énd of the expression during execution, as a
service to the user.

Example:

data='FRED’

interpret data "= 4°

/7% Will a) build the string "FRED = 4" %/
/% b) executa "FRED = 4;" %/

7% Thus the variable "FRED"™ will ba set to "4™ X/
Example:

data='do 3; say "Hello there!™; end'
interpret data
/7% Will type out "Hello there!™ three times %/

Note: For many purposes, the VALUE function (see page 77) may be used
instead of the INTERPRET instruction.

Note: Labels within the interpreted string are not persistent and are
therefora ignored. Hence executing a SIGNAL instruction from within an
interpreted string will cause immediate exit from that string before the
label search begins.

REX language definition . 37

IBM Internal Use Only

3.6.9 ITERATE

ITERATE [symboll;

Jterate alters the flow within a repatitive DO loop (i.e. any DO construct
other than that with a plain D0O).

Execution of the instruction list stops, and control is passad back up te
the DO clause just as though the END clause had been encountered. The
control variable (if any) is then stepped (iterated) as normal and the
instruction list is executaed again, unless the loop is terminated by the
DO clause.

If no symbol is specifiaed, then ITERATE will step the innermost active
repetitive loop. If a symbol is specified, then it must be the name of the
control variable of a currently active loop (which may be the innermest),
and this is the loop that is stepped. Any active loops inside the one
selectad for iteration are terminated (as though by a LEAVE instruction).

‘

Example: .

do i=1 to 6
if 12 then itarate
say i
end

7% Would typa out the numbers: 1, 3, ¢ %/

Note: The symbol, if specifiad, must match that on the DO instruction
axactly in that no substitution for compound variables is carriaed ocut.

Note: A loop is active if it is currently being executed. If a subroutine
is called (or an INTERPRET instruction is executed) during execution of a
loop, then the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. ITERATE cannot be used to step
an inactive loop.

Note: If more than one active loop uses the same control variable. then
the innaermost will be the ona selected by tha ITERATE.

REX language definition . 38

Eled

/7N

IBM Internal Use Only

3.6.10 LEAVE

LEAVE [symboll;

Leave causes immediate exit from ona or more repetitive DO loops (i.e. any
DO construct other than that with a plain DQ).

Exaecution of tha instruction list is terminated, and control is passed to
the instruction following the END clause, just as though the END clausa
had been encountered and the termination condition had been met normally,
excapt that on exit the control variable (if any) will contain the value
it had when the LEAVE instruction was executed.

If no symbol is specified, then LEAVE will terminate the innermost active
repetitive loop. If a symbol is specified, then it must be the name of the
control variable of a currently active loop (which may be tha innermost),
and that loop (and any active loops inside it) is then terminated. Con-
trol then passes to the clause following the END that matches the DO
clause of the selectad loop. ‘

Example:

do i=1 to 5
say i
if i=3 then leave
end

7% Would typea out tha numbers: 1, 2, 3 ¥/

Note: The symbel, if specified, must match that on the DO instruction
exactly in that no substitution for compound variables is carried out.

Note: A loop is activa if it is currently being executad. If a subroutine
is called (or an INTERPRET instruction is executed) during execution of a
loop, then the loop becomes inactive until the subroutine has returned or
the INTERPRET instruction has completed. LEAVE cannot be used to termi-
nate an inactive loop.

Note: If more than one activa loop uses tha same control variable, then
the innermost will ba the one selected by the LEAVE.

REX language definition . 39

i = B - Bl T Ea b R s i

R R e ST Torloma

IBM Internal Use Only

3.6.11 Nap

NOP;

NOP is a dummy instruction which has no aeffect. It can ba useful as the
target of an ELSE, WHEN, or THEN clause:

Example:

Selact
when a=b then nop /7% Do nothing %/
when a>b then say 'A > B!
otherwise say 'A < B!

end

Note: Putting an extra semicolon instead of the NOP would merely insert a
null clause, which would just be ignored by REX. The second WHEN clause
would then immediately follow the first, and hence would be treated as a
syntax error. NOP is a true instruction, however, and is thereforae a val=
id target for the WHEN clause.

3.6.12 NUMERIC

NUMERIC DIGITS [expressionl;
FORM [SCIENTIFICI];
[ENGINEERING];
FUZZ [expressionl;

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described
in detail on pages 91-100, but in summary:

NUMERIC DIGITS controls the precision to which arithmetic operations will
be carried out. The expression (if specified) should evaluate
to a positive whole number, and the default is 9. This number
must be larger than the FUZZ setting.

There is no limit to tha value for DIGITS (except the amount of
storagae availabla) but notae that high precisions are likely to
be very expensive in CPU time. It is recommended that the
dafault value be used wheraver possible.

NUMERIC FORM controls which form of exponential notation is to be used by
REX. This may be either SCIENTIFIC (in which case only one,
non-2aero, digit will appear before tha decimal point), or ENGI-
NEERING (in which case the power of ten will always be a multi-

REX language definition : 40

IBM Internal Use Only

ple of three). The default is SCIENTIFIC.

NUMERIC FUZZ controls how many digits, at full precision, will be ignored
during a comparison operation. The expression (if specified)
must result in zero or a positive wholae number which must be
less than the DIGITS setting. The default value for FUZZ is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS
by the FUZZ value before every comparison oparation, so that the
numbers are subtracted undar a precision of DIGITS-FUZZ digits
during the comparison and are then compared with 0.

Note: The three numeric settings are automatically saved across subrou-

tine and intarnal function calls. See under tha CALL instruction (page
27) for more details.

3.6.13 PARSE

PARSE [UPPER] ARG [templatel;
EXTERNAL v
NUMERIC
PULL
SOURCE
VALUE [expressionl] WITH
VAR name
VERSION

3 33 3 3 3

Where "templatae™ is a list of symbols separated by
blanks and/or "patterns™ _

The PARSE instruction is used to parse data into variables according to
the rules described in the section on parsing (page 83). If the UPPER
option is specified, then tha data to be parsed is first translated to
upper case. Otherwise no upper case translation takes place during the
parsing.

If no template is specified, then no variables will be set but action will
be taken to get the data ready for parsing if necessary. Thus for PARSE
EXTERNAL and PARSE PULL, a data string will ba removed from the appropri-
ate queue; and for PARSE VALUE the expression will be evaluated.

The data used for each variant of the PARSE instruction is:

REX language definition . 41

IBM Internal Use Only

" For PARSE ARG

The string(s) passed to the program, subroutine, or function as
the input parameter list are parsed. (See the ARG instruction
for details and examples.) Note that under versions of CMS pri-
or to VM/SP release 2, the ARG string passed from the command
level is irrevocably translated to upper case by CMS, though
XEDIT correctly passes mixed case data. i

For PARSE EXTERNAL

The next string from tha system external event queue is parsed.
This queue is system defined, and may contain data that is the
result of extarnal asynchronous events - such as usar consola
input, or messages.

The number of lines currently in the external event queue may be
found with the EXTERNALS built-in function. See page 67.

Under CMS/SP, PARSE EXTERNAL will read directly from the con-
sole input queue (S; opposed to the program queue which PULL
accesses). If that quaue is empty, then a consolae read results.
Note that this mechanism should not be used for "normal"™ console
input, for which PULL is more general, but rather it could be
used for special applications (such as debugging) when the pro-
gram queue cannot be disturbed.

For PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction
-~ sae page 40) in the order DIGITS FUZZ FORM are made available.

e.g: 9 0 SCIENTIFIC
See also page 99.
For PARSE PULL

The next string from the system provided data queue is parsed.
This queue is implementation defined, but will at least support
the ability to sava a saries of data strings of reasonable
length. Data can be added to the head or tail of the queue
using the PUSH ard QUEUE instructions respectively. The queue
may also ba altered by other programs in the system, and may be
usable as a means of communication between programs.

The number of lines currently in the data queue may be found
with the QUEUED built~in function. See paga 71.

Under CMS, PULL and PARSE PULL read from thae program "stack®.
If that is empty, they read from the console input queue, and if
that too is empty then a console read results. (See the PULL
instruction, on page 46, for further daetails.)

REX language definition ' 42

w0

IBM Internal Use Only

For PARSE SOURCE

The data parsed describes the source of the program being exe-
cuted in some implementation dependent way.

Under CMS, the string contains the characters "CMS", follouwed
by either "COMMAND™, T™FUNCTION™, or ™SUBROUTINE"™ depending on
whether the program was invokad as some kind of host command
(e.g. Exec or Macro), or from a function call in an expression,
or via thae CALL instruction. These two tokens are followed by
tha program filenamae, filetype, and filemode; each separated
from the previous token by one or more blanks. (The filetype
and filemode may be blank if the program is being executed from
storagae, in which case tha SOURCE string will have one or tuwo
"%"s as place holders.) Follouwing the filemode is the name by
which the program was invoked (due to synonyming, this may not
be the same as the filename). It may be in mixed case when
called from some versions of CMS, and will be truncated to 8
characters if necessary. The final word is the initial
(default) address for commands.

If the interpreter was called from a program that set up a sub-
command environment, then the filatype is usually the name of
the default address for commands - see page 118 for details.

The string parsed might tharefore look like this:
CMS COMMAND REXTRY XEDIT * rext XEDIT
For PARSE VALUE
The axpression is evaluatad, and the result is the data that is
parsed. Note that "WITH"™ is a kevuword in this context and so
cannot be used as a symbol within the expression.
Thus, for example:

Parse VALUE’time() WITH hours *:' mins ":' secs

will get the current time and split it up into its constituent
parts.

For PARSE VAR name
The value of the variable specified by name is parsed. Note

that the variable name may be included in the template, so that
for example:

PARSE VAR string uwordl string
will remove the first word from STRING and put it in the vari;
able WORD1, and

PARSE UPPER VAR string wordl string

REX language definition ~ ’ . 43

U P C e e e e e o e e e e e e e e

IBM Internal Use Only

will also translate the data in STRING to upper case before the
parsing.

For PARSE VERSION

Information describing the language level and the date of the
interpreter is parsed. This consists of five words: first the
string "Rex"™, then'the language level description, e.g. "3.00",
and finally the interpreter release date eg: "4 Jul 19827,

3.6 PROCEDUR

PROCEDURE [EXPOSE name-listl;

Where name-list is a list of symbols separated by blanks

v

The PROCEDURE instruction may be used within an internal routine (subrou-
tine or function) to protect all tha existing variables by making them
unknown to following instructions. Saelected variables or groups of vari-
ablas may be exposed to the internal routine by using the EXPOSE option.
On executing a RETURN instruction, the original variables environment is
restored, and any variables used in the routine and which were not EXPOSEd
are dropped.

A routine need not include a PROCEDURE instruction, in which case the var~-
iables it is manipulating are those "owned" by the caller.

If the EXPOSE option is used, then the specified variables of the caller
arae exposed; so that any references to them (including setting them and
dropping them) refer to the variables environment owned by the caller.
Hence the values of existing variables are accessible, and any changes are
persistent even on RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an
error to specify a name more than once, or to specify a name that has not
been used as a variable by thae caller.

Example:

/7% This is main program ¥/
3=1; x.i='a*

call toft
say j km /7% would typa ™1 7 M" %/
exit

toft: procedure expose j k x.J

say j k x.j /% would type "1 K a® */
k=7; m=3 /% nota "M" is not exposaed %/
return

REX language definition . 46

o)

IBEM Internal Use Only

Note that if the "X.J"™ in the EXPOSE list had been placed before the "J",
then the caller's value of "J" would not hava been visible at that time,
so "X.1" would not have been exposed.

An entire collection of compound variables (see page 101) may be exposed
by specifying their stem in the name-list. (The stem is that part of the
name up to and including the first period.) Again, the variables are
exposed for all operations.

Example:

Procedure Expose i j a. b.
/7% This exposes "I, ™J", and all variables whose %/

/7% name starts with "A."™ or "B." */
A.1='7' /% This will set "A.1" in the caller's L 74
/7% environment, even if it did not */
/% previously exist. : */

Variables may be exposed through several generations of routines, if
desired, by ensuring that they are included on all intermediate PROCEDURE
instructions. ‘e

¢

Note: The PROCEDURE instruction should be the first instruction executed
after the CALL or function invocation - i.e. it should be the first
instruction following the label. This restriction has an important affect
on the compilability of a REX program, but is not enforced in the current

interpreter implementation.
Only one PROCEDURE instruction in each leval of routine call is alloued,

all others (and thosae met outsida of internal routines) are in error.

Please see the CALL instruction and Function descriptions on pages 27 and
58 for details and examples of how routines are invoked.

REX language definition . 45

IBM Internal Use Only

3.6.15 PULL

PULL [templatel;

Where "template” is a list of symbols separated by
blanks and/or "patterns"

PULL is used to read a2 string from the system provided data queua. It is
just a short form of the instruction

PARSE UPPER PULL [templatel;

The current head-of-queue will be read as one string. If no template is
specified, no further action is taken (and the data is thus effectively
discarded). Otherwise, the data is translated to upper case and then
parsed into variables according to the rules described in the section on
parsing (page 83). Use the PARSE PULL instruction if upper case trans-
lation is not desired. ' '

¢

Example:

Say 'Do you want to erasa the fila? Answer Yes or No:!
Pull answer .
if answer='YES' then Erase filename filetype filemode

Here tha dummy placeholdar "." is usaed on thae template s¢ the first word
typed by the user is isolated ready for the comparison.

The number of lines currently in the data queue may be found with the
QUEUED built-in function. Sea page 71.

Note: Under CMS, the program "stack™ is used. If that is empty, then the
console input buffer is used. If that is empty too, then a console read
will occur. Conversely, if you "type-ahead" before an Exec asks for your
input, then your input data is added to the end of the console input buff-
er and will be read at the appropriate time. The length of data in the
stack is restricted to 130 or 255 characters, depending on CMS release.

REX language definition . 46

N ‘
EPSEET P = e n et cem e mm e e e c o ol s e e o = i inxcives el memmmsmmmemimii S S oa mess

IBM Internal Use Only

3.6.16 PUSH

PUSH [expressionl;

The string resulting from expression will be stacked LIFO (Last In, First
Qut) onto the system data queue. If no expression is specified, a null
string is stacked.

Example:
az='Fred'
push /7% Puts a null line onto the stack ¥/

push a 2 /7% Puts "Fred 2" onto the stack ¥/

The number of lines currently in the data queue may be found with the
QUEUED built-in function. See page 71.

Note: Under CMS, the program 'queua ("stack"™) is used. This is limited to
255 characters per entry. ¢

3.6.17 QUEUE

QUEUE [expressionl;

The string resulting from expression will be queued onto tha system data
queue. ("stacked™ FIF0 -~ First In, First Qut). If no expression is spec~-
ified, a null string is queued.

Example:

a='Toft!"

queue a 2 /7% Enqueues "Toft 2" ¥/

queuea /7% Enqueues a null linae behind thae last »/

The number of lines currently in the data queua may be found with the
QUEUED built-in function. See page 71.

Note: Under CMS, the program queua ("stack™) is usad. This is limited to
255 characters per entry.

REX language definition . 47

IBM Internal Use Only

3.6.18 RETURN

RETURN [expressionl;

RETURN is used to return control (and possibly a result) from a REX pro-
gram or internal routine to the point of its invocation.

If no intarnal routine (subroutine or function) is active, than RETURN is
aessentially identical to EXIT. Please sea paga 35 for details.

If a subroutine is being executed (sea the CALL instruction) then the
exprassion (if any) is evaluated, control passes back to the caller, and
the variable "RESULT" is set to the value of the expression. If no
expression is specified, the variable "RESULT"™ 'is dropped (becomes
uninitialised). The various settings saved at the time of the CALL (trac-
ing, Addressas, etc.) are also restored - see under the CALL instruction,
on page 27, for details of these.

If a function is being executed, then the action taken is idantical,
except that an expression must be spacified on tha RETURN instruction.
The result of the expression is then used in the original expression at
the point where the function was invoked. See tha dascription of func-
tions on page 58 for mora details.

If a PROCEDURE instruction was exacuted within the routina (subroutine or
internal function), then all local variables are dropped (and the previous
genaration is exposed) after the expression is evaluated and before the
result is used or assigned to "RESULT™.

REX language definitien ' 48

a

IBM Internal Use Only

3.6.19 _SAY

SAY [expressionl];

The result of evaluating the expression is displayed (or spoken, or typed,
etc.) to the user via whatever channel is implemented. The result of the
aexpression may ba of any length.

Example:

data=100
Say data 'divided by ¢ =>' data’4%
/7% Would type: "100 divided by ¢ => 25" ¥/

Note: In the CMS implementation, the data will be formatted (split up into
shorter lengths, if necessary) to fit the terminal linesize (which may be
determined using the LINESIZE function). Thae line splitting is done by
REX, hence allowing any length data to be displayed. Lines are typed on a
typewritar terminal, or "Displayed™ on a VDU. If you are disconnected
(i.a. LINESIZE=0), then SAY will use a default linesize of 80 (as there is
no "real"™ console, but data can still be written to the console log).

3.6.20 SELECT

SELECT; when-list [OTHERWISEL;] [instruction-listl]l END;

where when-list is:
one or mora when-constructs
and when-construct is:
WHEN expression[;1 THEN[;] instruction

and instruction-list is any sequence of instructions

SELECT is used to conditionally execute one of several alternativa
instructions.

Each expression following a WHEN is evaluated in turn and must result in
0' or "1'. If tha result is '1', the following instruction (which may be
a complex instruction such as IF, DO, or SELECT) is executed and control
will then pass to the END. 1If the result is '0', control will pass to the
next WHEN clause.

If none of the WHEN expressions succeed, control uill pass to the instruc-

tion-list (if any) following OTHERWISE. In this situation, the absence of
an OTHERWISE will cause an error. .

REX language definition . 49

IBM Internal Use Only

Example:

State Fn Ft Fm
Select
when rc=0 then do
erase Fn Ft Fm
say 'File existed, Now erased®
end ’
when rc=28 | rc=36 then say 'File doas not exist'
otherwise
say 'Unexpected return coda from STATE?
exit 99
End /% Select ¥/

Note: A null clause is not an instruction, so putting an extra semicolon
after a WHEN clause is not equivalent to putting a dummy instruction (as
it would be in PL/I). The NOP instruction is provided for this purpose.

Note: The keyword "THEN" is treated specially, in that it need not start a
clause. This allows the expression on the WHEN clause to be terminated by
the THEN, without a ";" be}ng required - this is consistent with the
treatment of "THEN" following an IF clause. Hence a variable called
"THEN™ cannot be used within the expression.

Note: In the CMS implementation, the presence of tha keyword "THEN"™ is not

enforcad, provided that an axplicit semicolon or line end is present at
that position in the construct.

3.6.21 SIGNAL and Labels

SIGNAL labelname;
[VALUE] expression;
ON condition;
OFF condition;

where "condition™ and "labelname™ ara single symbols or
strings which are taken as constants.

The SIGNAL instruction causes an abnormal change in the flow of control,
or (if ON or OFF is specified) controls the trapping of exceptions.

In the case of naeither ON nor OFF being specified:

The labelname is used directly, or is tha result of the expression if
VALUE is specified (the keyword "VALUE" may bae omitted if the
expression does not begin with a symbol or string). All active pend-
ing DO loops, DO groups, IF constructs, SELECT constructs, and INTER-
PRET instructions in the current routine are then terminated (i.a.
they cannot be reactivated). Control then passas to the first label

REX language definition ' 50

7N

30

IBM Internal Use Only

in the program that matches the required string, as though the search
had started from the top of the program. The match is done independ-
ently of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred; /% Jump to label "FRED" below %/

oo e o

Fred: say 'Hi!!'

Since tha search effactivaly starts at tha top of the program, control
will always pass to the first label in the data if duplicates are
present. i.e, duplicate labels are ignored and there are no scoping
rules for labels. An implementation may or may not warn of the pres-
ence of a duplicate label.

In the case of ON or OFF being specified:

A particular exception trap is either enabled or disabled. The speci-
fied condition must be one of the symbols:

¢

ERROR raised i f any host command returns a non-zero return code.

HALT raised if an external attempt is made to interrupt exe-
cution of the program. (e.g., undar CMS, by using the "he"
immediate command - see page 115.)

NOVALUE raised if an uninitialised variable is used in an evaluated
exprassion, or following the VAR kayword of tha PARSE
instruction, or in an UPPER instruction. NOVALUE is raised
if SYMBOL("nama') would raturn "LIT'.

SYNTAX raised if an interpretation error is detected.

If ON is specified, tha given condition is enabled; and if OFF is giv~-
en, the condition is disabled. The initial setting of all conditions
is OFF.

Whan a condition is currently enabled and the specified event occurs,
then instead of the usual action at that point execution of the cur-
rent instruction will immediately cease. A "SIGNAL xxx" (where xxx
is ERROR, HALT, NOVALUE, or SYNTAX) is then executed automatically.
The condition will be disablad before the signal takes place, and a
new SIGNAL ON instruction is required to re-enable it. Therefore, for
examplae, if the required label is not found, a normal Syntax Error
exit will be taken,; which tracas the name of that label and the clausa
in which the avent occurred.

For ERROR and SYNTAX the variabla "RC" is sat to the error return code
or syntax error number respectively before control is transferred to
the condition label. ’

The conditions are saved on entry to a subroutine and are then

REX language definition . 51

. ey = s “- St Lema e T S ST e s — T o . T A o ot S e e * £ 5% By moeeErg S e e
7

IBM Internal Use Only

restored on RETURN. This means that SIGNAL Oﬂfénd SIGNAL OFF may be
used in a subroutine without affecting the conditions set up by the
caller. See under the CALL instruction (page 27) for more details.

Note: In all cases, the condition will be raised (and the current
instruction terminated) immediately the error is detected. Therefore
the instruction during which an event occurs may be only partly exe-
cutad (a.g. if SYNTAX is raisad during the evaluation of the
expression in an assignment, the assignment will not take place).
Nota that HALT and ERROR can only occur at clause boundaries, but
could arisa in tha middle of an INTERPRET instruction. :

Note: During interactive debug, all conditions are set OFF so that
unexpected transfer of control does not occur should (for example) the
user accidentally use an uninitialised variable while SIGNAL ON
NOVALUE is active. For the same reason, a syntax error during inter-
active debug will not cause exit from the program, but is trapped spe-
cially and then ignored after a message is given.

Note: Certain execution 'errors are detected by tha host interface
either before execution of the program starts or after the program has
Exited. These errors cannot be trapped by SIGNAL ON SYNTAX, and are
listed on page 144.

Following the execution of any jump due to a signal, tha line number of
the instruction causing the jump is stored in the special variable "SIGL"™.
This is especially useful for "Signal On Syntax" (see above) when the num-
ber of the line in error can be used, for exampla, to control an editor.
Typically code following the SYNTAX label may PARSE SOURCE to find the
sourcae of the data, then invoke an editor to edit the source file, posi-
tionad at the line in aerror. Note that in this case the Exec has to be
re~invoked befora any changes madae in the editor can take effect.

Alternatively SIGL may be used to help determine the cause of an error
(such as the occasional failure of a function call), using the following
section of code (or something similar):

7% Standard handler for SIGNAL ON SYNTAX ¥/
syntax:
$error='REX error! rc 'in lina' sigl':' errortext(rec)
say $error
say sourceline(sigl)
trace '?r'; nop

This code types out the error message and line number, then types the line
in error, and finally drops into debug mode to allow you te inspect the
values of the variables used at the line in error (for instance). This
may be followed, under CMS, by the following lines, seo that by pressing
ENTER you will be placaed in XEDIT as suggested above:

REX language definition ' 52

it

o

Ly

IBM Internal Use Only

call trace '0ff'

address command 'Dropbuf 0°

parse source . . $fn $ft $fm .

push 'Command :'sigl; push 'Command EMSG' $error
address cms 'Xedit' $fn $ft $fm

exit rc

Labels are clauses consisting of a single symbol, followed by a colon.
The colon in this context impliaes a semicolon (clause separator), and so a
label is a clause in its own right and multiple labels may therefore pre-
cede an executable clausa. Except when following a symbol at the begin-
ning of a clausa, the colon is treated like any other special character,
and is therefore not permitted outsida of a string or comment.

Note: If a SIGNAL instruction or condition is issued as a result of an
INTERPRET instruction, the remainder of the string(s) being interpreted
will not be searched for the given label. In effect, labels within inter-
preted strings are ignored.

3.6.2 TRACE ‘

TRACE [trace-settingl;
[VALUE] expression;

wherae "trace~setting” is a symbol or string which is
taken as a constant.

The TRACE instruction is used to control the tracing of execution of a REX
program, and is primarily used for debugging. Its syntax is more concise
than other REX instructions, since it is commonly typed manually during
interactive debugging. For this use economy of keystrokes is considered
to be more important than readability.

The trace-setting is either specified immediately, or is taken from the
raesult of evaluating the expression. Tha keyword "VALUE™ may be omitted
if the expression does not begin with a symbol or a2 string (i.a. if it
starts with a special character or operator).

If tha satting is a positiva numbaer, then (if debug mode is active) that
number of debug pauses are skipped (see the section on interactive debug-
ging, paga 80, for further information). If the setting is a negative
number, then all tracing (including debug pauses) is temporarily inhibit-
ad for that number of clauses that would otherwise ba traced. e.g.
"Trace -100"™ means that the next 100 clauses that would normally be traced
will not in fact be displayad, but then tracing will resume as befora.

If the setting is not a number, then it may be prefixed by a "?", a "!", or
both. If so, these cause special actions to be taken (see below). TRACE
will then take action according to tha first character of the remainder of

REX language dafinition . 53

C e m e w —a e e . W e e S S maagen R wae W = % TS Tt ceam e —a e e v

IBM Internal Use Only

the setting:

N (e.g: "Negative™) any host command resulting in a negative return code

is traced (after execution). This is the default setting.

E (e.g: "Error™) any host command resulting in non-zero return code is
traced (after execution).

C (e.g: "Commands™) all host commands ara traced befora execution; and
any non-zero return code is shoun.

A (a.g: MAll") all clausas are traced bafore execution.

R (a.g: "Results™) all clauses are traced baefore execution, togethar
with the final result of any expression evaluated. Values assigned
during PULL, ARG, and PARSE instructions are also displayed. This

setting is recommended for general debugging.

I (e.g: "Ints™) as "R" except that all terms and intermediate results
during expression avaluation (and substituted names) are alsc traced.

L (e.g: "Labels™) trace only labels passed during execution. This is
aspecially useful with debug mode, when the interpreter will pause
after each label; or if one wishes to nota all subroutine ¢alls and
signals.

s (e@.g9: "Scan™) all remaining clauses in the data will ba traced without
being executed. Basic checking (for missing END's etc) is carried
out, and the trace is formatted as usual. This is only valid if the
"TRACE Scan™ clause is not itself nested in any other instruction or
internal routine.

0 (a.g: T"0ff") nothing is traced, and the special prefix actions (sea
below) ara reset to OFF.

If no setting was specified, or if the result was null, then the same
action is taken as for "Trace Off".

Example:
Trace ?R
/% Results of exprassions will now be traced, and ¥/

7% debug mode is suitched on if it was off baefore ¥/

The current trace-setting may be retriaved by using the TRACE built-in
function. Sea page 76.

Comments associated with a traced clausa are included in the trace, as are
comments in a null clause if Traca "A®, "RW¥, "IW, or "S™ is specified.

Commands traced before execution always have the final value of the com-

mand (i.e. the string passed te the environment) traced as well as the
clausae generating it.

REX language definition . 5¢

IBM Internal Use Only

Note: The trace action is automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 27) for
more details.

The prefixes "!™ and "?™ modify tracing and execution as follows:

! is used to inhibit command execution. During normal execution, exe-
cuting a TRACE instruction with a "!" setting prefix causes all fol-
lowing commands to be ignored -~ as each command is bypassed, the
spacial variable "RC" is set to 0. This may be used for debugging
potentially destructive programs. As an example, "Trace !Commands™
will cause commands to be traced but not executed. (Note that this
does not inhibit any commands issued manually while in debug mode,
which are always executed.) Command inhibit mode is saved and
restored across internal routine calls.

Command inhibition may be switched off by executing a TRACE instruc-
tion with a prefix "!" while it is on, or by executing "Trace 0ff" at
any time. Using the "!" prefix theraefora toggles you in or out of
command inhibition mode. -

[T]

is used to control the interactive debug mode. During normal exe-
cution, executing a TRACE instruction with a "?" setting prefix causes
debug mode to be switched on (see separate section on paga 80 for full
details of this facility). While debug moda is on, interpretation
will pause after most clauses which are traced; and TRACE instructions
in the file are ignored (this is so you are not taken out of debug mode
unexpectedly). The state of debug mode (i.a. whethar it is on or off)
is saved and restored across internal routine calls,.

As an example, the instruction: "Tracae ?Errors™ will make the inter-
pretar pause for input aftar executing any host command that returns a
non-zero return code.

Debug mode may be switched off by executing a TRACE instruction with a
prefix "?" while in debug execution mode, or by executing "Trace 0ff".
Using the "?" prefix thereforae toggles you in or out of debug mode.

Both prefixes may be specified on one TRACE instruction if desired, in any
order. ‘

Format of TRACE output:

Every clause traced will be displayed with automatic formatting (indenta-
tion) according to its logical depth of nesting etc., and any control
codes (dafined as EBCDIC values less than X'40') are replaced by a ques-
tion mark ("?") to avoid console interference. Results (if requested) ara
indented an extra two spaces and have a double quote prefixed and suffixed
so leading and trailing blanks are apparent.

The first clause traced on any line will bae preceded by its lina number.
If the lina number is greater than 99999, it is truncated on the left and

REX language dafinition . 55

IBM Internal Use Only

the truncation is indicated by a prefix of "?". For example the line num-
ber 100354 would be shown as "?200354".

All lines displayed during tracing have a three character prefix to iden-
tify the type of data being traced. These may be:

% =% identifies the source of a single clause, i.a. tha data actually in
the program. :

44 identifias a trace message. This may ba the non-zero return code
from a command, the prompt message whaen debug mode is enterad, an
indication of a syntax error when in debug moda, or the traceback
clauses aftar a syntax error in the program (see below).

> identifies the result of an expression (for Trace Results) or the
value assigned to a variable during parsing.

2. identifies the value "assigned” to a placeholder during parsing.

The following prefixes are only used if "TRACE Intermediates™ is in
effect: ’

‘

>V> The data traced is the contents of a variablae.

L Tha data traced is a Litaral (string or uninitialised variable).
P The data traced is the result of a function call.

P The data traced is the rasult of a prefix operation.

>0> Tha data traced is the result of an operation on two terms.

>C> Tha data traced is the name of a compound variabla, traced after
substitution and before use.

Following a syntax error which is not trapped by SIGNAL ON SYNTAX, the
clause in error will always be traced, as will any CALL or INTERPRET or
function invocation clauses active at the time of the error. If the error
was caused by an attempted jump to a label that could not be found, that
label is also traced. These traceback lines are identified by the special
traca prefix "+++"7,

Note: Under CMS tracing may be switched on, without requiring modifica-
tion to an Exec, by using the TRACER module (which will turn the system
tracing bit on or off). Tracing may be also turned on or off
asynchronously, (i.e. while an Exec is running) using the "ts" and "te"
immediate commands. - See below on page 115 for the description of these
facilities. :

REX language definition ' 56

IBM Internal Use Only

3.6.23 UPPER

UPPER [variable-listl;

Where variable-list is a list of symbols separated by
blanks.

UPPER may be used to translate the contents of one or more variablas to
upper case. The variables are translated in sequence from left to right.

It is more convenient (and faster) than using repeated invocations of the
TRANSLATE function.

Example:

az'Hello?'; b='there'
Upper a b
say a b /% would type T"HELLO THERE"™ ¥/

Note: Only symbols that are valid as individual variables may be specified
(see page 21). Using an uninitialised variable is not an error, and has
no effect, except that the NOVALUE condition will be raised if SIGNAL ON
NOVALUE i's set.

REX languaga definition - . 57

http:Using.an

IBM Internal Use Only

3.7 FUNCTION CALLS

Calls to certain internal and external routines (called functions) may be
included in an expression anywhere that a data term (such as a string)
would be valid, using the notation:

function-name(lexpressioni,[expressionl]...1)

where "function-namae™ is a string, or a symbol which is
taken as a constant.

There may be up to ten expressions, separated by commas, between the
parentheses. These are called the arguments to the function. Each argu-
ment expression may include further function calls.

Note that the name of the function must be adjacent to the "(", with no
blank in between, or there will be a blank operator assumed at this point
and the construct will not be recognised as a function call.

The arguments are evaluated in turn from left to right and they are all
then passed to tha function. This then executes some operation (usually
dependent on the argument strings passed, though arguments are not manda-
tory) and will eventually return a single character string. This string
is then included in the original expression just as though the entire
function reference had been replaced by the namae of a variable which con-
tained that data.

For exampla, the function SUBSTR is built-in to tha REX interpreter (see
balow, page 73) and could be used as:

c="abcdefghijk?’
a="Part of C is:' Substr(c,2,7)
/7% would set A to 'Part of C is: becdefgh' %/

A function may have a variable number of arguments: only those required
need be specified. Substr('ABCDEF',4]) would return "DEF"™ for axample.

The function calling mechanism is identical to that for subroutines, and
indeaed the only difference between functions and subroutines is that func-
tions must raturn data, whereas subroutines need not. Tha various types
of routines that can ba called as functions may be:

Internal If the routine name exists as a label in tha program, then the
current stata of interpraetation is saved;, so that it will later
ba possible to return to the point of invocation to resume exe-
cution. Control is then passed to the label found. As with
routines invoked by the CALL instructions, various other state
information (TRACE and NUMERIC settings, aetc.) is saved too.
Please see uder the CALL instruction (page 27) for details of
this. If an internal routine is to be called as a function,

REX languaga definition : . 58

R G e SN B e e e L e e . et o S 52 2 % e e e - —

15e

IBM Internal Use Only

then any RETURN instruction executed to return from it must have
an expression specified. This is not necessary if it is to be
called as a subroutine.

Built-in A rich set of functions are built-in to the REX interpreter:
these are always available, and are defined in the next section
of this manual.

External Users may write or make use of functions which are external to
REX. An external function may be written in any languaga,
including REX, uwhich supports the system dependent interfaces
used by REX to invoka it. Again, when called as a function it
must return data to the caller.

Example:

/7% Recursive internal function execution... %/
arg x

say x'! =' factorial(x)

exit

factorial: procedura /7% calculate factorial by.. X/
arg n /% .. recursive invocation. ¥/
if n=0 then return 1
return factorial(n=-1) ¥ n

REX searches for functions in the order given abova. i.e. internal labels
take precedence, then built-in functions, and finally external functions
{tha latter may have their oun search order in turn, houwever this is a
system dependent matter and is described on page 125). Houwever, internal
labals are not used if the function nama is given as a string (i.e. is
specified in quotes) - in this case the function must be built-in or
external. This lets you usurp the name of (say) a built-in function to
extend its capabilities, yet still be able to invoke the built-in function
when needed.

Example:

7% Modified DATE to return sortad date by default ¥/
date: procedure

arg in

if in='" then in='Sorted’

return "DATE'(in)

Notae that the built-in functions have upper case names,; and so the name in
the literal string must be in upper case, as in the example. The same will
usually apply to external functions.

If an external or built-in function detects an error of any kind, then REX
is informed, and a syntax error would be raised. Execution of the clause

‘that included the function call is therefore terminated. Similarly, if an’

external function fails to return data correctly, this will be detected by
REX and reported as an error.

REX language definition o 59

IBM Internal Use Only

If a syntax error occurs during the execution of an internal function, it
may be trapped (using SIGNAL ON SYNTAX) and recovery may then be possible.
If the error is not trapped, then execution of the whole program is termi-
nated in the usual way.

Note: Under CMS, other REX Exec's may be called as functions, with up to
ten argument strings. Details are given in a later section of this manual
on page 125. Either EXIT or RETURN may be used to leave the other REX pro-
gram, and in either case an expression must be spacified. There is no
rastriction on the content or length of the returnad charactar string.

Nate: Execution of a function with a variable function name may be

achieved by careful use of the INTERPRET instruction, however this is
should be avoided if possible as it reduces the clarity of the program.

REX language definition . 60

an

IBM Internal Use Only

3.8 BUILT-IN FUNCTIONS

There is a rich set of built-in functions available for REX. These
include character manipulation, conversion, and information functions.

General notes on the built-in functions:

. The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except wherae stated.

. Where a string is referenced, a null string may ba supplied.
o pad character, if specified, must be only one byte long.

. If a function has a sub-option selected by the first character of a
keyuword, that character may be in upper or lower case.

© Conversion between characters and hexadecimal involves tha machine
repraesentation of character strings, and hence will return appropri-
ately different results for an ASCII machina. The axamples below
assume an EBCDIC implementation.

ABBREV(string, teststringl, lengthl)

returns '1' if teststring is a valid abbreviation of string, or
'0' otherwisa. The third argument (length) specifies the mini~-
mum length that the test string must be for a match. The
default length is the length of the tast string supplied.

@.g. ABBREV('Print','Pri')
ABBREV('PRINT','Pri")
ABBREV('PRINT','PRI', %)
ABBREV('PRINT', "PRY")
ABBREV('PRINT','")
ABBREV('PRINT','',1)

e a0 n
LI LI L T T I | |
(— I N~ B I -]

Note: A null string will always match if a length of 0 (the
default) is used. This allows a default keyword to be selected
automatically if desired:

@.g. say 'Enter option:'; pull option .
select /% Keyword-1 is to be the default */
when abbrev('Keyuword=1',option) then ...
when abbraev('Keyword-2',option) then ...
otherwise nop;
end;

REX language dafinition . 61

IBM Internal Use Only

ABS (number) .
returns the absolute value of number. The result is formatted
according to the current setting of NUMERIC DIGITS.

e.g. ABS('12.3")

= 12.3
ABS(' -0.307") =

0.307

ADDRESS()

returns the name of the environment to which host commands are
currantly baing submitted. Trailing blanks are removed from
the result.

TCMS?Y /% perhaps %/

@.g. ADDRESS() ==
== *XEDIT'

ADDRESS()
BITAND(stringl,string2l,padl)

returns a string composed of the two input strings logically
AND'ed together, bit by bit. If no pad character is provided
the operation tarminates when the shorter of the two strings
runs out. If a pad character is provided, it is used to extend
the shorter of the two strings or the right, before carrying out
the logical operation.

e@.g. BITAND('1111'x,"222222"x) == '000022°x.
BITAND('3311'x,'222222'%x,"' ') == v220000"x.
BITAND('1111%x,'444444"'x) s= '000044"x.
BITAND('"1111%x,"4%44444"%,"40"x) == '000040"%.

/
BITOR(stringl,string2l,padl)

returns a string composad of tha two input strings logically
OR'ed together, bit by bit. If no pad character is provided the
operation terminates when the shorter of the two strings runs
out. If a pad character is provided, it is used to extend the
shorter of the two strings on the right, before carrying out the
logical operation.

e.g. BITOR("1111'x,'222222"'x) == '333322'x.
BITOR('C511'x,'222222"'x,"' ') == 'E73362°x.
BITOR('1111"x, '4444464"x) == 75555644 "x%.
BITOR('1111%%,'64464444"%x,"40%%) == '5555464"x.

BITXOR(stringl,string2t,padl)

raturns a string composad of the two input strings logically
eXelusiva OR'ed together; bit by bit. If no pad character is
provided the operation terminates when the shorter of the twe
strings runs out. If a pad character is provided, it is used te
extend the shorter of the two strlngs on the right, before car-
rying out the logical operation. :

REX language definition . 62

g

IBM Internal Use Only

e.g. BITXOR('1111'x,'222222'x) == '333322"x.
BITXOR('C711'x,'222222'x,"' ') == 'E53362'x.
BITXOR('1111'x,'4466464"x) == '555544"'x.
BITXOR('1111°'x,"'446446"'x,'40"'x) == '555504"x.

CENTRE(string,kl,padl) CENTER(string,kl,padl)

returns a string of length k with string centred in it, with pad
characters (the default pad character is a blank) added as nec-
essary to maka up the length. If the string is longer than k.
then it will ba truncated at both ends to fit. If an odd number
of characters are truncated or added, then the right hand end
loses or gains ona more character than the laeft hand end.

a.g. CENTRE(Cabe,7) == " ABC '
CENTRE(abc,8,'-") == '--ABC---?
CENTER('The true REX',8) == 'e true R'
CENTER('The true REX',7) == 'e true '

Note: This function may be called either CENTRE or CENTER,
which avoids errors due to the difference between the British
and American spellings.

COMPARE(stringl,string2l,padl)

returns '0' if the strings are identical, or non-zero if they
are not. In this case the returned number is the index of the
first character that does not match. The shorter string is pad-
ded on the right if necessary, and the default pad character is
blank.

@.g9. COMPARE('abe','abe')
COMPARE('abc', 'ak')
COMPARE('ab ', 'ab')
COMPARE('ab ','ab',' ')
COMPARE('ab ', 'ab','x'")
COMPARE('ab~- ','ab','-")

(L T I T T T I [
VMUwoOoOoONO

COPIES(string,n)

returns n concatenated copiaes of the string.

e.g. COPIES('abe',3) == 'abcabcabe’
COPIES(*abe?,0) == *°*

c2n(stringl,;nl)

Character to Decimal. Returns the decimal value of the binary
representation of string. If the result cannot be expressed as
a whole number, an error results. i.e. the result must have no
more than NUMERIC DIGITS digits. See also tha X2D function.

If p is not specified, string is taken to be an unsigned number:

REX languagae definition . 63

http:taken.to

IBM Internal Use Only

e.g. C2DC'09'x) == 9
C2D('81'x) == 129
c2D('a") == 129
C2D('FF81'x) == 65409

If n is specified, the binary value of the string is taken to be
a tuwo's complement number exprassaed in n characters, and is con-
verted to a REX whole number which may therefore be negative.

The string is padded on the laft with characters of "40'X (note,
not %sign-extended") or truncated to length n characters, if
nacessary. (i.e. as though RIGHT(string,n,'00'x) had been exa-

cuted.)

a.g. €C2D{"'81'x,1) == =127
€2D('81"x,2) == 129
C2D('FF81'x,2) == =127
C2D('FF81'x,1) == -127
C2D{'FF7F'x,1) == 127

Implementation restriction: This function is not vet fully
implemented. At presant, string is limited to four characters,
and the result must be less than 10 digits. A second argument
may not be specified. Please refer to REXDOC level 2.50 for
examples.

c2X(string)

Character to Hexadacimal. Converts a character string to its
hexadecimal representation. i.e. Unpacks. The data to be
unpacked may be of any laength.

"F7F2A2°

e.g. C2X('72s") ==
== '0123°*

C2X('0123'x)
DATATYPE(stringl, typel)

If tvpe is omitted then returns "NUM* if the string is a valid
REX number (any format) otherwise returns 'CHAR'.

If type is specified then the returned result will be *1' if
string matches the type, or '0°' otherwise. The valid types (of
which only the first character is significant) are:

Number returns *1' if the input is a valid REX number.

Hhole-number returns %1% if the input is a REX whole number
under the current satting of NUMERIC DIGITS.

Alphanumeric returns 'l if the input enly contains characters
from the ranges “a-z", "A-Z%¥, and “0-9".

Mixed-case returns 1Y if the input ‘only contains characters
from the ranges "a-z" and "A-Z%.

REX language definition : 66

N

o

IBM Internal Use Only
Upper-case returns '1' if the input only contains characters
from the range "A-2"V.

Lower-casea returns '1' if the input only contains characters
from the range "a-2".

Symbol returns '1' if the input only contains characters
which are valid in REX symbols (see page 13). Note
that louer casa alphabetics are permitted.

Bits returns '1' if the input only contains "0's and "1's,

X (heXadecimal) returns '1' if the input only contains
characters from the ranges "a-f", "A-F", and "0-9%.

e.g. DATATYPE(' 12 ") == 'NUM*
DATATYPE('") == 'CHAR'
DATATYPE("123%') == 'CHAR'
DATATYPE('12.3','N") == '1'
DATATYPE('12.3','W') == '¢'
DATATYPE('Fred','M") == '}1°
DATATYPE('','M") == o'
DATATYPE('Fred','L') == '0°'
DATATYPE('$20K','S") == '1°

== vy

DATATYPE('BCd3"*,'X")

DATE([optionl]

returns the local date in the default format @.g9. '27 Aug 1982°',
The following options (first latter significant) may be sup-
plied to obtain alternative formats:

century Returns number of days so far in this century in the
format: ddddd. '

Days Returns numbar of days so far in this year in the for-
mat: ddd.

European Returns date in the format: dd/mm/yy.
Julian-0sS Returns date in "0S" format: yyddd.

Month Raturns full nama of the current month, e.g:
YAugust'.

Ordered Returns date in the format: yy/mm/dd (suitable for
sorting etc.).

sorted Raturns date in the format: yyyymmdd (suitable for
sorting ete.).

UsSA Returns date in tha format: mm/dd/yy.

Weekday Raeturns day of the week, e@.g9: "Tuesday’'.

REX language definition ’ . 65

P a it e S ey — b e i S G

IBM Internal Use Only

Note: The first call to DATE or TIME in one expression causes a
time stamp to be made which is then used for 3all calls to these
functions in that expression. Hence if multiple calls to any of
the DATE and/or TIME functions are made in a single expression,
they are guaranteed to be consistent with each other.

DELSTR(string,nl, k1)

deletes the substring of string which begins at the nth charac-
tar, and is of length k. If k is not specified, the rast of the
string is deleted. If p is greater then the length of string,
then the string is returned unchanged. :

a.g. DELSTR('abed',3) == 'abp?!
DELSTR('abede',3,2) == 'abhe’
DELSTR('abcde',6) == 'abcde'

DELUORD(string,nl,kl)}

deletes the substring of string which starts at the nth word,
and is of length k blank-delimited words. If k is omitted it
defaults to be the remaining words in the string. If nis
greater then the number of words in string, then the string is
returned unchanged. The string deleted includes any blanks

following the final word involved.

e.g. DELWORD{'Now is the time',2,2)
DELWORD('Now is the time ',3)
DELWORD('Now is the time',5)

*Now time’
"Nouw is '
'Now is the time®

pD2C(uhole~-numberi,nl)

Decimal to Charactaer. Returns a character string of length as
needaed, or of length n, which is the binary representation of
the decimal number. See also the D2X function.

If n is not specified then whole-number must be zero or
positiva, an error results if it is not. The result is returned
such that there are no leading '00'x characters.

Ifnis specified it is the length of the final result in char-
acters, i.e. after conversion the input string will be
sign—-extended to the raequired length. If the number is toeo big
to fit into n characters; it will be truncated on the left.

e.g. D2C(9) == v09x
D2C(129) == 181"y
D2C(12951) == "81'x
D2¢(129,2) == '0081"x
D2C(257,1) == 101%x
D2C(-127,1) == '8§1'x
D2C(-127,2) == 'FF81'x
D2C(-1,4) == 'FFFFFFFF'x

REX language definition ' 66

o

IBN Internal Use Only

Implementation restriction: This function is not yet fully
implemented. Except for the simple cases where number is posi-
tive and less than 10 digits, results may differ from those
shown abova. Please refer to REXDOC level 2.50 for examples.

D2X(whole-numberi,rl)

Decimal to Hexadecimal. Returns a string of hexadecimal char-
acters of length as needed, or of length n, which is the
unpacked representation of tha decimal numbar. See also the D2C
function.

If n is not specified then whole-number must be =zero or
positive,; an error results if it is not. Tha result is returned
such that there are no leading '0' characters.

If n is specified it is the length of the final result in char-
acters, i.e. after conversion the input string will be
sign-extended to tha required length. If the number is too big
to fit into n characters, it will be truncated on the left.

v

e.g. D2X(9) ¢ =z vg9¢
D2X(129) == 81"
D2X(129,1) == "1
D2X(129,2) == '81°'
D2X(129,4) == '0081"'
D2X(257,2) == 'o1°
D2X(-127,2) == '31°"
D2X(-127,4) == 'FF81"

Implementation restriction: This function is not yet fully
implemented. Except for the simple cases where number is posi-
tive and laess than 10 digits, results may differ from those
shoun above. Please refer to REXDOC lavel 2.50 for examples.

ERRORTEXT(n)

returns the error message associated with error number n. n
must be in the range 0-99. Ifn is not a defined REX error num-
ber, then the null string is returned.

'Label not found'

@.g. ERRORTEXT(16) =
ERRORTEXT(68) =

EXTERNALS()
returns the number of elements on the external event queaue. See
PARSE EXTERNAL on page %2 for a description of the external
queue.
Under CMS/SP, the console input buffer is used as the external

queue, and so EXTERNALS() will return the number of logical
typed-ahead lines;, if any.

REX language definition . 67

C e o T SRS T T e o oL G i o T e e L o A= i s i o a2 et s e

http:D2X(whole-numbert,r.3J

IBM Internal Use Only

e.g. EXTERNALS(} == '0°' /% Usually %/
FIND(string,phrasa)

searches string for the first occurrence of the sequence of
blank-delimited words phrase, and returns the word number of
the first word of the phrase in the string. Multiple blanks
between words are treated as a single blank for the comparison.
Returns '0' if the phrase is not found.

@.9. FIND('now is the time';'is tha tima') == *2°
FIND('now is the time','is tha') == '2°
FIND('now is tha time','is time ') == "0

FORMAT (numbertl, (beforel(,lafterlll)

rounds and formats a number. before and after describe how many
characters are to be used for the integer part and decimal part
of the result respectively. If either of these is omitted then
as many characters as are needed will be used for that part.

If before is not larée enough to contain the integer part of the
number; an error is raised. If after is not the same size as
the decimal part of the number, the number will be rounded (or
extended with zeros) to fit. Specifying 0 will cause the number
to be rounded to an integer.

If only the number is given, then the number will be rounded and
formatted to standard REX rules, just as though the operation
Yahumber+0™ had been carried out.

e.g. FORMAT('3',4) == v 3
FORMAT('1.73',4,0) s= 2
FORMAT('1.73',4,3) == ! 1.730°
FORMAT('-.76%,4,1) == * -0.8°
FORMAT('3.03',4) == 3.03°
FORMAT(' - 12.73',,4) == '-12.7300°
FORMAT(" - 12.73") == '-12.73°

FORMAT('0.000") '

A further two arguments may be specified on the FORMAT function
to control the use of exponential notation. Tha full syntax of
the function is therefora:

FORMAT (number(, [beforell,[afterll,exppli,exptlii])

The first threae arguments are as described above, and in addi-
tion expp and expt control the exponent part of the result:
gggg saets the numbar of places to be used for the exponent part,
the default being to use as many as are needed. expt sets the
trigger point for use of exponential notation. If the number of
placas needed for the integer or decimal part exceeds expt or
twice expt respectively, then exponential notation will be
used. The default is the current setting of NUMERIC DIGITS. If

REX language definition : 68

!

g

IBM Internal Use Only

0 is specified for expt, then exponential notation is aluays
used unless the exponent would be 0. If expp is not large
enough to contain the exponent, an error is raised. expp must
be less than 10, but there is no limit on the other numbers. 1If
0 is specified for the expp field then no exponent will be sup-
plied, and the number will be expressed in "simple™ form with
added zeros as necessary.

e.g. FORMAT('12345.73',,,2,2) == '1.234573E+04"
FORMAT('12345.73',,3,,0) == '1.235E+4"'
FORMAT('1.234573',,3,,0) == '1.235"
FORMAT('12345.73%,,,3,6) == "'12345.73"'
FORMAT('1234567e5",,3,0) == '123456700000.000°"

INDEX(haystack,needlel,startl)

returns the character position of one string in another (same
format as PL/I - see also the P0OS function). If the string
needle is not found, then '0' is returned. By default the
search starts at tha first character of haystack (start=1).
This can ba overridden by giving a different start point.
e.g9. INDEX('abcdef','cd")
INDEX('abcdef', "xd")
INDEX('abcdef', 'be',3)
INDEX('abcabe', 'be',3)
INDEX('abcabc','bec',6)

i 0 u s
LU L I T [1}
OWU oo

INSERT(new, targetl,Inll,[kil,padlll)

inserts the string new, padded to length k, into the string tar—
get after the nth character. k and n must be zero or positive.
If n is greater than the length of the target string, padding is
added there also. The default pad character is the blank. The
default value for n is 0, which means insert before the begin-
ning of the string.

e.g. INSERT(' ','abcdef',3) == Yabc def!
INSERT('123",'abe',5,6) == 'abe 123 '
INSERT('123",'abe",5,6,"+"') == "abc++123+++*
INSERT('123%, 'abe") == '123abe’
INSERT('123','abe',5,,'=%) == '123--abe’

JUSTIFY(string, ki,padl)

formats blank-delimited words in string, by adding pad charac-
ters between words to justify to both margins. i.e. to width k
(k must be zero or positiva). The daefault pad character is a
blank.

Tha string is first normalised as though SPACE(string) had been.

executed (i.a. multipla blanks are converted to single blanks,
and leading and trailing blanks ara removed). If k is less than
the width of the normalised string, the string is then truncated

REX language definition . 69

http:width.l1
http:12345.73

IBM Internal Use Only

on the right and any trailing blank is removed. Extra pad char-
acters are then added evenly from left to right to provide the
required length, and the blanks between words are replaced with
a pad character.

"The true REX?
'"The true'
'The true’
'"Thet+true'

e.g. JUSTIFY('The true REX',14)
JUSTIFY('The true REX',8)
JUSTIFY('Theé true REX',9)
JUSTIFY('The true REX',9,'+')

M u nn
LI LI [I [}

LASTPOS(needle,haystackl,startl)

returns the position of the last occurrence of one string in
another. (See also P0S.) If the string needle is not found,
then '0' is returned. By default the search starts at the last
character of haystack (i.e. start=LENGTH(string)) and scans
backwards. This may be overridden by specifying the point at
which to start the backwards scan.

a.g. LASTPOS(' ','abc def ghi') == 8
LASTPOS("' ', 'abcdefghi') == 0
LASTPOS(' ','abec def ghi',7) == 4§

LEFT(string,ki,padl)

returns a string of length k containing the left-most k charac~
tars of string. i.a. padded with pad characters (or truncated)
on the right as needed. The default pad character is a blank.
Kk must be =zero or positive. Exactly equivalent ¢to
SUBSTR(string,1,kl,padl).

'abe d '
'‘abc d...°
Yabe de'

@.g. LEFT('abe d',8)
LEFT('abe d',8,'.")
LEFT('ch def',7)

LENGTH(string)
returns the length of string.

e.g. LENGTH('abcdaefgh') ==
LENGTH('*") == 0

LINESIZE()
returns the current terminal line width (the point at which REX
will break lines displaved using the SAY instruction). If this

is indeterminate, then 0 will be returned.

Note: Undar VM/7370 this is the terminal width as set by the CP
TERM LINESIZE command; 0 implies that the virtual machine is
DISCONNECTed. ‘

REX language definition) 70

go

IBM Internal Use Only

MAX(numberi,numberl...)

returns the largest number out of the list specified, formatted
according to the current setting of NUMERIC DIGITS. Up to ten
numbers may be specified, although calls to MAX may be nested if
more are needed.

e.g. MAX(12,6,7,9) == 12
MAX(17.3,19,17.03) == 19
MAX(~7,-3,-64.3) == 1=-3Y

MAX(1,2,3,4,5,6,7,8,9,MAX(10,11,12,13)) == 13
MIN(number,numberl...)

raturns the smallest number out of the list specified, format-
ted according to the current setting of NUMERIC DIGITS. Up to
ten numbers may be specified, although calls to MIN may be
nested if more are needed.

e.g. MINC12,6,7,9) == 6
MIN(17.3,19;17.03) == 17.03
MINC-7,-3,-4.3) == -7

OVERLAY(neu, targetl,Ini(,{kil,padll])

overlays the string new, padded to length k, onto the string
target starting at the nth character. k must be zero or posi-
tiva. If n is greater than the length of the target string,

padding is added there alse. The default pad character is the
blank, and the default valua for p is 1. pn must be greater than

g.

e.g. OVERLAY(' *,'abedef';3) == 'ab def'
OVERLAY('.', 'abcdef',3,2) == 'ab. af'
OVERLAY('qq', 'abed') == 'qqcd’
OVERLAY('qq', 'abcd',4) == 'abcaq’
OVERLAY('123','abc',5,6,°+') == 'abct+123+++°

POS(needle, haystackl,startl])

returns the position of the first string in the second string.
Sea also tha LASTPOS and INDEX functions. If the string needle
is not found, then '0' is returned. By default the search
starts at the first character of haystack (i.e. start=1). This
may be overridden by specifying the point at which to start the

s@arch.
@.9. POS(" 7;,%abc daf ghi') == 4§
POS('%*, Yabec def ghi') == 0
POS(' *;%abc def ghi';5) == 8

REX language definition . 71

http:MIN(17.3,19J17.03
http:MAX(17.3,19,17.03

IBM Internal Use Only

QUEUED()

returns the number of lines remaining in the system data queue
at the time when the function is invoked.

Under CMS/SP, the number of lines in the program "stack" is
returned. Therefore if QUEUED()=0 then a PULL or PARSE PULL
will read from the console input buffer and will cause a console
read ("VM READ™) if there is no user input waiting.

@.g. QUEUED() == '5° /7% Perhaps ¥/
RANDOM(Iminl{, Imaxl{,seedil)

returns a pseudo-random non-negative whole number in the range
min to max inclusive. If only one argument is specified then
the range will be from 0 to:that number. Otherwise the default
values for min and max are 0 and 999 respectively. A specific
saed (which must be a whola number) for the random number may be
specified as the third argument if repeatable results are
desired. Note, tﬁoygh. that the generator may differ from
implementation to implementation since an entirely satisfactory
algorithm has not yet been discovered.

The magnitudae of the range (i.ae. max minus min) may not exceed

100000.
@.9. Possible raesults might be:
RANDOMC) = 305
RANDOM(S5,38) =7
RANDOM(,,1982) = 279 /% always ¥/
RANDOM(2) =0

Note: The random number generator is global for an entire pro-
gram - the current seed is not saved across internal routine
calls.

REVERSE(string)
returns string, swapped end for end.
@.g. REVERSE('ABe.') == ' _cBA'
RIGHT(string,ki,padl)

raturns a string of length k containing the right-most k charac-
ters of string. i.e. padded with pad characters (or truncated)
on the left as needad. The default pad character is a blank. k
must be 2eroc or positiva.

@.g9. RIGHT('abe d',8)
RIGHT('abc def¥,5)
RIGHT('12",5,%0"%)

* abe d°
'c def’
'006012°

REX language dafinition ' 72

e L e el e € £ % e b e e e Ll i TN S A e e e LT e e e o e

IEM Internal Use Only

SIGN(number)

returns the sign of number. The number is rounded according to
the current setting of NUMERIC DIGITS, and then its sign (re-
presented as '-1', '0', or '1l') is returned.

e.g. SIGN('12.3") == ¢
SIGN(' -0.307°) == '-1°
SIGN(0.0) == 'Q°

SOQURCELINE(InNI)

If n is omitted, returns the line number of the final line in
the source file.

If n is given, then the nth line in the source filae is returned.
n must be positive and must not exceed the number of the final

line in the source file.

e.g. SOURCELINE() =
SOURCELINE(1) =

¢

=10
= '/% This is a 10~line program ¥/°

SPACE(stringl,Inll,padll)

formats the blank-delimited words in string with p pad charac-
ters between each word. n should be positive, but may be 8, to

remove all spaces. Leading and trailing blanks are removed.
The default for n is 1, and the default pad character is a

blank.
a.g9. SPACE('abc def ') == 'abec def'
SPACE(' abc def',3) == 'abe def'
SPACE('abc def ',1) == Yabc def®
SPACE('abc def ',0) == 'abecdef®
SPACE('abe def ',2,'+') == 'abct+def’

STRIP(stringl,loptionli,charll)

removaes Leading, Trailing, or Both leading and trailing charac-
ters from string when option is 'L', 'T', or 'B' respectively.
The default is '"B'. The third argument specifies the character
to be removed, with the default being a blank. If given, the
third argument must be exactly one character long. -

@.g. STRIP(' abec ") == 'ab c¢°
STRIP(' ab e ','L') == 'ab e °
STRIP(' abc ','t') == °% ab ¢
STRIP('12.7000',,0) == v12.7°
STRIP('0012.700',,0) == %12.7°

REX language definition . 73

i T TR S, T S I
7

IBM Internal Use Only

SUBSTR(string,nl,lkll,padll)

returns the substring of string which begins at the nth charac-
ter, and is of length k, padded with blanks or the specified
character if necessary. If k is omitted it defaults to be the
rest of the string, and the default pad character is a blank.

e.g. SUBSTR('abec',2) == 'be!
SUBSTR('abe',2,4) == 'bhe !
SUBSTR('abc',2,6,'.') == 'be....'

Note: In some situations tha positional (numeric) patterns of
parsing templates are more convenient for selecting substrings,
especially if more than one substring is to be extracted from a
string.

SUBKORD(string,nl,kl)

‘returns the substring of string which starts at the nth word,

and is of length k blank-delimited words. If k is omitted it
defaults to be the remaining words in the string. The returned
string will never have leading or trailing blanks, but will
include all blanks between the selected words.

tis the'
‘the time®
ve

a.g9. SUBWORD('Now is the time',2,2)
SUBWORD("Now is the time',3)
SUBWORD('Now is the time',5)

nonou
Wwon

SYMBOL(name)

If name is not a valid REX symbol, then 'BAD'! is returned. If
it is the name of a variabla (i.e. a symbol which has been
assigned a value) then 'VAR' is returned. Otherwisa "LIT' is
returnaed;, which indicates that it is a symbol which has not yet
been assigned a value (i.e. a Literal).

Like symbols appearing normally in REX expressions, lower case
characters in the name will be translated to upper case and sub-
stitution in a compound name will occur if possjble.

Note: Normally name should be specified in quotes (or derived
from an expression), to prevent substitution by its value

before it is passad to the function.

e.g. /% following: Drop A.3; J=3 %/

SYMBOL(YJ") == 'VAR!

SYMBOL(J) == 'LIT' /% has tested "3" */
SYMBOL(*a.j') == 'LIT' /% has tested "A.3% %/
SYMBOL("%"') == 'BAD' /% not a valid symbol X%/

REX language daefinition , 7%

e m T Lt e i e 2wz o R, - S, S —_—

IBM Internal Use Only

TIME(Ioptionl)

by default returns the local time in the 24-hour clock format
*hh:mm:ss' (hours, minutes, and seconds). e.g. '04:641:37".

The following options (first letter significant) may be sup-
plied to obtain alternative formats, or to gain access to the
elapsed time calculator.

Long Raturns time in the format: hh:mm:ss.uuuuuu (uuuuuu
is the fraction of seconds, in microseconds).

Hours Returns numbaer of Hours since midnight in the format:
hh

Minutes Returns number of Minutes since midnight .in the
format: mmmm et

Seconds Returns number of Seconds sincae midnight in the
format: sssss

Elapsed Returns "ssssSsssSss.uuuuuu’, the number of
seconds.microseconds since the elapsed time clock uas
started or reset. ’

Reset Returns 'sssssssss.uuuuuy’, the number of
seconds.microseconds since the elapsed time clock was
started or reset, and alsoc resats the elapsed time
clock to zero.

Q@.g. time('L") '16:564:22.123456" /% Perhaps %/

time() == '16:54:22"

time(*H') == '16°

tima('™M') == '1014" /7% 56 + 60%16 */
time('s') == '60862° /7% 22 + 60%(54+60%16) */

The elapsed time clock:

The elapsed time clock may be used for measuring real time
intervals. It is not affected by the time-of-day or by date
changes. On the first call to the elapsed time clock, the clock
is started, and both TIME('E') and TIME('R') will return '0°'.

The clock is saved across internal routine calls, which is to
say that an internal routine will inherit tha time clock started
by its caller, but if it should reset the clock any timing being
done by the caller will not be affected. Should the number of
seconds in the aelapsed time exceed nine digits (a little over
31.6 years) then an aerror will raesult in the current implementa-
tion.

REX language definition . 75

IBM Internal Use Only

An example of the elapsed time calculator:
time('E') == /7% The first call */
/% pause of one second here %/
time('E') == 1.002345 /% or thereabouts %/
/7% pause of one second here ¥/
time('R') == 2.004690 /% or thereabouts %/
/% pause of ona second here %/
time('R') '== 1.002345 /% or thereabouts X%/

Note: Sece note under DATE about consistency of times within a
single expression. The elapsed time clock is synchronised teo
the other calls to TIME and DATE, so multiple calls to the
elapsed tima clock in a singla expression will always return the
sama result. For the same reason, the interval between two
normal TIME/DATE results may be calculated exactly using the
elapsed time clock.

TRACE((settingl)

Returns the current setting of TRACE, and optionally may be used
to set a new valua. ‘See the TRACE instruction, on page 53, for
full details. Unlike the TRACE instruction, tha setting will be
altered even if debug mode is active.

e.g. TRACE() == *9R' /% mayba %/
TRACE(C'0Off') == '7R' /% also sets TRACE OFF x/
TRACE('?1I") == Q' /% now in debug mode again %/

TRANSLATE(strinal,{tableoll,[tableill,padlil)

Translates charactaers in a string to be other characters;, or may
be used to permute the order of characters in a string. If nei-
ther translate table is given, then string is simply translated
to upper casa. JTablei is the input translate table (the default
is XRANGE('00'x,'FF'x)) and tableo is the output table. The
output table defaults to the null string, and is padded with
blanks (or with the pad character if specified) or truncated as
necessary. The tables may be of any length: the first occur-
rence of a character in the input table is the one that is used
if there are duplicates.

@.g. TRANSLATE('abcdef') == YABCDEF®
TRANSLATE('abbc','&"','b") == 'agg&e’
TRANSLATE('abcdef',"12%;,%ac’) == "ab2dif*
TRANSLATE('abcdef®, 12, 'abed®,*.") == '12..af"
TRANSLATE('4123%,'abed',"1234") == 'dabe’

Note: The last example shows how the TRANSLATE function may be
used to reorder tha characters in a string. In the example any
4-character string could be specified as the second argument
and its last character uwould ba moved to tha beginning of the
string.

REX language definition ’ 76

http:expressi.on

n

IEM Internal Use Only

TRUNC(numberi,nl)

returns the integer part of the number, and n decimal places
(default n=0). The number is truncated to n decimal places (or
trailing zeros are added if needed to make up the specified

length). Exponential form will not be used.

e.g. TRUNC(12.3). == 12
TRUNC(127.09782,3) == '127.097°
TRUNC(127.1,3) == 9127.100°"
TRUNC(127,2) == v127.00°

Note: The number will be rounded to NUMERIC DIGITS digits if
necessary before being processed by the function.

USERID()
returns the system-defined User Identifier.
Under VM/370 this is the Virtual Machine Userid which is
returned without trailing blanks.
@.g9. USERIDQ) =="ARTHUR' /% Maybe %/
VALUE(name)

The valuae of the symbol name is returned. Like symbols appear-
ing normally in REX expressions, lower case characters in the
name willi be translated to upper case and substitution in a com-
pound name will occur if possibla. name must be a valid REX
symbol, or an error is raised. .

e.g. 7% following: Drop A3; A33=7; J=3; fred='J' ¥/

VALUE(*fred') == "J' /¥ looks up "FRED" *x/
VALUE(fred) == '3' /% looks up "J¥ X/
VALUE('a'3) SS OTAYY
VALUE(C'a'jil3) == '7°

Note: The VALUE function is typically used when a variable con-
tains the name of another variable, or a name is constructed
dynamically. It is not useful to wholly specify the name as a
quoted string, since tha symbol is then constant and so the
whola function call could bae replaced directly by the data
betueen the quotes. (i.a. "fred=VALUE('j');"™ is always identi-
cal to the assignment "fred=j;".)

VERIFY(string,referencel, "Match'l)

Verifias that the string is composed only of characters from
reference, by returning the position of the first character in
string which is not also in reference. If all the characters
were found in reference, then 0 is returned. If 'Match' is
specified, the position of the first character in string which
i8 in reference is returned, or 0 if none of the characters were

REX language definition . 77

IBM Internal Use Only

found.

The reference string must be non-null. The third argument may
be any expression which results in a string starting with 'M' or
m'.

e.g. VERIFY('123",'1234567890")
VERIFY('1Z3%,'1234567890")
VERIFY('AB3','1234567890','M")

" oa
o n
N o

HORD(sString,n]}

returns the nth blank-delimited word in string. n must be zero
or positive. If n is 0, or there are less than p words in

tring, then the null string is returned. Exactly equivalent to
SUBWORD(string,n,1).

e.g. WORD('Now is the time',3) == *'tha'
WORD('Now is the time',5) == !

WORDINDEX(Sstring,n) ,
returns the position of the nth blank-delimited word in string.
n must be zero or positive. If there are not n words in the
string, or n is 0, then 0 is returned. ’

@.g. WORDINDEX('Now is the time',3)
WORDINDEX('Now is the time',6)

W oa
o

WORDLENGTH(string,n)

returns the length of the nth blank-delimited word in string. »n
must ba zero or positiva. If there are not n words in the
string, orn is 0, then 0 is raturned.

a@.g. WORDLENGTH('Now is the time',;2)
WORDLENGTH("Now comes the time',2)
WORDLEMGTH("Now is the time',6)

i nn
oo
ounN

HORDS (string)
returns the number of blank-delimited words in string.

e.g. WORDS('Now is the time®)

== §
WORDS(* *) ==

0
XRANGE(Istartll;endl)

returns a3 string of all one byta codes between and including the
values start and end. start defaults to '00°x, and end defaults
to 'FF'x. If start is greater than end then the values will
wrap from X'FF' to X'00'. start and end must be single charac~-
ters. ’

REX language definition ' 78

12

IBM Internal Use Only

e.g. XRANGE('a','f") == ‘'abcdef'
XRANGE('03'x,'07"'x) == '03064050607"x
XRANGE(, '04'x) == '0001020304'x
XRANGE(C'i','3") == '898A8B8CSDSE8F9091'x
XRANGE('FE'x,'02'x) == 'FEFF000102"x

X2C(hex-string)

Hexadecimal to Character. Converts from hexadecimal to charac-
ter (pack). hex-string will be paddad with a leading '0' if
necessary to make an aven number of hexadecimal digits. Blanks
may optionally be added in the data to aid readability, and are

ignored.
e.g. X2C('F7F2 A2') == 172s'
X2C('F7f2a2°%) == '72s'
X2C('F') == '0F'x
X2p(hex-stringl,nl)

Hexadecimal to Decimal. Converts hex-string (a string of
hexadecimal characters) to decimal. If the result cannot be
expressed as a whole number, an error results. i.e. the result
must have no more than NUMERIC DIGITS digits. See also the C2D
function.

If n is not specified, hex-string is taken to be an unsigned

number.

a.g. X2D('0E"') == 14
X2D('81") == 129
X2D('F81') == 3969
X2D('FF81') == 65409

If n is specified, the hex-string is then taken to represent a
two's complement number expressed as n hexadecimal characters,
and is converted to a REX whole number which may therefore be
negative.

If necessary, the hex—-string is padded on the left with '0°'
characters (note, not "sign-extended"), or truncated on the
left, to length n characters. (i.a. as though
RIGHT(string,;n;"'0") had bean executed.)

a.g. X2D('81',2) == =127
X2D(*817,4) == 129
X2D('FF81°%,64) == =127
X2D('FF81',3) == =127
X2D('FF81',2) == =127
X2D('FF81',1) == 1

Implementation restriction: This function is not yat fully
implemented. At present, string is limited to eight
characters, and the result must be less than 10 digits. A sec-

REX languaga definition , 79

IBM Internal Use Only

ond argument may not be specified. Please refer to REXDOC level
- 2.50 for examples.

3.9 INTERACTIVE DEBUGGING OF REX PROGRAMS

REX possesses a debug facility which permits interactively controlled
exacution of a program.

Changing the TRACE setting to one with a prefix "?" (a.g. "Trace ?All"%,
or using tha TRACE built-in function) turns on thae interactive debug mode,
and indicates to the user that debug mode is active. The REX interpreter
will then ignore further TRACE instructions in the program, and will pause
after nearly all instructions wuhich are traced at the console (see below
for exceptions). When the interpreter has paused (indicated under VM by a
"YM READ™ or unlocking of the keyboard) then three debug actions are
available:

1. Entering a null line (no ‘blanks even) will make the interpreter con-
tinue exacution until the next pause for debug input. Repeatedly
entering a null line will therefore step from pause point to pause
paint. For T"™TRACE ?All", for example, this is equivalent to
single-stepping through the program.

2. Entering an equal sign ("=") will make the interpreter ra-execute the
clause last traced. For example: if an IF clause is about to take the
wrong branch, one can change the value of the variable(s) on which it
depends, and then re-execute it.

Once the clause has been re-executed, the interpreter will pause
again. The equal sign may not have leading or trailing blanks.

3. Anything else entered will be treated as a string of one or more
clauses; which are interpreted immediately. They are executed by the
same mechanism as the INTERPRET instruction, and the same rules apply
(e.g. DO-END constructs must be completa, etc.). If an instruction
has a syntax error in it, a standard message will be displayed and you
will be prompted for input again - the error will not be trapped by
SIGNAL ON SYNTAX or cause exit from the program. Similarly all the
other conditions are disabled while tha string is interpreted, to pra-
vent unintentional transfer of control.

During execution of the string, no tracing takes place, except that
non-2zaro return codas from host commands are displayed. Host commands
are always executed (i.a. are not affectaed by the prefix "!™ on TRACE
instructions) but the variabla "RC" is not set.

Once the string has been interpreted, the interpreter pauses again for
further debug input unless a TRACE instruction was entered. Execution
of a TRACE instruction immediately affacts the tracing mode, as usual.
Debug mode will be turned off only if a TRACE instruction uses a "?%
prafix (or is "Trace O0ff").

REX language dafinition ' 80

7N

(re

~

IBM Internal Use Only

The numeric form of the TRACE instruction may be used to allow
saections of the program to be executed without pause for debug input.
TRACE n, (i.e. positive result) will allow execution to continue,
with the next "n" pauses being skipped. TRACE =-n, (i.e. negative
result) will allow execution to continue without pause and with trag-
ing inhibited for "n"™ clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored
across subroutine calls. This means that if you are stepping through a
program (say after using "TRACE ?Rasults™) then enter a subroutine in
which you have no interest, you can enter "TRACE OFF". No further
instructions in the subroutine will be traced, but on return to tha caller
tracing will be raestored. .

Similarly, if you are interested only in a subroutine; you can put a
"TRACE ?R"™ instruction at its start. Having traced the routine, the ori-
ginal status of tracing will be restored and hence (if tracing was off on
entry to the subroutine) tracing (and debug mode) will be turned off until
the next entry to the subroutine.

Under CMS tracing may be switched on, without requiring modification to an
Exec, by using the TRACER module (which will turn the system tracing bit
on or off). Tracing may be also turned on asynchronously, (i.e. while an

Exec is running) using the "ts" immediate command. See below on page 115
for the description of these facilities.

Since any instructions may be executed in interactive debug mode ona has

considerable control over execution. Some examples:

Say expr will display the raesult of evaluating the aexprassion.

namesexpr will alter the value of a variable.

Trace Off (or just Trace) will turn off debug mode and all tracing.

Trace ?All will turn off debug mode but continue tracing all clauses.

Trace L will make the interpreter pause at labels only. This is similar
to the traditional "breakpoint™ function, except that you don't
have to know the exact name and spelling of the labels in the
Exec.

exit will terminate execution of the program.

Do i=l to 10; say stem.i; end; would display ten alements of the array
"Stem.".

REXDUMP (in CMS) will display tha values of all variables.

,

atc. ete...

REX languagae definition o 81

e T —m . e e o i, . h i i o f e & = e — = = - - [U— et e e i

IBM Internal Use Only

Exceptions: Some clauses may not be safely re-executed, and therefore the
interpreter will not pause after them, even if they are traced. These
are:

. Any repetitive DO clause, on the second or subsequent time around the
loop.

. All END clauses (not a useful place to pause in any case).
° All THEN, ELSE, OTHERWISE, or null clauses.
e All RETURN and EXIT clauses.

® All SIGNAL and CALL clauses (the interpreter pauses after the target
1abel has been traced).

° Any clause that causes a Syntax error. (These may be trapped by SIGNAL
ON SYNTAX, but cannot be re-executed.)

REX language dafinition : 82

S e e o e w5 2 e —— e L - AR

IBM Internal Use Only

3.10 PARSING FOR ARG, PARSE, AND PULL

Three instructions (ARG, PARSE, and PULL) allow a selected string to be
parsed (split up) into variables, under the control of a template. The
various mechanisms in the template allow a string to be split up by words
(delimited by blanks), or by explicit matching of strings (called
patterns), or by selecting absolute columns - for example to extract data
from particular columns of a record read from a file.

This section first gives soma informal examples of how the parsing tem-
plate can be used, then dascribes in more detail the mechanisms used.

3.10. Introduction to parsin

The simplest form of parsing template consists of a list of variable
names. The data being parsed-is split up into words (characters dalimited
by blanks), and each word from tha data is assigned to a variable in
sequence. The final variable is treated specially in that it will be
assigned whatever is left of the original data and may therefore contain
several words.

Parse value 'This is a sentence.' with vl v2 v3

In this example, V1 would get the value "This", V2 would get the value
"is", and V3 would get "a sentence.".

Leading blanks are removed from each word in thae string before it is
assigned to a variable, as is the blank that delimits the end of the word.
Thus variables set in this manner (V1 and V2 in the exampla) will never
have leading or trailing blanks, though V3 could have both leading and
trailing blanks. In addition, if PARSE UPPER (or the ARG or PULL instruec~
tion) is used, the whola string is translated into upper case before pars-
ing begins.

Nota that all variables mentioned in a template are always given a new
value and so if there are fewer words in the data than variables in the
templatae then the unused variablas will be sat to null.

A string may be used in a templatae to split up the data:
Parse value 'To be, or not to be?' with wi ',' w2

would cause the data to be scannad for the comma; and then split at that
point: thus Wi would be set to "To be", and W2 is sat to ™ or not to be?".
Note that the pattern itself (and only the pattern) is removed from the
data. In fact each section is treated in just the same way as the whola
string was in the previous example, and so either section may be split up
into words. Thus, in:

REX language definition . 83

IBM Internal Usa Only

Parse value 'To ba, or not to be?' with wl ',' w2 W3 wé

W2 and W3 get the values "or™ and "not", and W4 would get the remainder:
"to ba?". If UPPER was specified on the instruction, then all the vari-
ables would be translated to upper case.

If the data in thaese examples did not contain a comma, then the pattern
would effectively "match"™ thHe end of the string, so the variable to the
laft of tha pattern would get the entire input string, and the variables
to tha right would ba sat to null.

The string may ba specified as a variabla, by putting the variable nama in
parenthesaes. Thae following instructions tharaefora have the sama effact as
the last examplaea:

comma="',"
Parse value 'To be, or not to be?' with wl (comma) w2 w3 wé

The third type of parsing mechanism is the numeric pattern. This works in
the same way as the string pattern except that it specifiaes a column num-
ber. So: ’

Parse value 'Flying pigs have wings' with x1 5 x2

would split the data at column 5, so X1 would bae "Flyi™ and X2 would start
at column 5 and so be "ng pigs have wings™.

More than one pattern is allowed;, so for axampla:
Parsa value 'Flying pigs hava wings' with x1 5 x2 10 x3

would split tha data at columns 5 and 10, so X2 would bae "ng pi®™ and X3
would be "ga hava wings™.

The numbers can be relative to thae last number used, so
Parse value "Flying pigs have wings' with x1 5 x2 +5 x3

would have exactly the same effect as the last example: here the "+5" may
ba thought of as specifying tha langth of the data to be assigned to X2.

String patterns and numeric patterns can be mixed (in effact the beginning
of a string pattaern just spacifies a variable column number) and some very
powerful things can ba done with templates. The naxt section describes in
more detail how the various mechanisms interact.

Finally, it is possible to parse more than ona string. For exampla, an
internal function may have more than ona argument string. To get at each
string in turn, you just put a comma in the parsing template, so (for
exampla) if the invocation of the function "FRED™ was:

fred(*'This is the first string',2)

REX language definition) 84

N

§o

IBM Internal Use Oniy

then then instruction
ARG first, second

would put the string 'This is the first string' into the variable
"FIRST", and the string "2' into the variable "SECOND". Betuween the com-
mas you can put a normal template with patterns etc., to do more complex
parsing on each of the argument strings.

3.10.2 Parsing definition

This section describes the rules which govern parsing.

In its most general form, a template consists of alternating pattern spec-
ifications and variable names. The pattern specifications and variable
names are used strictly in sequenca from left to right, and are used once
only. In practice, various simpler forms are used in which either vari-
able names or patterns may be omitted: we can therefore have variable
names without patterns in batween, and patterns without intervening vari-
able names.

In general, the value assigned to a variable is that Qequence of charac-
ters in the input string betueen the point which is matched by the pattern
on its left and the point which is matched by the pattern on its right.

If tha first item in a template is a variable, then thera is an implicit
pattern on the left which matches the start of the string, and similarly
if the last item in a template is a variable then thera is an implicit pat-
tern on the right that matches the end of the string. Hence the simplest
terplate consists of a single variabla nama which in this case is assigned
the entire input string.

The same restrictions apply to the names of variables changed by use in a
parsing template as to those used as the target of assignments (see page
21).

The constructs which may appear as patterns:-fall into two categories, pat-
terns which act by searching for a matching string (literal and variable
patterns), and numaric patterns which specify an position in the data (po~-
sitional and relative patterns).

For the following examples, assume that the following string is being
parsed (note that all blanks arae significant):

*This is thae data which, I think, is scanned.?®

REX languaga definition . 85

IBM Internal Use Only
3.10.2.1 Parsing With literal patterns

Literal patterns cause scanning of the input data string to find a
sequence which matches tha value of the literal. Literals are expressed
as a quoted string.

The template:
wl ', w2 %, rast
when parsing the example string, raesults in:

muiT has the value "This is the data which”
2w has the value ™ I think"™
"REST™ has the valua ™ is scanned.™

Here the string is parsed using a template which asks that each of the
variables receiva a valua corresponding to a portion of tha original
string between commas; the commas are given as quoted strings. Note that
the patterns themselves are réqoved from the data being parsed.

A di fferent parse would result with tha template:
wl "' w2 ', w3 *,' rast
which would result in:

"l has tha value "This is the data which"
n2w has the value ™ I think"™

"TW3w has the valua " is scanned."

PREST"™ has thae valua ™™ (null)

This illustrates an important rule. When a match for a pattern cannot bea
found in the input string, it instead "matchas™ thae end of tha string.
Thus, no match was found for tha third ',' in the tamplate, and and so W3
was assigned the rest of the string. REST was assigned a null value
because the pattern on its left had already reached the end of the atring.

Note that all variables which appear in a templatae ara assigned a naw val-
ue.

If a variabla is followad by another variabla, a spacial action is takan.
This is similar to there baing tha pattarn ' ' (a single blank) batwaean
them, except that leading blanks at the current position in tha input data
ara skipped over beforae the search for tha new blank takas place. This
means that the value assignaed to the laeft-hand variabla will be the next
word in the string, and will have naither leading nor trailing blanks.

Thus the templata:

wl w2 w3l rest ',!

REX languaga dafinition) 86

TN

IBM Internal Use Only

would result in:

Ty has the value "This'

Tu2n has tha valua "is"

n3n has the value "the™

"REST" has the value "data which"

Note that the final variable (REST in this exampla) could have had both
leading blanks and trailing blanks, since only the blank that delimits the
pravious word is removed from the data.

Also observa that this exampla is not tha same as specifying explicit
blanks as patterns, as the templata:

wl " " w2 ' " w3 ' rest ',
would in fact result in:
L has tha value "This'
n2w has the value "is®"
T3 has the value "7 '
T"REST™ has the valua "the data which®™
since the third pattarn would match the third blank in the data.

In general then, when a variable is followed by another variable, parsing
of the input by tokenisation into words is implied.

3.10.2.2 Use of the period as a placeholder

The symbol consisting of a single period acts as a placeholder in a tem-
plate. It has exactly the same effect as a variable name, except that no
variable is set. It is especially useful as a "dummy variable™ in a list
of variables or to collect unwanted information at tha end of a string.
Thus the template:

. word% .

would extract the fourth word ('data’') from the string and place it in the
variable WORDG.)

3.10.2.3 Parsing uith positional patterns

Positional patterns may be used to cause tha parsing to occur on tha basis
of position within the string, rather than on its contents. They taks the
form of signad or unsignad whole numbers, and may cause the matching oper-

REX language definition . 87

IBM Internal Use Only

ation to "back up” to an earlier position in tha data string. The lattér
cannot occur except when positional patterns are used.

Unsigned numbers in a template refer to a particular character column in
the input. For example, tha template

sl 10 s2 20 s3
rasults in

751" has the value "This js "
. "S2" has the value "the data w"
"S53™ has the value "hich, I think, is scannad."

Here S1 is assigned characters from input through the ninth character, and
S2 receives input characters 10 through 19. As usual the final variable,
$3, is assigned the remainder of the input.

Signed numbers may be used as patterns to indicate movement raelativa to
the character position at which the previous pattaern match occurread.

If a signed number is specified, then the position used for tha next match
is calculatad by adding (or subtracting) the numbaer given to the last
matched position. The last matched position is the position of the first
character of the last match, whather specified numerically or by a string.
For example, the instructions:

a = %123456789"
parse var 2 3 wl +3 w2 3 wl

result in

"W1l"™ has tha value ™345"
"W2" has the value "4789"
"W3" has the value ™3456789"

The +3 in this case is equivalent to the absolute number 6 in the same
position, and indeed may be considered as specifying the length of tha
data to be assigned to thae variablae Wl.

This example also illustrates the effects of a pattern which implies move-~
ment to a character position to the left of, or to, the point at which
matching has already occurred. The variable on the left is assigned char-
actaers through the end of thae input, and the variable on the right is, as
usual, assigned characters starting at the position dictated by the pat-
tern.

A useful effect of this is that multiple assignments can be madae:

parsa var x 1 wl 1 w2 1 w3

REX languaga definition ; 88

- —_—— e

%l

IBM Internal Use Only

results in assigning the (entire) value of X to W1, W2, and W3. (The first
71" here could be omitted as it is effectively the same as the implicit
starting pattern described at the beginning of this section.)

If a positional pattern specifies a column which is greater than the
length of the data, it is equivalent to specifying the end of the data
(i.e. no padding takes place). Similarly, if a pattern specifies a column
to the left of tha first column of the data, this is not an error but
instead is taken to spaecify the first column of the data.

Any pattern match sats the "last position™ in a string to which a relative
positional pattern can refer. Tha "last position™ set by a literal pat-
tern is the position at which the mateh occurred, i.a. the position in the
data of the first character in the pattern. Thus the template:

' =1 x +1
Will:

1. Find the first comma in the input (or the end of tha string if there is
no comma)l. .

2. Back up one position.

J. Assign one character (the character immediately preceding the comma
or end of string) to the variable X.

A possible application of this is looking for abbreviations in a string.
Thus the instruction:

/% Ensurae options have leading blank and are uppercasa %/
parse upper value ' Topts with ' PR'" +1 prword * °*

will set the variable PRWORD to the first word in OPTS which starts with
"PR" or will set it to null if no such word exists. Note that +0 is a val-
id trigger.

Note: If a number in a template is preceded by a "+" or a "=", this is tak-
en to be a signed positional pattern. There may be blanks between the
sign and the number, since REX initial scanning removes blanks adjacent to
special eharacters.

3.10.2.% Parsing With variable patterns

It is somaetimes desirable to be able to specify a matching pattern by
using a variable instead of a literal string. This may be achieved by
placing the name of the variable to be used as the pattern in parentheses.
The variable may be one which has been set earlier in the parsing process,
so for example:

REX language definition . 89

IBM Internal Use Only

input="L/look fors1 10")
parsae var input verb 2 delim +1 string (delim) rest

will set:
verb == e
delim == '/°
string == 'look for'
rest == '] 10"

3.10.2.5 Parsing multiple strings

A parsing template can parse multiple strings. This is effected by using
the special character "," (comma) in the template - each comma is an
instruction to the parser to move on to the next string. For each string a
normal template (uwith patterns ete.) may be specifiad. The only time mul-
tiple strings are available is in the ARG (or PARSE ARG) instruction: when
an internal function or subroutine is inveked it may have several argument
strings, and a comma is used to accass each in turn. Thus the template:

wordl stringl, string2, num
would put the first word of the first argument string into "WORDL™, the
rest of that string into "STRINGI™, and the next two strings into

T"STRING2™ and "NUM™. If insufficent strings werae specified in the invoca-
tion, unused variablas arae set to null; as usual.

REX language definitien : 90

IBM Internal Use Only
3.11 NUMERICS AND REX.A&ITHHETIC

REX arithmetic attempts to carry out the usual operations (addition, sub-
traction, multiplication, and division) in as "natural™ a way as possible.
What this really means is the rules followed are those which are conven-
tionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortu-
nately the rules used vary considerably (indaed much more than generally
appraeciated) from parson to person and from application to application and
in ways which are not always predictable. The REX arithmetic described
here is therefore a compromise which (although not the simplest) should
provide acceptable results in most applications.

3.11.1 Introduction

Numbers can be expressed in REX very flaxibly (leading and trailing blanks
are permitted, exponential notation may be used) and follow the conven-
tional rules. Some valid numbers are:

12 /7% an integer t 74

=76 /% signad integer */
12.76 /7% decimal places ¥/

+ 0.003 ° 7% blanks around tha sign etc %/
17. /% same as "17" . ¥4

.5 /% same as "0.5" */

4E9 /7% exponaential notation .74
06.73e~7 /% exponential notation */

(Exponential notation means that the number includes a pouwer of ten fol-
lowing an "E"™ which indicates how the decimal point should be shifted.
Thus 4E9 above is just a short way of writing 4000000000, and 0.73e~7 is
short for 0.000000073.)

The Arithmetic operators include addition ("+7), subtraction ("-7), mul-
tiplication ("%"), exponentiation ("%X%%), and division ("/"). In addi-
tion there are two further division operators: integer divide ("%") which
divides and returns the integer part; and remaindar ("//%) which divides
and returns the remainder.

When twoe numbers are combined by an operation, REX uses a set of rules to
dafine what the result should be, and how the result is to be represented-
as a character string. Thaesa rules are daefined in thae next section, but
briefly:

® A number will be displayed with up to some maximum number of signi f-

icant digits (the default is 9, but this may be altered with the
NUMERIC instruction to give whatever accuracy you need). Thus if a

REX language definition . . 91

IBM Internal Use Only

result requires more than 9 digits it would normally be rounded to 9
digits. For example, the division of 2 by 3 would result in
0.666666667 (it would require an infinite number of digits for perfect
accuracy)d.

¢ Except for division and exponentiation, trailing zeros are preserved
(this is in contrast to most popular calculators which remove all
trailing zeros). So, for example:

This behaviour is desirable for most calculations (espacially finan-
cial calculations).

If necessary, trailing zeros may be easily removed with the STRIP
function (see page 73), or by division by 1.

® A zero result is slways expressed as the single digit '0°,

. Exponential form is used for a result depending on the setting of
NUMERIC DIGITS (the default is 9): If the number of places needed
before the decimal point exceeds DIGITS, or the number of places after
the point excesds twice DIGITS, then the number will be expressed in
exponential notation:

le6 % leé => 1E+12
© /% not 1000000000000 x*/
i1 7 3E10 => 3.33333333E-11
/% not 0.0000000000333333333 %/

3.11.2 Definition

This definition should unambiguously describe the arithmetic facilities
of the REX language.

Numbers

A number in REX is a character string which includes one or more
decimal digits, with an optional decimal point. The decimal
point may ba embedded in the number. or may be prefixed or suf-
fixed to it. The group of digits (and optional point) thus con—
structed may have leading or trailing blanks, and an optional
sign ("+® op "=%) yhich must come before any digits or decimal.
point. Thus:

REX language definition ' 92

Precision

IBM Internal Use Only

sign 1=+ | =

digit ::= 0] 112131415161 71]181]39
digits ::= digit [digitsl...

numeric ::= digits . [digitsl]

£.] digits
number ::= ([blankl... [sign [blankl...] numeric [blankl...

Note that a single period alone is not a valid number.

The maximum numbar of significant digits that can result from an
operation is controlled by the language instruction:

NUMERIC DIGITS [expressionl

The expression is evaluated and should result in a positive
whole number. This defines the precision (number of signif-
icant digits) to which calculations will be carried out:
results will be rounded to that precision.

If no expression is spacified, then the default precision is
used. The default precision is 9, i.e. all implementations must
support at least nine digits of precision. An implementation
dependent maximum (larger than 9) may apply: an attempt to
exceed this should cause execution to terminate with an error
message. Thus if an algorithm is defined to use a given number
of digits then if tha NUMERIC DIGITS instruction succeeds then
the computation will proceed and produce identical results to
any other implementation.

Arithmetic operators:

Thae four basic operators "+", "-", "%, and "/" (add, subtract,
multiply, and divide) produce results that are rounded if nec-
essary to the precision specified by the NUMERIC DIGITS
instruction.

Every operation is carried out in such a way that no errors will
be introduced except during the final rounding to the specified
significance for the result. (i.e. input data is first trun-
cated to the appropriate significance (DIGITS+1) before being
used in the computation, and thaen divisions and multiplications
ara carried out to double that precision, as needed.)

Rounding is done in thae "traditional™ manner, in that the guard
digit is inspacted and values of 5 through 9 are rounded up;, and
values of 0 through 4 are rounded down. Even/odd rounding would
require the ability te calculate te arbitrary precision at all
times and is therefora not the mechanism defined for REX.

A conventional zero is supplied previous to a decimal point if
otherwise there would ba no digit pqeceding it. Significant
trailing zeros are retained for addition, subtraction, and mul-

REX language dafinition . 93

P AT LT e i e e g o o cite mm e wm = n T 2 T o NP S S o S SO SRR UPP S R

IBM Internal Use Only

tiplication, according to the rules given below, except that a
result of zero is always expressed as the single digit '0'. For
division, trailing zeros are removed after rounding.

The FORMAT built-in function is supplied (sce page 68) to allow
a number to be represented in a particular format if the stand-
ard result provided by REX does not meet requirements.

The precise rules for the operations are described below, but
the following examples illustrate the main implications of the

rules:

/7% With: Numeric digits 5 %/

12+7.00 == 19.00
1.3-1.07 == 0.23
1.3-2.07 == -0.77
1.20%3 == 3.60
7%3 == 21
0.9%0.8 == 0.72
173 == 0.33333
273 == 0.66667
572 = 2.5
1710 == 0.1
12/12 == 1

8.0/2 = 4

Exponentiation (™%"), integar divida ("%"), and remainder
("//7) operators are also defined:

Tha "%%" (exponentiation) operator raises a number to a whole
power, which may ba positiva or negativa. If negative, the
absoluta valua of the power is used, and then the result is
inverted (divided into 1). For caleulating the result, the num-
ber is effectively multiplied by itself for the number of times
expressed by the power, and finally trailing zeros are removed
(as though the result were divided by one). In practice (see
note below for rationale), the result is calculated by the proc-
ess of left-to-right binary reduction. For "x*%n™: ™n" is con-
verted to binary, and a temporary accumulator is set to '1'. If
"™ = 0 then thae calculation is complete. Otherwise each bit
(starting at the first non-zero bit) is inspected from left to
right. If the current bit is '1' then the accumulater is multi-
plied by ™™, If all bits hava now been inspected then the cal-
culation is complaete, otheruwise the accumulater is squared and
the next bit is inspected for multiplication. When the calcu-
lation is complete, the temporary result is ready for division
by or inte 1 to provide tha final answer. The multiplications
and division are done under the normal REX arithmetic combina-
tion rules, detailad below.

The "%" (integer divide) operator divides tws numbers and
returns the integer part of the result, which will be unrounded
unless the integer has more digits than the current DIGITS set-
ting. The rasult returned is defined to be that which would

REX language definition ' 94

http:1.3-2.01

3+

IBM Internal Use Only

result. from repeatedly subtracting the divisor from the divi-
dend while the dividend is larger than the divisor. During this
subtraction, the absolute values of both the dividend and the
divisor are used: the sign of the final result is the same as
that which would result if normal division were used. Note that
this operator may not give the same result as truncating normal
division (which could be affected by rounding).

The "//% (remaindér) operator will return the remainder from
integer division, and is definad such that:

a’szb == a-(a%b)*b
Thus:

/% Again wit Numeric digits 5 %/

h:

2%%3 == 8
2%%-3 == 0.125
1.7%%8 == 69.758
2%3 == 90
2.1/773 == 2.1
1023 = 3.
10/73 == 1
-10/73 == -1
10.2/771 == 0.2
10//70.3 = 0.1

Note: A particular algorithm for calculating exponentiation is
dascribed, sinca it is afficient (though not optimal) and con-
siderably reduces the number of actual multiplications per-
formad. It therefore gives better performance and can give
higher accuracy than the simpler definition of repeated multi-
plication. Since results may differ from those of repeated mul-
tiplication, thae algorithm must be defined here so that
different implementations will giva identical results for the
same operation on the same values. .

Arithmetic combination rules
The rules for combination of two numbers by the four basic oper-
ators are as follows. All numbers have insignificant leading
zaros removed before being used in computation.

Addition and Subtraction

The numbers are extended on tha right and left as necessary
and then added or subtracted as appropriate.

Q.g: XXX . XXX + yy.yyyvy

becomes: %xxXX.xxx00
+ Oyy.yyyyy

D - - - - — -

222.22222

REX language definition . 95

o e . e e, = = PSS S

et e m e e e o e e = PER U N

e

IBM Internal Use Only

The result is then rounded to DIGITS digits if necessary,
- and then any insignificant leading zeros are removed.

Multiplication

The numbers are multiplied together ("long multiplication™}
resulting in a number which may be as long as tha sum of the
lengths of the two operands.

@.g: XXX. XXX ¥ yy.yyyyy
becomes: 22222.22222222
and the result is then rounded to DIGITS digits.
Division
For the division:

yyy 7/ XXXXX
the following steps are taken: First the number "yyy" is
extended to be at least as long as the number ™xxxxx™ (with
note being taken of the change in tha power of ten that this
implies). Thus in this example, "yyy" becomes "yyy007.
Traditional long division thaen takes place, which might be
uritten:

xxxxx) yyy00

The length of the result ("zz222") is such that the rightmost
">" will ba at least as far right as the rightmost digit of
the (extended) "y" number in the example. During the divi-
sion, the "y" number will be extended further as necessary,
and the "z=" number may increase up to DIGITS+1 digits, at
which point the division stops and the result is rounded.
Following completion of the division (and rounding if nec-
aessary), insignificant trailing zeros are removed.

Nota: In the above examplaes, the position of the decimal point
is arbitrary. In fact the operations may be carried out as
integer operations wuwith the exponent being calculated and
applied after. Therefore nane of the operations are in any way
depaendent on the position of the dacimal point and hence results
are completaely independent of the number of decimal plaeces.

Comparison operators

The same comparative operators are supported as. for character
strings (see page 17). Numeriec comparison is effected by sub-
tracting the two numbers (calculating .the differenca) and then
comparing the result with '0'. i.e. the operation

REX language definition : 96

IEM Internal Use Only

N A?8B

where "?" is any comparison operator, is identical to:
(A - B) ? '0°'

It is therefore the difference between two numbers, when sub~-
tracted under REXA subtraction rules, that determines their
equality.

Comparison of two numbers is affected by a quantity called
"Fuz2¥", which is sat by tha instruction:

NUMERIC FUZ2Z [expressionl

Here the expression must result in a whole number which is zero
or positive. This FUZZ number controls the amount by which two
numbers may differ before being considered equal for the pur-
posae of comparison. The default is 0.

Tha effect of FUZZ /is to temporarily reduca the value of DIGITS
by the FUZZ value for each comparison operation. i.e. the num-
bers are subtracted under a precision of DIGITS-FUZZ digits
during the comparison. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, then the comparison will be

N carried out to 8 significant digits, just as though "NUMERIC

(S

DIGITS 8™ had been put in effact for the duration of the opera-
tion. Example:

Numeric digits 5

Numaeric fuzz 0

say 4.9999 = 5 /% would type 0 ®/
say 6.9999 < 5 /% would typae 1 */

Numeric fuzz 1
say 4%.9999 = 5 /% would type 1 */
say %.9999 < 5 /7% would type 0 */

An implementation dependent maximum value for FUZZ (which could
be 0) may apply: an attempt to exceed this should causae exe-
cution to terminate with an error message. Thus if an algorithm
is defined to require a non-zero valua of FUZZ then if the
NUMERIC FUZZ instruction succeeds then the computation will
proceed and produce identical results to any other implementa-
tion.

Exponential notation

The daescription above decribes "pure®™ numbers, in the sense
that the character strings which describe numbeirs can be very

N long. e.g.

REX language definition) 97

e v e —— PR — ———— e e ———y—— -

IBM Internal Use Only

say 10000000000 % 10000000000
/% would type: 100000000000000000000 x/

say .00000000001 * .00000000001
/% would type: 0.000000000000000000001 %/

For both large and small numbers some form of exponential nota-
tion is useful, both to make numbers more readable, and to
reduce execution time storagae requirements. In addition, expo-
nantial notation is used whaenavaer thae "simplae™ form would give
mislaading information. For example

numeric digits 5
say 54321%54321

would typa "2950800000"™ if long form were to be used. This is
clearly misleading, and so REX would express the result as
"2.9508E+9", :

Thae definition of "numbers™ (see above) is therefore extended
as followus: ‘

numaric ::= digits . [digits]
[.] digits
numeric E [sign] digits

where the integar following the "E"™ represents a powar of ten
that is to be appliad to tha number; and the "E™ may be in upper
or lower case. e.g.

12E11 = 1200000000000
12E-5 = 0.00012
~12e% = -120000

The abovae numbers are valid for input data at all times. The
rasults of calculations will be returned in exponential form
daepending on the setting of DIGITS. If the number of places
needed before the daecimal point exceeds DIGITS, or the number of
places after the point exceeds twice DIGITS, then exponential
form will bae used. Thae exponential form generated by REX always
has a sign following tha "E™ in order to improve readability.
An exponential part of "E+0" will never be generatad.

Numbers may be axplicitly convartad te exponential form, or
forcad to be displayed in ™long™ form, by using tha FORMAT

built-in function, sea pagae 68.

The usar may control whether Scientific or Enginearing notation
is to ba used by using the instruction:

NUMERIC FORM SCIENTIFIC
ENGINEERING

REX language daefinition . 98

i s e —— e Lo e e aee St e e e e

IBM Intérnal Use Only

/»\\ Tha default setting of FORM is SCIENTIFIC.

Scientific notation adjusts the power of ten so there is a sin-
glae non-zero digit to the left of the decimal point, Engineer-
ing notation causes pouwers of ten to always be expressed as a
multiple of 3: tha integer part may therefore range from 1
through 999.

Numeric form scientific
say 123.45 % lell
/% would typa: 1.2345E+13 1/

"Numeric form engineering
say 123.45 ¥ lall
/% would type: 12.345E+12 %/

Numeric information

The current sattings of the NUMERIC options may be found by
using the NUMERIC option of the PARSE instruction:

PARSE NUMERIC [templatel
this will parse the current settings of the numaric parameters,

in the ordar: Digits, Fuzz, Form. ae.g9. if tha defaults applied,
then this would causa tha string

WA "9 0 SCIENTIFIC®

20

to ba parsed.

Note: Like all informational PARSE options, naw options may bae
added to the string at a latar date.

uUse of numbers by REX

Whenever REX uses a character string as a number (for example as
an argument to a built-in function, or the exprassions on a DO
clause) then rounding may occur according to the setting of
NUMERIC DIGITS.

Implementation independence

Tha REX arithmatic rules ara defined in detail, so that when a
given program is run the results of all computations are defined
sufficiently that the same ansuwer will result for ALL implemen-
tations. Vagaries of underlying machina architectures cannot
affect tha results achievad.

This contrasts with othaer languages, such as APL and most com-
piled languages, whare tha result obtained may depend on the
implementation - as the precision of the internal represen-~

//"\ tation is implamentation defined rather than language defined.

REX avoids this problem. :

REX languagae definition . 29

e T e e W= e e et . I e e e am mw U L T

Errors

I1BM Internal Use Only

Various types of errors may occur in computation:

Overflow/Underflow

This error will occur if the exponential part of a result
exceeds the range that may be handled by the interpreter.
The language defines a minimum capability for tha exponen=-
tial part, namaely the largest number that can be expressed
as an axact intager in default praecision. Thus since thae
dafault pracision is 9, then implementations must support
axponents at least as largae as 999999999.

Since this allows for (very) large exponents, an implemen-—
tation may treat overflow or underflow as a terminating
"syntax"™ error.

Storage excaption

Storage is necded for calculations and intermediate
results, and on ‘'occasion an arithmetic operation may fail
due to lack of storage. This is considered a terminating
error as usual, rather than an arithmaetical error.

REX languagae definition . 100

e v . g g o e

\&

Ly

7N

IBM Internal Use Only
3.12 VARIABLES AND COMPOUND SYMBOLS (ARRAY HANDLING)

A symbol which has been given a new value (by an assignment, or a PULL,
ARG, or PARSE instruction) is called a Variable. The value of a symbol is
either the string assigned to it (if a variable) or its derived name. The
derived name of a simple symbol is the upper case form of thae symbol, as
described earlier.

A symbol which does not start with a digit (0-9) or a period, yat includes
at least one period, is compound: This means that its name may incluga
thae valua of ona or morae other symbols. '

The derived name of a compound variable of the form:
s0.sl.s2. === .sn

is then given by:i
d0.vli.v2. === .vn

where di is the upper case fo;m of the symbel s0, and vl to vn are the val-
ues of tha simple symbols sl to sn. Any of the symbols sl-sn and values
vi-vn may ba null.

Compound symbols may therefore be used to set up arrays and lists of vari-
ables, in which the subscript is not necessarily numeric, and thus offer
great scope for the creative programmer. A useful application is to set
up an array in which the subscripts are taken from the value of one or more
variables, so affecting a form of associativa memory ("content
addraessable™).

Soma aexamples follow in the form of a small extract from a fictitious REX
exec:

a=3 /% assigns '3' to the variable with name 'A' X/
b=4 /% 4" to var named 'B' *xs

='Fred’ /% 'Fred’ to var named 'C’ 74
a.b="Fred’ /% 'Fred' to var named 'A.4' */
a.fred=5 /% 5 to var named 'A.FRED' ¥/
a.c='Bill" /% "BillY to var named 'A.Fred' ¥/
c.c=a.fred /% 157 to var named 'C.Fred' %/
x.a.b="Annie? /% "Anniae' to var named 'X.3.4' ¥/

say a b ¢ a.a a.b a.c c.a a.fred x.a.% ?.a

/7% will type the string: t 74
7% '3 4 Frad A.3 Frad Bill €.3 5 Annie 7.3°' L 74

For certain operations (DROP and PROCEDURE EXPOSE), a wholae collection of
variables which share a common stem may be referenced by specifying the

stem alone. The stem is that part of the name up to and including the
first paeriod.

REX language dafinition 101

http:dO.vI.v2
http:SO.S1.52

IBM Internal Use Only

Implementation maximum: The length of a variable name, after
substitution, may not exceed 250 characters.

3.13 RESERVED KEYWORDS AND LANGUAGE EXTENDABILITY

The free syntax of REX implies that some symbols are reserved for use by
the interpreter in certain contexts.

Within particular instructions, some symbols may be reserved to separate
the parts of the instruction: for example the WHILE in a DO instruction,
or the THEN (which acts as a clause terminator in this case) following an
IF or WHEN clausa.

Only non-compound symbols that are the first in a clause and that are not
followed by an "=" or ":" are checked to see if they are instruction
keywords: the symbols may be freely used elsewhere in clauses without
being taken to be keyuwords.

.

Therefore keywords can only adversely affect thae user if it is dasired to
executa a host command or subcommand with the same name (e.g. "QUEUE"™) as
a REX keyword.

This is potentially a problem for any programmer whose REX programs might
be used for soma time and in circumstances outside his or her control, and
who wishes to make the programs absolutely "watertight™.

In this case a REX program may be written with (at least) the first words
in command lines enclosed in quotes.

e.g: "ERASE' Fn Ft Fm
This also has an advantage in that it is more efficient; and with this
style, the SIGNAL ON NOVALUE condition may be used to check the integrity
of an Exec.
An alternative strategy is to precede such command strings with two adja-
cent quotes,; which will have the effect of concatenating the null string
on to tha front.

@.g: ""Erase Fn Ft Fm

A third but more ugly option is to enclose the entire expraession (or the
first symbol) in parentheses.

a@.g: (Erase Fn Ft Fm)
Importantly, the choica of strategy (if it is te be done at all) is a par~
sonal ornae by the programmer, and is not imposed by the REX languagea.

The possibility of identifying all REX keywordﬁ by starting them with a

REX languaga definition . 102

o e e S e gt o —— o e e e o e - - T e e oy e =

W

2T}

IBM Internal Use Only

unique character (e.g. ".") was most seriously considered, however this:

° does not solve the problem should one in the future be allowed com-
mands starting with that same letter (for example, SCRIPT commands
begin with a period).

. destroys the natural look of the language which was one of the prime
reasons for its inception.)

In addition to this, it uas felt that the problem is much lass severe than
that of changes to thae host commands invoked by thae program: these are
often far less controlied and may even have totally different effects in
different locations and environments. (This problem is eased by REX's
policy of standard external functions starting with "RX" - these at least
MAY have some integrity).

3.14 SPECYAL VARIABLES

There are three Special Variables which may be set automatically by the
REX interpreter:

TRC™ this is set to the return code from any executed host command
(or subcommand).’ Following the SIGNAL events SYNTAX and ERROR,
it is set to the code appropriate to the event, i.e. the syntax
error number (1-49) or the Command return code. "RC" is
unchanged following a NOVALUE or HALT event.

Note: Host commands executed manually from debug mode do not
cause the valua of RC to changa.

TRESULT™ this is set by a RETURN instruction in a subroutine that has
been CALLed if the RETURN instruction specifies an expression.
If the RETURN instruction has no exprassion on it then "RESULT"™
is dropped (becomes uninitialised).

"SIGL™ contains the line number of the last instruction that caused a
jump to a label (i.e. a SIGNAL, CALL, internal function inveoca-
tion, or trapped error condition).

None of these variables has an initial value. They may be altered by the
usar, just like any other variable, and they may be accessed, under CMS,
via the direct interface to REX variables. Thae PROCEDURE and DROFP
instructions alse affect these variables in the usual way.

Certain other information is always available to a REX program. This
includes tha name by whieh the program was invoked, and the source of the
program (which is available using tha PARSE SOURCE instruction, see page
42). Under CMS, this latter consists of the string "CMS" followed by the
call type and then the name, typa, and disk mode of the file being exe-
euted; thesa are followed by the call name and the initial (default) com-

REX language definition .) 103

D T SR S = .

IBM Internal Use Only

mand environment.

In addition, PARSE VERSION (see page 44) makes available the version and
date of the interpreter code that is running; and the built-in functions
TRACE and ADDRESS return the current trace setting and environment name
respectively.

Philosophical Note: The existence of these three special variables is
believed to be an undesirable feature of the language, and they should be
considered to ba implementation depandent rather than strictly part of the
language. At some futura time it is hoped that the language will provide
a more formal way of accassing these valuaes, probably via built-in func-
tions. However it is expected that these special variables will be sup-
portad indefinitely in the 57370 implementation of REX.

REX language definition ’ 164

\F

2

IBM Internal Use Only

.0 THE CHMS IMPLEMENTATION

6.1 INSTALLING REX AND EXECUTING REX EXECS

To run a program written in REX, you first have to activate REX in your CMS
machine by executing the command TEXEC REX I"™. If the REX MODULE (and
possibly other modules required) are not available, this will fail with an
appropriate error messaga and you should contact your systems support
dapartment to find out where they ara.

Once REX is activated (by "EXEC REX I™, see below) then you can normally
run REX Execs (which must be in files with a filetype of TEXEC") just by
typing the name of the Exec when in the CMS command environment = CMS will
find the file of that name, and pass it to the REX interpreter for exe-
cution. REX then checks the first line of the program: if the first
non~blank characters are "/%" then the program will be processed by REX:
otherwise it is assumed to be written in EXEC or EXEC 2 and the appropri-
ate interpreter is called.

7

. Execs may also be invoked from XEDIT - see balou.

6.1.1 Installation and Help: the REX EXEC

The basic REX package includes a (CMS) Exec which performs sevaral func-
tions:

Installation:

The command "REX I™ will install REX as an extension to CMS (and
will also install EXEC 2 if it is available and is not already
active). Once this has executed successfully, you may run any
REX Execs on your system (and continue to run EXEC or EXEC 2
Execs). The external function packages (REXVMFNS and REXFNS2)
will be loaded automatically by REX as and if required.

You will probably want to put the line "EXEC REX I"™ into your
PROFILE EXEC so REX will be installed automatically when you
logon. .

General Information:
Thae command "REX 2™ will tell you about REX EXEC and how to use

the Tutorial/Help facility, and will also display the version
(level) of REX currently active and displayed.

The CMS implementation) 105

IBM Internal Use Only

Error Return Code Information:

You can get extra information and hints on the likely causes of
REX errors by typing "REX nnnnn™ (where nnann is the error
return code, e.g. 20006). It is strongly recommended that neu
users make use of this faeility

Tutorialsonline help facility:

The command "REX™ will take you directly to the Index of the
Tutorial/Halp facility - you may then select thae topic you wish
to read about by number, keyword, by hitting PF Keys, or by
using the Lightpen.

A main index is presented: there is a sub-index for each of 10X,
FSX, and the function packages.

The command "REX xXxXX"™ (where xxxx is any REX keyword, function
name, etc.) will take you directly to the part of the online
documentation describing that instruction.

¢

6.1, Executin rograms uritten in REX

Execs (files with filaetype EXEC) may be executed from a variety of envi-
ronments running under CMS (eg XEDIT, FULIST), or directly from the CMS
command environment itself.

In the CMS command environment, Execs arae invoked when you enter the
filename of the Exec file. You may optionally precedae the filename on the
command line with "ex", "exe", or "exec®.

Example:
myexec fred bloggs
”OR"‘

exec myexec fred bloggs
where "myexec®™ is the filename of the EXEC fila, and "fred bloggs"” is the
argument string to be passed to tha Exec (this can be retrieved by the ARG
o PARSE ARG instructions).
Normally you do not need the prefixed "exee™ as CMS will add it for you.
However, if an internal flag of CMS called IMPEX (Implied Exec execution)
is set OFF, then the prefix is required te explicitly invoke the Exec
processors. More information is available in the CMS User's Guide
(5C19-6210).
Executing REX programs from othaer environments will depend on tha partic-

ular environment, but mest (such as FULIST) provide the usual CMS search

The CMS implementation ' 106

S I I USSRV - =t

A7

Y

IBM Internal Use Only

order and so REX Execs may be invoked just like any other command.

When editing an Exec with XEDIT, it is very often convenient to invoke the

.Exec to test it without leaving XEDIT. To do this, first issue the XEDIT

"SAVE"™ command to ensure that your latest changes are saved on disk (which
is where CMS will look for the data). Then just type the command on
XEDIT's command line just as described above, but with "CMS" prefixed.

Example:

cms myexec fraed bloggs
- OR -
cms exac myexec fred bloggs
You may ;;it-the prefix "CMS™ if all the following conditions are met:

1. the filename of the Exec is not the same as the name of any XEDIT com-
mand

2. the filename consists of Eqst alphabetic characters

3. XEDIT's IMPCMSCP (Implied CMS and CP commands) flag is ON. (If this
flag is OFF, then XEDIT will not automatically pass unrecognised com-
mands on to CMS.)

See the XEDIT User's Guide and Reference manuals (5€24~-5220 and $C24-5221)
for further information.

Note: For an Exec written in REX to ba run successfully under CMS, there
are two conditions that must both be satisfied first:

1. REX must be activated (see above). It is possible for an Exec to
automatically install REX if it needs it (sea page 130).

2. The EXEC interpreter must be told that the Exec is written in REX
(rather than EXEC or EXEC 2). This is achieved by ensuring that the
first line of the Exec starts with a REX comment ("/% ... /"), If the
first non-blank characters in the file are "/%", then REX will process
the file, otherwise it will be passed on to EXEC 2 or EXEC.

Note: XEDIT macros written in REX are executed in exactly the same way as
thosa written in Exec 2. The conditions for Exaecs (described in the last
Note) must be satisfied for Macros, too. Take carae that no lines in the
macro start with the character %", as some versions of XEDIT may delete
these lines before passing them to REX. See pagae 131.

The CMS implementation . 107

T A e e gt e ——— g R m e o e Lt N e e = mm o e e s s

Cm e o o b e - s o —— e A e e m e —e em - . e e e m— D P

IBM Internal Use Only

6.2 STANDARD EXTERNAL FUNCTION. PACKAGES

REX includes many built-in functions (see page 61) but in addition two
standard packages of external functions are distributed. These are called
REXVMFNS and REXFNS2, and currently are loaded automatically by REX if and
when needed, or they may be explicitly loaded by issuing their name as a
command. Both "tell"™ about themselves when invoked with the argument ™?%
@.g. "REXFNS2 77

§.2.1 REXFNS2

REXFNS2 includes various string manipulation functions, together with
additional conversion routines etc. More detailed information is avail-
able in the on-line help: type "REX REXFNS2T.

Note: for functions which provide for a "pad™ character, the pad character
is optional: if specifiad, the shorter string is extended on the right
with the pad character, otherwise, the operation is performed only en the
portions of the strings which correspond in length.

AND(stringl,string2l,padl)

Returns the longer of the two strings, with which the shortar
has been logically ANDed.

B2¢(binarystring)}
Converts the string of binary characters ('0° and 'i') to a
packaed byte string. The length of the binary string must be a
multiple of eight.
e.g. B2C('i001011i0') == 196'X
B2X(binarystring)
Converts the string of binary characters ('0' and '1') to a
string of hex characters. The length of the binary string must
bae a multiple of four.
e.g. B2X('101001011111°) == TASF'
CLCL(stringl,string2f,padl)
Compares the strings bit by bit and returns the positien of the
first characters which miscompare (zero if the strings are
equal, negative if stringl is less than string2)}. The longer
string is truncatad to the length of the shorter.
Note: The built-in COMPARE function provides a very similar

ability.

Tha CMS implementation . 108

L

e

.~

IBM Internal Use Only

CLXL(stringl,string2l,padl)

Like CLCL except that the comparison is arithmetic, and the
strings are hexaqecimal.

COUNTBUF()
Returns the total number of rdcords in the console stacks.
C2B(string)

Converts the character string to 2 string of binary characters
('0* and "1').

e.g. C2B('AB') == v11000001110000i0°"
E2X(hexstring) .

Same as the REX notation "string™X, except that string may be a
variable i.a. Pack. .

@.g. E2X('F7F2A2') == 1'72s’
Note: The built-in X2C function carries out ﬁhe same operation.
FETCH(address(,kl1)

Returns the contents of k bytes of the user's memory starting at
address. Both address and k ara packed hexadecimal values.

@.g. FETCH('0200°x,'03'x) == 'CMS’
Note: The STORAGE function (in REXVMFNS) provides a similar
ability, together with the option of changing the value of stor-
aga. Its arguments are expressed in hex characters.

OR(stringl,string2l,padl)

Returns the longer of the two strings; with which fhe shorter
has begn logically ORed.

REPEAT(string,n]}
raturns p+1 concatenated copiaes of the string.
e.g. REPEAT('abe?,2) == 'abcabcabc®

Note: Thae built-in function COPIES has tha same call format,
but returns n concatenated copies of the string.

SUBSET()

Returns '1' if in SUBSET, '"0' otherwisa.

The CMS implementation . © 109

LTI I AT I T e e e T e e L LIrmLmm v imommoiil LT T cmelw o= one ot S R e e it L mam

IBM Internal Use Only

TM(string,maskl,padl)

The bits of string are tested byte for byte under the 1 bits of
the mask (only mask may be extended with the pad character).
Zero is returned if all bits tested were zero; -1 is returned if
all bits tested were one; otheruwise, the position of the first
character in string which caused a mixed ones and zeros condi=-
tion is returned. Note that the string "0" has four bits ons
for examplae, since it is in fact thae EBCDIC code hex FO.

TRT(string,referencel, '~*1)
Synonym for tha built-in VERIFY function.

TYPEFLAG(IHT or RT1)
Returns 'HT' or 'RT', according to the setting of the CMS
typeflag. It will also halt typing or resume typing if HT or RT
is specified as the argument.

XOR{stringl,string2l,padl) !

¢

Returns the longer of the two strings, with which tha shorter
has been logically XORed.

X2B(hexstring)

Converts the string of hex characters to a string of binary
characters ('0' and '1%).

e.g. X2B(TAB') == °v10101011°
X2E{string}

Returns the EBCDIC character representation (hex characters) of
string . i.e. Unpacks.

e.g. X2E('72s') == 'F7F2A2°

Note: The built—-in C2X function carries out the same operation.

The CMS implementation ’ iié

DV

(L]

IBM ;ntérnal Use Only

6.2.2 REXVMENS

Functions which are only meaningful in a VM/370 (CP, CMS) environment are
included in the REXVMFNS pack. Please refer to the file "REXVMFNS MEMO™
for further details.

DIAGI(NI?] [,datal [,datal ...)

issues diagnose X'n' and returns data as a character string.
Sea balow for the list of supportaed codes.

DIAGRC(NI?] [,datal {,datal ...}

identical to the DIAG function, except that the CP return code
and condition code are prefixed to the returned string.

NEST()
returns the current depth of nesting of Execs (including CMS and
EXEC 2 Execs). If 1, then the Exac was called from CMS Command
level, possibly via an intermediate Module.

QDISK('x[?1")

READFLAG()

returns information about disk x (or the R/W disk with most free
spaca if x="?%", or the first R/W disk if x="%"). The disk may
be CMS, 0/S, DOS, or PAM.

For CMS disks, tha string raeturns the following tokens to
describe the disk: 'CMS', label, number of blocks used, number
of blocks free, blocksize, virtual address, CMS moda letter,
number of files on the disk, numbar of cylinders, disk type
(3330, etec.), access mode (R/W, etc.), and whether the Extended
File System is available.

returns 'CONSOLE® or 'STACK' depending on from where the next
"Pull®™ will read. Note that the built-in functions "QUEUED" and
WEXTERNALS™ may ba used to find out how many lines are in the
stacks.

STORAGE([addressi,[kll,datall])

returns the current VM size if no arguments are specifiaed, or
returns k bytes from the user's memory starting at address. k
is in decimal, the address is a hexadecimal character valuae. If
data is specified then the k bytes addressed are then replaced
with the string given as the third argument.

If k would imply returning storage beyond the VM size, then only
those bytes up to the VM sizae are returned; and if an attempt is
made to alter any bytes outside the VM siza, they are left unal-

The CMS implementation - 111

i . - g o —— o i - A i o

IBM Internal Use Only

tered.

Harning: The STORAGE function allows any location in vour vir-
tual machine to be altered. Do not use this function without
due care and knowledge.

e.g. STORAGE(2C8,8) == 'OSRESET ' /¥ Maybe! %/

Thae following CP Diagnose codes are suﬁported by the DIAG and DIAGRC func-
tions for all CP systems:

0° Raturn virtual machina idantification.

'8 Issue CP command/retrieve raesponsa. Release 6 of CP is required for
use of this function.

fc Return timer information.

*24" Raturn device type and features for specified device or console.
60" Return virtual storage'siza.

64" Manipulate named shared segments.

The following CP Diagnose codes are supported by the DIAG and DIAGRC func-
tions only for some modified CP systems:

*104' Return extended ID and account information.
¥266° Return VMBUSER information.
"248* Alter VMBUSER information.

¥254°" Return VMBLOK data.

The CMS implementation : 112

/’“‘“\

http:re!5pon.se

It

IBM Internal Use Only

§.3 USING SERVICE PROGRAMS WITH REX (IOX, FSX, ETC.)

All commands that may be called from EXEC or EXEC 2 may be used with REX,
except that those which attempt to set "0ld EXEC" variables may not work.
Some modules which may be of interest follow. These may usually be
located by checking the VM News Quick Index to find the Author or Distrib-

utor. Those which are distributed with the internal REX package are
marked by ().

CALLER?

CONGET:

DRAINSTK:

EMSG:

EXECIO:

EXSERV:

FSX:

GLOBALV:

HT, RT:

1083270:

IDENTIFY

(%) allows copying variables to or from an earlier EXEC inve~
cation, and also allous access to the SOURCE, ARG, and VER-
SION strings of earlier generations.

(%) permits a console read without affecting the stack. With
recent releases of CP, also permits a "blind™ (non-display)
read.

(%) purges all buffers from the input console stack without
affecting the output stack.

’

(%) has the same éffect as &EMSG in CMS Execs.

General package for disk and unit record I/0, similar to I0X.
Has many useful features and is fully compatible with REX.
It is a part of CMS as from VM/SP release 2. Note that cur-
rently its I/0 is limited to the width of the stack.

the current version of EXSERV is not compatible with the REX
variables interfaca.

(%) is a REX service program designed to give users complete
control of full screen displays (a.g. for modelling future
applications).

maintains pools of Global Variables for communication
between Execs and programs. There is now a fully
REX-compatible version. A stack-interface version is a part
of CMS as from VM/SP releasa 2.

(%) Halt/Resume typing. Samae as stacking HT, RT in CMS EXEC.
Note that under VM/SP you should usa SET CMSTYPE HT/RT.

327x display and menu facility as used for REX online help.
A new version is availabla which is completely compatible
with both EXEC and REX, and with the latest version of
EXEC 2. When called from REX, it allows data and names to be
up to 132 characters uwida. Older Modules may fail to run
satisfactorily, since they are not aware of REX variables.
The latest version provides control of colour displays.

provides the userid, node, net machine name;, and time infor-
mation for general use. This command is a part of CMS as
from VM/SP ralaease 2.

The CMS implementation . 113

T - pm =t g — o

e e T T e P T T T N el

INSTANT:

I0X:

MODULES:

OSRESET:

PROMPT:

REQUIRED:

REXTRY:

REXDUMP:

REXIFY:

REXPLI:

REXTRAN:

RXCPA:

IBM Internal Use Only

(%) provides the "he" and “ts"jéghediate commands for use
with REX, together with a general escape mechanism.

(%) is a service program which was written especially for use
with REX. It may be used to read, write, update, and search
files; print, punch, or read unit records; set global vari-
ables; etc.

chacks whether listed modules exist on any disk: a message is
typed for any that could not ba found.

Note: This module is supaersedad by thae REQUIRED modulae - see
below.

(¥} a module which resats 0S5 simulated storage, and cleans up
after 0S simulation and VSAM if necessary. Should be invoked
between PL/I module calls, for example, which can otheruwise
fail with "VIRTUAL STORAGE SIZE EXCEEDED"™ or other obscure
messages. (Alsc useful within EXEC 2 Execs for the same pur-
pose). '

(%) prompts the user with data in the screen command input
area. A version is available which will use the Extended
Plist provided by REX/EXEC 2.

(%) checks whether specified filas exist on any disk: a mes-
sagae is typed for any that could not bae found. This is
intended for use at the start of Execs so dependencies are
both documented and tested bafora an Exac starts to run.

It is strongly recommended that Execs "“for export™ use this
command to protect themselves against missing commands.

(%) an Exec which may be used to try out REX instructions to
find out how they uwork. Very useful when learning new fea-
tures.

(%) a debug aid which "dumps™ up to 53 characters of each
variable, and the length of the variable, to the screen.

an Xedit Macro which can be used to mechanically translate
EXEC or EXEC 2 Execs and Macros into REX. Usually some manu-
al intervention is required, alseo.

routines to provide full interfaces to allow REX programs to
be called from PL/I, with the ability to set up subcommand
environments, etc.

an Xedit Macro which can be used to mechanically translate
REX2 Execs and Macros inte REX3. Occasionally some manual
intervention is required, also.

(%) function, issues a CP command and raeturns thae lines
normally typaed by CP. Requires CP Release 6 or VM/SP.

\

The CMS implementation : 114

P

IBM Internal Use Only

N RXLOCATE: (%) function, LOCATE(needle,haystackl,nl,'='1]1) returns the

position of the n'th occurrence of needle in haystack (or, if
"-" js specified, the n'th occurrence of any string in
haystack which is equal in length to needle but which is nat
equal to needle). If n is negative, the search is right to
left.

e.g. LOCATE('A','ANIMALS',2) == 5

RXMDF: RXMDF provides the REX exec writer with a full-screan I/0
capability built on MDF (Menu Display Facility). RXMDF is
especially suited to menus sinca each menu template bears a
one-for-one spatial relationship to the actual displayed
screen.

STACKIO: General I/0 package, similar to IO0X. Has very many useful
features and is fully compatible with REX, however in CMS its
I/0 fs limited to the width of the stack.

Note: The CMS command EXECIO (VM/SP Release 2) supports much
of the function of STACKIO, with the same syntax.

.

TRACER: (%) may be used to explicitly set, clear, or query the system
Tracae bit, or to put the REX interpreter into TEST mode.

§.6 INTERRUPTING EXECUTION AND CONTROLLING TRACING

REX may be interrupted during execution in several ways:

. The "ha" (halt exaec) immediate command may be used to cause all cur-
rently executing REX Execs or macros to terminate, as though there has
been a syntax error. This is especially useful when an editor macro
gets into a loop, and it is desirable to halt it without destroying
the whole environment (as "hx"™ would do). The program stack is
cleared by REX when this interrupt is accepted and causes exit from
the program. This event may be trapped by using "SIGNAL ON HALT"™ -
see page 50.

e Tha "ts™ (traca start) immediata command turns on the external tracing
bit. If it is not already on, this has tha effect of executing an
instruction of the form TRACE ?Results. This will put the program
into normal debug mode and you can then execute REX instructions ate.
as normal (e.g. to display variables, EXIT, etc.). This too is useful
when it is suspected that a REX program is looping - "ts" may be
entered, and the program can be inspected and stepped befora a deci-
sion is made whether to allow the program to continue or not.

L Thae "ta®™ (trace end) immediate command turns off the axternal tracin§
bit. If it is not already off, this has the effect of executing an

2 instruction of the form TRACE Off. This is useful when a program is

baing tracaed without being in debug moda and it is wished to stop the

The CMS implementation . 115

IBM Internal Use Only

tracing.

It is hoped that the immediate command features described above will
become available in a forthcoming CMS release, but in the meantime the
INSTANT package by this author provides this facility without requiring
any change to standard CMS systems. It may also ba used to inhibit the
"he" immediate command if desired as it allows a user command with the
same name to be set up. (It also has several other useful facilities.)

The system (external) trace bit:

Befora executing each clause, REX inspects an external trace bit, owned by
CMS (sea page 129). It never alters the stata of the bit, except that the
bit is cleared on return to CMS command level. The bit may be turned on by
the "ts" immediate command, turned off by the "te" immediate command, and
also altered by the TRACER command (see below).

REX maintains an internal "shadow"™ of the external bit, which therefore
allows it to detect when the external bit changes from a 0 to a 1, or
vice-versa. If REX sees the bit changa from 0 to 1, then debug mode and
TRACE RESULTS are forced on. Similarly, if it is seen to changa from 1 to
0, then all tracing is forced off. This means that REX tracing may be con-
trolled externally to the Exec: debug mode can be suwitched on at any tima
without making any modifications to the program. The "te" command can be
usaful if a program is tracing clauses without being in debug mode - "te"
may be used to switch off the tracing without affacting any other output
from the program.

If the external bit is found to ba on upon entry to a REX program, the
SOURCE string is traced (see page 42), and debug moda is switched on as
normal - hence with usa of tha system traca bit, tracing of a program, and
all programs called from.it, can be easily controlled.

The internal "shadow™ bit is saved and restored across internal routine
calls. This means that (as with internally controlled tracing), it is
possible to turn tracing on or off locally within a subroutine. It also
means that if a "ts" interrupt occurs during execution of a subroutine,
then tracing will also be switched on on RETURN to the caller. Several
other subtle and beneficial side-effects result from this action.

The command TRACER may ba usad to tast or explicitly alter thae setting of
the system Trace bit:

T"TRACER QUERY™ will display the current satting of tha bit.

"TRACER ON" turns on the trace bit. Using "TRACER ON" before invoking a
REX EXEC will causa it to be entered with debug tracing imme-
diately active. If issued from inside an Exec, it has the
effect as "Traca ?7R", but is more global in that all Execs
called will be traced, too.

"TRACER OFF™ turns thae traca bit off. Issuing this when the bit ison is
equivalent to the instruction "Trace 0ff"™, excapt that it has a

Tha CMS implementation) 116

- o e~ -

IBM Internal Use anly

TN system (global) effect.

Note: "TRACER OFF™ will turn off the system trace bit at any
time, e.g. if it has been set by a "ts" immediate command issued
while not in a REX Exec.

"TRACER HALT"™ is used to simulate the effect of the "he" immediate
command, for testing. It turns on the Halt Exec system bit
which will normally cause immediate exit from the Exec that
issuas the command.

Adding the keyword MQUIET™ to any of the above commands suppresses the
usual TRACER typed response.

4.5 SYSTEM INTERFACES

The current REX implementation uses the YKTSVC package, which offers tha
neatest way of extending CMS. ‘REX uses the same interface conventions as
EXEC 2 (Extended Plist, atc.) so it is usable by any program, such as
XEDIT, currently able to interface with EXEC 2.

REX is normally installed as a nucleus axtension callad "EXEC™ and there-

N fore intercepts all EXEC calls. It then reads the Exec fila (or Fileblock

definad data, see belouw) until the first non-blank character is mat. If
the first non-blank characters are "/%" (i.a. the start of a REX comment),
thae fila will be assumed to ba writtan in the REX language - otherwise it
is assumed to be an EXEC or EXEC 2 languagae file and will be passed on as
appropriate:

If a NUCX (or NUCEXT) Nucleus extension called EXEC2 exists, and the
call was an EXEC 2 conventional call (or tha first word in tha file
was W"&TRACE™) then the Plist(s) will ba passed directly to it for
processing. Otherwise the Plist will be passed directly to the CMS
EXEC processor.

These rather unpleasant CMS dependent rules are described further in the
section on Writing Bilingual Execs (page 130). They allow REX programs to
coexist and ba used simultanaously with both EXEC 2 and EXEC programs, and
in addition also work if EXEC 2 is part of the CMS Nucleus.

Internal calls (from REX to a usar command or subcommand) follow tha same
conventions as EXEC 2 (Extended Plist is generated, etc.), except that
Function calls usa only the simple "0ld Format™ Plist to reduce overhead,
and thae default environment for commands implies full resolution (saa page
23). Michel Hack's documents TEXEC25YS MEMO™ and "FUTURE MEMO™ and are
tha best and most authoritativa source for furthar information on the
datailas of these interfaces and how they hava changed between CMS
versions, however the Extendad Plist and other defined interfaces to REX

2 are described below.

Tha CMS implemantation ' . 117

IBM Internal Use Only

$.5.1 Extended Plist interface

REX may be called with an "Extended Plist™ (in addition to the standard
CMS 8-byte tokenised Plist) which allows the following possibilities:

1. An arbitrary parameter string (neither upper case; nor tokenised) may
be passed to REX. '

2. A file other than that defined in the "old™ Plist may be used. (i.a.
the filetype nead not be "EXEC™).

3. A default target for commands (other than CMS). A filetype other than
"EXEC™ or blanks will cause commands to go to tha environment with the
name that matches the filetype.

4. A program which exists in storage may be executed (instead of being
read from a file). This in-storage execution option may be used for

improved performance when a REX program is being executed repeatedly.

§. A default target for comhqnds may ba specified which overridas the
dafault darived from the filetype.

6. Passing multiple argument strings to the program.

7. Allowing for the return-of data from tha REX program.

Thae CMS implementation) 118

wn e

e

IBM Internal Use Only

Calling REX with an Extended Plist:

Byte 0 of R1 = X'01' (Signifies Extended Plist exists)

R0 points to the Extended Plist:

¥=> The Extended Plist, points to

* 2) an optional File Block:

%% Extended Plist

=> CLS"EXEC '

-> start of ARGString

=> character after and of
the ARGString

-> fila block, else is A(0)

NPL DS OF
DC A(COMVERB)
DC A(BEGARGS)
DC ACENDARGS)

DC A(FBL)

1) the argument string,

¥=> The file block (only required if REX is to execute a
* non~-EXEC file or is to execute from storage, or is to
* have a non-default default address environment).

FBL DS OF
DC CL8'filename’
DC ClL8'filetypa'

*
*
*
DC CL2'filemode’
DC H'extlen'
N *

DC AL4(PROG)

DC AL4(PGEND-PROG)

% filetype).

%% File block
logical name of program
+ default destination for
+ commands (blanks .or "EXECY
causa commands to ba
passed to CMS)
normally "% ' or ' '
length of extension block
in fullwords.
¥=> Extension block starts here.
¥-> In-storagae program dafinition
% Following two words should ba 0 if extlan >=2 and
* in-storage program is not supplied.
=> Start of program
descriptor list.
Length of same in bytes
¥=> Initial Address environment (overrides default from

%* Should be set to 2F'0' if not used and extlen >=4
The initial environment
May be a PSW for non-SVC
subcommand call.

¥-> Argument interface (F'0' if not used)

Address of argument list

DC CL8'environment!'

DC AL4(ARGLIST)
DC AL4(FUNRET)

Where

%% Descriptor list for in-storage

PROG DS OF
DC A(linel),F'lenl’
DC A(line2),F'len2’
DC A(lineN),F'lenN’
PGEND EQU

Tha CMS implemaentation

%% In
Addr,
Addr,

Addr,

return block is put
program

storage program ¥
length of line 1
length of line 2

length of line N

119

http:blanks.or

IBM Internal Use Only

Notes:

The in-storage program lines need not be contiguous, since each is sepa-
rately defined in the descriptor list.

For in-store execution, Filename and Filetype are still required in the
file block, since these determine the logical program name and the default
command environment, except that the default environment may be explicit~-
ly overridden by the name in the extension.

If the extension length is >= 4 Fulluwords, then the 3rd and 4th fullwords
form an 8-character environment address that overrides the default
address set from tha Filetype in the file block; and thus forms the ini-
tial ADDRESS to which commands will be issued. This new address may be
all characters (eg blank, "CMS™, or some other environment namae), or it
may be a PSW for non-SVC subcommand execution - see below on page 128.

If the extension length is >= 5 Fullwords, then the 5th fullword may be
the address of the list of arguments to the program. This consists of an
Adlen (Address/Length) pair for each argument string, followed by 2F*-1"'.
If the argument list is given, tha basic argument string (as defined by
BEGARGS and ENDARGS) is not used for the ARG instruction.

Note: The usa of this 5th fullword implies that the argument list supplied
is in private (non-static) storage, and hence that REX need not copy the
data strings before using them.

If the extension length is >= 6 Fullwords, then the 6th fullword (if
non-zero) is & request that the program ba considered a function. The
program must end with a RETURN or EXIT instruction with an expraession, and
the resulting string is raturned in the form of an EVALBLOK (see below,
page 125). The address of the EVALBLOK, followed immediately by a
fulluword containing F'-1', must ba stored at the address supplied as the
function request.

If the program is to bae called as a subroutinae, such that the return of
data is to be optional, then this may be indicated by setting the
high-order bit of this 6th fullword. This is reflected to the program
being invoked, in that the second token of the SOURCE string (see page 42)
will be "SUBROUTINE' rather than "FUNCTION'. The caller can detect wheth-
er an EVALBLOK is raturned by ensuring that the word where the address is
to bae stored (or the following word) is cleared before the call. If this
is unchanged on return, then no data EVALBLOK was returned.

The CMS implementation : 12¢0

IBM Internal Use Only

N 6.5.2 Direct Interface to REX variables

(Note: this section describes the interface for all REX versions since
2.17, which is compatible with that used by EXEC 2.)

REX (under CMS) provides an interface whereby called Commands may easily
accass and manipulate the current generation of REX variables. Variables
may be inspected, set, or dropped; and if required all active variables
may be inspected in turn. The manipulation of internal REX work arcas is
carried out by REX's own routines: user programs do not theraeforae need to
know anything of the structure of the variables' access method (which
includes complex binary trees, etc. etc.). Namas ara checked for validity
by the interfacae code, and substitution is carried out according to normal
REX rules.

Note: A program which wants to use this interfaca in a general way should
only use names which are passed to it from the caller, or are built up in
some way defined by the caller, or are names containing only alphanumerics
and which start with an alphabetic. If these rules arae followed, then the
program should be able to use’ the variable pools supported by programs
other than REX (e.g. EXEC 2). i.e. a_program using this interface should
not _assume that REX substitution rules apply.

TN The interface works as follows:

When REX starts to interpret a new Exec or editor macro it first sets up a
Subcommand entry point called EXECCOMM. When a program (Command or Sub-
command) is invoked by REX, it may in turn use the current EXECCOMM entry
point to Set, Fetch, or Drop REX variables using REX's internal routines.

An internal REX routine carriaes out all changes to pointers, allocation of
storage, substitution of variables in the name, etc. and hence isolates
user programs from the intarnal mechanisms of REX.

To access variables, the EXECCOMM entry point is invoked using both the
tokenised and the extended Plist (see also page 118). SVC 202 should be
issued (with Rl pointing to the normal tokenised Plist, and the top (flag)
byte of R1 set to hex 02).

The R1 Plist: Register 1 should point to a Plist which consists of the
eight byte string "EXECCOMM™.

The RO Plist: RO should point to an extended Plist. The first word of the
Plist should contain the value of Rl (without the flag in the top byta).
No argument string should be given, so the second and third words must be
identical (a.g. both 0). Tha fourth word in the Plist should point to tha
first of a chain of ona or more request blocks, seae below.

On raeturn from the SVC, R15 will contain the return coda from the entire

The CMS implementation . 121

IBM Internal Use Only

set of requests. The possible return codes are:

0 (or positive) Entire Plist was processed. R15 is the composite OR-ing
of the SHVRET flags (see below).

=] Invalid entry conditions (e.g. BEGARGS -= ENDARGS).

-2 Insufficient storage was available for a requested SET. Processing
was aborted.

=3 {from SUBCOM) No EXECCOMM entry point found: i.a. not called from
insida a REX Exec.

The raequest block: Each request block in the chain must ba structured as
follows: :

36 9636 3 36 36 96 36 3 96 26 36 3636 26 36 36 36 76 36 36 56 36 36 36 6 36 36 36 96 96 36 36 36 36 36 36 36 96 36 36 6 96 36 36 36 36 36 36 6.6 36 36 36 36 36
% SHVBLOCK: layout of shared-variable Plist element

3636 36 36 36 36 36 36 36 36 36 36 36 36 36 7€ J6 36 36 36 36 36 26 36 36 36 36 36 36 36 36 36 36 J6 JE 36 I6 36 36 J6 36 I6 36 36 36 36 36 36 36 36 36 36 3¢ 36 3¢ 3¢
SHVBLOCK DSECT

SHVYNEXT DS A Chain'qointer (0 if last block)
SHVUSER DS F Available for private use, except
* during "Fetch Next™. *

SHVCODE DS cL1 Individual function coda
SHVRET DS XL1 Individual return code flags
DS H'0' Not used, should ba zero

SHVBUFL DS F Length of 'fetch' value buffar

SHVNAMA DS A Address of variable name

SHVNAML DS F Length of variable name

SHVVALA DS A Address of value buffar

SHVVALL DS F Length of value (set by 'Fetch')

SHVBLEN EQU ¥=-SHVBLOCK (langth of this block = 32)
SPACE

*

* Function Codes (SHVCODE):

*

SHVSET EQU C'S' Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPY EQU C'D' Drop variable

SHVNEXTV EQU C'N' Fetch "next™ variable

SHVPRIV EQU C'P' Fetch private information

SPACE
*)
* Return Code Flags (SHVRET):
*

SHVYCLEAN EQU X°008° Execution was 0K

SHVNEWV EQU X*0i' Variable did not exist

SHVLVAR EQU X'02* Last variabla transferred (for "NW)
SHVYTRUNC EQU X‘04' Truncation occurred during "Fetch"”
SHVBADN EGQU X*'08° Invalid variable name

SHVBADY EQU X'10° Valuae too long (EXEC 2 only)
SHVBADF EQU X'80° Invalid function code (SHVCODE)

*

The CMS implementation ' 122

- a— o

IBM Internal Use Only

A typical calling sequence using fully relocatable (NUCXLOADable) and
read-only code might be:

The

"s"

WF"

WD"

NNW

The

LA RO,EPLIST -> Extended Plist, as above
LA R1,=CL8'EXECCOMM' (normal Plist)
ICM R1,B'1000',=X'02"' Insert "subcommand call"™ flag

SvC 202 Issue SVC

bC AL4(1) Indicate we want control

LTR RI15,R15 Test return code

BM DISASTER Wherae to go if bad return code

Exacution was 0K (RC>=0)

speci fic actions for each function code are as follouws:

Set variable. The SHVNAMA/SHVNAML adlen describe the name of the var-
iable to be set, and SHVVYALA/SHVVALL describe the value which is to be
assigned to it. The name (up as far as the first period, if any) is
validated to ensure that it does not contain invalid characters, and
the variable is then set from the value given. SHVNEWV is set if the
variable did not exist before the operation.

Fetch variable. Tha SHVNAMA/SHVNAML adlen describe the name of the
variable to be fetched. SHVVALA specifies tha address of a buffer
into wuhich the data is to be copied, and SHVBUFL contains the length
of the buffer. The name is validated to ensure that it doas not con-
tain invalid characters, and the variable is then located and copied
to the buffer. The total length of the variable is put into SHYVALL,
and if the value was truncated (because the buffer was not big enough)
the SHVTRUNC bit is set. If the variabla is shorter than the length
of the buffer, no padding takes placa.

SHVNEWV is set if the variable did not exist before the operation, and
in this case the value copied to the buffer is the derivaed name of the
variable (after substitution etc.) - seae page 101

Drop variable. The SHVNAMA/SHVNAML adlen describe the name of the
variable to be dropped. SHVVALA/SHVVALL are not used. The name is
validated to ensure that it does not contain invalid characters, and
the variable is then dropped, if it exists. If the name given is a
stem, then all variables starting with that stem are dropped. SHVNEWV
is set if no variables were affected by the oparation.

Fateh Next variable. This function may be used to search though all
the variablas known by REX (at thae current level).

REX maintains pointars to its list of variables: thesae are reset when-
aver 1) a host command is issued; or 2) any function other than "N" is
executed via this direct variables interfaca.

Whenever an "N" (Next) function is executed the name and value of thé

next variable available are copied to two buffers supplied by the
caller.

CMS implementation . 123

IBM Internal Use oOnly

SHYNAMA specifies the address of a buffer into which the na@e is to be
copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHYNAML, and if the name was truncated
(because the buffer was not big enough) the SHVTRUNC bit is set. If
the name is shorter than the length of the buffer, no padding takes
placa. The value of the variable is copied to the users buffer area
using exactly the same protocol as for the "Fatch™ operation.

If SHYRET has SHYLVAR set, than tha end of the list of known variablas
has been found, the internal pointers have been reset, and no valid
data has baen copiad to the user buffers. If SHVIRUNC is sat then
@ither the name or the value has been truncated.

By repeatedly axecuting the "N"™ function (until the SHVLVAR flag is
set) a user program may locate all the currently active REX variables.
In this manner a program (such as the "REXDUMP"™ debug aid) may inspect
all active variables.

"P"™ Fetch private information. This interface is identical to the ™F"
fetch interface, except that the name refers to certain fixed informa-
tion items that ara available. Only the first letter of each nama is
checked (though callers should supply the whole name), and three names
are racognised:

ARG Fetch primary argument string. The first argument string
which would be parsed by tha ARG instruction is copied to
the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 42, is copiaed to tha user's buffar.

VERSION Fatch version string. The source string, as described for
PARSE VERSION on paga 44, is copied to tha usar's buffer.

Note: Only the ™S"™ (Set) and "F" (Fetch) functions ara also supported by
EXEC 2.

Note: The interface is only enabled during the execution of commands and
extarnal routines (functions and subroutines). An attempt to call the
EXECCOMM entry point asynchronously will result in a raturn coda of -1
("Invalid entry conditions™). -

Note: While the EXECCOMM request is being serviced, interrupts will be
enabled for most of the tima.

The CMS implementation : 124

IBM Internal Use Only

4.5.3 Interface to external routines

REX supports external functions and subroutines (invoked by a function
call in an expression, or by the CALL instruction) whenever the call is
not satisfied by an internal routine or built-in function. Under CMS,
these external routine are called via SVC 202 using a special search order
(see the diagram at the end of this section):

1. The name is prefixed with "RX"™, and REX attempts to execute the pro-
gram of that nama.

2. If the routine is not found, then the function packages will be inter-
rogated and loaded if necessary (they return RC=0 if they contained
tha requested routine, or RC=1 otherwise). If the load is successful,
step (1) is repeated and will succeed.

J. If still not found, the nama is restored to its original form, and all
disks are checked for an Exec of that name. If found, control is
passed to it. Note that this search is independent of the CMS IMPEX
satting. ’

4. Finally REX attempts to execute the routine under its original name.
(If still not found, an error is raised!)

Tha name prefix mechanism allows new external REX functions and subrou-
tines to be uritten with littla chance of name conflict with existing
MODULESs.

If the routine being invoked is an Exac, then tha normal Extended Plist is
used to convey the parameters etc. Otheruise, when the routine receives
control, Register 1 points to a tokenised CMS Plist, and the top byte of
Rl is hax 00. Register 0 points to a list of argument descriptors, being a
series of fullword pairs. The first value in each pair is the address of
the argument character string, and the second value is its length (which
may be 0). The final valua pair is followed by two fullwords containing
"-1" (i.e. hex FFFFFFFF). REX will only provide a maximum of ten argument
strings, but note that the ARG (and PARSE ARG) instructions can handle
more if they are passed to REX. If the routina is being called as a sub-
routine, so that it need not return a result, then the top bit of RO will
be set to indicate this. Otherwisae the routine should return a result -
REX will raise an error if it doas not.

During calculation of thae rasult, the routine may use the argument strings
(uhich reside in User storage owned by REX) as work areas, without fear of

corrupting internal REX values.

The rasult must be returned to REX in a block of User storage allocated by
DMSFREE and which has thae following storage assignments and values:

The CMS implementation . 125

IBM Internal Use Only

¥-= DSECT for the returned data block =-- =%
EVALBLOK DSECT

EVBPADL DS F Reserved

EVSIZE DS F Total block size in DW's
EVLEN DS F Length of Data (in bytes)
EVBPAD2 DS F Reserved

EVDATA DS C... The returned character string

The address of this block should be stored in the first fullword of the
argument list (i.e. the location pointad to by Register 0 on entry to the
function), and tha second fullword in the argument list must be sat to
"-1" (hex FFFFFFFF).

This block will only be accepted (and later freed) by REX if the function
also returns a zero return code in Register 15.

This interface has several major advantages:
e There is no restriction on tha content of the data returned.

e There is no restriction (;ther than your VM sizae) on the length of
data returned.

L The returned block is immediately usable by REX, without need to copy
the data.

e Using the stack would require two invocations of the stack handling
routines for each argument and result. This overhead is significant
and is avoided.

When an Exec is called as a function, the following points are relavant:

© the RETURN or EXIT instruction will pass back a REX EVALBLOK directly.
There is therefore no raestriction on the length or content of the data
returned.

U the usual EXEC new-form Plist is used, as described on page 118.

. the special processing involved in this is transparent to the user.

. calling an external program as a function or subroutine is similar to
calling an internal routine. The external routine is however an
implicit PROCEDURE in that all the caller's variables are always hid-
den, and the internal statae values (NUMERIC sattings, etc.) start uwith
their daefaults (rather than inheriting thosa of the caller).

Implementation note: The standard external function packagas alsc
respond to a call of the form:

REXname LOAD RXfname
if RXfnama is contained within the package REXname, then REXname will

NUCXLOAD itself if necassary, install the NUCX entry point for the func-

Tha CMS implementat:ion) 126

TN

0

tion,. and then return Rc=ﬂ;.otherwise RC=1 is returned.

IBM Internal Use Only

This allows the

function packages and entry points to be automatically loaded by REX when

necessary.
date.

REX external routine resolution and execution:

Start

Prefix namae
with 'RX?

<

v

Execute SVC

\7
v

Was funetion

—~Yas— found ? 'No—]
?
Fail— Try b—0K-
autoloads
Subtract
"RX' prefix
‘l
Does EXEC |—Yes > Prepare
exist? EXEC
T invocation
No I
|<
Exacute SVC
v Was function
—Yas— found ? -—No—'—l
14, l'l
Finish Errcor

The CMS implementation

This autoload facility will probably be removed at some later

127

IBM Internal Use Only

4.5.4 Non-SVC subhccmmand invocation

When a command is issued to an environment, there is an alternative
non-SVC fast path available for issuing commands. This mechanism may be
used if an environment wishes to support a minimum-overhead subcommand
call, or for applications where several Execs are running aessentially
asynchronously ("concurrently").

The fast path is used if the current eight character environment address
has thae form of a PSW (signified by tha fourth byta being hex 00). This
address may bae set using tha extended Plist (see abovae) or by normal use
of the ADDRESS instruction if the PSW has been made available to the Exec
in some other way. Notae that if a PSW is used for the default address,
then the PARSE SOURCE string will use "?" as the name of the environment.

The definition of the interface follows:

i. REX will pass control to the routine specified by doing an LPSW of the
eight-byte environment address. On entry to the callee all registers
are undefined, except: ,

RO => Extended Plist as per normal subcommand call. First word con-
tains a pointer to the PSW used, second and third words define
the beginning and end of the command string, and the fourth word
is 0.

R1 => Tokenised Plist. First doubleword will contain the PSW used,
second doubleword is 2F'=1%. Note that the top byte of R1 does
not have a flag.

R2 is tha original R2 as encountered on the initial entry to the REX
external interface. This register is intendad to allow for the
passing of private information to the subcommand entry point;
typically the address of a control block or data area.

R14 contains the return address

2. It is the callee's responsibility to save registers R9-R13, and to
restore them before returning to REX. All other registers may be used
as work registers.

3. 0On return to REX, R9-R13 must be unchanged (saeae (2)); and R1S should
contain the return codae which will be placed in the variable "RC¥ as
normal. Contents of other registers may be undefinaed. REX will set
the storage key and mask that it requires.

Note: If the execution sequenca of Exacs is changed while using this
interface then tha SUBCOM and CMS save araea chains may need to be manipu-
lated to ensure that the EXECCOMM entry points stay in step with the Execs
being executed. Alternatively they may be clearad and restored as appro-
priate.

Thae CMS implementation ' 128

A

IBM Internal Use Only

%4.5.5 EXECFLAG external control byte

REX is affected by and may alter the global flags held in the EXECFLAG
byte in NUCON (page 0 of your CMS system). These are used for external
control of REX tracing and also to permit interrupting execution. The
following equates are defined:

3636 26 36 36 36 36 36 36 36 36 36 36 36 € 36 36 3636 36 36 36 36 36 36 36 36 2636 36 J6 36 36 J6 3 36 J6 36 36 36 36 I6 3E 36 36 36 I6 36 3¢ 36 36 3¢ 36 3¢ %
¥ Equates for EXECFLAG in NUCON 3*
36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 26 3696 36 JE 36 36 36 36 36 36 36 36 6 36 26 36 26 36 36 36 36 36 36 36 36 3E 36 36 36 36 36 36 36 36 6 36 36 3¢ 3¢
EXECRUN EQU X'80° (reserved for EXEC 1 use)
EXECSTOP EQU X'40° EXECHALT has been accepted
EXECMASK EQU X'20°" Allow EXECHALT

EXECHALT EQU Xt10°* Halt the Exec if MASK=1
EXECRESYV EQU X'08" (reserved for future use)
EXECTEST EQU X'04"° (reserved) Special test mode
EXECTMSK EQU Xt02°* Allow EXECTRAC

EXECTRAC EQU X'o1° Start tracing if TMSK=1

Datails of the use of each flag by REX are as follows:

EXECSTOP This flag is set by the REX interface when an EXECHALT request
is detected and has been honoured. On exit from REX, this bit
indicates that the program stack should be cleared, as REX was
halted (probably asynchronously). On re-entry to REX this bit
indicates that the EXECHALT flag has been used previously and
may now be cleared (together with the EXECSTOP bit).

EXECMASK Mask for EXECHALT. EXECHALT takes effect only if this bit is
set. This bit is currently set on entry to any REX program.

EXECHALT Request to halt execution of all active REX programs. Takeaes
effect only if EXECMASK is 1. This bit is cleared on entry to
REX if EXECSTOP is set, and also if datected normally but SIGNAL
ON HALT is enabled.

EXECTEST This bit is reserved for REX testing purposes.

EXECTMSK Mask for EXECTRAC. EXECTRAC takes aeffect only if this bit is
s@t. This bit is currently set on entry to any REX program.

EXECTRAC If this bit changas from 0 to 1 or from 1 to 0, then REX will
force interactive tracing on or all tracing off respectively.
Sae page 115 for further details. This bit is neither set nor

reset by REX, except that it is cleared on return to CMS command

level.

The CMS implementation . 129

L R L Dt we e e oo e i = e - e e mEmom. el e oo ot m e v

IBM Internal Use Only

.6 WRITING BYILINGUAL EXECS

In some circumstances it may be desirable to write Execs that will run
whether or not REX is installed.

To permit this, REX allows its programs to start with "%/%" rather than
"/%" - both these alternatives are taken to be the start of a comment if
parsad by REX. If the file is executed by EXEC becausa REX is not
installed, then this first line will be intarprated as a comment by it
" too: subsequent lines may then contain "old™ Exaec languagae statements.

Example:

¥/7% This is a trivial Bilingual Exec

&GOT0 -0OLD */
Say 'This is executed when REX is installed'
exit
~0LD ’
&TYPE This is executed by EXEC when REX is not installed

The technique may be used to allow an Exec to be written in REX which has
statements at the start to install REX and re-invoke the Exee if REX is
not already activae. The following sequence may be used after the labeal
-0LD above to achieve this:

&CONTROL OFF

EXEC REX I

&IF SRETCODE EQ 0 EXEC &0 &1 &2 &3 &4 &5 26 &7 ...

&EXIT &RETCODE

Similarly, the entire Exec may be preceded with one line starting with
&TRACE or &CONTROL. This too will be taken as a REX Exec if the first
non-blank characters in the second or subsequent lines are /%" or "%X/%x%
as above, and REX will then ignore line one when it executes the data.
This permits EXEC 2/REX bilingual EXECs, and EXEC/REX in the same format.

Example:

&TRACE

¥/7% This is an EXEC2/REX Bilingual Exec ...
&GOTO -0LD %/

Say "This is executed when REX is installed®

exit
-0LD
¥ Install REX then re-invoka the Exec ...
EXEC REX I
&IF &RC EQ 0 EXEC &0 &ARGSTRING
&EXIT &RC

The CMS implemantation . 1360

77N

IBM Internal Use Only

Note for XEDIT users: XEDIT currently discards all lines which have an
asterisk in column one. When writing bilingual XEDIT macros you should
therefore take care that the bilingual comment line does not start in that
column.

Similarly, care should be taken not to end a REX comment in such a way that
the asterisk on the closing "%/" is at the start of a line: if you do,

XEDIT will throw the line away and the comment will never be closed...

Also, for XEDIT you should specify "MACRO™ instead of "EXEC™ to re~invoke
the program after REX has been installed.

§.7 REX PROGRAM STRUCTURE

The following information may ba of interest to some readers:

REX is implemented as eight CSECTS which together form a Read-Only Module
that is self-relocating and’' recursive. All "System dependent™ code is
contained in simple macros, so REX may be modified for running under a
differant operating system by just rewriting DMSREX ASSEMBLE and REXEXT
MACRO, then re-assembling tha other CSECTS. The basic interpreter was
successfully moved to another CMS-like operating system in about three
man-days.

The code never (except in existing external interfaces) uses other than
the top bit of registers for flags etc., and so should be suitable for the
S/7370 axtended 31-bit architaecture ("XAW).

REX runs enabled for interrupts as soon as the input Plist has been safely
copiad, and stays enabled except when it branches to CMS Nucleus service
routines (e.g. DMSFREE/DMSFRET).

REX runs in Nucleus Key for efficiency, however during testing a special

module is used which runs in User Key in order to provide some confidence
of the security of the code.

The CMS implementation . 131

IEM Internal Use Only

Briefly, the approximate size (in source lines + comments) and function of
each CSECT is:

DMSREX

DMSRCN

DMSREV
DMSRFN
DMSRIN

DMSRTC
DMSRVA
DMSRXE

REXMINT
REXEXT

The REX package

1

2

2
5
2

1
3

!

MAC
MAC

]

900

Reads the EXEC file and calls REXINT.

Also handles the direct interface
to variables.

620 - Conversion (Character <-=> Binary),
console .I/0, general services,
and all arithmetic.

200 - The Expression Evaluator.

000 - Builit-in functions.

970 - Parsas tha input data, controls most
execution decisions, and passes
clauses to REXXEC for execution.

5640 - Format and display trace information

620 - Access and maintain REX variables.

270 - Executas individual clauses.

RO is about 1280 lines (Internal DSECTs, etc.)
RO is about 1660 lines (External interfaces)

’

¢

includes othaer files and utilities, of course,

and the

approximate size of the more important of these is (again, in lines):

REXFNS2
REXVMFNS
REX EXEC
IgsLiB
SCRIPT

1700 - Extended functions

2470

VM-related functions

180 - On-line documentation and installation

t

3890
9400

On~-line documentation data
(This document)

in terms of lines of code, the REX interpreter is approximately 7800 LOC,

and the CMS interface macros are 600 LOC.

fully implemented in 8400 LOC,

bytes.

The CMS implementation

“ e me e e

e e e om s e mme s -

The REX language is therefore

which assembles to approximately 32000

132

N

e

IBM Internal Use Only

4.8 REX MAINTEMNANCE STRATEGY

‘The REX language, and the internal use REX interpreter itself (except for

the built-in functions), and the documentation, is maintained by this
author. Please send any problems, suggestions, or trouble reports to
REXMAIL at WINPA, with a copy to REXMAIL at GDLS3.
However several modules are n;u maintained by othar people who have kindly
agreed to continue to support them - problems with these packages shouid
be diracted to them in the first instance:
CALLER

Bob Marshall, DFESC4 at MSNVM2
FSX

Jim Mehl, MEHL at SJRLYMI1
I0X, Built-in functions "

Steve Davies, FILES at WINPA
REQUIRED

John Godwin, GODWIN at SJHVM1
REXFNS2, HT, RT, RXLOCATE |

Reed Bittinger, 2F7RRBIC at FSDSA
REXIFY, REXTRAN

Russ Williams, RUSS at STLVM1
REXVMFNS

Dick Snow, SNOW at STLVM?7

RXCPA

Forrest Garnett, CMSLIVES at LSGVMB

Tha CMS implementation . 133

e e G e T

IBM Internal Use Only
6.9 PERFORMANCE CONSIDERATIONS.n:

REX is unusual in being a structured language which is interpreted, and
because of this has required some fairly complicated coding techniques in
order to achieve good performance. Thase include:

. Variable names are held in a two-level binary tree to provide fast
lookup and an efficient implementation of the PROCEDURE EXPOSE func-
tion.

° Thae position in the data of all labels is savaed in a look-aside buffer
arranged in most-recently-used order: this considerably improves the
performance of subroutine and internal function calls. Accesses to
built-in and external routines are similarly recorded and reordered
for improved performance.

. The internal form of all clauses is saved in a second look-~aside buff-
aer: this obviates the need for parsing each clause each time it is
executed; giving spead improvements of a factor of two in many loops.
This look-aside is not started until the first CALL, INTERPRET, repet-
itive DO, or label is found. This look-aside also means that the
overhead of including comments in Execs is negligible except for the
storage they take up and the initial read-in time.

L Special look-aside information is kept for DO~loops to minimise loop
overhead.

® Parsing is optimisad for mixed case data. PARSE ARG and PARSE PULL
ara therefore slightly faster than ARG and PULL.

Where possible, REX Exaecs should be V=format. This minimises execution
time, main storage use (paging), and disk spaca.

As much as possible of REX Execs should be written in mixed case (espe-
cially comments): this maximises reading speed and minimises human errors
due to misreading data, and so improves the performance of thae human side
of the REX programming operation.

There is now no particular area in the interpreter that can be described
as a bottleneck, however any external call may incur significant system
overheads. High precision numbers should ba avoidaed unless truly needed.

The CMS implementation ’ 134

[§Y

197

IBM Internal Use Only

5.0 THE 7SO IMPLEMENTATION

The REX language is system independent, and as described elsewhere (page
131), the S/370 implementation was written with all system dependent code
moved into external Macro libraries. The effectiveness of this strategy
has been demonstrated by the TS0 implementation of REX by Burn Leuwis which
is abla to use the REX assembly modulaes directly - hence ensuring an iden~-
tical implementation of the languaga.

In the TS0 implementation, Execs are stored in one or more partitioned
datasets (which must be allocated as SYSEXEC). The REX interface is
installed with the name "EXEC", replacing the TS0 Clist interpraeter (which
may be explicitly invoked through its alias, "EX").

The interface passes control to the REX interpreter if the command verb
matches a member in the SYSEXEC dataset(s), otherwise it passes control to
the Clist interpreter. REX Exacs may call Clists and vice-versa, and like
the CMS implementation they may be invoked with the program already held
in storage. !

Preliminary tests have indicated that tha function of a typical CLIST may
be written in REX and achieve a performance improvement of an order of
magni tude.

Further information and the TS0 version of REX may be obtained from Burn
Lewis (BURN at YKTVS).

The TS0 implementation . 135

IBM Internal Use Only

6.0 ACKNOWLEDGEMENTS

The inspiration for REX initially came from the standard (CMS) EXEC lan-
guages: many of the features follow directly on from this. Many languages
have influenced the development of REX - for example the flow-control con-
structs are very PL/I like, as is much of the notation; however the con-
cept of tha Blank operator which both concatenates and inserts a blank is
I baliaeve original. (Pleasae tall ma if it is not!)

The main influencae, howaver, on REX devalopment has bean the Corporate Job
Network. Without the network, there would have been little incentive to
start a task of this magnitude; and without the constant flow of ideas and
feedback from thoughout the corporation REX would have been a much poorer
language. Much credit for the effectiveness of the network as a communi-
cation medium for this sort of work is due to P.G.Capek who edits the VM
Neusletter.

EXEC 2 (by C.J.Stephenson)ﬁ togethar with the Yorktown SVYC package
(M.Hack), havae strongly influenced the language; particularly in the area
of host dependencies and interfacas. The ADDRESS instruction system
interface, for example, is similar in effect to the EXEC 2 &PRESUME state~-
ment. I am especially indebted to Michel Hack for numerous extensive dis-
cussions on the philosophies and features of both the REX language and its
System/370 interfaces.

Very many (at least three hundred) people have made constructive criti-
cisms and comments on the REX language; and several have contributed code
and documentation. Members of thae REX Language Committee (coordinated by
Wes Christensen) especially ware of considerable help in the decisions
leading to major releases of tha REX packaga.

There are now far too many to give everybody who has helped the individual
thanks I would like to have included in this document, but all REX users
are indebted to those people from all over the company who have contrib-
uted help, suggestions, and time.

I must, however, list those people who have contributed code or documenta~-
tion to the REX package, and who continua to help with maintenance etc..
Stave Davies deserves special mention for the enormous effert he has put
into the built-in function package - which weuld have been much poorer
without his work. A complete list is:

Chuck Berghorn (part of DRAINSTK)

Dave Betker (part of REX EXEC, and the sub-indexes in REX IOSLIB)
Reed Bittinger (REXFNS2, HT, RT, RXLOCATE, some conversion functions)
Peter Capek (part of REXDOC)

Steve Davies (Most of the built-in functions, recent additions to

I0X, part of TRACER)

Acknowledgements ' 136

N

ao

Forrest Garnett
John Goduin
Rob Golden

Laurie Griffiths

Michel Hack

Rick Haeckel
Ray Holland
Ray Mansell
Bob Marshall

Jim Mahl

Simon Nash
Mike Nicholson

Steven Pouwell

Dick Snou
Coyt Tillman

Caral Thompson

Russ Williams

MFC.

Acknowledgements

IBM Internal Use Only

(RXCPA)
(REQUIRED)
(REXSHARE - DCSS support)

(A major extension to the REXVAR variables interface,
to hold variables in a binary tree)

(QEXEC, the original SYN, an imprassive collection of
improvements to REX coda and documentation, and of
coursa YKTSVC and CMS PRY - without which the develop-
ment of REX would cartainly not hava been attempted)
(parts of REXDOC, REX EXEC, etc.)

(original ABBREV function)

(part of PROMPT)

(CALLER) -

¢

(FSX Varsion 2 - Colour and extended data stream sup-
port)

(DISPIO - the full-screen interfaca used by FSX)
(I10X)
and the

(part of tha FIND function, original

SUBWORD/DELWORD functions)
(REXVMFNS)
(REXIFY initial version)

(part of REXDOC, and extensive advice on text process—
ing for the REX reference card)

(REXTRAN and REXIFY)

4th July 1982.

137

IBM Internal Use Only

A.0 THE SUBCOMMAND CONCEPT

A subcommand environment usually corresponds to an interactive environ-
ment, i.e. an environment in which a user may enter commands to be exe-
cuted in that environment. An example is an editor, which accepts
commands to change, insert or delete data in a file, or to change the cur-
rent location in a file. To distinguish commands issued to a particular
environment (such as an editor) from commands issuaed diraectly to thae host
(CMS), the word subcommand is oftan used.

Interactive users react to the success or failure of a particular subcom-
mand by adapting an intended sequence of commands. They enquire about
specific attributes of the environment (e.g. length of the current line)
and base subsequent subcommands on the information supplied by the envi-
ronment (e.g. displayed in a message area).

The SUBCOM mechanism makaes this moda of interaction available to programs
as well as human users. It gives programs tha ability to issue subcom-
mands to the environment, to react to the outcome of a subcommand, and to
retrievae information about the environment for subsaquent use.

To use the SUBCOM mechanism, an interactive program sets up a subcommand
environment. This involves declaring the name of the environment, and the
entry point in the interactive program that is prepared to handle subcom-
mands issued from other programs to the declared environment.

Programs wuwhich issuae subcommands to interactivae environments are often
written in a convenient interpretive languaga (such as EXEC 2 or REX), and
are traditionally called macros. Both REX and EXEC 2 have the convention
that, unless instructed otherwise, they direct commands to a subcommand
environment whose name is the filetype of tha macro. Traditionally, edi-
tors declara their subcommand environment under their own name, and also
claim that name as the filetype to be used for their macros.

For example, the XEDIT editor ("new CMS editor™ of VM/System Product,
announced at the end of January 1980) sets up a subcommand environment
named XEDIT, and the filetype for XEDIT macros is also XEDIT.

The macro issues subcommands to tha editor (e.g. NEXT 4, or TRANSFER
ZONE). Thae editor "repliaes™ with a return codae, and sometimes with fur-
ther information, which .is stacked, and may be read by tha macro. A
non-zaro return coda from NEXT 4 may indicate that End-of-file has been
reached, and TRANSFER ZONE may stack two numbers, which are thae current
setting of tha "zone™ in XEDIT. By testing the return coda and retriaving
stackaed information, the macro has the ability to react appropriately, and
the full flexibility of a programmablae interface is availabla.

REX allows the default environment to be altered (between various subcom-
mand environments or the host environment) using the Address instruction.

EXEC 2 has a similar mechanism in the &PRESUME statement.

Thae SUBCOM command is usaed to declara, quary, or cancal subcommand envi-

The Subcommand concept : 138

¢

o

IBM Internal Use Only

ronments.

Only the query form of SUBCOM is a command, in the sense that it can be
issued from the. terminal (or from an EXEC file). The form of this command
is:

SUBCOM name

This yields a return code of b if name is currently dafined, or 1 if it is
not dafinad as a subcommand environment nama.

Programs may call the SUBCOM function with an appropriate plist to declare
or cancel an environment, or to obtain complete information about a
declared environment. Tha plists arae definad in YKTSVC MEMO. (A CMS
function takes a parameter list which may contain binary information, such
as flags or binary addresses, and is thus distinguished from a command,
which takes character string arguments only.)

The command SUBMAP can be used to list currently defined subcommand envi-
ronments.

(From SUBCOM MEMO by Michel Hack, Yorktown Haights, Fabruary 1980)

The Subcommand concept _ 139

IBM Internal Use Only

B.0 EXAMPLE EXECS FOR CMS USING REX

These examples show three possible styles of Exec writing (there are many
others): the first is a "private™ Exec, in which full use is made of
literal shorthand etc; in the second, all literals are explicit (quoted);
the third is somewhere betweéen the two, with the emphasis being on read-
ability and presentation.

ADDR EXEC
/7% Displays name and address for nicknames specified %/

Arg rest
If rest='' | rest='?' then signal tell
*REQUIRED MODULE SCANRMSG CPS' /% Is he missing anything? */
Do i=1l to words(rest) /% For each word in REST .. %/
parse var rest nickname rest /% .. get 1lst X/
State Nickname Distrib '%?
If RC=0 then do -
Say nicknama 'is a distribution list'
Iterate I; end
/% not a list %/
Scanrmsg nickname
if RC=0 then /% some data was stacked ¥/ do
Pull nn node uid via nl n2 n3 n%é n5
if uid='%" then
say Nickname 'is the local user' via’
else
say Nickname 'is' nl n2 *('uid at node')"*
Iterate I; end
/7% nothing was stacked; might be a local userid %/
CPS Transfar CL 1 from Nickname
Pull; pull /% clean stack after CPS ¥/
If RC=0 then say Nickname 'is a local VM id'
else say Nickname 'is an unknown name'
end /% I %/
exit

taell: /% tell about the program ¥/

say 'Correct form: ADDR namel <name2 <named>>°

say

say 'ADDR searches your RMSG fila for the specified®

say ' nicknama.”®

say 'If it finds the name; it displays the actual node’
say ¥ and userid of the user. If the nama isn't found,"
say ' it checks for 2 local userid with the same name.'

Example Exees for CMS using REX ’ 140

IBM Internal Use Only

7N SEND EXEC (from the EXEC 2 documentation)

7% Send file to a local user ¥/

Arg name fn ft fm Z

if name='"' | name='?' then do
say 'Use: SEND User Filename Filetype <Filemode>’
exit 100; end

if ft='' | 2-='' then do . /% Check only 2 or 3 args ¥/
say 'Bad SEND command’
exit 101; end

if fm='' then fm=*%' 7% assuma ANY if no mode 74
- 'CP SPOOL PUN' name 'CLASS A®
if re-=0 then do /% check SPOOL worked */
say name 'is not a valid userid’
- exit 102; end
'PUNCH' Fn Ft Fm
if re~=0 then do 7% check PUNCH worked */
say "Error' rc 'from "PUNCH" (while in SEND)?’
nn=102
end '

elsa /7% Tell racipient what has been done ¥/

. 'CP MSG' Name 'I have just sent' Fn Ft Fm 'to you.'
'CP SPOOL PUN x CLASS AT
Exit nn

(ol

Exampla Execs for CMS using REX . 161

[P, ’ :
et = 2 e s s

IBM Internal Use Only
sample editor macro: Editor subcommands are in upper case for emphasis.

7% REX equivalent of CONC XEDIT (EXEC 2) Macro */

7% First comprehensively check the operands ¥/
c="Command’ /7% for efficient and safe use ¥/
Arg num fill '
salect
whan num=*' then do; num=1; fill=% '; eond
when fill='* then do
if num=t?* then signal tell
fili="
end
otheruise
If fill="%" then fill="'
end /% select ¥/

If datatype(num)-="NUM' then do
¢ EMSG 'Invalid line gount "Trum'"’
signal disaster; end

7% Now check if the concatenated line will fit fila %/
¢ TRANSFER LENGTH TRUNC LINE
pull len trunc fline
if len>255 then do
c EMSG 'File too wide to use this Macro'
exit; end
¢ STACK 1 1 len; pull curline
string=curline
do num
¢ NEXT
if re==0 then do
c EMSG 'EOF hit bafore concatenating' num 'lines.®
':'"fline
signal disaster; end
c TRANSFER LENGTH

pull len
c STACK 1 1 len; pull curline
string=string || fill || curline

i=length(string)
if i>trunc then do;
¢ EMSG *'Concatenated line length'; /¥ continues.. %/
i "exceads TRUNC column' trunec®.®
"' fline
signal disaster; end
end; /% num %/

{Continued on next page...?

Example Execs for CMS using REX ’ 142

"

IBM Internal Use Only

7% PUT THE CONCATENATED LINE IN THE FILE x/
c ':"fline /% go to right place %/
¢ REPLACE string

c NEXT

¢ DELETE num

c UP

exit

disaster:
arg prompt
parse source @xecname .
¢ REPLY execname prompt

exit
Tell: /% CONC ? ¥/
€ MSG "4-————mmmm—meee e e e L P mmmemeccmeaad Y
c MSG | Correct form is: CONC <N <Fill>> 1Y
€ MSG '"4--ceoecocao- - e
c MSG
c MSG 'Concatenate the next N lines using Fill string as'
¢ MSG 'separator. Defaults are 1 line and single blank'
c MSG "fill. If FILL="%" tha linas are to be concatenated’
c MSG ‘'without any separators.®
Exit; end

Example Execs for CMS using REX

143

IBM Internal Use Only

C.0 ERROR NUMBERS AND MESSAGES

The error numbers produced by syntax errors during interpretation of REX
programs are all in the range 1-49 (and this is the value placed in the
variable "RC™ when SIGNAL ON SYNTAX is trapped). Under CMS, REX adds
20000 to these error return codes before leaving an Exec in order to pro-
vida a different range of codes than those used by EXEC and EXEC 2. UWhen
REX types an error maessage, it first clears tha CMS "NOTYPING™ flag to
ensura that the message will ba seen by the user, aven if "HT™ has been
typed during execution of the program.

Several of the error messages are generated by the external interfaces to
the interpreter either before the interpreter gains control, or after con-
trol has left the interpreter. Therefore these errors cannot be trapped
by SIGNAL ON SYNTAX. The error numbers involved are: 1, 2, 3, 5 (if the
initial requirements for storage could not be met), and 26 (if on exit the
returned string could not be converted to form a valid return code).

The possible error numbers with their messages and meanings are as follows
(the error number is contained in tha threa digits following "DMSREX™ in
the error code):

DMSREXOO1E Program name not specified

"EXEC" has been invoked without the name of a fila. REX cannot
therefore proceed with execution.

DMSREX002E Program could not be found

A program has bean spaecifiad which cannot be found on any acces-
sible disk.

a.g. T"EXEC PPP™ would give this error if no file with filenama
and filetypa "PPP EXEC"™ could be found.

DMSREX003E Program is unreadable

An error was returned by CMS while the Exec was being read from
disk.

This is almost always due to attempting to execute an Exec on
another persons disk, which you have accessed Read/Only but
someonae aelsa has Read/Write. The other person has altered the
Exec and it no longar exists in tha same place on the disk.

The cure for this is to re-accaess the disk on which the Exec
raesides.

Error numbers and messages ' 144

IBM Internal Use Only

DMSREX004E Program interrupted

The system interrupted execution of an Exec or Editor macro,
usually due to your having typed in the immediate command "he"
(Halt Exec). Certain utility modules (e.g. FSX) may force this
condition if they detect a disastrous error condition.

Unless trapped by SIGNAL ON HALT, this causes REX to immediately
cease eaxecution with this message and the system data queue
("program stack™) is cleared.

DMSREXO0OS5E Machine storage exhausted

While attempting to interpret an Exec or REX program, REX was
unable to get the space needed for its work areas, variables,
etc.

This is most likely to occur uhen REX is invoked from within a
User program (such as an Editor) which is already using up most
of the storage available.

9’

Run the REX program on its own, or dafine a larger Virtual
Machine, as appropriate.

DMSREXOO06E Unmatched "/x" or quote

On reaching the end of fila (or end of data in an INTERPRET
instruction), REX is still scanning a literal string or a com-
ment.

This is caused by there being an unmatched quota or incomplete
comment in your program.

It can also happen in XEDIT macros if your comment ended at the
beginning of a line thus:

/7% This is a comment
*/

The current version of XEDIT throws away all lines beginning
with an asterisk, hence the comment terminator cannot be found
by REX...

DMSREX007E WHEN or OTHERWISE expected
Within a SELECT construct, REX expects a seriaes of WHEN con-
structs and an OTHERWISE. If any other instruction is found,

this message raesults.

This is commonly caused by forgetting tha DO and END around the
list of instructions following a WHEN.

Error nunbers and messages : 145

IBM Internal Use Only

e.g: Select
When a=b
Say A EQUALS B
exit
Otherwise nop
end

Should be: Select
When a=b then Do
Say A EQUALS B
exit
end
Otherwise nop
end

DMSREX008E Unexpected THEN or ELSE

A THEN or an ELSE has been found which does not match a corre-
sponding IF clause.

This error often occurs because of a missing END or DO END in
the THEN part of a complex IF THEN ELSE construction.

@.g. IF a=b then do
Say EQUALS
exit

else
Say NOT EQUALS

should have an END immediately following the EXIT instruction.

DMSREXQO09E Unexpected WHEN or OTHERWISE

A WHEN or an OTHERWISE has been found outside of a SELECT con-
struct. You may have unintentionally enclosed it in a DO END
construct by leaving off an END instruction; or you may have
tried to branch to it with a SIGNAL instruction (which cannot
work as the SELECT is then closed).

DMSREX010E Unexpected or unmatched END

You have put more ENDs in your program than DOs and SELECTs, or
the ENDs arae wrongly placed so they do not mateh the DOs and
SELECTs.

It may be helpful to use "TRACE Scan®™ to show the structure ef
the program and hence make it more obvious whare the error is.
Putting the name of the contrel variable on ENDs which close
repatitive loops can also help locate this kind of error.

A common mistake which causes this error message is attempting
to jump into the middla of a loop using the SIGNAL instruction.
Since tha pravious DO will not hava been executed, the END is
unexpected. Remember, too, that SIGNAL deactivates any current

Errer numbers and messages . 146

N

IBM Internal Use Only
loops, so it may not be used to jump from one place inside a
loop to another.

This error will also be generated if an END immediately follows
a THEN or an ELSE.

DMSREXO11E control Stack Full

You have excaeded the implementation limit of 250 levels of
nesting of control structures (DO-END, IF-THEN-ELSE, ete).

This could be due to a looping INTERPRET instruction, for exam=-
ple:

1ina="INTERPRET line’
Interpret line

which would otherwise loop forever. Similarly a recursive sub-
routine or internal function which does not terminate correctly
could loop forever.

If this is not the cause, complain to the author to increase the
number of levals available. (Ha will probably refuse.)

DMSREXO012E Clause > 500 characters

There is an implementation restriction that limits the length
of the internal representation of a clause to 500 characters -
you have aexceedad this.

If you cannot seae why this has happenad, it is most likely due
to a missing quota, which has caused a number of lines to be
included in one long string. The error probably occurred at the
start of the data included in the clause tracaeback (flagged by
"+++" on the consola).

The internal representation of a clause does not include com-
ments or multiple blanks which are outside of strings. Note
that any symbol ("name") gains two characters in length in the
internal representation.

DMSREXO013E Invalid character in data

Error

Your program includes a character outside of a literal (quoted)
string which is not one of the following:

A-Z, a-z, 0-9 (Alphamerics)
Aa#S$ & . ?2 ! underscore (Name chars)
& % () -+ =" W . <, >% 7 (Spacial chars)

numbers and messages . 147

IBM Internal Use Only -

DMSREX014E Incomplete DO/SELECT/IF

On reaching the end of file (or end of data in an INTERPRET
instruction), it has been detected that there is a DO or SELECT
without a matching END, or an IF which is not followed by a THEN
clause to execute.

It may be helpful to use "TRACE Scan™ to show the structure of
the program and hence make it more obvious where the missing END
should be. Putting tha name of the control variable on ENDs
which closa repaetitive loops can also halp locate this kind of
arror.

DMSREXO1SE Invalid Hex constant

Hexadecimal constants must include an even number (and at least
two) Hex digits. You have most likely mistyped one of the dig-
its (e.g. 0 instead of 0)

The following are all valid Hex constants: (blanks are allowed
at byte boundaries €o‘improve readability).

"13'x
*A3C2 1c34'x
"1de8'X

The error may also be caused by following a string by the
ona-character symbol "X" (@.g. the name of the variable "X")
when thae string is not intended tc be taken as a hex specifica~
tion. Use the explicit concatenation operator, "||%, in this
situation to concatenate the string to thae value of the symbol.

DMSREX016E Label not found

A SIGNAL or CALL instruction has been executed (or an event for
which a trap was set has occurred), and the label specified can-
not be found in the file. You may have mistyped it, or forgot-
ten to include it.

The nama of tha label for which the search was mada is included
in the error traceback.

EMSREX017E Unexpected PROCEDURE
A PROCEDURE instruction was encountered in an invalid position,
either becausa no intarnal routines are activa, or because a
PROCEDURE instruction has already been encountered in the

internal routine.

A possiblae cause of this is "dropping through® into an internal
routine rather than invoking it via CALL or a function call.

Error numbers and messages) 148

IBM Internal Use Only

DMSREX019E String or symbol expected

Following the keyword CALL or the sequence SIGNAL ON or
SIGNAL OFF, a symbol or string was expected but was not found.

Possibly the symbol or string was entirely omitted, or a special
character (such as a parenthesis) has been inserted.

DMSREX020E Symbol expected

In the clauses END, ITERATE, LEAVE, NUMERIC, PARSE, and PROCE-
DURE a symbol can ba expectaed. Either it was not present when
required, or some other characters were found.

Alternatively, DROP, UPPER, and the EXPOSE option of PROCEDURE,
expect a list of symbols. Some other characters were found.

DMSREX021E Junk on end of clause

You have followed a clause, such as SELECT or NOP, by soma data
other than a comment.

¢

DMSREX024E Invalid TRACE request

The setting specified on a TRACE instruction (or as the argument
to the TRACE built-in function) starts with a character which
does not match one of the valid TRACE settings (i.e. N, E, C, A,
R, I, L, or S). This error is also raised if an attempt is made
to request "TRACE Scan™ when insida any kind of control con-
struct.

DMSREX025E Invalid sub-keyuord found

A token has been found in the position in an instruction where a
particular sub-keyword was expected.

For example, in a NUMERIC instruction, the second token must be
DIGITS, FUZZ, or FORM, and anything else is in error.

DMSREX026E Invalid whole number

An expression in the NUMERIC instruction, or a parsing posi-
tional pattern, or in a repetition phrase of a DO clause, or the
right~hand tarm of the exponantiation ("%%%") operator, did not
evaluate to a whole number (or is greater than the implementa-
tion limit, for these uses, of 999999999). This error is also
raisaed if a negative repatition count is found in a DO clause.

Similarly the return code passed back to CMS with the EXIT or
RETURN instructions (when a REX program is called as a command)

must be a whole number which fits into a 5/370 register (saee
page 35).

This error is mest likely due to specifying a symbol which is

Error numbers and messages . 149

IBM Internal Use Only

not the name of a variable in the expressidn on any of these
instructions.

e.g: EXIT CR when you meant to put EXIT RC
DMSREX027E Invalid DO syntax

Some syntax arror has been found in the the D0 instruction.
This might be using BY or TO twice, or using BY, T0, or FOR when
thera is no control variable specified, atc.

DMSREX028E Invalid LEAVE or ITERATE

A LEAVE or ITERATE instruction was ancountaered in an invalid
position: either no loop is active, or the name specified on the
instruction does not match the control variable of any active
loop. HNote that since internal routine calls and the INTERPRET
instruction protect DO loops, they becomae inactive. Thereforae,
for axample, a LEAVE in a subroutine cannot affect a DO loop in
the calling routine.

A common causa for this error maessage is attampting to use the
SIGNAL instruction to transfer control within or into a loop.
Since SIGNAL terminates all activa loops, an ITERATE or LEAVE
would then ba in error.

DMSREX029E Environment name too long

The environment name specifiad by the ADDRESS instruction is
longer than permitted for the system under which REX is execut-
ing. For CMS, environmaent names may not be more than 8 charac-
ters long.

DMSREXO030E NamesString > 250 characters

There is an implementation limit on the langth of a variable
» or label name, and on the length of a literal (quoted) string.

Following any substitutions, the length of a name must be less
than or equal to 250 characters. The most likaly cause of this
aerror is the unintentional use of the "." (period) in a name,
hence causing an unexpected substitution.
Similarly, a litaral string may not excaeed 250 charactars.
Leaving off an ending quote (or putting a singla quote in a
string) can causae this error as thaen several clauses may ba
included in tha string. e.g: the string
*don't?

should be writtan

'don''t' or "don't"™

Error numbaers and messages : 15¢

"

IBM Internal Use Only

DMSREX031E Name starts uith numeric/"."

You are not allowed to assign a value to a variable whose name
starts with a numeric digit or a periocd (since if you were, you
could re-define numeric constants). Similarly the UPPER
instruction may not attempt to alter a variable with such a
name.

The best way to Start a variable name is with an alphabetic
character, although some other characters are allowed.

DMSREX032E Invalid use of stem

An attempt is being made to change the value of a symbol which
is a stem (i.e. a symbol which contains just one period, as the
last character). This may be in a parsing template, the UPPER
instruction, or as the target of an assignment. The action in
these cases is undefined and is therefore in error.

DMSREX033E Invalid use of expression
The result of an expression in an instruction was found to be
invalid in the particular context in which it was used. This
may be due to an illegal FUZZ or DIGITS value in a NUMERIC
instruction (FUZZ may not become larger than DIGITS), or it may
be trying to SIGNAL a null label (a label whose length is 0).

In addition, this error is raised if an expression is not speci-
fied when it is required (a.g. following the sub-keyword
"VALUE"™ in certain clauses).

DMSREXO34E Logical value not 0 or 1

The expression in an IF, WHEN, DO WHILE or DO UNTIL phrase must
result in a "0" or a "I", as must any value operated on by a log-
ical operator (i.e. ~ | & &8&).

For examplea:

If rc then exit re
should be written as:

If re~=0 then exit rec

DMSREX035E Invalid expression
This is due to a grammatical error in an expression, such as
ending it with an operator,; or having two operators adjacent
with no data in batween.
A common error is to include special characters (such as opera-

tors) in an intended character expression without enclosing
them in quotes.

Error numbers and messages . 151

IBM Internal Usa Only

For example:
) LISTFILE % % x

should be written as:
LISTFILE "% % %'

or even (if LISTFILE is not a variable):
TLISTFILE % % x°*

DMSREX03I6E Unmatched ™(™ in expression

This is due to not pairing parentheses correctly within an
exprassion.

A common error is to include a single ™(™ in a command, without
enclosing it in quotes.

For example:
COPY A B CAB D (REP

should be uritten'qs:
COPY ABCABD "('REP

Without this restriction, one would not. be able to have
sub-expraessions in avaluations and so urita:

Result=3%(4+K)

DMSREX037E Unexpected ™,™ or "™

Either a %, has bean found outaide a function invocation, or
vou have too many right parenthaeses in an expraession.

A common error is to include a "," in a character expression,
without enclesing it in quotes.

a.g:
Say Enter A, B, or C

Should be written as:
Say ‘Enter A, B, or C'

DMSREX032E Invalid template or pattern

Within a parsing template, & special character that is not
allowed (e.g. "%") has been found, or the syntax of a variable
trigger is incerraect (i.a. no symbol was found aftar a left
paraenthesis}). This error is also raised if the WITH sub-keyword
is omitted in a PARSE VALUE instruction.

Error numbers and messages ' 152

IBM Internal Use Only

DMSREX039E Evaluation stack overflou

The expression is too complex to be evaluated by the REX imple-
mentation. There are many nested parentheses, functions, etec.

You will have to break the expression up by assigning
sub-expressions to temporary variables.

DMSREX040E Incorrect call to routine

The specified built=in or external routina does exist, but it
has been used incorrectly: -

. you passed invalid data (argumants) to the routine

o or: the module invoked was not a REX compatible routine

° or: you have used more than 10 arguments

The first possibility is thae most common; and is dependent on

the actual routine: if a routine returns a non zero return code,

this will cause REX &0 in turn issue this message (and pass back

20040 as its return code).

If you were not aware that you wera invoking a routine, then it

is probabla that you have a symbol or string adjacent to a "("

when you meant it to be separated by a space or operator. This

will cause it to be understood as a function call.

e.g: TIME(4+5) should probably be written TIMEX(4+5)

DMSREXO41E Bad arithmetic conversion

Ona of the terms involved in an arithmatic operation is not a
valid number, or its exponent is outside the range:

=999999999 +to +999999999%
You may have mistyped a variable's name, or more likely included
an arithmetic operator in a character expression without put-
ting it in quotes.
@.g. MSG * Hi!
should be written: 'MSG % Hi!°*
as otherwisa REX will attempt to multiply "MSGW® by "HI!"™.

DMSREX042E Arithmetic Overflou/Underflow

The result of an arithmetic operation requires an exponeni
which is greater than 999999999, or less than -999999999.

This can happen during evaluation of an expression (commonly an

Error numbers and messages . 153

—ame ITammT T~ - S D B LA S T L

IBM Internal Use Only

attempt to divide a number by 0); or possibly during the step-
ping of a DO loop control variable.

REX only supports 9 digits for the exponent of a number.
DMSREX043E Routine not found

A function has been invoked within an expression, or a subrou-
tine invoked by CALL, but no label with the specifiad name
exists in thae program, and it is not the name of a built-=in
function, and tha host system has baeen unable to locate it
externally. You have probably mistyped the routine's name, or
possibly one of the standard packagas (REXFNS2 or REXVMFNS) is
missing.

If you wera not aware that you were invoking a function, then it
is likely that you have a symbol or string adjacent to a "("
when you meant it to be separated by a space or operator. This
will be understood as a function invocation.

@.g: 3(4+5) sﬁoyld ba written 3I%(4+5)
DMSREX044E Function did not return data

An external function has been invoked within an expression, but
even though it appeared to end without error, it did not raturn
data for use within the expression.

This is most likely due to specifying the name of a CMS MODULE
which is not intended for usae as a REX function and which there~
fore should have been called as a command or subreoutine.

DMSREXO45E A function must return data

The prog}am has been called as a function, but an attempt is
being madae (by RETURN;) to return without passing back any data.

Similarly, if an internal routine is called as a function then
the RETURN instruction which ends it must specify an
exprassion. N
DMSREX048E Failure in system service
Some system service used by REX (such as user input or output,
or manipulation of the system—provided data queue) has failed
to work corractly and hence normal execution cannot continue.
DMSREXO049E Interpreter error
The interprater carries out numerous internal salf-consistency
checks: this message indicates that some kind of severe error

has been detected within the interpreter.

Please report any occurrence of this error message te the

Error numbers and messages ' 154

author.

Error numbers and messages

IBH Xnternal Use Only

155

IBM Internal Use Only

Special Characters

See Period
+++ Tracing flag 56

! praefix on TRACE instruction

#=-% Tracing flag 56
>.> Tracing flag 56
>>> Tracing flag 56
>C> Tracing flag 56
>F> Tracing flag 56
>L> Tracing flag 56
>0> Tracing flag 56
>P> Tracing flag 56
>Y> Tracing flag 56

? prefix on TRACE instruction

= immediate Debug command 80’

A

ABBREV function 61

55

58

using to selact a default 61

Abbreviations
testing with ABBREV
function 61
ABS function 61
Absolute value

finding using ABS function

Activating REX
automatically 130
expliecitly 105, 187

Active loops 38

Addition 17
definition 93

ADDRESS function 62

ADDRESS instruction 24

ADDRESS sattings
savad during subroutine

calls 28

Algebraic Precedence 18

Alphabatics
checking with DATATYPE

Alphanumerics
checking with DATATYFE

AND function 108

AND, logical 18

AND operator 18

Index

64

64

61

AND'ing charactaer strings
together 62
ARG instruction 26

. ARG option of PARSE

instruction 41

Arguments
of Exacs 26
of Functions 26, 58
of Subroutinas 26, 27
passing to Execs 118
passing to functions 58

Arithmetic 91, 100
combination rules 95
comparisons 96
errors 99
NUMERIC settings 460
operators 17, 91, 93
overflow 99
precision 93
underflow %9

Arrays 101

Assignments 21

Associative storage 101

Bilingual Exaecs 130
BITAND function 62
BITOR function 62
Bits

checking with DATATYPE 64

BITXOR function 62
Blank
adjacent to special
character 12
as an operator 16
Blank removal with STRIP
function 73
Boolean opaerations 18
Bottom of program
reaching during execution
Built-in functions
maintaenance 133
BY phrase of DO instruction
B2C function 108
B2X function 108

e 2 e b ek Saisiiios o

35

28 » 61-80

29

156

ry

IBM Internal Use Only

c

CALL instruction 27
CALLER
maintenance 133
CALLER, access to previous EXEC
invocations 113
CENTER function 63)
Centering a string using CENTER
function 63
CENTRE function 63
Centring a string using CENTRE
function 63
Character removal with STRIP func-
tion 73
Clauses 12
as labels 20
assignment 20, 21
continuation of 15
null 20
CLCL function 108 ,
cMS ‘
COMMAND anvironment 23
environment name 23, 25
issuing commands to 22, 23,
24, 25
search order 23
unique functions 111
Codas, error 164-155
Collating sequence, using
XRANGE 78
Colons
as label terminators 20, 53
Combination, arithmaetic 95
COMMAND
environment name 23, 25
Command Environments
See environments
Command errors, trapping
See SIGNAL instruction
Command inhibition
See TRACE instruction
Commands
alternative destinations 22
destination of 24
inhibiting with TRACE instruc-—-
tien 55
issuing to host 22
Comments 12
identifying REX Execs 117
COMPARE function 63
Comparison

Index -

of numbers 17, 96. .
of strings 17
using COMPARE 63
Compound Variables 101
Concatenation of strings 16
Conditional Loops 29
Conditions
ERROR 50
HALT 50
NOVALUE 50
saved during subroutinae
calls 28
SYNTAX 50
Conditions, trapping of
See SIGNAL instruction
CONGET, immediate console
read 113
Console
reading from with PULL 46
writing to with SAY 49
Content addressable storaga 101
Continuation
character 15
of clauses 15
of data for display 49
Control Variable 31
Controlled Loops 31
Conversion
character to dacimal 63
character to hexadecimal 64
decimal to character 66
dacimal to hexadecimal 67
EXEC to REX with REXIFY 114
EXEC 2 to REX with REXIFY 114
formatting numbers 68
hexadecimal to character 79
hexadecimal to decimal 79
REX2 to REX3 with REXTRAN 114
Conversion functions 61-80,
108-110
COPIES function 63
Copying a string using COPIES 63
COUNTBUF function 109
Counting words in a string 78
cP
issuing commands to 23
ratrieving responses from 114
CPA function, in RXCPA 116
CXCL function 108
€2B function 109
C2D function 63
C2X function 64

157

T

IBM Internal Use Only

Data

length of 16
Data terms 16
DATATYPE function 64
Date and Version of the

interpreter 44

DATE function 65
Debug, Interactiva 53, 30
Debugging REX programs

See Interactive Debug

Sea TRACE instruction
Decimal arithmetic 91-100
Deleting part of a string 66
Deleting words from a string 66
Delimiters, clause

See Colons

See Semicolons
DELSTR function 66
DELWORD function 66 !

Derived names of variables 161
DIAG function 111
DIAGRC function 111
DIGITS option
of NUMERIC instruction 40, 93

Direct interface to variables
Displaying data
See SAY instruction
Division 17
definition 93
DO instruction 29-33
See also Loops
DROP instruction 3%
Dummy instruction
See NOP
D2C function 66
D2X function 67

Editor Macros 24, 138
example 142
Elapsed time
saved during subroutine
calls 28
Elapsed time calculater 74
ELSE keyword
See IF instruction
EMSG service module
END clause
Sea also DO instruction
See also SELECT instruction

113

Index

121

specifying control variable
Engineering notation 98
Environment

determining current using

ADDRESS function 62
Environments

addressing of 24

default 25, 42, 118, 138

temporary change of 24
Equality, testing of 17
Error codaes 144, 155

onlina information 105

31

ERROR condition of SIGNAL instruc-

tion 50
Error messages
retrieving with ERRORTEXT 67

Error messages and codes 144-155
Error numbers
online information 105

Errors

during execution of

functions 59

from Host Commands 22

syntax 164-155

traceback after 56
Errors, trapping

See SIGNAL instruction
ERRORTEXT function 67
EVALBLOK

format of 125
Evaluation of expressions 16

Examples
of Editor macros 142
of Execs 140

Exception conditions
saved during subroutine
calls 28

Exclusive OR operator 18

Exclusive OR'ing character strings

together 62
EXECCOMM
interface to variables
subcommand entry point
EXECFLAG byte in NUCON 129
EXECIO service command 113
Execs
arguments to 26
calling as functions 60, 126
examples 140
executing 106
in-store execution of
invoking 117
multilingual
(EXEC/EXEC2/REX)

121
121

118

130

158

IBM Internal Use Only

Plist for 117

ratrieving name of 42
Executing REX programs 106
Execution of data 37
EXIT instruction 35
Exponential notation 14, 91

definition 97
Exponentiation 17

definition 94
EXPOSE option of PROCEDURE

instruction 44

Expressions

evaluation 16

examples 19

parsing of 43

results of 16

tracing results of 53
EXSERV, use with REX 113
Extended Plist 118
External functions

interface 125 ,
EXTERNAL option of PARSE instruc-
tion 62
External subroutines

interface 125
External traca bit 116

in EXECFLAG 129
EXTERNALS function 67
Extracting a substring 73
Extracting words from a string 74
E2X function 109

F

FETCH function 109
FIF0 stacking 47
File nama, typa, moda of
program 42
FIND function 68
Finding a mis—match using
COMPARE 63
Finding a string in another
string 69, 70, 71
Flow control
abnormal, with SIGNAL 50
with CALL/RETURN 27
with DO construct 29
with IF construct 36
with SELECT construct 49
FOR phrase of DO instruction 29
FOREVER repetitor on DO instruc-
tion 29
FORM option

Index

of NUMERIC instruction 40, 98
FORMAT function 68
Formatting
numbers for display 68
numbers with TRUNC 76
of output during tracing 55
text centring 63
text justification 69
text left justification 70
text right justificatioen 72
text spacing 73
FSX) :
maintenance 133
FSX full screen interface 113
Full screen I/0
with FSX 113
with 1053270 113
with MDF 115
Function
invoking REX as 118
Function, built-in

ABBREV 61
ABS 61
ADDRESS 62
BITAND 62
BITOR 62
BITXOR 62
CENTER 63
CENTRE 63
COMPARE 63
COPIES 63
C2D 63

€2X 64
DATATYPE 64
DATE 65
DELSTR 66
DELWORD 66
D2C 66

D2X 67

ERRORTEXT 67
EXTERNALS 67

FIND 68
FORMAT 68
INDEX 69
INSERT 69
JUSTIFY 69
LASTPOS 70
LEFT 790
LENGTH 70
LINESIZE 70
MAX 70

MIN 71
OVERLAY 71
POS 71

159

IBM Internal Use Only

QUEUED 71
RANDOM 72
REVERSE 72
RIGHT 72
SIGN 73
SOURCELINE 73
SPACE 73
STRIP 73
SUBSTR 73
SUBWORD 74
SYMBOL 74
TIME 74
TRACE 76
TRANSLATE 76
TRUNC 76
USERID 77
VALUE 77
VERIFY 77
WORD 78
WORDINDEX 78
WORDLENGTH 78

WORDS 78 ‘

XRANGE 78
X2C 79
X2D 79
Functions 58
built~-in 58, 61-80
calling Execs as 126
external 58
external interfaca 125
external packages 108~-i12
for VM/7370 information 111
forcing built-in or external
raference 59
internal 58
invocation of 58 _
numeric arguments of 9¢
return from 48 S
variables in 464
Fuzz
controlling numaric
comparison 97
FUZZ option

nrT N

of NUMERIC instruction 40, 97

G

GLOBALV, usa with REX 113
GOTO, abnormal

See SIGNAL instruction
Group, DO 30

Index

HALT

option of TRACER command 116
HALT condition of SIGNAL instruc~-

tion 50
Halt, trapping
See SIGNAL instruction
Halting a looping REX program
T"he™ immadiata command 115
Help, on=-line 105
Hexadacimal
See also Conversion
checking with DATATYPE 6¢
Hexadecimal strings 13
Host commands 22
"HT" flag
cleared before error
messagas 144
HT halt typing module 113

I

Identifying usars 77
IF instruction 36
Immediate commands
"he™ 115
in INSTANT packagea 115
*ta® 115
Fes™® 115

Implementation deteils 131, 134

Implied Semicolons 15

Imprecisa numeric comparison 97
In-store execution of Execas 318

Inclusive OR opaerator 18
Indefinite Loops 29

See also Looping programs
Indentation during tracing 55
INDEX function 69
Indirect avaluation of data 37
Inequality, testing of 17
Infinitae loops 29

Sae alse Looping programs

Inhibition of commands with TRACE

instruction 55
INSERT function 69
Inserting @ string into
another 69
Installation of REX
auteomatic 130
explicit 105
INSTANT - CM3 immediate command
support 115

vy

"

IBM Internal Use Only

Instructions

ADDRESS 24

ARG 26

CALL 27

Do 29

DROP 34

EXIT 35

IF 36

INTERPRET 37

ITERATE 38

LEAVE 39

NGP 40

NUMERIC 40

PARSE 41

PROCEDURE 44

PULL 46

PUSH 47

QUEUE 47

RETURN 48

SAY 49

SELECT 49 ©)

SIGNAL 50 .

TRACE 53

UPPER 57
Integer arithmetic 91-100
Intagar division 17, 91

definition 94
Interactivae Debug 53, 80

Sea also TRACE instruction
Interfaces)

system 117

to external routines 125

to PL/I with REXPLI 114

to variables 121
Internal functions

return from 48

variables in 44
INTERPRET instruction 37
Interpreter date and version 644
Interprative execution of data 37
Interrupting REX execution 115
Interrupts

REX is enabled for 131
1053270, usa with REX 113
I0X

CMS 1/0 interfaca 114

maintenanca 133
ITERATE instruction 38

See also DO construct

usa of variabla on 38

Index

J -

JUSTIFY function 69

X

Key; Storage 131

Keywords
conflict with commands 102
mixed casa 24§
rasarvation of 102

L

L ogical operations 18
Labels 20, 53
as targets of CALL 27
as targets of SIGNAL 50
duplicata 51
in INTERPRET instruction 37
saarch algorithm 50
LASTPOS function 70
Leading blank removal with STRIP
function 73
Leaading zeros
adding with the RIGHT
function 72
removal with STRIP function 73
LEAVE instruction 39
Sea also DO construct
use of variable on 39
LEFT function 70
LENGTH function 70
LIFQ stacking 47
Lina length of tgrgiqpl 70
Lines from program .
retrieving with SQURCELINE 73
LINESIZE funetion 70
Lists 101 L
LOCATE functien, in RXLOCATE 114
Locating a phrase in a string 68
Locating a string in another
string 69, 70
Locating string in another
string 71
Look-asida buffering in REX 134
Looping programs
halting 115
tracing 115
Loops
Sea alse DO instruction
Sea also Looping programs

161

IBM Internal Use Only

active 38
execution madel 33
modification of 38
repetitive 29
termination of 39

y|

Macros
Sea Execs

Maeros, editor

Maintenanca
Built-in functions
CALLER 133
FSX 133
I0X 133
REQUIRED
REX 133
REXFNS2
REXIFY
REXTRAN
REXVMFNS
RXCPA 133

MAX function 70

MDF function, in RXMDF 115

MDF Menu Display Facility

support 115

Memory '

accessing 111

24, 138

133

133

133
133
133
133

finding upper limit of 111
Menu support

using 1053270 1i3

using MDF function 115
Messages, arror 144-15%5
MIN function 71
MODULES service module 114
Modules, Utility 113-115
Multiple arguments

passing to REX 113 '
Multiplae strings R -

parsing of 90 :
Multiplication 17

definition 93 ,2w

Namas
of Exacs 42
of functions 58
of programs 642
of subroutines 27
of variables 13

Index

Negation _
of logical values 18
of numbers 17
NEST function 111
Network machine
finding name of with
IDENTIFY 113
Network noda
finding nama of with
IDENTIFY 113
Noda, network
finding name of with
IDENTIFY 113
NOP instruction 40
NOT operator 18 .
Notation -
Engineering 98
Scientific 98
NOTYPING flag e
cleared before arror = .
messages 14¢ 7 7
NOVALUE condition
an SIGNAL instruction 50

use of 102
NUCON

holds EXECFLAG byte 129 C e
Null clauses 20 c e
Null instruction

Saa NOP gl
Null strings 13, 16 L
Numbars 14, 91 N

arithmetic on 17, 91, 93

chaecking with DATATYPE 64
comparison of 17, 96 P
definition 92 T,
formatting for display 68

in DO instruction 29

truncating 76

use of by REX 99

Ll

. NUMERIC instruction 490

NUMERIC option of PARSE instrue-
tion 462, 99
NUMERIC settings ‘
saved during subroutina
calls 28 .

- g

OFF e
option of TRACER commend “118 ' _
ON CUIANLD KTASTAOYE
option of TRACER command
Operations

116

162

IBM Internal Use Only

tracing results of 53
Operators
arithmetic 17, 91, 93
as special characters 14
comparitive 17, 96
concatenation 16
logical 18 °
precedence (priorities) of 18
OR function 109
OR, logical
axclusiva 18
inclusive 18
OR'ing character strings
together 62
OSRESET, for clearing PL/I storage
and VSAM 114
OTHERWISE clause
See SELECT instruction
Overflow, arithmetic 99
OVERLAY function 71
Overlaying a string onto
another 71 e

NIV
~ v

R

AcizoLsFast LY

“r 2

Packing a strlng with XZC 79
Parameters
See Arguments
Parenthases P
adjacent to blanks 14
in expressions 16
in function calls 58
in parsing %emplates 89
PARSE instruction 41 '
Parsing 83-90
definition 85
ganeral rulds 83, 85
introduction 83 »
literal patterns 85
multiple strings 90-
patterns 85 .
positional patterns 87
salecting words 86y”
variabla patterns 89
Parsing templatas
in ARG instruction 26
in PARSE instruction 41
in PULL instruetion 46
Patterns
in PGPSIP?ﬁ §5~90
Peformanca considarations 134

i
AL Trremtmerd 67

A b -
S8

e e

Index .

Period
as placeholder in parsing 87
causing substitution in vari-
able names 101
in numbers 93
PL/I
interfacing with REXPLI 114
PL/I storaga management
Sea OSRESET
Plist
Extaendaed 118
for accessing variables 121
for invoking Execs 117
fer invoking external
routines 125
P0S position function 71
Powaers of ten in numbars - 16
Precedence of operators 18
Precision
of arithmetic 93
Presumed command destinations 24
PROCEDURE instruction 44
Program
retrieving lines with
SOURCELINE 73
Programming style 102, 134
Programs
retriaeving nama of 642
PROMPT service module 114
Pseudorandom number functior, RAN~-
poM 72
PULL instruction 46
PULL option of PARSE
instruction 42 - ;
PUSH 1nstruction _47 .

Do e e gy
Q e . "
- s . .

~ QDISK function .111

QUERY
option of TRACER command 116
Queauea
counting lines in 71
reading from with PULL 46
writing to with PUSH 47
writing to with QUEUE 47
QUEUE instruction 47
QUEUED function 71
QUIET
option of TRACER command 117

163

IBM Internal Use Only

R . .- REXIFY conversion program 114 .
REXPLI lnterface packaga 114 .
RANDOM function 72 REXTRAN . P
Random number function, RANDOM 72 maintenance 133 [
RC) REXTRAN conversion program.;114_, .
not set during interactive REXTRY test Exec .114 .- . .
debug 80 ’ REXVMFNS o
set by Host Commands 22 i description 111, LwmnE
set to 0 if Commands) maintenance 133..,. . S
inhibited 55 . RIGHT function 72. . . . ;
spaecial variabla 103 " RND function o W nea
Re-ordering data o Sea RANDOM function ..)
with TRANSLATE function 76 Rounding 91 :
Read immediate of console with definition 93
CONGET 113 Routines . - .
READFLAG function 111 See Functions .. .- R
Raading the Stack and Consolae 46 Sea Subroutinaes :: e
Remainder 17, 91 ' RSCS machine ceemae Y L LCEulE
definition 94 , finding name of with < =nyv2
REPEAT function 109 N : IDENTIFY 1135 jsrauc
Rapeating a string with COPI&S 63 RT resume typing modq}e,414§ Lo osec
Raepaetitivae Loops 30 L ". ' Running off the end of a oy
Requast Block o program 35 cn o ee3E
for accessing variablas 122 ... Running REX programs 106 Te
REQUIRED - RX prefix Noed?
maintenance 133 . g ;‘ on external routines fpirznx,¢3
REQUIRED service modulae 116 ;ﬁaw“hh REX 125 . Lot amig s
Reservation of keywords 102 RXCPA - . . -_
RESULT DR maintenance, 133 S
sat by RETURN 1nstructlon | 28, .. RXCPA extarnal’ functlon 116 ung7e
48 s \M;u; RXLOCATE axternal function 114 _ . .-
spacial variable 103 = RXMDF extennal_functlon 118
Rasults LT R (
length of 16 R y
Return coda " RV 8 it e :

as set by Host COmmsadéﬂ;?g; .

P I -
setting on exit 357 Kﬂr_iLJ; .. SAY instruction 69’
RETURN instruction 48, "' " = Scientific notation 98
Return string s w‘éh:QQw“? Scraen 1/0 .
saetting on exit '35 GE el tn with FSX. 113 _
REVERSE function 72 "~ ' . with 1083270 113
REX e) with MDF 115 . _ . s
for other systems 131 ™~ Search ordar B : . aan
installation 105 for commands 23 N
interpreter structure 131, 134 for funstrops,,S? b e n e
maintenance 133 _ for subroutunasa,§7 . ~
on-lina tutorial 105 . Saarching a string. for;a phrasa 98
self-installation 130 . SELECT instrugtion. .49 Pt o TR
REXDUMP debug aid 114 Scmicoeloms 12 AT
REXFNS2 ' implied 15. |, . o .. censie:
description 108 omission of 24 31 o cdoren
maintenance 133 Sarvice programs 113- 1&5 £t frun
REXIFY SHYBLOK
maintanance 133 format of 122
W an Y

Index ' 164

(%3

. " haexadecimal sﬁ%cf?\cﬁt1o B i
: of 13 L1 oeanias e

IBM Internal Use Only

SIGL
set by CALL instruction 28
set by SIGNAL’ ‘instruction 52
special variabla® 103 '
SIGN function 73
SIGNAL -
execution of‘in subroutines 28
in INTERPRET instruction 37,
53 .
SIGNAL instruction 50-53
Significant digits~ - * e
in arithmatic 93 ©¥°7
Singla Stepping o e
Sea Interactfﬁé5ﬁdbég"‘ T
Size of REX interpreter coda 131
Source of the program 4
retrieval of information 62
SOURCE option of PARSE’ =
instruction 42 *°7 7TV
SOURCELINE function 73 “7'" 7

SPACE function 73 77 =7 T
Spacial Characters 14' "'
Spacial variabley™ " © @' vy v
RC 103 & To lar)r:i,‘r" 2
RESULT 103 L
SIGL 103 et epeoaprae JI3F
Stack o~

L Sl TR

counting lines in** 71"
reading from with PULL ~46 °
writing to with PUSH 47
writing to with QUEUE“"?
STACKIO sdrvice modulg? B LA
Stam of' &’ variable 11)1.'”l Trxe i
used in DROP instruction’® 34
used in PROCEDURE
instruction 44
Staepping through programs
Sea Intaeractive Debug
Storage v ’ ’
accessing 111
finding uppar limit of 111
Storage, execution from ° 118

>y

STORAGE function 111 _'- wotd

et

e b

[RS

Storage Key used by REX" iq3per - i ,
Strings 13 SRS ?7,;P

as literal constants o G
as namas of functloﬁgﬁ P B
as names of suBro&fT as” s T
CompaFisen §F F7En e & e

g
I %

Pa il L

A SO

interpratation ofH 37"L
langth of 16 "_"~f -
Cnull 13, 3ptTELL cesnouns

A
12

Index

Tenf YIRS

quotes in 13

verifying contents of 77
STRIP function 73
Style, programming 102, 134
SUBCOM command 138-139
Subcommand destinations 24
Subcommands]

addressing of 24

concept 138

initialisation 138
SUBMAP command 139
Subroutinas '

calling of 27

external interfaca 125

forcing built-in or external

referencae 27

naming of 29

passing back values from 48

raturn from 68

use of Labels 27

variablaes in %4
SUBSET function 109
Substitution’

in axprassions 16

in variabla names 101
SUBSTR function 73
Subtraction 17

deflnltlon 93
SUBWORD functlon 74
SvV¢C, Yorktoun Interfaca 117
SYMBOLﬂfunctlon 76
Symbols 15

uppar case translatlon 13 .

valid names 13 h ?h
Syntax checking R

See TRACE instruction
SYNTAX condition of SI%”ﬁLu;N¢ys_

instruction 50
Syntax errors
traceback after rgk .
trapping with, SIGNAL lnstruc-
tion 50 7 7
System Intarfaces ~ 117
Systam traca bit 116

o S

S diwmone Toif o

"ta" immadiata command 115
Tamplatas, parsing
general rules 83
in ARG instruction 26
in PARSE instruction 641
in PULL instruction 4§

2
-
b

T

165

http:S~~cif.ft

IBM Internal Use Only

Ten, powers of 97 T
Terminal LINESIZE 70 - i
Terms and data 16 R
Text formatting -
Sae Formatting o
See Words SRt
THEN
as free standing clausa 24
following IF clause 36
following WHEN clause 49 o
TIME function 76 A

M function 109 rited prath aste s SR
70 phrase of DO inatruction 29°%*¢ Undaerflow, arithmatic 99 con s
Trace bit, external 116 e Unpacking & string with C2X " 64 .. ;5;;
TRACE function 76 o UNTIL phrase of DO lnstructlon' 29
TRACE instruction 53 e Upper casa translation M."I o
See also Interactive Debug by CMS command leval ' 27 o ay
TRACE setting S during ARG lnstructlon 26 T
altering with TRACE Teeoome) during PULL lnstructlon°”46
function 76 cEmroL e of symbols 13
altaering with TRACE < “:"®7 #° 7" yjth PARSE UPPER 41 y
instruction 53 o ”“" f?“;v with TRANSLATE function 76
querying 76 ceriotet 3AMERY gith UPPER instruction . 57 i wE
Trace tags 56 R AL UPPER lnstructlon 57 ﬂﬁ:;;;':kt'
Traceback, on Syntax error 56 “UPPER option of PA%EE 61, ' i
s amu :d- Degent 00 Ty wzuann DuT
TRACER IR instruction “41 o o] o
external control of T ~USERID functlon ,11 .
tracing 115, 116 Utility funct1ons 61~ 80 108 1I2 GO
Tracing v Utility Modules and Execs }13 115 -
action saved during subroutine NEJM: e -
calls 28 e aeeess :"J“‘"'°b ;;f
data identifiars 36 °7/0T VRN v s znarear.
execution of Execd ©53° “¥ noiAT Ry
external control of 115, 116 VALUE function ‘77 "°'7°7 ‘;;?vw
looping REX programs 115) VALUE option of PARSE s - Lo
Trailing blank removal with STRIP* instruction '43 "7 " " f 0 T
function 73 VAR optloneof PAﬂSE Ct o
Trailing Zé#°5?f?§nﬁﬁf . ?7‘bwﬁ.,g?“%; lnstructlon 53 £ peat o b 24N ol
TRANSLATE functioh 76 © ;?““""d'" “*Variable namas. 13 ...
Translation =1 neTIoNe yapjablas o ' ‘ i
See also Upper case accassing earlter generat1ons
with TRANSLATE function 76 with CALLER 113
with UPPER instruction §7 compound 101
Trapping of conditions controlling loops 31
See SIGNAL instruction direct intarfaca to 121
Trouble reporting 133 dropping of 34
TRT function 110 dumping with REXDUMP 114
TRUNC function 76 axposing to callaer 644
Truncating numbars 76 gatting valua with VALUE 77
"ts" immaediate command 115 in internal functions 644
TS0 in subroutinas 44
intarfaces to 135 new laval of 44
REX under 135 parzing of 43
Tutorial, on-line 105 resatting of 3¢
Index IGéwhﬁ;

V-"

Type—-ahead lines
counting with EXTERNALS 37
" Type of data
checking with DATATYPE 6& -
TYPEFLAG function 110~ ey
Typing control wlth HT and Rfx 113
Typing data S i - H-k .
Sea SAY lnstructloﬁ S ez

Tl

. - = B an
cmaste.t JrHs® Yo

*

IBM Internal Use Only -c

l

setting new valua 21

S i} -q’»_‘;-»‘ﬁ-‘-';'. .
specipl SI.ATEYY W :n;'*l
“103)
RESULT ;03 -
stel 193 || s

testlngwforElnlflallsatlonv 79
translation to upper case‘b57 .
valid names 21 , ... _?
VERIFY function 77 e
VERSION option of PARSE instruc-
tion 644 .
Virtual storagae size Abend i
Saa OSRESEI sizer s ;up e § e
VM/370 unlque_functlons i

=<

FLAR S IR

VNET,machlne o "
=nrt Slals
finding name of u%ih e -
IDENTIFY 113" in.hm;:
VSAM cleanup vﬂypr‘-ﬁ:ﬁ -
see oSKESEF”. " U0 07T
& tromee
DB mINRY 32445
H & st ory 31 AT ﬁ'i”‘m b
V3 amifan wdewt TIZIEU A
WHEN clause o e -

0 !"Lﬂ*’r

See SELECT |nst5g§tgop e
WHILE phrasa of DO lnstructlop 29
Whole numbers 14 ¢ P

chagking wi th oATA[xPQ, 64, -
WORD fungtlon 78K: bra se s A e
Word procassing

Saee Formatting

Saeaa Words
WORDINDEX function 78
WORDLENGTH function .18

:ui YRR TR
Words 3 .
ting in a stcl:’ Y78 eiFes @

coun 9 r 94 5’7’/;3"‘7

deleting from a strlqg .66
extracting from a sfrlng ig
78 D ameant #10 .

finding in a strlng 68
finding dength of I8 vrieesnra

LS B

AAR2 nT iy
Bl medouma s
i£ eapel poélloitac
251 ot sastmeval fased
RE Fo paraoni:
st SMOGXIE At i pooaete s
8¢ =wgliss oF prizoowe
T BUlat eid T BULBY BRI LaN
e paobioneY isAqsdpnt
#E pweltuosdus o
P Yo
Lo Ta paiess
M Fe proids

Index
EXyS

'(_'friﬁ" Y

in parsing 86
locating in a string 78
- WORDS function 78
Writing to the Stack
“ with PUSH 47

with QUEUE 47 ...
R - A, el S
x ’ . '-5 PR :: . T e v (A
v Co b ABAL e o f
XEDIT S

bilingual editor macros 513L;-:;
exacyting REX programs = o

from 106 . N
ﬁj macro interface 138 = :=
' Running macros uritten in.. . -
REX 107 . r oz on R
trap for the unwary 131 w50
XOR function 110 [
XOR, logical 18 e o
XO0R'ing character strings ., .
togather 62) e
XRANGE function 78 ormeLE
-~ X2B function 110 .t

ch functgan ~19
"X2D function 79

Yorktown SVC Interface :117,. 1,4

s LEeos

k]
1‘3;,, Cv.,_'f oA

Sy dbi 2821 T Len
dik 2Ll mmesmow
Ze wrr gy gw Levoman dnsic w0t
£ noisw

Zeros. adding on the @aft5,72 ~A
LLZeros removal with STRIP... , -~ s
. function 73 e s

-
QB soal 8.,
- : M

a;-”':,c ey

AT rat 514

o=

Forut
pefrgense 0

ranidioae. s yars
gordoung s, S EMINTA
L3l pedian
A
s

fovs.l v

i67

'*?:XZE function 110
YE' ooty | LN T ST 2
YKTSVC (Yorktown SVC)., 117 ... « «

)

http:n!5t~'!'~.tt

Indoex

D e - TR P

IBH Imvernsal dse OnRly

168

	REX_7
	REX_1
	REX
	REX1
	REX1a

	REX_2
	REX_3
	REX_3a
	REX_3b

	REX_4
	REX_5
	REX_6a
	REX_6

	REX_back

