V%shington
Systems
Center

Technical
Bulletin

JES3 A Primer

By J. Brown

Edited by The Washington Systems Center

DAPS Code 0894
GG22-9200-00
June 1980

The information contained in +this document has not been
submitted to any formal IBM test and is distributed on an
"as is" bhasis without any warranty either express or
implied. The wuse of this information is a customer
responsibility and depends on the c¢ustomer's ability to
evaluate and integrate them into the customer's operational
envirxonment.

Requests for copies of <this and other IBM publications
should be made to your IBM xepresentative or to +the bxranch
office serving your locality.

A form is provided in +the back for any comments oz
criticisms you may have. If the form has been <removed,
comments may be addressed to IBM Washington Systems Center,
Field Support, 18100 Fredexrick Pike, Gaithexsbhurg, MD 20760.
Comments become the propexrty of IBM.

C)Copyright International Business Machines Corporation 1979

Washington Systems Center
Gaithersburg, Maryland
Technical Bulletin

JES3 - A PRIMER

Written by J. Broun

Edited by Washington Systems Centex

This Technical Bulletin is bheing made available to IBM and
customer personnel. It has not bheen subject to any formal
revieu and may not be a total solution. The exact
organization and implementation of the <functions described
will vary from installation to installation and must be
individually evaluated foxr applicability.

It is possible that this material may contain reference to,
or information about, IBM products (machines and programs),
programmings, or services that are not announced in your
country. Such references or information must not be
construed to mean +that IBM intends to announce such IBHM
products, programming, or services in your country.

A form is provided in the back for comments, cxriticisms, new
data, and suggestions for further studies, ete¢. IBM may use

or distribute any of the information you supply in any way
it believes avpropriate without incurring any obligation
whatever. You may, of course, continue to use the

information you supply.

DAPS Code 0894
GG22-9200-00
June, 1980

This publication is designed to serve as a learning aid for
thosehuho have a need to expand their knowledge of JES3 and
its rzelationships to MVS.

The author assumes that the reader has, at a minimum, an
introductory level background in MVS. It is not the intent
of this publication to provide a detailed description of
JES3 or its components. The most valuable use of this
material will be as a supplementary text for the standard
JES3 courses offered by the IBM Advanced Education Centers.

Chapter 1, a short history of JES3, was extracted from other
IBM publications and is included only to give the readexr an
appreciation of the many evolutionary changes through which
multiprocessoxr systems have come.

Many readers will f£ind Chapter 2 to be the nmost
informational of the chapters, since its purpose is to
introduce many of <the JES3 features. For some, whose
involvement with JES3 will be at a minimum, reading beyond
Chapter 2 will be wunnecessary. Readers who require more
detailed information are referred to 0S/VS2 MVS System
Programming Library: JES3 (GC28-0608). Coding details forx
JES3 control statements can be found in 08S/VS2 JCIL (GC28~
0962). .

Comments and constructive criticisms which may be used to
improve the publication are welcomed by the author.

TABLE OF CONTENTS
PAGE

Chapter 1 Development of Job Entry Subsystems veesesenaesel
INtrzodUCtioNn. . oveeeeveeeevaseoscssonsssnnosssnesl

Tape Oriented Systems O |

Direct Coupled Systemccveveenccoceassecd

HASP/ASP SYStemMS..vccerceocsorssossoasosnsoseesd

Job Entry Subsystems.......cccieeeeeacccnccssst

Summary of JES3 Features......oeeeeeescsosessB

Chapter 2 Overview of JES3 JOob FloWceveeecccrvcccess8
Definition Of TETMS ..vceeecossccvrssssosssennsS
Read a JobStXeamM.. .o ceeereeeesccsvsssccvconcsasll

Construction of a Reader Job....civvssvesesa il
Resident and Non-Resident Functions14
Scheduling a ReadeX JOb ...c.cecernveacsessslll
Input Sexrvice ProcesSSiNg.....cceecesoveerecseslb
Standard Job ProcCesSSingccecevevsoccccosel?
Converters/Interpreter Processing.....ccee...17
Main Sexrvice ProcesSsingccceeessassvessdl
Main Device Scheduling.....cecveeessceeessld
Generalized Main Sexvice Processing23

MDS Final ProcessSiNg......ereecesaseceese.dlt
Output Service ProCesSSiNgcsvesseccesees28
Scheduling Outputvvvivecrecosnceasssa28
Writing Output....cccviveevevccrsasveseeesdd
Purge ProCEeSSiNg....cccvveesssvcsvcssssscsesd?

Chapter 3 Subsystem Intexfaceocvvveenenscacosess3l
IntroduUction..ccoeeeeeescenscassccssvscoassnnceeadl
MVS Definition of SSIc.nvvsccrsrscencesnsse3dl
SSI Communications OVeXVIieWecocevsecesss .3

SSI Request Routinevecvvevvevesceass35
The Function Routinesccvvsecesssess35
SSI Common Services — ROUtEE...ceceevcssssees36
S$SI Common Sexrvices = Poster.....oevessees..38
Return a Response to Requestor..............39
REVIGW. s vveveeeessoessossssssscsssscscnssosesstl
COARE v vvenseeenescssencoccsssssanancasnsessesd
MAC OB . c oo cvveeesesesnonoccscasssssssnsasesss0
ROULINES . s v vt v e veeecocnennvensssnonnsssnssssdl

Chaptexr % Spool Data Managementeceeeccvecass B2
INtroduetion...vveeeeesooscescsssnnssssssssees 42

Functional OVeXVIEH ..ccvvsvesssscasssancsonssd2

JSAM Componentscscvevsssscocsscnnccesss3

USAM Components - L

Common Component (JSAH and USAM)............QS

Buffers and BuffeX PooOlS.......cvvcvsvonsssessl4B

JES3 BUFFELS . v eeeresooneenososcnoscossnnsesdb

Data Flow for USAM RequesStsecsevecceesss 7

SYSIN PYOCeSSiNG.:veceeeecceccccsssasnonosssesld?

Chaptex 5

Chapterxr 6

Glossary
Rppendix

SYSOUT ProcesSing ...vceeeeeeenses - 2]

SUMMBYY o eeecerecncenscnonnas et s s e e a s e e eaes 49
Job-Related Control BlocKks.....veuveeuenon cesuen 50
Places Control Blocks are Kept.......ccccv....50
SPool VolUumeScvueteveeeeorenonoconcss «-.50
Single Track Table.........cc... wessseese.80
Job's Spool Space0vv.n s s e s e s aae e 51

Job Control Table Data Set.......cieiceeeen- 51
‘Control Blocks — Defining JobS.....cenveeeos ..52
Control Blocks — Job Processingecocecee .53
Job Description and Accounting Block (JDAB) 53
Job's Data Sets Block (UDS)ivivtenecnnn 53
Job Summary Table (JST) ..ceeeieieenn st e s 54
Job Track Allocation Table (JBTAT)..........54
Job Management Recoxd (JMR} seessesse.Dl
Format Parametexr Buffer (FRP) -1
User Parameter Buffer (PARM)......... verses. BB
Job Volume Table (JVT).......... e ee s e e e 55

Output Scheduling Element (OSE)55
Control Blocks — Segment Processing55

Rdditional Functions and Features57

Introduction........... e e e ne ceerenee ceaean ...87
Deadline Schedulingccvevvcnvvs ceneeenes 57
Dependent Job Control e es s s essrrsenne .59
Recovery Managementco0e0e.. P -1

System Recovery - Software Failures 61

System Recovery - Global Hardware Failure ..62

LK I I N N B S T I I L L * ® " s n " e o e e .C.‘D‘C.'..Gu

............................. e«

Chapter 1
Development of Job kntry Subsy=tens
Introduction

The scope of data processing and its degree of involvement
in bhusiness and industry have changed dramatically duzing
the past +two decades. Very large computer complexes, such
as we Kknow today, utilizing complicated software have groun
through many evolutionary stages.

During these tuwenty years of rapid growth and expansion,
many installations discovered that single processoxs, even
very laxge ones, simply were not capable of handling their
ever—increasing workload. An obvious approach, then, was to

install second, third, and subsequent processors. The
addition of processoxs, with the attendant operational and
work scheduling problems, sometimes presented real

challenges. Since many of the computing systems being added
were not symmetric to those already installed, requirements
for new approaches to managing large installations began to
surface.

Rapidly changing harduare and software facilities dictated
the need for some type of "external," reasonably c¢onsistent
interface to the often radical "internal" differences. Any
viable new approach to effective resource utilization across
computing systems would ideally provide a single job
scheduling process built into the operating systems of the
day. Additional design requirements wexe such things as:

- the ability to support the intermixing of different
operating systenms.

- semiautomatic (at minimum) centralized opexations
with external control when necessary.

- a single job dqueue to be shared among the multiple
processors via some sort of scheduling interface.

Let's follow some of the highlights in the development of
the subsystem we knou today as JES3.

Tape Oriented Systems

Job Entry Subsystems became Knouwn during the late 1950's and
early 1960's. The 1larger installations <zrecognized the
economics of wusing a relatively small (and less expensive)
computer to prepare work for their large processors. Jobs

were batched onto input tapes, often by IBM 1400 systenms,
and then processed by the larger systems. At completion of
a batch o©f work, output tapes from the large system uere
returned to the smallexr system £for printing. One faixly
significant innovation was the sharing of tape drives, which
were then dial-addressable, between the two processors.
This implementation xremoved +the need for moving the tapes
trom one machine to the other. These tape oriented systens,
while relieving the larger computexrs of the unit record
processing, generated new scheduling problenms. With the
input and output on tape, and the jobh queue external to the
processing system, operations personnel had little control
over the order of execution of jobs in the strean.

Direct Coupled System

‘Loosely coupled processors uwere seen in 1962 as a possible
means of overcoming many scheduling difficulties as well as
retaining +the ability to insure that large, expensive
computers were more Ffully wutilized. The Direct Coupled
System (DCS) included an IBM 7040,/7044 (to prepare and
manage the Jjob gqueue) and an IBM 7090/7094 (for job
processing). The two machines were coupled through selector
channel and memory bus connection. Many DCS configurations
even attached application I/0 devices to the 704X, due to

lessexr expense than having them on the 709X. Requests fox
I/0 were routed from the 709X to the 704X which then wrote
oxr read directly into oxr out of the 709X memory. The 709X

software, Kknown as IBSYS, did not suppoxt multiprogramming
as we Know it today. Consequently, tape mounts idled the
entire system until the mount was completed. Pre-execution
setup (the mounting of required volumes prior to Jjob
selection and selecting 3jobs only after completion of the
mounts) greatly reduced this idle time. The front-end
processoxr, the 704X, also managed the input and output unit
recoxrd equipment, performed prioritized job selection, and
essentially automated operxration of the back-end processor,
the 709X. Now that the Jjob gqueue was an internal one,
operations personnel could contrxrol or alter the sequence of
job processing.

As time passed and data processing needs increased, othex
features were added to DCS. R remote Jjob entry £facility.,
using the Synchronous Transit/Receive Access Method, allowed
remote users to feed job streams to the front end processor
and receive output of their jobs. The advent of
simultaneous peripherial output .online (SPOOL) permitted
additional scheduling =flexibility for output since several
printers could be attached to the 70u4X.

HASP/ASP Systems

1964 brought new harduare, the IBM Systems/360, and neuw
software, Operating Systems/360. A study, c¢onducted to
determine the need for a follow-up system to DCS, concluded
that though some of +the factors which had led +to the
development of DCS no longer applied, a follow—-up system uwas
still required. During these evaluations, two independent
groups designed neuw approaches to the solutions offered by
DCS. Two different systems resulted; the Houston Automatic
Spooling Processor (HASP) and the Attached Support Processor
(ASP). HASP initially operated on a single processor with
the purpose of eliminating a great deal of the job
scheduling overhead which was inherent in the early releases
of 0S/360. More closely resembling DCS, RSP was to support
multiple processor installations by providing +the features
of DCS, augunmented by +the new hardware and software
facilities.

Development of ASP began in 1964, and the first version was
released in 1966. Like DCS, ASP was implemented on a
combination of front-end and back-end processors using,
however, a channel-to-channel adapter (CTC} as the means of
connection. Execution devices were attached only to the
back-end processor. Front—-end processing was provided by a
Systems/7360 Model 40 oxr laxger, and a Model 50 or laxger
served as the back-end processoxr. The front-end and back-
end processors became Known as the suppoxrt and main
processoxrs, respectively. The following facilities werxe
managed by the support processor:)

- primary inputting and outputting of jéhs and
management of associated tape and unit zxecord
equipment. '

- pre-execution setup of volumes required for job
execution with the devices now attached to the main
processor.

- job selection and scheduling.
- operator communications for both systems.

The first release of RSP had both processors operating under
control of 0S PCP, a non-multitasking system. Therefore, to
provide multiple synchronous facilities, a pseudo
multitasking structure was built into the support
processor's programming scheme. Each component routine of
ASP was called a Dynamic Support Program (DSP), with the
executions of DSPs being defined as functions. Each active

function was represented by a Function Control Table Entzy
(FCT), <roughly analogous to 0S's task control blocks. The
ASP dispatchex, known as the multifunction monitor (MFM),
used the queue of FCTs to represent potentially dispatchable
units of work. MFM defined processing events in such a
mannex that they were not necessarily dependent upon
harduare interrupts. Functions, then, could be dispatched,
in sequence, as long as any function could perform useful
work. An 0S WAIT was only involved when no function was
found by MFM to be dispatchable. Hardware interrxupts were
"filtered™ by ASP code to detexmine whether ASP's services
were required. This filtexing was performed by c¢ode entered
via modifications to the I/0, SVC, extexrnal, and program
check PSWs. When ASP's services were required, as the
result of an interxupt, the filter c¢ode 0S POSTed ASP,
causing entry to the MFM, and subsequent dispatching of some
ASP function.

In the period of 1967-1973, ASP, not unlike its predecessor
DCS, was designed fox those installations generally
classified as "scientific™ shops. ASP Version 2 provided
support for up to three main processors in 1968 and included
facilities to attempt balancing of workload across the
complex. A device nmanagement scheme, named Main Device
Scheduling oxr MDS, maintained awareness of use of devices
shared among the main processors. Six releases of ASP
Version 2 added capability, but not until Version 3, in
1973, was the system arxchitecture substantially changed.

With Version 3 of ASP came support for as many as thirty one
main processors, and ASP began to take on the
characteristics of a c¢commexcial system. A facility fox
maintaining the disposition status of volumes was added to
MDS. This facility enchanced the scheduling of jobs, with
compatible data set dispositions, across the complex.

Job Entry Subsystems

IBM announced 0S/VS2 Release 2 (MVS) for Systems370 in
January, 1973. The design of MVS, implementing a multiple
addxress space environment, enhanced +the virtual storage
concepts introduced with SVS (VS2 Release 1). Because HASP
and ASP had been widely accepted as add-ons for MVT and SVS,
it was decided to c¢reate similar systems for MVS. The
follow-ons to HASP and ASP uwere, houwever, to become
integrated components of MVS.

A numbexr of components in MVT and SVS had proven to be
system bhottlenecks, and one of the major bottlenecks was,
for bhoth HASP and ASP, the addition of another job queue to

the opexrating system environment. Since MVS involved a
major zreevaluation of control program design, the decision
was made to improve intercomponent communications and system

pexrformance. MVS was structured around the c¢oncept of
subsystems to perform serxrvices for address spaces which
requirxed those sexvices; the mechanism to provide this

communication was formalized into the subsystem interface
(SSI).

One of the several subsystems required foxr MVS came to be
knowun as a J0OB Entry Subsystem (JES) and was to be
responsible foxr inputting and outputting woxk to and fxom
the system. Studies of possibilities for JESs resulted in
the conclusion that requirements for users of HASP and ASP
were different enough to necessitate replacement of each - of
the two systems. The JES which provided HASP-like fung¢tion
was named JES2, and ASP-like ©processing was called .JES3.
Both JES2 and JES3 would provide the basic functions of a
subsystem, but, in addition, each would be designed with
additional facilities to specifically address the
requirements of its zrespective userx community. JES2
provided a shared, multiaccess spool and a common job queue.
Each processor, houwever, continued to perform its owun 3job
scheduling and xresouxce management independently of the
other processors. JES3, on the other hand, was to have a
design philosophy much like that of RSP - a loosely coupled
multiprocessor system with centralized Jjob managemnent,
resouce management, a shared spool, and awareness of worXk in
all the processors which constitute the complex. Also, in
ordexr to provide a migration path for ASP users moving to
MVS/JES3, JES3 provided <continued support Ffoxr processors
running as ASP mains, using MVT oxr SVS.

Summary of JES3 Features

As stated earlier, MVS zrequires a job entry subsystem to
perform any useful work. IBM provides two products, JES2
and JES3; in addition, the installation may provide its oun.
MVS has a formally defined subsystem interface which it uses
to communicate with JES. What the JES does in response to
requests made by MVS across the interface depends wupon the
design of the JES. JES3 has many functions and, therefore,
uses most of the job entry subsystem intexrface points
suppoxrted by MVS. Some of the major functions provided by
JES3 to manage a multiprocessor complexr are:

- introduction of Jjobs to +the system from any of
several sources, both external and intaxrnal.

job selection based upon - any of several
installation provided algorithms.

maintenance, c¢omplex-wide, of the integrity of
devices, data sets and volumes.

operational control of the complex <through
functionalized consoles - local, remote, and TSO.

passing spooled - in-stream data to a running
program.

accepting and spooling SYSOUT data sets to loecal
devices, remote wmorkstations, or TSO users.

user exits from the JES3 c¢ode to provide the
ability for the installation to include additional
features it desires.

installation oxr user defined enhancements to job
scheduling in the form of Deadline Scheduling and
Dependent Jod Control.

operatoxr controlled utility functions, including
many debugging aids.

collection of accounting data.
maintenance of system log and journal data sets.

provision of system xrecovery facilities at the
system oxr DSP levels.

NOTE:

Throughout +the balance of +the text, the zight maxgin
contains important words and phrases with which <the
readexr should become very familiar.

Also noted in +the =xight margin are the references to
diagrams located in the Appendix. o

Chapter 2
Overview of JES3 Job Flou

In this chapter, we want to learn about the major
activities which take place as a job flows through
the JES3 environment. Many terms will be defined,
features introduced, and concepts discussed. our
thrust will be toward JES3 and the worxk it
performs for MVS/JES3 processors, rather +than
emphasizing the support for ASP main processors.

Definition of Ternms

Our first chore, as we begin our study of JES3,
necessarily becomes that of defining many of the
terms we wWill be using. JES3 executes in an MVS
address space, and in many respects, is somewhat
similar to prxoblenm programs. The machine
configurations we £find in JES3 installations vaxry
from one processor to, perhaps, four, five, ox
more. Usually associated with these processors
are many I/0 devices - it is not unusual to find
installations with ten oxr more printers, perhaps
sixty-four or more tape drives, and as many as one
hundred spindles of DASD, with many ox all of
these devices shared betuween processors. One of
the processors is designated as the controller of
these complexes (even if there 1is only one
processor). The "controllerx™ has the
responsibility of managing the system resources,
scheduling of jobs that enter the complex, and
presenting to the installation's user community a
"single system image."

We c¢all this controller the globhal system to
distinguish it fxrom the other MVS/JES3 processors
which have lesser responsibility from a JES3
viewpoint. The other MVS processors are Knouwn as
locals. Work is scheduled by global JES3 onto the
same processor, onto the local processors(s), and
in some installations onto ASP processors. We
will use the term main to generically define all
these processors—global, locals, and ASP mains.
You will probably want to associate the execution
of jobs with "main" since "global™ and "local" are

JES3~related terms. Local processors and ASP
processors are attached to the global processoxr by
channel-to-channel adapters which sexrve as

communication paths. Communication between global

GLOBAL

LOCAL

MAIN

JES3 and the main which is physically housed in
the same processor is c¢arried out via MVS SRB
scheduling. Now that we have defined +the three
majoxr terms which refer to our environment, let's
begin to look at several othexr important
definitions. Some of the terms we use are "old"
terms with new meanings, while othexrs are
completely new for anyone with no prior experience
with ASP or JES3. : '

Most of us are already acquainted with the terms
"job."™ This word has been traditionally wused to
define a set of work, identified by the presence
of a JCL - JOB statement. Also, Jjobs have
consisted of one or more steps, defined by EXEC
statements. Though we will not change that
definition, we are going to add to the list of
items we call jobs in the JES3 environment.

There are several special cases for JES3 in which
a job can come into existence without there being
any JCIL involved. This c¢an happen as the result
of a JES3 operator command, which we will see
later. For now, we sre going to recognize that
JES3, like MVS, defines a job with a control block
called a Job Control ITable entry (JCT). Then, to
be technically correct, we will define a Jjob as
"whatever JES3 has defined with a JCT entrxy." The
work that JES3 pexforms on behalf of jobs is
described quite differently from the way it was in
earlier versions of the operating system.

JES3 does not break a job into steps (though uwe
will .continue to see job steps) as does MVS.
Rather, JES3 stages its sexrvices on behalf of a
job through something we <c¢all Jjob segments ox
simply segments. R segment is defined as a
logical portion of the woxrk JES3 pexforms on
behalf of a job. Let's try to put that definition
into a meaningful perspective by discussing
processing for a traditional type of job, i.e.,
represented by JCL, '

In order for a job of this nature to exist, JES3

must become aware of it. First, the job must
somehou (and there are many means of doing this)
be entered into the systen. One set of woxk,

therefore, simply consists of "reading"™ the job,
and constructing a concise definition of that 3Jjob
to JES3, in the form of a JCT. Included in the

JCT
Jos

SEGMENT

definition of a job are also the defintions of its
JES3 segments. They are, foxr the typical job:

- an interpreter segment to cause the job's
JCL to be interpreted in what appears to
be an almost normal manner.

- a summary segment, called MARIN, which
allows JES3 to do a number of things on
behalf of the job:

. acquire I/0 resources (data sets,
volumes and devices) needed by the
job.

] schedule the job to MVS so that the
job can execute.

. free up the I/0 resources (when they
become available), making then

available for other jobs.

- an outputting segment, the processing for
which is the handling of SYSOUT data.

- a cleanup segment to cause graceful
removal of the job from the systenm.

Now, imagine a control block which defines the
existence of a job (the JCT), having appended to
it a set of small extensions, each one being the
definition of a JES3 segment of work. These
extensions are called scheduler elements.

It is very important to further discussion that
the next statement be fully grasped. "JES3 does
not <really schedule 3jobs (in the MVS sense of
scheduling jobs), it instead schedules JES3 job
segments." It should be obvious that code is
requred to perform +the work defined by a Job
segment; hence, our next definition set.

The programmed <routines which perform the uwoxk
defined by job segments are c¢alled Dynamic Support
Programs oxr DSPs. You may remembexr encountering
that acronym in Chaptexr 1. So, when JES3
schedules a job or segment, the result is
execution of one or more DSPs. The execution of a
PSP is defined as a function. A function, for

10

1 21

SCHEDULER
ELEMENTS

DSP

FUNCTION

purposes of an analogy, is very much like an MVS
task, but uwe do not have "mother"™ functions or
"daughtexr™ functions. The function is JES3's
dispatchable wunit of work defined by a Funtion
Control Table entry. Those functions (and FCTs)
which are not resident in the JES3 nucleus are
created by the Job Segment Scheduler. JSS is
responsible for all new work entering the system;
its primary responsibility is the scheduling of
the work defined by Jjobs' segments. The JES3
function “"dispatchexr™ is named the Multifunction
Monitor, as in ASP. You should now be familiar
with)

- global and local

- job and JCT
- segnent and scheduler element
- DSP and function

bl FCT and JSS

~ Multifunction monitor and MFM

There are several classifications of jobs in JESS3.
One term you will hear often is gtandard job. :1
standard Jjob is one defined in JES3's usual
manner} completely by JES3 that is, with no help
from the user who created the job's JCL. Standard
jobs, as defined in the distributed JES3 system,
consist of four segments: 1)Converters/Interpretex
service, 2) Main Service, 3) Output Service, and
4) Purge. Note +that should your installation
include ASP mains, a job eligible to run on both
ASP main(s) and JES3 main(s) would also contain a
segment for scheduling the 0S Readexrs/Intezpreter.

We implied, in the previous paragraph, that a user
could help JES3 define the job. By coding special
JES3 control statements in the JCL, the user can

define <the number and +the order of +the 3job

segments for the job. Jobs for which this is done
are classified as non-standarxd jobs.

There remain a few more terms to define, and their

context relates to the several sources of jobs
(refexrred to earliex). Noxrmal jobs, which may be

11

FCT

JSS

MFM

STANDARD
JoB

NON-STANDARD
JoB

NORMAL
JOBS

either standard or non-standard, are those entered
into JES3 from:

- locally attached devices - card readers,
tapes, or members of a special PDS.

- remotely attached devices through the
Remote Job Processing facility.

- Data sets - containing job streams
SUBMITted by TSO users.

- SYSOUT data sets containing job streams
passed to JES3 via the MVS internal
xeadex.

- another global JES3, using a facility

called Network Job Processing.

- another node in <the network using the
JES3 netuwoxking PRPQ.

Much oxr most of the work in JES3 installations
will consist or normal jobs of one form or other.

Rnother source of jobs, however, is the result of
an operator command - these jobs we c¢lassify as
called Jjobs, since <the opexrator enters a CALL
command to invoke the job. Called jobs are unigue
in that they are not defined by JCL; thexe is, in
fact, no JCL involved at all. These 3jobs are
actually internally generated by JES3 in response
to the CALL command, and their JCTs always contain
two schedulexr elements ~ one to represent the DSP
invoked by the operator via the c¢all command and
one for PURGE. '

Oux third and final source of jobs is that of the

started tasks or tso LOGONs. In <this case, the .

resulting Jjob is +termed a demand select job,
because the request for the job is in the form of

a specific job being demanded by initiator code
(moxe about this later).

Read a Jobstean
In order for a normal job to be executed, it must
be f£irst zxead into the systen. This is

accomplished by functions that we know as xeaders.
Readers exist in three forms (card readex, tape

12

INTRDR

NJP

CALLED
JoBS

DEMAND

SELECT

READERS

reader and disk reader), the only difference
betueen +them being the device dependent code
necessaxy to read from different device types. In
our example, we will have the operatoxr CALL the
Card Reader DSP to read a jobstream in the form of
a deck of cards. The operator entexs:

XX CR [B=3 optional paratmeters]

Since this is the first JES3 operator command we
have seen, let's examine its paxrts. ‘The first
component of the command, the ¥, serves as a
signal to distinguish between JES3 commands and
MVS commands. This signal is necessary (though it
may be an installation-defined chaxracter other
than ¥) on commands entered from consoles at which
both MVS and JES3 commands may be entered. Were
the console a JES3-only console, the ¥ would be
unnecessary. The second part of +the command uwe
call the "verh" due to its characteristic of
causing action to take place. Txn is the
abbreviated form of CALL. We use the CALL command
to cause JES3 to invoke a function when the
operator requires that function. Following the
verb in the command, ue see a "noun," CR. Three
foxrms of the noun are meaningful +to JES3,
depending upon the situation involved: ‘

- name of a DSP (as is true in the
examples).

- symbolic name of a device such as PRY for
printexr four.

- device address such as OOE.

Optionally, most commands allow entry of one orx
more parameters, serving as control information to
the DSP. Our example illustrates a B=3 parameter,
telling the CR DSP to break the jobstream into
batches of 3 jobs each. The 1last batch may
contain 3 or fewer jobhs, of course. There will be
other sample commands used from time to time in
the text.

Processing of the CALL command results in the use
of several of JES3's functions. First, the
command is read by a function named "CONSOLES,"™
responsible for traffic management Zfox locally
attached consoles. CONSOLES, not wanting to

13

CONSOLES

process the CALL command since a JCT mnmust be
constructed, passes the command to anothex JES3
function, the Work-To-Do-Driver.

Construction of a Readexr Job

The construction of a job, particularly a called
job, is a relatively simple procedure. It
consists of "filling in the blanks"™ in a JCT with
information about the job, building the scheduler
elements for the <c¢alled DSP and PURGE, and
enqueueing the resulting JCT into the JES3 JCT
data set. Called jobs arxe enqueued at job
priority 15 to insure faster reaction to operator
commands. A significant part of the enqueuing
process is the posting (or waking up) of the JsSs
function.

Before we proceed further with our jobstream,

let's examine functions, in general, and how they

are defined and handled.
Resident and Non-nesident Functions

The referenced illustration shous the structure of
the JES3 Function Control Table. It is basically
a queue of entries (FCTs) chained in DSP priority
sequence. The priority wused to detexmine the
oxder of chaining is the one specified when the
DSP uas defined to JES3. Note that the FCTs shoun
only represent those ° functins which are
nresident.” Invocation of other functions, such
as CR, will <c¢ause new FCTs to be added, in
priority sequence, to +the queue of FCTs. At
completion of one of these "transgient"™ functions,
its corresponding FCT will be <removed from the
chain. Each FCT on the chain contains f£lags which
indicate the execution status of +the zrelated
function. The MFM (and perhaps this is obvious)
uses the FCT chain as input to its dispatching
decision, with the status flags indicating whethex
or not a function is currently dispatchable.

Scheduling a Readexr Job

Now that WTDDRVR has constructed and enqueued a
job, and in the process caused JSS to be posted,
- WTDDRVR "waits." The JES3 "wait"™ is really
nothing moxe than branch entry +to MFM. MFM
examines FCTs from the top of the c¢hain downward,

14

WTDDRVR

122

RESIDENT
FUNCTION

TRANSIENT
FUNCTION

testing each FCT, in turn, to determine if that
function is dispatchable.

In ouxr case, JSS is now ready to be dispatched.
Upon being dispatched, JSS looks into the queue of
JCTs at the appropriate level of priority to
attempt scheduling of job segment. What do we
mean by "appropriate level of priorxrity?"

The JES3 JCT is managed by level of priority - in
other words, the queue logically consists of 16
subqueues, one for each level of job priority. At
the time a job's JCT is enqueued, flags are set to
indicate to JSS which specific level of prioxity
it is to examine. So, if a job is enqueuved at
prioxity 4, <for example, JUSS doesn't waste time
looking at priority levels 15-5. Those subqueues
would have been examined during an earlier scan,
anyway.

Back to our job again - JSS finds the JCT for the
reader job at priority level 15 and attempts to
schedule the first schedulexr element. There are
many reasons why, in almost any given c¢ase, JSS8S
would not be able to schedule a job segment...but
assume for now that the CR DSP can be scheduled.
In orxdexr to activate a function, JSS creates an
FCT and chains it into the FCT chain (foxr CR, at
prioxity 4). JSS then "waits," causing entxy to
MFM. Later, since functions of highexr priority
may require time in the CPU by now, when the CR
FCT's turn comes, it will be dispatched by MFM,
its load modules brought into memory, and its
primary module (called a "drivex") branch entered.
Incidentally, since module loading involves I/ZO,
other functions are potentially dispatched by MFM
duxring the loading process.

When the readexr DSP becomes diSpatchahle. it
vexrforms the following processing:

- retrieval of the parameters entered on
the CALL command and sets itself up to
process in +the manner defined by those
parameters. In our example, CR Knous its
batch size to be 3.

- obtains, by JES3 éllocation. its input

device and begins to read the job stream,
counting O0S job statements up to the

15

123

DRIVER

batch size indicated (3) and recording
each batch as a collection of files in
JES3 spool.

- for each batch, CR constructs a JCT at
prioxrity 15. This JCT has two schedulex
elements, Input Serxrvice driver and PURGE.
The new JCT is then enqueued, and it can
usually be scheduled by JSS during the
I/70 times inherent in CR processing.

- continues to ‘build up batches of johs and
construct Input Service 3jobs until the
job stream is exhausted. At that time,
assuming we are not using a HOT zreader,
CR: wumould return contol to JSS, which
would schedule the PURGE schedulex
element (yes, another transient FCT) for

the job. After PURGE processing is
complete, JSS removes the CR JCT from the

JCT queue.
Input Sexrvice Processing

Meanwhile, the Input Sexrvice Jjob is Dbeing
processed by JSS in the manner described fox
processing of the CR job.. Once again, JSS will
construct an FCT -~ this time for Input Service -
and add it to the FCT chain at prioxrity 4. The
primary purpose of Input Sexvice is the
construction of individual jobs originally in the
job stream. Like CR, the processing is done in
multiple stages: :

- first, Input Service retrieves the batch
which is its input from the JES3 spool.

- examines the Jjob's JCL for JES3 control
statements. You may hear this phase of
Input Serxrvice referred to as the "Control
Caxrd Processor."™ The presence of JES3
controel statements will influence the
construction of the 3job - an example,
perhaps the user has defined a non-
standard job. '

- for each job in the batch, Input Service
will gather the information necessary to
construet a JCT. This will include such
things as:-

16

'BATCHING

INPUT
SERVICE
JOBS

| 24

. a JES3 job number.

. the jobname from the job
statement.

. the job's priorxity.

. its job class.

] the symbolic origin for the job
(used ultimately fox the

puxrpose of returning the job's
output to its origin which
becomes the default output
destination).

. ~ specific information izom JES3
qontrol,statements, etec.

The new JCT, containing the items listed above, is
enqueued (at the propexr level of priority) in the
JES3 JCT queue. Nou, for the first time, JES3 is
aware of the existence of a Jjob £fxrom +the 3Jjob
stream. Job construction is repeated for each job
in the batch, and at batch exhaustion, Input
Service returns to JSS, has its PURGE scheduler
element scheduled, and its JCT zemoved from the
queue. '

Remember that we would probably have had several
of the Input Service jobs to be scheduled, due to
therxe being a numbexr of jobs in the job stream.
Foxr 10 jobs in the stream, our example case would
have c¢aused construction of 4 batchs (3 jobs, 3
jobs, 3 jobs, 1 job) and four Input Sexrvice jobs.

Standard Job Processing

As a result of Input Service processing, we now
have at least one normal job in the job queue. If
we assume a standard job, the JCT would contain
scheduler elements for Converter/Interpreter
Service, Main Service, Output Service, and PURGE.
let's examine the processing for each of these job
segments in tuzrn.

Converters/Intexpreter Proceséing

JSS, posted when a job is added to the JCT queue,
selects a job based upon its priority and attempts

17

to schedule a job segment - either the first
scheduler element or the first one not yet marked

complete. It 4is still txue that there could be
many reasons to prevent JS8S's scheduling a given
segment for a given job - again, assume that

everything required is available and the
Converter/Interpreter (C/I) scheduler element can
be scheduled. JS8SS builds an FCT, chains it, and
C/I processing is underuway.

During JES3 initialization, an installation-
defined number of MVS convertersinterpreter
subtasks are attached. These tasks are subtasks
to the JES3 task which is primarily responsible
for the JES3 address space. The Cs/I DSP, whose
execution is prescribed by +the <fixrst scheduler
element of a standard job, serves as an interface
betuween JES3 and the MVS /I subtasks. We have a

c/I DSP for one basic reason - to gathexr the
information concexning the jobh's I/0 requirements
prior to MVS exrecution of the Jjob. This

information is necessary to be able to carry out
the process of preexecution setup, one of the
major facilities of JES3. The information we need
is, of course, specified by DD statements in the
job's JCL. JCL would ultimately be passed to the
MVS convertexs/interpreter anyway; we simply
perform the intrepretation process ahead of its
normal time. The zesponsibilities of the Cs/I DSP
are as follous:

- to serve as a programmed interface to the
MVS converters/interpreter. This is done
by communicating the job's JCL to the MVS
converter/interpreter subtask of JES3.
The JCL was recorded onto spool at input
sexvice "time" (while the job was being
processed by Input Service).

- failing, from a JES3 standpoint, the job
if JCL errors are detected by the MVS
convertersinterpreter. This T"express

cancel™ is a side benefit of processing
the JCIL prior to initiation of the job.

- to collect, and save on spool, the SWA
control blocks being generated by the
interpretation rhase. The MVS
interpretexr "thinks" it is mapping these

18

CONVERTER
INTERPRETER

SUBTASKS
C/1 Dsp

SWA control blocks into a user address
space.

- to extract the information which defines
the I/0 requirements for the Jjob. This
extraction process will include issuance
of MVS LOCATEs for catalog zreferences.
The items which concern us relate to:

. device requirements.
. volume regquirements.
. data set requirements.

The I/70 requirement data is stored into
job-related control blocks called a Job
Summary Table (JUST) and a Job Yolune
Iable (JVT), which are recorded on spool
along with +the othexr c¢ontrol blocks
relating to a Jjob. In addition, the
volume and data set information is latex
used to either add new entries ox cause
updating of use counts in the tables JES3
Keeps in memory to maintain the system—
wide integrity of volumes and data sets.

- to xeturn to JSS when the 3job's JCL
processing has been completed.

Upon return from the C¢s/I DSP, JUSS performs its
normal processing steps to remove +the ¢Cs/I FCT,
mark complete +the C/I scheduler element for the
job, and attempt the scheduling of the next
scheduler element belonging to the job.

Before proceeding further with our job flow, let's

investigate the c¢oncept of scheduling "times."
You should be aware , by now, of the cyclical
process of scheduling one scheduler element afterx
another for a Jjob. We have already referred to
Input Sexvice time...additional times we will see
are €/I time, Main Service time, Output Service
time, and PURGE time. This phraseology should be
easily understood, as well as allowing Ifewer
descriptive words as we discuss the job's
processing segments.

Now, back to our 3job and the processing on its
behalsf.

19

JST
and
JVT

Main Service Processing

The second standard scheduler element, Main
Sexrvice, represents the execution of moxe ‘than one
DSP e.g., more than one JES3 DSP is involved. In
addition, we will be woxking with resident
functions rather than transient ones. The idea of
resident functions being used nets out to the fact
that, when scheduling a job onto Main Serxrvice, JSS
need not construct an FCT...one already exists.

Main Serxrvice, as it relates to a typical batch
job, normally consists of many processing stages.
Two DSPs, Main Device Scheduling and Generalized
Main Scheduling, share the responsibilities for
processing the Main Service scheduler element.
The work performed by MDS and GMS =xepresent +the
real "heart"™ of JES3...major reasons foxr existance
of a system like JES3. Those zreasons fall into
the c¢ategories of effective resource utilization
and maximum job throughput.

Main Device Scheduling

MDS, unlike many of +the JES3 functions, is
optional: e.g., an installation chooses whethex
or not to include MDS in its JES3 subsystemn.
Then, assuming we have chosen to include MDS, the
installation has several optional features of MDS
from which to choose. Those choices include such
things as:

- the volume Ffetch option, which allous MDS.

to issue messages to library <c¢onsoles,
thus instructing librarians to retrieve
the volumes required for a job and send
them +to the machine room. This option
may not he as useful for those
installations which retain volumes in
theixr machine rooms.

- job or high watermark setup. The
objective of preexecution setup is the

allocation and mounting of devices and
volumes prior to the beginning of MVS
execution of the job. What we gain by
this technique is, of c¢ourse, the time
otheruise expended to mount volumes (the
operator intervention) as the job enters
its execution. In the JES3 environment,

20

MDS
and
GMS

VOLUME
FETCH

jobs requiring volume mounts do not even
become eligible for MVS processing until

the necessary volumes are ready. I£f we '
choose the "job setup"” option, ‘all JOB
devices and volumes required for SETUP

execution of a job are preallocated and
premounted (normally, only the first
volume of multivolume data sets is
premounted). This option +tends +to be
somewhat extravagant in texms of +the
numbexr of devices allocated to a single
job (example: 3 step job, each step
requiring 4 tape data sets with no back--
ward references, equals 12 tape drives),
but little or no operator intervention is
necessary between job steps. Job
throughput is the favored objective.

High watermark setup (HWS) is available HWS
for either tape oxr DASD or all JES3 setup
devices, and is a c¢compromise type of

allocation. Using +this option, fewer
devices are allocated at the expense of
opexator intervention. Hexe, on a

device-type basis, we allocate the number
of devices required (generally speaking)
hy the job step having the maximum device
requirements. That subset of devices
would then be used for all steps of the
job, with intervening mounts, as long as
the devices are necessary for the job.

- s we speak about device allocation, it
must be noted that MDS has a built-in
early resource release <facility. This
feature allous the deallocation of
devices, data sets or volumes at the end
of a job step which xepxesents the last
requirement of the resource during the
job. Did vyou notice the 1listing of
resources for which MDS is responsible?
They are, again, devices, data sets, and
volumes. Device +types which may be .
defined to MDS are <tape, DASD, unit
record, and graphic.

MDS processing c¢onsists of several potential
phases, infuenced by the choice of MDS options:

21

yolume fetch phase

Messages are sent to library consoles to
indicate whether a volume is to be
fetched ox not. A USES message, rather
than a GET message, is issued when MDS
"knows"™ that a volume has bheen previously
fetched for a prioxr job and is still
accessible.

allocation phase
In this phase, either MANUAL ox AUTOmatic.
allocation nay be used. Manual

allocation means that MDS will begin
allocation of devices for a job when an
opexator notifies MDS that the required
volumes have been successfully "fetched"™
to the woxrk area. This notification is
done via a command:

¥*START S nn uwhere nn is the job
number.

If volumes wused by +the installation's
jobs. are always in the machine zroom -
(easily accessible tape volumes, resident
DASD, etc), automatic allocation may be
more meaningful. No operation action is
necessary to cause allocation to begin.

Durxing the allocation phase of MDS
processing, the decisions made by MDS as
to which set of devices may be allocated
to a job are influenced heavily by many
factors. For now, let's move our job
(after mount messages have bheen issued
instructing operators as to which volumes
to mount where, and JST and JVT wupdates
have been made) to the next phase of MDS
processing.

verify processing

The verification process performed by MDS
represents the work necessary to insure,
as volumes axe being mounted, that the
propexr volumes are being mounted on the
proper devices. This work is carried on
asynchronously as devices become ready.

22

JES3 is made aware of mounts being
pexformed on devices it is managing. MDS
is then responsible for maintaining the

verify counts relative to individual job.

When all the necessary mounts for a job
have been accomplished, the job is passed
from MDS to GMS - the job is now eligible
to be passed to MVS for execution.

Generalized Main Sexrvice Processing

Our Jjob is still active on its Main Serxvice
schedulexr element. The "initial™ phases of MDS
have been accomplished, and the job will reentex
MDS processing after execution for a.final phase.
It is now time, houwever, to have our job processed
by GMS. This processing of jobs waiting to be
selected is controlled in a manner determined by
the installation's tailoring of JESS3. Triggered

by an MVS initiator's request for a jobh, GMS is

primarily responsibhle for pickRing or choosing one
of several potentially schedulable johs to give to
the initiatox. The selection of one 3job, in

preference to some other job, is influenced by a

multitude of variables such as:
- type of work being processed during a
shift (test vs. production, on-line vs.
batch, etc.).

- eligibility relationships between jobs

and processors based upon such things as::

. job classes involved.

. number of active initiators which
can service the jobs. :

U processors being online or offline.

. I/0 rates of jobs in execution.
. virtual memory requirements as

related to working set size.

- job priorities, <to the extent that the
installation wishes to honor priority.

After considexring +these many Zfactors, GMS will
pick a job, send information about the job to the

23

GMS
JoB
SELECTION

requesting initiatozx, and indicate +that the
selected job is now "on main." It may be valid,
due to combinations of eligible job
characteristics and scheduling algorithm
decisions, not to pick a job on a given selection
pass. Having been given a job, the initiator
schedules it through all its steps, with JES3 only
being involved for such items as:

- notification of step to step transition.
- SYSIN/SYSOUT data sets being OPENed.

- dynamic allocations/unallocation of data
sets on JES3-managed devices.

- requests for spool space.

From the vieuwpoint of job execution, thexe is so
little dependency by typical jobs upon JES3 that
jobs can perform much oxr most of their execution
even if JES3 has teminated, if the termination
occurred after job initiation. Yet, since
dependencies do exist, at some point when a JES3
sexvice is <required, the job must MVS WAIT until
that service request has been satisfied.

MDS Final Processing

When the job has completed execution under MVS, it
is returned to JES3 (more specifically, +to MDS)
for device breakdown processing. Remember that at
the end of a job step which zxzepresents the last
use of a device, volume, or data set, these
resources are being zreturned to MDS for early
resource release. Many, if not all, of a job's
resources may have been returned, but in most
cases, the devices required for execution of the
last step of the job must be <returned to JES3
(along uwith data sets and volumes). Breakdouwn
processing consists of wupdating MDS's control
blocks by removing entries or reducing use counts
and issuing appropriate KEEP or RETAIN messages.
Our purpose, of course, is to make the zesources
available for use by othexr jobs which may require
them.

Our next activity, now that the job has exrecuted,
is to have JSS mark the Main Service scheduler

24

BREAKDOWN
PROCESSING

element complete and schedule the job onto its
Output Service scheduler element.

Output Sexrvice Processing

Output Serxvice, the third scheduler element for a
standaxrd job, is responsible for the management of
SYSOUT data sets genexated by jobs during theix
execution. The data sets we are concerned with

were written directly onto spool by problem

programs or by JES3 DSPs running on behalf of the
jobh. In oxder to handle these data sets, a
single, resident, -FCT, Rnoun as OUTISERV, performs
rreliminazry woxrk necessary to schedule the
transcription of data sets to output devices.
This work essentially consists of generation of
contxol blocks which represent work to be done by
a transient writer function. So, OUTSERV differs
from many DSPs in that it is a scheduler of other
functions...writers of various types. The actual
scheduling process is designed by an
installation's JES3 System Programmers in the fornm
of an algoxithm driven by a set of variables.
These variables are defined by the characteristics
of data sets and output devices. Let's examine
the characteristics with which we axe concerned
fixrst, and then we will see houw they are used.

_ Priorit

Data sets to be managed by output sexvice
may have an assigned level of prioxity.
Priorities may be assigned by eithexr a
JES3 DSP that generates a data set or by
a JES3 control statement, or by default
from SYSOUT class definitions. The final
result is the same in any case...output
sexrvice has a prioxity at which to
engquaue a data set £for subsequent
handling (printing, punching, sending to
an external writer, etc.).

- Destination

The JES3 initialization process allous
the allocation of symbolic names with the
devices used by DSPs. These devices may
be either 1local ox zremote. We might
assign the same device group name to
nultiple devices. An example would be a

25

OUTPUT
SERVICE
VARIABLES

DEVICE
GROUP
NAMES

card reader and a printer located in a
room near our applicaton programmer staff
area. Perhaps we've assigned the name
"TESTGRP"™ to these +two devices. "Qur
desire is that output sexvice will send
back to the TESTGRP printexr the output of
any 3jobs which entered the system from
the TESTGRP card zreaderx. Herxe we see
that, by default, an "originname has
become a "destination™ name. For remote
devices, ‘both input devices and output
devices take on a group name which is the

name of the remote. workstation.
Destination names may be overridden by
users with specifically assigned

destinations in JES3 control statements
associated with theix jobs.

Device Type

This characteristic is probably self
explanatory. Data sets which werxe
defined as Mprint type™ will be sent to
printers, "punch type" will be xouted to
punches.

Forms, FCB/ riage Tape, a ral

We have grouped these three
characteristics together since they have
a like effect on our output. Output
sexvice will route output (to be printed)
to a printer which eithexr has the proper
"setup"” characteristics or to a printer
whose charactexristics may be changed to
match the regquirements of a data set.
Notice that we said "Ya printer whose
characteristics may be changed."™ This
statement implies +that we ¢an define
setup characteristics with instructions
that the printexr characteristics are not
to be changed. It follows, then, that
many installations will have sone
rrinters uwith specified, unchangeable
characteristics and other printers whose
characteristics are changeable as
required.

26

- Line Limit

Another characteristic assigned to output
devices is that of line 1limit. We use
this limit to <cause data sets of less
than 10,000 lines, for example, to print
on one ‘printer and data sets with moxe
than 12,000 lines to print .on another.
In this manner, we can cause routing of
low volume output to a relatively slouw
printer and high volume output to a
fastexr printer, should we so choose.

- Character Set Tmage and Foxms Flash
Cartridae

These two characteristics are associated
with the IBM 3800 printers, giving us the

capability of changing ~ the print
character set and the forms to be
"flashed."

The characteristics described above may be
assigned to both devices and data sets. How does
output service wuse them? The scheduling process
essentially involves a matching of data set
characteristics to device characterxristics and
routing data sets accoxrdingly. You should
remembexy that we described output service, a JES3
function, as a scheduler of othex functions wuwe
call writers.

Writers may be categorized in several ways, but
principally fall -into +two distinct groupings
designated as DYNAMIC and HOT writers. Writers
are coded routines .which become JES3 functions
when scheduled by OUTSERV. A dynamic writer is a
type which is automatically scheduled when two
things are true:

- there is worxk (one or more data sets) in
the output service queue.

- there is an available device upon which
to do the writing.

Dynamic writers give operations personnel little
or no control over when and how writing is to be
done. An exception, of course, is that dynanmic
writers allow changing of setup characteristics of

27

WRITERS

DYNAMIC
WRITERS

devices. We might want dynamic writers to handle
our volume printing on stock paper. Hot wuriters,
on the other hand, give operations people total
control of output handling. Operators entexr
commands to CALL and control hot uwriters. We
might use a hot writer to direct classes of output
which require special forms to a particular
printer, thereby concentrating operator intez-
vention on a single rrinterxr. To furxthex
differentiate between dynamic and hot writexs, we
need to become aware that the characteristics
assigned to dynamic writexs are specified in the
JES3 initialization statements and become "fixed"™
at that time. An operator may allow a hot writex
to assume some oxr all of the installation-default
set of characteristics ox directly specify an
override set, thereby gaining total control over
hot writers.

The management of data sets, directed by class to
TSO users, external writers, or to the internal
reader, 1is most interesting. In these cases, uwe
are generally speaking of transcribing data sets
to programmed routines rather than to hardware
devices. The external writexr, a STARTed . task in
MVS, is wused to transcribe special purpose data
sets to devices such as magnetic tape, DASD, or
plotters...these devices are not supported by
output sexvice. Data sets destined to the
internal <reader are routed by output sexrvice, not
to a printexr, but to a JES3 function we have
slready discussed - Input Service — since internal
reader data sets contain job streams. SYSOUT data
sets held for TSO processing are simply routed by
output service to the TS0 OUTPUT command processor
upon demand.

Scheduling Output

We left our job at the point where JSS scheduled
its output service scheduler element. When this
occurs, the OUTSERV function goes to work on our
job's behalf. OUTSERV accesses the control blocks
necessary to locate the data set it is to process.
These control blocks also contain the
characteristics of each individual data set. From
this information OUTISERV constructs other control
blocks which represent work +to be performed by
writers and schedules the writers by invoking them
as functions. (This +type of scheduling assumes

28

HOT
WRITERS

that the data sets involved are not of the "held"
nature.)

Writing Output

R writer, when scheduled by OUTSERV, becomes a
transient JES3 function. It accesses the control
information enqueued by OUTSERV and attempts
matching the characteristics of a data set to
those of the device obtained by the writer. Data
sets are +transcribed on a "best-match"™ basis,
allowing for the fact that a given writer function
may or may not be able to process all of a job's
data sets. Scheduling of several writexrs may be
necessary to complete +the handling of a " Jjob's
SYSOUT. Many dependencies, which determine uwhere.,
when, and houw data sets are managed,
exist...remember those data set and device
characteristics? As each data set is written,
Type 6 SMF records are recorded for later use in
job accounting. Our job remains active on its
output sexvice scheduler element until all its
data sets have been properly transcribed to the
proper destinations. When all the data sets have
been written, we again return to JSS who marks the
scheduler complete and schedules +the 3job onto
PURGE.

Purge Processing

We are finally about to see our 3job zxeach
completion, since PURGE is its last schedulex
element. There are several items for which PURGE
is responsible:

- recording of SMF record Type 25 which was
generated during MDS processing to
account for the setup requirements of the
job.

- recording +the SMF zrecord Type 26, the
noxrmal job management recoxd.

- most impoxrtantly, PURGE must "free" all
the spool space which still belongs to
our job. With the exception of a special
case of data set SPINOFF, all the spool
space acquired during the life of our job
remains assigned until PURGE time. This
space contains:

29

PURGE

. the oxiginal JCIL for the job.

] message data sets.

. SYSIN/SYSOUT data sets.

. JES3 control blocks ithich define our
job and its processing
characteristics.

° the MVS SWA contrxol block generated

at C/I time.

When PURGE completes its processing it returns
contzol to JSS (like any function), but JSS
recognizes that return is being made by PURGE.
Now it is time for JSS to zremove ouxr job's JCT
from the job queue, causing ouxr job to leave the
system.

30

Chaptexr 3
Subsystem Interface
Introduction

We will attempt in this chapter to describe the
general structure of the communications betueen:

- MVS system components and JES3.
- JES3 and JESS3.

To set the stage, let's quickly review the basic
structure of MVS. The usual pictorial
representation of an MVS environment consists of a
larxge box representing the memoxry layout of the
systen. Areas of memory usually shown include
(from high address to low):

- System Queue Area.

- Pageable Link Pack Area.

- Common Storage Area.

- Memoxry in which virtual address spaces
are established for.

. Master Scheduler.

. JES.

. Usexrs - batch, TS0, STARTed tasks.
- Nucleus.

By simple acceptance of the multiple address space
structure and the requirements of address spaces
for services, we trecognize the necessity of
communication between address spaces. A
communication mechanism is established and has
been defined as the Subsystem Interface (SSI).
Like most system components, SSI consists of
several elements, namely:

- a series of control blocks for passing
requests for service from sendex to
receiver and back.

- a set of macro instructions wused by
requestors of services and system
components which respond.

- Programmed <xroutines +to perform the work
necessary to respond to requests.

31

I 31

Ssi

Let's quickly review the roles played by global
JES3 and local JES3. You should zremember that
global JES3:

- introduces all 3jobs into the system, no
matter what the source.

- converts and intexprets JCL.

- pexrforms preexecution setup of devices.

- schedules MVS jobs to all MVS processors
in the complex.

- maintains awareness of all Jjobs in
execution.

- handles all SYSOUT data sets.

- manages, and is responsible foxr, the
allocationsunallocation of space on +the
shared spool devices.

When c¢arrying out several of the responsibilities
listed above, global JES3 needs +the M"assistance™
of local JES3. This is, of course, only true if
we are discussing the scheduling of woxrk onto a
local processor. (If global JES3 is scheduling
woxrk onto the global processor, wuwe would not
really speak of Mmassistance".) Local JES3 also
has responsibilities:

- returning information to global JES3, as
necessary, to satisfy:
. requests for catalog LOCATEs.

. verification of device mounts.

- routing of console messages +to global
JESS3. '

- genexally Keeping global aware of what is

happening in the local.

So, uwue see that JES3 is deeply involved with, and
on behalf of, MVS; thexre are many <types of
communications.

What exactly are the communication paths uwe are

concerned about? Beginning with the global
processor, uwe see that 1) user address spaces will

32

132

make requests of global JES3 and responses will be
returned. For example, imagine an initiatox in a
user address space requesting a Jjob and having
returned +to it a set of descriptive data defining
the job to be initiated. An extension of this
form of request/response would be 2) a local user
address space requesting a job from global JES3.
Thexe are also a few cases in which 3) global JES3
and local JES3 must communicate; either JES3 c¢an
initiate +the c¢ommunication, and, in many c¢ases.,
responses are not required. It would appear from
the illustration that a fourth type of information
flow might be used - local user address space to

local JES3. This last type of communication,

however, is not used in today's JES3 envirxonment.
How are all these communication paths implemented?

MVS Definition of SSI

MVS has defined thirty seven (this number will
vary depending upon uwhich selectable units are
installed) cases in which communications with JES
is involved. FEach of these cases 1s assigned a
number, called a function g¢ode. These SSI
function <codes represent a different type of
information:

- a request for a service or
- control information

passed to JES3. Currently, JES2 supports nineteen
of the codes; JES3 supports all but code 15, which
is handled by the Master Subsystem. Several of
the request types are not passed to JES3. These
are, instead, processed directly by special SSIX
function xoutines in the processor that originated
the ... request. SSI funection codes may be
categorized by the type of processing <to which
they relate.

To implement the suppoxrt required when JES3
communicates with JES3, a set of <£functions was
designed for specific use by JES3. We call these
codes JES3 destination godes. As we will see in
the following discussion, both JES3 destination
codes and MVS function codes are handled in the
same general mannerx.

33

133

FUNCTION
CODES

JES
DESTINATION
CODES

SSI Communications Overview

We mentioned earlier in this chapter that the SSI
was made up of control blocks, macros. and
routines. Priox to our following a request
through the SSI, the <c¢ontrol blocks involved
should be described and understood. The sequence
of control information for SSI really begins in
the MVS nucleus with a control block named the JES
Communications Table (JESCT). Our major concern
in this block is the pointer +to the primary
subsystem (JES2 or JES3) communications yector
table, the SSCVT, which is located in CSA. Therxe
will always be at least two SSCVTs, including one
for the Master Subsystem. From the JESCT, we can
locate the primary subsystem SSCVT, in which three
items interest us:

- the ID of the subsystem (i.e., JES3).

- a pointer to the Master Subsystem SSCVT
... SSCVTs are constructed during MVS
IPL. They are used for two purposes:

validation of the subsysten's being
active when needed and to house the
address of an SSVT.

- the address of +the subsystem vector
table, the SSVT.

The SSVT is built by the subsystem itself
during its initialization. A matrix is
contained within the SSVT to describe (in
a very simple way) which function codes
are supported by the subsysten. In
addition to the function matrix, the SSVT
contains addresses of the routines to
support the various function codes.

Then, chained from the Master Subsystem SSCVT are
88CVTs foxr any active secondary subsystems. The
user memory, at the time of an SSI request will
also use two control blocks which are described in
the discussion below.

Let's assume, for our discussion, that we are an
MVS initiator in a user address space. At that
point in our processing at which we want to ask
JES3 for a job, we issue an. JIEFSSREZ macro (not
the run—-of-the-mill macroe since only systen

34

134
JESCT

SSCVT

SSVT

IEFSSREQ
MACRO

routines can use it). When we issue the macro, we
point (via <register 1) to a Subsystem QOptions
Block, which contains a function <code to define
the request we axre making. For our job select

request, the code would be 5. The SSOB also
contains the address of the Subsystem
Identification Block which identifies the

subsystem to which we wish the request to go. The
expansion of the IEFSSREQ macro loads the address
of the subsystem interface request routine from
the JESCT into register 15 and branches to the
routine, IEFJSREQ.

SSI Request Routine

This routine, residing in PLPA, perxforms several
activities relating to an SSI request. Aftex
certifying the validity of the SSOB and SSIB,
the request routine determines that the
subsystem requested is valid and started. This
is done by checking subsystem IDs in the c¢hain
of SSCVTs. The function code (placed into the
SSOB at IEFSSRER time) now becomes very
impoxrtant, because we use it to determine if the
subsystem supports the requested function.
IEFJSREQ uses the function code as a
displacement (after adding 4) within the SSVT
matrix. You have probably guessed by now that
the SSVT matrix is 256 bytes in. length and +that
only part of the matrix is currently used. The
resulting address (function code + address of
SSVT + 4) contains zero for non-supported codes
and anothexr displacement value for the supported
codes. This second displacenment, when
multiplied by 4 and added to the address of a
vector list on the bottom of the SSVT, gives us
the address of a routine to which the request is
to be passed. During this process of getting to
that routine, should any of the +tests made by
IEFJSREQ result in failure, an exrror return code
is passed back to the issuer of IEFSSRER.

The Function Routines

Though there are many (about 36) SSI functions
supported by JES3, there is not an equal numberx
of function routines. Several of the routines
rexform more than one function. We cannot, in
this text, describe all the function rxoutines,
but you should be aware of their general logic

35

SS08

SSiB

IEFJSREQ

1 3.5

after we have described our example case, the
job select request.

When a function routine i1is branch-entered by
IEFJSRE®R, we are executing code which also
resides in PLPA. This code has access to the
SS0OB/SSIB pair, passed along by IEFJSREQ. One of
the duties of a function xroutine is to construct
a Serxrvice Entrance List which is, in essence, a
communication control block. The SEL built by
function xroutines contains such items as:

- a data area address.

- address of an ECB.

- optionally, an exit routine address.
- a response buffer address.

- address of a staging area (which we have
not yet described).

So, the function routine (our case is IATSIVS, the
job select routine) gathexrs data, places that data
intoe an SEL, and sends the request on its way by
issuing another macro, SSISERV. This macro
provides entry into a routine we call Subsystenm
Common Services - IATSSCM is its module name.

SSI Common Services - Router

IATSSCM consists of two distinct parxrts; the
first part is entered as a result of the SSISERV
mnacro. You may hear the routine referred to as
the "common services xouter" oxr more simply "the
top half of common services". The foxrmer name,
router, is the more descriptive of the zoutine's
sexvices - the <routing of a zrxequest to the
appropriate address space. We will examine that
routing process after describing the seven types
of requests which ¢an be made with SSISERV:

- wait type -~ a communication of data which
‘requires a response. The requestor is MVS
WAITed until the response is received.

- reply type - almost the same as wait type
except the requestor is not MVS WAITed:

36

SEL

SSISERV
MACRO

IATSSCM

ROUTER

usually involves a user exit to process
the response.

- ack type - communication of data with no
required response other than an
acknowledgement of receipt.

- comm type - sending of data only, no
response communication is necessary.

- resp type — a response to an earlier wait,
reply, oxr ack type of request.

- EOMT +type - used as a memoxy is ending to
cause special cleanup of SSI communication
areas which might still be outstanding.

~. purge type - used by JES3 DSPs to free the

areas containing type=comm requests which

the DSP has processed.

A shorxt review of houw we came to be processing
in the router routine is probably necessary by
now ...

- a system routine has issued a request for
some service; the IEFSSRE2 macro was used.

~ the subsystem interface request routine
has verified the request and passed it to
an SSI function routine.

- the function routine assimilated the
request into an SEL and enterxed the common
sexvices router via SSISERV.

The vehicle used to communicate hetween address
spaces is called a staging area. Since multiple
address spaces are involved, ‘the staging axea
must be located in CSA. A preallocated pool of
staging areas was built during JES3
initialization. After acquiring a staging area,
the router £ills it in with information from the
sexrvice entrance list. Then, very importantly,
the zxoutexr mnust determine whether or not the
sending address space and the address space of
the receiver are in the same machine. This
detexrmination is necessary bhecause if the
sender/xreceiver are in the same processoxr, the
request is MVS SRB scheduled on its way; if the

37

STAGING
AREA

two address spaces are in different machines, uwe
must issue a STARTIO macro to write staging
areas on the CTC device. Following the SRB
SCHEDULE oxr STARTIO macro, the action pexrformed
by the routerx depends upon the +type of
communication request bheing made:

- for type=wait, an MVS WAIT is issued.

- for type=comﬁ or ack, the routexr returns
control to the user address space.

We must note, at this point in our processing,
that all <the c¢ode we have executed in the
subsystem interface has heen located in PLPA and
is run under control of the user address space.

S§SI Common Services - Poster

The zxequest, in the form of a staging area, now
enters the second part of +the common sexvices
routine c¢alled the "poster" or "the bottom half
of common services"™. Its formal name is the
Read End Subroutine. The poster routine is
executed on the processor which holds the
receiver of the request, under control of the
receiver's address space. Processing by the
poster may be summarized as getting the request
to its receivexr. Two things are required to do
this:

-~ gqueueing the request (staging areal) on a
queue serviced by the receiver.

- posting the receivexr to notify it that a
request has arrived.

Did you notice that we said that the poster runs
undex control of the receiver's address space
.«» houw did we obtain addressability? &s it
turns out, the poster is always SRB scheduled,
allowing the equivalent of a "cross memory
post™.

We have, in CSA, a control block to facilitate
the accomplishments listed above ... dgqueueing
and posting. The contrxol block name is the
Destination Routing Table, sometimes called the
Destination Queue (DSQ). This control block is
structured much like the SSVT; it has two

38

POSTER

Dsa

matrices (which zrelate 8SSI function codes and
JES3 destination codes to receivers) and entries
which c¢ontain gqueue origin pointers and data
used to post the receiver of a request.

Return a Response to Requestex

In the example c¢ase we are using, that of an
initiator requesting a Jjob, the poster will
queue the staging area for JES3's GMS function
and post GMS that it has a request to sexvice.
GMS, when dispatched by the nultifunction
monitor, uses its algorithms to select a job to
send to the initiator, placing scheduling
information foxr the initiator into the staging
area it received. Next, GMS begins the process
of getting the scheduling information back to
the initiator by issuing a JES3 macro - JSERV.
This macro is the JES3 form of SSISERV, and
causes entry to the router routine of SSI common
sexrvices ... same process as used before, but
now the c¢ode for the router is executed under
control of the JES3 address space.

Rgain, the router issues either SRB SCHEDULE ox
STARTIO to send the staging area back to 1its
receiver (which is, of course, the original
sendex) by executing the code for the SSI poster
routine. What address spaces do the routines
run under control of this time? The routex is
controlled by the response sender (the orxiginal
receiver), and the poster =zxuns undex the
receiving address space (the original sender).

The response to the original request (for wait
and reply types) is now matched to the oxiginal
request to be able to return the response
information. Responses are then moved from <the
staging area, in which +they came from the
sendex, to the original SS0B, and +the user is
posted for "receipt of response". (We see that
the return of a response is not the revexrse of
making a request, it is almost exactly the same
process.) Remember that the original requestor,
if WAITing, is waiting in the common services
router routine. Common sexrvices, when posted,
returns control to the SSI function routine
which in turn returns control to the user's code
following the IEFSSRES macro. The user code (in
our case, an initiator) nouw finds in the SSOB

39

JSERV
MACRO

the information it zrequested and may continue
processing.

Review

R basic understanding of the subsystem interface
is essential if you are to grasp the concepts of
MVS to JES3 communications. In this chapter, ue
have discussed many codes, several macros, and
multiple <xoutines. Pexrhaps a short review would
serve us well.

Codes

The MVS subsystem interface function codes are
used in those cases in which some user address
space needs to communicate with JES3. Should
one JES3 address space have a zrequirement to
communicate with another JES3 address space,
JES3 destination codes are used instead of MVS
8SI function codes. '

Macxos

En SSI request being made by a user address
space is started on its way by issuance of an
IEFSSRE® macro. Subsequently, an SSISERV macro
is issued by a function routine +to pass ‘the
request along to SSI common services (the
router). The router routine uses a STARTIO or
SCHEDULE macro to send the request through the
poster routine of common services to global
JES3. Once the request has been satisfied, a
JSERY macro is issued by the JES3 component to
route the response (if one is required) back to
the requestor.

Routines

The first routine entered during normal course
of processing of an SSI request is +the request
routine. After wvalidation of the request, a
function <routine, which is zresponsible for
supporting the request, is given control. 1In
many c¢ases, the request is satisfied directly by
the function routine. When the function routine
does not directly satisfy the request, it is
passed to a JES3 function via the c¢common
sexvices of <the SSI. The common service

4o

routines are also used in returning - the response
to the orxiginal requestox.

41

Chapter 4§
Spool Data Management
Introduction

One of the significant features of JES3 is its
spooling capability. Though a typical, large JES3
complex may have 7-10 spool volumes, JES3 supports
as many as 30. These spool volumes may reside on
DASDs which are IBM 3330 (Models 1 ox 11), 33u40s
or 3350g; the environment may consist of a single
device type or any combination of the supported
device types.

Since all JES3 processors read and write data from
and to the spool volumes, each processor must have
access to the spool space. Several different
types of data are recorded in the spool space.
First, spool contains the information (originally
taken from the initialization statements)
necessary to bring up JES3 in both the global and
local processors. The spool volumes also contain
two types of information directly related to Jjobs
which are to be run:

-~ the JES3 contrxrol blocks which define the
scheduling and operxational characteristics of
the jobs.

- the SYSIN (DD X or DD DATA) data sets and
SYSOUT data sets for jobs.

The management of spool space and
recoxding/retrieval of spooled data are the
responsihilities of our two special access

methods. JES3 DSPs use the JES Spool Access
Method (JSAM) +to read and write data. Usex
address spaces wutilize the User Spool Access
Method (USAM) foxr handling their spooled data,
though USAM is transparent to user programs.

Functional Overview

If we examine the component parts of JES3 Spool
Data Management (SDM), we quickly see that some of
the paxts are distinct to JSAM, some are USAM
related, and others are <¢ommon +to both access
methods. To increase our perspective, let's
itemize these components by +the categories 3Just

42

JSAM
USAM

SDM

mentioned. We c¢an break JSAEM into about four
separate logical parts.

JSAM Components

There are two recording techniques (from a
programming standpoint) used for spooled data.
We reads/write the job related control blocKks as
Single Record Files (SRF). This simply means SRF
that a control block, irrespective of its size,
is recorded as a single buffer image (a block of

data on a spool volume). While most of ouxr
control blocks will fit into a single buffer
image, some (due to the variable lengths

consisting of multiple parts) may extend across
multiple buffers. When this occurs, the buffers
are chained together so that there is still a
single "recorxrd" in the file.

It is more logical to recoxrd such files as a
job's JCL, its SYSIN, and SYSOUT by a technique
which allouws us to pack multiple recorxrds (card
images, print lines) into a single huffer image.

We identify these files as MultiRecord Files MRF
(MRF).

The firxst of our four JSAM components consists 1 41
of the set of macros used by DSPs to record and

retrieve both SRFs and MRFs. Macros are

provided to acquire spool space, c¢reate spool
files, read and write records, and to terminate
the existance of files when they are no longerx
needed. Many of +these macros involve the
acquisition of a place on spool (a DASD block)
in which to record the JES3 record. Notice that
our use of the texm "record"™ is inconsistant

"with noxmal DASD <terminology ... ouxr spool
access methods do not include +the concept of
"hlocked™ recorxds.

Our second JSAM component is a set of routines

responsible foxr the allocation of space. The
unit of JES3 spool space is c¢alled a track TRACK
qroup. Track groups consist of multiple GROUP
physical tracks on DASD as defined by a JES3
initialization parameter. R track group is made

up o0f either a half cylindexr or a full cylindex
- the quantity being fixed, once it is defined.
S0, then we have routines +to allocate track

43

groups and othexr routines to suballocate
individual blocks within track groups.

Since each of our JES3 processors has access to
spool, the single-system image concept demands
that management of spool space be concentrated
into a global-only xresponsibility. The +thixd
JSAM component is an interface routine betueen
user address spaces requesting track groups and
the allocation zoutines mentioned earliex. Usex
address spaces are assigned one or more track
groups (prior to MVS execution) as the job is
being processed by Input Service. This initial
allocation is used to hold the job control
blocks, its SYSIN data, and the MVS SWA control
blocks generated by the convertexs/interpreter.
While the job is executing, SYSOUT data sets
will be written into the remaining portion of
the first allocation as long as they £fit.
Should the initial allocation be insufficient to
hold all the job's SYSOUT, later <requests axe
satisfied by global JES3 via the subsystem
interface routines.

Ouxr fourth JSAM component is a JES3 function (it
happens to be one of the resident functions)
nanmed "JSAM". This function is responsible for
routing all JSAM I/O completions to the
appropriate DSP by posting flags which allouw a
waiting DSP to again become dispatchable.

USAM Components

We will group the responsibilities of USAM into
a smaller numbexr of categories - only two.
First, there is a set of macros, access to which
is through a standard (both JES2 and JES3)
compatibility interface. User problem programs
require access to spool for SYSIN and SYSOUT,
which are being processed by normal BSAM ox
QSAM. Routines hidden away inside the
compatibility intexface, not the problem
program, actually issue the macros which cause
entxy to the zoutines provided by JES3. When a
buffer has been filled duxring creation of a
SYSOUT data set, the second USAM component conmes
into play.

Though USAM c¢annot allocate <track groups of
spool space, USAM does have responsibility =Iox

44

the allocation of individual blocks on spool
into which buffer contents axe to be written.
These blocks are suballocated from the original
set of track groups assigned to the wusexr Jjob
until, of course, that space is exhausted. If
additional track groups are required, requests
are forwarded +to JSAM's track group allocation
routine through the subsystem interface and the
allocation intexrface routine.

Common Component (JSAM and USAM)

You have probably noticed that to this point in
our discussion we have not mentioned the
"starting” of I/0 operations to spool. JES3
manages I/70 to spool at the STARTIO macro level,
and our routine serves as an IO0S driver. The
routine which actually schedules the I/0
operations is common to JSAM and USAM. So, ue
see both JSAM and USAM requests to read and
Wwrite spool passing through a pageable link pack
area module, housed in the processor foxr which
I/0 is being verformed. This module is
responsible for managing the termination of I/0O
requests as well as initiating them. When JSAM
requests are completed, the common routine posts
the JSAM function (we mentioned this earlier) to
rass the completion to the proper DSP. USAM
completions <c¢ause the common module to post the
proper user address space that its I/70 is
complete. You should review the components by

referring to the more detailed illustration.

Buffexrs and Buffer Pools

Spool I/0 is
and buffers in
of buffers

initialization
initialization

JES3 Buffers

The buffers

pexrformed to and from spool volumes
memory. Both the size and number
involved arxe predefined at JES3

time with parameters in
statements.

we use for spool I/70 have a numbex

of interesting characteristics. Each buffex

contains a

fixed area which is not transferred

to spool volumes. This axea c¢ontains the
channel program necessary to read or write the

data portion
the status

of the buffer, flags to indicate
of the buffer, and any required

45

142

chaining fields. Following the fixed arxea, we
~£ind the data area which is formatted
differently for SRFs and MRFs. How about user
memoxry buffers? They are Zformatted as MRFs.
Remembexr that a SRF contains a control block, a
MRF will contain packed card images or print
line images.

The buffer size can vary, but is usually either
1248, 1952, ox U000 bytes in Ilength. These
repxesent sizes which, when increased by the
size of the fixed area (96 bytes), result in 3
or 2 oxr 1 buffer, zrespectively, per page of
virtual memory. The 1952 byte size appears to
he the one most commonly used by JES3
installations.

JES3 buffers are always grouped into buffer
pools, of which there are three types:

- JESIO buffer pool - This pool is in the
global JES3 address space and is wused by
DSPs doing SRF/MRF processing. I/O0 takes
rlace directly to and from these buffers.

- User memory buffer pools - These buffex
pools, inside the wuser address space,
consist of 1 page of virtual memoxy forxr a
SYSIN data set or multiple pages for
SYSOUT data sets. The contents of these
buffers ares not directly transmitted
tosfxom spool, but instead tosfrom I/O0
areas provided by the problem program.
Usexr memory buffers are transmitted to
(when filled for output) and Ffrom (when
emptied for input) buffers in the
protected pool for <transmission to and
from the spool volumes.

- Protected buffex pool - Each JES3
processor contains, in CSA, a buffer pool
used in the performance of I/0 betueen
user memories and spool. This pool is
"protected™ for two xreasons:

46

BUFFER
POOLS

. to maintain the integrity of data sets
betueen address spaces.

. +the Disabled Interrxupt Exit included
with SDM runs under control of JES3
segment and page tables ... thus
requiring common addressability.

Data Flow for USAM Requests

Since it is assumed that most readers of this text
axre primarily concerned with the relationships
between user address spaces and JES3, our SDM data
flow discussion will be directed at USAM requests.

The accompanying illustration is a memory map
which high lights the SDM components mentioned in
the follouwing description. You will, moxe than
likely, need to refer +to the diagram several
times.

SYSIN Processing

Qur discussion begins at +the point of MVS
initiation of a job step for a user memoxry. The
MVS allocation routines, when allocating a SYSIN
(ox SYSOUT) data set, issue the IEFSSRE® macro
to ask the Job Entry Subsystem for assistance.
In the case of JES3, the SSI function <xoutine
satisfies the request, without help from global
JES3, by constructing a control block, the Data
Set Block, in CSA. This control block contains
many of the DCB-like characteristics of the data
set being allocated, as well as several SDM-
related fields to be used during processing of
the data set. After building the DSB, the SSI
function <routine <returns +to +the user code.
Latexr, when the problem program QPENs the SYSIN
data set, another IEFSSREQ macro is issued by
the compatibility intexrface code, since the data
set being OPENed is a spool data set. The SSI
function xoutine which processes OPEN requests
has a number of responsibilities. It is at this
time that the user buffer pool (1 page of
virtual memory) is constructed in subpool 230 of
the user memory. Management of this buffer pool
is facilitated by control fields in the DSB.
The <function zoutine finds itself facing a lack
of information ... only global JES3 knows the
location of +the SYSIN data set on spool. &

47

143

ALLOCATION

DSB

OPEN

staging area containing descriptive information
about the data set being OPENed is SSISERVed to
global JES3.

Global JES3 has to respond (via JSERV) with the
disk location of the firxst MRF buffer of the
SYSIN data set. This information is kept in a
control block which was built for the job during
Input Service processing. Upon receipt of the
response OPEN processing can continue by
queueiny requests to prime the usexr bufferx.
Remembexr that the I/0 operation involved here
first reads the data from spool to the protected
buffer pool in CSA. At texrmination of the
reading, the buffer content is moved to a user
buffer.

The problem program now begins its noxrmal
processing by issuing GET oxr READ macros. Each
logical recoxd is passed to the program by the
USAM xoutines given control by the compatibility
interface. Then, as necessary, user bhuffers are
refilled from protected buffers, I/0 requests to
refill the protected buffers are queued ...
until end-of-file is reached.

User buffers are freed at CLOSE time by the SSI
function routine, thus "disconnecting"” the data
set and the problem program. At end of the job
step, the MVS unallocation process again issues
IEFSSRE? in orxdexr that the SSI function routine
can free the DSB, and processing of the data set
is now complete. Notice that only one
communication betuween the SSI routine and JES3
Was necessary.

SYSOUT Processing

SYSOUT processing, though similar to that of
SYSIN, is somewhat more complex. This
additional c¢omplexity arises from the fact that
JES3 has no need to maintain information about a
SYSOUT data set until it is OPENed. As bhefore,
our involvement begins at allocation time. The
§SI function routine constructs the DSB as the
result of an IEFSSREQ request. For SYSOUT data
sets, OPEN processing (in the SSI function
routine) must construct an entry to he placed in
the <control block that JES3 uses to define a
job's MRFs. This "new" entry is then sent to

48

GET

CLOSE

UNALLOCATION

global JES3, again via SSISERV, who places the
entry into the control block. AR user Dbufferx
pool is then allocated in subpool 230 ... this
time, multiple pages of virtual memoxy (the
default is 2 pages).

Following OPEN, +the problem program issues PUT
or WRITE macros. Each PUT causes entry to a
USAM routine which counts the records, truncates
any trailing blanks in the recoxd, and moves the
resulting record into a user buffer. When the
user buffer is filled, the USAM "PUT"™ routine
causes the full buffer to be moved to a
protected buffer and gqueued for output to spool.

After exhausting the input for the SYSOUT data
set, the CLOSE macro is issued by the problem
program. CLOSE issues IEFSSREQ giving control
to the close routine in the SSI function code.
CLOSE processing by the 8SI function routine
includes propexr handling of the last user buffer
{to cause it to be written to spool) and the
freeing of the user buffer pool. Then, we see
another difference between SYSIN and SYSOUT
processing. Do you remembher the control block
entry sent to global JES3 at OPEN time? Well,
it must be wupdated at unallocation time to
reflect the final status of the new data set ...
line count, disk location, etc. The updated
entry is SSISERVed +to global JES3 to complete
the entry made at OPEN time. When the updating
is complete, a notification is JSERVed back to
the function routine which then frees the DSB.

Summary

Spooled data sets are clearly the responsibility
of JES3. MWe have seen that, though it is not
apparent to a usexr problem program, routines
supplied as part of JES3 are deeply involved in
the processing of both SYSIN and SYSOUT data sets.
This <¢ode is found in two distinct sets of
routines, one being branched into from the
compatibility interface code, and the other
entered as result of IEFSSREQ macros being issued.
A quick review of I4#.3 will help you locate these
sets of routines, the buffer pools we discussed,
and the major control blocks involved in JES3 SDM.

49

PUT

Chapter 5
Job Related Control Blocks
Places Controi Blocks are Kept

JES3, like other systems, uses a control block
scheme to define both the existence of Jjobs and
how those Jjobs arxe +to be processed. Some of a
job's control bloc¢ks are Rept in various areas of
DASD until required for processing, at which time
a copy of the required control block is bhrought
into memory. Othexr control blocks reside only in
memory, with no copy on DASD. 0f those which
exist in memory, there are tuwo types - 1) those
which exist for the life of the job, and 2) <those
which are created as job segments are scheduled.
We will examine the generxal stxucture of our
control blocks by first describing those areas on
DASD in which control blocks are Kept.

Spool Volunmes

Control blocks are, you may remember from our
discussion in Chapter 4, recoxrded on spool in
the form of single record files. Therxre are tuwo
areas of spool space which will contain control
blocks. By generalizing, we can classify these
two areas as:?

- an area of spool space, used somewhat like
CSA in memory, usable by many components
of JES3 ... a commonly accessable area.

-~ +the spool space "owned by a job"™.
Lets investigate the two areas individually.
Single Track Table

The part of spool space which is usable by
many components of JES3 is the Single ZTrack
Table (STT) space. In order that this name be
meaningful, we must relate back to a term we
discussed back in Chaptexr 4. The term is
"track", and a related term we used is "track
group®. We defined the unit of spool space as
a track group, which consisted of a half ox
full c¢ylindexr of space. While we might think
of a track group consisting of physical

50

SST

tracks, in_ JES3' i on, a track is a disk
record location or a DASD addrxess at which a
block (buffer image) is located. So, to be
definitive (in JES3 terminology) a track group
consists of a consecutive group of "tracks" or
DASD addresses. Because it is often moxe
efficient, in terms of spool space, to
allocate a single "track" rathex than a track
group, the developers implemented the single
track table.

The STT may c¢onsist of one orxr more areas
inside (ox, allocated from within) <the DASD
space defined to JES3 as its spool space.
Physical placement of +the STT is carefully
considered by JES3 system programmers because
of its relationship to system pexrformance.
Some, oxr in special cases, all of a job's
control blocks will be written as SRFs in the
STT. There is a table kKept in the JVES3 memory
in the form of a bit map which defines the
available tracks in the STT. This table is
used to allocate or unallocate (make available
for xreuse) STT space, a single track at a
time.

Job's Spool Space

With the exception of "called jobs"™, all jobs
entexring JES3 pass through Input Sexrvice
processing and are assigned a mininum of a
single track gxoup of spool space. This
oxriginal allocation of space 1is used to
contain many of a 3job's control blocks.
Control blocks forxr Y"called jobs"™ arxe written
into the STT because the Jjohs oun no spool
space. The STT is utilized, as we shall see
latex, to contain some of the control blocks
belonging to normal jobs, as well.

Job Contxol Table Data Set

One of a 3job's control blocks, the JCT entry
(xemember it from Chapter 2) is recoxded into a
unigue data set instead of Dbeing placed in
eithex STT ox the job's spool space. This data
gset is allocated by MVS allocadtion as the JUES3
address space is being initialized, and,
consequently, the JCT data set does not lie
within the DASD pace allocated foxr spool. From

51

TRACK

I 8.1

a formatting standpoint, the JCT data set is of
a fixed length, wunblocked format, with each
block capable o0f holding one JCT entry. You
should remember that JCT entries vary in size -
"called jobs" have +two scheduler elements,
normal jobs have four (oxr moxe), and non-
standard jobs have a variable number up to an
installation-defined maximum. Even though <the
JCT data set 1is allocated outside the spool
space, the data set is read and written from the
JESIC Dbuffer prool with the JSAM SRF processing
techniques. The JCT data set, depending wupon
how much space uwas allocated to it, contains =a
fixed number of Dblocks (oxr "slots"). These
blocks are reused following a Jjob's being
PURGEd; allocation and wunallocation of the
blocks is managed via a memory-resident control
block which, in structure, is identical to the
control block which maps the STT.

Control Blocks - Defining Jobs

Though thexe are <typically many control blocks
associated with a job, +two are primary to the
definition of the job. First, and most important,
is the JCT entry, which we have discussed many
times alrxeady. The JCT entry describes the
processing to be performed on behalf of +the Jjob,
the characteristics of the job, and serves as a
continually-updated checkpoint of +the status of
the Jjob as it progresses through its life in the
system. A job T"exists" when its JCT entry 1is
created and ceases to exist when the JCT entry is
removed.

There is, in addition to the JCT entrxry kept in the
JCT data set, another closely related control
block kept in memory for each job in the system.
This new control block is named the Job Queue
Element (JRE). The c¢ontent of +the JQE is
essentially copied fxrom the job's JCT entry. JREs
are present in JES3 to reduce the I/0 that would
othermwise result from frequent examination of JCT
entxries for scheduling work. The JQE is a highly
abbreviated set of information about a job - only
that necessary to make scheduling decisions and
maintain an in-memory status for jobs. It is the
JEE which is used to answer most inquiries about
jobs ... further removing a need for JCT access.

52

JCT
DATA
SET

JOE

The JUQE is constructed at the same time as a job's
JCT entry ... and in one sense, the JQE carries as
much weight of importance as the JCT. It is the
J2E uwhich is first examined by Jss when
determination of woxrk to be done is being made.
Once JSS has decided to schedule work for a job,
the JCT is then read, additional information
extracted, and the status checkpointed by
rewriting the updated JCT entry.

From pointers in <the JQE and JCT, JES3 DSPs
woxking on behalf of a job can find all the othex
job-related information Xkept by JES3. These
pointexrs are in the form of either a memory
address or a disk address, depending upon the
control block being accessed and the time at which
the pointer is used.

Control Blocks - Job Processing

If we examine the jobh-related control block
structure for a "typical" standard job, we <£find
several control blocks involved. Lets discuss
each of these control blocks individually.

Job Description and Accounting Block (JDAB)

The JDAB is constructed by Input Service
simultaneously with the JCT entry; many
informational fields are common to both. JDABs
give DSPs a source of data concerning a job such
that JCT access is not necessary. Entries which
represent each of the JCT scheduler elements are
appended to the JDAB to provide DSP accounting
foxr each segment of the job.

Job's Data Sets Block (JDS)

All of a job's multirecord files will be
identified and defined in the JDS. This block,
built by Input Serxvice, initially contains
entries for the data sets whose contents are:

- inputted JCL foxr the job.
- two message data sets; one for messages

generated by DSPs and one for system
generated messages.

53

152
JDAB

JDS

- the SWAR control blocks generated by the
Converters/Interpreter.

- any SYSIN (in individual entries) data
sets for the job.

Entries foxr SYSOUT data sets are added to the
JDS when the data sets are OPENed during MVS
execution.

Job Summary Table (JST?

Though this control block is constructed at
Input Sexvice time, it is not £filled in until
Converter/Interpreter time. The entries consist
of the requirements for preexecution setup for
the 3Jjob. Primaxy use of the entries is at MDS
processing time when devices are being assigned
to the job.

Job Track Allocation Table (JBTAT)

Built at Input Service time, this block is a bit
map identifying the track groups of spool space
which have been allocated to the jobh. The table
Wwill bhe wupdated %o reflect any subsequent
allocations as they are regquired. At PURGE
time, track groups are simply "given back™ to
the system or master track allocation table for
reassignment to other jobs.

Job Management Record (JMR)

This c¢ontrol block is also built at Input
Service time. It contains the 3job accounting
information (fields) necessary to construct an
SMF type 26 recoxrd for the job.

Format Parameter Buffer (FRP)

If the usexr indicates, through the inclusion of
the JES3 control statement FORMAT, that there is
to be special handling for any of the SYSOUT
data sets, a FRP is constructed at Input Sexrvice
time foxr the Jjob. The FRP is just a place to
store the information, taken from FORMAT
statements, relating +to the individual SYSOUT
data sets.

54

JST

JBTAT

TAT

JMR

FRP

Usexr Parametex Buffer (PARM)

One of the JES3 contrxol statements, PROCESS,
allows the user to define a non-standaxd 3job:;
i.e., to let the user design the set of segments
for the job. These PROCESS statements wmay be
individually followed by parameter information
to be passed to a DSP named in the PROCESS
statement.

This control block is also generated for called
jobs if the operator enters any optional
parametexr information in the CALL command.

Job Volume Table (JVT)

This table, 1like the JST, is built to contain
entries descxibing one of the resources assigned
to jobs at MDS processing time. JVT entries are
established to identify the volumes (by serial
numbexr) the Jjob will require at MVS execution
time. The JVT is built at Convertexr/Interpreter
time.

Output Scheduling Element (OSE)

OSE's contain a set of output (SYSOUT) data set
characteristics relating to one or more data
sets to be managed at Output Sexrvice time. The
first OSE for a job ‘is constructed at Input
Service <time and written into the STT. Laterx,
during Output Serxrvice processing, the OSE will
be completed and perhaps others generated for
the job. These elements become <the "output
gqueue",

Control Blocks - Segment Processing

ARfter the Job Segment Scheduler has been posted to
make a scheduling pass, JREs are examined to #£ind
an eligible 3job for which to schedule a job
segment. Paxrt of JSS's processing is to construct
an FCT entry (remember from Chapter 2) if the
function being scheduled is not a resident
function. You should remember that FCTs represent
the functions being pexrforxrmed by JES3. Also, in
addition to constructing and enqueueing an FCT (if
necessary), JSS will always build .a Resident RQueue
Element. As the illustration shous, pointers from
the JCT to the job's other SRFs are extracted and

55

PARM

VT

OSE

153

RQ
or
RESQUEUE

placed into the RQ. The R®, quite a large control
bloeck, 1is a storage area for status flags.,
informational fields, and queuing pointexs duxing
processing of a job segment (1 oxr more DSPs). R@s
only last the life of a job segment.

56

Chapterxr 6
ARdditional Functions and Features
Intxroduction

There are many JES3 facilities we have not yet
addressed in our discussions. Though it is beyond
the intent of this text to describe all the
features of JES3, a few which remain deserve oux
attention. Our purpose in +this chaptexr is to
examine several JES3 facilities that directly
affect, or are affected by, users of the computer
complex.

Deadline Scheduling

Most installations' production schedules demand
that cexrtain applications are completed at
strategic times of day on particular days of the
week. Deadline Scheduling, a JES3 DSP, is
designed to facilitate scheduling of jobs in a
controlled manner based upon time intervals, time
of day, and associated job priority changes.

Implementation of Deadline Scheduling begins with
one or more algorithm definitions (up to 36) in

the initialization statements for JESS3. Each
algorithm is given a type name and c¢ontains the
specifications regarding time intexvals and

priority changes. Therxre are two required parts of
a deadline algoxrithm:

- an initial priority change - The change may
be eithex in the form of a priority "set"
value ox a "change"™ value.

- a lead time value - Each job to use Deadline
Scheduling will, via a JES3 control statement
parameter, identify a <time of day by which

the job is to be completed - +the deadline
tinme. The lead time value, expressed in

hours ox nminutes, represents a time prioxr to
the deadline time at which the set or change
value (priorxity) is to be applied.

Two other parts of a deadline algorithm are

optional and will be described after a simple
example involving only the required operands.

57

I 6.1

Let's suppose that our installation had defined an
algoxrithm, type C, as

DEADLINE,C=(11, 1H)
We can tell that at 1 hour before a job's deadline
time, algorithm C will cause the job's priorxrity to
be set to 11. If a job with the JCL

//7MYJOB JOB » PRTY=Y
/7/STEP1 EXEC cees

including the following JES3 control statement

//MYJOB JOB ,PRTY=4§
//%MAIN ...,DEADLINE=(1500,C)
//STEP1 EXEC

enters our system at 9:00 am and has not completed
by 1400 (1 houxr prior +to its deadline time of
1500), its priority is to be set to 11 at 1400.
So, using this simple algorithm, if a job
completes prior to 1400, Deadline Scheduling has
had no effect on +the 3job; houwever, if not
completed by 148400, the change in priority will
enhance the chances of the job's being scheduled.
Should the 3Jjob in our example have entered the
system after 1500 (its deadline), but before 2400,
the deadline would be assumed to be 1500 tomorrow.

Several other options are available for Deadline
Scheduling:

- the set value in the algorithm could have
been specified as a change value such as +3
... meaning <to increment the job's original
prioxity by 3.

- gdditional increments and time intexrvals may
also he specified.

- the user may include a date or a relative
cycle specification in the DEADLINE operand
of //%¥MAIN.

Moxe detailed information will either be supplied
by your installation (with regaxrd to its wuse of
Deadline Scheduling) or may be found in the 0S/VS2
JCL manual in the section desoribing JES3 ocontrol
statenents.

58

| 8.2

Dependent Job Contxol

Applications usually consist of multiple
processing stages. These stages may relate to
each other in very simple or very complex uays.
Some stages may be optional, based upon
successful or unsuccessful completion of prior
stages. In prior operating systems environments,
the stages of processing usually had to be related
through the mechanism of job steps, since there
was no job-to-job <relationship. JES3 provides
Dependent Job Control (DJC) as a means of relating
the jobs which make up an application.

We use the term network +to describe a set of
related jobs which must xun in a predetermined
ordex. The "ordexing™ of 3jobs is usually
necessitated by data set dependencies, though
there may be other reasons as well. We include in
each job's JCL a JES3 control statement, the
/7/7X¥NET statement, to define the structure of our
network. In the illustrated netuwork, pictured by
what we refer to as a node diagram, we are showing
that job B cannot run until aftexr job A completes.
Jobs € and D are to be run, in that order, after
successful completion of job B, jobs E and F,. in
that ordex, only if job B abnormally terminates.

Without becoming +too deeply involved in coding
detail, let's examine our example network, whose
name (ID) is “SAMPLE"™. The 7/*NET statements
indicate:

- fox JOBA - there are no predecessors
indicated since HC (hold count) is
defaulted to =zero. Upon conmpletion of

JOBAR, JOBB (successoxr to JOBR) is to Dbe
released (RL=JOBB) <for normal scheduling
by decrementing its hold count.

- for JOBB =~ there is one predecessor
(JOBA), indicated by HC=1. JOBB cannot
proceed wuntil its HC is reduced to =zerxo.
At completion of JOBB, hold counts for

JOBC and JOBE are to be decremented

((RL=(JOBC,JOBE)).
- foxr JOBC — this job's hold count will only

be decremented if JOBB normally completes
(NC=D). If JOBB abnormally completes,

59

DJC

NETWORK
1 63

| 64
NODE

HOLD
COUNT

JOBC is to be flushed (AB=F) from the
system; JOBD will also be flushed.

- foxr JOBD - run this job upon successful
completion of JOBC (NC=D), retain it if
JOBC abnormally completes (AB=R).

- foxr JOBE - xrun this 3job only if JOBB
completes abnormally (AB=D). Should JOBB
run normally, JOBE is to be flushed, along
with JOBF.

Dependent Job Control has many items of noteworthy
interest associated with it. Jobs as a network
may be zread into the system in essentially any
ocxrder and at varying times. The structure and
content of the control blocks that are built forx
DJC allow the DSP to schedule the proper 3job at
the proper <time, and we will "wait" for missing
jobs of a network. This same control block
structure disallouws duplicate network names in the
system; jobs in a second network with the same
name will be considerxred part of the first networxk.
Early completion of a 1long <xrunning 3job may be
simulated via a console message (issued by a
problem program) so that successor Jjobs may be
scheduled earlier than otherwise. DJC is driven
by job completion, not by Jjob step completion.
Within a Jjob, however, the COND= entry coded on
EXEC statements can still be used. Several large
JES3 installations have production 3job stream
generating programs which also generate +the DJC
control statements for their applications.

Recovery Management

JES3's recovery facilities have been greatly
enhanced when compared to its predecessor, ASP.
These recovery facilities can be categorized into
three distinct groupings, allowing recovery for:

- software failuzres.

JES3

MVS
- hardware failures of global processor.
- DSP failures.

Our discussion will address the first two of these
three categories.

60

System Recovery - Software Failures

In the event of softuare failure in the JES3
addxess space, recovery involves an
initialization of JES3, but has no major effect
upon user jobs executing at the time of +the
failure. Usexr 3jobs +throughout the complex
continue to execute normally until they reach a
point of requiring a global JES3 service. Until
global JES3 is reinitialized, user jobs
requiring global service are MVS WAXTed. The
normal, first attempt at zxecovery is a JES3
HOTSTART, which initializes JES3 from
information spooled during the last incidence of
reading the set of initialization statements
(WARMSTART oxr COLDSTART). During HOTSTART, JES3
reestablishes itself based upon its checkpoints,
validity checks control tables in CSA, and
restructures each of its processing queues by
reading the job queue (JCT entries). Jobs found
to have been active at the time of failure are
restarted at the schedulexr element wupon which
the 3job was active; this restart is only an
"internal™ JES3 restart.

JES3 HOTSTART may also be used if an MVS failure
occurs on the global machine. In this case,
however, since MVS must be IPLed, usexr jobs in
execution on +the global processor will bhe
temporarily lost. They will be MVS restarted if
they were journaled. Jobs not journaled will
have JES3 failure option applied: ‘

- restart - Restart the job at the beginning
(of the job).

-~ cancel - Print any output generated to
time of failure and cancel the job out of
the system.

~ hold - Place the job in operator hold for
later restart.

= print - Print any output, then hold for
restart.

In addition, because the global JES3 address

space 'is lost in the case of MVS failuxe, local
processors must resend any outstanding requests

61

HOTSTART

foxr global sexvice when +the global has been
HOTSTARTED.

If a WARMSTART is necessary, either because
HOTSTART was unsuccessful, or because the system
restart is a planned one, all JES3 processors

must be re—-IPLed. This means, of c¢ourse, that
all wusexr jobs in execution will be temporarily
(at least) lost. Those which were journaled

will be MVS restarted; unjournaled jobs have the
JES3 failure option applied.

Failure of a local JUES3 address space causes no
loss of user jobs, even in the same processor as
the failure. The operator LOCAL starts the JES3
address space, the local processor reconnects to
the global, and the failure is transparent to
user jobs.

A LOCAY, start is also involved if MVS fails on a
local processor. The effect is, houwever, a bit
more drastic. Because MVS must be re-IPLed,
user jobs in that machine must be restarted ...
either MVS checkpoint-restart oxr JES3 failure
option applied.

System Recovery — Global Hardware Failure

The global JES3 address space is the "heart" of
a JES3 complex. AR hardware failure in the
global processor is relatively moxe serious than
the loss of a local processoxr, particularily
from a total complex standpoint. The reaction
to this global failure is to "move™ +the global
JES3 facility to another processor in such a
manner that we do not totally lose the JES3
complex. We call this procedure Dynamic Systenm
Interchange (DSI).

DPSI, internally a complicated procedure, must
have been thoroughly planned duxring the design
of a JES3 installation. This is due to tuwo
reasons:

- we are going to move the global facility
to a "new"™ global processor.

- we do not process an initialization deck

... during initialization of the oxiginal
global pProcessor, locals which are

62

WARMSTART

LOCAL START

Dsi

potential globals nust bhe identified.
This identification is necessary in ordex
to specify CTC paths to othexr locals <from
the machine that is becoming the global
processor.

All, or a major subset, of the "old" global
devices must be accessible by the "new™ global.
This accessibility wusually involves hardware
switching for unit record devices, some magnetic
tapes, and teleprocessing lines used for Remote
Job Processing.

The DSI process 1is begun and controlled by
operations personnel, and it is a multistep
transition of global capability. The local (to
hecome global) JES3 address space is Dbrought
doun in a special way, necessary devices
switched to the "neu™ global, and a HOTSTART is
simulated. The result is that we have, aftex
DSI, a "neuw" global processor. Though we cannot
dounplay the loss of computing capacity, ourx:
complex can continue to supply JES3 services to
its users.

When the "old"™ global is repaired, two options
are available as choices as to how to use it.
First, it may be LOCAL started and simply run as
a local processor. The installation may, on the
other hand, wish to reestablish that processor
as global. If the latter option is chosen, the
normal course of events is +to bring up the
repaired processor as a local, then DSI the
global =facility back to it. Now again, we have
a "neuw" global and the "old"™ global must be
LOCAL started +to bring the complex back to its
normal operating status.

63

GLOSSARY

This glossary provides definitions of 05/VS2 and
JES3 texms used in this publication. For
definitions not included, see IBM Data Processing
Glossary, GC20-1699.

address space. The virtual storage assigned to a
job, TSO user, or a task initiated by the START
conmmand. Each address space consists of the same
range of addresses.

ASP. Asymmetric multiprocessing system. A&n ,
extension of the IBM operating system (0S/7MVT and
08/7VS2 Release 1) that provides increased
automation of computer operations £or large scale
data processing users.

ASP main progesso¥. A processor supported by JES3
that is executing undexr eithexr OS/MVT oxr OS/VS2

Release 1. The ASP MAINTASK modules must be
rresent to communicate with JES3.

ch ~to-channel a ter. A hardware device
that is used to connhect two channels on differxent
systems.

cold start. The first start up after system
generation. Cold start invokes the initialization
process and may also be required after a
catastrophic failure. C

console service. Routines that provide two way
communication between the operator and JES3.

convertersinterpreter. The Jjob segment that
converts and interprets JCL for jobs that execute
on MVS processors.

CTC. See channel-teo-channel adapter.

DDR. See dynamic device reconfiguration.

dependent job control (DJC). The organizing of a

collection of jobs that must execute in a specific

64

oxdexr. DJC manages jobs thatvare dependent upon
one another.

DSI. See dynamic system interchange.

DSP. See dynamic support program.
dynamic allocation. Assignment of systen
resourxrces to a job at the time the job is executed
rathexr than at the time it is read into the
systenm.

dynamic device reconfiquration (DDR). A facility

that allows a demountable volume to be moved, and
repositioned if necessary, without abnormally
terminating the job or repeating the initial
program load proceduxe.

dynamic support program (DSP). The executable
code segments of JES3 that perform JES3 processing

facilities on behalf of jobs in the system. Card
reading and printing are examples.

dynamic system interchange gnsi). Allows the
operator to switch the global JES3 functions to a

local processor in the case of glohal procossor
failure.

dynamic writer. An output sexrvice function that
controls printing or punching of data sets with
characteristics that are not assigned to a
specific device but are assigned by JES3 to
appropriate devices as they become available.

early resource release. The releasing of
resources (devices volumes, and data sets) after

they are no longer needed.

explicit setup. The programmex specifies on a .
JES3 control c¢ard precisely which devices are to
be set up.

external writer. In 0S/VS2, a program that
supports the ability to write SYSOUT to devices
not supported by the job entry subsysten.

generalized main scheduling (GMS). A set of
algorithms that allow the JES3 system programmer

to tailor job scheduling and selection to the
specific needs of the installation.

65

global main processor. The MVS processoxr in the
JES3 installation in which the JES3 address space
manages jobs for all main processors, including
itself.

global processox. See global main processor.

GMS. See generalized main scheduling.

HASP. An extension to the System/360 operating
system that provides supplementary job management,
data management, and task management functions
such as control of job flowu.

hi wat a tup. An attempt to allocate a
mninimum numbexr of unique device types that fulfill
the requirements for each job step. Devices used
in one step can be released and used again in
later steps.

hot start. A restart that reinitializes JES3
automatically without allowing changes to the
initialization control cards. Recovery of all
jobs in execution is attempted.

hot writex. An output service program that
controls printing or punching of data sets wth
characteristics that are assigned for processing
on a specific device.

initialization. In JES3, the process that rxeads
the JES3 initialization control statements and
creates the tables and control blocks used
throughout the JES3 program.

~ input sexvice. The function that accepts and
gqueues all jobs entering the JES3 systen.

internal readex. A facility that transfers jobs
to the JES3 input sevice function.

JES2. A functional extension of the HASPII
program that receives jobs into the system and
processes all output data produced by the job.

JES3 spool access method (JSAM). Data management
routines that serve JES3 address space requests
such as allocation and deallocation of JES32
buffers.

66

JSAM. See JES3 spool access method.

local main processoxr. The MVS processor(s)

connected to and controlled by the global main
processor and sharing the JES3 gqueue. JES3 is
active in the local main processor for
communication with the global main processox.

local processor. See local main processor.

loosely—coupled multiprocessing. Two or more
computing systems interxconnected by an I/O
channel-to-channel adapter. The CPUs can be of
different types and have their ouwn unique
configurations.

madi ice scheduler (M . Controls the setup
of I/70 devices associated with job execution.

main processor. Any processor in the JES3
installation on which jobs can execute. The three
types of main processors are (1) global main, (2)
local main, and (3) ASP main.

main service. A dynamic support program that
schedules problem programs for execution and
manages the flow of data (system input, print, and
punch) across the channel-to-channel adapter to
and from the global processor.

MDS. See main device schedulerx.

nigration. Term used to define the changing over
from an installation's production operating system
to an upgraded or entirely new operating system,
such as from O0S/MVT to 0OS/VS2.

multiple virtual storage (MVS). A virtual stoxage

facility that allows each user a private address
space. MVS is provided at 0S/VSZ Release 2 and
subsequent releases. JES3 is provided at 0S/VS2
Release 3 and subsequent releases.

multiprocessi stem. A computing system
employing tuwo or more interconnected processing
units to execute programs simultaneously.

MVS. See multiple virtual storage.

67

network job processing (NJP). A facility that
permits the input, processing, and output of jobs
to and from compatible, remotely-located JES3
installations.

NJP. See network job processing.

output sexrvice. The function that processes
SYSOUT data sets. Processing includes printing,
punching, or directing output to an external
writex.

pre—execution setup. That portion of setup
performed by MDS prior to a job entering
execution.

primary Hjob—entry subsystem. The active job-entry
subsystem. The primary job-entry subsystem is
determined during the system generation process.

readersinterpreter. The job segment that reads
and interprets JCL for jobs that execute on ASP
main processors.

remote job processing (RJP). A facility that
permits the input, processing, and output of jobs
to and from terminals remote from the JES3
installation.

remote terminal processor (RTP). R programmable

remote workstation.

RJP. See remote job processing.

RMT. See remote terminal processor program.

emote terminal processor o m (RMT). & self-
loading object deck created as a result of an RMT
generation. RTP programs allow for JES3 to
communicate with programmable remote workstations.

RTP. See remote terminal processor.

setup. Consists of volume fetching, allocation,
mounting, and deallocation.

SSI. Subsystem interface,.

68

subsyst inte c . A set of progranm
routines that allouw twuo way communication betuween
a JES3 address space and other address spaces.

USAM. See user spool access method.

ugser exit. 1A subroutine in an IBM provided
program module that allows users to insert theix
oun unigue analysis and processing routine.

s ool ace od SAM). Data management
routines that do not execute in the JES3 address
space but provide the subsystem intexrface Ffor
allocation, deallocation, SYSIN/SYSOUT, OPEN, and
CLOSE functions of usexr data sets.

warm start. A restart that allous
reinitialization. Jobs that were in execution
remain in the job queue; however, an IPL must be
rexrfoxrmed for each processor. In ASP, this type
of start is called "xestart™.

workstation. A terminal device that may or may
not be a CPU. At a worxkstation, an opexator can
connect into a central system via SIGNON, entex
jobs, and receive cutput.

69

APPENDIX

The illustrations which follow are oxdered to
conform with the references within the text
material.

70

THE JoB CoNTROL TABLE ENTRY

JCT

JOB
CHARACTERISTICS
AND

DEFINITION

SCHEDULER ELEMENT

SCHEDULER ELEMENT

SCHEDULER ELEMENT

SCHEDULER ELEMENT

THE FIXED PORTION OF THE JCT
ENTRY CONTAINS THE DEFINITION

OF THE JOB... ITS CHARACTERISTICS
AND VARIOUS FLAGS WHICH IDENTIFY
THE STATUS OF THE JOB,

SCHEDULER ELEMENTS REPRESENT
THE SEGMENTS OF WORK TO BE
PERFORMED ON BEHALF OF THE
JoB BY JES3,

12,1

RESIDENT JES3 FCTS

FCTENTRY PRIORITY
CONSOLES 255
CONSERV 254
JSAM 250
CONSDM 240
MAIN 53
MAIN 52
MAIN 51
MAIN 50
DVNAL 35
OUTSERV 30
VERIFY 30
SETUP 30
SMFHGST 30
MODDRVR 15
INQDRVR 14
WTDDRVR 12
LOCATE 5
MSGC 4
JSS 2
FAILSOFT 1
MAIT 0

DESCRIPTION

CONSOLES

CONSOLE SERVICE

DSP SPCOL 1/0

CONSOLE SPOOL I/0

MVS CTC I/0

ASP CTC I/0

MVS GENERALIZED MAIN SCHEDULING
ASP GENERALIZED MAIN SCHEDULING
DYNAMIC ALLOCATION

OUTPUT SERVICE

VOLUME VERIFICATION

MAIN DEVICE SCHEDULING

SMF RECORD WRITER

MODIFY PROCESSING

INQUIRY PROCESSING

WORK-TO-DO PROCESSING

LOCATE

MAIN SERVICE GENERAL COLLECTION
JOB SEGMENT SCHEDULER

FAILING CODE PROCESSOR

ENTRY TO MULTIFUNCTION MONITOR

DRIVER

IATCNSL
IATCNSV
IATDMBG
IATCNDM
IATMSMI
IATMSIO
IATMSMS
IATMSMN
IATDYDR
IATOSDR
IATLVVR
IATMDDR
IATOSDR
IATMODV
IATIQDV
IATGRWD

IATLVIN

IATHMSGC
IATGRJS
IATFSLG
IATGRCT

I2.2

BEFORE:

FCT CHAIN

JCT

CR

PURGE

JCT

CR

s s

URGE

CODE FOR
CR DSP

12,3

3

|
I
! CODE FOR
"7 crR Dsp
]
[
1
SPOOL

'.—.—.—-

MSGC

BATCH

2

/

CODE FOR
IS DSP

JSS

—
w
i
|
1

WAIT

MAY OR MAY NOT
STILL BE IN THE
FCT CHAIN

N

SPOOL

4&/”/’ (VJOB ﬂ
(JOB » BATCH 1
| J
BATCH JCT
1
____/
BATCH
\\NE“,,/
FURGE
JCT
<> IS
DATA JCT
FOR DATA SET PURCE
JOBS
BATCH
.
f 'I
N— I

12.4

MVS MEMORY MAP

SQA
PLPA
CSA
MASTER JES BATCH TSO STARTED
SCHEDULER MEMORIES USERS TASKS
(MuLTiPLE) | (MULTIPLE)| (MULTIPLE)

NUCLEUS

13,1

¢'¢l

ADDRESS SPACE COMMUNICATIONS

JES3 USER JES3 USER
CTC ADAPTER
1 <G——>
2 <+ >
3 4 >
SLOBAL LOCAL

GroeaL JES3 10 GropaL User via SEE ScHEDULE
GrLosaL JES3 1o LocaL USER via SSISERV iacro
GroeaL JES3 1o LocaL JES3 via JSERV Macro

22

12
13

32

23
24
25
96
27
35
36
37

10
14
33
34

SSI FUNCTION CODES

SCHEDULING
JOB SELECTION
STEP INITIATION

STEP TERMINATION
JOB TERMINATION

JOB RE-ENQUEUE

END OF MEMORY

“S INIT" COMMAND FAILURE

DEVICE/DATA SET MGMT
DYNAMIC ALLOCATION

COMMON ALLOCATION
COMMON UNALLOCATION
CHANGE DDNAME

CHANGE ENQUEUE USE ATTRIBUTE

MSS VOLUME INVENTORY
MSS MOUNT EQUALIZATION
MSS OPEN/EOV

CONSOLES
WTO/WTOR
SVC 34
DOM
MASTER CONSOLE SWITCH
WTL

16
17

* 18
* 19

11

26
29
30
31

15
20
21

SYSIN/SYSOUT

ALLOCATION

OPEN

CLOSE
UNALLOCATION
CHECKPOINT
RESTART

150
QUTPUT
CANCEL
STATUS
VALIDATE

DDR

CANDIDATE SELECTION
CANDIDATE VERIFICATION

SWAP NOTIFICATION
SWAP COMPLETE

MISCELLAKLOUS

VERIFY SUBSYSTEM ID (UNSUPPORTED)

REQUEST JOB ID
RETURN JOB 1D

* PROCESSED BY FUNCTION ROUTINE

13,3

SSI-RELATED CONTROL BLOCKS

MVS
(NUCLEUS) (csA) (csA)
JESCT SSCVT SSCVT
/"3‘
/9“ /F »
JES3 MSTR
SUBSYSTEM
(PLPA) (csa) (csA) DEFINITION
SSVT X SSVT
SUBSYSTEM FUNCTIONS ™ FuNCTIONS
INTERFACE THAT THIS THAT THIS
REQUEST SUBSYSTEM SUBSYSTEM
ROUTINE CAN PERFORM CAN PERFORM
. R1
IEFSSREQ USER MEMORY
» /
.
BALR ‘[
SSOB SSIB
SUBSYSTEM
FUNCTIONAL
FUNCTION FROM WHICH
INTERFACE
REQUESTED FUNCTION
REQUESTED

13.4

STRUCTURE OF
SUBSYSTEM VECTOR
TABLE

RESVD 21y
01102]035(04
05§ 0 07 | 06
09| 0A|OB|QC
0D{ CE| 00| QCF
1011112} 13
1411511617
181 19| 1A | 1B
1C{ 10| 1E} IF
201 2112223
24 :
< <
RTN1
RTN2
RTN3
RTN4
RTN5

4 RTNG

< ; Y

(@21 QLS

s 30 | e | i | e

13.5

SPOOL DATA MANAGEMENT
FUNCTIONAL COMPONENTS

JSAM USAM
1. Macro ROUTINES 1. MaAcro ROUTINES
2. SpooL SPACE ALLOCATION 2. DASD Brock ALLOCATION

3, User TRAck GROUP ALLOCATION
INTERFACE

4, JSAM FuncTion

COMMON

1, SpooL 1/0 INITIATION AND TERMINATION

14.1

SPOOL DATA MANAGEMENT

FUNCTIONAL COMPONENTS

JSAM

MACRO ROUTINES
- SRF ProCESSING
- MRF PRrocessING

SpooL Space ALLOCATION

- ALLOCATES TRACK GROUPS
ForR DSPs AND USER JOBS

- ALLOCATES BLOCKS WITHIN
TRACK GROUPS

User TrRACK GRoup ALLOCATION

INTERFACE

- SERVES AS PATH TO TRACK
GROUP ALLOCATION, ABOVE

JSAM FuncTiION

- SENDS NOTIFICATION OF
JSAM compLETIONS To DSPs

COMMON

UsAN_

1. Macro RouTINES
- ENTERED BY MACROS
ISSUED IN COMPATIBILITY
INTERFACE
2. RECORD ALLOCATION

- ALLOCATES BLOCKS
WITHIN TRACK GROUPS

1. SpooL I1/0 INITIATION AND TERMINATION

- STARTS ALL REQUESTS BY SRD SCHEDULING

- SENDS JSAM coMmPLETIONS To JSAM FuncTION

- seNDS USAM COMPLETIONS TO USER ADDRESS

SPACES

14,2

SQA

PLPA
|__SSI ROUTINE USAM ROUTINES
ALLOCATION GET PUT
OPEN CLOSE POINT
UNALLOCATION CHECK ENDREQ
DSB CSA (241)
———— | L
‘ PROTECTED BUFFER POOL
(231) L Lo b L]
JES3 MEMORY USER MEMORY
(230) JES10 BUFFERS
i | I |
USER BUFFERS (230)
) LI
(1))
JSAM
SRF = MRF
MACROS
FLPA

SDM DIE ROUTINE

NUCLEUS

e -

4.3

E# J’ JQEs ARE.CHAINED FIFO

WITHIN PRIORITY
JOE

SCHEDULING
AND
STATUS
DATA

POINTER IS IN FORM OF A DISK

~JOE

A/

POINTER IN FORM OF MEMORY

ADDRESS OF RESIDENT <:::::::::::7

QUEUE ELEMENT
JCT DATA SET

RQ JCT
GENERATED AS SEGMENT

BEING SCHEDULED

15.1

gurs WU UL BLULRG Lidam

OF
JOB”

JCT

JOB
CTL
TABLE
ENTRY

Cl
MAIN
OUTSERVY
PURGE

| |
| JDAB I JST | 0SE
| JOB l JOB l OUTPUT
DESC SUHM ! SERVICE
] ACCTNG | TABLE [ELEMENT
BLOCK ! l
#’ | Y [y
JDS | JBTAT | Nt
JOB | SPOOL l JOL:
DATASET| | SPACE l MGMT
BLOCK [ALLOC RECOKD
v l
2 i }
FRP PARM JVT
FORMAT USER JOB
PARHMS PARMS VOLUME
BUFFER TABLE
JCT KEPT IN UNIQUE DATA SET ALL OTHERS kepT 11 sPcoL

CONTAINING ALL JCTS [5,2

JOB CONTROL BLOCKS

“NCTIVE FUNCTION”

DATA FROM JCT

- FCT

I RQ

RESIDENT

KEPT IN MEMCRY

n -n
—_——— ()]
| —

>

C

1 m™m

[

m

— Y KEPT ih SPCOL
] | |] B |
| i | | | 4
I JDAB I JST] 0SE
I | |
| l |
JDS ! JBTAT | JMR
| |
| |
N |
B R ¥
FRP PARM JVT

I5.3

DEADLINE SCHEDULING
Basic SPECIFICATIONS

1. IN THE JES3 INITIALIZATION STATEMENTS, DEFINE NEEDED
ALGORITHM TYPES.
ExAMPLE -

DEADLINE,C=(11,1H)
a/"’*‘L.EAD TIME PRIOR TO DEADLINE
INITIAL PRIORITY "SET” OR "CHANGE”

DEADLINE TYPE

2, IpeNTIFY THE NEED FoR DEADLINE SCHEDULING witH JES3 conTROL
STATEMENT OPERANDS FOR INDIVIDUAL JOBS.

EXAMPLE -

//+VMAIN ., ..,DEADLINE=(1500,C)

(f* (»ALGORITHM TYPE
DEADLINE TIME
%EXPRESSED IN 24 HOUR)
CLOCK TIME)

16,1

DEADLINE SCHEDULING
OPTIONAL SPECIFICATIONS

1, ALGORITHM DEFINITION:

DEADLINE,B=(+3,2H,+1,20M)

é:iTHESE OPERANDS SPECIFY ADDITIONMAL PRIORITY
INCREMENTS OF +1 EACH TWENTY MINUTES
FOLLOWING THE INITIAL PRIORITY CHANGE,
UNTIL THE JOB COMPLETES OR A PRIORITY
ofF 14 1s REACHED.

NOTE THAT THE INITIAL PRIORITY IS SHOWN HERE
AS AN INCREMENT RATHER THAN A “SET” VALUE

2. CONTROL STATEMENT:

//+MAIN ..., DEADLINE=(1600,B,0pPT1I0N)

————
onay

————
(::;T;HE OPTION FIELD MAY BE CCDED AS A

DATE - MMDDYY, OR A RELATIVE CYCLE
SPECIFICATION:

3, WEEKLY 3RD DAY OF WEEK
12,MONTHLY 12TH DAY OF MONTH
117,YEARLY 117TH DAY OF YEAR

16l2

DEPENDENT JOB CONTRO

- — e e - S D D G O P W SN e - - - - —— - - - -

O DEFINE A JOB WITHIN A NETWORK OF JOBS

0 SPECIFY THE RELATIONSHIPS OF THE DEPENDENT JOBS

//#NET FACTORS TO BE CONSIDERED
NETID ID=NAME - THE NETWORK I BELONG TO
NHOLD HC=N - HOW MANY IMMEDIATE PREDECESSORS
DO I HAVE ?
RELEASE RL=(JOBNAME,..,) - WHAT ARE MY IMMEDIATE SUCCESSORS
NorMAL NC=D | F [R ACTION TAKEN FOR NORMAL OR

- ABNORMAL TERMINATION OF ANY
ABNORMAL AB=D | F | R IMMEDIATE PREDECESSOR

D - DpecreMeENT NHOLD count
F - FLUSH THE JOB AND IT'S SUCCESSORS

R - RETAIN ; DO NOT DECREMENT NHOLD coumt

16.3

NODE DIAGRAM FOR SAMPLE NEWWORK

ID="SAMPLE"

HC:O S re v ne

Hc=1,Nc=D, -+

AB=R

............. He=1
NC=F
AB=

- He=1

MC=D
AB=R

Jos CONTROL LANGUAGE

//JOBA
//+NET

//J0BB
//#NET

//J0BC
//#NET

//J0BD
//#NET

//JOBE
//=NET

//JOBF
//#NET

JOB L B I]
[D=SAMPLE, HC=1, RL=(JOEB)

0B ...
[D=SAMPLE, HC=1, RL=CJOBC, JOBE)

JOB ...
ID=SAMPLE, HC=1,HC=D, AB=F , RL=(.JOBD)

JOB ...

[D=SAMPLE, HC=1,NC=D, AB=R

JOB ...

ID=SANPLE, HC=1,NC=F , AB=D , RL=(JOEF)

JOB ...
[D=SAMPLE, HC=1,NC=D,AB=R

16.4

READER'S COMMENTS

Title: JES3 - R PRIMER
Washington Systems Center
Technical Bulletin 6622-9200-00

IBM may use ox distribute any of the information you supply
in any way it believes appropriate without incurring any
obligation whatever. You may of course, continue to use the
information vou supply.

Please state your occupation:

Comments:

Please mail to: J. M. Eubanks
IBM Corporation
18100 Frederick Pike
Gaithersburg, Md. 20760

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A, 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

	#FrontCoverA
	#FrontCoverB
	$001
	$002
	$003
	$004
	$005
	$006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	I2-1
	I2-2
	I2-3
	I2-4
	I3-1
	I3-2
	I3-3
	I3-4
	I3-5
	I3-6
	I4-1
	I4-2
	I4-3
	I4-4
	I5-1
	I5-2
	I5-3
	I5-4
	I6-1
	I6-2
	I6-3
	I6-4
	replyA
	replyB
	xBackCoverA
	xBackCoverB

