Washington Systems Center
Gaithersburg, Maryland
Technical Bulletin

VM/370 MAINTENANCE MADE SIMPLE

Written by: R. W. Benham
Edited by: A. A. Gigliotti
G. E. Hollendursky

6G22-9277-00
May 1982

PREFACE

There seem to be many misconceptions regarding the generation
and maintenance of VM/CMS systems. 1 believe that simplicity
has always been the hallmark of VM/370. Many of the problems
arise from new users imagining that the processes must contain
acertain complexity which simply is not there.

Much of the imagined complexity has doubtless been caused by
the many procedures and EXEC's which have been developed over
the years in an effort to simplify the generation and mainte-
nance process. And while they do, indeed, provide valuable and
time-saving tools to the initiated, they tend to obscure the
basic processes from the struggling novice.

The purpose of this paper is to try to clarify the process.

Preface iii

CONTENTS

THE VIRTUAL MACHINE e e 4 & s e s e e e e e e e e e e e e e e 1
The MAINTenance MACHINE e b e e e e e e e e e e e e e e e e 3
CP-0Ouned Volunes e 4 e e e e s e e e e e e e e e e e e e e e 5

MAINT's Mini-Disks e e e e e e e e e e e e e e e e e e e 7
MAINT's 190 disk e e e e st e e e e e e e e e e e s e e e 8
MAINT's 191 disk C e e e e e s e e e e e e e e e e e e e e 9
MAINT's 193 (or 293) disk e e e e e e e e e e e e e e 9
MAINT's 194 disk e N
MAINT's 294 disk s N ¢

CP/CHMS Nuclei — from Disk to Card e & £
The CHNTRL file . & « v ¢ v v v v e v v e e e e v e e e e v w12
The Loadlist EXEC file D
The VRSIZE MODULE S B
The VMFLOAD MODULE e X
Some Notes T 1)
Summary T

CP/CMS Nuclei - from Card to Disk B)
The CP Nucleus. O 4
The CMS Nucleus T -
A Suggestion D

After The Gen — A Few Comments e e e e e e e e e e e e e e, 21
On CP - |
On CMS - |

NAMED SYSTEMS And DCSS's -

VM/370 Source Maintenance e e e e e e e e e e e e e e e e . . 25
The UPDATE Command e .25
The VMFASM EXEC D 1
The VMFMAC EXEC . S |
A Scenario . 3 |

MY WAY - which is one Way . 3

POSTLUDE e 1

Contents v

THIS PAGE INTENTIONALLY LEFT BLANK

vi VM/370 MAINTENANCE MADE SIMPLE

THE VIRTUAL MACHINE

VM/370 is comprised of a number of components. The two most
significant of these are CP (the Control Program) and CMS (the
Conversational Monitor System). These are the only two compo-
nents with which we will deal at any length, as they are the
head and heart of the system and are the only components which
are absolutely necessary to get the job (generation and mainte-
nance) done.

Now let's look at CP. CP has but one real mission in life, and
that is to multiprogram virtual machines. True, it provides
other nice functions as well, such as SPO0OLing, and VMCF commu-
nications between virtual machines, and DIAGNOSE interfaces to
enhance the function and performance of virtual machines, but
the fact remains that CP really exists to create and juggle a
whole bunch of IBM 360 and 370 virtual computers on one real
computer.

And how hard is that? It may sound complex at first. If we
think about it, it really becomes (conceptually, at least)
quite simple.

The most difficult part of any system design or progranmnming
problem is always definition, followed a close second by change
("That's not what I meant!!"” says the user to the programmer).
CP's "problem definition" is almost cast in concrete. It may
be found in IBM publication GA22-7000, "IBM System/370 Princi-
ples of Operations”. It's the function described therein that
CP makes every attempt to provide to a multitude of concurrent
users.

But what does a user do with his own IBM 360/370 computer?
Surely not everyone wants to be a computer operator or a sys-
tems prouyrammer, playing with PSWN's and general registers and
control registers and all that neat stuff. HNo, generally they
will want to run some operating system which will provide the
services that we have come to expect of operating systems, such
as 170 access maethod support, and compiler support, and support
of various end-user programs like STAIRS and QBE and SPF, and
storaae management, and device management, and on and on.

Mow the user might choose to run any number of operating sys-
tems in that virtual IBM 360 or 370 that CP has created. Over
the years, IBM has developed quite a number of such systems -
BPS, TO0S, BOS, DOS, PCP, MFT-I, MFT-II, 0Ss/VS1l, DOS/VSE, SVS,
MVS... Since each of these systems was designed to run in an
IBM 360 or 370, each of them will most probably run in that vir-
tual machine that CP has created.

But wouldn't it be nice to have an operating system that was
custom designed to run to maximum advantage in a virtual

THE VIRTUAL MACHINE 1

machine? One that would provide all that function that we have
come to expect of an operating system?

Enter our second component - CMS. CMS is just such an operating
system with all of those above mentioned functions, and while
it would be a gross misrepresentation to infer that there is no
connection between CP and CMS, for our purposes let us just say
that CMS is just another operating system running in a virtual
machine. So far as CP is concerned, it might be DOS or BPS or
whatever. CP is just managing the virtual hardware and cares
not what we run in it.

Now what is the point of this discussion about CP, and virtual
IBM 360's and 370's, and operating systems? The point is to
dispell the myth that some virtual machines have special quali-
ties and do things differently from garden variety virtual
machines. The fact is that CP creates and manages all virtual
IBM 360 and 370 computers as they are defined in the current
system DIRECTORY. All virtual machines are created equal in
CP's eyes, and the fact that one is called MAINT and one is
called RSCS is of absolutely no consequence to CP.,

So let's talk now of convention.

2 VM/370 MAINTENANCE MADE SIMPLE

e
P AU |

¢

THE MAINTENANCE MACHINE

As a matter of convenience and in an attempt at
standardization, a virtual machine with the name of MAINT has
become something of standard in VM/370 installations. But this
seems also to have led to the belief that this virtual machine
has certain qualities that other machines like CMS1 and CHMS2 do
not. This is sheer nonsense.

But surely, you say, there is something uniacue about MAINT?
And vyes, I ansuwer, but the only uniqueness lies in the fact that
the MAINT virtual machine is generally defined in the system
DIRECTORY as having more privileges than most virtual machines
are given (via the privilege class entries in the USER state-
ment), and as having write access to more system related
mini-disks and full-disk volumes than the "average" userid.

To look a bit more closely, the userid generally named MAINT is
ordinarily given privilege classes ABCDEFG which allows that
particular userid to use any command in the system (including
SHUTDOWN, so0o be careful). It is also generally defined as &
rather large machine - typically 3 Megs with the opticn of
redefining itself right up to the 16 Meg limit. It will require
this large address space to install Discontiguous Shared Seg-
ments which typically reside above the "average" user's
address space. It will generally have MDISK statements in its
DIRECTORY entry for all of the system-related mini-disks (the
CMS system disk, the disks used for CP and CHS maintenance,
etc). Other MDISK statements give 1t read/write access to full
volumes so that it may do systems maintenance such as
re-writing the CP nucleus, changing disk allocaticns, and
writing the DIRECTORY itself:

"

Those are the things which make MAINT "different™ from an "av-

erage" user.

The MAINTenance MACHINE 3

THIS PAGE INTENTIONALLY LEFT BLANK

4 VM/370 MAINTENANCE MADE SIMPLE

CP~OWNED VOLUMES

All VM/370 installations will have at least one CP-Owned
volume. The volume on which the CP nucleus resides must belong
to CP and cannot be removed while the system is running.

Most VM/370 installations will have more than one CP-Owned vol-
ume. Any volume that is to be used for CP paging, SPOQLling, or
T-Disk space must be defined as a CP-Owned volume in DMKSYS.
One should keep in mind, however, that the DASD space used for
CP functions (paging, SPOOLing, T-Disk, DIRECTORY, SYSWRM,
SYSERR, SYSCKP, etc.) is NOT affected by DIRECTORY entries. The
SIPO/E and the clever user may specify such areas under NOLOG
entries in the DIRECTORY for documentation purposes but there
is NO checking done by CP to avoid overlaps.

Let's look at some of those areas and see exactly where they are
defined for use.

Each CP-0Owned volume must be formatted and allocated by the CP
FORMAT/ALLOCATE program. This is quite different from the CMS
FORMAT program since CP and CMS are two very different "oper-
ating systems", and use different disk formats.

The FORMAT function of the program formats the entire disk (or
mini-disk) to 4096-byte blocks. The first cylinder (or 16
blocks with FBA devices) contains a volume label, an IPL
record, a dummy VTOC, and an allocation bit map.The allocation
bit map defines how the space on the volume is to be used.

The ALLOCATE function of the program fills in the allocation
bit map according to the user's specifications (PERHYM, TDSK,
DRCT, TEMP, PAGE). If the ALLOCATE function is not run, the
default from the FORMAT function is PERM for the entire disk
(or mini-disk).

When space is allocated as anything but PERM (i.e. TEMP, TDSK,
PAGE, DRCT), that space has been given to CP and if tiie same
space is also inadvertantly given to some user via a MDISK
statement with write access in the DIRECTORY you can expect
disaster. Again, no checking is automatically done by CP, it
is quite possible to allocate space on a volume as TEMP (i.e.
for CP paging and SPOOLing) and then create a USER entry in the
DIRECTORY with the same cylinders (or blocks) allocated as a
user mini-disk. The results will be that CP paging/SP0O0OLiIng
occurs in the same area that a virtual machine is writing. No
one checks but YOU!

So, simply stated, keep track of how you have allocated your
packs with the FORMAT/ALLOCATE program. Place USER NOLOG
entries in the DIRECTORY to document all your allocation in one
DIRECTORY. Remember that those DIRECTORY entries for TDSK,

CP-0Owned Volumes 5

TEMP, PAGE, DRCT, and other CP-owned areas are for your conven-
ience only, and are of no significance to CP.

But is the space allocated as PERM there to use at will for
mini-disks? No, ¢t least not all of it. In DMKSYS and in DMKSNT
you define areas for CP for the CP-nucleus, various error
recovery areas, and areas to be used for the storing of SAVED
SYSTEMS and Discontiguous Shared Seaments. You have explicite-
ly told CP where and how much DASD space to use for these
various functions, and CP does NOT go to the DIRECTORY to find
out where these areas are. The DIRECTORY has only one
function, and that is to describe to CP just what virtual IBM
3607370 computer to create when a user logs on to the system,
So, again, it is up to YOU to assure that there are no overlaps.

In summary, be auware that there are really three different
things to look at when trying to determine how your DASD space
is allocated: first, how the real volume was allocated with the
FORMAT/ALLOCATE program; second, what areas were given to CP in
the DMKSYS and DMKSNT ASSEMBLE files; third, how is mini-disk
space allocated in the system DIRECTORY. The second and third
are easy, 1in that you need only look at the files, and perhaps
do some simple calculations to convert pages to tracks or
blocks. The first — if you have lost all record of how the disk
was allocated - can be determined by running the
FORMAT/ALLOCATE program and simply specifying EHND when prompt-
ed for the new allocations. The program will respond with the
current allocations for the disk. Then write it down (or cap-
ture it in a file) and save it.

6 VM/370 MAINTENANCE MADE SIMPLE

‘P
o

MAINT'S MINI-DISKS

We will now turn to the MAINT virtual machine and look at cer-
tain of the mini-disks customarily associated with this ser-
vice machine.

Once again the reader should be aware that the addresses used
for these mini-disks are a matter of convention and not hard
and fast rules. In fact even within IBM's own procedures, the
conventions are periodically changed. VM/SP used 293 vs 193 for
the SIPO/E.

Let's lock at what we really need in order to maintain our sys-
tem, and then explore the logic behind the choice of where to
put things.

First, consider that we are really maintaining two systems, CP
and CMS, which, though similiar in maintenance procedure, are
quite totally different in function. Therefore it becomes con-
venient (although not absolutely necessary) to logically and
physically separate the various pieces of the two systems. The
logical separation is handled qQuite nicely by a simple naming
convention - a unique three-character prefix is used for each
CP or CMS module to identify the component to which it belongs.
DMKxxx identifies a CP module, DMSxxx identifies a CMS module.
The three characters following the prefix give some indication
of the function of the module — DMKSCH is a CP scheduler module,
DMSACC is the CMS ACCESS command module, etc.

Now let us digress a moment and review the VM/7370 service phi-
losophy.

All of CP and CMS is programmed in assembler language. When a
new release level of VM/370 appears the assembler source is
re-sequenced to include all updates which have been incorpo-
rated during the life of the previous release. This becoines
the base source and, with a few exceptions, that source does
not change throughout the life of the release. The current
release level of VM/370 is release 6, the current release level
of VM/SP is 1.1 (that 1.1 is simply a mid-life merging of PTF's
to source).

As fixes to problems become available, they are provided to
customers via PUT (Program Update Tapes) or PLC (Program Level
Change) tapes in the form of UPDATES to the base source. If
that was all that was provided, it would require that each cus-
tomer re-assemble (with the provided updates) every module in
the system that had changed. As this is obviously not feasable,
IBM also ships the TEXT decks which result from the re-assemble
of those modules. And, as many of the CMS commands are MODULES
created from TEXT decks with the LOAD, INCLUDE, and GENMOD com-
mands, those MODULES are also shipped in order to reduce the
customer effort to install updates.

MAINT's Mini-Disks 7

A few other things are generally included in a PUT or PLC. They
include updated HELP screens, EXEC's, MACLIB's, and occa-
sionally a replacement for a source module ~ ASSEMBLE file -
which may have been split into two modules or changed in a way
inconsistent with a simple update file.

Some users may not keep CP or CMS source (ASSEMBLE) files
online, as it is rarely used - unless your system is heavily
modified. Since IBM ships all TEXT decks which have been modi-
fied, the source is only needed if customer modifications are
required or if a problem is identified which requires an
on-site modification. In this case, the required source pro-
gram can be retrieved from the source tapes which are supplied
by PID with the VM/370 system. All of the DMK (CP) modules are
on one tape, and the DMS (CHMS) modules on a second tape volume.
It would not be correct, however, to infer that online source
is a luxury. Much time may be saved, and the very best system
documentation (the source itself) becomes immediately avail-
able when the source is kept online.

So we have reduced our requirements for maintaining a CP/CMS
system to CP TEXT, MACLIB, EXEC, and UPDATE files, and CMS
TEXT, MACLIB, EXEC, MODULE, HELP screens, and UPDATE files.

By convention, (which changes from time to time) these files
are placed on four mini-disks which (also by convention) belong
to the user MAINT. They are - 190, 193 (or 293), 1964, and 294.
The SYSGEN manual also recommends a 201 disk for containing the
CPEREP TXTLIB's, which have generally been kept on the 190
disk.

Let's press on then. MWe really have only five mini-disks to
contend with, so let's look at them and see what they contain.

MAINT's 190 disk

This is historically the CMS System disk, and as such is a bit
different from the other mini-disks. A system disk (be it for a
"real" system or a "virtual"™ system) needs space for writing
the system nucleus so that the system can be IPL'ed. MWhen a
disk is formatted using the CMS FORMAT command, the whole
mini-disk i1s normally formatted for CMS use and as such the
entire mini-disk would be available for writing CMS files.
This would have a most adverse effect on the operation of the
system if a file were written over the CMS nucleus (which is NOT
a CMS file, but an IPL'able operating system). In order to pre-
vent such an occurance, the CMS FORMAT command has a RECOMP
option which makes available only a specified portion of the
disk for CMS file use. You can see this difference by comparing
the results of a CP QUERY VIRTUAL 190 command which will show
the true size of the mini-disk, with a CMS QUERY DISK S command

8 VM/370 MAINTENANCE MADE SIMPLE

which will show the size of the disk in terms of what the CMS
file system has available for use. They had best be different.
This disk (190) contains everything that is necessary to the
generating and running of CMS. It contains TEXT files, EXEC's,
MACLIB's, and MODULE's, as well as the HELP screens for a
BSEPP, SEPP, or VM/SP system.

This is the disk to which all of your CMS users will have
read-only LINK's, in order that they may IPL and use CMS. When
CMS is IPL'ed it ACCESSes the 190 (IPL) disk as the S-Disk and,
as whenever a CMS disk is ACCESSed, builds an in-storage direc-
tory to the files on the disk. In an effort to reduce the size
of that in-storage directory, however, only filemode number 2
(S2) files are included in that directory. Thus, if you wish to
be able to "see™ all of the S-Disk files, you must also access
it as some other mode letter - e.g. ACCESS 190 C.

MAINT's 191 disk

This is simply the MAINT machines work disk, and is generally
used to contain those ASSEMBLE files which are needed for
day-to-day systems work (DMKRIO, DMKSYS, DMKSNT). It may also
contain the 'system DIRECTORY, unless you choose to hide that
away i some obscure spot for reasons of security.

MAINT's 193 (or 293) disk

This disk contains the UPDATE and AUX files for the CMS system.
These files (and this disk) are needed only if a local modifi-
cation is to be made to CMS source. It is handy to have around,
however, because you can find out from the FILETYPES on this
disk whether or not a particular PTF is on your system. LlLet's
say you call the Support Center with a CHMS problem, and they ask
if you have APAR number 12345 on your system. If you ACCESS the
193 (or 293) disk as (say) your B-disk and issue LISTFILE x
§12345DS B, you should get a hit if that PTF is on your system.
FLIST is even nicer, in that you can simply enter FLIST ¥
¥12345% B, and not worry about the naming conventions for sys-—
tem UPDATE files.

MAINT's Mini-Disks 9

MAINT's 194 disk

This disk contains all of the code that you normally will need
to do a CP Nucleus Generation. It has all of the CP TEXT,
MACLIB's, and CNTRL files necessary for putting together a CP
Nucleus which we will loock at more closely in a bit. This is
really the CP counterpart of the 190 disk for CMS, excepting
that there is no nucleus on this disk - it contains the pieces
for putting together a CP nucleus for writing on the IPL'able
system disk.

MATIHNT's 294 disk

This disk contains the CP UPDATE and AUX files necessary for
applying source changes to CP modules. It is the CP counter-
part to the 193 (or 293) disk for CMS. As with the 193 disk, it
is used only when it becomes necessary to apply local source
changes cr when one wishes to see if a particular PTF is on ones
system.

And that's the lot. True, MAINT has a bunch of other disks
which normally belong *o that virtual machine, but all of the
pieces used for normal CP/CHS maintenance (with the exception
of source, which may be selectively loaded from tape as needed)
are contained on those five mini-disks. And if you consider
that 193 (or 293) and 294 are needed only if source changes are
to be made, that cuts the list to three - 190 for CMS
generation, 194 for CP generation, and 191 for a work disk if
certain modules (such as DMKRIO) need to be re—~assembled.

The one exception to the above, is that the MAINT machine (or
whatever machine you choose to use for maintenance) must have
READ/WHRITE access to the system volume which is to contain the
system CP Nucleus and the system DIRECTORY. This disk need not
be ACCESS'ed as a CMS disk, but must be available whenever a
DIRECTORY 15 to be written or when a new CP nucleus is created.

WHe shall press on now and look at exactly how a CP ands/or CHMS
nucleus generation is accomplished.

10 VM/370 MAINTENANCE MADE SIMPLE

CP/CMS NUCLET - FROM DISK TO CARD

This section will be a breeze for those among us who remember
the days of stand-alone programs which were loaded from cards
via a real card reader. HNot JOB's loaded from cards but whole
programs which consisted of a boot-strap IPL program of gener-—
ally two or three cards, followed by a LOADER program, which
loaded and relocated TEXT decks, resolved external references,
printed a map showing where everything was loaded, and finally
gave control to the program which it had loaded.

Hell that's exactly how a CP or CMS nucleus is generated and
loaded.

Now many EXEC's have come into being which have a way of obscur~-
ing the facts - EXEC's like GENERATE, and GENERBSE - but the key
MODULE which (with a little information from us) creates those
great big stand-alone card decks for loading is VMFLOAD.

The process which will now be described is, for all practical
purposes, identical for CP, CMS, and for certain other
sub-systems (such as RSCS) which have their ouwn IPL'able
nuclei., It is quite simply a process of piling together many
card decks - certain of which we may have produced via assembly
of source - with an IPL program and LOADER program in the front,
dozens of TEXT decks in the middle, and an LDT (Load Terminate)
card at the end which directs the LOADER to the symbolic
address to be given control after all of those TEXT decks have
been loaded into storage.

You could very well do all that manually - that is, identify
each of the appropriate decks to punch, punch them using the
CMS PUNCH command, gather up all the cards from the card punch,
place them in the card reader, and IPL from the reader. Don't!
For a CP nucleus generation, you would have something in excess
of 200 PUNCH commands to issue and about 16 to 20 thousand cards
to shuffle.

But the process that you do use is functionally identical to
that described above, except that it is automated by supplied
lists of the decks to be punched, and the decks are "punched"
to, and IPL'ed from, disk by virtue of CP virtual SPOOL
devices, thus reducing the element of human error and the drop-
ping of cards.

Let us now turn our attention to the bits and pieces which are
used to automate the process of building a nucleus. As ue
explore these various modules and files, keep in mind that they
are the ones which are 1invoked when we use the various
system—-supplied EXEC's such as GENERATE and GENERBSE.

We really have only three things to consider (four if you are
planning to include a V=R area in your CP nucleus generation).

CP/CMS Nuclei - from Disk to Card 11

The CNTRL file

This file (of which there are several, those for CP normally
residing on the MAINT 194 disk, and those for CMS normally on
the MAINT 190 disk) is a multi-purpose file. CNTRL is a file-
type which is recognized by the CMS UPDATE command and by the
VMFLOAD MODULE. UPDATE is imbedded in the VMFASM EXEC when we
assemble a system source module. For purposes of VMFLOAD, the
CNTRL file used specifies the search order which is to be
applied to filetype when punching out all those TEXT decks
which will make up our CP or CMS nucleus.

This allows us a certain amount of freedom in applying local
fixes or modifications, in that not all of the decks punched
need have the filetype of TEXT (although they will all be in the
TEXT, or object code format). Thus, we might wish to have all
locally altered decks identified with a filetype of TXTLCL for
instance, rather than TEXT. With a properly modified CNTRL
file, we may then specify that the VMFLOAD module is first to
look for decks with a filetype of TXTLCL, before searching for
one witth a filetype of TEXT. We can, in fact, have many levels
to the search order by simply adding the appropriate entries to
the CHNTRL file.

As supplied with the system, there are a number of different
CNTRL files from which we select depending upon our require-
ments. For example, with VM/SP, we have DMKSP CNTRL which is
used for creating an ordinary uniprocessor version of CP, and
DMKSPA CNTRL for those needing Attached-Processor support, and
DMKSPM for Multi-Processor systems.

The Loadlist EXEC file

The next file to consider, is one which contains the names (and
optionally filetypes) of all the various TEXT decks which are
to be punched out to make up our system.

As with the CNTRL files, many different loadlist files are pro-
vided with the system, to be used depending upon our particular
needs and upon which nucleus (CP, CMS, RSCS) that we happen to
be creating. They are not quite so easy to identify as CNTRL
files, however, since they have a filetype of EXEC, as do
countless other files which are not loadlists. Generally, they
‘will have the characters LOAD or LD as a part of the filename
(CPLOAD, CPLOADSM, CPLDBSE, etc.) and can thus be identified.

loadlists will generally have two things in common. They will
have a loader specified as the first file to be punched which
will probably be named DMKLDOOE LOADER. This loader is sup-—
plied with the system as a stand-alone loader which produces a

12 VH/370 MAINTENANCE MADE SIMPLE

load map on a printer at address 00E -~ the address most commonly
used for the CMS virtual printer, and a common real printer
address as well. The second commonality will be the last file
specified to be punched. This will normally be a file with a
filename of LDT, and if we inspect files named LDT in our
system, we uwill generally find that they consist of a single
card image which is the LDT (Load Terminate) command to the
loader (DMKLDOOE LOADER). This notifies the loader that its
work is done and requests that the loader now pass control to
the program which it has just finished loading.

The dozens or hundreds of line-items which come between these
first and last items (LOADER and LDT) are the filenames of the
TEXT (object) decks that are to be punched out to make up our
nucleus. Notice that the filetypes are not generslly specified
within the loadlist, since we may wish to take advantage of the
flexibility offered by the CNTRL file process to affect a
search order containing filetypes of other than TEXT.

The VRSIZE MODULE

The next 1i1tem to be optionally considered is a module on
MAINT's 190 disk named VRSIZE. This module has a very simple
job to do. If you plan to generate a CP nucleus which will
allow a V=R area, you will be using one of the loadlists which
accomodate V=R systems (VRLOAD, AVLOAD, etc.).

The big difference in a V=R system, is that the CP nucleus -
after page zero is loaded is relocated to some place in upper
memory in order to accomodate the V=R system. The V=R system
runs in storage at virtual addresses which are the same as real
addresses (with t{he exception of page zeroc which belongs to
CP).

The simple function of the VRSIZE MODULE then, is to ask two
questions. The first is whether or not you plan to have a V=R
system. If your answer is NO the module goes auway without doing
anything. If vyou answer YES, the second question is asked. How
big is your V=R area to be? VYou answer, and the VRSIZE program
then produces a three record file called DHMKSLC TEXT. This is
an SLC (Set Location Counter) Loader command (followed by an
ESD (External Symbol Dictionary) card and an END card). bWhen
encountered by the loader (DMKLDOOE LOADER) these cause the
loader to skip the amount of storaye specified by the SLC com—-
mand before resuming the loading and relocating of TEXT decks.
Thus we leave a "hole™ for the V=R virtual machine.

If your curiosity leads you to explore the various loadlists
(CPLOAD, VRLOAD, etc.) you will find that those loadlists which
are supplied for a V=R system will have an entry for DMKSLC,
where the non-V=R loadlists will not.

CP/CMS Nuclei - from Disk to Card 13

A note for the curious. If you have become intrigued by the
various loader commands (SLC, LDT etc.) mentioned here, the
"CMS Command and Macro”™ manual has a good explanation of many
of the loader-recognized commands under the LOAD command sec-
tion. There are many such commands which were most familiar in
the days of BPS card systems.

The VMFLOAD MODULE

This fourth element in our nucleus generation process is a MOD-
ULE file normally found on MAINT's 190 disk (the CMS system
disk) with a name of VMFLOAD. It is this module that puts
together all of the above mentioned pieces.

VMFLOAD expects two operands when it is invoked. The first is
the name of the loadlist to be used to identify the decks to be
punched, and the second is the name of the CNTRL file to be used
for determining what filetypes to look for when running through
that loadlist.

Thus, the command VMFLOAD CPLOAD DMKSP would cause the VMFLOAD
program to simply search for each file specified by name in the
loadlist CPLOAD and append a filetype according to the search
order specified in the CNTRL file DMKSP. The actual disk order
of search is the standard CMS search order starting with the
disk ACCESSed as the A-disk and running through the alphabet.
The first file found that satisfies the search criteria is the
one punched by VMFLOAD.

Notice that the VMFLOAD usage of the CNTRL file in locating
filetypes for which to search is from the TOP DOKN so as to be
compatable with the VMFASM EXEC's usage in naming those TEXT
decks (as discussed in a later section) which is from the bot-
tom up. The update level identifier (ULI) on the MACS record is
ignored, as are any ULIs of "PTF". VMFLOAD prefixes the char-
acters TXT to the ULI to determine the filetype for which to
lock. Thus, if the ULI is LCL, VMFLOAD will search for filetype
TXTLCL.

Some Notes

It should be mentioned that when the VMFLOAD command is used
directly, none of the initial 'set-up' which is normally done
by the GENERATE EXEC is automatically done for you. Thus, you
are responsible for assuring that the necessary assemblies
have been done (DMKRIO, DMKSYS, etc.) and that the appropriate
TEXT (object) decks are available to be punched as a part of the

14 VM/370 MAINTENANCE MADE SIMPLE

nucleus to be generated. Nor is the punch SP0OOLed to your vir-
tual machine, so unless you do it, the resulting 16 thousand
cards or so will be dispatched to the real system punch which is
probably not what you had in mind.

But on the plus side, you are now working on a more or less bas-
ic level with the system, so that if something goes wrong, you
will know where you stand.

GENERATE also takes that 16 thousand card program which has
been punched, reads it back in and writes it to a tape, then
rewinds the tape and IPL's the new nucleus from the tape. The
theory is that you now have a copy of the nucleus (in IPL'able
format) on a tape should you ever have to restore your CP nucle-
us in a stand-alone environment. The fact 1is that most
installations never save or use the resulting tape anyway, so
why create i1t? Remember that the big punch deck you have cre-
ated can always be read in wWwith some filename and saved,
although the short time it takes to re-create it with VMFLOAD
generally makes this unnecessary.

Another point perhaps worth mentioning is that since CP uses no
"files" during operation, and is totally resident or paged (as
discussed later), ALL changes to CP, even seemingly trivial
ones such as adding a new FCB (Forms Control Buffer) load for a
real printer, require a CP nucleus generation. MWith CMS, how-
ever, this is not always true, as many CMS functions are simply
MODULES or TEXT files that reside on the CMS system disk and are
not a part of the CMS nucleus. VYou can determine whether a CMS
nucleus generation is required by simply scanning the CMSLOAD
EXEL loadlist to see if the DMSxxx TEXT deck you are changing is
part of the CMS nucleus. If not, no CMS nucleus generation is
required, although you may have to re-install certain SHARED
SEGHMENTS as discussed later.

One cther thing should be noted here. Should you desire to cre-
ate your own loadlist EXEC (for a customized SMALL CP option,
for example) you should start with a standard system-provided
list, and comment out (an *¥ in column one) those TEXT decks not
to be included. And be SURE to check your list against new
loadlists which are supplied with PUT tapes, since they have a
way of changing from time to time.

Summary

What has been described here is the general process of creating
an IPL"able nucleus in an effort to demonstrate that it is bas-
ically a simple process of combining a lot of object programs
into a single program which can be IPL'ed in a real or virtual
machine. The process is the same for CP, CMS, and RSCS (RSCS

has its own loadlist EXEC and CNTRL file which have not been

CP/CMS HNHuclei - from Disk to Card 15

discussed here). The workings of the various IPL'able programs
differ, however, once they are IPL'ed, and that will be dis~-
cussed subsequently.

As a sort of recapitulation of just what we have created with
this VMFLOAD process let's look at that big card deck once
more. The first three or four cards will be a little bootstran
loader which will initially get control when we issue an IPL to
the device which contains our card deck. That little loader
will serve to load the DMKLDOOE LOADER which will then be given
control. DMKLDOOE will now continue the process by reading the
card images which follow it (these are simply data to the load-
er), locating them in storage as they are read, and, when that
LDT card is encountered the loader (DMKLDOOE) will in turn give
up control to the 'data' it has just loaded. Thus the IPL proc-
ess has really caused the loading and execution of three
'programs' - the bootstrap loader loads the loader and gives it
control, the loader loads the object decks and gives them con-
trol, and the program made of the object decks then executes.
We now must look at CP and CMS separately, as they each have
their own way of doing things.

16 VM/370 MAINTENANCE MADE SIMPLE

. e e .
T 2 Riqb ot NP -~ Y

CP/CMS NUCLET - FROM CARD 7O DISK

We have at this point succeeded in putting together a whole
bunch of card images from various CMS files and producing an
IPL'able '"program'. What we do next is to IPL the device (prob-
ably a virtual reader) which contains that big card deck. As
explained earlier, when we do this a program is loaded into
storage (virtual, if we are working in a virtual machine) and
given control. Up to this point the process has been identical
regardless of whether we are generating a CP, CMS or RSCS
nucleus. Now we must look at CP and CMS separately.

The CP Nucleus,

The CP nucleus is self-contained, with all the information it
requires supplied within object decks. Thus, it asks no ques-
tions, but simply goes about its business as directed in the
user—-tailored module DMKSYS. It is in this module that we tell
CP where, and upon which volume to write itself. The only cave-
at is that we must have write access to the volume which we have
specified, at the address specified, and with the volume label
specified.

PLEASE NOTE. If we are doing all this in a virtual machine - as
we most probably are — the device address is VIRTUAL. It may or
may not be the same as any real device on the system. This
seems to be an area of major confusion to new users who tend to
insist upon specifying a real device address in DMKSYS but find
that they get an error message from the CP nucleus program when
it attempts to write itself to that disk because the MAIAKT
machine 'sees' that device at a different virtual address.
Remember, no magic, when you are working in a virtual machine,
that machine has access only to those devices which are given
to it via MDISK or DEDICATE statements in the DIRECTORY, or via
ATTACH commands after logon, although the user can redefine the
virtual addresses of those devices with the CP DEFINE command.
Just because it happens to be a CP nucleus that is trying to do
something does not alter this basic fact.

The key to success then is to have enough virtual storage in
your virtual machine (3 Megs is generally a good number), and
to have write access (this has nothing to do with CMS ACCESS, as
at this moment CHS is no longer in the picture, we have IPlLed
that new CP nucleus in our virtual machine) to the volume and
the cylinders or blocks which we have specified in DMKSYS to
contain our new CP nucleus.

If all goes well, that new nucleus will write itself to the spe-
cified disk and then load a disabled PSW with a code of 12.

CP/CMS Nuclei - from Card to Disk 17

VM/SP also nicely informs us just where it has written itself
on the disk.

Now, how does this affect our system - since we are probably
rewriting the real CP nucleus? Not at all, until the next real
system IPL. The CP nucleus is only used at initial IPL (or sys-
tem restart). At that time, the 'resident' nucleus is brought
into real storage and there it stays. The 'pageable' part of
the nucleus is loaded and immediately paged out and from that
point until the next IPL the actual CP nucleus on disk is never
referenced.

As for what parts of the CP nucleus are 'resident' and what are
'paged', this is decided by one of those TEXT decks that was
included in the loadlist we used to create the new nucleus.
Everything up to the DMKCPE module i5 resident. Everything
following DMKCPE is paged.

So, as you can deduce from the above, you can go ahead and
regenerate your CP nucleus six times over while the system is
running without affecting anything. Just hope you have a good
one there the next time you IPL. I shall not insult anyone's
intelligence by mentioning system backup tapes, etc...

The CMS Nucleus

When ne IPL that card version of the CMS nucleus that we created
using VMFLOAD, we must be prepared to answer a few questions.
Unlike CP, CMS requires no user assemblies. There is no equiv-
alent to DMKSYS in the CMS nucleus, and therefore we wWill be
prompted by the program for information similiar to that sup-
plied to CP in DMKSYS (although the information required is not
nearly as complex for the CMS nucleus).

We are given the opportunity to customize certain messagyes,
which appear on terminals and printed output, to our oun
requirements, and we are asked for information concerning the
disk addresses to be used. Where should this nucleus be writ-
ten (normally 190)? What address will be used when the result-
ing CHS nucleus is IPL'ed from disk (also, normally 190)? What
address should be used for the Y-Disk (normally 19E)? HNotice
that in keeping with our thesis, very little is "hard wired™ in
VM/370. He take certain things for granted - such as virtual
address 190 for the CMS residence and virtual address 19E for
the Y-Disk (the default extension to the S-Disk) - but these
are but convenient standards, and we may, should we wish, have
multiple CMS nuclei on separate mini-disks provided we have
properly prepared the mini-disks (remember FORMAT with
RECOMP?2). The SIPO/E, in fact, provides a 390 mini-disk for
the MAINT virtual machine for just this purpose — to contain a
test CMS nucleus.

18 VM/370 MAINTENANCE MADE SIMPLE

We wWill also be asked if we really want to re-write the CMS
nucleus (one last chance to back out), and whether cylinder O
should also be re-written with the DASD IPL record which will
bootstrap the CMS IPL process to point to our nucleus area. MWe
will answer "YES"™ to both questions.

NOW, one other question will be asked for which you will need a
predetermined answer, and that is the absolute location (rela-
tive to the MINI-DISK, NOT to the REAL DISK) of where this
nucleus is to be written. If you are not prepared with the cor-
rect ansuwer, you may find yourself almost coming to blows uith
CHMS, when it refuses to accept your answer. The correct answer
(provided the FORMAT RECOMP was done correctly) will be the
cylinder (or for FBA devices, the block multiplied by 2, 4 , or
8 depending upon the CMS blksize - 1024, 2048, or 4096 — of the
system disk) which uwe see when we do a QUERY DISK S. With CKD
dasd types (2314, 2330, 3340 3350, etc.) it will be the number
which appears under the CYL heading in the response to QUERY
DISK S. HWith an FBA device (3310, 3370), the CYL column will
indicate FB, and we must take the BLK TOTAL figure (this is the
number of CMS blocks) and convert it to FBA 512 byte blocks by
multiplying by either 2, 4, or 8, depending on the value of the
BLKSIZE column - 10264, 2048, or 4096. This value of cylinders
or FBA-blocks is the number of cylinders or blocks that the CMS
file-system "sees" as available for use. In fact the actual
mini-disk size will be larger (as may be seen by using the CP
QUERY VIRTUAL 190 command, as CP is unconcerned with the CMS
file-system and concerns itself only with the "hardware”) if we
have properly done our FORMAT-RECOMP. Since that number - the
one we arrived at with QUERY DISK S - is5 a TOTAL number of cyl-
inders or blocks, it will also be the RELATIVE number (relative
to zero) of the first cylinder or block HOT "seen" by the CMS
file system. There is one additional caveat with FBA devices.
The FBA block address specified' must be a3 multiple of 256 as
specified in the "VM SYSGEN" manual - so you would do well to
have done your homework before this point.

Assuming that all of the above questions have been ansuered to
the satisfaction of CMS, it will now write 1tself to the speci-
fied disk and then immediately IPL itself from that disk, so
you Will get immediate gratification if all went well.

A Sugqgestion

Now that we have discussed all these things, go ahead and try
them. So long as you don't have write access to the real CP
system disk or the CMS system (190) disk, you can't hurt a
thing. And if you refrain from issuing an IPL 00C to vyour read-
er after you have created a card-image nucleus, you won't
change anything even if you have write access to those disks.

CP/CHMS Nuclei - from Card to Disk 19

I would suggest that you logon to some unprivileged (class G
only) machine with about 3 megs of storage. Get read access to
MAINT's 194 mini-disk (you will no doubt have a read—-only link
to MAINT's 190 mini—-disk, but you will have to ACCESS it as some
other mode letter than S, in order to "see" all of the files you
will need), then define a Temporary disk , do the FORMAT, and
the FORMAT-RECOMP on that disk, and do some of the things we
have talked about. You needn't worry about destroying anything
so long as you are a class G user without write access to those
system disks.

Use VMFLOAD to generate a new CP nucleus. Then IPL it and take
a look at the load map that is created in the process. You will
get an crror message when CP tries to write itself to a
non-existent disk, but you will have all the by-products of a
successful gen.

Then use VMFLOAD to create a new CMS nucleus, and you can even
go ahead and write it on that T-Disk, and put in your own
installation headings and get a feel for the process. It will
take the mystery out of i1t.

20 VM/370 MAINTENANCE MADE SIMPLE

On CP

As mentioned in the previous section, you can regenerate the CP
nucleus to your heart's content while the system is in use and
it will have no effect until the real CP is re-IPL'ed. Under NO
circumstances should you EVER IPL that CP system disk in a vir-
tual machine that has write access to the disk, as that would
guarantee complete and immediate disaster. The result would be
that two copies (one real and one virtual) of CP would be paging
and SPOOLing and recording errors on the same disk areas and at
the same time., It is quite permissable, however, to define
separate areas on dedicated mini-disks, and generate a
VM-under-VM for test purposes. This is, in fact, an excellent
way to test out a new or changed version of CP, before commiting
it to production. You would do well, houwever, to run that vir-
tual VM/370 in a virtual machine with class G privileges only,
as you run the risk of sending critical operational commands
(such as SHUTDOWN) to the first level (real) CP which could
play havoc with your user community. So long as you are a class
G wuser, such privileged commands wWill be rejected by
first-level CP, but will be quite acceptable to your
second-level (virtual) CP.

On CMS

What was said about a CP nucleus generation having no immediate
effect upon ongoing system operation is NOT true of CMS. HWhen-
ever you are making changes to the CMS system disk you should
either be alone in the system. The reason is, that when a user
IPL's CMS, a file-directory to the CMS system disk is either
set up in the user's virtual storage, or - more probably - if
you use the standard DCSS's (Discontiguous Shared Segments),
the S-Disk directory is made available to the user in a shared
manner. Whichever is the case, when you alter files on the
S-disk, those alterations are not known to the other CMS users
on the system, and at some point a user will enter a command or
invoke some CMS function which requires an S-Disk access, and -
poof! - things are not where that user's in-storage directory
says they are.

Also remember that if you make use of those DCS5S's, that any
change to the S-Disk requires that you re—-install the DCSS's.
And whenever you re—-install a Named System or a DCSS you should
make very sure that no other user is currently using those seg-
ments. Otheruwise, your users run the risk of winding up with

After The Gen -~ A Few Comments 21

mixed segments - some old pages, some new - if
pages not vet referenced in the in—-use segment.

22 VMs370 MAINTENANCE MADE SIMPLE

there are any

)

NAMED SYSTEMS AND DCSS'S

Probably a few words are in order concerning NAMED SYSTEMS and
DCSS's (Discontiguous Shared Segments).

The VM/7370 system, as a performance option, allows you to share
certain read-only segments of storage which may be common to
many users. In fact, you can share segments in an unprotected
mode (read-urite) but that goes beyond the scope of this dis-
cussion.

NAMED SYSTEMS and DCSS's are conceptually similar, excepting
that NAMED SYSTEMS can be IPL'ed by name, where as DCSS are not
IPL"able systems, but segments of storage which exist above the
user's normally addressable storage and may be "attached" for
use by many users concurrently. The areas defined in DMKSHNT
which are used to contain these segments are in reality "perma-
nent paging” areas, in that segments are installed by loading
them into virtual storage and then - via appropriate CP com-
mands - "paging”"™ them out to the predefined System Name Table
(DMKSNT) disk areas.

To INSTALL DCSS's, you MUST have addressability to the storage
areas at which the DCSS's reside. To USE DCSS's, you MUST NOT,
have addressability to the storage areas occupied by the
DCSS's. A user whose virtual storage size overlaps with a DCSS,
will not be allowed to "attach" that DCSS. Therefore, if you
use the standard system location for CMSZER, any user with a
virtual storage greater than 960K will not be able to take
advantage of that DCSS.

There are three primary CMS shared segments. One is the named
system CMS which most users will IPL rather than issuing an IPL
to 190. Try the two different approaches some time one after
another and notice how much faster IPL CMS responds (it is a
page~in operation), than does IPL 190 (which is a virtual IPL
with all of the overhead of clearing and resetting and boot-
straping).

The other two primary CMS segments, CMSSEG and CMSZER, are "at-
tachable" DCSS's which contain high-use CMS modules such as
editors and 0S simulation routines in CMSSEG, and segment zero
sharable code as well as (optionally) S-Disk and Y-Disk direc-
tories in CMSZER.

Two system EXEC's are provided to load the required modules and
issue the SAVESYS for CMSSEG and CMSZER. CMSXGEN EXEC loads
and saves CMSSEG, and CMSZGEN EXEC loads and saves CMSZER. VYou
need only invoke these EXEC's and specify the load address of
the segment to be saved (if you use the recommended DHKSNT
entries for those segments, the hexadecimal addresses are
FOOOO for CMSZGEM, and 100000 for CMSXGEN). You will be
prompted by CMSZGEN as to whether you wish to save the S-Disk

NAMED SYSTEMS And DCSS's 23

and Y-Disk directories. You should reply yes to the S-Disk
question, but be careful about the Y-Disk. If you are using IPF
(the Interactive Productivity Facility), and have all of its
panels on the Y-Disk, the directory for the Y-Disk will proba-
bly not fit in the system-recommended CMSZER area and vyou
should reply "NO".

The re-installation of the NAMED SYSTEM CMS is done simply by
IPL'ing 190 and replying SAVESYS CMS when CMS issues its VM
READ following IPL. CHNS will save itself and then IPL the NAMED
SYSTEM.

Keep in mind that the disk areas which will contain these NAMED
SYSTEMs and DCSS's are "hard-wired™ in the CP module DMKSNT as
to actual volume, cylinder, and page location. The virtual
machine that you are using to install these segments must
therefore have write access to that volume (or volumes), and at
the virtual address(s) specified in DMKSNT ASSEMBLE.

26 VM/370 MAINTENANCE MADE SIMPLE

VM/370 SOURCE MAINTEMNANCE

The whole area of VM/370 source maintenance and the application
of temporary fixes or local modifications is really much more
simple than it may at first appear.

What is required is an understanding of the CMS UPDATE command
and its functions, and a close look at the VMFASM EXEC, which
simply wraps some standards around the usage of the UPDATE com-
mand.

The UPRATE Command

The CMS UPDATE command is a powerful utility program designed
to apply modifications to source program files. It has many
options which may be selected depending upon the requirements
of the vuser. It can function rather sinply as a "controlled
merge”™ of one file into another (single level update) where an
original source file is updated by a second file containing
control records and/or new source statements. Or it can func-
tion as a very powerful utility, selectively drawing together
control and update information from a great many sources to
result in a complex update (multi~-level update with auxiliary
control files).

For a full understanding of the UPDATE command one should read
the appropriate manuals. For our purposes here, we will con-
cern curselves with the somewhat formalized use of the command
within the VYMFASM EXEC and the application of source mainte-
nance to CP and CMS.

When the UPDATE command is invoked, two file-ids are passed to
the command. The first is the id of the file to be updated (the
original source file) and the second is the id of either a sim-
ple uodate file if the NOCTL default option is selected, or - as
in our case - the name of a control file if the CTL option is
selected.

The default filetype for a control file is CNTRL, and the file
consists of two basic types of records. The first record,
which is required, is the MACS record. This is an
information-only record, and is only used by UPDATE if the STK
and CTL options are selected - as they are in our usage via the
VMFASM EXEC. The MACS record has the following format -~

ULI MACS ml m2 ... m8
where - ULI is the Update Level Identifier (be patient).

MACS identifies this as a MACS record.
ml to m8 are the filenames of up to 8 MACLIB's.

VM/370 Source Maintenance 25

Thus, the following MACS record from the DMKSP CNTRL file -
TEXT MACS DMKSP DMKMAC DMSSP CMSLIB OSMACRO i

identifies a MACS record with an Update Level Identifier of
"TEXT", and five macro library (MACLIB) names specified.

Records which follow the MACS record are called "file records”
and, depending upon content, can request various actions. File
records have the following format -

ULI UAID PAl ... PAn

where - ULI is the Update Level Identifier (again, be patient).
UAID is the Update or Auxfile Identifier.
FAl thru pan are optional Preferred Auxfile Id's.

Thus, the following file record from the DMKIPF CNTRL file -
TEXT AUXR60 AUXBZ20

is a file record with an Update Level Identifier of "TEXT",
specifying an Auxfile of AUXR60, and one Preferred Auxfile
Identifier of AUXB20.

It should be noted that the Update Level Identifier "PTF" is
treated as a special case and should not be specified without
an understanding of its usage.

Now, with all of the pieces of a Control File identified, let's
take an example, examine it, and see just how it is used. I have
chosen the DMKIPF CHTRL file used by the Systems IPO/E packag-
ing of VM/7370, as it is a more complex control file than the
ones used for non-Systems IPUO/E systems, and is of a format
which illustrates the construction of a control file for apply-
ing local (customer) modifications. The DMKIPF CNTRL file is
as follows -

LCL MACS CPBSE DMKMAC CHMSBSE CMSLIB OSMACRO
LCL AUXLCL:

THP AUXTHP

IPF AUXIPF

TEXT AUXBZ2O

TEXT AUXR60 AUXB20O

Now let us assume that the following command string is entered
at the terminal -

UPDATE DMKXYZ ASSEMBLE A DMKIPF CNTRL A (CTL

This will invoke the UPDATE utility and specify that the assem-
ble source program DMKXYZ on the A-Disk is to be updated

26 VHM/370 MAINTENANCE MADE SIMPLE

according to directions contained in the control file (since uWe
have specified option "CTL"™) DMKIPF CNTRL, also on the A-Disk.

The source program DMKXYZ will be loaded into storage prior to
performing the updates. There is a STOR/NOSTOR option for the
UPDATE command and STOR is the default if CTL is specified. The
assumption here is that if a simple update is to be performed,
it is only a merge of one file into another and performing the
operation on disk is as efficient as doing it in storage. MWhen
CTL is specified, however, it is likely that many updates are
to be forthcoming, which would require re-writing the source
file to disk many times. Thus, if the source program will fit
in the virtual storage available, it is read in once, all
updates applied, and then written to disk. If the program is
too large to fit in the virtual storage available, NOSTOR will
be used, and the update may take considerably longer.

UPDATE will nouWw locate the DMKIPF CNTRL file and work its way
from the last record in that file to the first. In our example
the last record is the file record "TEXT AUXR60 AUXB20™ which,
according to our formats, specifies one Preferred Auxfile
TAUXB2O". UPDATE will now search for a file named DMKXYZ
AUXB20 - the source program name with a filetype as specified
on this file record. If that file is located, NOTHING is done
and this file record is ignored. If it is not located, then the
search continues for a file named DMKXYZ AUXR60. This is the
function of a Preferred Auxfile. In effect it says, "if any of
the Preferred Auxfiles specified on this file record are pres-
ent, ignore the file record, otherwise treat it as an ordinary
file record and continue processing With the auxfile
specified” - AUXR60 in our example.

This may seem a bit strange, but now look at the next to last
file record "TEXT AUXB20". The Preferred Auxfile procedure
allows us to selectively apply updates depending upon what
files are available. In our example, DMKXYZ AUXR60 will only
be applied if DMKXYZ AUXB20 is not available. In no case will
they both be applied.

And so the process continues from bottom to top, searching in
turn for files named DMKXYZ AUXIPF, DMKXYZ AUXTHP, and DMKXYZ
AUXLCL. HNote that in all cases the filename applied is the same
as the filename of the source program to be updated.

The key to a multi-level update with auxiliary files is in the
three characters "AUX" in the identifier specified on the file
record. If the first three characters are anything else, the
UPDATE utility will assume that the filetype pointed to is an
update file, not an auxiliary file.

An auxiliary file is not in itself an update file, but is a
pointer to the actual update files. The records in an auxilia-
ry file are quite simple - there is one record for each update
file to be applied and that record specifies the FILETYPE of
the file which contains the updates. The FILENAME, as before,

VM/370 Source Maintenance 27

is assumed to be the same as the filename of the source program
being updated. And, as before, the update files specified in
an auxiliary file are applied to the source from the bottom up.

Let's now sharpen the focus by looking at all of the pieces
together. Assume that the following files are accessable to the
UPDATE program.

DMKXYZ AUXBZ20

(which contains the following records)
§12345DK 999 FIX TO BROKEN HWIDGET 11721781
S12335DK 110 FIX T0O BENT THUNDERBLAST 10719779

(note that anything past the first blank is comments)

DMKXYZ AUXR60
(which contains the follouwing record)
S$11345DK 999 FIX TO CRACKED BLIVOT 10704778

DMKXYZ AUXLCL
(which contains the following record)
L99999DK 000 LOCAL CHANGE TO BENT WIDGET 11/24/81 RWB

DMKXYZ S12345DK
(which contains the actual update data and control records)

DMKXYZ S12335DK
(which contains more actual update data and control records)

DMK XYZ L99999DK
(whicihh contains even more update data and control records)

DMKXYZ S511345DK
(which contains ... you get the picture.)

And now to continue the UPDATE process that we began above, the
following takes place. Since the first (last actual record -
remember, bottom to top) record in our DMKXYZ CNTRL file speci-
fied a preferred auxiliary file of AUXB20 and, since a file
named DMKXYZ AUXB20 exists, UPDATE will not even look for
DMKXYZ AUXR60 even though it exists. Therefore the file DMKXYZ
AUXR60 and the file to which it points, DMKXYZ S11345DK, will
be ignored.

The next file searched for will be DMKXYZ AUXBZ20 (second to
last in our control file) and when this file is found, it in
turn points to update files DMKXYZ S12335DK and DMKXYZ S12345DK
which will be applied in that order (remember, bottoms up).

28 VM/370 MAINTENANCE MADE SIMPLE

The control file search then continues for files named DMKXYZ2
AUXIPF and DMKXYZ AUXTMP, neither of which exist in our
example, but which may exist with different filenames for
application to other source modules. Our last "hit" will be
the file DMKXYZ AUXLCL, which in turn points to file DMKXYZ
L99999DK which will be applied against our source program.

At this point, the resulting updated source program will be
written to disk but, since we have taken the UPDATE option
default "NOREP", the name of the updated version wnill be
changed to a ¢ followed by the first seven characters of our
filename. Thus, our resulting updated source program is a file
named $DMKXYZ ASSEMBLE.

You have been very patient to this point, so0 let's now discuss
the MACS record and those Update lLevel Identifiers (ULI). 1In
fact, in our example they have absolutely no use, as we
accessed the UPDATE command directly rather than having it
imbedded within an EXEC as is the case with VMFASM and VMFMAC.

Had we accessed the command with the option "STK", upon com-
pletion of the update, the UPDATE utility would have placed the
following line in the CMS console stack -

¥ LCL CPBSE DMKMAC CMSBSE CMSLIB OSMACRO

The asterisk (%) is placed first in the line so that if the STK
option is selected from a terminal rather than an EXEC, the
stacked line will be treated as a comment and not generate an
error. The next token "LCL" is the update level identifier on
the last file record for which a "hit" was found. In our case
it was the line "LCL AUXLCL" since we had a file called DMKXYZ
AUXLCL. If no "hits" had been found, the update level identi-
fier of the MACS record would have been used (which in our
example would have been the same - LCL). The next five tokens in
the stacked line of our example are the MACLIBs specified on
the MACS record.

We shall see just how this information is used by the VMFASM and
VMFMAC EXEC's later in our discussion.

We will now take a brief look at the Update Controul Statements.
This is not intended to be an in-depth tutorial on the use of
the utility and, for particulars on the control statements, the
"CMS Command and Macro Reference" manual should be consulted.

All Update Control Statements are identified to the UPDATE
utility by the characters ./ which must be present in columns 1
and 2. There are five control statements - S, I, Dy R, and ¥ -
to specify re-sequencing, inserting, deleting, replacing, and
comments respectively. The I and R control statements have an
optional ¢ operand which is worth noting as this requests that
UPDATE resequence the inserted or replaced lines. If this
operand is not used, sequence errors may result in the updated

VM/370 Source Maintenance 29

I R

source program which ran have serious (and sometimes unde-
tected) effects where multiple updates are involved.

The UPDATE utility, as you can see, is not really difficult to
use, but it does offer considerable flexibility which may be
reason for some confusion. We have not covered the full UPDATE
function, nor discussed all of the options, but we have covered
enough to see that a simple change in control files, or in the
way in which disks are accessed, can produce totally different
versions of a source program.

The VMFASM EXEC

VMFASM is an EXEC wuhich is supplied primarily to perform VM/370
maintenance functions. Once its usage is understood, however,
it is quite useful either 55 is, or in some modified version as
a tool for many program development and maintenance applica-
tions.

VMFASM does some initial housekeeping by setting up defaults
for the assembler and checking to determine that both the
source program and the control file, which were specified when
it was invoked, exist.

VMFASHM then invokes UPDATE, and three non-default options are
selected by the EXEC: PRINT, which produces an update log on
the virtual printer; CTL, which informs the UPDATE command that
this update is to consist of a multi-level update (the update
file specified is a control file and not a simple update file to
be merged with the source file); STK, which requests that the
UPDATE command stack certain information concerning the out-
come of the update in the CMS console stack.

Upon return from the update utility, condition codes are tested
and if no updates existed for the program to be assembled, the
actual program name is passed to the assembler. If updates
were applied, the $program—-name as created by the update utili-
ty is the updated program to be assembled.

That line that we looked at earlier, which is placed in the CMS
console stack by UPDATE, is then read (&READ ARGS) and a little
MODULE named VMFDATE is executed once for each MACLIB filename
passed back in the console stack. The VMFDATE module will
place in a disk file, name, location, and date and time of last
change information for any file specified. It is used here to
capture documentary information which will later be prefixed
to the resulting TEXT deck along with information from the AUX-
FILES used during update. This provides an excellent audit
trail right within the TEXT program of all updates applied and
the currency of the macro libraries used in the assemble.

30 VM/370 MAINTENANCE MADE SIMPLE

¢ 7
s

-

P e

The program is now assembled and, if the assemble is
successful, the resulting TEXT deck is prefixed with the audit
information and renamed according to the Update Level Identi-
fier that was returned in the console stack from UPDATE. 1If
this ULI is anything other than TEXT, it is prefixed with the
characters TXT and, following our example above, if we were to
enter the following -

VMFASM DMKXYZ DMKIPF

the result would be an object program named DMKXYZ TXTLCL.
There is one other caveat in the use of VMFASM. If the source
program to be assembled is on any read/uwrite disk other than
the A-Disk, the resulting TEXT program will not be renamed

according to the Update Level Identifier, nor will the audit
information be added to the object program.

The VMFMAC EXEC

The VMFMAC EXEC is not nearly so commonly used as the VMFASM
EXEC, and you may never have occasion to use it at all. It is an
EXEC of which you should be aware, however, and may also prove
useful as a prototype for developing maintenance EXEC's for
other uses.

If you look at any VM/370-supplied macro library (MACLIB), vou
will find that there is also an EXEC file sunpplied with the same
name as the MACLIB. There is, for example, a DMKMAC MACLIB and a
DMKMAC EXEC and, corresponding to CMSLIB MACLIB, you will find
a CMSLIB EXEC. If you look at these EXEC's you will find that
they provide lists of the MACRO and COPY files which make up
their corresponding MACLIB, and that they are in the format of
a CHS EXEC file as produced by the LISTFILE command with the
EXCC cption.

The VMFMAC EXEC uses these EXEC's and a control file to apply
updates to the individual MACRO and COPY files and then com-
pletely recreates the MACLIB. The function of the EXEC is much
the same as the function of VMFASM, except for the important
difference that VMFMAC updates ALL of the macros and copies in
a given MACLIB, and therefore all of the MACRD and COPY files
which make up a MACLIB must be available and accessed when the
EXEC is invoked.

A Scenario

Perhaps it would be helpful to describe a typical maintenance
process. Let us suppose that you discover a problem with your

VM/7370 Source Maintenance 31

system, and through careful research you decide that it is
somehow related to a dented widget. You place a call to the IBM
Support Center and explain that you have a new problem which is
CP-related. You are assigned problem number 0X123 for tracking
purposes, and connected to a level one support person.

You explain the problem, and a search of the data-base reveals
that there is indeed a knouwn fix for your widget problem. It is
PTF number 12346, and it is a change to CP module DMKXYZ. It is
also quite short, so rather than mailing the change, the level
one person reads the fix to you on the phone.

You are sitting at your terminal and you can key in the fix
directly. You already have the information you will need to
create the update file with whatever editor you may use, so0 you
prepare for the fix by editing a new file named DMKXYZ
D12346DK. (Those last two characters of the filetype nould be
DS, rather than DK if the fix were for a DMS (CMS) module - con-
‘vention is nice). You then key in the update information as it
is read to you - perhaps -

./ % FIX FOR DENTED WIDGIT
./ R 2000 2000 ¢ 2100
XNAME LM 12,14, XADDRES LOAD REGS 12 THRU 14.

You thank level one for the fix, and promise to call back for
more info if it doesn't fix the problem, or to close the inci-
dent if it does.

(If you have the Program Product "Information/System for
VM/370" at your installation, you would probably have
researched the problem on vour system and found the fix without
the call to IBM.)

You still have a bit of research to do, as you have a local mod-
ification to that DMKXYZ module, and you must assure that it
does not conflict with the IBM fix. You perbaps don't have the
VM/370 source online, so you attach a tape drive to your MAINT
virtual machine, mount the CP Source Tape which is in your tape
library, and issue the command -

VMFPLC2 LOAD DMKXYZ ASSEMBLE

This will load the assemble source to your A-Disk. You now
access the 194 disk as your B-Disk to get access to the neces-
sary MACLIB's, and you access the 294 disk as your C-Disk to get
access to those other AUX and update files that we looked at
earlier.

You will now edit that file DMKXYZ AUXB20 that we looked at ear-
lier and that currently contains the following records.

S12345DK 999 FIX TO BROKEN WIDGET 11721781
S12335DK 110 FIX TO BENT THUNDERBLAST 10/19/79

32 VM/370 MAINTENANCE MADE SIMPLE

You will add to the TOP of that file the following record -
D12346DK 999 FIX TO DENTED WIDGIT 01701782 FROM IBM SC. RWB.
So that file DMKXYZ AUXB20 now looks like this -

D123646DK 999 FIX TO DENTED WIDGIT 01/01/82 FROM IBM SC. RWB.
$12345DK 999 FIX TO BROKEN WIDGET 11721781
S12335DK 110 FIX TO BENT THUNDERBLAST 10/19/79

You are now ready to assemble the module with the fix, so you
enter the follouwing -

VMFASM DMKXYZ DMKIPF

Your neuw DMKXYZ TXTLCL object deck is created which you will
probably copy to the 194 disk after renaming the old copy to -
perhaps - DMKXYZ OLDTXT just in case the fix doesn't work and
you wish to easily back it out.

Now all that is left is to regenerate the CP nucleus as
described earlier, re-IPL the system at some convenient time,
and test the fix. You find it works just fine, so you call back
the I1BM Support Center, this time giving incident number 0X123,
thank them kindly, and ask them to close the incident.

The filetype for a VM/370 update file is customarily made up by
an S prefix, followed by the PTF number, and a suffix DK for CP
(DMK) modules or DS for CMS (DMS) modules when the fixes are
supplied via PUT or PLC tapes. We have changed the prefix S to
D to identify an IBM fix not included in a PUT, and to L to iden-
tify local (non-IBM) modifications. This allows for easy
indentification. Remember, it is your responsibility to
determine whether or not any non-PUT/PLC changes (either
IBM-supplied or local) are still needed when you apply a new
PUT or PLC tape. This is a good reason for having your own ver-
sion of the CNTRL file to produce TXTLCL decks rather than just
TEXT. The TEXT decks will most likely be replaced with the
application of a PUT/PLC tapre while TXTLCL decks will not.
Still, you MUST research to determine if a fix still "fits",
and then re-assemble all locally altered modules to assure that
any changed macros or control blocks are properly updated.

VM/370 Source Maintenance 33

34

THIS PAGE INTENTIONALLY LEFT BLANK

VM/370 MAINTENANCE MADE SIMPLE

MY WAY ~ WHICH IS ONE WAY

I will now outline my own personal procedures for generating an
unmodified CP and CMS nucleus upon the arrival of a new PUT
tape. It is not the only way, just my way.

I will logon to the MAINT machine and attach a tape drive as
virtual address 181 and mount the PUT tape. Then I issue a
VMFPLC2 LOAD to get the VMSERV EXEC and the various memos load-
ed to MAINT's 191 A-Disk. Then I access the 191 disk as the
C-Disk which the VMSERV EXEC prefers to run from (because
VMSERV is going to access many disks as the A-Disk as it pro-
ceeds to load the various updated files and if it were running
from the A-Disk, it would cut its own head off when it accessed
another disk as the A-Disk).

The first execution of VMSERV loads in various documentation
and discovers what products are represented on the PUT tape. 1
normally respond "NO" to the guestion about whether I want mem-
os printed, as I can read them quite nicely at the terminal. It
is politic at this point to examine the PUT memos to see if
there are any changes from previous ways of doing business.

VMSERV is then invoked a second time, and I respond to the
prompting questions as to what things and where I want loaded.
In our section concerning MAINT's disks, we pretty well covered
what goes where, and if vyou prefer (or, as has happened to me on
occasion, you find you have a bad file on the tape which pre-
vents VMSERV and the product EXEC's which VMSEPRV invokes from
operating successfully) you might print off a copy of the prod-
uct documentation which shows the contents of each file on the
tape, and simply access the particular disk to be loaded as the
A-Disk (194 for CP TEXT, 293 for CMS AUX, etc.) and load them
yourself using VMFPLC2.

You might also choose to selectively load the CP files to the
194 and 294 disks and leave the CHS updates for a later time,
remembering that modifications to the 190 disk will affect oth-
er system users.

Once I am satisfied that all of the updated files have been
loaded to the appropriate mini-disks, 1 re-assemble the
installation-tailored modules (DMKSYS, DMKRIO, DMKSNT, etc.).
This is generally not necessary, but on occasion, changes are
made to system macro libraries, and considering how little time
it takes to do three or four assembles, I consider 1t to be
faster to do them than to research the necessity.

I am now ready to re-generate my CP nucleus, which the follou-
ing sequence of commands accomplishes -

ACCESS 191 A - Just for fun.
ACCESS 194 B - To get access to the TEXT decks.

MY MAY - which is one way 35

PURGE READER
SPOOL PUNCH x
SPOOL PRINTER *

- Make sure the reader is empty.
- Get that nucleus sent to me.
-~ Get the load map sent to me.

' ,‘\
¢

VMFLOAD CPLOAD DMKSP - Punch out that nucleus.

IPL 00C - IPL the new nucleus.

IPL 190 - Re-1PL CMS.

ACCESS 194 B - Get 194 for my load map.
READ CPNUC MAP B - Save load map for debugging.

And that takes care of CP - all done.

Now for CMS (I wait until everyone's left). Then make sure all
the updated TEXT, MACLIB, MODULE, HELP Screen, and EXEC files
have been loaded to my 190 disk. And then -

ACCESS 191 A . - Just for fun.

ACCESS 190 BrA - Get read access to ALL the TEXT
files.

PURGE READER - Make sure the reader is empty.

SPCOL PUNCH x - Get the nucleus sent to me.

SPOOL PRINTER * - Get the load map sent to me.

VMFLOAD CMSLOAD DMSSP - Punch out that nucleus.

IPL 0O0C - IPL the new CMS nucleus.

Answer a lot of questions from CHMS.
(Remember to have that relative address available)

IPL 190 PARM SEG=NULL - Re-IPL CMS without DCSS's.
ACCESS 190 A - Get read/uwrite access to 190.
CMS5GEND ASSEMBLE - Re—-generate the Assembler Aux.

Directory.
Ansuwer another question or tuwo (or take defaults).

IPL 190 PARM SEG=NULL - Re—-IPL CMS without DCSS's.

ACCESS 1%0 Br/A - Get read access to ALL 190 files.
CHMSXGEN 100000 - Re-install CMSSEG.

CHMSZGEN FO000O - Re-install CMSZER.

Answer a couple more guestions.

IPL 190 - Re-IPL CMS.

SAVESYS CMS - Re-install the NAMED SYSTEM CMS.
ACCESS 194 B - Get a place to save the load map.
READ CMSNUC MAP B - Save load map for debugging.

And basically, that's it. Of course I may need to re-install a
number of other DCSS's for D0S, or VSAM, but the above steps
(provided I have loaded all the right stuff on my 190 and 194
disks) take care of my basic CP and CMS maintenance.

Once the new files are loaded, the procedures listed above take
perhaps 20 to 30 minutes - not so bad. Then, a silent prayer,
SHUTDOWN and re-IPL to test success.

I keep all my ASSEMBLE files (DMKRIO, DMKSYS, DMKSNT, DMKBOX,
and any source that I have had to modify because of local fixes)
on MAINT's 191 disk. After I have assembled any source, I will
copy the resulting TEXT (object) deck either to my 196 disk
(CP) or to my 190 disk (CMS), and erase it frommy 191 disk. If
there is any doubt as to the eventual success of a

36 VM/370 MAINTENANCE MADE SIMPLE

modification, I will RENAME the old TEXT module to something
like TXTOLD before copying the new TEXT to the 190 or 194 disk.
That way, I can always back out a change without re-assembly.

I feel that by having only one copy of a TEXT deck available
gives me peace of mind in that I cannot inadvertantly (by hav-
ing disks ACCESSed in the wrong order) include the wrong copy
of a module in a CP or CMS nucleus.

MY WAY - which is one way 37

THIS PAGE INTENTIONALLY LEFT BLANK

38 VM/370 MAINTENANCE MADE SIMPLE

POSTLUDE

What has herein been described with many words, can really be
reduced to saying that both CP and CMS are - in the main - made
up of a few hundred program modules which we combine - and cus-
tomize via three or four assemblies - to create a system that is
acceptable to our needs.

What has been said holds true not only to the application of
system updates, but to the generation of new systems as well,
be they unmodified VM/370 SCP's, BSEPP, SEPP, VM/SP, and (let
us hope) new things to come.

Get your disk allocations in order, combine the right bunch of

TEXT decks in the right order, and you have conquered VM/370
maintenance.

POSTLUDE 39

g
:
;

THIS PAGE INTENTIONALLY LEFT BLANK

40 VM/370 MAINTENANCE MADE SIMPLE

READER'S COMMENT FORM

Title: VM/370 MAINTENANCE MADE SIMPLE
Washington Systems Center
Technical Bulletin GG22-9277-00

You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the
understanding that IBM may use or distribute whatever informa-
tion you supply in any way it believes appropriate without
incurring any obligation to you.

Please state your occupation:

Comments:

Please mail to: G. E. Hollendursky
IBM Washington Systems Center
18100 Frederick Pike
Gaithersburg, MD 20879

