PALO ALTO SYSTEMS CENTER IBM ## Intermediate Systems — Systems Performance by B.P. Miller W.J. Watt W.C. Worthington L.R. Halvorsen J.W. Hoyt S.J. Raitt N.J. Nucci J.T. Casey Palo Alto Systems Center ## INTERMEDIATE SYSTEMS SYSTEMS PERFORMANCE January 1979 Edition This document was created using SCRIPT/370 Installed User Program (5796-PHL). Forms for reader's comments have been included at the back of each section of this publication. If the forms have been removed, address comments to: B. P. Miller Palo Alto Systems Center IBM Corporation 1501 California Avenue Palo Alto, CA 94304 ### PALO ALTO SYSTEMS CENTER INTERMEDIATE SYSTEMS ### SYSTEMS PERFORMANCE ### INTRODUCTION The Intermediate Systems - Systems Performance Pocket Reference is designed to be a quick and easy to use reference for the I/S Systems Engineer. It provides comprehensive and consolidated performance and tuning guidelines in checklist format for the major Intermediate Systems SCP and DB/DC products. The Systems Performance Pocket Reference is divided into six major sections: VM/370, OS/VS1, DOS/VS, VSAM, CICS/VS and IMS/VS DB and DL/I DOS/VS. product section contains information on how to use the checklist, currency and prerequisites, a performance and tuning bibliography, and the performance checklist for the product. For each performance and tuning item on the checklist, the effect on the major system resources (e.g., CPU Cycles, Paging, I/C, Real Storage) is shown. Thus, users who have identified their major bottleneck or constraint can look down the appropriate resource columns for items to help alleviate the situation. The recommendations contained in this document have not been subjected to any formal test or review and should, therefore, be individually evaluated for their applicability to a particular installation. ### PALO ALTO SYSTEMS CENTER INTERMEDIATE SYSTEMS ### SYSTEMS PERFORMANCE Use of the information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. ### ORDERING INFORMATION To order this document from Mechanicsburg, specify the following form numbers: o Binúer ZZ20-2859 o Tabs ZZ20-2860 o Contents ZZ20-2861 To receive automatic updates, enroll under DAPS Code 0893. ### VM/370 ### PERFORMANCE CHECKLIST #### VM/370 ### PERFORMANCE CHECKLIST ### January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 ### CONTENTS | Intro | du | ct | io | n | • | ٠ | ٠ | • | ٠ | ٠ | ٠ | ٠ | • | • | ٠ | • | ٠ | 3 | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|---|---|-----|---| | | Pu | rp | os | e | 0± | 5 | ľhi | s | Do | cu | me | nt | : | | | | | 3 | | | но | W | To | ι | Jse | 2 7 | ľhi | S | Do | cu | me | nt | ; | | | | | Ł | | | Cu | rr | en | C } | , | | | | | | | | | | | | | 6 | | | Pr | er | eq | uj | si | .te | s | | • | | | | | | | | | 6 | | Bibli | Log | ra | ph | y | | | | | | | | | | | | | | 7 | | VM/CM | 15 | Se | ct | ic | n | | | | | | | | | | | | . 1 | 1 | | | CP | G | en | eı | al | | | | | | | | | | | | . 1 | 1 | | | CM | S | | | | | | | | | | | | | | | . 2 | 3 | | Opera | ti | ng | s | y s | te | m | Wi | .th | ı V | 'M/ | 37 | 0 | | | | | | | | Sec | ti | on | | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | . 3 | 0 | | | Ge | ne | ra | 1 | Ba | to | h | Co | ns | iđ | er | at | io | ns | | | . 3 | C | | | DO | s/ | vs | L | lit | h | ۷r | I/3 | 70 |) | | | | | | | . 4 | 1 | | | os. | / V | S 1 | L | lit | h | ٧r | 1/3 | 70 | ١ | | | | | | | . 5 | 1 | | | CI | cs | W. | it | h | 17 | 1/3 | 70 | 1 | | | | | | | | . 5 | 9 | | Appen | di | x | I | • | | | | | | | | | | • | | | . 6 | 7 | | Doodo | 1 | _ | ~~ | | | | F | | | | | | | | | | - | 4 | ### INTRODUCTION ### Purpose Of This Document This document is intended for new users of VM/370 whose accounts run DOS, DOS/VS, VS1, or a combination under VM/370 for testing and/or production. The intent is to provide a rather comprehensive checklist of performance items for consideration that will aid in making maximum use of the standard unmodified hardware and software. While some of the items on the list are obvious and not new, they can sometimes he overlooked. The recommendations contained in this document have not been subjected to any formal test or review and should, therefore, be individually evaluated for their applicability to a particular installation. Use of the information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. ### How To Use This Document The first section of the checklist contains tuning items related to CP and CMS and will be of general interest. The second and more lengthy section pertains to running Intermediate System Control Programs and Customer Information Control System in a virtual machine. The tuning items fall into two major categories. One category includes items which are potentially beneficial to all virtual machines. Some will be easy to implement while others may be judged as not providing enough potential benefit to be worth the cost of implementing on a particular system. The other category contains trade-off items which are marked with a 't' in the left-most column. The trade-off may favor one type of user over another. For example, improving CICS response while degrading CMS response, or improving CMS response while degrading batch throughput. The effect on the four major system resources (CPU Cycles, Paging, I/O, Real Storage) is shown for each performance and tuning item. Users who have identified their major bottleneck or constraint can look down the appropriate column for items to help alleviate the situation. The tuning items with the greatest potential for performance improvement Page 4 IBM Internal Use Only ZZ20-2861 are indicated by a double asterisk (**). Other high potential items are indicated by a single asterisk(*). The contents of the checklist should also be reviewed prior to: - The installation of a new VM/370 system. - The installation of a new release of VM/370. - A major change in the hardware environment. - The installation of a new major application. Most items on the list contain references to other documents where further information may be obtained. The lack of a reference implies only that no further explanation is needed or available. Whenever possibile, SRL's are referenced in the checklist because they contain much current performance related information. Don't overlook the VM/370 Feature Supplement (GC20-1757); although it may not be updated as frequently as the VM/370 Publications, it does contain in-depth material on the workings of VM. ### Currency - Release 5 of VM/370 which became available February 1978. - VM/System Extensions Program Product 5748-XE1 (SEPP) available March 1978. - VM/Basic System Extensions Program Product 5748-XX8 (BSEPP) available May 1978. - VM/370 System Installation Productivity Option available for Release 5, PLC 07 and BSEPP. ### **Prerequisites** - Experience installing, generating and using VM/CMS. - A basic understanding of how the system functions: VM/370 Implementation Class VM/370 Advanced Topics - Access to the documents on the bibliography list. And as a minimum, the SRLs. - Highly recommended, Chapter IV of VM/370 Performance/Monitor Analysis FDP Program Description/Operations Manual (SB21-2101). ## VM/370 PERFORMANCE AND TUNING BIBLIOGRAPHY | ٦. | GC20-1801 | VM/370 Planning and | |-----|-----------|---------------------------| | | | System Generation Guide | | 2. | GC20-1807 | VM/370 System | | | | Programmer's Guide | | 3. | GC20-1819 | VM/370 CMS User's Guide | | 4. | GC20-1821 | VM/370 Operating Systems | | | | in a Virtual Machine | | 5. | GC20-1757 | VM/370 Features | | | | Supplement | | 6. | SC33-0071 | CICS/VS V1 R3 System | | | | Programmer's Guide | | | | (OS/VS) | | 7. | ZZ20-3755 | VM/370 Predictor (VMPR) | | 8. | ZZ05-0073 | VM/370 AP Support | | | | Installation Experiences | | 9. | ZZ05-0066 | VM/370 Attached Processor | | | | Support | | 10: | ZZ20-2852 | VM/370 Planning for Basic | | | | System Extensions | | 11. | ZZ05-0060 | VM System Extensions | | | | Program Product | | | | Performance | | 12. | GG22-9008 | An APL Performance | | | | Benchmark | | 13. | GG22-9012 | VM/370 Planning for | | | | Release 4 | | 14. | ZZ10-9855 | VM/370 IMS/VS System | | | | Study | | 15. | ZZ10-9853 | VM/370 Model 148 | | | | Intermediate Systems | | | | Guide | | 16. | ZZ05-0039 | VM/370 Interactive | | | | Benchmark on S370 148 | | 17. | G320-2121 | An Analytic Model of the | | | | VM/370 System | | 18. | SB21-2101 | VM/370 | | | | Performance/Monitor | | | | Analysis FDP | | | | | # VM/370 PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 19. | ZZ10-9859 | A VS1-CICS/DLI SNA Based | |-----|-----------|---------------------------| | | | System Performance Report | | 20. | G321-5040 | Service Levels | | 21. | G320-2111 | A Characterization of | | | | VM/370 Workloads | | 22. | ZZ20-3905 | 138/48 Marketing Guide | | 23. | ZZ10-9833 | 138/48 System Selection | | | | Guide (VS1) | | 24. | ZZ10-9832 | 138/48 System Selection | | | | Guide (DOS/VS) | | 25. | ZZ10-9829 | | | | | Installation Cookbook | | 26. | ZZ05-0026 | VM Performance Evaluation | | | | and Tuning Guidelines | | 27. | G320-2108 | | | | | to Systems Tuning | | 28. | G321-5022 | Performance Analysis of | | | | Virtual Memory | | | | Timesharing Systems | | 29. | ZZ05-0004 | VM/VS1 Handshaking-158 | | | | Batch Requirements | | 30. | ZZ77-5018 | | | | | for VM/370 | | 31. | | VM/370 Performance Tools | | 32. | | CMS on a 370 Model 135 | | 33. | | CMS on a 370 Model 145 | | 34. | G320-2099 | | | | | Sizes | | 35. | ZZ77-4028 | Performance Measurement | | | | on a 145 in a Student | Environment
VM/370 PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) NOTE: G320 documents can only be ordered from: Cambridge Scientific Center 545 Technology Square Cambridge, MA 02139 | CP GENERAL | | | TUNING EFFECT | | | | | | |--------------------|--|---|---------------|---------------------------|--|---------------------|--|--| | ! ITEM | COMMENTS | REFERENCE | | PAGING | I/0 | REAL
 STORAGE | | | | * System Packs | Use minimum of two system packs. Paging should be split over multiple packs. If all systems packs are the same device type, don't designate any as preferred for paging. | | | Reduce
 wait
 | Balance
 paging/
 spooling
 load
 | | | | | | | 4-Sect. 7
 5-Ch. 35

 | | Sustain
higher
raté | Balance
 paging/
 spooling
 load
 | | | | | CP GENERAL (co | ntinued) | TUNING EFFECT | | | | | | |----------------|--|------------------------------|--|----------------|--|--------|--| | ITEM ! | COMMENTS | REFERENCE! | | PAGING | I/O
 | REAL I | | | l of Page andl | Allocate TEMP space for paging and spooling as close to the center of the packs as possible. | 5-Ch. 20 | | Reduce
wait | Reduce
 device
 busy
 | | | | of TDisk | Minimize DASD arm movement by placing high activity minidisks near center of pack. | | | | Reduce
 wait
 | | | | | Use QUERY SASSIST, ASSIST,
and CPASSIST to insure that
all microcode assists are
activated. | 4-Sect. 7
5-Ch. 35
 | | |

 |
 | | | Head | Place highly used files under
fixed heads. CHKPT and the
Directory (if frequent logons
or links) are some examples. |
 | | | Reduce
 wait and
 device
 busy | | | | CP GENERAL (c | ontinued) | ۱
ا
د ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ | TUNING EFFECT | | | | | |---------------------------------------|---|---|---------------|--|---------|--|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/0
 | REAL
 STORAGE | | | *
 Mixed
 DASD
 Types
 | CP's order of preference in allocating TEMP space for paging and spooling is 2305, 3330, 3340, 3350, and 2314. For example, with default, the 3330 will be used before the faster 3350. This default order can be changed by reordering the DCs after label DMKPGTP5 in DMKPGT. | | | Reduce
 wait

 | | | | | *
Accounting
Records | Punch accounting records out
on frequent basis by starting
class C punch. Don't generate
a punch on systems without
them. SEPP or BSEPP can elim-
inate problem with support of
accounting records to disk. | 5-Ch. 15

 | | Decrease
 rate

 | | Increase
 available
 Page Pool
 | | | CP GENERAL (co | GENERAL (continued) | | TUNING EFFECT | | | | | | |----------------|--|---------------------|---------------|--------|--------------------------------------|--------|--|--| | I ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O
 | REAL | | | | Path DASD | If alternate path hardware exists, consider defining some devices without alternate path and some strings with a different primary path. To help evaluate the effectiveness of using alternate paths the monitor should be enabled to also collect seek data. In addition to VMAPs DASTAP report, display 16 bytes at external label DMKIOSNM. See DMKIOS source | | | | Reduce
device
busy and
wait | | | | | 1 | <pre>code for explanation of these four fields.</pre> | !
! | |
 | !
! | !
! | | | | an anymnty (| GENERAL (continued) | | | MULTIC PERFORM | | | | | | |--|---|---------------------|----------------|------------------------|---------|--|--|--|--| | CP GENERAL (CC | ontinued) | | TUNING EFFECT | | | | | | | | ITEM | СОММЕНТS | REFERENCE DOCUMENTS | | PAGING | I/O
 | REAL | | | | | Resident
 Nucleus
 | The resident nucleus can be reduced is support for 370X, 3270 Remote, 3270 Local, or 3340 alternate track support is not required. | 1-Part 1
 | | Decrease
 rate
 | †
 | Increase
 available
 Page Pool
 | | | | | Address of
 High Speed | Waiting for I/O on channel
zero causes machine to be
dropped from queue. Avoid
problem by changing virtual
device address. | 5-Ch. 20 | Reduce
wait | Reduce
 wait
 | |
 | | | | | Channels,
 Control
 Units and
 Storage | Every virtual channel & con-
trol unit requires a 40 byte
control block in Free Stor-
age. Virtual Machine size
should be limited to reduce |
 | |
 |
 | Increase
 available
 Page Pool
 | | | | | 1 | real storage requirements. | 1 | | I | ł | 1 | | | | | GENERAL (c | ontinued) | į | TUNING EFFECT | | | | | | |------------------|---|--------------------------|---------------|--------|----------------------|-----------------|--|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL
STORAGE | | | | 3340/44
MDisk | To reduce arm movement, mini-
disks on 3340 should begin on
even numbered cylinders. For
3344, use cylinders ending
with 0 to 5. Do not use 3344
for CP paging if possible. | !
! | | | Reduce
 wait | | | | | Emulation | Avoid using 3330 emulation for CP owned or CMS volumes. Emulating a single Model 11 is preferable to two Model 1s. ISAM is a particularly poor performer with emulation because of 3 to 2 cylinder mapping. |
 | | | Reduce
 Wait
 | | | | | CP GENERAL (co | GENERAL (continued) | | TUNING EFFECT | | | | | |------------------------|--|--------------------------|---------------|--------|--|--|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL | | | | Avoid placing 'selector'
channel devices, such as tape
or 2314s, on the same real or
virtual channel as 'block
multiplexor' devices. | i I | | | Reduce
 wait
 | | | | Initialize
 DASD | Format/initialize DASD off shift. CP's Format/Allocate, CMS Format, and IBCDASDI all use long CCW strings without RPS and therefore will tie up the channel. | | | | Reduce
 channel
 busy

 | | | | Console | Address of 009 is preferable
to 01F because 009 will use
the same virtual control
block as 00C, 00D, 00E. |
 | | |

 | Increase
 available
 Page Pool | | | CP GENERAL (c | ontinued) | į | TUNING EFFECT | | | | | | |--|---|-------------|--------------------|-------------|-------------------------------|---|--|--| | I ITEM | COMMENTS
 | REFERENCE | | PAGING | I/O
 | REAL | | | | Number of
 Virtual
 Machines
 | To prevent overcommitment of resources, the maximum allow-lable number of users can be specified by placing a value at label DMKSYSMA in module DMKSYS, reducing demand for free storage. | | |
 | | Increase
 available
 Page Pool

 | | | | 3270 Local | Place on lower virtual channel than tape so that if interrupts get stacked, 3270 interrupts will be presented before tape. | | | | Reduce
 channel
 busy | | | | | VNET vs. | VM/370 Networking PRP2
 (5799-ATA) is more efficient
 for CP to CP communication
 than RSCS. | !
!
! | Reduce
overhead | !
!
! | !
! | , | | | | CP GENERAL (co | GENERAL (continued) | | | TUNING EFFECT | | | | | |----------------|--|-----------|-----------------------------|---------------|---------|--|--|--| | I ITEM ! | COMMENTS | REFERENCE | | PAGING | I/O
 | REAL STORAGE | | | | Management | If drum or fixed head DASD is installed, consider using the page migration and page-able SWAP/PAGE table
features of SEPP to reduce page wait. | 1 1 | Slight increase in overhead | used | | Increase
 available
 Page Pool
 | | | | Real Storage | Insufficient real storage is a very common problem and easy to detect by observing a Storage Contention Ratio consistently over 1.0. Another symptom is erratic response times. Adding additional storage will allow an increased level of multiprogramming and may also reduce paging and overhead. | | Reduce CP | | | Reduce Reduce | | | | P GENERAL (continued) | | | TUNING EFFECT | | | | |-----------------------|-------------------------------|----------------------------|---------------|--------|---------|-------------------| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL
 STORAGE | | ** | Insure that there is enough | | | | | Decrease | | Free | free storage to avoid ex- | 2-Part 2 | overhead | l | 1 | Page Pool | | Storage | l tending. Display 8 bytes at | 1 1 | | l | I | 1 | | | DMKFREXP as in the sample | 1 | | l | 1 | 1 | | | EXEC in Appendix I. The | 1 | | ļ | 1 | 1 | | | first word contains a hex | 1 | | l | 1 | 1 | | | count of the number of | 1 1 | | i | 1 | i | | | dynamic free storage pages | 1 1 | | l | 1 | I | | | l obtained. The next word | 1 | | l | i | l | | | contains the number released. | 1 | | l | 1 | i | | | Consider increasing the | 1 1 | | I | 1 | 1 | | | number of fixed free storage | 1 | | l | 1 | I | | | pages in the SYSCOR macro by | 1 1 | | l | i | 1 | | (t) | the difference. | 1 | | i | 1 | i | | CP GENERAL (continued) | | | TUNING EFFECT | | | | | |--|---|---------------------|----------------------------|--------|---------|---------------------------------|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O
 | REAL | | | Facilities
 of the
 Fair Share | Fair Share Scheduler favors interactive users. The degree of favoring can be reduced by reducing the Interactive Bias from its default setting of 2. SET SRM IB to 0 to help batch machine(s). | | Reduce
wait | | | Reduce
 wait

 | | | | This scheduler considers both CPU and storage resource consumption of virtual machines. The default paging hias of 40 causes paging to be weighted by up to 40% and therefore CPU by at least 60%. The paging bias only has an effect when an eligible list is present. | | Control
alloca-
tion | | | Control alloca- tion | | | CP GENERAL (c | CP GENERAL (continued) | | | TUNING EFFECT | | | | |---------------|--|-----------|--|---|---------|--------------------------------------|--| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O
 | REAL
STORAGE | | | Management | Set raging defaults to 4 and can be used to affect the level of multiprogramming. A smaller number will reduce the level of multiprogramming by increasing projected working set size. |
 | | Control
 rate

 | | Control
 utiliza-
 tion
 | | | (B)SEPP | | | |
 Increase
 rate

 | |
 Reduce
 wait

 | | | cms | | | r | TUNING | EFFECT | | |------------------------|--|---------------------|----------------------------|--------------------------------------|---------|------------------------------------| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O
 | REAL
STORAGE | | Fair Share Scheduler | The improved scheduler in SEPP and BSEP will provide moreconsistent response times with more active CMS users. Under heavy loads, trivial response times will improve. | | Decrease
 overhead
 | More
 control

 | | Better
 utiliza-
 tion
 | | CMS System Disk | Reduce search time and stor-
age requirements for the
active file directory by
(1) using auxiliary direc-
tories, (2) removing files
not necessary for normal sys-
tem operation, (3) using the
access command to restrict
the files referenced. |]
[| | | | | | MS (continued) | | | TUNING EFFECT | | | | |---------------------|---|----------------------------|----------------------|--------|-----------|---------------------| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL
 STORAGE | | Diagnose
Assist | Enhanced ECPS on 370/138 & 148 is supported by SEPP or BSEPP. |
 | Decrease
overhead | |
 | ! ! ! | | CMS/DOS
COBOL | Increase default workfile
 blocksize to multiples of
 800 bytes (BUF option in CBL
 statement). Other compile
 options that affect perfor-
 mance: NOLIB, SUPMAP, SYNTAX. | | Decrease
overhead | | | | | CMS/DOS
Programs | Catalog programs in DOS CIL
 instead of CMS phase library
 for better fetch performance. | 1 | Decrease
overhead | | | ! ! ! | | Global
Command | Specify proper search order
 for Macro and DOS libraries. | | Decrease
overhead | |

 |
 | | CMS (continued) | | | TUNING EFFECT | | | | |--|---|---------------------|----------------------|------------------|---|---------------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O
 | REAL
 STORAGE | | Virtual
 Machine/
 DOSPART
 Size | Use DOSPART option of the Set
command to control partition
size. Some programs run
better in small partitions. | 3-Sect. 9

 | | Decrease
wait | Possible
 increase
 in wait
 |
 | | | Specify fixed length for
EXECs & CMS files being read
randomly. CMS uses an algo-
rithm to calculate record
position for fixed length
files. | | Decrease
overhead | | Decrease | | | CMS Batch
 Facility | Use instead of batch opera-
ting system where possible. |

 | Decrease
overhead | |

 |
 | | | Can be used to control the number of concurrent compi-lations. | !
! | | Decrease
wait | !
!
! | i i | | CMS (continued) | | | TUNING EFFECT | | | | |-----------------|--|--------------------------|----------------------|-----------------------------|---------|--------------| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL STORAGE | | VSAM | I Specify SHAREOPTIONS 3 in the Access Method Services Define I statements so that CMS does not try to execute code that reserves and releases system resources. SHAREOPTION facilities are not supported in CMS/VSAM. |]
 | Decrease
overhead | | | | | Set Blip | Use the CMS Set Command to turn blip off so that non-interactive machines are kept out of 21. In addition, using the CP SET TIMER OFF will also reduce overhead. | | Reduce
overhead | Reduce unneces- sary paging | |
 | | CMS (continued) | | | TUNING EFFECT | | | | |-----------------|--|------------|---------------------------|----------------|---------|-------------------------------| | ITEM | COMMENTS | REFERENCE! | | PAGING | I/O
 | REAL STORAGE | | | Option ECMode is not needed for CMS. | 1 | Reduce
overhead |

 | | | | | If User Priority is defaulted it will remain at 50 until the DIRECT command is used after (B)SEPP is installed. Then it will be 64. | | Discri-
minate
more |
 | | Discri-
 minate
 more | | l 3270 l | Use the Network command to disable lines when not in use. Also use to adjust the negative poll delay to the maximum value that will still provide acceptable response. | | Decrease
overhead | | | | | CMS (continued) | | | TUNING EFFECT | | | | |---|--|--------------------------|------------------|--------------------------|---|--------------| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL STORAGE | | ous Saved | If multiple users have re- guirements for the same code, use discontiguous Saved Seg- ments if possible to have one shareable copy. In addition to CMS itself, VSAM, VS/APL, and EDGAR are candidates. Note: This system IPO pro- vides pregenerated DMKSNT entries for this purpose. | 1-Part 2
 | | | Possibly
 reduce
 I/O load

 | require- | | Display
 Editing
 System IUP
 (EDGAR) | This full screen editor for
 3270 (5796-PJP) can reduce
 I/O interrupts & data trans-
 mitted & improve
response
 times for remote 3270s. | | Decrease
load |

 | Decrease terminal I/O |
 | | | | |
 | | | |-----------------------|--|------------|--------------------------|----------------------------|---------------------| | CMS (continue | ed) | ı | TUNING | EFFECT | İ | | ITEM | COMMENTS | REFERENCE! | PAGING | I/O
 | REAL
 STORAGE | | CMS Sort
 FDP
 | Although not compatible with OS or DOS Sort, this FDP (5798-BDW) is basically an in-storage sort & more effi- cient than SORT command. | 1 1 |

 | Decrease I/O require- ment |
 | | G | ENERAL BATCH | TUNING EFFECT | | | | | | |---|-------------------|---|--------------------------|----------------------------------|--------|---------------------------------|--| | 1 | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O | REAL
STORAGE | | | *
Spooling | Use spooling in the virtual machine to reduce number of SIOs CP will have to handle. Double spooling is a better performer than unblocked unit record I/O from the virtual machine. | | Reduce CP
overhead
greatly | | Increase
 DASD I/Os
 | Slightly
increased
working
set | | 1 | I/O
Blocking | Raise I/O blocking factors where possible for sequentially access data sets. | 4-Sect. 7
5-Ch. 35 | | | Reduce | Slightly
increased
working
set | | 1 | | Be sure to specify virtual
block multiplexor channels
in directory (OPTION BMX) so
that multiple SIO requests
can be processed by CP. | 1-Part 2
4-Sect. 8 | | | Reduce
 wait
 | | | GENERAL BATCH | TUNING EFFECT | | | | | | |---------------|---|-----------|----------------------|--------|------------------------|--------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O
 | REAL STORAGE | | Options | Use OPTION ISAM only for
those OS machines where it
is required. | | | |

 | | | | If ISAM must be used try to
use incore indices. VSAM is
a better performer than ISAM
under VM. | l 1 | Decrease
overhead | | Decrease
 SIOs
 |
 | | SET RUN ON | Use to continue batch opera-
tions following interruptions
for CP communications. | | Increase
thruput | |

 |
 | | GENERAL BATCH | TUNING EFFECT | | | | | | |----------------------------|--|-----------|--------------------|--------------------------|---------|--| | ITEM | COMMENTS
 | REFERENCE | | PAGING | I/O
 | REAL | | Number of
 Partitions/ | Consider reducing to improve total batch thruput. Or if using YM/VS handshaking, SET PAGEX OFF to let CP adjust level of multiprogramming in the virtual machine suitable for the available storage. | | | Reduce
paging
load | | Reduce
 working
 set
 | | Shadow
 Table | DOS/VS's new program check PSW has the dynamic address I translation bit off which causes the shadow table to be purged. If SEPP is Installed, set of STBYPASS NNNNNK should be used. If running DOS/VS/AF or VS1 in nonpaging mode specify vir- I tual machine size for NNNNKK. | | Reduce
overhead | |
 | | | GENERAL BATCH | CONSIDERATIONS (continued) | TUNING EFFECT | | | | | |---------------|--|---------------------------------------|-----|--------|--|-------------------| | TTEM | COMMENTS | REFERENCE
 DOCUMENTS | CPU | PAGING | I/O
 | REAL
STORAGE | | | If one of the tape switching features is installed on the 3803, switching can be de- fined in either the guest operating system or in CP. To define in DMKRIO specify ALTCU in the RDEVICE macro (see 'Alternate Path DASD' above for evaluation sugges- | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | |
 Reduce
 wait

 | | | 1 | ! tions). To then support more ! than one concurrent tape I/O ! from a virtual machine, | | |
 |]
 | | |
 | define some drives on one virtual channel and some on another. | i
 | |
 |
 |
 | | GENERAL BATCH | GENERAL BATCH CONSIDERATIONS (continued) | | | | TUNING EFFECT | | | | |---|---|--------------------------|--|--------------------------|---|-----------------|--|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O | REAL
STORAGE | | | | Option of I I I I I I I I I I I I I I I I I I | Using the clear option of the IPL command and will eliminate the need for CP to do a page-in each time a page is referenced on other than the first IPL in a virtual machine. | !
! | Reduce
overhead | Reduce
paging
load | | | | | | MDisk vs.
 Dedicated
 Disks | On systems without SIOF implemented where real DASD is shared between CPUs, use dedicated disks where minidisk sharing is not required. A device busy condition will be reflected to the virtual machine only if device is dedicated. |
 | Possible
increase
in number
of CCW
Transla-
tions | | Possible
 decrease
 in wait

 | | | | | GENERAL BATCH | CONSIDERATIONS (continued) | TUNING EFFECT | | | | | |---------------|--|--------------------------|---|--------|--|--------------| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL STORAGE | | | CP will suspend execution after a SIO until the real SIO is executed and the re- sulting condition code can be presented to the virtual machine. With SEPP or BSEPP, CP will not suspend execution if the first CCW to a DASD device is a Seek. The fix to APAR VMO8290, contained in LTR505, removes the SIONW implemented in (B) SEPP DMKVSI modules because of a problem | | | | Reduce
 Wait for
 DASD

 | | | | with dedicated DASD in a
 multi-CPU environment. | | i | | i
I | i
I ! | | GENERAL BATCH CONSIDERATIONS (continued) | | | TUNING EFFECT | | | | |--|--|--|---------------|--------|--------------|--| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O

 | REAL STORAGE | | | Giving high priority (0 is
highest) to a virtual machine
will cause the scheduler to
favor that machine. This
facility has greater impact
when SEPP or BSEPP is
installed. | 5-Sect.20

 | |
 |
 | Reduce wait (if not Favored) | | Percent | queue and is highly recom-
mended when running virtual
operating systems under VM.
Use of this option for too
many virtual machines can
cause an overcommitment of |
 2-Part 2
 4-Sect. 3

 | | | | Eliminate storage wait | | [(t) | real storage. | 1 1 | | | 1 | 1 1 | | GENERAL BATCH | CONSIDERATIONS (continued) | |
TUNING | EFFECT | | |---------------|--|--------------------------|----------------------------------|--------------|------| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | PAGING | I/O

 | REAL | | SET FAVORED | This option will cause CP to attempt to assure the virtual machine a fixed percent of the CPU resource. With (B)SEPP installed, multiple machines may be favored with percent but CP will not keep the machine in queue unless it is also SET FAVORED. | 4-Sect. 3

 |

 | | | | GENERAL BATCH | GENERAL BATCH CONSIDERATIONS (continued) | | | | TUNING EFFECT | | | | |---------------------------------------|--|--------------------------|--
---|---|--|--|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL | | | | SET PAGEX | When using handshaking, PAGEX can be set on after IPL of the virtual machine to assist VS1 or DOS in only stopping the partition where the page fault occurred rather than the whole machine. When the batch operating system has a low multiprogramming level, leave PAGEX off. | | Increase
in CP and
Operating
System
overhead | paging |

 | Increase working set | | | | Lock Pages

 | Specific pages of a V=V machine may be locked. This should be carefully experimented with as it can be counter-productive for other virtual machines. | | | Increase
paging
load for
other
machines | i | Decrease
 available
 Page Pool
 | | | | GENERAL BATC | TUNING EFFECT | | | | | | |--------------------------------------|---|---------------------|-----------------------------|---|---------|----------------------------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O
 | REAL | | Reserve
 Pages

 | Using SET RESERVE may be necessary for online systems to maintain acceptable response when transaction rate falls off. This option can only be used for one machine. Be careful using reserved pages because the effect is not always the intended one. | 2-Part 2

 | | Increase
paging
load for
other
machines |
 | Decrease available Page Pool | | V=R Jobs | If not using handshaking,
 running jobs V=R will avoid
 level of CCW translation.
 This will not be possible for
 DOS jobs requiring VSAM and
 is mutually exclusive with
 RPS in DOS/VS. | | Reduce
batch
overhead | | | | | GENERAL BATCH | ENERAL BATCH CONSIDERATIONS (continued) | | | | TUNING EFFECT | | | | |---------------|---|---------------------|---|--------|---------------|------------------------------------|--|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O | REAL | | | | | V=R can only be used for one
virtual machine. Use of
handshaking (nonpaging mode)
is preferable. If using V=R,
be sure to SET NOTRANS ON
after the IPL command. With
SEPP installed, also use
SET STBYPASS VR. | 4-Sect. 7
 | | paging | Ī | Decrease available Page Pool | | | | Multiple | If real storage and opera-
Itional considerations permit,
generate multiple virtual
machines with special purpose
supervisors rather than a
single machine with many
active initiators or
partitions. | l i | Possible
increase
in total
thruput | paging | |
 More | | | | DOS/VS WITH VM/370 | | | TUNING EFFECT | | | | |-----------------------------|--|-----------|---------------------------------------|--------------------------------|---------------------|-----------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O

 | REAL
STORAGE | | **
 Use VM
 Linkage | VM/VS handshaking is a system
generation option (VM=YES) of
DOS/VS Advanced Functions
Program Produce 5746-XE2. | | Decrease
overhead |
 |

 |
 | | 1 | DOS/VS/AF should be at PUT
level 3408 or have fix for
APAR DY13973 installed. | | Decrease
overhead | Reduce
 rate and
 wait |
 | | | * Partition Balancing | It is usually not advisable
 to use partition balancing
 when operating under VM link-
 age. Therefore, don't use
 equal partition priorities
 unless it can't be avoided. | i | Decrease
CP and
DOS
overhead | | | | | DOS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |--------------------------------|--|----------------------------|-------------------------------------|--------|---------------------------------|--|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL
 STORAGE | | | POWER/VS | Use of POWER/VS will greatly reduce the number of SIOs which CP will have to handle. Use as large a DBLK value as possible and a single buffer for all reader/writer tasks. | | Decrease
CP
overhead | | Decrease
 SIOs
 | Slight
 increase
 in
 working
 set | | | | Consider installing the 3800 ICR for Release 34 even with- out a 3800 printer installed. A dummy 3800 assigned to a batch partition will greatly reduce the number of SVC and the associated privileged instructions. | i
i
i | Reduce
DOS
and CP
overhead | | 1
1
1
1
1
1
1 | | | | S/VS WITH | S/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |--------------------------|--|----------------------------|---|---------------|---------|---------------------------|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL
STORAGE | | | *
Display
Consoles | If using DOC=125D or 3277,
consider applying suggested
fix for APAR DY13561 to eli-
minate fetching of transients
for console operations.
Caution, this fix is known
to cause problems when DOS/VS
is run native. | | Reduce
overhead

 | | | | | | Console
Buffering | If using virtual 3210, 3215, or 1052 console, eliminate console buffering option of supervisor. CP will do the buffering. | ! | Decreases
DOS/VS
overhead | | | 1

 | | | OOS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |--------------------------------|---|-----------|--------------------|---|------------------|--| | ITEM | COMMENTS | REFERENCE | | PAGING | I/0 | REAL
STORAGE | | | Adjust the DOS/VS supervisor end address and both real and virtual partition boundaries as well as the size parameter in the exec statement so that they are all on 4K intervals. This can reduce VM paging by insuring that program loading starts on a 4K boundary. |
 | | Slight
decrease
in paging
load | | Slight
decrease
in
working
set | | BIKMPX | Avoid seek separation in the FOPT macro. With 3000 series DASD specify BLKMPX in PIOCS macro. | i I | Reduce
overhead | | Decrease
wait |

 | | OS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |-------------------------------|--|--------------------------|---------------|---|-----|---|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | CPU ! | PAGING | I/O | REAL
 STORAGE | | | RSIZE | When using VM linkage, the I real storage specified in the DOS/VS supervisor should be I the minimum required. POWER/I VS, however, still requires I a real allocation. Another I means of reducing supervisor I size is to default the specification for copy blocks. They are not needed except to I contain initialization code. | |
 | Slight
decrease
in paging
load | | Slight
 decrease
 in
 working
 set

 | | | DOS/VS WITH VM | 1/370 (continued) | i | | TUNING | EFFECT | | |----------------|--|--------------------------|--------------------|--------|--------|-----------------| | ITEM | COMMENTS | REFERENCE!
DOCUMENTS! | CPU | PAGING | I/0 | REAL
STORAGE | | Unnecessary | TCH instructions before SIOs serve no useful purpose with virtual machines. Use CP trace SIO to find and NOP, making sure to also change the BC instruction following the TCH. This modification is particularly beneficial on machines without VM ECPS. | | Reduce
overhead | | | | | DOS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |----------------------------------
--|---------------------------|---------------|--------|---------|-------------------| | ITEM | COMMENTS | REFERENCE
 DOCUMENT. | | PAGING | I/O
 | REAL
 STORAGE | | TCH In- structions (cont.) | When using a VM/VS hand- shaking supervisor generated with Job Accounting and the CPU not specified as a 138 or 148, six additional TCH instructions are inserted to improve resolution of the virtual interval timer. If JA's reporting of CPU cycles is not important, they can all be NOP'ed; otherwise, three of them can be elimi- nated without sacrificing any accuracy (two in the external interrupt routine, and the | | | | | | | | remaining one inserted after changing the interval time value - label SYSTIMER). | ! !
! ! | | !
! | !
[|)

 | | DOS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |---|---|--|---------------|--------------------------|--------------------------|---------------------|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | CPU | PAGING | I/O | REAL
 STORAGE | | | Saved
 Systems

 -
 -
 -
 -
 - | Because of the time required
 to IPL DOS/VS/AF under
 VM/370, consider saving the
 DOS system. One logical
 place in the IPL routine is
 at the point where AUTOPOLL
 is set on via a diagnose
 instruction. Another time is
 at the end of each day but
 make sure to set autopoll on
 again (and pagex also if
 desired) after IPL'ing the
 saved system. | 4-Sect. 1
 5-Ch. 35

 | | | | | | |
 SLD and
 PSLD
 | Insure that sufficient Second
 Level Directory entries are
 specified in FOPT macro to
 cover all directory tracks. |
 4-Sect. 7
 | |

 | Reduce
 DOS SIOs
 |

 | | | DOS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |--------------------------------|--|----------------------------|---------------|---|--------------|-----------------| | ITEM | COMMENTS
 | REFERENCE
 DOCUMENTS | | PAGING | I/O

 | REAL
STORAGE | | BTAM Autopoll I I I | Use Autopoll/Wraplist option of BTAM to reduce SIOs. If using DOS/VS/AF, the IPL rou- tine will automatically SET AUTOPOLL ON. This feature will reduce the I/O inter- rupts CP must handle. | 5-Ch. 35 | | |
 | | |
 *
 SDL

 | Make extensive use of the System Directory List in the Shared Virtual Area to elimi- nate DOS I/O to directory for heavily used transients and program phases. | | | Possible
increase
in paging
load | DOS SIOS | | | OS/VS WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |-------------------------------|---|------------|--------------------------------|--------|-----------------------------------|-------------------------------|--| | CTEM | COMMENTS | REFERENCE! | CPU | PAGING | I/O | REAL
 STORAGE | | | 2314
Devices | Use seek separation in the DOS supervisor even though CPU will unchain seeks on 2314. | | | | Reduce
 wait |

 | | | (t) | Always specify SEEKSEP=NO if
 using 2314 emulation on
 370/135 or 138. | | Decrease
overhead |
 |
 |

 | | | RPS | For installations which have DASD that will support this function, consider specifying RPS=VES in DOS supervisor, especially for 148 CPUs and above where DASD I/O is | i į | Increase
DOS/VS
overhead | i | Reduce
 channel
 busy
 |

 | | | (t) | l heavy. | 1 | | 1 | I | 1 | | | 0S/VS1 WITH VM/370 | | | TUNING EFFECT | | | | |--------------------|---|-------------------------------------|---------------|--------|---------|---------------------| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | | | Aun VS1 in nonpaging mode so that CP will do all paging and CCW translation. The VS1 system must be generated with the VM option. This will require a full VS1 system generation. | 1-Part 1
 | | |
 | | | | Use Autopoll/Wraplist option of BTAM to reduce SIOs. If on VS1 Rel. 6 with VM option and VM Rel. 3.8 or above, VS1 will automatically SET AUTOPOLL ON and notify CP when CCWs are modified. This will reduce the number of I/O interrupts CP must handle. | 5-Ch. 35

 | vs1 1 | | | | | S/VS1 WIT | S/VS1 WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |-----------|--|---------------------------|-------------------------------------|---------------|-------------------------------|--|--|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL STORAGE | | | | JES | Reader and writer intervals (RDR=Y= and WRT=Z=) should be high to cut down I/O requests. Writer blocksize (WTR=B=) should be large to reduce VS1 I/O operations. | | Reduce
CP and
VS1
overhead | | Reduce
 VS1 SIOs

 | Slight
 increase
 in
 working
 set | | | |
 | There is little or no advan-
tage in specifying multiple
buffers for readers or
writers. | | • |
 -
 | !
!
! | Decrease working set | | | | OS/VS1 WITH VM/370 (continued) | | | TUNING EFFECT | | | | | |--------------------------------|---|---------------------|---------------------------|--------|-----|--------------|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O | REAL STORAGE | | | CTIMERS | By specifying EXCLUDE in CENPROCS SYSGEN macro the overhead of simulating the SET and STORE CPU Timer Instructions will be eliminated. The other consideration is that SMF results will be less accurate due to use of a simulated interval timer on machines other than 370/138 and 148. |
 | Decrease
overhead | | | | | | of Resident
 SVC List | Place most frequently used modules last in Resident SVC list because supervisor searches list starting from the end. | | Reduce
VS1
overhead | | | | | | OS/VS1 WITH V | M/370 (continued) | !
! | | TUNING 1 | EFFECT | | |--|--|----------------------------|--------------------------------|---|--------------------|---------------------| | ITEM | COMMENTS
 | REFERENCE
 DOCUMENTS | | PAGING | I/0 | REAL
 STORAGE | | Resident Modules I I I I I I I I I I I I I I I I I I I | Make as much as possible resident, and preferably fixed rather than pageable, to reduce VS1 I/O. Modules which can be made resident are SVCs, selected Error Recovery routines, Access Methods, various LINKIIB members, BLDL, and any other re-entrant modules. | | | Slight increase in paging rate and wait | | | | I SWA
I
I
I | It is better to use the in- core Scheduler Work Area than the disk resident Scheduler Work Area Data Set. Paging I/O is faster than VS1 I/O. VS1 partition sizes must also be increased. | | Slight
overhead
decrease | | Reduce
VS1 SIOs | | | S/VS1 WITH VM | VS1 WITH VM/370 (continued) | | | TUNING EFFECT | | | | |----------------------------|---|---------------------|----------------------|----------------------------|---------------------|----------------------|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | 1/0 | REAL
 STORAGE | | | Eliminate
Unnecessary | The PTLB instruction is not
needed when VS1 is run in
nonpaging mode. The PTF to
APAR OX21631 removes it. | | Reduce
overhead | | | | | | Slicing | Try to avoid this option if it is not really needed. It is, however, preferrable to using dynamic dispatching. | • | Decrease
overhead | |

 | Decrease working set | | | Dispatching | Avoid the use of DDG
in the CPRLPROG macro. This option will probably not yield the desired results under VM/370. It can be turned off at IPL time. | t 1 | Decrease
overhead | Decrease
paging
load | !
!
! | Decrease working set | | | HTIW 12V.20 | VM/370 (continued) | | TUNING EFFECT | | | | |-------------|---|---------------------|------------------|--------|------------|------------------------| | ITEM | COMMENTS | REFERENCE DOCUMENTS | | PAGING | I/O
 | REAL | | SAM | Consider using Chained | ļ | Reduce | | Decrease | | | Options | Scheduling (OPTCD option in
 DCB) for Sequential Access
 Methods to reduce SIOs | !
! | CP
 overhead | !
 | SIOs
 | ! !
! ! | | 1 | possibly at the expense of locking out other I/O on the | !
!
! | | !
! | ,

 | | | į | same channel. Also use
 Search Direct (OPTCD=Z) or |
 | | i
I | İ | | | i
i | Fixed Standard to reduce |
 | |
 |
 | ! | | İ | | i | | i | i | ii | | !
! | Consider decreasing I/O buffers in a storage | !
! | | !
! | !
! | Decrease
 demand | | 1 | constrained system. | l | | i | l | | | OS/VS1 WITH | VM/370 (continued) | | TUNING EFFECT | | | | |-----------------------|---|-----------|---------------------------|--------|--------------------------|-------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/0 | REAL | | SMF | Don't collect more information than needed. Consider generating without EXCP counts, Page-in counts, EVA and ESV. | | Reduce
VS1
overhead | |

 | | | DDR | Consider eliminating Dynamic
 Device Reconfiguration
 (OPTIONS=NODDR) in CTLGPROG
 sysgen macro. | | Reduce
VS1
overhead | | | ! ! ! | | I/O Load
Balancing | Consider not using this
 option in the SCHEDULR sysgen
 macro because VS1 is only
 aware of its own I/O and
 virtual addresses. | | Reduce
VS1
overhead | |

 | | | S/VS1 WITH VM/370 (continued) | | | TUNING EFFECT | | | | |-------------------------------|--|----------------------------|-------------------------------|--------|----------------------------------|-------------------| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | 1/0 | REAL
 STORAGE | | Console
Logging | If VS1 virtual console is 1052, 3210, or 3215, generate SCHEDULR macro with NOLOG and let CP spool the console. | l i | Reduce
overhead | | Reduce
 VS1 SIOs
 |
 | | Internal
Trace | To eliminate VS1 internal trace which is somewhat re-dundant with CP internal trace, generate zero trace entries or place X'FF' into location X'54' at run time. | | Reduce
overhead | | | | | VS1 ECPS | Not always helpful when running under VS in a V=V virtual machine with hand- shaking. Most of the assist functions are handled by CP anyway. | | Could
decrease
overhead | | -

 | | | CICS WITH VM/3 | 370 | | | TUNING 1 | EFFECT | i | |----------------|--|-----------|----------------------|----------|--------|----------------------------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O | REAL STORAGE | | Control | Specifying Anticipatory Paging (ANTICPG) when using VM/VS Handshaking will result in unnecessary Page In/Out SVCs being issued by CICS. Use of this option should probably be avoided. The only advantage in using ANTICPG is that multiple pges will be released with a single SVC. | | Decrease
overhead | | | | | | Specify Autopoll and Wrap-
list=Yes in DFTRMLST macro
when applicable to reduce the
number of SIOs. | | Decrease
overhead | | | Reduce
 working
 set | | CICS WITH VM/ | 370 (continued) | | TUNING EFFECT | | | | |-----------------------|---|-----------|----------------------|---------------------------------|----------------|----------------------------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/O | REAL
STORAGE | | ALT and NLT

 | Make all or most programs
 resident to eliminate
 fetch I/O. | | Decrease
overhead | Slight
increase
in paging | | | | | Use Application and Nucleus
Load Tables to specify load
order of modules. Align on
UK boundaries. |
 | | Reduce
 paging
 load | | Reduce
working
set | | Initiali- | Interval Control Value (ICV) should be set to at least one second to minimize interrupts from interval timer. | 1 | Decrease
overhead | | | | | 1
1
1
1
1 | Specify PGSIZE=4096 so that
 CICS will manage the dynamic
 area with 4K rather than 2K
 pages. |
 | | Reduce
paging
load |

 | Reduce
 working
 set | | cics with vm/3 | 370 (continued) | | TUNING EFFECT | | | | |----------------|---|-----------|---|--------|----------------------|-----------------| | ITEM | COMMENTS | REFERENCE | | PAGING | I/0
 | REAL
STORAGE | | | This feature of CICS/VS/DOS
has no effect in a VM/VS
handshaking environment.
Therefore, the TPIN TPOUT
SVCs can be NOP'ed in CICS. | | Decrease :
DOS/VS
overhead | | | | | Unnecessary | Storage management SVCs such
as Page In/Out and Page Fix/
Free serve no useful function
in a virtual machine. | l i | Decrease
operating
system
overhead | | | | | Journaling | Disk journaling is preferable
to tape because the virtual
machine is nondispatchable
when the real tape channel
is busy. | | | | Reduce
 wait
 | | | CICS WITH VM/ | ICS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |---------------|--|----------------------------|-----------------------------|---------------|---------|------|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING | I/O
 | REAL | | | | CICS should be run at a higher priority than JES/ POWER. For VS1, this can be accomplished by specifying a dispatching priority for JES rdr/wtrs in the parm field of the EXEC statement in the cataloged procedure. | i i | Reduce
wait | | | | | | Realtimer | Be sure to specify this directory option so that the virtual interval timer continues to decrement when the virtual machine loads a Wait State PSW. |
 | Reduce
voluntary
wait | | |
 | | | CICS WITH VM/3 | 370 (continued) | 1 | TUNING EFFECT | | | | | |------------------|--|-----------------------|----------------|------------------------------------|-----|-------------------------|--| | ITEM | COMMENTS | REFERENCE! DOCUMENTS! | CPU | PAGING | I/O | REAL
 STORAGE | | | | Always use for production machine to keep dispatchable. With (B)SEPP it may also be necessary to Set Favored with Percent. Setting percent too high will severely impact response time of interactive users. |
 | Reduce
wait |

 | | Eliminate
 wait
 | | | User Priority I | Important to set high priority (low number) for CICS Virtual Machine. If using Set Favored Percent with (B)SSPP, the user priority of the CICS machine has no effect. May be possible to improve CICS response by lowering other | 5-Sect.20
 | | | | | | | c | ICS WITH VM/ | 370 (continued) | | | TUNING 1 | EFFECT | | |-----|--------------|--|--------------------------|------------------|----------|---------|------------------------------------| | | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | PAGING | I/O
 | REAL
STORAGE | | | | Consider using SEPP or BSEPP
to improve thruput and
response time. |
 | Less
overhead | | | Better
 utiliza-
 tion | | i | ** | Can be used to retain a mini- | i | i | Reduce | | i i | | - 1 | Reserve | mum number of pages in real | 1 | 1 | wait | | 1 | | i | Pages | storage during periods of low | t | | | | 1 | | 1 | | activity. To insure that | | | | i | | | 1 | | mainline DOS and CICS pages | ı | | | | 1 | | 1 | | are marked reserved: Stop | ı | 1 | | | 1 | | 1 | | batch partitions is possible, | 1 | 1 | | | 1 | | 1 | | SET FAVORED off and PAGEX | 1 | | | | 1 | | 1 | | OFF, SET RESERVE, then set | ! | 1 | | . | 1 | | - 1 | | FAVORED again and PAGEX also | i | i | | i | 1 | | - 1 | (t) | if desired. | 1 | 1 | | ! | 1 | | ics with vm/3 | CS WITH VM/370 (continued) | | | TUNING EFFECT | | | | |---------------|--|----------------------------|--------------------------------|----------------------|------|---------------------------------|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | | PAGING |
I/O | REAL
STORAGE | | | | Can be used to fix specific
4K pages in real memory.
Page zero is gook candidate. |
 | | Reduce
 wait
 | |

 | | | V=R Machine | Use of this feature is not recommended. VM/VS hand-shaking will provide performance at least as good for CICS and better overall. | | | |
 | Can limit alloca- tion for CICS | | | ** PAGEX | Leaving PAGEX off is usually best for CICS. If batch is run in the same virtual machine, it may be necessary to SET PAGEX OFF to maintain acceptable CICS response during peak periods. Doing so may impact batch thruput. |
 | Reduce
overhead
and wait | Reduce
 rate
 | | | | ## VM/370 PERFORMANCE CHECKLIST | CCS WITH VM/3 | 370 (continued) | i | | TUNING | EFFECT | | |----------------------|---|----------------------------|---|--------|---------|--| | ITEM | COMMENTS | REFERENCE
 DOCUMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | | Multiple
Machines | If real storage, operational & application considerations permit, run CICS is a separate virtual machine. This will allow better control of resource allocation between CICS, batch and CMS. A separate virtual machine for CICS/VS/DOS will also reduce transient area contention. | 4-Sect. 7

 | Possible
increase
in total
thruput | paging | | Increase
 total
 working
 set and
 free
 storage
 required | # VM/370 PERFORMANCE CHECKLIST APPENDIX I: PERFORMANCE MEASUREMENT TECHNIQUES-TOOLS ## Basic Measurements VM is unique in its ability to report some rather fundamental load and performance data upon request; such as, CPU and storage utilization, level of multiprogramming, paging rate and wait. Daily monitoring of these basic indicators is good installation management practice. The commands (INDICATE LOAD, QUERY PAGING, INDICATE QUEUE, INDICATE USER) can be issued on a regular basis by an EXEC as shown, from an autologged (disconnected) virtual machine with privileged class E. # VM/370 PERFORMANCE CHECKLIST # Sample Indicate Exec &CONTROL OFF CP SPOOL CONSOLE START CP DISCONN -BEGIN CP QUERY TIME CP QUERY NAMES CP DCP Address of DMKFRENP.8 &SPACE 1 &LOOP -ENDLOOP 12 KO EMITS CP SLEEP 5 MIN ETIME OFF CP INDICATE LOAD CP QUERY PAGING CP INDICATE QUEUES CP INDICATE USER & 1 &SPACE 1 -ENDLOOP CP CLOSE CONSOLE EGOTO -BEGIN # VM/370 PERFORMANCE CHECKLIST # Selecting a Performance Tool There are two types of techniques for extracting information maintained by the system. One technique requires a virtual machine (TVMON). The other uses data produced by CP's Monitor facility (VMAP, VMPR). Although the first approach can immediately report available data for real-time analysis, there are a number of inherent disadvantages, namely: - No event derived data. (Less detail.) - More overhead. (Distorts system being measured.) - Measurements biased. (Sampling interval only approximate. Must be running during observation.) # Tools Available VMAP: VM/370 Performance/Monitor Analysis, Extended Support FDP 5798-CPX TVMON: VM/379 Graphic Monitor, IUP 5796-PDT # VM/370 PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel make VM/370 perform better, please send them also. Please give the following information: | Name: | |-------------------| | Location: | | Address: | | | | Telephone number: | | TIE line 8/, | | Outside () | General rating of this document: - o Extremely useful o Marginally useful - o Very useful o Of no value - o Useful Additional comments may be written on the back of this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 . IBM Internal Use Only ZZ20-2861 # VM/370 PERFORMANCE CHECKLIST READER'S COMMENT FORM # 0S/VS1 # PERFORMANCE CHECKLIST ## 0S/VS1 ## PERFORMANCE CHECKLIST # January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 # CONTENTS | Intr | oduc | tio | n | ٠ | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ | ٠ | • | • | ٠ | 3 | |------|------|-----|----|----|-----|-----|------|-----|----|-------|-----|----|---|---|---|-----|----------------| | | Pur | pos | е | 0£ | • | Thi | .s | Do | cu | me | nt | | • | | | | 3 | | | Ноы | То | υ | se | | Thi | s | Do | cu | me | nt | | | | | | 4 | | | Cur | ren | сy | ٠. | | ٠ | | | | | | | | | | | 6 | | | Pre | req | ui | si | t. | e s | | | | • | • | | | | | • | 6 | | Bibl | iogr | aph | У | | | • | | | | • | • | | | | | | 7 | | VS1 | Perf | orm | an | ce | : : | Ιtε | ms | | | • | | | • | | • | • | 1 1 | | | Gen | era | 1 | Co | n: | £ig | jur | at | ic | ns | : | | | | | • | 1 1 | | | Res | ide | no | У | L | ist | s | | | | | | | | | • | 17 | | | Sys | tem | L | at | a | Se | ts | : | | | | | | | | . 2 | 2 4 | | | JES | | | | | | | | | | | | | | | . 3 | 33 | | | Sys | tem | | en | ρ. | rat | -i o | n / | Pa | יוריו | 1 i | h | | | | | | | | • | pti | | | | • | | | | | | | | | | . 3 | 37 | | | 0pe | rat | ic | na | 1 | ar | nd | Pr | 00 | ra | mm | in | a | | | | | | | - | ons | | | | | | | _ | | • | | - | | • | ٠ ١ | 1 5 | | | RES | | | | | | | | | | | | | | | . : | 8 6 | | | VTA | M | | | | | | | | | | • | | | | . 6 | 5 1 | | Read | er's | Co | mm | en | t | Fo | x | | | | | | | | | . 6 | 53 | ## INTRODUCTION ## Purpose Of This Document This document is intended to provide a quick reference for VS1 Systems Engineer who wants to help more finely tune a customer's VS1 system. The intent is to provide a rather comprehensive list of performance items for consideration that will aid in making maximum use of what the standard unmodified hardware and software has to offer. This document represents a best effort to supply a list of those items which have proven to provide a performance improvement in a majority of instances. The recommendations contained in this document have not been subject to any formal test or review and should therefore be individually evaluated for their applicability to a particular installation. Use of information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. ## How To Use This Document The following checklist assumes that the user has access to the documents listed in the bibliography section of this document. For ease of use, the VS1 Performance Checklist is divided into eight sections: General Configuration Considerations Residency Lists System Data Sets JES System Generation/Parmlib Options Operational and Programming Considerations RES VTAM The effect on the four major system resources (CPU cycles, Paging, I/O and Real Storage) is shown for each performance and tuning item on the checklist. Users who have identified their major bottleneck or constraint can look down the appropriate columns for items to help alleviate the situation. The contents of the checklist should also be reviewed prior to: - The installation of a new VS1 system. - The installation of a new release of VS1. - A major change in the hardware environment. - The installation of a new major application. # Currency This document is current through the current release of OS/VS1 at the date of publication. ## Prerequisites - Experience installating, generating and using VS1. - A basic understanding of how the system functions. - Access to the documents on the bibliography list. # OS/VS1 PERFORMANCE AND TUNING BIBLIOGRAPHY # GENERAL | 1. | GC24-5090 | OS/VS1 Planning And Use | |-----|------------|---------------------------| | _ | | Guide | | 2. | GC26-3791 | OS/VS1 System Generation | | | | Reference | | 3. | ZZ20-2363 | OS/VS1 Performance | | | | Evaluation - Release 6 | | 4. | ZZ20-2349 | Introduction To System | | | | Performance Evaluation - | | | | Virtual Storage Systems | | 5. | ZZ05-0005 | VS1 TP Response Time | | | | Tuning In A Low Message | | | | Rate Environment | | 6. | ZZ10-9833 | 138/148 System Selection | | | | Guide - OS/VS1 | | 7. | 2210-9853 | S/370 Model 148 | | • | | Intermediate Systems | | | | Guide | | Α. | ZZ10-9850 | | | ٠. | | System Performance Report | | q | 77-51 | Palo Alto Systems Center | | ٠. | ,, ,, | Flash - VS1 RSVC List For | | | | Improved Performance For | | | | Display Commands | | 10. | ZZ20-3698 | | | 10. | 2220-30.90 | Device Switching Concepts | | 4 4 | 7777 FA 10 | | | | ZZ77-5012 | | | 12. | ZZ77-3043 | | | | | Free | | 13. | | | | | | Effective Use of DASD - | | | | 11/75, B. Maxwell | | | ZZ05-0300 | | | 15. | ZZ77-2036 | | | | | Performance In Virtual | | | | Storage | | | | | # OS/VS1 PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) ## AIDS AND TOOLS | 16. | ZZ20-3499 | VS1 Performance Tool | |-----|-----------|-------------------------| | | | (VS1PT) Marketing Guide | | | | (5796-PGL) | | 17. | SH20-1831 | VS1 Performance Tool | - 17. SH20-1831 VS1 Performance Tool (VS2PT) Program Description and Operation Manual (5796-PGL) - 18. SB21-2143 GTFPARS Program Description and Operation Manual (5798-CQ2) - 19. SB21-1405 VS1 Utilization Monitor Program Description and Operation Manual (5798-CAK) - 20. SB21-2247 VTAMPARS Program Description and Operation Manual (5798-CTW) - 21. GB21-9880 VS/REPACK General Information Manual (5796-POZ) - (5796-POZ) 22. SH20-1669 VS/REPACK Program Description and Operation Manual (5796-PDZ) # OS/VS1
PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) # RES | 23. | GC28-6878 | OS/VS1 RES Systems | |-----|-----------|---------------------------| | | | Programmer's Guide | | 24. | 78-13 | Palo Alto Systems Center | | | | Flash - VS1 RES For 3770 | | | | and 3790 Communications | | | | Systems | | 25. | G320-6014 | 3770 RJE SNA Installation | | | | Guide | | 26. | ZZ05-0061 | 3790 RJE Installation and | | | | Operations Guide | | GENERAL CONFIG | GENERAL CONFIGURATION | | TUNING EFFECT | | | | | |--|---|---|---|---|---------------------|--|--| | ITEM | COMMENTS | I CPU | PAGING | 1/0 | REAL
 STORAGE | | | | Balance
 DASD
 activity

 | For better performance, data set placement should be analyzed and optimized to balance the DASD activity for the system. The objective is to spread the I/O requests as evenly as possible across devices and channels and to minimize arm movement on each device. | Better
 CPU utili-
 zation
 possible
 through
 increased
 I/O and
 CPU
 overlap | Reduce
 wait

 | Balance
 I/O.
 Minimize
 device,
 channel
 busy, and
 wait. | | | | | Split
 system
 packs
 across
 channels | | Better
 CPU utili-
 zation
 possible
 |
 Reduce
 wait

 | Reduce
 wait.
 Sustain
 higher
 rate.
 Balance
 I/O. |
 | | | | GENERAL CONFI | GURATION (continued) | | тииты | EFFECT | | |---------------------------------|--|--|---|--|------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL | | Use at least two system packs l | I normally be spread across a I minimum of two packs, since in | CPU utili-
 zation | Reduce
 waits

 | Reduce
 device
 busy, wait

 | | | Fixed Head
 DASD | Place highly used files under
 fixed heads.
 | Better
 CPU utili-
 zation
 possible | Reduce
 wait
 | Reduce
 device
 busy,
 wait | | | GENERAL CONFIG | URATION (continued) | TUNING EFFECT | | | | |----------------|---|-------------------|--------|--|---------------------| | ITEM | COMMENTS
 | l CPU | PAGING | I/O
 | REAL
 STORAGE | | | When alternate path is generated, the sequence in which IOS tries the various paths is dependent upon the I/O configuration generated during SYSGEN, regardless of actual hardware attached. NOTE: * When a set of devices is generated with alternate path to 2 or more channels and one or more other devices is generated on one of the channels, IOS will try the channel with no other devices | Slight increase | | Reduce
 device
 busy and
 wait.
 Balances
 channel
 usage.
 | | | 1 | on it first. | I | 1 | 1 | I I | | NERAL CONFI | GURATION (continued) | TUNING EFFECT | | | | | |-------------|--|---------------|--------|-----|-------------------|--| | ITEM | COMMENTS | l CPU | PAGING | I/0 | REAL
 STORAGE | | | lternate | NOTE: (cont.) | 1 | 1 | | | | | Path | * When a set of devices is | i | 1 | 1 | į | | | (cont.) | generated with alternate | 1 | 1 | 1 | 1 | | | | path to 2 or more channels | 1 | ı | 1 | İ | | | | and each channel or neither | 1 | i | 1 | 1 | | | | channel has other devices, | 1 |] | ı | ı | | | | IOS will rotate selection of | I | 1 | 1 | I | | | | the channel, that is, IOS | I | 1 | 1 | 1 | | | | will alternate the primary | 1 | 1 | 1 | 1 | | | | and secondary as the first | i | ŀ | 1 | 1 | | | | path tried. | i | i | 1 | 1 | | | | 1 | 1 | 1 | 1 | l | | | | ALSO NOTE: | 1 | l | F | I | | | | <pre> * Generation of alternate</pre> | I | l | 1 | 1 | | | | paths when no real alternate | i | | 1 | 1 | | | | path exists to a device | 1 | i | 1 | i | | | | causes needless increased | 1 | ļ | 1 | l | | | | CPU overhead. | I | 1 | 1 | 1 | | | ENERAL CONFIGURATION (continued) | | TUNING EFFECT | | | | | | |----------------------------------|--|---------------|--------|--|-----------------|--|--| | I ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
STORAGE | | | | Shared DASD | Consider the following performance implications when running in a Shared DASD environment: Slower CPUs or equal CPUs running different SCPs with longer IOS path lengths may be at a decided disadvantage in competing for busy components. The DEVICE RESERVE command is used to prevent access by another CPU to a spindle to synchronize critical system update activity. | | | Can increase contention and lockout problems | | | | | NERAL CONFIGURATION (continued) | | i | TUNING EFFECT | | | | | |---------------------------------|---------------------------------------|----------|---------------|---------|-------------------|--|--| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL
 STORAGE | | | | Shared | Configurations must be | i | | 1 | | | | | DASD | sensitive to contention on | 1 | i | 1 | ł | | | | (cont.) | volumes expecting high | I | 1 | i | i | | | | | activity from: | 1 | I | 1 | 1 | | | | | Linkage Editor output | 1 | 1 | I | 1 | | | | | DASDM routines | ı | l | ı | l | | | | | Catalog management | 1 | 1 | ł | l | | | | | User RESERVE macros | F | 1 | ŀ | 1 | | | | | 1 | 1 | I | 1 | I | | | | | * Note that shared DASD could | i 1 | 1 | I | 1 | | | | | l have a significant negative | <u> </u> | 1 | 1 | t | | | | | <pre>impact on response in a TP</pre> | ł | 1 | 1 | 1 | | | | | environment. | į. | ł | i | Į. | | | | RESIDENCY LIST | s | TUNING EFFECT | | | | |---|---|---------------|--|-----------|--| | ITEM | COMMENTS | I CPU | PAGING | I/O
 | REAL | | Standard
 RSVC List | Using the default standard
 module list rather than no
 list at all. | Decreases | 1 | Decreases | Increases | | Large or
 Full RSVC
 List,
 optimized
 for the
 environment | Full merit of RSVC is gained. Significant performance improvement possible, depending on the use of SVCs. Installation-dependent, heavily used modules can be determined with VS1PT or GTF. Second loads can be determined from the Storage Estimates Manual. | Decreases | I Increases but SVC loads will be reduced. | reduce | Some additional increase of real storage usage. 50K-90K typical. | | RESIDENCY LISTS (continued) | | TUNING EFFECT | | | | |-----------------------------|--|---------------------------|-------------|-------------|-------------------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | | | NOTE: * Heavily used modules should be at the end of the list because the list SCAN starts at the end of the list. * Loading of modules at IPL |

 | | | | |
 | I time will be lengthy, as
I more modules are added to
I the list. | [

 | [
]
[| \
!
! | | | | * More virtual storage in the
 pageable supervisor will be
 required. | !
! | 1
1
1 | !
! | !
! | | !
! | * A good RSVC list is very
 important for good system
 performance. | :
 |
 | !
! | !
! | | RESIDENCY LISTS (continued) | | TUNING EFFECT | | | | |--|--|--|--------|-----------|--| | ITEM | COMMENTS | l CPU | PAGING | I/0
 | REAL
 STORAGE | | Standard
 RAM List

 | Using the default standard module list rather than no list at all. | Better
 CPU utili-
 zation
 possible

 | Decreases | Real stor- age usage increases slightly due to the! contents supervisor! control blocks for the resident modules. | | RESIDENCY LISTS (continued) | | TUNING EFFECT | | | | | |---------------------------------|----------|---------------|--------|---------|--|--| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | | | Standard
RAM List
(cont.) | | | | | But over-
 all real
 storage
 usage
 could de-
 crease in
 instances
 where a
 module is
 simulta-
 neously
 used by
 two or | | | RESIDENCY LISTS (continued) TUNING EFFECT | | | | | | |--|---|------------------------|--------|----------------------------|--| | ITEM | COMMENTS
 | CPU | PAGING | I/O
 | REAL STORAGE | | Standard
 RAM List
 (cont.)

 |
 | | | | If fre- quently used modules are not in the RAM list, real storage use can increase. | | | l likely to be used by more than
l one task at a time. Order | CPU utili-
 zation | | Decreases access to SVCLIB | Same as
 above
 | | RESIDENCY LIS | STS (continued) | | TUNING | G EFFECT | | | |-------------------------------|---|--|---|------------------------------|------------------------|---| | ITEM | COMMENTS
 | CPU | PAGING | I/O | REAL
 STORAGE | 1 | | Resident Link Library Modules | Add re-entrant link library modules likely to be used by more than one task at a time to list IFAIGGO2. Order list by reverse frequency of use. | Better
 CPU utili-
 zation
 possible | Could
 decrease
 since
 modules
 shared | Decreases access to LINKLIBs | Same as
 above
 | | | RESIDENCY LISTS (continued) | | TUNING EFFECT | | | | |--|------------------------|---|-----------------|---|----------------------| | ITEM | COMMENTS | l CPU | PAGING

 | I/O
 | REAL | | BLDL List

 | should be added to the | Better
 CPU utili-
 zation
 possible

 |
 | Decreases access to access to SVCLIB and LINKLIBS | Increases slightly | | SYSTEM DATA SETS | | TUNING EFFECT | | | | |--|--|--|---------------------|------------------------------|-----------------| | ITEM | COMMENTS | l CPU | PAGING | I/0
 | REAL
STORAGE | | System
Pack(s)
VTOC
Placement | Locate in the middle of the
 pack with the data sets
 accessed most often closest
 to the VTOC. | Better
 CPU utili-
 zation
 possible |

 | Decreases arm movement, etc. | | | SYS1.SVCLIB
Placement | Usually very important when I the default RSVC list is used. I Place next to and before the I VTOC. The load on SVCLIB and I the importance of its location I decreases as the RSVC list is I optimized. | Better
 CPU utili-
 zation
 possible
 | | Decreases arm movement, etc. | | | SYSTEM DATA SETS (continued) | | TUNING EFFECT | | | | |------------------------------|---|---------------------|---------------------|------------------------------------|---------------------| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL STORAGE | | SYS1.LINKLIB
Placement | Highly important in most environments. Even more so when PCI fetch is not used and many small jobs are being processed. Place next to and after VTOC. Use large Linkage Editor blocking for modules and ensure full track blocking. | | | Decreases arm movement, etc. | | | SYSCTLG
near VTOC | Still a highly important data
set. If possible, place on
same cylinder as VTOC. |

 |

 | Decreases arm movement, etc. |

 | | SYSTEM DATA SETS (continued) | | TUNING EFFECT | | | | |---|---|----------------------------------|--------|--|-----------------| | ITEM | COMMENTS | CPU | PAGING | I/O | REAL
STORAGE | | placement
 on a
 dedicated
 drive | | CPU utili-
zation | | Decreases arm movement, etc. | | | placement
 on multiple
 devices | To improve SPOOL processing and performance, it may be better to split the SPOOL across multiple devices and channels since JES has automatic performance balancing built into its SPOOL space allocation algorithm. But remember to never put a highly used data set on a SPOOL drive. | CPU utili-
zation
possible | | Faster
 SPOOL I/O
 processing

 | | | SYSTEM DATA SETS (continued) | | TUNING EFFECT | | | | |--|---|-----------------------------------|-------------------|---|--------------| | ITEM | COMMENTS | CPU | PAGING
 | I/O | REAL STORAGE | | SYS1.PAGE
 Placement

 | placement depending on the amount of paging occurring in | Better CPU utili- zation possible | İ | Faster I/O
processing
due to
reduced
contention | | | Splitting
 SYS1.PAGE
 over
 several
 devices | paging rate is relatively high
(e.g., 10-15 per second on
3330), the page data set should
be split across at least two | Also,
better | sustain
higher | More I/O
initiated
simulta-
neously | | | SYSTEM DATA SETS (continued) | TUNING EFFECT | | |---|---|---| | ITEM COMMENTS | CPU PAGING I/O REAL STORAGE | - 1 | | dedicated In this case, use the fastest drive device available. | Decreases Decreases Decreases Page arm slightly movement, CPU etc. overhead slightly. Better CPU utili zation possible. | 1 | | Combining Usually not recommended.
 PAGE and !
 SPOOL on
 one drive | Increases Slight
 depending increase
 on volumes | ! | | SYSTEM DATA SET | (continued) | TUNING EFFECT | | | | |----------------------------|---|----------------------|--------|--|-----------------| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL
STORAGE | | SPOOL and
 User Data | Usually undesirable. Useful
for low use, permanently
required data sets (if they
exist). |

 | | Increases
 depending
 on volumes | | | Placement | Less critical than in MFT. Job and step scheduler tables, which were formerly held in JOB2 are now held in the resident job list and SWA/SWADS. However, for systems that run many small jobs or have a high level of multiprogramming, the location of the JOB2 becomes more important and it should be separated from other system data sets. | zation
 possible |
 | Decreases | | | SYSTEM DATA SET | CS (continued) | TUNING EFFECT | | | i | į | |-----------------|---|---------------|-----------|-----------|-----------------|---| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL
STORAGE | 1 | | | The scheduler work area (SWA) option enables scheduler tables held in SWADS to be placed into virtual storage. It is better to use the incore SWA rather than SWADS since paging I/O is faster than VS; I/O. Note that this eliminates the need to allocate SWADS data set but requires that the partition size be increased to a size large enough to hold the scheduler tables. | I | Increases | Degreases | Increases | | | SYSTEM DATA SE | TS (continued) |
 | TUNING | EFFECT | | |------------------------|----------------|--|-------------------------|---------------
-----------------| | I ITEM | COMMENTS | l CPU | PAGING | I/O | REAL
STORAGE | | SYS1.SWADS
Location | • | Better
 CPU utili-
 zation
 possible | | Decreases | | | | | | Could
 increase
 | Decreases
 | Increases | | SYSTEM DATA SET | S (continued) | TUNING EFFECT | | | | |-----------------|---------------|---|---|-----------|----------------------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL STORAGE | | SYS1.PROCLIB | | Better.
 CPU utili-
 zation
 possible
 | Could
 increase

 | Decreases | Increases slightly | | JES | |
 | TUNING | EFFECT | | |--------------------------|--|----------------------------|--|--------------------|---| | ITEM | COMMENTS
 | l CPU | PAGING | I/O | REAL
STORAGE | | JES Number of buffers | Use the NUMBUF parameter to specify the number of buffers in the central JES buffer pool. You should overspecify the number of buffers that are needed to prevent buffer pre-emption. Never use the default value. | Decreases JES overhead |
 | Decreases

 | Increases only if the excess buffers are accessed | | JES Buffer
 size
 | | Decreases JES overhead | Could
 increase

 | Decreases | Increases | | JES (continued |) | TUNING EFFECT | | | | |--------------------------|--|----------------------------|--|--|-----------------| | ITEM | COMMENTS | l CPU | PAGING | ! I/O
! | REAL
STORAGE | | large JES | Should be considered where both very high JES Spool volumes and low real storage loads exist. In such cases, select a buffer size that is optimized for the device track size rather than for page size. | | Increased page overhead possible | Decreases
 | Increases | | JES Control
Intervals | Increasing Unit Record I/O
 chaining decreases CPU over-
 head and allows performance
 improvement where heavy JES
 loads exist. At least double
 the default values. | Decreases JES overhead |
 Could
 increase

 | Faster I/0
 Faster I/0

 | Increases | | JES (continued) | | 1 | | | | |---------------------------------|--|--|-----------------------------|--|--| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
STORAGE | | IEFJES
 Order

 | To maintain the real storage requirements and paging activity of JES, the IEFJES load module should remain ordered as specified on Stage I output listing. | | Not
 increased

 | | Not
 increased

 | | JES | JES can impose heavy real
 storage and CPU overheads.
 Schedule high volume SYSIN/
 SYSOUT jobs and high proportion
 JCL SYSIN streams in off peak
 periods. | More even

 |
 | More even

 -
 -
 -
 - | More even

 -
 -
 -
 - | | JES (continued) | | TUNING EFFECT | | | | |---|---|--|--------|-----------|-------------------| | ITEM | COMMENTS | CPU | PAGING | I/O | REAL
 STORAGE | | Reader/
 Writer
 priority

 | I For TP systems, performance and response can generally be improved when the dispatching priority in the RDR/WTR catalogued procedures are set to one less than the TP partition but higher than the batch partitions. | Makes the
 CPU more
 available
 to the TP
 partition | | | | | JES
 writer
 checkout
 interval
 | I Increasing the value of this optional parameter will decrease the amount of check- point I/O required for each data set the writer is processing. It is important to increase this value for a high performance printer such as the 3800. | Decreases
 JES
 overhead

 | | Decreases | | | SYSTEM GENERAT | ION/PARMLIB OPTIONS | | TUNING | EFFECT | | |--|---|-----------|--|---------------------------------------|--| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL | | Minimum
 SYSGEN
 options
 (No LOG,
 no spare,
 etc.) | This approach is necessary on small machines or when real storage loads are critical. Options requiring excess storage should he limited to free the load and attain efficient operation. | Decreases | Decreases
 Page
 management
 overhead
 | Probably
 increases

 | Decreases | | VS1 assist | Use the hardware assist on
CPUs that support it. Specify
ECPS in the CTRLPROG macro
and at IPL. | | Could
 decrease
 (see Real
 Storage
 column) |
 | Decreases if ECPS SCP code is not generated into the nucleus | | SYSTEM GENERATION/PARMLIB OPTIONS (continued) | | TUNING EFFECT | | | | |---|---|--|--------------------------|---|------------------------------------| | ITEM | COMMENTS
 | l CPU | PAGING
 | I/O
 | REAL
 STORAGE | | I/O
priority
queueing | System packs should be on priority queued devices to improve system performance. Often it is desirable to generate all disk addresses as priority queued. | Better
 CPU utili-
 zation
 possible | | Less
 wait for
 critical
 system
 functions | | | I/O ordered queueing | Will be helpful in environments
 where excessive arm movement
 impacts performance. |
 |
 | Reduces arm movement | | | I/O Load
balancing | SYSGEM option only. Generally
 favorable in environments with | Reduces.
 Actually
 shortens
 the path
 length
 through
 allocation. |

 | Improved
 balancing

 | Slight
 overhead

 | | SYSTEM GENERAT | NERATION/PARMLIB OPTIONS (continued) | | TUNING EFFECT | | | |-------------------------|---|-----|---------------|-----|--| | ITEM | COMMENTS | CPU | PAGING | I/O | REAL | | Dynamic Dispatching | utilization is high, system may
not be able to absorb the
additional overhead caused by
Dynamic Dispatching. Only of
value on 512K and larger | | | | TK control table table plus higher job require- ments due to improved CPU time allocation between the partitions | | SYSTEM GENERATI | ON/PARMLIB OPTIONS (continued) | | TUNING 1 | EFFECT |
 | |-----------------|--|---|---------------------|---------|----------------------------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL | | Fetch | PCI fetch is generally of no value for 370/145 or lower CPUs. It is larger than standard fetch and is fixed while STD fetch is pageable. It requires 1600 bytes in PQA or SQA for each use. LINKLIB, etc., accesses can be reduced by PCI fetch and throughput will increase. Use where hardward permits and real storage loads are low. If CPU is not a bottleneck and I/O is, PCI Fetch may be beneficial. Will significantly save elapsed time and channel if PCI reconnect is successful. Will lose some cycles if it is not. | CPU utili-
zation
possible.
CPU time
decreases. | increase

 - | reduce | Increases by 6K to 10K | | SYSTEM GENERAT | ION/PARMLIB OPTIONS (continued) | ! | TUNING | EFFECT | i | |----------------
--|--------------------|-----------------------------|----------|----------------------| | ITEM | COMMENTS
 | CPU
 | PAGING | I/O
 | REAL STORAGE | | MAXIO | Specify a relatively large
number if the system is more
I I/O-bounded than CPU-bounded. | Decreases | Slightly
increases | | Increases
 | | WTOBFRS | System slows down if not lenough buffers specified. Make it at least 50. A good way to find out what is needed is to use JESPARMS to try out various numbers. |
 | Can
increase
slightly | Improved | Slightly increases | | WTLRCDS | Specify a large number, e.g.,
 9000, in the JES macro if the
 master console is a graphi
 device. This reduces overhead
 and degradation due to end-of-
 log-segment processing. | Decreases

 | |
 | | | SYSTEM GENERAT | ION/PARMLIB OPTIONS (continued) | | TUNING | EFFECT | | |----------------|---|-------|---|---------|---------------------| | ITEM | ! COMMENTS
! | l CPU | PAGING | I/O
 | REAL
STORAGE | | Trace Table | When real storage loads are
critical, generate the trace
table with a small number of
entries. Savings of 16 bytes
for each entry. (When needed,
the number of entries can be
increased at IPL.) | | May
 decrease
 if trace
 table was
 large
 | | Reduces
slightly | |
 | Furthermore, to eliminate internal trace and its CPU time overhead, specify TRACE=0 in response to message IEAI01A at IPL. (Note that turning off trace will have a negative impact on problem determination capability.) | | | | | | SYSTEM GENERA | TION/PARMLIB OPTIONS (continued) | [| TUNING EFFEC | T | |--|---|---|--------------|--| | ITEM | COMMENTS | CPU | PAGING I/O | REAL
 STORAGE | | SQA
 storage
 considera-
 tions

 | If insufficient real storage is specified for SQA at SYSGEN (CTRIPROG macro) or NIP (reply to message IEAIO1A) time, later expansion of the SQA could reduce contiguous available storage for V=R requests. | Decreases
 for
 handling
 V=R
 requests
 | | Real
 storage
 fragmen-
 tation
 if SQA
 specifi-
 cation
 insuffi-
 cient | | DEB
 Validity
 Checking | Consider eliminating DEBCHECK when CPU utilization is very high. | Reduces

 | - |

 | | SYSTEM GENERA | TION/PARMLIB OPTIONS (continued) | l
 | TUNING | EFFECT | | |-----------------------|--|---|-----------------------------------|---------|------------------------| | ITEM | COMMENTS | CPU
 | PAGING

 - | I/O
 | REAL
 STORAGE | | Not using
full SMF | Reduces accounting and systems monitoring facilities. May be helpful when real storage loads are critical. | Slight
 CPU
 overhead
 decrease | Could
 decrease
 slightly | | Decreases by 6K | | DDR

 | Consider eliminating DDR
 when real storage loads are
 critical. | Reduces
 VS1
 overhead | Could
 decrease
 slightly | | Decreases
 by 2K | | ERATIONAL & F | ROGRAMMING CONSIDERATIONS | ! | TUNING | EFFECT | | |---|------------------------------|---|--|---|-------------------| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL
 STORAGE | | Keep paging
activity to
a minimum | a vehicle to support virtual | Reduces
 paging
 overhead

 | Reduces
 paging
 overhead

 | Reduces
 page I/O

 | Decreases | | PERATIONAL & | PPOGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | |--|--|------------------------------------|-----------|-----------|-----------------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
STORAGE | | Sufficient
Real
Storage | Insufficient real storage is a common problem and the easiest lo detect by observing excessively aging rates, task deactivation, and erratic response. Adding more storage or reducing multi-ly programming will reduce paging and overhead. | CPU
overhead | Reduces | | Reduces
Wait | | Using a low
level of
Multi-
programming | multiprogramming to improve
 total batch throughput. This
 is necessary where real storage
 loads are high. It is often | overhead
decreases
with less | Decreases | Decreases | Decreases | | OPERATIONAL & PROGR | AMMING CONSIDERATIONS (cont.) |
 | TUNING | EFFECT | | |---------------------|--|--|--------|---------------------|--------------| | ITEM COMI | MENTS | CPU | PAGING | I/O
 | REAL STORAGE | | impact of | nificant negative impact on ponse and throughput. The lowing should be avoided n TP response is critical: Command chaining 25AM chained scheduling COMTASK (includes operator commands like: | zation
possible.
Makes the
CPU more | | | | | allocation acce | ays allocate sequentially
essed data sets by cylinders
her than tracks. | Reduces | !
! | Reduces
 time | | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | 1 | TUNING | EFFECT | | |---------------|---|------------------------|--|-----------|-------------------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | | Sequential | Blocking is one of the best and most useful methods known for improving throughput. Use blocking factor of 10 to 15. Make blocksize equal or just less than a multiple of 2k bytes, and less than 8k, if CPU is bottleneck. Consider DASD track size and RPS. When L/O time is critical (e.g., DASD contention or lost time due to tape IBG), consider specifying even higher blocksizes - up to full track for DASD and up to 5 inches for tape. | Can be up
 to 500% | May
 increase

 | Decreases | Increases | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | |---------------|--|-----------------------------------|--|--------------------------------------|--| | ITEM | COMMENTS | l CPU | PAGING | I/O | REAL
STORAGE | | | Increasing the values specified for PAGEMEAS via the PAGETUNE command will cause pages to migrate more slowly toward the level 0 queue and often improves TP response in low message rate environments. Note: This may increase batch deactivation. | page
 migration
 overhead | | | Keeps
CICS
pages in
real
storage
longer | | | Increasing the values specified for STOP via the PAGETUNE command will cause deactivation to happen less often. However, specifying an excessive value could induce suspension of the deactivation functions and possibly even cause page thrashing. | l | Increases.
 Thrashing
 likely to
 occur.
 | Page I/O
 increases

 | Increases | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | ì | |--------------------------------|--|---|--------|-----------|--|--------| | ITEM | COMMENTS | CPU | PAGING | I/O
 | REAL
 STORAGE | 1 | | Defining additional partitions | Two or three additional partitions can be defined for added flexibility. Real storage use will be slight if they are defined with zero virtual storage until needed. | !
!
!
! |
 | | Increases
 Slightly

 -
 - | | | (pre-allo-
 cated) | Savings of 6-10% in elapsed |
Decreases.
 Better
 CPU utili-
 zation
 possible. |
 | Decreases | | 111111 | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | 1 | TUNING | EFFECT | | |--|--|--|----------------------------------|-----------------------------------|--------------------------------| | ITEM | COMMENTS
 | CPU
 | PAGING

 | I/O

 | REAL | | Chained
 Scheduling
 for
 sequential | In combination with large
blocksize and large buffer
number, this can be very useful
for the reduction of CPU time
and the improvement of
throughput. | Decreases

 -
 -
 -
 - | Increases

 -
 -
 - | Decreases | Increases

 | |
 | blocksizes are better than
 chained scheduling for overall | Reduces disabled CPU code. CPU more available. |

 | Reduces channel lockout potential | | | ISAM
 indices
 | If ISAM must be used, try to
use incore indices. VSAM is
a better performer than ISAM
under VS1. | Decreases | Slightly
 increases
 | Decreases | | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | |--|--|---|---|---------------------|---| | ITEM | COMMENTS | CPU | PAGING | I/0 | REAL | | Other SAM
options | Use Search Direct (OPTCD=Z) or Fixed Standard (RECFM=FBS) to reduce channel busy. | | | Decreases
 SIOs | | | Using STARTF command | Using STARTF to start readers and writers whenever possible could shorten the processing time and drastically improve performance. | Decreases | | Decreases | Decreases
for start
processing
period | | Eliminating
 CCW
 overheads
 by running
 V=R | This is seldom desirable. | Eliminates
 CCW trans-
 lation
 overhead
 (5-39%) |
 Will
 increase
 usually
 | ! | Heavily
 increases
 usually | | OPERATIONAL & PROGRAMMING CONSIDERATION | IS (cont.) | ont.) TUNING EFFECT | | | | |---|--|--|---------------------------|---|--| | ITEM COMMENTS | CPU | PAGING | I/0 | REAL
STORAGE | | | Monitoring When deactivation of on for is regularly and contin Deactivation observed, the level of programming or the opti functions active should decreased immediately. rule of thumb is that w sum of deactivation for partitions exceeds 150% partition should be cut | nually expensive multi- overhead lions and | Decreases

 | | Decreases

 | | | Programming Locality and validity o
 Techniques reference in heavily us
 code is vital. Apply t
 or modified application | sed
conew | | Decreases
Paging I/O | Signifi- cantly decreases (up to 80%) | | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | I | TUNING | EFFECT | | |-------------------|---|-----------|-------------------------|----------------------|---| | ITEM | COMMENTS | l CPU | PAGING | I/O
 | REAL STORAGE | | Re-entrant Coding | Re-entrant (read only) coding eliminates pageouts. Re-
l entrant modules can be shared by placing them in the resident re-entrant area. | Decreases | Decreases | Decreases | Decreases (when shared in re-entrant area) | | Overlays | ! In general, overlays should
 be removed from user programs
 since Page I/O is more
 efficient than overlay handling
 and loading. |
 | Could
 increase
 | Varies

 | Increases | |
 | In cases where many large overlays exist that may not be executed at all, it may be better to leave the overlays in the programs. | Decreases | Decreases | Decreases | | | RATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | |------------|------------------------------------|-----|--------|--------|-------------------| | TEM | COMMENTS | CPU | PAGING | I/O | REAL
 STORAGE | | mpact | Examine the APF authorized | i | | | i | | f APF | I applications in the system very | 1 | 1 | 1 | l | | pplication | closely. It is possible to | 1 | 1 | 1 | I | | | have a negative performance | | l | i | l | | | impact from a user application | 1 | ł | ł | I | | | or a program product that | 1 | I | I | I | | | changes the means of system | | i | 1 | 1 | | | dispatching (e.g., CIRB, CHAP | 1 | 1 | 1 | l | | | request), or paging algorithm | 1 | 1 | 1 | 1 | | | (e.g., PGLOAD, PGRLSE), or | 1 | i | ł. | l | | | resource management (e.g., | 1 | l | 1 | ł | | | ENQ/DEQ, RESERVE). | 1 | 1 | 1 | l | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) | | TUNING | EFFECT | | |---------------|--|---|--|--------------------|-----------------| | ITEM | COMMENTS | i CPU | PAGING | I/O
 | REAL
STORAGE | | | Certain types of programs (i.e., SORT, ASSEMBLER, LINKAGE EDITOR) normally improve performance when the amount of storage assigned to them is increased. This can be controlled by: * The size parameter or buffer size, or by | Decreases
 overhead

 | Increases

 | Decreases

 | Increases | | 1 | <pre>* Enlarging the partition's virtual address space.</pre> | 1 | 1 | 1 | | | OPERATIONAL & | PROGRAMMING CONSIDERATIONS (cont.) |
 | TUNING | EFFECT | | |---|--|--------------|--------------------|-----------|-----------| | ITEM | COMMENTS | CPU

 | PAGING | I/O
 | REAL | | Controlling
 unstable
 real
 storage
 loads | Certain types of programs (i.e., MPSX, linear programming) with unstable real storage loads are best controlled by: * Setting size parameters * Limiting the partition's virtual address space * Running at lowest priority | l page | Decreases

 | Increases | Decreases | | RES | | TUNING EFFECT | | | | |---------|--|----------------------|-------------------------|------------------|---------------------------| | ITEM | COMMENTS | CPU | PAGING | I/O | REAL STORAGE | | MXINTBR | Specify MXINTBR=1K, preferably 2K. Reduces task switch overhead. | Decreases | Could
 increase
 | Decreases | Increases
 slightly | | VBUF | SNA only. Optimum specification
 is VBUF=14. This yields faster
 terminal print speed and reduced
 RTAM and VTAM overhead. | | Could
 increase
 | | Increases

 | | and | Note that compaction is for SNA only. Use these two options to improve printer performance and reduce RTAM and VTAM overhead. | increase.
 Might | | Reduces

 |

 | | RES (continued |) | TUNING EFFECT | | | | |----------------|--|---------------|----------------|--------------------------------|-------------------------------------| | ITEM | COMMENTS | CPU
 | PAGING
 | I/O
 | REAL | | STBUFNO | Performance of inbound console commands could be improved by increasing the number of subtask buffers. This reduces the unnecessary task switches between RTAM and its subtask and the internal waits within RTAM. | Decreases | |
 | Increases

 | | | Each additional remote
 printer/reader started requires
 a JES spool buffer. | Decreases |

 |
 | Increases | | | For high volume LOGON processing with passwords, place the UADS data set near the VTOC. |
 | | Reduces
 arm
 movement | | | RES (continued |) |
 | TUNING | EFFECT | | |----------------|--|-----------|--------|-----------|-------| | ITEM | COMMENTS | CPU | PAGING | 1/0 | REAL | | госои | | Decreases | | Decreases | | | performance | <pre>1 * Use STARTF to start remote 1 readers and writers.</pre> | | l
I | i i |]
 | | i
1 | * Put LOGON modules in BLDL
 list. | !
! | !
! | 1 | [| | 1 | * Use NONOTICES and NOMAIL.
 * Start only required devices. |
 |
 | | | | VTAM | | | TUNING | EFFECT | | |---------------------
---|---------|-----------------|---------|-----------------| | ITEM | COMMENTS
 | CPU | PAGING

 | I/O
 | REAL STORAGE | | VTAM i buffer pools | In storage-contrained environments, specification of too large a VTAM buffer pool results in higher paging and longer response times. Decrease the number of buffers. | Reduces | Reduces |
 | Reduces | | | Too few buffer pools result
 Too few buffer pools result
 In VTAM slow-down and poor
 response. Increase the value. | Reduces | | | Increases
 | IBM Internal Use Only Page 62 ## OSZVS1 PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel make VS1 perform better, please send them also. Please give the following information: | Name: | |
 | | | |-------------------|---|------|---|--| | Location: | |
 | | | | Address: | |
 | | | | Telephone number: | |
 | | | | TIE line 8/ | |
 | , | | | Outeida (|) | _ | | | General rating of this document: - o Extremely useful o Marginally useful - o Very useful - o Of no value o Useful Additional comments may be written on the back of this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 IBM Internal Use Only 7720-2861 #### OS/VS1 PERFORMANCE CHECKLIST READER'S COMMENT FORM ### DOS/VS #### PERFORMANCE CHECKLIST #### DOS/VS #### PERFORMANCE CHECKLIST #### January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 #### CONTENTS | Intr | oduc | tio | n. | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠ | • | • | ٠ | ٠ | 3 | |------|------|------|-----|----|-----|-----|-----|-----|-----|-----|-----|----|----|---|-----|-----| | | Pur | pose | ≘ 0 | £ | Thi | is | Do | cı | me | nt | : | | | | | 3 | | | How | То | Us | e | Thi | is | Do | cı | ıme | nt | : | | | | | Ł | | | Cur | ren | сy | • | | | • | • | | • | • | • | | | | Ę | | | Pre | requ | uis | it | es | | | | | | | | | | | į | | Bibl | iogr | aphy | у. | | • | | | | | • | | | | | • | 7 | | DOS | VS P | erf | orm | an | ce | Ιŧ | en | ıs | • | • | | • | | | • | 1 1 | | | Sys | tem | Ge | ne | ra | tic | n | Oŗ | ti | .or | ıs | • | | | • | 1 ' | | | Oth | er 1 | Per | fo | rma | anc | e:e | 0 p | ti | .or | ıs | • | • | | • | 1 6 | | | Per | for | nan | ce | 01 | pti | on | ıs | Re | qι | ıiı | ir | ıg | | | | | | M | ore | Ε£ | fo | rt | • | ٠ | • | • | • | • | • | ٠ | • | • | 1 9 | | | POW | ER/ | ٧s | Tu | niı | ng | Op | ti | or | ıs | | | | | . : | 2 ' | | Read | er's | Col | mme | nt | F | orn | 1 | | | | | | | | . : | 23 | #### INTRODUCTION #### Purpose Of This Document This document is intended to provide a quick reference for the DOS/VS Systems Engineer who wants to more finely tune a customer's DOS/VS system. It is not an all-inclusive list of tuning knobs which will result in a better performing DOS/VS system. It does represent a best effort to supply a list of those items which have proven to provide a performance improvement in a majority of instances. The recommendations contained in this document have not been subject to any formal test or review and should therefore be individually evaluated for their applicability to a particular installation. Use of information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. #### How To Use This Document The following checklist assumes that the user has access to the document listed in the bibliography section of this document. For ease of use, the items in the checklist are broken into four categories. The first represents those areas that can result in system improvements with minimal efforts. The next category requires a greater investment in time and effort, etc. The effect on the three major system resources (CPU Cycles, Paging and I/O) is shown for each performance and tuning item on the checklist. Users who have identified their major bottleneck or constraint can look down the appropriate column for items to help alleviate the situation. The contents of the checklist should also be reviewed prior to: - The installation of a new DOS/VS system. - The installation of a new release of DOS/VS. - A major change in the hardware environment. - The installation of a new major application. #### Currency This document is current through the current release of DOS/VS and DOS/VS Advanced Function at the date of publication. #### **Prerequisites** - Experience installing, generating and using DOS/VS. - A basic understanding of how the system works. - Access to the documents on the bibliography list. ## DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY #### GENERAL | 1. | ZZ20-2850 | Advanced Functions - DOS/VS and DOS/VS Release | |-----|-----------|--| | | | 34 Implementation | | | | Considerations | | 2. | ZZ05-0022 | | | 3. | | | | ٥. | 2220-2349 | Performance Evaluation | | | | Virtual Storage Systems | | 71 | ZZ20-3306 | | | 4. | 4440-3306 | | | - | ~~^^ ~~ | Evaluation | | ٥. | ZZ20-3309 | | | _ | | Predictor User's Guide | | 6. | ZZ20-3737 | | | _ | | Handbook | | 7. | 73-19 | Poughkeepsie Systems | | | | Center Bulletin - DOS/VS | | | | Notebook | | 8. | 74-04 | Poughkeepsie Systems | | | | Center Bulletin - 370/125 | | | | Performance | | 9. | 74-06 | Poughkeepsie Systems | | | | Center Bulletin - 370/115 | | | | Performance | | 10. | 74-20 | Poughkeepsie Systems | | | | Center Bulletin - 370/115 | | | | Performance | | 11. | 76-07 | Palo Alto Systems Center | | | | Flash - RPS With DOS/VS | | 12. | 76-11 | Palo Alto Systems Center | | | | Flash - Comments On | | | | Paging | | 13. | 76-18 | Palo Alto Systems Center | | | | Flash - Shared DASD | | 14. | 76-30 | Palo Alto Systems Center | | | | Flash - Monitoring DOS/VS | | | | Paging Activity | | | | · | # DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 15. | 77-08 | Palo Alto Systems Center | |-----|-------|---------------------------| | | | Flash - VM/370 Linkage | | | | Enhancements | | | | Clarification On Job | | | | Accounting | | 16 | 77-18 | Palo Alto System Center | | 10. | 77-10 | Flash - Advanced | | | | Functions - DOS/VS and | | | | DOS/VS Release 34 | | | | Implementation | | | | Consideration | | 477 | 77-20 | | | 17. | //-20 | Palo Alto System Center | | | | Flash - Console Support | | | | for 370/138, 148 under | | | | VM/370 | | 18. | 77-23 | Palo Alto Systems Center | | | | Flash - 3277 Display | | | | Operator's Console | | | | Support | | 19. | 77-32 | Palo Alto Systems Center | | | | Flash - A Comparison of | | | | 138/148 Console Mode and | | | | the 3215 Printer Keyboard | | 20. | 77-45 | Palo Alto Systems Center | | | | Flash - Advanced | | | | Functions - DOS/VS | | | | Partition Balancing | | | | Algorithm | | 21. | 77-48 | Palo Alto Systems Center | | | | Flash - Support For The | | | | Operator's Console | | 22. | 76-09 | Palo Alto Systems Center | | | | Flash - Fast CCW | | | | Translate Measurements | | 23. | 75-05 | Installation Newsletter - | | | | Disk/Tape File | | | | Operational | | | | Considerations | | | | | IBM Internal Use Only ZZ20-2861 Page 8 # DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) 24. 75-10 Poughkeepsie Systems Center Flash -Reactivation Control #### AIDS AND TOOLS - 25. ZZ20-3495 DOS/VS Performance Tool Marketing Guide - 26. SH20-1836 DOS/VS Performance Tool Program Description and Operation Manual - 27. G320-5679 DOS/VS Performance Tool #### POWER/VS - 28. ZZ05-0010 Power/VS Tuning Considerations 29. 76-14 Palo Alto Systems Center Flash Forms Control Buffer Loading 30. 76-26 Palo Alto Systems Center Flash 3770/3740 Diskette Labeling For RJE - Diskette Labeling For RVI 31. 76-29 Palo Alto Systems Center Flash - RJE - Clarifications 32. 76-30 Palo Alto Systems Center Flash Release 33 - Working Sets 33. 77-42 Palo Alto Systems Center Flash 3790 RJE Clarifications - 34. 78-02 Palo Alto Systems Center Flash Clarification Of - The Timeout Specification # DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 35. | /0-1/ | Palo Alto Systems Center | |-----|-------|--------------------------| | | | Flash - Cross-Partition | | | | Communications Macro | | | | Restriction | | 36. | 78-17 | Palo Alto Systems Center | | | | Flash - SNA-RJE | | | | Installation Checklist - | | | | 3770 | | SYSTEM GENERATION OPTIONS | | | ADVANCED I | | | |---------------------------|---|-------------------------------------|------------|---------------------------------|------------| | ITEM | COMMENTS | CPU | PAGING | 1/0 | FUNCTIONS | | FASTTR | Enables user to use a fast path
 through the CCW translation
 routines. Generally aids smaller
 CPU user. | Shorter
 path
 |
 | Same | N o | | RPS | Includes support for rotational
 position sensing. | Increases
 DOS/VS
 overhead | | Reduces
 channel
 usage | No I | | | Can be used to reduce program size by using IOCS modules in shared virtual area instead of in user program. |
 | Reduces | Reduces
 channel
 usage | | | JA(LIOCS) | Includes support for job
 accounting.
 | Increases system overhead | | | No I | | SYSTEM GENERATION OPTIONS (continued) TUNING EFFECT | | | | | ADVANCED | |---
---|--|--------|------------------------------|-----------| | ITEM | COMMENTS | CPU | PAGING | 1/0 | FUNCTIONS | | SKSEP | Causes all seeks to disk to be
 done as standalone seek. |

 |
 | Reduces
channel
tie-up | No I | | DASDFP | Causes DOS/VS to verify all seek addresses before the seek is allowed to ensure that the seek remains within the specified extent. (Useful only for DAM files and user-written channel programs.) Do not use if only SAM, ISAM, and VSAM files. | Increases
 super-
 visor
 path
 length
 | | | No | | I IDRA | Provides an independent directory read-in area so that directory search does not require logical transient area for directory search during fetch. | Improves
 system
 overlap
 | |

 | No | | SYSTEM GENERATION OPTIONS (continued) | |
 | ADVANCED I | | | |---------------------------------------|---|--|------------|------------------------------|-------------| | ITEM | COMMENTS | CPU | PAGING | 1/0 | FUNCTIONS ! | | BLKMPX

 | Causes block multiplexing support to allow channel to disconnect during seek on block multiplex channel with 33XX devices. (Remember to specify 3340R if using 3340 or 3344.) | | | Reduces
channel
tie-up | No
 | | SYSFIL | | Increases
 super-
 visor
 path
 length | | | No | | SYSTEM GENERATION OPTIONS (continued) | | I DULLUARD | | | |--|---|--------------------------|--|-------------------------| | ITEM COMMENTS | CPU | PAGING | 1 1/0 | ADVANCED
FUNCTIONS | | transients to release control to a dispatchable partition during error recovery. | Increases
 degree of
 multi-
 programming
 | | disk arm | No | | console message activity. |

 |

 | movement

 Reduces
 time to
 fetch the
 transient | No I | | display console. | l | l | l ! | ! | | STEM GENER | TION OPTIONS (continued) | | TUNING EFFEC | T | ADVANCED | |------------|--|--|-----------------------|-------------|-----------| | TEM | COMMENTS | CPU | PAGING | I/O | FUNCTIONS | | | Causes balanced group of
partitions to share CPU cycles
on a scheduled basis (MSECS=). | Increases
 super-
 visor | May
 increase
 | i
!
! | Yes
 | | | Specify this on systems which may have CPU-bound steps being scheduled into random partitions. | paths on
 intervals
 specified | 1 | | 1
1 | | | Tomourus and Lundom Fallorons. | in MSECS | i | i | ĺ | | OTHER PERFORMANCE OPTIONS | | | ADVANCED | | | |---------------------------|--|----------------|------------------------------------|-------------------------|-----------| | ITEM | COMMENTS | l CPU | PAGING | I/0 | FUNCTIONS | | Page Data
 Set | Keep on low activity volume. | | Less arm | Less arm
movement | Ко | | !
! | Put in fixed head area. (Only
 background partition will
 probably be under fixed heads.) |

 | Reduces
 seek time
 | Less arm
movement | No I | | Virtual | Place all VSAM, DL/I, RPS,
 etc., in SVA. Allows programs
 to share frequently used
 subroutines, etc. | | Common routines will stay resident | | No I | | Directory | Use PDAID fetch/load trace to
determine frequently referenced
phases. Then create "tuned"
SDL. | |

 | Reduces CIL search time | No I | | OTHER PERFORMANCE OPTIONS (continued) | | | l ADVANCED I | | | |---------------------------------------|--|------|--|---|-----------| | ITEM | COMMENTS | CPU | PAGING | I/O | FUNCTIONS | | | Place on limited use volume to I reduce time to store console I messages. Remember to place the I console transients in the SDL I also. There are 6 transients I fetched for each line on the I display console. |
 |
 | Reduces
 disk arm
 movement
 | No | | TPBAL | In systems with CICS/VS (or others using TPIN/TPOUT macros), causes immediate deactivation of batch partition when page fault occurs while CICS running. Requires TP support in SUPVR macro. This is an Attention Routine command. |
 | Reduces thrashing I I I I I I I I I I I I I I I I I I |
 | No | | OTHER PERFOR | MANCE OPTIONS (continued) | İ | I ADVANCED I | | | |-------------------------|--|-----------|-------------------------------------|-----------------------|-----------| | ITEM | COMMENTS | CPU | PAGING | 1 1/0 | FUNCTIONS | | Linkage
 Editor
 | Improved techniques used by Advanced Functions LNKEDT such as double buffering, full track read, improved directory search mechanism, etc. | Increases | May
 increase
 slightly
 | Reduced

 | Yes | | PERFORMANCE (| OPTIONS REQUIRING MORE EFFORT | [| TUNING EFFECT | | | | | | |-----------------------|---|--|---|-----------------------|---------------|--|--|--| | ITEM | COMMENTS | CPU | CPU | | | | | | | Data File
Blocking | Increase tape block sizes to coupy approximately five (5) inches of tape. | Increase
 in cycles
 available
 to user
 program | Increases
 due to
 larger
 working
 set | Reduced

 | No | | | | | Disk File Blocking | Increase disk block size to
 equal track capacity.
 | Increase
 in cycles
 available
 to user
 program | Increases
 due to
 larger
 working
 set | Reduced

 | No

 | | | | | PERFORMANCE OPTIONS REQUIRING MORE EFFORT (cont) | | TUNING EFFECT | 1 | A DUANGED | |---|--|---------------|---|-------------------------| | I ITEM COMMENTS | i CPU | PAGING | | ADVANCED
FUNCTIONS | | 3800 ICR output to 3800s to utilize the (see Blue larger blocking capability. This Letters requires that programs run V=V, P77-56 and have a SIZE= parameter on the P77-216) EXEC statement, and enough partition GETVIS space for the updated PRMODS and 4K to contain the 3800 I/O buffer. POWER/VS should also be used so that the conversion of the 3800 CCWs are | super-
 visor SIO
 processing
 by issuing
 start I/O
 requests
 on a less
 frequent
 basis due | increase | | No | | nandled by POWERV'S. Otherwise,
 a 3800 is required for actual
 printing. | blocking | | | 1 | | POWER/VS TUN | IING | | I ADVANCED I | | | | |--------------|---|------|--------------|---|-----------|--| | ITEM | COMMENTS | CPU | PAGING | 1/0 | FUNCTIONS | | | DBLK | This specifies the size of the unit of data transmission. It should be optimized for the DASD device being used. Specify the following: DASD Type DBLK 3330 2008 3340 1966 3350 1954 | | due to | Reduced
 I/O due
 to better
 blocking
 |
 No | | | TRACKGP | I Impacts the way POWER/VS allocates cylinder space. Specify small number for system where jobs produce limited printout volumes. Specify large number for system where jobs produce volume printout on average. (Remember POWER/VS allocates one track group even for one line of printout). |
 | | | No | | #### DOS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel make DOS/VS perform better, please send them also. Please give the following information: | Name: | |-------------------| | Location: | | Address: | | | | Telephone number: | | TIE line 8/, | | Outside () | General rating of this document: - o Extremely useful o Marginally useful - o Very useful - o Of no value o Useful Additional comments may be written on the back of
this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 ### DOS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM #### VSAM #### PERFORMANCE CHECKLIST #### January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 #### CONTENTS | Intro | du | ct | io | n | ٠ | ٠ | • | • | ٠ | • | ٠ | • | • | ٠ | • | • | • | 3 | |-------|-----|----|----|-----|-----|---|----|-----|-----|-----|----------|-----|---|---|---|---|---|-----| | | Pu | rp | os | e | ьo | | Th | is | De | oc. | ume | en† | t | | | | | 3 | | | но | w | То | U | se | 2 | Th | is | D¢ | o c | ume | en† | t | | | | | 4 | | | Cu | rr | en | сy | , | | | | | | | | | | | | | 6 | | | Pr | er | eq | ui | s i | t | es | | • | | | | | | | | | 6 | | Bibli | Log | ra | ph | У | | | | | | | | | | | | | | 7 | | VSAM | Рe | r£ | or | ma | no | e | I | tei | n s | | | | | | | | | 13 | | | Ge | | | | | | | | | | and
• | | | | | | | | | | In | | | | | | | | | | te: | | | | • | | | 15 | | | ot | | | | | | | | | | te: | | | | | | | 18 | | | Ca | ta | 10 | g | Cc | n | si | de: | ra. | ti | ons | 5 | | | | | | 2 1 | | | Tu | ni | ng | E | ££ | e | ct | C | ode | 9 5 | | | | | | | • | 2 2 | | Reade | er' | s | Co | m m | en | t | F | orı | n | | | | | | | | | 23 | #### INTRODUCTION #### Purpose Of This Document This document is intended to provide a quick reference for the System Engineer who wants to help his customer more finely tune VSAM in the system. It is not an all-inclusive list of tuning knobs which will result in better performing VSAM. It does represent a best effort to supply a list of those items which have proven to provide a performance improvement in a majority of instances. The recommendations contained in this document have not been subject to any formal test or review and should therefore be individually evaluated for their applicability to a particular installation. Use of information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. #### How To Use This Document The following checklist assumes that the user has access to the documents listed in the bibliography section of this document. For ease of use, the items on this checklist are divided into four sections: General Allocation and Placement Considerations Indexes, Control Intervals and Buffers Other Performance Items and Options Catalog Considerations The effect on the seven major system resources/performance factors (CPU cycles, working set, channel utilization, operating system overhead, I/O response time, throughput, DASD space) is shown for each performance and tuning item on the checklist. Users who have identified their major bottleneck or constraint can look down the appropriate columns for items to help alleviate the situation. The contents of the checklist should also be reviewed prior to: - The initial installation of VSAM on a system. - The installation of a new level of VSAM. - A major change in the hardware environment. - The installation of a new major application. Most items on the list contain references to other documents where further information may be obtained. The lack of reference implies only that no further explanation is needed or available, or that the information may be in multiple documents. Wherever possible, SRIs are referenced in the checklist because they contain the most current performance-related information. All the tuning items in this checklist apply to both VS1 and DOS/VS VSAM unless specifically stated otherwise. #### Currency This document is current through the current levels of OS/VS1 VSAM and DOS/VS VSAM that are available with their respective SCPs at the date of publication. #### Prerequisites - Experience installing, generating, and using VSAM. - A basic understanding of how VSAM works. - Access to the documents on the bibliography list. ## VSAM PERFORMANCE AND TUNING BIBLIOGRAPHY #### VS1 VSAM | 1. | ZZ20-2363 | OS/VS1 Performance | |-----|-----------|---------------------------| | | | Evaluation Release 6 | | 2. | ZZ10-9833 | 138/148 Systems Selection | | | | Guide - OS/VS1 | | 3. | GC26-3838 | OS/VS VSAM Programmers | | | | Guide | | | | OS/VS VSAM Planning Guide | | 5. | GC26-3842 | Planning for Enhanced | | | | VSAM under OS/VS | | 6. | GC26-3819 | OS/VS VSAM Options for | | | | Advanced Applications | | 7. | GC26-3840 | OS/VS1 Access Method | | | | Services | | 8. | SY35-0008 | OS/VS1 Access Methods | | | | Services Logic | | | | OS/VS1 VSAM Logic | | 10. | SY35-0003 | OS/VS1 Catalog Management | | | | Logic | | 11. | SJD2-2118 | VSAM Fiche-Component | | | | Listings | | 12. | SJD2-2114 | IDCAMS Fiche-Component | | | | Listings | | | | Guide to PL/S II | | | GC38-1001 | | | 15. | GC26-3835 | | | | | Information | | | GC24-5094 | | | 17. | PA75-009 | (VSAM Flash) VSAM | | | | Resource Sharing | | 18. | PA75-013 | (VSAM Flash) VSAM | | | | Application Design and | | • • | | Implementation | | 19. | 6321-0038 | IBM Systems Journal "VSAM | | | 7705 0065 | Data Set Parameters" 1974 | | 20. | 2205-0067 | VSAM Performance Study | | | | (ISAM vs VSAM) | # VSAM PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 21. | ZZ20-2841 | VSAM Catalog Structures | |-----|-----------|---------------------------| | | | and Comparison of VSAM | | | | Catalogs | | 22. | 76-002 | (WTSC-PA Flash) How to | | | | Get Rid of VSAM Catalog | | 23. | 75-029 | (WTSC-PA Flash) Some Not | | | | Too Obvious VSAM Catalog | | | | Restrictions | | 24. | ZZ10-9840 | Practical Experiences in | | | | Recovering a VSAM | | | | Recoverable Catalog | | 25. | ZZ05-0011 | OS/VS Backup and Recovery | | 26. | 76-008 | (VSAM Flash) Catalog | | | | Recovery Area Size | | | | Restriction | | 27. | 76-003 | (VSAM Flash) Enhanced | | | | VSAM Feature and | | | | CICS/OS/VS | | 28. | 75-008 | (VSAM Flash) Storage | | | | Estimates in OS/VS VSAM | | | | Version 2 | | 29. | G320-5774 | VSAM Primer (DOS/VS, VS1, | | | | MVS) | | 30. | SCF-7841 | (VSAM Flash) Recovering | | | | Files with Recovery | | | | (Load) Mode | | 31. | SCF-7850 | (VSAM Flash) VS1/VSAM CI | | | | Split Integrity PTF | | | | Available | | 32. | ZZ20-2732 | VSAM on 3350 (Fixed | | | | Heads) Newsletter 76-08 | | 33. | GC29-5099 | OS/VS1 JCL Reference | | 34. | GC26-3791 | OS/VS1 System Generation | | | | Reference | | 35. | SY26-3837 | OS/VS1 DADSM Logic | | 36. | ZZ20-3698 | DASD Switching Concepts | | 37. | WSCF-7707 | OS/VSAM Questions and | | | | Answers | | | | | # VSAM PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 38. | G320-6015 | OS/VS VSAM Sharing - A | |-----|-----------|------------------------| | | | Technical Discussion | | 39. | GC28-1818 | CMS Command and Macro | | | | Pafaranca - Annandiy C | #### VS1 VSAM AND SHARED DASD - 40. GC24-5096 OS/VS1 Planning and Use Guide Section C - 41. GC26-3799 OS/VS VSAM Planning Guide - 42. GC26-3842 Planning for Enhanced VSAM Under OS/VS - 43. ZZ77-5012 Planning for Shared DASD - 44. ZZ05-0300 A DASD Tuning Refresher #### VS1 VSAM WITH IMS/VS DB - 45. ZZ20-2806 VSAM Performance in IMS/VS - 46. ZZ10-9872 HDAM Randomizing Algorithms - 47. ZZ20-2732 IMS Topical Index for PARSC Newsletter (see VSAM) - 48. ZZ19-0279 Writing Randomizing Modules for HDAM - 49. GH20-9069 IMS/VS Fast Path Feature General Information # VSAM PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) # VSAM FLASH AND NEWSLETTER INDEXES 50. ZZ20-2735 PARSC Newsletter Index | | | 1973-76 (Newsletter | |-----|-----------|---------------------------| | | | 76-11) | | 51. | SCF-7849 | PASC and WSC Document | | | | Index - 1975-1978 | | 52. | ZZ10-9842 | WTSC Bibliography to | | | | Weekly Distribution 1976 | | 53. | ZZA0-9869 | WTSC 1978 Weekly | | | | Distribution (Microfiche) | | | | (plus TNL ZZAO-9878) | | 54. | ISF-76-22 | Intermediate Systems | | | | Flash Index 1976 | 55. INL-75-21 VSAM Bibliography 1973-75 # DOS/VS VSAM | 56. | INL-75-01 | VSAM Data Set Design | |-----|-----------|---------------------------| | | | Considerations | | 57. | INL-75-07 | DOS/VS VSAM NRES | | | | Parameter | | 58. | INL-75-09 | DOS/VS COBOL and VSAM RBA | | 59. | INL-76-02 | AMS VSAM Catalog Reload | | | | Restrictions | | 60. | 76-04 | (VSAM Flash) DOS/VS DB/DC | | | | Design and Tuning | | | | Checklist | | 61. | 76-06 | (VSAM Flash) Specifying | | | | the Number of Index | | | | Buffers | | 62. | 76-06 | (VSAM Flash) VSAM Buffer | | | | Usage | | 63. | 76-08 | (VSAM Flash) VSAM | | | | Time-Stamping | | 64. | 76-09 | (VSAM Flash) DOS/VSAM on | IBM Internal Use Only Page 10 ZZ20-2861 3350 # VSAM # PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 65. | 76-19 | (VSAM Flash) Using VSAM | |-----|-----------|---------------------------| | | | IIP With ISAM Unblocked | | | | Records | | 66. | 77-11 | (VSAM Flash) VSAM Catalog | | | | Recovery | | 67. | 77-11 | (VSAM Flash) VSAM and | | | | Release 33 | | 68. | 77-14 | (VSAM Flash) VSAM | | | | Alternate Index | | 69. | 77-51 | (VSAM Flash) DOS/VS VSAM | | | | 3330-11 and 3350 | | | | Migration | | 70. | 74-11 | VSAM Performance on | | | | 370/115 - Poughkeepsie | | | | Bulletin | | 71. | ZZ05-0016 | VSAM User's Guide | | 72. | ZZ33-6025 | DOS/VS Release 31 VSAM | | | | Performance | | 73. | ZZ10-9840 | Practical Experience | | | | Recovering a VSAM | | | | Recoverable Catalog | | 74. | ZZ77-4070 | DOS/VS VSAM Questions and | | | | Answers | | 75. | ZZ77-3047 | A VSAM Analytic Model for | | | | Data Set Design | | 76. | ZZ20-2841 | VSAM Catalog Structures | | 77. | GC33-5382 | DOS/VS Access Method | | | | Services User's Guide | | 78. | GC33-5404 | DOS/VS Vsam Planning | | | | Guide | | 79. | SY33-8562 | DOS/VS LIOCS Vol. 4 - | | | | VSAM Logic | | 80. | SY33-8564 | DOS/VS AMS Logic | | 81. | ZZ20-2858 | DOS/VS Tuning and ISAM to | | | |
VSAM Conversion Guide | | GENERAL ALLOCATION & | PLACEMENT CONSIDERATIONS | | *TUN | ING EF | FECT O | Y PERF | ORMANC | E FACTO | ORS | |-----------------------------|---|---------------------|-----------------|---------------------------------------|------------------------|------------|-----------------------------|----------------------|-------| | ITEM | COMMENTS | REFERENCE DOCUMENTS | UTIL | ISET | UTIL | Ю.Н. | TIME | PUT | SPACE | | Place VSAM indexes | | 32, 35 | | | | • | -
 -
 | • | 0 | | and data
 components on | Allows VSAM to gain
 access to an index and
 to data at the same
 time. Do not IMBED. | | *

 | 0 | 0 | *

 | -

 | -

 | 0 | | | Do not use less than a cylinder's worth of allocation for either the rimary or secondary allocation. Not applicable to very small files. | | * | 0
 -
 -
 -
 -
 -
 - | -

 -
 -
 | - | *
 *

 | -

 | - | ^{*} See Codes at end of Checklist | INDEXES, CONTROL INTE | | *TUN | ING EF | FECT O | PERF | ÖRMANC | FACT | DRS | | |-----------------------|--|------------------------|----------------------------|--------|----------------------|--------|---------------|-----|-------| | ITEM | | REFERENCE
DOCUMENTS | UTIL | SET | UTIL | Ю.Н. | TIME | PUT | SPACE | | | When Index and Data are on separate volumes. | • | 1 0 | i – | 1 0 | 0 | - | * | i + i | | | For larger CA sizes. | | 1 0 | i 0 | i o | * | i - | * | i + i | | Increase index | Use if you suspect | | | | | | -

 | - | - 1 | | cISZ. Decrease | | 3, 4, 18,
81, 29 |
 *

 | 0 | *

 | * | 1 -
1
1 | - | * | | INDEXES, CONTROL INT | DEXES, CONTROL INTERVALS, & BUFFERS (continued) | | | *TUNING EFFECT ON PERFORMANCE FACTORS | | | | | | | | |--|--|----------------------------|-------------------|---------------------------------------|-----------------|----------------------|----------------------|-----------------------|---------------------------|--|--| | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | WORK | CHAN | | | THRU
 PUT | DASD | | | | Increase data
 CISZ | Should improve
 processing for
 sequential requests. | 3, 4, 18,
 81 | *

 | +
 +
 | - | -
 -
 | - | -
 -
 | * | | | | Increase BUFNI | Appropriate for random requests and multi- string processing. | 3, 18, 81,
 33, 29 | *

 | +

 | - | *
!
! | -

 | ! -
! | 0 | | | | Increase BUFND | | 3, 18, 81,
 33, 29
 | *

 | +

 | - | *

 | -

 | -

 | 0 1 | | | | Use Assembler or PL/I to specify BUFND and BUFNI exactly (DOS/VS only) | To override the default data and index allocation of buffers, specify it in ACB. | 6, 7

 | *
 *

 | 0

 | *

 | *

 |
 |
 -

 | 0
 0

 | | | | 1 | NDEXES, CONTROL INT | ERVALS, & BUFFERS (continu | reg) | *TUN | ING EF | FECT O | N PERF | ORMANC | E FACT | DRS | |---|--|---|--------------------------------|--------------|-----------------|------------------|---|--------|------------------|------| | i | ITEM | COMMENTS | REFERENCE
DOCUMENTS | | WORK | | | RESP | | DASD | | 1 | decrease data | Applicable when small
percentage of variable
length records exceed
a smaller CISZ. | 7, 27 | * | -

 | -

 | * * ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | * | * | - | | 1 | ALTER CI free
space upwards | Applicable when larger
number of inserts are
expected. | 3, 4, 7 | 0 | 0 | * | -

 | - | - | + | | 1 | ALTER CA free
space upwards | Applicable when inserts
are expected within
existing key groups. | 3, 4, 7 | 0 | 0

 | * | -

 | - | -

 | + | | 1 | Increase BUFSPACE as opposed to BUFND or BUFNI | | 3, 4, 7,
18, 81,
129, 33 | *
 *
 | +
 +
 |
 -

 | *
 *

 | - |
 -

 | 0 | | | | | r | | | | | | | | | |-------------------------------|---|---------------------------|--------------------------------|---------------------------------------|------------------|------------------|---------------------------|-----------------------|-----------------------|--|--| | THER PERFORMANCE IT | ER PERFORMANCE ITEMS & OPTIONS | | | *TUNING EFFECT ON PERFORMANCE FACTORS | | | | | | | | | ITEM | COMMENTS | REFERENCE DOCUMENTS | | | CHAN
 UTIL | | | | DASD
SPACE | | | | shared
resources | | 3, 5, 6,
17, 28,
38 | *

 |
 -

 | | * |
 -

 |
 |
 0
 | | | | string number
value in ACB | Avoid dynamic string allocation as it fragments page references. | 3, 29, 27

 | - |
 -

 | 0

 |
 -

 |
 -

 | -
 -

 | 0

 | | | | | However, it will not
be possible to resume
loading if an ABEND
occurs. |
 3, 7, 30

 |
 -

 |
 0

 |
 -

 |
 -

 |
 -

 |
 -

 |
 0

 | | | | OTHER PERFORMANCE ITE | HER PERFORMANCE ITEMS & OPTIONS (continued) | | | | *TUNING EFFECT ON PERFORMANCE FACTORS | | | | | | | | |---|---|--------------------------|------|---------------------------|---------------------------------------|---------------------------|---------------------------------|-----------------------|-------|--|--|--| | ITEM | COMMENTS | REFERENCE DOCUMENTS | UTIL | SET | CHAN
 UTIL | lo.H. | TIME | PUT | SPACE | | | | | 4 only when | | 3, 4, 5,
 81, 29
 | - |
 0

 | - |
 -

 |
 -

 |
 -

 | 0 | | | | | DSNAME sharing
 for ACBs that
 point to the same
 file or for files | that should share
control blocks are a
base and its path to
an alternate index
cluster when used in | 3, 27, 33 | * ! |
 -

 | *

 |
 -

 |
 -

 | | 0 | | | | | | The performance penalty is severe for the flexibility and "release" independence. | 3, 6

 | - |
 +

 | 1 0 | -
 -

 | -

 | -
 -
 | 0 | | | | | | | | | r | | | | | | | |-------------------------------------|--|-------------|-----|------------------------|----------------------|---------------------------|---------------------------|------------------------|---------------------------|------------------| | OTHER PERFORMANCE IT | *TUNING EFFECT ON PERFORMANCE FACTORS | | | | | | | | | | | I ITEM | COMMENTS | REFER | | CPU | | CHAN | | RESP | THRU | DASD | | | Assembler only. The user has responsibility for maintaining VSAM's control field. | | 81, | -
 -

 | *
 *
 | 0

 | *
 *
 | - | -

 | 0
 0
 | | | User has responsibility of keeping track of RBA changes (from updates, CI splits, etc.), for later retrieval of records. | 3, 5,
29 | 81, | - | 0 | 0

 | -

 | - | -

 | | | Avoid CA splits

 | Use statistics to monitor file growth, reorganize before significant number of splits occur. | 3, 7 | |
 -

 | -

 | - |
 -

 | -
 -

 |
 -

 | *
 *
 | IBM Internal Use Only | CATALOG CONSIDERATIONS | | | | *TUNING EFFECT ON PERFORMANCE FACTORS | | | | | | ì | | | |------------------------|------------------|--|------|---------------------------------------|----------------------|---------------------------|----------------------|---------------------------|---------------------------|------------|---------------|-------------| | 1 | ITEM | COMMENTS | | | | | CHAN | | RESP
 TIME | | DASD
SPACE | • | | | catalogs only | It is not usually necessary, for example, for the master catalog if it only contains pointers to USERCATALOGS. | | 3, 7 | -

 | -

 | -

 | -

 | *

 | * * * | -
! | | | 1 | Use USERCATALOGS | Not only for recovery but to avoid catalog contention. | | 3, 7, 18 | *
! | +
! | *
! | +

 | i -
! | -

 | + | !
!
! | | | too small | With many user catalogs it is possible to run out of resource usage records. |
 | | *
 *
 | 0 | * * ! ! ! ! | -

 | +

 | + | 1 0
1 | 1 | #### TUNING EFFECT CODES (for the general case): - Performance Factor should decrease - + Performance Factor should increase - * Effect cannot be directly predicted - O No effect #### VSAM PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel
make VSAM perform better, please send them also. Please give the following information: | Name: | | | | | | |-----------|---------|---|---|---|--| | Location: | | | | | | | Address: | | | | | | | | | | | | | | Telephone | number: | | | | | | TIE | line 8/ | | | , | | | Outs | ide (|) | - | _ | | General rating of this document: - o Extremely useful o Marginally useful - o Very useful o Of no value - o Useful Additional comments may be written on the back of this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 IBM Internal Use Only ## VSAM PERFORMANCE CHECKLIST READER'S COMMENT FORM #### CICS/VS #### PERFORMANCE CHECKLIST # January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 ## CONTENTS | Introduction | • | • | • | . 3 | |-------------------------------|---|---|---|------| | Purpose Of This Document | | | | . 3 | | How To Use This Document | | | | . 4 | | Currency | • | | | . 6 | | Prerequisites | | | | . 6 | | Bibliography | | | | . 7 | | CICS/VS Performance Checklist | | | | . 9 | | System Generation | | | | . 9 | | Table Considerations | | | | . 10 | | Operational Parameters . | | | | . 13 | | Program Considerations . | | | | . 14 | | Reader's Comment Form | | | _ | . 17 | #### INTRODUCTION #### Purpose Of This Document The purpose of this document is to assist in the installation and tuning of CICS/VS systems. This checklist is not an all-inclusive list of tuning knobs that will result in better performing CICS. It does represent a best effort to supply a list of those items which have proven to provide a performance improvement in a majority of instances. The recommendations contained in this document have not been subject to any formal test or review and should therefore be individually evaluated for their applicability to a particular installation. Use of information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. #### How To Use This Document The following checklist assumes the user has access to the documents listed in the bibliography section of this document. For ease of use, the items on this checklist are divided into four sections: System Generation Table Considerations Operational Parameters Program Considerations The effect on the three major system resources (CPU cycles, Real Storage and I/O) is shown for each performance and tuning, item on the check list. Users who have identified their major bottleneck or constraint can look down the appropriate columns for items to help alleviate the situation. The contents of this document should be reviewed prior to: - The installation of a new CICS/VS system. - The installation of a new release of CICS/VS. - A major change in the hardware environment. - The installation of a new major application. Most of the information presented here relates to selection of installation parameters, which properly selected, will proclude the necessity for going back and tuning the system. #### Currency This document is current through the current release of CICS/VS, at the date of publication which is CICS/VS Release 1.4. The items on the checklist also apply to Release 1.3, unless stated otherwise. A fcw items on the checklist apply either to Release 1.3 or 1.4 and not to both releases, and these items are so specified. As of the date of publication of this document, user experience with Release 1.4 has been limited. Because of that, this checklist may need to be further updated for Release 1.4 performance in the future. # **Prerequisites** - Experience installing, generating and using CICS/VS. - A basic understanding of how the system functions. - Access to the documents on the bibliography list. # CICS/VS PERFORMANCE CHECKLIST BIBLIOGRAPHY # PALO ALTO-RALEIGH SYSTEMS CENTER NEWSLETTERS | 1. | 76-03 | CICS/VSAM Storage
Requirements and Tuning | |----|-------|--| | 2. | 76-07 | CICS/DOS/VS Critical Performance and | | | | Functional Support | | | | Checklist | | 3. | 76-09 | CICS/DOS/VS 1.1.1 | | | | Performance Tip - ICV | | 4. | 76-11 | CICS/DOS/VS 1.1.1 | | | | Anticipatory Paging | | 5. | 76-13 | CICS/VS Table Generation | | | | Tips | | 6. | 76-17 | CICS/VS VSAM | | | | Considerations | # CICS/VS PUBLICATIONS - 7. SC33-0069 System Programmers Reference Guide 8. SC33-0070 System Programmers Guide (DOS/VS) - 9. SY33-6030 Problem Determination Guide | SYSTEM GENERATION | | | | TUNING EFFEC | T | |--|---|--------------------|--------------------|-------------------|-----------------| | ITEM | COMMENTS
 - | ENVIRON-
 MENT | CPU | REAL
 STORAGE | I/O | | Stage-One

 | Generate only those facilities
 required by the production system.
 Excess facilities needlessly
 increase the working set and page
 reference pattern of CICS and
 cause excessive CPU and storage
 to be used as well as increased
 paging. | 111 | Decreases

 | Decreases | Decreases
 | | TABLE CONSIDER | RATIONS | | | TUNING EFFEC | Γ | |------------------------------------|---|----------|-----------|-----------------|-----| | ITEM | COMMENTS | ENVIRON- | l CPU | REAL
STORAGE | 1/0 | | Program
 Control | Sequence by activity. | All | Decreases | Decreases | | | Table | Anticipatory paging. | Paging | Increases | Shift | | | i
! | Set task class equal long. | All | Decreases | Shift | | | Processing
 Program
 Table | Sequence by program use. | All | Decreases | Decreases | | | Nucleus | Define partition layout for CICS/VS management modules. | All | | Decreases | | | Table | Pagein/pageout (DOS/VS only). | Low | Increases | Shift | | | TABLE CONSIDERATIONS (continued) | | | | r į | | |----------------------------------|--|--------------------|-----------|-------------------|------| | ITEM | COMMENTS | ENVIRON-
 MENT | i CPU | REAL
 STORAGE | 1/0 | | Load | Define partition layout for application modules. | All |

 | Decreases | | | Table

 | Pagein/pageout for very low volume applications only. (DOS/VS only). |

 | Increases | Shift | | | Terminal | Sequence and balance by volume. | All | | | | | Control
 Table | WRAPLIST/AUTOPOLL. | All | Decreases | | | | 1 | Terminal areas (INAREAL TIOAL). | All |
 | Decreases | | | 1 | User areas (TCTUAL). | All | 1 | Decreases |
 | | TABLE CONSIDERATIONS (continued) | | | | TUNING EFFECT | | | | |----------------------------------|------------------------------|----------|-----|-------------------|-----------|--|--| | ITEM | COMMENTS | ENVIRON- | CPU | REAL
 STORAGE | 1/0 | | | | File | VSAM strings and buffers. | I VSAM | 1 | Decreases | Decreases | | | | Table | Shared resources. | VSAM | | Decreases | | | | | ! | ISAM core index. | ISAM | | Increases | Decreases | | | | 1 | ISAM LOGICMOD (DOS/VS only). | ISAM | | Increases | Decreases | | | | ournal
Control | Buffer size selection. | All | | Decreases | | | | | OPERATIONAL PARAMETERS | | | TUNING EFFECT | | | | |------------------------|---|--------------------|---------------|-------------------|-----------|--| | ITEM | COMMENTS | ENVIRON-
 MENT | l CPU | REAL
 STORAGE | 1/0 | | | Max Task | Set at 999. | All | Decreases | | Decreases | | | Max Active
 Task | Set for CPU and memory
 environment. | All | Decreases | Decreases | | | | ICV | Operating system wait interval. | All | Decreases |

 | | | | ICVSD | Terminal table scan delay. | All | Decreases | 1 | | | | Storage
 Cushion | Set high enough to ensure
storage availability. | All | Decreases |

 | Decreases | | | Trace | Set off in production system. | All | Decreases | Decreases | | | | | Use only the facilities required by a tested recovery system. | All | Decreases | Decreases | Decreases | | | PROGRAM CONSID | ERATIONS | | [| TUNING EFFECT | | |-------------------------------------|---|----------|-----------|-----------------|------| | ITEM | COMMENTS | ENVIRON- | CPU | REAL
STORAGE | 1/0 | | Exclusive
 Control | See Table B for resource
 ownership application lock outs. | All | |

 | | | | Minimize real storage required
 to provide application function. | All | ! | Decreases | | | Modularize
 (XCTL LINK) | Avoid modularity for program | l All | Decreases | Decreases | | | Conversa-
 tional
 Programs | Provide proper operating environment and avoid long resource ownership. | All |
 |

 | | | Temporary
 Storage | Avoid the use of temporary storage mainly for large tables. | All
 | | Decreases |
 | | PROGRAM CONSIDERATIONS (continued) | | | | TUNING EFFEC | r | |------------------------------------|---|--------------------|-------------------------|-------------------|---------| | ITEM | COMMENTS | ENVIRON-
 MENT | CPU | REAL
 STORAGE | I/O
 | | Transient
Data | Avoid use for temporary data
 saving with Release 1.3. With
 Release 1.4, Transient Data with
 VSAM has much less overhead. | All | Decreases
(Rel.
1.4) |
 | | | Terminal
 Message
 Size | Avoid sending redundant
 information and do not
 initialize with blanks. | Remote | |
 | | #### CICS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel make CICS/VS perform better, please send them also. Please give the following information: | Name: | |
 | |-------------------|----------|------| | Location: | | | | Address: | | | | | | | | Telephone number: | | | | TIE line 8/ | <u>-</u> | | Outside (____)___ General rating of this document: - o Extremely useful o Marginally useful - o Verv useful - o Of no value o Useful Additional comments may be written on the back of this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 IBM Internal Use Only ZZ20-2861 ## CICS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM #### January 1979 Edition A form for reader's comments has been included at the end of this document. If it has been removed, please send any comments or additional performance items to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 #### CONTENTS | Intro | du | ct: | ior | ι. | | | • | • | • | • | • | • | • | • | • | ٠ | • | 3 | |--------------|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|----|---------|----|---|---|---|-----|-----| | | Pu | rp | 056 | . (| £ | 7 | hi | .s | Do | cu | me | nt | ; | | | | | 3 | | | Но | พ ' | Го | Us | s e | 7 | hi | . s | Do | cu | me | nt | : | | | | | 4 | | | Cu | rr | enc | y | | | | | | | • | | | | • | | | 6 | | | Pr | er | equ | ıis | εi | te | 2 | | | | | | | | | | | 6 | | Bibli | Log | ra | phy | , | | | | | • | | | • | | • | | | • | 7 | | IMS/V
Per | | | | | | | | |)S/ | 'VS | | | | | | | . 1 | 1 1 | | | | | ral
nsi | | | | | | | | | | | | | | . 1 | 1 1 | | | Se | gm | ent | :/E | li | eı | ar | ch | iic | al | D | es | ig | n | | | . 1 | 1 5 | | | | _ | cal
cor | | | | | | | - | | nd
• | • | | | | . 2 | 2 0 | | | DL | /I | Ac | ce | 2 S | s | Me | th | od | s | | | | | | | . 2 | 2 5 | | | DL | /I | Ca | 11 | Ls | | | | | | • | • | • | • | | | . 2 | 27 | | | НD | P | oir | te | r | c | pt | ic | ns | ; | | | | • | | • | . 2 | 9 | | | Pr | og: | ran | 1 | s | o l | .at | ic | n | | | | | | | | . 3 | 3 1 | | | Εx | eci | uti | .or | 1 | Тi | .me | F | ar | am | et | er | s | | | | . 3 | 3 2 | | Reade | er' | s (| Con | me | n | t | Fo | rn | ì | | | | | | | | . 3 | 3 5 | #### INTRODUCTION #### Purpose of This Document This document is intended to provide a quick reference for the Systems Engineer who wants to help his customer more finely tune IMS/VS Data Base or DL/I DOS/VS in the system. It is not an all-inclusive list of tuning knobs which will result in better performing IMS. It does represent a best effort to supply a list of those items which have proven to provide a performance improvement in a majority of instances. The recommendations contained in this document have not been subject to any formal test or review and should therefore be individually evaluated for their applicability to a particular installation. Use of information presented in this document in a customer installation must adhere to the Guidelines for Systems Engineering Services. #### How To Use This Document The following checklist assumes that the user has access to the documents listed in the bibliography section of this document. Since nearly all the tuning items in this checklist apply to both IMS/VS and DL/I DOS/VS data base products, subsequent reference to DL/I in this document applies to both IMS/VS DB and DL/I DOS/VS, unless specifically stated otherwise. For ease of use, the items on this checklist are divided into eight sections: General Performance Considerations Segment/Hierarchical Design Logical Relationship And Secondary Index DL/I Access Methods DL/I Calls DL/I Calls HD Pointer Options Program Isolation Execution Time Parameters Page 4 The effect on the four major system resources (CPU cycles, I/O, Real Storage, and DASD Space) is shown for each performance and tuning item on the checklist. Users who have identified their major bottleneck or constraint can look down the appropriate columns for items to help alleviate the situation. The contents of the checklist should also be reviewed prior to: - The installation of a new IMS or DL/I system. - The installation of a new release of IMS or DL/I. - A major change in the hardware environment. - The installation of a new major application. #### Currency This document is current through the current release of IMS/VS Data Base and DL/I DOS/VS at the date of publication. #### Prerequisites - Experience installing, generating, and using IMS/VS DB or DL/I DOS/VS. - A basic understanding of how the respective data base system functions. - Access to the documents on the bibliography list. # IMS/VS DB AND DL/I DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY | 1. | SH12-5413 | DL/I DOS/VS
System/Application Design | |-----|-----------|--| | 2. | SH12-5412 | Guide For The System | | - | SH24-5001 | Users | | 4. | ZZ20-4275 | Understanding System And
Application Growth
Environment - Marketing | | 5. | G320-6001 | Program DL/I DOS/VS Version 1, Release 3 Planning Guide | | 6. | ZZ20-2823 | DOS/VS DB/DC Design And
Tuning Guide | | 7. | 78-14 | Palo Alto Systems Center FLASH - Loading Large DL/I DOS/VS Data Base - | | | | Correction And
Clarification Of Flash
78-01 | | 8. | 78-01 | Palo Alto Systems Center
FLASH - Loading Large
DL/I DOS/VS Data Base | | 9. | 77-51 | Palo Alto Systems Center
FLASH - DL/I DIS/VS
Dynamic Transaction | | 10. | 77-50 | Backout Hint Palo Alto Systems Center FLASH - DL/I DOS/VS Program Isolation | | 11. | 77-45 | Deadlock Considerations Palo Alto Systems Center FLASH - "Batch Only" MPS Performance Considerations | # IMS/VS DB AND DL/I DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 12. | 77-39 | Palo Alto Systems Center | |-----|-------|---------------------------| | | | FLASH - GIS/DOS/VS Using | | | | SPMOL II | | 13. | 77-28 | Palo Alto Systems Center | | | | FLASH - DL/I DOS/VS MPS | | | | With CICS/DOS/VS Dynamic | | | | Transaction Backout | | 14. | 77-26 | Palo Alto Systems Center | | | | FLASH - DL/I DOS/VS MPS | | | | Support And GIS/DOS/VS | | 15. | 77-19 | Palo Alto Systems Center | | | | FLASH - DL/I DOS/VS Data | | | | Base Prefix Resolution | | | | Utility Warning | | 16. | 76-25 | Palo Alto Systems Center | | | | FLASH - Loading DL/I | | | | DOS/VS Data Bases With | | | | Logical Relationships | | 17. | 76-25 | Palo Alto Systems Center | | | | FLASH - Sort Work Area | | | | For Prefix Resolution | | 18. | 76-24 | Palo Alto Systems Center | | | | FLASH - DL/I DOS/VS | | | | Buffer Pool | | | | Characteristics Report Y | | 19. | 76-12 | Palo Alto Systems Center | | | | FLASH - DL/I DOS/VS | | | | Consideration For Loading | | | | A HDAM Data Base | | 20. | 76-11 | Palo Alto Systems Center | | | | FLASH - DL/I Segment | | | | Intent Propagation | | 21. | 76-01 | Palo Alto Systems Center | | | | FLASH - Potential | | | | Performance Degradation | | | | In Hidam Data Base | | | | Processing | | | | - | # IMS/VS DB AND DL/I DOS/VS PERFORMANCE AND TUNING BIBLIOGRAPHY (continued) | 22. | 75-63 | Palo Alto Systems Center | |-----|-----------|--------------------------| | | | FLASH - Writing And | | | | Analyzing HDAM | | | | Randomizing Modules For | | | | DL/I DOS/VS | | 23. | 75-53 | Palo Alto Systems Center | | | | FLASH - DOS/VS DL/I | | | | Multi-Partition Access | | 24. | G320-6009 | The IMS/VS Data | | | | Base/Application Design | | | | | - Review 25. G320-1004 IMS/VS Performance And Tuning Guide - 26. S320-5767 IMS/VS Primer - 27. SH20-9029 IMS/VS Utilities DB Monitor - 28. G320-6004 IMS Performance Monitoring And Tuning Guide | GENERAL PERFORMANCE | CONSIDERATIONS |
 | TUNING | EFFECT | | |----------------------------|--|-----------------|--|--------|-------------------| | ITEM | COMMENTS | l CPU | I/0 | | DASD
 SPACE | | Avoid shared DASD

 | Shared DASD can result in
 I/O times in excess of
 one second. Mean IWAIT
 time in DB monitor report
 will indicate excessive
 I/O wait times. | | Reduced contention of I/Os | | | | Avoid page faults | Page faults are expensive I in online environment. Paging in online environment should be minimized. Paging has a very significant impact on performance. | Decreases CPU I | Reduced

 -
 -
 -
 -
 - | | | | GENERAL PERFORMANCE | CONSIDERATIONS (continued) | | TUNING | EFFECT | | |---------------------|--|--------|-------------------------------------|--------|-----------------| | ITEM | COMMENTS | I CPU | 1/0 | | DASD
SPACE | | processing in | Avoid sequential scans
of data bases since they
generate lots of I/Os
and tie up resources. | reduce | Help
reduce
number
of I/Os | | | | l data base buffer | • | | Reduce
I/Os | | | | GENERAL PERFORMANCE | CONSIDERATIONS (continued) | 1 | TUNING | EFFECT | | |--|--|---------------------|------------------------|-------------------|-------------------| | ITEM | COMMENTS | CPU | I/O
 | REAL
 STORAGE | DASD
 SPACE |
 Use DB monitor
 in IMS for
 determining
 program profile | 1) DL/I call summary report is used for I/Os per call. Use for data set placement determination. |

 | | | | | | 2) Data base buffer pool stats is used to estimate buffer pool sizes. |

 | Minimize
 I/Os
 | | | | !
!
! | 3) VSAM buffer subpools
 report is used to size
 VSAM buffer pools. |
 | Minimize
 I/Os
 | | | | GENERAL | PERFORMANCE C | ONS | DERATIONS (continued) |] | TUNING | EFFECT | | 1 | |---------|---------------------------|-----|--|---------------------|--------------------------|-------------------|---------------|---| | 1 TEM | . ! | 001 | MENTS | l CPU | I/O
 | REAL
 STORAGE | DASD
SPACE | ! | | | ize data
 lacement | | Separate indexes from data bases. Use data set groups to isolate large or small segments |

 | Reduce I/O
contention | | | | | I |
 | 3) | (IMS only).
Balance I/O activity. | 1 |
 | 1 | [
 | 1 | | SEGMENT/HIERARCHICAL | DESIGN | TUNING EFFECT | | | | | | |---|---|---|---|-------------------|---------|--|--| | ITEM | COMMENTS | i CPU | I/O | REAL
 STORAGE | DASD | | | | Avoid duplication
 of data

 | A field in a dependent segment which may occur multiple times under a parent and is thus repeated for every occurrence of that dependent segment, should be promoted into the parent segment. | Can
 reduce
 number of
 calls
 | Can
 reduce
 number of
 calls
 | | Reduced | | | | Separate optional
 and required
 fields into
 separate segment
 types | • | Can
 increase
 number of
 calls
 |
 |
 | Reduced | | | | SEGMENT/HIERARCHICAL DESIGN (continued) | TUNING EFFECT | |---|---| | ITEM COMMENTS | CPU I/O REAL DASD
 STORAGE SPACE | | Include sequence By including this type or key field in of field, the segment can be uniquely retrieve with one DL/I call, thereby simplifying the application programming. | call to applica- retrieve tion ccde | | Avoid over- | Can | | Frequently More frequently accessed segments referenced segments should be kept to the as close to the left of the hierarchy. root as possible | Reduced Reduced | | SEGMENT/HIERARCHICAL | DESIGN (continued) | | TUNING | FFFECT | | |--|--|--|--|---|-----------------| | ITEM | COMMENTS | l CPU | I/O
 | REAL
 STORAGE | DASD
 SPACE | | Avoid wide
 range of
 segment lengths

 | By keeping all segments approximately the same length, better DASD space utilization when inserting. For IMS/VS DB, use data set groups. | Shorter
 path
 through
 insert | Reduced

 |
 | Reduced | | Protect sensitive
 data by placing
 in separate
 segment
 | | Increases since more DL/I calls to retrieve data base record | May
 possibly
 increase

 | Increases
 size of
 control
 block and
 applica-
 tion code | Increases
 | | SEGMENT/HIERARCHICAL | DESIGN (continued) | Í | TUNING | EFFECT | | |----------------------|--|---|-------------|--|-------------------| | ITEM | COMMENTS | CPU
 | I/O
 | | I DASD
I SPACE | | | | | Reduced
 | Reduced.
 Smaller
 control
 blocks
 and less
 applica-
 tion code. | Reduced | | | Remember that application recessing within a data base record is from top to bottom, left to right, and that hierarchical layout should be reflecting this for high activity application programs or transactions. | since
 shorter
 path
 through
 retrieve
 | | | | | SEGMENT/HIERARCHICAL DESIGN (continued) | | TUNING EFFECT | | | | |--|--|--|-----------------------|-------------------|------| | ITEM | COMMENTS
 | CPU
 | I/O
 | REAL
 STORAGE | DASD | | | Replacement of a variable length segment with a larger version may result in splitting of prefix and data. The result of this may require 2 I/Os for subsequent retrieves. | of path
 length
 due to
 reduction | Reduced
 I/Os
 |
 | | | Performance
 analysis

 -
 -
 -
 - | The hierarchical structure should be analyzed with the high activity processing program and transaction requirements in mind, prior to settling on the final data base design. | | |
 | | | LOGICAL RELATIONSHIP & SECONDARY INDEX | | TUNING EFFECT | | | | |--|---|---------------|--|--------------|-------------------| | ITEM | COMMENTS | l CPU | 1/0 | REAL STORAGE | DASD
 SPACE | | relationships | Unidirectional logical relationships imply less overhead in DL/I than bidirectional logical relationships and should be used when you need a relationship in one direction between one data base and another. When bidirectional relationships must be used, avoid sequence of | | Reduced.
 Less
 pointer
 mainte-
 nance. | | | | i | VLC, use insert rule
 first. | | 1 | i | | | LOGICAL RELATIONSHIP & SECONDARY INDEX (cont.) | | ! | TUNING | EFFECT | | |--|----------|-------------------------------------|------------------------------------|--------|---| | ITEM | COMMENTS | l CPU | I/O
 | | DASD | | provide logical
 relationship

 | | since
 less DL/I
 calls
 | Reduced.
 Direct
 RBA.
 | 1 | Reduced.
 Key not
 stored
 twice. | | Placement of the real logical child | | Shorter
 path to
 do DL/I | Reduced
 | 1
 | | | LOGICAL RELATIONSHIP | & SECONDARY INDEX (cont.) | | TUNING I | EFFECT | | |--------------------------------|---|-----------------------|---------------------|--------|---------------| | ITEM | COMMENTS | CPU | 1/0 | | DASD
SPACE | | should be used
 for random | Avoid sequential processing of a data base via a secondary index since it can be a very slow process. | Decreases | Decreased
I/Os | | | | cause of poor | l in a logical twin chain | Reduced path length i | Reduced | | Increases | | LOGICAL RELATIONSHIP | & SECONDARY INDEX (cont.) | | TUNING | EFFECT | | |--|--|-----------------------------|----------------|--------------|-----------------| | ITEM | COMMENTS | CPU | I/O | REAL STORAGE | DASD
SPACE | | pointer (IMS only) | | lindex | Reduced I/Os | | | | of a secondary
 index should be
 stable in | If the source segment of a secondary index has high insert activity or the source field of a secondary index has high replace activity, then DL/I index maintenance will become excessive. | Reduced I I I I I I I I I I | Reduced | | | | LOGICAL RELATIONSHIP & SECONDARY INDEX (cont.) | | I TUNING EFFECT | | | | |--|--|---|-----------------------|-------------------|-------------------| | ITEM | COMMENTS
 | CPU
 | I/0 | REAL
 STORAGE | DASD
 SPACE | | Use duplicate data for non- volatile fields to satisfy inquiries | The secondary index can
 be processed as a data
 base without accessing
 the target. | Reduced
 path
 length
 | Reduced
 I/Os
 | | | | Do not specify INDICES = in the SENSES statement of the PCB (IMS only) | Segments are retrieved by the primary sequence and the secondary index is also accessed to determine if a
pointer points to the candidate segment. Much more lefficient to use a search field. | Reduced path length due to reduced I/Os | Reduced I/Os I |
 | | IMS/VS DB AND DL/I DOS/VS PERFORMANCE CHECKLIST | DL/I ACCESS METHODS | | | TUNING | EFFECT | | |---------------------|---|----------|---------|---|---| | ITEM | COMMENTS | CPU | I/O
 | REAL
 STORAGE | DASD
 SPACE | | USE HDAM | Use HIDAM only if an application requires sequenced processing of root segments and no way is found to satisfy this requirement using HDAM. | No index | | Reduced.
 No KSDS
 require-
 ment.

 | May be
 reduced.
 Careful
 randomi-
 zation
 will aid
 good
 segment
 packing.
 No index
 require-
 ment. | | DL/I ACCESS METHO | ODS (continued) | | TUNING | EFFECT | | |--|---|-------------------------|-----------------------------------|-------------------|-----------------| | ITEM | COMMENTS | CPU | 1/0 | REAL
 STORAGE | DASD
 SPACE | | Process HDAM data bases sequentially | Insert the randomizing
 routine into a sort exit
 and sort in rap sequence
 Significantly increases
 the number of buffer hit | . due to
 reduced | Reduced I/Os and reduced I/O time | | | | i | and reduces seek time. | i | i | i | Ì | | DL/I CALLS | | İ | TUNING | EFFECT | i | |--|--|---|--|-------------------|--------| | ITEM | COMMENTS
 | l CPU | I/O
 | REAL
 STORAGE | I DASD | | Use path calls and fully qualified SSAs | Can significantly reduce
the number of calls. | Reduced path length by reducing calls |
 | | | | Save data in
 temporary storage

 | Temporary storage should
 be used to hold data
 over a conversation
 rather than a re-read
 of data base.
 For cases where data
 might be changed since
 the last read by some
 other task, the data will
 have to be re-read. | Reduced
 path
 length

 | Reduced I I/Os I I I I I I I I I I I I I I I I I I I | | | | D | L/I CALLS (cont.) | | | | TUNING | EI | FFECT | | Ì | |---|--|---|-----------|--|------------|----|-----------------|---------------|-------| | ! | ITEM | COMMENTS |

 | CPU | I/O | • | REAL
STORAGE | DASD
SPACE | - I | | 1 | Do not issue
GET CALL prior
to insert to
check for prior
existence | By issuing the insert initially and checking the return code for duplicate, redundant processing can be | 1 | Savings
in path
length
due to
less calls | i

 | | | | 1 1 1 | | ١ | | eliminated. | 1 | issued | 1 | 1 | | | i | | HD POINTER OPTIONS | | TUNING EFFECT | | | | |--|---|--|---|-------------------|--------------------------------------| | ITEM | COMMENTS | CPU | I/O
 | REAL
 STORAGE | DASD | | Physical Twin
 Backward (PTB)

 | 1) Always specify for
 root segment of
 HIDAM data base. | | Eliminates
 index
 processing
 time | |
 Increased

 | | !
!
! | 2) Specify on dependent
 segments that have a
 long twin chain and
 high delete activity. | Reduced.
 Shorter
 path for
 delete. | Reduced.
 Less I/O
 to do
 pointer
 mainte-
 nance. | | Increased | | | 3) Do not use for HDAM
root. | |

 |

 | Decreased | | HD POINTER OPTIONS | (continued) | | TUNINO | FEFFECT | | |---|---|---------|---|-------------------------------|-----------------| | ITEM | COMMENTS | CPU |] I/O | REAL
 STORAGE | DASD | | Physical Child
 Last (PCL)
 | Physical Child Last pointers are used only for non-sequenced segments or when the sequence field value may not be unique and the insert rule is last. | Reduced | Reduced

 |

 | Increased | | Logical Twin
 Backward (LTB)

 | The Logical Twin
 Backward pointer should
 be used if many
 deletions take place
 when a long logical twin
 chain exists. | | Reduced.
 Less I/O
 to do
 pointer
 mainte-
 nance. | | Increased
 | | PROGRAM ISOLATION | | TUNING EFFECT | | | | |---------------------------|---|---------------|-----------------------|-------------------|-----------------| | ITEM | COMMENTS | CPU
 | I/O
 | REAL
 STORAGE | DASD
 SPACE | | base record by concurrent | This situation usually cocurs during access of a single control record. Look for the opportunity to increase the number of roots. | | 1
1
1
1
1 |
 |
 | | EXECUTION TIME PARAMETERS | | TUNING EFFECT | | | | | |--|---|---------------|---------------------|-----------------|-----------------|--| | ITEM | COMMENTS | l CPU | I/O | REAL
STORAGE | DASD | | | replicate should | These options reduce I/O time by reducing rotational delay. | | Reduced
I/O time | | Increased space | | | Initial load of
 KSDS HISAM data
 bases will be
 faster if speed
 is specified in
 VSAM define | Faster VSAM processing. | l Reduced
 | Reduced

 |
 | | | | EXECUTION TIME PARAMETERS (continued) | | TUNING EFFECT | | | | |---|---|--|--|---|--| | I ITEM | COMMENTS | l CPU | I/O | REAL
STORAGE | DASD
SPACE | | Sort batch
 transactions by
 root key
 | Increase chances of
 buffer hits and reduces
 I/Os and I/O time.
 | Reduced path length due to I/O savings | Reduced I/Os and I/O time | | 1 | | aid to determine | DLISPACE will calculate
 average data base
 record size.
 | | Can be used to provide I/O prob- abilities |
 | Provides efficient space utili- zation | | should be fixed | Small PSB and DMB pools
 that are fixed are
 better than large
 pageable pools. Reduced
 page faults in CICS. |
 | | Increases
 real
 storage
 usage |]

 -
 -
 - | #### IMS/VS DB AND DL/I DOS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM Comments on the usefulness of this document are appreciated. Please suggest additions, deletions, revisions that would make this more useful to you. If you have additional items that you feel make IMS/VS DB or DL/I DOS/VS perform better, please send them also. Please give the following information: | Name: | | | | | |--------------|-------|---|---|--| | Location: | | | | | | Address: | | | | | | Telephone nu | mber: | | | | | TIE line | e 8/ | | , | | | Outside | (|) | _ | | General rating of this document: - o Extremely useful o Marginally useful - o Very useful o Of no value - o Useful Additional comments may be written on the back of this form. Send comments to: B. P. Miller IBM Corporation Palo Alto Systems Center 1501 California Avenue Palo Alto, CA 94304 IBM Internal Use Only # IMS/VS DB AND DL/I DOS/VS PERFORMANCE CHECKLIST READER'S COMMENT FORM