
Program Product

GC26-3771-3
File No. 5360-21 (OS)

OS Assembler H
Language

Program Number 5734-AS1

Page 01'(;(,26-3771-3
Rcvisctl September 30, 1975
By TNL: CN33-8204

Fourth Edition (June, 1974)

'1'his is a repr int of GC 2 6- 3 7 71- 2 incorpora t ing changes iss Ut,cl
in Technical Newsletter GN33-8149, dated August 28, 1972.
This edition applies to version 4 of the Assembler H Program
Product (Program Number 5734-AS1). Informai:ion in this
publication is subject to change. Before using this publication,
be sure you have the latest edition and any Technical
Newsletters.

Requests for copies of IBM publications shouJd be made to
your IBM representative or to the IBM branch office serving
your locality.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1974

ii

Read This First

This manual is divided into two independent parts. You should only use
one of the parts.

If your installation uses VS, you should read the first part, 'Part
I: For the VS User'. This part is written as a supplement to OS/yS and
DOS/yS Assembler Language, Order No. GC33-4010, which you must use in
conjunction with this supplement. Further instructions on how to use
this supplement are contained in the preface, which you should read to
be able to use this supplement correctly.

If your installation uses OS/MFT or OSjMVT, you should read the
second part, 'Part II: For the MFT or MV~ User'. This part is written
as a supplement to OS Assembler Language, Order No. GC28-6S14, which you
must use in conjunction with this supplement. Further instructions on
how to use this supplement are contained in the preface, which you
should read to be able to use this supplement correctly.

iii

Part I: For the VS User

v

Preface

Purpose and Subject of This Part

This part is a supplement to' the OSjVS and DOS(VS Assembler Language
manual. That manual describes the language supported by the OSjVS
Assembler, which is a subset of the language supported by Assembler H.
This supplement defines the differences between the two languages;
together the two manuals give you the information you need to write
instructions that can be assembled by Assembler H.

Who This Part Is For

This part has the same audience as defined for the parent manual. The
knowledge that the reader is assumed to have is defined in that manual.

How to Use This Part

First read the parent manual in the section relevant to your enqu1r1es.
Then check the table of contents in this supplement for the identical
section heading. If listed, this supplement contains a section on the
subject. The relevant section describes the differences between the
language supported by the OS/VS Assembler and the language supported by
Assembler H.

Organization of This Part

This supplement has exactly the same organization as the parent manual:
chapter and section headings are the same, but only those chapters and
sections which reflect differences between the two languages are
included in the supplement. Chapter and section headings that are common
to both the parent manual and the supplement are underlined in the table
of contents in this supplement.

Bibliography

OS/yS and DOS/yS Assembler Language, GC33-4010. This manual must be
used with the supplement.

OS Assembler H General Information Manual, GC26-3758. This manual gives
gener~l information about Assembler H, describing the language and
facilities of the prograro, and comparing it with the OSjVS Assembler.

vii

SECTION B: CODING CONVENTIONS
Bl - Coding Specifications

BIA - Statement Field Boundaries . .

SECTION C: ASSEMBLER LANGUAGE STRUCTURE.
C4 - Terms. '.

C4A - Symbols
C4B - Location Counter Refererence
C4D - Other Attribute References

Contents

· . . . 1
· . . . 1

· . . 1

• 2
• • • 2
• • • 2

• 3
• 3

SECTION E: PROGRAM SECTIONING • • • 4
• • • • • • 4 El - The Source Module

EIA - The COpy Instruction .,. • • 4
E2 - General Information About Control Sections . · 4

E2C - Location Counter Setting • • • 4
E2G - External Symbol Dictionary Entries • • • • 5

E3 - Defining a Control Section · 5
E3A - The S~ART Instruction. . . ' 5
E3B - The CSECT Instruction.
E3C - The DSECT Instruction.

· S
6

E3D - The COM Instruction. • • 6
6 E3E - The LOCTR Instruction.

E5 - Defining an External Dummy Section . • • • • 7
ESA - The DXD Instruction. • • 7

SECTION F: ADDRESSING. 8
F2 - Addressing Between Source Modules: Symbolic Linkage 8

SECTION G: SYMBOL AND DATA DEFINITION.
G2 - Defining Symbols

G2A - The EQU Instruction ..
G3 - Defining Data

G3B - General Specifications for Constants

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM .
HI - structuring a Program., ...

RIA - The ORG Instruction. . .
HIC - The CNOP Instruction . .

• • • • • • .3
• • • • • • • • • 9

• • • • • • • • 9

· 9
• 9

· . .11
· . . .11

.11

H2 - Determining Statement Format and Sequence ..
· . .11

.11
H2B - The ISEQ Instruction . .

HS - Redefining Symbolic Operation Codes ..
HSA - The OPSYN Instruction ..

SECTION J: THE MACRO DEFINITION.
Jl - Using a Macro Definition ..

JIB - Specifications
J2 - Parts of a Macro Definition

J2C - The Macro Prototype Statement: Coding.

· . .11
· . . .12

.12

.13
·13

.13
· .14

· . . .14
J2D - The Macro Prototype Statement: Entries .. · . . .14

· . .14
.15
.1S

· • .1S

J2E - The Body of a Macro Definition
J3 - Symbolic Parameters.
J4 - Model Statements

J4B ~ Specifications . . .
JS - Processing Statements ..

JSF - The AREAD Instruction.
J6 - Comments Statements

J6A - Internal Macro Comments Statements .

ix

.16
·16

· .17
.17

J7 - System Variable Symbols
J7C - &SYSLIST.
J7E - &SYSPARM. • .
J7G - &SYSLOC .

.17

.17

.17

.18

SECTION K: THE MACRO INSTRUCTION ..
Kl - Using a Macro Instruction

. 19

KlB - Specifications .. .
K2 - Entries for Fields .. .

K2B - The Operation Entry
K4 - Sublists in Operands.
K5 - Values in Operands ...

· .19
. . .19

.19
.19

.19
· . . • • • • • • .20

SECTION L: THE CONDITIONAL ASSEMBLY LANGUAGE21
Ll - Elements and Functions. · .21

LlA - SET Symbols
LIB - Data Attributes

.21
. 22

LlC - Sequence Symbols
L2 - Declaring SET Symbols

L2A - The LCLA, LCLB, and LCLC Instructions .
L2B - The GBLA, GBLB, and GBLC Instructions .

. 25
·25
· 25

. . . .26
L3 - Assigning Values to SET Symbols •26
L4 - Using Expressions28

L4A - Arithmetic (SETA) Expressions . . . • · .28
.29
.29

L4C - Logical (SETB) Expressions.
L6 - Branching

L6A - The AIF Instruction • . • . . .29
L6B - The AGO Instruction • • • • • • • • 30

.31 L9 - Macro Trace Facility
L9A - The MHELP Instruction31

INDEX. . · .35

x

Section B: Coding Conventions

B1 - Coding Specifications

B1A -- STATEMENT FIELD BOUNDARIES

The Identification-Sequence Field

COLUMNS CHECKED BY ISEQ : The columns checked by the ISEQ facility are
not restricted to columns 73 through 80, or by the boundaries determined
by any ICTL instruction. The columns specified in the ISEQ instruction
can be anywhere on the input cards; they can also coincide with columns
that are occupied by the instruction field.

B1B -- CONTINUATION LINES

NORMAL STATEMENT FORMAT: Nine continuation lines are allowed. Thus, a
single assembler language statement can occupy up to ten lines.

ALTERNATE STATEMENT FORMA~ : The alternate statement format, which
allows as many continuation lines as are needed, can be used for the
following instructions:

• the prototype statement of a macro definition

• the macro instruction statement

• the AGO conditional assembly statement

• the AIF conditional assembly statement

• the GBLA, GBLB, and GBLC conditional assembly statements

• the LCLA, LCLB, and LCLC conditional assembly statements

• the SETA, SETB, and SETC conditional assembly statements

Examples of the alternate statement format for each of these
instructions are given in the context where the individual instruction
is described.

Section B: Coding Conventions 1

Section C: Assembler Language Structure

C4 -- Terms

C4A ... - SYMBOLS

Specifications

ORDINAJRY SYMBOLS: The format of an ordinary symbol is:

alphabetic char.acter
~ 0--62 'alphameric characters

~D I N A R Y S Y M BOLl

examples: ORDSYM#435A
K4
B49467LITTLENAIL

VARIAB:LE SYMBOLS: The format of a variable symbol is:

ampersand
~ alphabetic character
~ 0--1l1 alphameric characters

~A R I A B L E S Y M BOLl

examples: &VARYINGSYMABC
&F346944
&@ME

SEQUENCE SYMBOLS: The format of a sequence symbol is:

2

period
~ alphabetic charact.r
~ 0--61 alphameric characters

~E QUE N C E S Y M B 0 Li

examples: .BLABEL04
.#359
.BRANCHTOMEFIRST

Restrictions on Symbols

Page of GC26-377 1-3
Revised September 30, 1975
By TNL: GN33-8204

USE OF DUPLICATE SYMBOL IN NAME FIELD OF CERTAIN INSTBQ~~IONS: The
symbol in the name field of a LOCTR instruction can be the same as the
name of a previous START, CSECT, DSECT, COM, or LOCTR instruction. It
identifies the resumption of the location counter specified by the name
field.

PREVIOUS DEFINITION NOT REQUIRED: Previous definition is not required
for symbols in the following operand entries:

EQU (first operand)
CNOP
ORG
DC and DS (in duplication factor and modifier expressions)

Previously Defined Symbols

Ordinary symbols do not have to be previously defined if they appear in
operand expressions of ORG and CNOP instructions, in modifier
expressions of DC, DS, and DXD statements, in the first operana of EQU
statements, or in Q-type constants.

Allowing forward reference in the above statement types creates two
new kinds of errors which you should guard aqainst.

• Circular definition of symbols, such as

x
y

EQU
EQU

Y
X

• Circular location-counter dependency, as in this example:

A
B

DS
LR

(B-A) C
1 ,2

Statement A cannot be resolved because the value of the duplication
factor is dependent on the location of B, which is in turn dependent
upon the length of A.

Literals may contain symbolic expressions in modifiers, but any
ordinary symbols used must have been previously defined. See Section L,
"Attribute Definition and Lookahead n , in this manual.

C4B ~- LOCATION COUNTER REFERENCE

MULTIPLE LOCATION COUNTERS: When using Assembler H, you can specify
multiple location counters for your control sections. See "E2C -­
Location Counter Settingn.

C4D -- OTHER ATTRIBU~E REFERENCES

ADDITIONAL ATTRIBUTE AVAILABLE: When using Assembler H there is one
attribute additional to the six attributes available when using the
OS/VS Assembler. The additional attribute is the defined (D') attribute
(see .IL 1B -- Data Attributes") •

Section C: Assembler Language Structure 3

Se(~tion E: Program Sectioning

El -. The Source Module

NESTED COpy INSTRUCTIONS: Copied code may contain other COpy
statements. The OS/VS Assembler allows up to five levels of nested COpy
instructions. The Assembler H has no restrictions on the nesting of
COpy statements.

The COpy nesting must not be recursive. ~hus, if the statement "COpy P"
is coded and A contains a statement "COpy B", B must not contain a
statement "COpy A".

E2 ,_. General Information About Control Sections

E2C == LOCATION COUNTER SET~ING

USE OF MULTIPLE LOCATION COUNTERS: Assembler H allows you to use
mUltiple location counters for each individual control section. You use
the LOCTR instruction (whose format and specifications are described
under "E3E - The LOCTR Instruction") to assign ~ifferent location
counters to different parts of a control section. The assembler will
then rearrange and assemble the coding together according to the
different location counters you have specified: all coding using the
first location counter will bE~ assembled together, then the coding using
the second location counter will be assembled together, etc.

A practical use of multiple location counters is illustrated below.
There, the programmer has interspersed executable instructions and dat.a
areas throughout the coding in their logical sequence, each group of
instructions preceded by a LOCTR instruction identifying the location
counter under which it is to be assembled. The assembler will rearrange
the control section so that the executable instructions are grouped
together and the data areas together.

4

SOURCE MODULE OBJECT MODU LE
(shown in source code formatl

LR 2,15 controlled INST CSECT USING INST,12 bylNST
LR 12,15 location
USING INST,12 TM CODE,X'03' counter

BM NEWCARD
DATA LOCTR
INPUTAREA DS OCLSO
CODE DS CLl - - -INPUTAREA DS OCLSO controlled INST LOCTR CODE DS CLl by DATA TM CODE,X'03'

BM NEWCARD location
VALl DC F'56' counter
VAL2 DC F'S4'

DATA LOCTR
VALl DC F'56'
VAL 2 DC F'S4'

control

NEXT CSECT section
NEXT

E2G -- EXTERNAL SYMBOL DICTIONARY ENTRIES

LIMITS TO THE NUMBER OF ESD ENTRIES IN A MODULE: There is no limit to
the number of individual control sections and external symbols that can
be defined in a source module.

E3 - Defining a Control Section

E3A -- THE START INSTRUCTION

Specifications

EXPRESSION ALLOWED IN OPERAND: The operand of a START instruction can
be an absolute expression, provided that any symbols referenced have
been previously defined.

E3B -- THE CSECT INSTRUCTION

RESUMING AN INTERRUPTED CONTROL SECTION: When an interrupted control
section is resumed using the CSECT instruction, the location counter
last specified in that control section will be resumed. Consider the
following coding:

Section E: Program Sectioning 5

control
section
INST

ALPHA START

---~
ALPHA

BALR 12,0

USING

BETA LOCTR

}
NEWSECT CSECT

} -------------. ALPHA CSECT }]his part is assembled using NEWSECT
the BET A location counter

For further information on the use of multiple location counters, refer
to wE3E -- The LOCTR Instruction".

E3C -- THE DSECT INSTRUCTION

RESUMING AN INTERRUPTED DUMMY CONTROL SECTION: When an interrupted
dummy control section is resumed using the DSECT instruction, the
location counter last specified in that control section will be resumed.

E3D _ THE COM INSTRUCTION

RESUMING AN INTERRUPTED COMMON CONTROL SECTION: When an interrupted
common control section is resumed using the COM instruction, the
locati.on counter last specified in that control section will be resumed.

E3E --. THE LOCTR INSTRUCTION

Purpose

The LOCTR instruction allows you to specify multiple location counters
within a control section. The assembler assigns consecutive addresses
to the' segments of code using one location counter before it assigns
addresses to segments of coding using the next location counter. By
using the LOCTR instruction, you can code your control section in a
logical order. For exarople, you can code work areas and data constants
within the section of code using them without having to branch around
them. The concept of mUltiple location counters is described more fully
under WE2C - Location Counter Setting".

6

Specifications

The LOCTR instruction has the following .format:

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------i IA variable or ILOC~R I Blank I
lordinary symbol I I I
I I I I L ___________________ L ___________ L ____________________________ J

0 • The LOCTR instruction defines a location counter -A 8 or resumes a previously defined location counter.
CSECT

LR 12,15

A location counter remains in use until it is inter-
USING A,12

• rupted by a LOCTR, CSECT, DSECT, or COM

instruction. B

0"
The first location counter of a control section is ·C

• defined by the name of the START, CSECT,

8.
B

DSECT, or COM instruction defining the section.

A LOCTR instruction with the same name as a 8.
8 control section resumes the first location counter 7\

of that section. • • A LOCTR instruction with the same name as a
DUM

LOCTR instruction in a previous control section .. • causes that control section to be resumed using C
the location counter specified.

END

A control section cannot have the same name as a previous LOCTR
instruction. A LOCTR instruction placed before the first control
section definition will initiate an unnamed control section before the
LOCTR instruction is processed.

The length attribute of a LOCTR name is 1.

LOCTR instructions do not force alignment; code running under a
location counter other than the first location counter of a control
section will be assembled starting at the next available byte after the
previous segment.

ES - Defining an External Dummy Section

E5A -- THE DXD INSTRUCTION

ENTRY IN THE EXTERNAL SYtJ:BOL DIC~'IONARY: An external dummy section
identified by a DXD instruction will not generate an entry in the
external symbol dictionary (ESD) unless it is referenced by a Q-type
address constant.

Section E: Program Sectioning 7

Section F: Addressing

F2 -- J\.ddressing Between Source Modules: Symbolic Linkage

NO RESTRICTION ON THE TO~AL NUMBER OF EX~ERNAL SYMBOLS: There is no
restriction on the number of control sections, external symbols, and
external dummy sections allowed by the assembler. The maximum number
depends on main storage available during linkage editing.

8

Section G: Symbol and Data Definition

G2 -- Defining Symbols

G2A -- THE EQU INSTRUCTION

Specifications

PREVIOUS DEFINITION OF SYMBOLS IN THE FIRST OPERAND NOT REQUIREr: Any
symbols used in the first operand of the EQU statement need not be
previously defined.

COMPLEXLY RELOCATABLE FIRST OPERAND: The first operand of the EQU
instruction may assume any value allowed for an assembly expression:
absolute (including negative), relocatable, or complexly relocatable.

If the expression in the first operand is complexly relocatable, the
whole expression rather than its value is assigned to the symbol.
During the evaluation of any expression that includes a complexly
relocatable symbol, that symbol is replaced by its own defining
expression.

Consider the following example, in which A1 and A2 are defined in one
control section and B1 and B2 in another:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IX IEQU IA1+B1 I
I Y I EQU I X-A2-B2 I l ____ ----___________ L ___________ ~ ____________________________ J

The first EQU statement assigns a complexly relocatable expression
(A1+B1) to X. During the evaluation of the expression in the second EQU
statement, X is replaced by its defining relocatable expression (A1+B1),
and the assembler evaluates the resulting expression ~1+B1-A2-B2) and
assigns an absolute value to Y, because the relocatable terms in the
expression are paired.

G3 - Defining Data

G3B -- GENERAL SPECIFICA~IONS FOR CONSTANTS

Subfield 1: Duplication Factor

SYMBOLS NEED NOT BE PREVIOUSLY DEFINED: Symbols used in operand
subfield 1 need not be previously defined. This does not apply to
literals.

Section G: Symbol and Data Definition 9

Subfield 3: Modifiers

SYMBO]~S NEED NOT BE PREVIOUSLY DEFINED: Symbols used in operand
subfiE~ld 3 need not be previously defined. This does not apply to
literals.

G3M -- THE Q-TYPE ADDRESS CONSTANT

PREVIOUS DEFINITION OF REFERENCED NAMES NOT REQUIRED: The DXD or DSECT
names referenced in the Q-type address constant need not be previously
defined.

10

Section H: Controlling the Assembler Program

HI -- Structuring a Program

H1A -- THE ORG INSTRUCTION

RESTRICTION ON ORG WHEN THE LOCTR INSTRUCTION IS USED: If you specify
multiple location counters with the LOCTR instruction, the ORG
instruction can alter only the location counter in use when the
instruction appears. Thus you cannot control the structure of the whole
control section using ORG, but only the part that is controlled by the
current location counter.

Specifications
\

PREVIOUS DEFINITION OF OPERANDS NOT REQUIRED: In general, symbols used
in the operand field need not have been previously defined. However,
the simply relocatable component of the expression (that is, the
unpaired relocatable term) must have been previously defined or be
equated to a previously defined value.

MULTIPLE LOCATION COUNTERS: ORG changes the value of the current
location counter only. !herefore, it cannot reference a location
outside the current location counter, even though that location may
belong to the same contrel section.

H1C -- THE CNOP INSTRUCTION

PREVIOUS DEFINITION OF SYMBOLS NOT REQUIRED: Symbols appearing in the
operand field of CNOP instructions need not be previously defined.

H2 -- Determining Statement Format and Sequence

H2B -- THE ISEQ INSTRUCTION

WHAT COLUMNS CAN BE SEQUENCE CHECKED?: !he columns to be sequence
checked by the ISEQ facility can be anywhere on the cards in the input.
Thus they can also be between the begin and end columns.

Section H: Controlling the Assembler Program 11

H5 -- Redefining Symbolic Operation Codes

H5A -- THE OPSYN INSTRUCTION

PLACEMENT OF OPSYN STATEMENTS: The OPSYN instruction can be coded
anywhere in the program to redefine an operation code.

REDEFINING CONDITIONAL ASSEMBLY INS!RUCTIONS: A redefinition of a
conditional assembly operation code will have an effect only on macro
definitions appearing after the OPSYN instruction. Thus, the new
defini,tion is not valid during the processing of subsequent macro
instructions calling a rracro that was defined prior to the OPSYN
sta temcent.

Any OPSYN statement redefining the operation code of an instruction
genGrated from a macro instruction will, however, be valid, even if the
definition of the macro was made prior to the OPSYN statement. The
following example illustrates this difference between conditional
assembly instructions and model statements within macro instructions.

Name Operation Operand Comment

MACRO macro header
MAC macro prototype
AIF · ...
MVC

MEND macro trailer

AIF OPSYN AGO assign AGO properties to AIF
MVC OPSYN MVI assign MVI properties to MVC

MAC · . macro call
[A IF evaluated as AIF instruction

generated AIFs not printed]
+ MVC · ... evaluated as MVI instruction

. open code started at this point
AIF evaluated as AGO instruction
MVC · ... evaluated as MVI instruction -

AIF and MVC instructions are used in a macro definition. OPSYN
instructions are used to assign the properties of AGO to AIF and to
assign the properties of MVI to MVC, after the macro definition has been
edi ted. In subsequent calls to 'that macro, AIF is still defined as an
AIF operation while MVC is treated as an MVI operation. In open code
followi.ng the OPSYN instructions, the operations of both instructions
are derived from their new definitions. If the macro is redefined,
either by means of a loop to a point before the macro definition or by a
subsequent macro definition defining the same macro, the new definitions
of AIF and MVC (that is, AGO and MVI) will be fixed for future
expansions.

12

Section J: The Macro Definition

11 -- Using a Macro Definition

J1B -- SPECIFICATIONS

Where to Define a Macro in a Source Module

MACRO DEFINITIONS NEED NOT APPEAR AT THE BEGINNING: Macro definitions
can appear anywhere in a source module. ~hey remain in effect for the
rest of your source module or until another macro definition defining a
macro with the same operation code is encountered. Thus, you can
redefine a macro at any point in your program. The new definition will
be used for all subsequent calls to the macro in the program.

NESTED MACRO DEFINITIONS,:
other macro definitions.
definitions permitted.

Macro definitions can also appear inside
~here is no limit to the levels of macro

The assembler does not process inner macro definitions until it finds
the definition during the processing of a macro instruction calling the
outer macro.

Consider the following example:

r-------T-----------T-------------------T------------------------------1 I Name I Operation I Operand I Comments I
I I I I I
~-------+-----------+-------------------+------------------------------~ MACRO Imacro header for outer macro

OUTER &A,&C= I macro prototype
AIF (. & C· EQ ••). A I
MACRO Imacro header for inner macro
INNER I macro prototype

I
I

MEND Imacro trailer for inner macro
.A ANOP I

I
MEND Imacro trailer for outer macro

I
~------L-----------L-------------------~--------------________________ J

The assembler does not process the macro definition for INNER until
OUTER is called with a value for &C other than a null string.

Section J: The Macro Definition 13

12 ... Parts of a Macro Definition

J2C e._ THE MACRO PROTOTYPE STATEMENT: CODING

INSEHTING COMMENT STATEMENTS BEFORE THE PROTOTYPE: The Assembler H
allo~Js internal comments statements between the macro header and the
macro prototype. Internal comments statements are listed only with the
macro definition.

MAXIr-mM NUMBER OF OPERANDS: The maximum number of symbolic parameters
allowed by Assembler H is 240.

J2D _.- THE MACRO PROTOTYPE STATEMENT: ENTRIES

The Operation Entry

OPERP.ITION ENTRY PREVIOUSLY DEFINED: Any operation code can be specified
in the prototype operation field. If the entry is the same as an
assembler or machine operation code, the new definition overrides the
previ.ous use of the symbol. The same is true if the specified operation
code has been defined earlier in the program as a macro, or is the
operation code of a library macro.

The Operand Entry

MAXIM'UM NUMBER OF OPERANDS: The maximum number of symbolic parameters
that can be specified in the operand field is 240.

J2E -- THE BODY OF A MACRO DEFINITION

Specifications

NESTED MACRO DEFINITIONS: You can include macro definitions in the body
of a macro definition. This is explained under "J1 -- Using a Macro
Definition".

14

J3 - Symbolic Parameters

General Specifications

FORMAT: The format of a symbolic parameter is:

ampersand
alphabetic character

~ 0-61 alphameric characters

& ~c PAR A M E RI

J4 - Model Statements

J4B -- SPECIFICATIONS

Format of Model Statements

LISTING OF GENERATED FIELDS: The different fields in a macro-generated
statement or a statement generated in open code appear in the listing in
the same column as they are coded in the model statement, with the
following exceptions:

• If the substituted value in the name or operation field is too large
for the space available, the next field will be moved to the right
with one blank separating the fields.

• If the substituted value in the operand field causes the remarks
field to be displaced, the remarks field is written on the next
line, starting in the column where it is coded in the model
statement.

• If the value substituted in the operation field of a macro-generated
statement contains leading blanks, the blanks are ignored.

• If the value substituted in the operation field of a model statement
in open code contains leading blanks, the blanks wil~ be used to
move the field to the right.

• If the value substituted in the operand field contains leading
blanks, the blanks will be used to move the field to the right.

• If the value substituted contains trailing blanks, the blanks are
ignored.

Section J: The Macro Definition 15

Rules for Model Statement Fie~ds

SPECIFYING OPSYN AS A MODEL STATEMENT: OPSYN is allowed in the
operation field of a model statement. Substitution is allowed in the
name, operation, and operand fields of the instruction.

J5 -- Processing Statements

J5F •• THE ARE AD INSTRUCTION

The AREAD instruction allows you to assign to a SETC symbol the
character string value of a card that is placed immediately after a
macro instruction. The AREAD facility functions in much the same way as
symbolic· parameters, but instead of supplying your input to macro
processing as part of the macro instruction, you add the values in the
form of whole SO-character input records that follow immediately after
the :macro instruction. Any number of successive cards can be read into
the macro for processing.

~ifications

The ,~READ instruction can only be used inside macro definitions. Its
form.st is:

r-------------------T-----------T----------------------------1 I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------1
IAny SETC IAREAD I [NOSTMT] I
I symbol I I NOPRINT I
L~~_._~ __ ~~~ ___ ~ ___ ~_L~~ _________ ~ ____________________________ J

The SETC symbol in the name field may be subscripted. When the assembler
enCOlLlnters the AREAD statement: during the processing of a macro
inst:ruction, it reads the source card following the macro instruction
and· ;assigns an SO-character st:ring to the SETC symbol in the name field.
In the case of nested macros, it reads the card following the outermost
macr<) instruction.

If no operand is specified, the card to be read by AREAD is p.rinted in
the listing and assigned a sta.tement number. If NOSTMT is specified in
the operand, the card is printed, but not given any statement number.
If NOPRINT is specified, the card does not appear in the listing and no
~tatement number is assigned to it.

Repeated AREAD statements read successive cards.

The :records read by the AREAD instruction can be in code brought in with
the COpy instruction, if the macro instruction appears in such code. If
no mc::>re records exist in the code brought in by the COpy instruction,
subscequent cards are read from the ordinary input stream.

16

Example:

r----~-~-~~--~--~---~-~-----~--~----~-~---~---------------------------~1
t MACRO

&VAL

&VAL1

MAC1

AREAD

AREAD

MEND
CSECT

MAC1
THIS IS THE CARD TO BE PROCESSED FIRST
THIS IS THE SECOND CARD FOR THE SECOND AREAD

END
L~~_~~_~~~_~~~~~ ____ ~ __ ~ _____ ~ ___ ~~---____ ~~ ___ ~ __________ ~ ___ , ______ ~-_
16 - Comments Statements

J6A -- INTERNAL MACRO CO~MENTS STATEMENTS

PLACEMENT OF COMMENTS STATEMENTS: The Assembler H allows internal
comments statements between the macro header and the prototype
statement.

17 - System Variable Symbols

ADDITIONAL SYSTEM VARIABLE SYMBOL AVAILABLE: Assembler H supports the
system variable symbol &SYSLOC which gives you the name of the location
counter in effect when the macro instruction appears. See below under
"J7G -- &SYSLOC".

J7C -- &SYSLIST

USING MORE THAN TWO SUBSCRIP'IS: When referring to multilevel sublists
in operands of macro instructions, reference to elements of inner
sublists can be made using the appropriate number of subscripts for
&SYSLIST. See examples under RK4 - sublists in Operands R•

J7E -- &SYSPARM

DEFAULT VALUE FOR &SYSPARM: If &SYSPARM is omitted in the PARM field of
the EXEC statement that invokes the assembler, the system parameter is
assigned the value that was specified when the Assembler H was generated
(added to your system) •

Section J: The Macro Cefinition 17

J7G -- &SYSLOC

purpose

You can use &SYSLOC in a macro definition to generate the name of the
location counter currently in E!ffect. If you have not coded a LOCTR
instruction between the macro instruction and the preceding START,
CSECT, DSECT, or COM instruction, the value of &SYSLOC is the same as
the value of &SYSECT.

Specifications

The assembler assigns to the system variable symbol &SYSLOC a local
read-only value each time a macro definition containing it is called.
The value assigned is the symbol representing the name of the location
countE~r in use at the point where the macro is called.

&SYSLOC can only be used in macro definitions.

18

Section K: The Macro Instruction

Kl - Using a Macro Instruction

K1B -- SPECIFICATIONS

PLACEMENT OF MACRO INSTRUCTIONS: A macro instruction can be coded
anywhere in your program, if the assembler finds its definition either
in a macro library, or in the source module before it finds the macro
instruction.

K2 -- Entries for Fields

K2B -- THE OPERATION EN~RY

GENERATED MACRO INSTRUCTION: You can code a variable symbol in the
operation field of a macro instruction if the value of the variable
symbol specifies the operation code of a library or source macro that
has been previously defined. Thus, if MAC1 has been defined as a macro,
you can use the following statements to call it:

& CALL SETC
&CALL

'MAC l'

K4 -- Sublists in Operands

MULTILEVEL SUBLISTS: You can specify multilevel sublists (sublists
within sublists) in macro operands. The depth of this nesting is
limited only by the constraint that the total operand length must not
exceed 255 characters. Inner elements of the sublists are referenced
using additional subscripts on symbolic parameters or on &SYSLIST.

N'&SYSLIST with an n-element subscript array gives the number of
operands in the indicated n-th level sublist. The number attribute (N')
and a parameter name with an n-element subscript array gives the number
of operands in the indicated ~+l)th level sublist.

Section K: The Macro Instruction 19

Example: If &P is the first positional parameter and the value assigned
in a macro instruction is (A, (B, (C)) , D) then:

r~----~-----------------------~-------~---------------------------~---~-,
&P =&SYSLIST(l) =(A, (B, (C» ,D)
&P(1) =&SYSLIST{l,l) = A
&P (2) =& SYSLIST (1,2) = (B, (C))
&P (2,,1) =&SYSLIST (1,2,1) = B
&P (2,,2) =&SYSLIST (1,2,2) = (C)
&P(2~2,1) =&SYSLIST(1,2,2,1) = C
&P (2,2,2) =&SYSLIST (1,2,2,2) =null
&P (3)1 =&SYSLIST (1,3) = D

N'&P(2,2) =N'&SYSLIST(1,2,2) =1
N' &P (2) =N' &SYSLIST (1,2) =2
N' &P (3) =N' &SYSLIST (1,3) =1
N' &P =N'&SYSLIST (1) =3 l ___ - ____ J

PASSING SUBLISTS TO INNER MACRO INS'IRUCTIONS: You can pass a suboperand
of an outer macro instruction sublist as a sublist to an inner macro
instruction.

KS - Values in Operands

§pecifications

EQUAL SIGN IN POSITIONAL OPERANDS: The assembler issues a warning
message for a positional operand containing an equal sign, if the
operand resembles a keyword opE~rand. Thus, if we assume that the
following is the prototype of a macro definition:

MACl &F

the following macro instruction would generate a warning message:

MACl K=L (K is a valid keyword)

while the following macro instruction would not:

MACl 2+2=4 (2+2 is not a valid keyword)

20

Section L: The Conditional Assembly Language

Ll - Elements and Functions

L1A -- SET SYMBOLS

Specifications ,

FORMAT: The format of a SET symbol is:

ampersand

~
alphabetic character L 0-61 alphameric characters

& S IE T S Y M BOLl

examples: &ARITHMETICVALUE439
&BOOLEANFORCOMPARISON37
&CHARACTERSTRINGFORA35

IMPLICIT DECLARATION: Local SET symbols need not be declared by
explicit declarations. The assembler considers any undeclared variable
symbol found in the name field of a SETx instruction as a local SET
symbol.

Subscripted SET Symbols Specifications

DIMENSION OF SUBSCRIPTED SET SYMBOLS: The dimension (the maximum value
of the subscript) of a subscripted SET symbol is not determined by the
explicit or implicit declaration of the symbol. The dimension specified
can be exceeded in subsequent SE~x instructions.

Created ?ET Symbols

Assembler H can create SE~ symbols during conditional assembly
processing from other variable symbols and character strings. A SET
symbol thus created has the form & (e), where "en represents one or more
of the following:

• Variable symbols, optionally subscripted.

• Strings of alphameric characters.

• Other created SET syrrbols.

Section L: The Conditional Assembly Language 21

After substitution and concatenation "en must consist of a string of up
to 62 alphameric characters, thE~ first of which is alphabetic. The
assembler will consider the preceding ampersand and this string as the
name of a SET variable.

You can use created SET symbols wherever ordinary SET symbols are
permitted, including declarations. You can also nest them in other
created SET symbols. Consider the following example:

r-------------------T----~-----·-T----------------------------,
1 Name 1 Operation 1 Operand 1
1 1 1 1
~-------------------+----------~~+----------------------------~
1 'ABC (1) 1 SE'IC ,'MKT', '27', '$5' 1 L ___________________ L ____________ L ____________________________ J

Let ,~) equal & (&ABC(&I)QUA&~.

r-------T-----~-----T-------------------T------------------------------,
1 'I 1 'ABC (&1) 1 Created SE~r Symbol 1 Comment 1
1 1 I 1 I
.-------+-----------+-------------------+------------------------------~ 11 1 Ml<T I &MK'IQUA 1 1 Valid I
12 127 1&27QUA2 1 Invalid: first I
1 1 1 Icharacter after I
I 1 I 1 & not alphabetic 1
13 I $5 I &$5QUA3 IValid I
14 1 1 &QUA4 IValid I
L _______ L_----------L-------------------~-------------_________________ J

The Cl~ea ted SET symbol can be thought of as a form of indirect
addressing. with nested created SET symbols, you can get this kind of
indir€!ct addressing to any level.

In another sense, created SET symbols offer an associative memory
facillty. For example, a symbol table of numeric attributes can be
referEmced by an expression of the form & (&SYM) (&1) to yield the "Ith"
attribute of the symbol name in &SYM.

CreatE~d SET symbols also enable you to get some of the effect of
multiply-dimensioned arrays by creating a separate name for each element
of thE~ array. For example, a three-dimensional array of the form
&X (&1 I' &J , &K) could be addressed as & (X&I. $&J. $ &K). Thus II &X (2,3,4) n

would be represented by &X2$3$4. The "$"s guarantee that &X(2,33,55)
and &X(23,35,5) are unique:

&X (2.33,55) becomes &X2$33$55
&X(23 u 35,5) becomes &X23$35$5

L 16 - ... DATA ATTRIBUTES

What Attributes Are
\

NUMBER OF ATTRIBUTES AVAILABLE: Under the Assembler H there are seven
attributes available. In addition to the six attributes available under

22

the OS/VS Assembler, the Assembler H also supports the defined (D')
attribute described below.

Purpose

THE DEFINED ATTRIBUTE: The defined attribute determines whether a
symbol has been defined prior to the point where the attribute reference
is coded.

Specifications

COMBINATION WITH SYMBOLS: The following table shows the seven kinds of
attributes, identifying the types of symbols they can be combined with.

ATTRIBUTES SPECIFIED

SYMBOLS Type Length Scaling Integer Count Number Defined
SPECIFIED T' L' S' I' K' N' 0'

IN THE OPEN CODE

Ordinary Symbols YES YES YES YES NO NO YES

--
SET Symbols YES SETC only SETC only SETC only YES YES SETC only

subscripted --~-----
System Variable Symbols:

&SYSPARM
&SYSDATE YES NO NO NO YES NO NO

&SYSTIME

IN MACRO DEFINITIONS
Ordinary S\trribols YES YES YES YES NO NO YES

- --
SET Symbols YES SETC only SETC only SETC only YES YES SETC only

subscripted

Symbolic Parameters YES YES YES YES YES YES YES
-

System Variable Symbols:
YES YES YES YES YES YES YES

&SYSLIST
,-f--- - ~-

&SYSECT,&SYSLOC,
~SYSNDX,&SYS~ARM, YES NO NO NO YES NO NO
&SYSDATE,&SYSTIME

REFERENCES TO GENERATED STATEMENTS: You can reference instructions
generated by conditional assembly substitution or macro expansion with

Section L: The Conditional Assembly Language 23

attributes. However, no such reference can be made until the
instruction is generated.

THE TYPE ATTRIBUTE (T'): Because Assembler H allows attribute
references to statements genera-ted through substitution, certain cases
where a type attribute of U (Undefined) or M (Macro) is given under the
OS/VS Assembler, may give a valid type attribute under Assembler H.
Assembler H allows you to use the type attribute with a SETC symbol if
the value of the SETC symbol is equal to the name of an instruction that
can be! referenced by the type attribute.

THE LE:NGTH ATTRIBUTE (L'): Assembler H allows you to use the length
attribute with a SETC symbol if the value of the SETC symbol is equal to
the name of an instruction that can be referenced by the length
attribute.

THE SCALING ATTRIBUTE (S'): Assembler H allows you to use the scaling
attribute with a SETC symbol if the value of the SETC symbol is equal to
the name of an instruction that can be r~ferenced by the scaling
attribute.

THE INTEGER ATTRIBUTE (I'): Assembler H allows you to use the integer
attribute with a SETC symbol, if the value of the SETC symbol is equal
to the name of an instruction that can be referenced by the integer
attribute.

THE NUMBER ATTRIBUTE (N'): The number attribute, when applied to a
subscripted SET symbol, is equal to the highest element to which a value
has been assigned in a SETx instruction.

For eJt:ample, if the only references to &A have been

&A (5)
LCLA
SETA
AIF

&A (100)
20",70
(&A (20) GT 50) .M

(See description of extended
SET statements)

then N'&A is equal to 8, because &A(8) is assigned the value 70.

THE DE:FINED ATTRIBUTE (D '): The defined attribute indicates whether or
not the symbol referenced has been defined prior to the attribute
referemce. A symbol is considered as defined if it has been encountered
in thEl operand field of an EXTRN or WXTRN statement or in the name field
of any other statement. The value of the defined attribute is 1 if the
symbol has been defined or 0 if the symbol has not been defined.

The dElfined attribute can reference all symbols that can be referenced
by the! scaling (S') attribute.

The following is an example of how you can use the defined attribute:

A
• AROUND

24

AIF
LA
ANOP

(0' A) • AROUND
1,4

Page of GC26-3111-3
Revised September 30, 1975
By TNL: GN33-8204

In this example, the statement at A would be assembled, since the branch
around it would not be taken. However, if by a branch, the same
statement were processed again, the statement at A would not be
assembled:

.UP
A
• AROUND

AIF
LA
ANOP

(J::' A) • AROUND
1 ,4

AGO • UP

You can save assembly time using the defined attribute. Each time the
assembler finds a reference (attribute or branch) to an undefined
symbol, it initiates a forward scan until it finds that symbol or
reaches the END statement. You can use the defined attribute in your
program to prevent the assembler from making this time-consuming forward
scan.

FOR~AT: The format of a sequence symbol is:

period

~
alphabetic character L 0-61 alphameric character

S IE QUE N C E S Y M B 0 L'

example: .BRANCHINGLABELl

AT'I'RIBUTE DEFINITION AND LOOKAHEAD

Symbol attrihut.es are established in ei ther defini tion mode or lookahead
mode. Lookahead mode is entered when Assembler H encounters an
attribute reference to a symbol that is not yet defined.

Definition occurs whenever a previously undefined symbol is encountered
in the name field of a statement, or in the operand field of an EXTRN or
WXTRN statement during open code processing. Symbols within a macro
definition are defined when the macro is generated.

Section L: The Conditional Assembly Language 25

Page of GC26-3771-3
Revised September 30, 1975
By TNL: GN33-8204

Lookahead Mode

Lookahead is a sequential, statement-by-statement, forward SCCin over: the
source text. It. is initiated when reference is made to an attribute
(other than D I) of a symbol not yet encountered, ei ther by macro or

open-·code attribute reference, or by a forward AGO or AIF br:aneh in open
code ..

If reference is made in a macro, forward scan begins with the first
source statement following the outermost macro instruction. Programmer
macros are bypassed. The text is not assembled. Lookahead attributes
are tentatively established for all intervening undefined symbols.
Tentative attributes are replaced and fixed when the symbol is
subsequently encountered in definition mode. No macro expansion or
open--code substitution is performed; no conditional or unconditional
(AIF or AGO) branches are taken. COpy instructions are excutE~d during
lookahead, and the copied statements are scanned.

Lookahead ends when the desired symbol or sequence syrnDOI is found,
or when the END card or end of file is reached. All statements passed
over by lookahead are saved on an internal file and processed when the
lookahead ends.

For purposes of attribute definition, a symbol is consioered
undefined if it depends in any way upon a symbol not yet dpfinpc1. For
example, if the symbol is defined by a forward EQU that is not yet
resolved, or if a DC, DS, or DXD modifier expression contains symbols
not yet defined, that symbol is assigned a type attribute of U.

NOTE: Since no variable symbol substitution is performed by a lookabead,
you should be careful when using a macro or open code substitution to
gene:rate END statements that separate source modules assembled in one
job step (option BATCH). If a symbol is undefined within a module,
lookahead will read in records past the point where the END statement is
to be generated. All statements between the generated statement and the
poin·t where lookahead stops (either because it finds a matching symbol,
or because it finds an END statemen~ are ignored by the assembler. The
next module will start at the point where lookahead stops.

Lookahead Restrictions

Assembler statements are analyzed only to the extent necessary to
establish attributes of symbols in their name fields.

Variable symbols are not replaced. Modifier expressions are
evaluated only if all symbols involved were defined prior to lookahead,
Possible multiple or inconsistent definition of the same symbol is not
diagnosed during lookahead because conditional assembly may eliminate
one (or both) of the definitions.

Lookahead 10es not check undefined op codes against library (system)
macro names. If the name field contains an ordinary symbol and the op
code cannot be matched with one in the current op code table, then the
ordinary symbol is assigned the type attribute of M. If the op code
contains special characters or' is a variable symbol, a type attribute of
U is assumed. This may be wrong if the unc1efinec1 op code is later
defined by OPSYN. OPSYN statements are not processed; thus, labels are
treated in accordance with the op code definitions in effect at the time
of entry to lookahead.

26

L2 -- Declaring SET Symbols

Page of GC26-3771-3
Revised September 30, 1975
By TNL: GN33-8204

IMPLICIT DECLARATION: Local SET symbols need not be declared explicitly
with LCLA, LCLB, or LCLC statements. The assembler considers any
undeclared variable symbol found in the name field of a SETA, SETB, or
SETC statement to be a lecal SET symbol. It is given the initial value
specified in the operand field. If the symbol in the name field is
subscripted, it is declared as a subscripted SET symbol.

SEecif~cations

MULTIPLE, DE~1_b_RATIQ~S OF SET SYMBOLS: Multiple LCLx statements can
declare the same variable symbol if only one declaration for a given
symbol is encountered during the expansion of a macro.

Section L: The Conditional Assembly Language 26.1

MAXIMUM VALUE OF SE'I SYMBOL SUBSCRIPT: 'Ihere is no limit to SET symbol
dimensioning. The limit specified in the explicit ~CLx) or implicit
(SE'l'x) declaration can also be exceeded, by subsequent SETx statements.

ALTERNATE FORMAT FOR LCLX STATEMENTS: The Assembler H permits the
alternatest-a-teme-ilt-format-for LCLx-instructions. An example is:

Statement Field

LCLA

--.-.-.--.-. --.-...... _. __ . __ .. - ..•.• --... -------............. ---.. ------------

Continuation Indicator
----_._._ __ .. __ ._-_._-_._._-_._----_ .. _--------------j

&LOCALSYMBOLFORDCGEN,
&COUNTERFORINNERLOOP,
&COUNTERFOROUTERLOOP,
&COUNTERFOR'IRAILINGLOOP

x
X
X

L2B -- THE GBLA, GBLB, AND GBLC INS'IRUC'IIONS

~)ecifications

MULTIPLE DECLARATIONS OF ~~'J_.$..YMBOL~: Multiple GBLx statements can
dE~clare the same variable symbol if only one declaration for a given
symbol is encountered during the expansion of a macro.

MAXIMUM VALUE OF SET SYMBOL SUBSCRt~T: 'Ihere is no limit on the maximum
subscript allowed. Also, the limit specified in the global declaration
(GBLx) can be exceeded.

ALTERNATE FORMAT FOR GBLX S'IATEMEN'IS: 'Ihe Assembler H permits the
alternate statement format·-for--GBLx·-instructions. An example is:

Statement Field

GBLA &GLOBALSYMBOLFORDCGEN,
&LOOPCON'IRLA,
&VALUEPASSEDTOMACDUFF,
&VALUERE'IURNEDFROMMACDUFF

Continuation Indicator

X
X
X

.-----_._ .. __ ._----- ---_._-.-.. __ ._---_ .. _----_._-------

L3 -- Assigning Values to SET Symbols

Extended SET Statemen~~

You can assign values to multiple elements in an array of a subscripted
SET symbol with one single SEI'x instruction. Such an instruction is
called an extended SET statewent.

26.2

The format of an extended SE~x statement is:

r-------------------T-----------T----------------------------1
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
I A subscripted I{SETAI loperand1 ,operand2, I
I variable ISETE loperand3, •••• ,operandn I
rs ymbo1 I SETC I I l ___________________ L ___________ i ____________________________ J

The name field specifies the name of the SET symbol and the position in
the array to which the first value in the operand field is to be
assigned. The successive operand values are then assigned to the
successive positions in the array. If an operand is omitted, the
corresponding element of the array is unchanged. Consider the following
example:

r-------------------T-----------~---------------------------, I Name I Operation 1 Operand I
I I 1 1
~-------------------+-----------+----------------------------i I 1 LCLA 1 SLIST (50) 1
I&LIST(11) I SETA 15,10,,20,25,30 I l ___________________ L ___________ i ____________________________ J

The first instruction declares SLIST as a subscripted local SFl'A symbol.
The second instruction assigns values to certain elements of the array
SLIST:

Number of Element 10 11 12 13 14 15 16

I
I

not assigned I not assigned 5 10 not assigned 20 25 30
.~

Thus the instruction does the same as the following sequence:

r-------------------T-----------~---------------------------, I Name 1 Operation I Operand I
1 1 1 I
~-------------------+-----------+---------------------------~
I &LIST (11) 1 SETA 15 I
1 &LIST (12) 1 SETA 110 1
1 &LIST (14) 1 SETA 120 1
I &LIST (15) I SETA 125 I
I &LIST (16) I SETA 130 I l ___________________ L ___________ i-__________________________ -J

ALTERNATE STATEMENT FORMA~: You can use the alternate statement format
for extended SETx statements. The above coding could then be written as
follows:

Name Operation

&LIST(ll) SETA

Operand

5,
10, ,
20,25,30

Remarks

THIS IS
AN ARRAY
SPECIFICATION

Continuation
Indicator

x
X

Section L: The Conditional Assembly Language 27

not assigned

L4 -- Using Expressions

L4A 4"_ ARITHMETIC (SETA) EXPRESSIONS

SETC VARIABLES IN ARITHMETIC EXPRESSIONS: The Assembler H permits a
SETC variable to be used as a term in an arithmetic expression if the
character string value of the variable is a self-defining term. The
value! represented by the string is assigned to the arithmetic term. A
null string is treated as zero. The OS/VS Assembler allows SETC
varialbles as arithmetic terms only if the value of the variable is a
decimal self-defining term, not longer than ten characters.

Examples:

r-------------------T-----------T----------------------------1 I Name I Operation I Operand I
I I I I
~----.---------------+---------,--+----------------------------"i
I I LCLC I &C (5) I
I &C (1) I SE'IC I 'B' , 101 ' , , I
I &C (2) I SE'IC I'C' 'A'" I
I &C (3) I SE'IC I • 23 • I
I &A I SE'IA I &C (1) +&C (2) -&C (3) ~ I
I &AA I SE'IA I &C (3) 2 I L _____________ ----__ ~ ___________ ~ ____________________________ J

t (Allowed only by Assembler ~
2 (Allowed by the OSjVS Assembler and Assembler H)

In evaluating the arithmetic expression in the fifth statement, the
first term (&Cel» is assigned the binary value 101 (5). To that is
added the value represented by the EBCDIC character A (hexadecimal Cl
which corresponds to decimal 193). Then the value represented by the
third term (&C(3» is subtracted, and the value of &A becomes
5+193-23=175.

This feature allows you to associate numeric values with EBCDIC or
hexad,ecimal characters to be used in such applications as indexing, code
conversion, translation, and sorting.

Assume that &X is a character string with the value ABC.

r----'----... ----------T-----------~---------------------------,.
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------i
1&1 ISE'IC I·C···.'&X·(l,l).···· I
I &VAL I SE'IA I & TRANS (&1) I L ____ . _______________ ~ __________ ._.L _________________________ ---.11

The first statement sets &1 to C'A'. The second statement
extracts the 193rd element of &'I'RANS (C'A' = X'Cl' = 193).

28

The following code will convert a hex value in &H into a decimal
value in &VAL:

r-------------------T-----------~---------------------------, I Name I Operation I Operand I
I I I I
~-------------------+-----------+-----------------~---------~ I&X ISETC I'X"&H'" I
I &VAL I SETA I & X I
L ______________ -----L-----------~---------------------_______ J

An arithmetic expression must not contain two terms in succession;
however, any term may be preceded by any number of unary operators.
+&A*-&B is a valid operand for a SETA instruction. The expression
&FIELD+- is invalid because it has no final term.

MAXIMUM SIZE: The maximum number of levels of parentheses allowed in an
arithmetic expression is 255.

L4C -- LOGICAL (SETH) EXPRESSIONS

LIMITATION TO LOGICAL OPERATORS: There is no limit to the level of
parentheses allowed in logical expressions.

L6 - Branching

L6A -- THE AIF INSTRUCTION

Extended AIF Instruction

The extended AIF instruction allows you to combine several successive
AIF statements into one statement. The extended AIF instruction ha·s the
following format:

r-------------------T-----------~---------------------------, I Name I Operation I Operand I
I I I I
~ -------------------+-----.------+----------------------------~
I A sequence I AIF I (logical expression) .S 1 , I
I symbol or I I (logical expression) .S2, I
I blank I I ... , (logical expression) .Snl
I I I' I L ___________________ L ___________ ~ ___________________________ -J

It is exactly equivalent to n successive AIF statements. The branch is
taken to the first sequence symbol (scanning left to right) whose
corresponding logical expression is true. If none of the logical
expressions is true, no branch is taken.

Section L: The Conditional Assembly Language 29

Consider the following example:

Operation Operand Col.72

AIF ('&L' (&C,l) EQ '$') .DOLR, ('&L' (&C,l) EQ ' # ') .POUND, X
('&L' (&C,l) EQ '@') .AT, ('&L' (&C,l) EQ '=') • EQUAL, X
(, &L' (&C, 1) EQ '('). LEFTPAR, (, &L' (&C, 1) EQ '+'). PLUS, X
(, &L' (&C, 1) EQ '-') .MINUS

This s'tatement looks for the occurrence of a $, t, 0), =, (, +, and -, in
tha t o:rder; and causes control t:o branch to • DOLR, • POUND, • AT, • EQUAL,
.LEFTPAR, .PLUS, and .MINUS, respectively, if the string being examined
contains any of these characters.

THE AVrERNATE STATEMENtI' F'ORMAT: 'Ihe alternate statement format is
allowed for extended AIF instructions. The format is illustrated by the
e xampl'2! above.

L6B -- THE AGO INSTRUCTION

Compub~O Instruction

The computed AGO instruction allows you to make branches according to
the value of an arithmetic expression specified in the operand. The
format of the computed AGO instruction is as follows:

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-----.---------~----+-----------+----------------------------i I A sequence I AGO ,(arithmetiC) • S1 , .S2, ••• , .Sn ,
I symbol or "~xpression ,
I blank I I I L _____ . ______________ ~ ___________ ~ ____________________________ J

If the arithmetic expression evaluates to k, where k lies between 1 and
n (inclusive), then the branch is taken to the "k-th" sequence symbol in
the list.. If k is outside that range, no branch is taken.

In the following example

r-------------------T-----------T-------------------------------------, I Name , Operation , Operand I
I I I I
~-----.--------------+-----------+--------------------------------------~ , I AGO I (&1) .FIRST,. SECOND, .THIRt, • FOURTH ,
I I I , L _____ . ______________ ~ ___________ ~ ______________________________________ J

control passes to the statement at .THIRD if &1=3. Control passes
through to the statement following the AGO if &1 is less than 1 or
greater than 4.

30

THE ALTERNATE STATEMENT FORMAT: The alternate statement format is
allowed for computed AGO instructions. The example above could be
coded:

Statement Field

AGO (&1) • FIRST,
• SECOND,
.THIRD,
• FOURTH

L9 - Macro Trace Facility

L9A -~ THE MHELP INSTRUC~ION

Purpose

Continuation Indicator

x
X
X

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open code or in macro
definitions. MHELP options remain in effect until superseded by another
MHELP statement.

Specifications

The format of this instruction is as follows:

r-------------------T-----------T----------------------------1
I Name I Operation I Operand I
I I I I
~-------------------+-----------+---------------------------~
IA sequence symbol IMHELP IAbsolute expression, binary I
lor blank I lor decimal options as I
I I I dis cuss ed below. I
I I I I
L __________ ~--------~-----------~---------------------______ -l

Macro Call T~ace -- Operand=l

This option provides a one-line trace listing for each macro call,
giving the name of the called macro, its nested depth, and its &SYSNDX
value. The trace is provided only upon entry into the macro. No trace
is provided if error conditions prevent entry into the macro.

~acro Branch Trace -- Operand=2

This option provides a one-line ,trace listing for each AGO and true AIF
conditional-assembly statement within a macro. It gives the
model-statement numbers of the "branched from" and the Rbranched toR

Section L: The Conditional Assembly Language 31

statements, and the name of the macro in which the branch occurs. This
trace option is suppressed for library macros.

Macro AIF Dump -- Operand=4

This option dumps undimensioned SET symbol values from the macro
dictionary immediately before each AIF statement that is encountered.

Macro Exit Dump -- Operand=8

This option dumps undimensioned SET symbols from the macro dictionary
upon entering a MEND or a MEXIT statement.

Macro l!:ntry Dump -- Operand=16

This option dumps parameter values from the macro dictionary immediately
after Cl macro call is processed.

Global Suppression Operand=32,

This option suppresses global SEW[' symbols in two preceding options,
MHELP j~ and MHELP 8.

MHELP Suppression Operand=128

This option suppresses all currently active MHELP options.

MHELP Control On &SYSNDX
(

The MH1~LP operand field is actually mapped into a fullword.
previously-defined MHELP codes correspond to the fourth byte of this
full word.

&SYSNDX control is turned on by any bit in the third byte (operand
values 256-65535 inclusive). Then, when &SYSNDX (total number of macro
calls) exceeds the value of the fullword which contains the MHFLP
operand value, control is forced to stay at the open-code level, by in
effect making every statement in a macro behave like a MEXIT. Open code
macro Galls are honored, but with an immediate exit back to open code.

32

Examples:

r--,
I I
I MHELP 256 Limit &SYSNDX to 256. I
I MHELP 1 Trace macro calls. I
I MHELP 256+1 Trace calls and limit &SYSNDX to 257. I
I MHELP 65536 No effect. No bits in bytes 3,4. I
I MHELP 65792 Limit &SYSNDX to 65792. I
I I L __ J

When the value of &SYSNDX reaches its limit, the message "ACTR EXCEEDEC
-- &SYSNDX· is issued.

Combining Options

As shown in the example above, multiple options can be obtained by
combining the option codes in one MHELP operand. For example, call and
branch traces can be invoked by MHELP B'11', MHELP 2+1, or MHELP 3.
Substitution by means of variable symbols may also be used.

Section L: The Conditional Assembly Language 33

II
&SYSLIST 17, 19-20
&SYSLOC 18
&SYSNDX, MHELP control of 32
&SYSPARM 17

Absolute expressions in START
operand 5

Address constant
(see also DC instruction)
Q-type, referencing external

durruny section 7
Addressing between source modules 8
AGO instruction, computed 30-31

Alternate statement format 31
Tracing (see macro branch trace)

AIF instruction, extended 29-30
Alternate statements format 30
Macro AIF dump 32
Tracing (see macro branch trace)

Alternate statement format 1
For AGO instruction 31
For AIF instruction 30
For GBLx instruction 26
For LCLx instruction 26
For SETx instruction 27

Arbitrary language input (see AREAD
instruction)

AREAD instruction 16-17
Repeated AREAD instructions 16
Within code inserted by COpy 16

Arithmetic expression
Maximum size 29
SETC variables in 28-29

Attributes 22-25
Combination with symbols 23
Defined attribute (DI) 23, 24-25
Integer attribute (II) 24
Length attribute (LI) 24
Number attribute (N I)

For SET symbol 24
With multilevel sub1ists 19-20

References to generated statements 23-24
Scaling attribute (SI) 24
Type attribute (TI) 24

Character variables used in
arithmetic expression 28-29

CNOP instruction 11
COM instruction 6
Corrunents statements, internal macro 14,17

Corrunon control section
(see COM instruction)

Complexly re1ocatab1e symbols
in EQU operand 9

Computed AGO instruction
(see AGO instruction, computed)

Constant (see DC instruction)
Continuation lines

Alternate format (see alternate
statement format)

Normal format 1
Control section

Index

Controlling with the ORG instruction 11
Initiating an unnamed with the

LOCTR instruction 7
Resuming an interrupted

Ordinary control section 5-6
Corrunon control section 6
DUrruny control section 6

Using mUltiple location counters in 4-5
COpy instruction

Nested 4
With AREAD 16

Created SET symbol 21-22
CSECT instruction (see control section)

m
DC instruction

Symbols in subfie1d 1 9
Symbols in subfield 3 10

Declaration of SET symbols 25-26
Alternate format for 26
Implicit declaration 25
Maximum value of SET symbol

subscript 26
Multiple declarations 25,26

Defined attribute 23, 24-25
Definition of SET symbols

(see declaration of SET symbols)
Dimension of SET symbol, maximum 26
DS instruction

Symbols in subfield 1 9
Symbols in subfield 3 10

DSECT instruction 6
Durruny control section (see

DSECT instruction
DXD instruction

ESD entry for 7
Name in Q-type address constant 7

II
EQU instruction

Complexly re10catable first operand 9

Index 35

Symbols in first operand 9
Equal sign in macro instruction
positional operand 20

ESD (see external symbol dictionary)
Exponent modifier (see modifiers)
Expres.sion
Aritl~etic (see arithmetic expression)
In EQU operand 9
In START operand 5
Logical (see logical expression)

Extended AGO instruction (see AGO
instruction, computed)

Extended AIF instruction (see AIF
instruction, extended)

Extended SETx instruction (see SETx
instruction, extended)

External dummy control section (s€~e DXD
instruction and DSECT instruction)

External symbol dictionary
(see also DXD instruction)
Maximum number of entries 5, 8

External symbols, maximum number of 5,8

Format, alternate (see alternate
statement format)

Forward scan 25

GBLx instruction (see declaration of
SET symbols)

Generated macro instruction operation
code 19

Generated statements, listing of 15
Global suppression in MHELP options 32
Global variable symbol (see
declaration of SET symbols)

o
Implicit declaration of SET symbol 25
Indirect addressing (see created

SET symbol)
Inner macro definition, (see nested
macro definitions)

Inner macro instruction, passing
sublists to 20

Inner sublist (see multilevel sublist)
Input sequence checking (see ISEQ
instruction)

Input-to-macro instruction (see
AREAD instruction)

Instruction format (see statement format)
Integer attribute 24
Internal macro comments statement 14,17
Interrupted control section
resuming

With COM instruction 6
With CSECT instruction 5-6
With DSECT instruction 6

ISEQ instruction 11

36

II
LCLx instruction (see declaration
of SET symbols)

Length attribute 24
Length of symbols (see symbol, format)
Local SET symbols (see declaration
of SET symbols)

Location counter
(see also interrupted control section)
controlled with the ORG section 11
LOCTR instruction 6-7
Multiple location counters 21

LOCTR instruction 6-7
(see also location counter)

Logical expression 29
"Lookahead mode" (see forward scan)

Macro AIF dump 32
Macro branch trace 31
Macro call by substitution (see macro
instruction, generated operation code)

Macro call trace 31
Macro definition

(see also macro prototype statement)
Comments statement before prototype 14,17
Maximum number of operands 14
Nested 13,14
Placement of 13
Prototype operation code
previously defined 14

Macro entry dump 32
Macro exit dump 32
Macro input instruction (see AREAD
instruction)

Macro instruction
Equal sign in positional operand 20
Generated operation code 19
Multilevel sublists in 19-20
Placement of 19

Macro name, length of (see ordinary
symbol, format)

Macro prototype statement
Maximum number of operands 14
Nested sublists (see multilevel sublist)
operation entry 14

(see also ordinary symbol, format)
Symbolic parameter format 15

Macro trace facility 31-33
Maximum number of ESD entries 5,8
Maximum number of operands on macro

prototype 14
Maximum number of operators in

logical expression 29
Maximum number of parentheses in
arithmetic expression 29

Maximum value of SET symbol subscript 26
MHELP instruction 31-33

Model statement
OPSYN as a model statement 16

Modifiers
Symbols to specify the value of 10

Multilevel sublist 19-20
Multiple location counters 4, 6-7
Multiple SET symbol declaration 26

Nested COpy instructions 4
Nested created SET symbols 22
Nested macro definitions 13,14
Nested sublist (see multilevel sublist)
Number attribute

For SET symbol 24
With multilevel sublists 19-20

OPSYN instruction
As model statement 16
Placement of 12
To redefine conditional

assembly instructions 12
Ordinary symbol, format 2
ORG instruction 11

Parameter format (see symbolic
parameter format)

Placement of macro definition 13
Placement of macro instruction 19
Placement of OPSYN instruction 12
Positional operand, equal sign in 20
Programmer macro, placement of

(see macro definition, placement of)
Prototype (see macro prototype statement)

Q-type address constant
referencing DXD instruction 7

Redefining operation codes (see
OPSYN instruction)

Scale modifier (see modifiers)
Scaling attribute 24
Sequence checking (see ISEQ instruction)
Sequence symbol format 2,25
SET symbol

Created 21-22
Declaration of

Alternate format for 26

Implicit 25
Multiple 25,26

Dimension
Maximum 26
Specifying 26

Format of 21
SETC symbol in name field of

AREAD instruction 16
SETC variable used in arithmetic
expression 28-29

SETx instruction, extended 26-27
Alternate format 27

Source macro, placement of (see macro
definition, placement of)

START instruction 5
Statement format

Alternate format (see alternate
statement format)

Normal format 1
Sublist

Multilevel 19-20
Passed to inner macro 20

Subscripted SET symbols
Declaration 26

open-ended 26
Substitution in macro instruction
operation field (see macro instruction,

generated operation code)
Symbol

Format
Ordinary symbol 2
Sequence symbol 2,25
SET symbol 21
Symbolic parameter 15
Variable symbol 2

Symbol attribute reference
Defined attribute (D') 23, 24-25
Integer attribute (I') 24
Length attribute (L') 24
Number attribute (N')

For SET symbol 24
With multilevel sublists 19-20

Scaling attribute (S') 24
Type attribute (T') 24

Symbolic linkages (see external symbols)
Symbolic parameter format 15
System variable symbols

&SYSLIST 17, 19-20
&SYSLOC 18
&SYSNDX, MHELP control on 32
&SYSPARM 17

II
Type attribute 24

Variable symbol format 2

Index 37

Part II: For the MFr or MVT User

i

Preface

This part presents reference information about Assembler H. Specific
information contained in the following pages supersedes the
corresponding information for Assembler F that appears in the ~
Assembler Language, Order Number GC28-6514. Except where contradicted
by this part, the information in GC28-6514 applies to Assembler H.

Assembler H operates under the control of OSjMFT or OS/MVT.
Assembler H supports the features of lower level operating system
assemblers. Any program successfully assembled with no warning or
diagnostic message by a lower level as assembler will assemble correctly
under Assembler H.

Knowledge of the IBM System/360 and 370 machine operations,
particularly storage addressing, data formats, and machine instruction
formats and functions, is prerequisite to using this publication. So is
experience with programming concepts and techniques or completion of
basic courses of instruction in these areas. IBM System/360 and 370
machine operations are discussed in IBM System/360 PrinciE!e~-2f
Operation, Order Number GA22-6821, and in Systemt370 principle~ of
Operation, Order Number GA22-7000.

You are also assumed to be generally familiar with assembler
language and with macro and conditional-assembly processing. Such
information may be found in the following manual, which will be referred
to in this manual as "the Assembler Language manual."

OS Assembler Language, Order Number GC28-6514

This part is a supplement to the Assembler Language manual. To have
complete documentation of the Assembler H language, you need both the
Assembler Language manual and this manual. Concepts introduced in the
Assembler Language manual are not reworked in this manual.

The structure of this manual parallels that of the Assembler
Language manual; sections of this book correspond exactly to sections of
that book. For example, there is no information applicable only to
Assembler H that corresponds to Section 1 of the Assembler Language
manual; therefore, this manual begins with Section 2.

In the text of this manual, braces { } are used to indicate that
only one of the items enclosed is to be used. Brackets [] indicate
that all the enclosed items are optional.

Other publications containing pertinent information are the
following:

OS Assembler H programmer's Guide, Order Number SC26-3759

The Assembler H Programmer's Guide gives detailed information about
programming with Assembler H, including assembler options and job
control language procedures applicable to Assembler H. It also explains
the listing produced by the assembler.

OS Assembler H Messages, Order Number SC26-3770

The Assembler H Messages manual provides an explanation of each of
the diagnostic and abnormal termination messages issued by Assembler H
and suggests how you should respond in each case.

iii

OS Assembler H System Information, Order Number GC26-3768
<

The System Information manual consists of three self-contained
chapters on performance estimates, storage estimates, and system
generation of Assembler H.

OS Assembler H Logic, Order Number LY26-3760

The Logic manual desc:ribes the design logic and functional
characteristics of Assembler H.

OS Introduction, Order Number GC28-6534

The Introduction describes and interrelates alIOS control program
facilities. It shows how these facilities work with the language
translators and service programs, so you can better learn how to use the
system.

,OS Job Control Language Reference, Order Number GC28-6704

The Job Control Language book tells how to code the job control
language necessary to initiate and control the processing of any
program, and contains a discussion of cataloged procedures.

9S Loader and Linkage Edi1:2!., Order Number GC28-6538

The Loader and LinkagE! Editor manual provides information on the
operation and use of the loader and linkage editor, which are two
programs that prepare the output of language translators for execution.

iv

SECTION 2: GENERAL INFORMATION ..
Terms and Expressions ..

Expressions

Contents

· . 1
· 1

6

SECTION 3: ADDRESSING - PROGRAM SECTIONING AND LINKING. 8
8 Base Register Instructions ..

USING - Use Base Address Register . .
DROP - DROP Base Register
Program Sectioning and Linking ...
DXD - Define External Dummy Section .
COM - Define Common Control Section .
LOCTR - Define Location Counter

SECTION 4: MACHINE INSTRUCTIONS.
Extended Mnemonic Codes

· . • • 8
· 8
· 8

· .10
· ... 10

.11

· . .13
.13

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS. . .14
Symbol Definition Instructions 14

EQU - Equate Symbol14
OPSYN - Equate Operation Code 15

Data Definition Instructions 16
DC - Define Constant.17
DS - Define Storage18

Listing Control Instructions18
TITLE - Identify Assembly Output. . .18
PRINT - Print Optional Data 18
PUSH - Save Current USING or PRINT Status 18
POP - Restore USING or PRINT Status 19
ISEQ - Input Sequence Checking. 19

Program Control Instructions20
ORG - Set Location Counter. . . . • 20
CNOP - Conditional No Operation21
COpy - Copy Predefined Source Coding. 21
END - End Assembly.21
MNOTE - Request Error Message 22

SECTION 6: INTRODUCTION TO THE MACRO LANGUAGE.23
The Macro Instruction.23
The Macro Definition. 23

System and Programmer Macro Definitions23
Variable Symbols24

SECTION 7: HOW TO PREPARE MACRO DEFINITIONS
Macro Instruction Prototype ..
Model Statements
Symbolic Parameters
Nested Macro Definitions .

SECTION 8: HOW TO WRITE MACRO INSTRUCTIONS ..
Macro Instruction Operands

Embedded Equal Sign in Parameter ..
Operand Sublists

Multilevel Sublists
Inner Macro Instructions .

· . .25
· ... 25

.25
• • .. .26

· .•• 27

.28
• .28

.28
· .. 28

.28
• .29

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS 30
AREAD - Insert Macro Input.30

v

SET Symbols.
Attributes • . . . • . . • • . .

Attribute Definition and Lookahead.
Sequence Symbols • .
LCLA, LCLB, LCLC - Define Local SET Symbols ..
SETA - Set Arithmetic. . . . • •. . .•.
SETC - Set Character
SETB - Set Binary ...•.
AIF - Conditional Branch .

Extended AIF Statements .

.30

.31

.32
• • .34

• • • • • • • • • • • 34
.34
.35

• • • • • .36
• • • • • • • • • 36

• • •• •••• 36
AGO - Unconditional Branch •. • 37

Computed AGO Statements . . .37
ACTR - Conditional Assembly Loop Counter .
ANOP - Assembly No Operation

• • .38
. . • . . . 38

SECTION 10: EXTENDED FEATURES OF THE MACRO LANGUAGE . • .39
MNOTE - Request for Error Message ..
Global and Local Variable Symbols.
MHELP - Macro Trace Facility .
System Variable Symbols ..

INDEX.

vi

• • • • • • 39
• • • • • • • • • • • • • • 39

• • • • • • • • • • • •• • 42
• • • • • • • • • • • • • 45

.47

Section 2: General Information

Assembler-Language Coding Conventions

Continuation Lines

Nine continuation lines are allowed, ten cards in all.

Statement Format
!

Name Entry: Symbols may be up to 63 alphanumeric characters long.
External Symbol Dictionary items (contained in START, CSECT, COM, DXD,
EXTRN, WXTRN, and ENTRY statements, and in Q~type and V-type constants)
are limited to 8 characters. For all cases, the first character must be
a letter.

Operation Entry: Op codes defined by OPSYN and macro names may be up
to 63 characters long.

Terms and Expressions

Symbols

All symbols except External Symbol Dictionary items may include up to 63
characters. The first character, or the first character following a
period or ampersand, must be a letter.

ordinar1 Symbols may contain up to 63 alphanumeric characters. The
first 0 these must be a letter. RECORDAREA2, for example, is a valid
symbol. Special characters and blanks are not allowed.

Variable Symbols may contain up to 62 alphanumeric characters following
the ampersand. The first of these must be a letter.

Sequence Symbols may contain up to 62 alphanumeric characters following
the period. The first of these must be a letter.

Note that a valid expression which consists of anything more than a
single term is considered by the assembler to be an arithmetic

Section 2: General Information 1

combination of terms. For example, the following expressions are single
terms:

ALPHA
L'BETA

*
L'*
=Jl.. (GAMMA)
12345
B'1100'
X'FFFF'
C'WXYE'

The following expressions are ~ot single terms, but are arithmetic
combinations of terms:

+]~LPHA

(I.' BETA)
-12345
- I{ALPHA)
- 1(+ (-BETA))
-2* (BETA-ALPHA)

previously Defined Svml;ols

Ordinary symbols do not have to be previously defined if they appear in
operand expressions of ORG and CNOP instructions, in modifier
expressions of DC, DS, and DXD statements, in the first operand of EQU
statements, or in Q-type constants.

Allowing forward reference in the above statement types creates two
new kinds of errors which you should guard against.

• Circular definition of symbols, such as

x
Y

EQU
EQU

Y
X

• Circular location-counter dependency, as in this example:

A
B

DS
LR

(B-A) C
1,2

Statement A cannot be resolved because the value of the duplication
factor is dependent on the loca'tion of B, which is in turn dependent
upon the length of A.

Literals may contain symbolic expressions in modifiers, but any
ordinary symbols used must have been previously defined. See Section 9,
"Attribute Definition and Lookahead", in this manual.

2

Previous Definition of Symbols

Some coping restrictions are imposed in certain cases where expressions
are allowed as operands, because the operand field must be processed
when it is first encountered during Pass 1. The cases are:

r-------------------T--,
I Items IAffected Fields I
I I I
~-------------------+--~
ISTART statements IAnyoperand I
IEQU statements IExpression 2 and Expression 3 (See in this I
I I manual, "EQU -- Equate Symbol" in I
I I section 5) I
I Literals IDuplication factor subfield and length modifier I
I Isubfield I L ___________________ L-___ J

The value of an expression in one of the fields above can be
determined in Pass 1 only if all symbols in the expression have been
defined by previous statements (or the same statement). Thus, all
symbols referenced in those statements must have been previously
defined.

In addition, these expressions must have absolute values. Thus, if
a relocatable term is used, it must be paired with another relocatable
term, with the opposite sign, from the same section.

However, paired relocatable terms must be used with caution.
Assembler H features may have caused temporary segmentation of the
location counter between the statements which define the two terms of
the relocatable pair. If this has occurred, the difference of the two
terms cannot be computed and the expression cannot be evaluated, as it
must be, in Pass 1.

Self-Defining terms

All types of self-defining terms are extended to 32-bit logical values
with the number of source digits as follows:

r-----------T------------------,
I Term IMaximum Number I
I ISource Eigits I
I I I
~-----------+------------------~
I Decimal I 10 I
I Hexadecimal I 8 I
I Binary I 32 I
I Character I 4 I L-__________ L __________________ J

Section 2: General Information 3

Note:: The value of a decimal self-defining term must lie in the range 0
through 2,147,483,647. A 32-bit hexadecimal, binary, or character
self-defining term with a 1 in the sign bit is treated as a negative
number when used in an arithmetic expression.

Location Counter Segmentation

In Pass 1, the location counter is temporarily interrupted (and the
assiqnment of temporary values to relocatable symbols is restarted a't
zero) whenever any of the following situations is encountered:

• A new LOCTR name is defined.

• 1?orward reference or a segmented pair of relocatable terms is used
in a DC, DS, ORG, or CNOP statement.

• The location counter cannot be aligned because of a prior
segmentation_

• l\n ORG statement with a blank operand occurs after a prior
segmentation in the same LOCTR, so that the highest previous
location-counter setting in the LOC'IR is not yet known.

GENEHAL RESTRICTIONS ON SYMBOLS: A symbol may appear only once in the
~field of a statement, except for START, CSECT, DSECT, COM, and
LOCTH names.

Loca't:ion Counter Reference

The alssembler internally maintains the location counter value as a
32-bit value. It flags any overflow into the high-order byte as a
"local tion counter error" _ When this error occurs, the location counter
will continue to carry the internal value of four bytes, even though
address~bility is limited to three bytes. As an illustration, consider
the following example:

r--,
fLOC OBJECT CODE NAME OPERATION OPERAND I
I I
~----.--~
1000000 A CSECT I
1000000 FFFFFE ORG *+X'FFFFFE' 1
IFFFF'FE 58506004 L 5,4 (6) I
1 IEV039 * * *ERROR* * *LOCATION COUNTER ERROR I
1000002 07FF B BR 15 I
1000004 01000002 C DC A (B) I
~--_-.--__________________ J

Note that the location counter value of B prints as three bytes, but
the location counter value for the address constant at C is four bytes
long_

Location counter values for EQU and USING statements are printed as
four bytes in the text ~ortion of the listing_ The values for COM,
CSECT', DSECT, DXD, EQU, EXTRN, WXTRN, LOCTR, and START symbols are
four-byte values in the Cross Reference Listing_

4

Literals
;

Symbolic expressions are allowed in the duplication factor and length
modifier fields of literals, as well as in the scale and exponent
modifier fields. Any symbols involved in the duplication factor or
length modifier must have been previously defined. Thus

L REG,=~)F'6'

is allowed if A has been defined in the program prior to this statement.

All literals are cross referenced. Cross reference entries for symbols
used in literals refer to the literal pool where the literals are
located, and not to the statements that reference the literals.

Symbol Length Attribute Reference

In either of the following instructions

A
A

EQU
EQU * 'expression'

where 'expression' consists of a self-defining term or begins with a
self-defining term, Assembler H sets the length attribute of A to 1. In
any EQU statement, Assembler H uses the value of a second operand, if
specified, as the length attribute of the symbol in the name field.
Thus in the statement

A EQU *,5

the length attribute of A is 5. See, in Section 5 of this manual, "EQU
-- Equate Symbol", and, in Section 9, "Attribute Definition and
Lookahead".

Terms in.parentheses

There is no restriction on the number of terms or levels of parentheses
in an expression.

Section 2: General Information 5

EXPRESSIONS

Assembler H allows unary operators, as well as binary operators, in
expressions.

Unary operators affect the algebraic sign of a single term or
expression; these are some examples:

-- (L' FIELD)
... (BETA-ALPHA)
--5

A binary operator indicates an operational relationship between two
terms such as

GAMMA+ (BETA~ALPHA)
13+(-.7)

A unary operator can precede a term, a left parenthesis, or another
unary operator; it can begin an expression or follow a left parenthesis,
unary operator, or binary operator.

Thus the rules for coding expressions with Assembler Hare:

• Unary (+, -,) and binary (+, -, I, *) arithmetic operators are
allowed in expressions.

• An expression may start with a unary operator. Thus -A, -X+5, and
+5 are all valid eXfressions.

• An expression cannot contain two terms or two binary operators in
succession.

• All arithmetic expression ca.nnot contain a literal.

Evaluati0l} of EX'I,?ressions

Arithmetic operators + or - bO:'tween terms are evaluated as follows:

r-----------T----------------------------------,
IExpression IEvaluation I
I I I
~-----------+----------------------------------i
IA+B I B is added to A I
I I I
IA+-B IThe negative of B is added to A I
I I (A+ (-B) I L ___________ L __________________________________ J

Thus it is possible to have any number of plus and minus signs in
succession between terms. The leftmost (or only) + or - between the
terms is treated by the assembler as a binary operator. Any arithmetic
opera1:ors to the immediate right of the first are treated as unary
opera 1:ors.

The rules for evaluation of expressions given for Assembler F in
Section 2 of the Assembler Language manual are valid for Assembler H
excep1:: that:

6

• Expressions are not truncated to the rightmost 24 bits.

• Unary operations are performed before binary operations. The
sequence of binary operations is the same: multiplication and
division are performed before addition and subtraction.

The final and intermediate results of expression evaluation must lie
in the range _23~ through 23~-1.

Relocatable Expressions: A simply relocatable expression may have a
negative value, but the unpaired relocatable term must not be
algebraically subtracted, or else the expression will be complexly
relocatable.

Section 2: General Information 1

Section 3: Addressing ... Program Sectioning and Linking

~ASE REGISTER INSTRUCTIONS

Addresses are broken down into base and displacement form by means of
the USING statement(s) currently in effect. The assembler keeps 32-bit
positive or negative values for USING statements and prints them in the
assembly listing. The current USING may be saved by means of the PUSH
assembler operation and restored later with a corresponding POP
operation. (See "PUSH -- Save Current USING or PRINT Status" and "POP
-- Restore USING or PRINT Status", in Section 5 of this manual.

YSING -- USE BASE ADDRESS REGIS~ER

A 32-bit signed value corresponding to the first operand of a USING
statement is saved and used in subsequent base-displacement computation.
The value of the first operand is printed as a four byte value in the
location counter field.

The current USING status may be saved with an assembler operation,
PUSH, and restored later with a corresponding operation, POP. (See in
this book Section 5, "Listing Control Instructions", "PUSH", "POP".)

CROP -- DROP BASE REGIS1ER

The operand field of a DROP instruction may be blank. DROP with a blank
operand field causes all currently active USING registers to be dropped.

?ROGRAM SECTIONING AND LINKINq

The total number of control sections, dummy sections, external symbols,
entry symbols, external dummy sections, LOCTR instructions, and common
sections may not exceed 216_1. Note, however, that the lower limits
imposed by the Linkage Editor and Loader are in effect. See the OS
Loader and Linkage Editor manual for details.

8

Control Section Location Assignment

CSECTs and LOCTRs can be intermixed. The assembler provides a location
counter for each. Each LOCTR after the first in a control section
begins at the next available byte; that is, the instruction does not
force location counter alignment. Invalid section names of any type
default to blank names. See "LOCTR--Define Location Counter" later in
this section.

START -- Start Assembly

The START instruction is allowed after DXD statements and after DSECT
and COM sections. The operand of the START instruction may be an
expression, but any symbols referenced must have been previously
defined. Location counter reference may not be used.

CSECT -- Id~ntify Control Se9tion

Each control section or LOCTR instruction initiates a different location
counter or continues an interrupted one. All statements following a
control section or LOCTR instruction are assembled within that location
counter, until a different location counter is produced by another
control section or LOCTR. Resuming an interrupted control section
forces resumption of the most recently active LOCTR in that section. If
no LOCTR instruction has been specified, the location counter initiated
by that control section is continued. See "LOCTR--Define Location
Counter" later in this section.

DSECT ~. Identify Dummy Section

The format of the DSECT instruction is:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IAny symbol or blanklDSEC~ I Blank I L __ -------__________ L ___________ ~ ____________________________ J

A DSECT instruction may be given a blank name. If more than one
dummy section is defined, all but one of them must be named because the
blank name field effectively "names" the dummy section.

Note: A symbol defined in a dummy section may be used in an A-type or
y-type constant which generates RLD items only if the symbol is paired

Section 3: Addressing -- Program Sectioning and Linking 9

with another symbol (with the opposite sign) from the same dummy
secti.on.

RLD items are generated by A-, Y-, v- or Q-type address constants
only in a DC operand defined within a CSECT and without a zero
dupli.cation factor. Both named. and unnamed dummy sections may be
further segmented by using the LOCTR assembler operation.

DXD--DEFINE,EXTERNAL DUMMY SEC~

DXD will not generate an ESD item unless the DXD is referenced by a
Q-type constant that is a cont:rol section begun by CSECT or START (or in
a LOCTR that continues a control section begun by CSECT or START) •

The operand format and alignment is identical to that of the DS
instruction. See "DS -- Define Storage" in Section 5 of this manual.

Note: A symbol that names a DXD statement may be used in A- or Y-type
constants which generate RLD items only if the symbol is paired with the
same symbol with the opposite sign, as in this example:

r~-~-~--~-~--~---~--T~~--~----·~-T--~--------------~--------~~,
I Name I Operation I Operand I
I I I I
~----_---__ -__ --_---+_-__ --_--4--+---_-_-_--__ -_--------------i
I JOE I DXD I F I
I IDC IA(JOE+ALPHA-JOE) I L ___________________ ~_~ __________ ~ ___________________ ~ ________ J

COM -- DEFltiE COMM9N CONTROL S]~CTION

Assembler H allows named, as well as unnamed, COM instructions. The
format of the COM statement is as follows:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+-------------------~--------1
IAny symbol or blank I COM I Blank I L ____ , _______________ ~ ___________ ~ ____________________________ J

As wi,th Assembler F, instructions or data appearing in a common control
section are never assembled.

Both named and unnamed common control sections may be further
segmented using the LOCTR assembler operation.

10

LOCTR DEFINE LOCATION COUNTER

The LOCTR instruction allows you to define multiple location counters
within a control section.

The format of the LOC~R instruction is:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IA variable symbol ILOC~R I Blank I
lor ordinary symbol I I I
I I I I L ________ - __________ L ___________ L ____________________________ J

A control section name automatically names the first location
counter in that section. A LOCTR instruction with the same name as
another location counter definition forces a return to that location
counter, as well as to the control section in which it was defined.

The assembler will assign consecutive addresses to the statements
assembled under each new or resumed location counter. A control section
name is in error if it is identical to a previously defined LOCTR name.
The length attribute of a LOCTR name is 1.

A location counter may be interrupted by a CSECT, a DSECT, a COM, or
another LOCTR. A LOCTR which occurs before the first control section
will initiate an unnamed control section (private code) before the LOCTR
is processed. LOCTR does not force location counter alignment.

This instruction enables you to code logically, defining data for
instance, where and when the need arises. Figure 1 illustrates location
counter definition.

LOC OBJECT CODE ADDRl ADDIl2 STMT SOURCE STATEMENT

000000 1 1 CSECT IIHTlAI.IZlTION 00060000
0(100011 2 B LOCTR Mllti iWUTINJ:: 00070000
000008 3 C LOCTR COIIP!.~TLON OOOROOOO
OOOOOE 4 D LOCTR COI/STAIHS 000'10000
vOOOOOOO 5 USING A.15 J::SIAbLISIi AODIlESSABILITY 00100000
0000011 6 B LOCTR BeGIN Wl'rH I1AIN ROUTINE 00110000
0(,00011 58511 POlO 00010 7 L 5.CON20 00120000
uOOOOE 8 D LOCTR COli/STlNl' LOCATION COUNTP.R 00130000
OOOOOE 0000
000010 000000111 9 CON20 DC P'20' OlfINE THE CONSTANT 00140000
000008 10 B LOCTH bACK l'O rHE MAIN NOUTINE 00150000

11 * 00160000
12 • 00171000
13 . BALANCE OP TilE MAIN ROUT IN E 001ROOOO
14 • 001'10000
15 • 007.00000

0000 00 16 A LOCTH INltlALIZATI~N COUNTER 00210000
17 SAV E (111.12) ItHTIAI.IZATION IlEGUN 00220000

000000 18+ OS 011 o 1-SAVE
ODOOOO 90EC oooe OOOOC 19+ STI"I 14,12.12 (13) SAVE liEGISTERS o 1-SA YE:
00000t! 20 C LOCTR LuMP!.J::! lOt; COUNTER 00230000

21 RETURN (111.12) COI1l?LE'rION ilt;GUN 00211000
OOOOOt! 9t1EC 000':: OOOOe 22+ LII 14. 12.1.l (13) Il";STuRE TilE tlEGISTERS 01-HETUR
OOoooe 07FE 23+ BR 14 IIt;TUIiN (l1-RETUH

24 END 00232000

Figure 1. Location Counter Definition

In Figure 1, all statements coded for a particular location counter
are assigned adjacent addresses in storage.

Section 3: Addressing -- Program Sectioning and Linking 11

symbolic Linkages: There is no practical restriction on the total
number of control sections, dummy sections, external symbols, ENTRY
items, and external dummy sections. The effective maximum for each of
these items depends upon main s·torage available at linkage edit time,
and thus may vary from program ·to program.

12

Section 4: Machine Instructions

EXTENDED MNEMONIC CODES

The following extended mnemonics provide RR format instructions which
correspond to the existing RX format extended mnemonic branch
instructions.

r---------------T-----------------------T--------------------,
I Extended Code IMeaning * IMachine Instructions I
I I I I
~---------------+-----------------------+--------------------~

BOR R2 Branch on Overflow BCR 1,R2 I

BHR
BPR
BLR
BMR

BNER
BNZR
BER
BZR
BNLR
BNMR

BNHR
BNPR
BNOR

R2
R2
R2
R2

R2
R2
R2
R2
R2
R2

R2
R2
R2

(Ones) I
Branch on High BCR 2,R2 I
Branch on Plus BCR 2,R2 I
Branch on Low BCR 4,R2 I
Branch on Minus BCR 4,R2 I
(Mixed) I

Branch on Not Equal BCR 7,R2
Branch on Not Zero BCR 7,R2
Branch on Equal BCR 8,R2
Branch on Zero BCR 8,R2
Branch on Not Low BCR 11,R2
Branch on Not ~inus BCR 11,R2
~ixed) I

Branch on Not High IBCR
Branch on Not Plus IBCR
Branch on Not Overflow IBCR
(Ones) I

13,R2
13,R2
14,R2

L _______________ L _______________________ ~ ______ ~------______ _

*All instructions are RR format

Section 4: Machine Instructions 13

Table of New Instructions

The instructions are all privileged. For a description, see the latest
edition of the IBM System/370 Principles of Operation, Order No.
GA22-7000. The machine instruction formats are given in the latest
edition of Assembler Language, Order No. GC28-6514, Appendix C.

Literal
allowed

Machine Type of (Y=yes, Storage
1 Ins·truction Mnemonic op code instruction N=no) alignment

LOA]) REAL
ADDRESS LRA B1 RX Y 1

PURGE TLB2 PTLB B20D S - -
RESgT REFERENCE
BI~r RRB B213 S N 1

SET CLOCK
COMPARATOR SCKC B206 S Y 8

SET CPU TIl-1ER SPT B208 S Y 8

STORE CLOCK
Co.r·iP ARATOR STCKC B207 S N 8

STORE THEN AND
SYSTEM MASK STNSM AC SI N 1

STORE THEN OR
SYSTEM MASK STOSf.1 AD SI N 1

STORE CPU
TI~lER STPT B209 SI N 8

1 StoJ:'age alignment for the storage operand is required.
• 8 • means

alig'nment to double word.

2No operand: if specified is ignored.

14

Section 5: Assembler Instruction Statements

These two listing control statements are unique to Assembler H:

PUSH -- Save current USING or PRINT status

POP -- Restore current USING or PRINT status

These are discussed later in this section to conform to the
structure of the Assembler Language manual.

Symbol Definition Instructions

EQU -- EQUATE SYMBOL

The format of the equate instruction is:

r---------------T-----------T--, I Name I Operation I Operand I
I I I I
~---------------+-----------+--~
I ,A" variable IEQU IExpression1~ ,Expression2 [,EXp reSSiOn3]}],
I symbol or' 1 , , Expression3 I
16rdinary symbol I 1 ,
, 'I I L _______________ L _________ -_L __ J

Expression 1 must be present and may assume any value allowed for
assembly expressions: absolute (including negative), relocatable, or
complexly relocatable. (See the OS Assembler Language manual and this
book: "Complex Relocatable Expressions· under "Operand Subfield 4:
Constant", in Section 5). Previous definition is not required for
symbols appearing in Expression 1.

If the expression is complexly relocatable, the value attribute is
meaningless. During the evaluation of any expression that includes a
complexly relocatable symbol, the symbol is replaced by its own defining
expression. Thus if A1 and A2 belong to one control section and B1 and
B2 belong to another, and if these equate statements have been used:

r-------------------T-----------T----------------------------, I Name I O~eration I Operand I
I I I I
~-------------------+-----------+----------------------------~ I X I EQ U I A 1 + B 1 I
I I · I I
I , . I I
I I · I I
I Y I EQU I X-A2-B2 I L ___________________ L ___________ L ____________________________ J

then X is complexly relocatable but Y is absolute.

Section 5: Assembler Instruction Statements 14.1

D-

Expression 2 and Expression 3 are both optional and any symbols
appearing in their operands must have been previously defined. Both
expressions, if present, must be absolute.

Page of GC26-377I-3
Revised September 30,1975
By TNL: GN33-8204

The value of Expression 2 must be in the range 0 through 65535. The
value of Expression 2 overrides the normal length attribute of the
symbol in the name field. Two commas following Expression 1 indicate
the absence of Expression 2 and the presence of Expression 3. If
Expression 2 is omitted, the length attribute of the symbol in the name
field is based on the leftmost (or only) term of Expression 1:

• If it is an asterisk (which references the current value of the
current location counter) or a self-defining term, the length
attribute is 1;

• If it is the name of a DC or DS instruction, the length attribute
equals the implicit or explicit length of the first constant.

• If it is the name of a machine instruction or channel command word,
the length attribute is the length of the instruction itself.

The value of Expression 3 must be in the range 0 through 255. The
value of Expression 3 overrides the normal type attribute of the symbol
in the name field. The corresponding EBCDIC character is taken as the
type attribute.

For example,

r-------------------T-----------T---------------~------------,
I Name I Operation , Operand ,
, I I I
~-------------------+-----------+----------------------------~
IA IEQU ISYM,13,194 I L ___________________ ~ ___________ ~ ____________________________ J

The value of A is that of SYM, the length attribute is 13, and the type
attribute is the letter B. ~he same type attribute could be achieved by
writing C'B', X'C2', or B'l1000010' as the third operand. If Expression
3 is not present, the type attribute defaults to "Un.

OPSYN -- EQUATE OPERATION CODE

The OPSYN instruction is used, as with Assembler F, to redefine or
delete existing operation codes or to define new operation codes
equivalent to existing ones. The modified format is:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand ,
, I I I
~-------------------+-----------+----------------------------~
IAn ordinary symbol IOPSYN IA machine instruction ,
lor variable symbol I !mnemonic code, an extended I
I I Imnemonic code, a macro ,
I J ,operation, an assembler ,
I I ,operation, an operation code I
, I I defined by a previous OPSYN I
I "instruction, or a blank. I
I t I I L _________ ----------~_----------~----________________________ J

Section 5: Assembler Instruction Statements 15

The symbol in the name field may be a previously defined operation
code. The latest definition takes precedence. The OPSYN mechanism does
not search the macro library for possible system macro definitions.
Thus:

r-------------------T-----------T----------------------------,
I Name I Oferation I Operand I
I I I I
~-------------------+-----------+--------------~-------------i
I PDQ IOPSYN IDCB I L ___________________ L ___________ ~ ____________________________ J

will yield the desired results if DCB has been expanded or edited ~s in
COpy DCB) prior to this OPSYN. Otherwise, DCB will be flagged as an
undefined opcode, and PDQ will be flagged when used later on.

If you want to prevent the assembler from recognizing the operation
code in the name field, use the following format:

r-------------------T-----------T----------------------------,
I Name I Oferation I Operand I
I I I I
~-------------------+-----------+----------------------------i
IA mnemonic IOPSYN IBlank I
I opera tion code I I I
I I I f L ___________________ L ___________ L ______ --____________________ J

OPSYN symbols conflict in no way with the use of the same symbols as
names on other statements.

OPSYN statements are ignored by lookahead. You should therefore
especially beware of an OPSYN involving COpy within a lookahead request,
or an OPSYN involving END. If such OPSYNS are used, they should be
placed early in the program before any statement that may initiate
lookahead mode.

])ata Definition Instructions

Literal Definitions: ~he following rules differentiate the coding of
literals from the coding of constants:

•

•

•

•

16

The literal is preceded by an equal sign.

Multiple operands may not be specified.

Every symbol in an expression used to specify the duplication factor
or length modifier must have been defined by appearing in the label
field of a previous (or the same) instruction.

The duplication factor may not be zero.

DC -- DEFINE CONSTAN'I

Operand Subfield 1: Duplication Factor

With the exception of literals, as noted above, symbols in the
expression need not have been previously defined.

Operand Subfield 3: Modifiers

With the exception of literals, as noted above, symbols used as
modifiers need not be previously defined. The length attribute of the
current statement name is not available for use in the length modifier
expression of the first operand for that statement.

Scale Modifier: Symbols used in an expression need not have been
previously defined.

EXEonent Modifier: Symbols used in an expression need not have been
previously defined.

Operand Subfield 4: Constant

X-Type and B-Type Constants: Multiple constants are allowed in x- or
B-type operands.

V-Type Constants: V-type constants with zero duplication factors will
not generate ESD items.

S-Tvpe Address Constant: S-type address constants can be used in
literals. Address decomposition into base and displacement form is
based on the USING statements in effect at the associated literal pool.

Q-Type Address Constants: Q-type address constants can also be used in
literals. Previous definition is not required for DXD or DSECT names
referenced in Q-type constants. A Q-type constant with a zero
duplication factor will not generate an ESD item.

Section 5: Assembler Instruction Statements 11

DS -- DEFINE STORAGE

The format of the DS operand is identical to the DC operand. See above,
"DC .- DEFINE CONSTANT".

ListiIl,g Control Instructions

TITLE -- IDENTIFY ASSEMBL¥ OUTPYX

Only one TITLE instructi9n, but not necessarily the first, can have a
name other than a sequence symbol. The name field in a TITLE
instruction may contain from one to eight non-blank characters. The
contents of the name field of the first named TITLE statement are
punchHd into the output cards beginning in column 73. Any remaining
columns in the sequence field are devoted to deck sequencing. Output
cards produced in the program by PUNCH and REPRO assembler instructions
are not affected by a TITLE instruction.

Note: If the name field starts with a period, it is considered to be a
sequence symbol.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction is allowed within macro definitions. The PRINT
statement is always printed, except when PARM=NOLIST is coded in the
EXEC statement that includes Assembler H, regardless of print options
already in effect.

PUSH -- SAVE CURRENT USING OR PRINT STATUS

PUSH may be used to save the cu:rrent PRINT or USING status in push down
storage. Conditions may be restored later on a last-in-first-out basis
by the use of a corresponding POP operation. PUSH does not change the
PRINT or USING currently in effect. The format for the PUSH instruction
is as follows:

18

r-~-----------------T-----------T----------------------------,
, Name , Operation , Operand , , " ,
~--------------~----+-----------+----------------------------~
,Sequence symbol or 'PUSH '{USING [,PRINT] 1 '
,blank , 'PRINT [,USING] , , " , L ___________________ L ___________ ~ ____________________________ J

The operands may appear in either order. At least one of them must be
specified.

POP -~ RESTORE USING OR PRINT STATUS

The POP assembler instruction is used to restore the PRINT or USING
status saved by the most recent PUSH operation. The format for the POP
instruction is:

r-------------------T-----------T----------------------------, , Name , Operation , Operand , , " ,
~-------------------+-----------+----------------------------~
,Sequence symbol or ,POP 'IUSING ['PRIN~l '
,blank I 'PRINT [, USING] , , " , L _______________ ----L-----------~ ________ ---_________________ J

The operands may appear in either order, and need not be in the order in
which they appear in the PUSH statement.

ISE~ -- INPUT SEQUENCE CHECKING

Sequence columns to be checked may be anywhere on the card, and thus may
be between the begin and end columns as defined by the ICTL instruction.
The EBCDIC collating sequence is used. An out-of-sequence card will
produce an error diagnostic.

A blank field being checked for sequencing will produce a warning
diagnostic, but the checking will continue, relative to the last card
with a non-blank sequence field.

Section 5: Assembler Instruction Statements 19

Program Control Instructions

ORG _.- SET LOCATION COUN'IER

The greneral form of this instruction is:

r----·---·-----------T-----------T----------------------------,
I Name I O~eration I Operand I
I I I I
~-------------------+-----------+----------------------------1
IAny symbol or blanklORG IA relocatable expression or I
I I I blank I
I I I I L ____ . _______________ ~ ___________ ~ ____________________________ J

In general, symbols used in the operand need not have been
previ.ously defined. However, 'the simply relocatable component of the
operand (that is, the unpaired relocatable term) must have been
previ.ously defined, or equated to a previously defined value. The
resolved value of the oJ;erand must fall in the same LOCTR as the ORG
instruction. (See this manual, "LOCTR -- DEFINE LOCATION COUNTER" for a
discussion of that instruction.) Remember that CSECT, DSECT, and COM, as
well as LOCTR instructions, define a location counter.

The ORG statement cannot be used to reference a location outside the
locat.ion counter in effect when the ORG is assembled. A negative value
is thus not allowed.

A symbol in the name field of an ORG statement is assigned the value
of the location counter prior to the application of the ORG. An
aster'isk (*) in the operand field has the same value as the symbol in
the name field. The location counter value, both before and after the
processing of the ORG, will appear in the assembly listing.

A.n ORG statement with a blank operand causes the current location
counter to be reset to the highest previous setting within the current
LOCTR.

SHecial Addressing Consider~tioq

All literals not located by LTORG statements within the program are
placed at the end of the most recently active LOCTR in the first control
section. This includes the case where literals are used after the last
LTORG statement in the program as well as the case where no LTORG
statements are used at all.

20

CNOP -- CONDITIONAL NO OPERAiION

The format of the CNOP statement is as follows:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IAny symbol or blanklCNOP ITwo absolute expressions, I
I I I separated by commas I
I I I I L ___________________ ~ ___________ ~ ____________________________ J

CNOP causes initial halfword alignment, if required. Then the symbol in
the name field is assigned the value of the current location counter,
and the alignment specified in the operand is completed.

An asterisk (*) in the operand field is assigned the same value as
the symbol in the name field. Symbols appearing in the operand
expression need not have been previously defined.

COpy -- COpy PREDEFINED SOURCE CODING

Any statement (except ICTL) is allowed within copied code, so long as it
conforms to the following rules:

• COpy statements may be nested to any level, but may not be
recursive. Thus in the statement "COpy A," if A contains the
statement "COpy B" and B contains the statement "COpy C,· the copy
requests are valid unless B contains the statement ·COPY A,· or C
contains either "COpy A" or "COpy B".

• If a copied partitioned data set member includes a MACRO statement,
it must also include the corresponding MEND statement.

• If an END statement or an OPSYN equivalent is encountered, either
inside or outside copied code, the assembly is terminated. In BATCH
mode, the next assembly begins with the next card in the SYSIN
stream.

COpy statements are executed during lookahead and the copied text is
scanned. See Section 9, "Attribute Definition and Lookahead".

END -- END iSSEMBLY

The END i~struction terminates the assembly whenever it is encountered
in the source stream, in copied code, or during the expansion of a macro
instruction. The END statement is treated as a model statement in a
programmer or library macro while the macro is being edited.

Section 5: Assembler Instruction Statements 21

MNOTE -- REQUEST ERROR MESSAGE

MNOTE instructions may be used in open code. They have all the
properties of macro instruction MNOTEs.

The severity code is optional. If it is omitted, the MNOTE becomes
a comnlent starting in the begin column, and is not treated as a
diagnostic.

22

Section 6: Introduction to the Macro Language

The Macro Instruction

All macro instructions in Assembler H are mixed mode, which permits you
to use the features of both positional and keyword operands within the
same macro instruction. Positional and keyword operands may appear in
any sequence.

The Macro Definition

The prototype statement specifies only the mnemonic operation code and
parameters; defining the type of instruction is not necessary, because
all macro instructions for Assembler H are considered mixed mode.

SYSTEM AND PROGRAMMER MACRO DEFINITIONS ,

Programmer macro instructions may appear at any point in the assembly
source text. However, the assembler must encounter a macro definition
for a given macro prior to the first call to that macro. Otherwise, the
macro instruction will be fetched from SYSLIB or treated as an undefined
operation code. The assembler flags a syntax error in a programmer
macro immediately following the erroneous statement in the listing.

Source syntax errors in system macro definitions are flagged
immediately after the first call to the macro. A system macro can be
processed ~nd therefore listed) as a programmer macro if a COpy is
issued to copy the entire macro definition into the source text before a
call is made to the macro. For instance:

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~ I I COpy I SYSMAC I
I ICSEC~ I I
I I USING 1*,12 I
I I BALR I 1 2 , 0 I L ___________________ L ___________ ~ ____________________________ J

In this case, SYSMAC is a cataloged system macro. It is copied into the
source text, and errors, if any, are flagged as in programmer macros,
immediately following the erroneous statements in the listing.

Section 6: Introduction to the Macro Language 23

Varia:ble Symbols

A variable symbol may contain up to 62 alphanumeric characters after the
ampersand. The first character following the ampersand must be a
letter.

Glo~al SET Symbols

Global and explicit local definitions of SET symbols can occur anywhere
in open code or in macros, as long as the definitions precede the first
use o:f the SET symbol.

24

Section 7: How to Prepare Macro Definitions

Programmer macro definitions can appear at any point within the assembly
source text. However, the assembler must encounter and edit the
definition of a given macro prior to the first call to that macro. It
is also possible to redefine a machine or assembler instruction
operation code by including a macro definition in the program.

A macro definition may appear within another macro definition. This
feature is discussed later in this section under "Nested Macro
Definitions".

Macro Instruction Prototype

The symbol appearing in the operation field may be any valid ordinary
symbol up to 63 characters long. This includes machine operations,
assembler operations, extended mnemonics, etc. A maximum of 240
parameters is permitted in a prototype statement.

All macro definitions are considered to be in mixed mode.
Positional and keyword parameters may be mixed freely in both the
prototype and the call. The positional parameters are processed from
left to right, skipping over the keyword parameters.

The default values specified for keyword parameters can contain
sublists nested within sublists. They can also contain embedded equal
signs.

Model Statements

The different fields in a macro-generated statement or a statement
generated in open code appear in the listing in the same column as they
are coded in the model statement, with the following exceptions:

• If the substituted value in the name or operation field is too large
for the space available, the next field will be moved to the right
with one blank separating the fields.

• If the substituted value in the operand field causes the remarks
field to be displaced, the remarks field is written on the next
line, starting in the column where it is coded in the model
statement.

• If the value substituted in the operation field of a macro-generated
statement contains leading blanks, the blanks are ignored.

• If the value substituted in the operation field of a model statement
in open code contains leading blanks, the blanks will be used to
move the field to the right.

Section 7: How to Prepare Macro Definitions 25

• If the value substituted in the operand field contains leading
blanks, the blanks will be used to move the field to the right.

• If the value substituted contains trailing blanks, the blanks are
i9nored.

Nine continuation cards are allowed on a model statement.

Local and global declarations are processed at generation time. A
macro (or a section of open code) may contain more than one declaration
for a given SET symbol, so long as only one is encountered during a
given macro expansion (or open code conditional assembly) , as controlled
by ArF and AGO statements.

Opera1t.ion Field

The operation field may contain any machine, macro or assembler
instruction listed in Section 5, except for ICTL. The Assembler H
listing control instructions, PUSH and POP, as well as END and PRINT,
may appear in this field. 'Ihe operation field may also contain variable
symbols, which may be concatenated with character strings. The result,
after substitution and concatenation, is recognized as an op code,
subject to the following restrictions.

The following operation codes, or their OPSYN equivalents, may not
be crE~ated by substitution:

r----------------------,
11~CTR GBLA MACRO I
I AGO GBLB MEND I
11~GOB GBLC MEXIT I
IAIF ICTL REPRO I
IAIFB ISEQ SE'IA I
IANOP LCLA SE'IB I
IAREAD LCLB SE'IC I
I COpy LCLC I L ______________________ J

A macro instruction, however, may be created by substitution.

11: a statement in a macro definition is recognized as a conditional
assemhly statement during Pass 1 of the assembly, the meaning of this
statement is fixed for all expansions of the macro. All other
statements in the edited definition will use the op code definitions in
effec1: whenever the macro is expanded. This must be considered when
OPSYN is used with an assembler operation.

Symbolic Parameters

A symt~lic parameter consists of an ampersand followed by a letter
follo\l1ed by from 0 to 61 alphanumeric characters. Thus,
&RUMPE~LSTILTSKIN is a valid symbolic parameter.

26

Nested Macro Definitions

Macro definitions may appear within other macro definitions to any
level. These nested definitions are edited only when the macro
definition header is encountered during expansion of the immediately
containing macro.

Consider the following example:

r-------T-----------T-------------------T------------------------------,
'Name ,Operation, Operand I Comments I
'I I' I
~----~--+-----------+-------------------+------------------------------i
, ,MACRO, ,Header ,
, ,OUTER ,&A,&E,&C=&D , ,
I , AI F , (K' & C EQ 0). A , ,
, , MACRO, , Header ,

I 'INNER ,&E,&F,&G,&H=) I I
, . I ,Nested definition of INNER I

, I . I I ,
, 'MEND' ,Trailer ,
I . A , MEND I' , 'I' 'Trailer ,
'I" , l ______ -L-----_____ -L-__________________ ~ ______________________________ J

In order for INNER to be edited and recognized as a macro instruction,
OUTER must be encountered as a macro instruction and &C must have a
non-zero length.

The operand parameters of a nested macro definition prototype are
distinct from those of the containing macro.

Section 7: How to Prepare Macro Definitions 27

Section 8: How to Write Macro Instructions

Macrell Instruction Operands

EMBEDDED EQUAL SIGN IN PARAMETER

In a macro call, an equal sign (=) may be embedded in a positional
operand or within the value of a keyword operand. The positional
operand will be accepted and handled properly. However, a warning
messagre will appear if the (=) is preceded by an alphanumeric string
that a.ppears to be a keyword.

Operand Sublists

MULTIL,EVEL SUBLISTS

Multilevel sublist (sublists within sublists) are permitted in macro
operands. The depth of this nesting is limited only by the constraint
that t,he total operand length s'till may not exceed 255 characters.
Inner elements of such sublists are referenced via additional subscripts
on parameters or &SYSLIS'I'.

N'&SYSLIST with an n-element subscript array gives the number of
operands in the indicated "n-th- level sublist. N' of a parameter name
with a.n n-element subscript array gives the number of operands in the
indicated " (n+1)th" level sublist.

Example: If &P is the first positional parameter and the value assigned
in a macro instruction is (A, (B, (C)) , D) then:

r--,
&P =& SYSLIST (1) = (A, (B, (C)) , D)
&P (1) =&SYSLIST (1,1) = A
&P (2) =&SYSLIST (1,2) = (B, (C)
&P(2,1) =&SYSLIST(1,2,1) = B
&P (2,2) =&SYSLIST (1,2,2) = (C)
&P(2,2,1) =&SYSLIST(1,2,2,1) = C
&P (2,2,.2) =& SYSLIST (1,2,2,2) =null
&P (3) =& SYSLIST P, 3) = D

N' &P ,:2,2) =N' &SYSLIST (1,2,2) =1
N'&P(2) =N'&SYSLIST(1,2) =2
N'&P(3) =N'&SYSLIST(1,3) =1
N' &P =N' &SYSLIST (1) =3 L ______________________________ • _______________________________________ _

28

Inner Macro Instructions

An operand of an outer macro instruction sublist may be passed as a
sublist to an inner macro instruction.

Section 8: How to Write Macro Instructions 29

Section 9: How to Write Conditional Assembly
Instructions

AREJlD -- Insert Macro Input

The AREAD instruction is used inside a macro definition to process
sourCE~ cards that immediately follow the outermost macro call.

The format of the AREAD ins'truction is:

r-----·--------------T-----------T----------------------------1 I Name I Operation I Operand I
I I I I
~-----,--------------+-----------+----------------------------~
I Any SETC I AREAD I {NOSTMT} t
I symbol I I NOPRINT I L _____ . ______________ .L __________ .L ____________________________ J

The SE:TC symbol in the name field of the AREAD statement may be
subscripted.. When the macro generator encounters an AREAD statement,
the next card in the input stream following the outermost macro call is
read and assigned as an 80-character string to the SETC symbol in the
name field.

If the macro call containing the AREAD statement occurs within
copied code, the cards are read and assigned from the COpy file. The
string value may then be examined and processed within the logic of that
macro as any SETC value. If neither of the options is used, the card is
printed in the source listing and assigned a statement number. If the
NOSTMT option is used, the card is printed, but no statement number is
assigned to it. If the NOPRINT option is used, the card is not printed
and a statement number is not assigned. Repeated AREAD statements read
successive cards.

SET Symbols

Defining S~T Symbols

A SET symbol is defined in either of two ways: explicitly if the macro
generator encounters it in the operand field of a LCLx or GBLx
statement, or implicitly by appearing in the name field of a SETx
instruction. The implicit declaration defaults to LCLx. The type is
determined by the SETx operator, and any dimensionality is determined by
the occurrence of a subscript in the name field. If an explicit
declar,ation is encountered later in the assembly, it is flagged as a
duplicate declaration.

A SET symbol must be defined before its value is referenced.
Implicit declarations are recognized before the operand field of the SET
statement is processed. The following examples are both valid uses of a
previously undeclared variable symbol:

30

r-------------------T-----------T----------------------------,
1 Name 1 Operation, Operand ,
1 I I ,
~-------------------+-----------+----------------------------~
I&ABC ,SETA I&ABC+1 ,
I &X (&X (1) + 1) I SETA 11 1 L ______________ ----_~ ___________ ~ ____________________________ J

Attributes

Attributes of symbols produced by macro expansion or open code
substitution are available immediately after the defining statement is
generated.

within the proper context of a SETA, SETB, or SETC expression type
(T'), length (L'), scaling (S'), integer (I'), and defined ~', see
below) attribute reference may be made to a macro instruction parameter,
to a SETC symbol inside a macro definition, to a SETC symbol or an
ordinary symbol in open code, or to ordinary symbols produced by macro
expansion or open code substitution.

Count (K') attribute reference may be applied to all SET variables.
In the case of SETA and SETB variables, the value of the variable is
first converted to a character string and leading zeros are discarded.
If the character string is composed of one or more zeros, the rightmost
character is a significant digit and the value of count attribute is 1.
In the following example,

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I 1 1 1
~-------------------+-----------+----------------------------~
I&A ,SETA 10100 1
I&B ,SETB 10000 1 L ___________________ ~ ___________ ~ ____________________________ J

K'&A equals 3 (the leading zero is lost) and K'&B equals 1.

The number (N') attribute may be applied to subscripted SET
variables. The number (N') attribute is the highest subscript value
that has been involved in a rece1v1ng operation. For example, if the
only references to variable symbol &A have been the following,

r-------------------T-----------T----------------------------,
1 Name , Operation I Operand ,
1 I I I
~-------------------+-----------+----------------------------~
I&A(5) 1 SETA 120",70 I
I IAIF 1 (&A (20) GT 50) .M 1 L ___________________ ~ ___________ ~ ____________________________ J

then N'&A equals 8. (Refer to Section 10, "Extended SET Statements".)

An attribute reference to a variable symbol whose value is an
arithmetic expression, in which the leftmost term is a symbol, returns
the attribute of that symbol.

Section 9: How to Write Conditional Assembly Instructions 31

Defined Attribute (D')

The dE~fined (D') attribute of a symbol indicates whether the symbol has
been defined at the time the 0' reference is made. A symbol is
considered defined if it has been encountered in the operand field of an
EXTRN or WXTRN statement, or in the name field of other statements. The
value of 0' is 1 (true) if the symbol is defined, 0 (false) if
other\<lTise. For further discussion of symbol definition, see "Attribute
Definition and Lookahead" below.

Defined ~') attribute reference may be made to a macro instruction
paramE!ter, to a SETC symbol inside a macro definition, to a SETC symbol
or an ordinary symbol in open code, and to ordinary symbols produced by
macro expansion or open code substitution.

r-----'--------------T-----------T----------------------------,
1 Name 1 Operation 1 Operand 1
1 1 1 1
~-----,--------------+-----------+----------------------------~
1 &B 1 SE'IB 1 (0' A) 1
IA ILA 11,4 1 l _____ , ______________ .L ___________ .L ____________________________ J

&B is assigned a value of zero because A is undefined at the time D'A is
evalua,ted. The defined attribute value of A is zero.

r-------------------T------------T----------------------------,
1 Name 1 Operation 1 Operand 1
I 1 I I
~-------------------+------------+----------------------------~
1 I AIF I (0 'A) .AROUND 1
IA ILA 11,4 I
1 .AROUND 1 ANOP I I l ___________________ .L ____________ .L ____________________________ J

Similarly, the sequence would cause the statement at A to be assembled
only the first time the AIF statement is encountered.

ATTRIBUTE DEFINITION AND LOOKAHEAD

Symbol attributes are established in either definition mode or lookahead
mode. Lookahead mode is entered when Assembler H encounters an
attribute reference to a symbol that is not yet defined.

32

Definition Mode

Definition occurs whenever a previously undefined symbol is encountered
in the name field of a statement, or in the operand field of an EXTRN or
WXTRN statement during open code processing. Symbols within a macro
definition are defined when the macro is generated.

Lookahead Mode

Lookahead is a sequential, statement-by-statement, forward scan over the
source text. It is initiated when reference is made to an attribute
(other than 0 1

) of a symbol not yet encountered, either by macro or
open-code attribute reference, or by a forward AGO or AIF branch in open
code.

If reference is made in a macro, forward scan begins with the first
source statement following the outermost macro instruction. Programmer
macros are bypassed. The text is not assembled. Lookahead attributes
are tentatively established for all intervening undefined symbols.
Tentative attributes are replaced and fixed when the symbol is
subsequently encountered in definition mode. No macro expansion or
open-code substitution is performed; no conditional or unconditional
(AIF or AGO) branches are taken. COpy instructions are executed during
lookahead, and the copied statements are scanned.

Lookahead ends when the desired symbol or sequence symbol is found,
or when the END card or end of file is reached. All statements passed
over by lookahead are saved on an internal file and processed when the
lookahead ends.

For purposes of attribute definition, a symbol is considered
undefined if it depends in any way upon a symbol not yet defined. For
example, if the symbol is defined by a forward EQU that is not yet
resolved, or if a DC, DS, or DXD modifier expression contains symbols
not yet defined, that symbol is assigned a type attribute of U.

NOTE: Since no variable symbol substitution is performed by lookahead,
you should be careful when using a macro or open code substitution to
generate END statements that separate source modules assembled in one
job step (option BATCH). If a symbol is undefined within a module,
lookahead will read in records past the point where the END statement is
to be generated. All statements between the generated statement and the
point where lookahead stops (either because it finds a matching symbol,
or because it finds an END statemen~ are ignored by the assembler. The
next module will start at the point where lookahead stops.

Lookahead Restrictions

Assembler statements are analyzed only to the extent necessary to
establish attributes of symbols in their name fields.

Variable symbols are not replaced. Modifier expressions are
evaluated only if all symbols involved were defined prior to lookahead.
possible multiple or inconsistent definition of the same symbol is not

Section 9: How to Write Conditional Assembly Instructions 33

diagnosed during lookahead because conditional assembly may eliminate
one (or both) of the definitions.

Lookahead does not check undefined op codes against library (system)
macro names. If the name field contains an ordinary symbol and the op
code cannot be matched with one in the current op code table, then the
ordinary symbol is assigned the type attribute of M. If the op code
contains special characters or is a variable symbol, a type attribute of
U is assumed. This may be wrong if the undefined op code is later
defined by OPSYN. OPSYN statements are not processed; thus, labels are
treated in accordance with the op code definitions in effect at the time
of entry to lookahead.

Sequence Symbols

A sequence symbol may be used in the name field of an ACTR, COPY, GBLA,
GBLB, GBLC, LCLA, LCLB, LCLC, MACRO, and any other statement where an
ordinary symbol is either optional or not allowed.

LCLA~ LCLB, LCLC -- Define Local SET Symbols

Becausle local and global declarations are processed at generation time,
a macro or open code may contain more than one declaration for a given
SET s~nbol as long as only one declaration is encountered (via AIF and
AGO statements) during a given macro expansion or open code assembly.

SET A -- Set Arithmetic

A SETC variable may be treated as an arithmetic term if its value string
represE~nts any valid self-defini.ng term. A null value is treated as a
zero.

This feature allows you to associate numeric values' with EECDIC or
hexadecimal characters to be used in such applications as indexing, code
conversion, translation, and sorting.

Assume that &X is a character string with the value ABC:

r------o-------------T-----------T----------------------------1
I Name I Operation I Operand I
I I 1 1
~------o-------------+-----------+--------------------________ ~
1&1 ISE'IC I·C···.·&X·(1,1).···· I
1 &VAL I SE'IA I & TRANS (& I) I L ______ o _____________ ~-__________ ~ ____________________________ J

The first statement sets &1 to C·A·. The second statement extracts the
193rd element of &TRANS (C'A' = X'C1' = 19~.

34

The following code will convert a hex value in &H into a decimal
value in &VAL:

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
I&X ISETC I'X"&H'" I
I &VAL I I SETA I &X I L ___________________ L ___________ ~ ____________________________ J

An arithmetic expression may not contain two terms in succession;
however, any term may be preceded by any number of unary operators.
+&A*-&B is a valid operand for a SETA instruction. The expression
&FIELD+- is invalid because it has no final term.

Evaluation of Arithmetic Expressions

The number of levels of parentheses in a SETA arithmetic expression must
not exceed 255.

SETC -- Set Character

Any of the expressions permitted in the operand field of a SETC
statement ~ type attribute, a character expression, a substring, or a
SETA symbol) may optionally be preceded by a SETA expression enclosed in
parentheses to be used as a duplication factor. If &J has a value of 3,
the following two statements are equivalent.

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
I&C ISETC 1(2) 'XY'. (&J+1) 'PDQ' I
I&C ISETC I'XYXY'.'PDQPDQPDQPDQ' I L ___________________ L ___________ ~ ____________________________ J

~: If a SETC duplication factor and a substring are used in the same
SETC statement, the substring is evaluated first, and the duplication
factor is evaluated second. For example, the following statement will
yield ·BCBC·, not nBCA n •

r-------------------T-----------T----------------------------,
I Name I ·Operation I Operand I
I I I r

~----~--------------+-----------+----------------------------~
r &STRING I SETC I (2) 'ABC' (2, 3) I L ___________________ L ___________ ~ ____________________________ J

Section 9: How to write Conditional Assembly Instructions 35

Character Expression

All characters in a character expression are assigned to the SETC symbol
in thE~ name field. The maximum length character value that can be
assigned to a SETC symbol is 255 characters.

substring Notation

The maximum length substring character value that can be assigned to a
SETC symbol is 255 characters.

SETB -- Set Binary

Evaluation of Logical Expressions

There is no limit to the levels of parentheses allowed in a logical
expression.

AIF - Conditional Branch

EXTENDED AIF STATEMENTS

The extended AIF statement has 1:he following format:

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-----.--------------+-----------+----------------------------i
IA sequence IAIF I Uogical expression) .Sl, I
I symbol or I I (logical expression) .S2, I
I blank I I ••• , (logical express ion) • Sn I
I I I I L _____ . ______________ L ___________ ~ ____________________________ J

It is exactly equivalent to n successive AIF statements. The branch is
taken to the first sequence symbol (scanning left to right) whose
corresponding logical expression is true. If none of the logical
expressions is true, no branch is taken.

36

Consider the following example:

Operation Operand CoL 72

AIF (' &L ' (&C,l) EQ '$') .DOLR,('&L ' (&C,l} EQ I # I) • POUND, X

(I &L I (&C, l) EQ I@I) .AT, ('&L ' (&C,l) EQ '=').EQUAL, X

('&L' (&C,l) EQ I (') .LEFTPAR, ('&L' (&C,l) EQ '+') .PLUS, X

('&L' (&C,l) EQ I_I) .MINUS

This routine looks for the occurrence of a $, #, ~, =, (, +, and -, in
that order; and causes control to branch to .DOLR, • POUND, .AT, • EQUAL,
.LEFTPAR, .PLUS, and .MINUS, respectively, if the string being examined
contains any of these characters.

Note: The example shown above indicates that the alternate format is
allowed for this statement. Refer to "Alternate Format in Conditional
Assembly" in Section 10.

AGO -- Unconditional Branch

COMPUTED AGO STATEMENTS

The computed AGO statement has the following format:

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IA sequence I AGO I(arithmetic) .S1,.S2, ••• ,.Snl
I symbol or I I expression I
I blank I I I L ___________________ L ___________ ~~ ___________________________ J

If the arithmetic expression evaluates to k, where k lies between 1 and
n (inclusive), then the branch is taken to the "k-th" sequence symbol in
the list. If k is outside that range, no branch is taken.

In the following exarr~le:

r-------------------T-----------T--------------------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+--------------------------------------~
I I AGO I (&1) • FIRST,. SECOND,. THIRD,. FOURTH I
I I I I L ___________________ L ___________ ~ ______________________________________ J

control passes to the statement at .THIRD if &1=3. Control passes
through to the statement following the AGO if &1 is less than 1 or
greater than 4.

Section 9: How to Write Conditional Assembly Instructions 37

ACTR -" Conditional Assembly Loop Counter

The ACTR instruction may occur at any point within a macro definition or
in th.e source program. When the AC'IR instruction is encountered during
macro generation or in open code, the counter is reset as indicated by
the operand field. Most errors detected during a macro expansion cause
the current ACTR value to be halved rather than decremented by 1. Such
errors include all model statements with incorrect syntax and those
errors with a severity greater than 4. This shortens any looping
brought about by erroneous statements. Use extreme caution when
resetting this counter within a loop.

l\NOP .- Assembly No Operation

The format for the ANOP instruction is:

r-------------------T-----------T----------------------------1 I Name I Operation I Operand I
I r I I
~-- -.---------------+----------.-+----------------------------~
I A sequence I ANOP r Blank I
I symbol o~ r I I
I blank I r r l ____ . _______________ ~ ___________ ~ ____________________________ J

Thus, a blank in the name field of the instruction is no longer
diagnosed as an error. An ANOP statement with a blank name field can
only be reached sequentially from the previous statement. AGO and AIF
state~ents must reference valid sequence symbols.

38

Section 10: Extended Features of the Macro Language

MNOTE - Request for Error Message

The MNOTE instruction may be used either in open code or macro
definitions. The severity code is optional. If it is omitted, the
MNOTE becomes a comment starting in the begin column and is not treated
as a diagnostic.

Global and Local Variable Symbols

Defining Local and Global SET Symbols

Global and local declarations may occur anywhere. Such declarations
must precede any reference to the symbol to be effective in the
generation process.

Alternate Format in Conditional Assembly

Alternate format allows a group of operands to be spread over several
lines of code. Each line, except the last, is followed by a comma, one
or more blanks, and a non-blank character in column 72. Comments are
inserted optionally between the blank and column 72. In addition to
macro prototype and macro call statements, alternate format can be used
for extended AGO, AIF, and SETx statements, and GBLx and LCLx
declarations.

Subscripted SET Symbols

SET symbol definition is discussed in "Defining SET Symbols" in Section
9 of this book. A subscripted SET symbol is declared explicitly by
following the symbol with a positive, decimal self~defined number
enclosed in parentheses. A subscripted SET symbol is implicitly
subscripted if it occurs first in the name field of a SET statement in
subscripted notation. The subscript limit is open-ended and may be
raised at any time simply by writing a higher number between the
parentheses.

Section 10: Extended Features of the Macro Language 39

The following example illustrates valid SET symbol subscripting:

r----·---r-----------T-------------------T------------------------------,
I Name IOperation I Operand I Comments I
I I I 1 I
~----.. --+-----------+-------------------+------------------------------~ I I LCLA I&A(1) IExplicitly declared, 1
I I I I subscripted I
I &A (5) I SETA I 5 I I
I&B(20) ISETA 1600 IImplicitly declared, I
I I I I subscripted I L ________ L ___________ ~ ___________________ ~ ______________________________ J

subscript usage of any global SET symbol must be consistent for the
entirE~ assembly: declarations of a global symbol must be either all
SubScl:-ipted or unsubscripted. The subscript limit remains open-ended.
Consider the following example:

r--------------------T----------·-T----------------------------'" I Name I Operation I Operand I
I I I I
~----... --------------+----------,-+----------------------------i
I I GBLC I &CHAR (1) I
I I MACRO I I
I IUPtATE I&ARG1,&ARG2 I
I I GBLC I &CHAR (50) I
I I • • • I I
I IMEND I I L _____ . ______________ ~ __________ ._~ ____________________________ .:1

Once defined as a subscript'ed SET symbol, subsequent declarations of
&CHAR in the previous illustration must be subscripted.

The number attribute (N ') o:f a subscripted SET symbol is the highest
subsCI:'ipt value involved in a s'tored-into operation. Thus, if the only
statements involving &X are the following:

r-----'--------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
I &X (5) I SETA 110 I
1'&X(10) I SETA 15 I
I I AIF I (&X (20) GT 6) • TOOBIG I L ___________________ ~ ____________ ~ ____________________________ J

then N'&X=10. You should be aware of the consequences. For example,
the following loop will be terminated only when the value of the
condi tional assembly loop count~:!r (ACTR) becomes zero.

r-------------------T------------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+------------+----------------------------~ I I LCLA I&I,&X(5) I
I·START I ANOP I I
I &1 I SETA I &1+1 I
I&X(&I) I SETA 1&1 I
I IA1F 1(&1 GT N'&X) .OUT I
, I AGO I·START I L ___________________ ~ ___________ ~ ____________________________ J

40

Extended SET Statements

A single SET statement can assign values to multiple elements in an
array. Consider the following exa.mple.

r-------------------T-----------T----------------------------, I Name I Operation I Operand I
I I I I
~------~------------+-----------+----------------------------~ I &ARRAY (1) 1 SErTA 1 5, 1 0, 1 5 , 20, 25 , 30 I L ___________________ L ___________ ~ ____________________________ J

The SET declaration defaults to LCLA if there has been no previous
global or local declaration of &ARRAY. The subscript of the variable
symbol is incremented by 1 for each operand value. Following the above
instruction, &ARRAY(1) has a value of 5, &ARRAY(2) has a value of 10,
and so forth.

If one of the operands is omitted, the corresponding element of the
array is unchanged. In the following example,

r-------------------T-----------T----------------------------, I Name 1 Operation 1 Operand 1
1 1 1 1
~-------------------+-----------+----------------------------~
I&LIST(6) 1 SETA 1,5,10,,20,25,30 I L ___________________ L ___________ ~ ____________________________ J

the elements referenced by &LIST(6) and &LIST(9) are left unchanged.
Note that N'&LIST=12 if this is the only statement involving &LIST.

Alternate format may be used for the operands of an extended SET
statement, as with the operands of a macro call or macro definition.
Thus, the above coding could be written as follows:

r-----------j-----------T---------------T------------------------------, I Name I Operation I Operand I Column 72 I
I I I I I
~-----------+-----------+---------------+------------------------------~
I &LIST (6) I SETA 1,5, IX I
I 1 11 0, IX I
I I 1,20,25,30 I I L ___________ L ___________ L _______________ ~ ______________________________ J

Created SET Symbols

A created SET symbol has the form & (e) where "e" represents a sequence
of one or more of the following:

• Variable symbols, optionally subscripted.

• Strings of alphanumeric characters.

• Created SET symbols.

Section 10: Extended Features of the Macro Language 41

After substitution and concatenation, "e" must consist of a string
of up to 62 alphanumeric characters, the first being alphabetic. This
strin9 will then be used as the name of a SET variable.

Crea ted SET symbols may be used wherever ordinary SE'l' symbols are
permit.ted, including declarations; they may also be nested in other
creatE!d SET symbols. Consider the following example:

r-------------------T-----------T----------------------------, 1 Name 1 O~eration 1 Operand 1
1 1 1 1
~-----.--------------+-----------+---------------------------~
1 &ABC 1:1) I SE'IC I'MKT', '27', '$S' 1 L ___________________ L ___________ ~ ____________________________ J

Let &(e) equal &(&ABC(&I)QUA&~.

r-------T-----------T------------~---~-~T-~~~~~-~~~---~-~~~-~-~~-~~--~~1
1&1 1 &ABC (&1) 1 Created SE'f Symbol IComment 1
1 1 1 1 1
~-------+-----------+.------------------+-----~------------------------~
11 1 MKT 1 &MK'IQUA 1 1 Valid 1
12 127 1&27QUA2 I Invalid: first 1
I 1 1 1 character after 1
1 1 1 1 & not alphabetic 1
13 1$5 1&$5QUA3 IValid 1
14 1 1 &QUA4 IValid 1 L _______ L ___________ L __________ •• ________ ~ _____________________________ -J

The created SET symbol can be thought of in one sense as a f,orm of
indirect addressing. With nested created SET symbols, you can get this
kind of indirect addressing to any level.

In another sense, created SET symbols offer an associative memory
facili·ty. For example, a symbol table of numeric attributes can be
referenced by an expression of the form & (&SYM) (&1) to yield the "I-th"
attribute of the symbol named in &SYM.

Cr,eated SET symbols also enable you to get some of the effect of
multiple-dimensioned arrays by creating a separate name for each element
of the array. For example, a three-dimensional array of the form
&X(&I,&J,&K) could be addressed as &(X&I.$&J.$&K). Thus "&X(2,3,4)"
would be represented by &X2$3$4. The "$"s guarantee that 'X (2,33,SS)
and &X(23,3S,S) are unique:

&X(2,33,55) becomes &X2$33$55
&X(23,35,5) becomes &X23$35$S

MHEL:P - Macro Trace Facility

The MHJELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open code or in macro
definitions. MHELP options remain in effect until superseded by another
MHELP statement. The format of this instruction is as follows:

42

r-------------------T-----------T----------------------------,
I Name I Operation I Operand I
I I I I
~-------------------+-----------+----------------------------~
IA sequence symbol IMHELP IAbsolute expression, binary I
lor blank I lor decimal options as I
I I I discussed below. I
I I I I L ___________________ L ___________ ~ ____________________________ J

Macro Call Trace -- Operand=1

This option provides a one-line trace listing for each macro call,
giving the name of the called macro, its nested depth, and its &SYSNDX
value. The trace is provided only upon entry into the macro. No trace
is provided if error conditions prevent entry into the macro.

Macro Branch Trace -- QE~f2nd=~

This option provides a one-line trace listing for each AGO and AIF
conditional-assembly branch within a macro. It gives the
model-statement numbers of the "branched from" and the "branched to"
statements, and the name of the macro in which the branch occurs. This
trace option is suppressed for library macros.

~M~a~c~r~o~A=I~F~D~um~p~ ___ O~p=erand=4

This option dumps undimensioned SET symbol-values from the macro
dictionary immediately before each AIF statement that is encountered.

Macro Exit :pump Operand=8

This option dumps undimensioned SET symbols from the macro dictionary
whenever a MEND or MEXIT statement is encountered.

~M=a~c~r~o~E~n~t~r~y~D~um~p~ ___ O~p~e~rand=16

This option dumps parameter values from the macro dictionary immediately
after a macro call is processed.

Section 10: Extended Features of the Macro Language 43

Global Suppression OEerand=32

This option suppresses global SET symbols in two preceding options,
MHELP 4 and MHELP 8.'

~HELP~~ression -~ Operand=J28

This option suppresses all currently active MHELP options.

MHELP Control On &SYSNDX

The MHELP operand field is actually mapped into a full word.
previously-defined MHELP code~ correspond to the fourth byte of this
full word.

&SYSNDX control is turned on by any bit in the third byte (operand
values 256-65535 inclusive). Then, when &SYSNDX (total number of macro
calls) exceeds the value of thE! fullword which contains the MHELP
operand value, control is forcE!d to stay at the open-code level, by in
effect making every statement in a macro behave like a MEXIT. Open code
macro calls are honored, but with an immediate exit back to open code.

Examples:

r----·--,
I I
I MHELP 256 Limit &SYSNDX to 256. I
I MHELP 1 Trace macro calls. I
I MHELP 256+1 Trace calls and limit &SYSNDX to 257. I
I MBELP 65536 No effect. No bits in bytes 3,4. I
I MBELP 65792 Limit &SYSNDX to 65792. I
I I l ____ . __ J

When ·the value of & SYSNDX reaches its limit, the message II ACTR Exceeded
-- &SYSNDX" is issued.

~~aing Options

As shown in the example above, multiple options can be obtained by
combining the option codes in one MHELP operand. For example, call and
branch traces can be invoked by MHELP B"", MHELP 2+1, or MHELP 3.
Substitution by means of variable symbols may also be used.

44

System Variable Symbols

There are four new system variable symbols available~-&SYSDATE,
&SYSTIME, &SYSPARM, and &SYSLOC--in addition to &SYSNDX, &SYSLIST, and
&SYSECT.

&SYSPARM, &SYSTIME, and &SYSDATE may be used as desired in macro
definitions and open code. &SYSNDX, SYSECT, &SYSLIST, and &SYSLOC may
be used only inside macro definitions.

&SYSLIST .- Macro Instruction Operand

&SYSLIST refers only to positional macro instruction operands.
Interspersed keyword operands are skipped over during &SYSLIST
reference.

&SYSDATE -- Date of Asserrbly

&SYSDATE provides the date of the assembly and corresponds to the date
printed in the page heading. The value of &SYSDATE is the 8-character
string mm/dd/yy (month/day/yea~. The value remains constant throughout
the assembly, and may be used both inside and outside macro definitions.

&SYSTIME -- Time of Assembly

&SYSTIME provides the time printed in the page heading. The value of
&SYSTIME is the five-character string hh.mm ~ours.minutes). As with
&SYSDATE above, the value remains constant and may be used both inside
and outside macro definitions.

For systems without the internal timer feature, &SYSTIME is a
five-character string of blanks.

&SY$PARM -- User Assembly Parameter

The system variable &SYSPARM operates in conjunction with the SYSPARM
parameter in the PARM field of the EXEC card in the JCL sequence.
Together they allow you to control conditional assembly flow and code
generation through the use of an externally specified parameter. The
value of &SYSPARM is the character string specified in the SYSPARM

Section 10: Extended Features of the Macro Language 45

parameter. Otherwise, it is the default value specified at system
generation time.

F'or example, in a section of code to conditionally produce a debug
request, the execute card might look like this: .

r--,
I I
I //STEP EXEC ASMHC,PARM='SYSPARMCDEBUG) , I
I I L __ J

And the code might look like this:

r-------------------T-----------T----------------------------, I Name I Operation , Operand ,
, I' ,
~-------------------+-----------+----------------------------i
, IAIF' C'&SYSPARM' NE 'DEBUG') .SKIP,
I ,SNAP, ~ight be the debug request),
I.SKIP I ANOP , , L ___________________ L ___________ ~ ____________________________ J

If the debug request is no longer desired, the SYSPARM value on the
EXEC card may be reset and the AIF will skip over the debug request.

As with &SYSTIME and &SYSDATE, the value of &SVSPARM remains
constant and may be used both inside and outside macro definitions.

If no value has been specified for SYSPARM, then &SYSPARM is the
default value specified at system generation time. Two quotes are
needed to represent a single quote and two ampersands are needed to
represent a single ampersand. The character comma is allowed only if
the string is enclosed in paired parentheses.

&SYSLOC -- Current Locat!Qn Cq~t~~

&SYSLOC is used to represent the name of the location counter in effect
at the time of a macro definition. &SYSECT gets the value of the
current CSECT, DSECT, or START control section. If no LOCTR statement
is in effect, the value of &SYSLOC is the same as &SYSECT.

It is often desired to return to a caller's section. However, if a
CSECT, DSECT, or COM has been qenerated in a macro, you have no way of
knowing what type of a statement to put an &SYSECT reference on. A
solution is "&SYSLOC LOCTR". Since LOCTR resumes the section type as
well as the location counter, it automatically provides the correct
section type.

46

II
&SYSDATE 4,5
&SYSLIST 45
&SYSLOC 46
&SYSNDX

MHELP control on 44
&SYSPARM 45-46
&SYSTIME 45
·value

In CNOP instructions 21
In location counter reference 15
In ORG instructions 20

Absolute expressions 3,14
ACTR instruction 38
Address constants 17
AGO instruction, computed 37
AIF instruction, extended 36-37
Alignment, location counter 9
Alternate format 37,39,41
ANOP instruction 38
AREAD instruction 30

Repeated AREAD statements 30
Within copied code 30

Asterick value
In CNOP instruction 21
In location counter reference 15
In ORG instruction 20

Attributes 31-33'
See also symbol attributes
Defined 32
Definition of 31,33

Definition mode 33
Lookahead mode 33

Lookahead restrictions 33-34
What can be referenced 31

B-type constants 17
Base register instructions 8
Binary operators 6
BER branch instruction 13
BHR branch instruction 13
BLR branch instruction 13
BMR branch instruction 13
BNER branch instruction 13
BNHR branch instruction 13
BNLR branch instruction 13
BNMR branch instruction 13
BNOR branch instruction 13
BNPR branch instruction 13
BNZR branch instruction 13
BOR branch instruction 13

BPR branch instruction 13
Branch instructions 13
BZR branch instruction 13

cataloged macro
See system macro

CNOP instruction 21
COM instruction 10
Complexly relocatable symbols 14
Computed AGO instruction 37
Constants 17
Continuation cards

Alternate format 37,39,41
Normal format 1

Control section, interrupted 9
COpy instruction 21

Copying macros 21
END statement encountered during
execution of 21

Within copied code 21
Nested 21
Recursive 21

Created SET symbols 41-42
CSECT instruction 9

DC instruction 17
Definition mode 33
Definition of SET symbols

Explicit 30
Implicit 30

DROP instruction 8
DS instruction 18
DSECT instruction 9-10
DXD instruction 10

END instruction 21
Encountered in copied code 21

EQU instruction 14-15
Equals sign, embedded in macro
parameters '28

Explicit definition of SET
symbols 30

Exponent modifier 18
Expressions

Evaluation of 6-7
Rules for coding 6

Extended AGO instruction
See computed AGO instruction

Index

Index 47

Extended AlP instruction 36-37
Extended mnemonic codes 13
Extended SET statements 41
External symbol dictionary items

Format 1
Maximum number of 8,12

o
Implicit definition of SET

symbol 30
Inner macro instructions 29
Insert macro input instruction 30
Interrupted control section
Resumption of 9

ISEQ instruction 19

II
Length attribute

Override, in EQU instruction 15
See also Attributes

Linkages, maximum 8,12
Listing control instructions 18-20

ISE() 19
POP 19
PRINT 18
PUSH 18-19
TITLE 18

Literals
Cross referencing of 5
Definitions 16-17
Literal pool, location of 20
Symbolic expressions
allowed in 7

Local SET symbols
Multiple definition of 34

Locat:Lon counter
Ali9nment 9
Def:Lni tion 11
Overflow 4
Reference to 4
Segmentation 4

LOCTR
Aliqnment 9
Inst.ruction 11

Lookahead mode 33-34
Lookahead restrictions 33-34

II
Macro definition 25-27

Positional restriction 25
Proqrammer 23
System 23

Macro instructions, mixed mode 23
Macro instruction prototype 25

Maximum character length of
each parameter 25

U8

Maximum number of parameters
for each prototype 25

Nested sublists 28
Symbol in operation field 26

MHELP 42-44
Combining options 44
Global suppression 44
Macro AIF dump 43
Macro branch trace 43
Macro call trace 43
Macro entry dump 43
Macro exit dump 43
MHELP control on &SYSNDX 44
MHELP suppression 44

Mixed mode macro instructions 23
Mnemonic codes 13
MNOTE instruction 22,39
Model statements 25-26

Operation field, permissible
instructions in 26

Modifiers
Exponent 17
Scale 17

Multi-level sublist 28

II
Nested macro definitions 27
Number (N I

) attribute in
subscripted SET symbol 40

Operation codes created by
substitution
Restrictions on 26

OPSYN instruction 15-16
In lookahead 16
Used with conditional assembly
operations 26

ORG instruction 20

Parentheses, number of
in logical expressions 36
in open code 5

POP instruction 19
Previously defined symbols 2

Required 3
PRINT instruction 18
Program control instructions 20-22

CNOP 21
COpy 21
END 21
MNOTE 22
ORG 20

Programmer macro
Definition 23

Location in source
program 25

Syntax errors 23
Prototype

See macro instruction proto­
type

PUSH instruction 18-19

Q-type address constants 17

Relocatable expressions 7
Relocation Dictionary items in DSECTS 9-10
RLD items

See Relocation Dictionary
items

S-type address constants 17
Scale modif\Ler 17
Segmentation of location counter 4
Self defining terms 3-4
Sequence symbols

Use of in name field 34
SET instructions

Extended 41
SET symbols

Created 41-42
Definition

Explicit 30
Implicit 30
Multiple 34
Placement 24,34
Subscripted 39-40

SETA instruction 34-35
As duplication factor in

SETC instruction 35
Levels of parentheses in 35

SETC instruction
Character length, ma~imum 36
Evaluation of duplication

factor and substring 35
Operand as arithmetic term 34
Substring, maximum character
value 35

START instruction 9
Statement format 1
Sublists

Multi-level 28
Outer macro sublist

As inner macro sublist 29
Subscripted SET symbols 39-40

Definition of 39
Open-ended limit 39

Substitution
Operation codes that can't be
created by 26·

Substring,maxim:um character
value of 35

Symbols
Definition 14-15
Format

Ordinary symbols 1
Sequence symbols 1
Variable symbols 1

Length 1
Name field symbol may appear

more than once 3
Previously defined 2
Restrictions 3

Symbol attribute reference 31-33
Count (K') attribute 31
Defined (D') attribute 32
Integer (I') attribute 31
Length (L') attribute 31

Override in EQU instruction 15
Number (N'l attribute 31
Scaling (S') attribute 31
Type (T'l attribute 31

Symbolic linkages 8,12
Symbolic parameter

Format 26
System macro

Copied 23
Definition 23

Syntax errors in 23
System variable symbols 45-46

&SYSDATE 45
&SYSLIST 45
&SYSLOC 46
&SYSNDX

MHELP control on 44
&SYSPARM 45-46
&SYSTIME 45 ..

Terms
Arithmetic combination of 1-2
Number of 5
Single 1-2

TITLE instruction 18
Type attribute

Override, in EQU 15

L1I
Unary operators 6-7
USING instruction 8

V-type constants 17
Variable symbols

Format 1

X-type constants 17

Index 49

Technical Newsletter

as ASSEMBLER H LANGUAGE
© IBM Corp. 1970,1971,1972,1974

This Newsletter No. GN 33 - 8 2 0 4

Da~September 30, 1975

Base Publication No. GC2 6 - 3771- 3

File No. S360-21 (OS)

Previous Newsletters None.

This Technical Newsletter, a part of version 4 of the Operating
System Assembler H Program Product 5734-AS1, provides replacement
pages for the subject manual. Pages to be inserted and/or
removed are:

Front Cover,ii
3,4

25,26
26.1,26.2 (Added)

15,16 (Part II)
Readers Comment Form/Reply (Removed)

A change to the text or to an illustration is indicated by a
vertical line to the left of the change.

Summary of Amendments

Minor technical changes have been made, and the manual has been
placed under class C maintenance.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Nordic laboratory, Publications Development, Box 962, S-181 09 lidingo 9, Sweden

© IBM Corp. 1975 Printed in U.S.A.

GC26-3771-3

Intematlonal Blisiness Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World TraC:!le Corporation
821 United Nations Plaza, New York, New York 10017
(Intematlonal)

o en
»
11'1

~
3
0-

~
I
r
Ql
:::J
to
c:
Ql
to
CD

."

CD
Z
P
en
w m
9
I\,)
o
~

	0001
	0002
	0003
	0005_VS
	0007
	0009
	0010
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26.0
	26.1
	26.2
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	001_MFT
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14.0
	14.1
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	upd
	xBack

