
C)

Program Product

o

IBM System/360
Operating System
AssemblerH
Programmer's Guide

Program Number 5734-AS1

TIlis book tells how to use Assembler H. It descnoes
assembler options, cataloged Job Control Language pro
cedures, assembler listing and output, sample programs,
and programming techniques and considerations.

Assembler H is an assembler language processor for the
IBM Systern/360 Operating System. It performs high
speed assemblies on an IBM Systern/360 Model 40 or
higher and on an IBM Systern/370 Model 145, 155, or
165 with at least 256K bytes of main storage.

This book is intended for all Assembler H programmmers.
It should be used in conjunction with the Operating
System Assembler Language manual, Order No. GC28-
6514; the Assembler H Language Specifications,
Order No. GC26-3771; and the Assembler H Messages,
Order No. SC26-3770.

Page of SC26-3759-0
Revised February 15, i971
By TNL SN33-8095

First Edition (June, 1970}

This edition with Technical Newsletter SN33-8095 applies to
version 2 of the IBM System/360 Operating System Assembler H
Program Product 5734-ASI and to all subsequent versions until
otherwise indicated in new editions or Technical Newsletter.
Changes to the text, and.small changes to illustrations, are
indicated by a vertical linte to the left of the change; changed
or added illustrations are denoted by the symbol • to the left
of the caption.

Changes are continually made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360 for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Nordic Laboratory, Publications Development,
Box 962, 5-18109 Lidingo 9, Sweden.

1 © Copyri9htInternationa1 Business Machines Corporation 1970

o

o

o

Technical Newsletter
R 0 d N SC26-3759-0 e: r er o.

This Newsletter No. SN33-8095

Date February 15, 1971

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM ASSEMBLER H
PROGRAMMER'S GUIDE

cmM corp. 1970

This Technical Newsletter, a part of version 2 of IBM System/360
Operating System, Assembler H Program Product provides replace
ment pages for IBM System/360 Operating System Assembler H, Pro
grammer's Guide, Order Number SC26-3759-0. These replacement
pages remain in effect for subsequent versions and modifications
unless specifically altered. Pages to be inserted and/or removed
are listed below:

Cover, ii
iii, iv
3_/ 4
7,8
31,32
37,38

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol • to the left of
the caption.

Summary of Amendments

Minor errors are corrected throughout the manual, information
changed on MHELP Control on &SYSNDX, and IBM System/370
information added.

Note: File this cover letter at the back of the manual to provide
a record of changes.

IBM Nordic Laboratory, Technical Communications, Box 962, 5-18109 Lidingo .9, Sweden

©lBM Corp. 1971 PRINTED IN U.S.A.

c

c

o

o

o

Page of SC26-3759-0

Revised February 15, 1971

By TNL SN33-8095

Preface

~his publication tells how to use Assembler H. It describes asserrbler
options, cataloged job control language {:rocedures, a'ssembler listing
and cutput, assembler data sets, error diagnostic facilities, sample
~rcgrarrs, and ~rogramming techniques and considerations.

Asserrbler E is an asserrbler-language processor for the IBM System/360
Operating System. It performs high-speed asserr.tlies on an IBM
System/360 Model 40 or higher and on an IBM System/370 Model 145,
155, or 165 with at least 256K bytes of main storage.

This manual has the following main sections:

• Using the Asserrbler

• Assembler Listing Description

• Assembler Diagnostic Facilities

• Programming Considerations

"Using the Assembler" describes the EXEC statement PARM field o{:tion,
the data sets used by tbe asserrbler, and the jot control language
cataloged procedures sup~lied by IBM. ~he cataloged procedures can
be used to assemble, link-edit or load, and execute an asserrbler
program.

"Assemtler Listing Descri~ticn" describes each field of the assembly
listing. "Assembler r::iagnostic Facilities" descri1:es the ~urI::ose and
format of error messages, MNO'IEs, and the MHELF macro trace facility.
"Programming Considerations" discusses various topics, such as standard
entry ahd exit procedures fer problem programs.

Appendix A is a sample program which des crites rrany of the asserrbler
lanquaqe features, especially those unique to Assembler H. Appendix
B is a sarople MHELP macro trace and dump. Appendix C describes the
ob;ect module output formats. Appendix D tells how to call the
assembler dynarrically frem ~rcblem programs.

'Ihis publication is intended for all Assemt:ler E programmers. To use
this ~ublication, you should be familiar with the assembler language
and with the basic concepts and facilities of the Operating System,
especially job control language, data management services, su~ervisor
services, and the linkage editor and loader.

Assem bIer Pu blications

'Ihe following publication contains a brief description of Asserrbler
H ana how it differs frcrr lewer level Operating System/360 assemblers:

IBM System/360 Operating System General Information Manual, Order Number
GC26-3758

iii

The followinq ~utlicaticns describe the assembler language and the
information required to rur. Assembler H programs:

IBM System/360 Operating System Assembler Language, Order Number
GC28-65l4

The Assembler lanquage manual contains the basic assembler and rracro
assemtler specificaticr.s, except those unique to Assembler H.

IBM System/360 Operating System Assembler H Language Specifications,
Order Number GC26-377l

The Assembler H lanquage specifications describes the language features
that are availatle with Asserrbler H. It is su~plemental to the
Assembler language manual listed above.

IBM System/360 Operating System Assembler H Messages, Order Number
SC26-3770

The Messaqes manual provides an explanation of each of the diagnostic
and abnormal termination messages issued by Assembler H and how you
should respond in each case.

The following publications contain information used to install and
maintain Assembler H:

IBM System/360 Operating System Assembler H System Information, Order
Number GC26-3768

The System Inforrr.ation n:anual consists of three self-contained chapters
cn performance estimates, storage estimates, and system generation
of Assembler H.

IBM System/360 Operating System Assembler H Program Logic Manual, Order
Number LY26-3760

The Program logic Manual describes the design logic and functional
characteristics cf Assembler H.

Operating System Publications

The following putlications contain information about the Operating
System:

IBM System/360 Operating System Concepts and Facilities, Order Number
GC28-6535

Concepts and Facilities introduces and interrelates all Operating
System/360 control program facilities. It shows how these facilities
work with the languaqe translators and service programs, so you can
tetter learn bow to use the system.

IBM System/360 Operating System Job Control Language, Order Number
GC28-6539

The Job Control Language book tells how to code the job control language
necessary to initiate and control the processing of any program, and
contains all cataloged procedures.

iv

c

o

o

IBM System/360 Operating System Linkage Editor and Loader, Order Number
GC28-6538

ThE Linkage Editor and Loader manual provides information on the
o~eration and use of the linkage editor and loader, which are two
prograrrs that prepare the output of language translators for execution.

IBM System/360 Operating System Supervisor and Data Management Macro
Instructions, Order Number GC28-6647, and

and Data Mana ement Services,

'Ihe Supervisor and Cata Management publications describe the program
Execution-tirre services available from the Operating system and the
macro instructions required to use these services.

IBM System/360 Operating System utilities, Order Number GC28-6586

'Ihe Utilities publication describes the utility programs of the
OpErating System. 'Ihe asseItlbler-language programmer can use utilities
to do such things as add macro definitions to a library.

IBM System/360 Operating System Messages and Codes, Order Number GC28-
GC28-663l

'Ihis publication contains the messages and corrpletion codes issued
ty the Operating Systerr. (It does not contain the messages issued
by Assemtler H.)

IBM System/360 Operating System Programmer's Guide to Debugging, Order
Number GC28-6670

This publication describes dumps and other inforrraticn issued by the
operating Systerr wten an asserrbler-language program executes
unsuccessfully.

v

This page intentionally left blank.

c

vi

~\-.:
~i

0 · ...
" 'I

.

.. '''

Using the Assembler
Assembler Options .

Default Options .
Assembler Data Sets

DD Name SYSUT 1

DD Name SYSIN

DD Name SYSLIB
DD Name SYSPRINT
DD Name SYSPUNCH

DD Name SYSLIN
Return Codes
Cataloged Procedures .

Cataloged Procedure for Assembly (ASMHC)

Cataloged Procedure for Assembly and Link-Editing (ASMHCL)
Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG)
Cataloged Procedure for Assembly and Loader-Execution (ASMHCG)
Overriding Statements in Cataloged Procedures .

Assembler Listing

External Symbol Dictionary (ESD) .
Source and Object Program.
Relocation Dictionary.
Cross Reference
Diagnostic Cross Reference and Assembler Summary
Assembler Diagnostic Facilities . .
Assembly Error Diagnostic Messages . . .
MNOTEs
Suppression of Error Messages and MNOTEs
Abnormal Assembly Termination
Macro Trace Facility (MHELP)

Programming Considerations
Saving and Restoring General Register Contents.
Program Termination
PARM Field Access.
Macro Definition Library Additions
Load Module Modification - Entry Point Restatement
Object Module Linkage
Special CPU Programming Considerations .

Controlling Instruction Execution Sequence .
Extended-Precision Machine Instructions .
Unaligned (Byte-Oriented) Operands

Appendix A. Sample Program

Appendix B. Sample Macro Trace and Dump (MHELP) .
Macro Call Trace (MHELP 1). .
Macro Entry Dump (MHELP 16)
Macro AIF Dump (MHELP 4)

Macro Exit Dump (MHELP 8)

Appendix C. Object Deck Output

ESD Card Format
TEXT (TXT) Card Format
RLD Card Format . . .
END Card Format ...
TESTRAN (SYM) Card Format

Appendix D. Dynamic Invocation of the Assembler

vii

Contents

1
1
4
4
6
6
6
6
6
7
8
9
9

10
12
13
15
19

21
22
24
25
25
27
27
30
30
30
30

33
33
34
34
34
35
35
38
38
38
39

41

53
53
53
54
54

61

61
61
62
63
63

67

Illustrations

Figures

Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.
Figure 7.
Figure 8 •

Figure 9.

Tables

Table 1.
Table 2.
Table 3.

Assembler H Data Sets....................................... 5
Cataloged Procedure for Assembly (ASMHC) •..•....•........... 10
Cataloged Procedure for Assembling and
Link-Editing (ASMHCL)•.•....•....•......... 11
Cataloged Procedure for Assembly, Link-Editing and
Execution (ASMHCLG) ...•.........•.........••................ 13
Cataloged Procedure for Assembly and
Loader-Execution (ASMHCG) •............•............•........ 14
Assembler H Listing•............ 20
Sample Error Diagnostic Messages•...•................. 29
Sample Assembler Linkage Statements for
FORTRAN or COBOL Subprograms•..•....•.................. 37
TESTRAN SYM Card Format•..........•...•.... 65

Assembler Data Set Characteristics••.... 7
Number of Channel Program (NCP) Selection 8
Types of ESD Entries .. 20

viii

,f-'~'",

, !
",\~

o

o

o

Using the Assembler

This section describes the assembly-time options available to the
assembler-lanquage programmer, the data sets used by the assembler,
and the cataloged procedures of job control language supplied by IBM
to simplify assembling, linkage editing or leading, and execution of
assembly language l=rograrr,s. The job control language is described
in detail in the Job Contrel Language publication, order ~Umber GC28-
6539.

Assembler Options

Assembler H offers a number of optional facilities. For example, you
can suppress printing of the asserobly listing or parts of the listing,
and you can specify whether you want an object deck or an ob ject module.
You select the options by including appropriate keywords in the PARM
field of the EXEC statement that invokes the assembler. There are
two types of options:

• Simple pairs ef keyword s: a posi ti ve form (such as LOAD) that
requests a facility, and' an alternative negative form (such as
NCICAD) that rejects that facility.

• Keywords that permit you to assign a value to a function (such
as LINECN'I=50) •

Each of these options has a standard or default value which is used
for the assembly if you do not specify an alternative value. The
default values are explained in the following section, "Default
Options. "

If you are using a cataloged procedure, you ~ust include the PARM field
in the EXEC statement that inVOkes the procedure. You must also qualify
the keyword (PJ\RMl with the name of the step within the procedure tha t
inVOkes the compiler. For example:

// EXEC ASMHC, FARM. C=' L·CAC, NODECK'

The sectien "Overriding Statements in ca taloged Procedures" contains
mere examples on how to specify options in a cataloged procedu.~e.

PARM is a keyword parameter: code PARM= followed by the list of options,
separating the options by commas and enclosing the entire list within
sinqle quotes or parentheses. If there is only one option that does not
include any special characters, the enclosing quotes or parentheses
can be omitted. The option list m~st not be longer than 100 characters,
including the separating commas. You may specify the options in any
order. If contradictcry cptions are used (for example, LIST and
NOLIST), the rightmost option (in this case, NOIIST) is used.

The assembler options are:

(DECK, LOAD, LIST, TEST, XREF, ALGN, RENT, ESD, RLD, MULT,

PARM~ or or or or or 'LlNECNT=nn', or or or or or SYSPARM=xxx';MSGLEVEL~nnn')

(NODECK.NOLOAD,NOLIST .NOTEST ,NOX RE F , ,NOALGN.NORE NT ,NOESD.NOR LD,NOMU L T,

Using The Assembler 1

DECK -- The object module is placed on the device specified in the
SYSPUNCH DD statement.

LOAC -- The object module is placed on the device specified in the
SYSLIN DC statement.

Note: The LOAD and DECK options are independent of each other. Both
or neither can be specified. The output on SYSLIN and SYSPUNCH is
identical except that the control program closes SYSLIN with a
disposition of LEAVE and SYSPUNCH with a disposition of REREAD.

ESI: -- The assembler produces the External Symbol Dictionary as part
of the listing.

RLD -- The assembler produces the Relocation Dictionary as part of
the listing.

MULT The assembler will do multiple (batch) assemblies under the
control of a single set of jab control language cards. The
source decks must be placed together with no intervening /*
card; a single /* card must follow the final source deck.

LIST -- An asserr.bler listing is produced. Note that the NOLIST
option overrides the ESD, RLD, and XREF options.

TEST -- The object module contains the special source symbol table
required by the test transla tor (T'ESTRAN) routine.

XREF -- The assembler produces a cross-reference table of syrrbols
and literals as part of the listing.

RENT -- The assembler checks for a possible coding violation of
prOCJram reenterablility.

LINECNT=nn -- The number of lines to be printed between headings
in the listing is nne The permissible range is
1 to 99 lines.

NOALGN -- The asserrbler suppresses the diagnostic message "IEVO 33
ALIGNMENT ERROR" if fixed point, floating- point, or logical
data referenced by an instruction operand is not aligned
on the proper boundary.. The message will be produced,
however, for references to instructions that are not aligned
on the proper (halfword) boundary or for data boundary
violations for privileged instructions such as LPSw. See
the "SJ:ecial CPU Prcgramming Considerations" section for
information on alignment requirements.

ALGN -- The assembler does not suppress the alignment error diagnostic
message; all alignrrent errors are diagnosed.

2 Assembler H Programmer's Guide

c

o

c

o

o

Page of SC26-3759-O
Revised February 15, 1971

By TNL SN33-8095

MSGLEVEL=nnn -- Error diagnostic messages below severity code nnn will
not appear in the listing. Diagnostic messages can
have severity codes of 0, 4, 8, 12, 16, or 20 (0 is
the least severe). MNOTEs can have a severity code
of 0 through 255.

Fer example, MSGLEVEL=8 will suppress messages for
severity codes 0 through 7.

SYSFARM=xxx -- The character string xxx is the value of the system
variable synbol &SYSPARM. The assembler uses &SYSPARM
as a read-only SE'Ie variable. If no value is specified
for the SYSFARM option, &,SYSPARM will be a null (empty)
character string. 'Ihe function of &SYSPARM is explained
in the Assenbler H Language Specifications, Order Number
GC26-3771.

A total of 100 characters is allowed in the PARM field
of the EXEC statement. Thus, the maximum length of
the SYSPARM character string is 100 minus the total
number of other characters in the PARM field. (Commas
separating c~tions and quotes enclosing individual
option values must also be counted.) For exanJ;:le:

FARM='SYSFARM=xxx'
xxx can be up to 92 characters

FARM=(NCCECK,'SYSPARM=xxx')
xxx can be up to 83 characters

Commas are not allowed unless parentheses or quotes
surrcund the entire PARM value. Also, two quotes are
needed to represent a single quote and two ampersands
are needed to represent a single ampersand, For example:

PARM=' LOAD, SYSPARM=(&&AB,&&XY),

PARM='NODECK,SYSPARM=(' 'AB,"XY)'

The SYSPARM character string is &AB,&XY in the first
example and ('AB, 'XY) in the second example.

If you are calling the asseroble.r from a prcblem program
at execution time (dynamic invocation), SYSPARM can
be up to 256 characters long,

Using The Assembler 3

Default Options

If you do not code an option in the PARM field, the assembler assumes
a default option. The following default options are included when
Assembler H is shi~~ed by IBM:

PARM=(DECK,NOLOAD,LlST,NOTEST,XREF,'LlNECNT=55',ALGN,NORENT,ESD,RLD,NOMULT,'SY$PARM=null','MSGLEVEL=O')

However, these may not be the default options in effect in your
installation. the defaults can be respecified when Assembler H is
installed. For example, NcrECK can be made the default in ~lace of
rECK. Also, a default opticn can be specified during installation
so that you cannot override it.

The cataloged procedures described in this book assume the default
entries. The section "overriding Statements in Cataloged Procedures"
tells you how to override them. First, however, check whether any
default options have been changed or whether there are any you cannot
override at your installation.

Assembler Data Sets

Asserrtler H requires the fcllowing data sets, as shown in Figure 1:

• SYSUT1 -- utility data set used as intermediate external storage.

• SYSIN -- an input data set containing the source statements to
be processed.

In addition, the following four data sets may te required:

• SYSLIB -- a data set containing macro definitions (for rracro
definitions nct defined in the source program) and/or source code
to be called for through COpy assembler instructions.

• SYSFRINT -- a data s·et containing the asserrtly listing (unless
the NCLIST option is specifie~ ~

• SYSPUNCH -- a data set containing object module output, usually
for punching (unless the NODECK option is specified).

• SYSLIN -- a data set containing object module output usually for
the linkage editor (only if the LOAD option is specified) •

The atove data sets are described in the follOwing text. The DD name
that normally must be used in the DD statement describing the data
set appears as the heading for each description. The characteristics
of these data sets, these set by the assembler and those you can
override, are shown in Tables 1 and 2.

4 Assembler H Programmer's Guide

c

0; .. ,,)

o

SYSLIB

(MACRO and
COpy Calls)

SYSPRINT

SYSIN

Assembler H

Fiqure 1. Assembler H Data Sets

SYSUTl

(overflow)

SYSPUNCH

'(Object Modules) JI
(80 Character Card I mage)

Using The Assembler 5

DD Name SYSUT 1

The assembler uses this utility data set as an intermediate external
storage device when ~rocessing the source program. The input/output
device assiqned to this data set must be a direct access device. The
assembler does not support a multi-volume utility data set.

DD Name SYSIN

This data set contains the input to the assembler -- the source
staterr.ents to te ~rocessed. The input/output device assigned to this
data set may be either the device transmitting the input stream, or
another sequential input device that you have designated. The DD
statement describing this data set appears in the input stream. The
IEM-su~plied ~rocedures de net contain this statement.

DD Name SYSLIB

From this data set, the assembler obtains macro definitions and
assErrtler-languagE stateITents to be called by the COpy assembler
instruction. It is a partitioned data set; each macro definition or
sequence of asserrtler-language statements is a separate member, with
the member name being the macro instruction mnerronic or COpy code name.

ThE data set rray be defined as SYS1.MACLIB or your private macro
definition or COpy library. SYS1.MACLIB contains macro definitions
for the system macro instructions provided by IBM. Your private library
may te concatenated with SYS1.MACLIB. The two libraries must have
the same logical record length (80 bytes), but the blocking factors
may be different. 'The OD statement for the library with the largest
blocksize must appear first in the job control language for the assembly
(that is, bEfore any other library DD statements). The Job Control
Lanquage publication, Crder Number GC28-6539, explains the concatenation
of data sets.

DD Name SYSPRINT

'This data set is used by the assembler to produce a listing. Output
may be directed to a printer, magnetic tape, or direct-access storage
device. The assembler uses the machine code carriage-control characters
for this data set.

DD Name SYSPUNCH

The assembler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access.

6 Assembler H Programmer's Guide

c

('"
; .;\

",.

o

o

o

DD Name SYSLIN

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

This is a direct-access storage device, magnetic tape, or card punch
data set used ty the assembler. It contains the same output text as
SYSPUNCH. It is used as input for the linkage editor.

eTatle 1. Assemcler Data Set Characteristics

Data Set SYSUT1 SYSPUNCH SYSPRINT SYSLIN SYSIN SYSLIB

Access Method BSAM BSAM BSAM BSAM BSAM BPAM

Logical Record fixed at fixed at fixed at fixed at fixed at fixed at
Length (LRECL) BLKSIZE 80 121 80 80 80

Block Size (0 CD CD CD CD CD (BLKSIZE)

Record Format 0 00 00 00 00 00 (RECFM)

Number of channel 1 0 0 0 0 Not
Programs (NCP) Applicable

CD
o
o
o
o

You can specify a blocksize (BLKSIZE) between 2000 and 5100 bytes in the DO statement or in the
data set label. BLKSIZE should be a multiple of 8; if it is not, it will be rounded to the next lower multiple
of 8. If you do not specify BLKSIZE, the assembler sets a default blocksize based on the device used for
SYSUT1 as follows:

2301 Drum
2302 Disk
2303 Drum
2305 Drum

model 1-
2305 Drum

model 2

2311 Disk
2314 Disk

3330 Disk

5016 bytes
4984 bytes
4888 bytes
4280 bytes

4688 bytes

3624 bytes
3520 bytes

4208 bytes

The Storage Estimates chapter of the System Information manual, Order Number SC26-3768, discusses the
reasons for changing the default blocksize.

If specified, BLKSIZE must equal LRECL or a multiple of LRECL. If BLKSIZE is not specified, it is set equal

to LRECL.

BLKSIZE be specified in the DO statement or the data set label as a multiple of LRECL.

Set by the assembler to F.

Set by the assembler to FM.

You may specify B, S, or T.

You can specify the number of channel programs (NCP) used by any assembler data set except SYSUT1.
and SYSLIB. The NCP of SYSUT1 is fixed at 1. The assembler, however, can change your NCP specification
under certain conditions. Table 2 shows how NCP is calculated. Note that if the NCP is greater than 2, chained
I/O request scheduling is set by the assembler.

Using The Assembler 7

Table 2. Number of Channel Program (NCP) Selection

Unit record device X X X X X X X X X

SYSPR I NT data set X X X X X X

SYSI N data set X X X X X X

SYSLIN or SYSPUNCH X X X X X X
data set

NCP not specified by user X X X X X X

NCP specified by user = 1 X X X X X X

= 2-99 X X X X X X

NCP set by assembler is
larger of 1210/BLKSIZE X X X
or 2

NCP set by assembler is larger
X X X of 8OO/BLKSIZE or 2

NCP set by assembler is larger
of 240/BLKSIZE or 2 X X X

NCP is set to number spec-
X X X X X X X X X ified by the user

Note: If the NCP is greater than two. chained I/O scheduling is set by the assembler.

Return Codes

Assembler H issues return codes for use with the COND parameter of
the JOB and EXEC jct cont~cl language statements. The COND parameter
enables you to skip or execute a jot step depending on the results
(indicated by the return code) of a previous job step. It is explained
in the Job Control Language publication, Order Numter GC28-6539.

~he return code issued by the assembler is the highest severity code
that is associated with any error detected in the assembly or with
any MNCTE message produced ty the source prograrr or macro instructions.
See the Asserrble~ H Messages book, Order Number SC26-3770, for a listing
of the assembler errors and their severity codes.

8 Assembler HProgrammer's Guide

c

c'

o

o

Cataloged Procedures

Often the same set of job centrol statements is used over and over
again (for example, to specify the compilation, link-editing, and
execution cf many different programs). '10 save programming time and
to reduce the possiblity of error, sets of standard series of EXEC
and DD stateff;ents can be prepared once and 'cataloged' in a system
library. Such a set of statements is termed a cataloged procedure
and can be invcked by one of the following statements:

//stepname EXEC procname

//stepname EXEC PRO c= proc name

The specified ~recedure is read from the procedure library
(SYS1.PROCLIE) and merged with the job control statements that follow
this EXEC statement.

The System Prcgrarr·ner's Guide, Order Number GC28-6550, tells how to
place cataloged procedures in the procedure library.

This section describes four IBM-provided cataloged procedures: a
procedure for assembling (ASMHC), a procedure for assembling and link
editing (ASMHCL), a procedure for assembling, link-editing, and
executing (ASMHCLG), and a procedure for asserrJ:ling and loader-executing
(ASMHCG) •

Cataloged Procedure for Assembly (ASMHC)

This procedure consists of one jot step: asserrbly. The name ASMHC
must be used to call this procedure. The result of execution is an
otject module, in ~unched card form, and an assembler listing.

In the following example, input enters via the input stream. An example
of the statements entered in the input stream to use this prccedure
is:

/Ijobname
Ilstepname
IIC.SYSIN

JOB
EXEC PROC=ASMHC
DO
I
I

source program statements
I
I

/* (delimiter statement)

The statements of the ASMHC rrocedure are read from the procedure
litrarv and merged into the input stream.

Figure 2 shows the statements that make up the ASMHC procedure.

Using The Assembler 9

2

3

4

5

//C EXEC PGM=I EV90,R EG ION=200K

//SYSLIB DO DSN=SYS1.MACLI B,DISP=SHR

//SYSUT1 DO UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUT1

//SYSPUNCH DO SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O))

//SYSPRINT DO SYSOUT=A,DCB=(B LKSI ZE=3509) ,UN IT=(,SEP=(SYSUT1 ,SYSPUNCH))

................

PARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure
(see "Overriding Statements in cataloged Procedures"). The system name IEV90 identifies Assembler H.

2 This statement identifies the macro library data set. The data set name SYS1.MACLI B is an I BM designation.

3 This statement specifies the assembler utility data set. The device classname used here, SYSDA, represents a
direct-access unit. The I/O unit assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 2311 may be substituted for SYSDA.

4 This statement describes the data set that will contain the object module produced by the assembler.

5 This statement defInes the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 2. Cataloged Procedure for Assembly (ASMHC)

Cataloged Procedure for Assembly and Link-Editing (ASMHCL)

This procedure consists of two job steps: assembly and link-editing.
The narre ASMHCI must be used to call this procedure. Execution of
this procedure results in the production of an assembler listing, a
linkage editor listing, and a load module.

The following exaIq:::le illustrates input to the assembler via the input
job stream. SYSLIN contains the output from the assembly step and
the in~ut to the linkage edit step. It can be concatenated with
addit icnal input tc the linkage editor a s shown in the e.xample. This
additional input can be linkage editor control statements or other
object rrodules.

An example of the statements entered in the input stream to use this
procedure is:

JOB //jobname
//stepname
//C.SYSIN

EXEC PROC=ASMHCL
DO *
I
I
I

sou rce program statements
I
I
I

/*
//L.SYSIN DO

I

/*

I
I

object modu Ie or
linkage editor
control statements

*

10 Assembler H Programmer's Guide

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

(

c

~\
\

11......./.

o

o

Figure 3 shows the statements that make up the ASMHCL procedure.
those stateroents not previcusly discussed are explained.

IIC

IISYSLIB

IISYSUTl

IISYSPUNCH

IISYSPRINT

IISYSLIN

II

2 IlL

3 IISYSLIN

4 II

5 IISYSLMOD

6 IISYSUTl

7 IISYSPRINT

EXEC

DO

DO

DO

DO

DO

EXEC

DO

DO

DO

DO

DO

PGM=IEV90,PARM=LOAD,REGION=200K

DSN=SYS1.MACLI B,D ISP=SH R

UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5»,DSN=&SYSUTl

SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O»

SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH»

DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O»,

DCB=(B LKSI ZE=400), DSN=&&LOADSET

*

PGM=IEWL,PARM=,'MAP,LET,LlST,NCAL',REGION=96K,COND=(8,LT,C)

DSN=&&LOADSET,DISP=(OLD,DELETE)

DDNAME=SYSIN

DISP=(,?ASS),UNIT=SYSDA,SPACE=(CYL,(2,1,2»,DSN=&GOSET(GO)

UNIT=SYSDA,SPACE=(CYL,(3,2»,DSN=&SYSUTl

SYSOUT=A,DCB=(R ECF M=F B,B LKSI ZE=3509)

Only

In this procedure the SYSLIN DO statement describes a temporary data set - - the object module - - which is to be
passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage
editor to produce a cross-reference table, a module map, and a list of all control statements processed by the linkage
editor. The NCAL option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one (SYSLlN) produced as output from the
assembler.

4 This statement is used to concatenate any input to the linkage editor from the input stream (object decks and/or
linkage editor control statements) with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain the load module, the DSN parameter must be respecified

and a DISP parameter added. See "Overriding Statements in Cataloged Procedures. " If the output of the linkage
editor is to be retained, the DSN parameter must specify a library name and member name where the load
module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

7 This statement identifies the standard output class as the destination for the linkage editor listing.

~~~~------------~ 
or Assembling and link-Editing 

Using The Assembler 11 



Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG) 

This ~rocedure consists of three job steps: asserrtly, link-editing, 
and execution. 

Fiqure 4 shows the staterrents tha t make up the ASMHCIG procedure. 
Cnlv those statements not previously discussed are explained in the 
f iqure. 

The naroe ASMHCLG must te used to call this procedure. An assembler 
listing, an object deck, and a linkage editor listing are prcduced. 

'Ihe staterr.ents entered in the irl1:ut stream to use this procedure are: 

JOB //jobname 
IIstepname 
IIC.SYSIN 

EXEC PROC=ASMHCLG 
DO * 
I 
I 
I 

source program statements 
I 
I 
I 

/* 
IIL.SYSI N DO 

I 
I 
I 

object module or 
linkage editor 
control statements 

/* 
IIG.ddname 
IIG.ddname 
IIG.ddname 

I 
I 
DO 
DO 
DD 
I 
I 
I 

* 

(parameters) 
(parameters) 
* 

problem program input 
I 
I 

12 Assembler H Programmer's Guide 

necessary only if linkage 
editor is to combine modules 
or read linkage editor control 
information from the job stream 

only if necessary 

c 

c 



~ 
j 

1iWY. 

o 

o 

2 

3 

IIC EXEC PGM=IEV90,PARM=LOAD,REGION=200K 

IISYSLIB DO DSN=SYS1.MACLlB,DISP=SHR 

IISYSUTl DO UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUTl 

IISYSPUNCH DO SYSOUT=B,DCB=(B LKSI ZE=800) ,SPACE=(CY L,(5,5,O)) 

IISYSPRINT DO SYSOUT=A,DCB=(B LKSI ZE=3509) ,UN IT=(,SEP=(SYSUTl ,SYSPUNCH)) 

IISYSLIN DO DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O)), * 

II DCB=(B LKSI ZE=400) ,DSN=&&LOADSET 

IlL EXEC PGM=IEWL,PARM='MAP,LET,LlST,NCAL',REGION=96K,COND=(8,LT,C) 

IISYSLIN DO DSN=&&LOADSET ,DISP=(O LD ,DE LETE) 

II DO DDNAME=SYSIN 

IISYSLMOD DO DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(2,1 ,2)) ,DSN=&GOSET(GO) 

IISYSUTl DO UN IT=SYSDA,SPACE=(CYL,(3,2)) ,DSN=&SYSUT1 

IISYSPRINT DO SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509) 

IIG EXEC PGM=*.L.SYSLMOD,COND= ((8,LT,C),(4,LT,L)) 

........................ 

... ... - ............... 

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as 
executable even though errors were encountered during processing. 

2 The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access 
device, and is to be passed to a succeeding job step. 

3 This statement initiates execution of the assembled and linkage edited program. The notation * .L.SYSLMOD 
identifies the program to be executed as being in the data set described in job step L by ,the DO statement 
named SYSLMOD. 

Fiqure 4. d or Assembly, Link-Editing and 
Execution 

Cataloged Procedure for Assembly and Loader-Execution (ASMHCG) 

This procedure consists of two job steps, asserrtly and loader-execution. 
Loader-execution is a comtination of link-editing and loading the 
proqram for executien. Lead modules for program libraries are not 
produced. 

Using The Assembler 13 



2 

3 

IIC EXEC PGM=IEV90,PARM=LOAD,REGION=200K 

IISYSLIB DD DSN=SYS1.MACLlB,DISP=SHR 

IISYSUTl DD UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUTl 

IISYSPUNCH DD SYSOUT=B,DCB=(B lKSI ZE=800) ,SPACE=(CY L,(5,5,O)) 

IISYSPRINT DD SYSOUT=A,DCB=(B LKSI ZE=3509) ,UN IT=(,SEP=(SYSUTl ,SYSPUNCH)) 

IISYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O)), 

II DCB=(B LKSI ZE=400) ,DSN=&& LOADSET 

IIG EXEC PGM=LOADER,PARM='MAP,LET,PRINT,NOCALL' 

IISYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 

II DD DDNAME=SYSIN 

IISYSLOUT DD SYSOUT=A 

... -------....................... 

This statement initiates loader-execution. The loader options in the PARM= field cause the loader to produce a 
map and print the map and diagnostics. The NOCALL option is the same as NCAL for the linkage editor and the 
LET option is the same as for the linkage editor. 

2 This statement defines the loader input data set as the same one produced as output by the assembler. 

3 This statement identifies the standard output class as the destination for the loader listing. 

Fiqure 5. Calalcged Procedure for Assembly and Loader-Execution 
(ASMHCG) 

Fiqure 5 shows the statements that make up the ASMHCG procedure. Only 
those stateIr.ents net ~revieusly discussed are explained in the figure .. 

The name A&~HCG must be used to call this procedure. Assembler and 
leader listings are produced. 

'The statements entered in the input stream to use this prccedure are: 

Iljobname 
Iistepname 
IIC.SYSIN 

JOB 
EXEC PROC=ASMHCG 
DD * 
I 
I 
I 

source program 
I 

/* 
IIG.ddname 
IIG.ddname 
IIG.ddname 

I 

DD 
DD 
DD 
I 
I 
I 

(parameters) 
(parameters) 
* 

problem program input 
I 
I 

/* 

14 Assembler H Programmer's Guide 

} only if necessary 

C 

c 



c 

O'.··!I 
, •• 1 

Overriding Statements in Cataloged Procedures 

Any parameter in a catalcged procedure can be overridden except the 
PGM= parameter in the EXEC statement. Such overriding of statements 
or fields is effective only for the dura tion of the job step in which 
the statements appear. The statements, as stored in the procedure 
litxary of tte systerr, remain unchanged. 

overriding for the purposes of respecification, addition, or 
nullification is accomplished by including in the input strearr 
statements containing the desired changes and identifying the statements 
to be overridden. 

EXEC Statements 

Any EXEC parameter (except PGM) can be overridden. For example, the 
PARM= and COND= parameters can be added or, if present, respecified 
by including in the EXEC statement calling the procedure the notation 
PARM. stepname=, or COND. stepname=, followed by the desired pararreters. 
"ste}:name" identifies the EXEC statement within the procedure to which 
the modification applies. 

If the procedure ccnsists cf more than one jot step, a 
PARM.~rocste~name= cr COND.prccstepname= parameter may be entered for 
each step. The entries must be in order, (PARM .• procstep1 =, 
PARM.procstep2=, etc.). 

DD Statements 

All r::arameters in the operand field of DD staterrents may be cverridden 
ty including in the in~ut Etream (following the EXEC card calling the 
procedure) a DD statement with the notation //procstepname.ddname in 
the name field. "Procstepname" refers to the job step in which the 
statement identified by "ddname" appears. 

Note: If rrcre than one DD statement in a procedure is to be overridden, 
the overriding statements must be in the same order as the statements 
in the procedu·re. 

Examples 

In the assembly procedure ASMEC (Figure 2) , the producticn of a punched 
oeject deck could be suppreEsed and the UNIT= and SPACE= parameters 
of data set SYSU71 respecified, by including the following statements 
in the input stream: 

//stepname EXEC PROC=ASMHC, X 
II PARM.C=NODECK 

IIC.SYSUT1 DO UNIT=2311, X 
II SPACE= (200,(300,40)) 

IIC.SYSIN DO 

Using the Assembler 15 



In procedure ASMHCIG (Figure 4), suppressing production of an assembler 
listinq and acding the COND= ~arameter to the EXEC statement, which 
specifies execution of the linkage editor, may be desired. In this 
case, the EXEC statement in the input stream would appear as follows: 

Ilstepname 

II 
II 

EXEC PROC=ASMHCLG, 

PARM.C=(NOLlST,LOAD), 

COND.L=(8,LT,stepname.C) 

X 

X 

Note: Overriding the LIST parameter effectively deletes the PARM=LOAD. 
PARM=LCAD must be repeated in the override statement. 

For current executicn cf ~rocedure ASMHCLG, no assembler listing would 
be produced, and execution of the linkage editor job step //L would 
be su~pressed if the return code issued by the asserrbler (step C) were 
greater than 8. 'The fcllowing listing shows how to use the procedure 
ASMHCL (Figure 3) to: . 

1. Read input from a non-lateled 9-track tape on unit 2B2 that has 
a stancard blocking factcr cf 10. 

2. Put the output listing on a tape labeled VOIIL=TAPE10, with a 
data set name of FRCG1 and a blocking factor of 5. 

3. Block the SYSLIN out~ut of the assembler and use it as input to 
the linkage editor with a blocking factor of 10. 

4. Link-edit the module only if there are no errcrs in the assembler 
(COND=O) • 

5. Link-edit onto a previously allocated and cataloged data set 
USER.LIBRARY with a rrember name of FROG. 

Iljobname JOB 

Ilstepname EXEC PROC=ASMHCL, X 

II COND.L=(O,NE,stepname.C) 

IIC.SYSPR I NT DD DSNAME=PROG1,UNIT=TAPE, X 

II VOLUME=SER=TAPE10,DCB=(BLKSIZE=605) 

IIC.SYSLIN DD DCB=(B LKSIZE=-800) 

IIC.SYSIN DD UN IT=282,LABE L=(,N L), X 

II DCB=(RECFM=FBS,BLKSIZE=800) 

IIL.SYSIN DD DCB=stepname.C.SYSLI N 

IIL.SYSLMOD DD DSNAME=USER.LlBRARY(PROG),DISP=OLD 

1* 

Note: The order cf appearance of overriding DD names for job step 
C corresponds to the order of DD names in the procedure;" that is, 
SYEFRIN'I precedes SYSIIN within step C. The DD name C.SYSIN was placed 
last because SYSIN dces net . .. C. These points 
are covered in the section "Using Cataloged . n the Job 
Control Language rranual, Or er Number 

16 Assembler H Prog~ammer's Guide 

c 

o 



o 

o 

The following exarn~le shows assembly of two programs, link-editing 
of the two assemblies into one load module, and execution of the load 
module. The input stream appears as follows: 

Ilstepnamel 
/IC.SYSLIN 

II 
II 
IIC.SYSIN 

/* 
Ilstepname2 

IIC.SYSLIN 

//C.SYSIN 

/* 
IIL.SYSLIN 

IIL.SYSIN 

/* 
IIG.ddname 

EXEC 

DO 

DO 

EXEC 

DO 

DO 

DO 

PROC=ASMHC,PARM.C='LOAD' 

DSNAME=&LOADSET ,UNIT=SYSSQ, 

SPACE=(BO,(100,50)), 

DISP=(MOD ,PASS) ,DCB=(B LKSI ZE=800) 

* 

source program 1 statements 

I 

PROC=ASMHCLG 

DCB=(BLKSIZE=·BOO),DISP=(MOD,PASS) 

* 

source program 2 statements 

I 

I 

DCB=BLKSIZE=800 

DO * 
ENTRY PROG 

dd cards for G step 

X 

X 

The Job Control Language rranual, Order Number::::28-6539, and System 
Programmer's Guide, Order Number C28-6550, provide additional 
description cf cverriding techniques. 

Using The Assembler 17 



This page intentionally left blank. 

c 

18 Assembler H Programmer's Guide 



o 

o 

Assem bIer Listing 

!he assembler H listing consists of up to five sections, ordered as 
follows: 

• E~ternal symbol dictionary 

• Source and object program 

• Relocation dictionary 

• Symbol and literal cross reference 

• Diagnostic cress reference and assembler summary 

Figure 6 shows each section of the listing. Each item marked with 
a circled number is explained in the following section. 

Assembler Listing 19 



\ PRIME 

CD 

o 

SYMBOL 

EXSYM 
IOlOOP 
COMSECT 
EXDMY 
WRKFlDS 

000 o 
TYPE IiJ AOOR lENGTH 

PC 0001 000000 00020C 
ER 0002 

o 
lO If) 

lD 000022 0001 
eM 0003 000000 000050 
XD 0004 000003 000018 
SO 0005 000210 000090 

PRIME SAMPLE LISTING DESCRIPTIUN 

@ (0 @ @ 

EXTERNAL SYMBOL DICTIONARY 

@ 
lOC OBJECT CODE MORI AODR? SHU SOURCE STATEMENT 

PRIME 

@ 

(JOOOOO 

00(J00005 

(J(J(JOOO 90fC DOOC 
000004 05CO 
00000006 
000006 5000 COFb 
OOOOOA 0000 ')000 

I EV044 ** .. ERR[)R 
OOOOOE 5850 C202 

000022 4110 CBE 
000026 4100 C052 
00002A 58FO 1030 
00002E 05H 

@ @ 
POS.ID REL. ID FLAGS 

OOlll 0001 08 
0001 0001 08 
0001 0002 OC 
0001 0004 2C .. 

OOOOC 

OI}OFC 
00000 

UNDEFINI:O 
00208 

@ 

00144 
00058 
00030 

AOtlRESS 

000019 
000010 
000208 
DUG 140 

2 
3 
4 
5 R5 

7 
H 
9 

10 
11 

SYMBOL 
12 
13 
14 

23 
24 IOlOOP 
25+ IOlOOP 
26+ 
27+ 
28+ 

CS~CT 
EXrRN EXSYM 
ENTRY IOlOOP 
EQU 5 

STM 14,120121131 
BAlR 12,(J 
USING ",12 
ST 13, SAVE+4 
lA 10, SAUE 

L R5,=AI EXSYMI 
PRINT NOGEN 
(JPEN IINDCB"OUTOCij,IOU1PUTII 

PRINT GEN 
GET INIJCB,INBUF 
LA l,INIJCB 
LA 0, INOUf 
l 15,48 10 ,II 
BAlR 14,15 

RFLOCATllIN DICTIONARY 

PRIME CROSS REFERENCE 

@ @ @ @ 
SYMIIOl LEN VALUE DEFN 

COMSECT 00001 00000000 0161 
EXDMY 00001 00000000 01(>9 
EXSYM 00001 oaoooooo 0003 
EXTNlDUMYSCTN 

00004 000140 0052 

~ 
REFERENCES 

0052 
0174 

I NIIUF 00004 000058 0049 0026 0033 
INDca 00004 000144 0058 0018 0025 
IOLOOP 00004 0001)22 0025 0004 0039 
OUTSUF 00004 0000A8 OOSO 0033 0036 
OUTBUF 00001 00000000 0172 ****DlJPLICATE**". 
OUTDCII 00004 00U1A4 0115 0020 0035 
R5 00001 00000005 0005 0012 0032 
SAUE "***UNIlEF INED* .... * 0011 
SAVE 00004 0000F8 0051 0010 0041 
WRKFlDS 00001 00000210 0170 
=AIEXSYM) 

00004 000208 0174 0012 

PRIME OIAGN(JST IC CROSS REFERENC!' ANfl ASSEMBLER SlI~MARY 

THE FOLLOWING STATEMENTS WERE HAGGE~ 
00011 00172 

2 STATEMENTS FlAGGEO IN THIS ASSEMALY R WAS HIGHEST SEVE~ITY CODE 

OVERR III I NG PAR A.~ETERS- NOD ECK, MUL T, S YSPARM=SAMPLE.PRUGRAt~ 
OPTIONS FOR THIS'ASSE'IBLY 

PAGE 1 

ASM H V 01 11.52 05/19110 

PAGE 2 

@ @ 
ASM H VOl 11.52 05119110 

LOAD PARAMETER REG 1 02-IHBIN 
LOAD PARAMETER REG 0 02-IHBIN 
lOAD GET ROUTINE ADDR. 01-GET 
LI t.K TO GET ROUTINE 01-GET 

PAGE 

ASM H V 01 1l.52 05/19/10 

PAGE 

ASM H V 01 U.52 05119110 

PAGE 

ASM H V 01 11.52 05/19170 

NUDECK, NOLtJAfl, LIST, XREF, NORE~JT, NOTEST, /1UlT, ALGN, ESO, RlD, LINECNT= 55, MSGLEVEl= 0, SYSPARM=SAMPlE*PROGRAM 
NO OVERR Illl NG 110 NAMES 

48 CARtJS FRUM SYS 1 N 
151 LINES DUTPUT 

1575 CAR')S FROM SYSLIB 
o CAlWS OUTPUT 

Fiqure 6. Assembler H Listing 

20 Assembler H Programmer's Guide 

c 

c 



o 

External Symbol Dictionary (ESD) 

This section of the listing contains the external symbol dictionary 
inforrr.ation ~ass€d to the linkage editor or loader in the object module. 
The entries describe the centrol sections, external references, and 
entry ~oints in the asserrbled program. There are six types of entries, 
shc~n in Table 3 along with their associated fields. The circled 
numters refer to the ccrres~ending headings in the sample listing 
(Fiqure 6). The Xs indicate entries accompanying each tYfe designation. 

1atle 3. TYf€S of ESD Entries 

Q) ® ® CD @ ® 
SYMBOL TYPE ID ADDR LENGTH LDID 

X SO X X X -
X LO - X - X 
X ER X - - -
- PC X X X -
X eM X X X -
X XO X X X -

The name of every external dummy section, control section, entry 
point, and external symbol. 

The type designatcr fcr the entry, as shown in the table. The 
type designators are defined as: 

se -- Ccntrel section definition. The symbol appeared in the 
name field of a CSECT or START statement. 

LD -- Label definition. The symbol appeared as the cperand of 
an ENTRY staterrent. 

ER -- External reference. The symbol appeared as the oferand of 
an EXTRN statement, or was declared as a V-tyfe address 
constant. 

FC -- Unnamed control section definition (frivate code). A CSECT 
or START statement that commences a control section does 
nct have a syrrbcl in the name field, or a .control section 
is commenced (by any instruction which affects the location 
counter) before a CSECT or START is encountered. 

CM -- Cerorron centrol section definition. The symbol appeared in 
the name field of a COM statement. 

XD -- External dUff,my section. The symt:ol appeared in the r.arre 
field of a DXD statement or a Q-type address constant. 
(The external dummy section is called a pseudo register 
in the Linkage Editor and Loader manual, Order Number 
GC28 -6 538. ) 

Assembler Listing 21 



o The external symbol dictionary identification number (ESDID). 
The numter is a unique four-digit hexadecimal number identifying 
the entry. It is used in combination with the LD entry of the 
ESD and in the relocation dictionary for referencing the ESD. 

The address of the symbol (in hexadecimal notation) for SD-and 
LD-type entries, and blanks forER-type entries. For PC- and 
CM-type entries, it indicates the beginning address of the control 
section. For xL-type entries, it indicates the alignment by 
printir.g a number one less than the number of bytes in the unit 
of alignment. For example, 7 indicates doutleword alignment. 

The asserrtled length, in bytes, of the control section (in 
hexadecimal nctaticn) • 

For an I.D ... type entry, the ESLID of the control secticn in which 
the syrntol was defined. 

Source and Object Program 

This section of the listir.g documents the source statements and the 
resulting object program. 

CD 
CD 
@ 

The one to eight-character deck identification, if any. It is 
obtained from the name field of the first named TITLE statement. 
The assembler prints the deck identification and date (item 16) 
On every page of the listing. 

The information taken from the operand field of a TITLE statement. 

The listing page number. 

The assembled address (in hexadecimal notation) of the object 
code. 

• For ORG statements, the location-counter value before the 
CRG is placed in the location column and the location counter 
value after the ORG is placed in the otject code field. 

• If the END staterr.ent contains an operand, the operand value 
(transfer addres s) aJ;pears in the location field (LOC). 

• In the case of LCCTR, COM, CSECT, and DSECT staterr.ents, the 
lccaticn field ccntains the current address of these control 
sections. 

• In the case of EXTRN, ENTRY, and DXD instructions, the 
location field ar.d object code field are blank. 

• For a USING statement, the location field ccntains the value 
of the first oFerand. It is four bytes long. 

• For LTORG staterrents, the location field contains the location 
assigned to the literal pool. 

• For an EQU staterrent, the location field contains the value 
assigned. It is four bytes long. 

22 Assembler H Programmer's Guide 

c 

c 



D, 
' .. ," 

o 

o 

The otjEct code ~roduced by the source statement. The entries 
are al~ays left-justified. The notation is hExadecirral. Entries 
arE machinE instructicns or assemtled constants. Machine 
instructions arE l=rinted in full with a blank inserted after every 
four digits (two bytes). Only the first eight bytes of a constant 
will appear in the listing if PRINT NODATA is in effect, unless 
the statement has continuation cards. The entire constant appears 
if PRINT r:ATA is in effect. (See the PRIN'I asserrbler instruction 
in the AssErrtlEr Language publication, Order Number GC28-6514.) 

Effective addresses (each the result of adding together a base 
register value and a displacement value) : 

The field headed ADr:R1 contains the effective address for 
the first operand cf an SS instruction. 

!he field headed ADDR2 contains the effective address of 
the last operand of any instruction referencing storage. 

Eoth addrEss fields contain six digits; however, if the high-order 
digit is a zero, it is not printed. 

The statement numter. A plus sign (+) to the right of the number 
indicates ttat the staterrent. was generated as the result of macro 
call processing. An unnumbered statement with a plus sign (+) 
is the result cf cpen code substitution. 

The source program statement. The following items a~ply to this 
section of the listing: 

• 

• 

Source staterrents are listed, including those brought into 
the program ty the copy assembler instruction, and including 
macro definiticns submitted ~ith the main program for 
assembly. Listing control instructions are not printed, 
except for PPIN!, which is always printed. 

MACFC definitions ottained frOID SYSLIB are not listed unless 
the rracrc definition is included in the source program by 
rr.Eans of a COPY staten:-ent. 

• The statements generated as the result of a macro call follow 
the rracrc call iT. the listing unless PRINT NOGEN is in effect. 

• Asserrtler and machine instructions in the source program 
that contain variatle symbols are listed twice: as they 
appEar in the scurce input, and with values substituted for 
the variatle symtols. 

• All error diagnostic ·messages appear in line except those 
suppressed by the MSGLEVEL option. The "Assembler Diagnostics 
Facili ties" section describes how error rressages and MNOTEs 
arE tandled. 

• Literals that have not been assigned locations by LTORG 
staterr.ents appear in the listing following the END statement. 
Literals are identified by the equals sign (=) preceding 
them. 

• Whenever possible, a generated statement is printed in the 
same format as the corresponding macro-definition (model) 
statement. The starting columns of the operation, o~erand, 

Assembler Listing 23 



@ 
@ 
@ 

and comments fields are preserved unless they are dis~laced 
ty field subsitution, as shown in the following exarr.~le: 

Source Staterrents: &C SETC 'ABCDEFGHIJK' 
&C LA 1,4 

Generated Staten.ent: ABCDEFGHIJK LA 1,4 

It is possible fer a generated statement to occupy ten or more 
continuation lines on the listing. In this way generated 
statements are unlike source statements, which are restricted 
to nine continuation lines. 

The versicn identifier of Assembler H. 

The current date (data run is made). 

The identification-sequence field from the source staterrent. 
For a macro-generated statement, this field contains information 
identifying the origin of the statement,. The first two colwnns 
define the level of the macro call. 

For a lil:rary IT,acre call, the last five columns contain the first five 
characters of the macro nane. For a macro whose definition is in the 
source program (including one read by a COpy stateITent), the last five 
characters centain the line number of the model statement in the 
definition from which the generated statement is derived. This 
inforrration can be an irr:~ortant diagnostic aid in analyzing output 
dealing with macro calls within macro calls. 

Relocation Dictionary 

This section of the listing contains the re.location dictionary 
inforrr,ation J;assed to the linkage edi tor in the object module. The 
entries describe the address constants in the asseIT.bled program that 
are affected by relccatien. 

The external symbol dictionary Ie number assigned to the ESD entry 
for the centrel section in which the address constant is used 
as an o~erand. 

The external symbol dictionary ID number assigned tc the ESD entry 
for the ccntrel sectien in which the referenced symbol is defined. 

The two-digit hexadecimal number represented by the characters 
in this field is interpreted as follows: 

• First Digit. A zero indicates that the entry describes an 
A-type or Y-type address constant. A one indicates that 
the entry describes a v-type address constant. A two 
indicates that the entry describes a Q-type address constant. 
A three descrires a CXD entry. 

• Second Digit. The first three bits of this digit indicate 
the length of the constant and whether the base should be 
added or subtracted: 

Bits 0 and 1 
00 = 1 byte 
01 = 2 bytes 

Bit 2 
0=+ 
1 = -

24 Assembler H Programmer's Guide 

Bit 3 
Always 0 

c 

o 

o 



o 

o 

o 

10 3 bytes 
11 4 l:ytes 

The assenl:led address of the field where the address constant 
is stored. 

Cross Reference 

This section of the listing information concerns symbols and literals 
which are defined and used in the progzam. 

@ 
@ 

The symbols or literals. 

The length (in decimal notation), in bytes, of the field 
represented l:y the syrrbcl. 

Either the address the symbol or literal represents, or a value 
to which the symbol is equated. The value is three bytes long, 
except for the following, which are four bytes long: CSECT, 
DSECT, START, COM, :CXC, EQU, LOCTR, EXTRN, and a dUI;licate symbol. 

The nurr.l:er of the statement in which the syml:ol or literal was 
defined. 

The statement numbers of statements in which the syrol:ol or litezal 
a~pears as an c~erand. In the case of a duplicate symbol, the 
assembler fills this column with the message: 

****CUPLICATE**** 

The following notes apply to the cross-reference sEction: 

• Symbols appearing in V-type address constants do not appear in 
the cress-reference listing. 

• Cross-reference entries for symbols used in a literal refer to 
the asserrtled literal in the literal ~ool. Look up the literals 
in the cross reference to find where the symbols are used. 

• A PRINT OFF listing control instruction does not affect the 
production of the cross-reference section of the listing. 

• In the case of an undefined symbol, the assembler fills fields 
23, 24, and 25 with tte message: 

****UNDEFINED****. 

Diagnostic Cross Reference and Assembler Summary 

The staten,ent number of each sta tement flagged with an error 
message or MNOTE appears in this list. ThE number of statenents 
flagged and the highest non-zero severity code encountered is 
also printed. The highest severity code is equal to the assembler 
return code. 

Assembler Listing 25 



If no errors are enccuntered, the following statement is printed: 

NO S'IA'IEMENTS FLAGGED IN 'IHIS ASSEMBLY 

See the section "E,rror :Ciagnostics" for a ccmplete discussion 
of how error nessages and MNOTEs are handled. 

A list of the options in effect for this assembly is printed. 
The options specified b:y the programmer in the PARM field to 
override the assembler default options are also printed. 

If the assembler has teen called by a protlero program (See Appendix 
:C) and any standard (default) DD names have been overriden, both 
the default :C:C names and the overriding DD names are listed. 
Otherwise, this statement appears: 

NO OVERRIDING DD NAMES 

'Ihe assembler prints the number of records read froIT SYSIN and 
SYSL IB and the nurrber of records ~ri tten on SYSPUNCH. The 
assembler also prints the number of lines written on SYSPRIN'I. 
This is a count of the actual number of 121-byte records generated 
by the assembler; it may be less than the total number of printed 
and tlank lines a~~earir.g on the listing if the SPACE n assembler 
instruction is used. For a SPACE n that does not cause an eject, 
the assemtler inserts n blank lines in the listing by generating 
n/3 blank 121-byte records -- rounded to the next lower integer 
if a fraction results (for example, for a SPACE 2, no blank records 
are generated). The assembler does not generate a blank record 
tc force a page eject. 

26 Assembler H Programmer's Guide 

c 

c 



o 

o 

o 

Assembler Diagnostic Facilities 

1he diaqnostic facilities for Assembler E include diagnostic rres~ges 
for asserrtly errors, diagncstic or explanatory messages issued by the 
source program or by macro definitions (MNOTEs), a macro trace and 
dump facility (MHELP), and messages and dumps issued by the assembler 
in case it terminates abnormally. 

This section briefly describes these facilities. The assembly error 
diagnostic rressages and atncrrral assembly termination messages are 
described in detail in the Assembler H Messages book, Order Number 
SC26-3770. 

Assembly Error Diagnostic Messages 

Assembler H prints most error messages in the listing immediately 
followinq the stateroent in errcr. It also prints the total number 
of flagqed statements and their line numbers in the Diagncstic Cross 
Reference section at the end of the listing. 

'The rressaqes do not follow the statement in error when: 

• 

• 

Errors are dEtected during editing of macro definitions read from 
a library. A message for such an error appears after the first 
call in the source program to that macro definition. You can, 
however, l:::ring the rr.aore defini tien into the source program with 
a COPY statement. The editing error messages will then be attached 
to the staterrents in error. 

Errors are detected by the lookahead function of the asse~bler • 
(Lookahead scans, fcr attribute references, statements after the 

one being asserrbled.) Mes~ges for these errors appear after 
the statements in which they occur. The messages rray also appear 
at the ~oint where lcokahead ~as called. 

• Errors are detected on conditional assembly statements during 
macro generaticn or MHELP testing. Such a message follows the 
most recently generated statement or MHEIP output statement. 

A typical error diagnostic message is: 

IEV057 ***ERROR*** UNDEFINED OPERATION CODE -- xxxxx 

The term ***ERROR*** is part of the message if the severity code is 
8 or qreater. The term **WARNING** is part of the message if the 
severity code is 0 or 4. 

A copy of a segment of the statement in error, represented above by 
xxxxx, is appended to the end of many messages. Normally this segment, 
which can be u~ to 16 bytes lcng, begins at the bad character or term. 
For some errors, however, the segment may begin after the bad character 
or term. 'The segrr,ent nay include part of the remarks field. 

If a diaqnostic message follows a statement generated by a rracro 
definition, the following iterr,s may be appended to the error message: 

Assembler Diagnostic Facilities 27 



• The number of the model statement in which the error occurred, or 
the first five characters of the macro name. 

• The SET symbol, parameter number, or value string associated with 
the error. 

Note: references to macro parameters are ty number (such as PARAMO 08) 
instead of narrE. Tbe first seven numbers are always assigned for the 
standard system parameters as follows: 

PARAMO 0 0 &SYSNDX 
PARAMO 0 1 = &SYSECT 
PARAMOO2 = &SYSLCC 
PARAMOO3 &SYS'IIME 
PARAMOO4 = &SYSI:ATE 
PARAMOO5 = &SYSPARM 
PARAM006 Name Field Parameter 

Then the keyword parameters are numbered in the order defined in the 
macro defini tion, followed by positional parameters. When there are 
no keyword parameters in the macro definition, PARAM007 refers to the 
first ~ositional parameter. 

If a diagnostic message follows a conditional assembly staterrent in 
the source prcgrarr, the following items will be appended to the error 
message: 

• The word "OPENC" 

• Tbe SET syrrtcl or value string a ssocia ted wi th the error 

Several messages may be issued for a single staterrent or even for a 
single error within a statement. This happens because each statement 
is usually evaluated on more than one level (for exarrple, tern 
level,expressicn level, and operand level) or by more than one phase 
of the assembler. Each level or phase can diagnose errors; therefore, 
most or all of the errors in the statement are flagged. Occasionally, 
duplicate error messages may occur. This is a normal result of the 
error detection process. 

Figure 7 is an exarrple of Assembler H handling' of error messages. 

28 Assembler H Programmer's Guide 

c 

o 



o 

LOC OBJECT CODE AOI)R 1 ADDR2 SHIT SUUKCf STATE;~FNT ASM H V 01 11.51 05/20110 

000000 
000000 0000 0000 00000 

IEV044 "'** ERROR *"'* UNDl:fINE(I 
I EV029 *** ERROR *** INCORRECT 
IEV119 **'" ERROR *** DEL IMITER 

000004 05CO 
00000006 
000006 0000 0000 00000 

IEV044 **'" EHROR *** UtIIOEF INEO 

I E VOSS *"'* ERROR **. UNBALANCED 
OOOOOA 0100 
nooooc 4510 COOF 00014 
~00010 00000000 
000014 0000 0000 00000 

******************.******************.**** •••• ******************** ••••• * SAMPL E ERROR 01 AGNOST IC MESSAGES * 
* l;-.j SOURCE PRUGRAr- (OPEN CODEI AND GENERATED BY MACRO CALLS • 

4 * * **. ***** **.**** **** * *** ** *.**** * * •• ****** ***** •• *** * '" *.******** •• **.* 
6 A 
7 

~YMBllL 

CSEC T 
S T>1 14,U2, 121 1 ~I 

REGISTER SPECifiCATION 
ERROR, EXPECT RIGHT PARI:NTHES IS 

8 BALR 12,0 
9 USING *,12 

10 ST 13,SAV[+4 
SYMBOL 

11 
PARI:NTHESES 
12+ 
13+ 
14+ 
15+ 

OPEN I CRIJI N, I INPUT I ,CRDOUT, I OUTPUT) 
IN MACRO CALL Oi>ERANIJ -- OPENClICRDIN,IIN 
CNOP 0,4 01-0PEN 
BAL 1,*+B LOAD REGl W/LIST AODR. aI-OPEN 
DC Alai OPT BYTE AND OCB ADOR. 01-0PEN 
ST CRDIN,(INPUT),CRODUT,IOUTPUT,Oll,OI XOI-0PEN 

STORE INTO LIST 
IEV029 *** ERROR *** INCORRECT REGISTt:R SPECIFICATION 
IEV044 *** ERROR *** UNDEFINED SYMBOL 
IEV177 *** ERROR *** DeLIMITER F.RRUR, EXPECT BLANK OR LEFT PARENTHESIS 

000018 92BO 1000 00000 16+ MV( O( 11 ,128 
00001C OA13 17+ SVC 19 

MOVE IN OPTION BYTE 
ISSUE OPfN SVC 

19 ******* *** *** ********************************* ** ********************** 
20 * ED I TI NG AND GENE RAT ION ERRORS AND MNOTES fROM A Ll BRARY MACRO 

21 ** ** ***** ** ** * *** ***** * *** ******** ****** *** *************************** 
23 LOAIJR REGl=10,REG2=8,CHEROKEE,CHAMP 

ILLEGAL LOGICAL/RELATIONAL OPERATOR MACRU - LUADR 

aI-OPEN 
01-0PEN 

IEV136 *** ERROR *** 
IEVOS~ *** !:RROR *** 

00001 E 58AO C02A 
ARITHMETIC rXPRESSlllN CUNTAINS ILLEGAL DELIMITER OR ENDS PREMATURELY 

00030 24+ L 10,CHI::ROKEE 
MACRO - LOADR 

01-LOAOR 

000022 0000 0000 

IEV029 *** ERROK *** 

000026 5800 can 

QOOOOC 5BAO C004 
0000 1 0 5880 COOB 

I EV003 *** ERROR *** 
000014 0000 0000 

I EV029 *** ERROR *** 
000018 0000 0000 

I EV074 *** ERROR *** 

IEV254 *** MNOTE *** 

26 L')ADR RI:Gl=25,RFG2=B,CHEROKFE,SWIFT 
00000 21+ L 25,CHI::RUKEE 

INCORRECT REGISTER SPECIFIC'ATION 

000~4 

00004 
00008 

29 
30+ 

LllAIJR KEG2=10,CHAMP, SWIFT 
L O,CHAMP 

6 * * ******* * ***** ** **** ** ****** ******** * ******** **** ******* * ************ 7 * SAMPLt MAC"O I)EFINITION RERUN wITH EDITING ERRORS CORRECTEO * 
f1 ** **** *** **** * ** ****** *** ** ** * ****** **** *** ******* ******* *********** ** 

10 
11 
12 
13 
14 
15 
16 
11 
IB 

20 
21 
22 

24 
25+ 
26<-

f.NAMF 
&R (1) 

.ERR 

MACKe) 
LOADR 
SETA 
AIF 
L 
L 
MEXI T 
MNUTE 
MEND 

&'1.E('l= ,&REG2=,&'OPl ,&OP2 
&REG 1, &REG2 
IT'&'RfGl EQ 'O'I.ERR 
&.R I 11, &OPI 
&'R(21,&QP2 

36, 'YOU LEFT OUT THE FIRST REGISTER' 

********************************************************************** * SAMPLf: MACRO CALLS WITH GENERATION ERRORS AND MNOTES * 
** ******** **** ******* * *********** * **** *** ***** **** **************** **** 

LOADR REGl= 1 0, REG2=8, CHEROKEE, CHAMP 
L 10,CHFROKEE 
L q,CHAt-'P 

28 LOAUR REGl=25,ReG2=B,CHEROKEE,&SWIFT 
UNDECLARED VARIABll' SYMBOL. DEFAULT=O, NULL, UR TYPE=U -- OPENC/SWIFT 

00000 29+ L 25,CHEROKEE 
INCORRECT REGISTER SPECIFICATION 

00000 30+ L B, 
IllfGAL SYNTAX IN EXPRESSION 

32 
~3+ 

34 

LUAD'1. REG2=B,CHAMP,SWIFT 
36,YOU LEFT OUT THE FIRST REGISTER 

END 

Ol-LOADR 

Ol-LOADR 

01-00014 
01-00015 

01-00014 

01-00015 

01-00017 

Figure 7. Sample Error Diagnostic Messages 

Assembler Diagnostic Facilities 29 



MNOTEs 

An MNCTE statement is included in a macro definition er in the source 
proqram. It causes the assenbler to generate an inline error or 
informational message. 

An MNOTE appears in the listing as follows: 

IEV254 ***MNCTE*** severity code, message 

Unless it has a severity code of * or the severity code is omitted, 
the statement number or the MNO'I'E is listed in the diagnostic cross 
reference. 

Suppression of Error Messages and MNOTEs 

Error messages and MNCTEs telow a specified severity level can be 
optionally su~~ressed by declaring in the EXEC statement: 
PARM= 'MSGLEVEL=n' (where "n" is the selected severity level). If you 
are not concerned with warning and error messages in a specific 
assembly, using this option provides a cleaner listing. 

Abnormal Assembly Termination 

Whenever the assently cannct be completed, Assembler H provides a 
rressage and, in some cases, a specially formatted dump for diagnostic 
information. This nay indicate an assembler malfunction or it may 
indica te a programmer error. The s·tatement causing the error is 
identified and, if ~ossibl€, the assembly listing up to the point of 
the error is printed. The Assemcler H Messages took, Order Number 
SC26-3770, descrites the abnormal termination messages. The messages 
give enough information to (1) correct the error and reassemble your 
progran., or (2) determine that the error is an assembler malfunction. 

The Assembler H Program Lcgic Manual, Order Number LY26-3760, gives 
a conplete explanation of the format and contents cf the abncrnal 
ternination durr~. 

Macro Trace Facility (MHELP) 

The ~HELF instruction controls a set of trace and dump facilities. 
Options are selected l:::y an absolute ex~ression in the MHELP operand 
field. MHELF statements can occur anywhere in open code or in macro 
definitions. MHELP options remain in effect continuously until 
superseded by another MHELF statement. Appendix B is a sample MHELP 
trace and dun};:. 

30 Assembler H Programmer's Guide 

c 

o 



o 

o 

o 

Macro Call Trace 

(MEELP B' l' or MHELP, 1}"1 'Ihis oJ;:tion provides a one-line trace for 
each macro call, gi virig the name of the called ll'acro, its ne sted de pth, 
and its &SYSNDX (total nurrber of macro calls) value. 

Note: This trace is provided upon entry into the macro. No trace 
is provided if error conditions prevent entry into the macro. 

Macro Branch Trace 

(MEELP B'10', or MHELP 2). This option provides a one-line trace for 
each AGO and true AIF conditional-assembly statement within a macro. 
It qives the model-statement numbers of the "branched froll''' and 
"branched to" statell'ents, and the name of the macro in which the branch 
occurs. This trace option is suppressed for library macros. 

Macro Entry Dump 

(MHELF B' 10000', or MHELF .16), This option dumps parameter values from 
the macro dicticnary when 'the macro is called. 

Macro Exit Dump (MHELP B'1000', or MHELP 8). This option dumps SET 
symbol values from the macro dictionary upon encountering a MEND or 
ME2<I'I staterrent. 

Macro AIF Dump 

(MHEI.F B' 100', or ~HELF'4). 'Ihis option durops SET symbol values from 
the rracro dictionaI:Y ill'mediately befoI:e each AIF statement that is 
encountered. 

Global Suppression 

(liliEI.F B'1 00000', or MHEI.F 32). This option sUJ;:presses global SE'I 
symbols in the twc J;:receding oJ;:tions, MHELF 4 and f.!HEI.F 8. 

MHELP Suppression 

(~HEI.F B'10000000', or MEELP 128t. This option sUfpresses all currently 
active MEELP cJ;:ticns. 

Assembler Diagnostic Facilities 31 



Page of SC26-3759-0 
Revised February 15, i971 
By TNL SN33-8095 

Combining Options 

Multiple.opticns can be ottained by combining .the option codes in one 
MHELF operand. For example, call and !:ranch traces can be invoked 
by MHELP B' 11', MEELP 2+1, or MHELP 3. 

MHELP Control on &SYSNDX 

The MHELP operand field is actually mapped into a fullword. 
Previously-defined MHELP codes correspond to the fourth byte of this 
fullword. 

&SYSNDX control is turned on by any bit in the third byte (operand 
values 256-65535 inclusive). Then, when &SYSNDX (total number of 
macro calls) exceeds the value of the fullword which contains the 
MHELP operand value, control is forced to stay at the open~code 
level, by in effect making every statement in a macro behave like 
a MEXIT. Open code macro calls are honored, but with an immediate 
exit back to open code. 

Examples: 

MHELP 256 
MHELP 1 
.MHELP 256+1 
MHELP 65536 
MHELP 65792 

Limit &SYSNDX to 256. 
Trace macro calls. 
Trace calls and limit &SYSNDX to 257. 
No effect. No bits in bytes 3,4. 
Limit &SYSNDX to 65792. 

When the value of &SYSNDX reaches its limit, the diagnostic 
message "ACTR EXCEEDED -- &SYSNDX" is issued. 

32 Assembler H Programmer's Guide 

o 

c 

o 



o 

o 

Programming Considerations 

This section describes of a number of subjects about assembler-language 
}:rcq:ramming. 

Saving and Restoring General Register Con ten ts 

A }::roblem program should save the values contained in the general 
registers u};:cn cerrrrencing execution and, upon completion, restore to 
the general reqistersthese same values. Thus, as control is passed 
from the operating system to a problem program and, in turn, to a 
sub~:rog:ram, the status of the registers used ty each program is 
preserved. This is dcne through use of the SAVE and REI'URN system 
mac:ro instructions. 

'Ihe SAVE mac:ro instruction should be the first statement in the program. 
It steres the contents of :registers 14, 15, and 0 through 12 in an 
area ~rovided by the program that passes control. When a };:roblem 
proqrarr is given ccnt:rel, :registe:r 13 contains the address of an area 
in which the general register contents should te saved. 

If the progran calls any sub};:rograms, or uses any operating system 
se:rvices other than GE'IMAIN, FREEMAIN,A'I'IACH, and XCTI, it must first 
save the contents of register 13 and then load the address of an 18-
fullword save area into register 13. This save area is in the problem 
T;:rogram and is used by any subprograms or Operating Systerr: services 
called by the prcblem };:rogram. 

At corr.pletion, the };:roblerr. };:regram restores the contents of general 
:registers 14, 15, and 0-12 by use of the RETURN system macro instruction 
~hich also indicates program completion). The contents of register 
13 must te restored before execution of the RETURN macro instruction. 

The ceding sequence that fellows illustrates the basic process of 
savinq and restoring the contents of the registers. A complete 
discussion of the SAVE and RE'IURN macro instructions and the saving 
and restoring of registers is contained in the Data Management Services 
putlication, Order Nurr~er GC28-6646, and the Data Management Macro 
Instructions publication, Order Number GC28-6647. 

Name Operation Operand 

BEGIN SAVE (14,12) 

set up base register 

ST 13,SAVEBLK+4 
LA 13,SAVEBLK 

L 13,SAVEBLK+4 
RETURN (14,12) 

SAVEBLK DC 18F'O' 

Programming Considerations 33 



Program Termination 

You indicate completion of an assembler-language source program by 
using the RETURN system macro instruction to pass control from the 
terminating pregram to the program that initiated it. The initiating 
program may be the Operating System or, if a subprogram issued the 
RETURN, the program that called the subprogram. 

In addition to indicating program completion and restoring register 
contents, the RETURN macro instruction may also pass a return code 
-- a condition indicator that may be used by the program receiving 
centrol. If the return is to the operating system, the return code 
is ccmpared against the ccndition stated in the COND= parameter of 
the JOE or EXEC statement. If return is to another problem program, 
the return cede is available in general register 15, and may be used 
as desired. Your program should restore register 13 before issuing 
the RETURN macro instruction. 

The RETURN system macro instruction is discussed in detail in the 
Supervisor and Data Management Macro Instructions publication, Order 
Numter GC28-6647. 

PARM Field Access 

Access to information in the PARM field of and EXEC statement is gained 
through general register 1. When control is given to the problem 
program, general register 1 contains the address of a fullword which, 
in turn, contains the address of the data area containing the 
information. 

The data area consists of a halfword containing the count (in binary) 
of the number of information characters, followed by the information 
field. The information field is aligned to a fullword boundary. The 
following diagram illustrates this process: 

General Register 1 

I Address of Fullword 
I I 

Points 
to 

Fu"word 

.. J Address of Data Area I 
I 
I 

Data Area 

'--___ +I: Count in Binary I Information Field I 
Macro Definition Library Additions 

Points I 
to 

Source statement coding, tc be retrieved by the COpy assembler 
instruction, and macro definitions may be added to the macro library. 
The IEEUPDTE utility prograrr is used for this purpose. Details of 
this program and its control statements are contained in the Utilities 
putlication, Order f'umber GC28-6586. The following sequence of job 
control statements can be used to call the utility program and identify 
the needed data sets. It is assumed that the jot control statements, 
IEEUPDTE program control statements, and data are to enter the system 
via the in-put stream. 

34 Assembler H Programmer's Guide 

c 

CI 

c 



o 

o 

//jobname 
//stepname 
//SYSUT1 
//SYSUT2 
//SYSPRINT 
//SYSIN 

JOB 
EXEC 
DO 
DO 
DO 
DO 

PGM=I EBUPDTE,PARM=MOD 
DSNAME=SYS1.MACLIB,DISP=OLD 
DSNAME=SYS1.MACLlB,DISP=OLD 
SYSOUT=A 
* 

IEBUPDTE control statements and source statements or 
macro-definitions to be added to the macro library 
(SYS1.MACLlB) 

/* (delimiter statement) 

Load Module Modification - Entry Point Restatement 

If the editing functions of the linkage editor are to be used to modify 
a load module, the entry J;cint to the load module must be restated 
when the load module is reprocessed by the linkage editor. otherwise, 
the first tyte af the first ccntrol section processed by the linkage 
editor will become the entry point. To enable restatement of the 
oriqinal entry p'cint, cr designation of a new entry point, the entry 
~oint must have been identified originally as an external syrrbcl; that 
is, it rrust have ap'p'eared as an entry in the external symbol dictionary. 
External symbol identification is done automatically by the assewbler 
if the entry pOint is the r.arc;e of a control section or STAR'! statement; 
other~ise, an assembler EN'IRY statement must J:e used to identify the 
entry point name as an external symbol. 

When a new object rrodule is added to or replaces part of the load 
module, the entry point is restated in one of three ways: 

• By placing the entry p'oint symbol in the operand field of an EXTRN 
staterrent and an END statement in the new object module. 

• By using an END statement in the new otject module tc designate 
a new entry p'oint in the new object module. 

• By using a lir.kage editor ENTRY statement to designate either 
the original entry point or a new entry point for the load module. 

Further discussion of load module entry points is contained in the 
Linkage Editor and Loader J;ublication, Order Number GC28-6538. 

Object Module Linkage 

Object modules, whether generated by the asseml:ler or another language 
processor, may be combined by the linkage editor to produce a composite 
load mcdule, provided each object module conforms to the data formats 
and linkage conventions required. ~his topic discusses the use of 
the CALI. system macro instruction to link an asseIl1bler language rrain 
program to subprograms produced by another processor. '!he Supervisor 
and Data Management Macro Instructions publication, Order Number GC28-
6647, contains additional details concerning linkage conventions and 
the CALL system macro instruction. 

Programming Considerations 35 



Figure 8 is an example of statements used to establish the assembler
language prograrr linkage to FOR'TRAN and COBOL subprograms. 

If any input/output o~erations are performed by called subprcgra~s# 
a~~ropriate DD statements for the data sets used by the subprograms 
must be supplied. See the appropriate language programmer's guide 
fer an explanation of the CD statements and special data set record 
formats used for the ~rocessor. 

36 Assembler H Programmer's Guide 

,( 

c 



o 

o 

o 

2 

ENTRPT SAVE 
LR 
USING 
ST 
LA 
ST 
LR 

CALL 

(14,12) 
12,15 
ENTRPT,12 
13,SVAREA+4 
15,SVAREA 
15,8(13) 
13,15 

name,(V1,V2,V3),VL 

L 13,SVAREA+4 
RETURN (14,12) 

3 SVAREA DC 18F'O' 
4 V1 DC (data) 
5 V2 DC (data) 
6 V3 DC (data) 

END 

This is an example of OS linkage convention. See the Supervisor and Data Management Services publication, 
Order Number GC28-6646, for details. 

2 The symbol used for "name" in this statement is: 

a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram. 

b. The name defined by the following COBOL statements in the procedure division: 

ENTER LINKAGE. ENTRY'name'. 

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an 
assembler-language subprogram. 

The order in which the parameter list is written must reflect the order in which the called subprogram expects the 
argument. If the called routine is a FORTRAN-written function, the returned argument is not in the parameter list: a 
real or double precision function returns the value in floating point register zero; an integer function returns the value 
in general purpose register zero. 

NOTE: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements 
of IBCOM (FORTRAN execution-time I/O and interrupt handling routines) which accompanies the compiled FORTRAN 
subprogram. In some instances the call for IBCOM is not automatically generated during the FORTRAN ompilation. 
The FORTRAN IV Library publication, Order Number GC28-6596, provides information about IBCOM requirements and 
assembler statements used to call IBCOM. 

FORTRAN-written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages 
which call them; therefore all linkages to FORTRAN subprograms are required to have the high-order bit in the last 
parameter in the linkage set to 1. COBOL-written subprograms have fixed-length calling linkages; therefore, for COBOL 
the high-order bit in the last parameter need not be set to 1. 

3 This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram, 
register 13 contains the address of this area. 

4,5,6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined 
by the data formats required by the FORTRAN or COBOLsubprograms. 

Fiqure 8. Sample Assembler Linkage Sta~ements for FORTRAN 
or CCECL sut~rcgrarrs 

Programming Considerations 37 



Page of SC26-3759-0 
Revised February 15, i971 
By TNL SN33-8095 

Special CPU Programming Considerations 

You should be aware of operational differences ~etween the Model 85, 
Model 91, and Model 195 and ether system/360 models. The primary 
diff erences are: 

• Non-sequential instruction execution -- 91 and 195 

• Extended precision Ir.achine instructions 85 and 195 

• Unaligned operands -- 85 and 195 

Controlling Instruction Execution Sequence 

'The Model Q and Model 8maintain a logical consistency with respect 
to their ~ o~erations, 1Dcluding the beginning and ending of I/O 
o~erations, but they do net assume responsibility for such consistency 
in the operations performed by asynchronous units. Consequently, for 
any asynchroncus unit that de~nds upon a strict adherence to sequential 
(or serial) execution, a problem program must set up its cwn ~rocedures 
to ensure the ~ro~er instruction sequence. 

For a program secticn that requires the serial or sequential execution 
cf instructions, the following 'no-operation' instruction: 

BCR N,O N = 1,15 

causes instruction deccding to halt until the instructions that have 
already been decoded are executed. (This action is calle~ a pl,p~~line 
drain.) On the Model 91 and Model 195, this instruction ensures that" 
all the instructions preceding it are executed l:efore the instruction 
succeeding it is decoded. Use of this instruction should be rriniroized, 
because it rray affect the ~erforrrance of the CPU. 

Isolating an instruction by preceding it and following it with a ECR 
N,O instruction eliminates multiple imprecise interruptions frcIT: more 
than one instruction by virtue of the pipe-line drain effect. However, 
because multiple exceptions may occur in one instruction, this technique 
does not eliminate a multiple imprecise interruption, nor does it 
change an imprecise interruption into a precise interruption. The 
use of the BCR instruction does not assure you that you can fix up 
an error situaticn. In general, the only information available will 
be the address of the BeE< instruction. The length of the instruction 
preceding the BCR instruction is not recorded, and generally there 
is nc ~ay to determine what that instruction is. 

I Note: BCR 0,0 does not cause a pipe-lin~ drain. 
, """" 

Extended-Precision Machine Instructions 

The extended-precisio~ arithrretic instructions and the rounding 
instructions of the Model 85 and the Model 195 are shown below. A 
complete descri~ticn cf these instructions is in the System/360 
Principles of Operation, Crder Number GA22-6821. 

38 Assembler H programmer's Guide 

o 

o 

c 



0' 

o 

Name Mnemonic Type Op Code 

ADD NORMALIZED (extended operands, extended result) AXR RR 36 
SUBTRACT NORMALIZED (extended operands, extended result) SXR RR 37 
MULTIPLY (extended operands, extended result) MXR RR 26 
MULTIPLY (long operands, extended result) MXDR RR 27 
MULTIPLY (long operands, extended result) MXD RX 67 
LOAD ROUNDED (extended to long) LRDR RR 25 
LOAD ROUNDED (long to short) LRER RR 35 

A ~roqram containinq the extended-precision instructions cannot be 
executed successfully Cn another Systerr/360 model unless those 
instructions are converted into others that can be executed by the 
non-Model 85 or Model 195 rrachine. 1he OPSYN assembler instruction 
hel~s ~rovide a facility for doing this. 

OPSYN is described in the Assembler H Language Specifications Manual, 
Order Numter GC26- 3771. 

A type L DC instruction can be used to specify an extended-precision 
(16-tyte) flcatinq-~cint ccnstant. The ~C instruction is described 
in the Assen;bler Lanquage rranual, Order Number GC28-6514. 

Unaligned (Byte-Oriented) Operands 

'Ihe ~odel~and MOdel~d{ll execute unprivileged RX and RS format 
instructi~ with fixe~~i~t, floating-point, or logical operands 
that are not on integral boundaries. Assembly of such instructions 
normally produces the diagnostic message "lEV033 ALIGNMENT ERROR". 
A FAFM option in the EXEC statement, ALGN or NOALGN, makes it possible 
to suppress the rressage and thereby obtain a clean assembly listing .• 
The object ccde is not affected. 

Note that an assembled program that requires use of the Model 85 and 
Model 195 byte-criented operand feature cannot te run on another 
machine, nor can it run successfully under the Operating system if 
it violates any aliqnment restrictions imposed by the Operating System. 

Programming Considerations 39 



This page intentionally left blank. 

40 Assembler H Programmer's Guide 

c 

!~\ 
',_yl 

() 



o 

o 

o 

Appendix A. Sample Program 

The sarr:ple };:rcgrarr included with Assembler H when it is received from 
IBM is described in this appendix. This program is a collection of 
casic asserrbler-Ianguage, nacre, and conditional assembly features, 
most of which are illlique to Assembler H. The circled letters in the 
description below refer to corresponding letters in the listing that 
fellows the description. 

® 

The job control language for the assembly consists of the IBM
supplied cataloqed procedure ASMHC and the statements needed to 
use the procedure and supply input to the assembler. (In this 
sample, tte procedure statements begin with XX?) Note that three 
of the default PARM options are overridden in the EXEC statement 
that calls the procedure. 

By using the MUL'I (rr.ultiple assembly) option, this sample program, 
the sample program in Appendix B, and the listings in Figure 6 
and Figure 7 were asserrbled with one set of JCL cards. Object 
modules were not punched for any of the asserrblies because the 
NODECK eI=tion is specified. 'Ihe character string specified in 
the SYSPARM option is avail al:le to each asselrl:ly. The character 
string is displayed in this program by using the system variable 
symbol &SYSFAFM (statement 144). 

'Ihe External Symbol Dictionary shows a named common statement .• 
The narred comrren section is defined in statement 158. 

Appendix A. Sample Program 41 



® 

® 

® 

statement 10: Save the current status of the PRINT staterrent 
(ON, NODATA ,GEl\). 

statement 11: Leave ON in effect, modify the other two options 
to DATA,TSCGEN. 

Statement 12: Macro call; note that the expansion (statement 
10) is not printed. 

statement 14: All 28 bytes of data are dis~layed to the twc
operand DC. 

Statement 15: Restore prior status of PRINT. 

Statements 17 and 18: The generated output of the macro W!O is 
shown and enly the first 8 bytes of data are displayed. 

statements 14 and 18: Multiple constants are allowed in 
hexadecimal and binary rc operands, and neither syrrbel in the 
duplicaticn factcr has been defined yet. Definition occurs in 
statements 108 and 109. 

Statements 26, 28, 136, and 155 illustrate use of the LOC!R 
assembler instruction. ~his feature allo~s one to break control 
sections down into sub-control sections. It may be used in CSECT, 
DSECT, and COM. LOC!R has rrany of the features of a control 
section for example, all of the first LOCTR in a section is 
assiqned space, then the second, and so on. The name of the 
control section automatically names the first LOCTR section. 
Thus LOCTR A is begun, or resumed, at statements 2, 28, and 155. 
Note that the location counter value shown each time is the resumed 
value of the LCCTR. On the other hand, various LOC'IR sections 
within a central section have common addressing as far as USING 
statements are concerned, subject to the corn~uted displacement 
falling within 0 through 4095. In the sample, CONSTANT is in 
LCC'IF DEECEES but the instruction referencing it (staterrent 25) 
has no addressing ~rcblerrs. 

Three-operand EQU. Here, we are assigning: (a) the value of E5 
(not yet defined) to A8, (b) the length attribute of AS to A8, 
and (e) tre ty~e attribute of A7 to A8. If no operand is present 
in an EOC statement, the type attribute is U and the length 
attribute is that of the first term in the o~erand expression. 
Symtols present in the label and/or operand field must be 
previously defined. Note that it is not possible to express the 
type attribute of A7 directly in the EOC statement. The EQU 
statement at 32 could have been written 

A8 EeU BS,2,C'L' 

A8 EQU B5,X' 2' ,X'C4' 

Set symbols &LA8 and &TA8 have not been declared in a LCL or GEL 
statement prior to their use here~ Therefore, they are defaulted 
to local variable syrrbols, as follows: &lA8 is a LCLA SET symbol 
because it appears in the name field of a SETA; &TA8 is a LCLC 
SET symbol tecause it is first used in a SETC. 

MNOTE may appear in open code. As such, they have all properties 
of MNOTEs inside macros, including substitution. 

42 Assembler H Programmer's Guide 

c 

c 



CD 

o 

® 

® 

o 

® 

o 

A SETC expression may have a duplication factor. The SETA 
expression must be enclosed in parentheses and immediately precede 
the character string, the substring notation, or the type attribute 
reference. 

Statements 57-60 illustrate 4-byte self-defining values and unary 
+ and -. Tte value cf X will appear later in a literal address 
constant (see statement 162). Location counter values for EQU 
and USING (statement 3) display 4 bytes. 

The prograrrrr,er macro DEMO is defined well after the start of the 
assembly. Macros can ~e defined at any ~oint and, having been 
defined and/er ex~anded, can be redefined. Note that the 
parameters on the prototype are a mixture of k,eywords and 
positional operands. &SYSLIS~ may be used. The positional 
parameters are identified and numbered 1, 2, 3 from left to right; 
keywords are skipped ever. 

Statement 70 illustrates the extended SET feature (as well as 
implicit declaration of &LOC (1) as a LCLC). Both &LOC (1) and 
&LOC(2) are assigned values. One SETA, SETB, or SETC statement 
can then do the work of many. 

Statement 72 is a model statement with a symtolic paraIreter in 
its operation field. This statement will ~e edited as if it is 
a macro call; at this time, each operand will be denoted as 
pcsitional or keyword. At macro call time, it will not be possible 
to reverse this decision. Even though treated as a rracre, it 
is still expanded as a machine or assembler operation. 

Statement 74 illustrates the computed AGO statement. Control 
will ~ass to .MNOTE1 if &KEY2 is 1, to .MNOTE2 if &KEY2 is 2, 
to .MNO~E3 if &KEY3 er will fall through to the model statement 
at 75 otherwise. 

Staterrent 77 illustrates the extended AIF facility. This statement 
is written in the alternate format. The logical expressions are 
exarrined frorr left te right. Control passes to the sequence 
sym~ol corresponding to the first true expression encountered, 
else falls throug,h to the next model staterrent. 

statement 87 contains a subscripted created SET symbol in the 
name field. Exclusive of the subscript notation, these SET symbols 
have the form See) where e is an expression wade up of character 
strings and/or variable symbols. When such a symbol is encountered 
at expansion time, the assembler evaluates e and attempts to use 
& (value) in place of &(e). Looking ahead, we see that DEMO is 
used as a macro instruction in statement 97 and &KEY1=C. Thus, 
the 'e' in this case is X&KEY1 Which has the value XC. Finally, 
the rracro-generator will use &XC(2) as the name field of this 
model statement. In statement 108, note that &XC(2)equals 
TRANSYLVANIA (statement 96). Finally, in the sequence field of 
statement 108, we see that this statement is a level 01 ex~ansion 
of a programmer macro and the corresponding wedel statement is 
staterrent nurrter 87. 

Created SET symbols may be used wherever regular SET symbols are 
used in declarations, name fields or operands of SET statements, 
in model staterrents, etc. Likewise, they are subject to all the 
restrictions of regular SET symbols. In the programrrer macro 
DEMO, it would not have been valid to have the statement GBLC 
& (X&KEY1) (1) because, in statement 71, we have ABLC &XA (5) , 

Appendix A. Sample Program 43 



® 

® 

@ 

(SXB920), SXC{l) and S(XSKEY1){2) becomes SXC(2) unless, of course, 
SKEYl was assigned scrrething other than the value A, B, or C in 
the macro instruction DEMO, statement 91. In that case, we would 
need a global declaration statement if we wanted &(X&KEY1) to 
te a glctal SET syrrbol. 

Because global declarations are processed at generation time and 
then only if the statement is encountered, we would insert the 
following statements between, say, statements 11 and 72. 

AIF('&KEY1' EQ'A' or 'EKEY1' EQ 'B' or 'EKEY1' EQ 'C'). SKIP 
GEIC & (XSKEY1) (1) 

• SKIP ANCP 

As the macro is defined, & (X&I<EY 1) will be a global SETC if SKEY1 
is A, B, or C; otherwise it will be a LCLC or, possibly, a LCLA. 
In the macro, if S(X&KEY1) becomes a local, it will have a null 
or zero value. Created SET symbols are a pOwerful tool. However, 
their use requires a careful planning. 

In statements 93 and 94, note that &XA is declared as a subscripted 
qlocal SE'IC variacle "ith a rraximum subscript of 1 and, in the 
next statement (an extended SET statement), we store sorrething 
into &XA(2). There is no contradiction here. The statement GBLC 
SXA(l) marks SXA as a sucscripted glotal SETC symtol any decimal 
self-defined nurrber (1 through 2147483647) can be used. 
Furthermore, only a ncminal amount of space is set aside in the 
global dictionary -- this space is open-ended and will be increased 
on derrand and enly en derrand. 

Statement 97 is the macro instruction DEMO. Note that SPl has 
the value WRITE. Therefore, the model statement at statement 
72 tecomes an inner rracro, WRITE, producing the code at statements 
98-103. The sequence field of these statements contains 03-1HBRD, 
indicating that they are genera ted by a ·level 03 macro (DEMO is 
01, WRITE is 02) named lHERDWRS. It is an inner macro called 
by WRITE. 

Statements 108 and 109 contain some ordinary symbols longer than 
eight characters. The limit for ordinary symbols, operation codes 
(for programmer and li1:rary macros and op codes defined through 

OPSYN), variable syrr.bcls, and sequence symbols is sixty-three 
characters (including the Sand e in the latter two instances, 
respectively). Most long symbols will probably be nearer to eight 
than sixty-three characters in length. Extremely long syrrbols 
are simply teo difficult to write, especially if the symbol is 
used frequently. The requirement that the operation field be 
present in the first statement of in state ent till 
in effect. Furthermore, name s of SECT 'XTRN 
etc. symbols are :s~t=i=l~l~r~e=s=t==r~i~ct~. ~e~d~~~~~~~==~~~~ 

I.·ibrary macros may be inserted into the source stream as 
programmer macros by use of a COPY statement. The result 
(statements 118-126) is essentially a programmer macro definition. 
When a library macro is brought in and expanded by use cf a macro 
instructicn, the asserrbler (1) looks the macro up by its memher
name and (2) verifies that this same name is' used in the operation 
field of the ~rotetype statement. Therefore, for example, DCB 
has to catalogued as DCB. However, as COpy code, the member name 
bears no relationship to any of the statements in the mewb€r. 

44 Assembler H Programmer's Guide 

c 

c 

c 



@ 

o 

Thus, several variations of a given macro could be stored as a 
li1::rary under separate names, then copied in at various places 
in a single assembly as needed. (Assembler H allows you to. def'ine 
and redefine a rracre any number of times) • 

In statement 129, MARK is made a synonym of NOTE. To identify 
NCTE as a macro, it has to 1::e used as a macro instruction or 
programrrer macro definition prior to its use in the operand field 
of an OPSYN statement. The COpy code at 118- 126 is a programmer 
macro definition. ~he macro instruction at statement 130 is MARK. 
We can use MARK and NO~E interchangeably. If desired, we could 
put these two words on separate lines (that is, make NOTE 
synomomous with the null string). This ~ould remove NOTE as a 
macro definition. Then, we could call the macro only as MARK. 

Statement 144 demonstrates &5YSTIME, &SYSDATE and &SYSPARM. The 
values for the first two are the same as ~e use on the heading 
line. The value for &SYSPARM is the value passed in the PARM 
field of the EXEC statement on the default value assigned to 
&SYSPARM when Asserr.bler H is installed. 

System variable symbols &SYSLOC and &SYSECT are displayed. The 
sequence field indicates that the model staterrents are statements 
148 and 149. 

Illustration of named COMMON. Note that estatlishing 
addressa1::ility to such a section can be obtained with a USING 
PD2 register statement. With blank COMMON, one has to make use 
of some la1::el cn a statement after the CCMMON statement. 

If there are literals outstanding when the END statement is 
encountered, they are assigned to the LOCTR currently in eff~ct 
for the first contrel section in the assembly. This mayor may 
not put the literals at the end of the first control section. 
In this sarrple asserrbly, the first ~ontrol section, A, has two 
I.CCTRs, A and CEECEES. Eecause A is active (at statexrent 155), 
the literals are assembled there. You always have the ability 
to centrol placement of literal pools by means of the LTORG 
sta tement. Note that X' FF'FFFFE8' is used for the contents of 
A(X), statement 162. ~he symbol X was assigned the value (4*-
6) by an lieU in statement 43. 

Appendix A. Sample Program 45 



IIHR TSHP JOB 1258153,0811 ,M.R. TAllEY, H SGl EVEl: 1 
II EX EC ASMHC, PARM. C: (NOOECK, MUL T,' SY SPARM=SAMPLE* PROGRAM' I 
XXC EXEC PGM=IEV90,KEGION=700K 
XXSYSLlB DO oSI\j=SYS1.M<\CLI£J,DISP=SHR 
XXSYSUTl Dil UN IT: (SYSDA, SEP:SYSL I nl, SPACE: (CYL, ( 10,51 I,DSI\j=£SYSUTl 
XXSYSPUNCH 00 SYSOUT=B,DCB=( fllKSIZf=8001 ,SP4CI:-=(CYl, (5,5,011 
IISYSPRfNT OJ SYSOUT=(A,,211 ,DCf\=(BLKSIZF=35091, 
II UNIT=( ,SFP=(.SYSUT1,SYSPUN(I~11 
X/SYSPR II\jT DO SYSOUT=A, IlCB= (flL KS I ZE= 35091, UN IT= (, SfP= ( S YSUTl, SYSPUNCHI I 
/lSYSIN 00 * 
IEF236I ALlOC. fOR MRTSMP 
IEF£371 135 ALLOCATED TO 
IEF7371 290 ALLOCATI'O TO 
IEF2371 132 ALLOCATEJ TO 
IEF2371 131 ALLOCATED TO 
IEFl.H1 130 ALLUCATCO TO 

BIGN<\ME 

C 
SYSLlH 
SYSUT! 
SYSPUNCH 
SYSPRINT 
SYS If'< 

SYMtlOL TYPI: I D ADDR LENGTH LO f [) 

<\ 
P02 

SO 0001 000000 OOOODC 
CM OOOl 000000 000702 

EXTERNAL SYMBOL DICT ION<\RY 

46 Assembler H Programmer's Guide 

o 

PAGE 

ASM H V 01 11.52 05/20170 

c 



o 

o 

o 

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 

LOC OBJECT CODE AGORI AOOR2 STMT SOURCE STATEMENT ASM H V 0111.5205/20170 

000000 
00000000 

000002 01230ABCO 1 02030A 
OOOOOA OBOCOI02030AC1BOC 
000012 010203CAOBOCOI02 
00001A 030AOdOC 

OOOOIE OA23 
000020 01230ABCOI02030A 

00003C 5850 8098 
000098 
000098 00000005 
000040 

000040 1812 

000042 OOOOOOCOOOOO 
000048 413243F6A8885A30 
000050 338D313198A2E037 

OOOOOOAO 

2 A 
3 

CSECT 
USING *,8 

5 ********************************************************************** 
6 * PUSH AND POP STATEMENTS * 
7 * PUSH DUWN THE PRINT STATEMENT, REPLACE IT, RETRIEVE ORIGINAL .. 
8 ********************************************************************** 

10 
11 

PUSH PRINT SAVE DEFAULT SETTING' PRINT ON,NODATA,GEN' 
PRINT NIlGEN,DATA o ~! WTO MF=CE, ( III EXPANS ION NOT SHOWN 

OC X'123,AI3C', (REALLYLONGSYM60L-TRANSYLVANIAIB'l, 10,11,1010, 1011,1100' 

15 POP PRINT RESTORE DEFAULT PRINT SETTING 
16 WTO MF=(E,(I11 EXPANSION SHOWN 
17+ S VC 35 ISSUE SVC Ol-WTO 
18 DC X' 123 ,ABC' , (REALL YLONGSYMBOL-T RANSYLVAN I A I B '1,10,11 ,10 10,1011,1100' 

20 ********************************************************************** 
21 * LOCTR INSTRUCTION * 
22 * LOCTR ALLOWS 'REMOTE' ASSEMBLY OF CONSTANT * 
23 ** ********* ********************** *** ******* ***** ************** ******** 

00098 25 L 5,CONSTANT 
26 DEECEES LOCTR 
27 CONSTANT DC Fl5' CONSTANT CODEO HERE. ASSEMBLED BEHIND LOCTR A 
28 A LOCTR RETURN TO 1ST LOCTR IN CSECT A 

f":\ 30 ********************************************************************** \!..J 31 * 3 OPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND * 
32 ********************* ***** ***************** *************************** 

34 AS 
35 

LR 1.2 
PRINT DATA 

L'A5 = 2, T'A5 = I 

36 A7 DC L'3.1415926535891932384626433832795028841912' L'A1 Ib,T'A7 

31 &TYPE 
38 A8 

+A8 

SETC 
EQU 
EQU 

T'A7 
B5,L'A5,C'&TYPE' 
85,L'A5,C'L' 

Appendix A. Sample Program 47 



81GNAME SAMPLE PROGRAM. 1ST TITlE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 

LOC OB.JECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT ASM H V 01 11.52 05/20110 

000058 7FfFFFFFC1C2C3C4 
000060 FFFFFFFF 
000064 1810 

FFFffFES 

G) 
0 
0 

o 

40 ****** **** ****** ***** **** ******** * **** ******** **** *** * ********** ****** 41 * IMPLICIT DECLARATION OF LOCALS I:. A , I:.C -- USE OF SETC DUP FACTOR TO * 
42 * PRODUCE SHC STRING LONGER THAN 8, MNUTE IN OPEN CODE * 

43 ** ******************* **** ****** ******* ** ****************************** 
45 foLAS SETA L' A8 
46 &TAS SETC T' A8 
47 MNOTE *, 'LENGTH OF AS &LAS, TYPE OF AS &TA8' 

+*,LENGTH Of A8 = 2, TYPE' OF AB L 

49 I:.A SETA 2 
0;0 foC SETC (&A+31' STR lNG,' 
51 MNUTE *, 'I:.&C HAS VALUE = &C' 

+*,&C HAS VALUE = STR! NG, S TR lNG, STR lNG, STR lNG, STR lNG, 

53 ********************************************************************** 54 * EXAMPLES OF 4 BYTE SElF-DEfiNED TERMS, UNARY + AND - * 

55 ********************************************************************** 
57 DC A(2147483647,C'ABCD',X'FFFFFFFF'1 

58 LR -1+2,16+-3 

60 X EQU 4*-6 

48 Assembler H Programmer's Guide 

c 

() 

c 



o 

o 

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW PAGE 

LOC OBJECT CODE 

000066 1816 
000068 9220 1005 
00006C 5081 0008 
000070 58Fl 0008 
000074 58FO F030 
000078 05EF 

00007.11 5850 .11006 
00007E IB9A 
000080 98CD 6090 
000084 5073 80.118 

ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 01 11.52 05/20170 

00005 

62 **** ** *** **** ******** **** **** *** ** **** **** ****** ** * ******* ************ 
63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGO AND AIF * 
64 * STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS, * 
65 * USE OF CREATtD SET SYMBOLS, EXTENDED SET STATEMENTS * 

66 ********** ****** ***** *** * *************** *** *********. **.*****.******** 

0 68 
69 

@ 70 &LUCIlI 
71 

G)72 

MACRO 
OfMLJ 
SErC 
GBLC 
&P 1 
SETA 
AGO 
SETA 
MNOTE 
AIF 

&P 1, &KEY 1=.1\, ~P2, &KfY2= 1, &PJ, &KEY3=3, &P4 
'2','3' &LOC IS DIMENSIONED LCLC BY DI::FAULT 
& X A I 'i I , f. X 6 I 201 , f. XC 11 I 

73 &N 

0 74 

&SYSLI ST\41 ,&SYSLI ST\51 ,&SYSLI STl6I,MF=E 
1 

75 &N 
I&KEY21.MNJTE1, .MNOTE2, .MNOTE3 
2 

76 

0 77 

78 
79 
80 
81 
82 
83 
84 
85 
86 

0 87 
88 
89 

91 

G) 93 
94 
95 
96 

0 97 

MNOTE 
AGO 

.MNOTE1 MNOTE 
AGO 

• MNOTE2 MNOTE 
AGO 

• MNOT E J MNOTE 
.COMMON L 
&XB121 SR 9,10 
&IX&KEYlII21 LM 
&P2 ST 7,&P3 

MEND 

***** 

*,'&&KFY2 NOT 1,2, OR- 3---USE &&KEY3" IN PLACE OF IT' 
I&KEY3 EQ 1I.MNOTE1, 
I&KEY3 EQ 21.MNDTE2'\&KEY3 EQ 31.MNOTE3 
*,'BOTH &&KEV2 AND &&KEY3 FAIL TO QUALIFY' 
.COMMON 
*,'&&KEY&LOCI&NI l' 
.COMMON 
*,'&&KEY&LOCI&NI 2' 
.COMMON 
*, '&&KEY&LOCI&NI 3' 
5,81,101 NOTE THAT OPCOOES, OPERANDS & COMMENTS 

ON MODEL STATEMENTS 
12,13,=AIA5,XI ARE: KEPT IN PLACE UNLESS DISPLACED 

AS A RESULT OF SUBSTITUTION 

OEMO MACRO INSTRUCTION ICALLI 

GBLC &XAI 11 ,&XBI 21 ,&XCI31 
&XAlll 
&XBlll 
&XCllI 

SETC 'A', 'MISSISSIPPI' 
SETC 'IP,' SUSQUEHANNA' 
SETC 'C','TRANSYLVANIA' 
OE 1010 KEYJ=Z ,WRIT E ,REALL YLONGSYMBOL, 

AIl+8*IB5-CONSTANT-71131 ,KEY1=C, (61 ,SF, 
181,KEYZ=7 

98+ LR 1,6 LOAD DECB AODRESS 
SET TYPE FIelD 
STORE DCB ADDRESS 
LOAD DC8 ADDRESS 

99+ MVI 5111 ,X'ZO' 
00008 100" ST B,8( 1,01 
00008 101+ L 15,8( 1 ,01 
00030 102+ L 15,4810,151 

103+ BALR 14,15 
104+*,&KEY2 NOT 1,Z, OR 3---USE &KEY3 IN PLACE OF IT 
105+*, &KEY3 = 2 

LOAD RDWR ROUTINE ADDR 
L1 NK TO RDWR ROUTI HE 

00008 106+ L 5,81,10) NOTE THAT OPCOOES, OPERANDS & COMMENTS 
10HSUSQUEHANNA SR 9,10 ON MODEl STATEMENTS 

00090(!)108.+TRANSYLVANIA LM 12,13,=AIA5,X) ARE: KEPT IN PLACE UNLESS DISPLACED 
000.118 1 09+REAll YlONGSYMBOL ST 7, .118+8* I B5-CONS TANT-7 II 31 

+ AS A RESULT OF SUBSTITUTION 

M 
N 

03-IH8RD 
03-tH8RO 
03-tH8RO 
03-tH8RO 
03-IH8RD 
03-tH8RD 
01-00076 
01-00082 
01-00085 
01-00086 
01-00081 

X01-00088 

Appendix A. Sample Program 49 



BIGNAME INSERT PROGRAMMER MACRO IN SOURCE SrREAM NOW PAGE 

LOC OBJECT CODE ADORI AODR2 STMT SOURCE STATfMfNT ASM H V 01 11.52 05/20/70 

000088 1816 
OOOOBA 5BFO 1054 
00008 E 05EF 

00009C 
00009C 00000000 
OOOOAO 060000A000000050 

0000A8 E3C9D4C5407E40Fl 

OOOOOC 
ooooac 
000090 

000000 
000000 
000700 1867 

000090 00000040FFFFFFE8 

0 

@ 

00054 

® 

III ************** *************** ********* ******************************** 
112 * COpy' NUTE' MACRO IN FROM MACLl B, RENAME IT 'MARK', CALL IT UNDER * 
113 * ITS ALIAS -- IN EXPAIISION OF MARK, NOTICE REFERENCE BACK TO * 
114 * DEFINITION STAHMt:NTS IN 'COLUMNS' 76-80 OF EXPANSION * 
115 ********************* ************* **** ***** *.************************** 

117 COpy NOn: 
118 . MACRO 
119 &NA:>IE NOTE £OCB, &OUMMY= 
120 AIF I't:DCR' EO ' 'I.FRR 
121 &NAMF IHBINNI'.!I &DCB 
122 L 15, R4 ( 0,11 LOAD NOH: RTN ADDRESS 
123 BALR 14,15 LINK TO NOTE ROUTINE 
124 MEXIT 
125 .ERR IHBERMAC 6 
126 MEND 

129 MARK OPSYN NOTE COMMENTS lJf' GENERATED STATEMENTS OCCUpy SAME 
130 MARK (61 'COLUMNS' AS THOSE IN MODEL STATEMENTS 
131+ LR 1,6 LOAD PARAMETER REG 1 
132+ L 15,8410,11 LOAD NOTE RTN ADDRESS 
133+ BALR 14,15 LI NK TO NOTE ROUTINE 

135 ** ** ***** *** ******* * * ** ** **** ***** *** * *************** ***************** 
1360EECEES LOCTR SWITCH TO ALTERNATE LOCATION COUNTER 

137 B5 CCW X'Otl',B5,0,80 

139 ********* * ***** *** ***** ****** ***** ** * ******** *** **************** ****** 
140 * DISPLAY OF &SYSTIME, &SYSDATE:, I;SYSPARM AND I;SYSLDC * 
141 ***** **** * ******* **** ** ** ********* ** * ************* ******************** 

PRINT NODATA 143 
144 DC 

DC 
C'TIME = I;SYSTIME, DATE = 6.SYSDATE, PARM = &SYSPARM' 
C'TIME = 11.52, DATE = 05/20/70, PARM = SAMPLE*PROGRAM' 

146 MACRO 
147 LOCATE 
148 &SYSECT CSECT 01 SPLAY OF CURRENT CONTROL SECT ION 
149 &SYSLOC LOCTR AND LOCAT ION COUNTER 
150 MEND 

152 LOCATE 
153+1\ CSECT DISPLAY OF CURRENT CONTROL SECTION 
1$4+DFECEES LOCTR AND LOCATION COUNTER 
155 A LOCTR 

157 ***************** ************* *** ******** ** **********************.***** 
156 P02 COM NAMED COMMON THROWN IN FOR GOOD MEASURE 
159 OS 500~ 

160 LR 6,7 
161 END 
162 =A(A5,XI 

50 Assembler H Programmer's Guide 

00020000 
00040017 
00060000 
00080000 
00) 00000 
00120000 
00140000 
00160000 
001BOOOO 

02-IHBIN 
01-00122 
01-00123 

01-00148 
01-00149 

c 

c 



) 

I" 0 

o 

8IGNAME 

POS.ID REL.lD FLAGS ADDRESS 

0001 
0001 

8IGNAME 

SYMBOL 

A 
AS 
A7 
A8 
85 
CONSTANT 
DEECEES 

0001 
0001 

LEN 

00001 
00002 
00016 
00002 
00008 
00004 
00001 

OC 
08 

VALUE 

00000000 
000040 
000048 

OOOOOOAO 
DOODAD 
000098 

00000098 
PD2 00001 00000000 
REALL YLONGSYM80L 

00004 000084 
SUSQUEHANNA 

00002 00007E 
TRANSYLVANIA 

00004 000080 
X 00001 FFFFFFE8 
=AIA5,X) 00004 000090 

000090 
OOOOAl 

OEFN REFERENCES 

0002 0028 0153 
0034 0038 0162 
0036 
0038 0109 
0137 0038 0109 
0027 0025 0109 
0026 0136 0154 
0158 

0109 0014 OOlS 

0107 

0108 0014 0018 
0060 0162 
0162 0108 

RELOCATIUN DICTIONARY 

CROSS REFERENCE 

0155 

0137 

BIGNAME DIAGNUSTIC CROSS REfERENCE AND ASSEMBLER SUMMARY 

NO STATEMENTS FLAGGED IN THIS ASSEMRLY 

OVERRIDING PARAMETERS- NODECK,MULT,SYSPARM=SAMPLE*PROGRAM 
OPTIONS FOR THIS ASSEMBLY 

PAGE 6 

ASM H V 01 11.52 05/20110 

PAGE 1 

ASH H V 01 11.52 05/2011'0 

PAGE 

ASM H V 01 11.52 05/20110 

NOOECK, NOLOAD, LI ST, XREF, NORENT, NOTES T, MUL T, ALGN, ESD, RLO, LlNECNT= 55, MSGLEVEL= 0, SYSPARM=SAMPLE*PROGRAM 
NO OVERRIOING DO NAMES 

136 CARDS FROM SYSIN 
197 LINES OUTPUT 

432 CARDS FROM SYSLIB 
o CARDS UUTPUT 

Appendix A. Sample Program 51 



This page intentionally left blank. 

( 

c 

o 
52 Assembler H Programmer's Guide 



~i 
~I 

o 

o 

Appendix B. Sample Macro Trace and Dump (MHELP) 

The Macro Trace and Dump (MHELP) facility is a useful means of debugging 
macro definitions. MBELF can be used anywhere in the source program 
or in macro definitions,. MHELP is processed during macro generation. 
It is completely dynamic; you can branch around the MHELP statements 
by using AIF or AGO staterr.ents. 'Therefore, its use can be controlled 
by symbolic parameters and SET symbols. 

'Ihe following sam~le J:rogram illustrates the five frimary functions 
of MEELP. Since most of the information produced is unrelated to 
statement numbers, the dumps and traces in the listing are marked with 
circled numbers. Most duroI;s refer to sta tement numbers. If you request 
MHELP information about a litrary macro definition, the first five 
characters of the rracrc narr.e will appear in place of the statement 
number. To get the statement numbers, you should use COPY to copy 
the library definition intc the source program prior to the macro call. 

Macro Call Trace (MHELP 1) 

Item l1iV illustrates an outer macro call, @ an inner one. In each 
case, t6e amount of information given is brief. This trace is given 
after successful entry intc the macro; no dump is given if error 
conditions prevent an entry. 

Macro Entry Dump (MHELP 16) 

This provides values of systerr variable symbols and symbolic parameters 
at the time the macro is called. The following numbering system is 
used: 

Number 

000 
00 1 
002 
003 
004 
005 
006 

Item 

&SYSNDX 
&SYSEC'I 
&SYSI.CC 
&SYS'IIME 
&SYSCATE 
&SYSPARM 
NAME FIEL6 CN MACRO INSTRUCTION 

If there are NKW keyword parameters, they follow in order of appearance 
en the prototype statement. 

007 
008 

006+NKW 

1st keyword value 
2nd keyword value 

NKWth keyword value 

Appendix B. Sample Macro Trace.and Dump (MHELP) 53 



If there are NPP positicnal pirameters, they follow in order of 
a ppearence in the macro instruction. 

007+NKW 
008+NKW 

1st positional parameter values 
2nd positional parameter values 

006+NKW+NPP NPPth positional parameter values 

For example, item @ has one keyword parameter (SOFFSE'I) and one 
positional parameter. 'Ihe value of the ke yword parameter appears 
o~posite 110006, the positional parameter, opposite 110007. In both 
the prototype (statement 3) and the macro instruction (statement 54), 
the positional parameter appears in the first operand field, the keyword 
in the second. A length appears between the NOM and VALUE fields. 
A length of NUL indicates the corresponding item is empty. 

Item ~ ill ustrates an inner call containing zero .keywcrds, and 
two pos~t ional parameters. 

Macro AIF Dump (MHELP 4) 

Items G, @, €9, ... are examples of these dumps. Each such 
dump in21udes a complete set of unsubscripted SET symbols with values. 
This list covers all unsubscripted variable symbols which appear in 
the narre field of a SET statement in the macro definition. Values 
of elelrents cf dirrensicned SE'r symbols are not displayed. 

MACRO ERANCH TRACE (MHELP 2) • 

This provides a one-line trace for each AGO and true AIF tranch within 
a programrrer macro. In any such branch, the "branched from" statement 
number, the "branched to" sta~ment number and the macro name are 
included. Note, in example A, the "branched to" statement number 
indicated is not that of the A OP statement tearing the target sequence 
symtol tut rather that of the statement following it. The branch trace 
facility is suspended when library macros are expanded and MHELP 2 
is in effect. To obtain a macro branch trace for such a macro, one 
would have to insert a COFY ''macro-name'' statement in the source deck 
at scme point prier to the MHELP 2 statement of interest. 

Macro Exit Dump (MHELP 8) 

This provides a dump of the same group of SE'l' symbols as are included 
in the Macro AIF dump (see item C above) when a MEXIT or MEND is 
encountered. 

Note. that local and/or global variable symbols are not displayed at 
any point unless they appear in the current macro explicitly as SET 
symtols. 

54 Assembler H Programmer's Guide 

c 

() 



) 

SAMPLt MHELP TRACE A~D DUMP PAGE 

LaC OBJECT COOt A[)[)K1 ADDR2 STMT SOURCE STATE:-lENT ASM H V 01 11.52 05/19/70 

2 * INCLUDE :-lACRO UfF INI TII1NS Til BbTRACED IN THE SOURCE PROGRAM 

000000 4 CSECT 
'5 COpy L'ISRCH 

Mtt.CRO 
,,~JAME LNSRCH &ARG, "OFF SE T= S TNUMd-ST CHAl III 

LCLC &LABfL 
q <.LABEL sue ' A"SYSNf)X' GFNERATE SYMBOL 

10 AI f IT'"NAME EQ '(1' I. SK I P 
11 "LABEL 51:: Te I &NAME' IF- MACRO CALL HAS LABEL, USE IT 
12 • SKIP ANOP I ~IS Tf,Ail OF GENERATED SYMBOL 
13 &LABEL L4 0, WfF::>ET LOAU RFG. 0 
1'+ SCHI f.ARG,OI11 SFARCH 
15 BC 1,"LARF.L IF- MAX RfACHED, CONT INUE 
16 MEND 

Ul COpy SCHI 
19 M4CRO 
20 f.NM SCril "CaMP, f.L 1ST 
21 LCLA "CNT 
22 LCLC &CMPAOR 
73 "CNT SErA 1 
24 !:NM STM 1.15,41131 
25 .TEST ANOP 
26 !:CMPADR SI'TC I !:CMPAOR' • '!:COMP' 1 KCNT, 11 c) 27 AIF I' &COMP' (&CNT. 11 EQ '('1.LPAR 
28 f.CNT SETA &CNT +1 
29 AIF ( !:CNT LT K' !:COMP I. TEST 
30 .NOLNTH Ai\lUP 
31 Lil 3, &CUMP COMPARAND 
32 AGO .CI)NTIN 
33 .LPAR AIF ('!:COMP' (&CNT+1, 11 EQ " 'I.FINISH 
34 tCNT SETA &CNT +1 
35 A IF ( !:CNT LT K'&CLlMPI.LPAR 
36 AGO .NOLNTH 
37 .FINISH ANUP 
3R "CMPAOR SETC I !:CMPADR I.' &CllMP' (!:CNT +2, K' !:COMP-!:CNTI 
39 LA 3, !:CMPAOR COMPAR4NO SANS LENGTH 
40 .CONlIN ANOP 
41 LA 1,!:L1ST Ll ST HEAOfR 
42 MVC !:CllMP, ('1(0 1 DUMMY MOVE TO GET CaMP LENGTH 
43 ORG *-6 CHANGE MVC TO MVI 
44 DC X ' 'l2' MVI OPCOOE 
45 ORG *+1 PRESERVE LENGTH AS IMMED OPNO 
46 DC X'OOOO' RESULT IS MVI 01131, L 
47 L 15,=V( SCHII 
48 BALR 14,15 
49 LM 1,15,4(131 
50 MEXlT 
51 MEND 

o 
Appendix B. Sample Macro Trace and Dump (MHELP) 55 



SAMPLE MHElP TRACE AND DUMP PAGE 

laC OBJECT CODE 

000000 
000000 O'>CO 
00000002 

000002 4100 a002 

000006 901F 0004 

AOORI AODR2 STMT SOUr.CE STATEMENT ASM H V 01 11.52 05/19110 

53 TEST 
54 
55 

57 
5B 

CSECT 
BAlR 12,0 
USING *,12 

MHElP B'11111' REQUEST All MHElP FUNCTIONS 
i::NS'RCH 'lISn::tNE, UFFSET=L I STL I NE-ll S TNEXT 

@ ++IIMHElP. CAll TO MACRO lNSRCH • DEPTH=OOl, SYSNOX=OOOl, STMT 00058 

00002 

00004 

IIMHElP ENTRY TO lNSRCH • MODEL STMT 00000, DEPTH=OOI, SYSNDX=OOOl, KWCNT=OOl 
III/PARAMETERS (SYSNDX, SYSEC T, SYSlOC, S YSTI ME, S YSOATE, SYSPARM, NAME ,KHS ,PPS) 11/ 
IINUM LNTH VALUE (64 CHARS/LINE) 
110000 004 0001 
110001 004 TEST 
110002 004 TEST 
110003 00'> 11.52 
110004 008 05/19/70 
1/0005 014 SAMPlE*PROGRAM 
110006 NUL 
1/0007 017 lISTlINE-lISTNEXT 
1/0008 008 lISTLINE 

I/MHElP AIF IN lNSRCH. MODEL STMT 00010, DE:PTH=OOI, SYSNDX=OOOI, KHCNT=OOI 
III/SET SYMBOLS (SKIPPED NUMBERS MAY fiE SEQUENCE SYMBOlS).1/ 
110000 lClC LABEL lNTH= 005 
II VAL=AOOOI 

++IIMHElP. BRANCH FROM ST~T 00010 TO STMT 00013 IN MACRO lNSRCH 

59+AOOOI lA O,L1STLINE-LISTNEXT lOAD REG. 0 01-00013 

60+ 

++IIMHElP. CALL TO MACRO SCHI • DEPTH=002, SYSNDX=0002, STMT 00014 

IIMHELP ENTRY TO SCHI • MODEL STMT 00000, DEPTH=D02, SYSNDX=0002, KWCNT=OOO 
IIIIPARAMETERS (SYSNDX, SYSEC T, SYSlOC, SYSTIHE, SYSDA TE. SYSPARH, NAME ,KWS ,PPS' III 
/lNUM lNTH VALUE (64 CHAR SIll NE' 
110000 004 0002 
/10001 004 TEST 
/10002 004 TE ST 
1/0003 005 11.52 
110004 008 05/19170 
/10005 014 SAMPlE*PROGRAM 
110006 NUL 
110007 008 llSTllNF 
1/0008 004 O( 11 

STH 1,15,4113) 02-00024 
I 

/lHHElP AIF IN SCHI • MODEL STMT 00027, DEPTH=002, SYSNOX=0002, KHCNT=OOO 

56 Assembler H Programmer's Guide 

c 

c 



SAMPLE MHElP TRACE AND DUMP PAGE 4 

lOC OBJECT CODE AOORl AODR2 STMT SOURCE ST AT EMENT ASM H V 01 11.52 05/19/70 

IIIISET SYMBOLS (SKIPPED NUMBERS MAY Bt: SEQUENCE SYMBOlS).1I 
110000 lClA CNT VAl= 0000000001 
110001 lClC CMPAOR lNTH= 001 
II VAl:l 

IIMHElP AIF IN SCHI • MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).1I 
110000 lClA CNT VAl= 0000000002 
110001 lClC CMPAOR lNTH= 001 
II VAl=l 

++IIMHElP. BRANCH FROM.STroIT 00029 TO STMT 00026 IN MACRO SCHI 

IIMHELP AIF 1111 SCHI • MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMI\OlS (SKIPPED NUMBERS MAY BE SEQUENCE ·SYMBOlS).1I 
110000 lClA CNT VAL: 0000000002 
1/0001 lClC CMPAOR lNTH= 002 
II VAl=lI 

IIMHElP AIF IN SCHI • MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SK I PPED NUMBERS MAY BF. SEQUENCE SYMBOLS 1.11 
110000 lClA CNT VAl= 0000000003 
110001 lClC CMPADR lNTH= 002 
II VAl=Ll 

o @ +"IIMHElP. BRANCH FROM SHn 00029 TO STMT 00026 IN MACRO SCHI 

IIMHELP AlF IN SCHI MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SK IPPED NUMBERS MAY BE SEQUENCE SYMBOL SI.II 
110000 lClA CNT VAl= 0000000003 
110001 lClC CMPADR lNTH= 003 
II VAl=Ll S 

IIMHELP AIF IN SCHI • MODEL STMT 00029, DEPTH=OOZ, SYSNOX=OOOZ, KWCNT=OOO 
III/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlSI.1I 
110000 LClA CNT VAl= 0000000004 
110001 lClC CMPADR lNTH= 003 
II VAl=LI S 

HIIMHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI 

IIMHHP AIF IN SCHI • MODEL STMT 00027, DEPTH=002, SYSNOX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlSI.1I 
110000 lClA CNT VAl= 0000000004 
1/0001 lClC CMPADR lNTH= 004 
II VAl=LIST 

o 
Appendix B. Sample Macro Trace and Dump (MHELP) 57 



c 

SAMPLE MHELP TRACE AND DUMP PAGE 

lOC OBJECT COOE AOORl ADDR2 STMT SOURCE STATEMfNT ASM H V 01 1l.52 05119110 

I/MHELP AIF IN SCHl • MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SKIPPED NUMBFRS MAY BE SEQuENCE SYMBOlS'.1I 
110000 LCLA (NT VAL= 0000000005 
1/0001 lCLC CMPAOR lNTH= 004 
1/ VAL=LIST 

++11 MHElP. BRANCH FROM STMT 00029 TO S TMT 00026 I N MACRO SCHI 

IIMHELP AIF IN SCHl MOOf:L SHIT 0002f, OEPTH=002, SYSNnX=0002, KWCNT=OOO 
I III SET SYM~OLS (SKI PPED "IUMBf-ORS ;~AY BE SEQUENCE SYMBOLS'./ I 
1/0000 LCL A CNT VAL= 0000000005 
110001 LCLC CMPAUR LNTH= 005 
II VAL =L1 S TL 

IIMHELP AIF IN SCHI • MOOf.L STMT 00029, OFPTH=002, SVSNDX=0002, KWCNT=OOO 
/I/ISET SYMBOLS (SKlPPfO NUMBERS MAY BE SEQUENCE SYMBOLS'.II 
110000 LCLA CNT VAL= 0000000006 
/10001 LCLC CMPAUR LNTH= 005 
/I VAL=L1STL 

++/lMHELP. BRANCH fROM STMT 00029 TO STMT 00026 IN MACRO SCHI 

I/MHELP AIF IN SCHI • MODEL STMT 00027, DI:PTH=002, SYSNDX=0002, KWCNT=OOO 
II/ISET SYMBOLS (SKIPPED NUMBERS MAY fiE SEQUENCE SYMHOLS'.II 
110000 LCLA CNT VAL= 0000000006 
110001 LCLC CMPAOR LNTH= 006 
II VAL=Ll STU 

IIMHELP AIF IN SCHI • MODEL STMT 00029, DI:PTH=002, SYSNDX=0002, KWCNT=OOO 
IIIISET SYMBOLS (SKIPPEO NUMBERS MAY HE' SEQUENCE SYMBOLS' .11 
110000 LClA CNT VAl= 0000000007 
110001 LClC CMPADR LNTH= 006 
II VAl=LISTLI 

++I/MHELP. BR·ANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI 

IIMHELP AIF IN SCHI • MODEL STMT 00027, OEPTH=002, SYSNDX=0002, KWCNT=OOO 
III/SET SYMROLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS'.II 
110000 LCLA CNT VAl= 0000000007 
110001 LClC CMPADR LNTH= 007 
II VAL=LISTLlN 

IIMHELP AIF IN SCHI • MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=OOO 
I/I/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS'./! 

c 
58 Assembler H Programmer's Guide 



~. 
J 

Of 

o 

SAMPLE MHELP TRACE AND DUMP PAGE 

LOC OBJECT CODE AODRI AOOR2 STMT SOURCE STATEMENT ASM H V 01 1l.52 05/19170 

OOOOOA 4130 C024 

OOOOOE 4111 0000 
0000 12 0202 C02.4 
000018 000012 
000012 92 
000013 000014 
000014 0000 
000016 58FO C02E 
OOOOlA 05H 
OOOOlC 9BIF 0004 

000020 4710 COOO 

000024 
000026 
000030 
000030 00000000 
000000 

0000 00026 

00026 

00000 
00000 

00030 

00004 

@ 

00002 

@ 

61+ 

62+ 
63+ 
64+ 
65+ 
66+ 
67+ 
68+ 
6<1+ 
70+ 

//0000 LCLA CNT 
110001 LCLC CMPAf)R 
II VAL=LISTLIN 

LA 3,LlSTLlNE CllMPARANO 

++IIMHfLP. BRANCH fROM STMT 00032 TO STMT 00041 IN MACRO SCHI 

LA 
MVC 
ORG 
DC 
ORG 
DC 
L 
BALR 
LM 

1,0111 
LI STLINE,O (01 
*-f> 
X' 92' 
*+1 
X'OOOO' 
15,=V(SCHII 
14,15 

1,15,41131 

LIST HEADER 
DUMMY MOVE TO GET COMP LENGTH 
CHANGE MVC TO MVI 
MVI OPCODE 
PPI'SERVE L ENGT H AS I MMEO OPNO 
RFSULT [S MVI 0113liL 

VAL= 0000000008 
LNTH= 007 

02-00031 

02-00041 
02-00042 
02-00043 
02-00044 
02-00045 
02-00046 
02-00047 
02-00048 
02-00049 

II MHE lP EX IT FROM SCH I • MnDEL S TMT 00050, OEPTH=002, SYSNDX=0002, KWCNT=OOO 
III1SET SYMBOLS ISKIPPED iIIUMBERS MAY BE SEQUENCE SYMBOLSI.II 
110000 LCLt. CNT VAl= 0000000008 
110001 lCLC CMPADR lNTH= 007 
/1 VAL=LISTLIN 

71+ BC I,AOOOl IF MAX REACHED, CONTINUE 01-00015 

IIMHtLP EXIT FRUM LNSRCH • MODEL STMl 00016, O~PTH=OOl, SYSNOX=OOOl, KWCNT=OOI 
IIIISET SYMBOLS I SKIPP~O NUMBERS MAY BE SEQUENCE SYMBOLS)./1 
110000 lCLC LABEL lNTH= 005 
/I VAL=AOOO 1 

72 LISTNEXT OS H 
73 LlSTLlNE OS FL3'O' 
74 LTORG 
75 =V(SCHll 
76 END TE ST 

Appendix B. Sample Macro Trace and Dump (MHELP) 59 



This page intentionally left blank. 

c 

c 
60 Assembler H Progranuner's Guide 



o 

o 

Appendix C. Object Deck Output 

ESD Card Format 

The format of the ESD card is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

13 -14 
15-16 

17-64 

65-72 
73-80 

Contents 

12- 2- 9 punch 
ESD 
Blank 
Variable field count -- number of bytes 
of infcrnaticn in variable field (columns 17-64) 
Blank 
ESDIO of first SO, XD, CM, FC, or ER 
in variable field 
Variable field. One to three 16-byte 
items of the following format: 

1 byte -- ESD type code 
'Ihe hex value is: 

00 SD 
01 LD 
02 ER 
04 PC 
05 Q.1 
06 XD(PR) 

3 bytes Address 

1 l:yte Alignment if XO; otherwise blank 

3 bytes Length, LOID, or tlank 

Blank 
Deck ID and/or sequence number --
The dack 10 is the name from the first TITLE 
statement that has a non-clank name field. 
'Ihe nan,e can be 1 to 8 characters long,. If the 
name is less than 8 characters long cr if 
there is no name, the remaining columns con
tain a card sequence number.. (Columns 73-80 
of cards produced by PUNCH or REPRO statements 
do not contain a deck ID or a sequence number.) 

TEXT (TXT) Card Format 

~he format of the TXT cards is as follows: 

Columns 

1 
2-4 
5 

Contents 

12- 2- 9 punch 
TXT 
Blank 

Appendix C. Object Deck Output 61 



6-8 
9-10 

11- 12 

13-14 
15-16 
17-72 
73-80 

RLD Card Format 

Relative address of first instruction on card 
Blank 
Byte ccunt -- number of bytes in information 
field (columns 17-72) 
Blank 
ES1:Ir:: 
56-byte inforrration field 
Deck 11: and/or sequence nurocer 
'Ihe deck 10 is the name from the first TITLE 
statement that has a non-clank name field. 
'Ihe narre can be 1 to 8 characters long. If the 
name is less than 8 characters long or if 
there is no name, the remaining columns con
tain a card sequence number. ~olumns 73-80 
of cards produced by PUNCH or REPRO statements 
do not contain a deck 10 or a sequence nurrber.) 

The forma t of the FLD card is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

13 -16 
17-72 

17-18 
19-20 
21 
22-24 
25-72 

73-80 

Contents 

12-2-9 punch 
FL·C 
Blank 
Data field count -- number of bytes of 
inforrraticn in data field (columns 17-72) 
Blank 
Data field: 

Relocation ESDID 
Position ESDID 
Flag byte 
Absolute address to be relocated 
Remaining RLD entries 

Deck ID and/or sequence nurrber --
The deok ID is the name from the first 'II'ILE 
staterrent that has a non-blank name field. 
The name can ce 1 to 8 characters long. If the 
name is less than 8 characters long or if 
there is no name, the remaining colu~ns con
tain a card sequence number. (Columns 73-80 
of cards produced by PUNCH or REPRO statements 
do not contain a deck ID or a sequence number.) 

If the rightmost bit of the flag byte is set, the following RID entry 
has the sarre relocation ES1:ID and position ESDID, and this information 
will not be repeated; if the rightmost bit of the flag byte is not 
set, the next FLD entry has a different relocation ESDID and/or position 
ESCID, and botb ESOIDs will be recorded. 

For example, if the RLD Entries 1,2, and 3 of the program listing 
(Appendix C) contain the following information: 

Position Relocation 
ESDID ESDID --- Flag Address 

Entry 1 02 04 OC 000100 
Entry 2 02 04 OC 000104 
Entry 3 03 01 OC 000800 

62 Assembler H Programmer's Guide 

c 



) 

o 

o 

Entry 1 Entry 2 Entry 3 

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37~ 72 

END Card Format 

Flag 
(set) 

Flag 
(not 
set) 

Flag 
(not 
set) 

• blanks 

The format of the END card is as follows: 

Columns 

1 
2-4 
5 
6-8 

9-14 
15-16 
17- 39 
40-64 

73-80 

contents 

12-2-9 punch 
END 
Blank 
Entry address from operand of END card in 
source deck (blank if no operand) 
Blank 
ESCIC of entrY point (tlank if no operand) 
Blank 
Version of the assembler (such as ASM H VI) , 
time of the assembly (hh,mrn) , and date of 
the assembly (mm/dd/yy). See the "AsseI'Pbler 
Listing" section.) 
Deck ID and/or sequence nuroter --
The deck ID is the name from the first TITLE 
statement that has a non-blank name field. 
'The name can be 1 to 8 characters long. If the 
name is less than 8 characters long or if 
there is no name, the remaining columns con
tain a card sequence number. (Columns 73-80 
of cards produced by PUNCH or REFRC statements 
do not contain a deck ID or a sequence nurrber.) 

TESTRAN (SYM) Card Format 

If you request it, the assembler punches out syrrtclic infcrmation for 
TESTRAN concerning the assembled program. This output appears ahead 
cf all loader text. The format of the card images for CIESTRAN output 
is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

Contents 

12-2-9 punch 
SYM 
Blank 
Variable field count -- number of bytes of 
text in variable field (columns 17-72) 

Appendix C. Object Deck Output 63 



13-16 
17-72 
73-80 

Elank 
Variable field (see below) 
Ceck IC and/or sequence number 
The deck ID is the name from the first TITLE 
statement that has a non-blank name field. 
'The narre can be 1 to 8 characters long. If the 
name is less than 8 characters long or if 
there is no name, the remaining columns con
tain a card sequence number. (Columns 73- 80 
of cards produced by PUNCH or REPRO statements 
do not contain a deck ID or a sequence nurrber.) 

The variatle field (cclurr:ns 17-72) contains up to 56 bytes of 'IES'IRAN 
text. 'The items making the text are packed together; consequently, 
only the last card may contain less than 56 bytes of text in the 
variatle field. 'Ihe fcrrrats of a text card and an individual text 
iterr are shown in Figure 9. The contents of the fi2lds within an 
individual entry are as followS: 

1. erg ani zation (1 byte) 
Eit 0: 

o = non-data type 
1 = data type 

Bits 1-3 (if non-data type): 
000 space· 
001 = contrel section 
010 = dummy control section 
011 = common 
100 = instruction 
101 CCW 

Eit 1 (if data type): 
o = no multiplicity 
1 = rrulti~licity (indicates presence of M field) 

Bit 2 (if data type): 
o independent (not a packed or zoned decirral constant) 
1 = cluster (packed or zoned decimal constant) 

Bit 3 (if data type): 
o = no scaling 
1 = scalir.g (indicates presence of S field) 

Eit 4: 
o = name pre se nt 
1 name not present 

Ei ts 5-7: 
Length of narre minus 1 

2. Address (3 bytes) -- displacement frOID base of control section 

3. Symbol Name (0-8 bytes) -- symbolic name of particular iterr 

Note: The follcwing fields are present only for data-type items. 

4. Data Type (1 byte) -- contents in hexadecimal 

00 = character 
04 = hexadecimal 
08 = binary 

64 Assembler H Programmer's Guide 

c 

c 



o 

10 = fixed point, full 
14 = fixed point, half 
18 = floating point, short 
1C = floating point, long 
20 = A-ty~e or Q-Type data 
24 = y-type data 
28 = S-type data 
2C = V-type data 
30 = packed decimal 
34 = zoned deciroa 1 
38 = floating point, extended. 

5. Length (2 bytes for character, hexadecimal decimal, or binary 
i terns; 1 byte for other types) -- length of data iterr minus 1 

6. Multiplicity - M field (3 tytes) equals 1 if not ~resent 

7. Scale - signed integer - S field (2 bytes) -- present only for 
F, H, E, D, P and Z type data, and only if scale is non-zero. 

, 2 4 5 101112.13 1617 72 73 

No. 

so 

12 of 
Deck & Sequence 2 SYM blank bytes blank TESTRAN text - packed entries 

10 number 9 

3 

of 
text 

6 2 

Org. Address 

3 

N complete entries 
N ~ 1 

Variable size entries 

Symbol name Data 
type 

56 

Entry 
(complete or 
head portion) 

1-2 3 

8 

2 

Figure 9. TESTRAN SYM Card Format 

Appendix C. Object Deck Output 65 



This page intentionally left blank. 

c 

c 
66 Assembler H Programmer's Guide 



o 

o 

Appendix D. Dynamic Invocation of the Assembler 

The assembler can te invoked by a problem program at execution time 
through the use of the CALL, LINK, XCTL, or ATTACH macro instruction. 
If the XCTL macro instruction is used to invoke the assembler, then 
no user o~tions may be stated. ~he assembler will use the standard 
default, as set during system generation, for each option. 

If the assembler is invoked ty CALL, LINK or A'ITACH, you rr,ay supply: 

1) The assemtler cpticns 

2) The DD names of the data sets to be used during processing 

Name Operation Operand 

[symbol] CALL I EV90,(optionlist 
[,ddnamelistl ),VL 

{LINK } EP=IEV90, 
ATTACH PARAM=(optionlist 

[,ddnamelistl ),VL=1 

EP -- specifies the symbclic name of the assembler. The entry point 
at which execution is to begin is determined by the control program 
(from the litrary directory entry). 

PARAM -- specifies, as a sublist, address parameters to be passed from 
the problem program to the assembler. The first word in the 
adGir.ess ~ararreter list contains the address of the option list. 
The second word contains the address of the ddname list. 

o~tionlist -- specifies the address of a variable length list containing 
the options. This address must be written even if no option list 
is provided. 

'The option list must begin on a ha1fword boundary. The first two bytes 
ccntain a count of the nurr,ber of bytes in the remainder of the list. 
If no options are specified, the count must be zero. The option list 
is free form with each field separated from the next by a comma. No 
blanks or 2eros should appear in the list. 

ddnamelist -- specifies the address of a variable length list containing 
alternate DD names for the data sets used during compiler processing. 
If standard DD names are used, this operand may be omitted. 

The DD name list must begin on a halfword toundary. The first two 
byt~s contain a count of the number of bytes in the remainder of the 
list. Each name of less than 8 bytes must be left-justified and padded 
with blanks. If an alternate DD name is omitted, the standard name 
will be assumed. If the name is omitted within the list, the 8-byte 
entry must ccntain binary zeros. Names can b.e omitted from the end 

Appendix D. Dynamic Invocation of the Assembler 67 



merely ty shortening the list. The sequence of the a-byte entries 
in the DD name list is as follows: 

Entry 

1 
2 
3 
4 
5 
6 
7 
a 

Alternate Name 

SYSI.IN 
not applicable 
not applicatle 
SYSLIB 
SYSIN 
SYSPRIN'I 
SYSFUNCH 
SYSUT1 

Note: An overriding DD nane specified when Assembler H was added to 
the Operating System occupies the same place in the above list as the 
IBM-supplied DC name it overrides. The overriding ddname can itself 
te overridden during invccatidn. For exam~le, if SYSWORK1 replaced 
SYSUT1, it occupies position a in the above list. SYSWORK1 can be 
overridden ty ancther narre during invocation. 

VL -- specifies that the sign bit is to be set to 1 in the last word 
of the address parameter list. 

68 Assembler H Programmer's Guide 

c 

o 

o 



o 

II 
& SYSPARM 3,50 

II 
Adding macro definitions to libraries 34 
ALGN (NOALGN) assembler option 2 
Alignment, Removal of 
restriction 39,2 

Assembler cataloqed procedures 9-17 
Assembler data sets 4-8 

Characteristics 5,7-8 
List of 4 

Assembler diagnostic facilities 27-32,25 
Abnormal assembly termination 30 
Cross-reference 25 
Error Messages 27 
Macro trace facility (MHELP) 30 
MNOTEs 30 
suppression of MNOTEs and error 
messages 30 

Assembler listing 19-26 
External symbol dictionary 21 
Source and object program 22 
Relocation dictionary 24 
Symbol and literal cross-reference 25 
Diagnostic cross-reference and 

assembler summary 25 
Assembler options 1-4 

Option list 1 
Default options 4 
Overrriding defaults 4,15 
Sample of use 46 

Assembler statistics 25,20 
Assembler summary 25,20 
ASMHC, cataloged procedure for 

assembly 9 
ASMHCG, cataloged procedure for 
assembly and loader-execution 13 

ASMHCL, cataloged procedure for 
assembly and linkage editing 10 

ASMHCLG, cataloged procedure for 
assembly, linkage editing, and 
execution 12 

II 
Calling the assembler from a problem 

program 67 
Cataloged procedures 9-17 

For assembling (ASMHC) 9 
For assembling and linkage editing 

(ASMHCL) 10 

Index 

For assemnling, linkage editing, and 
execution (ASMHCLG) 12 

For assembling and loader-execution 
(ASMHCG) 13 

overridinq 15 
Characteristics of assembler data 
sets 7-8 

Codes 
See Return codes; Severity codes. 

Cross-reference 
See also Diagnostic cross-reference. 
Examples 20,51 
Listing format 25 

Concatenation of SYSLIB data sets 6 
COND parameter 8,15 

iii 
Data sets, assembler 

Characteristics 5,7-8 
List of 4 

DD statements, overriding in cataloged 
procedures 15 

DECK assembler option 2 
Default options 4 
Diagnostic cross-reference and assembler 

summary 25,20 
Diagnostic facilities 

See Assembler diagnostic facilities .• 
Dynamic invocation of the assembler 67 

II 
END card format 63 
Entry point restatement 35 
Error messages 27-29 

Cross-reference 25,20 
ESD 

See External symbol dictionary. 
ESD (NOESD) assembler option 2 
EXEC statement 

Overriding in cataloged procedures 15 
PARM field 1,34 
COND parameter 8,15 

Extended precision machine instructions 38 
External symbol dictionary (ESD) 

Entry types 21 
Examples 20,46 
Listing format 21 
output card format 61 

Index 69 



II 
Format 

See error messages; macro-generated 
statements. 

a 
Identification-sequence field 24 
Invoking the assembler from a problem 

program 67 
Invoking cataloged procedures 9 
Instruction execution sequence, control 
of 38 

II 
Job control language cataloged 

procedures 
See Cataloged procedures. 

.. 
Linkage, object module 35-37 
LINECNT assembler option 2 
LIST (NOLIST) assembler option 2 
Listing control instructions, 
printing of 23 

LOAD (NOLOAD) assembler option 2 
Load module modification 35 

II 
Machine instructions, extended 
precision 38 

Macros, error messages in 27 
Macro-generated statements, format of 23-24 
Macro definition libraries, additions 
to 34 

Macro Trace Facility (MHELP) 
Description 30-32 
Sample 53-59 

Messages 
See Assembler diagnostic facilities. 

MHELP 
See Macro Trace Facility. 

Model 85, 91, and 195 programming 
considerations 38 

MNOTEs 30,42 
MSGLEVEL assembler option 3 
MULT(NOMULT) assembler option 2 

70 Assembler H Programmer's Guide 

II 
Number of Channel Programs (NCP) 
selection for assembler data sets 8 

II 
Object deck output format 61-65 
Output format 

Listing 19-26 
Object deck 61-65 

Object module linkage 35-37 
Options, assembler 1-4 

Option list 1 
Default options 4 
Overriding defaults 4,15 
Sample of use 46 

Overriding statements in cataloged 
procedures 15-17 

Overriding default assembler 
options 4,15 

• PARM field 1,34 
Procedure 

See Cataloged procedures. 
Program termination 34 
Programming considerations 33-39 

II 
~egisters, saving and restoring 33 
Relocation dictionary 

Listing format 24 
Output text format 62 
Examples 20,51 

RENT (NORENT) assembler option 2 
Restoring general registers 33 
Return codes 8 

See also MSGLEVEL assembler option. 
RLD 

See Relocation dictionary. 
RLD (NORLD) assembler option 2 

c 

o 



D ::> sample programs and listings 
Assembler language features 41-51 
Assembler listing description 20 
Diagnostic error messages 29 
MHELP 53-59 

0, 
I~ I'. 

o 

saving general registers 33 
Sequence number 24 
Severity codes 8,27 

See also MSGLEVEL assembler option. 
Source and object program assembler listing 

format 22,20 
special CPU programming considerations 38 
Statistics, assembler 25,20 
Suppression of error messages 30 
SYSIN data set 6 
SYSLIB data set 6 
SYSLIN data set 6 
SYM card (TESTRAN) format 63 
SYSPARM assembler option 3,46 
SYSPRINT data set 6 
SYSPUNCH data set 6 
SYSUT1 data set 6 

a 
Termination 

Abnormal assembly 30 
Program 34 

TEST (NOTEST) assembler option 
TESTRAN (SYM) card format 63 
TEXT (TXT) card format 61 

Unaligned operands 
Using the assembler 
Utility data set 6 

• 
39,2 
1-17 

XREF (NOXREF) assembler option 

2 

2 

Index 71 



SC26-3759-0 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series which serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the back of 
this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY . 

IBM Corporation 
Department 813 
112 East Post Road 
White Plains, New York 
10601 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

fold 

FIRST CLASS 
PERMIT NO. 1359 

WHITE PLAINS, N.Y. 

fold 

c 

c 

~ 
~. 
(1) 

c. 
5' ~ 

c 
en 
):. 

C/) • () 
I\.) 

q> 
w 

" (J1 
co 
6 

o 



) 

o 

READER'S COMMENT FORM 

IBM SYSTEM/360 OPERATING SYSTEM 

ASSEMBLER H PROGRAMMER'S GUIDE 

SC26-37S9-0 

Please comment on the usefulness and readability of this book, suggest additions and deletions, 
and list specific errors and omissions (give page numbers). All comments and suggestions become 
the property of IBM. If you want a reply, be sure to give your name and address. 

Name _____________ Occupation _________________ _ 

Address ___________________________________________ _ 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SC26-3759-0 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series which serves as- a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the back of 
this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY . 

IBM Corporation 
Department 813 
112 East Post Road 
White Plains, New York 
10601 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 

FIRST CLASS 
PERMIT NO. 1359 

WHITE PLAINS, N.Y. 

fold 

( 

c 

~ 
:;' .... 
CI) 

0. 
:;' ... 
c 
en 
?> 
en • 
(") 
I\,) 
0') w ..... 
CJ1 
co 
6 


