Program Product

IBM System/360
Operating System
Assembler H
Programmer’s Guide

Program Number 5734-AS1

This book tells how to use Assembler H. It describes
assembler options, cataloged Job Control Language pro-
cedures, assembler listing and output, sample programs,
and programming techniques and considerations.

Assembler H is an assembler language processor for the
IBM System/360 Operating System. It performs high-
speed assemblies on an IBM System/360 Model 40 or
higher and on an IBM System/370 Model 145, 155, or
165 with at least 256K bytes of main storage.

This book is intended for all Assembler H programmmers.
It should be used in conjunction with the Operating
System Assembler Language manual, Order No. GC28-
6514; the Assembler H Language Specifications,

Order No. GC26-3771; and the Assembler H Messages,
Order No. SC26-3770. '

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

First Edition (June, 1970)

This edition with Technical Newsletter SN33-8095 applies to
version 2 of the IBM System/360 Operating System Assembler H
Program Product 5734-AS1l and to all subsequent versions until
otherwise indicated in new editions or Technical Newsletter.
Changes to the text, and small changes to illustrations, are
indicated by a vertical linte to the left of the change; changed
or added illustrations are denoted by the symbol e to the left
of the caption.

Changes are continually made to the information herein; before

using this publication.in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360 for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serv1ng
your locality.

A form for readers comments is provided at the back of
this publication.. If the form has been removed, comments may
be addressed to IBM Nordic Laboratory, Publications Development,
“Box 962, S-18109 Lidingd 9, SWeden.

['@D Copyright International Business Machines Corporation 1970

IBM / Technical Newsletter SC26-3759-0

Re: Order No.
Q This Newsletter No. SN33-8095

Date February 15, 1971

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM ASSEMBLER H
PROGRAMMER'S GUIDE

©IBM Corp. 1970

This Technical Newsletter, a part of version 2 of IBM System/360
Operating System, Assembler H Program Product provides replace-
ment pages for IBM System/360 Operating System Assembler H, Pro-
grammer's Guide, Order Number SC26-3759-0. These replacement
pages remain in effect for subsequent versions and modifications
unless specifically altered. Pages to be inserted and/or removed
are listed below:

Cover, ii

iii, iv
C

7,8

31,32

37,38

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol e to the left of
the caption.

Summary of Amendments

Minor errors are corrected throughout the manual, information
changed on MHELP Control on &SYSNDX, and IBM System/370
information added.

Note: File this cover letter at the back of the manual to provide
a record of changes.

IBM Nordsc Laboratory, Technical Communications, Box 962, $-18109 Lidsngi 9, Sweden

©IBM Corp. 1971 PRINTED IN U.S.A.

®

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

Preface

This publication tells how to use Assembler H. It descrikes assenbler
options, catalcged job control language procedures, assembler listing
and cutput, assembler data sets, error diagnostic facilities, sample
rrcgrans, and programming techniques and considerations.

Assenbler H is an assenbler-language processor for the IBM System/360
Operating System. It performs high-speed assenklies on an IBM
System/360 Model 40 or higher and on an IBM System/370 Model 145,
155, or 165 with at least 256K bytes of main storage.

This manual has the following main sections:

. Using the Assenbler

° Assembler Iisting LCescription

. Assembler Diagnostic Facilities
. Programming Considerations

"Using the Assemkler" describes the EXEC statement PARM field ortion,
the data sets used ky the assembler, and the jok control language
cataloged procedures suprlied by IBM. The cataloged procedures can
be used to assemble, link-edit or load, and execute an asserbler
program.

"Assemkler Listing Descripticn" describes each field of the assembly
listing. "“Assembler Ciagnostic Facilities" descriktes the purpose and
format of error messages, MNOTEs, and the MHELF mWmacro trace facility.
"Programming Considerations®" discusses various topics, such as standard
entry and exit rrccedures for problem programs. ’

Arrendix A is a sample program which descrikes many of the asserbler-
lanquaqge features, esrecially those unigque to Assembler H. Appendix
B is a samrle MHELP macro trace and dump. Appendix C describes the
object module output formats. Appendix D tells how to call the
assemkler dynamically frcm prcblem programs.

This publication is intended for all Assemkler H programmers. To use
this gublication, ycu shculd be familiar with the assembler language
and with the basic concepts and facilities of the Operating Systen,
esrecially job control langquage, data management services, surervisor
services, and the linkage editor and loader.

Assembler Publications

The following publication contains a brief description of Asserxbler
H and how it differs frcor lcwer level Operating System/360 assemblers:

IBM System/360 Operating System General Information Manual, Order Number
GC26-3758

iii

The follcwing ruklicaticns describe the assemkler language and the
information required tc rur Assembler H programs: ;

IBM System/360 Operating System Assembler Language, Order Number
GC28-6514

The Assembler Ianguage manual contains the basic assembler and macro
assemkler specificaticrs, except those unique to Assembler H.

IBM System/360 Operating System Assembler H Language Specifications,
Order Number GC26-3771

The Assembler H lLanquage Specifications describes the language features
that are availakle with Asserbler H. It is surrlemental to the
Assembler language manual listed akove.

IBM System/360 Operating System Assembler H Messages, Order Number
SC26-3770

The Messages manual provides an exrlanation of each of the diagnostic
and abncrmal terminaticon messages issued by Assembler H and how you
shculd resrond in each case.

The following publications contain information used to install and
maintain Assembler H:

IBM System/360 Operating System Assembler H System Information, Order
Number GC26-3768

The System Infcrmation manual consists of three self-contained chapters
cn rperformance estimates, storage estimates, and system generation
cf Assemblerxr H.

IBM System/360 Operating System Assembler H Program Logic Manual, Order Q‘
Number LY26-3760

W

The Program Iogic Manual describes the design légic and functional
characteristics cf Assembler H.

Operating System Publications
The following puklications contain information about the Operating
System:

IBM System/360 Operating System Concepts and Facilities, Order Number
GC28-6535

Concepts and Facilities introduces and interrelates all Operating
System/360 control program facilities. It shows how these facilities
work with the lanquage translators and service rrograms, SC you can
ketter learn .-hcw tc use the systern.

IBM System/360 Operating System Job Control Language, Order Number
GC28-6539

The Jok Centrol Language book tells how to code the job control language
necessary to initiate and control the processing of any rrogram, and
contains all cataloged rrocedures.

iv

IBM System/360 Operating System Linkage Editor and Loader, Order Number
GC28-6538

The Linkage Editcr and Lcader manual provides information on the
oreration and use of the linkage editor and loader, which are two
prograrxrs that rrerare the output of language translators for execution.

IBM System/360 Operating System Supervisor and Data#Management Macro
Instructions, Order Number GC28-6647, and

IBM System/360 Operating System Supervisor and Data Management Services,

Order Number GC28-6646

The Supervisor and Cata Management publications describe the rrcgram
execution-time services available from the Operating System and the
macro instructions required to use these services.

IBM System/360 Operating System Utilities, Order Number GC28-6586

The Utilities publication describes the utility rrograms of the
Operating System. The assembler-language programmer can use utilities
to do such things as add macrc definitions to a library.

IBM System/360 Operating System Messages and Codes, Order Number GC28-
GC28-6631

This publication contains the messages and corpletion codes issued
ky the Operating Systen. (It does not contain the messages issued
ky Asserkler H.) ‘

IBM System/360 Operating System Programmer's Guide to Debugging, Order
Number GC28-6670

This publication describes dumps and other informwaticn issued by the
Operating Systenm whken an assermbler-language program executes
unsuccessfully.

This page intentionally left blank.

vi

¥

Using the Assembler
Assembler Options .
Default Options .
Assembler Data Sets
DD Name SYSUT 1
DD Name SYSIN
DD Name SYSLIB
DD Name SYSPRINT
DD Name SYSPUNCH .
DD Name SYSLIN
Return Codes . .
Cataloged Procedures .
Cataloged Procedure for Assembly (ASMHC)

Cataloged Procedure for Assembly and Link-Editing (ASMHCL) . .
Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG)
Cataloged Procedure for Assembly and Loader-Execution (ASMHCG)

Overriding Statements in Cataloged Procedures .
Assembler Listing

External Symbol Dictionary (ESD) .

Source and Object Program .

Relocation Dictionary .

Cross Reference .
Diagnostic Cross Reference and Assem bler Summary
Assembler Diagnostic Facilities .

Assembly Error Diagnostic Messages

MNOTEs . .
Suppression of Error Messages and MN OTEs .
Abnormal Assembly Termination .

Macro Trace Facility (MHELP)

Programming Considerations .
Saving and Restoring General Register Contents .
Program Termination .

PARM Field Access .

Macro Definition Library Addmons

Load Module Modification — Entry Point Restatement .

Object Module Linkage

Special CPU Programming Consxderatzons
Controlling Instruction Execution Sequence .
Extended-Precision Machine Instructions . . .
Unaligned (Byte-Oriented) Operands

Appendix A. Sample Program

Appendix B. Sample Macro Trace and Dump (MHELP) .

Macro Call Trace (MHELP 1) .
Macro Entry Dump (MHELP 16)
Macro AIF Dump (MHELP 4)

Macro Exit Dump (MHELP 8)
Appendix C. Object Deck Qutput .

ESD Card Format
TEXT (TXT) Card Format .
RLD Card Format

END Card Format . . .
TESTRAN (SYM) Card Format .

Appendix D. Dynamic Invocation of the Assembler

vii

Contents

VWO JOOOOCO0 b=

e e e
O U W O

WU WNNDNDNDNDDNDN
OCOOONNOGODbd N+

D TN NN NN
— O 000000 GG B DWW

ol or o orn
bW

o
hatt

o O O OO
NWDN =~

o
~

IMlustrations

Figures

. Figure 1.

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure

Tables

Table
Table
Table

Assembler H Data SetsS...cieuicicrecennceccacasas ceeteneseesas D
Cataloged Procedure for Assembly (ASMHC) .cieieercossnsnnnnns 10
Cataloged Procedure for Assembling and

Link-Editing (ASMHCL) e veevevennecessasocansns Cheseceeeena 11
Cataloged Procedure for Assembly, Link-Editing and

Execution (ASMHCLG) ¢oveeeeerenononnenenonns Chier et esea e 13
Cataloged Procedure for Assembly and

Loader-Execution (ASMHCG) ..v2vveeees G eeesesete e e 14
Assembler H Listing..ceeieeeeeesceseseoasans cescerecnencnsonn 20
Sample Error Diagnostic MeSSagesS......eeeeseescesscccsossnse 29
Sample Assembler Linkage Statements for

FORTRAN or COBOL SubprogramsS.....ceceeeese. ceeaeen ceeeeen . e 37
TESTRAN SYM Card FOrmat....ceeeeeeeertoeesonsesoseseassnnsaness 65
Assembler Data Set Characteristics.........iiieiiinrnneennnn 7
Number of Channel Program (NCP) Selection............o.. cve.s 8
Types Of ESD Entries..c.ceeeececesnseess cescesansenan e e 20

viii

.t

O

Using the Assembler

This section describes the assembly-time ortions available to the
assembler-language programmer, the data sets used by the assembler,
and the cataloged procedures of job control language suprlied by IBM
to simplify assembling, linkage editing or lcading, and execution of
assembly language rrcgranms. The job control language is described

in detail in the Job Contrcl Language publication, Order Numker GC28-
6539.

Assembler Options

Assembler H offers a number of optional facilities. For exanmple, you
can surppress printing of the assembly listing or parts of the listing,
and you can specify whether you want an object deck or an object module.
You select the ortions by including appropriate keywords in the PARM
field of the EXEC statement that invokes the assembler, There are

two types of options:

. Simple prairs cf keywords: a positive form (such as LOAL) that
requests a facility, and an alternative negative form (such as
NCLCAD) that rejects that facility.

e Keywords that permit you to assign a value to a function (such
as LINECNT=50) .

Each of these options has a standard or default value which is used
for the assembly if you do not specify an alternative value. The
default values are explained in the following section, "Default
Options."

If you are using a cataloged procedure, you must include the PARM field
in the EXEC statement that invokes the procedure. You must also gqualify
the keyword (PARM) with the name of the step within the rrocedure that
invokes the compiler. For example:

7/ EXEC ASMHC, FARM. C='1LCAC, NODECK!

The secticn "Overriding Statements in Cataloged Procedures" contains
mcre examples on how to specify options in a cataloged procedure.

PARM is a keyword parameter: code PARM= followed by the list cf options,
separating the options by commas and enclosing the entire list within
single quotes or rarentheses. If there is only one option that does not
include any special characters, the enclosing quotes or parentheses

can be omitted. The option list mast not be longer than 100 characters,
including the separating commas. You may specify the options in any
order. If contradictcry cgtions are used (for example, LIST and
NOLIST), the rightmcst option (in this case, NCIIST) is used.

The assembler options are:

(DECK, LOAD, LIST, TEST, XREF, ALGN, RENT, ESD, RLD, MULT,
PARM= or or or or or ‘LINECNT=nn", or or or or or SYSPARM=xxx', MSGLEVEL=nnn’)
(NODECK,NOLOAD,NOLIST,NOTEST NOXREF, /NOALGN,NORENT, ,NOESD,NORLD ,NOMULT,

Using The Assembler 1

DECK -- The object module is placed on the device specified in the
SYSPUNCH DD statement.

LOAL -- The okject module is rlaced on the device specified in the
SYSIIN DD statement. @

Note: The LOAD and DECK crtions are independent of each other. Both
or neither can be specified. The output on SYSLIN and SYSPUNCH is
identical except that the control program closes SYSLIN with a
disposition cf LEAVE and SYSPUNCH with a disposition of REREAD.

ESC -- The assembler produces the External Symbol Dictionary as part
of the listing.

RLLC -- The assembler prcduces the Relocation Dictionary as part of
the listing.

MULT -- The assembler will do multiple (batch) assemblies under the
control cf a single set of job control language cards. The
source decks must ke placed together with no intervening /%
card; a single /% card must follow the final source deck.

LIST

An assembler listing is produced. Note that the NOLIST
option overrides the ESD, RLD, and XREF opticns.

TEST -- The object module contains the special source symbol table
required by the test translator (TESTRAN) routine.

XREF -- The assembler produces a cross-reference table of symbols
and literals as part of the listing.

RENT -- The assembler checks for a possible coding violation of
Frogram reenterablility. '

LINECNT=nn -- The number of lines to be printed between headings
in the listing is nn. The permissible range is
1 to 99 lines.

NOALGN -- The assenbler surrresses the diagnostic message "IEV(033
' ALIGNMENT ERROR" if fixed point, floating-point, or logical

data referenced by an instruction operand is not aligned
on the proper koundary. The message will be rroduced,
however, for references to instructions that are not aligned
on the proper (halfword) boundary or for data boundary
violations for privileged instructions such as LPSW. See
the "Srecial CPU Prcgramming Considerations" section for
information on alignment requirements.

ALGN -- The assembler does nct suppress the alignment error diagnostic
message; all alignment errors are diagnosed.

2 Assembler H Programmer's Guide

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

MSGIEVEL=nnn -- Error diagnostic messages below severity code nnn will
not appear in the listing., Diagnostic messages can
have severity codes of 0, 4, 8, 12, 16, or 20 (0 is
the least severe). MNQOTEs can have a severity code
of 0 through 255.

Fcr example, MSGLEVEL=8 will suprress messages for
severity codes 0 through 7.

SYSPARM=xxx -- The character string xxx is the value of the system
variable synbol &§SYSPARM. The assembler uses §&SYSPARM
as a read-only SETIC variable. If no value is specified
for the SYSFARM option, &SYSPARM will ke a null (empty)
character string. The function of ESYSPARM is explained
in the Assembler H Language Specifications, Order Number
GC26-3771.

A tctal cf 100 characters is allowed in the PARM field
of the EXEC statement. Thus, the maximum length of
the SYSPARM character string is 100 minus the total
number of other characters in the PARM field. (Commas
separating crtions and quotes enclosing individual
option values must also be counted.) Fcr exangle:

FARM='SYSFARM=xxx"'
XXX can be upr to 92 characters

EARN= (NCLCECK, 'SYSPARM=xxx")
¥Xx can be up to 83 characters

Commas are not allowed unless parentheses or quotes
surrcund the entire PARM value. Also, two quotes are
needed to represent a single quote and two ampersands
are needed to represent a single ampersand, For example:
PARM="'LOAD , SYSPARM= (&&AB, &&XY) "
PARM="NODECK, SYSPARM=("'"'AB,"''XY)"'

The SYSPARM character string is &AB,&XY in the first
example and ('AB, 'XY) in the second exarngle.

If you are calling the assemkler from a prcblem rrogram

at execution time (dynamic invccation), SYSPARM can
ke ur to 256 characters long.

Using The Assembler 3

Default Options

If you do not code an option in the PARM field, the assembler assunmes
a default cpticn. The fcllowing default options are included when
Asserktler H is shirred by IBM:

PARM=(DECK,NOLOAD,LIST ,NOTEST,XREF,'LINECNT=55', ALGN,NORENT ESD,RLD,NOMULT 'SYSPARM=nuli’,'MSGLEVEL=0')

However, these may not be the default options in effect in yocur
installation. The defaults can be respecified when Assembler H is
installed. For example, NCLECK can be made the default in place of
CECK. Also, a default orticn can be specified during installation
so that you cannot override it.

The cataloged rrccedures described in this book assume the default
entries. The section "Overriding Statements in Cataloged Procedures"
tells you how to override them. First, however, check whether any
default options have been changed or whether there are any you cannot
override at your installation.

Assembler Data Sets

Assernktler H requires the fcllowing data sets, as shown in Figure 1:
. SYSUT1 -- utility data set used as intermediate external storage.

. SYSIN -- an input data set containing the source statements to
be processed.

In addition, the fcllowing four data sets may ke required:

. SYSIIB -- a data set containing macro definitions (for macroc
definitions nct defined in the source program) and/or source code
to be called for through COPY assemkler instructions.

. SYSPRINT -- a data set containing the assernkly listing (unless
the NCLIST option is specified).

. SYSPUNCH -- a data set containing okject module output, usually
for punching (unless the NODECK option is specified).

. SYSIIN -- a data set containing obkject module output usually for
the linkage editor (only if the LOAD option is specified) .

The akove data sets are described in the following text. The DD name
that ncrmally must be used in the DD statement describing the data
set appears as the heading for each description. The characteristics
of these data sets, thcse set by the assembler and those you can
override, are shown in Takles 1 and 2.

4 Assembler H Programmer's Guide

[

\ SYSIN

SYSLIB

SYSUT1

» Assembler H

<

(overflow)

Listing-
121 Characters

Wide

Figure 1. Assembler H Data Sets

(MACRO and
COPY Calls)
\ 4 v
7 SYSPRINT N SYSLIN a SYSPUNCH

/

[

\(Object Modules) A
(80 Character Card Image)

Using The Assembler

5

DD Name SYSUT 1

The assembler uses this utility data set as an intermediate external
storage device when rroccessing the sourxrce program, The input/output
device assigned to this data set must be a direct access device. The
assembler does not support a multi-volume utility data set.

DD Name SYSIN

This data set contains the input to the assemkler -- the source
statewents tc ke rrocessed. The input/output device assigned to this
data set may be either the device transmitting the input stream, or
another sequential input device that you have designated, The DD
statement describing this data set appears in the inrut stream. The
IBM-supplied rrocedures dc nct contain this statement.

DD Name SYSLIB

From this data set, the assemkler obtains macro definitions and
asserkler-language statements to be called by the COPY assembler
instruction. It is a partitioned data set; each macro definitiocn or
sequence of assernkler-language statements is a separate member, with
the member name being the macro instruction mnemonic or COPY code name.

The data set may be defined as SYS1.MACLIB or your private macro
definition or COPY likrary. SYS1.MACLIB contains macro definitions

for the system macro instructions provided ty IBM. Your private library
may ke concatenated with SYS1.MACLIB. The two libraries must have

the same logical record length (80 bytes), but the blocking factors

may ke different. The DD statement for the library with the largest
blocksize must appear first in the job control language for the assembly
(that is, kefore any cther library DD statements). The Job Control
Lanquage publication, Crder Number GC28-6539, explains the concatenation
of data sets.

DD Name SYSPRINT

This data set is used Ly the assembler to produce a listing., Outrut
may be directed tc a printer, magnetic tape, or direct-access storage
device. The assembler uses the machine code carriage-control characters
for this data set.

DD Name SYSPUNCH

The assembler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access.

6 Assembler H Programmer's Guide

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

DD Name SYSLIN

This is a direct-access storage device, magnetic tape, or card punch
data set used ky the assexbler, It contains the same output text as
SYSPUNCH. It is used as input for theé linkage editor,

eTakle 1. Assenkler Data Set Characteristics

Data Set SYSUT1 SYSPUNCH SYSPRINT SYSLIN SYSIN SYSLIB
Access Method BSAM BSAM BSAM BSAM BSAM BPAM
Logical Record fixed at fixed at fixed at fixedat | fixedat | fixed at
Length (LRECL) BLKSIZE 80 121 : 80 - 80 80

we |0 @ |© |0 0|06
e | © |00 00 |00 06|06
el NEE NO N N KON EGH P

Applicable

@ You can specify a blocksize (BLKSIZE) between 2000 and 5100 bytes in the DD statement or in the
data set label. BLKSIZE should be a multiple of 8; if it is not, it will be rounded to the next lower multiple
of 8. If you do not specify BLKSIZE, the assembler sets a default blocksize based on the device used for
SYSUT1 as follows:

2301 Drum 5016 bytes

2302 Disk 4984 bytes

2303 Drum 4888 bytes

2305 Drum 4280 bytes
model 1

2305 Drum 4688 bytes
model 2

2311 Disk 3624 bytes

2314 Disk 3520 bytes.

3330 Disk 4208 bytes

The Storage Estimates chapter of the System Information manual, Order Number SC26-3768, discusses the
reasons for changing the default blocksize.

If specified, BLKSIZE must equal LRECL or a multiple of LRECL. If BLKSIZE is not specified, it is set equal
to LRECL.

BLKSIZE be specified in the DD statement or the data set label as a multiple of LRECL.
Set by the assembler to F.
Set by the assembler to FM.

You may specify B, S, or T.

QOOEOL ©

You can specify the number of channel programs (NCP) used by any assembler data set except SYSUT1.

and SYSLIB. The NCP of SYSUTT1 is fixed at 1. The assembler, however, can change your NCP specification
under certain conditions. Table 2 shows how NCP is calculated. Note that if the NCP is greater than 2, chained
1/0 request scheduling is set by the assembler.

Using The Assembler 7

‘ Table 2. Number of Channel Program (NCP) Selection

Unit record device XX Xt XX X] XX X

SYSPRINT data set X X X X X X

SYSIN data set X X X X X X

SYSLIN or SYSPUNCH X X X X X X
data set

NCP not specified by user X[X]| X XXX

NCP specified by user = 1 X{X| X X{X]|X
= 299 X{X}] X X1 XX

NCP set by assembler is
larger of 1210/BLKSIZE X X X
or2

NCP set by assembler is larger
of 800/BLKSIZE or 2 X X X

NCP set by assembiler is larger
of 240/BLKSIZE or 2 X X X

NCP is set to number spec-
ified by the user

Note: If the NCP is greater than two, chained 1/0 scheduling is set by the assembler.

Return Codes

Assembler H issues return codes for use with the COND rarameter of

the JOE and EXEC jct contxcl language statements, The COND parameter
enables you to skip or execute a jokt step depending on the results
(indicated by the return ccde) of a previous job step. It is explained
in the Job Control language publication, Order Numker GC28-6539.

The return code issued by the assembler is the highest severity code
that is associated with any error detected in the assembly or with

any MNCTE message produced Lty the source prograr cor macro instructions.
See the Asserbler H Messages book, Order Number SC26-3770, for a listing
of the assembler errors and their severity codes.

8 Assembler H Programmer's Guide

Cataloged Procedures

Often the same set of job ccntrol statements is used over and over
again (for example, to specify the compilation, link-editing, and
execution cf many different programs) . To save programming time and
to reduce the possiklity of error, sets of standard series of EXEC
and DD staterents can be prepared once and 'cataloged' in a system
library. Such a set of statements is termed a cataloged rrocedure
and can ke invcked by one of the following statements:

J

L

//stepname EXEC procname
//stepname EXEC PROC=procname

The specified rrccedure is read from the procedure library
(SYS1.PROCILIE) and merged with the job control statements that follow
this EXEC statement.

The System Prcgrarmer's Guide, Order Number GC28-6550, tells how to
rlace cataloged procedures in the procedure litrary.

This section describes four IBM-provided cataloged procedures: a
procedure for assembling (ASMHC), a procedure for assembling and link-
editing (ASMHCL), a procedure for assembling, link-editing, and
executing (ASMHCLG), and a procedure for asserxkling and loader-executing
(ASMHCG) .

Cataloged Procedure for Assembly (ASMHC)

This procedure consists of one jok step: assembly. The name ASMHC
must be used to call this procedure. The result of execution is an
okject module, in runched card form, and an assembler listing.

O

In the following example, input enters via the input stream. An example
of the statements entered in the input stream to use this prccedure
is:

//jobname Jos
//stepname EXEC PROC=ASMHC
//C.SYSIN ppD *

|
|
source program statements
I
I
/* (delimiter statement)

The statements of the ASMHC procedure are read from the procedure
litrary and merged intc the input stream,

Figure 2 shows the statements that make up the ASMHC procedure.

Using The Assembler 9

L/ EXEC PGM=IEV90,REGION=200K

2 //sysLiB DD DSN=SYS1.MACLIB,DISP=SHR

3 //sYsuT DD UNIT=(SYSDA SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1

4 //SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))

5 //SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))

PARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure
(see * Overriding Statements in Cataloged Procedures”). The system name IEV90 identifies Assembler H.

This statement identifies the macro library data set. The data set name SYS1.MACLIB is an I1BM designation.
This statement specifies the assembler utility data set. The device classname used here, SYSDA, represents a

direct-access unit. The I/0 unit assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 2311 may be substituted for SYSDA.

H

This statement describes the data set that will contain the object module produced by the assembler.

(3]

This statement deflnes the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 2. Cataloged Procedure for Assembly (ASMHC)

Cataloged Procedure for Assembly and Link-Editing (ASMHCL)

This procedure concists of two job steps: assembly and link-editing.
The namre ASMHCI must be used to call this procedure. Execution of
this procedure results in the prcduction of an assembler listing, a
linkage editor listing, and a load module.

The following exarrle illustrates input tO the assembler via the input
jok stream. SYSLIN contains the output from the assembly step and

the inkut to the linkage edit step. It can ke concatenated with
additional input tc the linkage editor as shown in the example. This
additional input can be linkage editor control statements or other
okject modules.

An example of the statements entered in the input stream to use this
procedure is:

//jobname JoB
//stepname EXEC PROC=ASMHCL
//C.SYSIN DD *

|
I
|
source program statements
|
|
|

/*
/ILSYSIN oD * W
1
I necessary only if linkage
I editor is to combine modules
object module or or read linkage editor control
linkage editor information from the job stream
control statements
I J

10 Assembler H Programmer's Guide

)

Figure 3 shows the statements that make up the ASMHCL procedure.
those statements not previcusly discussed are explained.

Oonly

I EXEC PGM=IEV90,PARM=LOAD,REGION=200K
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUTH DD UNIT=(SYSDA SEP=SYSLIB),SPACE=(CYL,(10,5)) DSN=8SYSUT1
/ISYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
' //sYsLIN DD DISP=(,PASS),UNIT=SYSDASPACE=(CYL,(5,5,0)), .
I DCB=(BLKSIZE=400),DSN=&&LOADSET
2 EXEC PGM=IEWLPARM='MAP,LET,LIST,NCAL' REGION=96K,COND=(8,LT,C)
3 //sYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
4 DD DDNAME=SYSIN ‘
5 //sYsLMOD DD DISP=(,PASS),UNIT=SYSDA SPACE=(CYL,(2,1,2)),DSN=8GOSET(GO)
6 J/sYsuT1 DD UNIT=SYSDA,SPACE=(CYL,(3,2)) DSN=8SYSUT1
7 J/SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

1 In this procedure the SYSLIN DD statement describes a temporary data set - - the object module - - which is to be
passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage
editor to produce a cross-reference table, a module map, and a list of all control statements processed by the linkage
editor. The NCAL option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one (SYSLIN) produced as output from the
assembiler.

4 This statement is used to concatenate any input to the linkage editor from the input stream (object decks and/or
linkage editor control statements) with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain the load module, the DSN parameter must be respecified
and a DISP parameter added. See “ngrriding Statements in Cataloged Procedures. ” if the output of the linkage
editor is to be retained, the DSN parameter must specify a library name and member name where the load
module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

7 This statement identifies the standard output class as the destination for the linkage editor listing.

Fiqure 3. ataloged Procedure or Assembling and ILink-Editing

{ASMHCIL)

Using The Assembler

11

Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG)

This rrccedure consists of three jok steps: assernkly, link-editing,
and execution.

Figure 4 shows the statements that make up the ASMHCIG procedure.
Cnly those statements not previously discussed are exrlained in the
fiqure.

The name ASMHCLG must ke used to call this procedure. An assemkler
listing, an object deck, and a linkage editor listing are rrcduced.

The statements entered in the ingput stream to use this procedure are:

//jobname JoB
//stepname EXEC PROC=ASMHCLG
//C.SYSIN Db *

|
|
i
source program statements
|
I
1
/* 3
//L.SYSIN DD *
I
I

necessary only if linkage
| editor is to combine modules
object module or P or read linkage editor control
linkage editor information from the job stream
control statements
|
/" I J
//G.ddname DD (parameters) h
//G.ddname DD (parameters)
//G.ddname DD *
|
|
I
problem program input
|
1

» only if necessary

12 Assembler H Programmer's Guide

J

O

//c EXEC PGM=IEV90,PARM=LOAD,REGION=200K

//SYSLIB bo DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 Db UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(10,5)), DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=8,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
//SYSLIN DD DISP=(,PASS),UNIT=SYSDA SPACE=(CYL,(5,5,0)}, *
1 DCB=(BLKSIZE=400), DSN=&&LOADSET

T EXEC PGM=IEWL,PARM="MAP,LET,LIST,NCAL’ REGION=96K,COND=(8,LT,C)
//SYSLIN DD DSN=&&LOADSET,DISP={OLD ,DELETE)
1 DD DDNAME=SYSIN

2 //sYsSLMOD DD DISP=(,PASS), UNIT=SYSDA SPACE=(CYL,(2,1,2)) , DSN=&GOSET(GO)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,2)),DSN=&SYSUT1
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

3 /G EXEC PGM=".L.SYSLMOD,COND= ((8,LT,C),(4,LT,L))

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as
executable even though errors were encountered during processing.

The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access
device, and is to be passed to a succeeding job step.

3 This statement initiates execution of the assembled and linkage edited program. The notation *.L.SYSLMOD
identifies the program to be executed as being in the data set described in job step L by the DD statement

named SYSLMOD.
e T
Figqure 4. (Cat C Procedure)for Assembly, Link-Editing and
Execution (ASM)

Cataloged Procedure for Assembly and Loader-Execution (ASMHCG)

This rrocedure consists of two job steps, asserkly and loader-execution.
Loader-execution is a comkination of link-editing and locading the
program for executicn. Lcad modules for rrogram libraries are not
rreduced.

Using The Assembler 13

/Ic EXEC PGM=IEV90,PARM=LOAD,REGION=200K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
//SYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)), *
1/ . DCB=(BLKSIZE=400),DSN=&&LOADSET

T 6 ‘ EXEC PGM=LOADER,PARM="MAP,LET PRINT NOCALL'

2 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
" DD DDNAME=SYSIN

3 J/isysLouT DD SYSOUT=A

This statement initiates loader-execution. The loader options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option is the same as NCAL for the linkage editor and the
LET option is the same as for the linkage editor,

This statement defines the loader input data set as the same one produced as output by the assembler.

This statement identifies the standard output class as the destination for the loader listing.

Figure 5. Calalcged Procedure for Assembly and Ioader-Execution
(ASMHECG)

Figure 5 shows the statements that make up the ASMHCG procedure. Only
those statements nct rrevicusly discussed are explained in the figure.

The name ASMHCG must be used to call this procedure. Assemkler and
lcader listings are produced.

The statements entered in the input stream to use this prccedure are:

//jobname JOB
//stepname EXEC PROC=ASMHCG
//C.SYSIN pb *

|
|
1
source program
|
1
/*
//G.ddname DD (parameters)
//G.ddname DD (parameters)
//G.ddname DD *
| only if necessary
1
|
problem program input
1
|
/*

14 Assembler H Programmer's Guide

Overriding Statements in Cataloged Procedures

Any parameter in a catalcged rrocedure can be overridden except the
PGM= parameter in the EXEC statement. Such overriding of statements
or fields is effective only for the duration of the job step in which
the statements appear. The statements, as stored in the rrocedure
likrary of thke syster, remain unchanged.

Cverriding for the purposes of respecification, addition, or
nullification is accomplished by including in the input strear
statements containing the desired changes and identifying the statements
to be overridden.

EXEC Statements

Any EXEC parameter (except PGM) can be overridden. For example, the
PARM= and COND= parameters can be added or, if present, respecified

by including in the EXEC statement calling the procedure the notation
PARM. stepname=, Oor COND.stepname=, followed Ly the desired parareters.
"Stername" identifies the EXEC statement within the procedure to which
the modification applies.

If the procedure ccnsists cf more than one jok step, a
PARM.rrocstername= cx COND.prccstepname= parameter may be entered for
each step. The entries must be in order, (PARM.rrocstept=,
PARM.rrocstep2=, e€tc.).

DD Statements

All rarameters in the operand field of DD statements may be cverridden
ky including in the ingut stream (following the EXEC card calling the
procedure) a DD statement with the notation //procstepname.ddname in
the name field. "Procstepname" refers to the job step in which the
statement identified by "ddname" appears.

Note: If ncre than one DD statement in a procedure is to be overridden,
the overriding statements must be in the same order as the statements
in the procedure.

Examples

In the assembly procedure ASMHC (Figure 2), the producticn cf a punched
okiject deck could be surrressed and the UNIT= and SPACE= parameters

of data set SYSUT1 respecified, by including the following statements
in the input stream:

//stepname EXEC PROC=ASMHC, X
1 PARM.C=NODECK

//C.SYSUT1 DD UNIT=2311, X
/" SPACE=(200,(300,40))

//C.SYSIN DD *

Using the Assembler 15

In procedure ASMHCIC (Figure 4), suppressing rroduction of arn assembler

listing and ac¢ding the CONL= rarameter to the EXEC statement, which
specifies executicn of the linkage editor, may be desired. In this
case, the EXEC statement in the input stream would arpear as follows:

//stepname EXEC PROC=ASMHCLG, X
1 PARM.C=(NOLIST,LOAD), X
1 COND.L=(8,LT, stepname.C)

Note: Overriding the LIST parameter effectively deletes the PARM=LOAD.
PAEM=LCAD must be repeated in the override statement.

For current executicn cf procedure ASMHCLG, no assembler listing would
be produced, and execution of the linkage editor job step //L would

ke surpressed if the return code issued by the assenbler (ster C) were
greater than 8. The fcllowing listing shows how to use the procedure
ASMHCI (Figure 3) to:

1. Read input from a non-lakeled 9~track tare on unit 282 that has
a stancard klocking factcxr cf 10.

2. Put the output listing on a tape labeled VOLIL=TAPE10, with a
data set name of EIRCG1 and a blocking factor cf 5.

3. Block the SYSLIN cutrut cf the assembler and use it as input to
the linkage editor with a blocking factor of 10.

4, Iink-edit the module only if there are no errcrs in the assembler
(COND=0) .

5. Link-edit onto a previously allocated and catalcged data set
USER.LIBRARY with a wember name of PRCG.

//iobname JoB

//stepname EXEC PROC=ASMHCL, X
// COND.L=(0,NE stepname.C)

//C.SYSPRINT DD DSNAME=PROG1,UNIT=TAPE, X
/I VOLUME=SER=TAPE10,DCB=(BLKSIZE=605)
//C.SYSLIN DD DCB=(BLKSIZE=800)

//C.SYSIN DD UNIT=282,LABEL=(,NL), X
1/ DCB=(RECFM=FBS,BLKSIZE=800)

//L.SYSIN DD DCB=stepname.C.SYSLIN

//L.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=0LD

/*

Note: The order cf arpearance of overriding DD names for jok step

C corresponds to the order of DD names in the procedure; that is,
SYSEFRINT precedes SYSLIN within step C. The DD name C.SYSIN was placed
last kecause SYSIN dces nct ccclreat—all-within step €. These points
are covered in the section(?ﬁsing Cataloged Procedures" }n the Job
Control Langquage manual, Ordér Number GCZB8-6539. .

16 Assembler H Programmer's Guide

The following example shows assembly of two programs, link-editing
of the two assemblies into one load module,

module. The input stream appears as follows:

//stepname1
//C.SYSLIN
!/

7
//C.SYSIN

/’
//stepname2
//C.SYSLIN
//C.SYSIN

/*
//L.SYSLIN
//L.SYSIN

/-l-
//G.ddname

The Job Ccntrol Language wanual, Order Number C28-6539, and System
Programmer's Guide, Order Number C28-6550,
description cf cverriding techniques,

EXEC
DD

DD

EXEC
DD
DD

DD
DD
ENTRY

PROC=ASMHC,PARM.C="LOAD’
DSNAME=&LOADSET,UNIT=SYSSQ,
SPACE=(80,(100,50)),
DISP=(MOD,PASS),DCB=(BLKSIZE=800)
*

1

|

1

source program 1 statements

|

|

PROC=ASMHCLG
DCB=(BLKSIZE=800),DISP=({MOD,PASS)
*

1

|

|

source program 2 statements

|

1

1

DCB=BLKSIZE=800
*

PROG

dd cards for G step

Using The Assembler

and execution of the lmad

provide additional

17

This page intentionally left blank.

18 Assembler H Programmer's Guide

Assembler Listing

The assembler H listing consists of up to five sections, ordered as
follows:

. External symbol dictionary
o Source and object program
. Relocation dictionary

Symbol and literal cross reference
» Ciagnostic cxcss reference and assemblexr summary

Figure 6 shows each secticn cf the listing. Each item marked with
a circled number is explained in the following section.

Assembler Listing 19

©® ®®

Figure 6.

20

3

lPRlME EXTERNAL SYMBUL DICTIONARY PAGE
SYMBOL TYPE 1D ADDR LENGTH LD ID ASM H V 01 11,52 05/19/70
PC 0001 000000 00020C
EXSYM ER 0002
10LO0P] 000022 0001
COMSECT CM 0003 000000 000050
EXOMY XD 0004 000003 000078
WRKFLDS SO 0005 000210 000090
PRIME SAMPLE LISTING DESCRIPTIUN PAGE 2
LEC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 01 11.52 05/19/70
000000 2 CSECT
3 EXTRN EXSYM
4 ENTRY I0LOOP
00000005 5 RS EQU B
000000 90EC DOOC 0000C 7 STM 14,12,12(13)
000004 05C0 8 BALR 12,0
00000006 9 USING *,12
000006 50D0 COF6 000FC 10 ST 13, SAVE+4
00000A 0000 7000 00000 1 tA 10, SAUE
EVO44 %% ERROR *#% UNDEFINED SYMBOL
00000E 5850 €202 00208 12 L R6,=A(EXSYM)
13 PRINT NOGEN
14 OPEN (INDCB,,0UTDCB, (OUTPUTY)
23 PRINT GEN @
24 I0LOOP GET INDCB, INBUF
000022 4110 C13E 00144 25+10LOOP LA 1,INDCS LOAD PARAMETER REG 1 02-1HBIN
000026 4100 CO52 00058 26+ LA 04 INBUF LUAD PARAMETER REG 0 02-IHBIN
00002A S8F0 1030 00030 27+ L 15448(0,1) LOAD GET ROUTINE ADOR. OL-GET
00002E O0SEF 28+ BALR 14,15 LINK TO GET ROUTINE 01-GET
PRIME RELOCATIUN DICTIONARY PAGE 5
POS.ID REL.ID FLAGS ADORESS ASM H V 01 11.52 05/19/70
0001 0001 08 000019
0001 0001 08 000010
0001 0002 oc 000208
0001 0004 2¢c 060140
PRIME CROSS REFERENCE PAGE 6
SYMBOL LEN VALUE DEFN REFERENCES ASM H V 01 11.52 05/19/70
COMSECT 00001 00000000 0167
EXDMY 00001 00000000 0169 0052
EXSYM 00001 00000000 0003 U174
EXTNLDUMYSCTN
00004 000140 0052
INBUF 00004 000058 0049 0026 0033
INDCB 00004 000144 0058 00l8 0025
I0LOUP 00004 000022 0025 0004 0039
OUTBUF 00004 0000A8 0050 0033 0036
QUTBUF 00001 00000000 0172 *¥#4DUPLICATE*%**
OUTDCB 00004 00ULA4 0115 9020 0035
RS 00001 00000005 0005 0012 0C32
SAUE FRREUNDEF INED** ok oo11
SAVE 00004 000OF8 0051 0010 P04l
WRKFLDS 00001 00000210 0170
=A(EXSYM)
00004 000208 0174 0012
PRIME DIAGNUSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 7

THE FOLLOWING STATEMENTS WERE FLAGGED

00011 00172

2 STATEMENTS FLAGGED IN THIS ASSCMRLY

OVERRIDING

NUOECK, NOLQAD,

PARAMETERS~

LIST,

NO OVERRIDING DD NAMES

48 CARUS FRUM SYSIN
151 LINES OUTPUT

XREF,

E NODECK ¢ MULT y SYSPARM=SAMPLE*PRUGRAM
OPTIONS FOR THIS ASSEMBLY

NORENT,

NOTESTy MULT, ALGNy

1575 CARDS FROM SYSLIB
0 CARDS OUTPUT

Assembler H Listing

Assembler H Programmer's Guide

ESDy

8 WAS HIGHEST SEVERITY CODE

RLDs LINECNF= 55, MSGLEVEL=

ASM H Vv 01 11,52 05/19/70

Oy SYSPARM=SAMPLE*PROGRAM

L)

External Symbol Dictionary (ESD)

This section of the listing contains the external symbol dictionary
inforraticn rassed to the linkage editor or loader in the object module.
The entries descrike the ccntrol sections, external references, and
entry roints in the assenbled program. There are six types of entries,
shcwn in Table 3 along with their associated fields. The circled
numkers refer tc the ccrresrcnding headings in the sample listing
(Figure 6). The Xs indicate entries accompanying each tyre designation.

Takle 3. Tyres cof ESD Entries

SYMBOL TYPE ID ADDR LENGTH LDID
X SD X X X -
X LD - X - X
X ER X - - -
- PC X X X -
X CM X X X =
X XD X X X -

The name of every external dummy section, contrcl section, entry
rcint, and external symlbol.

The type designatcr fcr the entry, as shown in the table. The
type designators are defined as:

® O

SL -- Ccntrcl section definition. The symbol appeared in the
name field of a CSECT or START statement.

ID -- label definition., The symkol appeared as the cperand of
an ENTRY statenrent.

ER -- External reference. The symbol appeared as the orerand of
an EXTRN statement, or was declared as a V-tyre address
ccnstant.

FC -- Unnamed control section definition (private code). A CSECT

or START statement that commences a control section does
nct have a synbcl in the name field, or a control section
is commenced (ty any instruction which affects the location
ccunter) before a CSECT or START is encountered.

CM -- Ccmron ccntrol section definition. The symbol appeared in
the name field of a COM statement.

XD -- External dummy section. The symkol appeared in the name
field of a DXD statement or a Q-type address constant.
{(The external dummy section is called a pseudo register
in the Linkage Editor and Loader manual, Crder Number
GC28-6538.)

Assembler Listing 21

(:) The external symbol dictionary identification number (ESDID).
The numker is a unigue four-digit hexadecimal number identifying
the entry. It is used in combination with the LD entry of the
ESD and in the relocation dictionary for referencing the ESD.

The address of the symbol (in hexadecimal notation) for SD-and
LD-tyre entries, and klanks for ER-type entries, For PC- and
CM-type entries, it indicates the beginning address of the control
section. For XLC-type entries, it indicates the alignment by
printirg a number one less than the number of bytes in the unit

of alignment. For example, 7 indicates doukleword alignment.

<:) The asserkled length, in bytes, of the control section (in
hexadecimal nctaticn) .

(:) For an ID~type entry, the ESLCID of the control secticn in which
the symkol was defined.

Source and Object Program

This section cf the listirg documents the source statements and the
resulting object program.

(:) The one tc eight-character deck identification, if any. It is
obtained from the name field of the first named TITLE statement,
The assembler prints the deck identification and date (item 16)

on every rpage of the listing.

The information taken from the operand field of a TITLE statement.

The listing page number.

@OE

" The assembled address (in hexadecimal notation) of the object
code.

. For ORG statements, the location-counter value before the
CRG is placed in the location column and the location counter
value after the ORG is placed in the okject code field.

.. If the END statement contains an operand, the operand value
(transfer address) appeaxrs in the location field (LCC).

o In the case of LCCTR, COM, CSECT, and DSECT statements, the
lccaticn field ccntains the current address of these control
sections. '

. In the case of EXTRN, ENTRY, and DXD instructicns, the
location field ard cbject code field are blank.

. For a USING statement, the location field ccntains the wvalue
of the first orerand. It is four bytes long.

. For LIORG statements, the location field contains the location
assigned to the literal pool.

) For an EQU statement, the location field contains the value
assigned. It is four tytes long.

22 Assembler H Programmer's Guide

The okject code rroduced by the source statement. The entries

are always left-justified. The notation is hexadecimal. Entries
are machine instructicns or assemkled constants. Machine
instructicns are rrinted in full with a blank inserted after every
four digits (two bytes). Only the first eight bytes of a constant
will appear in the listing if PRINT NODATA is in effect, unless
the statement has continuation cards. The entire ccnstant appears
if PRINT LCATA is in effect. (See the PRINT asserbler instruction
in the Assernkler lLanguage publication, Order Number GC28-6514.)

Effective addresses (each the result of adding together a base
register value and a displacement value) :

The field headed ALLCR1 contains the effective address for
the first crerand cf an SS instruction.

The field headed ADDR2 contains the effective address of
the last operand of any instruction referencing stcrage.

Both address fields ccntain six digits; however, if the high-order
digit is a zero, it is not printed.

The statement numker. A plus sign (+) to the right c¢f the number
indicates that the statement was generated as the result of macro
call processing. An unnumbered statement with a plus sign (+)

is the result cf cpen code substitution.

The source program statement. The following items arrly to this
secticn of the listing:

. Source statements are listed, including those brought into
the program ky the COPY assembler instructicn, and including
macro definiticns submitted with the main program for
assembly. Listing control instructions are not printed,
excert for PRINT, which is always printed.

. MACEKC definitions oktained from SYSLIB are not listed unless
the macrxc definiticn is included in the source program by
means of a COPY statement.

. The statements generated as the result ocf a macro call follow
the macrc call ir the listing unless PRINT NOGEN is in effect.

. Asserkler and machine instructions in the source program
that contain variakle symbols are listed twice: as they
arpear in the scurce input, and with values substituted for
the variakle symbkols.

. All error diagnostic messages appear in line except those
suppressed by the MSGLEVEL option. The "Assembler Diagnostics
Facilities" section describes how errcr messages and MNOTEs
are randled.

. Iiterals that have not been assigned locations by LTORG
statenents agpear in the listing following the END statement.
Literals are idertified by the equals sign (=) preceding
them.

. Whenever possible, a generated statement is printed in the

same format as the corresponding macrc-definition (model)
statement. The starting columns of the operaticn, orerand,

Assembler Listing 23

and comments fields are preserved unless they are disrlaced
ky field subsitution, as shown in the following example:

Source Statements: &C SETC ‘ '*ABCDEFGHIJK!
) &C LA 1,4
Generated Statenent: ABCDEFGHIJK LA 1,4

It is possible fcr a generated statement to occupy ten or more
continuation lines on the listing, In this way generated
statements are unlike source statements, which are restricted
to nine continuation lines.

(:) The versicn identifier of Assembler H.
The current date (data run is made).

(:) The identification-sequence field fror the source statement.
Fcr a macro-generated statement, this field contains information
identifying the origin of the statement. The first two columns
define the level of the macro call.

For a likrary racrc call, the last five columns contain the first five
characters of the macro name. For a macro whose definition is in the
source program {including one read by a COPY statement), the last five
characters ccntain the line number of the model statement in the
definition from which the generated statement is derived. This
inforxation can be an important diagnostic aid in analyzing output
dealing with macro calls within macro calls.

Relocation Dictionary

This section of the listing contains the relocation dicticnary
informaticn passed to the linkage editor in the object module. The
entries describe the address constants in the assernkled program that
are affected Ly relccaticn.

The external symbol dictionary ILC numker assigned to the ESD entry
fcr the ccntrxrcl section in which the address constant is used
as an orerand.

The external symbol dictionary ID numker assigned tc the ESD entry
for the ccntrxcl secticn in which the referenced symbol is defined.

The two-digit hexadecimal number represented by the characters
in this field is interpreted as follows:

o First Digit. A zero indicates that the entry describes an
A-type or Y-type address constant. A one indicates that
the entry descrikes a V-type address constant. A two
indicates that the entry describes a ¢-type address constant.
A three descrikes a CXD entry.

. Second Digit. The first three bits of this digit indicate
the length cf the constant and whether the base should be
added or suktracted:

Bits 0 and 1 Bit 2 Bit 3
00 = 1 byte 0=+ Always 0
01 = 2 bytes 1= -

24 Assembler H Programmer's Guide

.

10
11

3 kytes
4 Lkytes

non

C:) The assenkled address of the field where the address constant
) is stored.

Cross Reference

This section of the listing information concerns symbols and literals
which are defined and used in the program.

The symbols or literals.

The length (in decimal notation), in bytes, cf the field
represented ky the synbcl.

Either the address the symbol or literal represents, or a value
to which the symbol is equated. The value is three bytes long,
except for the fclleowing, which are four bytes long: CSECT,
DSECT, START, COM, LCXLC, ECQU, LOCTR, EXTRN, and a durlicate symbol.

The nuxker of the statement in which the symkol or literal was
defined.

The statement numbers of statements in which the symkol or literxral
arrears as an crerand. In the case of a duplicate symbol, the
assembler fills this column with the message:

® 6 @& O

%% ¥ CUPLICATE %% %
&
l) The following notes apply to the cross-reference section:
. Symbols appearing in V-type address constants do not appear in

the crcss-reference listing.

[Cross-reference entries for symbols used in a literal refer toc
the asserkled literal in the literal pool. Look up the literals
in the crcss reference tc find where the symbols are used.

® A PRINT CFF listing control instruction dces not affect the
rroducticn c¢f the crcss-reference section of the listing.

. In the case of an undefined symbol, the assembler fills fields
23, 24, and 25 with the message:

*%x X% UNDEFINED***%

Diagnostic Cross Reference and Assembler Summary

(:) The statement number cf each statement flagged with an error
message or MNOTE appears in this list. The number of statements
flagged and the highest non-zero severity code encountered is
also printed. The highest severity code is equal to the assembler
return code.

Assembler Listing 25

If no errxcrs are enccuntered, the following statement is printed:
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

See the section "Error LCiagnostics" for a ccmplete discussion
cf how exrcr nessages and MNOTEs are handled.

A list of the options in effect for this assembly is printed.
The oprtions srecified by the programmer in the PARM field to
cverride the assembler default options are also printed.

If the assembler has keen called by a proklem program (See Appendix
L) and any standard (default) DD names have been overriden, both
the default LL names and the overriding DD names are listed.
Otherwise, this statement appears:

NC OVERRIDING LD NAMES

The assembler prints the number of records read frcom SYSIN and
SYSLIB and the nurber cf records written on SYSPUNCH. The
assembler also prints the number of lines written on SYSPRINT.
This is a ccunt of the actual number of 121-byte records generated
by the assembler; it may ke less than the total number cf printed
and klank lines arrearirg on the listing if the SPACE n assembler
instruction is used. For a SPACE n that does not cause an eject,
the assemkler inserts n blank lines in the listing by generating
n/3 blank 121-byte records -- rounded to the next lcwer integerx
if a fraction results (for example, for a SPACE 2, no blank records
are generated). The assembler does not generate a blank recoxd
tc force a page eject.

26 Assembler H Programmer's Guide

AN
;

N

Assembler Diagnostic Facilities

The diagnostic facilities for Assembler H include diagnostic ressages
for assently errors, diagncstic cr explanatory messages issued by the
source program or by macro definitions (MNOTEs), a macro trace and
dump facility (MHELP), and messages and dumps issued by the assembler
in case it terminates aknormally.

This section briefly descrikes these facilities. The assembly error
diagncstic wessages and akncrral assembly termination messages are
described in detail in the Assembler H Messages kock, Order Number
SC26-3770.

Assembly Error Diagnostic Messages

Assembler H prints most error messages in the listing immediately
following the statement in errcr. It also prints the total number
of flagged statements and their line numkers in the Diagncstic Crcss
Reference secticn at the end of the listing.

The messages do nct follow the statement in error when:

. Errors are detected during editing of macro definitions read from
a library. A message for such an error appears after the first
call in the source program to that macro definiticn. You can,
however, tkring the macrc definiticn into the source program with
a COFY statement. The editing error messages will then be attached
to the statements in error.

. Exrrors are detected by the lookahead function of the assembler.
(Lookahead scans, fcr attribute references, statements after the
one keing assentled.) Messages for these errors appear after
the statements in which they occur. The messages may also appear
at the rcint where lcckahead was called.

. Errors are detected on conditional assembly statements during
macro generaticn cr MEELF testing. Such a message follows the
most recertly generated statement or MHELF output statement.

A typical error diagnostic message is:
IEV057 *%%ERROR*%% UNDEFINED OPERATION CODE —-—- XXXXX

The term ***ERROR*** is part of the message if the severity code is
8 cr greater. The term *¥WARNING** is part of the message if the
severity code is 0 or 4.

A copy of a segment of the statement in error, represented above by
XXXXX, is appended to the end of many messages. Nocrmally this segment,
which can ke ug tc 16 bytes lcng, begins at the bad character or term.
Fcr scme errors, however, the segment may begin after the bad character
or term. The segment ray include part of the remarks field.

If a diagnostic message follows a statement generated by a macrc
definition, the following itens may be appended to the error message:

Assembler Diagnostic Facilities 27

. The numker of the mcdel statement in which the error occurred, or
the first five characters of the macrc name.

] The SET symkcl, parameter number, or value string associated with
the error.

Note: references to macro parameters are ky number (such as PARAMO0O08)
instead of name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAM0OOO = &§SYSNDX

PARAMO0O01 = &SYSECT

FARAM002 = §&SYSILCC

PARAMQO03 = §SYSTIME

FARAMOOY4 = ESYSLATE

PARAMO0S5 = &SYSPARM

FARAMO06 = Name Field Parameter

Then the keyword rarameters are numbered in the order defined in the

macro definition, followed by positional parameters. When there are

no keyword parameters in the macro definition, PARAMOO7 refers to the
first pcsitional parameter.

If a diagnostic message follows a conditional assembly statement in
the scurce rrcgran, the following items will be appended to the error
message:

. The word "OPENC"
. The SET syrkcl or value string associated with the error

Several messages may be issued for a single staterent or even for a
single error within a statement. This haprens because each statement
is usually evaluated on more than one level (for example, tern

level, expressicn level, and orerand level) or by more than one phase
of the assembler. Each level or phase can diagnose errors; therefore,
most or all of the errors in the statement are flagged. Occasionally,
durlicate error messages may occur. .This is a normal result of the
errcr detection process.

Figure 7 is an exarnple cf Assembler H handling of error messages.

28 Assembler H Programmer's Guide

O

()

LOC 0OBJECY CODE ADDRL ADDR2 STMT SUURCE STATEMENT ASM H V Ol 11.51 05/20/70
1 wkkrkrkkrbuhkerrkrRE iR Rk iRy LR L]
2 % SAMPLE ERROR DIAGNOSTIC MESSAGES *
3% IN SOURCE PRUGRAM (OPEN CODE) AND GENERATED BRY MACRO CALLS *
b ek SEERERRFERRFRRERFERFRAERKE TR X R
000000 6 A CSECT
000000 0000 0000 00000 7 ST 14,U2,12(1314
TEVO44 *%*%x ERROR *%% UNCEFINED SYMBUL
IEV029 **% ERROR *** [NCORRECT REGISTER SPECIFICATION
TEV1T9 *%* ERROR *¥* DELIMITER ERROR, EXPECT RIGHT PARENTHESIS
000004 05CO0 8 BALR 12,0
00000006 9 USING *,12
000006 0000 0000 00000 10 ST 13,SAVE+4
LIEVO44 **# ERROR *%% UNDEF INED' SYMBOL
OPEN (CRDIN, (INPUT},CRDOUT, (QUTPUT)
TEVO88 *%* ERROR *** UNBALANCED PARENTHESES IN MACRO CALL OPERAND ~—— OPENC/(CRDIN,(IN
00000A 0700 12+ CNOP 044 01-0PEN
00000C 4510 COOF 00014 13+ BAL le*¢8 LOAD REGL W/LIST ADDR, 01-OPEN
700010 00000000 14+ DC A(O) QPT BYTE AND DCB ADDR. O1-OPEN
000014 0000 0000 00000 15+ ST CRUINs LINPUT) yCRDOUT, (OUTPUT,0(1,0) XO01-OPEN
+ STORE INTO LIST
TEVO29 *%% ERROR **¥*x INCORRECT REGISTER SPECIFICATION
IEVO44 *%x% ERROR *** UNDEFINED SYMBOL
IEV177 #%* ERROR *#% DELIMITER FRRUR, EXPECT BLANK OR LEFT PARENTHESIS
000018 9280 1000 00000 L6+ MVI 0(L),128 MOVE IN DPTION BYTE 01-0PEN
00001C 0A13 17+ Sve 19 1SSUE OPEN SVC 01-0PEN
19 #xkdkkddrkhkrk bbby * ko ok ok ok
20 % EDITING AND GENERATIUN ERRORS AND MNOTES FROM A LIBRARY MACRO *
21 xxkpkkkkkkk gk ekkk ik kh Rk *RERK FRKEEEEE
23 LOADR REGL=104REG2=84CHEROKEE ¢ CHAMP
1EVI36 *#% ERROR *%x I1LLEGAL LUOGICAL/RELATIONAL UPERATUR =-- MACRO - LOADR
TEVO8I *¥* £RROR *¥% ARITHMETIC EXPRESSION CUNTAINS ILLEGAL OELIMITER CR ENDS PREMATURELY -- MACRO - LOADR

00001E 58A0 CO2A

000022 0000 J000
IEV029 #x% ERRUR ¥#%

000026 5800 CO2E

00000C 58A0 CO04
000010 5880 CO08

IEVO03 *%% ERROR
000014 0000 0000

TEV029 *%x* ERROR *%%
000018 0000 0000

1EVOT4 *%% ERROR *%%

1EV254 #%% MNOTE %%%

Figure 7.

00030 24+ L 10,CHEROKEE 01-LOADR
26 LOADR REGL=25,REG2=8,CHEROKEE y SWIFT
00000 27+ 259CHEROKEE O1-LOADR
INCORRECT REGISTER SPECIFICATION .
29 LOADR REG2=10,CHAMP, SWIFT
00034 30+ [0,CHAMP 01-LOADR
6 FEEEXERKEAFEXEK R KA E R KK RRERARE KR L ERE A R K F R AR R R R R ER DR R AR RA KRR
7 % SAMPLE MACRO DEFINITION RERUN WITH EDITING ERRDRS CORRECTED *
L s el] R R Lt i
10 MACRU
11 &NAME LOADR EREGL=,EREG2=960P1,E0P2
12 &R(1) SETA ®Ly ®2
13 ALF (T*EREGL EQ '0').ERR
14 L &R(1},E0P1
15 L &R{(2)}480P2
16 MEXIT
17 LERR MNOTE 36,°'YOU LEFT OUT THE FIRST REGISTER®
18 MEND
20 ERREAKRIOR KK KR Aok IR R IR KA KRR KK AORE E R R RS Aok Rk R Rk Rk ok
21 * SAMPLE MACRD CALLS WITH GENERATION ERRORS AND MNOTES *
22 FEFIEARKEREHER ALXFAIIR R ERRFRARE LR R R AR AR R KR LET 24
24 LOADR REGL=10,REG2=8,CHEROKEE ¢ CHAMP
00004 25+ L 10, CHERDKEE 01-00014
00008 26% L 8y CHAMP 01-00015
28 LOAUR REGL=25,REG2=8,CHEROKEEESWIFT
UNDECLARED VARIABLE SYMBOL. DEFAULT=0, NULLs, OR TYPE=U -— OPENC/SWIFY
00000 29+ 25,CHEROKEE 01-00014
INCORRECT REGISTER SPECIFICATION
00000 30+ L 8y 01-00015
TULFGAL SYNTAX IN EXPRESSION
32 LOADR REG2=8,CHAMP,SWIFT
33+ 36,Y0U LEFT OUT THE FIRST REGISTER 01-00017
34 END

Ssample Error Diagnostic Messages

Assembler Diagnostic Facilities

29

MNOTESs

An MNCTE statement is included in a macro definiticn cr in the source
program. It causes the assenbler to generate an inline error or
informational message.

An MNOTE appears in the listing as follows:
IEV254 *%%MNCTE**% severity code, message

Unless it has a severity code of * or the severity code is omitted,
the statement number or the MNOTE is listed in the diagncstic cross
reference.

Suppression of Error Messages and MNOTEs

Error messages and MNOTEs kelow a specified severity level can be
cptionally surrressed by declaring in the EXEC statement:
PARM='MSGLEVEL=n' (where '"n" is the selected severity level). If you
are nct concerned with warring and error messages in a specific
assembly, using this option provides a cleaner 1listing.

Abnormal Assembly Termination

Whenever the asserkly cannct be completed, Assembler H provides a
ressage and, in some cases, a specially formatted dump for diagnostic
information. This may indicate an assembler malfunction or it may
indicate a programmer error. The statement causing the error is
identified and, if gossible, the assembly listing up to the point of
the error is printed. The Assemkler H Messages kook, Order Number
S5C26-3770, descrikes the abncrmal termination messages. The messages
give enough information to (1) correct the error and reassemble your
program, or (2) determine that the error is an assembler malfunction.

The Assembler B Program Lcgic Manual, Order Number 1Y26-3760, gives
a complete explanation of the format and contents cf the abnecrmal
terrinaticn dung.

Macro Trace Facility (MHELP)

The MHELF instruction controls a set of trace and dump facilities.
Options are selected Ly an absolute exrression in the MHELF operand
field. MHELF statements can occur anywhere in open code or in macro
definitions. MHELP options remain in effect continuously until
superseded by another MHELF statement. Appendix B is a sample MHELP
trace and durrg.

30 Assembler H Programmer's Guide

Macro Call Trace

(MEELP B'1' or MHELPA1f2 This ortion provides a one-line trace for
each macro call, giving the name of the called mwacro, its nested depth,
and its &SYSNDX (tctal nuxber of macro calls) value.

Note: This trace is provided upon entry into the macro. No trace
is prrovided if error conditions prevent entry into the macro.

Macro Branch Trace

(MEELP B'10', or MHELP 2). This option provides a one-line trace for
each AGO and true AIF c¢onditional-assembly statement within a macro.

It gives the model-statement numkers of the "kranched from" and
"kranched to" statements, and the name of the macro in which the branch
occurs. This trace option is suppressed for likrary macros.

Macro Entry Dump

{MHELF B'10000*, or MHELF 16), This option dumps rarameter values from
the macro dicticnary when the macro is called.

Macro Exit Dumg (MHELP B*'1000', or MHELP 8). This option dumps SET
symbel values from the macro dictionary upon encountering a MEND or
MEXIT staterxent.

Macro AIF Dump

(MHELPF B'100', or MHELF 4). This option dumps SET symbol values frcm
the macro dicticnary immediately before each AIF statement that is
encountered.

Global Suppression

(MHELIEF B'100000', or MRBELF 32). This option surpresses global SET
syrkols in the twc rreceding cptions, MHELF 4 and MHELF 8.

MHELP Suppression

(MHELF BR*'10000000', or MEELE 128). This opticn surpresses all currently
active MHELP cgticns. S

Assembler Diagnostic Facilities 31

Page of §C26-3759-0)
Revised February 15, 1971
By TNL SN33-8095

Combining Options ‘ ' M::I

Multiple opticns can be oktained by combining the option codes in one
MHELF operand. For example, call and kranch traces can be invoked
ky MHELP B'11', MEELP 2+1, or MHELP 3.

MHELP Control on &SYSNDX

The MHELP operand field is actually mapped into a fullword.
Previously-defined MHELP codes correspond to the fourth byte of this
fullword.

&SYSNDX control is turned on by any bit in the third byte (operand
values 256-65535 inclusive). - Then, when &SYSNDX (total number of
macro calls) exceeds the value of the fullword which contains the
MHELP operand value, control is forced to stay at the open-code
level, by in effect making every statement in a macro behave like
a MEXIT. Open code macro calls are honored, but with an immediate
exit back to open code.

Examples:
MHELP 256 Limit &SYSNDX to 256.
MHELP 1 Trace macro calls.

MHELP 256+1 Trace calls and limit &SYSNDX to 257.
MHELP 65536 No effect. No bits in bytes 3,4.
MHELP 65792 Limit &SYSNDX to 65792.

When the value of &SYSNDX reaches its limit, the diagnostic
message "ACTR EXCEEDED -- &SYSNDX" is issued.

®

32 Assembler H Programmer's Guide

LJ

Programming Considerations

This section descrikes of a number of subjects about assembler-language
rrcgramming.

Saving and Restoring General Register Contents

A rroblem program should save the values contained in the general
registers upcn cocnrencing execution and, upon completion, restore to
the general registers these same values. Thus, as control is rassed
from the operating system tc a problem program and, in turn, to a
subprcgram, the status of the registers used ky each program is
preserved. This is dcne through use of the SAVE and RETURN system
macro instructioms.

The SAVE macro instruction should be the first statement in the program.
It stcres the contents of registers 14, 15, and 0 through 12 in an

area rrovided by the program that passes control. When a rrcblem
programr is given ccntrcl, register 13 contains the address of an area
in which the general register contents should ke saved.

If the program calls any subprograms, Or uses any operating system
services other than GETMAIN, FREEMAIN, ATTIACH, and XCTI, it must first
save the contents of register 13 and then load the address of an 18-
fullword save area intc register 13. This save area is in the problem
rrogram and is used by any subprograms or Operating System serxrvices
called by the prcblem rrogram.

At completicn, the rprcoblenr prcgram restores the contents of general
registers 14, 15, and 0-12 by use of the RETURN system macro instruction
(which also indicates program completion), The contents of register

13 must Ye restored before execution of the RETURN macro instruction,

The ccding sequence that fcllows illustrates the basic process of
saving and restoring the contents o0f the registers. A complete
discussion of the SAVE and RETURN macro instructions and the saving

and restoring of registers is contained in the Data Management Services
puklication, Ordexr Number GC28-6646, and the Data Management Macro
Instructions publication, Order Number GC28-6647.

'

Name Operation Operand
BEGIN SAVE (14,12)

set up base register

.ST 13, SAVEBLK+4

LA 13,SAVEBLK

L 13,SAVEBLK+4

RETURN {14,12)
'SAVEBLK] DC 18F‘0’

Programming Considerations 33

Program Termination

You indicate completion of an assembler-language source rrogram by
using the RETURN system macro instruction to pass control from the
terminating rrcgram to the program that initiated it. The initiating
rrogram may be the Operating System or, if a subprogram issued the
RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register
contents, the RETURN macro instruction may also pass a return ccde
-- a condition indicator that may be used by the program receiving
ccentrol. If the return is to the operating system, the return code
is ccmpared against the ccndition stated in the COND= parameter of
the JCE or EXEC statement. If return is tc another problem program,
the return ccde is availakle in general register 15, and may be used
as desired. Your program should restore register 13 before issuing
the RETURN macrc instructicn.

The RETURN system macro instruction is discussed in detail in the
Surervisor and LCata Management Macro Instructions publication, Order
Nurker GC28-6647.

PARM Field Access

Access to infcrmation in the PARM field of and EXEC statement is gained
through general register 1. When control is given to the rrcblem
program, general register 1 contains the address of a fullword which,
in turn, contains the address of the data area containing the
inforration.

The data area consists of a halfword containing the count (in binary)
of the number of information characters, followed Lty the infcrmation
field. The infcrmaticn field is aligned to a fullword boundary. The
fcllowing diagram illustrates this process:

General Register 1

Address of Fullword

Points

to Fullword

> Address of Data Area

Points
to

Data Area

Count in Binary Information Field

Macro Definition Library Additions

Source staterment ccding, tc ke retrieved by the COFY assembler
instruction, and macro definitions may be added to the macroc library.
The IEBUPDTE utility rrcgram is used for this purpose. Details of

this program and its control statements are contained in the Utilities
puklication, Order Number GC28-6586. The following sequence cf job
control statements can be used to call the utility program and identify
the needed data sets. It is assumed that the jok control statenents,
IEBUPDTE program contrcl statements, and data are to enter the system
via the ingut stream.

34 Assembler H Programmer's Guide

J

//jobname JOB

//stepname EXEC PGM=IEBUPDTE,PARM=MOD
//SYSUT1 DD DSNAME=SYS1.MACLIB,DISP=0LD
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A

*

//SYSIN DD

IEBUPDTE control statements and source statements or
macro-definitions to be added to the macro library
{SYS1.MACLIB)

/* {delimiter statement)

Load Module Modification — Entry Point Restatement

If the editing functions of the linkage editor are to be used to modify
a load module, tke entry rcint to the load module must be restated

when the load module is reprocessed by the linkage editor. Otherwise,
the first Lkyte cf the first ccntrol section processed by the linkage
editor will become the entry point. To enakle restatement cf the
original entry pcint, cr designation of a new entry point, the entry
roint must have been identified originally as an external symbcl; that
is, it must have arpreared as an entry in the external symbol dictionary.
External symbol identification is done automatically by the assembler
if the entry pcint is the rame of a control section or START statement;
ctherwise, an assembler ENTRY statement must ke used to identify the
entry pcint name as an exterrnal symbol.

When a new okject mocdule is added to or replaces part of the load
module, the entry point is restated in one of three ways:

] By placing the entry roint symbol in the operand field of an EXTRN
staterent and an END statement in the new object module.

. By using an ENC statement in the new okject module tc designate
a new entry rcint in the new object module.

. By using a lirkage editcr ENTRY statement to designate either
the original entry point or a new entry point for the load module.

Further discussion of load module entry points is contained in the
Linkage Editcr and Loader rublication, Order Number GC28-6538.

Object Module Linkage

Object modules, whether generated by the assemkler or ancther language
processor, may be combined by the linkage editor to produce a composite
load mcdule, provided each object module ccnforms to the data formats
and linkage conventions required. This topic discusses the use of

the CALL system macro instruction to link an asserbler language main
program to subprograms produced by another processor. The Supervisor
and Data Management Macrc Instructions publication, Order Number GC28-
6647, contains additional details concerning linkage conventions and
the CALL system macro instruction.

Programming Considerations 35

Fiqure 8 is an example of statements used to establish the assembler-
language progran linkage to FORTRAN and COBOL subprograms.

If any input/output orerations are performed by called subrrcgrans,
arrropriate DD statements fcor the data sets used by the subprograms
must be supplied. See the appropriate language programmer's guide

fcr an explanation of the LD statements and special data set record
formats used for the rrocessor.

36 Assembler H Programmer's Guide

AN

ENTRPT SAVE (14,12)

LR 12,15
USING ENTRPT,12

1 ST 13,SVAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13,15

2 CALL name,(V1,V2,V3),VL
L 13, SVAREA+
RETURN (14,12)

3 SVAREA DC 18F'0°

Vi DC (data)

5 v2 DC {data)

6 v3 DC (data)
END

1 This is an example of OS linkage convention. See the Supervisor and Data Management Services publication,
Order Number GC28-6646, for details.

2 The symbol used for “‘name” in this statement is:
a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.
b. The name defined by the following COBOL statements in the procedure division:
ENTER LINKAGE. ENTRY'name’.

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an
assembler-language subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the
argument. If the called routine is a FORTRAN-written function, the returned argument is not in the parameter list: a
real or double precision function returns the value in floating point register zero; an integer function returns the value
in general purpose register zero.

NOTE: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements

of IBCOM (FORTRAN execution-time 1/0 and interrupt handling routines) which accompanies the compiled FORTRAN
subprogram. In some instances the call for IBCOM is not automatically generated during the FORTRAN ompilation.
The FORTRAN 1V Library publication, Order Number GC28-6596, provides information about IBCOM requirements and
assembler statements used to call IBCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages
which call them; therefore all linkages to FORTRAN subprograms are required to have the high-order bit in the last
parameter in the linkage set to 1. COBOL-written subprograms have fixed-length calling linkages; therefore, for COBOL
the high-order bit in the last parameter need not be set to 1.

3 This statement reserves the save area needed by the called subprogram. When controt is passed to the subprogram,
register 13 contains the address of this area.

456 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined
by the data formats required by the FORTRAN or COBOL subprograms.

Figure 8. Sample Assembler Linkage Statements for FORTRAN
or CCECL Sukrxrxcgranms

Programming Considerations

37

Page of SC26-3759-0
Revised February 15, 1971
By TNL SN33-8095

Special CPU Programming Considerations (‘ O

You should be aware of operational differences ketween the Model 85,
Model 91, and Model 195 and cther System/360 models. The primary
differences are:

. Non-seqguential instruction execution -- 91 and 195
° Extended precisicr machine instructions -- 85 and 195
. Unaligned operands -- 85 and 195

. Controlling Instruction Execution Sequence

The Modeland Model @maintain a logical consistency with respect
to their own orerations,including the beginning and ending of I/O
orerations, kut they do nct assume responsibility for such consistency
in the cperations performed ty asynchronous units. Consequently, for
any asynchrcncus unit that depends upon a strict adherence to sequential
{or serial) execution, a proklem program must set up its cwn rrocedures
to ensure the prorer instruction sequence.

For a program secticn that requires the serial or sequential execution
cf instructions, the following 'no-operation' instruction:

BCR N,0 N=1,15

causes instruction deccding tc halt until the instructions that have -
already been decoded are executed. (This action is called a ripe-line R
drain.) On the Mcdel 91 and Model 195, this instruction ensures that” QL}ﬂ
all the instructions preceding it are executed kefore the instruction

succeeding it is decoded. Use cf this instruction should be winimized,

because it may affect the performance of the CPU.

Isclating an instruction by preceding it and following it with a BCR
N,0 instruction eliminates multiple imprecise interruptions frcm more
than one instruction ky virtue of the pipe-line drain effect. However,
because multiple exceptions may occur in one instruction, this technique
does not eliminate a multiple imprecise interrugticn, nor does it
change an imprecise interruption into a precise interrupticn. The

use of the BCR instruction does not assure you that you can fix ug

an errcr situaticn. In general, the only information available will
be the address of the BCR instruction. The length of the instruction
preceding the BCR instructicn is not recorded, and generally there

is nc way to determine what that instruction is.

Note: BCR 0,0 does not cause a pipe-line drain.
Extended-Precision Machine Instructions

The extended-precisior arxithmetic instructions and the rounding
instructions of the Model 85 and the Model 195 are shown below. A
conplete descrirpticn cf these instructions is in the System/360
Principles of Cperation, Crder Number GA22-6821.)

38 Assembler H Programmer's Guide

J

Name Mnemonic Type Op Code
ADD NORMALIZED (extended operands, extended result) AXR RR 36
SUBTRACT NORMALIZED (extended operands, extended result) SXR RR 37
MULTIPLY (extended operands, extended result) MXR RR 26
MULTIPLY (long operands, extended result) MXDR RR 27
MULTIPLY (long operands, extended result) MXD RX 67
LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

A rrogram containing the extended-precision instructions cannct be
executed successfully ¢n ancther Systen/360 model unless those
instructions are converted into others that can be executed by the
non-Model 85 or Model 195 machine. The OFSYN assembler instruction
helrs rrovide a facility for doing this.

OPSYN is descriked in the 2ssembler H Language Specificaticns Manual,
Oxrdexr Numker GC26-3771.

A type I DC instruction can ke used to specify an extended-precisicn
(16-kyte) flcating-gcint ccnstant. The LC instruction is described
in the Assenbler Language manual, Order Number GC28-6514.

Unaligned (Byte-Oriented) Operands

The Modeland Model (195 /will execute unprivileged RX and RS format
instructions with fixed>rcint, flcating-point, or logical operands
that are not on integral boundaries. Assenbly of such instructions
normally produces the diagncstic Wessage "IEV033 ALIGNMENT ERROR".

A FARNM option in the EXEC statement, AIGN or NCALGN, makes it possible
to surpress the nmessage and thereby oktain a clean assembly listing.
The okject ccde is not affected.

Note that an assembled program that requires use of the Model 85 and
Model 195 byte-criented operand feature cannot ke run on another
machine, nor can it run successfully under the Cperating System if

it violates any alignment restrictions imposed by the Operating System.

Programming Considerations

39

This page intentionally left blank.

40 Assembler H Programmer's Guide

e

NV

Appendix A. Sample Program

The sample prcgrar included with Assembler H when it is received from
IBM is described in this appendix. This program is a collection of
kasic assembler-language, macrc, and conditional assembly features,
most of which are unique to Assembler H. The circled letters in the
description kelow refer to corresponding letters in the listing that
fcllcws the description.

®

The jobk control language for the assembly consists of the IBM-
supplied cataloged prccedure ASMHC and the statements needed to
use the procedure and supply input to the assemblex. (In this
sample, the procedure statements begin with XX,) Note that three
of the default PARM options are overridden in the EXEC statement
that calls the procedure,

By using the MULT (multiple assembly) option, this sample program,
the sample program in Appendix B, and the listings in Figure 6
and Figure 7 were assenbled with one set of JCI cards. Object
modules were not punched for any of the asserblies because the
NODECK ortion is specified. The character string specified in
the SYSPARM option is availakle to each assernkly. The character
string is disrlayed in this program by using the system variable
symbol E&SYSEAERM (statement 144).

The External Symbol Dictionary shows a named common statement.
The nared comncn secticn is defined in statement 158.

Appendix A. Sample Program 41

<:) Statement 10: Save the current status of the PRINT' statement
(CN,NCDATA,GEN).

Statemrent 11: Leave CN in effect, modify the other two options
tc DATA,NCGEN.

Statement 12: Macro call; note that the expansion (statement
10) is not printed.

Statement 14: All 28 kytes of data are disgplayed to the two-
orerand DC.

Statement 15: Restore prior status of PRINT.

Statements 17 and 18: The generated output of the macrc WIO is
shown and cnly the first 8 bytes of data are displayed.

(:) Statements 14 and 18: Multiple constants are allowed in
hexadecimal and kinary LC operands, and neither symnbcl in the
duplicaticn factcr has been defined yet. Definition occurs in
statements 108 and 109.

<:> Statements 26, 28, 136, and 155 illustrate use of the LOCTR
assemkler instructicn. This feature allows one to break control
sections down into suk-control sections. It may be used in CSECT,
DSECT, and COM. LOCTR has many of the features of a control
section for example, all of the first LOCTR in a section is
assigned sgtace, then the seccnd, and so on. The name of the
ccntrol section automatically names the first LOCTR section.
Thus LOCTR A is bkegun, or resumed, at statements 2, 28, and 155.
Note that the location counter value shown each time is the resumed
value of the LCCTR. On the other hand, varicus LOCTR sections
within a ccntrxol secticn have common addressing as far as USING
statements are concerned, subject to the cormputed displacement
falling within 0 through #095. In the sample, CCNSTANT is in
LCCTR DEECEES but the instruction referencing it (statement 25)
has no addressing rrcklens.

(:) Three-operand EQU. Here, we are assigning: (a) the value of BS
(not yet defined) to A8, (b) the length attrikute of A5 to AS,
and (c) tre type attribute of A7 to A8. If no operand is present
in an ECC statement, the type attribute is U and the length
attribute is that cf the first term in the orerand expression.
symtcls present in the label and/or operand field must be
previously defined. ©Note that it is not possikle to exrress the
type attribute of A7 directly in the EOC statement. The ECU
statement at 32 could have been written

A8 ECU B5,2,C'Lt
A8 EQU BS,X'2},X'CQ‘

(:) Set symbols &§LA8 and &TA8 have not keen declared in a LCL or GEL
statement prior to their use here, Therefore, they are defaulted
tc local variakle syrbols, as follows: &I1A8 is a LCLA SET symbol
because it appears in the name field of a SETA; &§TA8 is a ICIC
SET symkol kecause it is first used in a SETC.

(:) MNOTE may appear in cpen code. As such, they have all properties
of MNOTEs inside macros, including sukstituticn.

42 Assembler H Programmer's Guide

-

A SETC expression may have a duplication factor., The SETA
expression must be enclosed in parentheses and immediately precede
the character string, the substring notation, or the type attribute
reference.

Statements 57-60 illustrate U-byte self-defining values and unary
+ and -. TLe value cf X will appear later in a literal address
constant (see statement 162). Location counter values for EQU
and USING (statement 3) display 4 bytes.

The rrogrannmer macrc DEMO is defined well after the start of the
assembly. Macros can ke defined at any roint and, having been
defined ands/cr exgpanded, can be redefined. Note that the
parameters on the prototype are a mixture of keywords and
pcsitional operands. §&SYSLIST may be used. The positional
parameters are identified and numbered 1, 2, 3 from left tc right;
keywcrds are skirped cver.

Statement 70 illustrates the extended SET feature (as well as
implicit declaration of &LOC(1) as a LCLC). Both &LOC (1) and
£§LOC (2) are assigned values., One SETA, SETB, or SETC statement
can then do the work of many.

Statement 72 is a model statement with a symkolic parameter in

its operation field. This statement will ke edited as if it is

a macro call; at this time, each operand will be denoted as
pcsitional or keyword. At macro call time, it will not be possible
to reverse this decision. Even though treated as a macroc, it

is still expanded as a machine or assembler operation.

Statement 74 illustrates the computed AGO statement. Ccntrol
will rass to .MNOTE1 if &KEY2 is 1, to .MNOTE2 if &XEY2 is 2,
to .MNOTE3 if &KEY3 cr will fall through to the model statement
at 75 otherwise.

Statement 77 illustrates the extended AIF facility. This statement
is written in the alternate format. The logical exrressions are
exarined frcm left tc right. Control passes to the sequence

symkol corresponding to the first true expression encountered,

else falls through to the next model statenment.

Statement 87 contains a subscripted created SET symbol in the

name field. Exclusive of the subscript notation, these SET symbols
have the form & (e) where e is an expression wade ur of character
strings and/or variable symbols. When such a symbol is encountered
at expansion time, the assembler evaluates e and attempts to use

& (value) in rlace of &(e). Looking ahead, we see that DEMO is

used as a macro instruction in statement 97 and §KEY1=C, Thus,

the 'e' in this case is XEKEY1 which has the value XC. Finally,
the macro-generator will use £§XC(2) as tlie name field of this

model statement. In statement 108, note that &XC (2)equals
TRANSYLVANIA (statement 96). Finally, in the sequence field of
statement 108, we see that this statement is a level 01 expransion
of a rrogrammer macro and the corresponding mcdel statement is
statemrent nunker 87.

Created SET symbols may be used wherever regular SET symbols are
used in declarations, name fields or operands of SET statemrxents,
in mcdel staterents, etc. Likewise, they are subject to all the
restrictions of regular SET symbols. In the prcgramrrmer macro
DEMO, it would not have been valid tc have the statement GBLC

& (XEKEY1) (1) because, in statement 71, we have ABLC &XA (5),

Appendix A. Sample Program 43

(6XB920) , &XC(1) and &(XEKEY1) (2) bkecomes &XC(2) unless, of course,
&KEY1 was assigned scmething other than the value A, B, or C in
the macro instruction DEMO, statement 97. In that case, we would
need a global declaration statement if we wanted & (XEKEY1) to

ke a glckal SET symbcl.

Because globkal declarations are processed at generation time and
then only if the statement is encountered, we would inserxrt the
follcwing statements between, say, statements 71 and 72.

AIF('6KEY1' EQ'A' or 'EKEY1' EQ *B' or 'EKEY1' EC 'C'). SKIP
GBIC & (XE&KEY1) (1)
-SKIF ANCF

As the macro is defined, &(X&KEY1) will be a global SETC if &KEY1
is A, B, or C; otherwise it will be a LCLC or, possikly, a LCLA.
In the macro, if & (X&6KEY1) Lkecomes a local, it will have a null
or zero value. Created SET symbols are a powerful tool. However,
their use requires a careful planning.

In statements 93 and 94, note that 6XA is declared as a subscripted
glokal SETC variatle with a maximum subscript of 1 and, in the
next statement (an extended SET statement), we store something

into §XA (2). There is no contradiction here. The statement GBLC
XA (1) marks &XA as a sukscripted glokal SETC symkol any decimal
self-defined rumber (1 through 2147483647) can be used.
Furthermore, only a ncminal amount of space is set aside in the
global dictionary -- this space is open-ended and will ke increased
on demand and cnly cn demand.

Statement 97 is the macro instruction DEMO. Note that &F1 has

the value WRITE. Therefore, the model statement at statement

72 kecomes an inner macro, WRITE, producing the code at statements
98-103. The sequence field of these statements contains 03-1HBRD,
indicating that they are generated by a ‘level 03 macro (LCEMO is
01, WRITE is 02) named 1HBRLCWRS. It is an inner macro called

by WRITE.

Statements 108 and 109 contain some ordinary symbols longer than
eight characters. The limit for ordinary symbols, operation codes
{for programmer and likrary macros and or codes defined through
OPSYN) , variakle symbcls, and sequence symbols is sixty-three
characters (including the § and e in the latter twc instances,
respectively). Most long symbols will probably be nearer to eight
than sixty-three characters in length. Extremely long syrbols

are sirply tcc difficult tc write, especially if the symbol is
used frequently. The requirement that the operation field be
rresent in the first statement of a continued stategpent is _still
in effect. Furthermore, names of ;

etc. symbols are still restricted

0_€ight characteérs.

——

ILibrary macros may be inserted into the source stream as
programmer macros by use of a COPY statement. The result
(statements 118-126) is essentially a programmer macro definition,
When a likrary macro is krought in and expanded by use cf a macro
instructicn, the assenbler (1) looks the macro up by its member-
name and (2) verifies that this same name is used in the operation
field cf the rrotctyre statement. Therefore, for example, DCB
has to catalogued as DCB. However, as COPY code, the member name
bears no relationship to any of the statements in the menber.

Assembler H Programmer's Guide

(J

Thus, several variations of a given macro could be stored as a
likrary under serarate names, then copied in at various places

in a single assembly as needed. (Assenxbler H allows you to define
and redefine a macrc any number of times).

In statement 129, MARK is made a synonym of NCTE. To identify
NCTE as a macro, it has to ke used as a macro instructicn orx
rrogramner macro definiticn prior to its use in the operand field
of an OPSYN statement. The COPY code at 118- 126 is a prcgrammer
macro definiticn. The macro instruction at statement 130 is MARK.
We can use MARK and NOTIE interchangeably. If desired, we could
put these two words on separate lines (that is, make NOTIE
synomomous with the null string). This would remove NCTE as a
macro definition. Then, we could call the wmacro only as MARK.

Statement 144 demonstrates &SYSTIME, &§SYSDATE and §SYSPARM. The
values for the first two are the same as we use on the heading
line. The value for &§SYSPARM is the value passed in the FARM
field of the EXEC statement on the default value assigned to
&§SYSPARM when Assenkbler H is installed.

System variable symbols &§SYSLOC and ESYSECT are displayed. The
sequence field indicates that the model statements are statements
148 and 149.

Illustration of named COMMON. Note that estaklishing
addressakility tc such a section can be obtained with a USING
PD2 register statement. With klank COMMON, one has to make use
of some lakel cn a statement after the CCMMON statement.

If there are literals ocutstanding when the END statement is
encountered, they are assigned to the LOCTR currently in effect
for the first contrcl section in the assembly. This may or may
not put the literals at the end of the first control secticn.
In this sanrple assenbly, the first <control section, A, has two
ICCTRs, A and LCEECEES. Eecause A is active (at statemwent 155),
the literals are assembled there. You always have the ability
to ccntrol rlacement cf literal pools by means of the LTORG
statement. Note that X'FFFFFFE8' is used for the ccntents of
A(x), statement 162. The symbol X was assigned the value (4%*-
6) by an ECU in statement 43.

Appendix A. Sample Program 45

//MRTSMP J0OB
124 EXE

XXxcC

XXSYsLI8
XXSYSUTL
XXSYSPUN

@ 7/SYSPRI
/7

X/SYSPRI
//SYSIN
IEF2361
TEF237I
IEF2371
1EF2371
1EF2371
TEF2371

EX
CH .
NT

NT
oo

EC
2B}
on
on
Do

Do

(258753,D81) ¢ MeR .TALLEY,MSGLEVEL=1

ASMHC, PARM.C=(NODECK yMULT s * SYSPARM=SAMPLL*PROGRAM!)

PGM=1EV90,REGION=200K

DSN=SYS1.MACLIB,DISP=SHR
UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,{10,5)),DSN=ESYSUTL

SYSOUT=B,DCB={BLKSIZE=800),SPACE=(CYL,(545,0))
SYSOUT=(Ay,21) 4DCB={BLKSIZF=3509), X
UNIT=(,SEP=(SYSUT1,SYSPUNCH))
SYSOUT=A,DCB={BLKSIZE=3509)yUNIT=(,SEP=(SYSUTL,SYSPUNCH))

ALLOC. FOR MRTSMP

135
290
132
131
130

ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED

10
TQ
T0
TO
T0

C
SysLIs
SYSUTL
SYSPUMNCH
SYSPRINT
SYSIN

\\//~\‘//A_,/-\\\y‘//—*_—//'—~\‘_,/‘”*_’//‘\\\\“__/,,——__/—"_’/"_///-_///5\\\~_r”—~‘\“—‘/—~‘

BIGNAME

SYMBOL

A
1‘. PD2

TY

PE

I ADDR LENGTH LD IO

EXTERNAL SYMBUL DICT IONARY . PAGE 1

ASM H VvV 01 11.52 05/20/70

SD 0001 000000 0Q00DC
CM 0002 000000 0007D2

46 Assembler H Programmer's Guide

AN

)

s/

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 2

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H Vv 01 11.52 05/20/70
000000 2 A CSECY
00000000 3 USING *,8
5 e
6 * PUSH AND POP STATEMENTS *
7 * PUSH DUWN THE PRINT STATEMENT, REPLACE IT, RETRIEVE ORIGINAL *
Rtk
10 PUSH PRINT SAVE DEFAULT SETTING * PRINT ON,NODATA,GEN'
11 PRINT NOGEN,DATA
12 W10 MF={E,(1)) EXPANSION NOT SHOWN
000002 01230ABCOL02030A (:) 14 DC X'123,ABC', (REALLYLONGSYMBOL—TRANSYLVANIA)B'141041141010+1011,1100°*
00000A 0BOCOL02030A0B80C

000012 010203CA0BOCOL02
00001A 030A030C "

15 POP PRINT RESTORE DEFAULT PRINT SETTING
16 W70 MF={E,{1)) EXPANSION SHOWN
00001E 0A23 17+ 35 ISSUE SVC 01-WT0
000020 01230ABC0102030A 18 DC X'123,ABC' {REALLYLONGSYMBOL-TRANSYLVANIA)B?'1,41041141010+1011,1100°"
20 *ExEE * xk
21 % LOCTR INSTRUCTION *
22 * LOCTR ALLOWS *REMOTE' ASSEMBLY OF CONSTANT *
23 * # g ok LR e e
00003C 5850 8098 00098 25 L 5+CONSTANT
b 000098 26 DEECEES LOCTR
4 000098 00000005 27 CONSTANT DC Fr5e CONSTANT CODED HERE, ASSEMBLED BEHIND LDCTR A
000040 28 A LOCTR RETURN TG 1ST LOCTR IN CSECT A
30 "k *
<:> 31 * 3 QOPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND *
32 %% FEEREREREE
000040 1812 34 A5 LR 1,2 L'AS = 2, T'AS5 = [
35 PRINT DATA

000042 000000CC0000
000048 413243F6A8885A30 36 AT DC L*'3.1415926535897932384626433832795028841972% L'AT = 16,T*AT7 = L
000050 338D313198A2E037
37 &TYPE SETC T*a7
38 As EQU B5,4L*AS,C'ETYPE"
000000A0 +A8 EQU B54L'A5,CL"

Appendix A. Sample Program 47

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DUES PAGE 3

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H v 01 11.52 05/20/70

40 FXRFETTEREE whoRE R AK Aok k kkk
41 * IMPLICIT DECLARATION OF LOCALS &A, &C -- USE OF SETC OUP FACTOR TO ¥
42 * PRODUCE SETC STRING LONGER THAN 8, MNOTE IN OPEN CODE *
43 *x% ERAR AR R RAR AR KKK

45 GLAS SETA L'A8
46 GTA8 SETC T'A8

MNOTE *,'LENGTH OF A8
+*,L ENGTH OF A8 = 2, TYPE OF A8

&LA8, TYPE OF A8 = &TAS8!
L

: e
49 &A SETA 2
@ 50 &C SETC [GA+3)PSTRING,
51 MNOTE *,96&C HAS VALUE = 6C*
+#,6C HAS VALUE = STRING,STRING,STRING,STRING,STRING,
53 FREREEKKRRKERERRERERREE KGR AR R ERRE R ER K TR REK Ao gk xEE
@ 54 * EXAMPLES OF 4 BYTE SELF-DEFINED TERMS, UNARY + AND - *
55 x o -
000058 TFFFFFFFCLC2C3C4 57 DC A(2147483647,C*ABCD® ;X FFEFFFFFY) .
000060 FFFFFFFF ™~
000064 1810 58 LR —1+2,164-3 ‘3
FFFEFFES 60 X EQU 4%-6 —e

48 Assembler H Programmer's Guide

(J

B IGNAME

LOC OBJECT CODE

000066
000068
00006C
000070
000074
000078

00007A
00007€
000080
000084

INSERT PROGRAMMER MACRC IN SOURCE STREAM NOW

1816
9220
5081
58F1
58F0
05EF

5850
189A
98CD
5073

1005
0008
0008
FO30

A008

8090
80A8

ADDR1

00005

ADDR2

00008
00008
00030

00008

00090@

000A8

PAGE 4

STMT SOURCE STATEMENT ASM H V 01 11.52 05/20/70
62 FTEREREEERKFRERERERBREE R KRS ERXEERR TR K EE RKEE AR A
63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGG AND AIF *
64 * STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS, *
65 * USE OF CREATED SET SYMBOLS, EXTENDED SET STATEMENTS *
66 FEREREREEREKRAREXR R EXXEEERARE LK 21] P
®) o8 MACRO
69 DEMU £P1,GKEY1=A,EP2, EKEY2=1,6P3,EKEY3=3,£P4
@© 70 sLuctn) SETC 20,30 6LOC 1S DIMENSIONED LCLC 8Y DEFAULT
71 GBLC EXA(5),6XB(20)4EXC(1)
® 72 6P1 ESYSLIST(4)GSYSLIST(S) &SYSLIST(6) 4 MF=E
73 &N SETA 1
® 74 AGO (EKEY2).MNOTEL, .MNOTEZ, .MNOTE3
75 &N SETA 2
76 MNOTE *,'66KEY2 NOT 1,2, OR 3---USE LEKEY3 IN PLACE OF IT®
(:) 77 AIF (EKEY3 EQ L) MNOTEL, X
{EKEY3 EQ 2) . MNOTE2, (EKEY3 EQ 3).MNOTE3
8 MNOTE *,9BOTH GEKEY2 AND £EKEYV3 FAIL TO QUALIFY*
19 AGO .COMMON
80 .MNOTE1 MNOTE #,!&GKEYGLOCIEN) = 1°
81 AGO .COMMON
82 JMNDTE2 MNOTE #,'EEKEYELOC(EN) = 2°
83 AGO .COMMON
84 .MNOTE3 MNOTE #,'6E6KEVELOC(EN) = 3¢
85 .COMMON L 5,8(,10) NOTE THAT OPCUDES, OPERANDS & COMMENTS
86 £XB(2) SR 9,10 ON MODEL STATEMENTS
(P) 87 &(XGKEYL)(2) LM 12,13,=ALAS,X) ARE KEPT IN PLACE UNLESS DISPLACED
88 &P2 ST 7,6p3 AS A RESULT OF SUBSTITUTION
289 MEND
91 #akes DEMO MACRG INSTRUGTION (CALL)
@ 9 GBLC EXA(L),EXB(2),EXC(3)
94 EXALL) SETC *A',*MISSISSIPPL®
95 EXB(L) SEFC B¢, SUSQUEHANNA!
96 &XC(1) SETC *C'y'TRANSYLVANIA®
® s7 DEMO KEY3=2,WRITE,REALLYLONGSYMBOL , M
AB+8# (BS-CONSTANT-T) (3) yKEYL=C (6] 4 SFy N
(8) 1KEY2=7
98+ LR 1,6 LOAD DECB ADDRESS 03~ [HBRD
99+ MVI S(1),X920° SET TYPE FIELD 03-THBRD
100+ ST 848(140) STORE DCB ADDRESS 03-THBRD
101+ L 15+8(1,0) LOAD DCB ADDRESS 03~ THBRD
102+ L 15,480,151 LOAD RDWR ROUTINE ADDR 03— [HBRD
103+ BALR 14,15 LINK TO ROWR ROUTINE 03-IHBRD
104+%,6KEY2 NOT 1,2, OR 3---USE &KEY3 IN PLACE OF IT 01-00076
105+%,EKEY3 = 2 01-00082
106+ L 5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS 01-00085
LOT+SUSQUEHANNA SR 9,10 ON MODEL STATEMENTS 01-00086
108+TRANSYLVANTA LM 12,13,=AUAS,X) ARE KEPT IN PLACE UNLESS DISPLACED 01-00087
L09+REALLYLONGSYMBOL ST T,A8+8%(B5—CONSTANT-7)(3) X01-00088
+ AS A RESULT OF SUBSTITUTION

Appendix A. Sample Program 49

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW

LOC OBJECT CODE ADDR1 ADDR2 STMT

SUURCE STATEMENT ASM H VvV 01 11.52

111 ook ko g dorof okt ok ok ok otk deoteod o gk dok dek *
112 *# COPY *NUTE' MACRD IN FROM MACLIB, RENAME IT *MARK', CALL IT UNDER *
113 * ITS ALIAS —- IN EXPANSION OF MARK, NOTICE REFERENCE BACK TO *
114 % DEFINITION STATEMENTS IN 'COLUMNS!® 76-80 OF EXPANSION *
115 Sfdokrrkkgfokrkdkkdorfskforfkk F R kkokkkk ok
(:) 117 COPY NOTE
118 MACRO
119 ENAME NOTE EOCByEDUMMY=
120 ATF (7&DCRY EQ *1).ERR
121 &NAME EHBINNRA £DCB -
122 L 15,84(0,1) LOAD NOTE RTN ADDRESS
123 BALR 14,15 LINK TO NOTE ROUTINE
124 MEXIT
125 JERR IHBERMAC 6
126 MEND
(:) 129 MARK OPSYN NOTE COMMENTS UF GENERATED STATEMENTS OCCUPY SAME
130 MARK {6) TCOLUMNS' AS THOSE IN MODEL STATEMENTS
000088 1816 131+ LR 1,6 LOAD PARAMETER REG 1
00008A 58F0 1054 00054 132+ L 15,84(041) LOAD NOTE RTN ADDRESS
00008E O5EF 133+ BALR 14,15 LINK TO NOTE ROUTINE
135 kkkdkkkkrhkbhbbrrrbeehookirhrfikkk L2] %
00009¢C 136 DEECEES LOCTR SWITCH TO ALTERNATE LOCATION COUNTER
00009C 00000000
0000A0 0800004000000050 137 85 CCW XTO0B?',B5,0,80
" 139 %k iokiokkkiokkkkkky ke ok g Ok
140 * DISPLAY OF £SYSTIME, ESYSDATE, &SYSPARM AND &SYSLOC *
141 FxekErbxdhshEkkbkd kR d R ek ERhR kR e kA ek R r Rk Rk R kR R KRRk &
143 PRINT NUDATA
(:) 144 DC C'TIME = &SYSTIME, DATE = GSYSDATE, PARM = &SYSPARM!
0000A8 E3C9D4C5407E40F1 + DC C'TIME = 11.52, DATE = 05/20/70, PARM = SAMPLE*PROGRAM?
146 MACRO
147 LOCATE
148 ESYSECT CSECT DISPLAY OF CURRENT CONTROL SECTION
149 £SYSLOC LOCTR AND LOCATION COUNTER
150 MEND"
(:) 152 LOCATE
00000C 15344 CSECT DISPLAY OF CURRENT CONTROL SECTION
00000C 154+DFECEES LOCTR AND LOCATION COUNTER
000090 155 A LOCTR
157
000000 (:) 158 PD2 coM NAMED COMMON THROWN IN FOR GOOD MEASURE
000000 159 DS 500F.
0007D0 1867 160 LR 6,7
161 END
000090 00000040FFFFFFES (:) 162 =AtA5,X)

50 Assembler H Programmer's Guide

PAGE 5

05/20/70

00020000
00040017
00060000
00080000
00100000
00120000
00140000
00160000
00180000

02-IHBIN
01-00122
01-00123

01-00148
01-00149

BIGNAME RELOCATIUN DICTIONARY PAGE &

POS.ID REL.ID FLAGS ADDRESS ASM H v 01 11.52 05/20/10
0001 0001 oc 000090
0001 0001 08 0000A1L

N — e r—————— T T T T

BIGNAME CROSS REFERENCE PAGE 7
SYMBOL LEN VALUE DEFN REFERENCES ASM H V 01 11.52 05/20/70
A 00001 00000000 0002 0028 0153 0155
AS 00002 000040 0034 0038 0le62
AT 000l6 000048 0036
A8 00002 000000A0 00338 0109
B5 00008 0000A0 0137 0038 0109 0137
CONSTANT 00004 000098 0027 0025 0109
DEECEES 00001 00000098 0026 0136 0154
PD2 00001 00000000 0158
REALLYLONGSYMBOL
00004 000084 0109 0014 0018
SUSQUEHANNA
00002 00007E 0107
TRANSYLVANTIA
00004 000080 0108 0014 0013
00001 FFFFFFE8 0060 0162
=A(A5,X) 00004 000090 0162 o108

VJW\—/\/V\/\/\/\/W

BIGNAME DIAGNUSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 8

ASM H V 01 11.52 05/20/70
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

OVERRIDING PARAMETERS— NODECK,MULT,SYSPARM=SAMPLE*PROGRAM
OPTIONS FOR THIS ASSEMBLY

NODECK, NOLOAD, LIST, XREF,
NO OVERRIDING DD NAMES

NORENT, NOTEST, MULT, ALGN, ESDy RLDy LINECNT= 55, MSGLEVEL= 0Oy SYSPARM=SAMPLE*PROGRAM

136 CARDS FROM SYSIN
197 LINES OUTPUT

432 CARDS FROM SYSLIB
0 CARDS OUTPUT

Appendix A.

Sample Program 51

This page intentionally left blank.

52 Assembler H Programmer's Guide

®

o

Appendix B. Sample Macro Trace and Dump (MHELP)

The Macro Trace and Dump (MHELP) facility is a useful means of debugging
macro definitions. MHELP can be used anywhere in the source program

or in macro definitions. MHELP is processed during macro generation.

It is completely dynamic; you can branch around the MHELP statements

by using AIF or AGO statements. Therefore, its use can be controlled

by symbolic parameters and SET symkols.

The following sample program illustrates the five primary functions

cf MBELP. Since mcst of the informaticn produced is unrelated to
statement numbers, the dumps and traces in the listing are marked with
circled nunkers. Most durps refer to statement numbers. If you request
MHELP information about a likrary macro definition, the first five
characters of the macrc nare will appear in place of the statement
numbexr. To get the statement numbers, you should use COPY toc copy

the likrary definition intc the source program prior to the macro call.

Macro Call Trace (MHELP 1)

Item illustrates an cuter macro call, an inner one. In each
case, the amount of information given is brief. This trace is given
after successful entry intc the macro; no dump is given if error
ccnditions prevent an entry.

Macro Entry Dump (MHELP 16)

This provides values of syster variable symbols and symbolic parameters
at the time the macro is called. The following numbering system is
used:

Number Item

000 &ESYSNDX

001 &SYSECT

002 ESYSICC

003 &SYSTIME

004 ESYSCATE

005 §SYSPARM

006 NAME FIELD CN MACRO INSTRUCTION

If there are NKW keyword rarameters, they follow in order of appearance
cn the prototype statement.

007 1st keyword value
008 2nd keyword value

- L}

006+NKW NKWth keyword value

Appendix B. Sample Macro Trace and Dump (MHELP) 53

If there are NPP positicnal rarameters, they follow in order of
arpearence in the macro instruction.

007 +NKW 1st pcsitional parameter values
008+NKW = 2nd positional parameter values

006+NKW+NPP NPPth positional parameter values

For example, item has one keyword parameter (SOFFSET) and one
positional rarameter. The value of the keyword parameter appears
orrosite 110006, the positional parameter, opposite 110007. In both
the prototyre (statement 3) and the macro instruction (statement 54),
the positional parameter appears in the first operand field, the keyword
in the second. A length appears Lbetween the NUM and VALUE fields.

A length of NUL indicates the corresponding item is empty.

Item illustrates an inner call containing zero keywcrds, and
two positicnal rarameters.

Macro AIF Dump (MHELP 4)

Items @ v @ @ s <+ are examples of these dumps. Each such
dumpe includes a conplete set cf unsubscripted SET symbols with values.
This list covers all unsubscripted variable symbols which appear in
the name field of a SET statement in the macro definitiocn. Values

of elements cf dimensicned SET symbols are not displayed.

MACRO BRANCH TRACE (MHELP 2).

This provides a one-line trace for each AGO and true AIF kranch within
a programner macrc. In any such branch, the "branched from" statement
number, the "branched to" statement number and the macro name are
included. Note, in example ég? , the "branched to" statement number
indicated is not that of the ANOP statement kearing the target sequence
symkol kut rather that of the statement following it. The branch trace
facility is suspended when likrary macros are expanded and MHELP 2

is in effect. To cktain a macro branch trace for such a macro, one
would have to insert a CCPY 'macro-name" statement in the source deck
at scme pcint pricr to the MHELP 2 statement of interest.

Macro Exit Dump (MHELP 8)

This provides a dump of the same group of SET symbols as are included
in the Macro AIF dump (see item C above) when a MEXIT or MEND is
encountered.

Note that local and/or glokal variakle symkols are not displayed at

any point unless they arrear in the current macro explicitly as SET
symkols.

54 Assembler H Programmer's Guide

Lac

000000

SAMPLE MHELP TRACE AND DUMP

ORJECT CODE ADDR1 ADDR2 STMT

N

SOURCE STATEMENT

* INCLUDE MACR() DEFINITIONS TN 8F TRACED IN THE SOURCE PROGRAM
CSECT
COPY. . LNSRCH
_MACRD
ENAME LNSRCH &ARGy EOFFSET=STNUMB-STCHAIN
LCLC GLABEL
SLABEL SETC *A&SYSNDX® GFNERATE SYMBOL
ATF (TYENAME EQ *0*)1.SKIP
GLABEL SETC 'ENAME® 1F MACRO CALL HAS LABEL, USE 1IT
«SKIP ANOP IMSTEAD OF GENERATED SYMBOL
GLABEL LA 0y EOFFSET LUAD REG. 0O
SCHI &ARG,0(1) SFARCH
BC Ly ELABEL 1F MAX REACHED, CONTINUE
MEND
CQPY SCHI
MACRO
ENM SCrAl &COMP, &LIST
LCLA &CNT
LCLC EBCMPADR
&CNTY SEfA 1
ENM STM 1+15,4(13)
#TEST ANOP
G&CMPADR SETC '&CMPAUR®, *ECUOMPY (&CNT, 1)
AIF (*ECAMP* (ECNT, 1) EQ *(').LPAR
&CNT SETA &CANT+1
ALF {&CNT LT K'&COMP).TESY
+NOLNTH ANOP
La 3y £COMP CUMPARAND
AGO <CONTIN
+LPAR ALF {*ECOMPY (ECNT+141) EQ ', ') FINISH
ECNT SETA &CNT+1
AlF (ECNT LT K'6&CUMP) LLPAR
AGU +NOLNTH
<FINISH ANUP .
ECMPADR SETC 'ECMPADR'.'&CUMP* (ECNT+2,K'&COMP-ECNT)
LA 3y ECMPADR COMPARAND SANS LENGTH
+CONTIN ANOP
LA 1,8LIST L1ST HEADER
MVC ECUMP, 0(0) DUMMY MOVE TO GET COMP LENGTH
URG *-6 CHANGE MVC TO MVI
bDC X'92* MVI NPCODE
ORG *+1 PRESERVE LENGTH AS IMMED OPND
oc X'DOOO* RESULT IS MVI 0{13),L
L 15,=V(SCHI)
BALR 14,15
iM 1,1554(13)
MEXIT
MEND

Appendix B.

Sample Macro Trace and Dump (MHELP)

PAGE

2

ASM H V 01 11.52 05/19/70

55

SAMPLE MHELP TRACE AND DUMP

LOC OBJECT COOE ADDR1 ADDR2 STMTY

000000 53
000000 05CO 54
00000002 55
57
58

000002 4100 2002 00002 59+

000006 901F DOO4 00004 60+

PAGE 3
SOUNCE STATEMENT ASM H V 01 11,52 05/19/70
TEST CSECT
BALR 12,0
USING *,12
... MHELP B'llll[\f REQUEST ALL MHELP FUNCTIONS
CNSRCHLISTLTNE)OFFSET=LISTLINE-LISTNEXT
++//MHELP. CALL TO MACRO LNSRCH . DEPTH=001, SYSNDX=0001, STMT 00058
//MHELP ENTRY TO (LNSRCH . MODEL STMT 00000, DEPTH=00l, SYSNDX=0001, KWCNT=001

/77/PARAMETERS (SYSNDXsSYSECT,SYSLOC+SYSTIME,SYSDATE, SYSPARM, NAMEKHS+PPS) ///

//NUM LNTH VALUE (64 CHARS/LINE)
//0000 004 0001

/70001 004 TEST

//0002 004 TEST

//0003 005 11.52

//0004 008 05/19/70

/70005 014 SAMPLE*PRUGRAM

/70006 NUL

//70007 017 LISTLINE-LISTNEXT
/70008 008 LISTLINE

//MHELP AIF IN LNSRCH ., MODEL STMYT 00010, DEPTH=00L, SYSNDX=0001,
//77SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLC LABEL LNTH=
124 VAL=A0001

++//MHELP. BRANCH FROM STMT 00010 TO STMT 00013 IN MACRO LNSRCH

A0001 LA Oy LISTLINE-LISTNEXT LOAD REG. O

++//MHELP. CALL TO MACRO SCHI « DEPTH=002, SYSNDX=0002, STMT 00014

//MHELP ENTRY TO SCHI . MODEL STMT 00000, DEPTH=002, SYSNDX=0002,

KHCNT=001

005

01-00013

KWCNT=000

////PARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIMEySYSDATEs SYSPARM, NAME ,KWS,PPS) ///

Z/NUM LNTH VALUE (64 CHARS/LINE)
/70000 004 0002

//0001 004 TEST

/70002 004 TEST

/70003 005 11.52

//0004 008 05/19/70

/70005 0l4 SAMPLE*PROGRAM
/70006 NUL

/70007 008 LISTLINFE

/770008 004 o0f(1)

STM 1,15,4(13)

+
//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002,

56 Assembler H Programmer's Guide

02-00024

KWCNT=000

SAMPLE MHELP TRACE AND DUMP PAGE 4

LOC OBJECT CODE ADNR1 ADDR2 STMT SOURCE STATEMENT ASM H V 01 11.52 05/19/70
//7//7SET SYMBOLS (SKIPPED NUMBERS MAY Bt SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000001
/70001 LCLC CMPADR LNTH= 001
12 VAL=L
//MHELP ALF IN SCHI « MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNY VAL= 0000000002
//0001 LCLC CMPADR LNTH= 001
124 VAL=L

++//MHELP. BRANCH FROM_STMT 00029 TO STMT 00026 IN MACRO SCHI

®® 6

//MHELP ATF IN SCHIL « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000
///7/SET SYMBOLS {SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000002
//0001 LCLC CMPADR LNTH= 002
17 VAt=LI

//MHELP AIF IN SCHI1 « MODEL STMT 00029, DEPTH=002, SYSNDX=0002, XKWCNT=000
////SET SYMBOLS (SKIPPED NUMBERS MAY BFE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000003
/70001 LCLC CMPADR LNTH= 002
/7 VAL=L1

++//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCH!

®

//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000
///7SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000003
//0001 LCLC CMPADR LNTH= 003

/" VAL=LIS

//MHELP AIF IN SCHI « MODEL STMT 00029, DEPTH=002y SYSNDX=0002, KWCNT=000
//7//SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS}).//

/70000 LCLA CNT VAL= 0000000004
//0001 LCLC CMPADR LNTH= 003

/7 VAL=LIS

++//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP ALF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL= 0000000004
/70001 LCLC CMPADR LNTH= 004

{7 VAL=LIST

Appendix B. Sample Macro Trace and Dump (MHELP) 57

SAMPLE MHELP TRACE AND DUMP PAGE 5

LOC OBJECT COOE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 01 11.52 05/19/70
//MHELP AIF IN SCHI1 « MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWHCNT=000
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000005
/70001 LCLC CMPADR LNTH= 004
/7 VAL=LIST

++//MHELP, BRANCH FRUM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP ATIF IN SCHI . MODEL STMT 00027, DEPTH=002, SYSNNX=0002, KWCNT=000
////7SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000005
/770001 LCLC CMPADR LNTH= 005

/7 VAL=LISTL

J/MHELP ALF IN SCHI . MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000
////SET SYMROLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000006
/70001 LCLC CMPADR LNTH= 005

124 VAL=LISTL

++//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AIF IN SCHI . MODEL STMT 00027, DEPTH=002, SYSNOX=0002, KWCNT=000 —
77//SET SYMBOLS (SKIPPED NUMBERS MAY KE SEQUENCE SYMROLS).// AN
770000 LCLA CNT VAL= 0000000006 \ ‘
770001 LCLC CHPADR LNTH= 006 Y
7 VAL=LISTLI =
//MHELP AIF IN SCHI . MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000

7//SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL= 0000000007

/70001 LCLC CMPADR LNTH= 006

77 VAL=LISTLI

++//MHELP . BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AILF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL= 0000000007
//0001 LCLC CMPADR LNTH= 007

17 VAL=LISTLIN

//MHELP AIF IN SCHI » MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

58 Assembler H Programmer's Guide

J

LaoC

00000A

00000E
000012
000018
000012
000013
000014
000016
00001A
00001C

000020

000024
000026
000030
000030
000000

SAMPLE MHELP TRACE AND DUMP

STMT

61+

62+
63+
b4+
65+
66+
67+
68+
69+
70+

OBJECT COOE ADDR1 ADDR2
4130 CO24 00026
4111 0000 00000
D202 CO024 0000 00026 00000
000012

92

000014

0000

58F0 CO2E 00030
05€F

981F D004 00004
4710 C000

00000000

App

SOURCE STATEMENT

PAGE 6

ASM H V 01 11.52 05/19/70

//0000 LCLA CNT VAL= 0000000008
/70001 LCLC CMPADR LNTH= 007
/7 VAL=LISTLIN

La 3, LISTLINE COMPARANO 02-00031

++//MHELP. BRANCH FROM STMT 00032 TO STMT 00041 IN MACRO SCHI

LA 1,011} LIST HEADER 02-00041
MVC LISTLINE,O(O) DUMMY MOVE TO GET COMP LENGTH 02-00042
ORG 6 CHANGE MVC TO Mv! 02-00043
Dc xtq2e MVI OPCODE 02-00044
QarG *+1 PRESERVE LENGTH AS IMMED OPND 02-00045
nc X*DOOO* RESULT [S MVI 0(13},1 02-00046
L 15,=V{SCHIL) 02-00047
BALR 1441% 02-00048
M 1515,4013) 02-00049
//MHELP EXIT FROM SCHI « MODEL STMT 00050, DEPTH=002, SYSNDX=0002, KWCNT=000
////SET SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000008
//0001 LCLC CMPADR LNTH= 007
1/ VAL=LISTLIN
BC 1,A0001 IF MAX REACHEDy CONTINUE 01-00015

/70000 LCLC

//MHELP EXIT FRUM LNSRCH . MODEL STMT 00016, DEPTH=001, SYSNDX=0001, KWCNT=001
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

LABEL LNTH= 005

1/ VAL=A0001

LISTNEXT DS
LISTLINE DS
LTORG

END

endix B.

H
FL310¢

=V{SCH1)
TEST

Sample Macro Trace and Dump (MHELP)

59

This page intentionally left blank.

60 Assembler H Programmer's Guide

S ESD Card Format

Appendix C. Object Deck Output

The format of the ESD card is as follows:

Columns

1

2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-80

Contents

12-2-9 punch

EST

Blank

Variakle field count -- number of bytes

of infcrmaticn in variable field (columns 17-64)
Blank

ESDID of first sp, XD, CM, EC, or ER

in variable field

Variakle field. One to three 16-byte

items of the following format:

1 byte -- ESD type code
The hex value is:
00 SD
01 LD
02 ER
04 PC
05 ™
06 XD(PR)

3 bytes -- Address
1 byte -- Alignment if XD; otherwise blank
3 kytes -- Length, LDID, or klank

Blank

Deck IC and/or sequence number --

The dack ID is the name from the first TITLE
statement that has a non-klank name field.

The name can be 1 to 8 characters long. If the
name is less than 8 characters long cr if
there is no name, the remaining columns con-
tain a card sequence numker. {Columns 73-80

of caxds produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TEXT (TXT) Card Format

The format of the TXT cards is as follows:

Columns

-4

N

Contents
12-2-9 runch

TXT
Blank

Appendix C. Object Deck Output

61

6-8 Relative address of first instruction on card

9-10 Blank
11-12 Byte ccunt -- number of bytes in information
field (columns 17-72)
13- 14 Blank
15-16 ESCIC
17-72 56-byte information field
73-80 Deck IC and/or sequence numker --

The deck ID is the name from the first TITLE
statement that has a non-klank name field.

The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if

there is nc name, the remaining columns con-
tain a card sequence numker. (Columns 73-80

of cards produced by PUNCH or REFRC statements
do not contain a deck ID or a sequence number.)

RLD Card Format

The format of the KID card is as follows:

Columns Contents
1 12-2-¢ runch
2-4 RIC
5-10 Blank
11-12 Data field count -- number of bytes cf
informaticn in data field (columns 17-72)
13-16 Blank
17-72 Data field:
17-18 Relocation ESDID
19-20 Position ESLCID
21 Flag byte
22-24 Absolute address to be relccated
25-72 Remaining RID entries
73-80 Ceck ID and/or sequence number --

The deck ID is the name from the first TITLE
staterent that has a non-blank name field.

The name can ke 1 to 8 characters lceng. If the
name is less than 8 characters long or if
there is no name, the remaining columrns ccn-
tain a card sequence number. (Columns 73-80

of cards produced ky PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

If the rightmost bit of the flag Lbyte is set, the follcwing RID entry
has the samre relccation ESLCID and position ESDID, and this information
will not ke repeated; if the rightmost bit of the flag byte is not

set, the next RLD entry has a different relocation ESDID and/cr position
ESCIC, and bkothk ESDIDs will ke recorded.

For example, if the RLD Entries 1, 2, and 3 of the program listing
(Appendix C) ccntain the following information:

Pcsiticn Relccation

ESDID ESDID Flag Address
Entry 1 02 04 oc 000100
Entry 2 02 04 oc 000104
Entry 3 03 01 0c 000800

62 Assembler H Programmer's Guide

00| 04| 00| 02|op
:j} ;

Entry 1 Entry 2 Entry 3
Column: |17 18 19 20 21 22 23 24|25 26 27 28|29 30 31 32 33 34 35 36 (37— 72
00[01] 00| oc]oo] 01] 04| 00] 01 {00 [03| 0c{ 00| 08 00 |
[__J v JIN - \ v JI\ v J
ESD IDs Address T Address Esd IDs T Address blanks
Flag Flag Flag
{set) {not {not

END Card Format

set) set)

The format of the END card is as follows:

Columns

1
2-4
5
6-8

9-14
15-16
17- 39
40-64

G} 73-80

Contents

12-2-9 punch

END

BRlank

Entry address from operand of END card in
source deck (klank if no orerand)

Blank

ESTCIC of entry point (klank if no orerand)
Blank

Version of the assembler (such as ASM H VI),
tire of the assembly (hh,mm), and date of

the assembly (mm/dd/yy). See the "Assembler
Listing" section.)

Deck IC and/or sequence numker --

The deck ID is the name from the first TITLE
statement that has a non-bklank name field.

The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con-
tain a card sequence numker. (Columns 73-80
of cards produced by PUNCH or REFRC statements
do not contain a deck ID or a sequence nurber.)

TESTRAN (SYM) Card Format

If vcu request it, the assemkler punches out syrkclic infcrmation for
TESTRAN cocncerning the assembled program. This output appears ahead
cf all loader text.

is as follows:

Columns

1
2-4
5-10
11-12

The format of the card images for TESTRAN output

Contents

12-2-9 punch

SYM

Bl ank

Variable field count —-- number of bytes of
text in variakle field (columns 17-72)

Appendix C. Object Deck Output

63

13-16 Blank

17-72 Variakle field (see below)

73-80 Ceck IL and/or sequence number —-
The deck ID is the name from the first TITLE
statement that has a non-tklank name field.
The nare can be 1 to 8 characters long. If the
name is less than 8 characters lcng or if
there is nc name, the remaining columns con-
tain a card sequence numkber. (Columns 73-80
of cards produced by PUNCH or REFRC statements
do not contain a deck ID or a sequence nurnber.)

The variakle field (cclumns 17-72) contains up to 56 bytes of TESTRAN
text. The items making the text are packed together; consequently,
only the last card may contain less than 56 kytes of text in the
variakle field. The fcrmats of a text card and an individual text
iter are shown in Figure 9. The contents of the fi=lds within an
individual entry are as follcws:

1. Crganization (1 byte)
Eit O:

c

1

non-data type
data type

Bits 1-3 (if non-data tyre):

000 = sgpace.

001 = contrxcl section

010 = dummy control section
011 = common

100 = instruction

101 = CCW

Bit 1 (if data tyre):
0 no multiplicity
nultiplicity (indicates presence of M fleld)

1

Bit 2 (if data type):

0 = independent (not a packed or zoned deciral constant)
1 = cluster (packed or zoned decimal constant)
Bit 3 (if data type):
' 0 = no scaling
1 = scalirg (indicates presence of S field)
Bit 4:
0 = name present
1 = name not present
Bits 5-7:
Length of name minus 1
2. Address (3 bytes) =-- displacement from kase cf control section
3. Symbol Name (0-8 bytes) -- symbolic name of particular iter

Note: The follcwing fields are present only for data-type items.

4, Data Type (1 kyte) -- contents in hexadecimal

00 = character
04 = hexadecimal
08 = binary

64 Assembler H Programmer's Guide

5. Length
items;

fixed pcint, full

14 = fixed point, half

18 = floating point, short

1C = floating point, long

20 = A-tyre or Q-Type data

24 = Y-type data

28 = S-type data

2C = V-type data

30 = packed decimal

34 = zoned decimal

38 = floating point, extended.
(2 bytes for character, hexadecimal decimal, or binary
1 byte for other types) -- length of data itemr minus 1

6. Multiplicity - M field (3 kytes) -- equals 1 if not present

7. Scale - signed integer - S field (2 bytes)

F, H, E, D, P and Z type data, and only if scale is non-zero.

-- present only for

12 45 10 11 1213 16 17 72 73
No.
2 svm | biank byegs| blank TESTRAN text — packed entries Deck g Sequence
H \‘/)fes P 1D < number
text
1 3 2 4 586 8
. Entry
Entry N complete entries
(complteor N et ot
end portion)
Variable size entries
Data Muit, Symbol
Org. | Address Symbol name type Length factor Scale Org. name g
1 3 08 1 1-2 3 2
Figure 9. TESTRAN SYM Card Format

Appendix C. Object Deck Output

65

This page intentionally left blank.

66 Assembler H Programmer's Guide

Appendix D. Dynamic Invocation of the Assembler

The assembler can ke invoked by a problem program at execution time
through the use of the CALL, LINK, XCTL, or ATTACH macro instruction.
If the XCTL macrc instruction is used to invoke the assembler, then
nc user ortions may be stated. The assemkler will use the standard
default, as set during system generation, for each option.

If the assembler is invoked ky CALL, LINK or ATTACH, you ray supply:

1) The assemkler cpticns

2) The DL names cf the data sets to be used during processing
Name Operation Operand
[symbol] CALL IEV90, (optionlist

[.ddnamelist]),VL

{ LINK] EP=IEV90,
ATTACH PARAM=(optionlist

[, ddnamelist]),VL=1

EP -- specifies the symbclic name of the assembler. The entry point
at which execution is to begin is determined by the ccntrcl pregram
(from the litrary directecry entry).

PARAM -- specifies, as a sublist, address parameters to be passed from
the problem program to the assemkler. The first word in the
address rarameter list contains the address of the option list.
The second word contains the address of the ddname list.

orticnlist -- specifies the address of a variable length list containing
the crticns. This address must be written even if no option list
is provided.

The option list must begin on a halfword koundary. The first two bytes
ccntain a count of the nurmber of bytes in the remainder of the list.

If nc cptions are specified, the count must be zero. The ortion list
is free form with each field separated from the next by a comma. - No
blanks or zeros should appear in the list.

ddnanrelist -- specifies the address of a variakle length list containing
alternate DD names for the data sets used during compiler processing.
If standard DD names are used, this operand may be omitted.

The DD name list must begin on a halfword koundary. The first two
bytes contain a count of the number of bytes in the remainder of the
list. Each name of less than 8 kytes must ke left-justified and padded
with bklanks. If an alternate DD name is omitted, the standard name
will be assumed. If the name is omitted within the list, the 8-byte
entry must ccntain kinary zeros. Names can be omitted from the end

Appendix D. Dynamic Invocation of the Assembler 67

merely ky shortening the list. The sequence of the 8-byte entries
in the DD name list is as follows:

Entry Alternate Name

SYSLIN

not applicable
not applicakle
SYSLIB

SYSIN

SYSPRINT
SYSFUNCH
SYSUT1

ONOW W=

Note: BAn overriding DD narne specified when Assembler H was added to
the Operating System occupies the same place in the above list as the
-IBM-supplied DL name it overrides. The overriding ddname can itself
ke overridden during invccaticn. For examgle, if SYSWORK1 replaced
SYSUT1, it occupies position 8 in the akove list. SYSWORK1 can be
overridden ky ancther name during invocation.

VL -- specifies that the sign bit is to be set to 1 in the last word
of the address parameter list.

68 Assembler H Programmer's Guide

C

& SYSPARM 3,50

Adding macro definitions to libraries 34
ALGN (NOALGN) assembler option 2
Alignment, Removal of
restriction 39,2
Assembler cataloged procedures 9-17
Assembler data sets 4-8
Characteristics 5,7-8
List of 4
Assembler diagnostic facilities 27-32,25
Abnormal assembly termination 30
Cross-reference 25
Error Messages 27
Macro trace facility (MHELP) 30
MNOTEs 30
Suppression of MNOTEs and error
messages 30
Assembler listing 19-26
External symbol dictionary 21
Source and object program 22
Relocation dictionary 24
Symbol and literal cross-reference 25
Diagnostic cross-reference and
assembler summary 25
Assembler options 1-4
Option list 1
Default options &4
Overrriding defaults 4,15
Sample of use 46
Assembler statistics 25,20
Assembler summary 25,20
ASMHC, cataloged procedure for
assembly 9
ASMHCG, cataloged procedure for
assembly and loader-execution 13
ASMHCL, cataloged procedure for
assembly and linkage editing 10
ASMHCLG, cataloged procedure for
assembly, linkage editing, and
execution 12

Calling the assembler from a problem
program 67
Cataloged procedures 9-17
For assembling (ASMHC) 9
For assembling and linkage editing
(ASMHCL) 10

Index

For assembling, linkage editing, and
execution (ASMHCLG) 12
For assembling and loader-execution
(ASMHCG) 13
overriding 15
Characteristics of assembler data
sets 7-8
Codes
See Return codes; Severity codes.
Cross-reference
See also Diagnostic cross-reference.
Examples 20,51
Listing format 25
Concatenation of SYSLIB data sets 6
COND parameter 8,15

Data sets, assembler
Characteristics
List of 4

DD statements, overriding in cataloged

procedures 15

DECK assembler option 2

Default options &

Diagnostic cross-reference and assembler

summary 25,20

Diagnostic facilities
See Assembler diagnostic facilities.

Dynamic invocation of the assembler 67

5,7-8

END card format 63
Entry point restatement 35
Error messages 27-29
Cross-reference 25,20
ESD
See External symbol dictionary.
ESD (NOESD) assembler option 2
EXEC statement
Overriding in cataloged procedures 15
PARM field 1,34
COND parameter 8,15
Extended precision machine instructions 38
External symbol dictionary (ESD)
Entry types 21
Examples 20,46
Listing format 21
Output card format 61

Index 69

o

Format Number of Channel Programs (NCP)
See error messages; macro-generated selection for assembler data sets 8
statements.
Identification-sequence field 24 n

Invoking the assembler from a problem

program 67 Object deck output format 61-65

Invoking cataloged procedures 9 Output format
Instruction execution sequence, control Listing 19-26
of 38 Object deck 61-65

Object module linkage 35-37
Options, assembler 1-4
Option list 1
Default options 4
Overriding defaults 4,15
Sample of use 46
Overriding statements in cataloged
procedures 15-17

Overriding default assembler
options 4,15

Job control language cataloged
procedures
See Cataloged procedures.

]

Linkage, object module 35-37
LINECNT assembler option 2
LIST (NOLIST).assembler option 2
Listing control instructions,
printing of 23
LOAD (NOLOAD) assembler option 2 PARM field 1,34
Load module modification 35 Procedure
) See Cataloged procedures.
Program termination 34
m Programming considerations 33-39

Machine instructions, extended

precision 38

Macros, error messages in 27
Macro-generated statements, format of 23-24
Macro definition libraries, additions

to 34
Macro Trace Facility (MHELP) Registers, saving and restoring 33
Description 30-32 Relocation dictionary
Sample 53-59 Listing format 24
Messages Output text format 62
See Assembler diagnostic facilities. Examples 20,51
MHELP RENT (NORENT) assembler option 2
See Macro Trace Facility. Restoring general registers 33
Model 85, 91, and 195 programming Return codes 8
considerations 38 See also MSGLEVEL assembler option.
MNOTEs 30,42 RLD
MSGLEVEL assembler option 3 See Relocation dictionary.
MULT (NOMULT) assembler option 2 RLD (NORILD) assembler option 2

70 Assembler H Programmer's Guide

O

Sample programs and listings
Assembler language features 41-51
Assembler listing description 20
Diagnostic error messages 29
MHELP 53-59

Saving general registers 33

Sequence number 24

Severity codes 8,27
See also MSGLEVEL assembler option.

Source and object program assembler listing

format 22,20

Special CPU programming considerations 38

Statistics, assembler 25,20

Suppression of error messages 30

SYSIN data set 6

SYSLIB data set 6

SYSLIN data set 6

SYM card (TESTRAN) format 63

SYSPARM assembler option 3,46

SYSPRINT data set 6

SYSPUNCH data set 6

SYSUT1 data set 6

Termination
Abnormal assembly 30
Program 34

TEST (NOTEST) assembler option 2

TESTRAN (SYM) card format 63
TEXT (TXT) card format 61

Unaligned operands 39,2
Using the assembler 1-17
Utility data set 6

XREF (NOXREF) assembler option

2

Index 71

S§C26-3759-0

YOUR COMMENTS, PLEASE . ..

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold fold
FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.
L]
BUSINESS REPLY MAIL [
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. fr—
I
I
POSTAGE WILL BE PAIDBY . . . S
]
IBM Corporation L]
Department 813 e
112 East Post Road [—
W0h61te1P1a1ns, New York EEE—
1060]
]
[]
L]
I
L
fold fold

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corparation

821 United Nations Plaza, New York, New York 10017
[International]

C

0-6GL£-920S "V'S'N Ul paluld 09E/WeisAS NG!

®

— - — — — i ot o o ot cmane o wmamt da o e e e s ot s e e v oo b e i o v o ar g o om— —— — ot o it i o g o s ot e

READER'S COMMENT FORM

IBM SYSTEM/360 OPERATING SYSTEM SC26-3759-0
ASSEMBLER HPROGRAMMER'’S GUIDE

Please comment on the usefulness and readability of this book, suggest additions and deletions,
and list specific errors and omissions (give page numbers). All comments and suggestions become
the property of IBM. If you want a reply, be sure to give your name and address.

Name Occupation

Address

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

§C26-3759-0

YOUR COMMENTS, PLEASE . ..

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold
FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS,N.Y.
]
BUSINESS REPLY MAIL I
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. S
|
I
POSTAGE WILL BE PAID BY . . . [N
L]
IBM Corporation]
Department 813]
112 East Post Road I
?Z)hélz)el Plains, New York Ee—
]
L
L]
]
L
I
fold fold

BN

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

0-6GL£-920S "V'S'N Ul paiulld 09E/WialsAS Wa| <)

O

