OS Assembler H
Programmer’s Guide

SC26-3759-1

| OS Assembler H
Program Product Programmer’s Guide

Program Number 5734-AS1

Second Edition (June, 1972)

This is a major revision of, and obsoletes, SC26-3759-0 and
Technical Newsletters SN33-8095 and SN33-8124.

This edition applies to version 4 of the OS Assembler H
Program Product, Program Number 5734-AS1 and to all sub-
sequent modifications until otherwise indicated in new
editions or Technical Newsletters. Changes to the text and
to illustrations are indicated by a vertical line to the
left of the change.

Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest SRL Newsletter,
Order No. GN20-0360 for the editions that are applicable and
current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Nordic Laboratory, Publications Development,
Box 962, S-181 09, Lidingd 9, Sweden. Comments become the
property of IBM.

©Copyright International Business Machines Corporation 1970, 1971, 1972

ii

Preface

This publication tells how to use Assembler H. It describes assembler
options, cataloged job control language procedures, assembler listing
and output, assembler data sets, error diagnostic facilities, sample
programs, and programming techniques and consideratiomns.

Assembler H is an assembler language processor for the Operating System.

It performs high-speed assemblies on an IBM System/360 Model 40 or higherx
and on an IBM System/370 Model 145 or higher with at least 256K bytes of

main storage. :

This manual has the following main sections:
® Using the Assembler

e Assembler Listing Description

e Assembler LCiagnostic Facilities

e Programming Considerations

"Using the Assembler" describes the EXEC statement PARM field option,

the data sets used by the assembler, and the job contrcl language
cataloged procedures supplied by IBM. The cataloged procedures can be
used to assemble, linkage edit or load, and execute an assembler program.

"Assenmbler Listing Description® describes each field of the assembly
listing. "Assembler Ciagnostic Facilities®" describes the purpose and
format of errcr messages, MNOTEs, and the MHELP macro trace facility.
"Programming Considerations" discusses various topics, such as standard
entry and exit procedures for proklem programs.

Appendix A is a sample program which demonstrates many of the assembler
language features, especially those unique to Assembler H. Appendix B
is a sample MHELP macro trace and dump. Arpendix C describes the object
module output formats. Appendix D tells how to call the assemkler
dynamically from problem programs.

This publication is intended for all Assembler H programmers. To use
this publication, you should be familiar with the assembler language and
with the basic concepts and facilities of the Operating System,
especially job control language, data management services, supervisor
services, and the linkage editor and loader. To use this publication
effectively, the reader should be familiar with the 0S Introduction,
Order Number GC28-6534 or have the equivalent knowledge.

Assembler Publications

The following publication contains a brief descrirtion of Assembler H
and how it differs from lower level OS assemblers:

| OS Assembler H General Information Manual, Order Number GC26-3758.

The following publications describe the assembler language and the
information required to run Assemkler H programs:

| 0S/VS and DOS/VS Assembler Language, Order Number GC33-4010.

iii

0S Assembler Language, Order Number GC28-6514.

The Assembler Language manual contains the basic assembler and macro
assembler specifications, except those unique to Asserbler H.

0S Assembler H Language, Order Number GC26-3771.

The Assembler H Language manual describes the language features
that are available with Assembler H. It is suprlemental to the two
Assembler Language manuals listed above.

0S Assembler H Messages, Order Numker SC26-3770.

The Messages manual provides an explanation of each of the diagnostic
and abnormal termination messages issued by Assembler H and suggests how
you should respond in each case.

The following publications contain information used tc install and
maintain Assembler H:

OS Assembler H System Information, Order Number GC26-3768.

The System Information manual consists of three self-contained chapters
on performance estimates, storage estimates, and systemr generation of
Assembler H.

OS Assembler H Logic, Order Number LY26-3760.

The Logic manual describes the design loglc and functional
characteristics of Assembler H.

Operating System Publications

The following OS books are referenced in this publicaticn:

0S/VS JCL Reference, Order Number GC28-0618, or

0S _Job Control Language Reference, Order Number GC28-6704.

0S/VS Linkage Editor and Loader, Order Number GC26-3803, or

OS Loader and Linkage Editor, Order Number GC28-6538.

0S/VS Supervisor Services and Macros, Order Number GC27-6979, or

OS Supervisor Services and Macro Instructions, Order Number GC28-6646.

0S/VS Utilities, Order Number GC35-0005, or

0S Utilities, Order Number GC28-6586.

iv

USING THE ASSEMBLER
Assembler Options

Default Options
Assembler Data Sets

DD Name SYSUTLI
DD Name SYSIN
DD Name SYSLIB
DD Name SYSPRINT
DD Name SYSPUNCH
DD Name SYSLIN

Number of Channel Programs (NCP)

Return Codes
Cataloged Procedures . . .
Cataloged Procedure for Assembly
Cataloged Procedure for Assembly
Cataloged Procedure for Assembly, Linkage Editing, and
Execution (ASMHCLG) . .
Cataloged Procedure for Assembly and Loader- Executlon (ASMHCG)
Overriding Statements in Cataloged Procedures . . .

ASSEMBLER LISTING

External Symbol Dictionary (ESD)

Source and Object Program .

- .

(ASMHC) . e e .
and Llnkage Editing

. . -

Relocation Dictiocnary ¢« ¢ ¢« ¢ ¢ ¢« ¢« « ¢« o« . .
Cross Reference« e e e e .
Diagnostic Cross Reference and Assembler Summary . .

ASSEMBLER DIAGNOSTIC FACILITIES

Assembly Error Diagnostic Messages

MNOTEs .

. - . .

. .

.

Suppression of Error Messadges and MNOTEs e e e e e e
Abnormal Assembly Termination .
Macro Trace Facility (MHELP)

PROGRAMMING CONSIDERATIONS
Saving and Restoring General Register Contents
Program Termination
PARM Field Access
Macro Definition Library Additions
Load Module Modification - Entry Point Restatement . .
Object Module Linkage . . .
Special CPU Programming Considerations

Controlling Instruction Execution Sequerce

Extended-Precision Machine Instructions

. .

. .

. . . . -

.

Unaligned (Byte-Oriented) Operands . . « « « « « + &

APPENDIX

APPENDIX
Macro
Macro
Macro
Macro
Macro

A. SAMPLE PROGRAM

B.

Call Trace (MHELP 1)

Entry Dump (MHELP 16)

AIF Dump (MHELP 4)

SAMPLE MACRO TRACE

Branch Trace (MHELP 2)

Exit Dump (MHELP 8)

Contents

(ASMHCL)

OWWBIAAATAANO D W=

APPENDIX C. OBJECT DECK OUTPUT .

ESD Card Format . « « « « « & o &
TEXT (TXT) Card Format
RLD Card Format« « . .
END Card Format« « « o« « =«

TESTRAN (SYM) Card Format

APPENDIX D. DYNAMIC INVOCATION OF

ASSEMBLER

vi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.

Figure 12.

Assembler H Data Sets « « « o o o « o o o o o o
Assembler Data Set Characteristics
Number of Channel Program (NCP) Selection

Cataloged Procedure for Assembly (ASMHC). . .
Cataloged Procedure for Assembling and Linkage
Editing (ASMHCL). T
Cataloged Procedure for Assembly, Linkage Edltlng
Execution (ASMHCLG) . « « .« . . e e e s e s
Cataloged Procedure for Assembly and Loader-Executi
(ASMHCG) v &+ o ¢ o o o o o o o o s o o o o o o
Assembler H Listing« ¢ ¢« ¢ ¢ ¢ & o o & & &
Types of ESD Entries ¢« ¢ ¢ ¢ ¢ ¢ & + &
Sample Error Diagnostic Messages

Sample Assembler Linkage Statements for FORTRAN or
COBOL SubprogramsS . .« . o o o o s o o o o o o o
TESTRAN SYM Card Format ¢« « ¢ « o « o &

vii

Figures

e o e o
o« o o
« o o
o o o o
wvoogun

P I §
and

i0on

13

14
19
20
28

36
60

Using the Assembler

This section describes the assembly time options available to the
assembler language programmer, the data sets used by the assembler, and
the cataloged procedures of job control language supplied by IBM to
simplify assembling, linkage editing or loading, and execution of
assembly language programs. The jok control language is described in
detail in the Job_Control Lanquage Reference publication.

Assembler Options

Assenkbler H offers a number of optional facilities. Fcr examgle, you
can suppress printing of the assembly listing or parts of the listing,
and you can specify whether you want an object deck or an object module.
You select the options by including appropriate keywords in the PARM
field of the EXEC statement that invokes the assembler. There are two
types of options:

® Simple pairs of keywords: a positive form (such as OBJECT) that
requests a facility, and an alternative negative fcrm (such as
NOOBJECT) that rejects that facility.

e Keywords that permit you to assign a value to a function (such as
LINECOUNT (50) .

Each of these options has a standard or default value which is used for
the assembly if you do not specify an alternative value. The default
values are exrlained in the following section, "Default Ortions."

If 'you are using a cataloged procedure, you must include the PARM field
in the EXEC statement that invokes the procedure. You must also qualify
the keyword (PARM) with the name of the step within the procedure that
invokes the compiler. For example:

V4 EXEC ASMHC,PARM.C='0BJECT,NODECK"

The section "Overriding Statements in Cataloged Procedures"™ contains
more examples on how to specify options in a cataloged rprocedure.

PARM is a keyword parameter: code PARM= followed by the list of options,
separating the options ky commas and enclosing the entire list within
single quotes or parentheses. If you specify only one cption and it
does not include any special characters, the enclosing quotes or
parentheses can be omitted. The option list must not be longer than 100
characters, including the separating commas. You may specify the
options in any order. If contradictory options are used (for example,
LIST and NOLIST), the rightmost option (in this case, NOLIST) is used.

The assembler options are:

(DECK, OBJECT, LIST, TEST, ‘XREF(FULL/SHORTY), ALIGN, .RENT,
PARM= or or or or or ‘LINECOUNT(nn)’, or or
{NODECK,NOOBJECT, NOLIST NOTEST ,NOXREF, NOALIGN,NORENT,

ESD, RLD, BATCH,
or or or 'SYSPARM (string), FLAG(nnn)’)
NOESD,NORLD,NOBATCH,

Using the Assembler 1

DECK -- The object module is placed on the device sgpecified in the
SYSPUNCH DD statement.

| OBJECT -- The object module is placed'on the device specified in the
SYSLIN LD statement. . .

Note: The OBJECT and DECK options are independent of each other. Both
or neither can be specified.. The output on SYSLIN and SYSPUNCH is
identical except that the control program closes SYSLIN with a
disposition of LEAVE and SYSPUNCH with a disposition of REREAL.

ESD -- The assembler produces the External Symbol Cictionary as part
of the listing.

RLD -- The assembler produces the Relocation Dictionary as part of
the listing.

BATCH -- The assembler will do multiple (batch) assemblies under the
control of a single set of jok control language cards. The
source decks must be placed together with no intervening /#*
card; a single /* card must follow the final source deck.

LIST -- An assembler listing is produced. Note that the NOLIST
option overrides the ESC, RLD, and XREF options.

TEST -- The object module contains the special source symbol table
required by the test translator (TESTRAN) rcutine.

XREF (FULL) -- The assembler listing will contain a cross reference takle
of all symbols used in the assemkly. This includes symbols that
are defined but never referenced. The assembler listing will also
contain cross reference takle of literals used in the assembly.

XREF (SHORT) -- The assembler listing will contain a cross reference
table of all symkols that are referenced in the assembly. Any
symbols defined but not referenced are not included in the. table.
The assembler llstlng will also contain a cross reference table of
literals used in the assemkly.

RENT -- The assembler checks for a possible coding violation of
program reenterability.

| LINECOUNT (nn) -- The number of lines to ke printed between headings
in the listing is nn. The permissible range is
1 to 99 lines. : Co

| NOALIGN -- The assembler suppresses the diagnostic message "“IEV033
ALIGNMENT ERROR" if fixed point, floating-point, or logical data
referenced by an instruction operand is not aligned on the proper
boundary. The message will be produced, however, for references
to instructions that are not aligned on the prorer (halfword)
boundary or for data koundary violations for privileged
instructions such as IPSW. DC, DS, DXD, or CXLC constants, usually
causing alignment, are not aligned. See the "Srecial CPEU
Programming Considerations®" section for information on alignment
requirerents.

| ALIGN -- The assembler does not suppress the alignment error diagnostic
message; all alignment errors are diagnosed.

| FLAG (nnn) -- Error diagnostic messages below severity code nnn will not
appear in the listing. TCiagnostic messages can have severity

codes of 0, 4, 8, 12, 16, or 20 (0 is the least severe). MNOTEs
can have a severity code of 0 through 255.

| For example, FLAG (8) will suppress messages for severity codes 0
through 7.

| SYSPARM (string) -- ‘'string' is the value of the system variable symbol
ESYSPARM. The assembler uses ESYSPARM as a read-only SETC
variable. If no value is specified for the SYSPARM option,
§SYSPARM will be a null (empty) character string. The function of
E§SYSPARM is exrlained in the_Assembler H Lanquage Specifications
and in 0S/VS and DOS/VS Assembler Language.

Due tc JCL restrictions, you cannot specify a SYSPARM value longer
than 56 characters (as explained in Note 1) . TwcCc quotes are needed
to represent a single quote, and two ampersands to represent a
single ampersand. For example:

PARM='OBJECT,SYSPARM ((66AM, '"EO) .FY) '

assigns the following value to ESYSPARM:

(6AM, 'EQ) . FY .

Any parentheses inside the string must be paired. 1If you call the
assembler from a problem program (dynamic invocation), SYSPARM can

be up tc 256 characters long.

Note 1: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters. Consider the following
example:

// EXEC ASMFC,PARM.C= (OBJECT,NODECK,
// "SYSPARM (ABCL.ccccecccecccccccccscccccsnccscscsaccccanccacase)).

1 L j
N < 2 8
~

0 o S 56 bytes S
O © 3 8

Since SYSPARM uses parentheses, it must be surrounded by quotes. Thus,
it cannot be continued onto a continuation card. The leftmost column
that can be used is column 4 on a continue card. A quote and the
keyword must appear on that line as well as the closing quotes. 1In
addition, either a right parenthesis, indicating the end of the PARM
field, or a comma, indicating that the PARM field is ccntinued on the
next card, must be coded kefore or in the last column ¢f the statement
field (column 71).

Note 2: Even though the formats of some of the options previously
supported by Assembler H have been changed, you can use the old formats
for the following options: ALGN (now ALIGN) , NOALGN (NOALIGN) ,
LINECNT=nn (LINECOUNT (nn)), LOAD (OBJECT), and NOLOAD (NOOBJECT) .

Default Ogtions

If you do not code an option in the PARM field, the assembler assumes a
default option. The following default options are included when
Assembler H is shipped Ly IBM:

PARM=(DECK,NOOBJECT,LIST, NOTEST,’XREF(FULL),LINECOUNT(55)", ALIGN,NOBATCH,'SYSPARM(), FLAG(0))

Using the Assembler 3

However, these may not be the default options in effect in your
installation. The defaults can be respecified when Assembler H is
installed. For example, NOCECK can be made the default in place of DECK.
Also, a default option can be specified during installation so that you
cannot override it.

The cataloged procedures descriked in this book assume the default
entries. The section "Overriding Statements in Cataloged Procedures"
tells you how to override them. First, however, check whether any
default options have been changed or whether there are any you cannot
override at your installation.

Assembler Data Sets

Assembler H requires the following data sets,'as shown in Figure 1:

® SYSUT1 -- utility data set used as intermediate external storage.
® SYSIN -- an input data set containing the source statements to be
processed.

In addition, the following four data sets may be required:

® SYSLIB -- a data set containing macro definitions (for macro
definitions not defined in the source program) and/cr source code to
be called for through COPY assembler instructions.

® SYSPRINT -- a data set containing the assembly listing (unless the
NOLIST ortion is specified).

® SYSPUNCH -- a data set containing object module output, usually for
punching (unless the NODECK option is specified) .

® SYSLIN -- a data set containing object module cutput usually for the
linkage editor (only if the OBJECT option is sgecified).

The above data sets are described in the following text. The CDname
that normally must be used in the DD statement descriking the data set
appears as the heading for each description. The characteristics of
these data sets, those set by the assemrkler and those you can override,
are shown in Figures 2 and 3.

N SYSIN /

SYSLIB SYSUT1

» Assembler H (<

(overflow)
(Macro and
COPY Calls) 1 L
7’ SYSPRINT N SYSLIN / SYSPUNCH N\

Listing-
121 Characters
Wide ‘ /|

"™ (Object Modules) /¢
(80 Character Card Image)

Figure 1. Assembler H Data Sets

Using the Assemkler 5

DDNAME SYSUT1

The assembler uses this utility data set as an intermediate external
storage device when processing the source program. The input/output
device assigned to this data set must be a direct access device. The
assembler dces not support a multi-volume utility data set. The IBM
2321 Data Cell is not supported for this data set.

DDNAME SYSIN

This data set contains the input to the assembler -- the source
statements to be processed. The input/output device assigned to this
data set may be either the device transmitting the input stream, or
another sequential input device that you have designated. The LD
statement describing this data set appears in the input stream. The
IBM-supplied procedures do not contain this statement.

CDNAME SYSLIB

From this data set, the assemblexr obtains macro definitions and
assembler language statements to be called by the COPY assembler
instruction. It is a partitioned data set; each macro definition or
sequence of assembler language statements is a serarate member, with the
member name being the macro instruction mnemonic or COPY operand name.

The data set may be defined as SYS1.MACLIB or your private macro
definition or COPY library. SYS1.MACLIB contains macrc definitions for
the system macro instructions provided by IBM. Yocur rrivate library may
be concatenated with SYS1.MACLIB. The two libraries must have the same
logical record length (80 bytes), but the blocking factors may be
different. The DD statement for the library with the largest blocksize
must appear first in the jok control language for the assembly (that is,
before any other library LD statements). The Job Contrcl Language
Reference publication, explains the concatenaticn of data sets.

DDNAME SYSPRINT

This data set is used by the assemkler to produce a listing. Output may
be directed to a printer, magnetic tape, or direct-access storage device.
The assembler uses the machine code carriage control characters for this
data set.

DDNAME SYSPUNCH

The assembler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access.

DDNAME SYSLIN

This is a direct-access storage device, magnetic tape, or card punch

data set used by the assembler.

It contains the same cutput text as

SYSPUNCH. It is used as input for the linkage editor.
Data Set SYSUT1, SYSPUNCH | SYSPRINT SYSLIN | SYSIN SYSLIB
Access Method BSAM BSAM BSAM BSAM BSAM BPAM
Logical Record fixed at fixed at fixed at fixed at | fixed at | fixed at
Length (LRECL) BLKSIZE 80 121 80 80 80

Block Size
(BLKSIZE)

®

@

®

®

®

®

(RECFM)

Record Format

®

®®

®®

0]0)

@O

®6

Number of channel
Programs (NCP)

®

@

)

®

®

Not
Applicable

QOO ©®

2301 Drum
2302 .Disk
2303 Drum
2305 Drum
model 1
2305 Drum
model 2
2311 Disk
2314 Disk
3330 Disk

You may specify B, S, or T.

Set by the assembler to F or FB if necessary.

Set by the assembler to FM or FBM if necessary.

5016 bytes
4984 bytes
4888 bytes
4280 bytes

4688 bytes
3624 bytes

3520 bytes
4208 bytes

BLKSIZE be specified in the DD statement or the data set label as a multiple of LRECL.

@ You can specify a blocksize (BLKSIZE) between 2008 and 5100 bytes in the DD statement or in the data
set-label. BLKSIZE should be a multiple of 8; if it is not, it will be rounded to the next lower multiple of
8. If you do not specify BLKSIZE, the assembler sets a default blocksize based on the device used for
SYSUT1 as follows:

The Storage Estimates chapter of the System Information manual, Order Number SC26-3768, discusses the
reasons for changing the default blocksize.

If specified, BLKSIZE must equal LRECL or a multiple of LRECL, |f BLKSIZE is not specified, it is set equal
to LRECL. If BLKSIZE is not a multiple of LRECL, it is truncated.

You can specify the number of channel programs (NCP) used by any assembler data set except SYSUT1 and

SYSLIB. The NCP of SYSUT1 is fixed at 1. The assembler, however, can change your NCP specification under
certain conditions. Figure 3 shows how NCP is calculated. Note that if the NCP is greater than 2, chained 1/0
request scheduling is set by the assembler.

Figure 2.

Assembler LCata Set Characteristics

Using the Assemkler

7

Number of Channel Programs (NCP)

The number cf channel programs can be specified by the user or set by
the assembler. The number will vary depending upon whether or not a
unit record device is used. The following table shows how the NCP
selection is made.

Unit record No unit
device record device
NCP specified = 2 User specified User specified
NCP specified = 1 Computed ' User specified (= 1)
NCP not specified Computed’ Computed '

Figure 3. Number of Channel Program (NCP) Selection

1 For SYSPRINT data set, the NCP set by the assembler is the larger of
1210 /BLKSIZE or 2.
For SYSIN data set, the NCP set by the assembler is the larger of
800/BLKSIZE or 2.
For SYSLIN or SYSPUNCH data set, the NCP set by the assembler is the
larger of 240/BLKSIZE or 2.

Note: If the NCP is greater than 2, chained 1/0 scheduling is set by the
assembler.

Return Codes

Assembler H issues return codes for use with the COND parameter of the
JOB and EXEC job control language statements. The CONC parameter
enables you to skip or execute a jokb step depending on the results
(1nd1cated by the return code) of a previous job step. It is explained
in the Job Control Language Reference publication.

The return code issued ky the assemklér is the highest severity code
that is associated with any error detected in the assembly or with any
MNOTE message produced by the source program or macro instructions. See
the Assembler H Messages publication, for a listing of the assembler
errors and their severity codes.

Cataloged Procedure_s

Often the same set of job control statements is used over and over again
{for example, to specify the compilation, linkage editing, and execution
of many different programs). To save programming time and to reduce the
possibility of error, sets of standard series of EXEC and DD statements

can be prepared once and ‘cataloged' in a system library. Such a set of
statements is termed a cataloged procedure and can be invoked Ly one of

the following statements:

//stepname EXEC procname

//stepname EXEC PROC=procname

The specified procedure is read from the procedure library
(SYS1.PROCLIB) and merged with the job control statements that follow
this EXEC statement.

This section describes four IBM cataloged procedures: a rrocedure for
assembling (ASMHC), a procedure for assembling and linkage editing
(ASMHCL) , a procedure for assembling, linkage editing, and executing
(ASMHCLG) , and a procedure for assembling and loader-executing (ASMHCG) .

CATALCGED PROCEDURE FOR ASSEMBLY (ASMHC)

This procedure consists of one job step: assembly. The name ASMHC must
be used to call this procedure. The result of execution is an object
module, in punched card form, and an assembler listing.

In the following example, input enters via the input stream. An example
of the statements entered in the input stream to use this procedure is:

//jobname JoB
//stepname EXEC PROC=ASMHC
//C.SYSIN [0]0

|
|
source program statements
|
|
/* (delimiter statement)

The statements of the ASMHC procedure are read from the procedure
library and merged into the input stream.

Figure 4 shows the statements that make up the ASMHC procedure.

Ve EXEC PGM=IEV90,REGION=200K

2 //sYsLIB DD DSN=SYS1.MACLIB,DISP=SHR

3 J/1sysuTi DD UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(10,5}),DSN=&SYSUT1

4 //SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CY,(5,5,0})

5 //SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH}))

PARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure
(see * Overriding Statements in Cataloged Procedures”). The system name IEV90 identifies Assembler H.

This statement identifies the macro library data set. The data set name SYS1.MACLIB is an IBM designation.
This statement specifies the assembler utility data set. The device classname used here, SYSDA, represents a
direct-access unit. The /O unit assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 2311 may be substituted for SYSDA.

This statement describes the data set that will contain the object module produced by the assembler.

This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 4. Cataloged Procedure for Assembly (ASMHC)

Using the Assembler 9

CATALOGED PROCELCURE FOR ASSEMBLY AND LINKAGE EDITING (ASMHCL)

This procedure consists of two job steps: assembly and linkage editing.
The name ASMHCL must ke used to call this procedure. Execution of this
procedure results in the production of an assembler listing, a linkage

editor listing, and a load module.

The following example illustrates input to the assembler via the input
job stream. SYSLIN contains the output from the assembly step and the
input to the linkage edit step. It can be concatenated with additional
input to the linkage editor as shown in the example. This additional

input can be linkage editor control statements or other cbject modules.

An example cf the statements entered in the input stream to use this
procedure is: '

//jobname JoB
//stepname EXEC PROC=ASMHCL
//C.SYSIN pb * '

I
|
I
source program statements
|
|
|
/’
//ILSYSIN op *)
|
I

necessary only if linkage

i editor is to combine modules
object module or or read linkage editor control
linkage editor information from the job stream
control statements

” J

10

Figure 5 shows the statements that make up the ASMHCL procedure. Only

those statements not previously discussed are explained.

//IC EXEC PGM=IEV90,PARM=0BJECT,REGION=200K
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//1SYSUT1 DD UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
/ISYSPRINT DD SYSOUT=A,DCB=({BLKSIZE=3509),UNIT={,SEP=(SYSUT1,SYSPUNCH))
T //sysuin DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)), *
" DCB=(BLKSIZE=400), DSN=&&LOADSET
2 0 EXEC PGM=IEWL,PARM='MAP,LET,LIST,NCAL',REGION=96K,COND=(8,LT,C)
3 J/SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
4y DD DDNAME=SYSIN
5 //sYsLMOD DD DISP=(,PASS), UNIT=SYSDA,SPACE=(CYL,(2,1,2)),DSN=&GOSET(GO)
6 //svsuTi DD UNIT=SYSDA, SPACE=(CYL,(3,2)),DSN=&SYSUT1
7 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

L In this procedure the SYSLIN DD statement describes a temporary data set - - the object module - - which is to be
passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage
editor to produce a cross-reference table, a module map, and a list of all control statements processed by the linkage
editor. The NCAL option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one (SYSLIN) produced as output from the
assembler,

4 This statement is used to concatenate any input to the linkage editor from the input stream (object decks and/or
linkage editor control statements) with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain the load module, the DSN parameter must be respecified
and a DISP parameter added. See “*Overriding Statements in Cataloged Procedures. ” If the output of the linkage
editor is to be retained, the DSN parameter must specify a library name and member name where the load
module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

7 This statement identifies the standard output class as the destination for the linkage editor listing.

Figure 5. Cataloged Procedure for Assembling and Linkage Editing
(ASMHCL)

Using the Assembler

11

CATALOGEC PROCFDURE FOR ASSEMBLY, LINKAGE EDITING, ANL EXECUT ION
(ASMHCLG)

This procedure consists of three jok steps: assembly, linkage editing,
and execution.

Figure 6 shcws the statements that make up the ASMHCLG procedure. Only
those statements not previously discussed are explained in the figure.

The name ASMHCLG must Lke used to call this procedure. An assembler
listing, an object deck, and a linkage editor listing are produced.

The statements entered in the input stream to use this procedure are:

//jobname JoB
//stepname EXEC PROC=ASMHCLG
//C.SYSIN [0]5

!
I
1
source program statements

/* A

//L.SYSIN pb *
|
| necessary only if linkage
| editor is to combine modules
object module or or read linkage editor control
linkage editor information from the job stream
contro! statements
|
’ |)
//G.ddname DD (parameters) h
//G.ddname DD (parameters)
*

//G.ddname DD
|
|
|
problem program input
I
I Al
* J

> only if necessary

12

//c
//SYSLIB
//SYSUT1
//SYSPUNCH
//SYSPRINT

//SYSLIN
1/

T
J/SYSLIN
"

2 //sYSLMOD
//SYSUT1
//SYSPRINT

3 /6

EXEC
DD
DD
DD
DD
DD

EXEC
DD
DD
DD
DD
DD

EXEC

PGM=IEV90,PARM=0BJECT,REGION=200K
DSN=SYS1.MACLIB,DISP=SHR

UNIT=(SYSDA SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))

DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)), *
DCB=(BLKSIZE=400),DSN=&&LOADSET

PGM=IEWL,PARM="MAP,LET,LIST,NCAL',REGION=96K,COND=(8,LT,C)
DSN=&&LOADSET,DISP=(OLD,DELETE)

DDNAME=SYSIN

DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(2,1,2)) , DSN=&GOSET(GO)
UNIT=SYSDA,SPACE=(CYL,(3,2)),DSN=&SYSUT1
SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

PGM=",L.SYSLMOD,COND-= ((8,LT,C),(4,LT,L))

1 The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as
executable even though errors were encountered during processing.

2 The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access
device, and is to be passed to a succeeding job step.

3 This statement initiates execution of the assembled and linkage edited program. The notation *.L.SYSLMOD
identifies the program to be executed as being in the data set described in job step L by the DD statement
named SYSLMOD.

Figure 6.

Cataloged Procedure for Assembly, Linkage Editing and
Execution '

(ASMHCLG)

CATALOGED PROCEDURE FOR ASSEMBLY AND LOADER EXECUTION (ASMHCG)

This procedure consists of two job steps:
Loader-execution is a comkination of linkage editing and locading the

program for execution. Load modules for program libraries are not

produced.

Using the Assembler

assembly and loader execution.

13

/ic EXEC PGM=IEV90,PARM=0BJECT,REGION=200K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
//SYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)), *
1 DCB=(BLKSIZE=400),DSN=&&LOADSET

L/ EXEC PGM=LOADER,PARM="MAP,LET,PRINT,NOCALL'

2 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
/" DD DDNAME=SYSIN

3 J/sysLouT DD SYSOUT=A

This statement initiates loader-execution. The loader options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option is the same as NCAL for the linkage editor and the
LET option is the same as for the linkage editor.

2 This statement defines the loader input data set as the same one produced as output by the assembler.

3 This statement identifies the standard output class as the destination for the loader listing.

Figure 7. Cataloged Procedure for Assembly and Loader-Execution
(ASMHCG)

Figure 7 shows the statements that make up the ASMHCG procedure.
Only those statements not previously discussed are explained in the figure.

The name ASMHCG must be used to call this procedure.
Assembler and loader listings are produced.

The statements entered in the input streamw to use this procedure are:

//jobname JoB
//stepname EXEC PROC=ASMHCG
//C.SYSIN (0] B

I
|
|
source program
|
|
/l-
//G.ddname DD (parameters)
//G.ddname DD (parameters)
//G.ddname [0]0
| only if necessary
I
I
problem program input
|
|
/*

14

CVERRIDING STATEMENTS IN CATALOGELC PROCEDURES

Any parameter in a cataloged procedure can be overridden except the PGM=
parameter in the EXEC statement. Such overriding of statements or
fields is effective only for the duration of the job ster in which the
statements appear. The statements, as stored in the procedure library
of the system, remain unchanged.

Overriding for the purposes of respecification, addition, or
nullification is accomplished by including in the input stream
statements containing the desired changes and identifying the statements
to be overridden.

EXEC Statements

Any EXEC parameter (except PGM) can be cverridden. Fcr examrle, the
PARM= and CONI= parameters can ke added or, if present, respecified by
including in the EXEC statement calling the procedure the notation
PARM. stepname=, or COND.stepname=, followed by the desired parameters.
“Stepname” identifies the EXEC statement within the prccedure to which
the modification aprlies.

If the procedure consists of more than one job step, a PARM.procstepname=

or COND.procstepname= parameter may be entered for each step. The
entries must be in order (PARM.procstepl=, PARM.procstep2=, etc.).

LD Statements

All parameters in the operand field of DD statements may be overridden
by including in the input stream (following the EXEC card calling the
procedure) a LD statement with the notation //procstername.DDname in the
name field. "Procstepname" refers to the job step in which the
statement identified by "LCDname" appears.

Note: 1If more than one DD statement in a procedure is to be overridden,
the overriding statements must be in the same order as the statements in
the procedure.

Examples

In the assembly procedure ASMHC (Figure 4), the producticn of a punched
object deck could be suppressed and the UNIT= and SPACE= rarameters of
data set SYSUT1 respecified, by including the following statements in the
input stream:

//stepname EXEC PROC=ASMHC, X
Vi PARM.C=NODECK

//C.SYSUT1 DD UNIT=2311, X .
1/ SPACE=(200,(300,40))

//C.SYSIN DD *

Using the Assembler 15

In procedure ASMHCLG (Figure 6), suppressing production of an assembler
listing and adding the COND= parameter to the EXEC statement, which
specifies execution of the linkage editor, may be desired. 1In this
case, the EXEC statement in the input stream would arprear as follows:

//stepname ‘ EXEC PROC=ASMHCLG, X
1 PARM.C=(NOLIST,OBJECT), X
1/ COND.L=(8,LT,stepname.C)

For this execution of procedure ASMHCLG, no assembler listing would be
produced, and execution of the linkage editor job ster //L would ke
suppressed if the return code issued by the assembler (step C) were
greater than 8.

Note: Overriding the LIST parameter effectively deletes the
PARM=OBJECT. PARM=0BJECT must be repeated in the override statement.

The following'listing shows how to use the procedure ASMHCL (Figure 5)
to:

1. Read input from a non-labeled 9-track tape on unit 282 that has a
standard blocking factor of 10.

2. Put the cutput listing on a tape labeled TAPE10, with a data set name
of PROG1 and a blocking factor of 5.

3. Block the SYSLIN output of the assembler and use it as input to the
linkage editor with a blocking factor of 5.

4. Linkage edit the module only if there are no errors in the assembler
(COND=0) .

5. Linkage edit onto a previously allocated and cataloged data set
USER.LIBRARY with a member name of PROG.

//jobname JoB

//stepname EXEC PROC=ASMHCL, X
// COND.L=(0,NE stepname.C)

//C.SYSPRINT DD DSNAME=PROG1,UNIT=TAPE, X
/! VOLUME=SER=TAPE10,DCB=(BLKSIZE=605)
//C.SYSLIN DD DCB=(BLKSIZE=800)

//C.SYSIN DD UNIT=282,LABEL=(,NL)}, X
I/ DCB=(RECFM=FBS,BLKSIZE=800)

//L.SYSIN DD DCB=stepname.C.SYSLIN

//L.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=OLD

/*

Note: The order of arpearance of overriding DDnames for job step C
corresponds to the order of DDnames in the procedure; that is, SYSPRINT
precedes SYSLIN within step C. The DDname C.SYSIN was placed last
because SYSIN does not occur at all within step C. These points are
covered in the Job Control Lanquage Reference manual.

16

The following example shows assembly of two rrograms, linkage editing of
the two assemblies into one load module, and execution of the load
module. The input stream appears as follows:

//stepname EXEC PROC=ASMHC,PARM.C=OBJECT

//C.SYSLIN DD DSNAME=&LOADSET,UNIT=SYSSQ, X
" SPACE=(80,(100,50)), X
" DISP=(MOD,PASS),DCB=(BLKSIZE=800)
//C.SYSIN DD *

I
|
!
source program 1 statements
|
|

/*
//stepname2 EXEC PROC=ASMHCLG
//C.SYSLIN DD DCB=(BLKSIZE=800),DISP=(MOD,PASS)
//C.SYSIN DD *

1

|

|

source program 2 statements

|

1

|
/.
//L.SYSLIN DD DCB=BLKSIZE=800
//L.SYSIN DD *

ENTRY PROG

/*
//G.ddname dd cards for G step

The Job_Control Lanquage Reference manual provides additional description
of overriding techniques.

Using the Assembler 17

Assembler Listing

The assembler H listing consists of up to five sections, ordered as
follows:

® External symbol dictionary

® Source and object procgram

® Relocation dictionary

e Symbol and literal cross reference

e Diagnostic cross reference and assemkler summary

Figure 8 shows each section of the listing. Each item marked with a
circled number is explained in the following section.

18

PRIME EXTERNAL SYMBUL DICTIONARY PAGE
SYMBOL TYPE 1 ADDR LENGVH LD ID ASM H V 04 1T7.29 03/16/72
PC 0001 0V6000 00020C
EXSYM ER Q002
I0LO0P LD 000022 0001
COMSECT CM 0003 000UNY 000050
EXDMY XD 0004 000003 000078
WRKFLDS SO €005 0n0210 000090
PRIME SAMPLE LISTING DESCRIPTIUN PAGE 2
LTC O00JECT CODE AODRI ADDR2Z STMT SOURCE STATEMENT ASM H V 04 17.29 03/16/72
000000 2 CSECT
3 EXTRN EXSYM
4 ENTRY [OLOUP
00005 5 RS £QU 5
000000 90EC DOOC 0000C 7 STH 14,12,12013)
000004 05€0 a BALR 12,0
00006 9 USING *,12
000006 5000 COF6 000FF, 10 ST 13,SAVE+S
00000A 0000)000 000 11 LA 104 SAUE

1EV044 *** ERROR *%

UNDEFINED SYM3OL
00208

ROGRAM)

®e06

®

Figure 8.

OVERRIDING PARAMETERS~-
OPTIONS FOR THIS ASSEMBLY
NODECK, NOOBJECT,

48 CARUS FRUM SYSIN
151 LINES OUTPUT

THE FOLLOWING STATEMENTS WERE FLAGGED
0001l 00172
2 STATEMENTS FLAGGEL IN THIS ASSEMRLY

NO OVERRIDING DD NAMES

Q CARLS

QUTPUT

8 WAS HIGHEST SEVERITY CODE

SYSPARM({SAMPLE PROGRAM) NODECK¢BATCH
LIST, XREF(FULL), NORENT, NOTEST, BATCHs ALIGN, ESD, RLD, LINECOUNT(55)s FLAG(O), SYSPARM(SAMPLE P

1575 CARDIS FROM SYSLIB

Assembler H Listing

00000E 5850 €202 12 L R5,=ALEXSYM)
13 PRINT NICEN
14 OPEN (INDCB,,0UTDCH, (NUIPUT))
23 PRINT GEN @
24 10LOOP GET INDCB, INBUF
000022 4110 CL3E 00144 25+10LDIP LA 1, INOCB LOAD PARAMETER REG 1 02-IHBIN
000026 4100 C052 00058 26+ LA 0, INBUF LOAD PARAMETER REG 0 02-IHBIN
00002A S8FO 1030 00030 27+ L. 15,4810,1) LOAD GET ROUTINE ADDR. O1-GET
00002E O5EF 28+ BALR 14415 LINK TO GET ROUTINE 01-GET
PRIME RELOCATIUN DICTIONARY PAGE 5
POS.ID REL.ID FLAGS ADORESS ASM H V 04 17.29 03/16/72
Qo001 0001 98 000019
0001 0001 08 0nnoLo
0001 0002 oc 090208
0001 0004 2C 4eI140
PRIME CROSS REFERENCE PAGE 6
SYMRUL LEN VALUE DEFN REFERENCES ASM H V 04 17.29 03/16/72
COMSECT 00001 00000000 Ol67
EXDMY 00001 00000000 0169 0052
EXSYM ©0001 00000000 NCO3 V174
EXTNLDUMYSCTN
00004 000140 0052
INBUF 00004 000058 0049 0026 0033
INDCB 00004 000144 0058 0018 0025
1oLoup 00004 000022 0025 0004 0029
QUTBUF 00034 000UAB 0050 0033 0036
GUTBUF 00001 00000000 0172 *+¢+DUPLICATEX*#+
QUTDCR 00004 0001A4 Ol15 9020 0035
RS 00031 00000005 0005 0012 0C32
SAUE SRR KUNDEF [INED*# %% 0o1t
SAVE 00004 OO00OF8 0051 0010 0041
WRKFLDS 00001 00000210 0170
=A(EXSYM)
00004 000208 0174 0012
PRIME DIAGNOSTIC CROSS REFERENCE AND ASSEMBLTR SUMMARY PAGE 7

ASM H v 04 17.29 03/16/72

Assembler Listing 19

External Symbol Dictionary (ESD)

This section of the listing contains the external symbcl dictionary
information passed to the linkage editor or loader in the object module.

The entries describe the control sections, external references,
entry points in the assemkled program.

shown in

and

There are six tyres of entry,

Figure 9 along with their associated fields. The circled

numbers refer to the corresponding headings in the sample listing

(Figure 8) . The Xs indicate entries accompanying each type designation.
SYMBOL TYPE iD ADDR LENGTH LD ID
X SD X X X -
X LD — X - X
X ER X _ - -
- PC X X X -
X CM X X X ~
X XD X X X —
X WX X = p— =
Figure 9. Types of ESD Entries

The name of every external dummy section, control section, entry
point, and external symbol.

The tyre designator for the entry, as shown in the table.

The type

designators are defined as:

SC --
LD --

ER --

PC --

CM --

XD --

WX --

Control section definition. The symbol apreared in the
name field of a CSECT or START statement.

Label definition. The symkol appeared as the cperand of
an ENTRY statement.

External reference. The symbol appeared as the operand of
an EXTRN statement, or was declared as a V-type address
constant.

Unnamed control section definition (private ccde) . A CSECT
or START statement that commences a control section does
not have a symbol in the name field, or a control section
is commenced (ty any instruction which affects the location
counter) before a CSECT or START is encountered.

Common control section definition. The symbol appeared in
the name field of a COM statement.

External dummy section. The symbol appeared in the name
field of a LCXL statement or a Q-type address constant.

(The external dummy section is also called a pseudo register
in the Loader and linkage Editor manual.

Weak external reference. The symbol appeared as an
operand in a WXTRN statement.

(:)The extgrnal symbol dictionary identification number (ESDILC). The
number is a unique four-digit hexadecimal number identifying the

entry.

It is used in combination with the LD entry of the ESD and in

the relocation dictionary for referencing the ESD.

(:)The address of the symbol (in hexadecimal notation) for SD- and

20

LD-type entries, and blanks for ER- and WX-type entries. For PC- and
CM-type entries, it indicates the beginning address of the control
section. For XLC-type entries, it indicates the alignment by printing
a number one less than the numker of kytes in the unit of alignment.
For example, 7 indicates doubleword alignment.

(:)The assembled length, in bytes, of the control section (in
hexadecimal notation).

(6)For an LD-type entry, the ESDID of the control section in which the
symbol was defined.

Source and Object Program

This section of the listing documents the source statements and the
resulting okject program.

(:)The one to eight-character deck identification, if any. It is
obtained from the name field of the first named TIILE statement. The
assembler prints the deck identification and date (item 16) on every
page of the listing.

The information taken from the operand field of a TITLE statement.
(:)The listing page number.
The assembled address (in hexadecimal nctation) of the object code.

® For ORG statements, the location-counter value before the ORG is
placed in the location column and the location ccunter value after
the ORG is placed in the object code field.

e If the ENLC statement contains an operand, the operand value
(transfer address) appears in the location field (LOC).

® In the case of LOCTR, COM, CSECT, and DSECT statements, the
location field contains the current address of these control
secticns.

e In the case of EXTRN, WXTRN, ENTRY, and DXD instructions, the
location field and object code field are blank.

® For a USING statement, the location field contains the value of
the first operand. It is four bytes long.

® For LTORG statements, the location field contains the location
assigned to the literal pool.

® For an FQU statement, the location field contains the value
assigned. It is four kytes long.

C) The object ccde produced by the source staterent. The entries are
always left-justified. The notation is hexadecimal. Entries are
machine instructions or assembled constants. Machine instructions
are printed in full with a blank inserted after every four digits
(two bytes). Only the first eight Lytes of a constant will appear in
the listing if PRINT NODATA is in effect, unless the statement has
continuation cards. The entire constant appears if PRINT DATA is in
effect. (See the PRINT assembler instruction in the Assemkler
Language publication.)

Assembler Listing 21

() Effective addresses (each the result of adding together a base
register value and a displacement value) :

The field headed ADDR1 contains the effective address for the
first operand of an SS instruction.

The field headed ADDR2 contains the effective address of the last
operand of any instruction referencing storage.

Both address fields contain six digits; however, if the high-order
digit is a zero, it is not printed.

() The statement number. A plus sign (+) to the right of the number
indicates that the statement was generated as the result of macro
call processing. BAn unnumbered statement with a plus sign (+) is the
result of open code substitution.

() The source program statement. The following items arply to this
section cf the listing:

® Source statements are listed, including those brought into the
program by the COPY assembler instruction, and including macro
definitions submitted with the main program for assembly. Iisting
control instructions are not printed, except for PRINT, which is
always printed.

® Macro definitions obtained from SYSLIB are not listed unless the
macro definition is included in the source program by means of a
COPY statement.

® The statements generated as the result of a macro call follow the
macro call in the listing unless PRINT NOGEN is in effect.

® Assembler and machine instructions in the source program that
contain variable symbols are listed twice: as they appear in the
source input, and with values substituted for the variable symbols.

e® All error diagnostic messages appear in line except those
suppressed by the FLAG option. The "Assembler Diagnostics
Facilities" section describes how error messages and MNOTEs are
handled.

e Literals that have not been assigned locations by LTORG statements
appear in the listing following the END statement. Literals are
identified by the equals sign (=) preceding them.

® Whenever possible, a generated statement is printed in the same
format as the corresponding macro definition (wcdel) statement.
The starting columns of the operation, operand, and comments
fields are preserved unless they are displaced by field
substitution, as shown in the following example:

Source Statements: &C SETC *ABCDEFGHIJK'
&C LA 1,4

Generated Statement: ABCDEFGHIJK LA 1,4
It is possible for a generated statement to occupy three or more
continuation lines on the listing. In this way generated statements
are unlike source statements, which are restricted to two
continuation lines.

() The version identifier of Assemkler H.

The current date (date run is made).

22

C) The identification-sequence field from the source statement. For a
macro-generated statement, this field contains infcrmation
identifying the origin of the statement. The first two columns
define the level of the macro call.

For a library macro call, the last five columns contain the first five
characters of the macro name. For a macro whose definition is in the
source program (including one read by a COPY statement), the last five
characters contain the line number of the model statement in the
definition from which the generated statement is derived. This
information can be an important diagnostic aid in analyzing output
resulting from macro calls within macro calls.

Relocation Dictionary

This section of the listing contains the relocation dictiocnary
information passed to the linkage editor in the object module. The
entries describe the address constants in the assembled program that are
affected by relocation.

The external symbol dictionary ID number assigned tc the ESD entry
for the control section in which the address constant is used as an
operand.

The external symbol dictionary ID number assigned to the ESD entry
for the control section in which the referenced symrbol is defined.

Q) The two-digit hexadecimal number represented by the characters in
this field is interpreted as follows:

e First Cigit. A'zero indicates that the entry describes an A-type
or Y-type address constant. A one indicates that the entry
describes a V-tyre address constant. A two indicates that the
entry describes a Q-type address constant. A three indicates that
the entry describes a CXD entry.

® Second LCigit. The first three bits of this digit indicate the
length of the constant and whether the base should be added or

subtracted:

Bits 0_and 1 Bit 2 Bit 3

00 = 1 byte 0=+ Always O
01 = 2 bytes 1= -

10 = 3 bytes

11 = 4 bytes

Q) The assembled address of the field where the address constant is
stored.

Cross Reference

This section of the listing information concerns symbols and literals
which are defined and used in the progran.

é) The symbols or literals.

@) The length (in decimal notation), in bytes, of the field represented
by the symbol. The length of a literal is always 1.

Assembler Listing 23

é) Either the address the symbol or literal represents, or a value to
which the symbol is equated. The value is three bytes long, except
for the following, which are four bytes long: CSECT, DSECT, START,
COM, DXD, EQU, LOCTR, EXTRN, WXTRN, and a duplicate symbol.

The number of the statement in which the symbol or literal was
defined.

é@ The statement numbers of statements in which the symbol or literal
appears as an operand. In the case of a duplicate symbol or literal,
the assembler fills this column with the message:

x*x*DUPLICATE%*
The following notes apply to the cross-reference section:

® Symbols appearing in V-type address constants do nct agppear in the
cross-reference listing.

® Cross-reference entries for symbols used in a literal refer to the
assembled literal in the literal pool. Look urp the literals in the
cross reference to find where the symbols are used.

® A PRINT OFF listing control instruction dces not affect the
production of the cross-reference section of the listing.

e In the case of an undefined symbol, the assembler fills fields 23,
24, and 25 with the message:

****UNDEFINED#**%#*

Diagnostic Cross Reference and Assembler Summary

éj The statement number of each statement flagged with an error message
or MNOTE appears in this list. The number of statements flagged and
the highest non-zero severity code encountered is also printed. The
highest severity code is equal to the assembler return code.

If no errors are encountered, the following statement is printed:
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

See the section "Error Diagnostics®™ for a complete discussion of how
error messages and MNOTEs are handled.

®

A list of the options in effect for this assembly is printed. The
options specified by the programmer in the PARM field to override the
assembler default options are also printed.

@) If the assembler has been called by a problem program (See Appendix
D) and any standard (default) DDnames have been overridden, both the
default CCnames and the overriding DDnames are listed. Otherwise,
this statement appears:

NO OVERRIDING DD NAMES

24

The assembler prints the number of records read frcm SYSIN and SYSLIB
and the number of records written on SYSPUNCH. The assembler also
prints the number of lines written on SYSPRINT. This is a count of
the actual number of 121-byte records generated by the assembler; it
may be less than the total number of printed and blank lines
appearing on the listing if the SPACE n assembler instruction is used.
For a SPACE n that does not cause an eject, the assembler inserts n
blank lines in the listing by generating n/3 blank 121-byte records
-- rounded to the next lower integer if a fraction results (for
example, for a SPACE 2, no blank records are generated) . The
assembler does not generate a klank record to force a page eject.

Assembler Listing 25

Assembler Diagnostic Facilities

J

The diagnostic facilities for Assembler H include diagnostic messages
for assembly errors, diagnostic or explanatory messages issued by the
source program or by macro definitions (MNOTEsS)., a macro trace and dump
facility (MHELP) , and messages and dumps issued by the assembler in case
it terminates abnormally.

This section briefly descrikes these facilities. The assembly error
diagnostic messages and abnormal assembly termination messages are
described in detail in the OS Assemkler H Messages bock.

Assembly Error Diagnostic Messages

Assembler H prints most error messages in the listing immediately
following the statement in error. It also prints the total numker of
flagged statements and their line numkers in the Diagncstic Cross
Reference section at the end of the listing.

The messages do not follow the statement in error when:

® Errors are detected during editing of macro definitions read from a
library. A message for such an error arpears after the first call in
the source program to that macro definition. You can, however, bring
the macro definition into the source program with a COPY statement.
The editing error messages will then be attached tc the statements in
error.

® Errors are detected by the lookahead function cf the assembler.
(Lookahead scans, for attribute references, statements after the one
being assembled.) Messages for these errcrs appear after the
statements in which they occur. The messages may alsc appear at the
point where loockahead was called.

® Errors are detected on conditional assembly statements during macro
generaticn or MHELP testing. Such a message fcllows the most
recently generated statement or MHELP output statement.

A typical error diagnostic message is:
IEV057 ***¥ERROR*** UNDEFINED OPERATION CODE =~- XXXXX

The term ***ERROR#*** is part of the message if the severity code is 8 or
greater. The term **WARNING** is part of the message if the severity
code is 0 or 4.

A copy of a segment of the statement in error, rerresented above by
XXxXX, is appended to the end of many messages. Normally this segment,
which can be up to 16 bytes long, kegins at the bad character or term.
For some errors, however, the segment may begin after the bad character
or term. The segment may include part of the remarks field.

If a diagnostic message follows a statement generated by a macro
definition, the fcllowing items may be appended to the error message:

26

e The number of the model statement in which the errcr cccurred, orx
the first five characters of the macro name.

@ The SET symbol, parameter numker, or value string associated with
the error.

Note: References to macro parameters are by number (such as PARAM00S)
instead of name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAM0O0O = ESYSNDX
PARAMO01 = ESYSECT
PARAM002 = §SYSLOC
PARAM003 = ESYSTIME
PARAM0OOY4 = ESYSLATE
PARAMO0S = ESYSPARM
PARAM006 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in the
macro definition, followed by positional parameters. When there are no
keyword parameters in the macro definition, PARAMO07 refers to the first
positional parameter.

If a diagnostic message fcllows a conditional assembly statement in the
source program, the following items will be appended to the error
message:

® The word "OPENC"
® The SET symbol or value string associated with the error

Several messages may be issued for a single statement cr even for a
single error within a statement. This happens because each statement is
usually evaluated on more than one level (for exarple, term level,
expression level, and operand level) or Ly more than cne rhase of the
assemblexr. Each level or phase can diagnose errors; therefore, most or
all of the errors in the statement are flagged. Occasionally, duglicate
error messages may occur. This' is a normal result of the error
detection process.

Figure 10 is an example of Assemkler H handling of errxcr messages.

Asserbler Diagnostic Facilities 27

LOC 0OBJECT CODE

000000

000000 00N0 2000
TEVO44 #%% ERROR
1EV029 *%% ERROR
IEV1T9 *%% ERRCR

000004 05CO

000006 00600 5000
IEV044 **& ERROR

1EV088 #*#* ERROR
00000A 0700
N0000C 4510 COOF
200010 00000000
000014 0000 0000

TEV029 %% ERROR

IEV044 *%% ERROR

1EV177 =*%% FRROR
000018 9280 1000
00001C 0A13

IEV136 *%% ERROR
IEVN8I #%*% LRROR
00001E 58A0 CO2A

000022 0000 0000
1EV029 ##%% ERRUR

000026 5800 COZE

00000C 58A0 CO04
000010 5880 C008

1EVO03 #%% ERRUR
000014 0000 0000

1EV029 *xx ERROR
000018 0000 9000

ADNRL ADDR2 STMT SUUKCE STATEAENT ASM H V 01 11.51 05/20/70

IEVOT4 %%% ERROR *%%

IEV254 *%% MNOTE

Figure 10.

28

] FEXEER AKX EEIE R RRFRE TR ERERXF KRG ERERERER R RS AR AR KRR AR DR kSR Rk TRk R kKK
2 SAMPLE ERROR DIAGNOSTIC MESSAGES *
3 IN SOURCE PRUGRAM (OPEN CODE) AND GENERATED BY MACRO CALLS *
O FxERRETRF R REERXEFRT AR e R hREE R kLR kTR R ek T RE HukkEk EREREK
6 A CSECT
00000 7 STHM 14,02, 121131
#%% UNCEFINED SYMEUL
*%% INCORRECT REGISTER SPECIFICATION
*%% DELIMITER ERRDR, EXPECT RIGHT. PARENTHESIS
8 BALR 12,0
00006 9 USING #,12
00000 10 ST 13,SAVE+4
#+% UNDEF INED SYMBOL
OPEN (CRDIN, (INPUT) sCRDOUT, (QUTPUT)
*%% UNBALANCED PARENTHESES IN MACRO CALL OPERAND =-- OPENC/(CRDIN, (IN
12+ CNOP 0,4 01-0PEN
00014 13+ BAL 1e%+8 LOAD REGL W/LIST ADDR. O1-OPEN
14+ nc A(0) OPT BYTE AND DCB ADDR. Ol~OPEN
00000 15+ ST CRDINy [INPUT) 4CROIUT , {OUTPUT ,0(1,0) X01-0PEN
+ STORE INTO LIST
#£% INCURRECT REGISTER SPECIFICATION
k% UNDEFINED SYMBOL
*%x DELIMITER FRRUR, EXPECT BLANK OR LEFT PARENTHESIS
00000 Lo+ MVD 0(L1),128) MOVE IN OPTION BYTE 01-0PEN
17+ SVC 19 ISSUE OPEN SVC 01-0PEN
19 *xksedtrrrkexkdphpnerhbbrhhrhktpiorkbhiks *REE K kK
20 * EOITING AND GENERATION ERRORS AND MNOTES FROM A LIBRARY MACRD *
2] FEEEEAEAEE R AR B TR AR E R AR R R XX EF R KRR AR KR F KRR ERF R R AR R KRR AR SRR R E K
23 LOADR REGL=104REG2=8yCHEROKEE yCHAMP
®#% ILLEGAL LUGICAL/RELATIONAL OPERATUR =—-- MACRU - LUADR
s%% ARITHMETIC FXPRESSION CUNTAINS ILLEGAL DELIMITER OR ENDS PREMATURELY =-- MACRO - LUADR
00030 24+ L 10,CHEROKEE . 01-LOADR
26 LOADR REGL=254REG2=84CHEROKEE y SWIFT)
00000 27+ L 25,CHERUKEE 01-LOADR
*%% [NCORRECT REGISTER SPECIFICATION
29 LOAUR REG2=10,CHAMP, SWIFT
00034 30+ L 0,CHAMP 01-LJADR
6 FAEEEREFEXFEX L RARRTE T E IR TR T I E IR B E R AR AR R R AR R AR RNk E KRR kKK
7% SAMPLE MACKD NEFINITION RFRUN WITH EDITING ERRORS CORRECTED *
LR e S e Rt I e R e RS T 2 L
10 MACRU
11 &NAME LOADR £REGL=,EREG2=,80P1,E0P2
12 6r(1) SETA EREG1,EREG2
13 AIF (T'EREGL FQ '07').ERR
14 L ER(1),E0PL
15 L ER(2),80P2
16 MEXTT
17 JERR MNCTE 36,'Y0U LEFT OUT THE FIRST REGISTER®
18 MEND
20 FEREKER AT X EEREERRREEERRRE KR IR E AR R AR R RS R R RS SRR KR AR AR R R ARk KRR N
21 * SAMPLE MACRO CALLS WITH GENERATIUN ERRORS AND MNOTES *
22 XFEXNEFIEX RS K AR LR G R R R F R R ARG ER TR AR F R R A I RE TR KRR R R R R AR AR RS R
24 LOADR REGL=10,REG2=8,CHEROKEE s CHAMP
00004 254 L 10,CHFROKEE 01-06014
00003 26+ L 3,CHAMP 01-00015
28 LUADR REG1=25,REG2=8,CHEROKEE ¢ ESWIFT
*%% UNDECLARED VARIABLF SYMBOL. DEFAULT=0, NULL, OR TYPE=U =-— OPFNC/SWIFT
00000 29+ L 25,CHEROKEE 01-00014
*%% INCORRECT REGISTER SPECIFICATION
00000 20+ L. 8, 01-00015
ILLEGAL SYNTAX IN EXPRESSION
32 LOADR REG2=8,CHAMP, SWIFT
ET 33¢ 36,Y0U LEFT QUT THE FIRST REGISTER 01-00017
34 END

Sample Error Diagnostic Messages

MNOTEs

An MNOTE statement is included in a macro definition or in the source
program. It causes the assembler to generate an inline error or
informational message.

An MNOTE aprears in the listing as follows:
IEV254 ***MNOTE**x* severity code, message

Unless it has a severity code of * or the severity code is omitted, the
statement number or the MNOTE is listed in the diagnostic cross
reference.

Suppression of Error Messages and MNOTEs

Error messages and MNOTEs below a specified severity level can be
optionally suppressed by declaring in the EXEC statement:
PARM='FLAG(n) * (where "n" is the selected severity level).

Abnormal Assembly Termination

Whenever the assembly cannot Le completed, Assembler H rrcvides a
message and, in some cases, a specially formatted durp for diagnostic
information. This may indicate an assemkler malfunction cr it may
indicate a prcgrammer error. The statement causing the erxror is
identified and, if possible, the assembly listing up tc the point of the
error is printed. The 0S Assembler H Messages book, describes the
abnormal termination messages. The messages give enough information to
(1) correct the error and reassemkle your program, or (2) determine that
the error is an assembler malfunction.

The CS Assembler H Logic manual, gives a complete exrlanation of the
format and contents of the abnormal termination dump.

Macro Trace Facility (MHELP)

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open ccde or in macro
definitions. MHELP ortions remain in effect continuously until
superseded by another MHELP statement. Appendix B is a sample MHELE
trace and dumg. .

Macro Call Trace

(MHELP B'1' or MHELP 1) . This option provides a one-line trace for each
macro call, giving the name of the called macro, its nested depth, and
its ESYSNLX (total numker of macro calls) value.

Note: This trace is provided upon entry into the macro. No trace is
provided if error conditicns prevent entry into the macro.

Assembler Diagnostic Facilities 29

Macro Branch Trace

(MHELEF B'10', or MHELP 2). This option provides a one-line trace for
each AGO and true AIF conditional-assemkly statement within a macrxo. It
gives the model-statement numbers of the "branched from" and "kranched
to" statements, and the name of the macro in which the branch occurs.
This trace option is suppressed for library macros.

Macro Entry Dump

(MHELP B'10000*, or MHELP 16) , This option dumps parameter values from
the macro dictionary when the macro is called.

Macro Exit Dump

(MHELP B'10000', or MHELP 8). This option dumps SET symbol values from
the macro dictionary upon encountering a MEND or MEXIT statement.

Macro AIF Dumg

(MHELP B*'100', or MHELP 4). This option dumps SET symbol values from
the macro dictionary immediately before each AIF statement that is
encountered.

Global Suppression

(MHELF B*100000', or MHELP 32). This option suppresses global SET
symbols in the two preceding options, MHELP 4 and MHELP 8.

MHELP Supgression

(MHELP B*10000000*, or MHELP 128). This option suppresses all currently
active MHELP options.

Combining Ortions

Multiple options can be obtained by combining the option codes in one
MHELP operand. For example, call and branch traces can be invoked by
MHELP B*11*, MHELP 2+1, or MHELP 3.

30

MHELP Contrcl on &SYSNDX

The MHELP orerand field is actually mapped into a full word. Previously
defined MHELP codes correspond to the fourth byte of this fullword.

ESYSNLCX control is turned on ky any kit in the third byte (operand
values 256-65535 inclusive). Then, when §SYSNDX (total number of macro
calls) exceeds the value of the fullword which contains the MHELP
operand value, control is forced to stay at the oren-ccde level, by in
effect making every statement in a macro behave like a MEXIT. Open code
macro calls are honored, but with an immediate exit back to open code.

Examples:
MHELP 256 Limit &SYSNDX to 256.
MHELP 1 Trace macro calls.

MHELP 256+1 Trace calls and limit &SYSNDX to 257.
MHELP 65536 No effect. No bits in bytes 3,4.
MHELP 65792 Limit &SYSNDX to 65792.

When the value of ESYSNLCX reaches its limit, the message "ACTIR EXCEEDED
-— ESYSNDX" is issued.

Asserbler Diagnostic Facilities 31

Programming Considerations

This section discusses some topics in assembler language programming.

Saving and Restoring General Register Contents

A problem program should save the values contained in the general
registers upon commencing execution and, upon comgpletion, restore to the
general registers these same values. Thus, as control is passed from
the operating system to a problem prograr and, in turn, to a subprogram,
the status of the registers used by each program is preserved. This is
done through use of the SAVE and RETURN system macro instructions.

The SAVE macro instruction should ke the first statement in the program.
It stores the contents of registers 14, 15, and 0 through 12 in an area
provided by the program that passes control. When a rrcblem program is
given control, register 13 contains the address of an area in which the
general contents should be saved.

If the program calls any subprograms, or uses any operating system
services other than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first
save the contents of register 13 and then load the address of an
18-fullword save area into register 13. This save area is in the
problem program and is used by any subprograms or Operating System
services called by the prcblem program.

At completion, the problem program restores the contents of general
registers 14, 15, and 0-12 ky use of the RETURN systermr macro instruction
(which also indicates program completion). The ccntents cf register 13
must be restored before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process of saving
and restoring the contents of the registers. A complete discussion of
the SAVE and RETURN macro instructions and the saving and restoring of
registers is contained in the Supervisor Services and Macro Instructions
publication.

Name Operation Operand
BEGIN SAVE (14,12)

set up base register

ST 13,SAVEBLK+4

LA 13,SAVEBLK
L 13,SAVEBLK+4
RETURN (14,12)
SAVEBLK| DC 18F'0"

32

Program Termination

You indicate completion of an assembler language source program by using
the RETURN system macro instruction to pass control from the terminating
program to the program that initiated it. The initiating program may be
the Operating System or, if a subprogram issued the RETURN, the program
that called the subprogram.

In addition to indicating program completion and restcring register
contents, the RETURN macro instruction may also pass a return code -- a
condition indicator that may be used by the program receiving control.
If the return is to the operating system, the return code is compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement. If return is to another problem program, the return code is
available in general register 15, and may be used as desired. Your
program should restore register 13 Lkefore issuing the RETURN macro
instruction.

The RETURN system macro instruction is discussed in detail in
Supervisor Services and Macro Instructions.

PARM Field Access

Access to information in the PARM field of and EXEC statement is gained
through general register 1. When control is given to the proklem
program, general register 1 contains the address of a fullword which, in
turn, contains the address of the data area containing the information.

The data area consists of a halfword containing the count (in binary) of
the number of information characters, followed by the information field.
The information field is aligned to a fullword boundary. The following
diagram illustrates this process:

General Register 1

Address of Fullword

Points

to Fullword

Y

Address of Data Area Pomts

to

Data Area

Count in Binary Information Field

Macro Definition Library Additions

Source statement coding, to be retrieved by the COPY assembler
instruction, and macro definitions may ke added to the macro library.
The IEBUPLTE utility program is used for this purrose. Details of this
program and its control statements are contained in the Utilities
publication. The following sequence of job control statements can be
used to call the utility program and identify the needed data sets. It
is assumed that the job control statements, IEBUPLTE program control
statements, and data are to enter the system via the input stream.

Programming Ccnsiderations 33

//jobname JORB

//stepname EXEC PGM=IEBUPDTE, PARM=MOL
//SYSUT1 CC DSNAME=SYS1.MACLIB,DISP=0LD
//SYSUT2 152)] DSNAME=SYS1.MACLIB,DISP=0LD
//SYSPRINT CD SYSOUT=A

//SYSIN DD *

IERUPLTE control statements and source statements cr
macro definitions to be added to the macro library
(SYS1.MACLIE)

/*¥ (delimiter statement)

Load Module Modification - Entry Point Restatement

If the editing functions of the linkage editor are tc be used to modify
a load module, the entry point to the load module must be restated when
the load module is reprocessed by the linkage editor. Otherxwise, the
first byte of the first control section processed by the linkage editor
will kecome the entry point. To enable restatement of the original
entry point, or designation of a new entry point, the entry pocint must
have been identified originally as an external symbol; that is, it must
have appeared as an entry in the external symbol dicticnary. External
symbol identification is done automatically by the assembler if the
entry point is the name of a control section or START statement;
otherwise, an assembler ENTRY statement must be used tc identify the
entry point name as an external symbol.

When a new object module is added to or rerlaces part cf the load
module, the entry point is restated in one of three ways:

® By placing the entry pcint symbol in the operand field of an EXTRN
statement and an ENL statement in the new object mcdule.

e By using an END statement in the new object module to designate a new
entry point in the new okject module.

® By using a linkage editor ENTRY statement to designate either the
original entry point or a new entry point for the load module.

Further discussion of load module entry pocints is contained in the
Loader and Linkage Editor publication.

Object Module Linkage

Object modules, whether generated ky the assembler or ancther language
processor, may be combined by the linkage editor to produce a composite
load module, provided each okject module conforms to the data formats
and linkage conventions required. This toric discusses the use of the
CALL system macro instruction to linkage an assembler language main
program to subprograms produced ky another processor. The Sugervisor
Services and Macro Instructions publication, contains additional details
concerning linkage conventions and the CALL system macro instruction.

34

Figure 11 is an example of statements used tc establish the assembler
language program linkage to FORTRAN and COBOL subprograms.

If any input/cutput operations are performed by called subprograms,
appropriate LL statements for the data sets used by the subprograms must
be supplied. See the appropriate language programmer's guide for an
explanation of the DD statements and special data set record formats

used for the processor.

Programming Ccnsiderations

35

ENTRPT SAVE (14,12)

LR 12,15
USING ENTRPT,12

1 ST 13,SVAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13,15

2 CALL name,(V1.V2,V3),VL
L 13,SVAREA+4
RETURN (14,12)

3 SVAREA DC 18F'0’

4 v DC (data)

5 v2 DC (data)

6 V3 DC (data)
END

1

This is an example of OS linkage convention, See the Supervisor Services and Macro Instructions for
details.

The symbol used for “‘name’’ in this statement is:
a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.
b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY'name’.

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an
assembler-language subprogram. :

The order in which the parameter list is written must reflect the order in which the called subprogram expects the
argument. |f the called routine is a FORTRAN-written function, the returned argument is not in the parameter list: a
real or double precision function returns the value in floating point register zero; an integer function returns the value
in general purpose register zero.

NOTE: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements

of IBCOM (FORTRAN execution-time 1/0 and interrupt handling routines) which accompanies the compiled FORTRAN
subprogram. In some instances the call for IBCOM is not automatically generated during the FORTRAN ompilation.
The FORTRAN 1V Library publication, Order Number GC28-6596, provides information about 1BCOM requirements and
assembler statements used to call IBCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages
which call them; therefore all linkages to FORTRAN subprograms are required to have the high-order bit in the last
parameter in the linkage set to 1. COBOL-written subprograms have fixed-length calling linkages; therefore, for COBOL
the high-order bit in the last parameter need not be set to 1.

3 This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram,
register 13 contains the address of this area.

4,56 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined
by the data formats required by the FORTRAN or COBOL subprograms.

Figure 11. Sample Assembler Linkage Statements for FORTRAN
or COEOL Sukprograms

36

Special CPU Programming Considerations

You should ke aware cf operational differences between the Model 85,
Model 91, and Model 195 and other System/360 models. The primary
differences are:

® Non-sequential instruction execution -- 91 and 195

e Extended precision machine instructions -- 85 and 195
e Unaligned operands -- 85 and 195

CONTROLLING INSTRUCTICN EXECUTION SEQUENCE

The Model 91 and Model 195 maintain a logical consistency with respect
to their own cperations, including the keginning and ending of 1I/C
operations, but they do not assume responsibility for such consistency
in the operations performed by asynchronocus units. Ccnsequently, for
any asynchronous unit that depends upon a strict adherence to sequential
(or serial) execution, a problem program must set up its own procedures
to ensure the proper instruction sequence.

For a program section that requires the serial or sequential execution
of instructions, the following 'no-operation' instruction:

BCR N,O N=1,15

causes instruction decoding to halt until the instructions that have
already been decoded are executed. (This action is called a pipe-line
drain.) On the Mcdel ‘91 and Model 195, this instruction ensures that all
the instructions preceding it are executed before the instruction
succeeding it is decoded. Use of this instruction should be minimized,
because ‘it may affect the performance of the CPU.

Isolating an instruction by preceding it and following it with a BCR N,0
instruction eliminates multiple imprecise interruptions from more than
one instruction by virtue of the pipe-line drain effect. However,
because multiple exceptions may occur in one instruction, this technique
does not eliminate a multiple imprecise interruption, nor does it change
an imprecise interruption into a precise interruption. The use of the
BCR instruction does not assure you that you can fix up an error '
situation. In general, the only information available will be the
address of the BCR instruction. The length of the instruction preceding
the BCR instruction is not recorded, and generally there is no way to
determine what that instruction is.

Note: BCR 0,0 does not cause a pipe-line drain.

EXTENCED-PRECISION MACHINE INSTRUCTIONS

The extended-precision arithmetic instructions and the rounding
instructions of the Model 85 and the Model 195 are shown below. A
complete description of these instructions is in the IBM_System/360
Principles of Operation.

Programming Ccnsiderations 37

Name Mnemonic Type Op Code
ADD NORMALIZED (extended operands, extended result) AXR RR 36
SUBTRACT NORMALIZED ({extended operands, extended resuit) SXR RR 37
MULTIPLY (extended operands, extended result) MXR RR 26
MULTIPLY (long operands, extended result) MXDR RR 27
MULTIPLY (long operands, extended result) . MXD RX 67
LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

A program containing the extended-precision instructions cannot ke
executed successfully on another System/360 model unless those
instructions are converted into others that can be executed by the
non-Model 85 or Model 195 machine. The OPSYN assembler instruction
helps provide a facility for doing this.

OPSYN is described in the OS Assemkler H Lanquage Srecifications manual
or, for VS, in the Assembler Language manual.

A type L DC instruction can be used to specify an extended-precision
(16-byte) floating-point constant. The DC instruction is described in
the Assembler Langquage manual.

UNALIGNELC (EYTE-ORIENTEL) OPERANDS

The Model 85 and Model 195 will execute unprivileged RX and RS format
instructions with fixed-point, floating-point, or logical operands that
are not on integral boundaries. Assemkly of such instructions normally
produces the diagnostic message "I1IEV033 ALIGNMENT ERROR". A PARM option
in the EXEC statement, ALIGN or NOALIGN, makes it possible to suppress
the message and thereky oktain a clean assembly listing. The object
code is not affected.

Note that an assemkled program that requires use of the Model 85 .and
Model 195 byte-oriented operand feature cannot be run cn another
machine, nor can it run successfully under the Operating System if it
violates any alignment restrictions imposed by the Operating System.

38

Appendix A. Sample Program

The sample prcgram included with Assemkler H when it is received from
IBM is described in this appendix. This program demonstrates some basic
assembler language, macro, and conditional assernbly features, most of
which are unique to Assembler H. The circled letters in the description
below refer to corresponding letters in the listing that follcws the
description.

®

®

The job contrcl language for the assembly consists of the
IBM-supplied cataloged procedure ASMHC and the statements needed to
use the procedure and supply input to the assembler. Note that three
of the default PARM options are overridden in the EXEC statement that
calls the procedure.

By using the BATCH (multiple assembly) option, this sample rprogram,
the sample program in Appendix B, and the listings in Fiqure 8 and
Figure 10 were assemkled with one set of JCL cards. Object modules

-were not runched fcr any of the assemblies because the NODECK option

is specified. The character string specified in the SYSPARN option
is available toc each assembly. The character string is displayed in
this program by using the system variable symbcl &§SYSPARM (statement
144) .

The External Symbol Dictionary shows a named common statement. The
named common section is defined in statement 158.

Statement 10: Save the current status of the PRINT statement
(ON,NOLCATA,GEN) .

Statement 11: Leave ON in effect, modify the other two options to
DATA ,NOGEN.

Statement 12: Macro call; note that the expansion (statement 10) is
not printed. '

Statement 14: BAll 28 kytes of data are displayed tc the two-operand
DC.

Statement 15: Restore prior status of PRINT.

Statements 17 and 18: The generated output of the macro WTO is shown
and only the first 8 bytes of data are displayed.

Statements 14 and 18: Multiple constants are allowed in hexadecimal
and binary DC operands, and neither symbol in the duplication factor
has been defined yet. Definition occurs in statements 108 and 109.

Statements 26, 28, 136, and 155 illustrate use of the LOCTR assembler
instruction. This feature allows one to break contrcl sections down
into sub-control sections. 1t may be used in CSECI, LCSECT, and CONM.
LCCTR has many of the features of a contrcl section; for examgle,
all of the first LOCTR in a section is assigned space, then the
second, and so on. The name of the control secticn automatically
names the first LOCTR section. Thus LOCTR A is begun, or resumed, at
statements 2, 28, and 155. Note that the location ccunter value
shown each time is the resumed value of the LOCTR. On the other
hand, various LOCTR sections within a ccntrol secticn have common
addressing as far as USING statements are concerned, subject to the

BAppendix A. Sample Program 39

Q)

® 6 6 6

®

®

40

computed displacement falling within 0 through #095. 1In the sample,
CONSTANT is in LOCTR DEECEES but the instruction referencing it
(statement 25) has no addressing problems. ‘

Three-operand EQU. Here, we are assigning: (a) the value of BS5 (not
yet defined) to A8, (b) the length attribute of A5 to A8, and (c) the
type attribute of A7 to A8. 1If no operand is present in an EQU
statement, the type attribute is U and the length attribute is that
of the first term in the operand expression. Symbols present in the
lakel and/cr orerand field must be previously defined. Note that it
is not pcssible to express the type attribute of A7 directly in the
EQU statement. The EQU statement at 38 could have been written

A8 EQU B5,2,C'L®
A8 EQU B5,X'2',X'D3*

Set symbols ELA8 and §TA8 have not been declared in a LCL or GEL
statement prior to their use here. Therefore, they are defaulted to
local variable symkols, as follows: &§LA8 is a LCLA SET symbol
because it appears in the name field of a SETA; &§TA8 is a LCLC SET
symbol because it is first used in a SEIC.

MNOTE may appéar in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

A SETC expression may have a duplication factor. The SETA expression
must be enclosed in parentheses and immediately precede the charactex
string, the substring notation, or the type attribute reference.

Statements 57-60 illustrate U-byte self-defining values and unary +
and -. The value of X will appear later in a literal address
constant (see statement 162).

The programmer macxo DEMO is defined well after the start of the
assembly. Macros can ke defined at any point and, having been
defined and/or expanded, can be redefined. Note that the parameters
on the prototype are a mixture of keywords and positional operands.
§SYSLIST may be used. The positional parameters are identified and
numbered 1, 2, 3 from left to right; keywcrds are skirped cver.

Statement 70 illustrates the extended SET feature (as well as
implicit declaration of ELOC(1) as a LCLC). Bcth ELOC (1) and &LCC (2)
are assigned values. One SETA, SETB, or SETC statement can then do
the work of many.

Statement 72 is a model statement with a symbolic rarameter in its
operation field. This statement will be edited as if it is a macro
call; at this time, each operand will ke denoted as pcsitional or
keyword. At macro call time, it will not be possible to reverse this
decision. Even though treated as a racro, it is still expanded as a
machine or assemkler operation.

Statement 74 illustrates the computed AGO statement. Control will
pass to .MNOTE1 if €KEY2 is 1, to .MNOTE2 if €KEY2 is 2, to .MNOTE3
if EKEY2 is 3 or will fall through to the model statement at 75
otherwise.

Statement 77 illustrates the extended AIF facility. This statement
is written in the alternate format. The logical expressions are
examined from left to right. Control passes to the sequence symbol
corresponding to the first true expression encountered, else falls
through to the next model statement.

Statement 87 contains a subscripted created SET symbol in the name

field. Exclusive of the subkscript notation, these SET symbols have
the form &§(e) where e is an expression made up of character strings
and/or variable symbols. When such a symbol is enccuntered at
expansion time, the assembler evaluates e and attempts to use

& (value) in place of §(e). Looking ahead, we see that TCEMO is used
as a macro instruction in statement 97 and &KEY1=C. Thus, the ‘e' in
this case is X&KEY1 which has the value XC. Finally, the
macro-generator will use 6XC(2) as the name field cf this model
statement. In statement 108, note that &XC (2) equals TRANSYLVANIA
(statement 96) . Finally, in the sequence field of statement 108, we
see that this statement is a level 01 expansion of a programmer macro
and the corresponding model statement is statement number 87.

Created SET symbols may ke used wherever regular SET symbols are used
in declarations, name fields or operands cf SET statements, in model
statements, etc. Likewise, they are subject to all the restrictions
of regular SET symkols. 1In the programmer macro DEMO, it would not
have been valid to have the statement GBLC & (X6KEY1) (1) because, in
statement 71, &XA, &XB, and &XC are declared as glcbal variable
symbols and 6§ (X&EKEY1) (2) kecomes &XC(2) unless, cf ccurse, EKEY1 was
assigned something other than the value A, B, cxr C in the macro
instruction DEMO, statement 97. 1In that case, we wculd need a global
declaration statement if we wanted & (X6KEY1) to be a global SET
symbol. Eecause glokal declarations are processed at generation time
and then only if the statement is encountered, we would insert the
following statements between, say, statements 71 and 72.

AIF (*€KEY1' EQ *A' OR 'EKEY1' EQ 'B' OR 'EKEY1' EQ 'C').
GELC & (XEKEY1) (1)

.SKIP ANOP

As the macro is defined, & (X6KEY1) will be a global SETIC if &KEY1 is
A, B, or C; otherwise it will be a LCLC or, possibly, a LCLA. In the
macro, if & (X6KEY1) becomes a local, it will have a null or zero
value.

In statements 93 and 94, note that &§XA is declared as a subscripted
global SETC variable with a maximum subscript of 1 and, in the next
statement (an extended SET statement), we store sorething into &XA (2) .
There is no contradiction here. The statement GBLC &XA (1) marks &XA
as a subscripted gloktal SETC symkol. Any decimal self-defined number
(1 through 2147483647) can be used. Furthermore, only a nominal
amount of space is set aside in the global dictionary -- this space
is open-ended and will be increased on demand and only on demand.

Statement 97 is the macro instruction DEMO. Note that &P1 has the
value WRITE. Therefore, the model statement at statement 72 becomes
an inner macro, WRITE, producing the code at statements 98-103. The
sequence field of these statements contains 03-IHBRD, indicating that
they are generated ky a level 03 macro (DEMO is 01, WRITE is 02)
named IHERILWRS. It is an inner macro called by WRI1IE.

Statements 108 and 109 contain some ordinary symbols longer than
eight characters. The limit for ordinary symbcls, cperation codes
(for programmer and likrary macros and op codes defined through
OPSYN) , variable symbols, and sequence symbols is sixty-three
characters (including the & and . in the latter twc instances,
respectively) . Most long symkols will prcbably be nearer to eight
than sixty-three characters in length. Extremely long symkols are
simply too difficult to write, especially if the syrbecl is used
frequently. The requirement that the operation field be present in
the first statement cf a continued statement is still in effect.
Furthermore, names of START, CSECT, EXTRN, WXTRN, ENIRY, etc. symbols
are still restricted to eight characters.

Arpendix A. Sample Program 41

@

42

Library racros may be inserted into the source stream as programmer
macros by use of a COPY statement. The result (statements 118-126)
is essentially a programmer macro definition. ‘When a library macro
is brought in and expanded by use of a macro instruction, the
assembler (1) looks the macro up by its member-name and (2) verifies
that this same name is used in the operation field cf the prototype
statement. Therefore, for example, DCB has to be catalogued as ECB.
However, as COPY code, the memker name bears nc relationship to any
of the statements in the memker. Thus, several variations of a given
macro could be stored as a library under separate names, then copied
in at various places in a single assembly as needed. (Assembler H
allows ycu to define and redefine a macro any number of times).

In statement 129, MARK is made a synonym for NOTE. Tc identify NOTE
as a macro, it has to ke used as either a syster macrc call (that is,
from a macro library) or a programmer macro definition prior to its
use in the operand field of an OPSYN statement. The COPY ccde at
118-126 is a programmer macro definition. The macro instruction at
statement 130 is MARK. We can usée MARK and NOTE interchangeakly. 1I1f
desired, we could remove NOTE as a macro definition in the fcllowing
way:

MARK OPSYN NOTE
NOTE OPSY¥YN

We could then refer to the macro only as MARK.

Statement 144 demonstrates §SYSTIME, &§SYSDATE and &§SYSPARM. The
values for the first two are the same as we use on the heading line.
The value for &SYSPARM -is the value passed in the PARM field of the
EXEC statement or the default value assigned to &§SYSPARM when
Assembler H is installed.

System variable symbols §SYSLOC and &SYSECT are displayed. The
sequence field indicates that the model statements are statements 148
and 149, - :

Illustration of named COMMON. You can establish addressability for a
named COMMON section with :

- USING section-name, register

You can address data in a blank COMMON section by labelliﬁg a
statement after the COMMON statement and using relative addressing.

If there are literals outstanding when the END statement is
encountered, they are assigned to the LOCTR currently in effect for
the first control section in the asserbly. This may or may not put
the literals at the end of the first control section. In this sample
assembly, the first control section, A, has twc LOCIRs, A and DEECEES.
Because A is active (at statement 155), the literals are assembled
there. You always have the akility to contxol placement of literal
poocls by means of the LTORG statement. Note that X'FFFFFFE8' is used
for the contents of A (a5,X), statement 162. The syrbcl X was
assigned the value (4*-6) by an EQU in statement 60.

//HPGEXAMP J0OB 932100,BERGQUIST yMSGLEVEL=1,4S6CLASS=0
// EXEC ASMHC,PARM='SYSPARM(SAMPLE PROGRAM)oNODECK,BATCH®

b 4100 H ASSEMBLER GROUP -02/15/71- 00000100
XXC EXEC PGM=]EV90,PARM=*NOLOAD, NODECK*REGION=180K 06000200
//STEPLIB oD DSN=ASH. V04

X/STEPLIB DD DSN=ASHeEQ03,DISP=SHR 00000300
// 00 DSN=ASHe V03 ,DISP=SHR

XXSYSLIB DD DSN=SYS1.MACLIB,DISP=SHR 00000400

XXSYSUTL DD UNIT=2314,SPACE=(CYL,(1045)),DSN=ESYSUT1,DCB=(BLKSIZE=3520) 00C00500
XXSYSPUNCH DD SYSQUT=B,DCB=BLKSIZE=800,SPACE=(CYLy(5+5,0)) 0000C600

@ //SYSPRINT

//SYSIN
1EF2361
1EF2371
1EF2371
1EF2371
1EF2371
1EF2371
1EF2371
IEF2371

oD

DD * GENERATED STATEMENT
FOR HPGEXAMP C

ALLOC.

231
231
237
137
335
336
235

ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED

TO STEPLIB
T0

TO SYSLIB
TO SYSUTL
TO SYSPUNCH
TO SYSPRINT
TO SYSIN

SYSOUT=(0,COPY1},DCB=BLKSIZE=3509
X/SYSPRINT DD SYSQUT=A,DCB=BLKSIZE=3509

00000700

/—__/“_/‘\v/—_/\

BIGNAME

SYMBOL

P02

TYPE

ID ADDR LENGTH LD ID

SD 0001 000000 0GOODC
CM 0002 000000 0CQG7D2

EXTERNAL SYMBOL DICTIONARY PAGE

1

ASM H V 04 17.29 03/16/172

Appendix A. Sample Program

43

BIGNAME SAMPLE PROGRAMe

LOC OBJECT CODE ADDR1 ADDRZ STMT

0G0000

€00002 01230ABCO102030A
CO000A 0BOC0102030A0BOC
000012 0102030A0B0OCO102
000C1A 03CAOBOC

GOQOLlE 0A23
000020 01230ABC0102030A

00003C 5850 8098
000098

000098 00000005
000040

000040 1812
000042 000000000000

€00048 413243F6AB8B85A30
00C050 338D313198A2E037

4y

15
16

17+

18

20
21

1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES

SOURCE STATEMENT

CSECT
USING *,8

Pt Rk kR Rk

PUSH AND POP STATEMENTS

* PUSH DOWN THE PRINT STATEMENT, REPLACE IT, RETRIEVE O
¥

*oHoH®

g ok ok Ak ok ok koK

PUSH PRINT SAVE DEFAULT SETTING *
PRINT NOGEN,DATA

HTO MF={E, (1)) EXPANSION NOT SHOHWN
DC X*1233ABC*y (REALLYLONGSYMbOL—-TRANSYLVANIAIB*1,10,11,1010,1011,1100"*

POP PRINT RESTORE DEFAULT PRINT SETTING
WT0 MF=(E,(1}) EXPANS ION SHOWN
sve 35

OC X'1234ABC*y (REALLYLONGSYMBOL-TRANSYLVANIA)B*1,10,11,1010,1011,1100°*

ko kR Kok o kR ok Kok ok ook ok sk o

LOCTR INSTRUCTION

PRINT ON,NODATA,GEN*

22 * LOCTR ALLOWS 'REMOTE' ASSEMBLY OF CGNSTANT
23 wkkk¥kkkkRk
25 L 5,CONSTANT
26 DEECEES LOCTR
27 CONSTANT DC F*5°* CONSTANT CODED HERE, ASSEMBLED BEHIND LOCTR A
28 LOCTR RETURN TO 1ST LOCTR IN CSECT A
30 *%k% kwkk
31 * 3 OPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND
32 *x ey
34 A5 LR 1,2 LIAS = 2, T'AS = I
35 PRINT DATA
36 A7 DC L'3.1415926535897932384626433832795028841972¢
37 ETYPE SETC TUA7
38 A8 EQU B5,L°'A5,C'&TYPE'
+A8 EQU BS5,L"A5,C'L

PAGE 2

ASM H V 04 17.29 03/16/72

00020000
00030000

00050000
00060000
00070000
000806000

00100000
00110000
00120900
00130000

00140000
00150000
01-HWTO

00160000

00180000
00190000
00200000
00210000

00230000
00240000
00250000
00260000

00280000
00290000
00300000

00320000
00330000

00340000
00350000

00360000
00360000

BIGNAME SAMPLE PROGRAM.

1ST TITLE STATEMENT HAS NO NAME, 2ND GNE DOES

LOC OBJECT CODE ADDR1l ADDR2 STMT

000058 7FFFFFFFC1C2C3C4
€00060 FFFFFFFF
000064 181D

FFFFFFES

© OO

49
50
51

53
54

+*,LENGTH OF A8 = 2, TYPE OF A8

P

SOURCE STATEMENT ASM H V 04 17.29
KRR KRR A A O ROR K KKK AR KKK A AR
* IMPLICIT DECLARATION OF LOCALS &Ay &C ~— USE OF SETC DUP FACTOR TO =
* PRODUCE SETC STRING LONGER THAN 8, MNODTE IN OPEN CODE hd
ERREE T Rk KRk AR AR AR KK M R K MK
&LAS8 SETA L'A8
&TA8 SETC TvaAs

MNOTE *,'LENGTH OF A8

&A SETA 2
&C SETC (&A+3) *STRINGs*
MNOTE *,'&&C HAS VALUE = &C*

&LABy TYPE OF A8 = E&TAS8*
L

+%3 &C HAS VALUE = STRINGySTRING s STRING »STRINGsSTRING,

%% LEE] LR L LETES T ER 2 STt T
¥ EXAMPLES OF 4 BYTE SELF-DEFINED TERMS, UNARY + AND - *
A R AR K KRR R R R AR R A AAERR KRR *

55
57
58

60

nc Al2147483647,C*ABCD* 4 X* FFFFFFFF')
LR =142,16+-3
X EQU 4%=6

Appendix A.

Sample Program

AGE 3

03/16/7¢

00380090
00390000
00400000
20410000

©0430000
00440000
00450000
00450000

€0470000
00480000
00490000
00490000
00510000
00529000
00530000
20550000
00560000

00580000

45

BIGNAME

Loc

000066
000068
€0006C
000070
000074
€00078

0CO007A
00007E
000080
000084

u6

INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW

PAGE 4

OBJECT CODE ADDRL ADDR2 STMT SOURCE STATEMENT ASM H V 04 17.29 03/16/72
62 *ktk 00600000

63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGO AND AIF * 00610000

64 * STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS, * 00620000

65 * USE OF CREATED SET SYMBOLS, EXTENDED SET STATEMENTS * 00630000

PR 00640000

® 68 MACRO €0660000

69 DEMD &P1,&KEY1=A,&P2,6KEY2=1,6P3,6KEY3=3,6P4 00670000

@ 70 GLOC(L) SETC 927,13" &LOC IS DIMENSIONED LCLC BY DEFAULTY 00680000

71 GBLC &XA(S5) ,&XB(20) ,6XC(1) 00690000

@ 72 €P1 &SYSLIST(4)s&SVSLIST(5),6SYSLIST(6) JMF=E 00700000

13 &N SETA 1 00710000

® 74 AGO (GKEYZ2)eMNOTELse MNOTEZ yo MNOTE3 00720000

75 &N SETA 2 00730000

76 MNOTE *,'&EKEY2 NOT 1,42, OR 3---USE &E&KEY3 IN PLACE OF IT* 00740000

© 7 AIF (EKEY3 EQ 1).MNDTEL, 'X00750000

(6KEY3 EQ 2)MNOTE2, (6KEY3 EW 3)<MNOTE3 00760000

8 MNDTE *,'BOTH G&KEY2 AND GGKEY3 FAIL TO QUALIFY! 00770000

79 AGD «COMMON 00780000

80 «MNOTEL MNOTE #,'&E&KEYELOC(EN) = 1°¢ 00790000

81 AGO .COMMON 00800000

82 «MNJOTE2 MNOTE #*,*&EKEYELOC(EN) =" 2°* 00810000

83 AGO «COMMON 00820000

84 JMNDTE3 MNOTE *,'EEKEYELOC(EN) = 3¢ 00830000

85 «COMMON L 5+8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS 00840000

@ P ©xBL2) SR 9510 ON MODEL STATEMENTS 00850000

87 G(XEKEYL1)(2) LM 12513,=A(A5,X) ARE KEPT IN PLACE UNLESS DISPLACED 00860000

88 &P2 ST 7,6P3 AS A RESULT OF SUBSTITUTION 06870000

89 MEND 00880000

91 *ekan DEMO MACRO INSTRUCTION (CALL} 00900000

@ 93 © GBLC EXAL1)} EXB(2),6XC(3) 00920000

94 EXA({1) SETC A%y 'MISSISSIPPI® 00930000

95 &XB(1) SETC *B', *SUSQUEHANNA® 00940000

@ 96 £XC(1) SETC *C*,*TRANSYLVANIA® 00950000

97 DEMO KEY3=2,WHRITE,REALLYLONGSYMBOL , M00960000

AB+8% (B5-CONSTANT=7) (3) 1 KEY1=Cy (6) ,SFy NOGS70000

(8) 4KEY2=T 00980000

1816 98+ LR 1,6 LOAD DECB ADDRESS 03-1HERD
9220 1005 00005 99+ MVI 5(1),X'20¢ SET TYPE FIELD 03-IHBRD
5081 0008 00008 100+ ST 8,8(1,0) STORE DCB ADORESS 03-IHBRD
58F1 0008 00008 101+ L 15,8(1,0) LOAD DCB ADDRESS 03-1HBRD
58F0 FO30 00030 102+ L 15,48(0415) LOAD RDHR ROUTINE ADDR D3-IHBRD
O5EF 103+ BALR 14415 LINK TO RDWR ROUTINE 03—IHBRD
104+%,6KEY2 NOT 1,2, OR 3---USE &KEY3 IN PLACE OF IT 01-00076

105+%, EKEY3 = 2 . 01-00082

5850 A0OS 00008 106+ L 5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS ° 01-00085
1894 107+SUSQUEHANNA SR 9,10 ON MODEL STATEMENTS 01-00086
$8CD 8090 00090(5) 108 +TRANSYLVANIA LM 12,13,=A(AS, X] ARE KEPT IN PLACE UNLESS DISPLACED 01-00087
5073 80AB 000A8 — 109+REALLYLONGSYMBOL ST 7,A8+8%(B5~CONSTANT-7}(3) X01-00088

+

AS A RESULT OF SUBSTITUTION

BIGNAME

Loc

000088
0C008A
GO008E

©0009C
00009C
CO00A0

0000A8

00000C
00000C
000C90

€00000
€00000
000700

000090

INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW

OBJECT CoDE ADDR]1 ADDR2 STMT SOURCE STATEMENT ASM H V 04 17.29
PR R L P et
112 * COPY *NOTE®' MACRO IN FROM MACLIB, RENAME IT *MARK', CALL IT UNDER =*
113 * ITS ALIAS ~- IN EXPANSION OF MARK, NOTICE REFERENCE BACK TQ *
114 * ODEFINITION STATEMENTS IN *COLUMNS' 76-80 OF EXPANSION *
115 #%ok dokaookokookdok ok dok ok Aok o ok o o o ok ok o o e o R ok ook ok o o o ok KK ok
@ 117 COPY NGTE
118 MACRO
119 &NAME NOTE &DCB,&DUMMY=
120 AlF (*&DCB' EQ '*).ERR
121 &NAME IHBINNRA &DCB
122 L 15,84(0,1) LOAD NOTE RTN ADDRESS
123 BALR 14,15 LINK TO NOTE ROUTINE
124 MEXIT
125 <ERR ITHBERMAC 6
126 MEND
(:) 129 MARK OPSYN NOTE COMMENTS OF GENERATED STATEMENTS OCCUPY SAME
130 MARK (6] ? COLUMNS® AS THOSE IN MODEL STATEMENTS
1816 131+ LR 1,6 LOAD PARAMETER REG 1
58F0 1054 00054 132+ L 15,84(0,1) LOAD NOTE RTN ADDRESS
OSEF 133+ BALR 14,15 LINK TO NOTE RUUTINE
135 #* LEE] Ao ke s ook ok oK oK %0k K
136 DEECEES LOCTR SWITCH TO ALTERNATE LGCATION COUNTER
00000000
080000A000000050 137 85 CCH X*0B',y 85,0480
139 *x Rk kR Ak Eres
140 * QOISPLAY OF &SYSTIMEs, &SYSDATE, &SYSPARM AND &SYSLOC *
141 FekkkkkRkokg kK ok ook kR Sk kKR
(:) 143 PRINT NODATA
144 OC C*'TIME = &SYSTIME, DATE = GSYSDATEs PARM = GSYSPARM®
E3C9D4C5407E4OFL + DC C'TIME = 17.29, DATE = 03/16/72, PARM = SAMPLE PROGRAM®
146 MACRO
147 LOCATE
148 &SYSECT CSECT DISPLAY OF CURRENT CONTROL SECTION
149 &SYSLOC LOCTR AND LOCATION COUNTER
150 MEND
@ 152 LOCATE
153+4 CSECT DISPLAY OF CURRENT CONTROL SECTION
154+#DEECEES LOCTR AND LOCATIGN COUNTER
155 A LOCTR
® 157 reessenneres R «
158 PD2 COM NAMED COMMON THROWN IN FOR GOOD MEASURE
159 0s 500F
1867 160 LR 6,7
@ 161 END
00000040FFFFFFES 162 =A(A5:X)

Appendix A.

Sample Program

PAGE 5

03716772

01900000
01010000
01020000
01930000
01040000

01060000
00020000
00040017
00060000
00080000
€0100000
00120000
00140000
00160000
00180000

. 01090000
01100000
02-IHBIN
01-00122
01-00123

01120600
01130000

01140000

01160000
01170000
01180000

01200000
01210000
01210000

01230000
01240000
01250000
01260000
01270000

01290000
01-00148
01-00149
01300000

01320000
01330000
01340000
01350000
01360000

47

BIGNAME RELOCATION DICTIONARY PAGE 6

POS.ID RELWID FLAGS ADDRESS ASM H V 04 17.29 03/16/72
0001 0001 oc 000C90
0001 0001 08 00C0Al
BIGNAME CROSS REFERENCE PAGE 1
SYMBOL LEN VALUE DEFN REFERENCES ASM H V 04 17.29 03/16/72
A 00001 00000000 6002 0028 0153 0155
A5 00002 000040 0034 0038 0162
AT 00016 000048 0036
A8 00002 000000A0 0038 0109
B5 00068 0000A0 0137 0038 0109 0137

CONSTANT 00004 000098 €027 0025 0109
LEECEES 00001 00000098 0026 0136 0154

PD2 00001 00000000 0158
REALLYLONGSYMBOL

00004 000084 0109 0014 0018
SUSQUEHANNA

00002 00007E 0107
TRANSYLVANI A

00004 000080 0108 0014 0018
X 00001 FFFFFFE8 0060 Qle2 ’
=A{A5,X) 00004 000090 0162 o108

W

BIGNAME DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 8

ASM H V 04 17,29 03/16/72
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

OVERRIDING PARAMETERS— SYSPARM(SAMPLE PROGRAM),NODECK,BATCH

OPTICNS FOR THIS ASSEMBLY
NODECKy NOOBJECT, LIST, XREF(FULL), NORENT, NOTEST, BATCH, ALIGN, ESD, RLD, LINECOUNT(55), FLAG(O), SYSPARM{(SAMPLE P
ROGRAM)

NO GVERRIDING DD NAMES

136 CARDS FROM SYSIN 524 CARDS FROM 3YsLIB
198 LINES OUTPUT 0 CARDS 0OuTPUT

48

Appendix B. Sample Macro Trace and Dump (MHELP)

The Macro Trace and Lunmp (MHELP) facility is a useful means of debugging
macro definitions. MHELP can be used anywhere in the source program or
in macro definitions. MHELP is processed during macrc generation. It
is completely dynamic; you can branch around the MHELP statements by
using AIF or AGO statements. Therefore, its use can be controlled by
symbolic parameters and SET symbols.

The following sample program illustrates the five prirmary functions of
MHELP. Since most of the information produced is unrelated to statement
numbers, the dumps and traces in the listing are marked with circled
numbers. Most dumps refer to statement numbers. If you request MHELP
information akout a library macro definition, the first five characters
of the macro name will aprear in place of the statement number. To get
the statement numbers, you should use COPY to copy the library
definition into the source program prior to the macro call.

MACRO CALL TRACE (MHELP 1)

Item @ jllustrates an outer macro call, an inner one. 1In each
case, the amount of information given is brief. This trace is given
after successful entry into the macro; no dump is given if error
conditions prevent an entry.

MACRO ENTRY CUMP (MHELP 16)

This provides values of system variable symbols and symbolic parameters
at the time the macro is called. The following numbering system is used:

Number Item

000 &SYSNDX

001 &SYSECT

002 &SYSLOC

003 E&SYSTIME

004 ESYSLATE

005 &SYSPARM

006 NAME FIELLC ON MACRO INSTRUCTION

If there are NKW keyword parameters, they follow in order of appearance
on the protctype statement.

007 1st keyword value
008 2nd keyword wvalue
066+NKW ﬁKWth keyword value

Appendix B. Sample Macro Trace and Dump (MHELF) 49

I1f there are NPP positional parameters, they follow in order of
appearance in the macro instruction.

007+NKW 1st positional parameter values
008+NKW 2nd positional parametexr values

006 +NKW+NPP NPPth positional parameter values

For example, item has one keyword parameter (§0FFSET) and one
positional parameter:” The value of the keywcrd parameter appears
opposite 110006, the positional parameter, opposite 110007. In both the
prototype (statement 3) and the macro instruction (statement 54) , the
positional parameter appears in the first operand field, the keyword in
the second. A length appears ketween the NUM and VALUE fields. A
length of NUL indicates the corresponding item is empty.

Item {:a illustrates an inner call containing zero keywords, and two
positional parameters.

MACRO AIF CUMP (MHELP 4)

Items , @, ... are examples of these dumgs. Each such dump
includes a complete Set of unsubscripted SET symbols with values. This
list covers all unsubscripted variable symkols which appear in the name
field of a SET statement in the macro definition. Values of elements of
dimensioned SET symbols are not displayed.

MACRC BRANCH TRACE (MHELP 2)

This provides a one-line trace for each AGO and true AIF branch within a
programmer macro. In any such branch, the "branched frcm" statement
number, the "branched to" statement number and the macro name are
included. Note, in example é@ . the "kranched tc" statement numberxr
indicated is not that of the ANOP statement bearing the target sequence
symbol but that of the statement following it. The branch trace
facility is suspended when library macros are expanded and MHELP 2 is in
effect. To obtain a macro branch trace for such a macro, one would have
to insert a COPY "macro-name" statement in the source deck at some point
prior to the MHELP 2 statement of interest.

MACRO EXIT DUMP_(MHELP 8)

This provides a dump of the same group of SET symbbls as are included in
the Macro AIF dump when a MEXIT or MEND is encountered.

Note that lccal and/or global variable symbols are not displayed at any
point unless they appear in the current racrc explicitly as SET symbols.

50

LOC DRJECT CUDE

000000

SAMPLE MHELP TRACF AND NDUMP

ADDK]1 ADDR2 STMT
2

4

SGURCE STATEMENT
* INCLUDE MACRN DFFINITIUNS T BF TRACED IN THE SOURCE PRDGRAM
CSFCT
COPY LMNSRCH
MACRO
ENAMEC LNSRCH LARG,ENFFSET=STHUYE-STCHAIN
LCLC ELABFL
ELABEL SCTC *A&SYSMOHX! GFNERATE SYMBOL
AlT (TPENAME EQ 00). SKIP
ELABFL SETC vaNAMEC! TF MACRO CALL HAS LABEL,s USE IT
«SKIP ANUP IMSTEAD) OF GENERATED SYMAOL
ELABEL LA Dy ENFFSET LOAD RFG. O
SCHI &ARG,0U(1) SFARCH
BC 1y ELABFEL 1F MAX REACHED, CONTINUE
MEND
CAPY SCHI
MACRO
£NM SCHI &COMP, &LIST
LCLA &CNT
LCLC ACMPADR
&CNT SEfA 1
ENM ST 1415,4(13)
«TEST ANOP
&CMPADR SETC YECMPAUR', 'ECUMPY(ECNT, 1)
AlLF (YECOMP' (ECNT,1) FO *{').LPAR
&CNT SETA &CNT+1
AlLF {GCNT LT K'&CUMP) L TEST
«NOLNTH ANUOP
LA 3, &CONMP CUOMPARAND
AGO +CONTIN
+LPAR ALF (VECOMP! (ECNT+1,1) EQ *,*) .FINISH
ECONT SETA EGCNT+1
AlF (ECNI LT K'&CUMP) JLPAR
AGU +NOLNTH
<FINISH ANuP
LCMPADR SETC *ECMPADR'. '&CUMP! (ECNT+2,K*&COMP-&CNT)
LA 39 ECMPADR COMPARAND SANS LENGTH
<CONTIN, ANOP .
LA 1,6LIST LIST HEADER
MVC ECUMP,0(0) DUMMY MOVE TO GET COMP LENGTH
URG =6 CHANGE MVC TO MVI
pC X192+ MVI 0PCODE
ORG *+1 PRESERVE LENGTH AS IMMFD OPND
oC X'noon* RESULT IS MVI 0(13),L
L 15,=V(SCHI }
BALR 14,15
M 191554(13)
MEXIT
MEND

PAGE

Arpendix B. Sample Macro Trace and Lump (MHELP)

2

ASM H V 01 11.52 05/19/70

51

SAMPLE MHELP TRACE AND NUMP

LOC O0BJECT CODE

000000
000000 0SCO

000002 4100 3002

000006 901F D004

52

ADDR1 ADDR2

STMT

53
54

00002 55

00002

57
58

® 6

59+

00004

60+

PAGE 3
SOURCE STATEMENT ASM H V 01 11.52 05/19/70
TEST CSECT
BALR 12,0
USING %412
MHELP B711111°¢ REQUEST ALL MHELP FUNCTIONS

LNSRCH LISTLINEsUFFSET=LISTLINE-LISTNEXY

+4//MHELP. CALL TO MACRO LNSRCH . DEPTH=001, SYSNDX=0001, STMT 00058

J/MHELP ENTRY TO LNSRCH . MUDEL STMT 000N, DEPTH=001l, SYSNDX=0001, KWCNT=001
//7/PARAMETERS (SYSNDXySYSECT,SYSLOCSYSTIME,SYSDATE, SYSPARM, NAME sKWS+PPS) /77
J/NUM LNTH VALUE (64 CHARS/LINE)

/70000 004 0001

/70001 004 TEST

/70002 004 TEST

/70003 005 11.52

/70004 008 05/19/70

/70005 014 SAMPLE*PRUGRAM

/70006 NUL

//0007 017 LISTLINE-LISTNEXT

/70008 008 LISTLINE

//MHELP AIF IN LNSRCH . MOODEL STMY 00010y DEPTH=001, SYSNDX=0001, KWCNT=001
//777SET SYMBOLS (SKIPPED NUMBERS MAY RE SEQUENCE SYMBOLS).//

/70000 LCLC LABEL LNTH= 005

17 VAL=A0001

4++//MHELP. BRANCH FROM STMT 00010 TO STMT 00013 IN MACRO LNSRCH

A0001 LA Ny LISTLINE-LISTNEXT LUOAD REG. O 01-00013
++//MHELP. CALL TO MACRO SCHI1 « DEPTH=002, SYSNDX=0002, STMT 00014
//MHELP ENTRY TQ SCH1 « MODEL STMT 00000y DEPTH=002, SYSNDX=0002, KWCNT=000

/77 /PARAMETERS (SYSNDXySYSECT,SYSLOC,SYSTIME,SYSDATE, SYSPARM,NAME,KHWS5,PPS) ///
J/NUM LNTH VALUE (64 CHARS/LINE)
/70000 004 0002

//0001 004 TEST

/70002 004 TEST

/70003 005 11.52

/70004 008 05/19/70

/70005 014 SAMPLU*PROGRAM
/70006 NUL

/70007 008 LISTLINF

/70008 004 0O(1)

STM 15,15,41(13) 02-00024

i
//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000

SAMPLE MHELP TRACE AND DUMP

LOC O0RJECT CODE ADNRL ADDR2 STMT

@

PAGE 4

SOURCE STATEMENT ASM H v Ol 11.52 05/19/70
////SET SYMBOLS (SKIPPED NUMBERS MAY Bt SEQUENCE SYMBOLS).// .
//0000 LCLA CNT VAL= 0000000001
/70001 LCLC CMPADR LNTH= Q01
144 VAL=L
//MHELP AIF IN SCHI « MODEL STMT 00029y DEPTH=002, SYSNDX=0002, KWCNT=000
//7/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000002
/70001 LCLC CMPADR LNTH= 001
12 VAL=L
++//MHELP. BRANCH FROM _STMT 00027 TO STMT 00026 IN MACRO SCHIL
//MHELP AILF IN SCHL « MJDEL STMI 00027, DEPTH=002, SYSNDX=0002, KWCNT=0Nn0
//7/SET SYMBOLS {SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000002
//0001 LCLC CMPADR LNTH= 002
124 VAL=L!
//MHELP AIF IN SCHI « MODEL STMT 00029y DEPTH=002, SYSNDX=0002y KWCNT=000
//7/SET SYMBOLS (SKIPPED NUMBERS MAY BF SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000003
//0001 LCLC CMPADR LNTH= 002
17 VAL=LI
++//MHELP. BRANCH FROM STMT 00029 TU STMT 00026 IN MACRO SCHI
//MHELP AIf IN SCHI « MODEL STMT 00027y DEPTH=002, SYSNDX=0002, KWCNT=000
///77SET SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000003
/70001 LCLC CMPADR LNTH= 003
/7 VAL=LIS
//MHELP AIF IN SCHI « MODEL STMT 00029+ DEPTH=002, SYSNDX=0002, KWCNT=000
//77SET SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000004
/70001 LCLC CMPADR LNTH= 003
/77 VAL=LIS
++//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI
//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, XWCNT=000
////7SET SYMBOLS (SKIPPED NUMBERS MAY ©E SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000004
//0001 LCLC ¢ CMPADR LNTH= 004
/7 VAL=LIST

Appendix B. Sample Macro Trace and Dump (MHELF) 53

Loc

54

SAMPLE MHELP TRACE AND DUMP

UBJECT CUDE

ANOR1 ADDR2

STMT

PAGE 5
SOURCE STATEMENT ASM H V 01 11.52 05/19/70
//MHELP ATF IN SCHI « MUDEL STMT C0029, DEPTH=002, SYSNDX=0002, KWCNT=000
///7/SET SYMBOLS {SKIPPED NUMBFRS MAY BE SEQUENCE SYMBOLS).//
/70200 LCLA CNT VAL= 0000000005
/70001 LCLC CMPADR LNTH= 004
124 VAL=LIST
++//MBELP. BKANCH FRUM STMT C0029 TO STMT 00026 IN MACRO SCHI
J/MHELP AIF [N SCH1 o MODEL STMT 00027y DEPTH=002, SYSNNX=0002, KWCNT=000
////7SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000005
/770001 LCLC CMPADR ° LNTH= 0G5S
124 VAL=LISTL
J/MHELP ALF IN SCHI » MODEL SIMY 00029, DEPTH=002, SYSNDX=0002, KWCNT=000
///7/SET SYM3GLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000006
/77091 LCLC CMPADR LNTH= 005
1/ VAL=LISTL
++//MHELP. BRXANCH FROM STMT 00029 TQ STMT 00026 IN MACRO SCHI
//MHELP AIF IN SCHT . MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000
//7775E1 SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMROLS).//
/770000 LCLA CNT VAL= 0000000006
/770091 LCLC CMPADR LNTH= 006
/7 VAL=LISTLI
//MHELP ALF IN SCHI1 . MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000
/77/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNT VAL= 0000000007
' /70001 LCLC CMPADR LNTH= 006
7/ VAL=LISTLL

+4//MHELP. BRANCH FRNOM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AIF IN SCHI « MODEL STMT C0027, DEPTH=002, SYSNDOX=0002,
J/7//SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL=
/770001 LCLC CMPADR LNTH=
124 VAL=LISTLIN

//MHELP AIF 1IN SCHI -~ , MODEL STMT 00029, DEPTH=002, SYSNDX=0002,

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

KWCNT=000

0000000007
007

KWCNT=000

Loc

06000A

00000F
000012
000018
000012
000013
000014
000016
00001A
00001C

000020

000024
000026
000030
000030
000000

SAMPLE MHELP TRACE AND OUMP

0BJECT CODE ADNRY ADDR2

4130 C024

4111 0000
0202 CO024

0000
S54F0 CO2E
05EF
981F NO04

4710 €000 -

00000000

00026

0000 00026 00000

STMT

bl+

62+

64+
65+
66+
o7+
68+
69+
70+

SOURCE STATEMENT

//0000 LCLA CNT
/70301 LCLC CMPANR
/1 VAL=LISTLIN

LA

JeLISTLINE

CUMPARAND

PAGE 6

ASM H V 01 11.52 05/19/70

VAL=
LNTH=

++//MHELP. BRANCH FROM STMT 00032 TO STMT 00041 IM MACRO SCHI

LA
MVC
URG
oc
QRG
nc

L
RALR
(]

1,0(1)

LISTLINE,O0(D)

*=6

X192

41

Xenooo*
154=V(SCHL)
14415

191544(13)

J/MHELP EXIT FROM SCHI

J/7/SET SYMBOLS (SKIPPEN NUMBERS MAY HE SEQUENCE SYMBOLS).//
T

/70000 LCLA
//0001 LCLC

CMPADR

/77 VAL=LISTLIN

BC

1,A0001

//MHELP EXIT FRUM LNSRCH
///7/7SET SYMBOLS (SKIPPEN NUMBERS MAY RE SEQUENCE SYMBOLS).//

/70000 LCLC

LABEL

177 VAL=A0001 ~

LISTNEXT DS
LISTLINE DS
LTORG

END

H
FL300!

=VISCHL)
TEST

LIST HEADER

CHANGE MVC
MVI UPCODE

TO MVl

OLMMY MOVE TO GET COMP LENGTH

PRESERVE LENGTH AS IMMED OPND

RESULT [S MVI 0(12),L

« MODEL STMT 00050,

IF MAX REAC

« MODEL STMI 6OO0l6,

DEPTH=002,

SYSNDX=0002,

VAL=
LNTH=

HEN, CONTINUE

DEPTH=001,

SYSNDX=0001,

LNTH=

0000000008
007

02-00031

02-00041
02-00042
02-00043
02-00044
02-00045
02-00046
02-00047
02-00048
02-0n049

KHWCNT=000

0000000008

007

01-00015
KHCNT=001

nos

Appendix B. Sample Macro Trace and Dump (MHELP) 55

Appendix C. Object Deck Output

ESD Card Format

The format of the ESC card is as follows:

Columns Contents
1 12-2-9 punch
2-4 ESD
5-10 Blank
11-12 Variable field count =-- number of bytes
of information in variable field (columns 17-64)
13-14 Blank '
15-16 ESDID of first Sp, XD, CM, PC, ER, or WX
in variakle field
17-64 Variable field. One to three 16-byte

items of the following format:

8 bytes -- Name
1 byte -- ESLC type code
The hex value is:

00 SD
01 ID
02 ER
o4 BC
05 CM
06 XD (PR)
0A WX

3 bytes -- Address
1 byte -- Alignment if XD; otherwise blank
3 bytes -- Length, LDID, or blank

65-72 Blank

73-80 Deck IC and/or sequence number --
The deck ID is the name from the first TITLE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con-
tain a card sequence number. (Columns 73-80
of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TEXT (TXT) Card Format

The format of the TXT cards is as follows:

Columns Contents

1 -12-2-9 punch

2-4 TXT

S Blank

6-8 Relative address of first instruction on card

56

9-10 Blank

11-12 Byte count -- numker of bytes in information
field (columns 17-72)

13-14 Blank

15-16 ESDID

17-72 56-byte information field

73-80 Deck ID and/or sequence number --

The deck IL is the name from the first TITILE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. 1If the
name is less than 8 characters long or if

there is no name, the remaining columns ccn-
tain a card sequence number. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck 1D or a sequence number.)

RLD Card Format

The format of the RLD card is as follows:

Columns Contents
1 12-2-9 punch
2-4 RLL
5-10 Blank
11-12 Pata field count -- number of bytes of
information in data field (columns 17-72)
13-16 Blank
17-72 Data field:
17-18 Relocation ESDIL
19-20 Position ESDID
21 Flag byte
22-24 Absolute address to be relocated
25-72 Remaining RLLC entries
73-80 Deck 1D and/or sequence number --

The deck 1L is the name from the first TITLE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining columns con-
tain a card sequence number. (Columns 73-80

of cards produced ky PUNCH or REPRO statements
do not contain a deck ID or a sequence numker.)

If the rightmost bit of the flag byte is set, the follcwing RLLC entry
has the same relocation ESDID and position ESDID, and this information
will not be repeated; if the rightmost kit of the flag byte is not set,
the next RLLC entry has a different relocation ESDID and/or position
ESDID, and both ESDIDs will be recorded.

For example, if the RLD Entries 1, 2, and 3 of the program listing
contain the following information:

Position Relocation

ESDID ESDID Flag Address
Entry 1 02 o4 oc 000100
Entry 2 02 04 oc 000104
Entry 3 03 01 oc 000800

Arpendix C. Object Deck Output 57

|then, columns 17-72 of the RLD card would be as follows:

Entry 1 Entry 2 Entry 3

Column: {17 18 19 20 21 22 23 24|25 26 27 28|29 30 31 32 33 34 35 36 37— 72

00| 04| 00{ 02| D] 00{ 01{ 00] 0c| 00| 01] 04| 00| 01 [00| 03] 0| 00| 08| 00
I] . J ____JI\,) J|

. . 7l]
ESD IDs Address t Address Esd IDs T Address bla?\ks
Flag Flag Flag
(set) (not (not
set) set)

END Card Format

The format of the ENLC card is as follows:

Columns Contents

1 12-2-9 punch

2-4 END

5 Blank

6-8 Entry address from operand of END card in
source deck (klank if no operand)

9-14 Blank

15-16 ESLCIC of entry point (blank if no operand)

17-32 Blank

33 Number of ILR items that follow (EBCDIC1 or
EBCDIC2)

34-52 Translator Identification, version and nodlflcatlon
level (such as 0301), and date of the assermbly
(yyddd)

53-71 When present, they are the same format as columns

‘ 34-52
73-80 Deck 1D and/or sequence number --

The deck 1D is the name from the first TITLE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining cclumns con-
tain a card sequence number. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

58

TESTRAN (SYM) Card Format

If you request it, the assembler punches out symbolic information for
TESTRAN concerning the assembled program. This output appears ahead of
all lcader text. The format of the card images fcr TESTRAN output is as
follows:

Columns Contents
1 12-2-9 punch
2-4 SYM
5-10 Blank
11-12 Variable field count -- number of bytes of
text in variable field (columns 17-72)
13-16 Blank
17-72 Variable field (see below)
73-80 Deck 1IrC and/or sequence nurber --

The deck 1D is the name from the first TITLE
statement that has a non-klank name field.

The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining columns con-
tain a card sequence numker. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

The variable field (columns 17-72) contains up to 56 kytes of TESTIRAN
text. The items making the text are packed together; ccnsequently, only
the last card may contain less than 56 bytes of text in the variable
field. The formats of a text card and an individual text item are shown
in Figure 12. The contents of the fields within an individual entry are
as follows: :

1. Organization (1 byte)
Bit O:

0

1

non-data type
data type

Bits 1-3 (if non-data type):

000 = space

001 = control section

010 = dummy control section
011 = common

100 = instruction

101 = CCW

Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates presence of M field)

Bit 2 (1f data type):
0 independent (not a packed or zoned decimal constant)
1 cluster (packed or zoned decimal ccnstant)

Bit 3 (if data type):

0 = no scaling

1 = scaling (indicates presence of S field)
Bit U4:

0 = name present

1 = name not present
Bits 5-7:

Length of name minus 1

Appendix C. Object LCeck Output 59

2. Address (3 bytes) -- displacement from base of controcl section
3. Symbol Name (0-8 bytes) -- symbolic name of particular item

Note: The following fields are present only for data-type items.

4. Data Type (1 byte) -- contents in hexadecimal
00 = character
04 = hexadecimal
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-Type data
24 = Y-type data :
28 = S-type data
2C = V-type data
30 = packed decimal’
34 = zoned decimal
38 = floating point, extended.
5. Length (2 bytes for character, hexadecimal, decimal, or binary items;
1 byte for other types) -- length of data item winus 1
6. Multiplicity - M field (3 bytes) -- equals 1 if not present
7. Scale - signed integer - S field (2 bytes) -- present only for F, H,

E, D, P and Z type data, and only if scale is non-zerc.

1 2 45 1011 1213 16 17 72 73 80
No. ’
2 svm | btank botes| blank TESTRAN text — packed entries Deck g Sequence
9 ‘; fes p ID * number
text
1 3 6 2 4 56 8
Entry N complete entries (COIE né?; or
(complete or N 21 head gortion)
end portion)
Variable size entries
Data Mult. Symbol
Org. | Address Symbol name type Length factor Scale Org. name g
1 3 08 1 1-2 3 2

Figure 12. TESTRAN SYM Card Format

60

Appendix D. Dynamic Invocation of the Assembler

The assembler can be invoked by a problem program at execution time
through the use of the CALL, LINKAGE, XCTL, or ATIACH, macro instruction.
If the XCTL macro instruction is used to invoke the assembler, then no
user options may be stated. The assembler will use the standard

default, as set during system generation, for each option.

If the assembler is invoked by CALL, LINKAGE, or ATTACH, you may supply:
1) The assembler options

2) The DDnames of the data sets to be used during processing.

Name Operation Operand

[symbol] CALL 1EV90, (optionlist

[,ddnamelist] },VL
{LINK] EP=1EV90,

X ATTACH PARAM=(optionlist

[,ddnamelist]),VL=1

EP -- specifies the symbolic name of the assembler. The entry point at
which execution is to kegin is determined by the ccntrol program
(from the library directory entry).

PARAM -- specifies, as a sublist, address parameters to be passed from
the problem program to the assemkler. The first wcrd in the address
parameter list contains the address of the option list. The second
word contains the address of the DDname list.

optionlist -- specifies the address of a variable length list containing
the options. This address must be written even if no option list is
provided.

The option list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list. If
no options are specified, the count must be zero. The option list is
free form with each field separated from the next by a comma. No blanks
or zeros shculd aprpear in the list.

DDnamelist -- specifies the address of a variable length list containing
alternate LCnames for the data sets used during compiler processing. If
standard DDnames are used, this operand may be omitted.

The LCname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the 1list.

- Each name of less than 8 bytes must be left-justified and padded with
blanks. If an alternate LClname is omitted, the standard name will be
assumed. If the name is omitted within the list, the 8-byte entry must
contain binary zeros. Names can be omitted from the end merely by
shortening the list. The sequence of the 8-byte entries in the CDname
list is as follows:

Appendix L. Dynamic Invocation of the Assembler 61

Entry Alternate Name

SYSLIN

not applicable
not applicakle
SYSLIB

SYSIN

SYSPRINT
SYSPUNCH
SYSUT1

oNOALEWN =

Note: B2An overriding LCLname specified when Assembler H was added to the
Operating System occupies the same place in the above list as the
IBM-supplied DDname it overrides. The overriding Clname can itself be
overridden during invocation. For example, if SYSWORK1 replaced SYSUT1,
it occupies position 8 in the above list. SYSWORK1 can be overridden by
another name during invocation.

VL -- specifies that the sign kit is to be set to 1 in the last word
of the address rarameter list.

The Job Control Lanquage Reference manual prcovides additional
description of overriding techniques.

62

&SYSPARM 3,42

Adding macro definitions to libraries 33

ALIGN assembler option 2

Alignment, Removal of

restriction 2, 38

Assembler cataloged procedures 9-17

Assembler data sets 4-8
Characteristics 5, 7-8
List of 4

Assembler diagnostic'facilities 25,26-31
Abnormal assembly termination 29
Cross-reference 23-24
Error messages 26
Macro trace facility (MHELP} 29
MNOTES 29
Suppression of MNOTEs and error
messages 29

Assembler Listing 18-25
External symbol dictionary 20
Source and object program 21
Relocation dictionary 23

Symbol and literal cross-reference 23- 24

Diagnostic cross-reference and
assembler summary 24-25
Assembler options 1-4
Default options 3,4
Option list 1
Overriding defaults 5,15
Sample of use 43
Assembler statistics 25
Assembler summary 24-25
ASMHC, cataloged procedure for
assembly 9
ASMHCG, cataloged procedure for
assembly and loader-execution 13
ASMHCL, cataloged procedure for
assembly and linkage editing 10-11
ASMHCLG, cataloged procedure for
assembly, linkage editing, and’
execution 12

BATCH assembler option 2

Calling the assembler from a problem
program 61

Index

Cataloged procedures 8-17
For assembling (ASMHC) 9
For assembling and linkage editing
(ASMHCL) 10-11
For assembling, linkage editing, and
execution (ASMHCLG) 12
For assembling, linkage editing, and
execution (ASMHCLG) 12
For assembling and loader-execution
(ASMHCG) 13
overriding 15
Characteristics of assembler data
sets 7-8
Codes
See Return codes; Severity codes.
Cross-reference
See also Diagnostic cross-reference.
Examples 19,47
Listing format 23-24
Concatenation of SYSLIB data sets 6
COND parameter 8,15

Data sets, assembler
Characteristics 5, 7-8
List of 4
DD statements, overriding in cataloged
procedures 15
DECK assembler option 2
Default options 3-4
Diagnostic cross-reference and assembler
summary 24-25
Diagnostic facilities
See Assembler diagnostic facilities.
Dynamic invocation of the assembler 61

END card format 58
Entry point restatement 34
Error messages 26-—-28
Cross-reference 24-25
ESD
See External symbol dictionary
ESD (NOESD) assembler option 2
EXEC statement
Overriding in cataloged procedures 15
PARM field 1,33
COND parameter 8,15
Extended precision machine instructions 37
External symbol dictionary (ESD]}
Entry types 20
Examples 19,43
Listing format 20
Output card format 56

Index 63

FLAG assembler option 2,3
Format
See error messages; macro-generated

statements

Identification-sequence field 23
Invoking the assembler from a problem
program 61

Invoking cataloged procedures 8
Instruction execution sequence, control
of 37

Job control language cataloged
procedures
See cataloged procedures

Linkage, object module 34-36
LINECOUNT assembler option 2
LIST (NOLIST) assembler option 2
Listing control instructions,
printing of 22

Load module modification 34

Machine instructions, extended
precision 37
Macros, error messages in 26
Macro-generated statements, format
of 22
Macro definition libraries, additions
to 33
Macro Trace Facility (MHELP)
Description 29-31
Sample 49-55
Messages
See Assembler diagnostic facilities
MHELP
See Macro Trace Facility
Model 85, 91, and 195 programming
considerations 37
MNOTE 29,42

64

NOALIGN assembler option 2
Number of Channel Programs (NCP)
selection for assembler data sets 8

OBJECT assembler option 2
Object module linkage 34-36
Options, assembler 1-4
Option list 1
Default options 3-4
Overriding defaults 4,15
Sample of use 43
Output format
Listing 19-25
Object deck 56-60
Overriding statements in cataloged
procedures 15-17
Overriding default assembler
options 4,15

PARM field 1,33
Procedure

See Cataloged procedures
Program termination 33

Programming considerations 32-38

Registers, saving and restoring 36
Relocation dictionary

Listing format 23

Output text format 57-58

Examples 19,47
RENT (NORENT) assembler option 2
Restoring general registers 32
Return codes 8

See also FLAG assembler option
RLD :

See Relocation dictionary
RLD (NORLD) assembler option 2

Sample programs and listings
Assembler language features 39-47
Assembler listing description 19
Diagnostic error messages 28
MHELP 49-55

Saving general registers 32

Sequence number 23

Severity codes 8, 26
See also FLAG assembler option

Source and object program assembler

listing format 21

Special CPU programming considerations 37

Statistics, assembler 25

Suppression of error messages 29

SYSIN data set 6

SYSLIB data set 6

SYSLIN data set 6

SYM card (TESTRAN) format 59-60

SYSPARM assembler option 3

SYSPRINT data set 6

SYSPUNCH data set 6

SYSUT1 data set 6

Termination
Abnormal assembly 29
Program 33
TEST (NOTEST) assembler option
TESTRAN (SYM) card format 59-60
TEXT (TXT) card format 56-57

Unaligned operands 2,38
Using the assembler 1-17
Utility data set 6

XREF (NOXREF) assembler option

2

2

Index

65

SC26-3759-1

BV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

« 3NI7 031100 O9NOIV 1ND » =+ -+ »

0S Assembler H READER'’S
Programmer's Guide COMMENT
FORM

Order No. SC26-3759-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your

IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:
Yes [J Job Title:
No [(3
. Address:

Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC26-3759-1

Your comments, please . . .

Your answers to the questions on the back of this form, together with your comments, will
help us to produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All commernts and suggestions

become the property of IBM.
Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Fold Fold
First Class
Permit 40
Armonk
New York
]
I
Business Reply Mail I—
No postage stamp necessary if mailed in the U.S.A. EE——
L]
. . .
P :
ostage will be paid by —
International Business Machines Corporation [ro—
Department 813 L I
1133 Westchester Avenue I

White Plains, New York 10604

* 3ANI7T ONOTVY @I104 HO LND """ """

...

Fold Fold

BBV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

.

