

Program Product

SC26-3759-1

OS Assembler H
Programmer's Guide

Program Number 5734-AS1

Second Edition (June, 1972)

This is a major revision of, and obsoletes, SC26-3759-0 and
Technical Newsletters SN33-8095 and SN33-8l24.

This edition applies to version 4 of the OS Assembler H
Program Product, Program Number 5734-ASI and to all sub­
sequent modifications until otherwise indicated in new
editions or Technical Newsletters. Changes to the text and
to illustrations are indicated by a vertical line to the
left of the change.

Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest SRL Newsletter,
Order No. GN20-0360 for the editions that are applicable and
current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Nordic Laboratory, Publications Development,
Box 962, S-18l 09, Lidingo 9, Sweden. Comments become the
property of IBM.

©Copyright International Business Machines Corporation 1970, 1971, 1972

ii

Preface

This publication tells how to use Assembler H. It describes assembler
options, cataloged job control language procedures, assembler listing
and output, assembler data sets, error diagnostic facilities, sample
programs, and programming techniques and considerations.

Assembler H is an assembler language processor for the Operating System.
It performs high-speed assemblies on an IBM Systero/360 Model 40 or higher
and on an IBM System/310 Model 145 or higher with at least 256K bytes of
main storage.

This manual has the following main sections:

• Using the Assembler

• Assembler Listing Description

• Assembler ~iagnostic Facilities

• Programming Considerations

·Using the Assembler" describes the EXEC statement PARM field option,
the data sets used by the assembler, and the job contrel language
cataloged procedures supplied by IBM. The cataloged procedures can be
used to assemble, linkage edit or load, and execute an assembler program.

"Assembler Listing Description" describes each field of the assembly
listing. "Assembler ~iagnostic Facilities· describes the purpose and
format of errer messages, MNOTEs, and the MHELP macro trace facility.
"Programming Considerations" discusses various topics, such as standard
entry and exit procedures for problem programs.

Appendix A is a sample program which demonstrates many of the assembler
language features, especially those unique to Assembler H. Appendix B
is a sample MHELP macro trace and dump. Appendix C describes the object
module output formats. Appendix D tells how to call the assembler
dynamically from problem programs.

This publication is intended for all Assembler H programmers. ~o use
this publication, you should be familiar with the assembler language and
with the basic concepts and facilities of the Operating System,
especially job control language, data management services, supervisor
services, and the linkage editor and loader. To use this publication
effectively, the reader should be familiar with the OS Introduction,
Order Number GC28-6534 or have the equivalent knowl'edge.

Assembler Publications

The following publication contains a brief description of Assembler H
and how it differs from lower level OS assemblers:

OS Assembler H General Information Manual, Order Number GC26-3158.

The following publications describe the assembler language and the
information required to run Assembler H programs:

I OS/yS and DOS/yS Assembler Language, Order Number GC33-4010.

iii

OS Assembler Language, Order Number GC28-65l4.

The Assembler Language manual contains the basic assembler and macro
assembler s~ecifications, except those unique to Asserrbler H.

OS Assembler H Language, Order Number GC26-377l.

The Assembler H Language manual describes the language features
I that are available with Assembler H. It is supplemental to the two

Assembler Language manuals listed above.

OS Assembler H Messages, Order Numcer SC26-3770.

The Messages manual provides an explanation of each of the diagnostic
and abnormal termination messages issued by Assembler H and suggests how
you should respond in each case.

The following publications contain inforreation used tc install and
maintain Assembler H:

as Assembler H System Information, Order Number GC26-3768.

The System Information manual consists of three self-contained chapters
on performance estimates, storage estimates, and systerr generation of
Assembler H.

OS Assembler H Logic, Order Number LY26-3760.

The Logic manual describes the design logic and functional
characteristics of Assembler H.

Operating System Publications

The following as books are referenced in this publicaticn:

OS/VS JCL Reference, Order Number GC28-06l8, or

OS Job Control Langua~e Reference, Order Number GC28-6704.

OS/VS Linkage Editor and Loader, Order Number GC26-3803, or

OS Loader and Linkage Editor, Order Number GC28-6538.

OS/VS Supervisor Services and Macros, Order Number GC27-6979, or

OS Supervisor Services and Macro Instructions, Order Number GC28-6646.

OS/VS Utilities, Order Number GC35-0005, or

OS Utilities, Order Number GC28-6586.

iv

Contents

USING THE ASSEMBLER .
Assembler Options • .

Default Options
Assembler Data Sets .

DD Name SYSUTI
DD Name SYSIN
DD Name SYSLIB
DD Name SYSPRINT .
DD Name SYSPUNCH .
DD Name SYSLIN . . . • . • •

Number of Channel Programs (NCP} 0 • • • • •

Return Codes • • • . . .
Cataloged Procedures • • . • . • • .

Cataloged Procedure for Assembly (ASMHC) . • • .
Cataloged Procedure for Assemb.ly and Linkage Editing (ASMHCL)
Cataloged Procedure for Assembly, Linkage Editing, and
Execution (ASMHCLG) ..•....••..••..•..•...
Cataloged Procedure for Assembly and Loader-Execution (ASMHCG) .
Overriding Statements in Cataloged Procedures . • . .

ASSEMBLER LISTING • . • .
External Symbol Dictionary (ESD)
Source and Object Program
Relocation Dictionary . . • . • .
Cross Reference • • . • . .
Diagnostic Cross Reference and Assembler Summary

ASSEMBLER DIAGNOSTIC FACILITIES . . .
Assembly Error Diagnostic Messages
MNOTEs • . . . • .
Suppression of Error Messages and MNOTEs
Abnormal Assembly Termination
Macro Trace Facility (MHELP)

PROGRAMMING CONSIDERATIONS
Saving and Restoring General Register Contents
Program Termination . . . •
PARM Field Access • . . . • • . . . • . . • . .
Macro Definition Library Additions •.
Load Module Modification - Entry Point Restatement
Object Module Linkage • • •
Special CPU Programming Considerations

Controlling Instruction Execution Sequence .
Extended-Precision Machine Instructions
Unaligned (Byte-Oriented) Operands . . • • •

APPENDIX A. SAMPLE PROGRAM . .

APPENDIX B. SAMPLE MACRO TRACE AND DUMP (MHELP)
Macro Call Trace (MHELP 1) . .
Macro Entry Dump (MHELP 16)
Macro AIF Dump (MHELP 4) . . .
Macro Branch Trace (MHELP 2)
Macro Exit Dump (MHELP 8)

v

. . . .

. . . .

· · · · · · · ·
· · · ·

1
1
3
4
6
6
6
6
6
7
8
8
8
9

10

12
13
15

18
20
21
23
23
24

26
26
29
29
29
29

32
32
33
33
33
34
34
37
37
37
38

39

49
49
49
50
50
50

APPENDIX C. OBJECT DECK OUTPUT
ESD Card Format
TEXT (TXT) Card Format
RLD Card Format • . .
END Card Format
TESTRAN (SYM) Card Format .

APPENDIX D. DYNAMIC INVOCATION OF THE ASSEMBLER . .

vi

56
56
56
57
58
59

61

Figures

Figure 1. Assembler H Data Sets · · · · · · · · · · · 5
Figure 2. Assembler Data Set Characteristics · · · · · · · · 7
Figure 3. Number of Channel Program (NCP) Selection · · · · · . 8
Figure 4. Cataloged Procedure for Assembly (ASMHC) • 9
Figure 5. Cataloged Procedure for Assembling and Linkage

Editing (ASMHCL) . · · · · · · · · · · · · 11
Figure 6. Cataloged Procedure for Assembly, Linkage Editing and

Execution (ASMHCLG) · · · · · · · · · · · · · 13
Figure 7. Cataloged Procedure for As.sembly and Loader-Execution

(ASMHCG) · . · · · · · · 14
Figure 8. Assembler H Listing · · · · · · · · . · · 19
Figure 9. Types of ESD Entries · · · · · · · · 20
Figure 10. Sample Error Diagnostic Messages · · · · · · · 28
Figure 11. Sample Assembler Linkage Statements for FORTRAN or

COBOL Subprograms · . · · · · · · · 36
Figure 12. TESTRAN SYM Card Format · · · · · · · · · · · · 60

vii

Using the Assembler

This section describes the assembly time options available to the
assembler language programmer, the data sets used by the assembler, and
the cataloged procedures of job control language supplied by IBM to
simplify assembling, linkage editing or loading, and execution of
assembly language programs. The job control language is described in
detail in the Job Control Language Reference publication.

Assembler Options

Assembler H offers a number of optional facilities. Fer examt:le, you
can suppress printing of the assembly listing or parts of the listing,
and you can specify whether you want an object deck or an object module.
You select the options by including appropriate keywords in the PARM
field of the EXEC statement that invokes the asserrbler. ~here are two
types of options:

I. Simple pairs of keywords: a positive form (such as OBJECT) that
requests a facility, and an alternative negative ferm (such as
NOOBJECT) that rejects that facility.

• Keywords that permit you to assign a value to a function (such as
LINECOUNT(SO) •

Each of these options has a standard or default value which is used for
the assembly if you do not specify an alternative value. The default
values are ext:lained in the following section, nDefault 0t:tions."

If ·you are using a cataloged procedure, you must include the PARM field
in the EXEC statement that invokes the procedure. You must also qualify
the keyword (PARM) with the name of the step within the procedure that
invokes the compiler. For example:

II EXEC ASMHC,PARM.C='OEJECT,NODECK'

The section "Overriding Statements in Cataloged Procedures n contains
more examples on how to specify options in a cataloged t:rocedure.

PARM is a keyword parameter: code PARM= followed by the list of options,
separating the options by commas and enclosing the entire list within
single quotes or parentheses. If you specify only one ot:tion and it
does not include any special characters, the enclosing quotes or
parentheses can be omitted. The option list must not be longer than 100
characters, including the separating commas. You may specify the
options in any order. If contradictory options are used (for example,
LIST and NOLIST), the rightmost option (in this case, NOLIST) is used.

The assembler options are:

(DECK, OBJECT, LIST, TEST, 'XREF(FULL/SHORT)', ALIGN, . RENT,
PARM= or or or or or 'LINECOUNT(nnl: or or

(NODECK,NOOBJECT, NOLlST,NOTEST,NOXREF, NOALlGN,NORENT,

ESD, RLD, BATCH,

or or or 'SYSPARM(string),FLAG(nnn)')

NOESD,NOR LD,NOBATCH,

Using the Assembler 1

DECK -- The object module is placed on the device s~ecified in the
SYSPUNCH DD statement.

OBJECT -- The object module is placed on the device specified in the
SYSLIN tD statement.

I Note: The OBJECT and DECR options are independent of each other. Both
or neither can be specified. The output on SYSLIN and SYSPUNCH is
identical except that the control prograrr closes SYSLIN with a
disposition of LEAVE and SYSPUNCH with a disposition of REREAC.

ESD -- The assembler produces the External Symbol Dictionary as part
of the listing.

RLD -- The assembler produces the Relocation Dictionary as part of
the listing.

BATCH -- The assembler will do multiple (batch) assemblies under the
control of a single se~ of job control language cards. The
source decks must be placed together with no intervening 1*
card; a single 1* card must follow the final source deck.

LIST -- An assembler listing is produced. Note that the NOLIST
option overrides the ESD, RLD, and XREF o~tions.

TEST -- The object module contains the s~ecial source symbol table
required by the test translator (TESTRAN) routine.

XREF(FULL) -- The assembler listing will contain a cross reference table
of all symbols used in· the assembly. This includes symbols that
are defined but never referenced. The assembler listing will also
contain cross reference table of literals used in the assembly.

XREF(SHORT) -- The assembler listing will contain a cross reference
table of all symbols that are referenced in the assembly. Any
symbols defined but not referenced are not included in the table.
The assembler listing will also contain a cross reference table of
literals used in the assembly.

RENT -- The assembler checks for a possible coding violation of
program reenterability.

LINECOUNT (nn) -- The number of lines to be printed between headings
in the listing is nne The permissible range is
1 to 99 lines.

NOALIGN The assembler su~presses the diagnostic message "IEV033
ALIGNMENT ERROR" if fixed point, floating-point, or logical data
referenced by an instruction operand is not aligned on the proper
boundary. The message will be produced, however, for references
to instructions that are not aligned on the ~roJ;:er (halfword)
boundary or for data boundary violations for ~rivileged
instructions such as LPSW. DC, DS, DXD, or CXC constants, usually
causing alignment, are not aligned. See the "SJ;:ecial CPU
Programming Considerations" section for information on alignment
requirements.

I ALIGN -- The assembler does not suppress the alignment error diagnostic
message; all alignment errors are diagnosed.

FLAG (nnn) -- Error diagnostic messages below severity code nnn will not
appear in the listing. tiagnostic messages can have severity

codes of 0, 4, 8, 12, 16, or 20 (0 is the least severe). MNOTEs
can have a severity code of 0 through 255.

For example, FLAG(8) will suppress messages for severity codes 0
through 7.

I SYSPARM(string) -- 'string' is the value of the system variable symbol
&SYSPARM. The assembler uses &SYSPARM as a read-only SETC
variable. If no value is specified for the SYSPARM option,
&SYSPARM will be a null (empty) character string. ~he function of
&SYSPARM is explained in the Assembler H Language Specifications
and in OS/VS and DOSjVS Assembler Language.

Due tc JCL restrictions, you cannot specify a SYSPARM value longer
than 56 characters (as explained in Note 1). Twc quotes are needed
to represent a single quote, and two ampersands to represent a
single ampersand. For example:

PARM='OEJECT,SYSPARM «&&AM,' 'EO) .FY) ,

assigns the following value to &SYSPARM:

(&AM, 'EO) • FY •

Any parentheses inside the string must be paired. If you call the
assembler from a problem program (dynamic invocatio~, SYSPARM can
be up to 256 characters long.

Note 1: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters. Consider the following
example:

II EXEC ASMFC,PARM.C=(OBJECT,NODECK,
It! 'SYSPARM (AECC ••• • • •••• • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • • •••) .) t t v t
~ ~ M 00

~
o
u

~
o
u

~ ~

~ ~ o 56 bytes 0
u u

Since SYSPARM uses parentheses, it must be surrounded by quotes.· Thus,
it cannot be continued onto a continuation card. The leftmost column
that can be used is column 4 on a continue card. A quote and the
keyword must appear on that line as well as the closing quotes. In
addition, either a right parenthesis, indicating the end of the PARM
field, or a comma, indicating that the PARM field is continued on the
next card, must be coded before or in the last column of the statement
field (column 11).

Note 2: Even though the formats of some of the options previously
supported by Assembler H have been changed, you can use the old formats
for the following options: ALGN (now ALIGN), NOALGN (NOALIGN),
LINECNT=nn (LINECOUNT(nn», LOAD (OBJECT), and NOLOAD (NOOBJECT).

Default Options

If you do not code an option in the PARM field, the assembler assumes a
default option. The following default options are included when
Assembler H is shipped by IBM:

PARM=(OECK,NOOBJECT,LlST, NOTEST,'XREF(FULL),LINECOUNT(55)',ALlGN,NOBATCH,'SYSPARM(), FLAG(O)')

Using the Assembler 3

However, these may not be the default options in effect in your
installation. The defaults can be respecified when Assembler H is
installed. For example, NOCECK can be made the default in place of DECK.
Also, a default option can be specified during installation so that you
cannot override it.

The cataloged procedures described in this book assume the default
entries. The section "OVerriding Statements in Cataloged Procedures"
tells you how to override them. First, however, check whether any
default options have been changed or whether there are any you cannot
override at your installation.

Assembler Data Sets

Assembler H requires the following data sets, as shown in Figure 1:

• SYSUT1 -- utility data set used as intermediate external storage.

• SYSIN -- an input data set containing the source statements to be
processed.

In addition, the following four data sets may be required:

• SYSLIB -- a data set containing macro definitions (for macro
definitions not defined in the source progra~ and/cr source code to
be called for through COpy assembler instructions.

• SYSPRINT -- a data set containing the assembly listing (unless the
NOLIST o~tion is s~ecified).

• SYSPUNCH -- a data set containing object module output, usually for
punching (unless the NODECK option is specified) •

• SYSLIN. -- a data set containing object module cutput usually for the
linkage editor (only if the OBJECT option is s~ecified) •

The above data sets are described in the following text. 'Ihe DDname
that normally must be used in the DD state~ent describing the data set
appears as the heading for each description. The characteristics of
these data sets, those set by the assembler and those you can override,
are shown in Figures 2 and 3.

SYSLIB

(Macro and
COpy Calls)

SYSPRINT

SYSIN

Assembler H

Figure 1. Assembler H Data Sets

SYSUTl

(overflow)

SYSPUNCH

'(Object Modules) Jf
(80 Character Card I mage)

Using the Assembler 5

DDNAME SYSUT1

The assembler uses this utility data set as an intermediate external
storage device when processing the source program. The input/output
device assigned to this data set must be a direct access device. The
assembler dces not support a multi-volume utility data set. The IBM
2321 Data Cell is not supported for this data set.

DDNAME SYSIN

This data set contains the input to the assembler -- the source
statements to be processed. The input/output device assigned to this
data set may be either the device trans~itting the in~ut stream, or
another sequential input device that you have designated. The DD
statement describing this data set appears in the input stream. ~he
IBM-supplied procedures do not contain this statement.

DDNAME SYSLIB

From this data set, the assembler obtains macro definitions and
assembler language statements to be called by the COpy assembler
instruction. It is a partitioned data set; each macro definition or
sequence of assembler language statements is a se~arate member, with the
member name being the macro instruction mnemonic or COpy operand name.

The data set may be defined as SYS1.MACLIB or your private macro
definition or COpy library. SYS1.MACLIE contains macro definitions for
the system macro instructions provided by IBM. Your ~rivate library may
be concatenated with SYS1.MACLIB. The two libraries must have the same
logical record "length (80 bytes), but the blocking factors may be
different. The DD statement for the library with the largest blocksize
must appear first in the job control language for the assembly (that is,
before any other library ~D statements). The Job Control Language
Reference publication, explains the concatenation of data sets.

DDNAME SYSPRINT

This data set is used by the assemtler to produce a listing. Output may
be directed to a printer, magnetic tape, or direct-access storage device.
The assembler uses the machine code carriage control characters for this
data set.

DDNAME SYSPUNCH

The assembler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access.

6

DDNAME SYSLIN

This is a direct-access storage device, magnetic tape, or card punch
data set used by the assembler. It contains the same cut~ut text as
SYSPUNCH. It is used as input for the linkage editor.

Data Set SYSUT1. SYSPUNCH SYSPRINT SYSLIN SYSIN SYSLIB

Access Method BSAM BSAM BSAM BSAM BSAM BPAM

Logical Record fixed at fixed at fixed at fixed at fixed at fixed at
Length (LRECL) BLKSIZE 80 121 80 80 80

Block Size CD CD ® 0 CD ® (BLKSIZE)

Record Format @) 00 ®® 00 ®® ~® (RECFM)

Number of channel

CD 0 (}) 0 0 Programs (NCP) Not
Applicable

CD You can specify a blocksize (BLKSIZE) between 2008 and 5100 bytes in the DO statement or in the data
set label. BLKSIZE should be a multiple of 8; if it is not, it will be rounded to the next lower multiple of
8. If you do not specify BLKSIZE, the assembler sets a default blocksize based on the device used for
SYSUTl as follows:

®
CD
®
o
(})

2301 Drum 5016 bytes
2302.Disk 4984 bytes
2303 Drum 4888 bytes
2305 Drum 4280 bytes

model 1
2305 Drum 4688 bytes

model 2
2311 Disk 3624 bytes
2314 Disk 3520 bytes
3330 Disk 4208 bytes

The Storage Estimates chapter of the System Information manual, Order Number SC26-3768, discusses the
reasons for changing the default blocksize.

If specified, BLKSIZE must equal LRECL or a multiple of LRECL r If BLKSIZE is not specified, it is set equal
to LRECL. If BLKSIZE is not a multiple of LRECL,·it is truncated.

BLK51ZE be specified in the DO statement or the data set label as a multiple of LRECL

Set by the assembler to F or FB if necessary.

Set by the assembler to FM or FBM if necessary.

You may specify B, 5, or T.

You can specify the number of channel programs (NCP) used by any assembler data set except SYSUTl and
SYSLIB. The NCP of SYSUTl is fixed at 1. The assembler, however, can change your NCP specification under
certain conditions. Figure 3 shows how NCP is calculated. Note that if the NCP is greater than 2, chained I/O
request scheduling is set by the assembler.

Figure 2. Assembler rata Set Characteristics

Using the Assembler 7

Number of Channel Programs (NCP)

The number of channel programs can be specified by the user or set by
the assembler. The number will vary depending upon whether or not a
unit record device is used. The following table shows how the NCP
selection is made.

Unit record No unit
device record device

NCP specified ~ 2 User specified User specified

NCP specified = 1 Computed 1 User specified (= 1)

NCP not specified Computed 1 Computed 1

Figure 3. Number of Channel Program (NCP) Selection

1 For SYSPRINT data set, the NCP set by the assembler is the larger of
1210/ELKSIZE or 2.
For SYSIN data set, the NCP set by the assembler is the larger of
800/ELKSIZE or 2.
For SYSLIN or SYSPUNCH data set, the NCP set by the assembler is the
larger of 240/ELKSIZE or 2.

Note: If the NCP is greater than 2, chained I/O scheduling is set by the
assembler.

Return Codes

Assembler H issues return codes for use with the CONO parameter of the
JOB and EXEC job control language statements. The CON~ parameter
enables yduto skip or execute a job step depending on the results
(indicated by the return code) of a previous job step. It is explained
in the Job Control Language Reference publication.

The return code. issued by the assembler is the highest severity code
that is associated with any error detected in the assembly or with any
MNOTE message produced by. the source program or macro instructions. See
the Assembler H Messages publication, for a listing of the assembler
errors and their· severity cQdes.

Cataloged Procedures

Often the same set of job control statements is used over and over again
(for example, to specify the compilation, linkage editing, and execution
of many different programs). To save programming time and to reduce the
possibility of error, sets of standard series of EXEC and DO statements
can be prepared once and • cataloged' in a system library. Such a set of
statements is termed a cataloged procedure and can be invoked by one of
the following statements:

//stepname EXEC procname

//stepname EXEC PROC=procname

8

The specified procedure is read from the procedure library
(SYS1.PROCLIB) and merged with the job control statements that follow
this EXEC statement.

This section describes four IBM cataloged procedures: a ~rocedure for
assembling (ASMHC), a procedure for assembling and linkage editing
(ASMHCL) , a procedure for assembling, linkage editing, and executing
(ASMHCLG), and a procedure for assembling and loader-executing (ASMHCG).

CATALOGED PROCEDURE FOR ASSEMBLY (ASMHC)

This procedure consists of one job step: assembly. ~he name ASMHC must
be used to call this procedure. The result of execution is an object
module, in ~unched card form, and an assembler listing.

In the following example, input enters via the input stream. An example
of the statements entered in the input stream to use this procedure is:

JOB //jobname
//stepname
//C.sYSIN

EXEC PROC=ASMHC
DO *
I
I

source program statements
I
I

/* (delimiter statement)

The statements of the ASMHC procedure are read from the procedure
library and merged into the input stream.

Figure 4 shows the statements that make up the ASMHC procedure.

2

3

4

5

I/C EXEC PGM=IEV90,REGION=200K

I/SYSLIB DO DSN=SYS1.MACLlB,DISP=SHR

//SYSUTl DO UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUT1

I/SYSPUNCH DO SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O))

I/SYSPRINT DO SYSOUT=A,DCB=(B LKSIZE=3509) ,UN IT=(,SEP=(SYSUTl ,SYSPUNCH))

............ - .. --------

PARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure
(see "Overriding Statements in Cataloged Procedures"). The system name IEV90 identifies Assembler H.

2 This statement identifies the macro library data set. The data set name SYS1.MACLIB is an IBM designation.

3 This statement specifies the assembler utility data set. The device classname used here, SYSDA, represents a
direct-access unit. The I/O unit assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 2311 may be substituted for SYSDA.

4 This statement describes the data set that will contain the object module produced by the assembler.

5 This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 4. Cataloged procedure for Assembly ~SMHC)

Using the Assembler 9

CATALOGED PROCECURE FOR ASSEMBLY AND LINKAGE EDITING (ASMHCL)

This procedure consists of two job steps: assembly and linkage editing.
The name ASMHCL must be used to call this procedure. Execution of this
procedure results in the production of an assembler listing, a linkage
editor listing, and a load module.

The following example illustrates input to the assembler via the input
job stream. SYSLIN contains the output from the assembly step and the
input to the linkage edit step. It can be concatenated with additional
input to the linkage editor as shown in the example. This additional
input can be linkage editor control statements or other cbject modules.

An example cf the statements entered in the input stream to use this
procedure is:

JOB /Ijobname
//stepname
/IC.SYSIN

EXEC PROC=ASMHCL
DD *

/*

I
I
I

source program statements
I
I
I

//L.SYSIN DD *

/*

10

I
I
I

abject modu Ie or
linkage editor
control statements

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

Figure 5 shows the statements that make up the ASMHCL ~rocedure. Only
those statements not previously discussed are explained.

"2

3

4

5

6

7

//C EXEC PGM=I EV90,PARM=OBJECT,REG ION=200K

IISYSLIB DO DSN=SYS1.MACLlB,DISP=SHR

IISYSUTl DO UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUTl

IISYSPUNCH DO SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O))

IISYSPRINT DO SYS~UT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))

IISYSLIN DO DISP=(,PASS) ,UN IT=SYSDA,SPACE=(CYL,(5,5,O)),

II DCB=(B LKSI ZE=400) ,DSN=&&LOADSET

ilL EXEC PGM=IEWL,PARM='MAP,LET,LlST,NCAL',REGION=96K,COND=(8,LT,C)

IISYSLIN DO DSN=&&LOADSET,DISP=(OLD,DELETE)

II DO DDNAME=SYSIN

IISYSLMOD DO DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(2,l,2)),DSN=&GOSET(GO)

//SYSUTl DO UNIT=SYSDA,SPACE=(CYL,(3,2)),DSN=&SYSUTl

IISYSPRINT DO SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

In this procedure the SYSLIN DO statement describes a temporary data set - - the object module - - which is to be
passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage
editor to produce a cross-reference table, a module map, and a list of all control statements processed by the linkage
editor. The NCAL option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one (SYSLlN) produced as output from the
assembler.

4 This statement is used to concatenate any input to the linkage editor from the input stream (object decks and/or
linkage editor control statements) with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain the load module, the DSN parameter must be respecified

and a DISP parameter added. See "Overriding Statements in Cataloged Procedures. " If the output of the linkage
editor is to be retained, the DSN parameter must specify a library name and member name where the load
module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

7 This statement identifies the standard output class as the destination for the linkage editor listing.

Figure 5. Cataloged Procedure for Assembling and Linkage Editing
(ASMHCL)

Using the Assembler 11

CATALOGEC PROCEDURE FOR ASSEMBLY, LINKAGE EDITING, AN[EXECUTION
(ASMHCLG)

This procedure consists of three jot steps: asserrbly, linkage editing,
and execution.

Figure 6 shews the statements that make up the ASMHCLG procedure. Only
those statements not previously discussed are explained in the figure.

The name ASMHCLG must be used to call this procedure. An assembler
listing, an object deck, and a linkage editor listing are produced.

'I'he statements entered in the input stream to use this procedure are:

JOB //jobname
IIstepname
IIC.SYSIN

EXEC PROC=ASMHCLG
DD
I

source program statements
I

/*
IIL.SYSIN

I
I

DD
I
I
I

object module or
linkage editor
control statements

/*
IIG.ddname
IIG.ddname
IIG.ddname

I
I
DD
DD
DD
I
I
I

(parameters)
(parameters)
*

problem program input
I
I

/*

12

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

only if necessary

2

3

IIC EXEC PGM=IEV90,PARM=OBJECT,REGION=200K

IISYSLIB DD DSN=SYS1.MACLI B,DISP=SH R

//SYSUTl DD UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5»,DSN=&SYSUTl

IISYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O»

IISYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH»

IISYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O», *

II DCB=(B LKSIZE=400) ,DSN=&&LOADSET

IlL EXEC PGM=IEWL,PARM=-'MAP,LET,LlST,NCAL',REGION=96K,COND=(8,LT,C)

IISYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

II DD DDNAME=SYSIN

IISYSLMOD DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(2,1 ,2» ,DSN=&GOSET(GO)

IISYSUTl DD UNIT=SYSDA,SPACE=(CYL,(3,2»,DSN=&SYSUTl

IISYSPRINT DD SYSQUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

IIG EXEC PGM=*.L.SYSLMOD,COND= ((8,LT,C),(4,LT,L))

................ -..................

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as
executable even though errors were encountered during processing.

2 The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access
device, and is to be passed to a succeeding job step.

3 This statement initiates execution of the assembled and linkage edited program. The notation *.L.SYSLMOD
identifies the program to be executed as being in the data set described in job step L by the DD statement
named SYSLMOD.

Figure 6. Cataloged Procedure for Assembly, Linkage Editing and
Execution (ASMHCLG)

CA'I'ALOGED PROCEDURE FOR ASSEMBLY AND LOADER EXECU'IION (ASMHCG)

This procedure consists of two job steps: assembly and loader execution.
LOader-execution is a combination of linkage editing and loading the
program for execution. Load modules for program libraries are not
produced.

Using the Assembler 13

/lC EXEC PGM=IEV90,PARM=OBJECT,REGION=200K

//SYSLIB DD DSN=SYS1.MACLlB,DISP=SHR

/lSYSUT1 DD UNIT=(SYSDA,SEP=SYSLlB),SPACE=(CYL,(10,5)),DSN=&SYSUT1

/lSYSPUNCH DD SYSOUT=B,DCB=(B LKSI ZE=800) ,SPACE=(CY L, (5,5,0))

/lSYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT={,SEP=(SYSUT1,SYSPUNCH))

/lSYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O)),

II DCB=(B LKSI ZE=400) ,DSN=&& LOADSET

IIG EXEC PGM=LOADER,PARM='MAP,LET,PRINT,NOCALL'

2 /lSYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

/I DD DDNAM E=SYSI N

3 /lSYSLOUT DD SYSOUT=A

.............. -................

This statement initiates loader-execution. The loader options in the PARM= field cause the loaderto produce a
map and print the map and diagnostics. The NOCALL option is the same as NCAL for the linkage editor and the
LET option is the same as for the linkage editor.

2 This statement defines the loader input data set as the same one produced as output by the assembler.

3 This statement identifies the standard output class as the destination for the loader listing.

Figure 1. Cataloged Procedure for Assembly and Loader-Execution
(ASMHCG)

Figure 1 shows the statements that make up the ASMHCG procedure.
Only those statements not previously discussed are explained in the figure.

The name ASMHCG must be used to call this procedure.
Assembler and loader listings are produced.

The statements entered in the input stream to use this procedure are:

/ljobname
/lstepname
/lC.SYSIN

JOB
EXEC PROC=ASMHCG
DD *
I
I
I

source program
I

/*
/lG.ddname
/lG.ddname
/lG.ddname

I

DD
DD
DD
I
I
I

(parameters)
(parameters)
*

problem program input
I
I

/*

14

} only if necessary

OVERRIDING STATEMENTS IN CATALOGED PROCEDURES

Any parameter in a cataloged procedure can be overridden except the PGM=
parameter in the EXEC statement. Such overriding of statements or
fields is effective only for the duration of the job step in which the
statements appear. The statements, as stored in the procedure library
of the system, remain unchanged.

Overriding for the purposes of respecification, addition, or
nullification is accomplished by including in the input stream
statements containing the desired changes and identifying the statements
to be overridden.

EXEC Statements

Any EXEC parameter (except PGM) can be overridden. Fer example, the
PARM= and COND= parameters can be added or, if present, respecified by
including in the EXEC statement calling the procedure the notation
PARM.stepname=, or COND.stepname=, followed by the desired parameters.
·Stepname" identifies the EXEC statement within the procedure to which
the modification applies.

If the procedure consists of more than one job step, a PARM.procstepname=
or COND.procstepname= parameter may be entered for each step. The
entries must be in order (PARM.procstep1=, PARM.procstep2=, etc.).

DD Statements

All parameters in the operand field of DD statements may be overridden
by including in the input stream (following the EXEC card calling the
procedure) a CD statement with the notation //procste~name.DDname in tpe
name field. "procstepname" refers to the job step in which the
sta.tement identified by "I:Dname" appears.

Note: If more than one DD statement in a procedure is to be overridden,
the overriding statements must be in the same order as the statements in
the procedure.

Examples

In the assembly procedure ASMHC (Figure 4), the production of a punched
object deck could be suppressed and the UNIT= and SPACE= parameters of
data set SYSU11 respecified, by including the following statements in the
input stream:

/Istepname EXEC PROC=ASMHC, X
It PARM.C=NODECK
/IC.SYSUTl DO UNIT=2311, X
/I SPACE=(200,(300,40))
/IC.SYSIN DO

Using the Assembler 15

In procedure ASMHCLG (Figure 6), suppressing production of an assembler
listing and adding the COND= parameter to the EXEC statement, which
specifies execution of the linkage editor, may be desired. In this
case, the EXEC statement in the input stream would appear as follows:

IIstepname

III
II

EXEC PROC=ASMHCLG,

PARM.C=(NOLlST,OBJECT),

CON D. L=(8,L T,stepname.C}

X
X

I For this execution of procedure ASMHCLG, no assembler listing would be
produced, and execution of the linkage editor job step IlL would be
suppressed if the return code issued by the assembler (step C) were
greater than 8.

Note: Overriding the LIST parameter effectively deletes the
PARM=OBJECT. PARM=OBJECT must be repeated in the override statement.

The following listing shows how to use the procedure ASMHCL (Figure 5)
to:

1. Read input from a non-labeled 9-track tape on unit 282 that has a
standard blocking factor of 10.

2. Put the output listing on a tape labeled TAPE10, with a data set name
of PROG1 and a blocking factor of 5.

3. Block the SYSLIN output of the assembler and use it as input to the
linkage editor with a blocking factor of 5.

4. Linkage edit the module only if there are no errors in the assembler
(COND=O) •

5. Linkage edit onto a previously allocated and cataloged data set
USER.LIBRARY with a member name of PROG.

//jobname JOB

IIstepname EXEC PROC=ASMHCL, X
II COND.L=(O,NE,stepname.C}

IIC.SYSPRINT DO DSNAME=PROG 1 ,UN IT=TAPE, X
II VO LUME=SE R=TAPE 1 O,DCB=(B LKSI ZE=605}
IIC.SYSLIN DO DCB=(BLKSIZE=800}

IIC.SYSIN DO UNIT=282,LABEL=(,NL}, X
II DCB=(R ECFM=F BS,B LKSI ZE=800)
IIL.SYSIN DO DCB=stepname.C.SYSLI N

IIL.SYSLMOD DO DSNAME=USER.LlBRARY(PROG},DISP=OLD

/*

Note: The order of appearance of overriding DDnames for job step C
corresponds to the order of DDnames in the procedure; that is, SYSPRINT
precedes SYSLIN within step C. The DDname C.SYSIN was placed last
because SYSIN does not occur at all within step C. These points are
covered in the Job Control Language Reference manual.

16

The following example shows assembly of two ~rograms, linkage editing of
the two assemblies into one load module, and execution of the load
module. The input stream appears as follows:

IIstepnamel

IIC.SYSLIN

II
II
IIC.SYSIN

/*
/Istepname2

IIC.SYSLIN

IIC.SYSIN

/*
IIL.SYSLIN

IIL.SYSIN

/*
/IG.ddname

EXEC

DO

DO

EXEC

DO

DO

DO

DO

PROC=ASMHC,PAAM.CzOBJECT

OSNAME=&LOAOSET,UN IT=SYSSa,

SPACE=(80,(100,50)),

01 SP=(MOO ,PASS) ,OCB=(B LKSI ZE=800)

source program 1 statements

1

PAOC=ASMHCLG

OCB=(B LKSIZE=·800),0 1 SP=(MOO ,PASS)

*

source program 2 statements

1

OCB=B LKSI ZE= 800

ENTRY PROG

dd cards for G step

X

X

I The Job Control Language Reference manual provides additional description
of overriding techniques.

Using the Assembler 11

Assembler Listing

The assembler H listing consists of up to five sections, ordered as
follows:

• External symbol dictionary

• Source and object program

• Relocation dictionary

• Symbol and literal cross reference

• Diagnostic cross reference and assembler summary

Figure 8 shows each section of the listing. Each item marked with a
circled number is explained in the following section.

18

o

PRIME

o
SYMBOL

EXSYM
I nLOIlP
COMSECT
EXDMY
WRKFLDS

® 00 o 0
TYP~ III AOOR LEN(;TH LO III

PC 0001 000000 OOOlOC
ER (l002
lD 000022 0001
eM 0003 OOiJU()O 000050
XD 0004 000003 000078
SO 0005 000210 000090

PRIME SAMPLE LISTING DESCRIPTIUN

@ o @ @

HTERNAL SYMBUL UICTIDNARY

o
Lec OUJ~C T CODE AilOR 1 AllOR2 SHIT SOURCE STATEMENT

000000

000000 90EC DOOC
000001t O~CO

0000010 5000 COFb
OOOOOA 0000 lono

IEV041t ••• EKIWI!. ...
OOOOOE 56~0 C202

000022 4110 CI3E
0000210 4100 C051
00u02A 58FO 1030
00002 E 05ff

00005

2
3
4
5 1(5

OOOOC 7
8

0(10:16 9
OJO~r. 10
00000 II

UNDEf INtO SYMBUL
0020a 12

OOIH
000~8
00030

13
14

2;;
ZIt IIJLOOP
25+ IOLOJP
26+
27+
28+

CSECT
EXTRN EXSYM
ENTRY IOlOUP
EQU 5

ST'4 14,12,1211 31
BAlR 12,0
USING .,12
ST IhSAVE+t,
LA l(),SAUE

L R5,=AIHSYMI
PRINT MlGEN
(lPEN 1 I NOCa, ,DUTDCIl, 1 nUl PUT II

PRINT GEN
GET INQCB,INBUF
LA I,INIJCIl
LA 1),INIlUf
L_ 15,4810,11
OALR 14,15

PRIME RFLOCATI,lN OICTlIl!llARY

@ @ @
POS.IO REL .ID flAGS

00111 0001 08
0001 0<)01 O~
0001 0002 OC
0001 0004 2C

PRIME

@ @ e @
SYMBUL LEN VALUE OEFN

COMSECT 00001 00000000 0lb7
EXDMY 00001 00000000 01(>9
EXSYM 00001 00000000 n003
EXTNLOUMYSCTN

00004 000140 0052

@
AOORE 55

00001 q
0<)0010
0'10208
OU'JI40

@
REFERENnS

0052
U174

I NBUF 00004 000058 0049 00210 0033
INOCB 00004 000144 0058 001,8 0015
IOlOIlP 00004 0001122 0025 0004 0039
OUTBUF 000J4 00NJA8 oo~n 0033 on36

CI<OSS I!.EFEREI~C[

OUTBUF 00001 oooooano 0111 OUPLICATE
DUTDCA 00004 0001A4 0115 0020 Or.35
R5 OOCOI 00000005 0005 nOl2 OC32
SAUE •••• UNIlEF INE[)O... DOll
SAVE 00004 0000F8 OOSI 0010 U041
IoIRKFUlS 00001 00000210 0170
2AI EXSYMI

00004 000208 0174 0012

PRIME DIAGNiJSTlC CPDSS REFF.RENC~ liN!) ASSfo-1BLER SII'lMARY

THE fOLLOWING STATEMENTS w~RE ~LIlr,G(f1
000 11 00172

2 STATEMENTS FLAG(;W IN THI S ASSEMI1lY 9 WAS HIGHEST SEVE~ITY CODE

OVERRI 01 NG PARAMETERS- SYSPARMI SAMPLE PROGRAHI, NODECK, BAT CH
OPT IONS fOR THIS ASSEMBLY

PAGE 1

ASH H V 0" 11.29 03/16172

PAGE 2

@ @
ASM H V 04 11.29 03/16112

@
LOAD PARAMETER REG I 02-IH81N
LIIAD PIIRAMETER REG 0 02-IHAIN
LOAD GET ROUTINE ADDR. Ol-GET
LI ~K TO GET ROUTINE Ol-GET

PAGE 5

AS H H V 0" 17.29 03/1617 2

PAGE 6

ASH H V 04 17.29 03/16172

PAGE

ASM H V 0" 17.29 03/16172

NOOECK, NOOBJECT, LIST, XREfIFULLI, NORENT, NOTEST, BATCH, ALIGN, ESO, RLD, LINECOUNTl551, HAGIOI, SYSPARMISAMPLE P
ROGRAM I

NO OVERRIDING 00 NAMES

48 CAI<OS FRUM SYS I N
lSI LINES OUTPUT

157~ CARlS fROM SYSLl8
o CA;{US OUTPUT

Figure 8. Assembler H Listing

Assembler Listing 19

External Symbol Dictionary (ESD)

This section of the listing contains the external symbcl dictionary
information passed to the linkage editor or loader in the object module.
The entries describe the control sections, external references, and
entry points in the assembled program. There are six types of entry,
shown in Figure 9 along with their associated fields. 'Ihe circled
numbers refer to the corresponding headings in the sample listing
Wigure 8). The XS indicate entries accompanying each type designation.

G) 0 0 0 @ @
SYMBOL TYPE 10 AOOR LENGTH LOIO

X SD X X X -
X LD - X - X
X ER X - - -
- PC X X X -
X CM X X X -
X XO X X X -
X WX X - - -

Figure 9. Types of ESD Entries

GDThe name of every external dummy section, control section, entry
point, and external symbol.

QDThe type designator for the entry, as shown in the table. The type
designators are defined as:

SC -- Control section definition. The symbol appeared in the
name field of a CSECT or START statement.

LD -- Label definition. The symbol appeared as the operand of
an ENTRY statement.

ER -- External reference. The symbol appeared as the operand of
an EXTRN statement, or was declared as a v-type address
constant.

PC -- Unnamed control section definition (private cede). A CSECT
or START statement that commences a control section does
not have a symbol in the name field, or a control section
is commenced (by any instruction which affects the location
counter) before a CSECT or START is encountered.

CM -- Common control section definition. The symbol appeared in
the name field of a COM statement.

XD -- External dummy section. The symbol appeared in the name
field of a cxc statement or a Q-type address constant.
(The external dummy section is also called a pseudo register
in the Loader and Linkage Editor manual.

WX -- Weak external reference. The symbol appeared as an
operand in a WXTRN statement.

® The external symbol dictionary identification number (ESDIC). The
number is a unique four-digit hexadecimal number identifying the
entry. It is used in combination with the LD entry of the ESD and in
the relocation dictionary for referencing the ESD.

QDThe address of the symbol (in hexadecimal notation) for SD- and

20

LD-type entries, and blanks for ER- and WX-type entries. For PC- and
C~-type entries, it indicates the beginning address of the control
section. For xc-type entries, it indicates the alignment by printing
a number one less than the number of bytes in the unit of alignment.
For exam~le, 1 indicates doubleword alignment.

GDThe assembled length, in bytes, of the control section (in
hexadecimal notation).

~For an LD-type entry, the ESDID of the control section in which the
symbol was defined.

Source and Object Program

'l'his section of the listing documents the source statements and the
resulting object program.

GDThe one to eight-character deck identification, if any. It is
obtained from the name field of the first named ~I1LE statement. The
assembler frints the deck identification and date (item 16) on every
page of the listing.

QDThe information taken from the operand field of a 'lI~LE statement.

® The listing page number.

~ The assembled address (in hexadecimal notation) of the object code.

• For ORG statements, the location-counter value before the ORG is
placed in the location column and the location counter value after
the ORG is placed in the object code field.

• If the ENe statement contains an operand, the o~erand value
(transfer address) appears in the location field (LOC).

• In the case of LOCTR, COM, CSECT, and DSECT staterr.ents, the
location field contains the current address of these control
secticns.

• In the case of EX~RN, WXTRN, ENTRY, and DXD instructions, the
location field and object code field are blank.

• For a USING staterr.ent, the location field contains the value of
the first operand. It is four bytes long.

• For LTORG statements, the location field contains the location
assigned to the literal pool.

• For an EQU statement, the location field contains the value
assigned. It is four bytes long.

Q9 The object code produced by the source staterrent. ~he entries are
always left-justified. The notation is hexadecimal. Entries are
machine instructions or assembled constants. Machine instructions
are printed in full with a blank inserted after every four digits
(two bytes). Only the first eight tytes of a constant will appear in
the listing if PRINT NODATA is in effect, unless the statement has
continuation cards. The entire constant appears if PRINT DA~'A is in
effect. (See the PRIN~ assembler instruction in the Assembler
Language publication.)

Assembler Listing 21

~ Effective addresses (each the result of adding together a base
register value and a displacement value) :

The field headed ADDR1 contains the effective address for the
first operand of an SS instruction.

The field headed ADDR2 contains the effective address of the last
operand of any instruction referencing storage.

Both address fields contain six digits; however, if the high-order
digit is a zero, it is not printed.

~ The statement number. A plus sign (+) to the right of the number
indicates that the statement was generated as the result of macro
call processing. An unnumbered statement with a plus sign (+) is the
result of open code substitution.

~ The source program statement. The following items apply to this
section of the listing:

• Source statements are listed, including those brought into the
program by the COpy assembler instruction, and including macro
definitions submitted with the main program for assembly. Listing
control instructions are not printed, except for PRINT, which is
always printed.

• Macro definitions obtained from SYSLIB are not listed unless the
macro definition is included in the source program by means of a
COpy statement.

• The statements generated as the result of a macro call follow the
macro call in the listing unless PRINT NOGEN is in effect.

• Assembler and machine instructions in the source program that
contain variable symbols are listed twice: as they appear in the
source input, and with values substituted for the variable symbols.

• All error diagnostic messages appear in line except those
suppressed by the FLAG option. The "Assembler Diagnostics
Facilities" section describes how error messages and MNOTEs are
handled.

• Literals that have not been assigned locations by LTORG statements
appear in the listing following the END statement. Literals are
identified by the equals sign (=) preceding them.

• Whenever possible, a generated statement is printed in the same
format as the corresponding macro definition (~odel) statement.
The starting columns of the operation, operand, and comments
fields are preserved unless they are displaced by field
substitution, as shown in the following example:

Source Statements: &C SETC 'ABCDEFGHIJK '
&C LA 1,4

Generated Statement: ABCDEFGHIJK LA 1,4

It is possible for a generated statement to occupy three or more
continuation lines on the listing. In this way generated statements
are unlike source statements, which are restricted to two
continuation lines.

~ The version identifier of Assemtler H.

~ The current date (date run is made) •

22

QP The identification-sequence field from the source statement. For a
macro-generated statement, this field contains infcrmation
identifying the origin of the statement. The first two columns
define the level of the macro call.

For a library macro call, the last ffve columns contain the first five
characters of the macro name. For a macro whose definition is in the
source program (including one read by a COpy statement), the last five
characters contain the line number of the model staterrent in the
definition from which the generated statement is derived. This
information can be an important diagnostic aid in analyzing output
resulting from macro calls within macro calls.

Relocation Dictionary

This section of the listing contains the relocation dictionary
information passed to the linkage editor in the object module. The
entries describe the address constants in the assembled ~rogram that are
affected by relocation.

QID The external symbol dictionary 1D number assigned to the ESD entry
for the control section in which the address constant is used as an
operand.

~ The external symbol dictionary 1D number assigned to the ESD entry
for the control section in which the referenced syrrbol is defined.

~ The two-digit hexadecimal number represented by the characters in
this field is interpreted as follows:

• First Cigit. A'zero indicates that ·the entry describes an A-type
or y-type address constant. A one indicates that the entry
describes a V-type address constant. A two indicates that the
entry describes a Q-type address constant. A three indicates that
the entry describes a CXD entry.

• Second Cigit. The first three bits of this digit indicate the
length of the constant and whether the base should be added or
subtracted:

Bits 0 and 1 Bit 2 Bit 3
00 = 1 byte 0 = + Always 0
01 = 2 bytes 1 = -
10 = 3 bytes
11 = 4 bytes

~ The assembled address of the field where the address constant is
stored.

Cross Reference

This section of the listing information concerns symbols and literals
which are defined and used in the prograw.

~ The syrrbols or literals.

~ The length (in decimal notation), in bytes, of the field represented
by the symbol. The length of a literal is always 1.

Assembler Listing 23

~ Either the address the symbol or literal represents, or a value to
which the symbol is equated. The value is three bytes long, except
for the following, which are four bytes long: CSEC'I, DSECT, S'IART,
COM, DXD, EQU, LOCTR, EXTRN, WXTRN, and a duplicate symbol.

The number of the statement in which the symbol or literal was
defined.

~ The statement numbers of statements in which the symbol or literal
appears as an operand. In the case of a duplicate symbol or literal,
the assembler fills this column with the message:

****nUPLICATE****

The following notes apply to the cross-reference section:

• Symbols appearing in V-type address constants do net appear in the
cross-reference listing.

• Cross-reference entries for symbols used in a literal refer to the
assembled literal in the literal pool. Look up the literals in the
cross reference to find where the symbols are used.

• A PRINT OFF listing control instruction does not affect the
production of the cross-reference section of the listing.

• In the case of an undefined symbol, the assembler fills fields 23,
24, and 25 with the message:

****UNDEFINED****.

Diagnostic Cross Reference and Assembler Summary

~ The statement number of each statement flagged with an error message
or MNOTE appears in this list. The number of staterrents flagged and
the highest non-zero severity code encountered is also printed. The
highest severity code is equal to the assembler return code.

If no errors are encountered, the following statement is printed:

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

See the section "Error Diagnostics" for a complete discussion of how
error messages and MNOTEs are handled.

~ A list of the options in effect for this assembly is printed. The
options specified by the programmer in the PARM field to override the
assembler default options are also printed.

~ If the assembler has been called by a problem program (See Appendix
D) and any standard (default) DDnames have been overridden, both the
default r~names and the overriding DDnames are listed. Otherwise,
this statement appears:

NO OVERRIDING DD NAMES

24

The assembler prints the number of records read frcm SYSIN and SYSLIB
and the number of records written on SYSPUNCH. The assembler also
prints the number of lines written on SYSPRINT. This is a count of
the actual number of 121-byte records generated by the assembler; it
may be less than the total number of printed and blank lines
appearing on the listing if the SPACE n assembler instruction is used.
For a SPACE n that does not cause an eject, the asserrbler inserts n
blank lines in the listing by generating n/3 blank 121-byte records
-- rounded to the next lower integer if a fraction results (for
example, for a SPACE 2, no blank records are generated). The
assembler does not generate a blank record to force a fage eject.

Assembler Listing 25

Assembler Diagnostic Facilities

/

The diagnostic facilities for Assembler H include diagnostic messages
for assembly errors, diagnostic or explanatory messages issued by the
source program or by II1acro definitions (MNOI'ES)., a macro trace and dump
facility (MHELP), and messages and dumps issued by the assembler in case
it terminates abnormally.

This section briefly describes these facilities. The assembly error
diagnostic messages and abnormal assembly termination messages are
described in detail in the OS Assembler H Messages bock.

Assembly Error Diagnostic Messages

Assembler H prints most error messages in the listing immediately
following the statement in error. It also prints the total number of
flagged statements and their line numbers in the Diagncstic Cross
Reference section at the end of the listing.

The messages do not follow the statement in error when:

• Errors are detected during editing of macro definitions read from a
library. A message for such an error appears after the first call i.n
the source program to that macro definition. You can, however, bring
the macro definition into the source program with a COpy statement.
The editing error messages will then be attached tcthe statements in
error.

• Errors are detected by the lookahead function cf the assembler.
(LOokahead scans, for attribute references, statements after the one

being assembled.) Messages for these errors appear after the
statements in which they occur. The messages rray also appear at the
point where lookahead was called.

• Errors are detected on conditional assembly statements during macro
generation or MHELP testing. Such a message follows the most
recently generated statement or MHELP output statement.

A typical error diagnostic message is:

IEV057 ***ERROR*** UNDEFINED OPERATION CODE -- xxxxx

The term ***ERROR*** is part of the message if the severity code is 8 or
greater. The term **WARNING** is part of the message if the severity
code is 0 or 4.

A copy of a segment of the statement in error, represented above by
xxxxx, is appended to the end of/many messages. Normally this segment,
which can be up to 16 bytes long, begins at the bad character or term.
For some errors, however, the segment may begin after the bad character
or term. The segment may include part of the remarks field.

If a diagnostic message follows a staterrent generated by a macro
jefinition, the following items may be appended to the error message:

26

• The number of the model statement in which the errcr occurred, or
the first five characters of the macro name.

• The SET symbol, parameter numter, or value string associated with
the error.

Note: References to macro parameters are by number (such as PARA~008)
instead of name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAMO 0 0 = &SYSNDX
PARAM001 = &SYSECT
PARAM002 = &SYSLOC
PARAMO 0 3 = &SYSTIME
PARAM004 = &SYStATE
PARAM005 = &SYSPARM
PARAM006 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in the
macro definition, followed ty positional parameters. When there are no
keyword parameters in the macro definition, PARAM007 refers to the first
positional parameter.

If a diagnostic message follows a conditional assembly statement in the
source program, the following items will be appended to the error
message:

• The word nOPENcn

• The SET symbol or value string associated with the error

Several messages may be issued for a single staterrent or even for a
single error within a statement. This happens because each statement is
usually evaluated on more than one level (for exarrple, term level,
expression level, and operand level) or by more than one phase of the
assembler. Each level or phase can diagnose errors; therefore, most or
all of the errors in the statement are flagged. Occasionally, duplicate
error messages may occur. This is a normal result of the error
detection process.

Figure 10 is an example of Assemtler H handling of errcr messages.

Asserobler Diagnostic Facilities 27

LUC OBJECT CODE A(1')IH AODR2 SPH SUUkcr STAT[!~F'H ASM H V 01 11.51 05/Z0/70

000000
000000 oono 0000 onooo

IEV044 *** ERROR **. UNDt:Flr-.tE(l
I EVOZ9 *** ERRUK *** INCORRECT
IEV179 *** ERROR *** DELIMITER

000004 05CO
00001>

000006 0000 0000 00000
IEV044 *** ERROR *** Ur-.tOEFINEO

I EV088 *** FRROR *** U~BALANCED
OOOOOA 0700
nooooc 4510 COOF 00014
'100010 00000000
000014 0000 0000 00000

* * *** ••• 4< * *** ** ** *** * .. * ** ** ** * ** * **** *** ** ••• * ••••••• ***** **. **********
SAMPLE ER~OR 01 AGNOSTIC MESSAGES *

T ~ SOURC E PRUGRA/o' IOPEN CODE 1 AND GENERA TEO flY MACRO CALLS *
4 **** ****** *** **** ************** ** ********** ****************************

b A C SEC T
7 Sr.-I 14,U2, 121 III

S YMCUL
P EGISTE:H SPECIF IlATION
ERROR, EXPECT RIGHT PARI::NTHES IS

8 BUR 12,0
9 USlr-.tl; *,12
lOS T 13 ,S A II E +4

snlr,OL
OPFN I CKUI N, I lr-.t PUT 1 ,CROOUT, IOUTPUT) 11

PA~I:NTHESES

12+
IN MACRO CALL OI'ERANU -- OPENCIICRDIN,(IN
CNOP 0,4 Ol-OPEN

13+ SAL I, *+8 LOAD REG1 WIll ST ADDR. Ol-OPEN
14+ DC AlaI OPT BYTE AND OCR AOOR. ai-oPEN
15+ ST CRDIN'(Ir-.tI'UTl,CRfJ'lUT,cOUTPUT,OIl,OI XOI-0PEN

+ S TORE INTO LI ST
IEV029 *** ERRLlR *** INC[lRRECT REGISTl:R SPECIFICATIOr-.t
IEV044 .** ERRLlR llNOEFINFD SYMIl(IL
IEV177 *** F~ROR •• * DELIMITER FPRUR, EXPECT tlLANK nR LEFT PARENTHESIS

00001~ 9280 1000 00000 16+ Mill 0111,128
00001C OAl~ 17+ SVC 19

MOVE IN OPTION BYTE
ISSUE OPFN SVC

19 ******* ** * *.* ******** ***** •• ****. **** ****.**** ** *. ***.****************
2(' * ED IT I NG AN;) GENE RAT I 0'1 ERRORS AND Mr-.tOTES FROM A LI BRARY MACRO *
21 **.* ****. * * ** * *** ** *** * * ••••• ***** ***. ** * * ••• **** **.** .*******.* **** **

23 UlADR REG1=10,REG2=8,CHEROKEE,CHAMP
ILLEGAL lOGICAL/Rf.LATIONAL OPERATOR MACRO - LUADR

ai-OPEN
ai-OPEN

IEV136 *** ERROR ***
IEV08~ *.* ~RKOR ***

DOODlE 58AO C02A
ARITH~::rIC fXPRESSION CUNTAINS ILUGAL OELIMITER UP ENOS PREMATURELY

00030 24+ L 10,CHI::ROKEE
MACP.O - LUADR

01-LOAOR

000022 0000 00(10
IEV029 *** ERR(JK ***

000026 5'300 COZE

DOOOOC 58AO CD04
000010 5880 C008

I EV003 *** ERROR *.*
000014 0000 0000

I EI/029 *** ERROR ***
000018 0000 1)000

IEV074 *** ERROR ***

IFV254 *** MNOTE ***

26 l'JAIlK REG1=25,REG2=8,CHEROKFE, SWIFT
00000 27+ L 25,CHtORUKEE

I!~COR~ECT REGISTEH SPECIFIC'ATION

01)014

0:]004
OOCOR

29
30+

LLlALJR KEG2=10,CHAMP, SWIFT
L O,CHA'1P

6 '" * **** * ** * **** * ** **** **.* *. *. **** * *.* •• ***.* * * ** ** *.***** ***.*** *** ***
7 * SA~PU: MAC!{O I1EFTNITION RFRUN wITH EDITING ERRORS CORRECTEJ) *
R *. **** •• * ****.*.********* ***. * ************* ********.***********.*.**.*

10
11
12
13
14
15
16
17
18

70
21
22

24
25+
26+

f.NAMF.
&K I II

.ERR

MACRLl
LOAOR
SETII
AIF
L
L
MEXI T
MNUT[
MEND

r.REGl=, ®2=, &01'1, &OP2
®1, ®2
IT'&RfG1 FQ 'O'I.ERR
&R I II, &UPI
&R121,€.OP2

36, 'YOU LEFT OUT THE FIRST REGISTER'

** ******** .** * ******************** >1<* ** *** .*************.**************
* SAMPLf: MACRO CALLS WITH GENERATILlN ERRORS liND MNOTES
*. ******** ***. ** ** •• *. ************ **** .** •••••• *******.***************

LUADR RF.r;1 = 1 0, REG? =8 I CHEROKEE, CHAMP
L 10,CHFR.OKEE
L 'l,CflAt'P

28 LlJAUR REGl=L'5,REG2=8,CHEROKEE,r.SWIFT
UNOF.CLAREJ) VARIABLI' SYMBOL. DEF.AULT=O, NULL, UR TYPE=U -- DPFNC/SWIFT

00000 29+ L 25,CHEROKEE
INCORP.ECT REGISHR SPECIFICATION

00000 30+ L 8,
IlLfGAL SYNTAX IN EXPRESSION

32
l3+
34

LUADQ REG2=8,CHAMP, SWIFT
36,YOU LEFT OUT THE FIRST REGISTE:R

END

Figure 10. Sample Error Diagnostic Messages

28

01-LOAOR

01-LOAOR

01-00014
01-00015

01-00014

01-00015

01-00017

MNOTEs

An MNOTE statement is included in a macro definition or in the source
program. It causes the assembler to generate an inline error or
informational message.

An MNOTE a~~ears in the listing as follows:

IEV254 ***MNO~E*** severity code, message

Unless it has a severity code of * or the severity code is omitted, the
statement number or the MNOTE is listed in the diagnostic cross
reference.

Suppression of Error Messages and MNOTEs

Error messages and MNOTEs below a specified severity level can be
optionally suppressed by declaring in the EXEC s~atement:
PARM='FLAG (n)' (where "n" is the selected severity level) •

Abnonnal Assembly Termination

Whenever the assembly cannot be completed, Assembler H ~rovides a
message and, in some cases, a specially formatted du~~ for diagnostic
information. This may indicate an asseml:ler malfunction or it may
indicate a ~rogrammer error. The statement causing the error is
identified and, if possible, the assembly listing up to the point of the
error is printed. The OS Assembler H Messages book, describes the
abnormal termination messages. The messages give enough information to
(1) correct the error and reasseml:le your ~rogram, or (2) determine that
the error is an assembler malfunction.

The CS Assembler H Logic manual, gives a complete explanation of the
format and contents of the abnormal termination dump.

Macro Trace Facility (MHELP)

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open cede or in macro
definitions. r.'!HELP options remain in effect continuously until
superseded by another MHELP statement. Appendix B is a sample ~HELF
trace and dump.

Macro Call ~race

~HELP B'1' or MHELP 1). This option provides a one-line trace for each
macro call, giving the name of the called macro, its nested depth, and
its &SYSNtX (total number of macro calls) value.

Note: This trace is provided upon entry into the macro. No trace is
provided if error conditions prevent entry into the macro.

Assembler Diagnostic Facilities 29

Macro Branch Trace

(MHELF B'10', or MHELP 2). This option provides a one-line trace for
each AGO and true AIF conditional-assembly statement ~ithin a macro. It
gives the model-statement numbers of the "branched from" and "cranched
to" statements, and the name of the macro in which the branch occurs.
This trace option is su~pressed for library macros.

Macro Entry Dump

~HELP B'10000', or MHELP 16), This option dumps parameter values from
the macro dictionary when the macro is called.

Macro Exit Dump

~HELP B' 10000', or MHELP 8). This option dumps SE'l symbol values from
the macro dictionary upon encountering a MEND or MEXIT statement.

Macro AIF DumE

~HELP B'100', or MHELP 4). This option dumps SE~ symbol values from
the macro dictionary immediately before each AIF statement that is
encountered.

Global Suppression

~HELF B'100000', or MHELP 32). This option suppresses global SET
symbols in the two preceding options, MHELP 4 and MHELP 8.

MHELP SUPFression

~HELP B'10000000', or MHELP 128). This option suppresses all currently
active MHELP options.

Combining OFt ions

Multiple options can be obtained by combining the option codes in one
MHELP operand. For example, call and branch traces can be invoked by
MHELP B'11', MHELP 2+1, or MHELP 3.

30

MHELP Contrel on &SYSNDX

The MHELP o~erand field is actually mapped into a full word. Previously
defined MHELP codes correspond to the fourth byte of this full word.

&SYSNDX control is turned on cy any tit in the third byte (operand
values 256-65535 inclusive). Then, when &SYSNDX (total number of macro
calls) exceeds the value of the fullword which contains the MHELP
operand value, control is forced to stay at the open-cede level, by in
effect making every statement in a macro behave like a MEXIT. Open code
macro calls are honored, but with an immediate exit back to open code.

Examples:

MHELP 256
MHELP 1
MHELP 256+1
MHELP 65536
MHELP 65792

Limit &SYSNDX to 256.
Trace macro calls.
Trace calls and limit &SYSNDX to 257.
No effect. No bits in bytes 3,4.
Limit &SYSNDX to 65792.

When the value of &SYSNCX reaches its limit, the rressage "AC~R EXCEEDED
-- &SYSNDX" is issued.

Asserrbler Diagnostic Facilities 31

Programming Considerations

This section discusses some topics in assembler language ~rogramming.

Saving and Restoring General Register Contents

A problem program should save the values contained in the general
registers u~on commencing execution and, upon com~letion, restore to the
general registers these same values. Thus, as control is passed from
the operating system to a problem prograIT and, in turn, to a subprogram,
the status of the registers used by each program is ~reserved. This is
done through use of the SAVE and RETURN system macro instructions.

The SAVE macro instruction should be the first statement in the program.
It stores the contents of registers 14, 15, and 0 through 12 in an area
provided by the program that-passes control. When a ~roblem program is
given control, register 13 contains the address of an area in which the
general contents should be saved.

If the program calls any subprograms, or uses any operating system
services other than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first
save the contents of register 13 and then load the address of an
18-fullword save area into register 13. This save area is in the
problem program and is used by any subprograms or Operating System
services called by the problem program.

At completion, the problem program restores the contents of general
registers 14, 15, and 0-12 ty use of the RETURN systerr ~acro instructiori
(which also indicates program completion). The contents of register 13

must be restored before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process of saving
and restoring the contents of the registers. A com~lete discussion of
the SAVE and RETURN macro instructions and the saving and restoring of
registers is contained in the Supervisor Services and Macro Instructions
publication.

Name Operation Operand

BEGIN SAVE (14,12)

set up base register

ST 13,SAVEBLK+4
LA 13,SAVEBLK

L 13,SAVEBLK+4
RETURN (14,12)

SAVEBLK DC 18F'Q'

32

PrOgram Termination

You indicate completion of an assembler language source program by using
the RETURN system macro instruction to pass control from the terminating
program to the program that initiated it. The initiating program may be
the Operating System or, if a subprogram issued the RETURN, the program
that called the subprogram.

In addition to indicating program completion and restcring register
contents, the RETURN macro instruction may also pass a return code -- a
condition indicator that may be used by the program receiving control.
If the return is to the operating system, the return code is compared
against' the condition stated in the COND= parameter of the JOB or EXEC
statement. If return is to another problem program, the return code is
available in general register 15, and may be used as desired. Your
program should restore register 13 before issuing the RETURN macro
instruction.

The RETURN system macro instruction is discussed in detail in
I Supervisor Services and Macro Instructions.

P ARM Field Access

Access to information in the PARM field of and EXEC statement is gained
through general register 1. When control is given to the problem
program, general register 1 contains the address of a fullword which, in
turn, contains the address of the data area containing the information.

The data area consists of a halfword containing the count (in binary) of
the number of information characters, followed by the information field.
The inforrration field is aligned to a fullword boundary. The following
diagram illustrates this process:

General Register 1

I Address of Fullword
I I

Points
to

Fullword

.. I Address of Data Area - I
1
I

Data Area

.. I Count in Binary I Information Field I
I

Macro Definition Library Additions

Points I
to

Source statement coding, to be retrieved by the COpy assembler
instruction, and macro definitions may te added to the macro library.
The IEBUPLTE utility program is used for this purJ::ose. Details of this
program and its control statements are contained in the Utilities
publication. The following sequence of job control statements can be
used to call the utility program and identify the needed data sets. It
is assumed that the job control statements, IEBUPDTE program control
statements, and data are to enter the system via the inJ::ut stream.

pr~gramming Considerations 33

//jobname
//stepnarne
//SYSUT1
//SYSUT2
//SYSPRINT
//SYSIN

JOE
EXEC
CC
CD
CD
DD

PGM=IEBUPDTE,PARM=MOD
DSNAME=SYS1.MACLIB,DISP=OLD
DSNAME=SYS1.MACLIB,DISP=OLD
SYSOUT=A
*

IEEUPDTE control statements and source staterr,ents cr
macro definitions to be added to the macro library
(SYS 1 .MACLIB)

/* (delirriter statement)

Load Module Modification - Entry Point Restatement

If the editing functions of the linkage editor are to be used to modify
a load module, the entry ~oint to the load module must be restated when
the load module is reprocessed by the linkage editor. Otherwise, the
first byte of the first control section processed by the linkage editor
will eecome the entry point. To enable restatement of the original
entry point, or designation of a new entry point, the entry point must
have been identified originally as an external symbol; that is, it must
have appeared as an entry in the external symbol dictionary. External
symbol identification is done automatically by the assembler if the
entry point is the name of a control section or S~AR~ statement;
otherwise, an assembler ENTRY statement must be used tc identify the
entry point name as an external symbol.

When a new object module is added to or replaces ~art of the load
module, the entry point is restated in one of three ways:

• By placing the entry pcint symbol in the operand field of an EXTRN
statement and an ENt statement in the new object rrodule.

• By using an END statement in the new object module to designate a new
entry point in the new oeject module.

• By using a linkage editor ENTRY statement to designate either the
original entry point or a new entry point for the load module.

Further discussion of load module entry points is contained in the
Loader and Linkage Editor publication.

Object Module Linkage

Object modules, whether generated by the assembler or another language
processor, may be combined by the linkage editor to produce a composite
load module, provided each object module conforrosto the data formats
and linkage conventions required. This topic discusses the use of the
CALL system macro instruction to linkage an assembler language main
program to subprograms produced by another processor. The SUEervisor
Services and Macro Instructions publication, contains additional details
concerning linkage conventions and the CALL system macro instruction.

34

Figure 11 is an example of statements used tc establish the assembler
language program linkage to FORTRAN and COBOL sub~rograms.

If any input/cutput operations are performed by called subprograms,
appropriate CC statements for the data sets used by the subprograms must
be supplied. See the appropriate language prograrrmer's guide for an
explanation of the DD statements and special data set record formats
used for the processor.

Prograrr.ming Ccnsiderations 35

ENTRPT SAVE (14,12)
LR 12,15
USING ENTRPT,12
ST 13,SVAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13,15

2 CALL name,(V1,v2,V3),VL

L 13,SVAREA+4
RETURN (14,12)

3 SVAREA DC 18F'Q'
4 V1 DC (data)
5 V2 DC (data)
6 V3 DC (data)

END

This is an example of OS linkage convention. See the Supervisor Services and Macro Instructions for

details.

2 The symbol used for "name" in this statement is:

a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.

b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY'name'.

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRYstatement in an
assembler-language subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the
argument. If the called routine is a FORTRAN-written function, the returned argument is not in the parameter list: a
real or double precision function returns the value in floating point register zero; an integer function returns the value
in general purpose register zero.

NOTE: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements
of IBCOM (FORTRAN execution-time I/O and interrupt handling routines) which accompanies the compiled FORTRAN
subprogram. In some instances the call for IBCOM is not automatically generated during the FORTRAN ompilation.
The FORTRAN IV Library publication, Order Number GC28-6596, provides information about IBCOM requirements and
assembler statements used to call I BCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages
which call them; therefore all linkages to FORTRAN subprograms are required to have the high-order bit in the last
parameter in the linkage set to 1. COBOL-written subprograms have fixed-length calling linkages; therefore, for COBOL
the high-order bit in the last parameter need not be set to 1.

3 This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram,
register 13 contains the address of this area.

4,5,6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined
by the data formats required by the FORTRAN or COBOL subprograms.

Figure 11. Sample Assembler Linkage Statements for FOR~RAN
or COBOL Sutprograms

36

Special CPU Programming Considerations

You should be aware cf operational differences between the Model 85,
Model 91, and Model 195 and other System/360 models. The primary
differences are:

• Non-sequential instruction execution -- 91 and 195

• Extended precision machine instructions 85 and 195

• Unaligned operands -- 85 and 195

CONTROLLING INSTRUC'IICN EXECUTION SEQUENCE

The Model 91 and Model 195 maintain a logical consistency with respect
to their own operations, including the ceginning and ending of IIC
operations, but they do not assume responsibility for such consistency
in the operations performed by asynchronous units. Ccnsequently, for
any asynchronous unit that depends upon a strict adherence to sequential
(or serial) execution, a problem program must set up its own procedures
to ensure the proper instruction sequence.

For a program section that requires the serial or sequential execution
of instructions, the following 'no-operation' instruction:

BCR N,O N=1 ,15

causes instruction decoding to halt until the instructions that have
already been decoded are executed. (This action is called a pipe-line
drain.) On the Model '91 and Model 195, this instruction ensures that all
the instructions preceding it are executed before the instruction
succeeding it is decoded. Use of this instruction should be minimized,
because it may affect the performance of the cPU.

Isolating an instruction by preceding it and following it with a BCR N,O
instruction eliminates multiple imprecise interruptions from more than
one instruction by virtue of the pipe-line drain effect. However,
because multiple exceptions may occur in one instruction, this technique
does not eliminate a multiple imprecise interruption, nor does it change
an imprecise interruption into a precise interruption. ~he use of the
BCR instruction does not assure you that you can fix up an error "
situation. In general, the only information available will be the
address of the BCR instruction. The length of the instruction preceding
the ECR instruction is not recorded, and generally there is"no way to
determine what that instruction is.

Note: ECR 0,0 does not cause a pipe-line drain.

EXTENDED-PRECISION MACHINE INSTRUCTIONS

The extended-precision arithmetic instructions and the rounding
instructions of the Model 85 and the Model 195 are shown below. A
complete description of these instructions is in the IBM System/360
principles of Operation.

prograrr,ming Ccnsiderations 37

Name Mnemonic Type Op Code

ADD NORMALIZED (extended operands, extended result) AXR RR 36
SUBTRACT NORMALIZED (extended operands, extended result) SXR RR 37
MUL TIPL Y (extended operands, extended result) MXR RR 26
MULTIPLY (long operands, extended result) MXDR RR 27
MULTIPLY (long operands, extended result) MXD RX 67
LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

A program containing the extended-precision instructions cannot be
executed successfully on another System/360 model unless those
instructions are converted into others that can be executed by the
non-Model 85 or Model 195 machine. The OPSYN assembler instruction
helps provide a facility for doing this.

OPSYN is described in the OS Assembler H Language Specifications manual
or, for VS, in the Assembler Language manual.

A type L DC instruction can be used to specify an extended-precision
(16-byte) floating-point constant. The DC instruction is described in
the Assembler Language manual.

UNALIGNED (EYTE-ORIENTEC) OPERANDS

The Model 85 and Model 195 will execute unprivileged RX and RS format
instructions with fixed-point, floating-point, or logical operands that
are not on integral boundaries. Assembly of such instructions normally
produces the diagnostic message "IEV033 ALIGNMENT ERROR". A PARM option
in the EXEC statement, ALIGN or NOALIGN, makes it possible to suppress
the message and thereby ottain a clean assembly listing. The object
code is not affected.

Note that an assembled program that requires use of the Model 85 and
Model 195 byte-oriented operand feature cannot be run en another
machine, nor can it run successfully under the Operating System if it
violates any alignment restrictions imposed by the Operating System.

38

Appendix A. Sample Program

The sample ~regram included with Assembler H when it is received from
IBM is described in this appendix. This program demonstrates some basic
assembler language, macro, and conditional asserrbly features, most of
which are unique to Assembler H. The circled letters in the description
below refer to corresponding letters in the listing that follows the
description.

®

®

The job control language for the assembly consists of the
IEM-supplied cataloged procedure ASMHC and the statements needed to
use the ~rocedure and supply input to the assembler. Note that three
of the default PARM options are overridden in the EXEC statement that
calls the ~rocedure. .

By using the EATCH (multiple assembly) option, this sample program,
the sample program in Appendix B, and the listings in Figure 8 and
Figure 10 were assembled with one set of JCL cards. Object modules
were not punched fer any of the assemblies because the NODECK option
is specified. The character string specified in the SYSPAR~ option
is available to each assembly. The character string is displayed in
this progra~ by using the system variable symbol &SYSPARM (statement
144) •

The External Symbol Dictionary shows a named common statement.
named common section is defined in statement 158.

The

~ Statement 10: Save the current status of the PRIN~ statement
(ON, NOI:A'IA ,GEN) •

®

®

Statement 11: Leave ON in effect, modify the other two options to
DATA,NOGEN.

Statement 12: Macro call; note that the expansion (statement 10) is
not pr in ted.

Statement 14: All 28 bytes of data are displayed to the two-operand
DC •

. Statement 15: Restore prior status of PRINT.

Statements 17 and 18: The generated output of the rracro WTO is shown
and only the first 8 bytes of data are displayed.

Statements 14 and 18: Multiple constants are allowed in hexadecimal
and binary DC operands, and neither symbol in the du~lication factor
has been defined yet. Definition occurs in statements 108 and 109.

Statements 26, 28, 136, and 155 illustrate use of the LOCTR assembler
instruction. This feature allows one to break control sections down
into sub-control sections. It may be used in CSEC~, CSECT, and CO~.
LCCTR has many of the features of a control section; for example,
all of the first LOCTR in a section is assigned space, then the
second, and so on. The name of the control section automatically
names the first LOCTR section. Thus LOCTR A is begun, or resumed, at
statements 2, 28, and 155. Note that the location counter value
shown each time is the resumed value of the LOCTR. On the other
hand, various LOCTR sections within a control sectien have common
addressing as far as USING statements are concerned, subject to the

Appendix A. Sample Program 39

®

®

®

®

®

©

®

®

@

®

40

computed displacement falling within 0 through 4095. In the sample,
CONSTANT is in LOCTR DEECEES but the instruction referencing it
(statement 25) has no addressing problems.

Three-operand EQU. Here, we are assigning: (a) the value of B5 (not
yet defined) to A8, (b) the length attribute of A5 to A8, and (c) the
type attribute of A7 to A8. If no operand is present in an EQU
statement, the type attribute is U and the length attribute is that
of the first term in the operand expression. Symbols present in the
label and/er operand field must be previously defined. Note that it
is not pessible to express the type attribute of A7 directly in the
EQU statement. The EQU statement at 38 could have been written

A8 EQU B5,2,C'L'

A8 EQU B5,X'2',~'D3'

Set symbols &LA8 and &TA8 have not been declared in a LCL or GEL
statement prior to their use here. Therefore, they are defaulted to
local variable symbols, as follows: &LA8 is a LCLA SE~ symbol
because it appears in the name field of a SE~A; &~'A8 is a LCLC SET
symbol because it is first used in a SETC.

MNOTE may appear in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

A SETC expression may have a duplication factor. The SETA expression
must be enclosed in parentheses and i~mediately precede the character
string, the substring notation, or the type attribute reference.

Statements 57-60 illustrate 4-byte self-defining values and unary +
and -. The value of X will appear later in a literal address
constant (see staterr,ent 162).

The programmer macro DEMO is defined well after the start of the
assembly. Macros can te defined at any point and, having been
defined and/or expanded, can be redefined. Note that the parameters
on the prototype are a mixture of keywords and positional operands.
&SYSLIST may be used. The positional parameters are identified and
numbered 1, 2, 3 from left to right; keywerds are skipped over.

Statement 70 illustrates the extended SET feature (as well as
implicit declaration of &LOC(l) as a LCLC). Beth &LOC(l) and &LOC (2)
are assigned values. One SETA, SETB, or SETC statement can then do
the work of many.

Statement 72 is a model statement with a symbolic ~araroeter in its
operation field. ~his statement will be edited as if it is a macro
call; at this time, each operand will be denoted as pesitional or
keyword. At macro call time, it will not be possible to reverse this
decision. Even though treated as a rracro, it is still expanded as a
machine or assembler operation.

Statement 74 illustrates the computed AGO stateroent. Control will
pass to .MNOTE1 if &KEY2 is 1, to .MNOTE2 if &KEY2 is 2, to .MNOTE3
if &KEY2 is 3 or will fall through to the model statement at 75
otherwise.

Statement 77 illustrates the extended AIF facility. ~his statement
is written in the alternate format. The logical expressions are
examined from left to right. Control passes to the sequence symbol
corresponding to the first true expression encountered, else falls
through to the next model statement.

Statement 87 contains a subscripted created SE~ symbol in the name

field. Exclusive of the subscript notation, these SE~ symbols have
the form & (e) where e is an expression made up of character strings
and/or variable symbols. When such a symbol is enccuntered at
expansion time, the assembler evaluates e and attempts to use
& (value) in place of &(e). Looking ahead, we see that ~EMO is used
as a macro instruction in statement 97 and &KEY1=C". Thus, the 'e' in
this case is X&KEY1 which has the value xc. Finally, the
macro-generator will use &XC(2) as the name field of this model
statement. In statement 108, note that &XC(2)equals TRANSYLVANIA
(statement 96). Finally, in the sequence field of statement 108, we

see that this statement is a level 01 expansion of a programmer macro
and the corresponding model statement is statement number 87.

Created SET symbols may be used wherever regular SET symbols are used
in declarations, name fields or operands of SE~ statements, in model
statements, etc. Likewise, they are subject to all the restrictions
of regular SET symbols. In the prograremer macro DEMO, it would not
have been valid to have the statement GBLC & (X&KEY 1) (1) because, in
statement 71, &XA, &XB, and &XC are declared as glcbal variable
symbols and & (X&KEY1) (2) becomes &XC (2) unless, of ccurse, &KEYl was
assigned something other than the value A, B, cr C in the macro
instruction DEMO, statement 97. In that case, we would need a global
declaration statement if we wanted & (X&KEY1) to be a global SET
symbol. Eecause global declarations are processed at generation time
and then only if the statement is encountered, we would insert the
following statements between, say, statements 71 and 72.

AIF (' &KEY1' EQ 'A' OR '&KEY1' EQ 'E' OR '&KEY1' EQ 'C').
GELC & (X &KEY1) (1)

.SKIP ANOP

®

®

®

As the macro is defined, &(X&KEY1) will be a global SE~C if &KEYl is
A, B, or C; otherwise it will be a LCLC or, possibly, a LCLA. In the
macro, if & (X&KEY1) becomes a local, it will have a null or zero
value.

In staterr:ents 93 and 94, note that &XA is declared as a subscripted
global SETC variable with a maximum subscript of 1 and, in the next
statement (an extended SET statement), we store sorrething into &XA(2).
There is no contradiction here. The statement GBLC &XA(1) marks &XA
as a subscripted global SETC symbol. Any decimal self-defined number
(1 through 2147483647) can be used. Furthermore, only a nominal

amount of space is set aside in the global dictionary -- this space
is open-ended and will be increased on demand and only on demand.

Statement 97 is the macro instruction DEMO. Note that &Pl has the
value WRITE. Therefore, the model statement at statement 72 becomes
an inner macro, WRITE, producing the code at statements 98-103. The
sequence field of these statements contains 03-IHBRD, indicating that
they are generated by a level 03 macro (DEMO is 01, WRITE is 02)
named IHERDNRS. It is an inner macro called by WRI~E.

Statements 108 and 109 contain some ordinary symbols longer than
eight characters. The limit for ordinary symbcls, c~eration codes
(for programmer and library macros and op codes defined through

OPSYN) , variable symbols, and sequence symbols is sixty-three
characters (including the & and • in the latter twc instances,
respectively). Most long symbols will prcbably be nearer to eight
than sixty-three characters in length. Extremely long symbols are
simply too difficult to write, especially if the syrrbol is used
frequently. The requirement that the operation field be present in
the first statement of a continued statement is still in effect.

I Furthermore, names of START, CSECT, EXTRN, WXTRN, ENTRY, etc. symbols
are still restricted to eight characters.

A~pendix A. Sample program 41

®

®

®

®

®

42

Library rracros may be inserted into the source stream as programmer
macros by use of a COpy statement. The result (statements 118-126)
is essentially a programmer macro definition. When a library macro
is brought in and expanded by use of a macro instruction, the
assembler (1) looks the macro up by its member-naroe and (2) verifies
that this same name is used in the operation field of the prototype
statement. Therefore, for example, DCE has to be catalogued as DCB.
However, as COpy code, the member name bears no relationship to any
of the statements in the memcer. ThUS, several variations of a given
macro could be stored as a library under separate names, then copied
in at various places in a"single assembly as needed. (Assembler H
allows yeu to define and redefine a macro any number of times) •

In statement 129, MARK is made a synonym for NOTE. Te identify NOTE
as a macro, it has to be used as either a systerr roacre call (that is,
from a macro library) or a programmer macro definition prior to its
use in the operand field of an OPSYN statement. The COpy code at
118-126 is a programmer macro definition. The macro instruction at
statement 130 is MARK. We can use MARK and NOTE interchangeably. If
desired, we could remove NOTE as a macro definition in the following
way:

MARK
NOTE

OPSYN
OPSYN

NOTE

We could then refer to the macro only as MARK.

Statement 144 demonstrates &SYSTIME, &SYSDATE and &SYSPARM. ~he
values for the" first two are the same as we use on the heading line.
The value for &SYSPARM-is the value passed in the FARM field of the
EXEC statement or the default value assigned to &SYSPARM when
Assembler H is installed.

System variable symbols &SYSLOC and &SYSECT are displayed. ~he
sequence field indicates that the model statements are statements 148
and 149.

Illustration of named CO~MON.
named CO~MON section with :

You can establish address ability for a

USING section-name, register

You can address data in a blank COMMON section by labelling a
statement after the COMMON statement and using "relative addressing.

If there are literals outstanding when the END statement is
encountered, they are assigned to the LOCTR currently in effect for
the first control section in the asserrbly. This way or may not put
the literals at the end of the first control section. In this sample
assembly, the first control section, A, has two LOC~Rs, A and DEECEES.
Because A is active (at statement 155), the literals are assembled
there. You always have the ability to control placeroent of literal
pools by means of the LTORG statement. Note that X'FFFFFFE8' is used
for the contents of A (AS,X) , statement 162. The syrrbol X was
assigned the value (4*-6) by an EQU in staterrent 60.

IIHPGEXAMP JOB 932100,BERGQUIST,MSGLEVEL=lt~SGCLASS=O
II EXEC ASMHC,PARH='SYSPARM(SAMPLE PROGRAMI,NOOECK,BATCH'
*** 4100 H ASSEMBLER GROUP
XXC EXEC PGM=IEV90,PARM='NOLOAO,NOOECK',REGION=lBOK
IISTEPLIB 00 OSN=ASH.V04

-02/15/71- 00000100
00000200

X/STEPLIB DO OSN=ASH.E03,DISP=SHR
II DO DSN=ASH.V03,OISP=SHR
XXSYSLIB DO DSN=SYS1.MACLIB,OISpcSHR
XXSYSUTI DO UNIT=2314,SPACE=(CYL,(10,51I,DSN=&SYSUT1,DCB=(BLKSIZE=35201

(;\ XXSYSPUNCH DO SYSOUT=B,DCB=BLKSllE=BOJ,SPACE=(CYL,(5,5,OII
~ IISYSPRINT 00 SYSOUT=(O,COPY1I,DCB=BLKSIlE=3509

X/SYSPRINT DO SYSOUT=A,OCB=BLKSIZE=3509
IISYSIN 00 * GENERATED STATEMENT
IEF2361 ALLOC. FOR HPGEXAMP C
IEF237I 231 ALLOCATED TO STEPLIB
IEF237I 231 ALLOCATED TO
IEF2371 237 ALLOCATED TO SYSLIB
IEF2371 137 ALLOCATED TO SYSUT1
IEF237I 335 ALLOCATED TO SYSPUNCH
IEF2371 336 ALLOCATED TO SYSPRINT
IEF2371 235 ALLOCATED TO SYSIN

BIGNAME EXTERNAL SYMBOL DICTIONARY

00000300

00000400
00G00500
ooooebOO

00000700

PAGE

SYMBOL TYPE 10 AODR LENGTH LO 10

SO 0001 000000 OGOOOC

ASM H V 04 17.29 03/16/72

o ~D2 eM 0002 000000 000702

Appendix A. Sample Program 43

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATE~ENT MAS NO NAME, 2ND ONE DOES PAGE

LOC OBJECT CODE

000000

ADDR1 ADDR2 ST~T SOURCE STATEMENT

CSECT
USING *,8

ASM H V 04 17.29 03/16/72

00020000
00030000

C00002 01230ABCOI02030A
COOOOA OBOCOI02030AOBOC
000012 0102030AOBOCOI02
OOOOlA 03CAOBOC

C0001E OA23
OOOOZO 01Z30ABCOI02030A

00003C 5850 8098
000098
000098 00000005
000040

000040 1812

000042 000000000000
C00048 413Z43F6AB885A30
00t050 338D313198A2E037

00000
2 A
3

5 **
6 * PUSH AND POP STATEMENTS *
7 * PUSH DOWN THE PRINT STATEMENT, R~PLACE IT, RETRIEVE ORIGINAL *
8 **

00050000
00060000
00070000
00080000

10
11

PUSH PRINT SAVE DEFAULT SETTING' PRINT ON,NODATA,GEN' 00100000
PRINT NOGEN,DATA 00110000

@ ~! WTO MF=' E, 'Ill EX PANS ION NOT SHOWN 00120000
DC X'123,ABC','REALLYLONGSYMbOL-TRANSYLVANIAIB'I,10,ll,lO10,1011,1100' 00130000

®

00098

®

OOOAO

15
16
17+
18

POP PRINT RESTORE DEFAULT PRINT SETTING 00140000
WTO MF='E'(lll EXPANSION SHOWN 00150000
SVC 35 ISSUE SVC 01-HTO

JC X'123,ABC','REALLYlONGSYMBOL-TRANSYlVANIAIB'l,10,11,1010,1011,1100' 00160000

20 ** 00180000
21 * lOCTR INSTRUCT ION * 00190000
22 * LOCTR ALLOWS 'REMOTE' ASSEMBLY OF CCNSTANT * 00200000
23 ** 00210000

25 L 5,CONSTANT 00230000
00240000 26 DEECEES LOCTR

27 CONSTANT DC F'5' CONSTANT CODED HERE, ASSEMBLED BEHIND LOCTR A 00250000
28 A lOCTR RETURN TO 1ST lOCTR IN eSECT A 00260000

30 **
31 * 3 OPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND *
32 **

34 A5
35

LR 1,2
PRINT DATA

L'A5 = 2, T'A5 = I

36 A7 DC L'3.14159~65358979323846Z6433832795028841912' L'A7

37 &TYPE
38 AS

+A8

SETe
EQU
EQU

T'A7
B5 ,l' A5, C' &TYPE'
B5,L'A5,C'L'

16,T'A7

00280000
00290000
00300000

00320000
00330000

00340000

00350000
00360000
00360000

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND GNE DOES PAGE 3

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCe STATEMENT ASM H V 04 17.29 03/16/7i

000058 7FFFFFFFC1C2C3C4
t00060 fFfFfFFF
000064 1810

G)
0
(0

FFFFFFE8

40 ** 00380000
41 * IMPLICIT DECLARATION OF LOCALS &A, &C -- USE OF SETC OUP FACTOR TO * 00390000
42 * PROUUCE SETe STRING LONGER THAN 8, MNOTE IN OPEN CODE * 00400000
43 ** ~0410000

45 &LA8 SETA L'A8
46 &TA8 SETe i' A8
47 MNOTE *,'LENGTH OF A8 GLA8, TYPE OF A8 .&TA8'

+*,LENGTH OF AS = 2, TYPE OF A8 L

49 &A SETA 2
50 &C SETe (&A+31'STRING,'
51 MNOTE *,'&&e HAS VALUE = &e'

+*, &e HAS VALUE = STRING,STRING,STRING,STRING,STRING,

53 **
54 * EXAMPLES OF 4 BYTE SELF-DEFINED TERMS, UNARY + AND - *
55 **

51 DC A(2147483647,e'ABeD',X'FFFFFFFF'1

58 LR -1+2,16+-3

60 X EQU 4*-6

00430000
00440000
00450001)
00450000

00470000
00480000
00490000
00490000

(10510000
00520000
00530000

00550000

00560000

00580000

A~pendix A. Sam~le Program 45

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREA~ NOW PAGE 4

LOC OBJECT CODE

000066 1816
000068 9220 100S
(j0006C 5081 0008
000010 58Fl 0008
000074 S8FO F030
COO018 OSEF

oe007A S8S0 A008
00007E IB9A
000080 '>8CD 8090
000084 S013 80A8

46

ADDRl ADDR2 STHT SOURCE STATEMENT ASH H V 04 11.29 03/16/72

OOOOS

0
C0
0
@

@

00008
00008
00030

0

G)

0

62 ** 00600000
63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGO AND AIF * 00610000
64 * STATEMENTS, DECLARATION AND USE Of SU8SCRIPTED SET SYMBOLS, * 00620000
6S * USE OF CREATED SET SYMBOLS, EXT ENDED SET STATEMENTS * 00630000
66 ** 00640000

68
69
70 UOCIlI
71
72

MACRO
DEMO
SETC
GBLC
&Pl

&Pl,&KEV1=A,&P2,&KEY2=1,&P3,&KEY3=3,&P4
'2','3' &LOC IS DIMENSIONED LCLC BY DEFAULT
&XA(SI ,&XB(201 ,&XC(lI
&SYSLIST(41,&SYSLIST(SI,&SYSLIST(61,MF=E

73 &N SETA 1
74
7S
76
77

78
79
80
81
82
83
84
8S
86
87
88
89

91

93
94
9S
96
97

AGO
&N SETA

MNOTE
AIF

MNOTE
AGO

.MNOTEl MNOTE
AGO

.MNllTEZ MNOTE
AGO

.MNOTE3 MNOTE
.COMMoN L

(&KEYZI.MNOTE1,.MNOTE2,.MNOTE3
2
*,'&&KEY2 NOT 1,2, OR 3---USE &&KEY3 IN PLACE OF IT'
(&KEY3 EQ 11.MNOTE1,
(&KEY3 EQ 21.MNOTE2,(&KEV3 E~ 31.MNOTE3
*,'BOTH &&KEY2 AND &&KEY3 FAIL TO QUALIFY'
.COHMDN
*,'&&KEY&LOC(&NI l'
.COMMON
*,'&&KEY&LOC(&NI 2'
.COMMON
*, '&&KEY&LOC(&NI 3'
5,8(,101 NOTE THAT OPCODES, OPERANDS & COMMENTS

&XB(21 5R 9,10 ON MODEL STATEMENTS
&(X&KEY1)(21 LM 12,13,=A(AS,XI ARE KEPT IN PLACE UNLESS DISPLACED
&P2 ST 7,&P3 AS A RESULT OF SUBSTITUTION

&XA(11
UBnJ
&XC(11

MEND

DEMO MACRO INSTRUCTION (CALLI

GBLC &XA(11,&XB(ZI,&XC(31
SETC 'A','MISSISSIPPI'
SETC 'B', 'SUSQUEHANNA'
SETC 'C','TRANSYLVANIA'
DEMO KEY3=2,WRITE,REALLYLONGSYMBOL,

A8+8*(BS-CONSTANT-71(31,KEY1=C,(61,SF,
(8I,KEY2=1

98+ LR 1,6 LOAD DECB ADDRESS
TYPE fIELD 99+ MVI 5(11 ,X' 20'

100+ ST 8, 8(1, 01
101+ L lS,8(1,DI

SET

LOAD DCB
STORE DCB ADDRESS

ADDRESS

<l0660000
00610000
00680000
00690000
00100000
00110000
00120000
00130000
00740000

X001S0000
. 00760000

00770000
00180000
OC190000
00800000
00810000
OC820000
00830000
00840000
008S0000
00860000
0<l870000
00880000

00900000

00920000
00930000
00940000
009S0000

102+ L 15,4810,151
103+ BALR 14,15

LOAD ROWR ROUTINE ADDR
LINK TO RDWR ROUTINE

104+*,&KEY2 NOT 1,2, OR 3---USE &KEY3 IN PLACE Of IT
10S+*,&KEY3 = 2 •

00008 106+ L 5,81,101 NOTE THAT OPCODES, OPERANDS & COMMENTS

M00960000
N00970000

00980000
03-IHeRD
03-IHBRD
03-IHBRO
03-IHBRD
03-IHBRD
03-IHBRO
01-00076
01-o008Z
01-0008S
01-00086
01-00087

107+SUSQUEHANNA SR 9,10 ON MODEL STATEMENTS
00090~108+TRANSYLVANIA LH lZ,13,=AIA5,XI ARE KEPT IN PLACE UNLESS DISPLACED
000A8 109+REALLYLONGSYMBOL ST 7,A8+8*IBS-CONSTANT-7113J XOI-00088

+ AS A RESULT OF SUBSTITUTION

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW PAGE

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 04 17.29 03/16/7L

000088 1816
00008A 58FO 1054
(i0008 E 05EF

00009C
00009C 00000000
COOOAO OBOOOOA000000050

OOOOA8 E3C9D4e5407E40Fl

OOOODe
OOOODe
000090

COOOOO
COOOOO
000700 1867

000090 00000040FFFFFFE8

CD

00054

(0

0

o

III *.**
112 * COpy 'NOTE' MACRO IN FRUM MACLIB, RENAME IT 'MARK', CALL IT UNDER *
113 * ITS ALIAS ~- IN EXPANSION OF MARK, NOTICE REFERENCE BACK TO *
114 * DEFINITION STATEMENTS IN 'COLUMNS' 7b-8D Of EXPANSION *
115 **

117 COPY NOTE
118 MACRO
119 ~NAME NOTE ~DCB, ~DUMMY=
120 AIF 1'~DC8' EQ "I. ERR
121 ~NAME IHBINNRA WCB
122 L 15,8410,11 LOAD NOTE RTN ADDRESS
123 BALR 14,15 LINK TO NOTE ROUT INE
124 MEXIT
125 .ERR IHBERMAC 6
126 MEND

01'.l0000u
01010000
01020000
01030000
01040000

01060000
00020000
00040017
00060000
00080000
(,0100000
00120000
00140000
00160000
00180000

129 MARK
130

OPSYN NOTE
MARK 161

COMMENTS OF GENERATED STATEMENTS OCCUpy SAME 01090000
'COLUMNS' AS THOSE IN MODEL STATEMENTS 01100000

131+
132+
133+

LR 1,6
L 15,8410,11
BALR 14,15

LOAD PARAMETER REG 1 02-IH8IN
LOAD NOTE RTN ADDRESS 01-00122
LINK TO NOTE ROUTINE 01-00123

135 **
13p DEECEES LOCTR SWITCH TO ALTERNATE LOCATION COUNTER

137 B5 CCW X'OB',B5,O,80

139 **
140 * DISPLAY OF ~SYSTIME, ~SYSOATE, ~SYSPARM AND ~SYSLOC *
141 **
143 PRINT NODA TA
144 DC C'TIME '" ~SYSTIME, DATE '" ~SYSDATE, PARM '" ~SYSPARM'

+ DC C'TIME '" 17.29, DATE'" 03/16/72, PARM = SAMPLE PROGRAM'

146 MACRO
147 LOCATE
148 ~SYSECT CSECT DISPLAY OF CURRENT CONTROL SECT ION
l't9 ~SYSLOC LOCTR AND LOCATION COUNTER
150 MEND

152 LOCATE
153+A CSECT DISPLAY OF CURRENT CONTROL SECTION
154+DEECEES LOCTR AND LOCATION COUNTER
155 A LOCTR

157 **
158 PD2 COM NAMED COMMON THROWN IN fOR GOOD MEASURE
159 OS 500F
160 LR 6,7
161 END
162 =AIA5!XI

01120000
01130000

01140000

01160000
01170000
01180000

01200000
01210000
01210000

01230000
01240000
01250000
01260000
01270000

01290000
01-00148
01-00149
01300000

01320000
01330000
01340000
01350000
01360000

Appendix A. Sam~le Program 47

BIGNAME RELOCATION DICTIONARY PAGE 6

POS.ID REL.ID fLAGS ADDRESS ASM H V 04 17.29 03/16/72

0001
0001

BIGNAME

SYMBOL

A
A5
A7
A8
S5
CONSTANT
l::EECEE S

0001
0001

LEN

00001
00002
00016
00002
00008
00004
00001

OC
08

VALUE

00000000
000040
000048

OOOOOOAO
OOOOAO
000098

00000098
P02 00001 00000000
REALLYLONGSYMBOL

00004 000084
SUSQUEHANNA

00002 00007E
TRANSYLVANIA

00004 000080
X 00001 FFFFFfE8
=AIA5, XI 00004 000090

BIGNAME

000(90
0000A1

DEfN REFERENCES

0002 0028 0153
0034 0038 0162
0036
0038 0109
0137 0038 0109
0027 0025 0109
0026 0136 0154
0158

0109 0014 0018

0107

0108 0014 0018
0060 0162
0162 0108

CROSS REFERENCE

0155

0137

DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

OVE~RIDING PARAMETERS- SYSPARM(SAMPLE PRO~RAMI,NODECK,BATCH
OPTICNS FOR THIS ASSEMBLY

PAGE 7

ASM H V 04 17.29 03/16/72

PAGE

ASM H V 04 17.29 Q3/16/72

NODECK, NOOBJECT, LIST, XREF(FULLI, NJRENT, NOTEST, BATCH, ALIGN, ESD, RLD, LINECOUNT(551, FLAG(OI, SYSPARM(SAMPLE P
ROGRAMI

48

NO GVERRIDING DO NAMES

130 CARDS FROM SYSIN
198 LII~ES OUTPUT

524 CARDS FKOM SYSLIB
o CARDS OUTPUT

Appendix B. Sample Macro Trace and Dump (MHELP)

The Macro Trace and Curr.p (MHELP) facility is a useful means of debugging
macro definitions. MHELP can be used anywhere in the source program or
in macro definitions. MHELP is processed during macro generation. It
is completely dynamic; you can branch around the ~HELP statements by
using AIF or AGO st'atements. Therefore, its use can be controlled by
symbolic parameters and SET symbols.

The following sample program illustrates the five prirrary functions of
MHELP. Since most of the information produced is unrelated to statement
numbers, the dumps and traces in the listing are marked with circled
numbers. Most dumps refer to statement numbers. 1£ you request MHELP
information about a library macro definition, the first five characters
of the macro name will appear in place of the statement number. To get
the statement numbers, you should use COpy to copy the library
definition into the source program prior to the macro call.

MACRO CALL ~RACE (MHELP 1)

Item ~ illustrates an outer macro call, ~ an inner one. In each
case, the amount of information given is brief. ~his trace is given
after successful entry into the macro; no dump is given if error
conditions prevent an entry.

MACRO ENTRY DUMP (MHELP 16)

This provides values of system variable symbols and symbolic parameters
at the time the macro is called. The following numbering system is used:

000 &SYSNDX
001 &SYSECT
002 &SYSLOC
003 &SYSTIME
004 &SYS1:ATE
005 &SYSPARM
006 NAME FIELD ON MACRO INSTRUCTION

If there are NKW keyword parameters, they follow in order of appearance
on the prototype statement.

007
008

006+NKW

1st keyword value
2nd keyword value

NKWth keyword value

Appendix B. Sample Macro Trace and Dump ~HELP) 49

If there are NPP positional parameters, they follow in order of
appearance in the macro instruction.

007.+NKW
008+NKW

006+NKW+NPP

1st positional parameter values
2nd positional parameter values

NPPth positional parameter values

For example, item ~ has one keyword parameter (&OFFSE~) and one
positional parameter. ~he value of the keywerd parameter appears
opposite 110006, the positional parameter, o~posite 110007. In both the
prototype (statement 3) and the macro instruction (statement 54), the
positional parameter appears in the first operand field, the keyword in
the second. A length appears between the NUM and VALUE fields. A
length of NUL indicates the corresponding item is empty.

Item ~ illustrates an inner call containing zero keywords, and two
positional parameters.

MACRO AIF DUMP (MHELP 4)

Items @, ~, G9, ...)are examples of these dum~s. Each such dump
includes a complete set of unsubscripted SET symbols with values. This
list covers all unsubscripted variable symbols which a~~ear in the name
field of a SE~ statement in the macro definition. Values of elements of
dimensioned SET symbols are not displayed.

MACRO BRANCH TRACE (MHELP 2)

This provides a-one-line trace for each AGO and true AIF branch within a
programmer macro. In any such branch, the nbranched frem n statement
number, the nbranched· ton statement number and the macro name are
included. Note, in example ~, the nbranched ten statement number
indicated is not that of the ANOP statement bearing the target sequence
symbol but that of the statement following it. The branch trace
facility is suspended when library macros are expanded and MHELP 2 is in
effect. To obtain a macro branch trace for such a macro, one would have
to insert a COpy nmacro-name" statement in the source deck at some point
prior to the MHELP 2 statement of interest.

MACRO EXIT DUMP (MHELP 8)

This provides a dump of the same group of SET symbols as are included in
the Macro AIF dump when a MEXIT or MEND is encountered.

Note that local and/or global variable symbols are not displayed at any
point unless they appear in the current rracre explicitly as SET symbols.

50

SAMPL~ MHElP TRACf A~O DUMP PAGf

LOC ORJEC T COD~

000000

AoaKI AOOK2 STMT SUURCE S TATF.~l'NT ASM H V 01 11.52 05/19110

7. * INCLUDE ... ACRO U~ F I "II TlllNS Ttl 11I- T RAe EO I N THE SOUKCE PROGRAM

4
'j

" 10
11
12
13
1',
15
II>

lti
lQ
70
21
22
n
7.4
7.5
76
21
26
29
30
31
32
33
]4
35
31>
31
3f1
39
40
41
42
43
44
4!>
46
41
46
49
50
51

WA'l1:

tLABEL

tLAfll'l
.SKIP
tLAlIEl

f.NM

f.CNT
&,~~

• TEST
f.CMPAOK

f.CNT

.NOLNTH

.lPAI{
&CIIIT

.FlNISH
f.CMPADR

.CONTlN,

CSFCT
COPY l'lSKCH
M<\CRO

lNSRCH
lClC
SI: Te
Air
!>f. Te
ANliP
lA
~CHI
BC
/"1EN9

COpy
MACKO
SCnl
lClA
lClC
SUA
S rM
ANUP
SI'TC
AIF
SI'TA
AIF
A"IOP
III
AGO
AI F
SlOTA
AIF­
AGLl
AN uP
SETC
lA
ANOP
LA
MVC
!lRG
DC

f.1I1{ G, f.flF F SE T= S TNU"'d-S T C liA I N
f.LAllFl
, A&SYSIJI1X'
(T' f.NIIMf: F.Q
'I;NMIC'

O,Wt'F::.ET
f.AKG,U(11
I, &llllif.L

SCHI

f.COMP,f.LIST
f.CNT
r.C'\PADK
1
1,15,'.(13)

GfNERATE SYMB(JL
'(J' I. SI< I P

II- MACRO CALL HAS lI\BEL, USE IT
H'STF.Ail OF GF.NERATED SYMBOL
LOAD RFG. 0
S~ARCH
I f ,'lAX Rf ACIt Er) , CONT INIlE

'I;CMPALlK'.' !:CtlMP' (f.C~T, 11
I't;COMP'(!:CNT,lI fO '('I.LPAR
f.CNT+l
(t.OH LT K' !:CUI1P I. TEST

3, f.CLJI1P
.CI)NTlN

COMPARAND

('!:COMP'(f.CNT+l,lI ElJ ','I.FINISH
r.CNT+l
(f.CNI LT K'!:CllMPI.LPAR
• NOL:'-ITfi

'!:CMPADR'. 't.CuMP' (f.CNT +2, K' t.CllMP-t.CNTl
1,!:CMPAOR COMPARA"ID SANS LENGTH

1,f.lIST
t.CllMP,fI(01
*-6
X'92'

1I S r HEADER
OUMMY MOVE TO GET CaMP LENGTH
CHANGE MVC TO MVI
MVI OPCODE

(lRG *+1 PRESERVE LfNGTH AS lMMFO OPND
RESULT IS MVl 0113),L DC X'OOOO'

L 15,=V(SCHII
BALR 14,15
LM 1,15,41131
MEXtT
MEND

Appendix B. Sample Macro Trace and Dump ~HELP) 51

SAMPLE MHELP TRACE AND ~UMP PAGE

LaC OBJECT CODE

000000
000000 as CO

000002 4100 ry002

000006 90 1 F 1)004

52

AOOR1 AOOR2 STMT SOURCE ST 4T FMENT ASH H V 01 11.52 05/19/70

00002

<;3 TES T
<;4
55

57
!is

CSECT
1l4LR 12,0
US ING *,12

MHH P [\' 11111' REQUEST ALL MHELP FUNCTIONS
LNSPCH LIS TLI NE, UHSFT=L I sn I NE-L I S TNFXT

@ ++/I'1HELP. CALL TO MACRO LNSRCH • IlEPTH=OOI, SYSNOX=OOOI, STMT 00058

00002

00004

IIMHELP ENTRY TO LNSRCH • MOllEl STMT 00000, OEPTH=OOl, SYSNDX=OOOl, KWCNT=OOI
IIIIPARAMETER S (SYSNOX, SYSEC T ,SYSLOC, SYST I HE, S YSOA H, SYSPARM, NAHF.,KWS,PPS) III
IINUH lNTH VALUE (64 CHARS/LINE)
110000 004 0001
/10001 004 TEST
/10002 004 TEST
1/0003 005 11.52
1/0004 001l 05/19170
1/0005 014 SAMPLE*PRllGRAM
110006 NUL
1/0007 017 LISTLlNE-LISTNEXT
110008 008 LlSTLlNI:

IIMHElP AIF IN LNSRCH. MOOF.L STMT 00010, OEPTH=OOl, SYSNOX=OOOl, KWCNT=OOI
/II/SET SYMBOLS (SKIPPED NUHtlERS MAY Rf: SEQUENCE SYMBOLS).II
1/0000 LCLC LABEL LNTH= 005
II VAL=AOOOI

++I/HHELP. IlRANCH fROM 5T'1T 00010 TO STMT 00013 IN MACRO l.NSRCH

5<i+AOOOl L4 n,Ll5TUNE-Ll5TNf'XT LIIAD REG. a 01-00013

60+

++IIMHELP. CALL TO MACRO SCHI OEPTH=002, SY5NOX=0002, STMT 00014

/lMHELP ENTRY TO SCHI • MODEL SHIT 00000, OEPTH=002, SYSNOX=OOOZ, KWCNT=OOO
/I IIPARAHF.-TERS (SYSNOX, SYSEC T, SYSUJr., SYS TIME, SYSOA TE, SYSPARM, NAME ,KWS, PPS) III
/lflUM LNTH VALUE (64 CHARS/LlNE)
110000 004 0002
//0001 004 TEST
110002 004 TE ST
1/0003 (105 11.52
110004 OOB 05/19170
1/0005 014 SAMPL(*PROGRAM
110006 NUL
11000 7 008 LI STU NF
110008 004 O(11

STM 1015,4(13) 02-00024
I

/lMHElP AIF IN SCHI • MODeL S HH 00027, DEPTH=002, SYSNOX=0002, KWCNT=OOO

SAMPLE MHELI' TRACE AND DUMP PAGE

LOC OBJECT CODE AOIlRI ADDR2 STMT SOURCE STATEMfNT ASM H V 01 11.52 05/19/70

III1SET SYM~OLS (SKIPPED NUMBERS MAY B~ SEQUENCE SYMBOLSI.II
110000 LCLA CNT VAL" 0000000001
110001 LCLC CMPADR LNTH= 001
II VAL=L

IIMHELP AIF IN SCHI • MOOH STMT 00029, DEPTH=002, SYSNOX=0002, KWCNT=OOO
IIIISET SYMBOLS (SKIPPEIl NUMBERS MAY BE SEQU~NCE SYMBOLSI.II
110000 LCLA CNT VAL: 0000000002
110001 LCLC CMPADR LNTH= 001
II VAl=L

++IIMHELP. ~P.ANCH FPO~.STMT OQ02~ TO STMT 0002b IN MACRO SCHI

IIMHELP AIF 1"1 SCHl • MODEL STHT 00027, DEPTH=002, SYSNDX=0002, KWCNT=OOO
III1SET SYMROLS (SKIPPED NUMBERS HAY BE SEQUENCE SYMBOlSI.1I
110000 LCLA CNT VAL= 0000000002
110001 LCLC CMPADR LNTH= 002
/I VAl=L1

/lMHELP AIF IN SCHI • MODel SPIT 00029, DEPTH=002, SYSNDX=0002, KWCNT=OOO
/I IISET SYMBOLS 'SK I PI' ED IIjUMBERS MAY ~F SEQUENCE SYMBOLS 1.11
110000 LCLA CNT VAL= 0000000003
110001 LCLC CMPADR LNTH= 002
II VAL=L1

++IIMHELP. BRANCH FROM STilT 00029 TU STMT 0002b IN MACRO SCHI

/lMHELP AIF IN SCHI • MOOEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=OOO
/I /lSET SYMBOLS (SK IPPEO NUMBERS MAY BE SEQUEr.CE SYMBOL S 1.11
/10000 LCLA CNT VAL" 0000000003
110001 LCLC CMPADR LNTH= 003
/I VAL=L1S

IIMHELP AIF IN SCHI • MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT-OOO
/I/ISET SYMBULS (SKIPPED NUM~ERS MAY BE SEQUENCE SYMBOLSI.II
/10000 LCLA CNT VAL" 00000000010
110001 LCLC CMPADR LNTH .. 003
II VAL=LI S

++IIMHELP. BRANCH FROM STMT 00029 TO STMT 0002f> IN MACRO SCHI

IIMHELP AIF IN SCHI • MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT-OOO
II/1SET SYMBOLS (SKIPPED NUMBERS MAY tlE SEQUENCE SYMBOLS 1.11
110000 LClA CNT VAL= 00000000010
110001 lCLC CMpADR lNTH= 0010
II VAL=LIST

Appendix B. Sample Macro Trace and Dump (MHELP) 53

SAMPLE MHEL~ TRACE A~D DUMP PAGF.

LOC lJI:lJECT CUilE AOO)Rl ADDR2 STMT SOURCE STATE:MI"H ASM H V 01 1l.~2 05/1Qno

/lMHELP All' IN SCHI • MllDEL snn C002Q, OEPTH=002, SYSNOX=0002, KIICNT=OOO
/II/SET SYMBOLS (SKIPPED NUM9FKS MAY BE SEQUENCE SYMBOLSI./I
/10,)00 LCLfI (NT VAL= 0000000005
110001 LCLC (MPAUR LNTH= 004
/I VAL=LIST

++/lMHELP. BRANCH I'RUM SHIT OOO~9 TO SPoil 00026 IN MACRO SCHI

11'1f-1ELP AIF IN 5CHI • M()OE:l 51/'oT 00021, OEPTH=002, SYSNnx=0002, KWCNT=OOO
/I /I SET SY,'1tiOLS (SKI PPEO'lU~IRI'RS ;~AV BE SEQUENCE SYMBOLS I. /I
/10000 LCLA CNT VAL= 0000000005
1I00'Jl lCLC CMPADR LNTH= 005
/I VAl=L1STL

IIMHtlP AIF I"J SCHI • MOOfl SIMI 00'.129, OfPTH=002, SYSNDX=o002, KIICNT=OOO
IIIISET SVr1,\OlS (SKIPHO ~UMBt:RS fo1AY BE SEQUENCE SYMBOLSI.II
110000 lClA CI\iT VAl= 00000('10006
/lCOOl LCLC CMPAfJR LNTH= 005
II VAL=L1STl

++IIMHELP. fjlUNCH FRnM SPIT n0029 T(1 STMT 00026 IN MACRO SCHI

IIMHELP AIF IN SCHI • MOOEl STMT 00027, DI:PTH=002, SYSNDX=0002, KIICNT=OOO
1IIISI:1 SYMBOLS (SKIPPED NUr1[,ERS I'AY 111: SF.QUfNCt: SYMl\OLSI.11
110000 LClA CNT VAL= 0000000006
Iloon LClC CMPAI)r~ LNTH= 006
II VAL=L1STlI

IIMHElP AIF IN SCHI • MODEL STMT 00029, DI:PTH;'002, SYSNOX=0002, KIIOIT=OOO
IIIISET SY:oIROLS (SKIPPED NUMBERS MAY IH' SEQUENCE SYMBOLSI./I
110000 LClA CNT VAL= 0000000001
//0001 LClC CMPAOR LNTH= 006
II VAL=L1STLI

++/IMHElP. [lRANCI~ fRnM STMT 0002'1 TO STMT 00026 IN ~ACRO SCHI

IIMHELP AIF IN SCHI • MODEL STMT 00027, DEPTH=002, SYSNDX=OOOi>, KIICNT=OOO
IIIISET SYMflnLS (SKIPPED NUMRERS MAY BE SEQUENCE SYMBOlSI.11
110000 LClA (NT VAl= 0000000001
11000 1 lCLC CMPAOR LNTH= 001
II VAL=Ll5TLlN

IIMHElP AIF IN SCHI ~ MODEL STMT OOozq, DEPTH=002, SYSNDX=0002, KIICNT=OOO
IIIISET SYMROLS (SKIPPED NUMIIERS MAY Bf SEQUENCE SYMBOLSI./I

54

SAMPLE MHElP TRACE A>.jD DUMP PAGI'

lOC OBJECT CODE AIll)R1 AODR2 STMT SOURCE S r ATfMENT ASM H V 01 11.52 05/19170

OOOOOA 4130 C024

OOOOOE 4111 0000
000012 0202 C02.4
000018
000012 '12
000013
000014 0000
000016 513FO C02E
00001A 051'F
OOOl)lC 9!11F 0004

0001)20 4710 COOO

000024
000026
000030
000030 000000(10
000000

0000 00026

00026

00000
OOOOD
00012

00014

00030

0()004

@

01)002

61+

62+
63+
64+
65+
66+
67+
66+
6'1+
70+

"11+

110000 lClA CNT
/10001 lClC CMPAOR
II VAl=lISTLIN

lA J, L ISH It.E CllMPARAND

++IIMHFlP. BRANCH ~ROM ST~T 00037 TO STMT 00041 IN MACRO SCHI

l4
MVC
URG
DC
ORG
DC
L
fl4lR
l'1

1,0111
lhTLlNE,OIO) .-0
)(IQ21

*+ 1
)C'nOI)O'
15,=VISCHII
14, 1 ~

1015,41131

LIST HEAIJt:R
. DlJMMY MOVI: TO GET COMP lENGTH

CHA;-.,iGE MVC TO MV 1
MV I llPCOIlE
PP~StRVE lENGTH AS IMMEO OPNO
RFSULT IS MVI OID),L

VAl= 0000000008
lNTH= 007

07-00031

02-00041
02-00042
02-00043
02-00044
07.-00045
02-00046
02-00047
07.-00048
02-01)049

/lMtlELP EXI T FRClM SCHI • MOIlEl ,sT,.T 00050, UEPTH=002, SYSNOX=0002, KWCNT=OOO
/I/ISET SYMBOLS ISKII''''En iiUMB~RS MAY kE SEQUENCE SYMBOLS)./I
110000 LCUI Ull VAL= 0000000008
110001 LCLC CMPIIDR LNTH= 007
/I V"L=L1STLIN

BC I,AOO,)l I F"1A)c RE ACHF.[), CONTINUE 01-00015

IIMHElP EXIT FRUM LNSRCH • MnUI:L STMl 00016, OEPTH-001, SYSNOX-0001, KWCNT=OOl
1/11 SE T SY'1flOLS I SK I PHil rWMrlERS /oiAY fiE SEQUENCE SYMBOLS 1./1
110000 lClC lAfI EL LNTH- 005
/I VAl-AOOO 1

72 L ISTNEXT
73 LlSTLlNE
74

OS
OS
lTORG

H
Fl'l'O'

75 =VISCHII
76 END TEST

Appendix B. Sample Macro Trace and Dump ~HELP} 55

Appendix C. Object Deck Output

ESD Card Format

The format of the ESC card is as follows:

Columns

1
2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-80

Contents

12-2-9 punch
ESD
Blank
Variable field count -- number of bytes
of information in variable field (columns 17-64)
Blank
ESDID of first SD, XD, CM, PC, ER, or WX
in variable field
Variable field. One to three 16-byte
items of the following format:

8 bytes
1 byte

3 bytes

1 byte

3 bytes

Blank

Name
ESC type code
The hex value is:

00 SD
01 LD
02 ER
04 PC
05 CM
06 XD (PR)
OA WX

Address

Alignment if XD; otherwise blank

Length, LDID, or blank

Deck I~ and/or sequence number --
The deck ID is the name from the first TITLE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con­
tain a card sequence number. (Colu~ns 73-80
of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TEXT (TXT) Card Format

The format of the TXT cards is as follows:

Columns

56

Contents

12-2-9 punch
TXT
Blank
Relative address of first instruction on card

9-10
11-12

13-14
15-16
17-72
73-80

Blank
Byte count -- number of bytes in information
field (columns 17-72)
Blank
ESDID
56-byte information field
Deck ID and/or sequence number
The deck Ie is the name from the first ~I~LE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns ccn­
tain a card sequence number. (Columns 73-80
of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

RLD Card Format

The format of the RLD card is as follows:

Columns

1
2-4
5-10
11-12

13-16
17-72

17-18
19-20
21
22-24
25-72

73-80

Contents

12-2-9 punch
RLI:
Blank
Data field count number of bytes of
information in data field (columns 17-72)
Blank
Data field:

Relocation ESDII:
position ESD1D
Flag byte
Absolute address to be relocated
Remaining RLD entries
Deck ID and/or sequence number --

The deck ID is the name from the first ~I~LE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 ·characters long or if
there is no name, the remaining columns con­
tain a card sequence number. (Columns 73-80
of cards produced by PUNCH or REPRO staterr.ents
do not contain a deck 1D or a sequence number.)

If the rightmost bit of the flag byte is set, the follcwing RLD entry
has the same relocation ESDID and position ESDID, and this information
will not be repeated; if the rightmost tit of the flag byte is not set,
the next RLr entry has a different relocation ESDID and/or position
ESD1D, and both ESDIDs will be recorded.

For example, if the RLD Entries 1, 2, and 3 of the program listing
contain the following information:

position Relocation
ESD1D ~ Flag Address

Entry 1 02 04 OC 000100
Entry 2 02 04 DC 000104
Entry 3 03 01 OC 000800

Appendix C. Object Deck Output 57

I then, columns 17-72 of the RLD card would be as follows:

Entry 1 Entry 2 Entry 3

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37~ 72

Flag
(set)

Address

Flag
(not
set)

T
Address

T
Esd IDs

Flag
(not
set)

T
Address

T
blanks

END Card Format

The format of the ENC card is as follows:

58

Columns

1
2-4
5
6-8

9-14
15-16
17-32
33

34-52

53-71

73-80

Contents

12-2-9 punch
END
Blank
Entry address from operand of END card in
source deck (blank if no operand)
Blank
ESCIC of entry point (blank if no o~erand)
Blank
Number of ICR items that follow (EBCDIC1 or
EBCDIC2) .
Translator Identification, version and rrcdification
level (such as 0301), and date of the asserrbly
(yyddd)

When present, they are the same forrrat as columns
34-52
Deck ID and/or sequence number --
The deck ID is the name from the first 1lTLE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con­
tain a card sequence number. (Columns 73-80
of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TESTRAN (SYM) Card Format

If you request it, the assembler punches out symbolic information for
TESTRAN concerning the assembled program. This output appears ahead of
all loader text. The format of the card images fer ~ES~RAN output is as
follows:

Columns Contents

1
2-4
5-10
11-12

13-16
17-72
73-80

12-2-9 punch
SYM
Blank
Variable field count -- number of bytes of
text in variable field (columns 17-72)
Blank
Variable field (see below)
Deck IC and/or sequence nurr.ber --
The deck ID is the name from the first TITLE
statement that has a non-blank name field.
The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con­
tain a card sequence number. (Columns 73-80
of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

The variable field (columns 17-72) contains up to 56 bytes of ~ES~RAN
text. The items making the text are packed together; censequently, only
the last card may contain less than 56 bytes of text in the variable
field. The formats of a text card and an individual text item are shown
in Figure 12. The contents of the fields within an individual entry are
as follows:

1. Organization (1 byte)
Bit 0:

o = non-data type
1 = data type

Bits 1-3 (if non-data type):
000 = space
001 = control section
010 = dummy control section
011 = common
100 = instruction
101 = ccw

Bit 1 (if data type):
o = no multiplicity
1 = multiplicity (indicates presence of M field)

Bit 2 (if data type) :
o = independent (not a packed or zoned decimal constant)
1 = cluster (packed or zoned decimal constant)

Bit 3 (if data type) :
o = no scaling
1 = scaling (indicates presence of S field)

Bit 4:
o = name present
1 = name not present

Bits 5-7:
Length of name minus 1

Appendix C. Object Ceck Output 59

2. Address (3 bytes) -- displacement from base of control section

3. Symbol Name (0-8 bytes) -- symbolic name of particular item

Note: The following fields are present only for data-type items.

4. Data Type (1 byte) -- contents in hexadecimal

00 = character
04 = hexadecimal
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-Type data
24 = y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal
38 = floating point, extended.

5. Length (2 bytes for character, hexadecimal, decimal, or binary items;
1 byte for other types) -- length of data item minus 1

6. Multiplicity - M field (3 bytes) equals 1 if not present

7. Scale - signed integer - S field (2 bytes) present only for F, H,

1

12
2
9

E, D, P and Z type data, and only if scale is non-zero.

2

SYM

3

4 5

blank

6

1011 12.13 1617

No.
of

bytes
of

text

2

blank

N complete entries
N ~ 1

Variable size entries

Org. Address Symbol name

3 0-8

Data
type

TESTRAN text - packed entries

56

Entry
(complete or
head portion)

1-2 3 2

72 73

Figure 12. TESTRAN SYM Card Format

60

80

Deck & Sequence
ID number

8

Appendix D. Dynamic Invocation of the Assembler

The assembler can be invoked by a problem program at execution time
through the use of the CALL, LINKAGE, XCTL, or A~~ACH, rracro instruction.
If the XCTL macro instruction is used to invoke the assembler, then no
user options may be stated. The assembler will use the standard
default, as set during system generation, for each option.

If the assembler is invoked by CALL, LINKAGE, or ATTACH, you may supply:

1) The assembler options

2) The DDnames of the data sets to be used during processing.

Name Operation Operand

[symbol] CALL I EV90,(optionlist
[,ddnamelist)),VL

{LINK } EP=IEV90,
.. ATTACH PARAM=(optionlist

[,ddnamelist)),VL=l

EP -- specifies the symbolic name of the assembler. The entry point at
which execution is to begin is determined by the centrol program
(from the library directory entry) •

PARAM -- specifies, as a sublist, address parameters to be passed from
the problem program to the assembler. The first werd in the address
parameter list contains the address of the option list. The second
word contains the address of the DDnarre list.

optionlist -- specifies the address of a variable length list containing
the options. This address must be written even if no option list is
provided.

The option list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list. If
no options are specified, the count must be zero. The option list is
free form with each field separated from the next by a comma. No blanks
or zeros shculd afpear in the list.

DDnamelist -- specifies the address of a variable length list containing
alternate Crnames for the data sets used during compiler frocessing. If
standard DDnames are used, this operand may be omitted.

The Crname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list.
Each name of less than 8 bytes must be left-justified and padded with
blanks. If an alternate rDname is omitted, the standard name will be
assumed. If the name is omitted within the list, the 8-byte entry must
contain binary zeros. Names can be omitted from the end merely by
shortening the list. The sequence of the 8-byte entries in the CDname
list is as follows:

Appendix D. Dynamic Invocation of the Assembler 61

Entry Alternate Name

1
2
3
4
5
6
7
8

SYSLIN
not applicable
not applicatle
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUT1

Note: An overriding ttname specified when Assembler H was added to the
Operating System occupies the same place in the above list as the
IBM-supplied DDname it overrides. The overriding ~Dname can itself be
overridden during invocation. For example, if SYSWORK1 replaced SYSUT1,
it occupies position 8 in the above list. SYSWORK1 can be overridden by
another name during invocation.

VL -- specifies that the sign bit is to be set to 1 in the last word
of the address parameter list.

The Job Control Language Reference manual provides additional
description of overriding techniques.

62

II
&SYSPARM 3,42

II
Adding macro definitions to libraries 33
ALIGN assembler option 2
Alignment, Removal of
restriction 2, 38

Assembler cataloged procedures 9-17
Assembler data sets 4-8

Characteristics 5, 7-8
List of 4

Assembler diagnostic 'facilities 25,26-31
Abnormal assembly termination 29
Cross-reference 23-24
Error messages 26
Macro trace facility (MHELP) 29
MNOTES 29
Suppression of MNOTEs and error
messages 29

Assembler Listing 18-25
External symbol dictionary 20,
Source and object program 21
Relocation dictionary 23
Symbol and literal cross-reference 23-24
Diagnostic cross-reference and

assembler summary 24-25
Assembler options 1-4

Default options 3,4
Option list 1
Overriding defaults 5,15
Sample of use 43

Assembler statistics 25
Assembler summary 24--25
ASMHC, cataloged procedure for

assembly 9
ASMHCG, cataloged procedure for

assemply and loader-execution 13
ASMHCL, cataloged procedure for

assembly and linkage editing 10-11
ASM~CLG, cataloged procedure for

assembly, linkage editing, and'
execution 12

BATCH assembler option 2

Calling the assembler from a problem
program 61

Cataloged procedures 8-17
For assembling (ASMHC) 9

Index

For assembling and linkage editing
(ASMHCL) 10-11

For assembling, linkage editing, and
execution (ASMHCLG) 12

For assembling, linkage editing, and
execution (ASMHCLG) 12

For assembling and loader-execution
(ASMHCG) 13

overriding 15
Characteristics of assembler data
sets 7-8

Codes
See Return codes; Severity codes.

Cross-reference
See also Diagnostic cross-reference.
Examples 19,47
Listing format 23-24

Concatenation of SYSLIB data sets 6
COND parameter 8,15 ..
Data sets, assembler

Characteristics 5, 7-8
List of 4

DO statements, overriding in cataloged
procedures 15

DECK assembler option 2
Default options 3-4
Diagnostic cross-reference and assembler

summary 24-25
Diagnostic facilities

See Assembler diagnostic facilities.
Dynamic invocation of the assembler 61

II
END card format 58
Entry point restatement 34
Error messages 26-28

Cross-reference 24-25
ESD

See External symbol dictionary
ESD (NOESD) assembler option 2
EXEC statement

Overriding in cataloged procedures 15
PARM field 1,33
COND parameter 8,15

Extended precision machine instructions 37
External symbol dictionary (ESD)

Entry types 20
Examples 19,43
Listing format 20
Output card format 56

Index 63

II
FLAG assembler option 2,3
Format

See error messages; macro-generated
statements

a
Identification-sequence field 23
Invoking the assembler from a problem
program 61

Invoking cataloged procedures 8
Instruction execution sequence, control
of 37

• Job control language cataloged
procedures

See cataloged procedures

..
Linkage, object module 34-36
LINECOUNT assembler option 2
LIST (NOLIST) assembler option 2
Listing control instructions,
printing of 22

Load module modification 34

II
Machine instructions, extended
precision 37

Macros, error messages in 26
Macro-generated statements, format
of 22

Macro definition libraries, additions
to 33

Macro Trace Facility (MHELP)
Description 29-31
Sample 49-55

Messages
See Assembler diagnostic facilities

MHELP
See Macro Trace Facility

Model 85, 91, and 195 programming
considerations 37

MNOTE 29,42

64

II
NOALIGN assembler option 2
Number of Channel Programs (NCPl

selection for assembler data sets 8

OBJECT assembler option 2
Object module linkage 34-36
Options, assembler 1-4

Option list 1
Default options 3-4
Overriding defaults 4,15
Sample of use 43

Output format
Listing 19-25
Object deck 56-60

Overriding statements in cataloged
procedures 15-17

Overriding default assembler
options 4,15

• PARM field 1,33
Procedure

See Cataloged procedures
Program termination 33
Programming considerations 32-38

Registers, saving and restoring 36
Relocation dictionary

Listing format 23
Output text format 57-58
Examples 19,47

RENT (NORENT) assembler option 2
Restoring general registers 32
Return codes 8

See also FLAG assembler option
RLD

See Relocation dictionary
RLD (NORLD) assembler option 2

II
Sample programs and listings

Assembler language features 39-47
Assembler listing description 19
Diagnostic error messages 28
MHELP 49-55

Saving general registers 32
Sequence number 23
Severity codes 8, 26

See also FLAG assembler option
Source and object program assembler
listing format 21

Special CPU programming considerations 37
Statistics, assembler 25
Suppression of error messages 29
SYSIN data set 6
SYSLIB data set 6
SYSLIN data set 6
SYM card (TESTRAN) format 59-60
SYSPARM assembler option 3
SYSPRINT data set 6
SYSPUNCH data set 6
SYSUTI data set 6

II
Termination

Abnormal assembly 29
Program 33

TEST (NOTEST) assembler option 2
TESTRAN (SYM) card format 59-60
TEXT (TXT) card format 56-57

• Unaligned operands
Using the assembler
Utili.ty data set 6

2,38
1-17

XREF (NOXREF) assembler option 2

!Ildex 65

SC26 -3759-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

()
c
-j

»
r
o
z·
C)

o
o
-j
-j
m
o
C
Z
m

OS Assembler H
Programmer's Guide

order No. SC26-3759-l

Your views about this publication may help improve its usefulness; this fonn
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality:

Reply requested: Name:

READER'S
COMMENT
FORM

Yes 0
No 0

Job Title: _______________________ _

Address: _____________________ __
Zip _________ ___

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC26 -3759-1

Your comments, please ...

Your answers to the questions on the back of this form, together with your comments, will
help us to produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing, this material. All comments and suggestions
become the property of IBM.

~ Please dir~ct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold Fold

()
C
-f
o
:JJ
'TI o
r
o
::t>
r o
Z

••••••••••••••••••••••••.••• G)

Fold

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

r
Z

First Class m

Permit 40
Armonk
New York

c-1.

Fold

