Program Product

S$C26-3759-2
File No. S360-21 (OS)

OS Assembler H
Programmer’s Guide

Program Number 5734-AS1

Third Edition (September, 1975)

This is a major revision of, and obsoletes, SC26-3759-1 and
Tehnical Newsletter SN33-8171.

This edition applies to version 4 of the 0S Assembler H
Program Product (Program Number 5734-ASl). Information in
this publication is subject to change. Before using this
publication, be sure you have the latest edition and any
Technical Newsletters.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office
serving your locality.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1975

ii

Preface

This publication tells how to use Assembler H. It describes assembler
options, cataloged job control language procedures, assembler listing
and output, assembler data sets, error diagnostic facilities, sample
programs, and programming techniques and considerations.

Assembler H is an assembler language processor for the Operating System.
It performs high-speed assemblies on an IBM Syster/360 Model 40 or higher
and on an 1IBM System/370 Model 145 or higher with at least 256K bytes of
main storage.

This manual has the following main sections:
® Using the Assembler

e Assembler Listing Description

® Assembler LCiagnostic Facilities

® Programming Considerations

"Using the Assembler"™ describes the EXEC statement PARM field option,

the data sets used by the assemkler, and the job contrcl language
cataloged procedures supplied by IBM. The cataloged procedures can be
used to assemble, linkage edit or load, and execute an assembler program.

"Assembler Listing Description® describes each field of the assembly
listing. “"Assembler TCiagnostic Facilities®™ describes the purpose and
format of errcr messages, MNOTEs, and the MHELP macro trace facility.
"Programming Considerations™ discusses various topics, such as standard
entry and exit procedures for proklem programs.

Appendix A is a sample program which demonstrates many of the assembler
language features, especially those unique to Assembler H. Appendix B
is a sample MHELP macro trace and dump. Arpendix C describes the object
module output formats. Appendix D tells how tc call the assemkler
dynamically from proklem programs.

This publication is intended for all Assembler H programmers. To use
this publication, you should be familiar with the assembler language and
with the basic concepts and facilities of the Operating System,
especially job control language, data management serxvices, supervisor
services, and the linkage editor and loader. To use this publication
effectively, the reader should be familiar with the 0S Introduction,
Order Number GC28-6534 or have the equivalent knowledge.

Assembler Publications

The following publication contains a brief descrirption of Assembler H
and how it differs from lower level OS assemblers:

0S Assembler H General Information Manual, Order Number GC26-3758.

The following publications describe the assembler language and the
information required to run Assemkler H programs:

0S/VS and DOS/VS Assembler Language, Order Number GC33-4010.

iii

0S Assembler Language, Order Number GC28-6514.

The Assembler Language manual contains the basic assembler and macro
assembler srecifications, except those unique to Assenbler H.

0S Assembler H Language, Order Number GC26-3771.

The Assembler H Language manual describes the language features
that are available with Assemkler H. It is suprlemental to the two
Assemkler Language manuals listed above.

0S Assembler H Messages, Order Numker SC26-3770.

The Messages manual provides an explanation of each of the diagnostic
and abnormal termination messages issued by Assembler H and suggests how
you should respond in each case.

The following publications contain information used tc install and
maintain Assembler H:

OS Assembler H System Information, Order Number GC26-3768.

The System Informaticn manual consists of three self-contained chapters
on performance estimates, storage estimates, and syster generation of
Assembler H.

0S Assembler H Logic, Order Number LY26-3760.

The Logic manual describes the design logic and functional
characteristics of Assembler H.

Operéting System Publications

The fecllowing OS books are referenced in this publicaticn:

0S/VS JCL Reference, Order Number GC28-0618, or

0S Job Contrel Language Reference, Order Number GC28-6704.

0S/VS Linkage Editor and Loader, Order Number GC26-3803, or

0S Loader and Linkage Editor, Order Number GC28-6538.

0S/VS Supervisor Services and Macros, Order Number GC27-6979, or

0S Supervisor Services and Macro Instructions, Order Number GC28-6646.

0S8/VS Utilities, Order Number GC35-0005, or

0S Utilities, Order Number GC28-6586.

iv

Contents

USING THE ASSEMBLER . . ¢ + &« ¢ & ¢ 4 o o o o o o s o o o o o« @

Assembler Options . . ¢ ¢« 4 4 ¢ ¢ o ¢ o 4 ¢ e 4 e e e 4 e e e .
Default Options . . . & v ¢ v ¢« v v v v e e et e e e e e e
Assembler Data Sets ¢ ¢ ¢ 4t e it e e e e e e e e e

DD Name SYSUTI . . v & &t ¢ & o o o o o o s % o o s o o« o+ «
DD Name SYSIN . . ¢ & ¢ v o o o o o s o s o o o o o o« o o
DD Name SYSLIB . . & v ¢ v &« o o o o o s o o o o o o o o o =«
DD Name SYSPRINT . . . & ¢ ¢ ¢ v o o o o o s o o o o o o o
DD Name SYSPUNCH . . & + o & & o & o s « o s o o o« o« o o o =«
DD Name SYSLIN . . ¢ & &+ +¢ o o o o o o o o o o o o« o s o o »
Number of Channel Programs (NCP) . . .« & ¢ ¢« v v ¢ ¢ & & o« + .
Return Codes . . . v ¢ v v 4 v v o o 4 o o o s s e e e e e
Cataloged Procedures « . . « o e 6 e a4 e e e @
Cataloged Procedure for Assembly (ASMHC) . e e e e e e

Cataloged Procedure for Assembly and Llnkage Editing (ASMHCL)

Cataloged Procedure for Assembly, Linkage Editing, and
Execution (ASMHCLG) e e e e e e e e e e e e e

Cataloged Procedure for ASSembly and Loader-Execution (ASMHCG)

Overriding Statements in Cataloged Procedures«

ASSEMBLER LISTING e e s e e e e e e s s s e e e
External Symbol Dictionary (ESD) e e e e e e e e e e e e e
Source and Object Program . . .« « « « o« o o s o o o o o« o o o«
Relocation Dictionary . . . « ¢« ¢ & v « o o o o o o o« o o 0 e
Cross Reference e e e e e e e

Diagnostic Cross Reference and Assembler Summary e e e e e e

ASSEMBLER DIAGNOSTIC FACILITIES . &+ « « & o « o o o o o « o o
Assembly Error Diagnostic Messages . . ¢ « ¢ ¢« ¢ « o ¢« o o o« o
MNOTES &+ « ¢ «o « o o o o o o o o o &« e & o e o s s & & s s .
Suppression of Error Messages and MNOTEs e e e e e e e e e e
Abnormal Assembly Termination . . . « & « ¢ ¢ ¢ ¢ ¢ ¢« « o o o
Macro Trace Facility (MHELP) « & + ¢ & o ¢ o o o o + o o o « =

PROGRAMMING CONSIDERATIONS . o & & & & ¢ o o o o o o o o o o =

Saving and Restoring General Register Contents
Program Termination ¢ ¢ « « ¢ ¢« ¢« ¢ s 4 o o o 4 e e e .
PARM Field Access e e e e e e e e e e e e e e
Macro Definition Library Addltlons . . e v e e e e

Load Module Modification - Entry Point Restatement e e e e e e
Object Module Linkage . . .« o ¢ o ¢ ¢ o o o o o o o o « o« o o

Special CPU Programming Considerations . . . « + + ¢« « + + + &
Controlling Instruction Execution Sequerce
Extended-Precision Machine Instructions

Unaligned (Byte-Oriented) Operands . . + « « o « o o« o« o « &
APPENDIX A. SAMPLE PROGRAM . . . ¢ v ¢ o o o o « s o o o o o »

APPENDIX B. SAMPLE MACRO TRACE AND DUMP (MHELP) e = s s e s
Macro Call Trace (MHELP 1) . . . ¢ 4 ¢ o ¢ o o o o o o o o =
Macro Entry Dump (MHELP 16) . . .+« v & ¢ & + o o o o o o o &
Macro AIF Dump (MHELP 4) . . ¢ ¢ + ¢ v ¢ o« o o o o o o o o =«

Macro Branch Trace (MHELP 2) . ¢ v & ¢ o o« o o o o o o o o =

Macro Exit Dump (MHELP 8) . . + ¢« ¢ v &+ & o o o o o o o o &

O WWOOIANAANO D W

49
49

50
50
50

APPENDIX C. OBJECT DECK OUTPUT .
ESD Card Format
TEXT (TXT) Card Format
RLD Card Format « + « + &
END Card Format . .+« « « « o « « &
TESTRAN (SYM) Card Format

APPENDIX D. DYNAMIC INVOCATION OF

ASSEMBLER

vi

Figure 1
Figure 2
Figure 3.
Figure 4
Figure 5

Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Figure 12.

Assembler H Data Sets . . .

Assembler Data Set Characteristics

Number of Channel Program (NCP) Selectlon .

Cataloged Procedure for Assembly (ASMHC).
Cataloged Procedure for Assembling and Linkage

Editing (ASMHCL). . . .

.

Cataloged Procedure for Assembly, Linkage Editing

Execution (ASMHCLG)

Cataloged. Procedure for Assembly and Loader-Execution

(ASMHCG)
Assembler H Listing
Types of ESD Entries . . .

Sample Error Diagnostic Messages
Sample Assembler Linkage Statements for FORTRAN

COBOL Subprograms
TESTRAN SYM Card Format . .

. .

vii

.

.

.

.

.

or

Figures

and

Using the Assembler

This section describes the assembly time options available to the
assembler language programmer, the data sets used by the assembler, and
the cataloged procedures of job control language supplied by IBM to
simplify assembling, linkage editing or loading, and execution of
assembly language programs. The jok control language is described in
detail in the Job _Control Lanquage Reference publication.

Assembler Options

Assemkler H offers a number of optional facilities. Fcr example, you
can suppress printing of the assembly listing or parts of the listing,
and you can specify whether you want an object deck or an object module.
You select the options by including appropriate keywords in the PARM
field of the EXEC statement that invokes the assermrbler. There are two
types of options:

® Simple pairs of keywords: a positive form (such as OBJECT) that
requests a facility, and an alternative negative fcrm (such as
NOOBJECT) that rejects that facility.

e Keywords that permit you to assign a value to a function (such as
LINECOUNT (50) .

Each of these options has a standard or default value which is used for
the assembly if you do not specify an alternative value. The default
values are exrlained in the following section, "Default Options."

If you are using a cataloged procedure, you must include the PARM field
in the EXEC statement that invokes the procedure. You must also qualify
the keyword (PARM) with the name of the step within the procedure that
invokes the compiler. For example:

// EXEC ASMHC,PARM.C='0ORJECT,NODECK'

The section "Overriding Statements in Cataloged Procedures®™ contains
more examples on how to specify options in a cataloged procedure.

PARM is a keyword parameter: code PARM= followed by the list of options,
separating the options Ly commas and enclosing the entire list within
single quotes or parentheses. If you specify only one cption and it
does not include any special characters, the enclosing quotes or
parentheses can be omitted. The option list must not be longer than 100
characters, including the separating commas. You may specify the
options in any order. 1If contradictory options are used (for example,
LIST and NOLIST), the rightmost option (in this case, NOLIST) is used.

The assembler options are:

(DECK, OBJECT, LIST, TEST, ‘XREF(FULL/SHORTY), ALIGN, RENT,
PARM= or or or or or ‘LINECOUNT(nn) or or
(NODECK,NOOBJECT, NOLIST,NOTEST,NOXREF, NOALIGN,NORENT,

ESD, RLD, BATCH,
or or or 'SYSPARM (string),FLAG(nnn)’)
NOESD,NORLD,NOBATCH,

Using the Assembler 1

DECK -- The object module is placed on the device specified in the
SYSPUNCH DD statement.

OBJECT -- The object module is placed on the device specified in the
SYSLIN LD statement.

Note: The OBJECT and DECK options are independent of each other. Both
or neither can be specified. The output on SYSLIN and SYSPUNCH is
identical except that the control program clcses SYSLIN with a
disposition of LEAVE and SYSPUNCH with a disposition of REREAL.

ESD -- The assembler produces the External Symbol Cictionary as part
cf the listing.

RLD -- The assembler produces the Relocation Dictionary as part of
the listing.

BATCH -- The assembler will do multiple (batch) assemklies under the
control of a single set of jok control language cards. The
source decks must be placed together with no intervening /*
card; a single /* card must follow the final source deck.

LIST -- An assembler listing is produced. Note that the NOLIST
option overrides the ESD, RLD, and XREF options.

TEST -- The object module contains the special source symbol table
required by the test translator (TESTRAN) routine.

XREF (FULL) -- The assembler listing will contain a cross reference tatle
of all symbols used in the assemkly. This includes symbols that
are defined but never referenced. The assembler listing will also
contain cross reference takle of literals used in the assembly.

XREF (SHORT) -- The assembler listing will contain a cross reference
table of all symkols that are referenced in the assembly. Any
symbols defined but not referenced are not included in the table.
The assembler listing will also contain a cross reference table of
literals used in the assemkly.

RENT -- The assembler checks for a possible coding violation of
program reenterability.

LINECOUNT (nn) -- The number of lines to ke printed between headings
in the listing is nn. The permissible range is
1 to 99 1lines.

NOALIGN -- The assembler suppresses the diagnostic message “IEV033
ALIGNMENT ERROR" if fixed point, floating-point, or logical data
referenced by an instruction operand is not aligned on the proper
boundary. The message will be produced, however, for references
to instructions that are not aligned on the rrorer (halfword)
boundary or for data koundary violations for privileged
instructions such as LPSW. DC, DS, DXD, or CXLC constants, usually
causing alignment, are not aligned. See the "Sgecial CPU
Programming Considerations™ section for informaticn on alignment
requirements.

ALIGN -- The assembler does not suppress the alignment error diagnostic
message; all alignment errors are diagnosed.

FLAG (nnn) -- Error diagnostic messages below severity code nnn will not
appear in the listing. TCiagnostic messages can have severity

codes of 0, 4, 8, 12, 16, or 20 (0 is the least severe). MNOTEs
can have a severity code of 0 through 255.

For example, FLAG (8) will suppress messages for severity codes 0
through 7.

SYSPARM (string) =-- 'string' is the value of the system variable symbol
§SYSPARM. The assembler uses &§SYSPARM as a read-only SETC
variable. If no value is specified for the SYSPARM option,
ESYSPARM will be a null (empty) character string. The function of
ESYSPARM 1is explained in the_Assembler H lLanquage Specifications
and in 0S/VS and DOS/VS Assembler Lanquage..

Due tc JCL restrictions, you cannot specify a SYSPARM value longer
than 56 characters (as explained in Note 1) . Twc quotes are needed
to represent a single quote, and two ampersands to represent a
single ampersand. For example:

PARM='OBRJECT,SYSPARM ((§€AM, " 'EO) .FY) *
assigns the following value to ESYSPARM:
(EAM, "EO) . FY .
Any parentheses inside the string must be paired. 1f you call the
assembler from a problem program (dynamic invocation), SYSPARM can
be up tc 256 characters long.
Note 1: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters. Consider the following

example:

// EXEC ASMFC,PARM.C= (OBJECT,NODECK,
// "SYSPARM (BBCL. v veeueraencecssaeascacaseacasasascanasnanns)?)

<
—
]
&)

col 1

56 bytes

col l3r>

col 68%'»

Since SYSPARM uses parentheses, it must ke surroundea by gquotes. Thus,
it cannot be continued onto a continuation card. The leftmost column
that can be used is column 4 on a continue card. A quote and the
keyword must appear on that line as well as the closing quotes. In
addition, either a right parenthesis, indicating the end of the PARM
field, or a comma, indicating that the PARM field is ccntinued on the
next card, must be coded kefore or in the last column cf the statement
field (column 71).

Note 2: Even though the formats of some of the options previously
supported by Assembler H have been changed, you can use the old formats
for the following options: ALGN (now ALIGN) , NOALGN (NOALIGN),
LINECNT=nn (LINECOUNT (nn)), LOAD (OBJECT), NOLOAD (NOOBJECT), MULT
(BATCH) , NOMULT (NOBATCH) , XREF (XREF (FULL)), MSGLEVEL=nnn (FLAG (nnn)) .

Default Ortions

If you do not code an option in the PARM field, the assembler assumes a
default option. The following default ortions are included when
Assenmbler H is shipped bty IBM:

PARM=(DECK,NOOBJECT,LIST, NOTEST,' XREF(FULL),LINECOUNT(56)', ALIGN,NOBATCH,'SYSPARM(), FLAG(0)’)

Using the Assembler 3

However, these may not be the default options in effect in your
installation. The defaults can be respecified when Assembler H is
installed. For example, NOLCECK can be made the default in place of DECK.
Also, a default option can be specified during installation so that you
cannot override it.

The cataloged procedures descriked in this book assume the default
entries. The section "Overriding Statements in Cataloged Procedures"
tells you how to override them. First, however, check whether any
default ortions have been changed or whether there are any you cannot
override at your installation.

Assembler Data Sets

Assembler H requires the following data sets, as shown in Figure 1:

® SYSUT1 -- utility data set used as intermediate external storage.
® SYSIN -- an input data set containing the source statements to be
processed.

In addition, the following four data sets may be required:

® SYSLIB -- a data set containing macro definitions (for macro
definitions not defined in the source program) and/cr source code to
be called for through COPY assembler instructions.

® SYSPRINT -- a data set containing the assembly listing (unless the
NOLIST ortion is specified).

® SYSPUNCH -- a data set containing object module output, usually for
punching (unless the NODECK option is specified).

® SYSLIN -- a data set containing object module cutput usually for the
linkage editor (only if the OBJECT option is specified).

The above data sets are described in the following text. The CDname
that normally must be used in the DD statement descriking the data set
appears as the heading for each description. The characteristics of
these data sets, those set by the asserkler and those you can override,
are shown in Figures 2 and 3.

N SYSIN Vs
SYSLIB l SYSUT1

U

I -

=P Assemnbier i e

(overflow)
{Macro and
COPY Calls) 1 1
7 SYSPRINT N\ SYSLIN 7 SYSPUNCH N

o

Listing-
121 Characters
Wide /|
™ (Object Modules) ¥

(80 Character Card Image)

Figure 1. Assembler H Data Sets

Using the Assemkler 5

CDNAME SYSUT1

The assembler uses this utility data set as an intermediate external
storage device when processing the source program. The input/output
device assigned to this data set must be a direct access device. The
assemkler dces not support a multi-volume utility data set. The IBM
2321 LCata Cell is not supported for this data set.

DDNAME SYSIN

This data set contains the input to the assembler -- the source
statements to be processed. The input/output device assigned to this
data set may be either the device transmitting the input stream, or
another sequential input device that you have designated. The LD
statement describing this data set appears in the input stream. The
IBM-supplied rrocedures do not contain this statement.

CDNAME SYSLIB

From this data set, the assembler obtains macro definitions and
assembler language statements to be called by the COPY assembler
instruction. It is a partitioned data set; each macro definition or
sequence of assembler lanqguage statements is a serarate member, with the
member name being the macro instruction mnemonic or COPY orerand name.

The data set may be defined as SYS1.MACLIB or your private macro
definition or COPY library. SYS1.MACLIE contains macrc definitions for
the system macro instructions provided ky IBM. Ycur grivate library may
be concatenated with SYS1.MACLIB. The two libraries must have the same
logical record length (80 bytes), kut the blocking factcrs may be
different. The DD statement for the library with the largest blocksize
must appear first in the jok control lanquage for the assembly (that is,
before any other library LD statements). The Job Contrcl Lanquage
Reference publication, explains the concatenaticn of data sets.

DDNAME SYSPRINT

This data set is used by the assemkler to produce a listing. Cutput may
be directed to a printer, magnetic tape, or direct-access storage device.
The assembler uses the machine code carriage control characters for this
data set.

CDNAME SYSPUNCH

The assemkbler uses this data set to produce the object module. The
input/output unit assigned to this data set may be either a card gpunch
or an intermediate storage device capable of sequential access.

DDNAME SYSLIN

This is a direct-access storage device, magnetic tare, or card punch

data set used by the assembler.

oo

SYSPUNCH.

. It contains the same cutput text as
It is used as input for the linkage editor.

Data Set SYSUT1 SYSPUNCH | SYSPRINT SYSLIN | SYSIN SYSLiIB
Access Method BSAM BSAM BSAM BSAM BSAM BPAM
Logical Record fixed at fixed at fixed at fixed at | fixed at | fixed at
Length (LRECL) BLKSIZE 80 121 80 80 80

®

@

)

®

®

®

Record Format
(RECFM)

®

®®

®®

0l0,

®®

Ol0)

Number of channel
Programs (NCP)

®

Q)

@

Q)

Q)

Not
Applicable

.

You can specify a blocksize (BLKSIZE) between 2008 and 5100 bytes in the DD statement or in the data

set label. BLKSIZE should be a multiple of 8; if it is not, it will be rounded to the next lower multiple of
8. If you do not specify BLKSIZE, the assembler sets a default blocksize based on the device used for

SYSUT1 as follows:

2301 Drum
2302 Disk
2303 Drum

2305 Drum -

model 1
2305 Drum
mode! 2
2311 Disk
2314 Disk

2220 Nick

GOoU Sk

5016 bytes
4984 bytes
4888 bytes
4280 bytes

4688 bytes

3624 bytes
3520 bytes

AN hutac

HLUS OYIES

The Storage Estimates chapter of the System Information manual, Order Number SC26-3768, discusses- the
reasons for changing the default blocksize.

®

QE@E®®E

You may specify B, S, or T.

Set by the assembler to F or FB if necessary.

Set by the assembler to FM or FBM if necessary.

BLKSIZE be specified in the DD statement or the data set label as a multiple of LRECL.

If specified, BLKSIZE must _equal LRECL or a multiple of LRECL, |f BLKSIZE is not specified, it is set equal
to LRECL. If BLKSIZE is not a multiple of LRECL, it is truncated.

You can specify the number of channel programs (NCP) used by any assembler data set except SYSUT1 and

SYSLIB. The NCP of SYSUT1 is fixed at 1. The assembler, however, can change your NCP specification under
certain conditions. Figure 3 shows how NCP is calculated. Note that if the NCP is greater than 2, chained 1/0
request scheduling is set by the assembler.

Figure 2.

Assembler LCata Set Characteristics

Using the Assemkler

7

Number of Channel Programs (NCP)

The number cf channel programs can be specified by the user or set by
the assembler. The number will vary depending upcn whether or not a
unit record device is used. The following table shows how the NCP
selection is made.

Unit record No unit
device record device
NCP specified = 2 User specified User specified
NCFP specified = 1 Computed ' User specified (= 1)
NCP not specified Computed’ Computed '

Figure 3. Number of Channel Program (NCP) Selection

1 For SYSPRINT data set, the NCP set by the assembler is the larger of
1210 /BLKSIZE or 2.
For SYSIN data set, the NCP set by the assembler is the larger of
800/BLKSIZE or 2.
For SYSLIN or SYSPUNCH data set, the NCP set by the assembler is the
larger of 240/BLKSIZE or 2.

Note: If the NCP is greater than 2, chained 1/0 scheduling is set by the
assembler.

Return Codes

Assembler H issues return codes for use with the COND rarameter of the
JOB and EXEC job control language statements. The CONLC parameter
enables you to skip or execute a jok step depending on the results
(indicated by the return code) of a previous job step. It is explained
in the Job Control Lanquage Reference publication.

The return code issued by the assemkler is the highest severity code
that is associated with any error detected in the assembly or with any
MNOTE message produced by the source program or macroc instructions. See
the Assembler H Messages publication, for a listing of the assemkler
errors and their severity codes.

Cataloged Procedures

Often the same set of job control statements is used over and over again
(for examrle, to specify the compilation, linkage editing, and execution
of many different programs). To save programming time and to reduce the
possibility of error, sets of standard series of EXEC and DD statements

can be prepared once and ‘cataloged' in a system library. Such a set of
statements is termed a cataloged procedure and can be invoked ky one of

the following statements:

//stepname EXEC procname

//stepname EXEC PROC=procname

The specified procedure is read from the procedure likrary
(SYS1.PROCLIB) and merged with the job control statements that follow
this EXEC statement.

This section describes four IBM cataloged procedures: a procedure for
assembling (ASMHC), a procedure for assembling and linkage editing
(ASMHCL) , a procedure for assemkling, linkage editing, and executing
(ASMHCLG) , and a procedure for assembling and loader-executing (ASMHCG) .

CATALCGED PROCEDURE FOR ASSEMBLY (ASMHC)

This procedure consists of one job step: assembly. The name ASMHC must

be used to call this procedure. The result of execution is an okject
module, in punched card form, and an assembler listing.

In the following example, input enters via the input stream. An example
of the statements entered in the input stream to use this procedure is:

//jobname JOB
//stepname EXEC PROC=ASMHC
//C.SYSIN DD *

|
|
source program statements
I
|
/¥ (delimiter statement)

The statements of the ASMHC procedure are read from the procedure
library and merged into the input stream.

Figure 4 shcows the statements that make up the ASMHC procedure.

Ve EXEC PGM=IEV90,REGION=200K

2 //sysLiB DD DSN=SYS1.MACLIB,DISP=SHR

3 J/sYsuTi DD UNIT=(SYSDA SEP=SYSLIB), SPACE=(CYL, (10,5)),DSN=&SYSUT1

4 //SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))

5 //SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))

PARM-= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure
(see " Overriding Statements in Cataloged Procedures”’). The system name IEV90 identifies Assembler H.

This statement identifies the macro library data set. The data set name SYS1.MACLIB is an IBM designation.
This statement specifies the assembler utility data set. The device classname used here, SYSDA, represents a
direct-access unit. The 1/0 unit assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 2311 may be substituted for SYSDA.

This statement describes the data set that will contain the object module produced by the assembler.

5 This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

Figure 4. Cataloged Procedure for Assermbly (ASMHC)

Using the Assembler 9

CATALOCGED PROCELCURE FOR ASSEMBLY AND LINKAGE EDITING (ASMHCL)

This procedure consists of two job steps: assembly and linkage editing.
The name ASMHCL must ke used to call this procedure. Execution of this
procedure results in the production of an assembler listing, a linkage
editor listing, and a load module.

The following example illustrates input to the assembler via the input
job stream. SYSLIN contains the output from the assembly step and the
input to the linkage edit step. It can be concatenated with additional
input to the linkage editor as shown in the example. This additional

input can be linkage editor control statements or other cbject modules.

An example cf the statements entered in the input stream to use this
procedure is:

//jobname JOB
//stepname EXEC PROC=ASMHCL
//C.SYSIN (0] I

|
1
|
source program statements
1
|
|

/*
J/LSYSIN pp *)
|
| necessary only if linkage
1 editor is to combine modules
object module or or read linkage editor control
linkage editor information from the job stream
control statements
r* y

10

Fiqure 5 shows the statements that make up the ASMHCL rrocedure. Only

those statements not previously discussed are explained.

/e EXEC PGM=IEV90,PARM=OBJECT, REGION=200K
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA SEP=SYSLIB),SPACE=(CYL, (10,5)),DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
v //SYSLIN DD DISP=(,PASS),UNIT=SYSDA SPACE=(CYL,(5,5,0)), *
7 DCB=(BLKS!ZE=400), DSN=&&LOADSET
2 0 EXEC PGM=IEWL,PARM="MAP,LET, LIST,NCAL’,REGION=96K,COND=(8,LT,C)
3 //sYsSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
4y DD DDNAME=SYSIN
5 //sYsLmoD DD DISP=(,PASS),UNIT=SYSDA SPACE=(CYL,(2,1,2)),DSN=&GOSET(GO)
6 //sYsuT1 DD UNIT=SYSDA,SPACE=(CYL,(3,2)),DSN=&SYSUT1
7 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

1 In this procedure the SYSLIN DD statement describes a temporary data set - - the object module - - which is to be

passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage
editor to produce a cross-reference table, a module map, and a list of all control statements processed by the linkage
editor. The NCAL option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one (SYSLIN) produced as output from the
assembler.

4 This statement is used to concatenate any input to the linkage editor from the input stream {object decks and/or
linkage editor control statements) with the input from the assembler.

5 This statement specifies the linkage-editor output data set {the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain the load module, the DSN parameter must be respecified
and a DISP parameter added. See "Overriding Statements in Cataloged Procedures. ”’ If the output of the linkage
editor is to be retained, the DSN parameter must specify a library name and member name where the load
module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

7 This statement identifies the standard output class as the destination for the linkage editor listing.

Figure 5. Cataloged Procedure for Assembling and Linkage Editing
(ASMHCL)

Using the Assembler

11

CATALOGEL PROCEDURE FOR ASSEMBLY, LINKAGE EDITING, ANLC FEXECUT ION
(ASMHCLG)

This procedure consists of three jok steps: assermrbly, linkage editing,
and execution.

Figure 6 shcws the statements that make up the ASMHCLG procedure. Only
those statements not previously discussed are explained ir the figure.

The name ASMHCLG must Le used to call this procedure. An assembler
listing, an object deck, and a linkage editor listing are produced.

The statements entered in the input stream to use this procedure are:

//ijobname JoB
//stepname EXEC PROC=ASMHCLG
//C.SYSIN Db *

|
|
|
source program statements
|
I
[
/* 3

//L.SYSIN [5]0 B
|
f necessary only if linkage
1 editor is to combine modules
object module or ? or read linkage editor control
linkage editor information from the job stream
control statements
|
r* | J

//G.ddname DD (parameters))
//G.ddname DD (parameters)
//G.ddname DD ¥
|
1
i
problem program input
I
|
™ J

L only if necessary

12

e EXEC PGM=IEV90,PARM=0BJECT,REGION=200K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA, SEP=SYSLIB),SPACE=(CYL,(10,5)).DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,0))
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509), UNIT=(,SEP=(SYSUT1,SYSPUNCH))
//SYSLIN DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)}, *
/" DCB=(BLKSIZE=400),DSN=&&LOADSET

1 /I EXEC PGM=IEWL,PARM="MAP,LET,LIST,NCAL',REGION=96K,COND=(8,LT,C)
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

2 //SYSLMOD DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(2,1,2)) DSN=&GOSET(GO)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,2)),DSN=&SYSUT1
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FB,BLKSIZE=3509)

3 16 EXEC PGM=".L.SYSLMOD,COND-= ((8,LT,C),(4,LT,L))

1 The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as
executable even though errors were encountered during processing.

2 The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access
device, and is to be passed to a succeeding job step.

3 This statement initiates execution of the assembled and linkage edited program. The notation *.L.SYSLMOD
identifies the program to be executed as being in the data set described in job step L by the DD statement
named SYSLMOD.

Figure 6. Cataloged Procedure for Assembly, Linkage Editing and
Execution (ASMHCLG)

CATALOGED PROCEDURE FOR ASSEMBLY AND LOADER EXECUTION (ASMHCG)

This procedure consists of two job steps: assembly and loader execution.

Loader-execution is a comkination of linkage editing and loading the
program for execution. Locad modules for program libraries are not

produced.

Using the Assembler

13

//c EXEC PGM=IEVS0,PARM=0BJECT,REGION=200K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=(SYSDA SEP=SYSLiB),SPACE=(CYL,(10,5)),DSN=&SYSUT1
//SYSPUNCH DD SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,{5,5,0))

//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509),UNIT=(,SEP=(SYSUT1,SYSPUNCH))
//SYSLIN DD DISP=(,PASS) , UNIT=SYSDA SPACE=(CYL,(5,5,0)),

/! DCB=(BLKSIZE=400), DSN=&&LOADSET

/1G EXEC PGM=LOADER,PARM="MAP,LET PRINT,NOCALL’

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

I DD DDNAME=SYSIN

//SYSLOUT DD SYSOUT=A

*

This statement initiates loader-execution. The loader options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option is the same as NCAL for the linkage editor and the

LET option is the same as for the linkage editor.

This statement defines the loader input data set as the same one produced as output by the assembler.

This statement identifies the standard output class as the destination for the loader listing.

Figure 7.

(ASMHCG)

Cataloged Procedure for Assembly and Loader-Execution

Figure 7 shows the statements that make up the ASMHCG procedure.

Only those statements not previously discussed are explained in the figure.

The name ASMHCG must ke used to call this procedure.
Assembler and loader listings are produced.

The statements entered in the input streamr tc use this prccedure are:

//jobname JOB
//stepname EXEC PROC=ASMHCG
//C.SYSIN DD *

|

|

|
source program

|

|

/*
//G.ddname DD (parameters)
//G.ddname DD (parameters)

//G.ddname DD

/*

14

I only if necessary
|
1
problem program input
|
1

CVERRIDING STATEMENTS IN CATALOGEL PROCEDURES

Any parameter in a cataloged procedure can be overridden except the PGM=
parameter in the EXEC statement. Such overriding of statements or
fields is effective only for the duration of the job ster in which the
statements appear. The statements, as stored in the procedure library
of the system, remain unchanged.

Overriding for the purposes of respecification, addition, or
nullification is accomplished bty including in the input stream
statements containing the desired changes and identifying the statements
to be overridden.

EXEC Statements

Any EXEC parameter (except PGM) can be cverridden. Fcr example, the
PARM= and CONL= parameters can be added or, if present, respecified by
including in the EXEC statement calling the procedure the notation
PARM. stepname=, or COND.stepname=, followed by the desired parameters.
"Stepname" identifies the EXEC statement within the prccedure to which
the modification aprlies.

If the procedure consists of more than one job step, a PARM.procstepname=

or CCND.procstepname= parameter may be entered for each step. The
entries must be in order (PARM.procstepl=, PARM.procstep2=, etc.).

CD Statements

All parameters in the operand field of DD statements may be overridden
by including in the input stream (following the EXEC card calling the
procedure) a LD statement with the notation //procstername.DDname in the
name field. "Procstepname® refers to the job step in which the
statement identified by ®"LCDname" appears.

Note: If more than one DD statement in a procedure is to be overridden,
the overriding statements must be in the same order as the statements in
the procedure.

Examples

In the assembly procedure ASMHC (Figure 4), the producticn of a punched
object deck could be suppressed and the UNIT= and SPACE= parameters of
data set SYSUT1 respecified, by including the following statements in the
input stream:

//stepname EXEC PROC=ASMHC, X
Vi PARM.C=NODECK

//C.SYSUT1 DD UNIT=2311, X
1/ SPACE=(200,(300,40))

//C.SYSIN DD *

Using the Assembler 15

In procedure ASMHCLG (Figure 6), suppressing production of an assemktler
listing and adding the COND= parameter to the EXEC statement, which
specifies execution of the linkage editor, may be desired. 1In this
case, the FXEC statement in the input stream would arrear as follows:

//stepname EXEC PROC=ASMHCLG, X
/" PARM.C=(NOLIST,OBJECT), X
// COND.L=(8,LT stepname.C)

For this execution of procedure ASMHCLG, no assembler listing would be
produced, and execution of the linkage editor job ster //L would ke
suppressed if the return code issued by the assembler (ster C) were
greater than 8.

Note: Overriding the 11ST parameter effectively deletes the
PARM=OBJECT. PARM=0OBJECT must be repeated in the override statement.

The following listing shows how to use the procedure ASMHCL (Figure 5)
to:

1. Read input from a ncn-labeled 9-track tape on unit 282 that has a
standard blocking factor of 10.

2. Put the cutput listing on a tape lakeled TAPE10, with a data set name
of PROG1 and a blocking factor of 5.

3. Block the SYSLIN output of the assemkler and use it as input to the
linkage editor with a blocking factor of 5.

4. Linkage edit the module only if there are no errors in the assembler
(COND=0) .

5. Linkage edit onto a previously allocated and cataloged Jdata set
USER.LIBRARY with a member name of PROG.

//jobname Jos

//stepname EXEC PROC=ASMHCL, X
// COND.L=(0,NE stepname.C)

//C.SYSPRINT DD DSNAME=PROG1,UNIT=TAPE, X
/! VOLUME=SER=TAPE10,DCB=(BLKSIZE=605)
//C.SYSLIN DD DCB=(BLKSIZE=800})

//C.SYSIN DD UNIT=282,LABEL=(,NL}, X
// DCB=(RECFM=FBS,BLKSIZE=800)

//L.SYSIN DD DCB=stepname.C.SYSLIN

//L.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=0LD

/*

Note: The crder of arpearance of overriding DPnames for job step C
corresponds to the order of DDnames in the procedure; that is, SYSPRINT
precedes SYSLIN within step C. The DDname C.SYSIN was rlaced last
because SYSIN does not occur at all within step C. These points are
covered in the Job Control Lanquage Reference manual.

16

The following example shows assemkly of two rrograms, linkage editing of
the two assemblies into one load module, and executicn of the load
module. The input stream appears as follows:

//stepname? EXEC PROC=ASMHC,PARM.C=0OBJECT

//C.SYSLIN DD DSNAME=&LOADSET,UNIT=SYSSQ, X
1 SPACE=(80,(100,50)), X
/! DISP=(MOD,PASS),DCB=(BLKSIZE=800)
//C.SYSIN DD *

|
|
|
source program 1 statements
|
|

»

/*

//stepname2 EXEC PROC=ASMHCLG
//C.SYSLIN DD DCB=(BLKSIZE=800),D1SP=(MOD,PASS)
//C.SYSIN DD *

|
|
|
source program 2 statements
1
|
|

/*
//L.SYSLIN DD DCB=BLKSIZE=800
//L.SYSIN DD *

ENTRY PROG
/”
//G.ddname dd cards for G step

The Job _Control Lanquage Reference manual provides additicnal description
of overriding techniques.

Using the Assembler 17

Assembler Listing

The assembler H listing consists of up to five sections, ordered as
follows:

® External symbol dictionary

® Source and object program

® Relocation dictionary

e Symbol and literal cross reference

® Diagnostic cross reference and assemkler summary

Figure 8 shows each section of the listing. Each item marked with a
circled numker is explained in the following section.

18

PRIME

®

EXTERNAL SYMBUL DICTIONARY

®

PAGE 1

00011 00t72

OVERRIDING PARAMETERS—

NODECK
ROGRAM)
NO OVERRIDING DD NAMES

NOGBJECT,

®0e6

48 CARUS FRUM SYSIN
151 LINES NU¥PUT

®

Figure 8.

OPTIONS FOR THIS ASSEMBL
LISTy XREF(FULL)y NORENT,

2 STATEMENTS FLAGGEL IN THIS ASSCMRLY

THE FOLLOWING STATEMENTS WERE FLAGGED

SYSPARM(SAMPLE PROGRAM)sNODECK,BATCH

Y

1575 CARIS FROM SYSLIB
0 CARLS OUTPUT

Assembler H Listing

NOTEST, BATCHs ALIGN,

8 WAS HIGHEST SEVERITY CNDE

ESDy RLD,

LINECOUNT(55), FLAG(O), SYSPARM(SAMPLE P

SYMBOL Tyee ADDR LENGTH LD ID ASH H V 04 17.29 03/16/72
PC 0001 000000 00020C
ER 0002
L} 000022 0001
<% OU03 O00USG 606050
EXDMY XD 0004 000003 000078
WRKFLDS SD 0005 000210 000090
PRIME SAMPLE LISTING DESCRIPTIUN PAGE 2
LCC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 04 17.29 03/16/72
000000 2 CSECT
3 EXTRN EXSYM
4 ENTRY 10LDOP
00005 5 RS EQU 5
000000 99EC DOOC 0000C 7 STH 14,12,12(13)
000004 05C0 8 BALR 12,0
00006 9 USING *,12
000006 50D0 COFb 000FC 10 ST 13,SAVE+
00000A 0000 1000 00000 11 LA 10, SAUE
IEVO44 *%* ERROR s&% UNDEFINED SYMBOL
00000E 5350 €202 00208 12 L RS ,=ALEXSYM)
13 PRINT NIGEN
14 OPEN (INDCB,»OUTOCH, LOUTPUT))
23 PRINT GEN @
24 I0LOOP GET INDCB, INBUF
000022 4110 C13E 00144 25410L00P LA 14 INDCB LOAD PARAMETER REG 1 02-THBIN
000026 4100 C052 00058 26+ LA 0y INBUF LOAD PARAMETER REG O 02-IHBIN
000024 S8FO 1030 00030 27+ L 15,480,411 LOAD GET ROUTINE ADOR. O1-GET
00002E OSEF 28+ BALR 14,15 LINK TO GET ROUTINE 01-GET
PRIME RELDCATIUN DICTIONARY PAGE s
POS.ID RELLID FLAGS ADORESS ASM H V G4 17.29 03/16/72
0001 0301 28 000019
0001 0001 08 000010
0001 0002 oc 000208
0001 0006 2c 0¢140
PRIME CROSS REFERENCE PAGE 6
SYMBOL LEN VALUE DEFN REFERENCES ASM H V 04 17.29 03/16/72
COMSECT 00071 G0000000 0167
EXDMY 00001 00000000 0169 0052
EXSYM 00001 00000000 0003 0lT4
EXTNLDUMYSCTN
00004 000140 0052
INBUF 00004 000058 0049 0026 0033
INDCB 00004 000l44 0058 0018 0025
10LOGP 00004 000022 0025 0004 0039
OUTBUF 00004 ODOVAB 0050 0033 0N36
QUTBUF 00001 00000NJ00 0172 *#+*DUPLICATE**%*
DUTDCR 00004 00ULA4 0115 9620 035
RS 00C31 00000005 0005 0Ol2 0C32
SAUE SEFRUNDEF INEDS# %% 0011l
SAVE 00004 O0O00OF8 0051 0010 0041
WRKFLDS 00001 00000210 0170
=ALEXSYM)
00004 000208 0174 0012
PRIME DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 7

ASM H v 04 17.29 03/16/72

Assembler Listing 19

External Symbol Dictionary (ESD)

This section of the listing contains the external symbcl dictionary

information passed to the linkage editor or loader in the object module.

The entries describe the control sections, external references, and

entry points in the assemkled program.

shown in

There are six tyres of entry,
Figure 9 along with their associated fields. The circled

numbers refer to the corresponding headings in the sample listing

(Figure 8). The Xs indicate entries accompanying each type designation.
SYMBOL TYPE ID ADDR LENGTH LD ID
X SD X X X -
X LD - — X
X ER X - - -
- PC X X X -
X cMm X X X -
X XD X X X —
X WX X - — —

Figure 9.

Types of ESD Entries

(:)The narwe of every external dummy section, control section, entry

point,

(:)The tyge designatér for the entry, as shown in the table.

and external symbol.

The type

designators are defined as:

SC --

e --

ER ~--

PC --

WX -- Weak external reference.

Control section definition. The symbol appeared in the
name field of a CSECT or START statement.

Label definition.
an ENTRY statement.

The symkol appeared as the cperand of

External reference. The symbol appeared as the operand of
an EXTRN statement, or was declared as a V-tyre address
constant.

Unnamed control section definition (private ccde). A CSECT
or START statement that commences a control section does
not have a symbol in the name field, or a control section
is commenced (ky any instruction which affects the location
counter) before a CSECT or START is encountered.

Common control section definition.
the name field of a COM statement.

The symbol appeared in

External dummy section. The symbol appeared in the name
field of a CXL statement or a Q-type address constant.

(The external dummy section is also called a pseudo register
in the Loader and Iinkage Editor manual.

The symbol appeared as an

operand in a WXTRN statement.

(:>The external symbol dictionary identification number (ESDILD). The

number
entry.

is a unique four-digit hexadecimal number identifying the

It is used in combination with the LD entry of the ESD and in

the relocation dictionary for referencing the ESD.

(:)The address of the symbol (in hexadecimal notation) for SD- and

20

LD-type entries, and blanks for ER- and WX-type entries. For PC- and
CM-type entries, it indicates the beginning address of the control
section. For XC-type entries, it indicates the alignment by printing
a number one less than the numkter of kytes in the unit of alignment.
For examgle, 7 indicates doubleword alignment.

(:)The assembled length, in bytes, of the control section (in
hexadecimal notation).

For an LD-type entry, the ESDID of the control section in which the
symbol was defined.

Source and Object Program

This section of the listing documents the source statements and the
resulting okject program.

(:)The one to eight-character deck identification, if any. It is
obtained from the name field of the first named TITLE statement. The
assembler prints the deck identification and date (item 16) on every
page of the listing.

(§)The information taken from the operand field of a TITLE statement.
(:)The listing page number.
The assembled address (in hexadecimal nctation) of the object code.

® For ORG statements, the location-counter value before the ORG is
placed in the location column and the location ccunter value after
the ORG is placed in the object code field.

e If the END statement contains an operand, the orerand value
(transfer address) appears in the location field (LOC).

® In the case of LOCTR, COM, CSECT, and DSECT statements, the
location field contains the current address of these control
secticns.

e In the case of EXTRN, WXTRN, ENTRY, and DXD instructions, the
location field and object code field are blank.

e For a USING statement, the location field contains the value of
the first operand. It is four bytes long.

® For LTORG statements, the location field contains the location
assigned to the literal pool.

e For an EQU statement, the location field contains the value
assigned. 1t is four bLytes long.

CD The object code produced by the source staterent. The entries are
always left-justified. The notation is hexadecimal. Entries are
machine instructions or assembled constants. Machine instructions
are printed in full with a blank inserted after every four digits
(two bytes). Only the first eight kytes of a constant will appear in
the listing if PRINT NODATA is in effect, unless the statement has
continuation cards. The entire constant appears if PRINT DATA is in
effect. (See the PRINT assembler instruction in the Assemkler
Language publication.)

Assermbler Listing 21

() Effective addresses (each the result of adding together a base
register value and a displacement value):

The field headed ADDR1 contains the effective address for the
first orerand of an SS instruction.

The field headed ADDR2 contains the effective address of the last
operand of any instruction referencing storage.

Both address fields contain six digits; however, if the high-order
digit is a zero, it is not printed.

() The statement number. A plus sign (+) to the right of the number
indicates that the statement was generated as the result of macro
call processing. An unnumbered statement with a plus sign (+) is the
result of open code substitution.

() The source program statement. The following items arply to this
section cf the listing:

Source statements are listed, including those brought into the
program by the COPY assembler instruction, and including macro
definitions submitted with the main program for assembly. Listing
control instructions are not printed, except for PRINT, which is
always printed.

Macro definitions obtained from SYSLIB are not listed unless the
macro definition is included in the source program by means of a
COPY statement.

The statements generated as the result of a macro call follow the
macro call in the listing unless PRINT NOGEN is in effect.

Assembler and machine instructions in the source program that
contain variable symbols are listed twice: as they arpear in the
source input, and with values substituted for the variable symbols.

All error diagnostic messages appear in line except those
suppressed by the FLAG option. The "Assembler Diagnostics
Facilities" section describes how error messages and MNOTEs are
handled.

Literals that have not been assigned locations by LTORG statements
appear in the listing following the END statement. Literals are
identified by the equals sign (=) preceding them.

Whenever possible, a generated statement is printed in the same
format as the corresponding macro definition (rocdel) statement.
The starting columns of the operation, operand, and comments
fields are preserved unless they are displaced by field
substitution, as shown in the following example:

Source Statements: &C SETC *ABCDEFGHIJK'
¢C LA 1,4
Generated Statement: ABCDEFGHIJK LA 1,4

It is possible for a generated statement to occupy three or more
continuation lines on the listing. 1In this way generated statements
are unlike source statements, which are restricted to two
continuation lines.

C) The version identifier of Assemkler H.

The current date (date run is made).

22

() The identification-sequence field from the source statement. For a
macro-generated statement, this field contains infcrmation
identifying the origin of the statement. The first two columns
define the level of the macro call.

For a library macrc call, the last five columns contain the first five
characters of the macro name. For a macro whose definiticn is in the
source program (including one read by a COPY statement), the last five
characters contain the line numkter of the model statement in the
definition from which the generated statement is derived. This
information can be an important diagnostic aid in analyzing output
resulting from macro calls within macro calls.

Relocation Dictionary

This section of the listing contains the relocation dictionary
information passed to the linkage editor in the object module. The
entries describe the address constants in the assembled rrogram that are
affected by relocation.

The external symbol dictionary ID number assigned tc the ESD entry
for the control section in which the address constant is used as an
operand.

The external symbol dictionary ID number assigned to the ESD entry
for the control section in which the referenced syrbol is defined.

é) The two-digit hexadecimal numker represented by the characters in
this field is interpreted as follows:

e First Cigit. A zero indicates that the entry describes an A-type
or Y-type address constant. A one indicates that the entry
describes a V-type address constant. A two indicates that the
entry describes a Q-type address constant. A three indicates that
the entry describes a CXD entry.

® Second Ligit. The first three bits of this digit indicate the
length of the constant and whether the base should ke added or

subtracted:

Bits 0 _and 1 Bit 2 Bit 3

00 = 1 byte 0=+ Always 0
01 = 2 bytes 1= -

10 = 3 bytes

11 = 4 bytes

@) The assembled address of the field where the address constant is
stored.

Cross Reference

This section of the listing information concerns symbols and literals
which are defined and used in the program.

é) The symbols or literals.

@) The length (in decimal notation), in bytes, of the field represented
by the symbol. The length of a literal is always 1.

Assembler Listing 23

@) Either the address the symbol or literal represents, or a value to
which the symbol is equated. The value is three bytes long, except
for the following, which are four bytes lcng: CSECT, DSECTI, START,
CCM, L[XC, EQU, LOCTR, EXTRN, WXTRN, and a duplicate symbol.

The number of the statement in which the symbol or literal was
defined.

@@ The statement numbers of statements in which the symbol or literal
appears as an operand. In the case of a duplicate symbol or literal,
the asserbler fills this column with the message:

****CUPLICATE****

The fcllowing notes arpply to the cross-reference section:

e Symbols appearing in V-type address constants do nct agpear in the
cross-reference listing.

® Cross-reference entries for symbols used in a literal refer to the
assembled literal in the literal pocol. Look up the literals in the
cross reference to find where the symbols are used.

® A FRINT OFF listing control instruction dces nct affect the
producticn of the cross-reference section of the listing.

e In the case of an undefined symkol, the assembler fills fields 23,
24, and 25 with the message:

*¥***UNDEFINED**¥*

Diagnostic Cross Reference and Assembler Summary

@) The statement number of each statement flagged with an error message
or MNOTE arpears in this list. The number of statements flagged and
the highest non-zero severity code encountered is also printed. The
highest severity code is equal to the assembler return code.

If no errors are encountered, the following statement is printed:
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

See the section "Error Diagnostics"™ for a complete discussion of how
error messages and MNOTEs are handled.

A list of the options in effect for this assembly is rrinted. The
options specified by the programmer in the PARM field to override the
assembler default options are also printed.

é} If the assembler has been called by a problem rrogram (See Arpendix
D) and any standard (default) DDnames have been overridden, toth the
default [Cnames and the overriding DDnames are listed. Otherwise,
this statement appears:

NO OVERRIDING DD NAMES

24

The assembler prints the number of records read frcm SYSIN and SYSLIB
and the number of records written on SYSPUNCH. The assembler also
prints the number of lines written on SYSPRINT. This is a count of
the actual number of 121-byte records generated by the assembler; it
may be less than the total numker of printed and blank lines
appearing on the listing if the SPACE n assembler instruction is used.
For a SPACE n that does not cause an eject, the assembler inserts n
blank lines in the listing by generating n/3 blank 121-byte records
-- rounded to the next lower integer if a fraction results (for
example, for a SPACE 2, no blank records are generated). The
assembler does not generate a klank record toc force a rage eject.

Assembler Listing 25

Assembler Diagnostic Facilities

The diagnostic facilities for Assembler H include diagnostic messages
for assembly errors, diagnostic or explanatory messages issued by the
source program or by macro definitions (MNOTEs), a macro trace and dump
facility (MHELP), and messages and dumps issued by the assembler in case
it terminates abnormally.

This section briefly descrikes these facilities. The assembly error
diagnostic messages and abnormal assembly termination messages are
described in detail in the OS Assemkler H Messages bock.

Assembly Error Diagnostic Messages

Assenbler H prints most error messages in the listing immediately
following the statement in error. It also prints the total numker of
flagged statements and their line numkers in the Diagncstic Cross
Reference section at the end of the listing.

The messages do not follow the statement in error when:

@ Errors are detected during editing of macro definitions read from a
library. A message for such an error arpears after the first call in
the source program to that macro definition. You can, however, bring
the macro definition into the source program with a COPY statement.
The editing error messages will then ke attached tc the statements in
error.

® Errors are detected ky the lookahead function cf the assembler.
(Lookahead scans, for attribute references, statements after the one
being assembled.) Messages for these errcrs arrear after the
statements in which they occur. The messages may alsc agppear at the
point where lockahead was called.

® Errors are detected on conditicnal assembly statements during macro
generaticn or MHELP testing. Such a message fcllows the most
recently generated statement or MHELP output statement.

A typical error diagnostic message is:
IEV057 ***ERROR*** UNDEFINED OPERATION CODE -- XXXXX

The term ***ERROR#*#* is part of the message if the severity code is 8 or
greater. The term **WARNING** is part of the message if the severity
code is 0 or 4.

A copy of a segment of the statement in error, rerresented above by
xXxxXX, is appended to the end of many messages. Normally this segment,
which can be up to 16 bytes long, begins at the bad character or term.
For some errors, however, the segment may begin after the bad character
or term. The segment may include part of the remarks field.

If a diagnostic message follows a statement generated by a macro
Jefinition, the fcllowing items may be appended to the error message:

26

e The number of the model statement in which the errcr cccurred, or
the first five characters of the macro name.

® The SET symbol, parameter numker, or value string asscciated with
the error.

Note: References to macro parameters are by number (such as PARAM00S)
instead of name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAM0O0O = &SYSNDX

PARAM001 = ESYSECT

PARAM002 = §SYSLOC

PARAM003 = &SYSTIME

PARAMOOU4 = ESYSLATE

PARRMO0OS = &SYSPARM

PARAM006 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in the
macro definition, followed Ly positional parameters. When there are no
keyword parameters in the macro definition, PARAM007 refers to the first
positional parameter.

If a diagnostic message fcllows a conditional assembly statement in the
source program, the following items will be appended to the error
message:

e The word "OPENC"
® The SET symbol or value string associated with the error

Several messages may ke issued for a single staterent cr even for a
single error within a statement. This happens because each statement is
usually evaluated on more than one level (for example, term level,
expression level, and operand level) or bty more than cne ghase of the
assemkler. Each level or phase can diagnose errors; therefore, most or
all of the errors in the statement are flagged. Occasionally, duglicate
error messages may occur. This is a normal result of the error
detection process.

Figure 10 is an example of Assemktler H handling of errcr messages.

Asserbler Diagnostic Facilities 27

LOC O0OBJYECT CODE ANNRL ADDR2 STMT SUUKCE STATEAFNT ASM H V 01 11.51 05/20/70
1 FEXXFBREFEEERERRRARFISRARR XX AR SERRAN RN KL R XL NS SAERRRASER IR AR RS RE S
2 SAMPLE ERROR DIAGNOSTIC MESSAGES *
3 IN SOUKCE PRUGRAM (OPEN CODE) AND GENERATED RY MACRO CALLS *
G SRXBEAERERELNRRRARIL AR ERSRASR AL SR EBESIRN SRR NSS4 R RS SRR S0 ER SIS
000000 6 A CSECT
000000 0000 0000 00000 7 ST4 14,U2,1210131
TEVO44 ®*% ERR(R *%¥ UNCEFINED SYMBUL
IEV0O29 %% ERROR *** [NCORRECT REGISTER SPECIFICATIUN
TEVLT9 **x ERROR *%* DELIMITER ERRDR, EXPECT RIGHT PARENTHESIS
000004 05CO 8 BALR 12,0
00006 9 USING #*,12
000006 0GOO 02000 00000 10 ST 13,SAVE+4
IEV0O44 s%% ERROR *#* UNDEF INED SYMBOL
OPEN (CRDIN, (INPUT) ,CRDOUT, (OQUTPUT)
TEV0O88 *** ERROR **x* UNBALANCED PARENTHESES IN MACRO CALL OPERAND -— OPENC/I(CRDIN, (IN
Q0000A 0700 12+ CNOP 0,4 01-0PEN
00000C 4510 COOF 00014 13+ BAL 1e*48 LOAD REGL W/LIST ADDR. 01-OPEN
200010 00000200 14+ DcC A(0O) OPT BYTE AND DCB ADDR. 01-OPEN
000014 0000 0000 00000 15+ ST CRDIN, { INPUT) ,CRDIUT,,LOUTPUT,0(1,0} X01-0PEN
+ STORE INTO LIST
TEV029 #%% ERRJR *¢% [NCORRECT REGISTER SPECIFICATION
IEVO44 *%% ERRIR *** UNDEFINED SYMBUL
1EVIT7 #«% FRROR *** DELIMITER FRRUR, EXPECT BLANK OR LEFT PARENTHESIS
000018 9280 1000 00000 16+ MV 0(l),128 MOVE IN DPTIDN BYTE 01-0OPEN
00001C 0A13 17+ SvC 19 ISSUE OPEN SVC 01-0PEN
19 FREIREFREREREERRRERARRRRERERERRKRRRRE R DR R AN AR AR KR KRR R RR KRR KRR KRR KK
20 * EDITING AND GENERATION ERRORS AND MNOTES FROM A LIBRARY MACRD =
2] EXEETEREEFE KX R AR XBGKRARKSETRXRREX KRS
23 LDADR REGL=10,REG2=8,CHEROKEE ,CHAMP
1EV136 *x% FRROR *** ILLEGAL LOGICAL/RELATIONAL OPERATOR -- MACRU - LOADR
1EV0O83 **x £RROR *#* ARITHMETIC EXPRESSION CUNVAINS ILLEGAL DELIMITER CR ENDS PREMATURELY -- MACRO - LOADR
00001E 58A0 CO2A n0030 24+ L 10yCHEROKEE 01-1LOADR
26 LOADR REG1=25,REG2=8,CHEROKFE,SWIFT
000022 0000 0000 00000 27+ 254 CHERUKEE 01-L0ADR
1EV029 *#* ERROR *%* INCORRECT REGISTER SPECIFICATION
29 LUADR REG2=10,CHAMP, SHIFT
000026 5800 CO2E 0n034 30+ L 0y CHAMP 01-LOADR
6 FEERERRERFRABRKFR RN TR RRKRERE SRR SRR R RN R R AR R RE R AR KRR R AR KRR KRR Rk
7 % SAMPLFE MACKO NEFINITION RFRUN WITH EDITING ERRORS CORRECTED *
A REEEEXFFFERRASRRERYXFEBBR AR KB R IRE G R KR RN R R SRR R KKE EE 22
10 MACRY
11 E&NAME LOADR EREGLI=,®2=,60P1,60P2
12 &r(1) SETA EREGL,®2
13 AlLF ({T*EREGL EQ '0'}.ERR
14 L ER(1},60P1
15 L &R(2),80P2
16 MEXIT
17 .ERR MNUTE 36,%Y0U LEFT DUT THE FIRST REGISTER®
18 MEND
20 FEXEFXREF S REXERRRX KSR DR RKEEE Rk Kk kR *EREhEEE
21 * SAMPLE MACRO CALLS WITH GENERATION ERRORS AND MNOTES *
22 FEXXTREXFXFRAERREE RS SRR EERX S AR T RX KK SRR KA XX RARRERR R B AR RS R R XS E R RS
24 LOADR REGL=10,REG2=84yCHEROKEE CHAMP
00000C 58A0 CO04 00004 25+ L L0y CHERDKEE 01-05014
000010 5880 C008 00008 26+ L 3, CHAMP 01-00015
23 LOADR REG1=25,REG2=8,CHEROKEE,ESWIFT
TEVO03 *%* ERROR *** UNDECLARFD VARIABLE SYMBOL. DEFAULT=0, NULL, OR TYPE=U -— OPENC/SWIFT
000014 0000 0000 00000 29+ 25,CHEROKEE 01-00014
IEV029 *%% ERROR **% [NCORRECT REGISTER SPECIFICATION
000018 0000 2000 00000 30+ 8y 01-00015
1EVOT74 *%* ERROR *** [LLEGAL SYNTAX IN EXPRESSION
32 LOADR REG2=8,CHAMP,SWIFT
IEV254 *%x MNOTE %% 33+ 36,YOU LEFT OUT THE FEIRST REGISTER 01-00017
34 END

Figure 10.

28

Sample Error Diagnostic Messages

MNOTEs

An MNOTE statement is included in a macro definition or in the source
program. It causes the assembler to generate an inline error or
informational message.

An MNOTE arpears in the listing as follows:
IEV254 ***MNOTE*#** severity code, message

Unless it has a severity code of * or the severity code is omitted, the
statement number or the MNOTE is listed in the diagnostic cross
reference.

Suppression of Error Messages and MNOTEs

Error messages and MNOTEs below a specified severity level can be
optionally suppressed by declaring in the EXEC statement:
PARM='FLAG (n) ' (where "n" is the selected severity level).

Abnormal Assembly Termination

Whenever the assembly cannot be completed, Assembler H prcvides a
message and, in some cases, a specially formatted durr fcr diagnostic
information. This may indicate an assemkler malfuncticn cr it may
indicate a rrcgrammer error. The statement causing the error is
identified and, if possible, the assembly listing up tc the point of the
error is printed. The O0S Assembler H Messages book, describes the
abnormal termination messages. The messages give enough information to
(1) correct the error and reassemkle your rrogram, or (2) determine that
the error is an assembler malfunction.

The CS Assembler H Logic manual, gives a complete exrlanation of the
format and contents of the abnormal termination dump.

Macro Trace Facility (MHELP)

The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP operand
field. MHELP statements can occur anywhere in open ccde or in macro
definitions. MHELP options remain in effect continuously until
superseded by another MHELP statement. Appendix B is a sample MHELE
trace and dumg.

Macro Call Trace

(MVHELP B'1' or MHELP 1) . This option provides a one-line trace for each
macro call, giving the name of the called macro, its nested depth, and
its ESYSNLCX (total numker of macro calls) value.

Note: This trace is provided upon entry into the macro. No trace is
provided if error conditicns prevent entry into the macro.

Assembler Diagnostic Facilities 29

Macro Branch Trace

(MHELEF B'10', or MHELP 2). This option provides a one-line trace for
each AGO and true AIF conditional-assermkly statement within a macro. It
gives the model-statement numbers of the “"branched from" and "kranched
to" statements, and the name of the macro in which the branch occcurs.
This trace option is suppressed for library macros.

Macxrc Entry Dumg

(MHELP B'10000', or MHELP 16) , This option dumps parameter values from
the macro dictionary when the macro is called.

Macro Exit Dumg

(MHELP B*10000', or MHELP 8). This option dumps SET symbol values from
the macro dictionary upon encountering a MEND or MEXIT statement.

Macro AIF Dumg

(MHELP B*100', or MHELP 4). This option dumps SET symbol values from
the macro dictionary immediately before each AIF statement that is
encountered.

Global Suppression

(MHELEF B'100000', or MHELP 32). This option suppresses global SET
symbols in the two preceding options, MHELP 4 and MHELP 8.

MHELP Supgression

(MHELP B'10000000', or MHELP 128). This option suppresses all currently
active MHELP options.

Combining Ortions

Multiple cpticns can be obtained by combining the option codes in one
MHELP operand. For example, call and branch traces can be invoked by
MHELP B'11', MHELP 2+1, or MHELP 3.

30

MHELP Contrcl on §SYSNDX

The MHELP orerand field is actually mapped into a full word. Previously
defined MHELP codes correspond to the fourth byte of this fullword.

ESYSNDX control is turned on ky any kit in the third byte (operand
values 256-65535 inclusive). Then, when §SYSNDX (total number of macro
calls) exceeds the value of the fullword which contains the MHELP
operand value, control is forced to stay at the open-ccde level, by in
effect making every statement in a macro behave like a MEXIT. Open code
macro calls are honored, but with an immediate exit back to open code.

Examples:

MHELP 2 Limit &SYSNDX to 256.

MHELP 1 Trace macro calls.

MHELP 256+1 Trace calls and limit &SYSNDX to 257.
MHELP 65536 No effect. No bits in bytes 3,4.

MHELP 65792 Limit &SYSNDX to 65792,

ur
(o2}

When the value of ESYSNLX reaches its limit, the message "ACTR EXCEEDED
-- ESYSNDX" is issued.

Asserbler Liagnostic Facilities 31

Programming Considerations

This section discusses some topics in assembler language programming.

Saving and Restoring General Register Contents

A problem program should save the values contained in the general
registers upon commencing execution and, upon completicn, restore to the
general registers these same values. Thus, as control is passed from
the operating system to a proklem prograr and, in turn, tc a subprogram,
the status of the registers used ky each program is preserved. This is
done through use of the SAVE and RETURN system macro instructions.

The SAVE macro instruction should ke the first statement in the program.
It stores the contents of registers 14, 15, and 0 through 12 in an area
provided by the program that passes control. When a rrcblem program is
given contrcl, register 13 contains the address of an area in which the
general contents should be saved.

If the prcgram calls any subprograms, or uses any operating system
services other than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first
save the contents of register 13 and then load the address of an
18-fullword save area into register 13. This save area is in the
problem program and is used by any subprograms or Operating System
services called by the problem program.

At completion, the problem program restores the ccntents of general
registers 14, 15, and 0-12 Ly use of the RETURN systen racro instruction
(which also indicates program completion). The ccntents cf register 13
must be restored before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process of saving
and restoring the contents of the registers. A ccmrlete discussion of
the SAVE and RETURN macro instructions and the saving and restoring of
registers is contained in the Supervisor Services and Macro_ Instructions
publication.

Name Operation Operand
BEGIN SAVE (14,12)

set up base register

ST 13,SAVEBLK+4

LA 13,SAVEBLK

L 13,SAVEBLK+4

RETURN (14,12)
SAVEBLK| DC 18F'0’

32

Program Termination

You indicate completion of an assembler language source program by using
the RETURN system macro instruction to pass control from the terminating
program tc the program that initiated it. The initiating program may be
the Operating System or, if a subprogram issued the RETURN, the program
that called the subprogram.

In addition to indicating program completion and restcring register
contents, the RETURN macro instruction may also pass a return code =- a
condition indicator that may be used by the program receiving control.
If the return is to the operating system, the return code is compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement. If return is to another problem program, the return code is
available in general register 15, and may ke used as desired. Your
program should restore register 13 Lkefore issuing the RETURN macro
instruction.

The RETURN system macro instruction is discussed in detail in
Supervisor Services and Macro Instructions.

PARM Field Access

Access to information in the PARM field of and EXEC statement is gained
through general register 1. When control is given to the proklem
program, general register 1 contains the address c¢f a fullword which, in
turn, contains the address of the data area containing the information.

The data area consists of a halfword containing the count (in bkinary) of
the number of information characters, followed by the information field.
The informaticn field is aligned to a fullword boundary. The following

diagram illustrates this process:

General Register 1

Address of Fullword
Points
to Fullword
> Address of Data Area Ports
to
Data Area
- Count in Binary Information Field

Macro Definition Library Additions

Source statement coding, to ke retrieved by the COPY assembler
instruction, and macro definitions may ke added to the macro library.
The I1EBUPLTE utility program is used for this purrcse. Details of this
program and its control statements are contained in the Utilities
publication. The following sequence of job contrcl statements can be
used to call the utility program and identify the needed data sets. It
is assumed that the job control statements, IEBUPLTE program control
statements, and data are to enter the system via the input stream.

Programming Ccnsiderations 33

//jobname JOE

//stepnare EXEC PGM=1EEUPDTE, PARM=MOLC
//SYSUT1 CLC CSNAME=SYS1.MACLIB,DISP=0LD
//SYSUT2 CC DSNAME=SYS1.MACLIB,DISP=0LD
//SYSPRINT LCLC SYSOUT=A

//SYSIN CD *

IERBUPLTE control statements and source statements cr
macro definitions to be added to the macro library
(SYS1.MACLIB)

/* (deliriter statement)

Load Module Modification - Entry Point Restatement

I1f the editing functions of the linkage editor are to be used to modify
a load module, the entry point to the load module must be restated when
the load module is reprocessed by the linkage editor. Otherwise, the
first byte of the first control section processed by the linkage editor
will kecome the entry point. To enable restatement of the original
entry point, or designation of a new entry point, the entry pcint must
have been identified originally as an external symbol; that is, it must
have appeared as an entry in the external symbol dicticnary. External
symbol identification is done automatically by the assembler if the
entry point is the name of a control section or START statement;
otherwise, an assembler ENTRY statement must be used tc identify the
entry point name as an external symbol.

When a new object module is added to or rerlaces part cf the load
module, the entry point is restated in one of three ways:

® By placing the entry pcint symbol in the operand field of an EXTRN
statement and an ENL statement in the new object mrcdule.

e By using an END statement in the new object module to designate a new
entry point in the new okject module.

@ By using a linkage editor ENTRY statement to designate either the
original entry point or a new entry point for the load module.

Further discussion of load mcdule entry points is contained in the
Loadexr and Linkage Editor publication.

Object Module Linkage

Object modules, whether generated kty the assembler or ancther language
processor, may be combined by the linkage editor to produce a composite
load module, provided each okject module conforms to the data formats
and linkage conventions required. This topic discusses the use of the
CALL system macro instruction to linkage an assembler language main
program to subprograms produced ky another processor. The Sugervisor
Services and Macro Instructions publication, contains additional details
concerning linkage conventions and the CALL system macro instruction.

34

Figure 11 is an example of statements used tc establish the assembler
language program linkage to FORTRAN and COBOL subprograms.

If any input/cutput operations are performed by called subprograms,
appropriate CC statements for the data sets used by the subprograms must
be supplied. See the appropriate language prograrmer‘s guide for an
explanation of the DD statements and special data set record formats

used for the processor.

Programming Ccnsiderations

35

ENTRPT SAVE (14,12)

LR 12,15
USING ENTRPT,12
1 ST 13,5VAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13,15
2 CALL name,(V1V2,V3),VL
L 13,SVAREA+4
RETURN (14,12)
3 SVAREA DC 18F'0°
4 DC (data)
5 v2 DC (data)
6 v3 DC (data)
END
1 This is an example of OS linkage convention, See the Supervisor Services and Macro Instructions for
details.
2

The symbol used for ““name” in this statement is:
a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.
b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY'name’.

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an
assembler-language subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the
argument. If the called routine is a FORTRAN-written function, the returned argument is not in the parameter list: a
real or double precision function returns the value in floating point register zero; an integer function returns the value
in general purpose register zero.

NOTE: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements

of IBCOM (FORTRAN execution-time 1/0 and interrupt handling routines) which accompanies the compiled FORTRAN
subprogram. In some instances the call for IBCOM is not automatically generated during the FORTRAN ompilation.
The FORTRAN |V Library publication, Order Number GC28-6596, provides information about IBCOM requirements and
assembler statements used to call IBCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages
which call them; therefore all linkages to FORTRAN subprograms are required to have the high-order bit in the last
parameter in the linkage set to 1. COBOL-written subprograms have fixed-length calling linkages; therefore, for COBOL
the high-order bit in the last parameter need not be set to 1.

3 This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram,
register 13 contains the address of this area.

4,56 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined
by the data formats required by the FORTRAN or COBOL subprograms.

Figure 11. Sample Assembler Linkage Statements for FORTRAN
or COEOL Sukprograms

36

Special CPU Programming Considerations

You should ke aware cf operational differences between the Model 85,
Model 91, and Model 195 and other System/360 models. The primary
differences are:

® Non-sequential instruction execution -- 91 and 195

e Extended precision machine instructions -- 85 and 195

e Unaligned operands -- 85 and 195

CONTROLLING INSTRUCTICN EXECUTICON SEQUENCE

The Model 91 and Model 195 maintain a logical consistency with respect
to their own operations, including the keginning and ending of 1/C
operations, but they do not assume responsibility for such consistency
in the operations performed by asynchronous units. Ccnsequently, for
any asynchronous unit that depends upon a strict adherence to sequential
(or serial) execution, a problem program must set up its own procedures
to ensure the proper instruction sequence.

For a program section that requires the serial or sequential execution
of instructions, the following 'no-operation® instruction:

BCR N,O N=1,15

causes instruction decoding to halt until the instructions that have
already been decoded are executed. (This action is called a pipe-line
drain.) On the Model 91 and Model 195, this instruction ensures that all
the instructions preceding it are executed before the instruction
succeeding it is decoded. Use of this instruction should be minimized,
because it may affect the performance of the CPU.

Isolating an instruction by preceding it and following it with a BCR N,0
instruction eliminates multiple imprecise interruptions from more than
one instruction by virtue of the pipe-line drain effect. However,
because multiple exceptions may occur in one instruction, this technique
does not eliminate a multiple imprecise interruption, nor does it change
an imprecise interruption into a precise interruption. The use of the
BCR instruction does not assure you that you can fix up an error
situation. 1In general, the only information available will be the
address of the BCR instruction. The length of the instruction preceding
the BCR instruction is not recorded, and generally there is no way to
determine what that instruction is. :

Note: BCR 0,0 does not cause a pire-line drain.

EXTENCED-PRECISION MACHINE INSTRUCTIONS

The extended-rrecision arithmetic instructions and the rounding
instructions of the Model 85 and the Model 195 are shown below. A
complete description of these instructions is in the 1IBM_System/360
Principles of Operation.

Programming Ccnsiderations 37

Name Mnemonic Type Op Code
ADD NORMALIZED (extended operands, extended result) AXR RR 36
SUBTRACT NORMALIZED (extended operands, extended result) SXR RR 37
MULTIPLY (extended operands, extended result) MXR RR 26
MULTIPLY (iong operands, extended result) MXDR RR 27
MULTIPLY (long operands, extended result) MXD RX 67
LOAD ROUNDED (extended to long) LRDR RR 25
LOAD ROUNDED (long to short) LRER RR 35

A program containing the extended-precision instructions cannot ke
executed successfully on another System/360 model unless those
instructions are converted into others that can be executed by the
non-Model 85 or Model 195 machine. The OPSYN assembler instruction
helps provide a facility for doing this.

OPSYN is described in the OS Assemkler H lanquage Specifications manual
or, for VS, in the Assembler Langquage manual.

A type L DC instruction can be used to specify an extended-precision
(16-byte) floating-point constant. The DC instruction is described in
the Assembler Lanquage manual.

UNALIGNEL (EYTE-ORIENTEL) OPERANDS

The Model 85 and Model 195 will execute unprivileged RX and RS format
instructions with fixed-point, floating-point, or logical operands that
are not on integral boundaries. Assemkly of such instructions normally
produces the diagnostic message "IEV033 ALIGNMENT ERROR". A PARM option
in the EXEC statement, ALIGN or NOALIGN, makes it rossible to suppress
the message and thereky oktain a clean assembly listing. The object
code is not affected.

Note that an assemkled program that requires use of the Model 85 and
Model 195 byte-oriented operand feature cannot be run cn another
machine, nor can it run successfully under the Operating System if it
violates any alignment restrictions imposed by the Orperating System.

38

Appendix A. Sample Program

The sample rrcgram included with Assemkler H when it is received from
IBM is described in this appendix. This program demonstrates some basic
assembler language, macro, and conditional assembly features, most of
which are unique to Assembler H. The circled letters in the description
below refer to corresponding letters in the listing that follows the
description.

@9 The job control language for the assembly consists of the
IEN-supplled cataloged procedure ASMHC and the statements needed to
use the procedure and supply input to the assembler. Note that three
of the default PARM options are overridden in the EXEC statement that
calls the rrocedure.

By using the BATCH (multiple assembly) option, this sample program,
the sample program in Appendix B, and the listings in Figure 8 and
Figure 10 were assemtled with one set of JCL cards. Object modules
were not punched for any of the assemblies because the NODECK option
is specified. The character string specified in the SYSPARNM option
is available to each assembly. The character string is displayed in
this program by using the system variable symbcl §SYSPARM (statement
144y .

The External Symbol Dictionary shows a named common statement. The
named common section is defined in statement 158.

©

Statement 10: Save the current status of the PRINT statement
(ON,NOLCATA,GEN) .

®

Statement 11: Leave ON in effect, modify the other two options to
DATA,NOGEN.

Statement 12: Macro call; note that the expansion (statement 10) is
not printed.

Statement 14: All 28 Lkytes of data are displayed tc the two-operand
DC.

Statement 15: Restore prior status of PRINT.

Statements 17 and 18: The generated output of the macro WTO is shown
and only the first 8 bytes of data are displayed.

C) Statements 14 and 18: Multiple constants are allowed in hexadecimal
and binary DC operands, and neither symbol in the duglication factor
has been defined yet. Definition occurs in statements 108 and 109.

C) Statements 26, 28, 136, and 155 illustrate use of the LOCTR assembler
instruction. This feature allows one to break controcl sections down
into sub-control sections. It may be used in CSECT, LCSECT, and CON.
LCCTR has many of the features of a contrcl section; for example,
all of the first LOCTR in a section is assigned space, then the
second, and so on. The name of the control secticn automatically
names the first LOCTIR section. Thus LOCTR A is begun, or resumed, at
statements 2, 28, and 155. Note that the location ccunter value
shown each time is the resumed value of the LOCTR. On the other
hand, various LOCTR sections within a ccntrol secticn have common
addressing as far as USING statements are concerned, subject to the

Appendix A. Sample Program 39

Q)

® 6 6 6

®

40

computed displacement falling within 0 through 4095. 1n the sample,
CONSTANT is in LOCTR DEECEES kut the instructiocn referencing it
(statemrent 25) has nc addressing problems.

Three-operand EQU. Here, we are assigning: (a) the value of B5 (not
yet defined) to A8, (b) the length attribute of A5 to A8, and (c) the
type attribute of A7 to A8. 1If no operand is rresent in an EQU
statement, the tyre attribute is U and the length attribute is that
of the first term in the operand expression. Symbols present in the
lakel and/cr orerand field must Le previously defined. ©Note that it
is not pcssible to express the type attribute of A7 directly in the
ECU statement. The FQU statement at 38 could have been written

A8 EQU B5,2,C'L’
A8 EQU B5,X'2',X'D3!

Set symbols &LA8 and §TA8 have not been declared in a LCL or GEL
statement prior to their use here. Therefore, they are defaulted to
local variable symkols, as follows: &LA8 is a LCLA SET symbol
because it appears in the name field of a SETA; &§TA8 is a LCLC SET
symbol because it is first used in a SEIC.

MNOTE may arpear in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

A SETC expression may have a duplication factor. The SETA expression
must be enclosed in parentheses and immediately rrecede the character
string, the substring notation, or the type attribute reference.

Statements 57-60 illustrate U-byte self-defining values and unary +
and -. The value of X will appear later in a literal address
constant (see statement 162).

The programmer macro DEMO is defined well after the start of the
assembly. Macros can ke defined at any pcint and, having been
defined and/or expanded, can be redefined. Note that the parameters
on the prototype are a mixture of keywords and positicnal operands.
§SYSLIST may be used. The positional parameters are identified and
numbered 1, 2, 3 from left to right; keywcrds are skirred cver.

Statement 70 illustrates the extended SET feature (as well as
implicit declaration of ELOC (1) as a LCLC). Bcth &LOC (1) and &LCC (2)
are assigned values. One SETA, SETB, or SETC statement can then do
the work of many.

Statement 72 is a model statement with a symbolic parameter in its
operation field. This statement will be edited as if it is a macro
call; at this time, each operand will ke denoted as pcsitional or
keyword. At macro call time, it will not be possible to reverse this
decision. Even though treated as a racro, it is still expanded as a
machine or assemkler operation.

Statement 74 illustrates the computed AGO statement. Control will
pass to .MNOTE1 if E&KEY2 is 1, to .MNOTE2 if €KEY2 is 2, to .MNOTE3
if EXEY2 is 3 or will fall through to the model statement at 75
otherwise.

Statement 77 illustrates the extended AIF facility. This statement
is written in the alternate format. The logical expressions are
examined from left to right. Control passes tc the sequence symbol
corresponding to the first true expression encountered, else falls
through to the next model statement.

Statement 87 contains a subscripted created SET symbol in the name

field. Exclusive of the subkscript notation, these SET symbols have
the form & (e) where e is an expression made up of character strings
and/or variable symbols. When such a symbol is enccuntered at
expansion time, the assembler evaluates e and attempts to use

& (value) in place of &(e). Looking ahead, we see that TEMO is used
as a macro instruction in statement 97 and EKEY1=C. Thus, the ‘e' in
this case is X&KEY1 which has the value XC. Finally, the
macro-generator will use §XC(2) as the name field cf this model
statement. In statement 108, note that &XC (2) equals TRANSYLVANIA
(statement 96). Finally, in the sequence field of statement 108, we
see that this statement is a level 01 expansion of a rrogrammer macro
and the corresponding model statement is statement number 87.

Created SET symbols may ke used wherever regular SET symbols are used
in declarations, name fields or operands cf SET statements, in model
statements, etc. Likewise, they are subject to all the restrictions
of reqular SET symbols. 1In the programrmer macroc DEMO, it would not
have been valid to have the statement GBLC & (XEKEY1) (1) because, in
statement 71, &XA, &XB, and &XC are declared as glcbal variable
symbols and 6§ (X6KEY1) (2) becomes §&XC (2) unless, cf ccurse, EKEY1 was
assigned something other than the value A, B, cxr C in the macro
instruction DEMO, statement 97. 1In that case, we wculd need a global
declaration statement if we wanted & (X6KEY1) to be a global SET
symbol. EBecause glokal declarations are processed at generation tim
and then only if the statement is encountered, we would insert the
following statements between, say, statements 71 and 72.

AIF (*€KEY1' EQ 'A' OR '€KEY1' EQ 'B' OR 'SKEY1' EQ 'C').
GELC & (XEKEY1) (1)
SKIP ANCP

As the macro is defined, & (X6KEY1) will be a global SEIC if EKEY1 is
A, B, or C; otherwise it will be a LCLC or, possibly, a LCLA. 1In the
macro, if & (X&8KEY1) becomes a local, it will have a null or zero
value.

() In statements 93 and 94, note that &€XA is declared as a subscripted
global SETC variable with a maximum subscript of 1 and, in the next
statement (an extended SET statement), we store something into &XA (2).
There is no contradiction here. The statement GBLC §XA (1) marks EXA
as a subscripted glokal SETC symkol. Any decimal self-defined number
(1 through 2147483647) can be used. Furthermore, only a nominal
amount of space is set aside in the global dictionary -- this space
is open-ended and will be increased on demand and only on demand.

C) Statement 97 is the macro instruction DEMO. Note that &§P1 has the
value WRITE. Therefore, the model statement at statement 72 becomes
an inner macro, WRITE, producing the code at statements 98-103. The
sequence field of these statements contains 03-IHBRD, indicating that
they are generated ky a level 03 macro (DEMO is 01, WRITE is 02
named IHBERIWRS. It is an inner macro called by WRITE.

C) Statements 108 and 109 contain some ordinary symbols longer than
eight characters. The limit for ordinary symbcls, cperatiocn codes
(for programmer and likrary macros and op codes defined through
OPSYN) , variable symbols, and sequence symbols is sixty-three
characters (including the & and . in the latter twc instances,
respectively). Most long symkols will prcbably be nearer to eight
than sixty-three characters in length. Extremely long symbols are
simply too difficult to write, especially if the symbcl is used
frequently. The requirement that the operation field be present in
the first statement cf a continued statement is still in effect.
Furthermore, names of START, CSECT, EXTRN, WXTRN, ENTIRY, etc. symbols
are still restricted to eight characters.

Arpendix A. Sarple Program 41

@

©

42

Library macros may be inserted into the source stream as programmer
macros by use of a COPY statement. The result (statements 118-126)
is essentially a programmer macro definition. When a library macro
is brought in and expanded by use of a macro instruction, the
assembler (1) looks the macro up by its member-narme and (2) verifies
that this same name is used in the operation field cf the prototype
statement. Therefore, for example, DCB has to be catalogued as LCCB.
However, as COPY code, the memker name bears nc relationship to any
of the statements in the memker. Thus, several variations of a given
macro could be stored as a likrary under separate rames, then copied
in at various places in a single assembly as needed. (Assembler H
allows ycu to define and redefine a macro any number of times).

In statement 129, MARK is made a syncnym for NOTE. Tc identify NOTE
as a macro, it has to ke used as either a systemr macrc call (that is,
from a macro library) or a programmer macro definition prior to its
use in the operand field of an OPSYN statement. The COPY ccde at
118-126 is a programmer macro definition. The macro instruction at
statement 130 is MARK. We can use MARK and NOTE interchangeakly. 1If
desired, we could remove NOTE as a macro definition in the following
way:

MARK OPSYN NOTE
NOTE OPSYN

We could then refer to the macro only as MARK.

Statement 144 demonstrates ESYSTIME, &§SYSDATE and &SYSPARM. The
values for the first two are the same as we use on the heading line.
The value for ESYSPARM is the value passed in the PARM field of the
EXEC statement or the default value assigned to &§SYSPARM when
Assembler H is installed.

System variable symbols &SYSLOC and &SYSECT are displayed. The
sequence field indicates that the model statements are statements 148
and 149.

Illustration of named COMMON. You can establish addressakility for a
named COMMON section with :

USING section-name, register

You can address data in a blank COMMON section by labelling a
statement after the COMMON statement and using relative addressing.

I1f there are literals outstanding when the END statement is
encountered, they are assigned to the LOCTR currently in effect for
the first control section in the assermkly. This may or may not put
the literals at the end of the first control section. 1In this sample
assembly, the first control section, A, has twc LOCIRs, A and DEECEES.
Because A is active (at statement 155), the literals are assembled
there. You always have the akility to control placement of literal
pocls by means of the LTORG statement. Note that X'FFFFFFE8' is used
for the contents of A (A5,X), statement 162. The syrbcl X was
assigned the value (4*-6) by an EQU in statement 60.

//HPGEXAMP JOB 932100,BERGQUIST,MSGLEVEL=1,M4SGCLASS=0
// EXEC ASMHC,PARM=* SYSPARM(SAMPLE PROGRAM),NODECK,BATCH®

%% 4106 H ASSEMBLER GROUP -02/15/71~ 00000100
XXC EXEC PGM=1EV90,PARM="NOLOAD, NODECK * s REG ION=180K 00000200
J/STEPLIB DD DSN=ASH.VO04
X/STEPLIB DD DSN=ASH.EQ3,DISP=SHR 00000300
/" DD DSN=ASH.VO03,DISP=SHR
KXS¥SL1B DD DSN=SYSleMACLIB,DISP=SHR 00000400
XXSYSUTL DD UNIT=2314,SPACE={CYL, (10,5)),DSN=6SYSUT1,0CB=(BLKSIZE=3520) 00000500
XXSYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=800,SPACE=(CYL,(5,5,0)) 0000600

(:) //SYSPRINT DD SYSOUT=(0,COPY1),DCB=8LKSIZE=3509
X/SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3509 00000700

//SYSIN DD * GENERATED STATEMENT
IEF2361 ALLOC. FOR HPGEXAMP C
IEF2371 231 ALLOCATED TO STEPLIB
1EF2371 231 ALLOCATED TO

IEF2371 237 ALLOCATED TO SYSLIB
1EF2371 137 ALLOCATED TO SYSUT1
IEF2371 335 ALLOCATED TO SYSPUNCH
IEF2371 336 ALLOCATED TQ SYSPRINT
1EF2371 235 ALLOCATED TO SYSIN

/”“~_f,///“‘\\\\‘__////’“\\\“_ﬂ,,/”—“\\~_,//’\‘

BIGNAME EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TYPE ID ADDR LENGTH LD ID ASM H V 04 17,29 03/16/72
A SD 00C1 000000 0COCDC

PD2 CM 0002 000000 0CG7D2

Appendix A. Sample Program 43

BIGNAME SAMPLE PROGRAM.

LOC
G0G000

€00002
€0000A
000012
00001A

GOO0O1E
000020

©0003C
000098
0Cc0C98
000040

€00040
000042

€00048
cocose

44

GBJECT CODE ADDR1 ACDR2

01230ABC0102030A
0B0C0102030A0B0C
0102030A0B0C0102
03CA0BOC

0a23
01230A8C0102030A

5850 8098
00000005

1812

000000000000
413243F6ABB8B5A30
338D313198A2E037

STHT

15
16

17+

18

36

37
38

+A8

L
DEECEES LOCTR

1ST TITLE STATEMENT dAS NO NAME, 2ND ONE DOES

SOURCE STATEMENT

CSECT
USING *,8

PUSH PRINT

PRINT NOGEN, DATA
ATO MF=(E, (1))

pPOP PRINT
W70 MF=(Es(1)}
svC 35

5, CONSTANT

oc F151
LOCTR

PAGE 2

ASM H V 04 17.29 03/16/72

FERERRRRREERF T RRRR R AR KF R KRR R R R RR IR RER R KRR R AR KRR KRR AR KRR KR K
PUSH AND POP
* PUSH DOWN THE PRINT STATEMENT, REPLACE IT,
BERERRERRRRERAFRR AR R KRR TR R R SRR R RN EE

RETRIEVE ORIGINAL

SAVE DEFAULT SETTING *

CONSTANT CODED HERE,

Aok ok kR KK

EXPANSION NOT SHOWN
DC X*123,ABC*s(REALLYLONGSYMbOL—TRANSYLVANIA)B®*1,10,11,1010,1011,1100"

RESTORE DEFAULT PRINT SETTING

EXPANSION SHOWN
ISSUE SVC

OC X'123,4ABC" + (REALLYLONGSYMBOL-TRANSYLVANIA)B'1,10,411,1010,1011,1100°*

LR R e e L e
LOCTR
* LOCTR ALLOWS 'REMOTE' ASSEMBLY OF CCNSTANT
FR R R R KRR R KRR R R R KR R R R R RO R R R KRRk KRRk ok X

ASSEMBLED BEHIND LOCTR A
1ST LOCTR IN CSECT A

LR S s e R e S e e e S S e S st S R 2222]

LR 1,2
PRINT DATA

SETC TU'A7

EQu BSsL*A54C*&TYPE"
EQU B54L*AS5,C*L"

** EEEE R S
3 OPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND

RAXRERKKEKEKREEEK

PRINT GONyNODATA,GEN*

kxR kE

=1

A7 DC L'341415926535897932384626433832795028841972% L'AT = 16,T'A7

€0020000
00030000

00050000
00060000
00070000
00086000

00100000
00110000
00120900
00130000

00140000
00150000
01-WTO

00160000

00180000
00190000
00200000
00210000

00230000
00240000
00250000
00269000

00280000
00290000
00300000

00320000
00330000

00340000
00350000

00360000
00360000

BIGNAME SAMPLE PROGRAM.

1ST TITLE STATEMENT HAS NO NAME, 2ND GNE DOES

LOC OBJECT CODE ADDR1 ADDR2 STMT

000058 7FFFFFFFCLC2C3C4
€00060 FFFFFFFF
000064 181D

© 6O

FFFFFFES

40
41
42
43

45

46
“7

49
50
51

53
54
55
57
58

60

SOURCE STATEMENT

PAGE 3

ASM H V 04 17.29 03/16/72

Arpendix A.

REER AR AR KRR KK ETT T 1 kkxkkxkkxxxkkkx 00380000
* IMPLICIT DECLARATION OF LOCALS &A, &C —- USE OF SETC DUP FACTOR YO * 00390000
* PRODUYCE SETC STRING LONGER THAN 8, MNOTE IN OPEN COOE 00400000
HERERREARE *EEE KK EREHEK H AR KK *** 00410000
LLAB SETA L'A8 €0430000
&TA8 SETC T'aA8 00440000

MNOTE *,'LENGTH OF A8 = 4LA8, TYPE OF A8 = &TAS8* 00459000

+%,LENGTH OF A8 = 2, TYPE OF A8 = L 00450000
&A SETA 2 €0470000
&C SETC (&A+3) 'STRING,* 00480000

MNOTE *,'&4C HAS VALUE = &C! 00490000

+%, 6C HAS VALUE = STRING ySTRINGySTRING $STRINGsSTRING, 00490000
- AR kR Rk Rk FREREERRRIRRR AR AR KRR AR KKK R K 00510000
* EXAMPLES OF 4 BYTE SELF-DEFINED TERMS, UNARY + AND - * 00529000
FREd Rk Rk Rk kROl kR R kR R R R ok Rk R R Rk Kk R kR Rk kR Rk Rk K 00530000

DC A(214748364T75C*ABCD" 4 X*FFFFFFFF') 00550000
LR -142416+-3 00560000
X EQu 4% -6 00580000

Samrle Program 45

BIGNAME

INSERT

PROGRAMMER MACRO IN SOURCE STREAM NOW

LOC O0BJECT CODE ADDR1

000066
00C068
€0006C
000070
000074
€00078

0CO07A
CO007E
00008C
000084

u6

1816
9220
5081
58F1
58F0
OSEF

5850
1894
S8CD
5073

1005
0008
0008
FO30

A008

8090
80A8

00005

ADDR2

00008
00008
00030

00008

00090
000A8

S

© @600

@

® ®

TMT

91

93
94
95
96
97

98+
99+
100+
101+
102+
103+

SOURCE STATEMENT

EEFERERREERERERRRERRRRRKEERE R R RIS R RE B R R R AR R SRR KRR R AR RO R KRR R R R AR

* MIXED KEYWORDS AND POSITIONAL PARAMETERS,; EXTENDED AGO AND AIF
* STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS,

*
xEER

USE OF CREATED SET SYMBOLS, EXTENDED SET STATEMENTS

&LOC(1)

&N

&N

«MNOTEL
«MNJTE2

«MNOTE3
«COMMON

MACRO

DEMO
SETC
GBLC
&P1
SETA
AGO
SETA
MNOTE
AlF

MNOTE

&XB(2) SR 9,10
GIXEKEYL)(2) LM 125134=A(A5,X) ARE KEPT IN PLACE UNLESS OISPLACED
&P2 ST 7,6P3

*kkkE

6XA(1)
&XB(1)
&xc(1)

MEND

GBLC
SETC
SETC
SETC
DEMO

LR
MVI
ST

L

L
BALR

- R K ey YT}

GPLyGKEY1=A,6P2,6KEY2=1,6P3,LKEY3=3,LP4

121,30 &LOC IS DIMENSIONED LCLC BY DEFAULT
EXA(5) 46 XB(20) ,6XC (1)
GSYSLIST(4) 4 6SYSLIST(5) 4&SYSLIST(6) 4MF=E

1

{EKEY2) o MNOTE1 yo MNOTE2 4« MNOTE3

2

,"LEKEY2 NOT 1,2, OR 3---USE &E&KEY3 IN PLACE OF T
(E&KEY3 EQ 1)«MNOTEL,

(EKEY3 EQ 2).MNOTE2, (EKEY3 Eu 3)<MNOTE3

,'BOTH &&KEY2 AND &&KEY3 FAIL TO QUALIFY!

«COMMON

*,*ELKEYELOC(EN) = 1°

«COMMON

*, " LGKEYELOC(EGN) = 2¢

+COMMON

*, 'GEKEYE&LOC (EN) = 3¢

5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS

ON MODEL STATEMENTS

AS A RESULT OF SUBSTITUTION

DEMO MACRO INSTRUCTION (CALL)

EXA(L) 46XBI2) 9EXC (3}

A%y 'MISSISSIPPI®

*B*y *SUSQUEHANNA"'

YC'y " TRANSYLVANIA®
KEY3=2,WRITE;REALLYLONGSYMBOL s

A8+8% (B5~CONSTANT=7) (3),KEY1=Cy (6)45F,

(8) 4KEY2=7

1,6 LOAD DECB ADDRESS

5(1) 4X* 20" SET TYPE FIELD

8,8(1,0) STORE OCB ADDRESS
15+8(140) LOAD DCB ADDRESS

15,48(0415) LOAD RDWR ROUTINE ADDR
14415 LINK TO RDWR ROUTINE

104+*,6KEY2 NOT 1,2, OR 3-—-USE &KEY3 IN PLACE OF IT

105+
106+

107+SUSQUEHANNA SR 9,10

*y EKEY3

2
L

5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS
ON MODEL STATEMENTS

108+TRANSYLVANIA LM 12,13,=A(A5,X) ARE KEPT IN PLACE UNLESS DISPLACED
1O9+REALLYLONGSYMBOL ST 7,A8+8% (BS-CONSTANT-7)(3)

+

AS A RESULT OF SUBSTITUTION

PAGE 4

ASM H V 04 17.29 03/16/72

00600000
00610009
00620000
00630000
00640000

€0660000
90670000
00680000
00690000
00700000
00710000
00720000
0073000C
00740000
X00750000
00760000
00770000
00780000
00790000
00800000
00810000
00820000
00830000
00840000
00850000
00860000
0C870000
00880000

00900000

00920000
00930000
00940000
00950000
M00960000
NOG970000
00980000
03-1HERD
03-1HBRD
03-1HBRD
03~-1HBRD
03-IHBRD
03-1HBRD
01-00076
01-00082
01-00085
01-00086
01-00087
X01-00088

BIGNAME

Loc

000088
0C008A

cannoc
CCCoCStk

€0009C
00009C
€000A0

0000AS8

00000C
00000C
000C90

€00000
€0000¢
000700

000090

INSERT PROGRAMMER MACRO

IN SOURCE STREAM NOW

OBJECT CODE ADOR1 ADDRZ STMT SOURCE STATEMENT ASM H V 04 17.29
11] ko ke kR kR Rk R R R R RN R R R R RN R R R AR R R R R R R KRR Rk Rk ke kg
112 * COPY NOTE' MACRO IN FROM MACLIB, RENAME IT *MARK', CALL IT UNDER *
113 % ITS ALIAS —-- IN EXPANSION OF MARK, NOTICE REFERENCE 8ACK TQ *
114 * DEFINITION STATEMENTS IN "COLUMNS® 76-80 OF EXPANSION *
IR S e e e T s T
(:) 117 COPY NGTE
118 MACRO
119 &NAME NOTE &DCB, &DUMMY=
120 AIF (*&DCB* EQ **).ERR
121 ENAME IHBINNRA &DCB
122 L 15,84(0,1) LOAD NOTE RTN ADDRESS
123 BALR 14,15 LINK TQ NOTE ROUT INE
124 MEXIT
125 JERR IHBERMAC 6
126 MEND
(:) 129 MARK OPSYN NOTE COMMENTS OF GENERATED STATEMENTS OCCUPY SAME
130 MARK (6) *COLUMNS' AS THOSE IN MODEL STATEMENTS
1816 131+ LR 1,6 LOAD PARAMETER REG 1
58F0 1054 00054 132+ L 15,84(0,1) LOAD NOTE RTN ADDRESS
oser 133+ BALR 14,15 LINK TG NOTE ROUTINE
135 * e o o 3 e e o e 0 o o o o e o ok kool 3 o ok ke o Ko ok ol e e X oK ok R ok
136 DEECEES LOCTR SWITCH TO ALTERNATE LOCATION COUNTER
00000000
0B0000A000000050 137 85 CCW X'0B*,B5,0,80
139 Fr kR R d kR Rk R A KRR R R R R TR E R R RN R F R KGR R R R AR KR AR AR KRR XK KK
140 * DISPLAY OF &SYSTIME, &SYSDATE, &SYSPARM AND &SYSLOC *
14] FEEFREFERKFERFRFFRBXR TR F IR ph e pdrRrkrRrk ook iRk ok Rk kkkokk kg Rk k
(:) 143 PRINT NODATA
144 DC C'TIME = &SYSTIME, DATE = &SYSDATE, PARM = &SYSPARM®
E3C9D4C540TE4OF1L + DC C'TIME = 17.29, DATE = 03/16/72, PARM = SAMPLE PROGRAM®
146 MACRO
147 LOCATE
148 &SYSECT CSECT DISPLAY OF CURRENT CONTROL SECTION
149 &SYSLIC LOCTR AND LOCATION COUNTER
150 MEND
(:) 152 LOCATE
153+A CSECT DISPLAY OF CURRENT CONTROL SECTION
154+DEECEES LOCTR AND LOCATIGN COUNTER
155 A LOCTR
(:) 157 **xkkxsxnskxs Tk R EE KRR E
158 PD2 CoM NAMED COMMON THROWN IN FOR GOOD MEASURE
159 DS 500F
1867 160 LR 617
(:) 161 END
00000040FF FFFFES 162 =A(A5,X)

Appendix A.

Sample Program

PAGE 5

03/16/72

01900000
01010000
21020000
01030000
01040000

01060000
00020000
00040017
00060000
00080000
€0100000
00120000
00140000
00160000
00180000

01090000
01100000
02-1HBIN
01-00122

A1 AN oo
51 001id3

01120000
01130000

01140000

01160000
01170000
01180000

01200000
01210000
01210000

01230000
41240000
01250000
01260000
01270000

01290000
01-00148
01-00149
01300000

01320000
01330000
01340000
01350000
01360000

47

BIGNAME RELOCATION DICTIONARY PAGE)

POS. ID REL.ID FLAGS ADDRESS ASM H V 04 17.29 03/16/72
0001 0001 0ocC 00090
0001 0001 o8 00G0Al
BIGNAME CROSS REFERENCE PAGE 7
SYMBOL LEN VALUE DEFN REFERENCES ASM H V 04 17.29 03/16/72
A 00001 00000000 0002 0028 0153 0155
AS 00002 000040 0034 0038 0162
A7 0016 000048 0036
A8 00002 000000A0 0038 0109
B5 000C8 0000A0 0137 0038 0109 0137

CONSTANT 00004 000098 (€027 0025 0109
CEECEES 00001 00000098 0026 0136 0154

PD2 00001 00000000 0158
REALLYLONGSYMBOL

00004 000084 0109 0014 0018
SUSQUEHANNA

00002 00007E 0107
TRANSVLVANI A

00004 000080 0108 0014 0018
00001 FFFFFFE8 0060 0162
=A(A5,X) 00004 0000950 Olé2 glos

—~ e~ T

BIGNAME DIAGNOSTIC CRUSS REFERENCE AND ASSEMBLER SUMMARY PAGE 8

ASM H Vv 04 17429 N3/16/72
NO STATEMENTS FLAGGED IN THIS ASSEMBLY

OVERRIDING PARAMETERS- SYSPARM{SAMPLE PROGRAM),NODECK,BATCH

OPTICNS FOR THIS ASSEMBLY
NUDECK, NOOBJECT, LIST, XREF(FULL), NURENT, NOTEST, BATCH, ALIGN, ESD, RLD, LINECOUNT(55), FLAG(O), SYSPARM(SAMPLE P
ROGRAM)

NO CGVERRIDING DD NAMES

136 CARDS FROM SYSIN 524 CARDS FROM >YSLIB
198 LINES OUTPUT 0 CARDS OuTPUT

48

Appendix B. Sample Macro Trace and Dump (MHELP)

The Macro Trace and LCurp (MHELP) facility is a useful means of debugging
macrc definitions. MHELP can be used anywhere in the source gprogram or
in macro definitions. MHELP is processed during macrc generation. It
is completely dynamic; you can branch around the MHELF statements by
using AIF or AGO statements. Therefore, its use can be controlled by
symbolic parameters and SET symbols.

The following sample program illustrates the five prirary functions of
MHELP. Since most of the information produced is unrelated to statement
numbers, the dumps and traces in the listing are marked with circled
numbers. Most dumps refer to statement numbers. If you request MHELP
information about a library macro definition, the first five characters
of the macro name will appear in place of the statement number. To get
the statement numbers, you should use COPY tc copy the library
definition into the source program prior to the macro call.

MACRO CALL TRACE (MHELP 1)

Item @ illustrates an outer macro call, an inner one. In each
case, the amount of information given is brief. This trace is given
after successful entry into the macro; no dump is given if error
conditions prevent an entry.

MACRO ENTRY CUMP (MHELP 16)

This provides values of system variable symbols and symbolic parameters
at the time the macro is called. The following numbering system is used:

Number Item

000 &SYSNDX

001 &SYSECT

002 &sYsSLOC

003 ESYSTIME

004 ESYSLATE

005 &SYSPARM

006 NAME FIELLC ON MACRO INSTRUCTION

If there are NKW keyword parameters, they follow in order of agpearance
on the protctype statement.

007 1st keyword value
008 2nd keyword value
066+NKW ﬁKWth keyword value

Appendix B. Sample Macro Trace and Dump (MHELP) 49

If there are NPP positional parameters, they follow in order of
appearance in the macro instruction.

007+NKW 1st positional parameter values
008 +NKW 2nd positional parameter values

006 +NKW+NPP NPPth positional parameter values

For example, item has one keyword parameter (6§0FFSET) and one
positional parameter.” The value of the keywcrd parameter appears
opposite 110006, the positional parameter, orposite 110007. 1In both the
prototype (statement 3) and the macro instruction (statement 54), the
positional parameter appears in the first operand field, the keyword in
the second. A length appears ketween the NUM and VALUE fields. A
length of NUL indicates the corresponding item is empty.

Item illustrates an inner call containing zero keywords, and two
positional parameters.

MACRO AIF LCUMP (MHELP 4)

Items , s -.. are examples of these dumgs. Each such dump
includes a complete Set of unsubscripted SET symbols with values. This
list covers all unsubscripted variable symbols which arpear in the name
field of a SET statement in the macro definition. Values of elements of
dimensioned SET symbols are not displayed.

MACRC BRANCH TRACE (MHELP 2)

This provides a one-line trace for each AGO and true AIF branch within a
programmer macro. In any such branch, the "branched frcm" statement
number, the "branched to" statement number and the macro name are
included. Note, in example é@ , the "branched tc" statement number
indicated is not that of the ANOP statement bearing the target sequence
symbol but that of the statement following it. The branch trace
facility is suspended when library macros are expanded and MHELP 2 is in
effect. To obtain a macro branch trace for such a macro, one would have
to insert a COPY "macro-name" statement in the source deck at some point
prior to the MHELP 2 statement of interest.

MACRO EXIT DUMP (MHELP 8)

This provides a dump of the same group of SET symbols as are included in
the Macro AIF dump when a MEXIT or MEND is encountered.

Note that lccal and/or global variable symbols are not displayed at any
point unless they appear in the current macrc explicitly as SET symbols.

50

Lac

000000

SAMPLE MHELP TRACE AND DUMP

ORJECT CODE ADDR1 ADDRZ STMT

SOURCE STATEMENT

* INCLUDE MACRO DEFINITIONS TN Bt TRACED IN THE SOURCE PROGRAM
CSECT
COPY LNSRCH
MACRD
ENAME LNSRCH &ARGyEOFFSET=STNUMS-STCHAIN
LCLC ELABEL
GLABEL SETC *AESYSNDX® GFNERATE SYMBOL
ALY (TEENAME EQ *0O'1.5KIP
GLABFL SETC 'ENAME? IF MACRD CALL HAS LABEL, USE IT
SKIP ANOP IMSTEAD OF GENERATED SYMBOL
GLABREL LA Dy ENFFSET LUOAD RFG. 0
SCHI &ARG,0(1) SFARCH
BC Lo GLABEL IF MAX REACHED, CONTINUE
MEND
COPY SCHI
MACRO
LENM SCHI &COMP,&LIST
tCLA E&CNT
LCLC &CMPADR
LCNT SETA 1
ENM STM 1415,4(13)
STEST AMOP
LCMPADR SEFC "ECMPAUR' , 'ECUMP* (ECNT, 1)
ALF (YECOMPY(ECNT, 1) FQ '(')}.LPAR
LCNT SETA &CNT+1
AlF (&CNY LT K'&CUMP}.TEST
JNOLNTH ANUP
LA 3,8C0MP COMPARAND
AGO SCINTIN
+LPAR AlF {'ECOMP T (ECNT+1,1) EQ " ') FINISH
ECNT SETA &CNT+1
AlF (ECNT LT K'ECUMP) (LPAR
AGJ «NOLNTH
LFINISH ANUP
ECMPADR SETC 'GCMPADR','GCUMP'(ECNT+2,K'&COMP-ECNT)
LA 3y ECMP ADR COMPARAND SANS LENGTH
+CONTIN ANOP
LA 148LIST LIST HEADER
MVC ECUMP, 0 {0) DUMMY MOVE TO GET COMP LENGTH
ORG *-6 CHANGE MVC TO MVI
DC x1q92¢ MVI 0PCODE
ORG *+1 PRESERVE LENGTH AS IMMED OPND
ocC X'nooo: RESULT IS MVl 0(13),L
L 154=V(SCHI)
BALR 14,15
LM 1,15,4(13)
MEXTT
MEND

PAGE

Appendix B. Sample Macro Trace and Cump (MHELP)

2

ASM H V 01 11.52 05/19/70

51

SAMPLE MHELP TRACE AND OUMP

LOC O0BJECT CODE

000000
000000 05CO

000002 4100 2002

000006 90LF DOO4

52

ADOR1 ADODR2

STMT

53
54

00002 55

57
58

®6

00002

59+,

00004

60+

PAGE 3
SOURCE STATEMENT ASM H V 01 11.52 05/19/70
TEST CSECT
BALR 12,0
USING #,12
MHELP B'1LLLLL* REQUEST ALL MHELP FUNCTIONS

LNSRCH LISTLINE UFFSET=LISTLINE-LISTNEXT

+4//MHELP. CALL TO MACRO LNSRCH . NEPTH=001, SYSNDX=0001, STMT 00058

//MHELP ENTRY TO LNSRCH . MODEL STMT 0000n, DEPTH=001l, SYSNDX=0001, KWCNT=001
//7/PARAMETERS (SYSNOX,SYSECT,SYSLOC+SYSTIME,SYSDATE, SYSPARM, NAME ,KWS,PPS)} ///
//NUM ILNTH VALUE (64 CHARS/LINE)

/70000 004 0001

/70001 004 TEST

/10002 004 TEST

/70003 005 11.52

/700064 008 05/19/70

/70005 Ol4 SAMPLE*PRUGRAM

/70006 NUL

/70007 O17 LISTLINE-LISTNEXT

/70008 008 LISTLINE

//MHELP AIF IN LNSRCH . MOOEL STMT 00010, DEPTH=001, SYSNDX=0001, KWCNT=001
//777SET SYMBOLS (SKIPPED NUMBERS MAY BRE SEQUENCE SYMBOLS).//

/70000 LCLC LABEL LNTH= 005

17 VAL=A0001

+4//MHELP. BRANCH FROM STMT 00010 TO STMT 00013 IN MACRO LNSRCH

A0001 LA Oy LISTLINE-LISTNEXT LOAD REG. 0O 01-00013
++//MHELP. CALL TO MACRO SCHI « DEPTH=002, SYSNDX=0002, STMT 00014
//MHELP ENTRY TO SCHI » MODEL STMT 00000, DEPTH=002, SYSNDX=0002, KWCNT=000

////PARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIME,SYSDATEs SYSPARM, NAME \KHS,PPS) ///
//NUM LNTH VALUE (64 CHARS/LINE)
//0000 004 0002

//0001 004 TEST

//0002 004 TEST

//0003 005 11.52

/70004 008 05/19/70

/70005 014 SAMPLE*PROGRAM
/770006 NuL

//0007 008 LISTLINF

/70008 004 O(1)

ST™ 1,15,4113) 02-00024

'
//MHELP AIF 1IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002, KWCNT=000

SAMPLE MHELP TRACE AND DUMP

LOC 0OBJECT CODE ADNR1 ADDR2 STMT

©

PAGE L3

SOURCE STATEMENT ASM H V 01 11.52 05/19/70

/7//SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL=

/70001 LOLT CMPADR LNTH=
// VAL=L

//MHELP AILF IN SCHI « MODEL STMT 00029, DEPTH=002, SYSNDX=0002,
//7/7/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNTY VAL=

/70001 tLCLC CMPADR LNTH=
7/ VAL=L

++//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRQ SCHI

//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002, SYSNDX=0002,
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL=
//0001 LCLC CMPADR LNTH=
ii VAaiL=itl

//MHELP AILF IN SCHI « MODEL STMT 00029, DEPTH=002, SYSNDX=0002,
///7/SET SYMBOLS (SKIPPED NUMBERS MAY BF SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL=
//06001 LCLC CMPADR LNTH=
7/ VAL=L1

++//MHELP . BRANCH FRUM STMT 00029 TQ STMT 00026 IN MACRO SCHI

//MHELP AIF IN SCHI . MODEL STMT 00027, DEPTH=002, SYSNDX=0002,
///7/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL=
/70001 LCLC CMPADR LNTH=
124 VAL=LIS

//MHELP AIF IN SCHI « MODEL STMT 00029, DEPTH=002, SYSNDX=0002,
////SET SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNTY VAL=
//0001 LCLC CHMPADR LNTH=
1/ VAL=LIS

+4//MHELP, BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AILF IN SCHI « MODEL STMYT 00027, DEPTH=002, SYSNDX=0002,
//7/SET SYMBOLS (SKIPPED NUMBERS MAY HE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL=
//0001 LCLC CMPADR LNTH=
17 VAL=LIST

0000000001

001

KWCNT=000

0000000002
001

KNCNT=000

0000000002
002

KHCNT=000

0000000003
002

KWCNT=000

0000000003
003

KWCNT=000

0000000004
003

KHCNT=000

0000000004
004

Appendix B. Sample Macro Trace and Dump (MHELF) 53

SAMPLE MHELP TRACE AND DuMP PAGE 5

LOC OUBJECT CODE ADOR1 ADDR2 STMT SDURCE STATEMENT ASM H vV Ol 11.52 05/19/70
//MHELP AIF IN SCHI . MODEL STMT C0029, DEPTH=002, SYSNDX=0002, KWCNT=0Q0
7///SET SYMBOLS (SKIPPED NUMBFRS MAY BE SEQUENCE SYMBOLS).//

/70000 LCLA CNT VAL= 0000000005
/70001 LCLC CMPADR LNTH= 004
7" VAL=LIST

++//MHELP., BRANCH FRUM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP ALF IN SCHI1 . MODEL STMT 00027, DEPTH=002, SYSNNX=0002, KWCNT=000

//7/7/7SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000005
/770001 LCLC CMPADR LNTH= 005

/7 VAL=LISTL

//MHELP ALF IN SCHI . MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNY=000

///7/SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOULS).//

/70000 LCLA CNT VAL= 0000000006
/7/0001 LCLC CMPADR LNTH= 005

7/ VAL=LISTL

++//MHELP, BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AIF IN SCHI « MODEL STMT 00027, DEPTH=002y SYSNOX=0002, KWCNT=000
//7/7SET SYMBOLS (SKIPPED NUMBERS MAY HBE SEQUENCE SYMROLS).//

//0000 LCLA CNT VAL= 0000000006
//0001 LCLC CMPADR LNTH= 006

/7 VAL=LISTLI

//MHELP AIF IN SCHI + MODEL STMY 00029y DEPTH=002, SYSNDX=0002, KWCNT=000
//7//7SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000007
//000t LCLC CMPADR LNTH= 006

7/ VAL=LISTLI

4+4//MHELP. BRANCH FROM STMT 00029 TO STMT 00026 IN MACRO SCHI

//MHELP AIF IN SCHI « MODEL STMT 00027, ODEPTH=002, SYSNDX=0002, KWCNT=000

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

//0000 LCLA CNT VAL= 0000000007
//0001 LCLC CMPADR LNTH= 007

/7 VAL=LISTLIN

//MHELP AIF IN SCHI . MODEL STMT 00029, DEPTH=002, SYSNDX=0002, KWCNT=000

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

54

Lac

000004

00000E
000012
000018
000012
000013
000014
000016
000014
00001C

000020

000024
000026
000030
000030
000000

SAMPLE MHELP TRACE AND DUMP

OBJECT CODE ADDR1

4130

4111
D202

0000
58F0
O5EF
981F

4710

€024

2000

€024

CO2E

D004

€000

00000000

0000 00026

ADDR2

00026

[tlolelele)
00000
00012
00014
00030

00004

STMT

61+

52+
63+
64+
65+
66+
6T+
68+
69+
70+

00002

71+

SOURCE STATEMENT

PAGE 6

ASM H V 01 11.52 05/19/70

/70000 LCLA CNT VAL= 0000000008
/770001 LCLC CMPADR LNTH= 007
/7 VAL=LISTLIN
La 3, LISTLINE CUMPARAND 02-00031
+4//MHELP, BRANCH FROM STMT 00032 TO STMT 00041 IN MACRO SCHI
La 1,001 LiST HEADER 02-00041
MVC LISTLINE,O(O0) DUMMY MOVE TO GET COMP LENGTH 02-00042
ORG -6 CHANGE MVC TO MvI 02-00043
oc Xt921 MVI OPCODE 02-00044
QRG *+1 PRESERVE LENGTH AS IMMED OPND 02-00045
nc X'1000o* RESULT IS MVI 0(13),L 02-00046
L 15,=V{SCHL) 02-00047
BALR 14,15 02-00048
LM 1s15,4(13) 02-00049
J/MHELP EXIT FROM SCHI . MODEL STMT 00050, DEPTH=002, SYSNDX=0002, KWCNT=000
//7/SET SYMBULS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLA CNY VAL= 0000000008
//0001 LCLC CMPADR LNTH= 007
7/ VAL=LISTLIN
BC 1,A0001 IF MAX REACHED, CONTINUE 01-00015
//MHELP EXIT FRUM LNSRCH . MODEL STMT 00016, DEPTH=001, SYSNDX=0001, KWCNT=001
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/70000 LCLC LABEL LNTH= n05
124 VAL=A0001

LISTNEXT DS H
LISTLINE DS FL3t0O!
LTORG
=V{SCHL}
END TEST

Appendix B. Sample Macro Trace and Dump (MHELP) 55

Appendix C. Object Deck Output

ESD Card Format

The format of the ESC card is as follows:

Columns Contents
1 12-2-9 punch
2-4 ESD
5-10 Blank
11-12 Variable field count -- number of bytes
of information in variable field (cclumns 17-64)
13-14 Blank
15-16 ESDID of first SD, XD, CM, PC, ER, or WX
in variakle field
17-64 Variable field. One to three 16-byte

items of the following format:

8 bytes -- Name
1 byte -- ESC type code
The hex value is:

00 SD
01 1D
02 ER
04 BC
05 CM
06 XD (PR)
0A WX

3 bytes -- Address

1 byte -- Alignment if XD; otherwise blank
3 bytes -- Length, LDID, or blank

65-72 Blank

73-80 Deck 1L and/or sequence number --

The deck 1D is the name from the first TITLE
statement that has a non-klank name field.

The name can be 1 to 8 characters long. 1If the
name is less than 8 characters long or if

there is no name, the remaining columns con-
tain a card sequence number. (Colurns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TEXT (TXT) Card Format

The format of the TXT cards is as follows:

Columns Contents

1 12-2-9 punch

2-4 TXT

S Blank

6-8 Relative address of first instruction on card

56

9-10 Blank

11-12 Byte count -- numbker of bytes in information
field (columns 17-72)

13-14 Blank

15-16 ESDID

17-72 56-byte information field

73-80 Deck 1D and/or sequence number --

The deck ILC is the name from the first TITLE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining columns ccn-
tain a card sequence number. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

RLD Card Format

The format of the RLD card is as follows:

Columns Contents
1 12-2-9 punch
2-4 RLLC
5-10 Blank
11-12 Pata field count -- number of bytes of
information in data field (columns 17-72)
13-16 Blank
17-72 Data field:
17-18 Relocation ESDIC
19-20 Position ESDID
21 Flag byte
22-24 Absolute address to be relocated
25-72 Remaining RLD entries
73-80 Deck 1D and/or sequence number --

The deck ID is the name from the first TITLE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. If the
name is less than 8 characters long or if
there is no name, the remaining columns con-
tain a card sequence number. (Columns 73-80

of cards produced ry PUNCH or REPRO statements
do not contain a deck ID or a sequence numker.)

If the rightmost bit of the flag byte is set, the fcllcwing RLLC entry
has the same relocation ESDID and position ESDID, and this information
will not be repeated; if the rightmost kit of the flag byte is not set,
the next RLLC entry has a different relocation ESDID and/or position
ESDID, and both ESDIDs will be recorded.

For example, if the RLD Entries 1, 2, and 3 of the program listing
contain the following information:

Position Relocation

ESDID ESDID Flag Address
Entry 1 02 o4 oC 000100
Entry 2 02 ou 0C 000104
Entry 3 03 01 oc 000800

Arpendix C. Object Deck Qutput 57

then, columns 17-72 of the RLD card would be as follows:

Column: |17 18 19

Entry 1 Entry 2 Entry 3

20 21 22 23 24|25 26 27 28}29 30 31 32 33 34 35 36 [37——> 72

00|04/ 00| 02| 0D 00| 01] 00| 0c| 00| 01] 04| 00| 01 [00 [03] 0] 00] 08 [00 |
J \, YQ \ v 7\ v 7 ;v 7\, v
ESD IDs Address Address Esd IDs Address blanks
Flag Flag Flag
(set) (not (not
set) set)

END Card Format

The format of the ENL card is as follows:

58

Columns

AN -
(o<} £

9-14
15-16
17-32

34-52

53-71

73-80

Contents

12-2-9 punch

END

Blank

Entry address from operand of END card in
source deck (klank if no operand)

Blank

ESCIC of entry point (blank if no orerand)
Blank

Number of ILCR items that follow (EBCDIC1 or
EBCDIC2)

Translator Identification, version and mcdification
level (such as 0301), and date of the asserbly
(yyddad)

When present, they are the same format as columns
34-52

Deck ID and/or sequence number =--

The deck 1D is the name from the first TITLE
statement that has a non-blank name field.

The name can ke 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining cclumns con-
tain a card sequence number. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

TESTRAN (SYM) Card Format

If you request it, the assembler punches out symbolic information for
TESTRAN concerning the assembled program. This output appears ahead of
all loader text. The format of the card images fcr TESTRAN output 1is as
follows:

Columns Contents
1 12-2-9 punch
2-4 SYM
5-10 Blank
11-12 Variable field count -- number of bytes of
text in variable field (columns 17-72)
13-16 Blank
17-72 Variable field (see below)
73-80 Deck IrC and/or sequence number --

The deck 1D is the name from the first TITLE
statement that has a non-klank name field.

The name can be 1 to 8 characters long. If the
name is less than 8 characters long or if

there is no name, the remaining columns con-
tain a card sequence numkter. (Columns 73-80

of cards produced by PUNCH or REPRO statements
do not contain a deck ID or a sequence number.)

The variable field (columns 17-72) contains up to 56 kytes of TESTRAN
text. The items making the text are packed together; ccnsequently, only
the last card may contain less than 56 bytes of text in the variable
field. The formats of a text card and an individual text item are shown
in Figure 12. The contents of the fields within an individual entry are
as follows:

1. Organization (1 byte)
Bit O:

0

1

non-data type
data type

o

" Bits 1-3 (if non-data type):

000 = space

001 = control section

010 = dummy control section
011 = common

100 = instruction

101 = CCW

Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates presence of M field)

Bit 2 (if data type):
0 = independent (not a packed or zoned decimal constant)
1 = cluster (packed or zoned decimal cocnstant)

Bit 3 (if data type):
0 = no scaling
1 = scaling (indicates presence of S field)

Bit 4:
0
1

name present
name not present

i

Bits 5-7:
Length of name minus 1

Appendix C. Object LCeck Output 59

2. Address (3 bytes) -- displacement from base of control section
3. Symbol Name (0-8 bytes) -- symbolic name of particular item
Note: If the entry is non-data type and space, an extra byte is present
which contains the number of bytes that have been skipped.
4. pata Type (1 byte) -- contents in hexadecimal
00 = character
04 = hexadecimal
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-Type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal
38 = floating point, extended.
5. Length (2 bytes for character, hexadecimal, decimal, or binary items;
1 byte for other types) -- length of data item minus 1
6. Multiplicity - M field (3 bytes) -- equals 1 if not present
7. Scale - signed integer - S field (2 bytes) -- present only for F, H,
E, D, P and Z type data, and only if scale is non-zerc.
12 45 1011 1213 16 17 72 73 80
12 No.
f
2| s | lank bthes blank TESTRAN text — packed entries Deck g Sequance
text
1 3 6 2 4 56° 8
. Entry
(compiteor B N oot o1
end portion)

Variable size entries

Data Muit. Symbol
Org. | Address Symbol name type Length factor Scale | Org. name §
1 3 08 1 1-2 3 2

Figure 12. TESTRAN SYM Card Format

60

Appendix D. Dynamic Invocation of the Assembler

The assembler can be invoked by a problem program at execution time
through the use of the CALL, LINKAGE, XCTL, or ATIACH, macro instruction.
If the XCTL macro instruction is used to invoke the assembler, then no
user options may be stated. The assembler will use the standard

default, as set during system generation, for each option.

If the assembler is invoked by CALL, LINKAGE, or ATTACH, you may supply:
1) The assembler options

2) The DDnames of the data sets to be used during processing.

Name Operation Operand

[symbol] CALL 1EV90, (optionlist
[.ddnamelist]),VL
{LINK] EP=1EVO0,
ATTACH PARAM-=(optionlist
[.ddnamelist]),VL=1

EP -- specifies the symbolic name of the assembler. The entry point at
which execution is to begin is determined by the ccntrol program
(from the library directory entry).

PARAM -- specifies, as a sublist, address parameters to be passed from
the problem program to the assemkler. The first wcrd in the address
parameter list contains the address of the option list. The second
word contains the address of the DDnare list.

optionlist -- specifies the address of a variable length list containing
the options. This address must be written even if no option list is
provided.

The option list must begin on a halfword boundary, that is not also a
fullword boundary. The first two bytes contain a count of the number
of bytes in the remainder of the list. If no options are specified,
the count must be zero. The option list is free form with each field
separated from the next by a comma. No blanks or zeros should appear
in the list.

Dbnamelist -- specifies the address of a variable length list containing
alternate LCCnames for the data sets used during compiler processing. 1If
standard DDnames are used, this operand may be omitted.

The CCname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list.
Each name of less than 8 bytes must be left-justified and padded with
blanks. 1f an alternate L[Pname is omitted, the standard name will be
assumed. 1f the name is omitted within the list, the 8-byte entry must
contain binary zeros. Names can be omitted from the end merely by
shortening the list. The sequence of the 8-byte entries in the LDlname
list is as follows:

Appendix L. Dynamic Invocation of the Assembler 61

Entry Alternate Name

1 SYSLIN

2 not applicable
3 not applicakle
) SYSLIB

5 SYSIN

6 SYSPRINT

7 SYSPUNCH

8 SYSUT1

Note: BAn overriding LCCname specified when Assembler H was added to the
Operating System occupies the same place in the akove list as the
IBM-supplied DDname it overrides. The overriding CCname can itself be
overridden during invocation. For example, if SYSWORK1 rerlaced SYSUT1,
it occupies position 8 in the above list. SYSWORK1 can be overridden by
another name during invocation.

VL -- specifies that the sign kit is to be set to 1 in the last word
of the address rarameter list.

The Job Control Lanquage Reference manual provides additional
description of overriding techniques.

62

&SYSPARM

Adding macro definitions to libraries 33
ALIGN assembler option 2
Alignment, Removal of

restriction 2, 38

3,42

Assembler cataloged procedures 9-17
Assembler data sets 4-8

Characteristics 5, 7-8

List of 4
Assembler diagnostic facilities 25,26-31

Abnormal assembly termination 29
Cross-reference 23-24
Error messages 26
Macro trace facility (MHELP) 29
MNOTES 29
Suppression of MNOTEs and error
messages 29

Assembler Listing 18-25
External symbol dictionary 20
Source and object program 21
Relocation dictionary 23
Symbol and literal cross-reference 23-24
Diagnostic cross-reference and

assembler summary 24-25
Assembler options 1-4

Default options 3,4

Option list 1

Overriding defaults 5,15

Sample of use 43

Assembler statistics 25

Assembler summary 24-25

ASMHC, cataloged procedure for
assembly 9

ASMHCG, cataloged procedure for
assembly and loader-execution 13

ASMHCL, cataloged procedure for
assembly and linkage editing 10-11

ASMHCLG, cataloged procedure for
assembly, linkage editing, and
execution 12

BATCH assembler option 2

Calling the assembler from a problem
program 61

Index

Cataloged procedures 8-17
For assembling (ASMHC) 9
For assembling and linkage editing
(ASMHCL) 10-11
For assembling, linkage editing, and
execution (ASMHCLG) 12
For assembling, linkage editing, and
execution (ASMHCLG) 12
For assembling and loader-execution
(ASMHCG) 13
overriding 15
Characteristics of assembler data
sets 7-8
Codes
See Return codes; Severity codes.
Cross-reference
See also Diagnostic cross-reference.
Examples 19,47
Listing format 23-24
Concatenation of SYSLIB data sets 6
COND parameter 8,15

Data sets, assembler
Characteristics 5, 7-8
List of 4
DD statements, overriding in cataloged
procedures 15
DECK assembler option 2
Default options 3-4
biagnostic cross-reference and assembler
summary 24-25
Diagnostic facilities
See Assembler diagnostic facilities.

Dynamic invocation of +ha sacam
bynamic invecatili

cn cf the assembler ol

END card format 58
Entry point restatement 34
Error messages 26-28
Cross-reference 24-25
ESD
See External symbol dictionary
ESD (NOESD) assembler option 2
EXEC statement
Overriding in cataloged procedures 15
PARM field 1,33
COND parameter 8,15
Extended precision machine instructions 37
External symbol dictionary (ESD)
Entry types 20
Examples 19,43
Listing format 20
Output card format 56

Index 63

o

FLAG assembler option 2,3

Format NOALIGN assembler option 2
See error messages; macro-generated Number of Channel Programs (NCP)
statements selection for assembler data sets 8
Identification-sequence field 23 n

Invoking the assembler from a problem
program 61
Invoking cataloged procedures 8
£i :
Instruction execution sequence, control Options, assembler 1-4

of 37 Option list 1
Default options 3-4
Overriding defaults 4,15
Sample of use 43
Output format

OBJECT assembler option 2
Object module linkage 34-36

Job control language cataloged Listing 19-25
procedures Object deck 56-60
See cataloged procedures Overriding statements in cataloged
procedures 15-17
Overriding default assembler
options 4,15

Linkage, object module 34-36
LINECOUNT assembler option 2
LIST (NOLIST) assembler option 2 n
Listing control instructions,
printing of 22

Load module modification 34 PARM field 1,33
Procedure
See Cataloged procedures
Program termination 33
Programming considerations 32-38
Machine instructions, extended
precision 37
Macros, error messages in 26 n
Macro-generated statements, format
of 22
Macro definition libraries, additions Registers, saving and restoring 36
to 33 Relocation dictionary ’
Macro Trace Facility (MHELP) Listing format 23
Description 29-31 Output text format 57-58
Sample 49-55 Examples 19,47
Messages RENT (NORENT) assembler option 2
See Assembler diagnostic facilities Restoring general registers 32
MHELP Return codes 8
See Macro Trace Facility See also FLAG assembler option
Model 85, 91, and 195 programming RLD
considerations 37 See Relocation dictionary
MNOTE 29,42 RLD (NORLD) assembler option 2

64

Sample programs and listings
Assembler language features 39-47
Assembler listing description 19
Diagnostic error messages 28
MHELP 49-55

Saving general registers 32

Sequence number 23

Severity codes 8, 26
See also FLAG assembler option

Source and object program assembler

listing format 21
Special CPU programming considerations 37
Statistics, assembler 25

Hrnrecceinan oF
Suppression of errcr messages 2

SYSIN data set 6

SYSLIB data set 6

SYSLIN data set 6

SYM card (TESTRAN) format 59-60
SYSPARM assembler option 3
SYSPRINT data set 6

SYSPUNCH data set 6

SYSUT1 data set 6

Aol

Termination

Abnormal assembly 29

Program 33
TEST (NOTEST) assembler option 2
TESTRAN (SYM) card format 59-60
TEXT (TXT) card format 56-57

Unaligned operands 2

14
cocamhk1
Using the assembler 1

Utility data set 6

XREF (NOXREF) assembler option 2

38
-17

Index

65

S$C26-3759-2

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

({SO) LZ-09€ES "ON 3j1) 3PIND §,Jowweiboud H JAGWassy SO

V'S’ Ul palulig

C-6GL€-9¢0S

	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	xBack

