Maintenance Library

—— — o—
—

— o e o —

— —

— —

— —

— — —_—

= Processing Unit
Microinstructions

SY33-10568-1

3125 MLM. Microinstructions

Third Edition (October 1973)

This manual obsoletes SY33-1058-0. Changes are continually made to the information
in this manual; any such changes will be reported in subsequent revisions or Technical
Newsletters. N

Requests for copies of 1BM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

Forms for reader’s comments are provided at tﬁe back of the manual. If the forms have
been removed, comments may be addressed tol‘ 3M Laboratories, Product Publications,
Dept 3179, 703 Boeblingen/Wuertt., P.O. Box 210, Germany. Comments become the
property of IBM.

© Copyright International Business Machi/ s Corporation 1973

Preface

This manual provides information on the IBM 3125 Processing Unit’s instruction
processing unit (IPU), input/output processor (IOP), and service processor (SVP)
microprogram codes. Its main purpose is to explain the functions of:
© Each microinstruction group,
® Each microinstruction and
® Each microinstruction bit.
It also enables the reader to determine the mnemonic by analyzing the bit pattern
of a given instruction word.

The reader should have a basic knowledge of the IPU, IOP and SVP data flow of
the IBM System/370 Model 125.

Prerequisite Reading

3125 Processing Unit, General System Information, Maintenance Library Manual,
Order No. SY33-1059.

Associated Publications

System Library Manuals

IBM System/370 Principles of Operation, Order No. GA22-6821.
IBM System/370 Model 125 Functional Characteristics, Order No. GA33-1506.

3125 MLM. Microinstructions

Maintenance Library Manuals

IBM 3125 Processing Unit, Power Supplies, Order No. SY33-1060.

IBM 3125 Processing Unit, Main Storage Controller, Order No. SY33-1061.
1BM 3125 Processing Unit, Instruction Processing Unit, Order No. SY33-1062.
1BM 3125 Processing Unit, Input/Output Processor, Order No, SY33-1063.
IBM 3125 Processing Unit, Magnetic Tape Adapter, Order No. SY33-1064.
IBM 3125 Processing Unit, Service Processor Subsystem, Order No. SY33-1065.
IBM 3125 Processing Unit, Main Storage, Order No. SY33-1066.

IBM 3125 Processing Unit, Multiplexer Channel, Order No. SY33-1067.

IBM 3125 Processing Unit, 2560 Attachment, Front End, Order No. SY33-1068.
I1BM 3125 Processing Unit, 5425 Attachment, Front End, Order No. SY33-1069.
IBM 3125 Processing Unit, 3525 Attachment, Front End, Order No. SY33-1070.
IBM 3125 Processing Unit, 3504 Attachment, Front End, Order No. SY33-1071.
IBM 3125 Processing Unit, 1403 Attachment, Front End, Order No. SY33-1072.

IBM 3125 Processing Unit, Direct Disk Attachment, Order No. SY33-1073.

I1BM 3125 Processing Unit, Integrated Console Printer Attachment, Order
No. SY33-1074.

IBM 3125 Processing Unit, Integrated Communications Adapter, Part
B/M 1876075.

IBM 3125 Processing Unit, Installation Instructions, Part 4014001.

IBM 3125 Central Test Manual. Contains pages appropriate to the individual
3125 Processing Unit.

I1BM 3125 Processing Unit, Parts Catalog, Order No. S135-1000.

Preface

3125 MLM. Microinstructions

Contents

Section 1: IPU Microprogram Codes

IPU MICROINSTRUCTION GROUP DETERMINATION
IPU MICROINSTRUCTIONS BY GROUP

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9 .
Group 10 .
Group 11 ..
Group 12 .
Group 13 .

LISTING OF IPU MNEMONICS
EXPLANATION OF IPU MICROINSTRUCTION GROUPS
Group 1: Halfword from Local Store to TDR or CDR

Primary Function
Secondary Functions .

Common Layout of Group 1 Instructlons
Bit Function Description .

Valid Parameters for Group 1 Instructlons .
Group 2: Immediate Data to TDR or CDR

Primary Function
Secondary Functions .

Common Layout of Group 2 lnstructlons
Bit Function Description .

Valid Parameters for Group 2 Instructions .
Group 3: Arithmetic/Logic Operations to Local Storage

Primary Function
Secondary Functions .

Common Layout of Group 3 Instructlons

Bit Function Description .

Valid Parameters of Group 3 Instructlons

Group 4: Arithmetic/Logic Operatlons to Main Storage .

Primary Function
Secondary Functions .

Common Layout of Group 4 Instructlons
Bit Function Description .
Valid Parameters of Group 4 Instructlons

XMSC = Exclusive OR to Main Storage Read from Mam Storage mto

CDR.

XMSCR = Exclusive OR to Maln Storage Read from Maln Storage

into CDR, then Return
Layout of XMSC/XMSCR

W OWWOWOOOOWOWONNNNNNOOODDDPDDIDPEPDIEPEDRAROWWWWNNNONN =

S N i W T Qs | N Gy

15

15
15

Group 5 Read from Main Storage into TDR or CDR .

Primary Function
Secondary Function

Common Layout of Group 5 Instructlons

Bit Function Description .

Group 6: Read from MSC Local Storage or Key Store

Primary Function
Secondary Functions .

Common Layout of Group 6 Instructlons
Bit Function Description .

Immediate Control Operation Detalls .
Group 7: Arithmetic/Logic Operations to MSC Local Storage or

Key Storage
Primary Function
Secondary Functions .

Common Layout of Group 7 Instructlons
Bit Function Description .

Group 8: Test Instructions
Primary Function
Secondary Functions .

Layout of Test Instruction
Bit Function Description .

Table of Test Condition Specn‘icatlons .
Group 9: Branch on Test Instructions (Branch Type 1)

Primary Function
Secondary Functions .

Common Layout of Branch on Test Instructlons .
Bit Function Description .

Group 10: Conditional Branch Instructions .

Primary Functions .
Secondary Functions .

Common Layout of Group 10 Instructlons .
Bit Function Description .
Group 11: Shift Instructions .

Primary Function
Secondary Functions .

Common Layout of Shift Instructlons
Bit Function Description .
Group 12: Sense and Control Instructlons

Sense
Control

Common Layout of Sense and Control Instructlons .

Secondary Functions .

Bit Function Description .

Sense Table . .
Control Table

16
16
16
16
16
17
17
17
17
17
19

20
20
20
20
. 20
. 23
23
23

23

. 23,24

25
25
25
25
25
26
26

26
26
27
27
27
27
27
28
28
28
28

29
29
30

Contents

Group 13: Table Look Up (Translate and Branch) Instruction .
Function . . .
Layout of TRB Instructlon '
Bit Function Description

Section 2: 10P Microprogram Codes

I0P INSTRUCTION GROUP DETERMINATION e e e e e e e

IOP MICROINSTRUCTIONS BY MNEMONICS e e e s

EXPLANATION OF I0P MICROINSTRUCTION GROUPS e e e e

Group 1: IOP Branch Instructions «
Primary Function « + &« « « &« « « &
Secondary Functions

Layout of Group 1 Instructions . . .
Table of Parameters used with mnemonics BC (U) and BCR (U) .
Bit Function Description . . . e e e e e e

Group 2: |OP Data Storage Instructlons
Primary Function ¢ ¢« &« & ¢ o o o o o =
Secondary Functions . . . e e e e e e e e e

Layout of IOP Group 2 Instructlons e e e e e e e
Bit Function Description

Group 3: IOP Move Instructions . . . « . + & « « « + &
Primary Function « ¢« & & &« &+ « « & o
Secondary Functions« . . « .« . .
Layout of IOP Group 3 Instructions

Bit FunctionDescription « . « +« + « . &

Group 4: Logical IOP Instructions

Primary Function
Secondary Functions
Layout of IOP Group 4 Instructions
Bit FunctionDescription +« + « « 4 & « . &

Section 3: SVP MicroprogramCodes

SVPOPCODESBYBITPATTERN « ¢« « « & . .

SUMMARY OFSVPMNEMONICS « + « + « .
ADD = Add LS-Reg plus AccuintoAccu . . « . .+ -
ADDI = Add Accu plus Immediate data byteintoAccu.
AND = AND LS-Regwith AccuintoAccu . . . « . « « . .
ANDI = AND Accu with Immediate data byteinto Accu

B = Branch unconditionally
BR = Branch unconditionally to address contamed in reglster e e e
BZ = Branch if ALU zero.« e e .

BZR = Branch to address contamed in reglster |f ALU zero . . .
CHECK=Opcodecheck « +« ¢« & « + + « « &
BNZ=Branchif(Not) ALUzero « . « « « + &
CTB =Count, test forzeroandbranch
FR = Fetch one byte from LS-Reg into Accu . . .

LBAP = Load Bus and Parity bit from LS-Reg into BAR (S) or BDR (S)

IV

31
31
31
31

33

34
35
37
37
37
37
37
38
38
38
38
38
38
38
39
39
39
39
39
1
41
a1
1
42

43

44
44
45
45
45
45
45
46
46
46
46
47
47
47
47

LBI = Load Immediate data byte into LS-Register 48
LBR = Load Accuinto Bus Register 48
LDAC = Load immediate data byteintoAccu
NOP = No operation . . ¢« « 4 s 4 . . . 48
OR = Logically OR LS-Reg W|th Accu |nto Accu P . - . . 48
ORI = Logically OR Accu with Immediate data byte into Accu . . . 49
SF = Fetch one byte from storageintoAccu 49
SLS = Switch Local Storage Zone . . . - .
SST = Store one byte from Accu into storage e e e « « « B0
STBA = Sense, AND with mask into Accu, Branch if ALUzero . . . 50
STBX = Sense, exclusively OR with mask into Accu, Branch if

ALUzero . . . + ¢ ¢« &« « &« o &« &+ o« « « « &« = « . bBO
STOP = Halt Service Processor . . . v s e s o« . . B1
STR = Store one byte from Accu into LS Reglster .)
STROB = Sense from Bus 0 and/or 1 into Accu, or activate ‘CTRL

Strobe BusOand/or1’ e« « + « « . B1
XOR = Exclusively OR Ls-Reg with Accu into Accu e« « + « .« o b1
XORI! = Exclusively OR Accu with Immediate data byte into Accu . . 52

3125 MLM. Microinstructions ' Contents (continued) V

Section 1: IPU Microprogram Codes

3125 MLM. Microinstructions

IPU Microinstructions by Group

IPU Microinstruction Group Determination

c L TR o WY S R e)
] —~ e~ e~ e e e
-] [T N - N et
Q D & L & B T
8} = QO U S Mm A km
o T S [} [=- SN B« A B T o T s B o |
[~ T - T - a H O H O H H N N N N
o N =
2 L |
B el I < . &)
I]
Q) = (o] m o = O e o - o
ot} =T -
Qi (&l
[T I d 9]
[&] B o FER N o N o E A o N < B «» B o S o
o - ef ™
- m
Ul
M ©®© O o o © = = «— 9«

—— S g S q— T — —— — — — T —— O q— — — — — — — — — - on— — — f— —

—— —— Gy Gt S~ — —— —— —

Y - D o W et T e, R iy G oy D oy T Gy Dy O o—— Wy T— — —— — — —— —

| Instruction Bits | Instruction
1563 1. 8.9 1 .11 1 __ _Group_ ___|

S —— T — T a—— —— — — p— T o— D — — — T —— p— T h— T oty T oy — — —

direct addressing

indirect addressing

Bits | Mnemonic
4185] 8._.9 12 20 |

i |

}j 0 0 x x| OL(R)

| |

| 0 1 0 x | LTOL(R)

| |

| 0 1 x | LTCOL (R)
00 | === e—mm— e m e e e

| 1 0 x 0]| OL(R)

| 1 0 x 1| OSL(R)

| !

I 1 1 x 0] OBL(R)

| 1 1 x 1| OSBL(R)

] 0 0 x x | AL{(R)

| |

| 0 1 0 x | LTAL(R)

| |

| 0 1 x | LTCAL (R)
01 === e e e

] 1 0 x 0] AL(R)

| 1 0 1 1 ASL(R)

l |

| 1 1 x 0] ABL(R)

] 1 1 x 1] ASBL(R)

] 0 0 x x | NL(R)

| |

| 0 1 0 x | LTNL (R)

! |

I 0 1 x | LTCNL (R)
10 | e e

| 1 0 x 0 | NL(R)

] 1 0 x 1] NSL(R)

l |

| 1 1 x 0] NBL(R)

| 1 1 x 11 NSBL (R)

| 0 0 x x| XL(R)

| |

| 0 1 0 x | LTXL(R)

| |

} 0 1 x | LTCXL (R)
11 | === e e

| 1 0 x 0] XL(R)

1 1 0 x 1] XSL(R)

|]

| 1 1 x 0| XBL(R)

| 1 1 x 1] XSBL(R)

3125 MLM. Microinstructions

Group_ 4
Bits | Mnemonic
14 15 1 16 _22 1 —_—
| |
| 0 O | OMS(R)
0 0 |-—=————————~—————-
] 1 C | OSMS(R)
| 0 0 | AMS(R)
0 1 |==——————— =
| 1 0] ASMS(R)
| O 0 | NMS(R)
1 0 |==——=—==r—————————e
| 1 0 | NSMS(R)
| 0 0 | XMS(R)
l __________________
1 11 1 0| XSMNS(R)
! ___________________
| 0 1] XMSC(R)
Group_ 5
Bits Mnemonic
11 16
0 o0 MSC (R)
1 0 MST {R)
1 1 MSTIX (R)
Group_6
Bits Mnemonic
11 16 17

0 0 0 MLC(R)
0 1 0 MKC(R)
1 0 0 MLT(R)
1 0 1 MSCTL(R)

1 1 0 MKT(R)

3125 MLM. Microinstructions

Group_7 Group_10
Bits 1 Mnemonic The mnemonic is 'BC' (Branch conditional).
S8 15 116 13] -
1 |
| 0 0 | OML(R)
| |
| 0 1 | OLML(B) Group 11
0 0 Je=—=——m——m——mmmem e . .
Bits | Mnemonic
: 1 0 : OMK (R) 16_18_19_ 1 __
| ,
o bv g onek(R) 0 0 O | SRC(R), or NOP(B) if bits 16...23 = all zeros
1
: o0 : AML (R) 0 0 1 | SRT(R)
|
0 1 pem—oo 1M REEERY 0 1 0 | SRCN(R)
| .
: o : AMK (R) 0 1 1 | SRTN(R)
____________ l_-_..____._._--_._
S S S s 1 0 0 | SLC(R)
1
: 0 0 : NML (R) 1 0 1 | SLT (R)
|
Lo Lo mmwm v 1 0 | storm
l
: 1 0 : NMK (R) 1 1 1 | SLTN (R)
I 1 1 | NLEK(R) R Im===mmmmm s
i 0 0 | XML(R)
| |
| 0 1 | XLML(R) Group 12
1 1 e
I 1 0 | XMK(R) Bits | Mnemonic
| l 11__13__16__1 _ —_—
| 1 1] XLMK (R) |
__________________________________ 0 0 0 | SNSCR(R)
L]
0 1 0 | SNSCL(B)
Group_8]
1 0 O | SNSTR(R)
The mnemonic is 'T' or 'TR?, depending on the status of bit 10.]
1 1 0 | SNSTL(R)
|
X X 1 | CTL(R)
Grouwp 9 (Branch typer;;y e =
Bits Mnemonic
7 8
0 0 BT Group 13
0 1 BTS The mnemonic 1is; :
TRB = Translate and branch (Bit 10 = off), or
1 0 BTHM TRBR = Translate, branch and return {(Bit 10 = on).

Listing of IPU Mnemonics LTCAL (R) | IPU Local storage to TDR and CDR, Add both into

| IPU Local storage, {then return).

|
Mnemonic] Description____ 1Group LTCNL (R) | IPU Local storage to TDR and CDR, logically AND
| | | into IPU Local storage, (then return).
ABL (R) | Add to IPU local storage, suppress ALU Bits 0...7, | 3 |
] (then return).] LTCOL(R) | IPU Local storage to TDR and CDR, logically OR
| l | into IPU Local storage, (then return).
AL (R) | Add to IPU local storage, (then return).] 3]
| | LTCXL (R) | IPU Local storage to TDR and CDR, exclusively ‘OR
ALMK (R) | Add to IPU local storage and key storage, (return).| 7 | into IPU Local storage, (then return).
| 1 |
ALML (R) | Add to IPU local storage and MSC local storage, 1 7 LTNL(BR) | IPU Local storage to TDR, logically AND into
| (then return). | | IPU Local storage, {then return).
| | }
AMK (R) | Add to MSC key storaye, (then return). 17 LTOL(R) | IPU Local storage to TDR, logically OR into
| | | IPU Local storage, (then return).
AML (R) | Add to MSC local storage, (then return). 1 7 |
} | LTXL(R) | IPU Local storage to TDR, exclusively OR into
AMS (R) | Add to main storage, (return), | & | IPU Local storage, (then return).
I |] -
ASBL (R) | Add with Six correction to IPU local storage, | 3 MKC (R) | Read from MSC Key storage into CDR, (then return).
| suppress ALU Bits 0...7, (then return). | |
|] MKT (R) | Read from MSC Key storage into TDR, (then return).
ASL (R) | Add with Six correction to IPU local storage, | 3]
| (then return).] MLC (R) | Read from MSC Local store into CDR, (then return).
| | l
ASMS(R) | Add with Six correction to MSC main storage, 1 4 MLT (R) | Read from MSC Local store into TDR, (then return).
| (then return).] | '
| 1 MSC (R) | Read from Main storaye into CDR, (then return).
BC | Branch Conditional. | 10 |
! | MSCTL (R) | Main Storage Control.
BT | Branch on Test (no level switching). 1 9]
| | MST (R) | Read from Main Storage into TDR, (then return).
BTM | Branch on Test to Main routine. | 9 ' |
| | MSTIX (R) | Read from Main Storage into TDR, test for I-Phase
BTS | Branch on Test to Sub routine.] 9 | exception, (then return).
I | l
CTL (R) | Control, (then return). | 12 NBL (R) | AND to IPU Local storage, suppress ALU Bit 0...7,
| | | ({then return).
ILC (R) | Inmediate data Left adjusted to CDR, (then return).|] 2 |
|] NL (R) | AND toc IPU Local storagye, (then return).
ILT (R) | Inmediate data Left adjusted to TDR, (then return).| 2 |
| | NLMK (R) | AND to IPU Local storage and MSC Key storage,
IRC (R) | Inmediate data Right adjusted to CDR, (then return),}] 2 | {then return).
| | |
IRT (R) | Inmediate data Right adjusted to TDR, (then return),] 2 NLML(R) | AND to IPU Local storage and MSC Local storage,
| | } (then return).
LC (R) | Load CLCR, (then return). I 1 |
' | | NMK {R) | AND to MSC Key storage, (then return).
LT (R) | Load TDR, (them return). 1 1 l
| I NML (R) | AND to MSC Local storage, (then return).
LTAL(R) | IPU Local storage to TDR, Add with CDR into I |
| IPU Local storaye, (then return). } NMS (R) | AND to Main storage, {(then return).

3125 MLM. Microinstructions

(S, N ©) B)

3125 MLM. Microinstructions

NOP (B)

NSBL (R)
NSL (R)

NSHS (R)

OBL (R)

OL (R)

OLMK (R)

OLML (R)

OML (R)
OHMS (R)

0SBL (R)
OSL (R)

OSHS (R)
SLC(R)

SLCN (R)

SLT (R)

|

l

I

I

!

|

l

|

I

!

I

I

!

I

I

I

!

I

I

|

I
OMK (B) |
I

!

|

|

I

I

I

I

I

|

I

I

I

|

I

|

I

I

I

!
SLTN (R) |
|
SNSCL (R) |
I
SNSCR (R) |
I
SNSTL (R) |

|
SNSTR(R) |

|
SRC (R) }
|

No operation (then return).

AND with Six correction to IPU Local storage,
suppress ALU Bit 0...7, (then return).

AND with Six correction to IPU Local storage,
(then return). '

Add with Six correction to Main storage, (return).

OR to IPU Local storage, suppress ALU Bit 0...7,
({then return).

OR to IPU Local storage, (then return).

OR to IPU Local storage and MSC Key storage,
(then return).

OR to IPU Local storage and MSC Local storage,
(then return).

OR to MSC Key storage, (then return).
OR to MSC Local storage, (then return).
OR to Main storaye, (then return).

OR with Six correction to IPU Local storage,
suppress ALU Bit 0...7, (then return).

OR with Six correction to IPU Local storage,
(then return).

OR with Six correction to Main storage, (return).

Shift Left to CDR, (then return).

Shift Left to CDR, using Negative shift amount,
(then return).

Shift Left to TDR, (then return).

'Shift Left to TDR, using Negative shift amount,

{(then return).
Sense into CDR Left, (then return).
Sense into CDR Right, (then return).
Sense into TDR Left, (then return).
Sense into TDR Right; {({then return).

Shift right into CDR, (then return).

D N — Gt S — D G W — - — — . — — — — — — —— — G— —— — G — — G — — e —— (mta — e " m— b S t—— Gm S G ot mm e e G Smmn et S Gww

11

11

11

11
1

12
12

12

12
11

SRCN (R)
SRT (R)

SRTN (R)

T (R)
TRB (R)

XBL (R)

XL (R)

XLMK (R)

XLML (R)

X MK (R)
XML (R)
XMS (R)

XMSC (R)

XSBL (R)

XSL (R)

XSHES.((R)

ZILC(R)

ZILT (R)

7 IRC (R)

ZIRT (R)

—— — Y —— V— —y — — — — T — T q— S W gy St s St ey S fatts T s WD s s s W it G ot St s sy S s S Sy Sy O g D s D e Wt i

Shift Right into CDR, using Negative shift amount,
(then return).
Shift Right into TDR, (then return).

Shift Right into TDR, using negative shift amount,
(then return).

Test, (then return).

Translate

Exclusive OR to IPU Local storage, suppress ALU

Bit Q...
Exclusive

Exclusive
storage,

Exclusive
storage,

Exclusive
Exclusive
Exclusive

Exclusive
Storage

Exclusive
storage,

-

Exclusive
storagyge,

Exclusive

(then return).

Zero set,

into CDR, (then return).

Zero set,

intc TDR, (then return).

Zero set,

into CDR, (then return).

Zero set,

into TDR, (then return).

and Branch, (then return).

7, (then return).
OR to IPU Local storage, (then return),

OR to IPU Local storage and MSC Key
(then return).

OR to IPU Local storage and MSC Local
(then return).

OR to MSC Key storage, (then return).
OR to MSC Local storage, (then return).
OR to Main storage, (then return).

OR to Main Storage, read from Main
into CDR, (then return).

OR with Six correction to IPU Local
suppress ALU Bit 0...7, (then return).

OR with Six correction to IPU Local
(then return).

OR with Six correction to Main storage,

then place Immediate data Left adjusted

then place Immediate data Left adjusted

then place Immediate data Right adjusted

then place Immediate data Right adjusted

1
11
11

13

[\

Explanation of IPU Microinstruction Groups

Group 1: Halfword from Local Store to TDR or CDR
Brimary Function: One

Bripar ! halfword is fetched from the IPU local storage and
set into either the True Data Register (TDR) or Complement Data Register
(CDR) .

T — s s o o vt sy el A > <o e vy o o o S oy

¢ The contents of TDR can be propagated to the local storage address
registers (LSARs) 0 and 1; or 2 and 3; or 0,1,2,and 3 (see under LSAR
setting cases).

e The invert switch can be set to true, invert, force ones, force zeros.

¢ The local storage can be addressed direct or indirect.

e A return from a subroutine can be initiated,

Common_Layout_of Group_ 1 Instructicans

1 Invert Bit
2 Parity Bit
Byte0 3 PECN________
5 1
6 0 Op Code Group 1
7.1
8 0 =directs1=indirect
9 0 =LS to TDR or CDR (op code)
10 1 =Leave subroutine
11 1 =TDR/0=CDR
Bytel 12 1 =set LSARO and 1
13__1 =set LSAR2 and 3 __
14 invert switch function
15
16 - T 16 -
17 17 High Order
18 18 Portion
19 direct indirect 19 —
Byte2 20 LS addr Ls addr 20_no_function_
21 21_1=LSAR0
22 22
23 23 LSAR_addr

Note: Bits 0 and 4 of Byte 0 do not exist

3125 MLM. Microinstructions

Bit_ Function Description

Bit_1, Invert. Generated internally by hardware.

inverted by SVP.)

Bit 2, Parity Bit. Generated by assembler program.

number of zero bits.)

Bit 3, PFCN_ —-_Parity Function Bit. Generated by assembler program. (To

obtain an odd number of control gates.)
_____ 9, _0p_Code. These bits

common to all group 1 instructions.

(Ahen instruction is

(To obtain amn odd

represent a unique pattern that is

— e e e o M s s et S e s v M e o e e e st e s .

be addressed. Direct addressing is employed when bit 8 is 0,
addressing is used when bit 8 is 1.

indirect

Direct. When direct 1is specified, bits 16 to 23 of the instruction
represent a binary number (from 0 to 255) which is used to address the
local storage. Bit 16 has the highest binary value, bit 23 has the
lowest binary value.
Indirect. When indirect is specified, either one of two methods is used
as determined bty bit 21 (LSAR 0).
Bit_ 21 off (0). With bit 21 off, instruction bits 16 through 19
represent the high order rortion of the address. The contents of
the 1local store address register (LSAR) addressed by instruction
btits 22 and 23 represent the low order portion of the address. Both
portions are said to be concatenated (chained) to form one logical

bit string.

Bit_21 _on_(1). With kit 21 on, instruction bits 16 through 19 are
ignored. The high order portion of the address then is provided by
the contents of LSAR 0. The low order portion is provided by the
LSAR addressed by instruction bits 22 and 23. These Lkits nmay
specify any LSAR including LSAR 0. Both LSAR contents are said to be
concatenated to form one logical bit string.

Bit_10, Leave Subroutine. This bit allows the IPU microprogram to re-
enter the program level that was 1in effect prior +to the 1last level
switching operation. In this manner, the program may return from a

subroutine to its criginal point of continuation.

The dinstruction which has bit 10 on is still part of the subroutine and so
is the next following instruction. However, the instruction that follows
thereafter is the first one of the continued previous routine.

3125 MLM. Microinstructions

bits

—— — e e —

into LSAR 2,
non—-destructive.

Bit 14 and_15.

bits

the function

of

These
the

This

__________________ Bit

half (one byte) contents of TDR
0-3

invert

operation, (see parameters).

(see parameters).

The fparameters are listed as cases Cl1....CXX which will also appear in the

microprogram

——— —— v —

c1 =

c3 =

Bit 12

Bit 13

bit

Hhen

When

enter.

bit

switch

no LSAR setting

TDR
TDR

TCR
TDR

TDR
TDR
TDR
TDR

bits
bits

bits
kits

bits
Lits
bits
bits

0'0..3
u...a?

8ea. 11
12..15

Oeeeal
beood?
8...11
12..15

(0

12 provides
into LSAR's
of TDR are set into LSAR 0, bits
The readout from TCR is non-destructive.

13 is
12-15 of TDR are set into LSAR 3.

for

listinys to allow orientation.

to
to

to
to

to
to
to
to

the means to propagate the left
When bit 12 is on
4-7 of TDR are set into LSAR 1.

0 and 1.

on (1) bits 8-11 of TDR are set
The readout from TDR is

somne

LSARO,
LSAR1

LSAR2,
LSAR3

LSARO,
LSAR1,
LSAR2,
LSAR3

determines the register into which the data
CDR , 1

bits provide four different patterns which determine

later arithmetic/logic

indirect addressing is used, both bits
represent a binary number (from 0 to 3) that addresses one

and

and

and
and
and

Invert Switch_Cases

Bit 14 Bit 15

cs = 0 0 = invert

ce = 0 1 = true

c7 = 1 0 = force ones
cg = 1 1 = force zeros

Local Store Address_Cases

Bit 8 Bit 21 Bit 22 Bit 23

c9 = 0 - - - = instr.bits 16....23

C10 = 1 0 0 0 = instr.bits 16....19//LSARO
c11 = 1 0 0 1 = instr.bits 16....19//LSAR1
c12 = 1 0 1 0 = instr.bits 16....19//LSAR2
c13 = 1 0 1 1 = ipstr.bits 16....19//LSAR3
Cc14 = 1 1 0 0 = LSARO//LSARD

c15 = 1 1 0 1 = LSARO//LSAR1

C16 = 1 1 1 0 = LSARO//LSAR2

c17 = 1 1 1 1 = LSARO//LSAR3

Groub 2: Immediate Data to TDR or CDR

Primary Function: A data bLyte provided by the instruction is set into

either TDR or CDR in either right or left adjusted position.

Secondary Functions:

e The remainder cf TLCR or CDR may either keep its original data or may be
set to zeros.

e Data from TDR may be further distributed to LSAR's 0 and 1.

e The invert switch can be set to true, invert, force ones, force zeros.

1 Invert Bit
2 Parity Bit
Byte0 3_______PECN________
5 1
€ 0 Cg ccde Group 2
—
8 0 = keep/l=reset
9 1 = immediate to TDR/CDR (Cp Code)
1C 1 = Leave suktroutine
Bytel 11 1 = TCR/0=CDR
12 1 = set LSARO and 1
13__1_=_left /0=right
14 :
15 _____invert switch function
16
17
18 immediate
Byte2 19 data Lbyte
2C
z1
22
23

—— . o T ——————— ———— . s O it s o, ol e et b

These bits represent a unique pattern that is

into which no data is set keep their original data or change to zero.
Bit 10, Leave_Subroutine._ This bit provides the means to return from a
subroutine to the program level that was in effect prior to the last level
switching operation. The instruction that has bit 10 on is still part of
the subroutine and so is the next instruction. However, the instruction
thereafter is the first one in the previous level.

This kit determines whether the immediate data byte

— e e e e e o e o o e e e e D e

enters into TOR or CILR.

3125 MLM. Microinstructions

Bit__12, Set LSAR O _and__1. This bit causes the contents of TDR bit 0-3 to
Fe set into LSAR 0 and TDR bits 4~7 to be set into LSAR 1. when turned on

(1.

Bit__13 Left/RBight. Since TDR or CDR are halfword wide, bit 13 determines

whether the immediate byte enters bits 0-7 or bits 8-15 of the respective
register.

that set the invert switch for a 1later arithmetic/logic operation, (see
Farameters) .

Eits_16-23, Immediate__Byte. These bits have binary values assigned,
running from tottom to top in ascending value, capable of representing any
value from CO to FF.

_—— G it e e i S i e e A S i . s e S o i s s o i S o S s e s e A T e oo o

LSAR Setting Cases:

Bit_12
C1 = 0 = no LSAR setting
C2 = 1 = TDR bits 0....3 to LSARO, and

TDR bits H4....7 tc LSAR1

Invert Switch Cases:

See C5....C8 of yroup 1 parameters

Group 3: Arithmetic/Logic Operations to Local Storage

Primary Function: The contents of TDR represent an operand that is either
added, ANDed, ORed, or EXCLUSIVE CRed with the contents of CDR. The result
is stored into the IPU local storage. Before the ALU operation (in the
same cycle) TLR and CDR may be loaded from the same LS location which"
receives the result from the ALU output afterwards.

Note: The contents of CDR pass throuyh the invert switch kefore they enter
the ALU. The result, therefore, depends on the microinstruction that sets

the invert switch prior to the arithmetic/logic operation.

3125 MLM. Microinstructions

¢ the local storage can be addressed either direct or indirect.

e various ALU conditions <can be saved and propagated to other ALU

operations which need not be in consecutive order.
e sSix correction on byte basis can be performed.
e the left byte of the result can be suppressed.

e The proyram can be made to return from a subroutine,

1 Invert Bit
2 Parity Bit
ByteO 3_______PECN________
5 1
6 1 Cp Code Group 3
A
8 0 = direct/1=indirect
9 1 =1S to TPR (dir. addr.), suppr. ALU 0..7 (indir. addr.)
10 ____0=_no_function /_1=_return_to main_routine
11 See tit function description and
Bytel 12 cases leees6
13
14 ALU function
18 e
16 | 16
17 | 17 High order
18 | 18 Portion
19 direct Jindirect A9
Byte2 20 LS addr |LS addr 20_1=_allow_six_correction
21 21_1=_LSARO__ e
22 See cases T7....15 22 LSAR address
—23 22 - -

10

Bits _5,6,7, Op Code. These bits
common to all group 3 instructions.

represent a pattern that is unigque and

the IPU local storage is addressed direct or indirect.

Bit_8, DirectyIndirect. This bit has a dual function. It determines whether

Direct _(bit 8=0). When direct is specified, instruction bits 16....23
represent a binary number that is used as address. The 1lowest binary
value is assigned to bit 23, the highest binary value is assigned to bit

16.

________________ When indirect is specified, bit 21 determines which
of the two indirect addressing methods are used, as follows:

____________ Instruction bits 16....19 represent the high order
portion of the address. The low order portion is provided by the
contents of the local store address register (LSAR) that 1is
addressed by instruction bits 22 and 23. Both address portions are
said to be concatenated (chained) to form one logical bit string.

Bit 21 on_(1). With bit 21 on, instruction bits 16....19 are
ignored. The high order portion of the address is provided by LSAR
0. The 1low order portion is provided by the LSAR addressed by
instruction bits 22 and 23. This may be any LSAR including LSAR 0.
Both address portions are chained to form one logical bit string.

Note: Six correction can be specified only with indirect addressing.

Bit_9, 'Suppress_ALU Positions 0....7' or_ 'Local Storage to TDR'. With
indirect LS addressing this bit provides a means to suppress the left byte
of the ALU {(the ALU is halfword wide). This function is used when 24-bit
addresses are calculated via two passes through the ALU, such as for load
register type operations. With direct LS addressing bit 9 is used to
indicate that the TDR has to be loaded from local storage before the ALU
performs its operation.

Bit_10, Leave_Subroutine. This bit allows the microprogram to return (from
a.subroutine) to the program level that was in effect prior to the 1last
level switchingy operation The instruction that has bit 10 on is still
part of the subtroutine and so 1is the next instruction. However, the

instruction that follows thereafter is the first one in the previous level.

link any number of ALU operations with each other so as to obtain one
result and one result condition from which a final condition code (for the
PSW) can be derived. Conversely, by turning bit 11 off, any number of
independent ALU operations can be interspersed in a string of linked
operations. Bit 11 thus eliminates the need for processing long operands in
consecutive sequence, and allows manipulation of operands or portions
thereof inbetween the main string.

The following detail functions are involved:

The first ALU operation of a string must have bit 11 on and either bit 12
or bit 13 on. This bit combination sets the ALUZERO 1latch to the =zero
state. The latch remains in the zero state as long as all operations of the
string (all those that have bit 11 on) including the first one produce zero
results. If any operation in the string (including the first one) produces
a result greater than zero, the latch changes to the "not zero™ state and
remains 1in this state wuntil it is reset, irrespective of how many zero
results may follow in the string.

Only those operations which have bit 11 on are treated as part of the
string. Bit 11 also ensures that the signs of the operands and carries out
of ALU position 0 and 1 are saved and propagated to the next operation that
has bit 11 on. In this manner a common condition 1is accumulated for the
striny. Interspersed operations (which have bit 11 off) cannot disturb the
accumulated condition because the latter is saved. The accumulation ends
with the first instruction that has bit 11 and either bit 12 or 13 on
because this combtinaticn deliberately set the ALUZERO latch to the =zero
state (reset), thus starts a new string.

Operations which have bit 11 off may also form a string because carries can
be propagated, however, no common condition is accumulated (also see bit 12
and bit 13).

Bit_12, 'Force Carry' or 'Local_Storage to CDR'. When on, this bit causes a
carry to be generated and entered into ALU position 15 which 1is the 1low
order position. Bit 12 sets the ALUZERO latch to zero if bit 11 is also on.
If the mnemonic is 'LTxxx?' (bits 8 and 9 = 01), bit 12 being on causes CDR

to be loaded from local storage prior to the ALU operation.

________________________ This bit provides the means for controlling the
carry that may emerge from ALU position zero (the high order position).
When bit 13 is off (0), a carry from the preceding operation automatically
enters ALU position 15 during the next ALU operation. This action is
prevented 1if bit 13 is on (1). Bit 13 sets the ALUZERO latch if bit 11 is
also on.

____________________________ These bits are capable of providing four
different patterns, which specify the ALU functions OR, Add, AND, Exclusive
OR as followus:

Bit 14 Bit 15
0 0 = OR
0 1 = Add
1 0 = AND
1 1 = Exclusive OR

the means to convert a
binary 6 is

Bit 20, Bllow_ _Six_Correction. This bit provides

hexadecimal value to a decimal value. When bit 20 is on, a

3125 MLM. Microinstructions

subtracted from ALU positions 12....15 (units digit) if no carry emerged
from ALU position 12. The same occurs with ALU positions 8....11 (tens
digit) if no carry emerged from ALU position 8. ALU positions 0O....7 do not
participate in six correction.

possible only in conjunction with indirect LS

Note: Six <correction 1is

addressing.

Valid Parameters of Group 3 .Instructions

ALU_Control Cases Function Performed

C1 = Bit 11 Bit 12 Bit 13
0 0 0 o allow carry from ALU pos 0 that was
previously saved by an instruction
that had bit 11 off to enter ALU
pos 15.
® save carry out of ALU pos 0.
C2 = Bit 11 Bit 12 Bit 13
0 0 1 » prevent carry from entering ALDU
pos 15.
» save carry out of ALU pos 0.
C3 = Bit 11 Bit 12 Bit 13 :
0 1 0 o force carry into ALU pos 15.
(See Note below)
e save carry out of ALU pos O.
C4 = Bit 11 Bit 12 Bit 13

1 0 0 » allow carry from ALU pos 0 that
was previously saved by an
instruction that had bit 11 on
to enter ALU pos 15.

e save contents of ALU pos 0 (sign),
® save carry out of ALU pos 0.
®» save carry out of ALU pos 1.

o reset ALUZERO latch if result
not zero.

11

3125 MLM. Microinstructions

C5 = Bit 11 Eit 12 Bit 13
1 0 1

Cé = Bit 11 Bit 12 Bit 13
1 1 0
(See Note below)

Note: Cases 3 and 6 are not valid for LTxxx instructions (instruction bits

8§ and 9 = 01). With these mnemonics instruction bit 12 is used to indicate

'local store to CLDR!'.

s set ALUZERO latch to zero prior

to operation.

» prevent carry from entering ALU

pos 15.

o save contents of ALU pos 0 (sign).

» savVe carry out of ALU pos 0.

® save carry out of ALU pos 1.

o reset ALUZERO latch if result

not zero.

» set ALUZERO latch to zero prior

to operation.

o« force carry intc ALD pos 15,

» save contents of ALU pos 0 (sign).

e save carry out of ALU pos 0.

» save carry out of ALU pos 1.

» reset ALUZERO latch if
not zero.

result

Case | Instruction bits | Source of local storage address |
_____ 1821 22 23 1 _high order ___| low_order_ 1 e
21 0 __x __x X__] _Instruction bits 16...23 _1_direct
€ | 1 0 0 0 | | LSAR O |
9 | 1 0 0 i] Instr. bits | LSAR 1 |
10 | 1 0 1 0 | 16...19 | LSAR 2 | indirect
Al 4o A\ | ____LSAR 3 ____]
12| 1 1 0 0 | i LSAR O |
13 | 1 1 0 1 LSAR O | LSAR 1 laddressing
14 | 1 1 1 0 | | LSAR 2 |
A5 1 1 a2 1__1 —_ - 1 LSAR_3_ 1

Note: The —rparameters actually used will be shown in the microprogranm

listings.

12

Group 4: Arithmetic/Logic Operations to Main Storage

Erimary Function. The contents of TDR are Added, ANDed, ORed, or Exclusive

ORed with the contents of CDR and the result is placed into main storage.

Secondary_Functions

o

the format can te specified as halfword or byte.

the main storage address can be automatically incremented, decremented,
or left as it 1is,

the ALU <can Le ~controlled so as to propagate carries (or not) and to
accunulate a common result condition (or not).

the result can bte subjected to six correction.
the program can be made to return from a subroutine,.
dynamic address translation can be enabled or disabled,

For mnemonics XMSC/XMSCR see special paragraph at the end of this group
description.

. e i e e e, . e e o T, e St A oy, it > . i D e s S s T S — —— — S o S o

1 Invert Bit
2 Parity Bit
Eyte0 3 __DPFCN —
5 1
6 1 Op Ccde Group 4
7_1
8 1 = main storage
9.0 = write __________
10 1 = leave subroutine
Bytel 11 1 = accumulate condition code
12 1 = force carry
13__1 _=_reset carry latch
14
15 _____ALU_=_Function__ _
16 1 = allow six correction
17 1 = halfword/O=byte
Byte2 18 1 = increment
19__1_=_decrement _______
20
21 MSC_LS_address___
22__0 =_no_function
23___1 = relocate/0=no_relocate

—— ——— ——— — —————— ——— — o 4 —— ——

1o:]
PJ
rf
w

h
o
rf

@)

1=

|
o
[}
[a]
[WH
-+
bt
i
c
=4
(9]
H
("N
o]
=
os]
[V
H
]
«Q
1]
=
]
lal
o
ﬁl
]
o
o
~
o]
4]
4]
()
=]
o
[
)
[a]

3
n]
(o]

<
la)
[+Y
=]
L]

These bits represent a unigue pattern that
is common to all grcup 4 instructicns. Bit 8 at 1 1level designates the
cprerations as pertaining to main storage, while bit 9 at 1 level specifies
the direction as "tc" main storage.

the program level that was in effect prior to the 1last 1level switching
operation. In this manner, the rrogram may return from a subroutine to its
original point of continuation.

The 1instruction which has bit 10 on is still part of the subroutine and so
is the next fcllowiny instruction. However, the instruction that follows
thereafter is the first one of the continued previous routine.

link any number of ALU operations with each other so as to obtain one
resalt and one result condition from which a final condition code (for the
ESW) can be derived. Conversely, Lty turning bit 11 off, any number of
independent ALU operations <can be 1interspersed 1in a string of linked
orerations. Eit 11 thus eliminates the need for processinyg long operands in
consecutive seguence, and allows manipulation of operands or portions
thereof intetween the main string.

The following detail functions are involved:

The first ALU operaticn of a string must have bit 11 on and either bit 12
or bit 13 con. This Lkit combination sets the ALUZERO 1latch to the =zero
state. The latch rerains in the zero state as long as all operations of the
striny (all those that have bit 11 on) including the first one produce zero
results. If any oreration in the string (including the first one) produces
a tesult jreater than zero, the latch chanyes to the "not zero” state and
remains in this state until it is reset, irrespective of how many zero
results may follow in the striny.

Cnly those operations which have bit 11 on are treated as part of the
string. Eit 11 also ensures that the signs of the operands and carries out
of ALU position 0 and 1 are saved and propagated to the next operation that
has bit 11 on. In this manner a cowmmon condition 1is accumulated for the
striny. Interspersed operations (which have bit 11 off) cannot disturb the
accumulated condition because the latter is saved. The accumulation ends
with the first 1instruction that has bit 11 and either bit 12 or 13 on
because this combination deliberately set the ALUZERO latch to the zero
state (reset), thus starts a new string.

Cperations which have bit 11 off may also form a string because carries can
te propagated, however, no common condition is accumulated (also see bit 12

3125 MLM. Microinstructions

and bit 13).

Bit 12, Force Carry. When turned on, this bit causes a carry to be
generated and entered into ALU position 15 which is the low order position.
Bit 12 sets the ALUZERO latch to zero if bit 11 is also on.

__________________ This bit provides the means for controlling the
carry that may emerygye from ALU position zero (the high order position).
When bit 13 is off (0), a carry from the preceding operation automatically
enters ALU rposition 15 during the next ALU operation. This action is
prevented 1f bit 13 is on (1). Bit 13 sets the ALUZERO latch if bit 11 is
also on.

_______________ These bits are capable of providing four
different patterns, which specify the ALU functions OR, Add, AND, Exclusive
CR as follows:

Bit 14 Eit 15
0 0 = OR
0 1 = AdA4
1 0 = AND
1 1 = Exclusive OR

Bit 16, Allow_Six Correction. When turned on (logicall), this bit allows
ALU bits 12....15 (units digit) and 8....11 (tens digit) to be subtjected to
six correction. Six correction consists of a subtraction of a binary 6 fron
ALU pos 12....15 provided there was no carry out o¢f pos 12. The sane
occurs for ALU pos 8....11 if no carry emerged from pos 8. Since the
kcolean functions AND, OR, and XOR do not produce carries, a binary 6 is,
in effect, subtracted unconditionally when bit 16 of the instruction is
on, for these operations. ALU pos 0....7 do not participate im six
correction.

Bit 17, Halfword/Byte. This bit has a dual function because it determines
either cf two data transmission formats. When at logical 1 level, halfword
is specified which means that ALU positions 0.....15 are transferred to
main stcrage. If at logical 0 level, Lyte is specified which means that ALU
Fositions 8....15 are transferred to main storage.

___________ This bit specifies how the main storage address that is
used for the store ofperation 1is to be updated. The update amount
corresponds to the specified format (halfword/byte) and is thus either 2 or
1.

Note 1: HWhen

operand 1 is stored with bit 18 on, the address of operand 1
is incremented and, simultaneously, the 1length count of operand 2 is
decremented. When cperand 2 is stored with bit 18 on, the address and the
length count of operand 2 are decremented.

Note 2:

Bit 18 must be on when a halfword or a byte is to be stored on odd

This bit specifies how the main storage address that 1is
updated. The update amount

used for the store operation is to be
corresponds to the specified format.

13

3125 MLM. Microinstructions

Note: When operand 1 is stored with bit 19 on, the address of operand 1 is
decremented, and simultaneously, the length count of operand 2 is also
decremented. When operand 2 is stored with bit 19 on, both the address and
the length count of operand 2 are decremented.

Special Note for Bits 18 _and_13. Bits 18 and 19 cannot both be on in the

same instruction. However, both bits can be off simultaneocusly which means

that neither an address nor a length count is changed.

—

store register the contents of which are used to address the main storage.
The following registers with fixed assignment are thus addressed as
follovs;

Bits_20_and_21, MSC Local Store_Address. These bits specify the MSC local

Number Bit 20 Bit 21

— o —— ——— e o ot

‘

value 4 2
Fattern 0 ¢ = IAR (Machine instruction address reg.)
0 1 = Cperand 1 address register
1 0 = Operand 2 address register
1 1 = 1,/0 Common register
Note: The actual addresses of these registers are, in hex notation, 18,13,

1C,1F and proper addressing is accomplished by the MSC which
rissing bits.

forces the

Bit 22, No Function.

Bit_23, BRelocate/No Relocate. This bit provides the means to access a real
(physical) wmain storage 1location directly without going through the
relocate (dynamic address translation) mechanism. Conversely, when on (1),
the bit provides fcr dynamic address translation if the extended <control
mode bit in the current PSW is on.

e e A . e e o Sk s, S o o o, S T T o (o

ALU _Contrgol Cases Function_ Performed

C1 = Bit 11 Bit 12 Bit 13

0 0 0 e allow carry from ALU pos 0 that was

previously saved by an instruction
that had bit 11 off to enter ALU

pos 15.

save carry out of ALU pos 0.

c2

c3

(o

CS

cé

Bit 11 Bit 12 Bit 13
o

0

Bit 11 Bit 12 Bit 13

0

Bit 11 Bit 12 Eit 13

1

Bit 11 Bit 12 Bit 13

1

Bit 11 Bit 12 Bit 13

1

1

0

0

1

1

0

0

1

0

prevent carry from entering ALU
pos 15.

save carry out of ALU pos 0.

force carry intc ALU pos 15.

save carry out of ALU pos 0.

allow carry from ALU pos 0 that
was previously saved by an
instruction that had bit 11 on

to enter ALU pos 15.

save contents of ALU pos 0 (sign),
save carry out of ALU pos 0.

save carry out of ALU pos 1.

reset ALUZERGC latch if result
not zero.

set ALUZERC latch to zero prior
to operation.

prevent carry from entering ALU
pos 15.

save contents of ALU pos 0O (sign),
save carry out of ALU pos 0.
save carry out of ALU pos 1.

reset ALUZERC latch if result
not zero.

set ALUZERO latch to zero prior
to operation.

force carry into ALU pos 15,

14

e save contents of ALU pos 0 (sign). causes the microprogram to return (branch) to the main routine two micro-
instructions later.
* save carry out of ALU pos 0.

e save carry out of ALU pos 1.

MS_Read cycle MS_Hrite cycle

e reset ALUZERO latch if result

|
' . - d
not zero. Read data to be | Hrite data originating fron
HSC loaded into CDR. | BEx OR function (first IPU
Format Cases I cycle) into main storage.
1
C 7 = Bit 17=0 Byte |
C 8 = Bit 17=1 Halfword First IPU cycle | Second IPU cycle
|
Update_Cases ALU Exclusive OR, | pData read out of main storage
IPU result will be written | during MS Read cycle is loaded
Bit_18 Bit_19 into main storage 1 into CDR.
during MS Hrite cycle. |
C 9 = 0 0 = no ugdate
cC 10 = 1 0 = increment
c 11 = 0 1 = decrenent
XMSC = Exclusive OR to Main Storage, Read from Main Storage into CDR Layout of XMSC/XHSCR

Second IPU Cycle = MSC

This is a conmbination of the two mnemonics XMS {group %) and MSC (group 5).

|
1
The IPU places a main storage request. When the request is honored, the . __ Ppattern fixed for XMSC(R)]|
main storage performs a read and a vwrite cycle. The IPU executes two « l
cycles (see fiyure below). During the first IPU cycle the ALU performs an =¥ - |
Exclusive OR function. The result of which will be stored into main storage ByteO 3_ - ———— !
during the MS write cycle. The byte fetched from main storage earlier) — =1
(during the MS read cycle) is placed into CDR bits 8...15 during the second CHE !
IPU cycle. CDR bits 0...7 are set to zeros. 6 1 I
The IPU performs during its first cycle the same functions as for an XMS ———-1_ 1 Cp code = group 4 i Op code = group 5
instruction. For the second cycle control word bit 9 will be inverted to a 8 1 l . '
logical one, which indicates main storage read. Thus the IPU performs the 9__L =_write e |_1(inverted zero) = read
same operations as for the mnemonic MSC and stores the data coming fron 10__0 = _XMSC_s_1_=_XMSCR___ |_same_as_first _cycle
main storage intc CDR (bit 11 = 0). BResides bit 9 no other bit of the Bytel 11 O) | 0 = read into CDR
control word is changed or inverted after the first IPU cycle and the 12 0 no function I 0)
Neither of the IPU cycles is interruptible. Bit 10 of the 13__0 _ ——————————— 1.9 no_function
microinstruction is off. LE 11
—--A5__1___ALU =_Exclusive Or I_1___invert switch = force zeros
16 0 = no function |
17 0 = bkyte format |
18 0 = not increment | same as
XM = : ; : : : BEyte2 19__0C _=_not decrement _ 1
SCR = Exclusive OR to Main Storage, Read from Main Storage into CDR, then Return 501 WSC LS address = |
21__0_ _____0Op._ 2 addr.-register | first cycle
The basic functions are exactly the same as for XMSC (see previous 22__1 = XMSC(R) _ __ ____ _— |
paragraph) . The only difference is in bit 10, which is a logical omne. This 23__1_=_relocate 1

3125 MLM. Microinstructions 1 5

3125'MLM. Microinstructions

Group 5: Read from Main Storage into TDR or CDR

A halfword or a byte is fetched from main storage and
placed into either TDR or CDR. If a byte 1is fetched, this byte is
automatically set into Lits 8....15 of the selected register (right
adjusted) and bits 0....7 of the selected register are set to zero.

e e . s o . T S .

s The contents
or 0,1,2 and 3.

of TDR may be propagated into LSABRs 0 and 1; or 2 and 3;

o The length count cr the main storage address may be updated.

e A test on exceptional conditions may be performed so Fhat a brapcp to a
specific address can be initiated upon finding exceptional conditions.

e Dynamic address translation can be employed or circumvented.
» The invert switch can be set to true, invert, force ones or force zeros.
« A return from a subroutine can be initiated.

o Dynamic address translation can be enabled or disabled.

——— o T s e e e e s < o o T —— T — T s S S —— ——— —— " — o ——

— . . . T o> oot s s

1 Invert Bit
2 Parity Bit
Byte0 3______ PECN _
5 1
6 1 Cp Code Group 5
7 .1
8 1 = Main Storage
3.1 =Read _________
10 1 = Leave sutroutine
Eytel 11 1 = TDR/0=CDR
12 1 = set LSAR 0 and 1
13__1_=_set LSAR_2 _and_3
14
15______invert switch function
16 1 = test exception
17 1 = halfword/O=byte
18 1 = increment
19__1_= decrement__ _
Eyte2 20
21 ___ _MSC_LS_address
22 = Length count/0O=address
23__1_= relocate/0=ng_relocate

16

Bit Function_Description

Eit_3, PFCN - Parity Function Bit. Generated by assembler progranm.

its_5_throuyh_ 9, Cp_Cod
d common to all group

These bits
instructionse.

represent a pattern that is unique

€.
5

subroutine to the proyram level that was in effect prior to the last 1level
switching ofperation. The instruction that has bit 10 on is still part of
the subroutine and so is the next instruction. However, the instruction
that follows thereafter is the first one in the previous level.

Bit 11, TDR/CLR. This bit
data is placed.
CLCR.

determines the register into which the fetched
Logical 1 level specifies TDR, logical 0 1level specifies

Eit 12, Set LSAR O _and_1. When this bit is on, TDR bits
propagated to LSARC and TDR bits 4....7 are propayated to LSAR1.

Oeeae3 are

Timing_Note. If main storage data enters TDR the propagated data is not
valid in the LSARs until 450 nano sec (1 IPU cycle) after the read fron
main storage has ended. This means that the microinstruction that follows
immediately after the read from main storage cannot use the LSAR contents.
However, the propagated data 1is available to the instruction thereafter

(the second after the read from main storage).

This timing restricticn does not apply if main storage data is placed into
CDR because then the TDR contains valid data from a previous operation.

Bit 13, Set LSAR_2 and_3._ When on (1), TDR bits 8....11 are propagated to
LSAR 2 and TDR bits 12.....15 are propagated to LSAR 3. The same timing
restriction as specified under "Bit 12" applies when main storage data is
fetched in TDR and this data is prcpagated.

These tits determine the function

— e — — w— ———— — — ——— ——

of the invert switch, as follows:

Bit 14 Bit 18

invert
true

force ones

force zeros

honn

- OO
—t O o O

Bit_ 16, Test Exception. This bit provides the means for checking on
interrupts, address stops, and similar exceptional conditions. When bit 16
is on (1), data is fetched from main storage and simultaneously exceptional
conditions are checked. If exceptional conditions are found, the nmicro-
program branches to a fixed address where the exceptional condition
bandling routine begins. If exceptional conditions are not found, the
microprogram proce'eds with the next sequential microinstruction.

of the data to be fetched. If either form of wupdating (increment or
decrement) 1is also specified in the microinstruction , bit 17 implicitly
determines the updating amount as either 2 or 1 as required for the
selected format.

Note: If the main storage read operation uses the contents of the machine
instruction IAR as main storage address, the format must be specified as
"halfword", because the smallest machine instruction (e.g. RR format) has
halfword size.

Bit 18, Increment. This bit determines the updating modus as plus 2 or plus
1 as required for the selected format. Whether the updating pertains to the
main storage address or to the 1length count depends on bit 22 which
specifies either length count or address.

Note_1: If "lenygth count"™ is specified, bit 18 must be off because the

length count can te decremented only.
Note 2: 1If a byte or a halfword is to be fetched from odd boundary, bit 18
must be on. If either decrement or no wupdate 1is specified for an odd
address, data is fetched from the even boundary below the odd address.

Bit 19, Decrement. This bit determines the updating modus as minus 2 or
minus 1 as reguired by the selected format. Whether the wupdating pertains
to the main storage address or to the length count depends on bit 22 which
specifies either lenygth count or address. Either facility may be specified
for decrement.

Special Note_for Bits 18 _and_19. Bits 18 and 19 cannot both be on in the
same instruction. However both bits may be off simultaneously which means
"no change" to length counts or addresses.

four MSC LS reyisterswith fixed assignments as follows:

Bit 20 Bit 21
0 0 = IAR (machine instruction address register)
0 1 = Cperand 1 address register
1 0 = Operand 2 address register
1 1 = I,/0 Common register

the length count or the address as the facility to be updated by the main
storaye controller. The wupdated value is available when the main storage
operation has ended (i.e. for the next operation).

Bit_23, Relocatey/No Relocate. This bit

provides the means to read from a
fixed or known main storage location directly without going through the
relocate mechanism. Conversely, the relocation mechanism can ke employed,
provided the extended control mode bit is on in the current PSW.

3125 MLM. Microinstructions

Group 6: Read from MSC Local Storage or Key Store

Frimary Function: The contents of either the right or left portion of an

MSC local store register or the contents of a key storage position are
fetched and placed into either the TDR or CDR.

o the <contents of TDR can be propagated into LSAR 0 and 1; or 2 and 3; or
0,1,2 and 3.

o the invert switch can be set to true, invert, force ones, force zeros.
o the MSC can be addresssed directly or indirectly.
e with MSCTL (R) contrcl information as tc page sizes and storage limits

can be transferred to the main storage controller. (For details see
under 'Bit function description' for bit 17.)

——— s s o s s s s S T P — — —

1 Invert Bit
2 Parity Bit
ByteO 3_______PECN_ _______

5 1

6 1 Or Code Group 6
_—1

8 0 = MSC LS

9__ 1 =_read __________

10 1 = leave sukroutine

e i s ot T T o M W o) o T S

—— . i e i vt s e e D . S s et e s i o

12 1 = set LSAR 0 and 1
13__1 =_set LSAR_2_and_3
14
A8 _____invert switch_ function
16 O NSC LS/ 1=key store

17 1 = immediate (MSCTL/MSCTLR)

—————— ——— o . . 1o s i s i L o e T . o i s v A e o S e S . e <, S . S . . it

19 direct 118 ___ignored_
20 MSC LS 1_20___0_=_TDR_select
21 address 1.21_________ignored_
22 22

—— ——————————— i Y— — ‘o o —

—— e i S . e . . o e o W s T s e i i i

Bit_1, Invert. Generated internally by hardware.

Bit 2, Parity Bit. Generated by assembler program.

17

3125 MLM. Microinstructions

Bit 3, PFCN - Parity Function_Bit. Generated by assembler progran.

______ These ©bits represent a pattern that is unique and
cormon to all yroup €6 instructions. Bit 8 at zero specifies the source as
teing the Local Stcrage of the main storage contrcller.

I —— v — s T M — T . ——— — "

subroutine to the program level that was in effect prior to the last level
switching operation. The instruction that has bit 10 on is still part of
the subroutine and so is the next instruction. However, the instruction
that follows thereafter is the first one in the previous level.

Eit_11, TDR/CLR. This kit determines the register into which the fetched
data is placed. Logical 1 level specifies TDR, logical 0 1level specifies
CLCR.

Eit__ 12, Set LSAR_0_and_1. When on, this bit causes TDR bits 0...3 to be
propagyated to LSAR(Q and TLDR bit 4....7 to be propagated to LSAR 1.

Bit_13, Set_ _LSAR_2_and_3. This bit causes TDR bits 8....11 to be
propagated to LSAR2 and TDR bits 12....15 to be propagated to LSAR 3.

Note to bits 12 and_13. When reading from MSC Local Storage or Key Storage,

s = e S S o o s o - — - —

that the propagated data is available at the end of the MSC LS or Key Store
read operation.

Bits_14_and_15, Invert Switch Function. These bits determine the function
of the invert switch, as follows:
Bit 14 Bit 15
0 0 = invert
0 1 = true
1 0 = force ones
1 1 = force zerocs

Bit__16, MSC_Local Stores/Key Store. This bit specifies the facility fronm
which data is to be fetched. Bit 16 at zero specifies MSC Local Store, bit

1€ at 1 specifies key store.

If either key store or left portion of an MSC register is specified,
These seven data bits are always placed right
The remainder of the

seven data bits are fetched.
adjusted into TLR or CDR (whichever is applicakle).
receiving register (kits 0....8) is set to zeroc.

Bit 17, Immediate. (MSCTL/MSCTLR). When this bit 1is omn, the entire
character of the read instruction is changed. The primary function is then
the transmission of control information to latches and special registers in
the MSC and/or Relocation unit whereas the reading of data from MSC local
store registers or key storage. becomes the secondary function. Actually, a
true operation takes place because coded control information is sent to the
MSC and/or Relocation unit and simultaneously the same coding addresses the
MSC local storage or key storage and reads from it.

18

The control information is taken from the ALU-output, which depends on:
a) the data loaded into CDR and TDR,
b) the last ALU operation called for prior to the MSCTL instruction, and
c) the invert switch function specified by the MSCTL instruction.

For more details, see description of bit 18.

Bit 18, Direcﬁllndirect. This bit specifies the source that is to supply

the control and/or MSC local.store address, as follows:

Bit_18=0_ (lirect). Instruction bits 19....23 represent the source. Whether
this source represents an MSC LS address alone or an MSC LS address and, at
the same time, control immediate information depends on the state of bit
17. If bit 17 is off (0) bits 19....22 represent the address and bit 23
specifies 1left or right. Bits 19 to 22 have the binary values 8,4,2,1
assigned and are thus capable of addressing the upper half of the MSC Local
Storage because a bit with value 16 1is forced by the MSC itself.
Conseguently, MSC LS registers ranging from address 10 to 1F can be
addressed.

If bit 17 is on (1), the meaning of bits 19.....23 is a control code.
The control code function of bits 19....23 is as follous:
Bit Numbers

1 1. 1 0 0 O =‘incregent relocation_counter by 1

0 = write all, meaning all of the sixteen
associative registers

1 1 0 0 0 0 = set relocation mode, meaning
details such as page size, and
relocation yes/no which are taken
from PSW and control registers

1 T 01 1 O

set relocation counter to hex 7

Bit_18=1_ (Indirect). When indirect is specified, bits 19....23 are ignored
as address or contrcl code. Instead, two choices exist as to the source, as
specified by bit 2C (TDR select):

When bit 20 is at 1 level, LSARO chained with one of the four

LSAR's furnish the address/control code.

Bit 20=1.

Bit_20=0_ (TIDR_Select). When bit 20 is at 0 level, six specific TDR bits
provide the address/control code.

The indirect method of specifying the control code (bit 17=1) allows for

the following control operations via the following source bits:

-

TDR_kit 6_and 7 + TDR bits 0,1,2,3

/
Bit Number

LSARO LSARO,1,2,0r3
2 3 0 1 2 3

TDR TDR

€ 7 0 1 2 3

C 0 x x x 1= set_main_storage size, the main storage size
information stored by a previous IPU operation
into the MSC local storage will be transferred
tc latches in the MSC

write_associative array, the ALU output is

transferred to an AA register addressed
by the relocaticn counter

—— s i i S — V. S i " W . — . - " o o o e

is transferred to a relocation local storage
regyister addressed by the relocation counter

increment relocation_counter by 1_

— e e o e ——— — i

registers.

Write all is used for purging (invalidating)
the TLB

———— ——— . (e S N f— —— o "]~ o —

segquwent protection, and relocation yes/no,
details that are fetched from the PSW and
the contrcl registers

11 0 1 1 0 =
bits

set relocation counter to hex 7

s . S i 2 o A —— o ——— — — o T S 2 W S T " ", S o

Note: identified by are 1ignored

Immediate_Control Operation Details

Set_Main_Storage Size. The three bits denoted as XXX represent the values

2, 1, and are thus capable of specifying eight different MSC local
.-orage registers. However, as an engineering convention, MSC LS-Reg 0 is
always the one that has been loaded with the main storage size. The XXX
bits will, therefore, be zero. Either the SVP or the 2311 or 2314 emulator
supplies the main storage size.

Write Associative Array. The three bits denoted as

represent the values 4,2,1 and are thus capable of addressing
eight registers

xxx in the pattern
any of the
in the associative array. The selected register is loaded

3125 MLM. Microinstructions

follows:

81.9110111112113]114115}4
1112113115115

with the ALU output which is interpreted as

ALU bits --=>

1.01_11.2) 31 41 51 61 7]

logic Address tits|16]1171181191201 | x| x| 81 911011 3114y
\
|
t--— 0 = validate
1 = invalidate

Note: x is ignored.

Write Real Address_Local Store. The contents of the relocation ad@ress .
counter are used to address a specific register. The selected register is
loaded with the ALU output which is interpreted as follows:

131141151

1 3] 41 51.61.71.81_9]11 1
1131141151

01
81 9110]

ALU bits ---> 1
|

1_
Real Address Lbits |

2 11112
181191201x |Ix Ix | 11112

Note: X is ignored.

Each of the sixteen registers in the associative array is

Write ALL.
TAAAad us+ The ALU

loaded with the ALU output and will thus contain identical data.
output is interpreted as follows:

ALU bits ---> 1.01 1} 21 31 41 5] 61_71.81.9110111112113118]115]1
1 nl nl n] nl n| | x| x| n] n} nl n]l n} nj n| nj
3
|
1——— 0 = validate
1 = invalidate

Note: x is ignored
n is any value

transferred to latches in t@e MSC
access operations accordingly.

Mode., The ALU

Set_Relocaticn output is
which uses the

The ALU cutput

is interpreted as fcllows:

ALU bits —-—--> 0123 4% 5 € 7891011 12 13 14 15

ESW and Control x % x x 12 &

Req bits

24 9 x X X X X X X X

EC Mode when 0
BC Mode when 1

jt 5 represents PSW bit 5 which specifies:

Dynamic Address Translation when 1
System/360 Addressing Mode when 0

19

3125 MLM. Microinstructions

ALU_bit_ 7 represents bit 9 of control register 0 which specifies:

2K Page Size when 1
4K Page Size when 0

InvalidateysValidate_ Matching Entry. One of the sixteen registers in the
associative array which matches ALU output 0O...4, 8...15 is loaded with the
ALU output 0...5, 8...15. ALU bit 5 invalidates the entry if it is at
logical 1 level. ’

ALU bits -—--> 0 1 2 3 4 £6 789 1011 12 13 14 15
Logic Addr.bit -->16 17 18 19 20 x x 89 10 11 12 13 14 15
A
|
1--- (0 = validate
1 = invalidate

Group 7: Arithmetic/Logic Operations to MSC Local Storage or Key Storage

Erimary_ Function. The contents of TDR are added, ANDed, CRed or Exclusive

CRed with the contents of CDR and the result 1is placed into either the
local stcrage or key storage of the FMain Storage Controller.

20

* TDR bits 0....3 can be suppressed (set to zero) or not.

e The ALU can bLbe controlled so as to force a carry into the low order
position or to prevent a carry from a previous operation from entering
the low order position.

Addresses alone or addresses plus storage key can be placed into an MSC
LS register.

e Results that are to be stored into MSC Local store or key store can
simultanecusly be placed into IPU local storage.

Common_Layout _of Group 7 Instructions

1 "Invert Bit
2 Parity Bit
Byte0 3_______ PECN________
S 1
6 1 Grcup 7 Op Code
1
8 0 = MSC LS
S 0 = write _______________
10 1 = Leave subroutine
Bytel 11 1 = suppress TDR 0O....3
12 1 = force carry
13__1_= reset carry latch ___
14
——-1>______ALU function ________
16 0 = MSC LS/1=key store
17 1 = alter key
Byte2 18__0 = direct/l=indirect _
19__1_=_IPU_LS_ store | 13__ igmored _____
20 _20__0_=_TDR_select
21 direct 1_21___ignored ____
22 MSC_LS_address| 22 LSAR

23__1 = lefty/0=right_ |1 23 _address__

Bit Function Description

Bit_3, PFCN - Parity Function_ Bit. Generated by assembler program.

These bits represent a pattern that is

—— — i o st et ey a2, . csat. i e . s e e i S . e T < e v D 1 . st

Bit_ 10, Leave Subroutine. This bit allows the microprogram to return from Bit_16=z0, Bit 23=1, means store operation into left _Eorqug og_gzc gg
a subroutine to the level that was in effect prior to the 1last 1level register. Actually, only two bits are stored because the physica " 1k the
switching ofperation. The instruction that has kit 10 on is still part of the address is 18 Lits. During the store operation, the MSC checks c
the subroutine and so is the next instruction. Only the Jinstruction binary value of the address and if the insertion of the tworblts. 1ncreaset
thereafter is the first one in the previous level. the value to greater than 256K, the address check bit (kit 4 in the lef
. portion) is turned on. The parity in the left portion 1s generated Lky the
Bit_11, Suprress_TLR_Bits 0....3. This bit provides the means to set the MsC.
leftmost four bits of TDR to zero. This facility is used to delete the
register address field (B1 or B2) of an operand address so as to retain the 3456 7 (F &9 10 11 12 13 14 15 P
12-bit displacement (D1 or D2). This allows the displacement (alone) to be ALU 012 { ' |
added to the contents of a base register (general purpose register).. | 1
Bit 12, Force Carry. This bit allows a carry toc be generated and inserted e ! :
into ALU fposition 1£ ({the low order position). | mmmmmmmmmmmmmmmmm e '
Bit__13, Reset Carry Latch. This bit resets the carry latch to the "no : }
carry" state so as to prevent a carry from a previous ALU operation fron 'R |
always a stand-alone ofperation. | I I
.) i right pcrtion |
Eits_14 and_15, ALU_Function._ ~ These bits represent a pattern capable of | left portion | J F
specifying four different arithmetic/logic operations, as follows:
Bit 14 Bit 15
0 0 = OR Bit 16=1, means store operation to key storage. In this case ALU bits
0 1 = Add 8...-14 are stored, as shown. ALU bits 8...11 represent the key, while the
1 0 = AND rest of the bits have the following functions:
1 1 = Exlusive OR
Bit_16, MSC_Local StoragesKey Storage. This bit specifies the destination ALU bit 12 = reference bit
of the ALU result. When bit 16 is 0, the result is stored into either the ALU bit 13 = change bit
left or right portion of an ¥SC LS register, as specified, by bit 23 ALU tit 14 = protection bit
(left/right), If bit 16 is 1, the ALU result is stored into key storage. The
ALU result is a halfword (bits 0....15) and so is the right portion of ALU c 123456 7P &9 10111213 14 15 F
every MSC LS register. However, the left portion of an MSC LS register as 1 | _9_!
well as a key storage register are only 7 bits wide. Therefore, the ' '
following description explains which bits are stored 1in which fpositions ! [
depending on which destination has been specified. g Z g

key storagel 1 2 3 4 S8 |

] |

Bit 16=0, Bit 23=0, means store operation into right portion of MSC LS 1 |
register, as followus:

keyword

Note: ALU bit 15 must be zero to ensure correct key parity.

ALU 0123456 7P1&89 10 1112 13 14 15 P
I I

| I

| |
1

I

l

ESC LS Regnlttnoool.....l‘.‘...c.co.lo-.u‘.b......‘.oao..o....-:

| |
|left pcrticn| right portion

Bit_17, Alter Key. This bit provides the neans to alter the key in the

selected MSC local storage register in addition to storing a new address.

21

3125 MLM. Microinstructions

3125 MLM. Microinstructions

However, when altering the ey, the address storing that occurs
concurrently must go into the left portion of the MSC 1S register, i.e.,
bit 23 must be on when bit 17 is on. The following ALU bits are stored:
3 4567 E|89 10 11 12 13 14 15 P
j 10000 Jlxx x x x x|

B
|
l l |
|
|
I

— o b— —— —

- o v i o . V- o o S Ty o S s S — ————

1
]
|
I
|
I
I
!
|
I

—— ——— e S 42 o < s O W s I T S 7 i, O . S T e, S S . v, l

-

—— - e v

I I ~
1012 3 P4 P17 89 10 11 12 13 14 P|15 16 17 18 19 20 21 22 P|
| I | | |
I | 1

: ALU bits U4....7 must be zero to ensure correct parity for the key.
bits 8....13 are iynored.

|
l
|
|
|
|
|
I
Y
P

______________________ This bit determines the method

of addressing the
MSC local store and, in case of the special

operation, the method of

addressing MSC local storage, logic address storage, or real address storage.

If bit_18_ _is _O_(Direct). If direct addressing is specified, two address
bits are forced by the MSC while four Lits are provided by the

instruction, as fcllows:

______ Forced, Forced, 20, 21, 22, 23
Yalue: 1€, 8, 4, 2, 1, ‘1eft/righ’c
If _bit 18 _is_1_(Indirect). If 1indirect addressing 1is specified, two
indirect addressing sources are availalkle as specified by bit 20 which

then has the logical meaning "TLR Select".

Bit_20=1_ (not TDR_select). The

e . o o, s . T S e et e . — T — -

) addressing source is composed of two Lits
cut of LSARO and four bits out of the LSAR selected by instruction bits 22
and 23, as follows:

LSARC + Selected LSAR
Crigin: 2,3, 0,1,2,3
Yalue: 16,8, 4,2,1,left/right

Bit_20=0_ (TDR select). The

E addressing source is composed of specific bits
in the TDR exclusively, as follows:

22

Origin: 6, 7, 0, 1, 2, 3 (TDR bits)
______ 8, 4, 2, 1, left/right

______ This bit is available only when direct addressing
(bit 18=0) is specified. When bit 19 is on, ALU bits 0....15 are placed
into IPU 1local storage and this occurs concurrently with the MSC local
store or key storage transfer operation, The MSC LS address bits will then
address also the IPU local storage, as followus:

Bit 22 Bit 21 Bit 20 IPU LS Reyister No (decimal)

71
70
69
€8
67
66
65
64

OO OO ad = b =d
O ot o O s b
O ed O wd O d O s
LT T T O T (I T 1|

Bit 23, Left/Riqht. This bit specifies the portion of the selected MSC LS

- o i

register into which data isstored. When indirect addressing 1is specified,
the low order bit of the chained LSAR provides the same function.

Note_1: When ™alter key" 1is specified, the portion must be specified as

wleft" to ensure correct key placenent.

Transfer of Main_Storage_Size (for information only). The main storage
size The main storage size is set by a store operation into right portion
of MSC local store register. The contents of this register must be set
into hardware latches by a controcl instrucitcn to become effective. The
following table shows how the various main storage sizes reside in the
right portion of an MSC local store register:

MSC LS Register

Bit Number Meaning Note: "Allow Disk"™ is a bit
256K (when 1) that permits the Disk IOP to
8 128K access the 2311 or 2314 buffer
9 64K locations when the emulator is
10 32K active. "Allow IPU" is a bit
1 8K that permits the IPU to access
12 4K the 2311 or 2314 emulator
13 -) buffers. No other facility has
14 -) access to the emulator buffers.
15 -) Notice that up to eight
16 -) individual 4K or 8K buffers are
17 =) 1ignored created at the upper end of main
18 -) storage by setting a size
;g - ; smaller than the physical main
21 Allow Disk storage size.

22 Allow IPU

Group 8: Test Instructions

Eripary TFunction: A test is performed on
specific condition. If the test finds the specified condition, the 1'Test-
F1' does not change its status. If the specified condition is not found,
the 'Test-Fl' will ke reset. The status of the 'Test-Fl' can be tested by a
sutsequent ‘'Branch on test'-instruction (Group 9: ET, BTS, BTM). The
ricroprogram will branch only if the 'Test-F1' is found on. The 'Branch on
test'-instruction «causes the 1'Test-Fl' to be set. Therefore a second
'Branch on test'-instruction will be successful in any case.

Since the Test instruction can never set the 'Test-Fl', it is possible to
AND several conditions by issuing several Test instructions in sequence
tefore testing the status of of the 'Test-Fl'. If either one of the tested
conditicns does not exist, the ‘'Test-Fl' will be reset by the Test

the presence or absence of a

instruction and the subseguent ‘'Branch on test'-instruction 1is not
successful.
Secondary Functions: None.

1 Invert Bit
2 Parity Bit
Byte0 3 EECN .
5 1
6 0
——_1 0 Op Code Test
8 €
9__1

107717z Teave subreutine {0 = 1/ 1 = T

————— — . 1 s o o - A o - s i S S s o o

- s o — . o o ———— > o o o i st s e ot et i s e

14 ignored

—— o

19 Test Condition
20 Specification

3125 MLM. Microinstructions

———— — - —— T —— . T T S s

Bit_10, Leave Subroutine. This bit provides the
sukroutine. The instruction which has bit 10 on 1is
subroutine and so is the next instructione.

thereafter is the first one in the previous level.

means to return from a
still part of the
However, the instruction

Bit_ 12, Test for Onscff. This bit

the presence (on) or absence (off) of the specified
below) .

provides the means to check for either
condition (see takle

____________ These bits can
binary notation 128 different conditions. The conditions listed below are
presented as questions. It should, however, be noted that each such
guestion can be stated in true or false form by setting Eit 12 (on/off)
accordinyly. The presently assigned test conditions are as follows:

specify in

—— — —— —— — — ———

Table of Test Condition Specifications

Instruction bits Test Condition

17eees23 12

——— o e S A - " . . ——— —— — — — ——— — ————— N —— — N~ — T — — =V~

C00 0coo 0 Any I/0 Interrupt
1 (Not) Any I/O Interrupt
000 0C01 0 External Machine Check
1 (Nct) External Machine Check
€00 0C10 0 (Not) Previous Error
1 Previous Error
c00 G011 C (Not) External Damage
1 External Damage
c00 0100 0 (Not) SVP Hardware Error
1 SVP Hardware Error
000 0101 0 (Not) IOP Error
1 IO0P Error
€00 0110 0 Program Interrupt
1 (Not) Program Interrugpt
C00 0111 0 SVP Interrupt
1 (Not) SVP Interrupt
C00 1Cxx 0 ICP Response
1 (Not) IOP Response
C00 11xx 0 (Not) FP Overflow
, 1 FP Overflow
001 CCOO 0 ICP Busy
1 (Not) IOP Busy
001 0001 0 (Not) Page Carry
1 Page Carry

23

3125 MLM. Microinstructions

Table_of Test Condition Specificatiohsv{contiuuedl

Instruction bits Test Condition

17....23 12

——— — —— S — T ——— . ———— - — — -~ — - — Y — T - ——— — — " v %> o

001 0010 0 (Not) MS Address Stop
1 NS Address Stop
001 0100 0 IOP nct operational
1 (Not) IOP not operational
001 10xx 0 (Not) TOD Security Switch
1 TCD Security Switch
001 11xx 0 (Not) SVP Response
1 SVE Response
010 0CO0O0 0 (Not) TDR bit 15
1 TCR bit 15
010 €CO1 0 (Not) TDR bit 7
1 TCR bit 7
010 0010 0 (Not) TDR bit 11
1 TLR bit 11
010 0C11 0 (Not) TDR bit 3
1 TLCR bit 3
010 0100 ¢ (Not) TDR bit 13
1 TLCR bit 13
010 0101 C (Not) TDR bit 5
1 TLCR bit 5
010 0110 0 (Nct) TDR bit 9
1 TLCR bit 9
010 0111 0 (Not) TDR bit 1
1 TCR bit 1
010 1C00 0 (Nct) TDR bit 14
' 1 TDR bit 14
010 1€01 0 (Not) TDR bit 6
1 TDR bit 6
010 1010 0 (Net) TDR bit 10
1 TCR bit 10
010 1011 ¢ (Not) TDR bit 2
1 TLCR bit 2
010 1100 0 (Not) TDR bit 12
1 TCR bit 12
010 1101 0 (Not) TDR kit 4
1 TLCR bit 4
010 1110 0 (Not) TDR it 8
1 TCR bit 8
010 111 0 (Nct) TDR bit O
1 TCR bit 0
011 xxxx 0 Exceptional Condit. 2
1 (Not) Exceptional Condition 2
100 0CQO C Noct LSAR 2 bit 3 and not LSAR 2 bit O
1 (Not) Not LSAR 2 kit 3 and not LSAR 2 bit 0
100 xx01 0 (Nct) ALU zero accumulate
1 ALU zero accumulate
100 0010 0 Nct LSAR 3 kit 3 and not LSAR 3 bit 0
1 (Not) Not LSAR 3 bkit 3 and not LSAR 3 bit O
100 xx11 0 (Not) ALU carry acc.
1 ALU carry acc.

Instruction bits

Table of Test Condition Specifications {conti

24

17'...23

———— — e V) T S T U A T W T A - A — A —— - A - T —— U T W — . —— .t o —-——

110
110
110
110
110

Test Condition

(Not) Test Cond. Code, (No CC match)
Test Conditicn Code, ({CC match)
(Not) ALU bit 0 accumulate
ALU bit 0 accumulate

(Not) LSAR 2 bit 3

LSAR 2 bit 3

(Not) LSAR 3 bit 3

LSAR 3 bit 3

(Not) LSAR 2 = LSAR 3

LSAR 2 = LSAR 3

(Not) C 8

C 8

{Not) Execute

Execute

(Not) Stop key

Stcp key

(Not) Macro Instruction Step
Macro Instruction Step

{Not) Macro Address Stop
Macro Address Stor

(Not) IAR Boundary Check

IAR Boundary Check
Relocation Exception

(Not) Relocation Exception
(Not) MSC Check bit 2

MSC Check bit 2

(Not) MSC Check bit 1

MSC Check bit 1

(Not) Program Event Recording
Program Event Recording
(Not) Length Count Carry

LC Carry

(Not) Indicator bit 1
Indicator bit 1

(Not) Indicator bit 2
Indicator bit 2

(Not) Indicator bit 3
Indicator bit 3

(Not) Indicator bit 4
Indicator bit U4

Dec.Data CDR

(Not) Dec. Data CDR

TCR (14 and 15 = 0)

(Not) TDR (14 and 15 = 0)
Exceptional Condition 1
(Not) Exceptional Condition 1
(Not) ALU Carry Latch

ALU Carry Latch

Group 9: Branch on Test Instructions (Branch Type 1)

Frimary Function. A

check is performed on the state of the 'Test-Fl' that
was reset or left unchanged by a jrevious test instruction (yroup 8). If
the 1latch 1is found to Lte on, the next sequential instruction address
located in the current IAD is ijnored and, instecad, the branch address
contained in the "Branch on Test" instruction is used to read out the next
microinstruction (kranch).

If the latch is found to be off, the contents of the current IAR are used
to read cut the next wmicroinstruction (no branch) and, in addition, the
latch 1s turned c¢n. The turned cn latch provides the means to convert an
unsuccaessful Lranch to an unconditonal branch upon repetition.

¢ Level switchiny c¢an ke specified or not. If specified, level switching
occurs culy if the tranch is successful.

1 Invert Eit
2 Parity Bit
3

———— e > . e > o o ke

14 Branch

—— o —

16 Address

e . e T e . . ————————— .

3125 MLM. Microinstructions

Bits__7 and__2, Switch Level. These bits specify either of three functions

as follows: ——————————————

Bit_7 Bit_38
C 0 = no level switchingy
0 1 = switch to subroutine
1 0 = switch to main routine

The level switching cperations are defined as follows:

microprogram cab run in either one of three
address registers

No_Level Switching. The IPU

levels. Ccnseguently, three types of microinstruction
are maintained as follows:

IAR C = main level
IAR 1 = subkrcutine level
IAR 2 = trap routine level
The microprogranm runs in a given level when the IAR of that level

addresses the control store and suksequently receives the updated
instructicn address which then, ayain, addresses the ccntrol store. The IAR
in charge is termed the '"current IAR".

If no level switchiny is specified, and the branch is successful, then the
contents of the current IAR are ignored and the branch address 1in the
instructicn reads out the next microinstruction ., However, the branch
address is updatedand placed into the current IAR. The program thus remains
in the same level.

cnly if the branch instruction itself is located in the main routine. If
the branch instructicn is successful and switch to subroutine is specified,
the current IAR (this would be IAR 0) is igncred and the branch address 1in
the instruction reads out the next microinstruction . The address of the
tranch instruction itself is updated and returned to IAR O (main routine).
However, the branch address 1s updated and placed into IAR 1 {subroutine).
As of this moment, ccntrcl has passed from IAR O to IAR 1 and IAR 1 1is 1in
chargye cf addressing the control storaye.

Note: IAR 0 <contains the address of the 1instruction that wculd have
followed if the branch had not been successful. Any instruction in the
sukroutine level that has the "leave subroutine™ Ltit (bit 10) on will
return ccntrcl tc IAR 0, hence, continue in the main routine.

Switch_tc Main BRoutine. This specification 1is effective 1in any branch
instruction that is succesful and not located in the main routine. Thus a
successful branch instruction in the sub or trap level has the effect that
the current IAR (IAR 1 or 2) is iynored aund the Lkranch address is wused to
fetch the next instruction. The address of the branch instruction itself is
not updated, hcwever the branch address is updated and placed into IAR O

(wain routine).

instruction cannot go into the trap level. The
instruction in

25

For Information. A branch

trap level is forced by hardware events only. However, any

3125 MLM. Microinstructions

the trap 1level that has the "leave subroutine™ bit (bkit 10) on, returns
control to the IAR that was in charge at the time when the trap occurred.

rrior to
upon

Srecial_Note: If trapping occurred
instruction, this instruction is repeated

routine.

the completion of a micro-
returning from the trap

Group 10: Conditional Branch Instructions

Erimary Fupnctions. A condition which 1is specified in the instruction is
tested. If the specified condition is found, the address provided in the
instruction is used to fetch the next microinstruction. If the specified
condition 1is not found, the program continues with the instruction

specified in the current IAR.

—— e o e s s e e e S = D

. Level switching is normally not performed, except where specifically
stated.

e e i s i i el i e e e . s e S o e T e T o S —— — o o

—— v o o

1 Invert Bit
2 Parity Bit
Byte0 3______ _PFCN________
5 0 0
€ 0 or_1___QOp code ___
_—21 1x
& 1___1x x = condition specification
S X X
10
Eytel 11
12
13
14 sranch
___15
16 Address
17
Eyte2 18
19
20
21
22

26

o e e e S e T s ot e S . T e i s e b e s > e

Bit 1, Invert. Generated internally by hardware.
Bit 2, Parity Bit. Generated by assembler progranm.
Bit 3, PFCN_~-_Parity Function Bit. Generated by assembler progranm.

___________________________________ These bits are used to specify eight
different branch conditions. However, by wusing an unused ©pattern (kits
5,6,7, and 8 = 0011) of the Type I branch instructions (yroup 9, where bit
€ is a lcgical zero), the total number of branch conditions 1is raised to
10. The assignment is as follows:

Action and Condition

Bit_ &

Bit_9

—_— e ——

Bit_ 7

Eit 6
1 0 0 0 = Branch and switch to subroutine
level if LSARO not zero.

1 0 1 0 = Branch and switch tc subroutine
level if LSARO is zero.

1 1 0 0 = Branch and switch to subroutine
level if LSAR3 not zero.

1 1 1 0 = Branch and switch to subroutine
contain decimal data.

1 0 0 1 = Branch in level if current ALU
exit is zero.

1 0 1 1 = Branch in level if current ALU
exit not zero.

1 1 0 1 = Branch in level if accumulated
: ALU result is zero. If last
operation was executed with six
correction enabled, then the
condition is satisfied if ALU
tkits 8....15 are zero.

1 1 11 "= Branch in level if TDR bit
position 0 contains a logical 1.

0 1 1 0 = Branch in level if the last

ALU cperation with accumulate
bit on produced a carry out of
ALU position 0. If this was an
operation with six correction
enabled, then the condition is
satisfied by a carry out of ALU
pcsition 8.

0 1 1 1 = Branch in level if MSC signals
lenygth count overdraw, and
reset this sigynal.

Group 11: Shift Instructions

The contents of CLCR are shifted by any amount from 0 to
right and the shift result is

15 bit positions either to the left or
returned either to CLR or TDR.

» The shift amount can ke specified direct (in the instruction) or can be
taken from one of the U4 LSARs .

e The shift amount can be specified either in true or complement form.

o The <contents cf TDR can be propagyated into LSARs 1 and 2 or 2 and 3 or
all LSARs,

o The invert switch can ke set tc true, invert, force ones or force zeros.

o The shift instruction can initiate a return from a subroutine.

o For wmnemonic NOP(R) the bit pattern of the instruction word is similar
to SRC(R), only instruction bits 1€...23 must Le zero. Bits 12..15

(LSAR setting and invert switch) keep their ncrmal functions and may be
one Or ZeIO.

o o — i o - e e e - —— — —— — ——— " S v———— — ——— —

1 Invert Bit
2 Parity Eit
EyteC 3_______PECN________
5 1
6 0
____1 0 Cp Ccde, Shift
8 0
L
10__1_=_leave_sutroutine_ __
Eytel 11__0 = Op Ccde ___________
122 1 = set LSAR 0 and 1
A3__1_=_set LSAR_2_and_3___
14
1> _____invert switch function
16 1 = left/0=right
17 € = direct/%1=indirect
Eyte2 18 0 = true/1=ccnplement
A8 __1_=_1IDR/CO=CDR________ —_—
20 , 120
21 direct 121___ignecred ________
22 shift ammount |22
—3 123___LSAR_address___

3125 MLM. Microinstructions

——— —— ——— —— —— —— o — — — — o o ——

— e e e s e e e et . v s e s . s i e

— e v e e e s e . o e e e s e e T e e e e e e e e e e ———

Bits_5....9__and 11, Op Code. These bits represent a pattern that is unique

and common to all shift instructions.

means to return from a
still part of the
the instruction

Eit_ 10, Leave_Sukrcutine. This bit provides the
sukroutine. The instruction which has bit 10 on is
subroutine and so 1is the next 1instruction. However,

thereafter is the first cone in the previous level.

___________________ This bit causes TLCR bits 0...3 to te propagated
to LSAR 0 and TLCR bits 4....7 to LSAR 1.
Bit__13,_Set LSAR_2_and_3._ This bit <causes TDR bits 8...11 to be.
propayated to LSAR2 and TDR bits 12...15 to LSAR 3.

These bits determine the function of

Bit_ 14 Eit_ 15
0 0 = invert
0 1 = true
1 0 = force ones
1 1 = force zeros

________________ This bit determines the shift direction as toward left
({high order) or right (low order).

Bit 17, DirectsIndirect. This bit defines the facility that is to provide
the shift amount . If direct is specified, dinstruction bits 20...23
represent the shift amount . If indirect is specified, instruction bits 22
and 23 address an LSAR the contents of which represent the shift amount .
Note: The indirect specification of the shift amount can conflict with
LSAR setting if TDR-data is propagated into that LSAR which provides the
shift amount . Results are unpredictable.

Bit_ 18, TrueyComplement. This bit defines how the shift amount is to be
interpreted. If true is specified (bit 18=0) the shift amount is used as
is. If complement is specified (bit 18=1), every logical 1 in the shift
amount 1is interpreted as logical zero, and vice versa (15's conmplement).

This bit defines the register into which the shift result

These bits represent in binary notation the

i o — i i . o S o e — —— ——— . o et o

27

3125 MLM. Microinstructions

numbter of kit positions ty which the CDR contents are to be
provided bit 17 is ¢ (direct). Whether the shift
or complement nuwmber is defined by bit 18.

shifted,
amount is taken as a true

Bits_22__apnd_23, LSAR_Address. If bit 17 specifies indirect, bits 20 and 21
are iyncred and bits 22 and 23 represent the address of the LSAR that is to
prcvide the shift amount . :

Group 12: Sense and Control Instructions

A Etyte 1is sensed from the addressed facility and placed either right or
left adjusted into either TDR or CDR. The unused portion of TLCR or CLR
remains unchanjed.

Control

Used tc =<set a specitic register, or
defined Ly the contrcl numkter.

to activate a functional line as

28

- i s s . oo o i e B e s e e e e S, St s . 2.

1 Invert Bit
2 Parity Bit
FyteO 3_______PECN _______
5 1
6 0
——_—1 0 Cp Code
g 1
9 O
10 ____0=ng_functica / l=return to main routine
Eytel 11 1 = TDR/0 = CDR
12 1 = set LSAR 0 and 1 ‘Bits 11 through 15 are
13__1 = _lefty0 = right __
14 ignored in the control instruction
——_J&______invert switch function ________________
16 _____0_ = _sense ¢ 1 _=_control
17
Eyte2 18
19 Sense address
20 cr
21 © control number
22
23

—— v — ————— —— — L — —— — — V. T _—— .S T T i . e -V

e For sense instructions the

force ones or fource zeros.

invert switch can be set to true, invert,

e Both instructions can initiate a return from the subroutine.

Eit_Function Cescripticn

Generated internally by hardware.

o i s e s o s o s . s s il s e e b e

Generated by assembler progranm.

Bit 3, PFCN - Parity Function Bit. Generated by assembler program.

e S st v e o e o e S et o,

________ These bits represent a pattern that is unique
and common to all sense instructions.

This bit allows the program to return from a
sukroutine to the level that was in effect prior to the last level
switching ofperation. The instruction that has bit 10 on is still part of
the subroutine and so is the next one. However, the instruction thereafter

is the first one in the previous level.

. e s s vt . e . . . e et s, o o e o — o — v — —

This bit specifies the reyister into which the sensed data

Set LSAR _0_and 1. This bit causes TDR bits 0...3 to be propagated
0 and TDR bits 4...7 to be propagated to LSAR 1.

__'1=1eft/0=right.

These bits specify the function of

A . e a2, it it s . i st .

Bit 14 Bit 15
0 0 = invert
0 1 = true
1 0 = force ones
1 1 = force zeros

Bits 17....23, Sense_Address_or_Control Number. These bits represent bkinary
numbers which address the facility to be sensed (for sense) or to be
activated (for control). The following addresses are assigned:

3125 MLM. Microinstructions

Sense

Instr.
174«

101

110

111

Addr.

Bits
e223

¢cce

1000

1600

Sense Table

Sensed into...
CDR (bit 11. = 0)

TDR (bit 11 =

Left

.
~

I
1
1
1
1
!
]
I
|
|
|
|
|
|
|
1
|
1
|
|
|
|
i
I
|
|
!
!
|
!
!
|
|
|
!
|
|
I
!
]
|
|
|
!
!
|
!
]
|
1

1)
Right
(13 =

8...15
Besel15
Baes15
Beesl15
8...15
8."15
8'..15

8,9
10
11
12
13
14
15

Sensed Data

——————— ———— ——_— " ——— ——— — —— T _———" —_— {———— — Y —— {———

TOD Byte 5 (TOD Bits 40...47)
" " 4y (= n 32...39)
" ” 3 (" n 24...31)
L] n 2 (" " 16...23)
" n 1T (" " 8ees 15)
] n o (" n 0...15)
Difference Byte 5 (Bits U40...47)
between n b (" 32...39)
TOD-Clock " 3 (" 24...31)
and n 2 (" 16...23)
TOD- U N 8...15)
Comperator " o (" Qeeaaa?)
CPU Timer Byte 5 (CPU Timer U40...u47)
n n " 4 (v " 32...39)
" " n 3 (" n 24...31)
” n n 2 (" ” ‘]6...23)
" 1] n 1 (" " Beao15)
n n ” 0 (n ” 0.'-‘7)

Accum. update carries from Loc. 80

counter bit 24 to bit 23
Don't care
{Not) Timer Check
{Not) Loc. B0 Update Requ.
{Not) Comp. Int.
(Not) CPU Timer Int.
(Not) Loc. B0 Timer Int.
(Not) Key Int.
ALU 8...15 zero
(Not) Except. Cond.
Don't care
MSC LS Addr.0
n ”n n 1
LC Crossing
No Associative Array Match
Successful Branch
Carry O
" 1
Decrement
IAR Cnt. 1
” n 0
cC 1
cC 0 ,
(Not) Fixed Pt.
Length Cnt. 2
n n ’

" n 0

29

3125 MLM. Microinstructions

Control number

(Instr. bits
170¢..23)

100
100
100
100
100
100
100
100
100
1C0
100
100
100
100
100
100

CCGO
cCeC1
0010
0011
0100
0101
0110
0111
1C00
1C01
1010
1C11
1100
1101
1110
1111

Control Table

Function

- 8 - ———— —— —— ————— ——— A — - —— —— — T ——————— — ———— {a

Set TO

"
"
"
"
n

n
"
n
"
n

Set

D byte
n

Cifference
between
TOC-Clock

and

T

Cb-

Comperator

"
n
”
"
n

n
"
”
”n
”

Set accun.
Counter bit 24 to bit 23

"
7"
”
”n

"

Inmediate Stop
Set Indicate Bit 1 Latch

"
n

"
”

P e e R

n
”
"
"
"

Reset Trap Cond.
Reset Stop Key Latch
Set Cond.
Reset Indicate Bit 1 Latch

"
”
n

LiJ
"
”
”
”

Set CPU Timer byte

2

3

O = N W £ n

Code LSAR O

2
3
4

32...39) m
24...31) ®
16...23) ®
8...15) "
0vean?) M

QaNwEW,m
Lo T e B)

(bits
”
"
n
"
n

7"
n

n
n
n

(2,3)

"
"
n
L]
"

(Bits uo;..u-])
”

32...39)
no24,...31)
" 16...23)
" 8...15)
" 0ia..T)

40...047)
32...39)
24...31)
164..23)
Be..15)
0eeenT)

update carries from Loc.

Save (in case of trap condition)
Set LSAR 2
Set LSAR 3
Set Indicate Bit 4 Latch

Return Saved Info

from C

"
"
”
!
"

80

”
”
”
"
n

ER b
n

"
"
"
”

bits 40...47) from CLR bits 8...15

n
n
”
1"
n

its 8...15

n
”"
n
7"
n

n
n
"
"
”

Control number
{Instr.
17ee=e23)

————— — —— ———— — " —a>

d md emd aed wd D b D
-t D ad b) D
—_— e D d D D b D

11
1M

bits

IAR Decrement Ctl

Set Execute Llatch

Reset Execute Latch

Set Progr. Event Rec. Latch
Reset Progr. Event Rec. Latch

Set Wait Latch

Block I/O Interr. Requ. Latches
Set Halt I/0 or Halt DV Latch
Reset IAR Counter

Reset Wait Latch

Reset IOP Error latch

Set Ext. Mach. Chk. Mask Latch
Set FP Overflow Mask Latch
Reset Previous Error Latch
Reset Halt I/O0 aor Halt DV Latch
Reset SVP Int. Regu. Latch

Ext. Bus Check Reset

Cpen I/C Int. Requ. Latches

Set Mask Latches (CDR 0..5,7,13)
Set IOP Sel. Latches

Reset SVP Response Latch

Reset MS Addr. Stop Llatch
Set Cond. Code 0

7" " " 1
”" " " 2
" " " 3

Set Loc. 80 Timer Interrupt

(Set) Reset Ext. Damage from CDR bit 15

Set Ext. Masks: TOD Comp. Mask
CPU Timer Mask "
Loc. 80 Timer Mask "
Int. Key Mask fron "

Rest Loc. 80 Update Requ.

Reset Ext. Interr.: Loc. 8C Timer Int.

Int.Key Int.

from CDR

n
n
L1

from
"

30

- — e A . . " . ————— ——— A~ —— —— . —— T~ _—— ———— T S —— — — ——

bit 8
” 9
" 12
" 13
CDR kit 8
" n

9

Group 13: Table Look Up (Translate and Branch) Instruction

Function, This instruction is a branch to a specific address in the control

storage.
The address of the next microinstruction is formed in various ways from:

e The immediate bits contained in this microinstruction,

» the contents of LSAR 0, and

e either TDR bits 0...3 or LSAR 0,1,2, or 3.
Instruction bits 20, through 23 define how the new address is to be
composed. The four high order bits of CSAR are always set to (001. The
instruction %ocated at the selected address is executed as next sequential
microinstruction . The translate and branch instruction is primarily used
at the beglpnlng of the I-phase to branch to the execution routine required
for pgote551ng a given System /360 or /370 op code.
If bit 11 1s on (Test TLU), a special test has to be performed (Compare
Cond. Ccde). If the result is equal, subroutine level is forced and the

branch takes place. If the result is not equal (no Cond.-Code match) , the
TRE can be regyarded as a No-Operation (nc level switching,no branch).

Note: Besides TRB, the version TRBR exists which defines a return fronm
sukroutine.
Iayout of TRE Instruction
1 Invert Bit
2 Parity Bit
ByteO 3_______PECN_ _______
5 1
6 O
____1 ¢ Op Code TRB (R)
8 0
9__0_ —
10__0_ =_TRB_; 1_= TRBR____
Byte1l 11 0 = normal TLU , 1 = Test TLU
12______igmored __________
13
14
___A50 immediate
16 kits
17
Eyte2 18
a9 e
200 0 = TCR bits 0...3 s 1 = LSAR 0,1,2, or 3
21__1 = LSAR_0_indirect / 0 = Instr. bits 16...19
22
23 LSAR_address

3125 MLM. Microinstructions

———————————————————————
——————————————

————————————————————————————————

Normal TLU_(Bit_11_=_0): With the normal TLU-Operation only one ‘importaant
exception must be realized. If instruction bits 13, 14, 15 are 1 0 1, the
entries to CSAR-bits 8 and 14 will be interchanged by the loyical circuitry
(e«g. instr. kit 17 jJoes to CSAR bit 14, while TDR bit 3 enters CSAR tit
8). However CSAR tits 7,9,10,11 and 14 will be set with the inverted bits
(see example 2).

Test_ TLU_(Bit_ 11_=_1): This version of the TLU is used to simulate the
System/360 or /370 Branch Op-codes 07 and 47 (BCR and BC).Therefore the
circuitry first compares the Condition-Code Llatches with the Hask-field in
LSAR 2. If the two fields do not match, the 360 or /370 Branch
instruction is nct effective (no Branch). Thus the microprogram can go to
the next sequential instruction without executing the TRB instruction (same
as NCP).

In case of CC-match the machine will force sukroutine level (change IAR)
and test LSAR 3 fcr zero. If LSAR 3 is not zero, CSAR bit 11 is set to one.
If LSAR 3 1is zero, CSAR bit 11 is set to zero. In either case the other
CSAR bits are set according to Instruction bits 13 through 23. CSAR bits
7,9,1C and 14 are set with the inverted bits from the immediate field, TDR
tits 0...3 and/or LSAR's (see example 3).

Bits 20_and 21 determine four methods of address composition, as follows:

—_— e S e

Instruction] Address of next microinstruction 1
bit] CSAR bits]
2027y 0 v 2 3 | 4 5 6 | 72 8 910 | 11 12 13 14
————————— - |- | e s e e
0 C 1 1 | Instr. bits | TDR Lkits |
| | | 16 17 18 19 | O 1 2 31
--------- I | it Rttt |
0 1 | Alvays |Instruction]| LSAR O | TLCR bits |
I | | | O 1 2 31
——————————— 1 set to | bits R il ittt |
1 0 |] Instr. bits | LSAR]
| 0 0O O v | 13 14 15 | 16 17 18 18 |} 0,1,2, or 3 |
"""""" I l | === e e e e e |
1 1 I I LSAR O | LSAR I
| I | |1 0,1,2, or 3 |

Note: Bits entering CSAR " positions 7,9,10,11 and 14 (underscored) are

inverted before setting of CSAR.

Bits_22_and 23: If kit 20 = 1, these bits determine the address of the LSAR

31

to ke set into CSAR tits 11...14.

3125 MLM. Microinstructions

Bit 22 Bit 23

0 0 = LSAR O
0 1 = LSAR 1
1 0 = LSAR 2
1 1 = LSAR 3

Example_1: Normal TLU; bits 13,14,15
bits 20...23

i

Bits in LSAR 0 and 1
Bits 7,9,10,11 and 14 inverted

CSAR bits 7...174 (after TRB)

Example_2: Normal TLU; bits 13,14,15
bits 20...23

[T}

Bits in LSAR 0 and 1
Second and last bit interchange
bits 7,9,10,11,14 inverted

CSAR bits 7...14 (after TRB)

Example 3: Test TLU (bit 11 = 1); bits

Bits in LSAR 0 and 1

1]

LSAR 3 = naot zero ' =

Bits 7,9,10 and 14 inverted

1]

it

CSAR bits 7...14 (after TRB)

1}

d

not 1 0 1
1101

0000 0111
1111 O

1011 1110

-d wd
- O
O -
-a

1}

0000 01

[
-

]
e

11 1

20...23

0100 0111
1
1 11 0

1111 1110

11

1111 1111

1101

Section 2: 0P Microprogram Codes

3125 MLM. Microinstructions

|OP Instruction Group Determination

| -] Object Code in Op-Register] Bit
Group | Description | 3rd Hex. Char. | 5th Hex. Char. | C2 C3 YO
"""" | ettt ettt ittt il i
1 1 Branch 1 Qeea3 ____1 X__ 1.0 0 _x
| Instructions]| 4...7 | Qeea?] 0 1 O
"""" | === | | s s e s o e
2 | Data-Storage| 4,..7 and BaeasoF] 0 1 1
} Instructions]| } |
---- kel Rttt bbbl Bttt
3 | Move | B...B | X] 1 0 x
! Instructions| } |
"""" | Rttt Rttt bl ittt Bt g
4 | Logical | C...F | X] 1 1 x
| | | |

Instructions

- — - ———— ——————————— ————— —— L~ —— Y —————— —— - — i — — —— — — - ——— —— — ——

34

IO P Microinstructions by Mnemonics

ACDE (U)

ACL1(U)

ACDI

ANT (U)

ANCI

BCN (U)

ECNR (U)

ECR(U)

BCY (U)

ECYR (U)

BNC (U)

ENCR (U)

ENZ (U)

Cescription

Add register to register, reset previous carry|
(and change IAR's).

Add register to register, use previous carry
(and change IAR's).

Add register to register, use external carry
(and change IAR's).

Add register to register, use forced carry
({and change IAR's).

Add immediate data to register, reset previous
carry.

AND register to register (and change IAR's).
AND immediate data with register into register
Branch unconditionally (and chanye IAR's).

Branch cn ccndition defined by mask (and
change IAR's). ‘

Branch if 'Carry-FL'= Cn and Cond. Code = not
zerc (and change IAR's).

Eranch on register if 'Carry-FL'= On and Cond.
Code = not zero (chanye IAR's if condition
is noct met).

Eranch on register on condition defined by
mask (change IAR's if condition is met).

Branch if *Carry-FL'=Cn (chanye IAR's if
condition is nmet).

Branch ¢n rejyister if 'Carry-FL'=0n {change
IAR's if condition is met)

Branch if 'Carry-FL'=Cff (change IAR's if
conditicn is nmet).

Branch on register if 'Carry~FL'=0ff (change
IAR's if condition is met).

Branch if Cond. Code= not zero (change IAR's
if condition is met).

G T G G — G — — t— — — o So— — — G — — — it o Gl St S O Gt W i, St s, et s WS vt Wt bt Sttt iy S wwnt G o St ety St o

3125 MLM. Microinstructions

EZ (0)

BZN (U)

BZNR (U)

BZR (U)

EOR (U)

LDEC

LINC

LLKR

MV (U)

MVX (U)

NCP
CR (U)

ORI

Description

Branch on register if Ccnd. Code=naot zero
{change IAR's if condition is met).

Branch on reygister unconditionally (and change
IAR's).

Branch if condition code = zero (change IAR's
if condition 1is met),

Branch if condition code = zero, or if 'Carry-
FL'=Cff (change IAR's if either condition is
met).

Branch on register if Cond.Code = zero, or if
‘Carry-FL'=0ff, (and change IAR's if either
condition is met).

Branch on reyister if Cond. Code = zero
(change IAR's if conditicn is met).

Exclusively OR register with register into
register and set condition code {and
change IAR's).

Exclusively OR immediate data with register
into reyister and set condition code.

Load immediately byte into register.

Locad byte from data storage into register and
decrement data storage address.

Load tyte from data storage into register and
increment data storage address.

Load register from SVP-link-Rey.

Move Lbyte from register to register (change
IAR's).

Move byte from register to register with digit
crossing, (change IAR's).

No aperation.
OR register to register, (change IAR's).

OR immediate data with regyister.

35

3125 MLM. Microinstructions

Mnemonic

————— — o —

SADI
SADR

STEC

SINC

SLKI
SLKR

SMODE

SZR
TADD
(TADU)

TALCDC
(TADCU)

TADDE
(TADEU)

|
i

!
I
|
|
|
I
I
I
|
I
!
|
I
!
!
|
|
I
|
!
!
|
I
|
|
|
I
|
|
|
|
I
!
|
!

Description
Store immediate byte into ALS-B.
Store Ltyte from register into ALS-B.
Store imwmediate byte into ALS-D.

Store byte from regyister into ALS-D.

Store byte from rejister into data storage
and decrement data stcrage address.

Store byte from register into data stcrage
and increment data storagye address.

Set immediate byte into SVE-Link-Reg.

Set Fcde Luffer.
Set immediate Lbyte into ZLS.
Set byte from register into ZLS.

Reset previous carry, add register plus
register into D-reg. and set new condition
code (change IAR's).

Add register plus register plus previous carry
into D-rej, set new condition code {(change
IAR's) .

Add register plus register plus external carry
into L-reg., set new condition code (change

i
|
|
]
|
|
|
|
|
|
|
|
|
|
]
|
|
]
Set byte from register into SVP-Link-Reg. |
: |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IAR'S) . |

TADD1
(TAD1U)

TADDI

TAND (U)

TANCI

TEOR (U)

TCR (U)

TCRI

1
i
I
I
|
!
I
|
I
|
I
|
I
I
|
I
I
I
!
I
I
|
!
I
!
!
I
I
!
|
|
I
!
|
!
!
|

Description

- — ———— ——— " > T v o T~ o — o o . e

Add register plus register plus forced carry

into L-reg., set new condition code (change

IAR's) .

Reset previous carry, add register plus
inmediate data into D-rey., set new
condition code.

AND two reyisters into D-reg. and set
condition code (change IAR's).

AND register with immediate data into
D-Reg. and set condition code.

Test kit and tranch if cff.
Test bit and tranch if one.

Exclusively OR two registers into D-reg. and
set condition code (change IAR's).

Exclusively OR register with immediate data
into D-reqg. and set condition code.

Test Bit and Branch if off, same as TBOFF
Bit can ke addressed indirectly.

Test Bit and Branch if on, same as TBON
Bit can be addressed indirectly.

OR two registers into L-rey. and set
condition code (change IAR's).

OR register with immediate data into C-reg.
and set condition code.

|Group

o e e

— — — o — — — — — o — — O oo— S — G PP . S—ite - — — — s W Gmmn S (o T— — - —— — —

36

Explanation of IOP Microinstruction Groups

Group 1: IOP Branch Instructions ' Layout of IOP Group 1 _Instructions

Eripary Function: The microprojram branches to another instruction | C | R | Y |
anywhere in the control storaje instead of «continuing with the next | 4567 2312345671 01234567,
sejuential 1instruction. The branch may be unconditional or depending on a Mnemonic |-—===-——merrr e e e e e - ————]

certain condition. 1In the latter case the microproyram proceeds with the Number of Hex Character in Assembler List

| |
instruction if the condition is not met. | 2nd | 3rd | U4th | 5th | 6th]
The branch conditien is specified either directly by the mnemonic or in = --------- jm=—————- |=—=——-- | === | === | === j——————-
cqnjupction with the mnemonics BC and BCR ky a separate prarameter (mask B (U) | 10 | | | | Branch Tis- |
bits in hex.). |11 | | | |placement Addr|
“““““ | 01-10 0f | | |-
ER (U) | 111 | | | {0] Addr. of WR |
Secondary Functions N | l] | |with CS-Cisp|
“““““ I==1-1-—1 | I Bt il |
e PFProgram level =switchinyg 1is [ossible 1in case of a successful branch. BNZ (U) | 0] 10 1] | Block- | S |
(See under kit function description for bit Y0.) BCY (U)] 01 11 0] | part | u] Branch i
.) : BCN(U) | O] |1 1] I | £ |
e With the @mnemcnic ©NCP the microproyram performs no operation but it] 1C1 | | of | £1 Disglacement |
proceeds with the next micrcinstruction. BZ (U) 1 11 10 1) | | i} |
BNC (U) | 11 11 0] | CS~- I x| Address]
EZN(U) | 11 11 1] | I |
-=======—|==]=|===]0 0 | Branch- | U|=-==——————————- |
BNZR(U) | O]]0 1| | | |
BCYR(U) | 0O |1 0} | Address | B] | Address |
ECNR(U) | O] |1 1] | | il | of W-Reg. |
|11 | | | £t]0] containing |
EZR(U) I 11 10 1} | 11 Ccs- |
BNCR(U) | 11 }1 0]]] | |LCisplacement|
BZNR(U) | 1] 11 1] ! Io1d ' |
"""""" I=—1=1---1 | 1l -l |
BC (U) I1M11018 M| | ! | Branch Dis- |
| 1 12 3]] 1 |placement Addr| See
"""""" I==1=-1---1 | I\ - ===
BCR(U) [M1}1|M M| I | 10jAddr. of WR | Note 1
| | 12 3| | | | {with CS-Disp|
“““““ |I--l-}j---j----|-——————————— ||~ | == |-
NCP | 110 0 CJC O | Don't care | O] Don't care |
"""""" |\--{--—---- |- |- | |
TEON | 0] Bit-—| | I Branch] See
--------- [==1 10 1 | WR tested | 0] Lisplacement |
TEOFF | 11 Pos.| | | | Address | Note 2

- —————— — —— —— ———— —— T —— o ——— T —— T ——— - —— ———— ———— — 1 ——— . —— ——————— i — - o> w—

Note 1: For Mask Ltits M1, M2, M3 see next table.

Note 2: With *'Bit test'-Instructions bit position 3 cannot ke tested on its

own. If instruction bits C5...C7 are 0 1 1 (hex 3), this means for :

3125'MLM. Microinstructions | , 3 7

3125 MLM. Microinstructions

Table of parameters_used with _mnemonics_BC({U) and_BCR (U)

Instr. Bits

Parameter | Same as | Branch if: { C4 C5 Cc6 C7
| mpemonic | | M1 M2 M3 (Mask Bits)
"""""" |- | e e
x' 1 | BNZ(U) | Condition Code =]} 0 O O 1
| BNZR (0) | not zero] 0 1 O
“““““““ el Rt il Bttt
x?'2? | BCY (U) | Carry-Fl1 = On |1 0 0 1 0
| BECYR(U) | | 0 1 1 0
___________ l_-...__.._..__.’ I_....__..-............_._.._..___.... l_.._..-__..._.._-._.
xt3? | BCN (U) | Carry-Fl = Cn and] 0 0 1 1
| BCNR (U)] CC = not zero 1 0 1 1 1
““““““ e e ittt et e
X191 | BZ(U) | Condition Code = ! 1 0 0 1
| BZR (U)] Zero | 1 1 0 1
"""""" el sttt il Rttt
x'A? | BNC(U) | Carry-Fl = Cff] 1 0 1 O
| BNCR (U) | i1 1 1 1 0
------- j--—————— |- e e e
x'B? | BZN(U) | Cond. Code = zero] 1 0 1 1
| BZNR (U)] or Carry-Fl = Off I 1 1 1

- ———— v T T ———— — —— ——— — ——— > —— T —— v — — T ——— — "]~ " = -~ \—_— o " " > 1"

———— — — ——— S g 1o U S e e ot . e o o i S S Vo it

This field representslthe Op-code including the branch condition.
For mnemonics TBON and TBOFP bits C€§5,C6 and C7 define the bit to be
tested.

C-field

—-———

R-field: With Branch instructions this field contains the block part of
the branch address (6 high order bits of the 13 bits of the next
instructicn).

With TBON and TBOFF the R-field 1is used to
containing the bit to be tested.

With mnemonic NOP this field may be disregarded.

define the register

¥Y-field: _¥YO0 = Suffix U-bit. This bit 1is on for all suffix-U mnemonics
(last character of mnemonic = U). It causes the microprogram to change
IAR's (main routine IAR to subroutine IAR and vice versa) in case of a
successful branch. In such a case the address of the next sequential
instruction will be saved in the o0ld IAR and the branch address derived
from the R- and Y-field of the branch instruction will be 1loaded 1into
the new IAR before control is switched to the new IAR.

YleoaX7: This field contains either the branch displacement (7 low order
bits of the 13 kit branch address) directly, or (with branch on register
instructions) it defines the register containing the displacement. The
displacement is lcaded into ALS-D bit 1 through 7 of the controlling
IAR, while the block part of the address (R-field) enters ALS-B kit 2
through 7.

With mnemonics TBON and TBOFF the block part of the instruction address
remains unchanged.
With mnemonic NOP the whole Y-field may be disregarded.

38

Group 2: IOP Data Storage Instructions

Erimary Function: To either store a byte from a register into data storage
or to load a byte from data storage into a register. Multibyte transfer is
fossible if the multiple byte bit (ALS-B bit 0) has been set by a previous
instruction. In such a case storage—- and register—-address will be
incremented by one after each byte transfer. The operation is repeated
until a double word boundary (8 bytes) in the register area is reached. In
other words the operation 1is ended after a register with three loworder
cne-bits in its address has been loaded or stored.

Secondary_Functions

e It is possible to increment or decrement the data-storage address
contained in the register defined by the R-field. It must be emphasized
that this type of increment/decrement has nothing to do with the
incrementing in multibyte transfer. It 1is performed after the byte
transfer, therefore, it affects the program only when this instruction
is executed the next time.

Layout of IOP Group_ 2 Instructions

| C] R | Y |

| 45 €7 231234567)] 012345¢67]

Mnemonic |-———=-=-- e e e e e e e s e e e }
{ Number of Hex Character in Assembler List |

] 2nd | 3rd | 4th } 5th] 6th 1
""""" === | |]
SINC] O0jIncr.] | Address of | 101 |
SDEC | 1] or | | Work—-Reg. |]0] Address of |
————————— |-—|Decr.}0 1 | containing | 1]-] work-Reg. |
LINC] 0} Am— | | Data-Store | |1] (Data-Reg.) |
LDEC | 1] ocunt] | Address | |1} |

————— v —— —— T~ — i -~ —— -~ —— - ——— Y ——— o ———— —— ——— . — — ——— T ———— A~ " —

—— . . . s S R o s St Mo et . S e s o . i . T e

c-field Bits Cu4, C2, C3 together with bits Y0 and Y1 represent the Op-

Bits C5, Cb
following way:

and C7 define the increment/decrement amount in the

Instruction bits | Increment | Lecrement |
C& Ce C7 | ky: | by: |
-------------- |—=—————— |
0 0 0] 0 i 8]

0 0 1 1 1 | 7 |

0 1 ¢ | 2] 6]

c 1 1 | 3] 5]

1 0 0 I I I 4 !

1 0 1 | 5 | 3]

11 0 ! € i 2 |

1T 1 1 | 7] 1 |

————— ————— i ———— —— — -~ 17 ", o " il — T S - _——— - - T s

The increment/decrement of the operation can ke considered as an

part

add or subtract 1immediate operation which 1is executed after the
load/store part. It . is used to modify the data storage address before
this instructicn is executed again.

R-field: Bits R2 through R7 define the working register from which the
data storajye address will be taken. Cnly the displacement (7 low order
bits) is contained in this register. The block portion of the storage
address 1is taxen from ALS-B bit 2...7. The contents of this register
are increuwented cr decremented according to the value of kits C5, C€ and

c7.

Y-field: Bits Y0 and Y1 together with bits C4, C2 and C3 represent the Op-
code. Bits Y2 throuyh Y7 define the working register which will receive
data in <case of a load instructicn or from which data will Le taken in

case cf a store operation. If the multiple byte bit in ALS-B is on, the
load,/ store operation starts at this working register.

Group 3: IOP Move Instructions

Frimary_Function: Tc move a information

another.

byte of from one location to

Secondary Functions

o With mnemonics MV or MVX level switching (main routine to subroutine or
vice versa) 1is pcssible. In these cases the nnemonic is MVU or MVXU
respectively and instruction kit Y0 is on.

o If the mnemonic is MVX or MVXU, the two digits (hex characters) will be
crossed.

o For special Store and Load operations see under bit function description
of R- and Y-field.

3125 MLM. Microinstructions

— e e s T e o e ot e S e it S e o

2nd |

(e

o

—
.—.—_.:.3_.

—

-_
o
-

-
o
o

Dl ol ol al aaco o O | -

=
<
>
—
[en]
A

s o e T — - AV f_ — A A —— - -~ - A — o —— _——— —— T —— —————— — - —— — o =

| R
12 34567

3rd | U4th

I

I

] Address
| of

] '*To'—Reyg.
|

o S o e e e s A e ot e . s . S o . i o o o

c-field:

These €

instruction bits represent the Cp-code.

| _ZLS_ Addr.

Y

012345617

Number of Hex Character in Assembler List

5th | 6th

mnemonic LLKR.

1101 _Don't care_
0]0| Address
010] cf

010] 'From'~
010} Register
_]_I ____________
010} 'Tc'Reg—Addr|

- — ———e —

Unless the Y-

field contains immediate data, instruction bits YO and Y1 belong to the

Op-code as well.

39

3125 MLM. Microinstructions 4 O

R-_and_Y-field: The meaning of these two fields is dependent on the Op-

SLKI/SLKR: These instructions serve for twc purposes:

LBI, MV(U), MVX(U): With these mnemonics the R-field defines the
receiviny reyister. The Y-field contains either immediate data or twc
bits o©of the Cp-ccde and the 'From register' (see layout). If bit Y0 is
on (suffix 'U' bit), this causes the microprogram to change from MIAR to
SIAR (main routine to subroutine) and vice versa. Instr. bit C7 being

on causes digit crossing (mnemonic MVX(U). In this case bits 0...3 of.

the 'From-Reg.' go to bits 4...7 of the 'To-Rey.' while bits H4...7 go to
bit 0...3.

SABI/SABR: The purpose of these instructions is to store information

into Address Lccal Stcrage B.

R2_bit: 1is always 0.

R3...87: These bits <contain the address of the ALS-E where the

informaticn is to be stored.

¥0oe.Y72 These instructicn bits contain either the information
(irmediate data) if the mnemonic is SABI or the address of the work
regjister from where the information is to be fetched if the mnemonic
is SABR. 1In the latter case bits YO amd Y1 kelong to the Op-code

and must be Q0.

SADI/SALR: The purpose of these two 1instructions 1is to store

informaticn intc Address Local Storage D.

R2_bit: 1Is always 1.

R3...R7: These bits contain the address of the ALS-L where the

information is to Lbe stored.

¥0...Y7: These instruction bits contain either the information
(immediate data) if the mnemonic is SADI, or the address of the work
register from where the information is to be fetched if the mnemonic
is SADR. In the latter case bits Y0 and Y1 are part of the Op-code

and must ke CC.

SZI/SZ2R: The purpose of these two instructions is to store information

—_———a .o

into the Zone Local Storage.

R-field:

R2 is always zero.

R3...R7: These 5 bits contain the address of the ZLS location where

—— e o ———

the information is to Lbe stcred.

Y-field: For mnemonic S2I these bits contain the information
(immediate data) to be stored into ZLS.

If the mnemonic 1is SZR, bit YO0 and Y1 must be 00, while bits Y2
through Y7 contain the address of the work register from where the

information is to be fetched.

. Transfer of data to the SVP.

. Ccntrel functions.

R-field:

Bits R3 through RJ_= Control Function Bits: These bits are used to

determine the control functions which may Le performed besides the
data transfer tc the SVP.

Bit_R3: If this bit is on, the contents of the ¥-field (if SLKI) or
the contents of the work register determined by the Y-field bits 2
through 7 (if SLKR) will be transferred to the X-register. If bit

R3 is ¢ff, no data will be transferred.

Bit_ RA4: If this bit is on, the PCR-FL (Frogram Controlled Request

from ICE to SVP) will be set.

Bit_R5: If this bit 1s on, the SVP~Request-FL (from SVP to IOP)

—— > ——— o

Bit BR6: LCon't care-

1: If this bit 1is on, it causes the 'Prevent I/O0-FL' to be

Note: If R2-field bits 3,4,5 and 7 are all off, the SLKI/ SLKR operation

———— —

pecforms no function and thus it can be regyarded as an NOP instruction.

LLKR: This instruction 1is used to transfer data from the X-register

into a work register.

R-field:

Bit R2: Don't care.

' Bits_R3_through R6: Always zero.

—— s S . . — v - — - — o . <o i

Bit_R7_: If this bit is ¢ff, the work reyister is loaded with the
contents of the X-register.

If bit B7 is on, the work register is loaded as follows:

X-reqg bits 0...5 into work register bits 0...5

'*SVP-requ.~FL' cn: set 1 into work register bit 6

'ECR-FL'on: set 1 into work reg. bit 7.

d: kits 0 and 1 are always 00. Bits 2...7 contain the
s of the receiving work register.

| o | R I Y
R-field:] 456 72312345671 01234567
T Mnemonic |-——--—----——-m————r e
Bit_2: Always zero. | Number of Hex Character in Assembler List
""" | 2nd | 3rd | 4th . | Sth | 6th
Bits__3...5: These three bits address the mode buffer to be loaded. ~—~—~——==——= === |==m==—== |======== | ======= |=======-
T ANDI | I 10 0} | |
Bits_€_and_17: The contents of these two bits are set into the mode CRI 1 1 10 1] | I .
buffer. ' 1 11] | I I Innediate
R6 = MO EORI I 1 11 0} | |
R7 = M1 ALDI 1 111 | |
““““““ 1-=10[--- I I
Y-field: Bits 0 and 1 = always 1 0. Bits 2 through 7 = don't care. TANDI I 1 10 0] I |
TCRI] 1 10 1] | |
| 01 | I | I Data
TECRI | 1 |1 0} | |
TALCDI | I 11 1 | |
-------- I==I=i-—1 ! | ===
AND I 1 10 0] | I
CR I 110 1] I I 11
EQR I 1 11 0l I |
| 1 |=—=1 i Address | 0]-]
ALD I 110 0] | I
ACDC I 1 10 1] | | 10]
ALDE I 1 11 0] l o
ACD1 [T I I | I
————————— 1 11 1-—11 1 | of 1I=-—1-1 Address
Group 4: Logical IOP Instructions ANDU I 1 10 0] I 1
. ORU I 1 10 1] | I 1y
Erimary Function: The contents of the 'From'-reg. and the 'To'~-reg. are ECRU I | 11 0} | 111
locially combined by the ALU (Added, ANDed, CRed or Exclusively ORed). 1 1 1= | 'To'- | 11— of
Unless it 1is a test type instruction, the result is stored into the 'To? ACDU | 1 10 0} | 111
work register defined ty the R-field. ADDCU I 1 10 1] | 1 10}
ALCDEU I 111t or 1 | I
ACD1U 11 11 1)] Register | 1 1 'From'-
secomndary Functions e == 11]-—= I I==1-1
TAND i 1 10 0] | I
e The condition ccde 1is set depending on the ALU output to indicate TCR 1 1 10 1] | 1 11
whether the ALU ocutput (D-reg.) was zerc or not and to indicate a carry TEOR 1 1 11 0] | 1 1 | Register
or no carry out of the high order position of the ALU.. 1 1 1-—=1 | | 0]-1
TADD (1 10 0} | | I
¢ With test operations (mnemonic Txx..) the result is not stored into the TATLDC l 1 10 11 | | 10]
'To' work register, because the purpose of these instructions is only TALDDE I 1 11 0} 1 | I
the settiny of the condition code. TALL1 1 1 11 1]] | 11
“““““ 1 0 |-——| | I--1-1
e With suffix 'U' instructions MIAR and SIAR will be interchanged (level TANDU I 1 10 0}] 1 11
switching). _ TORU i1 10 1} | 1 11
TEORU I 111 0] | |
e With Add-instructions it is possible to I === i 1 1=
Beset the previous carry TADU I 1 10 01 | | T |
Use the previous carry TADCU 1 1 10 1} 1 1 10]
Force a carry (one) TATEU | 111 0] | | I
Use_an_external carry from the front end. TAD1U 1111 1) | 1 11

3125 MLM. Microinstructions

— " — — — —— —— ettt W— —

e ——— — —— —— — — —— G S —— — — — — — — — — — — — —— o —— — G——— a— — —

3125 MLM. Microinstructions

——— ——— ——— — — — S— —— — ——————— — o oo o — o

C-field: This field represents the Cp-code. Unless the instruction is of

the RI-format where the Y-field contains immediate data, bits Y0 and Y1
alsc belong to the Op-code.

Bit C4: If this bit is on, the result is not transferred from the D-

register to the 'To'-register (test type instruction).
Bit_C5: O0ff = RI-format On = RR-fornat,

Bits _C6_and C7: With the four different add operations, these two bits

——— . — - ———— ———— ——— —

are used for carry control.

R-field: The content of this field defines the 'To'-register. Except for
test type instructions (mnemonic Tx...), the 'To'-register contains one
of the two operands before and the result after the operation. For test
type instructions the content of the 'To'-register (operand) remains

unchanged.

Y-field:
With RI-format instructions (bit C5 = off) this field contains one tyte
of immediate data.

With RB-format instructions (bit C5 = on) bits Y2 through Y7 represent
the 'From'-register address and bits Y0 and Y1 are part of the Op-code.
Bit YO0 is the suffix-'U'~-bit. If the suffix *'U'-bit is on, IAR's (MIAR
and SIAR) will be interchanged after the operation 1is executed. Thus
the program will switch from subroutine level to main routine level or
vice versa after storing the address of the next sequential instruction
in the *'o0ld' IAR.

Section 3: SVP Microprogram Codes

3125 MLM. Microinstructions

SVP Op Codes_by Bit Pattern

MDD UDDDODD0DU0OD00DD00DQD» OO NETWNLO

XX MO OD> OO NOWULE WA 2 OK XX XX XXX KX KNX

Mnemonic

BNZ

STOP

NCP

Branch. to stop (no mnemonic)
STEBX

STEA

CTB

ER

CHECK

44

Summary of SVP Mnemonics

Mnemonic

CHECK
CTB

FR
LBAP

LBI
LBR
LCAC

NOP

OR
ORI

SF
SLS
SST
STBA
STBX

STOP
STR
STROB

XOR
XORI

Description

———— —— T — T > S T S —— o — —————— — o — ————— o ——— — - o —_——— —— " — i it

Add LS-Reg. plus Accu into Accu
Add Accu plus Immediate data byte into Accu
AND LS-Reg. with Accu into Accu
AND Accu with Immediate data byte into Accu

Branch unconditionally

Branch if {(Not) ALU =zero)

Branch unconditionally to address contained in register
Branch if ALU zero

Branch to address contained in regyister if ALU zero

Cp Ccde check :
Add LS-Reg. plus constant into LS-Reg., exclusively OR
result with mask into Accu, branch if ALU zero

Fetch one Lyte from LS-Beg. into Accu

Load Bus and Parity kit from LS-Reg. into
BAR (BAR's) or BDR (BLR's)

Load Imnmediate data byte into LS-Reg.

Load Accu into Bus—Reg.

Load Inmmediate data byte into Accu

No operation

Logically OR LS—-Reg. with Accu into Accu
Logically OR Accu-with Insmediate data byte into Accu

Fetch cne Lkyte from storage into Accu
Switch LS-Zone
Store one byte from Accu intc storage
Sense, AND with mask into Accu, Branch if ALU-out = zero
Sense, exclusively OR with mask into Accu,
Branch if ALU zerc

Store one byte from Accu into LS-Reg.
Sense from Bus into Accu, or°
activate CTRL Strobe Bus 0 and/or 1

Exclusively OR LS-Reg. with Accu intc Accu
Exclusively OR Accu with Imwediate data byte into Accu

Explanation of SVP Mnemonics

e D e et e o e i i e e e s . e o e T e s i i - e o S —— o ——

- e o - - - ——— o

The <contents of a 1local storage register addressed by instruction bits
4...7 are added to the contents of the Accu. The result is stored into the
Accu. The LS-Zone 1is selected by the LSZR. A carry from a previous add
operation is added intc tit position 7 of the ALU. A carry out of position
0 causes the ‘'Carry Fl' to be set. The 'ALU zero Fl' is set or reset
deprending on the result.

I-Fetch = 2 pico steps,
Execution = 1 picc step.

Instruction address (IAR) is incremented by 1.

o —— —— ———— — - ————————— - ——— —— —— —— ———

Inmed. data |

The Immediate data Ltyte (instruction byte 1) is added to the contents of
the Accu. The result is stored into the Accu. A carry from a previous Add
operation is added into bit r[position 7 of the ALU. A carry out of ALU
[osition C causes the 'Carry Fl' to be set. The 'ALU zero Fl' is set or
reset depending on the result.

I-Fetch = 2 pico steps,
Execution = 4 pico steps

Instruction address (IAR) 1is incremented by 2,

- ———— s e e e s e e s i . Al . e e . o S e o e — o — — — 2

e R R —

Rt e S —

3125 MLM. Microinstructions

The contents of a 1local storage register addressed Ey instruction bits
4...7 are anded with the contents of the Accu. The result is stored into
the Accu. The LS-Zone is selected depending on the contents of LSZR. The
'‘Carry-Fl' is reset before and canaot be set by this operation. The T'ALU
zero F1l' is set or reset depending on the result.

I-Fetch = 2 picc sters,
Execution = 1 pico step.

Instruction address (IAR) is incremented by 1.

——— T —— . — ———— — — ——— —— —— " — — —— — — — o s, st o e o . vt o, D S i e e St o s

- ——— ————— ——— — —— o —— o — — o ———— o —— o -

Immed. data |

- ———— . —— - — — —— — —— T P> —a M " —— ———— b — — T —

The contents of the Accu are ANDed with the Immediate data byte. The
result is stored intc the Accu. The 'Carry Fl' is reset tefore and cannot
be set by this operation. The 'ALU zero Fl' is set or reset depending on
the result.

I-Fetch = 2 plico steps,
Execution = 4 picc stegps

Instructiou address (IAR) is incremented by 2.

E_=_Branch_unconditicnally

I 1 D 1 8 | | Cisplacement |
Ip,0 31t 71E,8 151
] Eyte O | Byte 1 |

Instruction bits 8 through 15 (byte 1) are set into the low order Lyte (odd
numkered LS-Reg.) cf the current IAR. This provides the means to
within a 256-byte Llock.

I-Fetch = 2 picc steps,
Execution = 4 pico steps.

45

branch

3125 MLM. Microinstructions

BR_=_Branch_unconditionally to_address_contained_in_register

This instruction can be performed in two ways:

° Instructicn bit 4 = one: The 1low

T o e . - s o A T s . o o —— o~ ——— o~ ———,

order byte (displacement) of the
current IAR is changed to the value <contained in the LS-Register
defined Ly instruction bits 4 through 7. Only a kranch within the
current 256-byte block can be performed in this manner.

 Instruction kit 4 = zero: Ancther pair of LS-Registers Lecomes IAR in
order to branch to another 256-byte block. LS-Req. pairs 0-1, 2-3,
4-5, or 6-7 can be used as IAR. The pair is defined by instruction
bits §,€6 and 7. However the value of bit 7 is ineffective and always
considered to be zero, since the high order byte of the instruction
address must be in an even numbered LS-Register (0,2,4, or 6). The

LS-zone is defined by the contents of LSZR.

I-Fetch = 2 pico steps,
Execution = 2 pico steps.

The current ({(o0ld) Instruction address (IAR) is incremented by
1 if instruction kit 4 is a logical zera.

———— v —— o W o T " T . . T o —

- ———— ——— ————— —— ———— — — ——— —— o ——— -~ ———

1 1 D] 7 | | Displacement |
|E,O 314 71P,8 15]
| Byte © I Byte 1 |
If the 'ALU zero F1' is on instruction bits 8 through 15 (byte 1) are set

into the low order byte (odd numbered LS-Reg.) of the This

] current IAR.
provides the means tc branch within a 256-byte block. '

I-Fetch = 2 pico steps,
Execution = 4 pico steps.

Instruction address (IAR) is incremented by 2 if the branch
does not take place. (ALU zero = on.)

46

T i ——— . . i . oo o — fon - — i — (— — S — — o —— fo— " VStV st P o o

- ———————— o — —— ———— — -~ — -

——— —_— — —————— - — —— ——— - —

The microprogram branches only if the 'ALU zero F1l' is on. If the branch
takes place, it will be performed in one of two ways depending on the value
of instruction bit 4. ’
» Instructicn_bit 4 = _one: The low order byte of the current IAR is
changed to the value contained 3in the LS-Register defined by
instruction btits 4 through 7. Cnly a branch within the current 256-

byte block can ke performed in this manner.

o Instruction bit 4 _=_zero: Another pair of LS-Registers becomes IAR in
order toc branch tc another 256-hyte block. LS-Reg. pairs 0-1, 2-3,
4-s5, or 6-7 can be used as IAR. The pair is defined by instruction
bits 5,6 and 7. However the value of bit 7 is ineffective and always
considered to be zero, since the high order byte of the instruction
address must be in an even numbered LS-Register (0,2,4, or 6). The
LS-zone is defined bty the contents of LSZR.

I-Fetch = 2 pico steps,
Execution = 2 .-picc stegs.

The current (cld) Instruction address (IAR) is incremented by 1 if the

branch does not take place, or if the entire IAR is changed (instr. bit
4 is a logical C).

CHECK_=_0Op_code_check

- ———— ——_—— —— — — - ————

Any Op <code starting with either 0 or F in the first four bits is
considered to be invalid. If such a non-valid Op code is detected in the
Storage Data Register, the SVP stops with the check light at the keyboard
turned on. Restart is possible only via IMPL key.

Instruction address (IAR) is not updated.

s - S - —— W A > — S ———— A — —— T ——— — o o— o 4 it O

- - ———— - —— ——— ——— — — —— ——— ————_—— —

If the 'ALU zero Fl' is off instruction bits 8 through 15 (byte 1) are set

into.the low order byte (odd numktered LS-Reg.) of the current IAR. This
provides the means tc kranch within a 256-byte block.

I-Fetch = 2 pico steps,

Execution = 4 pico steps.

Instruction address (IAR) is incremented by 2 if the branch

does not take place. (ALU zero = on.)
CTE = _Count, test for zero and branch
|1 D | F | | Rey. | Const.}| | Mask | | Displacement |
|P,0 314 71,8 11112 1518, 16 23|p,24 31)
| Eyte O | Byte 1 | Byte 2 | Byte 3 1

This instruction provides the means to add a constant to the contents of an
LS-reg. and to Lkranch within a 256-byte block if the result matches a mask.
The contents of the LS-reg. addressed by instruction bits 8 through 11 is
added to the constant from instuction bits 12 throcugh 15. The result is
stored into the same LS-rey. from which the first operand was taken.
Thereafter the result is exclusively ORed with the mask (instruction bits
1€ through 23) and the new result remains in the accumulator. If this neu
result of the Exclusive OR operation 1is zero, the displacement from
instruction bits 24 through 31 is placed into the low order Lyte of the
current IAR thus causing a branch within this 256-byte blocke.

I-Fetch = 2 pico steps,
Execution = 10 pico stegps.

Instruction address (IAR) is incremented by 4 if the branch is not taken.

S - — . v —— —— . . i S ot W O 2, S B, M i . ot S o o D e S s P s S o o i D i

- — ——— v v ————

- ——— . ———————— — - — o

3125 MLM. Microinstructions

A byte 1is fetched from any LS-register into the Accu. The LS-register is
defined by instruction bits 4 through 7. The contents of LSZR define the
LS—-zone.

I-Fetch = 2 pico sterps,

Execution = 1 pico step.

Instruction address (IAR) is incremented by 1.

LBAP =_Load Bus_and_Parity bit from_LS—-Req. into BAR(s) or_ BDR(s)

- —— — . — . — o — " —— - — " — W o —— —— —~ ——— T —— — ——

I D ! S I 1 Reg. | Spec. |
|E,O 314 71p,8 11112 151
| Byte ©] Byte 1 !
This dinstruction provides the wmeans to place any value into the data or

address register of either one or both bus systems and to set either odd or
even parity with this value onto the address bus. Instruction bits8,9 and
10 select a pair of LS-regs. (evens/odd numbered), bit 11 is ignored.
The_odd numbered LS-reg. supplies the information that is placed into the
Bus Data Reg. or the Bus Address Reg. selected by instruction tFkits 12,13
and 15.

The 1low order bit (bit 7) of the even numbered LS-reg. supplies the parity
bit. If a Bus Address Rey. is specified, this bit 7 overwrites the parity
bit that is normaly generated for the address bus. A

The contents of LSZR defines the LS—zone. Instruction bits 12 and 13 are
set into the A-Reg. from where they are decoded.

Bus registers are selected by instruction bits 11 through 15 as followus
(it 14 has no effect):

Bits 12 through 15 in hex:

0, 1, 2, or 3 = No operatiocn

4 or 6 = Bus Address Reg. 1

5 or 7 = Bus Data Reg. 1

8 or A = Bus Address Reyg. O

9 or B = Bus Data Reg. 0

C or E = Bus Address Reg. 0 and 1

D or F = Bus Data Reg. 0 and 1
I-Fetch = 2 pico steps,
Execution = 5 picoc steps.

Instruction address (IAR) is incremented by 2.

47

3125 MLM. Microinstructions

——— R . . e W e L = —— T — —— — — — o T - — . o . Aot o s T o T . o A e Al i o o

Inmed. data]

- ——— - ———————— — ————— — ————————— ———

The immediate byte provided by instruction byte 2 is placed into the LS-
register addressed ty instruction btits 4 thrcugh 7.

I-Fetch = 2 pico steps,
Execution = 3 pico steps.

Instruction address (IAR) is incremented by 2.

- — — ————— - — i —————— —— —

The contents of the accumulator (including the parity bit) are placed intc
the bus register specified by instruction bits 4 through 7. Either the
address register(s) or the data register(s) of either or both fkus systens
may be specified as follows:

Instr. bits 4...7 in hex

o, 1, 2, or 3 = No Cperation

4 or 6 = Bus Address Reg. 1

5 or 7 = Bus Data Reg. 1

8 or A = Bus Address Reg. C

9 or B = Bus Data Reg. 0

C or E = Bus Address Regs. 0 and 1

D or F = Bus Data Regs. 0 and 1
I-Fetch = 2 pico steps,
Execution = 1 pico step.

Instruction address (IAR) is incremented by 1.

48

—— e S e e s . T s T W e i e o i

- ———————— —— - — — — - _— —— ——— — — o ——— —

Immed. data |

ol o s v — —— o o o 7 S 2 o o Sl o B s A T T T

1,0 314 71E,8 15]
| Byte 0 | Byte 1]

The immediate data byte provided by instruction bits 8 through 15 is placed
into the accumulator.

I-Fetch = 2 pico steps,
Execution = 4 pico steps.

Instruction address (IAR) is incremented by 2.

- ooy et ot e e e i . i s i S o W

—————— ——— —— —— ——- _— " —

—————— ——_ . — A " — i ot ot sz B

This Op-Code causes no operation. The microprogram continues with the next
cperation.

I-Fetch
Execution

2 pico steps,
2 pico sters.

Instruction address {IAR) is incremented by 1.

The contents of a local storayge register addressed ty instruction bits
4...7 are ORed with the contents of the Accu. The result is stored into the
Accu. The LS-Zone 1is selected depending on the contents of LSZR. The
'Carry-Fl' is reset tefore and cannot be set by this operation. The 'ALU
zero F1' is set or reset depending on the result.

I-Fetch = 2 pico steps,
Execution = 1 pico step.

Instruction address (IAR) is incremented Lky 1.

CRI_=_logically OR_Accu_with Immediate_data_byte_into Accu

. ———— g0 s —— D - —————— —— —— —— - —— — —t— — — ——— ——— ——

Inmed. data |

The contents of the Accu are ORed with the Immediate data tyte (instruction
Eyte 1). The result is stored into the Accu. The ‘'Carry Fl!' 1is reset
before and cannot be set by this operation. The 'ALU zero Fl' is set or
reset depending on the result.

I-Fetch
Execution

2 pico steps,
4 picc stegs

Instruction address (IAR) is incremented by 2.

—— o ———— — —— —— —— — — o — — t—— — S —— — —— — —— ——— T —— ——— ——

A single byte is fetched from the SVP storage and stored into the Accu.

The 16-bit storage address is obtained from an adjacent pair (event+odd

nunbered) of LS registers. The even numbered LS register, containing the

high order byte of the storage address, is defined by instruction bits 4,S

and 6. Instruction bit 7 is ignored. The contents of LSZR define the LS-

zone. The storage address (in the LS-reg. pair) 1is automatically
~incremented ty 1 via the ALU.

I-Fetch = 2 pico steps,
Execution = 3 picc stegs.

Instruction address (IAR) is incremented by 1.

3125 MLM. Microinstructions

— . — ——— —— . —— ——— ————

1E,Q 314 71
| Byte O 1

This 1instruction provides the means to select a new local storage zone (a
new set of 16 registers) and, because each zone contains its own IAR
pairs, alsoc a new IAR.

PFrior to issuing the SLS instruction, the microprogrammer must have loaded

two specific registers of the current zone with the following information:
Register_14_(hex_E) in _current_zone must ccntain the binary number of

.the new zone (0, 1, 2, or 3) in bits 2 and 3, and the IAR +that 1is to
have control 1in the new zone in bits 4 through 7. Any number from O
through 7 can be specified as IAR in the new zone.

_______________ should contain the number of the
current zone in bits 2 and 3, and the numkter of the current IAR or any
IAR that 1is to ke used when switch back to the current zone is desired
in bits 4,5 and 6. However, register 15 need not necessarily contain the
current zone, ancther zone may be specified if the switch back is to be
to ancther zone.

The locading cf register 14 and 15 is a prerequisite for the SLS instruction

Fecause the following actions occur when SLS is issued:

. The current IAR is updated Lty plus 1

» Bits 2 and 3 of LS-register 14 (E) in the current zone are loaded
into LSZR. Bits 4,5 and 6 are loaded into the IAR Select Register

° The new zone is selected via LSZR

. The IAR Select Reg. points to the LS-Reg. pair in the new LS-zone
that serves as IAR from now on

. The <contents «c¢f register 14 (E) of the old zone are transferred to
register 15_(F) of the new zone

» The <contents of register 15_(F) of the o0ld zone are transferred to
register 14_(E) of the new zone

After this cross—over of old to new registers, register 14 (E) of the new

49

3125 MLM. Microinstructions

(now current) zone is the old zone recall register; while register 15 (F)
of the new (now current) zone specifies the new zone for eventual recall.
Thus by repeating SLS instructions, alternating zones can be selected. All

register addresses 1in instructions refer to registers in the current zone
cnly.

I-Fetch =-2 pico steps,

Executicn = 9 pico steps.

Instruction address (IAR) is incremented by 1.

SST_=_Store one kyte from Accu into storage
_--ignored
I
v
I C | Reg.|x|
lE,O 314 71
] Byte 0
Tpe contents of the accumulator are stored into the SVE storage. The 16-
bit storage address is obtained from an adjacent pair (even+odd numbered)

of LS registers. The even numbered LS register, containing the high order
byte of the storage address, is defined by instruction bits 4,5 and 6.
Instruction Ltkit 7 is ignored. The contents cf LSZR define the LS-zone.

The storage address (in the LS-reg. pair) is automatically incremented by 1
via the ALLU.

I-Fetch = 2 pico steps,
Execution = 3 picc stegs.

Instruction address (IAR) is incremented by 1.

STBA = Sense

ANC_with mask_into_Accu, Branch_if ALU_zero.

——— oo

T ——— ——————— i - - —— — " - = ———

[D | E 1 1 | Ix}jx|] Reg. | Mask I Lisplacement |
|E,0 314 71P,8 11112 15|F, 1€ 23|P,24 31}
| Byte 0 | Byte 1 | Byte 2 | Byte 3]

This instruction provides the mneans to address an external facility
(outside SVP), to fetch the contents of this facility, and to logically AND

50

this data with a
Zero result.
Instruction bits 12
which are

mask in order to derive a branch decision in case of a

through 15
rlaced into

specify an LS-Register, the contents of
either one of the two Bus-Address-Registers,

whichever is specified bty instruction bits 8 and 9.

The address, placed onto the Bus causes the corresponding facility to set
its data onto the intound side of the SVE data ring bus. The data appears
in the External In Reg. 0 or 1. From there it is logically ANDed with the
mask {instruction byte 2) and the result is placed into the accumulator.

If the result is zero, the displacement (instruction byte 3) is placed into
the low crder Lkyte of the current IAR, allowing a branch within a 256-byte
tlock.

I-Fetch
Execution

2 picc steyps,
9 pico steps if the branch does not take place,
11 pico steps if the branch takes place.

woh

Instruction address (IAR) is incremented by 4 if the branch does
not take place.

STBX_=_Sense, exclusively OR_with mask_into_Accu, Branch if ALU zero.

—— el T et e e e s S e i s . S e o i e e o

v
1 D] L 1 1 | 1x]x] Reg. | Mask | Cisplacement |
lE, 0 3|4 71E,8 11112 15]1B, 16 23|P,24 31
| Byte 0 | Byte 1 | Byte 2 | Byte 3 |

This instruction fprovides the means to address an external facility
(outside SVP), to fetch the contents of this facility,and to exclusively OR
(compare) this data with a mask in order to derive a branch decision in
case of a match.

Instruction bits 12 through 15 specify an LS-Register, the contents of
which are ©placed into either g¢ne of the two Bus-Address—-Registers,
whichever is specified by instruction bits 8 and 9.

The address placed onto the Bus causes the corresponding facility to set
its data onto the inbtound side of the SVP data ring bus. The data appears
in the Fxternal In Reg. 0 or 1. From there it is exclusively ORed with the
mask (instruction byte 2) and the result is placed into the accumulator.

If the result is zero, the displacement (instruction byte 3) is placed into
the low order byte of the current IAR, allowing a branch within a 256-byte
klock.

I-Fetch
Execution

2 pico steps,
9 picc steps if the branch does not take place,
11 pico steps if the branch takes place.

Instruction address (IAR) is incremented by 4 if the branch does
not take place.

STOP_=_Halt_Service Processor
I D | A |

¢, 0 3|4 71

i Byte O

The SVP stops after the fourth cycle (last execute cycle). gfte; that the
SVP can be started only via the IMPL key. The Stop instruction is used for

diagnostic purroses.

I-Fetch
Execution

2 picc steps,
2 picc stepse.

- —— —————— - ————— — - r— —

The contents of the accumulator are stored into any LS-register.
register is defined by instruction bits 4 through 7.
define the LS-zone.

The LS-
The contents of LSZR

I-Fetch = 2 pico steps,
Execution = 1 picc steyp.

Instruction address (IAR) is incremented by 1.

STROB_=_Sense_from Bus_0_and/or_1 intao_Accu, or_activate

o — —— " — — o — — — —— T —— —— o i, ot W st o i v . e i T e o . e, et s v, e A A o s S i e S e T —

— . i e A — —— — i, A ———— 2 s o U i e e et

- — —— — ————— — _—— — .

. i e e s i o o —————

This instruction provides the means to send out data previously set into
cne or both Bus Data Registers or to admit data from one or both Bus 1Input
Registers into the accumulator, depending on the specification bits 4
through 7 of the instruction (see cases below). For both types of cperation

the approrriate Bus Address Reg. must have been loaded prior to the STROE

3125 MLM. Microinstructions

operation. For the send operation (control) the loading of the PBus Data
Register(s) is an additional prerequisite.
The STROB operation then controls:
. for_sense (instruction bit 7 = off): The gating of data from the
*External In Bus (es) into the accumulator.
. for_control (instruction bit 7 = on): The generation of 'CTRL Strobe
Bus 0/1' which control the gating trom the Bus out to the external or
internal unit.
When data is sensed from Lkoth buses simultaneously, the two bytes are ORed
by the ALU and the result is placed into the acumulator.
The bus and the action (sense or control) are specified by instruction tits

4,5 and 7 as follows (bit 6 has no affect):

Bit U4...7 in hex.

4 or € Sense 'External In Bus 1' into Accu

5 or 7 = Activate 'CTRL Strobe Bus 1!

8 or A = Sense 'External In Bus 0' into Accu

9 or E = Activate 'CTRL Strcbe Bus 0!

C or E = Sense 'External In Bus 0 and 1' (ORed) into Accu

D or F = Activate 'CTRL Stroﬁe Bus 0 and 1?

I-Fetch
Execution

2 picc steps,
1 pico step.

Instruction address (IAR) is incremented by 1.

e s o e A e e S s o i e, ot o it i o S S — T —— S " S~ T _— —— -

. — —————— ————————— —

The contents of a 1local storage register addressed bty instruction bits
4...7 are exclusively ORed with the contents of the Accu. The result is
stored into the Accu. The LS-Zone is selected depending on the contents of
LSZR. The 'Carry-Fl' is reset tefore and cannot be set by this operation.
The 'ALU zero Fl!' is set or reset dependingy on the result,.

I-Fetch
Execution

2 picc steps,
1 pico step.

Instruction address ({IAR) 1is incremented by 1.

51

3125 MLM. Microinstructions

———— — —— — . ———— i —————— — — —— —— ———— ————

1 D | 2] Inmed. data 1

- ——— — ——— — ——— - —————————— —— ——— — — - — —————

The contents of the Accu are exclusively ORed with the Immediate data byte
(instruction byte 1) . The result is stored into the Accu. The t*Carry Fl!
is reset before and cannot be set by this operation. The 'ALU zero F1l' is
set or reset dependiny on the result.

I-Fetch = 2 pico steps,
Execution = 4 picc steps.

Instruction address (IAR) is incremented by 2,

3125 Processing Unit READER'S
Microinstructions COMMENT
Order No. SY33-1058-1 FORM

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

auin Buoyy pjo4 10109

3125 Processing Unit READER’S
Microinstructions COMMENT

Order No. SY33-1058-1 FORM
Your views about this publication may help improve its usefulness; this form

will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,

however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? — - — _ _ __ _ _ L e e

. Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SY33-1058-1

Your comments, please . . .

This manual is part of a library that serves as a reference source for customer
engineers. Your comments on the other side of this form will be carefully
reviewed by the persons responsible for writing and publishing this material.
All comments and suggestions become the property of IBM.

auj 6uojy plo4 J031N)H

- PPN RIS S T
I
First Class '
Permit 40
Armonk |
New York 1
] |
R
Business Reply Mail — I
No postage stamp necessary if mailed in the U.S.A.
postag P y E— |
RN |
I
PR I
Postage will be paid by: e — |
International Business Machines Corporation I
Department 813B |
1133 Westchester Avenue |
White Plains, New York 10604
I
............................ e L
Fold Fold

BV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

SY33-1058-1

Your comments, please . . .

This manual is part of a library that serves as a reference source for customer
engineers. Your comments on the other side of this form will be carefully

reviewed by the persons responsible for writing and publishing this material.
All comments and suggestions become the property of IBM.

oo

No postage stamp necessary if mailed in the U.S.A.

International Business Machines Corporation

1133 Westchester Avenue
White Plains, New York 10604

EN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

42 A
Business Reply Mail
Postage will be paid by:
Department 813B
Fold

System
Maintenance
Library

f
| |
!

— — — cut here — -

TSI

&

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

3125 Processing Unit, Microinstructions Printed in U.S.A. SY33-1058-1

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55

