
Ci

o

o

••• a ••
• a ••••••

•• •• •• • •
• 1111
.. II

••
• a

order No. SH20-6162-0

P a 5 cal / V S •••••••••••••••••••
• .. aa.II ••

••
•• .11

.C ••• IIDa

.11 ZUI .a .. 111

Pro 9 ram mer '5

G u ide

•• ••
... ZIII:I

••
••

...
• 11

• •••••
.111:11:111
.:1 II.
aa
111111 ••••

• a •• III1 •

••
•• .11
• 1:1.11111111.
•• 1111 ••

••••••
• .. 11
II • ••
• 11

••
II.
.a
•• ••
lIa •••• a.

•• IIII ••••••••• a.II.11
II.

••
a •

•• ...
•• ...
..II
aD

a

1111

•• •• ••
•• ••
•• •• ••
II. II .. aall II •••••• II.II ••

•• ••
II.

•• D .. lla II •• a

•••• • • •• a •
•••••••••••••••• 11.
IIl1a •••• II .. lIa a ••

a.

.11

.11 .. .
• 11
a • ••

•• • •
aa a.a •• aa
• a ••• a.a ••••• a.a •• a •• a a.

• •• 11 ••

..11.11 •••
II • ...
.11 •••• 11 •

• •• 11.111111

.11 a •

•• • • •• ••
D • ••

May 13th, 1980

Final Draft

IBM Internal Use Only

•• • •• • •
1111 •• DII a.

•• • 1111 •• ••• •• • •
•• •••11

•• • 11 • ••
1111 • II

.a .a
••••••••

• ••
.11 • •
• •
•• • • •••

c

o

First Edition, May 1980
This is the first edition of SH20-6162, a new publication that applies to release
1.0 of the Pascal/VS Compiler CIUP program number 5796-PNQ).

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not avail­
able in your country. Such references or information must not be construed to mean
that IBM intends to "announce such products in your country.

Requests for copies of IBM pUblications should be made to the IBM branch office
that serves you.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, Pascal/VS
Development, Department M48/D25, P. O. BOX 50020, San Jose, California 95150.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, con­
tinue to use the information you supply.

(c) Copyright International Business Machines Corporation 1980

C,\

c

o

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat­
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

• Pascal/VS Reference Manual, order number SH20-6163. This manual describes the
Pascal/VS language.

• IBM Virtual Machine Facilitv/370: CMS Command and Macro Reference, order num­
ber GC20-1818. This manual describes the commands of the Conversational Moni­
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage. '

• IBM Virtual Machine Facility/370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facility/370.

• OS/VS2 TSO Command Language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of OS/VS2.

• OS/VS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of OS/VS2.

•

•

OS/VS Linkage Edito~ and Loader, order number GC26-3813.
describes how to use the OS/VS2 linkage editor and loader.

Thi s manual

Time Sharing Option Display Support and structured Programming Facility Ver­
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modifY menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu­
al is required to install the Pascal/VS SPF menus and procedures.

• OS/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu­
al describes the various data set access methods utilized by OS/VS2 and the OS
simulation of CMS - VM/370.

Preface iii

c/

c)

o

C) 1.0 Introduction

2.0 Running a Program under eMS
2.1 How to Compile a Program

2.1.1 Invoking the Compiler •...
2.1.2 The PASCALVS Command
2.1.3 The Y.INCLUDE Maclibs .
2.1.4 Passing Compiler Options
2.1.5 The Compiler Listing
2.1.6 Compiler Diagnostics
2.1.7 Sample Compilation .

2.2 How to Build a Load Module
2.2.1 Module Generation Options
2.2.2 Run time Libraries

2.3 How to Define Files
2.4 How to Invoke the Load Module

2.4.1 Run Time Options ..••.

3.0 Runn i ng a Program under TSO
3.1 How to compile a program

3.1.1 Invoking the Compiler ..
3.1.2 Using the Y.INCLUDE Facility
3.1.3 Compiler Diagnostics

3.2 How to Build a Load Module
3.3 How to Define Files
3.4 Invoking the Load Module

3.4.1 Run Time Options•.
3.5 Sample TSO Session

4.0 Running a Program under as Batch

CONTENTS

1

• • • • • • • • • • • • • ' 3
3

• . • • . . • • • 3
• . •'. • • . • • • • 3

4
. • . . • . 4

4
4

. . . . 5
· • • • • 6

• • • • 6
6

• • • • 7
• • • • • • • • • 7

• • • • 7

9
9
9

11
11
12
15
16
16
17

4.1 Job Control Language ...•....•.•.•.•••
19
19
19
20
21
22
23
24
26
27
27
28

4.2 How to Comp i I e and Execute a Program •••••.
4.3 Cataloged Procedures ..•....•
4.4 IBM Supplied Cataloged Procedures

4.4.1 Compile Only (PASCC)
4.4.2 Compile, Load, and Execute (PASCCG) •..•.•..•
4.4.3 Compile and Link Edit (PASCCL) ..•••..•...•..••
4.4.4 Compile, Link Edit, and Execute (PASCCLG) .••••

4.5 How to Access an Y.INCLUDE Library . . • . . . • . . •.•
4.6 How to Access Data Sets •.•• . . • • . ••••••• • •
4.7 Example of a Batch Job ..•• • ••.

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

compiler options
CHECK/NOCHECK
DEBUG/NODEBUG
GOSTMT/NOGOSTMT
LIST/NOLIST
MARGINSCm,n) .. .
OPTIMIZE/NOOPTIMIZE
SEQ(m,n)/NOSEQ
SOURCE/NOSOURCE
WARNING/NOWARNING

XREF/NOXREF

6.0 How to Read pascal/VS Listings
6.1 Source Listings

6 .1.1 Page Headers .
6.1.2 Nesting Information
6.1.3 Statement Numbering
6.1.4 Page Cross Reference
6.1.5 Error Summary
6.1.6 Option List
6.1.7 Compilation Statistics

6.2 Cross-reference Listing
6.3 Assembly Listing
6.4 External Symbol Dictionary
6.5 Instruction Statistics

7.0
7.1
7.2

Using Input/output Facilities
I/O Implementation
DDNAME Association

29
29
30
30
30
30
30
30
30
31
31

33
33
33
34
34
34
34
34
34
35
37
38
38

39
39
39

Contents v

c)

c

7.3 Data Set DCB Attributes
7.4 Text Files .•....

7.4.1 Opening a Text File
7.4.2 Text File PUT
7.4.3 Text File GET
7.4.4 The PAGE Procedure
7.4.5 End of Line Condition ..•.
7.4.6 End of File Condition•.
7.4.7 Text File READ
7.4.8 The READLN Procedure
7.4.9 Text File WRITE
7.4.10 The WRITELN Procedure

7.5 Record Files
7.5.1 Opening a Record File
7.5.2 Record File PUT •....•.•.....
7.5.3 Record File GET
7.5.4 End·of File Condition
7.5.5 Record File READ
7.5.6 Record File WRITE

7.6 Closing a File ..•.
7.7 The OPEN Procedure•
7.8 PDS Access in a CMS Environment

8.0
8.1
8.2
8.3

Runtime Error Reporting
Reading a Pascal/VS Trace Back
Run Time Checking Errors
Symbolic Variable Dump

9.0 Debug - pascal/VS Interactive Debugger
9.1 Qualification
9.2 Commands • .

9.2.1 BREAK Command•.•......
9.2.2 CL EAR Command . . .• ..•.•.
9.2.3 CMS Command . . • • .
9.2.4 DISPLAY Command• . •••..
9.2.5 DISPLAY BREAKS Command ..•. . •..
9.2.6 DISPLAY EQUATES Command ..•••....••..••
9.2.7 EQUATE Command • .
9.2.8 GO Command • . .. • . •
9.2.9 Help Command ...•.. . ••.
9.2.10 LISTVARS Command ..•.••..
9.2.11 Qualification Command
9.2.12 QUIT Command
9.2.13 RESET Command
9.2.14 SET ATTR Command
9.2.15 SET COUNT Command
9.2.16 SET TRACE Command
9.2.17 TRACE Command ..
9.2.18 Viewing Variables
9.2.19 Viewing Memory
9.2.20 WALK Command

9.3 Debug Terminal Session

10.0 storage Mapping
10.1 Automatic Storage ..
10.2 Internal Static Storage
10.3 DEF Storage
10.4 Dynamic Storage
10.5 RECORD Fi elds ...•.....
10.6 Data Size and Boundary Alignment

10.6.1 The Predefi ned Types .•..
10.6.2 Enumerated Scalar
10.6.3 Subrange Scalar
10.6.4 RECORDs
10.6.5 ARRAYs
10.6.6 FILEs
10.6.7 SETs

.10.6.8 SPACEs

11.0
11.1
11.2
11.3
11.4
11.5

Code Generation for the IBM/370
Linkage Conventions
Regi ster Usage .. ••
Dynamic Storage Area
Routine Invocation
Parameter Passing

vi Pascal/VS Programmer's Guide

.,

39
39
40
40
41
41
41
42
42
43
44
44
44
45
45
45
45
45
46
46
46
48

49
49
51
51

53
53
53
54
54
55
55
56
56
57
57
58
58
59
59
60
60
61
61
62
62
63
64
65

69
69
69
69
69
69
69
69
70
70
70
70
71
71
71

73
73
73
74
75
76

C

0

11.5.1 Passing by Read/Write Reference · · · · . . . · · · 11.5.2 Passing by Read-Only Reference . · · · · . 11.5.3 Passing by Value . · · . . · · · · · · · . . 11.5.4 Passing Procedure or Function Parameters · 11.5.5 Function Results · · . · 11.6 Procedure/Function Format
11.7 PCWA
11.8 FCB - File Control Block · · . · · · . .
12.0 Linking to Assemble~ Routines ••••••••••••••
12.1 Writing Assembler Routine with Minimum Interface
12.2 Writing Assembler Routine with General Interface ••...
12.3
12.4

Receiving Parameters From Routines•••
Calling Pasca!/VS Routine from Assembler Routine ••••

· · · · ·
· ·

· · ·
. ·

76
76
76
77
77
78
78
80

12.5 Sample Assembler Routine .•........•••...•••

83
83
84
86
86
86
88 12.6

13.0
13.1
13.2
13.3
13.4

14.0
14.1
14.2
14.3

15.0
15.1
15.2
15.3

16.0
16.1
16.2
16.3
16.4
16.5

Calling a Pascal/VS Main Program from Assembler Routine

Runtime Envi~onment Ove~view
Program Initialization
The Ma j n Program
Input/Output Routines
Heap Management Routines

compa~ison to Pascal
Pascal/VS Restrictions
Modified Features
New Features

Implementation specifications
System Oeser i pt ion ..••.
Memory Requirements•...•.
Implementation Restrictions and Dependencies

Pasca l/VS Messages •••••
Pascal/VS Compiler Messages
Input/Output Messages
Memory Management Messages
Math Package Messages
Messages from PASCALVS exec

APPENDIXES

A.O Command Syntax Notation

B.O Installation Instructions •
B.1 Install i ng Pascal/VS under CMS ...•.
B.2 Install i ng Pascal/VS under VS2

B.2.1 Loading Files from Distribution Tape
8.2.2 The TSO Clists
B.2.3 Cataloged Procedures ...•.
B.2.4 SPF Menus and Procedures

B.3 Loading the Source under CMS
B.4 Loading the Source under VS2

Index

89
89
89
89
89

91
91
91
91

93
93
93
93

95
95

110
111
112
113

115

117

119
120
121
121
124
124
124
125
125

129

Contents vii

o

o

o

o

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

LIST OF ILLUSTRATIONS

The PASCALVS command of CMS •
Sampl e comp i lat i on under CMS . • . • • • . . . • .
The PASCMOD command.•
Examples of CMS file definition commands . •.
PASCAlVS CllST syntax. •.•••
The TSO PASCMOD CllST description. .
Examples of TSO data set allocation commands
The TSO CAll command to invoke a load module .. •.
Sample TSO session of a compile, link-edit, and execution.
Sample JCl to run a Pascal/VS program .••.
Cataloged procedure PASCC • . ..•..•
Cataloged procedure PASCCG • . .• .
Cataloged procedure PASCCl ...•
Sample JCl to perform multiple compiles and a link edit.
Cataloged procedure PASCClG • •
Example of a batch job • • •
Sample source listing ••••
Sample cross-reference listing
Sample assembly listing •. •
Sample ESD table. ..
Using RESET on a TEXT file
Using INTERACTIVE on a TEXT file
Usi ng REWRITE on a TEXT fi Ie
Using PUT on a TEXT file
Using GET on a TEXT file
Using the PAGE procedure
Usi ng the EOLN functi on .. .
Using the EOF function on a TEXT file
Using READ with length qualifiers.
Using READ on TEXT files.
Using the procedure READlN
Using WRITE on TEXT files
Using the WRITElN procedure
Using PUT on record files
Usi ng GET on record fi les
Using READ and WRITE on record files.
Syntax of string parameter of OPEN
Usi ng the OPEN procedure. .
Trace called by a user program
Trace call due to program error
Trace call due to checking error
Trace call due to I/O error
Sample program for Debug session
Starting a program and setting a breakpoint
Viewing some program variables .
Viewing variables using the ATTR option
Debug error messages •••
Storage mapping for predefined types
Storage mapping of subrange scalars
Alignment of records •
Storage mappi ng of SETS .•
Regi ster usage .• ••
DSA format
Snapshot of stack and relevant registers at start of routine
Passing by Read/Write reference .•..•.
Passi ng by Read-only reference .• .
Passing by value . .
Passing routine parameters
Functi on resul ts .•.•
Rout i ne fo rmat. . '. .
Pascal Communications Work Area •• •
Fi Ie Control Block (FCB) format ...
Minimum interface to an assembler routine
PROLOG/EPILOG macros •.. ... •
General interface to an assembler routine
Pascal/VS description of assembler routine
Sample assembler routine .• . .•. .
Example of calling a Pascal/VS program from an assembler routine
Characteristics of System/370 floating point arithmetic
Sample JCl to retrieve first file of distribution tape.
Sample installation job . . .•.•.

3
5
6
7
9

13
15
16
17
20
22
23
24
25
26
28
33
35
37
38
40
40
40
41
41
41
41
42
43
43
44
44
44
45
45
46
46
47
50
50
50
50
65
66
66
67
68
69
70
70
71
73
74
75
76
76
76
77
77
78
79
80
83
84
85
87
87
88
94

121
122

List of Illustrations ix

c

c

o

Figure 72. Sample installation job••..•..••..
Figure 73. Sample installation job .•.............••..
Figure 74. Listing of the JCL to copy source files from tape
Figure 75. Listing of the JCL to copy source files from tape

x Pascal/VS Programmer's Guide

123
124
126
127

c'

Ci

o

The Pascal/VS compiler is a processing
program which translates Pascal/VS
source programs, diagnosing Qrrors as
it does so, into IBM System/370 machine
instructions.

The compiler may be executed under the
following operating system environ­
ments:

•
•
•

1.0 INTRODUCTION

OS/370 Batch (VS2 R3.7)

Time Sharing Option (TSO) of OS/VS2

Conversational
(CMS) of
Facility/370
PLC 2.

Mon i tor System
Virtual Machine

(VM/370) Release 5

Introduction 1

o

I - - - - - -- - - - - - - -- - - - - - - - - - - - - - - -- - -- - -- ---- --- --- ---- --- - -- _. - -- - - - - - - -- - - - - - - - - - - - - - - - - .- - - - - - - - - - - - -- - - -- -- -- - - - ---

o

o

o

This section applies only to those who
are using Pascal/VS under the Conversa­
tional Monitor System (CMS) of Virtual
Machine Facility/370 (VM/370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota­
t ion u sed to descr i be commands, see
"Command Syntax Notation" on page 117.

There are four steps to running a
Pascal/VS program under CMS.

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com­
mand;

4. The load module is invoked.

PASCALVS
[[

PRINT]] fn [maclibs ••• l ([options •••] NOPRINT [CONSOLE] [NOOBJ] [)]
DISK

Figure 1. The PASCALVS command of eMS: invokes the Pascal/VS compiler.

2.1 HOW TO COMPILE A PROGRAM

2.1.1 Invoking the compiler

The standard method of i nvok i ng the
Pascal/VS compiler under CMS is by
means of an EXEC called PASCAlVS.

To compi Ie a Pascal/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro­
gram. The file type is always assumed
to be "PASCAL".

The compiler translates a source pro­
gram into object code, which it stores
in a file. The name of this file is
i dent i cal to the name of the source
program. Its file type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL",
the command would be:

PASCALVS SORT

If the comp i lat i on completes wi thout
errors, then the file named "SORT TEXT"
will contain the resulting object code.

2.1.2 The PASCAlVS Command

The general i zed form of the PASCALVS
command is illustrated in Figure 1.
The operands of the command are defined

as follows:

fn
is the file name of the source pro­
gram; the assumed file type is
"PASCAL".

maclibs •••
are optional macro libraries
required by the ~INClUDE facility.
Up to eight may be specified.

options •••
are compiler options, see "Compil­
er Options" on page 29.

The command options PRINT, NOPRINT, and
DISK specify where the compiler listing
i s to be placed.

PRINT
specifies that the listing is to be
sPooled to the virtual printer.
This is the default.

NOPRINT

DISK

specifies that the listing is to be
suppressed. Th is opt i on automat­
ically forces the following three
compiler options to become active:

- NOSOURCE
- NOXREF
- NOlIST

specifies that the listing is to be
stored as a fl Ie on your A di sk.
The fi Ie is named "fn LISTING",
where "fn" is the file name of the
source program.

CONSOLE
This command option specifies that
the console messages produced by

Running a Program under CMS 3

o

the compi ler are be stored as a
file on your A disk. The name
assi gned to the fi Ie is "fn
CONSOLE". If CONSOLE is not speci­
f i ed, then the messages will be
displayed on the terminal console.

NOOBJ
This command option suppresses the
production of an object module by
disabling the code generation
phase of the compiler. This option
is useful when you are us i ng the
compiler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes
produced from the EXEC, see "Messages
from PASCALVS exec" on page 113.

2.1.3 The %INClUDE Maclibs

The macro libraries (maclibs) that may
be specified when invoking the PASCALVS
command are those required by the
%INCLUDE fac iIi ty. When the comp i 1 er
encounters an %INClUDE statement with­
in your program it wi 11 search the
maclibs (in the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%INCLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic­
itly provided as the last maclib in the
search order.

2.1.4 passing compiler options

Compile time options (see "Compiler
Options" on page 29) are parameters
that are passed to the compiler which
speci fy whether or not a parti cular
feature is to be active. A list of
compiler options may be specified in
the PASCALVS parameter 1 i st. The

4 Pasca!/VS Programmer's Guide

options list must be preceded by a left
parenthesis "(".

For instance, to compi Ie the program
"TEST PASCAL" wi th the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST (DEBUG NOXREF

2.1.5 The compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source List i ngs" on page 33.

2.1.6 compiler Diagnostics

Any compi ler-detected errors in your
program will be displayed on your ter­
minal console (or written to a disk
file if the CONSOLE options is speci­
fied). The errors will also be indi­
cated on your source 1 i st i ng at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com­
pi ler is di splayed on your console.
Immediately underneath the printed
line a dollar symbol ('$') is placed at
each location where an error was
detected. This symbol serves as a
pointer to the approximate location
where the error occurred wi th in the
source record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

For a synopsis of the compiler-gener­
ated messages see "Pascal/VS Compiler
Messages" on page 95.

I .- - - - - - -- - - - - - - - _. - - - - - .- - - - - - - -- - - - -- - .- .-- - - .- - -- - _. - - - - - - -- - -- - .. - - - - - - - '- - .- --- ... -- .. -- - - - - -- -- .- ., - - _ .. -- - .. - - - - -'. -. -- - - -.

c

C>

o

2.1.7 sample compilation

edit copy pascal
NEW FILE:

program copy;
var

infile,
outfile : text;
buffer : string;

begin
resetCinfile);
rewriteCoutfile);
readlnCinfile,buffer);
while not eofCinfile) do

end.

begin
writelnCoutfile buffer);
readln(infile,buffer)

end;

EDIT:

fi Ie
FILE SAVED

Ri T=0.25/0.62 06:56:44

pascalvs copy

INVOKING PASCAL/VS COMPILER •••

WRITELNCOUTFILE BUFFER);
$41

ERROR 41: Comma ',' expected
1 ERROR DETECTED.

SOURCE LINES: 16; COMPILE TIME: 0.16 SECONDS; COMPILE RATE: 6109 LPM

PRT FILE 5954 FOR PICKENS COpy 01 HOLD
RETURN CODE: 8
RC00008); T=0.34/0.67 06:56:59

Figure 2. Sample compilation under CMS

Running a Program under CMS 5

c

o

o

PASCtlOD ma in [names •••] [(opt ions. •• [)]]

Figure 3. The PASCMOD command: generates a Pascal/VS load module.

2.2 HOW TO SUI LD A LOAD MODUL E

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consi sts of just one source
module (that is, you have no segment
modules), a load module can be gener­
ated by simply invoking PASCMOD with
the name of the program. For example,
if a program named SORT was successful­
ly compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCMOD SORT

The, resulting module would be called
"SORT MODULE". A load map is stored in
"SORT t1AP".

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

matn
i s the name of the ma in program
module.

names •••
are the names of segment modules
and text libraries (TXTLIB's)
which are to be included. If a
name Un" is specified and there are
two files named n TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB will be
searched. --

options •••
is a list of options. (see "Module
Generation Options.")

The resulting load module will be given
the name "ma in MODULE A". The load map
of the module will be stored in "main
MAP A".

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic­
itly appends this library to the list
that you specify.

6 Pascal/VS Programmer's Guide

As an example, let us bui ld a load mod­
ule for a pre-compi led program whi ch
resides in three source modules: MAIN,
ASEG, and BSEG. Thi s program calls
routines that reside in a txtlib called
UTILITY. The following command would
generate a load module called MAIN
MODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation options

The following are recognized as options
to the PASCMOD command.

DEBUG
This option links the debugging
routi nes ; nto the load module so
that the interactive debugger can
be used. (See "Debug - Pascal/VS
Interact; ve Debugger" on page 53.)

NAME name
This option specifies an alternate
name for the load module. The
resulting load module and map will
have the name "name MODULE A" and
"name MAP A".

2.2.2 Run time Libraries

Rout; nes whi ch make up the Pascal/VS
run t; me env i ronmen t res ide ina text
library called "PASCALVS TXTLIB". It
must be present in order to resolve the
linkages from the program be i ng pre­
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIB". (see "Debug Pascal/VS
Interactive Debugger" on page 53 for a
description of Debug).

o

o

FIlEDEF SYSIN DISK INPUT DATA
FIlEDEF SYSPRINT PRINTER (lRECl 133 RECFM VA
FIlEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F lRECl 4
FIlEDEF OUTPUT TERMINAL (RECFM F lRECl 80
FIlEDEF INPUT TERMINAL (RECFM V lRECl 80

Figure 4. Examples of CMS file definition commands

2.3 HOW TO DEFINE FILES

Before you invoke the generated load
module, you must first define the files
tha t your program requ ires. Th is is
done with the FILEDEF command.

The first parameter of the FIlEDEF com­
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

val'
SYSIN,
SYSPRINT
OUTPUTFIlE

TEXT;
file of

INTEGER;

The text file named OUTPUT receives the
execution time error diagnostics. You
must always define this file prior to
executing any Pascal/VS program. This
file is often assigned to the terminal.

The text file named INPUT is required
by the interactive debugger ("Debug -
Pascal/VS Interact i ve Debugger" on
page 53) to be ass i gned to the
terminal.

I f a parti cular fi Ie is to be opened
for input, attribub~s such as lRECl,
BlKSIZE, and RECFM are obtained from
the (presumably) already existing
file.

For the case of files to be opened for
output, the lRECl, BlKSIZE, or RECFM
will be assigned default values if not
speci fi ed. For a descri pti on of the
defaults see "Data Set DCB Attributes"
on page 39.

The FIlEDEF commands required for each
of the three file variables in the
example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.4 HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the fi les defi ned, you are ready to

execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms ••• l

where "modname" is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program will read (via the PARMS
function), the runtime parameter list
must be termi nated wi th a slash "/".
The program parameters, if any, must
follow the "/".

modname [[rtparms ••• /l [parms ••• l]

2.4.1 Run Time options

The following options enable features
in the Pascal/VS run time environment
in which your program will be
executing.

COUNT
Th is opt i on causes instruct ion
frequency i nformati on to be col­
lected during program execution.
This option will only have an
effect if the program was both com­
pi led and loaded wi th the DEBUG
option.

DEBUG
The DEBUG option causes the inter­
acti ve debugger, Debug ("Debug -
Pascal/VS Interactive Debugger" on
page 53) to gain initial control
when you invoke your program.
Note: this option is valid only if
the load module was generated with
the DEBUG opt ion ("Module Gener­
ation Options" on page 6).

Running a Program under CMS 7

c'

C.J

o

I - - - _. - - - -- - -- - - -- -- - - - -- - - .. _. - -- - - - - - - - - - -- - ---- -

c

o

o

This section describes how to compile a
Pascal/VS program under the Time Shar­
ing Option (T50) of OS/VS2. If you are
not using TSO to run the compiler, you
may skip this section.

Refer to "Command Syntax Notation" on
page 117 for a description of the syn­
tax notation used to describe commands.

There are four steps to running a
Pascal/VS program.

CllST NAME

3.0 RUNNING A PROGRAM UNDER T50

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro­
gram are allocated;

4. The load module is invoked.

OPERANDS

PASCAlVS data-set-name

[compiler-options-listl

Figure 5. PASCALVS CLIST syntax.

3.1 HOW TO COMPILE A PROGRAM

3.1.1 Invoking the Compiler

[

[

[

[

The Pascal/VS compiler is invoked under
TSO by means of a CLIST. A sample
CLIST named PASCALVS is provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set in wh i ch conta ins
the source program to be compiled.
This can be either a fully quali­
fied name (enclosed in single quo­
tation marks) or a simple name (to
which the user identification will

OBJECT(dsnamel] NOOBJECT

PRINT 00
PRlNT(dsnamel

1 SVSPRlNT(sysout-classJ
NOPRINT

CONSOlE(*l] CONSOlE(dsnamel

LIB(dsname-listl] NOlIB

be prefixed and the qualifier
"PASCAL" will be suffixed). This
must be the first operand
specified.

compiler-options-list
specifies one or more compiler
options. See "Compiler Options" on
page 29.

OBJECT(dsnamel
speci fi es that the object module
produced by the compiler is to be
wr i tten to the data set named in
the parentheses. Th is can be
either a fully qualified name (en­
closed within triple quotation
marks "' .•. "')1 or a simple name
(to which the identification qual-

1 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

Running a Program under TSO 9

ifier will be prefixed and the
qualifier "OBJ" suffixed).

NOOBJECT
specifies that no object module is
to be produced. The compiler will
diagnose errors only.

If n~ither OBJ nor NOOBJ is speci­
fied then object module produced by
the compiler will be written to a
default data set. If the data set
specified in the first operand con­
tains a descriptive qualifier of
"PASCAL", the CLIST will form a
data set name for the object module
by replacing the descriptor qual­
i fi er of the input data set wi th
"OBJ". If the descriptive qualifi­
er is not "PASCAL", then you will
be prompted for the object module
data set name.

If the fi rst operand of PASCALVS
spec if i es the member of a pa rt i­
t i oned data set, the member name
will be i gno red - the genera ted
data set name will be based on the
name of the partitioned data set.

As an example, given that the user
identification is ABC, the follow­
ing commands will produce object
modules with the name shown.

PASCAlVS SORT
object module: 'ABC.SORT.OBJ'

PASCAlVS 'DEF.PDS.PASCAl(MAlN)'
object module: 'DEF.PDS.OBJ'

PASCAlVS 'ABC.PROG.PAS'

PRlNTOE)

user prompted for object
module name

specifies that the compiler list­
ing is to be written at the termi­
nal; no other copy will be
available.

PRlNT(dsname)
specifies that the compiler list­
i ng is to be wr i tten on the data
set named in the parentheses. This
can be either a fully qualified
name (enclosed within triple quo­
tat ion rna r k s ' , , .•. ' , ,) 2 0 r a
simple name (to which the identifi­
cation qualifier will be prefixed
and the qualifier "LIST"
suffixed).

SYSPRlNT(sysout-class)
specifies that the compiler list­
ing is to be written to the Sysout
class named in parentheses.

NOPRlNT

specifies that the compiler list­
i ng is not to· be produced. Thi s
operand activates the following
compiler options:

NOSOURCE, NOXREF, NOLIST

CONSOlEOE)
specifies that the compiler gener­
ated messages are to be displayed
on the terminal console. This is
the defaul t.

CONSOlE(dsname)
specifies that the compiler gener­
ated messages are to be written to
the data set named in the parenthe­
ses. This can be either a fully
qualified name (enclosed within
triple quotation marks "' .•. "')
or a simple name (to which the
identification qualifier will be
prefixed and the qualifier
"CONSOLE" suffixed).

lIB(dsname-list)
specifies that the %lNClUDE facil­
ity is being utilized. Within the
parentheses is a list of the names
of one or more parti ti oned data
sets that are to be searched for
members to be included within the
input stream.

If the list contains more than one
name, the entire list must be
enclosed within quotes. Any fully
qualified name within the quoted
list must be enclosed in double
quotes " ..• ".

See "Usi ng the Y.INCLUDE Faci Ii ty"
on page 11.

NOllB
specifies that no %lNClUDE
libraries are required. This is
the defaul t.

Example 1

Operation: Invoke the Pascal/VS com-
pi ler to process a
Pascal/VS program

Known: User-identification is ABC

Data set containing the pro­
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINT(A)

~ -2----T-r-i-p-I-e--q--u-o-t-es are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

10 Pascal/VS Programmer's Guide

c
Example 2

Operation: Invoke the Pascal/VS com-
pi 1 er to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro­
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST.

The long version of the cross
reference 1 i st i ng is pre­
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS 'ABC.TEST.PASCAL' +
XREF(LONG),PRINT(TESTLIST)

3.1.2 Using the %INCLUDE Facility

If the %INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called 3

"SYSl.PASCALYS.MACLIB"

This library must be specified in the
LIB list if your program contains an
%IHCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%INCLUDE statement wi thi n the source
program, it will search the partitioned
data set(s) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it wi 11 conti nue readi ng from
the previous input stream immediately
following the %INCLUDE statement.

Example 1

Operation: Invoke the Pascal/VS com­
pi ler to process a
Pascal/VS program which
utilizes the %INCLUDE
facility.

Known: User-identification is P123

Data set containing the pro­
gram i s named

'P123.MAIN.PASCAL'

The source to be included is
stored in two parti ti oned
data sets by the names of

'P123.PASLIB'
'SYSl.PASCALVS.MACLIB'.

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIB('PASLIB,+
"SYS1.PASCALVS.MACLIB"')

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
di splayed on your termi nal. If the
CONSOLE£dsname) operand appears on the
PASCALVS command, then the diagnostics
wi 11 be stored ina data set. The
errors will also be indicated on your
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list­
ing.

When an error is detected, the source
line that was being scanned by the com­
piler is printed on your terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$') is placed at each location
where an error was detected. This sym­
bol serves as a pointer to indicate the
approximate location where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

For a synopsis of the compiler gener­
ated messages see "Pascal/VS Compiler
Messages" on page 95.

The high-level qualifier name (SYSl) may be different at your
installation.

Running a Program under TSO 11

c

c

3.2 HOW TO BUILD A LOAD MODULE

To generate a load module from a
Pascal/VS object module, you may use
either the TSO LINK command or a CLIST
named "PASCMOD" (Figure 6 on page 13).
The CLIST performs the same function as
the L INK command except that it wi 11
automaticallY include the Pascal/VS
runtime library in generating the load
module. Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug library. (A complete
description of the LINK command is con­
tained in the T50 Command language
Reference Manual.)

Every Pascal/VS object module contains
references to the runtime support rou­
tines. These routines are stored in a
library called 4

"SYS1.PASCALVS.LOAD"

Thi s library must be linked into a
Pascal/VS object module in order to

4 The hi gh-Ievel
installation.

qualifier

12 Pascal/VS Programmer's Guide

name

resolve all external references prop­
erly. If the PASCMOD CLIST is used,
this library is included
automaticallY.

I f the interact i ve debugger i s to be
utilized, then the library containing
the debug environment must be included
in the linking. The name of this
library is 4

"SYS1.PASDEBUG.LOAD"

This library must appear ahead of the
runtime library in search order. If
the PASCMOD CLIST is used, this library
will be included if the option DEBUG is
specified.

If more than one object module is being
linked together, then an entry po i nt
should be specified by means of a link­
age editor control card. The name of
the entry point for any Pascal/VS pro­
gram is AMPXSTRT.

(SYS1) may be different at your

o

ClIST HAtlE OPERANDS

PASCHOD data-set-name 01' *

[OBJECT('dsname-list'l]
[DEBUG]
[lOAD(dsnamel]

[PRINT(*l] PRINT(dsname) [lET] [XCAl] NOPRINT NOLET NOXCAL

[lIB('dsname-list')] [FORTlIB] [COBLIB]

[MAP] [NCAl] [lIST] NOt1AP NONCAL NOlIST

XREF REUS REFR [NOXREF] [NOREUS] [.
NOREFR]

[SCTR] [OVlY] [RENT] NOSCTR NOOVlY NORENT

[NE] [OL] [DC] NONE NOOL NODC

[TEST] [NOTERM] NOT EST TERM

[SIZE('integel'l integeI'2'1]
[DCBS(blocksizel]
[AC(authol'ization-code)]

Figure 6. The TSO PASCMOD ClIST description.

data-set-name
spec i fi es the name of a data set
containing a Pascal/VS object mod­
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (*)
for the data set name to indicate
that you will enter control state­
ments from your terminal. The sys­
tem wi 11 prompt you to enter the
control statements. A null 1 i ne
indicates the end of your control
statements.

OBJECT('dsname-list')
specifies a list of data sets which
contai n object modules to be
included in the link edit. Because
of ClIST restrictions, the list
must be enclosed in single quotes;
fully qualified names within the
list must be enclosed in double
quotes (" .•. ").

LIB('dsname-list'l
specifies one or more names of
library data sets to be searched by

the linkage editor to locate load
modules referred to by the module
bei ng processed, that is, to
resolve external references. The
name of the Pascal/VS runtime
library is implicitly appended to
the end of this list; you need not
specify it.

Because of ClIST restrictions, the
1 i st must be enclosed in si ng1e
quotes; fully qualified names
within the list must be enclosed in
double quotes (" ... ").

DEBUG
specifies that the Pascal/VS
interactive debugger is to be uti­
lized on the resultant load module.
This will cause the Pascal/VS debug
1 i brary to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD ClIST
are identical to their counterparts in
the lINK command as descr i bed in the
TSO Command language Reference Manual.

Running a Program under TSO 13

C
' \

/

o

Example

Operation: Create a load module from
a compiled Pascal/VS pro­
gram con s i st i ng 0 f three
obj ect modules.

Known: User-identification is ABC.
Data sets conta in i ng the
three object modules:

ABC.SORT.OBJ
ABC.SEG1.OBJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

CThe user's input is in lower case;
the system repl i es are
high-lighted.)

pascmod * loadCprogsCsort» +
object('sort,segl,seg2')

ENTER CONTROL CARDS
entry ampxstrt

READY

14 Pascal/VS Programmer's Guide

CI

o

ATTR F80 LRECL(80) BLKSIZE(80) RECFMCF)
ALLOC DDNAMECSYSIN) DSNAMECINPUT.DATA) SHR
ALLOC DDNAME(SYSPRINT) SYSOUTCA)
ALLOC DDNAMECOUTPUTFI) DSNAMECOUTPUT.DATA) NEW SPACECI00) BLOCK(3120)
ALLOC DDNAMECOUTPUT) DSNAMEC*) USINGCF80)
ALLOC DDNAMECINPUT) DSNAMEC*) USINGCF80)

Figure 7. Examples of TSO data set allocation commands

3.3 HOW TO DEFINE FILES

Before you invoke the generated load
module, you must first define the files
that your program requi res. Thi sis
done with the ALLOC command.

The ddname to be associated with a par­
ticular file variable in your program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
file of

INTEGER;

The text file named OUTPUT receives the
execution time error diagnostics. You
must always allocate the ddname OUTPUT
prior to executing any Pascal/VS pro­
gram. This ddname is often assigned to
the termi nal.

The text file named INPUT is required
by the interactive debugger (see "Debug
- Pascal/VS Interacti ve Debugger" on
page 53) to be ass i gned to the
terminal.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attri butes" on page 39.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

Running a Program under TSO 15

CI

o

CALL dsname[(member)] ['[options/] [parms],]

Figure 8. The TSO CALL command to invoke a load module

3.4 INVOKING THE LOAD MODULE

After the module has been created and
the fi les defi ned, you are ready to
execute the program. This is done by
the CAll command (see Figure 8). The
operands of the CAll command are as
follows.

dsname(mamber)
specifies the
data set and
lOad module
stored. If

name of a partitioned
the member where the
to be invoked is

the member name is
omitted,
"TEMPNAME"
invoked.

then the member
will be the load module

dsname maY be either a simple name
(to which the user identification
is prefixed and the qUalifier
"lOAD" is suffixed), or a fully
qualified name in quotes.

options
specifies one or more run time
options separated by either a comma
or a blank. (See "Run Time
Options.").

parms
specifies a parameter string which
i s to be Pa ssed to the program.
The parameter string is retrieved
from within the program by the
PARtlS funct ion.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

3.4.1 Run Time options

The following options enable features
in the Pascal/VS run time environment
in which your program will be
executing.

COUNT
Thi s opt i on causes instruct ion
frequency i nformati on to be col­
lected during program execution.
This option will only have an
effect if the program WaS compiled
wi th the DEBUG opt i on and linked
with the Debug librarys.

DEBUG
The DEBUG option causes the inter­
active debugger to gain initial
control when you invoke your pro­
gram. Fo r a descr i pt i on of the
debugger see "Debug - Pascal/VS
Interactive Debugger"on page 53.

Note: this option is valid only if
the lOad module was linked with the
Debug librarYs.

S The Debug library will be included if the PASCMOD CllST is invoked with
DEBUG specified. See "How to Build a load Module" on page 12.

16 Pascal/VS Programmer's Guide

G

o

3.5 SAMPLE TSO SESSION

READY

pascalvs lander sysprintCa) list

INVOKING PASCAL/VS Rl.O
NO COMPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

pascmod lander 10adCprogramsClander»
READY

alloc ddnameCinput) dsnameC*)
READY

alloc ddnameCoutput) dsnameC*)
READY

call programsClander) 'parms go here'

Figure 9. Sample TSO session of a compile, link-edit, and execution.

Figure 9 is an example of a TSO session
which compiles an already existing
source module, link edits it, and exe­
cutes it. The commands entered from

the terminal are in lower case; those
produced by the system are in upper
case and high-lighted.

Running a Program under TSO 17

c

CI

o

This section describes how to compile
and execute Pascal/VS programs in an OS
Batch environment. If you are not
using the compiler under OS Batch then
you may skip this section.

4.1 JOB CONTROL LANGUAGE

Job control language (JCl) is the means
by which you define your jobs and job
steps to the operating systemi it
allows you to descri be the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCl statements which are essential
to run a Pascal/VS job are as follows:

• JOB statement, which identifies
the start of the job.

• EXEC statement, which identifies a
job step and, in particular, speci­
fi es the program to be executed,
ei ther di rectly or by means of a
cataloged procedure (described
subsequently) .

'. DO (data definition) statement,
whi ch defi nes the input/output

•

4.0 RUNNING A PROGRAM UNDER OS BATCH

facilities required by the program
executed in the job step.

/* (delimiter) statement, which
separates data in the input stream
from the job control statements
that follow this data.

A full description of job control lan­
guage is given in the publication
OS/VS2 JCl (GC28-0692).

4.2 HOW TO COMPILE AND EXECUTE A PRO­
GRAM

The job control statements shown in
Figure 10 on page 20 are sufficient to
compile and execute a Pascal/VS program
consisting of one module. This program
uses only the standard files INPUT and
OUTPUT. For a more generalized
descr i pt i on of input/output refer to
"How to Access Data Sets" on page 27
and "Using Input/Output Facilities" on
page 39. Any options to be passed to
the compiler are placed within the
OPTIONS parameter of the EXEC
statement.

Running a Program under OS Batch 19

c'

o

/ /EXA~lPLE JOB
//STEPl EXEC PASCCG,OPTIONS=' ,
//PASC.SVSIN DO *

program EXAMPLE(IHPUT,OUTPUT);
var

A, B: REAL;
begin

RESET(IHPUT);
while not EOF do

begin
READLHCA,B);
WRITELHC' SUM = ',A+B);
WRITElH(' PRODUCT = ',A*B);

end
end.

/*
//GO.INPUT DD *

3.0 4.0
3.14159 1.414
1.0E-lO 2.0E-10
-10.0 102.0

/*
Figure 10. Sample JCL to run a Pascal/VS program

In the sample JCl, "EXAMPLE" is the
name of the job. The job name identi­
fies the job within the operating sys­
tem; it is essential. The parameters
required in the JOB statement depend on
the convent ions establ i shed for your
installation.

The EXEC statement invokes the IBM sup­
plied cataloged procedure named
PASCCG. When the operating system
encounters thi s name, it replaces the
EXEC statement with a set of JCl state­
ments that have been written previously
and cataloged in a system library. The
cataloged procedure contains three
steps:

PASC

PASCT

GO

The first pass of the compiler
processes the Pasca l/VS pro­
gram and translates it into an
intermediate form that will
serve as input for the next
step.

The second pass of the compiler
reads in the intermediate code
produced from the fi rst pass
and produces an object module.

The LOADER is invoked to proc­
ess the object module by load­
ing it into memory and
i ncludi ng the appropri ate
runtime library routines. The
resulting executable program
is immediately executed.

The DD statement named "PASC.SYSIH"
indicates that the program to be proc­
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or dev ice on
which it expects to find the program.

20 Pascal/VS Programmer's Guide

The del i mi ter statement /* i ndi cates
the end of the data.

The DD statement named "GO. INPUT" indi­
cates that the data to be processed by
the program Cin procedure step GO) fol­
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure compri ses one or
more job steps (though it is not a job,
because it must not contain a JOB
statement) . It is included ina job by
specifying its name in an EXEC state­
ment instead of the name of a program.

Several IBM-supplied cataloged proce­
dures are avai lable for use wi th the
Pascal/VS compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre­
quently used sets of job control state­
ments. If the statements in a
cataloged procedure do not match your
requi rements exactly, you can east ly
modify them or add new statements for
the duration of a job.

It is recommended that each installa­
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

c

o

4.4 IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup­
plied for use with the Pascal/VS com­
pi ler are:

PASCC

PASCCG

PASCCl

Compi Ie only

Compile, load-and-execute

Compile and link edit

PASCClG Compile, link edit, and exe­
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set ; s
SYSIN; the procedure step name whi ch
reads the input data set is PASCo For
example, the JCl statements that you
might use to compile, link edit, and
execute a Pascal/VS program is as fol­
lows:

IIJOBNAME JOB
IISTEP1 EXEC PASCClG
IIPASC.SYSIN DD *

.
(insert Pascal/VS program here
to be compiled)

The listings and diagnostics produced
by the compi ler are di rected to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce­
dure routes DDname SYSPRINT to the out­
put class where the system messages are
produced (SY50UT=*).

The object module produced from a com­
pilation is normally placed in a tempo­
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSPUNCH in procedure
step PASCT must be overri dden. For
example, to compile a program stored in
data set

"T123.S0RT.PASCAl"

and to store the resulting object mod­
ule in a data set named

"T123.S0RT.OBJ"

the following JCl might be employed:

IIJOBNAME JOB
IISTEP1 EXEC PASCC
IIPASC.SYSIN DD DSN=T123.S0RT.PASCAl,
II DISP=SHR
IIPASCT.SYSPUNCH DD DSN=T123.S0RT.OBJ,
II UNIT=TSOPACK,
II DISP=(NEW,CATlG)

Running a Program under OS Batch 21

o

o

//PASCC
//

PROC SYSOUT=*,OPTIONS=,INCLLIB='SYSl.PASCALVS.MACLIB',
LINKLIB='SYSl.PASCALVS.LINKLIB'

//*
//*
//*

PAS C

//PASC EXEC
//STEPLIB DD
//SYSPRINT DD
//OUTPUT DD
//SYSTERM DD
/ /SYS~lSGS DD
//SYSLIB DD
// DD
//SYSBU DD
//
//SYSXREF DD
//
//SYSPUNCH DD
//SYSLIST DD
//

PGM=PASCALL,PARM='&OPTIONS'
DSN=&LINKLIB,DISP=SHR
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
SYSOUT=&SYSOUT
DU~1MY
DSN=SYSl.PASCALVS.MESSAGES,DISP=SHR
DSN=&INCLLIB,DISP=SHR
DSN=SYSl.PASCALVS.MACLIB,DISP=SHR
UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(TRK,(2,5»
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,5»
SYSOUT=&SYSOUT
UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(TRK,(2,5»

//*
//*
//*

PAS C T

//PASCT EXEC
//STEPLIB DD
//SYSPRINT DD
//OUTPUT DD
//SYSTERM DD
//INPUT DD
//SYSIN DD
//SYSPUNCH DD
//
//
//LOG DD
//SYSLIST DD
//SYSUTI DD
//
//
//SYSUT2
//
//

DD

PGM=PASCALT,COND=(8,LE,PASC),PARM='&OPTIONS'
DSN=&LINKLIB,DISP=SHR
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
SYSOUT=&SYSOUT
DUMMY
DUMMY
DSN=*.PASC.SYSBU,DISP=(OLD,DELETE)
DSN=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
SPACE=(TRK,(2,5»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
SYSOUT=&SYSOUT
DSN=*.PASC.SYSLIST,DISP=(MOD,DELETE)
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,5»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,5»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)

Figure 11. Cataloged procedure PASCC

4.4.1 compile Only (PASCC)

Thi s cataloged procedure (Fi gure 11)
compi les one Pascal/VS source module
and produces an object module. "It con­
si sts of two steps, PASe and PASCT,
whi ch are common to all of the cata­
loged procedures described in this
chapter.

Step PASC reads in the source module,
diagnoses errors, produces a listing,
and translates the source into an
i ntermedi ate form whi ch it passes to

22 Pascal/VS Programmer's Guide

the PASCT step. The PASCT step
produces the object module and writes
it to the data set associ ated wi th
DDname SYSPUNCH.

The DD statement for the object module
defines a temporary data set named
&&LOADSET. The term MOD is specified
in the DISP parameter and as a result,
if the procedure PASCC is invoked
several times in succession for differ­
ent source modules, &&LOADSET will
contain a concatenation of object mod­
ules. The linkage editor and loader
will accept such a data set as input.

c·

o

IIPASCCG
II
II
IIPASC

PROC SYSOUT=*,OPTIONS=,INCllIB='SYS1.PASCAlVS.MAClIB',
lKlBDSN='SYS1.PASCAlVS.lOAD',
lINKlIB='SYSl.PASCAlVS.lINKlIB'

EXEC PGM=PASCAll,PARM='&OPTIONS'

(this step is identical to the PASC step in procedure PASCC)

IIPASCT EXEC PGM=PASCAlT,PARM='&OPTIONS'

IIGO EXEC
II
IISYSlIB DD
II DD
IISYSlIN DD
IISYSlOUT DD
IISYSPRINT DD
IIOUTPUT DD
IIINPUT DD

(this step is identical to the PASCT step in procedure PASCC)

PGM=lOADER,COND=((8,lE,PASC),(8,LE,PASCT»,
PARM='EP=AMPXSTRT'
DSN=&lKlBDSN,DISP=SHR
DSN=SYS1.PASCAlVS.lOAD,DISP=SHR
DSN=&&lOADSET,DISP=(OlD,DElETE)
SYSOUT=&SYSOUT
SYSOUT=&SYSOUT
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,lRECl=133,BlKSIZE=685)
DUMMY,DCB=(RECFM=V,lRECl=256,BlKSIZE=260) .

Figure 12. Cataloged procedure PASCCG

4.4.2 compile, load, and Execute
(PASCCG)

er's input stream by concatenating them
in the SYSlIN DD statement.

In this cataloged procedure
(Figure 12), the first two steps com­
pile a Pascal/VS source module to
produce an object module. In the third
step (named GO) , the loader i s
executed; thi s program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
GO describes the libraries from which
external references are to be resolved.
If you have a library of your own from
whi ch you would like external refer­
ences to be resolved, then pass its
name in the lKlBDSN operand.

Object modules from previous compila­
tions may also be included in the load-

As an example, a program in a data set
named "DOE. SEARCH. PASCAL" needs to be
compiled and then loaded with an object
module named "DOE.SORT.OBJ". In addi­
tion, several external routines are
ca 11 ed from with in the program wh i ch
reside in a library named
"DOE.MISC.OBJlIB". The following JCl
statements would compi Ie the program
and execute it.

IIDOE JOB
IISTEP1 EXEC PASCCG,
II lKlBDSN='DOE.MISC.OBJlIB'
IIPASC.SYSIN DD DSN=DOE.SEARCH.PASCAl,
II DISP=SHR
IIGO.SYSlIN DD
II DD DSN=DOE.SORT.OBJ,
II DISP=SHR

Running a Program under OS Batch 23

o

o

//PASCCL
//
//
//PASC

PROC SYSOUT=*,OPTIONS=,INCLLIB='SYS1.PASCALVS.MACLIB',
LKLBDSN='SYS1.PASCALVS.LOAD',
LINKLIB='SYSl.PASCALVS.LINKLIB'

EXEC PGM=PASCALL,PARM='&OPTIONS'

.•. (this step is identical to the PASC step in procedure PASCC)

//PASCT EXEC PGM=PASCALT,PARM='&OPTIONS'

(this step ;s identical to the PASCT step in procedure PASCC)

//*
//* L KED
//*
//LKED EXEC
//
//SYSLIB DD
// DD
//SYSLMOD DD
//
//SYSUT1 DD
//SYSPRINT DD
//SYSLIN DD
// DD

PGM=IEWL,PARM='LIST,MAP',
COND=«8,LE,PASC),(8,LE,PASCT»
DSN=&LKLBDSN,DISP=SHR
DSN=SYS1.PASCALVS.LOAD,DISP=SHR
DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
SPACE=(TRK,(5,3,1»
UNIT=SYSDA,SPACE=(CYL,(1,1»
SYSOUT=&SYSOUT
DSN=&&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN

Figure 13. Cataloged procedure PASCCL

4.4.3 compile and Link Edit (PASCCLl

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module. '

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or Ii brar i es, from wh i ch the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defi ned by the DD statement wi th
the name SYSLMOD. Thi s statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the"
load module wi 11 be placed and gi ven
the member name GO.

In specifying a temporary library, it
is assumed tha t you will execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking multiple modules
together, you must supply an entry

24 Pascal/VS Programmer's Guide

point. The name of the entry point may
be either the name of your main
program, or the name AMPXSTRT. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor. This may be done
conveniently with a DD statement named
SYSIN for step LKED whi ch references
i nstream data:

//LKED.SYSIN DD *
ENTRY AMPXSTRT

/*

Multiple invocations of the PASCC cata­
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven­
iently in one job. The JCL shown in
Fi gure 14 on page 25 compi les three
source modules and then link edits them
to produce a single load module. With­
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAL.SRCLIB1".

The member "names are MAIN, SEGl, and
SEG2. The resulting load module is to
be placed ina preallocated 1; brary
named "DOE.PROGRAMS.LOAD" as a member
named MAIN.

o

o

//JOBNAME JOB (DOE),'JOHN DOE'
//STEP1 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(MAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG1),DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(SEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOADCMAIN),DISP=OLD
//LKED.SYSIN DD *

ENTRY AMPXSTRT
1*

Figure 14. Sample JCL to perform multiple compiles and a link edit.

Running a Program under OS Batch 25

'"',

C
'~

G

o

//PASCCLG PROC SYSOUT=*,OPTIONS=,INCLLIB='SYSl.PASCALVS.MACLIB',
// lKLBDSN='SYSl.PASCAlVS.LOAD',
// lIHKlIB='SYS1.PASCAlVS.lIHKlIB'
//PASC EXEC PGM=PASCAll,PARM='&OPTIONS'

//PASCT

... (this step is identical to the PASC step in procedure PASCC)

EXEC PGM=PASCAlT,PARM='&OPTIONS'

//LKED

... (this step is identical to the PASCT step in procedure PASCC)

EXEC PGM=IEWl,PARM='lIST,MAP',

... (this step is ,identical to the lKED step in procedure PASCCl)

//GO EXEC
//
//SYSPRIHT DD
//OUTPUT DO
//IHPUT DO

PGM=*.lKEO.SYSlMOO,
CONO=«8,lE,PASC),(8,LE,PASCT),(8,lE,lKEO»

SYSOUT=&SYSOUT
SYSOUT=&SYSOUT,OCB=(RECFM=VBA,LRECL=133,BLKSIZE=68S)
OUMMY,OCB=(RECFM=V,LRECL=256,BlKSIZE=260)

Figure 15. Cataloged procedure PASCCLG

4.4.4 Compile, Link Edit, and Execute
(PASCCLGl

Thi s cataloged procedure (Fi gure 15)
performs a compi lat ion, invokes the
linkage editor to form a load module

26 Pascal/VS Programmer's Guide

from the resulting object module, then
the load module is executed.

The first three steps of this procedure
are i dent i ca 1 to tho se of the PASCCl
procedure. An add; t i onal fourth step
(named GO) executes your program.

c

o

o

4. S HOW TO ACCESS AN "INCLUDE LIBRARY

The DD statement named SYSlIB in proce­
dure step PASC defi nes the Ii brari es
from whi ch included source is to be
retrieved.

When the compi ler encounters an Y.IN­
ClUDE statement within the source mod­
ule, it will search the library or
libraries specified by SYSlIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an Y.INClUDE library by
means of the INCllIB parameter of the
cataloged procedures, or by overriding
the SYSlIB DD statement by specifying a
DD statement with the name PASC.SYSlIB.

Example

IIJOBNAME JOB
II EXEC PASCCG
IIPASC.SYSlIB DO DSN= ... ,DISP=SHR
I/PASC.SYSIN DD *

4.6 HOW TO ACCESS DATA SETS

Every fi Ie vari able operated upon in
your program must have an associated DO
statement for the GO step whi ch exe-

cutes your program. The OOname to be
associated with a particular file vari­
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the ODnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
OUTPUTFIlE: file of

INTEGER;

The files named OUTPUT and INPUT need
not be explicitly defined by you if you
use the cataloged procedures. Both
cataloged procedures whi ch execute a
Pascal/VS program (PASCCG and PASCClG)
contai n DD statements for OUTPUT and
INPUT. OUTPUT is assigned to the out­
put class where the system messages and
compiler listings are produced
(SYSOUT=*). INPUT is defined as a dum­
my data set.

If the Pascal/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assign default values to the
DCB as described in "Data Set DCB
Attri butes" on page 39. If you prefer
not to rely on the defaults, then the
lRECl, BlKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associ ated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under OS Batch 27

o

o

4.7 EXAMPLE OF A BATCH JOB

//JOBNAME JOB
//STEPl EXEC PASCC,OPTIONS='NOXREF'
//PASC.SYSIN DD *
program COPYFILE;
type

F8D = file of
packed array[1 .. 80] of CHAR;

var
INFILE, OUTFILE: F8D;

procedure COPY(var FIN,FOUT: F8D);
external;

begin
RESETCINFILE);
REWR1TECOUTF1LE);
COPYCINF1LE,OUTF1LE);

end.
/*
//STEP2 EXEC PASCCLG,OPTIONS='NOXREF'
//PASC.SYSIN DD *
segment 10;
type

F8D = file of
packed array[1 .. 8D] of CHAR;

procedure COPYCvar FIN,FOUT: F8D);
entry;

begin
while not EOFCFIN) do

begin
FOUTCl := FINCl;
PUT(FOUT);
GETCFIN)

end
end;.
/*
//LKED.SYSIN DD *

ENTRY COPYFILE
/*
//GO.INFILE DD *

Cdata to be copied into data set goes here)

/*
//GO.OUTFILE DD DSN=P656706.TEMP.DATA,UNIT=TSOUSER,
// DISP=(NEW,CATLGJ,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),
// SPACE=(3120,(1,1))

Figure 16. Example of a batch job

28 Pascal/VS Programmer's Guide

C
'" \

I

o

Compile time options indicate what fea­
tures are to be enabled or di sabled
when the compiler is invoked. The fol-

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their
default values.

Compiler Option Abbreviated Hame Default

CHECK/HOCHECK --- CHECK
DEBUG/HODEBUG --- HODEBUG
GOSTMT/HOGOSTMT GS/NOGS GOSTMT
lIST/HOlIST --- HOlIST
~1ARGIHSCm,n) MARCm,n) MARGIHSCl,72)
OPTIMIZE/HOOPTIMIZE OPT/HOOPT OPTIMIZE
SEQUEHCE(m,n)/HOSEQUENCE SEQ(m,n)/HOSEQ SEQUEHCE(73,80>
SOURCE/HOSOURCE S/HOS
WARHING/HOWARNIHG W/HOW
XREF/HOXREF X/HOX

5.1 CHECK/NOCHECK

If the CHECK opti on is enabled, the
Pascal/VS compiler will generate
inline code to perform runtime error
checki ng. The %CHECK feature can be
used to enable or di sable parti cular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
whi ch may be checked are listed as fol­
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val­
ues.

Function routines
A call to a functi on rout; ne is
checked to verify that the called
function returns a value.

pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the
po inter does not have the value
nil.

Subrange scalars
Variables which are declared as
subrange sca lars are tested when
they are assigned a value to guar­
antee that the value 1 i es wi thi n
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment
statement or i mmedi ately after a
routine call in which the variable
was passed as a var parameter.

SOURCE
WARHING
XREF(SHORT>

(This latter case also includes a
call to the READ procedure).

For the sake of effi ci ency, the
compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.
For example, the compiler will not
generate code to check the fi rst
three assignment statements below;
however, the last three wi 11 be
checked.

var
A : -10 •• 10;
B : O •• 20;

A . - B-1 0; OEno check* >
B := ABS(A); (*no check*>
A := B DIV 2; (*no check*>

A .- B;
B .- A*10;
A : = -B;

(*check
<*check
C*check

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables.

subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

When a runtime checking error occurs, a
diagnostic message will be sent to the
file OUTPUT followed by a traceback of
the routi nes whi ch were acti ve when the
error occurred. See "Reading a
Pascal/VS Trace Back" on page 49 for an
example of a traceback due to a check­
ing error.

Compiler Options 29

c

o

5.2 DEBUG/NODEBUG

An i nteracti ve debuggi ng faci Ii ty is
available to debug Pascal/VS programs.
The debugger is described in "Debug -
Pascal/VS Interactive Debugger" on
page 53. If the opt i on DEBUG is
enabled, the compiler will produce the
necessary information that Debug needs
in order to operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GOSTHT/NOGOSTHT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entrl es wi thi n thi stable
allow the run-time environment to iden­
ti fy the source statement causi ng an
execution error. This statement table
also permits the interactive debugger
to place breakpoi nts based on source
statement numbers. For a descr i pt ion
of the debugger see "Debug - Pascal/VS
Interactive Debugger" on page 53.

The i nclus i on of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated.

5.4 LIST/NOLIST

The lIST/NOlIST option controls the
generation or suppression of the trans­
lator pseudo-assembler listing (see
"Assembly Listing" on page 37).

Note: The NOlIST option will cause any
~lIST statement within the source pro­
gram to be ignored.

5.5 MARGINS(H,N)

The MARGINSCm,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro­
gram starting at column m and ending at
column n. Any data outside these mar­
gi n Ii mi ts is ignored. The maxi mum
right margin allowed is 80.

The specified margins must not overlap
the sequence field. A specification of

HARGINS(1,80) implies that the source
contains no sequence numbers. 6

The default is MARGINSC1,72).

Note: When the PASCAlVS clist is being
invoked under TSO, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINSC'1,72')

5.6 OPTIHIZE/NOOPTIHIZE

The OPTIMIZE option indicates that the
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.7 SEQ(M,N)/NOSEQ

The SEQCm,n) option specifies which
columns within the program being com­
piled are reserved for a sequence
field. The starting column of the
sequence field is mi the last column of
the f i el dis n.

The compiler does not process sequence
fields; but serve only to identify
lines in the source listing. If the
sequence fi eld is blank, the compi ler
will insert a line number in the corre­
sponding area in the source listing.

NOSEQ indicates that there is to be no
sequence field.

The default is SEQC73,80).

NOTES:

• The sequence field must not overlap
the source margins.

• When the PASCAlVS cl i st is bei ng
invoked under TSO, the subparame­
ters of the SEQ opt i on must be
enclosed in quotes. For example,

SEQC'73,80')

5.8 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generat i on or suppressi on of the
compiler source listing.

Note: The NOSOURCE opti on wi 11 cause
any %PRINT statement within the source
program to be ignored.

6 The option NOSEQUENCE has the same effect.

30 Pascal/VS Programmer's Guide

c

c

5.9 WARNING/NOWARNING

This option controls the generation or
suppress; on of warn i ng messages. The
HOWARHIHG specification will suppress
warning messages from the compiler.

5.10 XREF/NOXREF

The XREF/HOXREF option controls the
generat ion 0 r suppress i on of the
cross-reference portion of the source
I; st i ng. (See "Cro ss- reference L i st­
i ng" on page 35).

Either a short or long cross-reference
list i ng can be generated. A long
cross-reference 1 i st i ng conta ins all

identifiers declared in the program. A
short list i ng consi sts of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LOHG or SHORT ;s placed
after the XREF spec i fi cat i on and
enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the speci fi ca­
tion

XREFCLOHG)

would cause a long cross-reference
table to be generated.

Note: If the PASCALVS clist is being
invoked under TSO, a subparameter
(SHORT or LOHG) must be specified with
the XREF option; there are no defaults.

Compiler Options 31

c

C)

o

6.0 HOW TO READ PASCAL/VS LISTINGS

6.1 SOURCE LISTINGS

PASCAL/VS RELEASE 1.0 UTILITY: 05/13/80 08:38:08 PAGE 2

S B P C I W STMT # SOURCE PROGRAM PAGE XREF
INCLUDE NUMBER: 1 SYSLIBCGLOBALS)

>---+----1----+----2----+----3//--7-< SEQ NO
00000200

1 : TYPE 00000100 R
1 : LINKPTR = ->LINK; 00000200 * * 1 : LINK = 00000300 * 1 : RECORD 00000400 R
1 : NANE : ALPHA; 00000500 * P
1 : NEXT : LINKPTR 00000600 * 2
1 : END; 00000700 R

1 PROCEDURE REVERSEC 00000300 R * 1 VAR FHEAD: LINKPTR); 00000400 R * 2
1 ENTRY; 00000500 R
1 VAR 00000600 R
1 LPl, 00000700 * 1 LP2, 00000800 * 1 LP3: LINKPTR; 00000900 * 2
1 BEGIN 00001000 R
1 1 LPI := FHEAD; 00001100 2 2
1 2 LP2 := NIL; 00001200 2 P
1 1 3 WHILE LPI <> NIL .00001300 R 2 P R
1 1 1 4 WITH LPI-> DO 00001400 R 2 R

==============ERROR=> $96
1 1 1 BEGIN 00001500 R

1 1 1 1 5 LP3 := NEXT; 00001600 2 2
1 1 1 1 6 NEXT := LP2i 00001700 2 2
1 1 1 1 7 LP2 := LP1; 00001800 2 2
1 1 1 1 8 LPI := LP3 00001900 2 2

1 END; 00002000 R
1 9 FHEAD := LP2 00002100 2 2

END; . 00002200 R

1 ERROR DETECTED.

ERROR 96: 'DO' EXPECTED

OPTIONS IN EFFECT: MARGINSCl,72), SEQ(73,80), GOSTMT, OPTIMIZE, SOURCE,
CHECK

SOURCE LINES: 30; COMPILE TIME:

Figure 17. Sample source listing

The source 1 i sti ng contai ns i nforma­
tion about the source program including
nesting information of blocks and cross
reference information.

6.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set with the ~TITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
wi 11 be blank.

0.17 SECONDSi RATE: 10608 LPM

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa­
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name becomes
the name of the control sect ion
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defin­
ition which was being compiled when
the page boundary occurred.

3. The time and date of the compile.

How to Read Pascal/VS Listings 33

c

o

4. The page number.

The third line contains column
headings. If the source being compiled
came from a library (i.e. YoIHCLUDE),
then the last line of the heading iden­
tifies the library and member.

6.1.2 Nesting Information

The left margin contains nesting infor­
mation about the program. The depth of
nest i ng i s represented by a number.
The heading over this margin is:

S P B C I W STMT

S - a '1' in thi s column i ndi cates that
the line contains a comment which
'S'pans across the line.

P - indicates the depth of 'P'rocedure
nesting.

B indicates the depth of 'B'EGIH
block nesting.

C indicates the nesting of
'C'onditional statements. Conditional
statements are if and case.

I indicates the nesting of
'I'terative statements. Iterative
statements are for, repeat and while.

W - i ndi cates the nesti ng of 'W'ITH
statements.

STMT is the headi ng of a co lumn that
numbers the executable statements of
each routine. If the source line
orgi nated from an INCLUDE fi Ie, the
include number and a colon (':') pre­
cede the statement number.

6.1~3 statement Numbering

Pascal/VS
statement
rules:

numbers
according

each executable
to the following

• Every assignment, if, for, while,
case, with, procedure call, and
assert statement is given a number.

• The until part of a repeat state­
ment is given a number.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.
The statement numbers are gi ven for
runtime errors and to speci fy break­
points in the interactive debugger (see
"Debug Pascal/VS Interactive
Debugger" on page 53).

34 Pascal/VS Programmer's Guide

6.1.4 Page Cross Reference

The right margin contains an indicator
for each identifier that appears in the
assoc i ated 1 i ne. The i ndi cators have
the following meanings:

•

•

•

•

•

A number indicates a page number on
which the corresponding identifier
was declared.

A '*' indicates that
sponding identifier
declared.

the corre­
is being

A 'P' i ndi cates that the corre­
sponding identifier is predefined.

A 'R' i ndi cates that the corre­
sponding identifier is a reserved
key word.

A '?' i ndi cates that the corre­
spondi ng i denti fi er is ei ther
undeclared, or will be declared
fu rther on in the program. Th i s
latter occurrence arises often in
pointer type definitions.

6.1.5 Error Summary

Toward the end of the 1 i st i ng is the
error summary. It contains the diag­
nosti c messages correspondi ng to the
compilation errors detected in the pro­
gram.

6.1.6 option List

The option list summarizes the options
that were enabled for the compilation.

6.1.7 Compilation statistics

The compiler prints summary statistics
whi ch tell the number of 1 i nes
compiled, the time required, and compi­
lat i on rate in 1 i nes per mi nute of
(virtual) CPU time.

These stat i st i cs are di vi ded between
two phases of the compiler: the syn­
tax/semantic phase and the code gener­
ation phase~ Also printed is the total
time and accumulative rate for the sum
of the phases.

c

o

6.2 CROSS-REFERENCE LISTING

C R 0 S S REF ERE N C E LIS TIN G

INCLUDE 1 CAME FROM MEMBER GLOBALS

IDENTIFIER

ALPHA

DEFINITION

PREDEFINED

ATTRIBUTES <PAGE I>I<INCLUDE I>:<LINE I>

CLASS = TYPE, TYPE = ARRAY, LENGTH = 16
2/1:5

FHEAD 2/4 IN REVERSE, CLASS = VAR PARAM,
TYPE = POINTER, OFFSET = 144, LENGTH = 4
2/11 2/21

LINK CLASS = TYPE, TYPE = RECORD, LENGTH = 20
2/1:2

LINKPTR 2/1: 2 CLASS = TYPE, TYPE = POINTER, LENGTH = 4
2/1:6 2/4 2/9

LPI 2/7 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 148, LENGTH = 4
2/11 2/13 2/14 2/18
2/19

LP2 2/8 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 152, LENGTH = 4
2/12 2/17 2/18 2/21

lP3 2/9 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 156, LENGTH = 4
2/16 2/19

NEXT 2/1:6 IN LINK, CLASS = FIELD, TYPE = POINTER,
OFFSET = 16, LENGTH = 4
2/16 2/17

NIL PREDEFINED CLASS = CONSTANT, TYPE = POINTER, VALUE = 0
2/12 2/13

REVERSE 2/3 CLASS = PROCEDURE

Figure 18. Sample cross-reference listing

The cross reference listing lists
alphabetically every identifier used
in the program giving its attributes
and both the page number and the source
line number of each reference.

If the Y.INCLUDE facility was used, the
cross reference listing will begin by
listing all of the include-members by
name wi th a reference number.

Each reference specification is of the
following form:

pi [t:J 1

where p is the page number on which the
reference occurred; i is the number of
the include-member if the reference
took place within the member; 1 is the
line number within the program or
include-member at which the reference
occurred.

The reference immediately following
the i dent i fi er i s the place in the
source program where the identifier was
declared.

The attribute specifications have the
following meaning.

IN name
If . the identifier is a record
fi eld, then thi s attri bute speci­
fi es the name of the record in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:

CONSTANT declared constant

CONST PARAMETER

How to Read Pascal/VS Listings 35

C~

C)

o

pass-by-const parame-
ter

DEF VAR external def variable

ENTRY FUNCTION
function routine
declared as an ENTRY
point

ENTRY PROCEDURE
procedure routine
declared as an ENTRY
point

EXTERNAL FUNCTION
external function rou-
tine

EXTERNAL PROCEDURE
external procedure
routine

FIELD record field

FORMAL FUNCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parameter

FORTRAN FUNCTION
external FORTRAN func-
tion

FORTRAN SUBROUTINE
external FORTRAN sub-
routine

FUNCTION a user-defi ned or

LABEL

LOCAL VAR

PROCEDURE

standard function

statement label

automatic variable

a user-defi ned or
standard procedure

REF VAR external ref variable

STATIC VAR static variable

36 Pascal/VS Programmer's Guide

TYPE type identifier

VAR PARAMETER pass-by-var parame­
ter

UNDECLARED undeclared identifier

TYPE = type
This attributes gives the type of
the identifier:

ARRAY an array type

BOOLEAN boolean type

CHAR character

FILE a fi Ie type

INTEGER fixed point numeric

POINTER a pointer type

REAL floating point numeric

RECORD a reco rd type

SCALAR enumerated scalar or
sub range

SET a set type

SPACE a space type

STRING a stri ng type

OFFSET = n
This attribute specifies the byte
offset (in decimal) within the
dynamic storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH = n
This attribute specifies the byte
length of a variable or the storage
required for an instance of a type.

VALUE = n
This attribute specifies the
ordinal value of an integer or enu­
merated scalar constant.

C~,

()

o

6.3 ASSEMBLY LISTING

PASCAL/VS RELEASE 1.0 UTILITY 05/13/80 10:18:00 PAGE 2

LaC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING

* LP1 := FHEAD;
000090 5830 D090 8 L 03,144(,13)
000094 5840 3000 9 L 04,0(,03)
000098 5040 D094 10 ST 04,148(,13)

* LP2 := NIL;
00009C 1B33 11 SR 03,03
00009E 5030 D098 12 ST 03,152(,13)

* WHILE LP1 <> NIL DO
0000A2 13 Gl4Ll DS OH
0000A2 5830 D094 14 L 03,148(,13)
0000A6 1233 15 LTR 03,03
0000A8 4780 **** 16 BE Gl4L2

* WITH LPI-> DO
OOOOAC 45EO C860 17 BAL 14,2144(,12)
OOOOBO 5030 DOAO 18 ST 03,160(,13)

* BEGIN
* LP3 := NEXT;

0000B4 5840 3010 19 L 04,16(,03)
0000B8 5040 D09C 20 ST 04,156(,13)

* NEXT := LP2i
OOOOBC 5850 D098 21 L 05,152(,13)
OOOOCO 5050 3010 22 ST 05,16(,03)

* LP2 := LPli
0000C4 5030 D098 23 ST 03,152(,13)

* LP1 := LP3;
0000C8 5040 D094 24 ST 04,148(,13)
OOOOCC 47FO 2016 25 B Gl4L1
OOOODO 26 0)4L2 DS OH

*
*

OOOODO 5830 D090 27
000004 5840 D098 28
000008 5040 3000 29

Figure 19. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if you specify
the LIST option. The information pro­
vided in this listing include:

LaC
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen­
erated text. If the line refers to
a symbol or literal not yet
encountered in the list i ng (for-

END;
FHEAD . - LP2;

L 03,144(,13)
L 04,152(,13)
ST 04,0(,03)

ward reference) the base displace­
ment format of the instruction is
shown as four asterisks ('****').

PSEUDO ASSEMBLY
basic assembly language
descri pt i on of generated i nstruc­
tion.

Annotation
intermixed with the assembly
instructions is the source line
from whi ch the i nstructi ons were
generated. The source lines appear
as comments in the listing.

How to Read Pascal/VS Listings 37

o

PASCAL/VS RELEASE 1.0 AMPLXREF:

EXT E R N A L S Y M

NAME TYPE ID ADDR LENGTH

AMPLXREF SO 1 000000 002EOC
XREFEOF LO a 0008D8 000001
XREFREF LD 0 000A80 000001
GlSTATIC PC 2 000000 000009
AMPXPUT ER 4 000000
CHARPTR CM 6 000000 000004
BOOlPTR CM 8 000000 000004
INClLEVE CM 10 QOOOOO 000004
PROCP CM 12 000000· 000004
LINECOUN CM 14 000000 000004
AMPXGET ER 16 000000
SYSPRINT CM 18 000000 000040
AMPXL~CHR ER 20 000000
OPTION CM 22 000000 000014
TRIM ER 24 000000

Figure 20. Sample ESD table

6.4 EXTERNAL SYMBOL DICTIONARY

The External Symbol Di cti onary (ESO)
provides one entry for each name in the
generated program that is an external.
Thi s i nformati on is requi red by the
1 i nkerlloader to resolve inter-module
linkages. The information in this ta­
ble is:

NAME the name of the symbol.

TYPE the classification of the
symbol:

SD - Symbol Definition

LD - Local Definition

ER - External Reference

CM - Common

PC - Private Code.

ID is the number prov i ded to the
loader in order to relocate
address constants correctly.

38 Pascal/VS Programmer's Guide

05/13/80 13:07:27 PAGE 1

B 0 L D I C T I 0 N A R Y

NAf\1E TYPE ID ADDR LENGTH

XREFDUMP LO a 000FC4 000001
XREFINCL LO 0 000964 000001
XREFLIST LD a 002C40 000001
SYSXREF CM 3 000000 000040
INTPTR CM 5 000000 000004
REAlPTR CM 7 000000 000004
PAGENO CM 9 000000 000002
INClNUMB Cf\1 11 000000 000001
AMPXRSET ER 13 000000
AMPXNEW ER 15 000000
PAGEHEAD ER 17 000000
AMPXWlIN ER 19 000000
AMPXWTXT ER 21 000000
AMPXWIHT ER 23 000000
AMPXWSTR ER 25 000000

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the SD or
CM entry.

The SO classi fi cati on corresponds to
the name of the module; the lO classi­
fications are entry routines; ER names
are external routines; CM names corre­
spond to def vari abIes. The pri vate
code section is where static variables
are located.

6.5 INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa­
rize the usage of 370 instructions gen­
erated by the compiler. The table is
sorted by frequency of occurrence.

c

o

o

7.1 I/O IMPLEMENTATION

Pascal/VS employs OS access methods to
implement its input/output facilities.
Pascal/VS fi Ie vari abIes are associ­
ated wi th a data set by means of a
ddname. The Queued Sequential Access
Method (QSAM) is used for sequential
data sets. The Basic Partitioned
Access Method (BPAM) is used for parti­
tioned data sets (MACLIBs in CMS
terminology) .

7.2 DDNAME ASSOCIATION

For any identifier declared as a file
variable the first eight characters of
the i dent i fi er' s name serves as the
DDNAME of the file. As a consequence,
the first eight characters of all file
variables declared within a module
should be unique. You must also be
careful not to allow one of the first
ei ght characters to be an underscore
(' ') since this is not a valid charac­
ter to appear in a DDNAME.

If you prefer, you may assoc i ate an
arbitrary ddname with a file variable
by explicitly specifying a ddname with­
in the OPEN procedure (see "The OPEN
Procedure" on page 46).

7.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every
Pascal/VS file variable is a Data Con­
trol Block (DCB) which contains infor­
mation describing specific attributes
of the associated data set. Among
these attributes are

• the logical record length (LRECL);

•
•

the physical block size (BLKSIZE);

the record format (RECFM).

Pascal/VS supports only the following
record formats:

F, FA, FB, FBA, V, VA, VB, VBA

Newly allocated (empty) data sets, that
is, data sets intended for output might
not have these attri butes assi gned. As
far as Pascal/VS is concerned, there
are two ways to specify the DCB attri­
butes for such data sets:

• by being specified in the associ­
ated DDNAME definition 'in CMS: the
FI L EDEF command; in TSO: the

7.0 USING INPUT/OUTPUT FACILITIES

ALLOC/ATTR commands; in OS batch:
the DD card);

• by being specified in the OPEN pro­
cedure (see "The OPEN Procedure" on
page 46),

If any of these attri butes are unas­
signed for a particular data set to
which a Pascal/VS program will be writ­
i ng, the Pascal/VS I/O manager wi 11
assi gn defaul ts accordi ng to whether
the data set is bei ng managed as a fi Ie
of type "TEXT" or as a non-TEXT file.

For the case of TEXT files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following defaults
wi 11 apply:

• LRECL=256

• BLKSIZE=260

• RECFM=V

For the case of non-TEXT files, if nei­
ther LRECL, BLKSIZE, nor RECFM are
specified then the following defaults
wi 11 apply.

•
•
•

LRECL="length of file component"

BLKSIZE=LRECL

RECFM=F

If some of the attri butes are speci fi ed
and some are not then defaults will be
applied using the following criteria:

•

•

•

•

RECFM of V is preferred over F for
TEXT files.

RECFM of F is preferred over V for
non-TEXT files.

If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

If RECFM is V then the BLKSIZE is
to be at least four bytes greater
than the LRECL.

7.4 TEXT FILES

Text files contain character data
grouped into logical records. From a
Pascal/VS language viewpoint, the log­
ical records are lines of characters.
Pascal/VS supports both fi xed length
and variable length record formats for
text files. Characters are stored in
their EBCDIC representations.

The predefi ned type TEXT is used to
declare a text fi Ie vari able in

Using Input/Output Facilities 39

o

o

Pascal/VS. The pointer associated with
each file variable points to positions
within a physical I/O buffer.

7.4.1 opening a Text File

A closed file is opened automatically
by the procedures GET and READ for
input, and WRITE for output 7 • To open
a file explicitly, the procedures
RESET, REWRITE, INTERACTIVE, and OPEN
are prov i ded.

The procedures RESET and INTERACTIVE
are used to open a fi Ie for input.
RESET allocates a buffer, reads the
first logical record of the file into
the buffer, and positions the file
pointer at the beginning of the buffer.
Therefore, gi ven a text fi Ie F, the
execution of the statement 'RESET(F)'
would imply that 'F->' would reference
the first character of the file. If a
RESET operation is performed on an open
file, the file is closed and then reo­
pened.

program EXAMPLE;
var

SYSIN : TEXT;
C : CHAR;

begin
(*open SYSIN for input *)
RESET(SYSIN);
(*use first char of file*)
C := SYSIN->j
WRITELN(C);

end.

Figure 21. Using RESET on a TEXT
file

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
To alleviate thi s problem you should
use the INTERACTIVE procedure to open
the file. No initial read operation is
performed on files opened in this man­
ner. The file pointer has the value
NIL until the the first file operation
is performed (namely GET or READ).

program EXAMPLE;
var

SYSIN : TEXT;
DATA : STRING(80)j

begin
<*open SYSIN for interactive *)
(*input *)
INTERACTIVECSYSIN);
(*prompt for response *)
<*read in response *)
WRITELN(' ENTER DATA: ')j
READLH(SYSIH,DATA);

end.

Figure 22. Using INTERACTIVE on a
TEXT file

The procedure REWRITE is used to open a
file for output. The file pointer is
positioned at the beginning of an empty
buffer. If the file is already open it
is closed pri or to bei ng reopened.

program EXAMPLE;
var

SYSPRIHT : TEXT;
begin

REWRITE(SYSPRIHT)j
WRITELNCSYSPRINT,'MESSAGE')j

end.

Figure 23. Using REWRITE on a
TEXT file

7.4.2 Text File PUT

The PUT procedure, when applied to an
output text file, causes the file
pointer to be incremented by one char­
acter position. If, prior to the call,
the number of characters in the current
logical record is equal to the file's
logical record length (LRECL), the file
pointer will be positioned within the
associated buffer to begin a new log­
i cal record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 44).

The procedure PUT does not perform an implicit open on a file. Prior to a
PUT operation, the associated output buffer must contain the data to be
written. If the file is not open when the PUT operation is attempted,
then no output buffer exists. (The file pointer will have the value nil.)

40 Pascal/VS Programmer's Guide

C:

c

o

program EXAMPLE;
var

OUTFIlE TEXT;
C : CHAR;

begin
REWRITECOUTFIlE)i

OUTFIlE-> := Ci
C*Write out value of c*)
PUTCOUTFIlE)i ...

end.

Figure 24. Using PUT on a TEXT
file

7.4.3 Text File GET

The GET procedure, when applied to an
input text file, causes the file point­
er to be incremented by one character
position. If the file pointer is posi­
tioned at the last position of a log­
i ca 1 record, the GET operat i on wi 11
cause the end-of-line condition to
become true (see "End of line
Condition") and the file pointer will
be positioned to a blank. If, prior to
the call, the end-of-line condition is
true, then the fi Ie pointer wi 11 be
positioned to the beginning of the next
logical record.

If GET is called when the file pointer
; s POSt ti oned at the last character
posi ti on of the fi Ie, the end-of-fi Ie
condition becomes true. (See "End of
Fi Ie Condi ti on" on page 42).

program EXAMPLE;
var

IHFIlE TEXT;
Cl,C2 : CHAR;

begin
C*get first char of file*)
RESETC IHFIlE);
Cl := IHFIlE->;
C*get second char of file*)
GETCIHFIlE);
C2 := IHFIlE->; ...

end.

Figure 25. Using GET on a TEXT
file

7.4.4 The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer Cor to
a disk file which will eventually be
printed).

program EXAMPLE;
var

PRIHT: TEXT;
begin

(*start new page*)
PAGECPRIHT);

end.

Figure 26. Using the
procedure

7.4.5 End of Line Condition

PAGE

The end-of-line condition occurs on a
text fi Ie opened for input when the
fi Ie po inter is posi ti oned after the
end of a logical record. To test for
this condition, the EOlH function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi­
tioned at the last character of a log­
i cal record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (in EBCDIC, hexadeci­
mal 40) when the end-of-line condition
occurs.

The EOlH function is only applicable to
text fi les.

program EXAMPLE;
var

SYSIH: TEXT;
CHT : 0 .. 32767;

begin
c* compute length of first

logical record of SYSIH *)
RESETCSYSIN);
CNT : = 0;
while not EOlNCSYSIN) do

.begin
CNT := CNT + 1;
GETCSYSIN) ;'

end;
WRITElNCCNT)

end.

Figure 27. Using the EOlH func­
tion

Using Input/Output Facilities 41

c

o

7.4.6 End of File Condition

The end-of-file condition becomes true
when GET is executed for a file posi­
tioned at the last character of the
last logical record, or if a call to
READ consumes all of the characters of
the last logical record.

The file pointer will always point to a
blank character (hexadecimal 40) when
the end-of-file condition occurs. To
test for this condition, the EOF func­
tion is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will be ignored.

program EXAMPLE;
var

SYSIH: TEXT;
CHT : 0 .. 32767;

begin
(* compute number of logical

records in file SYSIH *)
RESET(SYSIH);
CHT : = 0;
while not EOF(SYSIH) do

begin
CNT := CHT + 1;
READLH(SYSIH)

end;
WRITELH(CHT)

end.

Figure 28. Using the EOF function
on a TEXT file

7.4.7 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. If the
file pointer is not yet set, an initial
GET operation is performed. This case
occurs when a file is opened INTERAC­
TIVEly.

If READ is called for a closed fi Ie,
the fi Ie is opened for input by an
implicit call to RESET.

When reading IHTEGER or REAL data via
the READ procedure, and no length field

42 Pascal/VS Programmer's Guide

is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is dete­
cted, the integer value 0 or the real
value 0.0 will be returned.

Integer data begi ns wi th an opt i onal
sign ('+' or '-') followed by all dig­
its up to, but not including, the first
non-digit or up to the end of the log­
ical record.

For example, given an input file posi­
ti oned at the begi nni ng of a logi cal
record with the following contents:

95123SAH JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first'S' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi­
tioned at the beginning of a logical
record with the following contents:

3.14159/2

a floating point read operation would
bring in the floating point value
3.14159. After the read, the fi Ie
pointer would be positioned to the '/'
character.

The length field is the expression
indicated in the following sample
statement:

READ(file, variable: length_field);

If a length field value is specified,
as many characters as are indicated by
the value will be consumed by the read
operation. The variable will be
assigned from the beginning of the
field. If the field is not exhausted
after the vari able has been assi gned
the data, the rest of the field will be
skipped.

c

o

o

program EXAMPLE;
var

ZIP,
MAN INTEGER;
BALANCE: REALi

begin
READCZIP:5,MAN:6,BALANCE:9);
WRITELN('ZIP = ',ZIP);
WRITELN('MAN = ',MAN);
WRITELNC'BALANCE = ',BALANCE:8:2)

end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP =
MAN =
BALANCE =

95123
999999

1000.00

Immediately after the READ state­
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 29. Using READ with length
qualifiers.

When reading data into variables
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

• the variable is filled to its
declared capacity;

• an end-of-l i ne condition
detected;

• the length field Cif specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

program DOREAD;
var

IHFILE TEXT;
R

record

end;

array[l .. lO] of

NAME: STRING(25);
AGE: 0 .. 99;
WEIGHT: REAL

I 1 .. 10;
begin

RESET C INFILE);
for I := 1 to 10 do

with R[I] do

end.

begin
READCIHFILE,NAME,AGE);
READ(IHFILE,WEIGHT);
READLN(IHFILE)

end;

Figure 30. Using
files.

READ on TEXT

7.4.8 The READLN Procedure

The READLN procedure is applicable only
to text files. It causes the charac­
ters between the file pointer position
and the end of the logical record to be
skipped.

In the case of text files opened with
the INTERACTIVE attri bute, the fi Ie
pointer is positioned after the end of
the logical record and the end-of-line
condi t ion is set to true. For non­
INTERACTIVE files, the file pointer is
positioned at the beginning of the next
logical record (unless, of course, the
end-of-file condition occurs).

If the end-of-l i ne condi t ion is true
for an INTERACTIVE file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in successi on wi 11 cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,
the file is opened implicitly for input
without the INTERACTIVE attribute.

Using Input/Output Facilities 43

o

o

program COpy;
var

INFILE,
. OUTFILE : TEXT;

BUF : STRING(100);
begin

RESETC INFILE);
REWRITECOUTFILE);
while not EOFCINFILE) do

end.

begin
READCINFILE,BUF);
WRITELNCOUTFILE,BUF);
C*ignore characters after

column 100 in each line *)
READLNCINFILE)

end

Figure 31. Using the procedure
READLN

7.4.9 Text File WRITE

The WRITE procedure outputs data to a
text file beginning at the current
position of the file pointer. If WRITE
is called for a closed file, the file
is opened implicitly for output.

If during a call to WRITE, the length
of the logi cal record bei ng produced
becomes equal to the logi cal record
length C LRECL) of the text fi Ie, the
record is completed and the remaining
data is placed on a new record.

program DOWRITE;
var

OUTFILE TEXT;
R

I

array[l .. 10] of
record

NAME: STRIHG(25);
AGE: 0 •• 99;
WEIGHT: REAL

end;
1 .. 10;

begin
REWRITECOUTFILE); ...

for I := 1 to 10 do
with R[I] do

end.

begin
WRITECOUTFILE,NAME,' ');
WRITECOUTFILE,AGE:3,' ');
WRITECOUTFILE,WEIGHT:3:0);
WRITELNCOUTFILE)

end;

Figure 32. Using WRITE on TEXT
files

44 Pascal/VS Programmer's Guide

7.4.10 The WRITELN Procedure

The WRITELH procedure is appl i cable
only to text files intended for output.
It causes the current logi cal record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the fi Ie is
fixed CRECFM=F), WRITELN will fill the
rema i nder of the current record wi th
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out­
put.

program DOUBLESPACE;
var

FILEIH,
FILEOUT : TEXT;
BUF : STRING;

begin
REWRITECFILEOUT);
RESETC FILEIN);
while not EOF(FILEIN) do

begin
READLN(FILEIN,BUF);
WRITELNCFILEOUT,BUF);
(*insert blank line *)
WRI TELN (FIL EOUT)

end;
end.

Figure 33. Using the
procedure

7.5 RECORD FILES

WRITELN

All non-TEXT fi les ; n Pascal/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base component; oth­
erwi se, an execution time error wi 11
occur when the fi Ie is opened. For
example, a fi Ie vari able declared as
'file of INTEGER' will require the
associated physical file to have a log­
ical record length of at least 4 bytes.

If a fi Ie has fi xed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
fi les component type, then the extra
space in each logical record is wasted.

C
'··"

I
/

o

o

7.5.1 opening a Record File

A closed file is opened automaticallY
when the first operation is performed
on it. The procedures GET and READ will
open it for input; PUT and WRITE will
open it for output. To open a fi Ie
explicitly, the procedures RESET,
REWRITE, and OPEN are provided.

The procedure RESET is used to open a
file for input. This procedure allo­
cates a buffer, reads the first logical
record of the file into the buffer, and
positions the file pointer at the
begi nn i ng of the buffer. Therefore,
given a record file F, the execution of
the statement 'RESETCF)' would imply
that the term 'F->' would reference the
fi rst component of the fi Ie. If a
RESET operation is performed on an open
file, the file is closed and then reo­
pened.

The procedure REWRITE is used to open a
fi Ie for output. The fi Ie po inter is
positioned at the beginning of an empty
buffer. If the file is already open it
is closed prior to being reopened.

7.5.2 Record File PUT

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physi cal fi Ie. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
val'

F : file of
record

NAME: STRING(25);
AGE : 0 .. 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

end;
begin

REWRITECF);
F->.NAME .- 'John F. Doe';
F->.AGE .- 36;
F->.WEIGHT .- 160.0;
F->.SEX .- MALE;
PUTCF); ...

end.

Figure 34. Using PUT on record
files

7.5.3 Record File GET

The GET procedure causes the next
sequential file record to be placed in
the input buffer referenced by the file
pointer. Each call to GET for the case
of record files reads one logical
record.

program EXAMPLE;
val'

F : file of
record

NAME: STRING(25);
AGE: 0 .. 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

end;
begin

RESET(F)j
while not EOF(F) do

begin

end.

WRITEC' Name : "
F->.NAME);

WRITEC' Age : "
F->.AGE:3);

WRITELN;
GET(F)

end

Figure 35. Using GET on record
files

7.5.4 End of File condition

The end-of-file condition occurs when a
call to GET or READ is attempted on a
record file (open for input) when no
more logical records remain in the
file. The function EOF is used to test
this condition.

7.5.5 Record File READ

As documented in the language manual,
the statement

READCF,V)

is equivalent to

begin
V . - F->j
GET (F)

end

where F and V are declared as follows:

val' F: file of t; v: t;

Using Input/Output Facilities 45

o

o

If fi Ie F is not open when READ is
called, it will be opened implicitly
for input.

7.5.6 Record File WRITE

As documented in the language manual,
the statement

WRITECF,V)

is equivalent to

begin
F-> := Vi
PUTCF)

end

where F and V are declared as fo llows:

val' F: file of tj
V: t;

If fi Ie F is not open when WRITE is
called, it will be opened implicitly
for output.

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

end;
val'

INFILE,
OUTFILE:

STRING(2S)j
O •• 99 j
(MALE,FEMALE)

file of REC;
BUFFER : REC;

begin
RESET(INFILE);
REWRITE(OUTFILE);
while not EOFCINFILE) do

begin
REAOCINFILE,BUFFER);
WRITECOUTFILE,BUFFER)

end
end.

Figure 36. Using READ and WRITE
on record files.

7.6 CLOSING A FILE

All fi les wh; ch are declared in the
body of a routine are closed implicitly
when the rout i ne returns to its
invoker. All files which are open when
the program term; nates, whether nor­
mally or abnormally, wi 11 be closed
automatically by the Pascal/VS runtime
environment.

If the procedures RESET, REWRITE, or
OPEN are applied to an open file, the
file is closed prior to being reopened.

46 Pascal/VS Programmer's Guide

The procedure CLOSE is provided to
close a file explicitly. CLOSE is pre­
declared as follows:

procedure CLOSEC
val' F : filetype);

EXTERNAL;

7. 7 THE OPEN PROCEDURE

The OPEN procedure is a general i zed
form of the procedures RESET and
REWRITE. OPEN is predeclared in the
following fashion:

procedure OPENC
val' F filetype;
const OPTIONS: STRING);

EXTERNAL;

The second parameter of the OPEN proce­
dure is a stri ng expressi on. Thi s
string contains a list of options which
are read at execution time. These
options determine how the file is to be
opened and what attri butes it is to
have.

The data in the str i ng parameter has
the syntax shown in the following fig­
ure:

>{option}--->~> l< ___ , <----I

option:

--~---> DDNAME = name ----->
------> > BLKSIZE = n

> LRECL = n -------->
> RECFM = c -------->
> INTERACTIVE ----------->
> RESET ---------->
> REWRITE ------------->
> PDSIN,MEMBER=name ---->

> PDSOUT ,MEMBER=name -->

Figure 37. Syntax of string
parameter of OPEN

The opt ions RESET, REWRITE, INTERAC­
TIVE, POSIN, and PDSOUT are mutuallY
exclusi ve. If none of these opt ions
appear in the option string, REWRITE
will be assumed by default.

c,:

o

The following is a description of each
option.

DDHAHE=name
This attribute signifies that the
physical file to be associated with
the fi Ie vari able has the ddname
i ndi cated by "name". Thi s new
ddname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to OPEN with the DDHAHE attribute
specified.

If this option is not specified,
then the ddname to be a ssoc i ated
with the file is derived from the
first eight characters of the file
variable name (first parameter of
OP EN) •

BLKSIZE=n
This attribute is used to specify a
physical block size to be associ­
ated wi th an output fi Ie. Th is
value (indicated by "n") will over­
ride a BLKSIZE specification on the
ddname definition.

LRECL=n
This attribute ;s used to specify a
logical record length to be associ­
ated with an output file. This
value (indicated by "n") will over­
ride a LRECL specification on the
ddname definition.

RECFt1=e
This attribute is used to specify a
record format to be associated with
an output file. The only valid
record formats that may be speci­
fi ed are

program EXAMPLE;
var

POS TEXT;
MEMBER: STRIHG(8);
BUF : packed array[1 .. 80]

begin
OPENCINPUT,'IHTERACTIVE')j

of CHAR;

F, FB, FA, FBA, V, VB, VA, VBA

This specification Cindicated by
"e") will override a RECFM specifi­
cation on the ddname definition.

INTERACTIVE
This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a Text Fi Ie" on page 40 for a
description of interactive files.

RESET
This attribute indicates that the
file is to be opened for input. A
call to OPEN wi th thi s attri bute
performs the same funct i on as a
call to the procedure RESET.

REWRITE
This attribute indicates that the
file is to be opened for output. A
call to OPEN with this attribute
performs the same funct i on as a
call to the procedure REWRITE.

PDSIH,t1EMBER=name

PDSeUT,MEMBER=name
These attributes indicate that the
file to be opened is an OS parti­
tioned data set CPOS). The member
to be accessed is indicated by
"name". PDSIN indicates that the
member is to be opened for inputj
PDSeUr indicates that it is to be
opened for output. These two oper­
ations perform in the same manner
as the corresponding RESET and
REWRITE operations.

C*open INPUT for interactive *)
C* input. *)

REAOLNCMEMBER); C*read 1st member name *)
while not EOFCINPUT) do (*loop until no more members *)

end.

begin (*open member for input *)
OPEHCPOS,'OONAME=SYSLIB,POSIN,MEMBER=' I I MEMBER);
while not EOFCPOS) do· C*copy each line of the

begin
REAOLNCPOS,BUF);
WRITELHCBUF)j

endj
REAOLNCMEMBER)

end

member to file OUTPUT

C*read next member name

Figure 38. Using the OPEN procedure

Using Input/Output Facilities 47

c

{-'"
~I

o

7.8 PDS ACCESS IN A CMS ENVIRONMENT

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the OS simulation facili­
ties. A ddname ;s assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a
Pascal/VS program, the following com­
mands would be executed prior to exe­
cuting the program.

48 Pascal/VS Programmer's Guide

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the COHCAT option of the FILEDEF com­
mand. For example, in order to access
the MACLIBs "MI", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed pri or to execut i ng
the Pascal/VS program.

FILEDEF LIB DISK MI MACLIB A
FILEDEF LIB DISK M2 MACLIB A (COHCAT
FILEDEF LIB DISK M3 MACLIB A (COHCAT
GLOBAL MACLIB MI M2 M3

c

o

8.1 READING A PASCAl/VS TRACE BACK

The Pascal/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa­
tion is given.

• The name of the rout i ne.

• The statement number of the last
statement to be executed in the
routine (i .e. the statement number
of the call to the next routine in
the chain).

• The address in storage where the
generated code for the statement
begins.

• The name of the module in which the
routine is declared.

The trace routi ne may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 39 on page 50. In the example
start i ng at the bottom we see that
Pascal/VS called the user's main pro­
gram in the module named HASHASEG.
statement 24 of the main program con­
tains the call to READ ID, statement 3
of READ_ID contains- the call to
SEARCH_ID, and so on.

A trace will be produced when a program
error occurs. An example is given in

8.0 RUNTIME ERROR REPORTING

Fi gure 40 on page 50. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Look i ng at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check­
i ng error occurs. A check i ng error
occurs when code produced by the com­
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK" on page 29 for a
description of compiler generated
checks.) Figure 41 on page 50 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace wi 11 be produced when an 1/0
error occurs. Figure 42 on page 50 is
an example of this. In this case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimi zati on performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a
runtime error occurs, the statement
number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen­
erated.

Runtime Error Reporting 49

o

o

TRACE
ROUTINE
TRACE
HASHKEY
GET_HASH_PTR
SEARCH 10
READ_IO
<MAIN PROGRAM>
PASCAL/VS

BACK OF ROUTINE CALLS
STMT AT ADDRESS IN

4 '02028C'X
9 '02018C'X
2 '021208'X
9 '0213C8'X
3 '021550'X

24 '020278'X
o '02048C'X

MODULE
AMPXSENV
HASHCSEG
HASHBSEG
HASHBSEG
HASHBSEG
HASHASEG

Figure 39. Trace called by a user program

PROGRAM ERROR: FIXED POINT OVERFLOW
TRACE BACK OF ROUTINE CALLS

ROUTINE
FACTORIAL
FACTORIAL
FACTORIAL
<MAIN PROGRAM>
PASCAL/VS

STMT AT ADDRESS IN MODULE
3 '02014C'X TEST
3 '02014C'X TEST
3 '02014C'X TEST

17 '020298'X TEST
o '02048C'X

Figure 40. Trace call due to program error

CHECKING ERROR: HIGH BOUND
TRACE BACK OF ROUTINE CALLS

ROUTINE
TRANSLATE
TO ASCII
<MAIN PROGRAM>
PASCAL/VS

STMT AT ADDRESS IN
4 '020154'X

10 '02024C'X
17 '020338'X
o '02048C'X

MODULE
CONVERT
CONVERT
CONVERT

Figure 41. Trace call due to checking error

AMPX0011 File
TRACE

ROUTINE
INITIALIZE
<MAIN PROGRAM>
PASCAL/VS .

could not be opened: SYSIN
BACK OF ROUTINE CALLS

STMT AT ADDRESS IN MODULE
3 '020154'X COPY
2 '020218'X COPY
o '02048C'X

Figure 42. Trace call due to I/O error

50 Pasca!/VS Programmer's Guide

o

o

8.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
check i ng errors that may occur ina
Pascal/VS program at run time.

LOW BOUND
Ei ther a subscri pt or a subrange
variable is being assigned a value
less than the lower bound of the
allowed range.

HIGH BOUND
Ei ther a subscri pt or a subrange
variable is being assigned a value
greater than the upper bound of the
allowed range.

NIL POINTER
an attempt was made to reference a
variable from a pointer using the
value NIL.

CASE ERROR
a case express; on has a value other
than any of the declared case
labels and there ;s no otherwise
clause.

STRING CONCATENATION
the concatenat; on of two str; ngs
resul ts ina stri ng greater than
255 characters in length.

STRING TRUNCATION
there was an attempt to assign to a
stri ng a value whi ch has more char­
acters than the maximum length of
the string.

ASSERTION FAILED
an assert statement was executed in
which its associated boolean
expression evaluated to the value
FALSE.

8.3 SYMBOLIC VARIABLE DUMP

When a program error or checking error
occurs, a symbolic dump of all vari­
ables which are local to the routine in
which the error. occurred may be
produced. This dump will be produced
if two conditions are met:

• The source module contai ni ng the
code from which the error occurred
was compiled with the DEBUG option.

• The Pascal/VS debug library was
included in the generation of the
associated load module.

The dump is written to file OUTPUT.

Runtime Error Reporting 51

c'

o

o

9.0 DEBUG - PASCAL/VS INTERACTIVE DEBUGGER

Debug is a tool that allows programmers
to quickly debug Pascal/VS programs
w; thout hav i ng to wr i te debug state­
ments directly into their source code.
Basi c functi ons include traci ng pro­
gram execution, viewing the runtime
values of program variables, breaking
at intermediate points of execution,
and di splayi ng statement frequency
count i ng ; nformat ion. The programmer
uses Pascal/VS source names to refer­
ence statements and data.

In order to use Debug, you must follow
these four steps:

• Compile the module to be debugged
wi th the DEBUG opt ion. Modules
that have been comp; led wi th the
DEBUG opt; on can be I; nked w; th
modules that have not been compiled
with the DEBUG option.

• When link edi ti ng your program,
include the debug library. (It
must be located ahead of the
runtime library in search order).6

•

•

Ddname INPUT must be allocated to
your terminal, or to the data set
from which Debug commands are to be
read. Likewise, the ddname OUTPUT
must be allocated to your termi nal.

When executing the load module,
specify 'DEBUG/' as a parameter.
This will cause the debug environ­
ment to become active, and, if
INPUT has been allocated to your
terminal, you will be immediately
prompted for a Debug command. In
the Debug environment the user may

issue Debug commands and exami ne
variables for those modules which
were compi led wi th the DEBUG
option.

9.1 QUALIFICATION

A qualification consists of a module
name and a rout i ne name. Debug uses
the current gualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger ga i ned
control.

At the start of a Debug sessi on, the
current qualification is the name of
the module containing the main program,
and the main program itself.

9.2 COMMANDS

This section describes the commands
that a user may issue wi th the Debug
facility. Every command may be abbre­
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets ('['
and 'l') are used in the command
description to indicate optional parts
of the command.

6 Under eMS, the debug library is included if the DEBUG option is specified
when invoking PASCMOD. (see "How to Build a Load Module" on page 6.)

Under TSO, the debug library is included by specifying the DEBUG keyword
operand when invoking the PASCMOD clist. (see "How to Build a Load
Module" on page 12.)

Debug - Pascal/VS Interactive Debugger 53

c

o

9.2.1 BREAK Command

Command Format:

BREAK [[module/] routine/] stmtno

Minimum Abbreviation:

B

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmtno is a number of a statement
in the designated routine.

This command causes a breakpoint to be
set at the i ndi cated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit­
ted ; n whi ch case the defaul ts are tak­
en from the current qualification.
stmtno is the number of the statement
on which to stop in the specified rou­
tine of the specified module. The
statement numbers are found on the
source listing.

A maximum of 8 breakpoints may be set
at anyone time.

54 Pascal/VS Programmer's Guide

9.2.2 CLEAR Command

Command Format:

CLEAR

Minimum Abbreviation:

CLEAR

There are no operands.

The CLEAR command is used to remove all
breakpoints.

C~I

'I 0
-'"

o

9.2.3 CMS Command

Command Format:

CMS

Minimum Abbreviation:

C

There are no operands.

This command activates the CMS subset
mode. If the program ;s not being run
under eMS, the command is ignored.

9.2.4 DISPLAY Command

Command Format:

DISPLAY

Minimum Abbreviation:

D

The DISPLAY command is used to display
information about the current Debug
sessi on at the user's termi nal. The
information displayed is:

• the current qualification,

• where the user's program will
resume execution upon the GO com­
mand,

• the current status of Counts,

• the current status of Tracing.

Debug - Pascal/VS Interactive Debugger 55

! - - - .- - - - - - - - .- - - - -- - - - - - - - - - -- - - - - - -- --- _.- - _. - -- - - - - - - -

o

o

9.2.5 DISPLAY BREAKS Command

Command Format:

DISPLAY BREAKS

Minimum Abbreviation:

D B

There are no operands.

The DISPLAY BREAKS command is used to
produce a list of all breakpoints which
are currently set.

56 Pascal/VS Programmer's Guide

9.2.6 DISPLAY EQUATES Command

Command Format:

DISPLAY EQUATES

Minimum Abbreviation:

D E

There are no operands.

The DISPLAY EQUATE command is used to
produce a list of all equate symbols
and their current definitions.

c

o

9.2.7 EQUATE Command

Command Format:

EQUATE identifier [datal

Minimum Abbreviation:

E identifier [datal

Where:

identifier is a Pascal/VS
identifier.

data is a command which the
identifier is to represent.

This command causes the data to replace
the identifier whenever the identifier
is first token in a command.

Examples

equate x ,r->.b[2]->
eq y break procx/4
eq z

The fi rst example demonstrates how a
user may exami ne a vari able wi thout
hav i ng to retype along st ring every
time. The next example demonstrates a
way to develop a synonym for a command.
The third example shows how to remove
an equate.

9.2.8 GO Command

Command Format:

GO

Minimum Abbreviation:

G

There are no operands.

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

• breakpoint

• program error

• normal program exit

A breakpoint or program error will
return the user to the Debug environ­
ment.

Debug - Pascal/VS Interactive Debugger 57

- - - - - - - - - - - - .- - - - - - - - - - - - - -" - - ,'- -.- - - - - - -- _. - - - -- -.-. - - - - - -.- - --- -,-:.. -- - _.- - - ...• - .- -~ - -- --- _.- -',-

C~/

c

o

9.2.9 Help Command

Command Format:

1

Minimum Abbreviation:

?

There are no operands.

The Help command lists all Debug com­
mands.

58 Pascal/VS Programmer's Guide

9.2.10 LISTVARS Command

Command Format:

LISTVARS

L

There are no operands.

This command displays the .values of all
variables which are local to the cur­
rently active routine.

c

o

o

Command Format:

QUAL [module /] [routine]

Minimum Abbreviation:

Q [module /] [routine]

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

• the module name defaul ts to the
current qualification.

• the routine defaults to the main
program if the associated module is
a program module, or to the outer­
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The
current qualification provides the
basis on which program names are
resolved. If there is no activation of
the routine available (no invocations)
the user may not di splay local vari­
ables for that routine.

Qual i fi cat i on may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali­
fication is automatically set to the
modu le and the rout i ne in whi ch the
breakpoint was set.

9.2.12 QUIT Command

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

Debug - Pascal/VS Interactive Debugger 59

o

o

9.2.13 RESET Command

Command Format:

RESET [[module/] routine/] stmtno

Minimum Abbreviation:

R [[module/] routine/] stmtno

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmtno is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

60 Pascal/VS Programmer's Guide

9.2.14 SET ATTR Command

Command Format:

SET ATTR [ON

OFF
]

Minimum Abbreviation:

S A [ON

OFF
]

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter specifies that variable
attribute information will not be dis­
played by default. The default may be
overridden on the variable viewing com­
mand.

o

9.2.15 SET COUNT Command

Command Format:

SET COUNT [ON

OFF
]

Minimum Abbreviation:

s C [ON

OFF
]

The SET COUNT command is used to initi­
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is executed duri ng program
execution. The summary is produced at
the end of program execut i on and i s
wr i tten to the standa rd f i 1 e OUTPUT.
Statement counting may also be initi­
ated with the runtime COUNT option.

9.2.16 SET TRACE Command

Command Format:

SET TRACE [ON

OFF
]

Minimum Abbreviation:

S T [ON

OFF
]

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user wi th ali st of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

Debug - Pascal/VS Interactive Debugger 61

C:

c

o

9.2.17 TRACE Command

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca­
ti on chai n are 1 i sted along wi th the
most recently executed statement in
each.

62 Pascal/VS Programmer's Guide

9.2.18 Viewing Variables

Command Format:

, variable [(option [)]]

Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascall'VS
Reference Manual for the
syntax of a variable.

option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro­
gram execution.

The stat i c scope ru I es that apply to
the current qualification are applied
to the speci fi ed vari able. If the var­
iable is found to be a valid reference,
then its value is di splayed. If the
name cannot be resolved within the cur­
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automati c
variable for which no activation cur­
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam­
ples, array elements, record fi elds,
and dynamic variables may all be
viewed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are di s­
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen­
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an opti on, attri butes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: a subscripting expression may
only be a vari able or constant i that
is, it may conta in no operators. Thus,
such a reference as

,a[b->[j]]

is valid (at least syntactically), but
the reference

,a[i+3]

c'

c'

o

is not a val i d reference because the
subscripting expression is not a vari­
able or constant.

Examples

,a
,p->
,p->.b
,b[1,xl.int (ATTR
,p->[x,yl.b->.a[ll

9.2.19 viewing Memorv

Command Format:

, hex-string [: length J

Where:

hex-string is a number in
hexadecimal notation.

length is an integer.

Thi s command is used to di splay the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex stri ng is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is in both hex and character for­
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '35D05'X). The
length is specified in decimal.

Examples

,'20000'X
,'46cfO'X 100

Debug - Pascal/VS Interactive Debugger 63

c'

C"

o

9.2.20 WALK Command

Command Format:

WALK

Minimum Abbreviation:

W

There are no operands.

64 Pasca1/VS Programmer's Guide

This command causes the program to
either start executing or resume exe­
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin­
gle stepping through a section of code.

c

0

o

9.3 DEBUG TERMINAL SESSION

1
2
3
4
5
6
7
8
9
10

11
12
13

14

program MYPROG;
type

R1PTR = ->Rl;
R1 = record

A STRING(12);
B : INTEGER;
X : REAL;
S :·set of 1 .. 31;
end;

REC2 = record
INT : INTEGER;

end;
COLOR = (RED, ORANGE, YELLOW, GREEN, BLUE);

def
SPAC: array[0 .. 9] of INTEGER;

static
ARR array[1 .. 8,1 .. 4,1 .. 2] of REC2;

var
I 1 .. 8;
J 1 .. 4;
K 1 •• 2;
C CHARi
RP : R1PTR;
HUE : COLOR;

begin
C . - , A' ;
HUE · - GREEN;
for I . - 1 to 8 do

for J . - 1 to 4 do
for K . - 1 to 2

ARR[I,J,K].INT
for I . - 0 to 9 do

SPAC[I] . - I;
NEW(RP);
with RP-> do

begin
A · - 'NEW REC' ;
B · - 3;
X · - 4.5;
end;

do . - I

WRITELN('END OF PROGRAM');
end;

+ J + K;

Figure 43. Sample program for Debug session

The followi ng seri es of fi gures is a
sample Debug terminal session that dem­
onstrates breakpoints and viewing var­
iables. User commands are in lower

casei system responses are high
lighted. The program being executed is
shown in Figure 43.

Debug - Pascal/VS Interactive Debugger 65

I - - - - - - ,- - - - - _. - - - - - - - - - - - -- - .- - - - - _. - .- - - ------- - - - - - -

c

G

o

myprog debug/

Debug(MVPROG <MAIN-PROGRAM»:

break 14

Debug(MVPROG <MAIN-PROGRAM»:

go

STOPPED AT MVPROG/<MAIN-PROGRAM>/14

Figure 44. Starting a program and setting a breakpoint

Debug(MVPROG <MAIN-PROGRAM»:
,c

C = 'A'

Debug(MVPROG <MAIN-PROGRAM»:
,hue

HUE = GREEN

Debug(MVPROG <MAIN-PROGRAM»:
,arr[arr[1,1,1J.int,1,1J.int

ARR[ARR[1,1,11.INT,1,11.INT = 5

Debug(MVPROG <MAIN-PROGRAM»:
,arr[l]

ARR[11
(00020410)
000000 00000003 00000004 00000004 00000005 , •••••••••••••••• ,
000010 00000005 00000006 00000006 00000007 , ••••••••••••••••

Debug(HVPROG <MAIN-PROGRAM»:
,spac[4]

SPAC[4l = 4

Debug(MVPROG <MAIN-PROGRAM»:
,rp->.x

RP->.X = 4.5

Debug(HVPROG <MAIN-PROGRAM»:
,rp->.b

RP->.B = 3

Figure 45. Viewing some program variables

66 Pascal/VS Programmer's Gui de

o

Debug(MYPROG <MAIN-PROGRAM»:
,c (attr
VARIABLE TYPE: CHAR
MEMORY CLASS : LOCAL AUTO
DECLARED IN : <MAIN-PROGRAM>

C = 'A'

Debug(MYPROG <MAIN-PROGRAM»:
,arr[l,l,ll.int (attr
VARIABLE TYPE: INTEGER
MEMORY CLASS : STATIC
DECLARED IN : <MAIN-PROGRAM>

ARR[1,1,1J.INT = 3

Debug(MYPROG <MAIN-PROGRAM»:
,spac (attr
VARIABLE TYPE: ARRAY
LENGTH : 40
MEMORY CLASS : EXTERNAL
DECLARED IN : <MAIN-PROGRAM>

SPAC
(000382FO)
000000 00000000 00000004 00000008 OOOOOOOC , ••••••••••••••••
000010 00000010 00000014 00000018 0000001C ' ••••••••••••••••
000020 00000020 00000024

Debug(MYPROG <MAIN-PROGRAM»:
,rp (attr

VARIABLE TYPE: POINTER
MEMORY CLASS : LOCAL AUTO
DECLARED IN : <MAIN-PROGRAM>

RP = 000486F8

Debug(MYPROG <MAIN-PROGRAM»:
,rp-> (attr

VARIABLE TYPE: RECORD
LEtlGTH : 36
MEtlDRY CLASS : DYNAtlIC
DECLARED IN : <MAIN-PROGRAM>

RP->
(000486F8)
000000 07DSCSE6 40D9CSC3 00000000 00000000
000010 00000003 00000000 41480000 00000000
000020 00000000

Debug(MYPROG <MAIN-PROGRAM»:
,rp->.a (attr
VARIABLE TYPE: STRING
LENGTH : 7
MEMORY CLASS : DYNAMIC
DECLARED IN : <MAIN-PROGRAM>

RP->.A = 'NEW REC'

'.NEW REC •••••••• '
, ' , ,

Figure 46. Viewing variables using the ATTR option

Debug - Pascal/VS Interactive Debugger 67

C
~'

./

c

o

Debug(MYPROG <MAIN-PROGRAM»:
I rp->. junk

,RP->.JUNK
$

JUNK IS NOT A RECORD FIELD

Debug(MYPROG <MAIN-PROGRAM»:
,c->
,C->

$
-> FOLLOWED NON POINTER

Debug(MYPROG <MAIN-PROGRAM»:
,arr[l,lOOOO,l]
,ARRtl,lOOOO,lJ

$
ARRAY INDEX OUT OF BOUNDS

Debug(MYPROG <MAIN-PROGRAM»:
go
END OF PROGRAM

Figure 47. Debug error messages

68 Pascal/VS Programmer's Guide

CI

This section describes the rules that
the Pascal/VS compiler employs in map-.
ping variables to storage locations.

10.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off­
sets within the routine's dynamic stor­
age area (DSA) . There is a DSA
associated wi th every routi ne of the
program plus one for the main program
itself. The DSA of a routine is allo­
cated when the routine is called and is
deallocated when the routine returns.

10.2 INTERNAL STATIC STORAGE

For source modules that contai n va­
riables declared STATIC, a single
unnamed control section ('private
code') is associated with the source
module in the resulting text deck.
Each variable declared via the STATIC
construct, regardless of its scope, is
assi gned a uni que offset wi thi n thi s
control section.

10.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control sect ion
(csectL Each def variable which is
not initialized will generate a named
common section. The name of the sec­
tion is derived from the first eight
characters of the var i able's name.

10.0 STORAGE MAPPING

10.4 DYNAMIC STORAGE

Pointer qualified variables are allo­
cated dynamically from heap storage by
the procedure 'NEW'. Such var i abl es
are always aligned on a doubleword
boundary.

10.5 RECORD FIELDS

Fields of records are assigned con sec­
uti ve offsets wi thi n the record ina
sequential manner, padding where nec­
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

10.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/VS
source module is assigned storage and
aligned according to its declared type.

10.6.1 The Predefined Types

The table in Fi gure 48 displays the
storage occupancy and boundary align­
ment of variables declared with a pre-
defined type. '

STORAGE MAPPING OF DATA

DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
REAL 8 DOUBLE WORD
STRING(len) len+1 BYTE

Figure 48. Storage mapping for predefined types

Storage Mapping 69

I --.- - ----.- - - ----- _.- - - - - -- - - - - - - - - -. - - - - - - -- - .-. -. -- -- - - - - - -- - - - - .- - - --

c
10.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar dQfinQs
more than 256 values then it will occu­
py a half word and will be aligned on a
half word boundary.

10.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed wi 11 be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
i ndi cated in the table of Fi gure 49.
Given a type definition T as:

type
T = packed i .. j;

and

const
I = ORDCi);
J = ORDCj);

Range of
I .. J

o •• 255

-128 •. 127

-32768 .. 32767

0 .• 65535

otherwise

SIZE in
bytes

1

1

2

2

4

ALIGNMENT

BYTE

BYTE

HALF WORD

HALF WORD

FULL WORD

Figure 49. Storage mapping
subrange scalars

of

Each entry in the first column in the
above table is meant to include all
possi ble sub-ranges wi thi n the spec­
if i ed range. Fo r exampl e, the range
100 .• 250 would be mapped in the same
way as the range 0 .. 255.

10.6.4 RECORDs

An unpacked record is al i gned on a
boundary in such a way that every field
of the record is properly al i gned on
its requi red boundary. That is,
records are al i gned on the boundary
required by the field with the largest
boundary requirement.

70 Pascal/VS Programmer's Guide

For example, record A below wi 11 be
al i gned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of
type REAL; record C will be aligned on
a byte.

type
A= record (*full word aligned*)

Al INTEGER;
A2 : CHAR

end;

B= record C*double word aligned*)
Bl Ai
B2 REALi
B3 : BOOLEAN

end;

C= record C*byte aligned*)
Cl packed o •• 255;
C2 ALPHA

end;

Figure 50. Alignment of records

Packed records are always aligned on a
byte boundary;

10.6.5 ARRAYs

Consider the following type
definition:

type
A = array [s] of t

where type s is 'a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary requ i rQd for data type 't'.
Wi th the excepti on noted below, the
amount of storage occupied by this var­
iable is computed by the following
expression:

CORDCHIGHESTCs»-ORDCLOWESTCs»+I)
* SIZEOFCt)

The above expression is not necessarily
appl i cabl ei f ' t ' represents an
unpacked record type. In thi s case,
paddi ng wi 11 be added, if necessary,
between each element so that each ele­
ment wi 11 be al i gned on a boundary
whi ch meets the requi rements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev­
er inserted between elements.

A multi-dimensional array is mapped as
an array of arrayCs). For example the

c

c

following two array definitions would
be mapped identically in storage.

array [i .. j, m .. n] of t

array [i .. j] of
array [m .. n] of t

10.6.6 FILEs

File variables occupy 64 bytes and are
aligned on a full word boundary.

10.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequatelY explain how sets are
mapped, two terms will need to be
defined: The base type is the type to
which all members of the set must
belong. The fundamental base type
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0' .. ' 9'

has the base type defined by '0' .• '9'j
and a fundamental base type of CHAR.

Any two unpacked sets whi ch have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S = set of s;
T = set of tj

where s is a non-subrange scalar type
and tis a subrange of s: both Sand T
will have the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though th i s va 1 ue may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to conta in
the largest value of the fundamental
base type. Packed sets occupy the min­
i mum number of bytes to conta in the
largest valid value of the base type.
Thus, variables A and B below will both
occupy 256 bits.

var
A set of CHARi
B : set of '0' .. ' 9 ' i

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
C set of (C1,C2,C3,C4,C5,C6,

C7,C8,C9,C10,C11,C12
C12,C13,C14,C15,C16);

D : set of C1 .. C8;
E : packed set of C1 .• C8;

A set type with a fundamental base type
of INTEGER is restri cted so that the
largest member to be contained in the
set may not exceed the value 255;
therefore, such a set will occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bi ts; vari able X wi 11 occupy 32
bits.

var
U set of 0 .. 255;
V set of 10 .• 20;
W packed set of 10 .• 20;
X packed set of 0 •• 31;

Gi ven that Mis the number of bi ts
require? for a particular set, the
table 1 n Fi gure 51 i ndi cates how the
set will be mapped in storage.

Range of SIZE
M BYTES

1 <= M <= 8 1

9 <= M <= 16 2

17 <= M <= 24 3

25 <= M <= 32 4

33 <= M <= 256 (M+7)
DIV

Figure 51. Storage
SETS

10.6.8 SPACEs

ALIGNMENT

BYTE

HALF WORD

FULL WORD

FULL WORD

BYTE
8

mapping of

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes i ndi cated in the
length speci fi er of the type
definition. For p.xample, the variable
S declared below occupies 1000 bytes of
storage.

var S: space [1000] of INTEGER;

Storage Mapping 71

o

11.1 LINKAGE CONVENTIONS

Pascal/VS uses standard OS linkage
conventions with several additional
restrictions. The result is that
Pascal/VS may call any program that
requires standard conventions and may
be called by any program that adheres
to the addi ti onal Pascal/VS restri c­
tions.

On entry to a Pascal/VS rout i ne the
contents of relevant registers are as
follows:

• Register 1 - points to the parame­
ter list

•

•

•
•

Regi ster 12 po i nts to the
Pascal/VS Communication Work Area
CPCWA)

Reg i ster 13 - po i nts to the save
area provided by the caller

Register 14 - return address

Register 15 - entry point of called
routine

Pascal/VS requires that the parameter
register CR1) be pointing into the
Dynarn i c Sto rage A rea C DSA) stack i n
such a way that 144 bytes prior to the
Rl address is an ava i labl e save area.

11.0 CODE GENERATION FOR THE IBM/370

11.2 REGISTER USAGE

The table in Fi gure 52 descri bes how
each general register is used within a
Pascal/VS program. The floating point
registers are used for computation on
data of type REAL.

registerCs)

0,1

purposeCs)

- temporary work registers
for the compiler

- standard linkage usage
on calls

3,4,5,6,7,8,9

2,10

11

12

13

14,15

- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

- address of DSA of active
routine at outermost
lexical level

- always points to Pascal/VS
Communication Work Area

- always points to the local
DSA

- temporary work registers
for the compiler

- standard linkage usage
on calls

Figure 52. Register usage

Code Generation for the IBM/370 73

c/

o

11.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area (OSA) is allocated. Thi s area is
used to contain save areas, local vari­
ables and compiler generated tempo­
raries. Pascal/VS requires a minimum

register 13--->~------------------~
0:

4:

DSA of 144 bytes; if the rout i ne ha s
parameters or local variables, more
space is needed.

The first 72 bytes are generally used
according to standard as linkage con­
ventions. The first word is used to
copy the previous data base register at
the current procedure nesting level.

save space for DISPLAYClevel)

pointer to last save area

8: /////////////////// reserved for future use

12: return address

16: entry point address

20: general purpose
registers
o 12

72: /////////////////// reserved for future use

r--80 :-

~-84:-

---88:-

pointer to translator temporaries

pointer to parameter list build area

pointer to run time environment save
area

pointer to the frequency count table 92:

96:

100:

1///////// execution flags, check function flag

reserved for
error handling

112: floating point

144:

L--___ >

>

>

registers
FO F6

parameter
1 i st

local variables
and compiler
temporaries

144

translator
temporaries

byte save area

parameter list
to be built here

144 byte save area

16 byte rte parms

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

for the next routine to be called

for runtime environment in case of
error

room for parameters if required by
error recovery

//// = indicates that the field is not presently used.

Figure 53. DSA format

74 Pascal/VS Programmer's Guide

o

11.4 ROUTINE INVOCATION

Each invocation of a Pascal/VS routine
must acqui re a dynami c storage area
(DSA) (see "Dynami c Storage Area" on
page 74), Thi s storage is allocated
and deallocated ;n a LIFO (last
; n/fi rst out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which
storage is to be allocated.

Every DSA must be at least 144 bytes
long; this ;s the storage required by
Pascal/VS for a save area. The rou­
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon enter i ng a rout i ne, reg i ster 1
poi nts 144 bytes into the routi ne' s
DSA, which 1S where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. This
portion of storage is actuallY an
extension of the caller's DSA.

REG 13 1-->

L--R_E_G_1_---II-->

top of stack ---->

caller's save area

local save area
(144 bytes)

Parameters

In general, the DSA of a routine con­
sists of five sections:

1. The local save area (144 bytes).

2. Parameters passed in by the caller.

3. Local variables required by the
routine.

4. A save area required by any routine
that will be called.

5. Storage for the largest parameter
Ii st to be bui It for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, 4, and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation, register 13 points to
the ba se of the DSA of the ca 11 er,
which is where the caller's save area
is located. The new value of register
13 may be computed by subtracting 144
from the value in register 1.
Figure 54 illustrates the condition of
the stack and relevant registers imme­
diately at the start of a routine.

start of DSA of caller

start of DSA of called routine

144 bytes into DSA

--------------------- storage yet to be allocated

local variables

save area
of any routines
yet to be invoked

start of DSA of routine yet
to be called

144 bytes into this DSA [-~:~-~:~:-]----> for calls

parameter list to
be built for calls
to other routines

next stack top -->

Figure 54. Snapshot of stack and relevant registers at start of routine

Code Generation for the IBM/370 75

c/

G

o

11.S PARAMETER PASSING

Pascal/VS passes parameters in several
di fferent ways dependi ng on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter list is al i gned on a
doubleword boundary and each parameter
is aligned on its proper boundary.
Addresses are aligned on word bounda­
ries.

11.S.1 passing bv Read/Wri~e Refer­
gn£g

This mechanism is indicated by use of
the reserved word var in the rout i ne
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROCevar I:INTEGER);

Routine Invocation:

PROCeJ);

Parameter list:

address of J

Figure 55. Passing by Read/Write
reference

11.5.2 Passing by Read-only Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
thi s way may not be modi fi ed by the
invoked routine.

The parameter list contains the address
of the actual parameter.

76 Pascal/VS Programmer's Guide

Routine Heading:

procedure PROceconst I: INTEGER);

Routine Invocation:

PROCeJ+5);

Parameter list:

address of a memory location
which contains the value of
J+5.

Figure 56. Passing by Read-only
reference

11.5.3 passing by Value

Thi s mechan ism is the defaul t way in
whi ch parameters are passed. Parame­
ters passed in this way are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or set,
then the parameter 1 i st wi 11 contai n
the value of the actual parameter. If
the actual parameter is an array,
record, space, or &string., then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure wi 11 copy
the parameter into its local storage.

Routine Heading:

procedure PRoce
I : INTEGER;
A : ALPHA);

Routine Invocation:

PROC(J,'alpha');

Parameter list:

value of J
address.of 'alpha

Figure 57. Passing by value

o

o

11.5.4 passing Procedure or Function
Parameters

For procedures or functions which are
being passed as parameters, the address
of the routine ;s placed ;n the parame­
ter list.

Routine Heading:

procedure PROC(
function X(Y: REAL): REAL);

Routine Invocation:

PROC(COS);

Parameter list:

address of COS routine

Figure 58. Passing
parameters

routine

11.5.5 Function Results

Pascal/VS functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the functi on result is to be
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

I : = FUNC (, l ') ;

Parameter list:

- address of returned integer
result

- value of character 'l'

Figure 59. Function results

Code Generation for the IBM/310 11

o

11.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function
is arranged in the order shown below.
Regi ster 2 is the code base regi ster
for the first 4K bytes of the routine
body. I f the rout in e occup i es mo re
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routi ne exceeds 8K
bytes of storage, the compi ler wi 11
diagnose it as a terminal error.

Reg 2 ---.
Entry pt --L>

DEBUG control
block

entry prologue

body
of

routine

exit epilogue

literals:
ACONS, VCONS,
and small values
1 to 8 bytes long

STRING and SET
literals longer
than 8 bytes

statement table
(if present)

Figure 60. Routine format

78 Pascal/VS Programmer's Guide

11.7 PCWA

The Pascal Communications Work Area is
always addressable from regi ster 12.
This area of memory is used to contain
global information about the execution
of the program.

The area is divided .into two parts,
each i s 2048 bytes 1 n 1 ength. The
first part contains data that needs to
be addressable; the second is composed
of the small routines used to augment
the generated code. An example is the
routine that is used to concatenate two
strings.

c

0

o

offset
o

width in bytes

4

8

12

16

20

24

28

32

36

68

72

80

88

96

104

112

256

320

324

328

332

336

340

1776

1920

1984

end of stack

current stack

flags 1

flags 2

return code

pointer to files

pointer to parms

module link

ext. save area

level display

debug temp

floating pt temp

conversion const1

conversion const2

set mask

temp dsa save

error recovery
save area

error recovery
param list build

address of HALT

addr of allocator

addr of dealloc

default alloc size

addr of checker

reserved

SPIE save area

SPIE work area

memory space desc

4

4

4

4

4

4

4

4

4

32

4

8

8

8

8

8

144

64

4

4

4

4

4

1436

144

64

64

Figure 61. Pascal Communications
Work Area

end of stack
a pointer to the end of the current
DSA stack.

current stack
a pointer to the top of the current
DSA stack.

flags 1
reserved for future use.

flags 2
flags used to enable runtime fea­
tures.

return code
the value assigned by the last exe­
cution of RETCODE or zero if
RETCODE has not been called.

pointer to files
a po inter to the fi rst fi Ie that
has been opened but never closed.

pointer to parms
a po inter to the pa rameter list
passed to the program.

module link
a po inter to the head of a cha in
that links modules together as
di rected by the interact i ve
debugger.

ext. save area
conta ins the po inter to the save
area for the caller of the Pascal
program.

level display
a stack of 8 base regi sters that
contain the addresses of the DSAs
that are available to the executing
routine.

debug temp
a temporary used by the symbolic
debugger.

floating pt temp
a temporary used in conversion
between floating point numbers and
integers.

conversion constl
a constant that contains the float­
ing point value zero.

conversion const2
a constant that contains the float­
ing point value of 2 raised to the
31 power minus 1 in an unnormalized
form.

set mask
eight bytes that contain masks used
in set operations.

temp dsa save
a temporary used during execution
errors.

error recovery save area
used as a register save area when a
program error or checking error
occurs.

error recovery parm list build
used when a program error or check­
ing error occurs to build a parame­
ter list in order to invoke a
recovery procedure.

Code Generation for the IBM/370 79

c

o

address of HALT
address of a procedure which termi­
nates the program no matter what
state it is in. This procedure is
normally HALT.

addr of allocator
address of the rout i ne whi ch is
responsi ble for allocati ng blocks
of storage.

addr of deallocator
address of the routi ne whi ch
releases blocks of storage.

default alloc size
the number of bytes of storage that
the allocation routine will allo­
cate when called.

addr of checker
the address of the routine which is
invoked to diagnose a checking
error.

reserved

sp t e save area
a small save area used when a SPIE
exi tis invoked.

spie work area
a place to save certain information
from the SPI E.

memory space desc
descriptors used to control the
allocation and deallocation poli­
cies of dynamic storage and I/O
buffers.

80 Pascal/VS Programmer's Guide

11.8 FCB - FILE CONTROL BLOCK

Every Pascal/VS file is represented by
a fi Ie control block. An FCB is com­
posed of 64 bytes of space.

offset
o

width in bytes

4

6

8

16

18

20

22

24

28

32

36

40

44

48

52

56

60

file pointer

flags

elem len

symbolic name

buf i dx

buf end

rec len

rec end

pointer to buffer

pointer to record

last fcb

next fcb

pointer to DCB

pointer to DECB

aux buffer

pointer to exten.

current status

not assigned

Figure 62. File Control
(FCB) format

The fi elds are defi ned as:

Fi Ie pointer

4

2

2

8

2

2

2

2

4

4

4

4

4

4

4

4

4

4

Block

po i nts to the current element of
the fi Ie.

Flags
set of file flags (16 bits). The
flags are:

FOPEN indicates that file is
open;

FINPUT the file is open for input
(output otherwise);

FTEXT

FEOLN

the fi Ie is of type TEXT;

end-of-line condition ;s
true;

c

FEOF end-of-file condition is
true;

FFIXED file is fixed block (vari­
able block otherwise);

FSEQ sequential file;

FINTER interactive file;

FFEOL

FSUMR

FSUMW

end-of-line condition is
true, but not as a result
of READLNi

file is prepared for read­
ing;

file is prepared for writ­
ing;

FALTIO alternate 1/0 system in
use.

Elem len
the length of one element of the
file

symbol i c name'
the DDNAME of the file.

Buf idx
count of the number of bytes from
beginning of buffer used.

Buf end
total length of buffer in bytes.

Rec len
logi cal record length of current
record.

Rec end
byte offset from beginning of buff­
er for the end of the current
record.

Pointer to buffer
address of the beg inn i ng . of the
buffer.

Pointer to record
address of the current record in
the buffer.

Last FCB
back chain of currently open FCBs.

Next FCB
forward chain of currently open
FCBs.

Po inter to DCB
address of the as Data Control
Block.

Pointer to DECB
address of the Data Event Control
Block.

Aux buffer
the address of a buffer that needs
to be freed when the file is
closed.

Pointer to exten.
the address of another 64 byte area
used to implement special 10 inter­
faces.

Current status
status of the fi Ie.

Code Generation for the IBM/370 81

G

o

Writing an assembler language routine
for Pascal/VS is a simple operati on·
provided that a set of conventions are
carefully followed. There are two rea­
sons for the need for these
conventions:

1. Pasca!/VS parameter passi n9 con­
v~ntions: As described in "Parame­
ter Passing" on page 76, Pascal/VS
parameters are passed in a variety
of ways, depending on their attri­
butes.

2. The Pascal/VS env ironment: Thi sis
an arrangement of regi sters and
control blocks used by Pascal/VS to
handle storage management and
runt i me error recovery. (see "Reg­
i ster Usage" on page 73.)

12.1 WRITING ASSEMBLER ROUTINE WITH
MINIMUM INTERFACE

Writing an assembler routine with the
mi n i mum interface requ i res the least
knowledge of the runtime environment.
However, such a routine has the follow­
ing deficiencies:

• It may not call a Pascal/VS
routine;

• It must be non-recursive;

• If a program error should occur
(such as divide by zero), the

anyname

12.0 LINKING TO ASSEMBLER ROUTINES

Pascal/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
assembler language routine, register
14 contai ns the return address and reg­
ister 15 contains the starting address
of the routine. The routine must fol­
low the System/370 linkage conventions
and save the regi sters that wi 11 be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
will contain the address of the regis­
ter save area provided by'the caller,
and register 1 will point to the first
of ali st of parameters bei ng passed
(if such a list exists). Once the reg­
ister values are stored in the caller's
save area, the save area address (reg­
ister 13) must be stored in the
backchain word in a save area defined
by the assembler routine itself.
Before returning to the Pascal/VS rou­
tine, the registers must be restored to
the values that they contained when the
assembler routine was invoked.

If you insert your assembler
instructions at the point indicated in
the skeletal code shown in Figure 63,
your assembler routi ne can be called
from a Pascal/VS routine and you need
have no knowledge of the Pascal/VS
environment.

procname

CSECT
ENTRY
DS
STM
BALR
USING
ST

procname
OH
14,12,12(13)
basereg,O
*,basereg
13,SAVEAREA+4
13,SAVEAREA

declare routine name as an entry point
entry point to routine

* *

LA

L
LM
BR

SAVEAREA DC
END

13,4(13)
14,12,12(13)
14
20F'O'

save Pascal/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of assembler routine

restore the floating point registers if
they were saved
restore Pascal/VS registers

return to Pascal/VS
local save area

Figure 63. Minimum interface to an assembler routine: skeletal code to be
invoked from Pascal/VS

Linking to Assembler Routines 83

C'"
/

12.2 WRITING ASSEMBLER ROUTINE WITH GENERAL INTERFACE

procname PROLOG LASTREG=r,VARS=n,PARMS=P

EPILOG LASTREG=r

where:

procname is the entry point name of the routine.

LASTREF is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.
This value must be the same for both the PROLOG and EPILOG macros.

VARS is the number of bytes required for any local data, including
passed-in parameters.

PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

defaults:
LASTREG=12
VARS=3
PARr1S=O

Figure 64. PROLOG/EPILOG macros

If an assembler routi ne has at least
one of the following characteristics,
the general interface must be used:

• It calls a Pascal/VS routine;

•
It is recursive;

Program errors must be intercepted
and diagnosed by the Pascal/VS
runtime environment.

Two assembler macros are available
which are used to generate the prologue
and epi logue of an assembler rout i ne
with a general Pascal/VS interface.
The macro names are PROLOG and EPILOG
and thei r forms are descri bed in the
fi gure above.

The PROLOG macro preserves any regis­
ters that are to be modified and allo­
cates storClge for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is estClblished as the
base register for the first 4 kilobytes
of code.

Upon ent~ring a routine prior to exe­
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

• Register 1 - address of the parame­
ter list built by the caller, which
is 144 bytes into the DSA to be
used by the called routine.

• Register 13 - address of the DSA of
the calling routine.

• Register 14 - return address.

• Register 15 - address of the start
of the called routine.

Upon execut i ng the code generated by
the PROLOG macro, the registers are as
follows:

•
•

•

•
•
•

•

Register 0 - unchanged

Register 1 - address of an area of
storage in whi ch parameter lists
may be built to pass to other rou­
tines.

Register 2 - base register for the
fi rst 4 kilobytes of code wi thi n
the invoked routine.

Registers 3 through 11 - unchanged.

Register 12 - unchanged

Register 13 - address of the local
DSA of the routine just invoked.
The first 144 bytes is the register
save area for the invoked routine.
Followi ng the save area is where
the parameters passed in by the
caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter list build area.

Register 14 - unchanged. o· Regi ster 12 - address of the Pascal
Communication Work Area (PCWA). • Register 15 - unpredictable.

84 Pascal/VS Programmer's Guide

The EPILOG macro restores the saved
regi sters, then branches back to the
calling routine. In order for the
epilogue to execute properly, register
13 must have the same contents as was
established by the prologue.

The contents of the floating point reg­
isters are not saved by the PROLOG mac-

roo If the floating point registers
are modified, they must be restored to
thei r ori gi nal contents pri or to
returning from the routine.

A skeleton of a general-interface ass­
embler language routi ne whi ch may be
called by a Pascal/VS program is given
below.

* The following names have the indicated meaning

* * * * * * *

'csectnam' is the name of the csect in which the routine resides
'procname' is the name of the routine.
'parms;ze' is the length of the passed-in parameters
'varsize' is the storage required for the local variables
'lastreg' is the highest register (up to 12) which will be modified
'plist' is the length of the largest parameter list required for calls

to other routines from "procname"

* csectnam CSECT

* procname PROLOG LASTREG=lastreg,VARS=varsize+parmsize,PARMS=plist

* EPILOG LASTREG=lastreg
END

<== insert code here

Figure 65. General interface to an assembler routine: skeletal code to be
invoked from Pascal/VS

Linking to Assembler Routines 85

C. ___ ,

o

12.3 RECEIVING PARAMETERS FROM ROU­
TINES

Parameters recei ved from a Pascal/VS
routine are mapped within a list in the
manner described in "Parameter
Passing" on page 76. At invocation
register 1 contains the address of this
list.

If the general interface (see "Writing
Assembler Routine with General Inter­
face" on page 84) is used in wri ti ng'
the assembler routine, passed-in
parameters start at offset 144 from
regi ster 13 after the prologue has been
executed.

12.4 CALLING PASCAL/VS ROUTINE FROM
ASSEMBLER ROUTINE

An assembler language routine may call
a Pascal/VS routine provided that:

1. the P a sca l/VS runt i me env ironment
is active (this will be so if the
assembler routine was invoked by a
Pascal/VS procedure),

2. the general Pascal/VS interface
was incorporated, and

86 Pascal/VS Programmer's Guide

3. the Pascal/VS routine to be called
is an ENTRY routine.

Prior to making the call, register 1
must contain the value assigned to it
within the PROLOG code. Parameters to
be passed are stored into appropriate
di splacements from regi ster 1 as
described in "Parameter Passing" on
page 76.

At the point of call, register 12 must
contain the address of the Pascal Com­
munications Work Area (PCWA). This
will be the case if the assembler rou­
tine was invoked from a Pascal/VS rou­
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into regi ster 15 ·and then the
instruction 'BALR 14,15' is executed.

12.5 SAMPLE ASSEMBLER ROUTINE

In Figure 66 on page 87 and Figure 67
on page 87, a sample assembler routine
is listed which may be called from a
Pascal/VS program. Thi s routi ne exe­
cutes an OS TPUT macro to write a line
of text to a user's termi nal .

c

C~

o

type
BUFINDEX = 0 .. 80;
BUFFER = packed array[1 .. 80] of CHARi

(*this routine is in assembly language*)

procedure TPUT(
const BUF : BUFFER;

LEN: BUFINDEX);
EXTERNAL;

(*this routine is called from the assembly language routine*)
procedure ERROR(

RETCODE: INTEGER;
const MESSAGE: STRING)j

ENTRYj
begin

WRITELN(OUTPUT, MESSAGE, , RETURN CODE =' RETCODE)
endj

Figure 66. Pascal/VS description of assembler routine: the assembler
routine ;s shown in Figure 67.

TIOSEG
TPUT

*

*

CSECT
PROLOG LASTREG=4

L
L
TPUT
LTR
BZ

ST
LA
ST
L
BALR

3,144(13)
4,148(13)
(3),(4)
15,15
TPUTRET

15,0(1)
3,TPUTMSG
3,4(1)
15,=V(ERROR)
14,15

TPUTRET EPILOG LASTREG=3

* TPUTMSG DC AL1(L'TPUTTEXT)
TPUTTEXT DC C'TPUT ERROR'

END

only registers 3 and 4 are modified

load address of 'BUF' parameter
laod value of 'LEN' parameter
write content of 'BUF' to terminal
check return code
if no error then return
build parm list for call to 'ERROR'
assign to 'RETCODE' parameter
load address of message
assign to 'MESSAGE' parameter
load address of 'ERROR' procedure
call 'ERROR'

length byte of string
message text

Figure 67. Sample assembler routine: this routine is invoked by a
Pascal/VS routine and, within itself, invokes a Pascal/VS
routine.

Linking to Assembler Routines 87

'\ C'

o

12.6 CALLING A PASCAL/VS MAIN PROGRAM
FROM ASSEMBLER ROUTINE

A Pascal/VS program may be invoked from
an assembler language routine by load­
i ng a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

Program to be called:

program test;

begin
end.

The convention employed in passing
parameters to a program is dependent on
whether you are runni ng under CMS or
under TSO (or OS Batch). Both con­
ventions require that register 1 be set
to the address of the parameter data.

Assembler instructions to perform the call under CMS:

LA 1,PLIST
L 15,=VCTEST)
BALR 14,15

PLIST DS OF
DC CL8'TEST'
DC CL8'token 1 '
DC CL8'token 2'

DC CL8'token n'
DC 8X'FF'

Assembler instructions to perform the call under VS2 (and TSO):

LA 1,PLIST
L 15,=VCTEST)
BALR 14,15

PLIST DS
DC
DC

OF
XL1'80'
AL3CPARMS)

set first bit of address

PARMS DC
DC

FL2'length' length of parameter string
C'parm string goes here'

Figure 68. Example of calling a Pascal/VS program from an assembler routine

88 Pascal/VS Programmer's Guide

c

C'

o

13.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab­
lishing the Pascal/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated.

2. The Pascal Communication Work Area
(PCWA) is created and initialized.

3. An environment is set up to inter­
cept program interrupts (fixed
point overflow, divide by zero,
etc.)

4. The main program is called.

5. Upon return from the main program
any open files are closed.

13.0 RUNTIME ENVIRONMENT OVERVIEW

6. Acquired memory is freed.

7. Control is returned to the system.

13.2 THE MAIN PROGRAM

The main program is called as an ordi­
nary procedure from the environment
setup routine (AMPXSTRT). The external
name AMPXBEGN is associ ated wi th the
address of the main program execution
code.

13.3 INPUT/OUTPUT ROUTINES

The I/O operat ions (whi ch appear as
calls to predefined procedures in
Pascal/VS) are implemented as calls to
internal procedures within the runtime
environment.

Internal Input/Output Routines

Procedure name

AMPXRSET
AMPXOPEN
AMPXCLOS

AMPXRCHR
AMPXRINT
AMPXRR
AMPXRSTR
AMPXRTXT

AMPXWB
AMPXWCHR
AMPXWINT
AMPXWR
AMPXWSTR
AMPXWTXT

AMPXGET
AMPXPUT

AMPXRREC
AMPXWREC

Action Performed

Opens a file
Opens a file by means of OPEN
Closes a file

Reads a character from a text
Reads an integer value from a

file
text

Reads a floating point value from a
Reads a string from a text file
Reads an array of characters from a

file
text

text

Writes a boolean value to a text file
Writes a character to a text file
Writes an integer to a text file
Writes a real value to a text file
Writes a string to a text file

file

file

Writes an array of characters to a text file

Performs a GET operation on a file
Performs a PUT operation on a file

Performs a READ operation on a non-text file
Performs a WRITE operation on a non-text file

13.4 HEAP MANAGEMENT ROUTINES acqu i red by a precedi ng ca 11 to
AMPXNEW.

The NEW operation generates a call to
the internal procedure AMPXNEW. This
procedure allocates storage wi thi n a
heap. If a heap has not yet been cre­
ated, NEW will obtain memory from the
operating system to create a heap.

The DISPOSE operation generates a call
to the procedure AMPXDISP. This proce­
dure deallocates the heap storage

The MARK operation generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from whi ch subse­
quent calls to AMPXNEW will obtain
storage.

The RELEASE operation generates a call
to the procedure AMPXRLSE. This proce­
dure frees a heap that was previously
created via the AMPXMARK procedure.

Runtime Environment Overview 89

I -- - - - - - - .- .. - -- .- -- -. - - - _ .. - - - .- -. - - - - - - - - - - - -- _.- - - - - - - _. - - -- - - -. - - -- - - - - - -- .. - _ .. - -- -- - -- - - . - -- _ .. - - - - - --'- - - -- - .- -- -

c

o

Subsequent calls to AMPXNEW will obtain
storage from the heap which was active

90 Pasca!/VS Programmer's Guide

prior to the call of AMPXMARK.

c'

o

Release 1.0 of Pascal/VS has several
differences from 'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have su i table
facilities.

14.1 PASCAL/VS RESTRICTIONS

Pascal/VS contains the following
restrictions that are not in standard
Pascal.

Non-local labels
Branching to a non-local label (by
means of the gata statement) is not
supported.

Files
Fields within records and elements
of arrays may not be declared as
files. Files may not be pointer
qualified.

Routine parameters
A routine which is passed as a
parameter must not be nested within
another routi ne; that is, it must
be at the outermost nesting level.

14.2 MODIFIED FEATURES

Pascal/VS has modi fi ed the meani ng of a
negative length field qualifier on an
operand within the WRITE statement.

14.3 NEW FEATURES

Pascal/VS provides a number of exten­
sions to Pascal.

• Separately compilable modules are
supported wi th the segment defi­
nition.

• 'internal static' data is sup­
ported by means of the static dec­
larations.

•

•

•

'external static' data is sup­
ported by means of the def and ref
declarations.

Stat i c and external data may be
initialized at compile time by
means of the value declaration.

Constant expressions are permitted
wherever a constant is permi tted
except as the lower bound of a sub­
range type definition.

•

•

•

•

•

•

•

•

•

•

14.0 COMPARISON TO PASCAL

The keyword "range" may be prefixed
to a sub range type def in it i on to
permit the lower value to be a con­
stant expression.

A varying length character string
is provi ded. It is called STRING.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, L TRIM, COM­
PRESS and INDEX.

The parameters of the text READ
procedure may be length-qualified.

Ca 11 s to FORTRAN subrout i nes and
functions are provided for.

Input files may be opened as
"INTERACTIVE" so that I/O may be
done conveniently from a terminal.

I/O is supported for parti ti oned
data sets.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the OPEN procedure.

The space structure is provided for
processing packed data.

• Records may be packed to the byte.

• The tagfield in the variant part of
a record may be anywhere within the
fixed part of the record.

• Fields of a record may be unnamed.

•

•

•

•

•

•

Tag specifications on record vari­
ants may be ranges (x .. y).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators 'I', '&', '&&' and
,~, may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basi s. Shi ft operati ons on data
are also provided.

Integer constants may be expressed
in hexadecimal digits.

Comparison to Pascal 91

•

c.
•

•

•

•

c

o

Real constants (floating point)
may be expressed in hexadecimal
digits.

string constants may be expressed
in hexadecimal digits.

The ~INCLUDE fac iIi ty prov i des a
means to include source code from a
library.

A parameter passing mechanism
(const) has been defined which
guarantees that the actual parame­
ter is not modi fi ed yet does not
require the copy overhead of a pass
by value mechanism.

leave, continue and return are new
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val­
ue or an identifier.

92 Pascal/VS Programmer's Guide

•

•

•

•

•

•

•

case statements may have a range
notat i on on the component state­
ments.

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permits
runtime checks to be compiled into
the program.

The followi ng system interface
procedures are supported: HALT,
CLOCK, and DATETIME.

Constants may be of a structured
type (namely arrays and records).

To control the comp; ler Ii sti ng,
the followi ng I; st i ng di rect i ves
are supported: ~PAGE, ~SKIP, and
~TITLE.

o

15.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and 43xx
computers providing one of the follow­
ing operating environments:

• VM/CMS

• OS/VS2 TSO

• OS/VS2 Batch

15.2 MEMORV REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro­
gram can be performed ina 256K CMS
machine.

The compiler requires a minimum region
size of 512K under VS2 (MVS). A com­
piled and link-edited program can exe­
cute in a 128K region.

15.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions
Pascal/VS "short circuits"
boolean expressi ons i nvolv; ng
the and and or operators. For
example, given that A and Bare
boolean express; ons and Xis a
boolean variable, the evaluation
of

X := A or B or C

would be performed as

if A then
X := TRUE

else
if B then

X := TRUE
else

X := C

The evaluation of

X := A and Band C

would be performed as

15.0 IMPLEMENTATION SPECIFICATIONS

if -A then
X := FALSE

else
if -B then

X := FALSE
else

X := C

See the section entitled
"Boolean Expressi ons" in the
Pascal/VS Reference Manual for
more details.

Floating-point
Some commonly required charac­
teristics of System/370 float­
i ng-po i nt a r i thmet i care shown
in Figure 69 on page 94.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a
longer name, it will ignore that
portion of the name longer than
16 characters.

Names of external variables and
external routines must be unique
wi thi n the fi rst 8 characters.
Such names may not conta in an
underscore' , within the first 8
characters.

Integers
The largest integer that may be
represented is 2147483647. 9 This
is the value of the predefi ned
constant MAXINT.

The most negati ve integer that
may be represented is
-2147483648. This is the value
of the predefined constant
MININT.

Rout; ne nest i ng
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The followi ng standard rout i nes
may not be passed as parameters
to another routine:

ABS, CHR, CLOSE, DISPOSE, EOF,
EOLN, FLOAT, GET, HBOUND, HIGH­
EST, INTERACTIVE, LBOUND,
LENGTH, LOWEST, MARK, MAX, NEW,
000, ORO, PACK, PAGE, PREO, PUT,
READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF,SQR,
STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN

A routine may not be passed as a
parameter if it is nested within
another routine; that is, a rou-

9 This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 93

C~:

o

o

Floating-point Characteristics

Characteristic

Maxreal 2

Minreal 3

Epsilon 4

Decimal approximation

7.23700557733226E+75

5.39760534693403E-79

1.38777878078145E-17

Exact Representation1

'7FFFFFFFFFFFFFFF'XR

'OOlOOOOOOOOOOOOO'XR

'3310000000000000'XR

1 The syntax ' ••• 'XR is the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the
Pascal/VS Reference Manual.

2 Maxreal is the largest finite floating-point number that may be
represented.

3 Minreal is the smallest positive finite floating-point number that
may be represented.

4 Epsilon is the smallest positive floating-point number such that the
following condition holds:

1.O+epsilon > 1.0

This value is often needed in numerical computations involving
converging series.

Figure 69. Characteristics of System/370 floating point arithmetic

Sets

tine being passed as a parameter
must be at the outermost nesting
level.

A FORTRAN function or subroutine
may not be passed as a parameter
to a Pascal/VS routine.

Given a set type of the form

94 Pascal/VS Programmer's Guide

set of a .. b

where "a" and "b" express the
lower and upper bounds of the
base scalar type, the following
conditions must hold:

• OROCa) >= 0

• OROCb) <= 255

16.0 PASCAL/VS MESSAGES

('

,/ 16.1 PASCAL/VS COMPILER MESSAGES

No. Message and Explanation

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 Source continues after end of program

The compiler detected text after the logical end of the program.
This error is often caused by mismatched begin/end brackets.

3 "END" expected

4 Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displayable EBCDIC character. If the string is printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character is intended, then the string should be
represented in hexadecimal form.

c
S Symbol invalid or ,out of context

The indicated symbol i s not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

6 EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error
mismatched begin/end brackets.

is often caused by

7 "BEGIN" expected

8 semicolon ' . , expected ,

9 VAR declarations not permitted here

The indicated var declaration appears in the outermost lexical level
of a segment module. Automatic variables (those declared via the
var construct) must be local to either the main program or to a rou-
tine; they may not be declared in the outermost level of a segment
module. The declaration may be changed to static.

11 Ambiguous procedure/function specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

12 Multiply defined label

The indicated label has been previously defined within the surround-
ing routine.

o
Pascal/VS Messages 95

13 Label identifier expected

Ci Within the indicated label definition, a label identifier is
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

14 File types restricted to simple variables

Only a variable may be declared as a fi Ie.

As a restriction imposed by Pascal/VS, neither a field of a record
nor the elements of an array may be declared as a file. In
addition, the object of a pointer may not be of a file type.

15 '=' expected

16 Identifier required to be a type in tag field specification

Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represent the tag field's
type was not declared as a type.

17 ' : ' expected

18 Parameters on forwarded routine not necessary

A routine declaration which has been previously declared as FORWARD
must not specify any formal parameters. Any formal parameters are
assumed to have been specified previously on the associated declara-
tion that contained the FORWARD directive. .

19 Files passed by value not parmitted

The indicated formal value parameter is of a file type. A file var-

G iable may be passed to a routine only by the var or const mechanism;
never by value.

21 ') , expected

22 Forwarded routine class conflict

A procedure declaration was previously declared as a forwarded func-
tion; or a function declaration was previously declared as a for-
warded procedure.

23 Routine nesting exceeds maximum

The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

24 Too many nested WITH statements or RECORD definitions

This error is caused by either too many nested with statements, or
too many nested record definitions.

25 Type not needed on forwarded function

A function declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORWARD directive.

26 Missing type specification for function

The indicated function header did not specify a return type.

o
96 Pascal/VS Programmer's Guide

c

o

27

28

Procedure/Function previously FORWARDed

The indicated routine declaration that contains the FORWARD direc­
tive was already previously forwarded.

Additional errors not printed

The indicated construct contained more errors, but were not printed
due to space considerations.

29 Illegal hexadecimal or binary digit

An invalid hexadecimal digit was detected within a hexadecimal con­
stant specification of the form

' .•. 'X, ' ... 'XC, or ' ... 'XR;

or, an invalid binary digit was detected within a binary constant
specification of the form

, ••• ' B •

The following characters are valid hexadecimal digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 0, E, F,
a, b, c, d, e, f

The following characters are valid binary digits:

0, 1

30 unidentifiable character

31

32

The indicated character is not recognized as a valid token.

Digit expected

A decimal digit was expected but missing at the indicated location.

Real constant has too many digits

The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, please
notify the compiler maintenance group at IBM.

33 Integer constant too large

The indicated integer constant is not within the range -2147483648
to 2147483647.

34 End of string not seen

A string constant may not cross a line boundary. This error i.s
often the result of mismatched quotes.

If a
broken
tor.
time).

string constant is too large to fit on one line, it must be
up into multiple strings and concatenated with the I I opera­

(Concatenation of string constants is performed at compile

35 Hexadecimal integer constant may not exceed 8 digits

The indicated hexadecimal constant exceeds the maximum allowed num­
ber of digits.

36 Char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con­
stants are concatenated.

Pascal/VS Messages 97

c

c

o

37 standard routines not permitted as parameters

standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou­
tines:

ABS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
ODD, ORD, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN

38 Variable must be of type file

The indicated variable is required to be of a file type.

39 Must be of type TEXT

The indicated variable is required to have been declared with the
predefined type TEXT.

40 Required parameters are missing

The indicated READ or WRITE statement contains no parameter from
which to reference data.

41 Comma ',' expected

42 User defined scalars not permitted

43

44

Expressions which are of a user defined enumerated type may not be
directly read from or written to a text file.

operand of READ/WRITE not of a valid type

Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:

- INTEGER
REAL
CHAR
BOOLEAN
STRING
packed array[l .. n] of CHAR
where n is a positive integer constant.

Length field must be integer

The indicated length qualifier expression in a READ or WRITE state­
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.

45 set contains constant mernber(s) which are out of range

46

The indicated set constant contains members which are not valid for
the set variable to which the constant is being assigned.

For example,

var S : set of 10 .. 20;
begin

5 .- [1,2]; (*<== this statement would produce error 45*)
end;

This error may also occur when a set constant is being passed as a
parameter.

2nd length applicable only to REAL data

In the procedure WRITE (text file case), only expressions of type
REAL are permitted to have two length field qualifications.

98 Pascal/VS Programmer's Guide

48 Associated variable of subscript must be of an array type

c An attempt is being made to subscript a variable which was not
declared as an array.

49 Expression must be of a simple scalar type

The indicated expression should be of a simple scalar type within
the context in which it is being used.

51 Variable must be of a pointer type

The indicated variabie is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

52 corresponding variant declaration missing

Within a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fails to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

53 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

54 Expression must be numeric

Expressions which are prefixed with a sign ('+' or ,-,) must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expression must be of type real

G The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

56 Expression must be of type integer

The indicated expression must be of a type that is compatible with
INTEGER.

57 parameter type does not match formal parameter

Within a procedure or function call, an expression or variable is
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 This expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-var parameter.

59 Number of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.

60 ' (, expected

61 Constant expected

o
Pascal/VS Messages 99

c

c

o
100

62 Type specification expected

At the place indicated, a type definition is expected but is
missing.

63 ' •• ' expected

64 Expression's type is incorrect or incompatible within context

This error is caused by a number of reasons:

• A unary or binary operator is being applied to an expression
which is of a type that is not valid for the operator.

• Two expressions being joined by a binary operator are of incom­
patible types.

• The parameters of the MIN/MAX functions are not of consistent
types.

• Members of a set constructor have inconsistent types.

65 Subrange lower bound > upper bound

66 Assignment to ptr qualified variant record invalid

67

The indicated statement attempts to assign to the whole of a pointer
qualified record with variant fields. Such an assignment is not
valid under Pascal/VS. This restriction is necessary because the
pointer qualified record may have been allocated with a size that is
specific to its active variant. '

Example of violation:

type
R = record

case BOOLEAN of
TRUE: (C:CHAR)i
FALSE: (A: ALPHA)

end;
var P : ->Ri

RR : Ri
begin

NEWCP,TRUE);
P-> .- RR C*<===invalid assignment*)

end

Real type not valid here

The indicated expression is of type REAL. An expression of this
type is not valid within the associated context.

68 "OF" expected

69 Tag constant does not match tag field type

Within
of a
type.

a record definition, a variant tag is being defined which is
type that is not compatible with the corresponding tag field

Within a call to NEW or SIZEOF, a tag value is specified which is of
a type that is not compatible with the corresponding tag field type
of an associated record variable.

70 Duplicate variant field

Within a record definition, a variant tag is being defined more than
once.

Pascal/VS Programmer's Guide

71 Not applicable to "PACKED" qualifier

The indicated type definition was qualified with the word "packed".
Such a qualification within the associated context is not valid.

72 ' [, expected

73 Array has too many elements

The length of the indicated array definition exceeds the address-
ability of the computer.

74 '] , expected

76 File of files not supported

77 Illegal reference to function name

The indicated identifier is the name of a function. It i s being
used in a way that is incorrect.

78 Subscript type not compatible with index type

The indicated subscript expression is not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record type.

A variable associated with the indicated statement or expression is
required to be of a record type according to context; but such is
not the case.

c
80 Record field qualifier not defined

The indicated record field does not exist for the associated record.

81 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compi ler error.

82 Associated variable must be of a pointer or file type

The indicated arrow qualified variable is not of a pointer or file
type.

83 Set element out of range

The indicated set member of a set constructor exceeds the allowed
range for the set.

84 Expression must be of a set type

The indicated expression i s required to be of a set type in the con-
text in which it is being used.

85 Must be positive integer constant

The indicated expression fails to evaluate to a positive integer
constant, which is required in the context in which it is be; ng
used.

86 LEAVE/CONTINUE not within loop

The indicated leave or continue statement fails to reside within a
loop construct.

Pascal/VS Messages 101

87 ' : =' expected

C'· 89 Jump out of procedure not supported

The target label of a goto statement must be local to the routine in
which the statement resides. This is a Pascal/VS restriction.

90 Label not declared

The indicated label did not appear in a label declaration.

92 "THEN" expected

93 Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

95 "UNTIL" expected

96 "DO" expected

97 FOR-loop index must be simple local variable

A for-loop variable must be declared as a simple automatic (val')
variable, local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "TO" expected

c 99 Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

103 Expression must be of type BOOLEAN

The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAN. The indicated expres-
sion failed to meet this criteria.

104 Constant out of range

The indicated constant expression evaluated to a value which is out-
side the required range of its context.

105 Identifier was previously declared

The indicated identifier within a declaration was previously
declared within the same lexical scope.

102 Pascal/VS Programmer's Guide

106 Undeclared identifier

c The indicated identifier being referenced was not declared.

107 Identifier is not in proper context

The indicated identifier is being used in a way that is not consist-
ent with how it was declared.

108 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

109 Case label tag of wrong type

The value of the indicated case statement label is not of a type
that is conformable to the case statement indexing expression.

110 Loop will never execute

The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi-
tionally true.

111 Loop range exceeds range of index

The indexing variable used for the indicated for loop was declared
with a subrange that does not include the range indicated by the
initial and final index values.

112 'PROGRAM' header missing

113 pending comment not terminated

C, A comment starting symbol was detected within a pending comment.

114 Percent "%" statement not found

A ,~, symbol was detected, but with no identifier following.

115 Percent "%" identifier not recognized

A identifier following the ,~, symbol is not recognized as a valid
compiler directive.

116 "ON" or "OFF" expected

117 Unrecognizable option in "%CHECK"

120 string constant requires truncation

The indicated string constant, which is being assigned to a variable
or being passed to a routine, requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.

122 "OTHERWISE" clause without associated CASE statement

The indicated otherwise statement is not within the context of a
case statement.

123 Maximum string length exceeded

The indicated expression produced a varying length string which
exceeds 255 characters in length. 255 is the maximum allowed length
for a varying length string.

o
Pascal/VS Messages 103

125 Real to integer conversion not valid

c The indicated expression is of type real, but according to its con-
text, it is required to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 Types not conformable in assignment

The indicated assignment statement attempts to assign an expression
of a particular type to a variable of an incompatible type.

127 File variable assignment not permitted

The left side of the indicated assignment statement is a variable of
a file type. Assignment to file variables is not permitted.

128 Not compile-time computable

The indicated expression fails to be a constant expression that can
be evaluated at compile time.

129 Assignment to "CONST" parameter invalid

The indicated variable declared as a formal canst parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid

The indicated variable that is bei ng used as a for loop index may
not be modified by an assignment within the for loop statement.

131 passing "CONST" parameter by VAR invalid

The indicated variable declared as a formal canst parameter may not
be modified by being passed as ~n actual val' parameter to a routine.

132 Passing FOR-loop index by VAR invalid

The indicated variable that is being used as a for loop index may
not be modified by being passed as an actual val' parameter to a rou-
tine.

133 Refer-back tagfield must not be typed

The indicated tag field specification within a record definition was
found to reference a previous field within the record. Such
refer-back references may not contain a type reference.

137 Passing packed record field by VAR not valid

The indicated field of a packed record may not be passed as an actu-
al val' parameter to a routine.

138 Passing SPACE component by VAR not valid

The component of a space variable may not be passed as an actual val'
parameter to a routine.

139 passing packed array element by VAR not valid

An element of a packed array variable may not be passed as an actual
val' parameter to a routine.

140 Scalar PACKing does not match corresponding VAR parameter

The indicated variable that is being passed as a val' parameter is of
a compatible type, but has a different length than the corresponding
formal parameter. This was caused by one being packed and the other
unpacked.

o
104 Pascal/VS Programmer's Guide

c.

c

o

142

143

Must be an array variable

The indicated variable is required to be of an array type, but such
is not the case.

Offset qualified field not on proper boundary

The indicated field in a record definition is qualified with an off­
set which is not consistant with the boundary requirement of the
field's type.

144 Offset qualification value is too small

The indicated field in a record definition is qualified with an off­
set which causes an overlap with a previous field within the record.

145 Type must be CHAR or PACKED ARRAY OF CHAR

The indicated expression is required by its context to be of type
CHAR or packed array[l .. n] of CHAR.

146 Variables of type POINTER are not permitted

The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function

148

149

150

The indicated identifier is used as though it is a function name,
but is not declared as such.

Missing period '.' assumed

Not a valid comparison operation

The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings, variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
'=', '<>', '<=', and '>='.
ENTRY routines must be at the outermost nesting level

A routine declared as an ENTRY may not be nested within another rou­
tine.

151 Fixed Point overflow or divide-by-zero

An integer expression consisting of constant operands causes a pro­
gram error to occur when it is evaluated.

152 Checking error will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
error.

This error may occur at an assignment ~r at a routine call in which
parameters are passed. It indicates that the range of the source
expression (a scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this
error to occur:

var I: 1 .. 10;
J: 10 .. 20;

I .- J+1; (*target's range: 1 •. 10; source's range: 11 •. 21 *)

Pascal/VS Messages 105

c·

o

153 LBOUND/HBOUND dimension number is invalid for variable

154 Low bound of subscript range is too large in magnitude

The indicated array definition has an illegal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET members must lie within 0 •• 255

The ordinal value of any valid set member may not be less than 0 nor
greater than 255.

156 Length fields not applicable to non-TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non-text file I/O.

157 STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Routines passed as parameter must be at outermost nesting level

An attempt is being made to pass a routine as a parameter, but the
routine being passed is nested within another. As a Pascal/VS
restriction, routines being passed as parameters must not be nested
within another routine.

159 Recursive type reference is semantically incorrect

The compiler detected a degenerate type declaration of one of the
following forms:

I. type X = X;
II. type X = ->X;

III. type X = record

F: X;

end

160 This SET operation will always produce the NULL set

Two disjoint sets are being intersected. The result will always be
the null set [1. For example,

var Sl: set of 0 .. 10;
S2: set of 11 .. 20;
S3: set of 0 .. 20;

begin

S3 .- Sl * S2; (* <== always produces the NULL set *)

end

161 ELSE clause without associated IF statement

162 Must be an unPACKED array

The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.

163 Must be a PACKED array

The indicated array variable should have been declared as packed,
but was not.

106 Pascal/VS Programmer's Guide

o

o

164

165

Unrecognizable procedure/function directive

The indicated identifier was interpreted as a procedure or function
directive but was not recognizable. The following are the only
recognizable directives:

- FORWARD
- EXTERNAL
- FORTRAN
- ENTRY

FORTRAN subroutines may not be passed as parameters

Only Pascal/VS routines may be passed as parameters; FORTRAN subrou­
tines may not.

One way to get around this problem is to define a Pascal/VS proce­
dure which does nothing more than call the FORTRAN subroutine. The
Pascal/VS procedure would then be passed in place of the FORTRAN
subroutine.

166 FORTRAN subroutine parameters may not be passed by value

All formal parameters of a FORTRAN subroutine must be passed by ref­
erence: either by var or by const.

167 FORTRAN functions may return only scalar values

A FORTRAN function may only return values that are scalars (includ­
ing floating point).

168 %INCLUDE member not found in library

169

170

The library member which was to be included into the source program
could not be found.

Floating point computational error

The indicated floating point expression causes a program error when
evaluated.

Data storage exceeds addressability of machine

The memory required to contain all declared variables within a rou­
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.

171 Only STATIC/DEF variables may be initialized

The only class of variables which may be initialized at compile time
are def and static variables.

172 Variable's address is not compile-time computable

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173 Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174 Repetition factor applicable to constants only

175

Within a array structure, only a constant may be qualified with a
repetition factor; a general expression may not.

No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

Pascal/VS Messages 107

c

176 This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.

177 Numeric labels must lie within the range 0 •• 9999.

178 Identifier was previously referenced illegally

The indicated identifier that was just declared was referenced pre­
viously within the associated routine. Pascal/VS requires an iden­
tifier to be declared prior to its use.

179 Recursive reference within constant declaration

A constant declaration of one of the following forms was detected:
const X = Xi

or
const X = "some expression involving X"

Such recursion within a constant declaration is not permitted.

180 Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali­
fied with a repetition factor. Only array structures are permitted
to have repetition factors.

181 Label previously referenced from a GOTO invalidly

The indicated label was previously ref~renced in a goto statement
that is not a constituent of the statement sequence in which the
label is defined.

Example

begin
gato LABELl;
for I .- 1 to 10 do

begin
LABELl: A[I] .- 0; (*<==label was previously referenced invalidly*)

end;
end

182 A GOTO may not reference·a label within a separate stmt sequence

The indicated gota statement ref~rences a label which was previously
defined within a statement sequence of which the gato is not a con­
stituent. Such a reference is not permitted.

Example

begin
for I .- 1 to 10 do

begin
LABELl: A[I] .- 0;

end;
gato LABELl; (*<==invalid reference of label *)

end

108 Pascal/VS Programmer's Guide

c

c

o

183 CASE label outside range of indexing expression

The indicated case label within a case statement has a value which
is outside the range of the indexing expression. For example,

var I: 0 .. 10;
begin

case I*2 of (*range of index is 0 •. 20 *)
0:
1 .. 20: ...
30: ... (*<== this label is out of range of index*>

end
end

184 Second operand of MOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.

600 Identifier used in type definition at line nnn is out of context: xxxx

The identifier 'xxxx' appeared in a pointer type definition of the
form '->xxxx' at line 'nnn', but the identifier was subsequently
declared as something other than a type.

Example:

type X = ->y;

var Y: INTEGER; (* <=== would cause error 600 to be generated *)

601 Type identifier referenced at line nnn is undeclared: xxxx

602

The identifier 'xxxx' appeared in a pointer type definition of the
form '->xxxx' at line 'nnn', but the identifier was not subsequently
declared.

label xxxx was declared and/or referenced but was not defined

The label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603 procedure/function xxxx was forwarded but not resolved

The procedure or function named 'xxxx' was declared with the direc­
tive 'FORWARD', but the body of the routine was not subsequently
declared.

Pascal/VS Messages 109

c

c

o

16.2 INPUT/OUTPUT MESSAGES

No.

AMPXOOlI

AMPX002I
"

AMPX003I

AMPX004I

AMPXOOSI

AMPX006I

At1PX007I

AMPX0081

AMPX009E

Message and Explanation

File could not be opened: ddname

An error occurred when an attempt was made to open the file
whose DDNAME is 'ddname'. The most probable cause of this
error is a missing ddname definition.

LRECL size too small for file ddname

The logical record length of the file with indicated ddname is
not large enough to contain the data in one file component.

File is not open for output: ddname

An output operation was attempted on a file open for input.

File is not open for input: ddname

An input operation was attempted on a file open for output.

File has small format V record: ddname

The logical record length of a particular record within a vari­
able record length file was too small to contain the file's
component data. I

Data larger than lrecl for file: ddname

Invalid options in OPEN for file ddname

The options string passed to the OPEN procedure contains
unrecognizable directives.

Hissing member in file: member library

The indicated member could not be found in the partitioned data
set.

Floating point overflow/underflow

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

110 Pasca!/VS Programmer's Guide

16.3 MEMORY MANAGEMENT MESSAGES

C: No. Message and Explanation

At1PXOSOI Operand of RELEASE does not correspond to last MARK

The parameter passed to RELEASE did not have the value returned
by the last call to MARK.

AMPXOSII Operand of DISPOSE not allocated with NEW

A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPXOS3I Operand of DISPOSE already deallocated

An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

C'

Pascal/VS Messages 111

16.4 MATH PACKAGE MESSAGES

No. Message and Explanation

AMPX100I IN: argument <= 0.0.

The natural logarithm function (UO was called with a 0 or neg-
ative argument.

AMPX101I SQRT: argument < 0.0, zero returned as result

The square root function (SQRT) was called with a negative
argument.

AMPX102I EXP: argument too large, exceeds 174.67309

The argument of the EXP function is too large; the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

AHPXI03I RANDOM: seed is out of range.

The function RANDOM was called with an argument which is either
negative or greater than 1048575 (which is the allowed
maximum).

AMPXI04I SIN/COS: argument too large exceeds (pi/2HBESO.

A call to SIN or COS was made with an argument that 1S too
large for an accurate result to be computed.

c'

112 Pascal/VS Programmer's Guide

c·

c

o

16.5 MESSAGES FROM PASCALVS EXEC

The following messages are given by the
PASCAlVS EXEC of CMS to indicate the
status of the compiler invocation.
They are shown below with their associ-

RC Message and Explanation

1 File name is missing

ated return codes. (A non-zero return
code i ndi cates a termi nated compi la­
t ion.)

The exec was invoked without specifying a file name.

2 Unable to find 'fn' PASCAL

The specified file name could not be found.

16 Unable to find the 'name' HACLIB

The specified maclib file could not be found.

32 More than 8 maclibs specified

The maximum number of MAClIBS that may be specified when invoking
the PASCAlVS EXEC is eight.

Pascal/VS Messages 113

APPENDIXES

c'
• "Command Syntax Notation" on page 117

• "Installation Instructions" on page 119

("

-'

o
APPENDIXES 115

c'

c

o

The syntax notation used to illustrate
TSO commands is explained in the manual
TSO Command LanQuaQe Reference
(GC28-0646). The notation used to
illustrate CMS commands is explained in
the manual VM/370: CMS Command and Mac­
ro Reference (GC20-l8l8).

Briefly, the conventions used by both
notati ons are as follows.

• Items in brackets [1 are optional.
If more than one item appears in
brackets, then no more than one of
them may be specified; they are
mutually exclusive.

•

•

•

•

A.O COMMAND SYNTAX NOTATION

Items in capi tal letters are
keywords. The command name and
keywords must be spelled as shown.

Items in lowercase letters must be
replaced by appropri ate names or
values.

Items which are underlined repre­
sent defaults.

The special characters' () * must
be included where shown.

Command Syntax Notation 117

o

This section describes how to install
Pascal/VS under OS/VS2 and CMS-VM/370
from the distribution tape.

All VS2 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili­
ty program. VS2 sequential data sets
were stored by using the IEBGEHER util­
ity program.

The CMS version of the package is
located at file 14 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con­
tain the following data sets.

File 1: INSTALL.CNTL
A sample of the job control lan­
guage (JCl) required to install
Pascal/VS under OS/VS2 (MVS). .

File 2: LOADSRC.CNTL
A sample of the job 'control lan­
guage (JCl) required to load the
Pascal/VS source from the di s­
tribution tape.

File 3: PASCALVS.CONTENTS
A sequential data set which lists
the contents of the Pascal/VS
package.

File 4: PASCALVS.LINKLIB
A partitioned data set which con­
tains the modules of the
compiler.

File'S: PASCALVS.LOAD
A partitioned data set which con­
tains the Pascal/VS run time
library.

File 6: PASDEBUG.LOAD
A partitioned data set which con­
tains the Pascal/VS debug
library.

File 7: PASCALVS.MACLIB
The standard include library.

File 8: PASCALVS.CLIST
A partitioned data set contain­
ing two clists: PASCAlVS and
PASCMOD.

File 9: PASCALVS.PROCLIB
A partitioned data set which con­
tains the JCl cataloged proce­
dures for running the compiler as
a batch job under MVS.

File 10: MASTER.MENUS
A partitioned data set which con­
tai ns SPF menus whi ch wi 11 permi t
Pascal/VS to be invoked from the
program product SPF.

B.O INSTALLATION INSTRUCTIONS

File 11: MASTER.PROCS
A partitioned data set which con­
tains the command procedures
necessary to invoke Pascal/VS
under the program product SPF.

File 12: PASCALVS.MESSAGES
A sequential data set which con­
tains the compiler messages.

File 13: SAMPLE.PASCAL
A sample Pascal/VS program.

File 14: CMS dump of the entire
Pascal/VS package:

- PASCALVS CONTENTS
A listing of the contents of
the Pascal/VS package.

- PASCALL MODULE
The first pass of the compil­
er.

PASCALT MODULE
The second pass of the com­
piler.

- PASCALVS TXTLIB
The Pascal/VS
library.

- PASDEBUG TXTLIB

run time

The Pascal/VS debug library.

- PASCALVS MACLIB
The standard Y.IHCLUDE
library.

- PASCALVS EXEC
CMS EXEC whi ch invokes the
compiler

- PASCAL 1 EXEC
an internal EXEC invoked
from PASCAlVS EXEC.

- PASCAL2 EXEC
an i nterna 1 EXEC invoked
from PASCAlVS EXEC.

- PASCHOD EXEC
CMS EXEC whi ch creates a load
module from a compiled
Pascal/VS program.

- PASCALVS MESSAGES
list of the compi ler mes­
sages.

- LOADSRC EXEC
An EXEC which will load the
source of the compiler from
the tape.

- SAMPLE PASCAL
A sample program.

File 15: PASCALL.PASCAL

Installation Instructions 119

c

c

The source of the first pass of
the comp i ler.

File 16: PASCALT.PASCAL
The source of the second pass of
the compi ler.

File 17: PASCALD.PASCAL
The source of the interactive
debugger.

File 18: PASCALX.PASCAL
The source of the runtime library
routines.

File 19: PASCALX.ASH
The source of the operating sys­
tem interface routines.

File 20: MACLIBL.PASCAL
Include library for first pass of
the compi ler.

File 21: HACLIBT.PASCAL
Include library for second pass
of the compiler.

File 22: HACLIBD.PASCAL
Include library for i nteracti ve
debugger.

File 23: HACLIBX.PASCAL
Include library for runtime rou­
tines.

B.1 INSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under CMS perform
the following:

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is done with the CP
LINK command. The mini-disk must
have at least 1210 blocks of free
storage10 .

3. Access thi s di sk wi th the ACCESS
command.

4. Execute the
commands:

TAPE FSF 13
TAPE LOAD * * m

following two

where "m" is the single letter file
mode of the disk that was accessed
in the previous step.

c=J -1-O---8-0-0--b-y-t-e---b-l-ocks are assumed. This amount is equivalent to 5 cylinders on
a 3330 disk.

120 Pascal/VS Programmer's Guide

c

c'

o

IIJOBNAME JOB ,REGION=50K
IISTEP1 EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=*
IISYSUT1 DD DSN=PASCALVS.INSTALL.CNTL,
II VOL=SER=TAPEVOL,
II UNIT=TAPE,LABEL=(1,NL),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
II DISP=OLD --
IISYSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(1,1»
IISYSIN DO DUMMY

Figure 70. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an OS/VS2 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/VS under VS2
(MVS) is stored as the fi rst fi le of
the distribution tape. To retrieve
this data set, the utility program
IEBGENER must be used. The JCL shown
in Figure 70 may serve as a model job
to retri eve thi s fi leo OD operands
which are high-lighted will require
modification to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOLn appears in the DO
card named SYSUT1.

The data set name (DSN=) in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the fi rst
file on the tape is to be stored. The
appropriate UNIT and volume serial num­
ber for disk storage must be specified
for DO SYSUT2.

Figure 71 on page 122, Figure 72 on
page 123, and Fi gure 73 on page 124
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

• The name nTAPEVOL" must be replaced
with the volume serial number of
the distribution tape in the DD
statement named SYSUT1 in job step
STEP 1.

•

•

•

•

•

•

The UNIT speci fi cati on for tapes
has been given the generic name of
"TAPE"; thi s should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330" j thi s should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascal/VS
is to be installed must be speci­
fied where indicated (nDISKVOLn)
in the following OD statements:

in STEP1: SYSUT2
in STEP2: SYSUT2
in STEP3: 054, OS5, DS6,

OS7, DS8, D59,
D510, DS11

inS TEP4: 5YSUT2
in STEP5: SYSUT2

The DO statements named 5Y5UT3 and
SY5UT4 in job step STEP3 represent
temporary work storage. The gener­
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with­
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If your dis­
tr i but i on tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that are to be cataloged
should be modi fi ed to follow
installation conventions. (The
examples in thi s manual assume a
hi gh level qual i fi er of "SYS1".)

Installation Instructions 121

I

I

I
I

,I
I

//IHSTAll JOB ,REGIOH=128K
//*
//*
//*

FILE 2 -- SOURCE INSTAllATION JOB

//STEPl EXEC PGM=IEBGEHER
//SYSPRIHT DD SYSOUT=*
//SYSUT1 DD DSH=lOADSRC.CHTl,
// VOl=(,RETAIN,SER=TAPEVOL),
// UNIT=TAPE,lABEl=(2,Nl),
// DCB=(LRECL=80,RECFM=FB,BlKSIZE=3120,OEN=3),
// DISP=(OlD, PASS) --
//SYSUT2 DD DSN=SYSl.lOAOSRC.CNTl,OISP=(NEW,CATlG),
// DCB=(LRECl=80,RECFM=FB,BlKSIZE=3120),
// UNIT=3330,VOl=SER=OISKVOL,
// SPACE=(3120,(1,1»
//SYSIH DD DUMMY
//*
//*
//*

FILE 3 -- PASCAlVS CONTENTS

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DO SYSOUT=*
//SYSUTI DD DSH=PASCAlVS.CONTENTS,
// VOl=REF=*.STEP1.SYSUTl,
// UNIT=TAPE,lABEL=(3,NL),
//' DCB=(LRECL=80,RECFM=VB,BlKSIZE=3120,OEN=3),
// DISP=(OLD, PASS) --
//SYSUT2 DD OSN=SYSl.PASCALVS.CONTENTS,DISP=(NEW,CATlG),
// OCB=(lRECl=80,RECFM=VB,BlKSIZE=3120),
// UNIT=3330,VOl=SER=OISKVOL,
// SPACE=(3120,(1,1»
//SYSIN DD DUMMY
//*
//*
//*
//*
//*
//*
//*
//*
//*

FILE 4
FILE 5
FILE 6
FILE 7
FILE 8
FILE 9
FILE 10
FILE 11

PASCAlVS.LINKLIB
PASCAlVS.LOAD
PASDEBUG.lOAD
PASCAlVS.MAClIB
PASCAlVS.ClIST
PASCAlVS.PROCLIB
SPF.MASTER.MENUS
SPF.MASTER.PROCS

//*
//STEP3
//DS4
//

EXEC PGM=IEBCOPY
DD DSN=SYSl.PASCAlVS.lINKlIB,DISP=(NEW,CATlG),

DCB=(BLKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOl=SER=OISKVOL,
SPACE=(TRK,(70,10,3»

//
//
//FIlE4 DD
//

DSN=PASCAlVS.lINKlIB,
VOl=REF=*.STEP1.SYSUT1,

//
//
//
//OS5
//
//
//

UNIT=TAPE,lABEL=(4,NL),
DCB=BlKSIZE=13030,
OISP=(OlD,PASS)

DD DSN=SYSl.PASCAlVS.lOAD,DISP=(NEW,CATlG),
DCB=(BlKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOl=SER=OISKVOL,
SPACE=(TRK,(14,10,36»
DSN=PASCAlVS.lOAO,
VOl=REF=*.STEP1.SYSUT1,

//FIlE5 DD
//
//
//
//
//DS6
//
//
//

DCB=BlKSIZE=13030,
UNIT=TAPE,lABEl=(S,Nl),
DISP=(OLD,PASS)

DD DSN=SYSl.PASDEBUG.lOAD,DISP=(NEW,CATlG),
DCB=(BLKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOl=SER=OISKVOL,
SPAC~(TRK,(8,1,7»

Figure 71. Sample installation job: (continued in Figure 72 on page 123)

122 Pascal/VS Programmer's Guide

c

o

//FILE6 DD OSN=PASDEBUG.LOAD,
// VOL=REF=*.STEP1.SYSUT1,
// OCB=BLKSIZE=13030,
// UNIT=TAPE,LABEL=(6,NL),
// OISP=(OLD,PASS)
//057 DO DSN=SYS1.PASCALVS.MACLIB,DISP=(NEW,CATLG),
// DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(7,2,3»
//FILE7 DD DSN=PASCALVS.MACLIB,
// VOL=REF=*.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(7,NL),
// OCB=BLKSIZE=3120,
// DISP=(OLO,PASS)
//OS8 DD DSN=SYS1.PASCALVS.CLIST,OISP=(NEW,CATLG),
// OCB=(BLKSIZE=3120,RECFM=VB,LRECL=255,OSORG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(4,2,S»
//FILE8 DO OSN=PASCALVS.CLIST,
// VOl=REF=*.STEP1.SYSUT1,
// OCB=BLKSIZE=3120,
// UNIT=TAPE,lABEl=(8,NL),
// DISP=(OLD,PASS)
//059 DO OSN=SYSl.PASCALVS.PROCLIB,DISP=(NEW,CATlG),
// DCB=(BLKSIZE=3120,RECFM=FB,lRECL=80,OSORG=PO),
// ·UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(4,2,2»
//FIlE9 DO OSN=PASCAlVS.PROCLIB,
// VOL=REF=*.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(9,Nl),
// DCB=BLKSIZE=3120,
// DISP=(OLD,PASS)
//DS10 DO OSN=SYS1.MASTER.MENUS,OISP=(NEW,CATLG),
// OCB=(BLKSIZE=3120,RECFM=VB,LRECL=84,DSORG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(13,2,6»
//FILEIO DD OSN=MASTER.MENUS,
// VOl=REF=*.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(lO,NL),
// OCB=BLKSIZE=3120,
// OISP=(OLD,PASS)
//DS11 DO DSN=SYS1.MASTER.PROCS,OISP=(NEW,CATLG),
// DCB=(BLKSIZE=3120,RECFM=VB,LRECL=84,DSORG=PO),
// UNIT=3330,VOl=SER=DISKVOL,
// SPACE=(TRK,(1,1,2»
//FILEll OD OSN=MASTER.PROCS,
// VOL=REF=*.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(ll,NL),
// OCB=BLKSIZE=3120,
// OISP=(OLD,PASS)
//SYSPRINT OD SYSOUT=*
//SYSUT3 DO UNIT=SYSDA,SPACE=(TRK,(l»
//SYSUT4 DO UNIT=SYSDA,SPACE=(TRK,(l»
//SYSIN DO *

/*

COpy OUTDD=OS4,INDD=FILE4
COpy OUTDD=DS5,INDD=FILE5
COpy OUTDO=DS6,INDD=FILE6
COpy OUTDD=DS7,INDD=FILE7
COpy OUTDD=DS8,INDD=FILE8
COPY OUTOD=DS9,INDD=FILE9
COpy OUTDD=OSlO,INDD=FILEIO
COPY OUTDD=DS11,INDD=FILEll

Figure 72. Sample installation job: (continued in Figure 73 on page 124)

Installation Instructions 123

c

o

11*
11* FILE 12-- PASCAlVS MESSAGES
11*
IISTEP4 EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=*
IISYSUTl DO DSN=PASCALVS.MESSAGES,
II VOL=REF=*.STEP1.SYSUT1,
/1 UNIT=TAPE,LABEl=(12,Nl),
II DCB=(LRECl=80,RECFM=VB,BLKSIZE=3120,DEN=3),
II DISP=(OLD,PASS) --
IISYSUT2 DO DSN=SYS1.PASCALVS.MESSAGES,DISP=(NEW,CATLG),
II DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),
II UNIT=3330,VOl=SER=DISKVOL,
II SPACE=(TRK,(l,l»
IISYSIN DO DUMMY
11*
11* FILE 13-- SAMPLE PASCAL
11*
IISTEP5 EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=*
IISYSUT1 DO DSN=SAMPlE.PASCAl,
II VOL=REF=*.STEP1.SYSUT1,
II UNIT=TAPE,lABEl=(13,NL),
II DCB=(LRECL=80,RECFM=FB,BlKSIZE=3120,DEN=3),
II DISP=(OLD,KEEP) --
IISYSUT2 DD DSN=SYS1.SAMPLE.PASCAL,DISP=(NEW,CATlG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
II UNIT=3330,VOl=SER=DISKVOL,
II SPACE=(TRK,(1,1»
IISYSIN DO DUMMY

Figure 73. Sample installation job: (continued from Figure 71 on page 122
and Figure 72)

B.2.2 The TSO Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
ClISTs reside in the partitioned data
set PASCAlVS.CLIST (file 8 of the dis­
tribution tape).

These ClISTs should be stored in a pub­
lic ClIST library that is accessable to
TSO users through DDname SYSPROC.

Each ClIST must be modified so that the
correct high level qualifier name is
used to reference the Pascal/VS data
sets. In PASCAlVS, the symbol named
"FIRSTNAME" should be set to the appro­
priate name. In PASCMOD, the symbols
named "lIBRARY" and "DEBUGLIB" should
be set to the names of the Pascal/VS
run time library and the debug library,
respectively.

B.2.3 Cataloged Procedures

Distributed with the compiler are four
cataloged procedures for invoking the
compi ler from a batch job: PASCC,
PASCCG, PASCCl, and PASCCLG. These
procedures resi de in the part it i oned
data set PASCAlVS.PROCLIB (file 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure library, so that
the names will be recognized when ref­
erenced from a batch job.

Each procedure must be customi zed to
reflect the data set naming convention
chosen at your installation. For a
listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 21.

B.2.4 SPF Menus and Procedures

If your TSO installation utilizes the
Structured Pr09rammi n9 Faci 1 i ty (SPF)
(program number 5740-XT8), you may
invoke the Pascal/VS compiler from SPF
by means of the foregroundlbackground
menus.

File 11 on the distribution tape is a
partitioned data set which contains the
SPF menus required to add Pascal/VS to
the 1 i st of comp; lers whi ch may be
invoked in the foregroundlbackground
menu of SPF. Each member in this data
set should be copi ed into the parti­
tioned data set named 11

"SPF22.MASTER.MENUS"

11 At some installations this data set may be named "SPF22.MOD1.MEHUS".

124 Pascal/VS Programmer's Guide

C~

c

o

The following members of this data set
will be replaced: 12

FORA
JOBA
JOBB

All other members will be new. 13

Fi le 11 of the tape is a part, t, oned
data set which contains the foreground
and background procedures for invoking
the compiler. Each member of this data
set should be placed in the data set
named 14

"SPF22.MASTER.PROCS"

The primary option menu of SPF is the
member named APRIOPT in SPF22.­
MASTER.MENUS. This menus should be
modified so that the selection "5.9"
will activate the Pascal/VS foreground
menu, and the selection "4.7" will
activate the Pascal/VS background
menu. For information on installing
and customizing SPF refer to the manual
TSO 3270 Display Support and Structured
Programming Facility Version 2.2:
Installation and Customization
Guide(SH20-2402).

B.3 LOADING THE SOURCE UNDER CMS

The compiler source is stored on the
distribution tape beginning at file 15;
that is, 14 tape marks from the begin­
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for­
mat. To read such a format under CMS,
the TAPPDS command must be utilized.

The lOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per­
form the following:

1. Have the distribution tape mounted
at address 181.

2. Access the di sk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 45 free cylinders of 3330 stor­
age. 1S

3. Make sure that there is the equiv­
alent of at least 2 free cylinders
of 3330 storage on your "A" disk.

4. Invoke the lOADSRC EXEC' as follows:

LOADSRC fm

where "fm" i s the sing le letter
file mode of the disk to where the
source files are to be placed. The
EXEC will print out messages as it
processes the tape.

B.4 LOADING THE SOURCE UNDER VS2

The compi ler source is stored on the
distribution tape beginning at file 15.
It consists of nine tape files stored
in the IEBUPDTE format.

Fi le 2 of the di stri buti on tape con­
tains the JCl which copies the source
files to disk storage. This file is
unloaded when the compiler is installed
and has been given the name
"lOADSRC.CNTL".

Prior to submitting the job, it must be
customized as follows:

• In ddname SYSIN of jobstep STEP1,
the volume seri al number of the
distribution tape should be placed
where the name TAPEVOL is shown.

•

•

•

•

•

The UNIT speci fi cati on for tapes
has been gi ven the generi c name
"TAPE"; thi s should be changed to
the appropri ate generi c at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; thi s shou ld be changed to
the appropri ate speci fi cati on at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DD state­
ment named SYSUT2 in each job step.

The high level qualifier for the
data set names to be cataloged is
arbitrary. In the supplied JCl,
the riame "SOURCE" is used.

The tape density is specified with­
in the DEN suboperand of the DCB
attributes. In the JCl, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other densi ty, then
the DEN operands should be changed
accordingly.

12

13

As a precautionary measure, we suggest that you rename the members FORA,
JOBA, and JOBB prior to replacing them with the new copy.

14
lS

You should look at the names of each member that we are supplying to make
sure that they do not conflict with any previously existing member.
At some installations this data set may be named "SPF22.MOD1.PROCS".
This is roughly 15000 800-byte blocks. Once the source files have been
installed, you may find it desirable to pack them in order to save disk
storage.

Installation Instructions 125

r-··
U

o

IILOADSRC JOB ,REGION=SOK
II*.
II*.
II*.

FILE 1S -- PASCALL PASCAL - COMPILER SOURCE

IISTEP1 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALL.PASCAL,DISP=CNEW,CATLG),
II UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=CTRK,C132,43,S»
IISYSIN DD UNIT=TAPE,VOL=(,RETAIN,SER=TAPEVDL),LABEL=(1S,NL),
II DISP=(OLD,PASS),
II DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*' --
II*.
II*.
II*.

FILE 16 -- PASCALT PASCAL

IISTEP2 EXEC PGM=IEBUPDTE,PARM=NEW

- TRANSLATOR SOURCE

IISYSUT2 DD DSN=SOURCE.PASCALT.PASCAL,DISP=CNEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
1/ VOL=SER=DISKVOL,SPACE=CTRK,Cl17,39,S»
IISYSIN DD UNIT=TAPE,VOL=REF=*..STEP1.SYSIN,LABEL=(16,NL),
II DISP=(OLD,PASS),
1/ DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*' --
II*.
II*.
II*.

FILE 17 -- PASCALD PASCAL - DEBUG SOURCE

IISTEP3 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALD.PASCAL,DISP=CNEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=CTRK,(33,9,S»
IISYSIN DD UNI1=TAPE,VOL=REF=*..STEP1.SYSIN,LABEL=(17,NL),
II DISP=(OLD,PASS),
II DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*' --
II*.
II*.
II*.

FILE 18 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE

IISTEP4 EXEC PGM=IEBUPDTE,PARM=HEW
IISYSUT2 DD DSN=SOURCE.PASCALX.PASCAL,DISP=CNEW,CATLG),
II UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(69,24,S»
IISYSIN DO UNIT=TAPE,VOL=REF=*..STEP1.SYSIN,LABEL=(18,NL),
II DISP=(OLD,PASS),
II DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*' --
II*.
II*.
II*.

FILE 19 -- PASCALX ASM - RUN TIME ENVIRONMENT SOURCE

IISTEPS EXEC
IISYSUT2 DD
II

PGM=IEBUPDTE,PARM=NEW
DSN=SDURCE.PASCALX.ASM,DISP=CNEW,CATLG),
UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB),

II
IISYSIH
II
II
IISYSPRINT

VOL=SER=DISKVDL,SPACE=CTRK,C16,1,4»
DD UNIT=TAPE,VOL=REF=*..STEP1.SYSIN,LABEL=C19,NL),

DISP=(OLD,PASS),
DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

DO SYSOUT=*' --

Figure 74. Listing of the JCL to copy source files from tape: this job is
stored as file 2 of the dlstrlbution tape. (continued in
Figure 7S on page 127).

126 Pascal/VS Programmer's Guide

c

o

11*
11*
11*

FILE 20 -- MACLIBL PASCAL - Y.INCLUDE LIBRARY FOR COMPILER

IISTEP6 EXEC PGM=IEBUPDTE,PARM=HEW
IISYSUT2 DD DSH=SOURCE.MACLIBL.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(21,7,4»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=(20,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=* --
11*
11*
11*

FILE 21 -- MACLIBT PASCAL - r.INCLUDE LIBRARY FOR TRANSLATOR

IISTEP7 EXEC
IISYSUT2 DD
II

PGM=IEBUPDTE,PARM=NEW
DSN=SQURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),
UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

II
IISYSIH
II
II
11*
11*
11*

VOL=SER=OISKVOL,SPACE=(TRK,(19,7,4»
DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=(21,NL),

DISP=(OLD,PASS),
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

FILE 22 -- MACLIBD PASCAL - Y.INCLUDE LIBRARY FOR DEBUG

IISTEP8 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCF..MACLIBD.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=OISKVOL,SPACE=(TRK,(2,1,1»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=(22,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,OEN=3)
IISYSPRINT DD SYSOUT=* --
11*
11*
11*
11*

FILE 23 -- MACLIBX PASCAL - Y.INCLUDE/MACRO LIBRARY FOR RUN TIME
ENVIRONMENT

IISTEP9 EXEC
IISYSUT2 DD
II

PGM=IEBUPDTE,PARM=HEW
DSH=SOURCE.MACLIBX.PASCAL,DISP=(NEW,CATLG),
UHIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

II
IISYSIN
II
II
IISYSPRINT

VOL=SER=OISKVOL,SPACE=(TRK,(9,1,2»
DD UHIT=TAPE,VOL=REF=*.STEP1.SYSIH,LABEL=(23,NL),

DISP=OLD,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

DD SYSOUT=* --

Figure 75. Listing of the JCL to copy source files from tape: (continued
from Figure 74)

Installation Instructions 127

c

c

o

access methods 39
BPAM 39
QSAM 39

arrays
storage mapping of 70

assembler routines, linking to 83-88
calling Pascal/VS main program

from 88
calling Pascal/VS routines from 86
general interface 84-85
minimum interface 83
receiving parameters 86

assembly listing 37
automatic variables

storage mapping of 69

batch
See OS batch

BLKSIZE 39, 47
block size attribute

See BLKSIZE
BPAM 39

CALL
command of TSO 16

cataloged procedures 20, 21
PASCC 22
PASCCG 23
PASCCL 24
PASCCLG 26

CHECK compiler option 29
as it applies to

CASE statements 29
function routines 29
pointers 29
subranges 29
subscripts 29

checking errors at run time 51
CLOSE procedure 46
closing a file 46
CMS 3-7

building load module 6
compiling under 3-5
defining files under 7
invoking load module 7

code generation 73-81
See also DSA,
FCB,
linkage conventions
parameter passing,
PCWA,
register usage,
rout i ne format,
routine invocation

command syntax 117
compilation

under CMS 3-5

under OS batch 19-28
under TSO 9-11

compiler diagnostics
under CMS 4
under TSO 11

compiler listings 33-38
assembly

See assembly listing
cross-reference

See cross-reference listing
ESD

See ESD table
source

See source listing
compiler messages

See messages, compiler
compiler options 29-31

See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option

CONSOLE opti on
of PASCALVS CLIST 10
of PASCALVS EXEC 3

COUNT option
of executable program 7, 16

cross-reference listing 35-36

data set attributes 39
See also LRECL, RECFM, BLKSIZE

data set definitions
See file definitions

DCB attri butes
See· data set attributes

DDname
OPEN specification 47

DDname association 39
DEBUG compiler option 30
Debug facility 53-68

commands 53-64
break 54
clear 54
CMS 55
display
display
display
equate
go 57
help 58

55
breaks
equates
57

listvars 58
qualify 59
quit 59

56
56

Index 129

c

c

o

reset 60
set attr 60
set count 61
set trace 61
trace 62
vi ew memory 63
view variable 62
walk 64

qualification 53
DEBUG opt ion

of executable program 71 16
of PASCMOD ClIST 13
of PASCMOD EXEC 6

debugging a program
interactive debugger

See Debug facility
traceback facility 49

DEF vari abIes
storage mapping of 69

default
BlKSIZE 39
lRECL 39
RECFM 39

DISK opti on
of PASCAlVS EXEC 3

DSA (dynamic storage area) 74
dump

symbolic variable 51
dynamic storage area

See DSA
dynamic variables

storage mapping of 69

end-of-file condition
for record file 45
for TEXT file 42

end-of-line condition 41
enumerated scalar

storage mapping of 70
EOF function 421 45
EOlN function 41
EPILOG assembler macro 84
ESD table 38
executing a program

under OS batch 19-28
external symbol dictionary

See ESD table

FCB 80
file control block

See FCB
file definit;ons~

under CMS 7
under OS batch 27
under TSO 15

files
storage mapping of 71

function invocation
See routine invocation

130 PascallVS Programmer's Guide

GET procedure
record files 45
TEXT fi les 41

GOSTMT compiler option 30
GS compiler option

See GOSTMT compiler option

1/0 facilities
See inputloutput facilities

Y.INCLUDE facility
under CMS 4
under OS batch 27
under T50 11

input/output facilities 39-48
implementation 39
record fi les

See record files
TEXT fi les

See TEXT fi les
input/output messages

See messages1 inputloutput
installation instructions 119-127

compiler source
under CMS 125
under VS2 125

for CMS 120
for OS/VS2 121-125

cataloged procedures 124
ClIST customizing 124
loading compiler 121-124 .
SPF menus and procedures 124

INTERACTIVE
OPEN specification 47

INTERACTIVE procedure
TEXT fi les 40

0
JCl 19
job control language 19

~
lIB option

of PASCAlVS ClIST 10
of PASCMOD ClIST 13

linkage conventions 73
lIST compiler option 30
listing

See compiler listings
load module

creating under CMS 6
creating under TSO 12
invoking under CMS 7
invoking under T50 16

logical record length
See lRECL

lRECl 39 1 47

c

o

MARGIHS compiler option 30
math package messages

See messages, math package
memory management messages

See messages, memory management
messages 95-113

compiler 95-109
input/output 110
math package 112
memory management 111
PASCALVS exec 113

MVS batch
See OS batch

HAME opt, on
of PASCMOD EXEC 6

HOCHECK compiler option 29
HODEBUG compiler option 30
HOGOSTMT compiler option 30
HOGS compiler option

See HOGOSTMT compiler option
HOLIB option

of PASCALVS CLIST 10
HOLIST compiler option 30
non-TEXT fi les

See record files
opening

See opening a record file
HOOBJ option

of PASCALVS EXEC 4
HOOBJECT option

of PASCALVS CLIST 10
HOOPT compiler option

See HOOPTIMIZE compiler option
NOOPTIMIZE compiler option 30
NOPRINT option

of PASCALVS CLIST 10
of PASCALVS EXEC 3

NOS compiler option
See NOSOURCE compiler option

HOSEQ compiler option
See NOSEQUEHCE compiler option

NOSEQUENCE compiler option 30
NOSOURCE compiler option 30
NOWARHING compiler option 31
NOX compiler option

See NOXREF compiler option
NOXREF compiler option 31

OBJECT option
of PASCALVS CLIST 9
of PASCMOD CLIST 13

OPEN procedure 46
opening a record file 45

RESET 45
REWRITE 45

opening a TEXT file 40
INTERACTIVE 40
RESET 40
REWRITE 40

OPT compiler option

See OPTIMIZE compiler option
OPTIMIZE compiler option 30
OS batch 19-28

cataloged procedures 19
compiling under 19
executing under 19

PAGE procedure 41
parameter passing 76-77

by value 76
function results 77
read-only reference (CONST) 76
read/write reference (VAR) 76
routine parameters 77

Pascal communication work area
See PCWA

Pascal, standard
extensions 91
modified features 91
restrictions over 91

PASCALVS
CLIST of TSO 9
exec messages

See messages, PASCALVS exec
exec of CMS 3-4

PASCC cataloged procedure 22, 24
PASCCG cataloged procedure 23
PASCCL cataloged procedure 24
PASCCLG cataloged procedure 26
PASCMOD

CLIST of TSO 12, 13
EXEC of CMS 6

PCWA 78
PDS access

under CMS 48
PRINT option

of PASCALVS CLIST 10
of PASCALVS EXEC 3

procedure invocation
See routine invocation

PROLOG assembler macro 84
PUT procedure

record files 45
TEXT fi les 40

QSAM 39

READ procedure
for record file 45
for TEXT file 42

integer data 42
length qualifier 42
real data 42
strings 43

READLH procedure 43
RECFM 39, 47
record fi elds

storage mapping of 69
record files 44-46

closing 46

Index 131

c:

c

o

opening
See opening a record file

record format
See RECFM

records
storage mapping of 70

register usage 73
RESET

OPEN specification 47
RESET procedure

record files 45
TEXT files 40

REWRITE
OPEN specification 47

REWRITE procedure
record files 45
TEXT fi les 40

routine format 78
routine invocation 75
run time libraries

under C~'S 6
run time options 7
runtime environment 89-90

main program 89
memory management 89
program initialization 89

S compiler option
See SOURCE compiler option

SEQ compiler option
See SEQUENCE compiler option

SEQUENCE compiler option 30
sets

storage mapping of 71
SOURCE compiler option 30
source listing 33-34

compilation statistics 34
error summary 34
nesting information 34
option list 34
page header 33
statement numbering 34

spaces
storage mapping of 71

SPF
installing Pascal/VS procedures and
menus 124

standa rd P a sca 1
See Pascal

static variables
storage mapping of 69

storage mapping 69-71
arrays 70
automatic storage 69
boundary alignment 69-71
data size 69-71
DEF storage 69
dynamic storage 69
enumerated scalar 70
files 71

132 Pascal/VS Programmer's Guide

predefined types 69
record fields 69
records 70
sets 71
spaces 71

. stat i c storage 69
sub range scalar 70

subrange scalar
storage mapping of 70

symbolic variable dump 51
syntax notation 117
SYSLIB 24, 27
SYSLMOD 24
SYSPRINT DDname 21
SYSPRINT option

of PASCALVS CLIST 10
SYSPUNCH DDname 21

TEXT files 39-44
closing 46
opening

See opening a TEXT file
traceback facility 49-51
TSO 9-17

building load module 12
compiling under 9-11
defining files under 15
invoking load module 16

variable dump 51
VS2 batch

See OS batch

W compiler option
See WARNING compiler option

WARNING compiler option 31
WRITE procedure

for record file 46
for TEXT file 44

WRITELN procedure 44

X compiler option
See XREF compiler option

XREF compiler option 31

