order No. SH20-6162-0
L R 2 R-1-% |
Eousmsny
an -3
ua L]]
2R 2 3 B B-F]
soooon
=g PascalszvVvs
un
T monmun ENENINAVNEEN NN
an mzooncaw
LE] nm Programmer's
nn no :
FET T)T Guide
- 2-2-2-%-2-3-2-|
u-n an
an - 3-]
o ns EEDEREN
ao Iz wmooomone
nx -3]
-3-1
i-3-2-2. 3 3 1 |
| 22§ 2-2 11
| B]
nm oo
-R-2 R-2-%-%-F | 1 22 2 11]
-2 2-%-3 1 | |- t-5-2-2-32%-F
en L 1]
nn
L]
na
nn
Q nm ns
sEEnEECD naumuN
AEENNNNEUEOEENUCENDD oEomEns manmonon
OIS DNDNENaINDOEOREDD na ow
-2 -2 -] .3] -1 -]
un] ooonaanm
g -}] -2-2 2-2-1-3-%-]
an an un on
ns t-3-1 -}] -2 -
ms um L3 | §- . §] » uE =m 4]
nn an oa o oo T I-T -1 I I 1
L 3| -2 un | k-3 as o= oo
-3] an n | 2.1] nE nmn aun
no RN LNONRENEDONODEENROEDNE -1} 1 2.3} om nm nn
un NIONCUEDNOONESOUEDOEDDDORDHD am uo nmn uw om
na -}] L &} -1] -3 - = nEn
oo L]]] ao (1]
ENEEDEEBDINDOREERE | §- EaEERNEN
EORUENDRIONOOEDEEDDD oo TE111T1]
on no
LT] an
om an
NOENROEENNEDDONNBNNONORAnES
b k-2 k-2 R-F -2 R R-R R R-R QR R R-R-RR-R R R-R-R
May 13th, 1980
O Final Draft
IBM Internal Use Only

First edition, May 19380
This is the first edition of SH20-6162, a new publication that applies to release
1.0 of the Pascal/VS Compiler (IUP program number 5796-PNQ).

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not avail-
able in your country. Such references or information must not be construed to mean
that IBM intands to ‘announce such products in your country.

Requests for copies of IBM publications should be made to the IBM branch office
that serves you.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, Pascal/Vs
Development, Department M438/D25, P. 0. BOX 50020, San Jose, California 95150.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, con-
tinue to use the information you supply.

(c) Copyright International Business Machines Corporation 1980

PREFACE

(:/ This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat-
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

ELATED PUBLICATIONS

. Pascal/VS Reference Manual, order number SH20-6163. This manual describes the
Pascal/V$S language.

. IBM Virtual Machine Facilitys/370: CMS Command and Macro Reference, order num-
ber GC20-18138. This manual describes the commands of the Conversational Moni-
tor System (CMS) component of the IBM Virtual Machine Facilitys/370 with
detailed reference information concerning command syntax and usage. ’

. IBM Virtual Machine Facilitys370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facility/370.

. 0S/VS2 150 Command Language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of 05/VS2.

. 0S/VS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of 05/VS2.

. 05/VS_ Linkage Editor_ and_lLoader, order number GC26-3813. This manual
describes how to use the 05/VS2 linkage editor and loader.

. Time Sharing Option Display Support and Structured Programming Facility Ver-
sion 2.2: Installation and Customization Guide, order numbaer SH20-2402. This
(:: manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knouwledge of the content of this manu-
al is required to install the Pascal/VS SPF menus and procedures.

] 0S/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu-
al describes the various data set access methods utilized by 05/V52 and the 05
simulation of CMS - VM/370.

Preface ifi

CONTENTS

.0 Introduction

1 1
2.0 Running a Program under CMS |
2.1 How to Compile a Program e e e e e e e e e s e e e e e e e e e . . 3
2.1.1 Invoking the Compiler e e e e e e e e e e e e e e e . . 3
2.1.2 The PASCALVS Command . e e e R, . 3
2.1.3 The %ZINCLUDE Maclibs . e e .« e e . . %
2.1.4 Passing Compiler Options e e e e e e e e e e e e . e e e e . B
2.1.5 The Compiler Listing e e v e e e e e e e e e e e . . 4
2.1.6 Compiler Diagnostics e e e e e e e e e e e e e . . e e 4
2.1.7 Sample Compilation .
2.2 How to Build a Load Module e b e .. b
2.2.1 Module Generation Options e e e e e e b e e e e e e e e e e e e e e .. b
2.2.2 Run time Libraries e . b
2.3 How to Define Files . e 7
2.4 How to Invoke the Load Nodule O 4
2.%4.1 Run Time Options Y
3.0 Running a Program under TSO e 6 o s s e s s s o s s s s e s s e e e e e 9
3.1 How to compile a program e e e e e e e e e e e e e e e 9
3.1. Invoking the Compiler . e e e e e e o 9
3.1. 2 Using the XINCLUDE Facullty e e e e e . . - . . 11
3J.1.3 Compiler Diagnostics . e . I e e e e e e e e e e 11
3.2 How to Build a Load Module . . . e e e e e e e e e . e . 12
3.3 How to Define Files . N . e e e e e 15
3.4 Invoking the Load Module e e e e e . e e e e e e e e e . . 16
3.4.1 Run Time Options e e e e e . . e e e . v 16
3.5 Sample TS0 Session e e e e e e . e 17
.0 Running a Programunder OS BaICh . ¢ & ¢ ¢ ¢ o & & o o o s s o s o o s s o 19
4.1 Job Control Language . e e e e e e e e e e e e 19
4,2 How to Compile and Execute a Program e e e e e e e e e e . . . e e 19
4.3 Cataloged Procedures . e e e e e e e e e e e e e . . . 20
4.% IBM Supplied Cataloged Procedures . e e e e e e e e e 21
4.4.1 Compile Only (PASCC) . v e e e e e e e e 22
%4.4.2 Compile, Load, and Execute (PASCCG) e e e e 23
%4.4.3 Compile and Link Edit (PASCCL) e e e vt e e e e e e e 24
%4.4.9 Compile, Link Edit, and Execute (PASCCLG) e e e e e e e e . . 26
4.5 How to Access an %XINCLUDE L\brary e e e e e e e e e e e e e e e . 27
4.6 How to Access Data Sets . .. e e e e e e e e e e e e e e e e e e e 27
4.7 Example of a Batch Job e e e e e s s e e e e e e e e e e e e . . 28
5.0 Ccompiler Options e o e s o s e o s e s s e s s e s e e s e s e e e s e 29
5.1 CHECK/NOCHECK e . . 29
5.2 DEBUG/NODEBUG e . . 30
5.3 GOSTMT/NOGOSTMT . e e e e e e e e . e e e . e e e e e e 30
5.4 LIST/NOLIST e e e e 30
5.5 MARGINS(m,n) e e e e e . . e e e e e e 30
5.6 OPTIMIZE/NOOPTIMIZE e e e e e s . e . e e e 30
5.7 SEQUm,n)/NOSEQ e e e e e e e o e . . e e 30
5.8 SOURCE/NOSOURCE e e 30
5.9 WARNING/NOWARNING C e e e e e e e e e e C e e e e e e e “ e e e 31
5.10 XREF/NOXREF e e e e e e e e e e e e e e e e e 31
6.0 How toRead Pascals/vs Listings . . ¢ v ¢ ¢ ¢ ¢ ¢ o o o o o o o o o s o« o« » 33
6.1 Source Listings e e e e e e e e e e e . . e e e e e « e e . . . 33
6.1.1 Page Headers e 33
6.1.2 Nesting Informatlon e e e e e e e e . - e e e e e 34
6.1.3 Statement Numbering v e e e e s . . e e e e 34
6.1.4 Page Cross Reference e e e v s . . “ e e e e e 34
6.1.5 Error Summary ¢ ¢ ¢ e v v e o o o e s e e v e . 34
6.1.6 Option List e e e . . e e e e e e e e e e e e 34
6.1.7 Compilation Statlsttcs . e . e e e e e e e e e 34
6.2 Cross-reference Listing e e e e e e e e e .« . 35
6.3 Assembly Listing e e e N 37
6.4 External Symbol chtvonary v e e e e s e e e e e e e e e e e e e e 38
6.5 Instruction Statistics e v s e e s s e s e et e st e e e e e e e 38
7.0 Using Inputsoutput Facihties <
7.1 170 Implementation . . e 39
7.2 DDNAME Association et e e e e e e e s e e e e e e e e e e e e e e e e 39

Contents v

O

~N~

«
© e e e o & e s o

~
« e e @ ¢« o .
“ e e .
U‘lU‘kﬂU!U‘IU‘I -l-\-t.\-h-t\-l-\-b-&\-b-t\-b

VOO 0000 NN

« o @

HOVOVVVOVOVOVOVOVOOVOVLOOOOVONNEO HUHNFRO OONONNSNSNNNUISNI SIS NI NININSNI NN D W

.
« o @
¢+ e e ¢ o s v e + e

Gl) oy S
cCoocoooo
N

R Y N
MPUNRO COCOOOOORUIHUNEO

et b et e et
et et o et ot
. .

MR NNNNNNNNNNNNNDNDNDN

e e e o o
[e R o We e Re No
o« o e e

Data Set DCB Attributes e e e e e e e
Text Files . e e e e e e e e
Opening a Text Flle e e e e e
Text File PUT e e e e e e e e e
Text File GET e e e e e e e e e
The PAGE Procedure

.1

.2

.3 .
5 End of Line Condition e e e e e
.6 End of File Condition e e e .
.7 Text File READ e e e e e e .
.8 The READLN Procedure e e e e .
.9 Text File WRITE . v e e e e e
.10 The WRITELN Procedure e e e e e
Record Files
.1 Opening a Record Flle
.2 Record File PUT e e e e e . .
.3 Record File GET e e e e e e e e e
.4 Endof File Condition e e v

2 Record File READ . . .

Record File WRITE e e e e e e e
Closmg a File e e e e e e e e e e e
The OPEN Procedure . e e e e e
PDS Access in a CMS Envuronment N

Runtime Error Reporting e e e e e e
Reading a Pascal’/VS Trace Back . .
Run Time Checking Errors .
Symbolic Variable Dump e e e e

Debug - Pascalsvs Interactive Debugger
Qualification . . e e e e e e e
Commands e e e e e e e e e e
BREAK COmmand e e e e e e e e e e

.1
.2 CLEAR Command e e e e e e e e e e
.3 CMS Command . e e e e e e e e e
.% DISPLAY Command e e e e e e e
5 DISPLAY BREAKS Command e e e e e e
6 DISPLAY EQUATES Command e e e e e
7 EQUATE Command - . . e e e e e
8 GO Command e e e s e e e e e e e
9 Help Command
10 LISTVARS Command . . . e
11 Qualification Command . . .
12 QUIT Command N
.13 RESET Command e e e e .
.14 SET ATTR Command . e e
.15 SET COUNT Command N .
.16 SET TRACE Command . .
.17 TRACE Command c e . .
.18 Viewing Variables . .
.19 Viewing Memory e e e e e e .
.20 WALK Command et e e e e e e e .
Debug Terminal Session e e e e e .

storage Mapping
Automatic Storage e e e e e e e e
Internal Static Storage e v e e e
DEF Storage e e e e e e e e e e
Dynamic Storage e e e e e e e e e e
RECORD Fields . . e e .
Data Size and Boundary Allgnment . .
The Predefined Types e v e e e
Enumerated Scalar e e e e e e e
Subrange Scalar e e e e e e e
RECORDs e e e e e e e e e e e
ARRAYs e e e e e e e e e e e e e
FILEs e e e e e e e e e e e e e
SETs et e e e e e e e e e e e e
SPACEs e e e e e e e e e e e

e e e o ® o o ° o e o

« o o

NV UN

Code Generation for the IBM/370 . . .
Linkage Conventions . .

Register Usage . e e v e e e e .
Dynamic Storage Ar-ea e e e e e e
Routine Invocation e e e e e e
- Parameter Passing e e v . e e

Pascal/VS Programmer's Guide

e e e o o

L

" e e e e

« e e e s

e o & o o o

e o o e o

« o o .

¢« o e o

e e e 4 o o e ¢ v e o

e e e o o &

e e e o @

e o o e o s o

e e o o e o e

e s e e @

« @ o o e o e

e+ 9 e e e ¢ 2+ e o

s e e ¢ o o

e e @ e o o o e s e s .

€ e ¢ o e s e e s e s 8

o e« o o o

« s e e e 0

* e o s o

69

NNNNNNN OISOV
HRHEEFEROOOOWVOBWVOY

Passing by Read/Write Reference e e e e e e e e e e e

11.5.1 . .
11.5.2 Passing by Read-0Only Refarence e e e e e e e e e e e e s e e e 76
. 11.5.3 Passing by Value . e e e e e e e e e . 76
(/' 11.5.4 Passing Procedure or Functlon Parameters e e e e e . . e 77
: 11.5.5 Function Results e e e e e e e e 77
11.6 Procedure/Function Format e e e e e e e e e e e e e e . . 78
11.7 PCUA . e e e e e e e e e e e e e e e . . . 78
11.8 FCB -~ Flle Control Block e e e e e e e e e e e e e e e . . e e . 80
12.0 Linking to Assembler RoUtines . . & ¢« ¢« ¢ ¢ ¢ v o o s o o s s o o s o+ o 83
12.1 Writing Assembler Routine with Minimum Interface e e e e e e e . 83
12.2 Writing Assembler Routine with General Interface e e e e e e 84
12.3 Receiving Parameters From Routines -1
12.4 Calling Pascals/VS Routine from As:embler Routlne s o o o s s e o+ s 4 . 86
12.5 Sample Assembler Routine . . e e e e e 36
12.6 Calling a Pascal/V5 Main Program from Assembler Routme e e e e e 38
13.0 Runtime Environmant Overvieu e o o o s e e s s s e s s e e s e e e e 89
13.1 Program Initialization e e e e e e a9
13.2 The Main Program . e e e e e e e e e e 89
13.3 Input/Output Routmes v e e e e e e e e 39
13.4 Heap Management Routines e e e e e . . . e e e e e e 39
14.0 Ccomparison to Pascal T 2
14.1 Pascal/VS Restrictions e e e e e . . . e e e e e 91
14.2 Modified Features e e e e e e e e 91
14.3 New Features e e e e e e e e e e e 91
15.0 Implemantation Specifications T X |
15.1 System Description e 93
15.2 Memory Requirements . e e e e e e e e e e e e 93
15.3 Implementation Restrlctlons and Dependenmes e e e e s e e e e e e 93
16.0 Pascals/vs Messagaes e e ¢ o o o o o s e s s e e s s s v e e s e e e e 95
16.1 Pascals/VS Compiler Messages . e . e e e e . . . 95
16.2 Input/0Output Messages e e e e .. e e e e e 110
) 16.3 Memory Management Messages e e e 111
Q 16.4 Math Package Messages e e e e e e e e e e e e . 112
16.5 Messages from PASCALVS exec e e e e . e . . . e e e e 113

APPENDIXES e o o o o o s o s e s o 8 w s e e e s e e e e s e s e s e e e o o 115
A.0 Command syntax Notation e o o o s e o 5 e s e e u s s s s s e w s s s 117

B.0 Installation Instructions e o o s o o e s e s s o v e s s e s e s e s 119
B.1 Installing Pascal/VS under CMS et e e e e e e e e e e e e . e e . 120
B.2 Installing Pascal/VS under V52 e e e e e e e e e e e e e e e e 121
B.2.1 Loading Files from Dlstrlbutlon Tape e e e e e e e e s e e e e e 121
B.2.2 The TS0 Clists e e e e e e e e e« e e 124
B.2. 3 Cataloged Procedures e v e . .o 124
B.2. SPF Menus and Procedures 124
B.3 Loading the Source under CMS e e e e 125
B.% Loading the Source under VS2 e e e e e e . . . 125

Index - - L d . . . - L . L . - L4 A d L4 Ll L L . L4 L . L4 . L4 . L . L] - . L2 L4 129

Contents vii

LIST OF ILLUSTRATIONS

O

Figure 1. The PASCALVS command of CMS 3
Figure 2. Sample compilation under CMS C e e e e e . . .
Figure 3. The PASCMOD command 6
Figure 4. Examples of CMS file deflnltlon commands . . e e e e e e o 1
Figure 5. PASCALVS CLIST syntax. . e e e e e e e o 9
Figure 6. The TS0 PASCMOD CLIST descrlptlon. 13
Figure 7. Examples of TS50 data set allocation commands e h e e e e e e 15
Figura 8. The TS0 CALL command to invoke a load module . e e v e 16
Figure 9. Sample TS0 saession of a compile, link-edit, and executlon. .. 17
Figure 10. Sample JCL to run a Pascal/VS program e e e e e e e e e e e e e e 20
Figure 11. Cataloged procedure PASCC . . e e e e e e e e e e e e e e e 22
Figure 12. Cataloged procedure PASCCG e e e e e e e e e e e e e e e e e e e 23
Figure 13. Cataloged procedure PASCCL .. e e e e e e e e e e e e e 24
Figure 14. Sample JCL to perform multiple complles and a link edit. e e e . 25
Figure 15. Cataloged procedure PASCCLG . e e e e e e e e e e e e e e e 26
Figure 16. Example of a batch job C e e e e e e e e e e e e e e e e e e 28
Figure 17. Sample source listing e e e . e e e e . . . 33
Figure 18. Sample cross-reference llstlng e e e e e . e 35
Figure 19. Sample assembly listing . s e e e e e s . . . 37
Figure 20. Sample ESD table . e e e e e e e e e e s e e e e e e e e e e 38
Figure 21. Using RESET on a TEXT flle . e e e e e e e e e e e e e e e e e 40
Figure 22. Using INTERACTIVE on a TEXT flle e s e e e s e e e e e e e e e e 40
Figure 23. Using REWRITE on a TEXT file 40
Figure 24. Using PUT on a TEXT file e e s e e b e e e e e e e e e e e e e e e 41
Figure 25. Using GET on a TEXT file e e e e e e e e e 41
Figure 26. Using the PAGE procedure « « + . . . 41
Figure 27. Using the EOLN function e e e e e e e e e e e e e e e 41
Figure 28. Using the EOF function on a TEXT flle e e e e e e e e e e e e e e 42
Figure 29. Using READ with length qualifiers. e e e e e e e e e e e e e e e 43
Figure 30. Using READ on TEXT files. e e e e s e e e e e e e e e e e e e e 43
Figure 31. Using the procedure READLN e e e e e . e v e e . 44
Figure 32. Using WRITE on TEXT files e e e e e e e e e e e e e e . 449
Figure 33. Using the WRITELN procedure e e e e e e e e e e e e e e e . 44
) Figure 34. Using PUT on record files e .. . 65
Figure 35. Using GET on record files . . e e e e e e e e e e e e e e e 45
Figure 36. Using READ and WRITE on record flles e e e e e e e e e e e e e e 46
Figure 37. Syntax of string parameter of OPEN e e e e e e e e e e e e e e e 46
Figure 38. Using the OPEN procedure e e e e e e e e e e 47
Figure 39. Trace called by a user program e e s e e e e e s e e e e e e e e 50
Figure 40. Trace call due to program error e e e e e e e s e e e e e e e 50
Figure 41. Trace call due to checking error e e e e e e e e e e e e e e . 50
Figure 42. Trace call due to I/0 error e e e e e e e e e 50
Figure 43. Sample program for Debug session e e e e e e e e . . 65
Figure 44. Starting a program and setting a breakpotnt e e e e e e . . 66
Figura 45. Viewing some program variables .. e e e e e e e e e e e 66
Figure 46. Viewing variables using the ATTR optlon e e e e e e e v e e 67
Figure 47. Debug error messages e e e e e e e e e e e e . 638
Figure 48. Storage mapping for predeflned types e e e e e e e e e e e e 69
Figure 49. Storage mapping of subrange scalars e e e e e e e e e e . . . 70
Figure 50. Alignment of records e e s e 70
Figure 51. Storage mapping of SETS e 71
Figure 52. Register usage 73
Figure 53. DSA format ’ e e e e e e 74
Figure 54. Snapshot of stack and relevant reglsters at 5tart of routine . . 75
Figure 55. Passing by Read/Write reference e e e e e e e e e e e e e e e e 76
Figure 56. Passing by Read-only reference . . e e e e e e e e e e e e e 76
Figure 57. Passing by value . . e e e e e e e e e e e e e e e e e e e 76
Figure 58. Passing routine parameters e e e e et e e e e e e e e e e e e e 77
Figure 59. Function results e e e e e e e . . e e e e e e e v e e . 77
Figure 60. Routine format e e e e e e e . c e e e e 78
Figure 61. Pascal Communlcatlons Nork Area . e e e e . e e e e e e 79
Figure 62. File Control Block (FCB) format e e . . e e e e e e e e 30
Figure 63. Minimum interface to an assembler routlne . . e e e e e e e 83
Figure 64. PROLOG/EPILOG macros . . e e s e e e e e e e e e s 384
Figure 65. General interface to an assembler routlne . e e e e e 385
Figure 66. Pascal/V$S description of assembler routine 87

] Figure 67. Sample assembler routine .
) Figure 68. Example of calling a Pascal/VS program from an assembler routlne 38
Figure 69. Characteristics of System/370 floating point arithmetic e e e e 94
Figure 70. Sample JCL to retrieve first file of dlstrlbutlon tape. e e e e 121
Figure 71. Sample installation job e e e e e e . e s e e e e e e e 122

List of Illustrations ix

c

S

Figure 72. Sample installation job e e e e e e e e e
Figure 73. Sample installation job .

Figure 74. Listing of the JCL to copy source files from tape
Figure 75. Listing of the JCL to copy source files from tape

X Pascal/VS Programmer's Guide

123
124
126
127

1.0 JINTRODUCTION

(::’ The Pascal/VS compiler is a processing L4 057370 Batch (V52 R3.7)

program which translates Pascal/VSs

source programs, diagnosing errors as . Time Sharing Option (TS0) of 05/VS2

it does so, into IBM System/370 machine

instructions. (4 Conversational Monitor System
(CMS) of Virtual Machine

The compiler may be executed under the Facilitys/370 (VM/370) Release 5

foltowing operating system environ- PLC 2.

ments:

Introduction 1

(:> This section applies only to those who
are using Pascal/V$S under the Conversa-
tional Monitor System (CMS) of Virtual
Machine Facilitys370 (VM/370). If you
ara not using CMS then you may skip
this entire section.

For a description of the syntax nota-
tion used to describe commands, see
"Command Syntax Notation™ on page 117.
There are four steps to running a
Pascal/VS program under CMS.

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com-
mand;

4. The load module is invoked.

PRINT

PASCALVS fn I[maclibs...]l |(Ioptions...l NOPRINT] [CONSOLE] [NOOBJ] [)]
DISK

Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1 HOW TO COMPILE A PROGRAM

2.1.1 Invoking the Compiler

N The standard method of invoking the
Pascal/VS compiler under CMS i5 by
means of an EXEC called PASCALVS.

To compile a Pascals/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fnN" is the file name of the pro-
gram. The file type is always assumed
to be "PASCAL"™,.

The compiler translates a source pro-
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its file type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL"™,
the command would be:

PASCALVS SORT
If the compilation completes without

errors, then the file named "SORT TEXT"
Wwill contain the resulting object code.

2.1.2 The PASCALVS Command

<:> The generalized form of the PASCALVS
command is illustrated in Figure 1.
- The operands of the command are defined

as follows:

fn .
is the file name of the source pro-
gram; the assumed file type is
T"PASCAL".

maclibs...
are optional macro libraries
required by the %XINCLUDE facility.
Up to eight may be specified.

options...
are compiler options, see "Compil-
er Options"™ on page 29.

The command options PRINT, NOPRINT, and
DISK specify where the compiler listing
is to be placed.

PRINT
specifies that the listing is to be
spooled to the virtual printer.
This is the default.

NOPRINT
spacifies that the listing is to be
suppressed. This option automat-
ically forces the following three
compiler options to become active:

~ NOSOURCE
- NOXREF
= NOLIST

DISK
specifies that the listing is to be
stored as a file on your A disk.
The file is named “fn LISTING",
whare "fn" is the file name of the
source program.

CONSOLE

This command option specifies that
the console messages produced by

Running a Program under CMS 3

the compiler are be stored as a

file on vyour A disk. The name
assigned to the file is "fn
CONSOLE". If CONSOLE is not speci-
fied, then the messages will be

displayved on the terminal console.

NOOBJ :
This command option suppresses the
production of an object module by
disabling the code generation
phase of the compiler. This option
is useful when you are using the

compiler only as an error
diagnoser.
For an explanation of the possible
error messages and return codes

produced from the EXEC, see "Messages
from PASCALVS exec" on page 113.

2.1.3 The %INCLUDE Maclihs

The macro libraries (maclibs) that may
be specified when invoking the PASCALVS
command are those required by the
ZINCLUDE facility. UWhen the compiler
encounters an %INCLUDE statement with-
in your program it will search the
maclibs (in the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%ZINCLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic-
itly provided as the last maclib in the
search order.

2.1.4 Passing Compiler Options

Compile time options (see "Compiler
Options” on page 29) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compiler options may be specified in
the PASCALVS parameter list. The

4 Pascal/VS Programmer's Guide

options list must be preceded by a left
parenthesis "(".

For instance, to compile the program
Y"TEST PASCAL" with the debug feature
enabled and without a cross refearence
table, you would invoke the following
command:?

PASCALVS TEST (DEBUG NOXREF

2.1.5 The compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings” on page 33.

2.1.6 compiler Diagnostics

Any compiler-detected errors in your
program will be displayed on your ter-
minal console (or written to a disk
file if the CONSOLE options is speci-—-
fied). The errors will also be indi-
cated on your source listing at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com-
piler is displayed on your console.
Immediately underneath the printed
line a dollar symbol ('$') is placed at
each location where an error was
detected. This symbol serves as a
pointer to the approximate location
where the error occurred within the
source record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number.

For a synopsis of the compiler-gener-
ated messages see "Pascal/VS Compiler
Messages™ on page 95.

2.1.7 Sample Compilation

edit copy pascal
NEW FILE:
program copy;
var
infile;
outfile @ text;
buffer ¢ string;
begin
reset(infile);
rewrite(outfile);
readln(infile,buffer);
while not eof(infile) do
begin
writeln(outfile buffer);
readln(infile,buffar)
end;
end.

EDIT:

file
FILE SAVED

R; T=0,.25/0.62 06:56:44
pascalvs copy
INVOKING PASCAL/VS COMPILER ...
HRITELN(OUTFILE BUFFER);

ERROR 41: Comma '," expec%gé

1 ERROR DETECTED.
SOURCE LINES: 16; COMPILE TIME: 0.16 SECONDS; COMPILE RATE: 6109 LPM
PRT FILE 5954 FOR PICKENS COPY 01 HOLD

RETURN CODE: 3
R(00008); T=0.34/0.67 06:56:59

Figure 2. Sample compilation under CMS

Running a Program under CMS

5

PASCMOD

main [names ... 1 I (options... [)11]

Figure 3. The PASCMOD command:
2.2 HOW TO BUILD A LOAD MODULE

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consists of just one source
module (that is, vou have no segment
modules), a load module can be gener-
ated by simply invoking PASCMOD with
the name of the program. For example,
if a program named SORT was successful-
ly compiled (which implies that "YSORT
TEXT" exists), then a load module may
be generated with:

PASCMOD SORT

The resulting module would be called
"SORT MODULE". A load map is stored in
"SORT MAP™.

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the main program
module.

namas...

are the names of segment modules
and text libraries (TXTLIB's)
which are to be included. If a
name "N" is specified and there are
two files named N TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB will be
searched.

options...
is a list of options. (see "Module
Generation Options.")

The resulting load module will be given
the name "main MODULE A". The load map
of the module will be stored in "main
HAP A",

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic-
itly appends this library to the list
that you specify.

6 Pascal/VS Programmer's Guide

generates a Pascal/VS load module.

As an example, let us build a load mod-
ule for a pre-compiled program which
resides in three source modules: MAIN,
ASEG, and BSEG. This program calls
routines that reside in a txtlib called

UTILITY. The following command would
generate a load module called MAIN
MODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
This option links the debugging
routines into the load module so
that the interactive debugger can
be used. (See "Debug - Pascals/V$s
Interactive Debugger™ on page 53.)

NAME name
This option specifies an alternate
name for the 1load module. The
resulting load module and map will
have the name "name MODULE A" and
"name MAP A".

2.2.2 Run time Libraries

Routines which make up the Pascal/VS$s
runtime environment reside in a text
library called "PASCALVS TXTLIB". It
must be present in order to resolve the
linkages from the program being pre-
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIB". (see "Debug - PascalsV$s
Interactive Debugger" on page 53 for a
description of Debug).

FILEDEF SYSIN DISK INPUT DATA

FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF OUTPUT TERMINAL (RECFM F LRECL 30

FILEDEF INPUT TERMINAL (RECFM V LRECL 30

Figure 4, Examples of CMS file definition commands

2.3 HOW TO DEFINE FILES

Before you invoke the generated load
module, you must first define the files
that your program requires. This is
done with the FILEDEF command.

The first parameter of the FILEDEF com-
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT ¢ TEXT;
OUTPUTFILE : file of
' INTEGER;

The text file named OUTPUT receives the
execution time error diagnostics. You
must always define this file prior to
executing any Pascal/VS program. This
file is often assigned to the terminal.

The text file named INPUT is required
by the interactive debugger ("Debug -
Pascal/VS Interactive Debugger” on
page 53) to be assigned to the
terminal.

If a particular file is to be opened
for input, attributes such as LRECL,
BLKSIZE, and RECFM are obtained from
th? (presumably) already existing
file.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes”
on page 39.)

The FILEDEF commands required for each
of the three file variables in the
example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.% HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the files defined, you are ready to

execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms...l]

where "modname” is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program will read (via the PARMS
function), the runtime parameter list
must be terminated with a slash "/".
The program parameters, if any, must
follow the "/7,

modname [[rtparms...s/1 [parms...l 1

2.%.1 Run Time Options

The following options enable features
in the Pascals/VS run time environment
in which your program will be
executing.

COUNT

This option causes instruction
frequency information to be col-
lected during program execution.
This option will only have an
effect if the program was both com-
piled and loaded with the DEBUG
option.

DEBUG

The DEBUG option causes the inter-
active debugger, Debug ("Debug -
Pascal/VS Interactive Debugger" on
page 53) to gain initial control
when you invoke your program.
Note: this option is valid only if
the load module was generated with
the DEBUG option ("Module Gener-
ation Options” on page 6).

Running a Program under CMS 7

This section describes how to compile a
Pascal/VS program under the Time Shar-
ing Option (TS50) of 05/VS2. If vou are
not using TS0 to run the compiler, vou
may skip this section.

Rafer to "Command Syntax Notation" on
page 117 for a description of the syn-
tax notation used to describe commands.

There are four steps to running a
Pascal/VS program.

3.0 RUNNING A PROGRAM UNDER TSO

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro-
gram are allocated;

4. The load module is invoked.

CLIST NANE

OPERANDS

PASCALVS

data-set-name
[compiler-options~listl

OBJECT(dsname)

NOOBJECT

PRINT(x*)

PRINT (dsname)
SYSPRINT(sysout-class)
NOPRINT

CONSOLE(*)
CONSOLE (dsname)]

LIB{dsname-list)
NOLIB

Figure 5. PASCALVS CLIST syntax.
3.1 HOW 7O COMPILE A PROGRAM

3.1.1 Invoking the Compiler

The Pascal/VS compiler is invoked under
TS0 by means of a CLIST. A sample
CLIST named PASCALVS 1is provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set in which contains
the source program to be compiled.
This can be either a fully quali-
fied name (enclosed in single quo-
tation marks) or a simple name (to
which the user identification will

be prefixed and the qualifier
"PASCAL" will be suffixed). This
must be the first operand
spacified.

compiler-options-list
specifies one or more compiler
options. See "Compiler Options" on
page 29.

OBJECT (dsname)
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. This can be
either a fully qualified name (en-
closed within triple quotation
marks Y''...'7")} or a simple name
(to which the identification qual-

1 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

Running a Program under TS0 9

C

O

ifier will be prefixed and the

qualifier "0BJ" suffixed).

NUOBJECT

specifies that no object module is
to be produced. The compiler will
diagnose errors only.

If neither OBJ nor NOOBJ is speci-
fied then object module produced by
the compiler will be written to a
default data set. If the data set
specified in the first operand con-
tains a descriptive qualifier of
Y"PASCALY, the CLIST will form a
data set name for the object module
by replacing the descriptor qual-
ifier of the input data set with
"0BJ". If the descriptive qualifi-
er is not "PASCAL™, then you will
be prompted for the object module
data set name.

If the first operand of PASCALVS
specifies the member of a parti-
tioned data set, the member name
will be ignored - the generated
data set name will be based on the
name of the partitioned data set.

As an example, given that the user
identification is ABC, the follow-
ing commands wWill produce object
modules with the name shown.

PASCALVS SORT
object module: 'ABC.SORT.OBJ'

PASCALVS 'DEF.PDS.PASCAL(MAIN)'
object module: 'DEF.PDS.0BJ?

PASCALVS 'YABC.PROG.PAS'
user prompted for object
module name

PRINT (%)

specifies that the compiler list-
ing is to be written at the termi-
nal; no other copy wWill be
available.

PRINT (dsname)

specifies that the compiler list-
ing is to be written on the data
set named in the parentheses. This
can be either a fully qualified
name (enclosed within triple quo-
tation marks 'Y',,.''')2 or a
simple name (to which the identifi-
cation qualifier will be prefixed
and the qualifier "LIST™
suffixed).

SYSPRINT(sysout-class)

specifies that the compiler list-
ing is to be written to the sysout
class named in parentheses.

NOPRINT

2

10

spacifias that the compiler list-
ing is not to be produced. This
operand activates the following
compiler options:

NOSOURCE, NOXREF, NOLIST

CONSOLE(¥*)

specifies that the compiler gener-
atad messages are to be displayved
on the terminal console. This is
the default.

CONSOLE (dsnane)

specifies that the compiler gener-
ated messages are to be written to
the data set named in the parenthe-
ses. This can be either a fully
qualified name (enclosed within
triple quotation marks ''',..''")

or a simple name (to which the
identification qualifier will be
prefixed and the qualifier

WCONSOLE" suffixed).

LIBl{dsnama-list)

specifies that the %INCLUDE facil-
ity is being utilized. Within the
parentheses is a list of the names
of one or more partitioned data
sets that are to be searched for
members to be included within the
input stream.

If the list contains more than one
name, the entire 1list must be
enclosed within quotes. Any fully
qualified name within the quoted
list must be enclosed in double
quotes ''...,'"'.

See "Using the XZINCLUDE Facility”
on page 11.

NOLIB

%INCLUDE
This is

specifies that no
libraries are required.
the default.

Example 1

Operation:

Invoke the Pascal/VS com-
piler to process a
Pascal/VS program

Known: User-identification is ABC

Data set containing the pro-
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINT(A)

Triple quotes are required because the CLIST processor removes the outer

quotes within a keyword sub-operand list.

Pascal/VS Programmer's Guide

c

Example 2

Operation: Invoke the Pascal/VS com-
piler to process a
Pascal/V$S program

Known: User-identification is XYZ

Data set containing the pro-
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST.

The long version of the cross
reference listing is pre-
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS "ABC.TEST.PASCAL" +
XREF(LONG),PRINT(TESTLIST)

3.1.2 Using the %INCLUDE Facility

If the %INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called?®

"S$YS1.PASCALVS .MACLIB"

This library must be specified in the
LIB list if your program contains an
%INCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%INCLUDE statement within the source
program, it will search the partitioned
data set(s) in the order specified for
the member named within the statement.

When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire

member, it will continue reading from
the previous input stream immediately
following the %INCLUDE statement.

3 The high-level
installation.

qualifier name

(5YS1) may be

Example 1

Operation: Invoke the Pascal/VS com-
piler to process a

Pascal/VS program which
utilizes the %INCLUDE
facility.

Known: User-identification is P123

Data set containing the pro-
gram is named

"P123.MAIN.PASCAL’

The source to be included is
stored in two partitioned
data sets by the names of

'P123.PASLIB?
"SYS1.PASCALVS.MACLIB".

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIB('YPASLIB,+
"'SYS1.PASCALVS.MACLIB''")

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
displayed on your terminal. If the
CONSOLE(dsnama) operand appears on the
PASCALVS command, then the diagnostics
will be stored in a data set. The
errors will also be indicated on vour
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list-
ing.

When an error is detected, the source
line that was being scanned by the com-
piler is printed on your terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$') is placed at each location
where an error was detected. This sym-
bol serves as a pointer to indicate the
approximate location where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number. :

For a synopsis of the compiler gener-

ated messages see YPascals/VS Compiler
Messages" on page 95.

di fferent at your

Running a Program under TS0 11

C

3.2 HOW TO BUILD A LOAD MODULE

To generate a load module from a
Pascal/V5S object module, you may use
either the TS50 LINK command or a CLIST
named "PASCMOD"™ (Figure 6 on page 13).
The CLIST performs the same function as
the LINK command except that it will
automatically include the Pascals/Vs
runtime library in generating the load
module. Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug library. (A complete
description of the LINK command is con-
tained in the IS0 Command tanguage
Reference Manual.)

Every Pascal/VS object module contains
references to the runtime support rou-
tines. These routines are stored in a
library called?®

"SYS1.PASCALVS.LOAD™

This library must be linked into a
Pascal/VS object module in order to

4 The high-level
installation.

qualifier name

12 Pascal/VS Programmer's Guide

(5YS1)

resolve all external references prop-
erly. If the PASCMOD CLIST is used,
this library is included
automatically.

If the interactive debugger is to be
utilized, then the library containing
the debug environment must be included
in the linking. The name of this
library is®

"SYS1.PASDEBUG.LOAD"

This library must appear ahead of the
runtime library in search order. If
the PASCMOD CLIST is used, this library
will be included if the option DEBUG is
specified.

If more than one object module is being
linked together, then an entry point
should be specified by means of a 1ink-
age editor control card. The name of
the entry point for any Pascal/VS pro-
gram is AMPXSTRT.

may be different at your

data-set-nama

specifies the name of a data set
containing a Pascal/VS object mod-
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (%)
for the data set name to indicate
that you will enter control state-
ments from your terminal. The sys-
tem will prompt vou to enter the
control statements. A null line
indicates the end of your control
statements.

DBJECT('dsname-~list')

specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list
must be enclosed in single quotes;
fully qualified names within the
list must be enclosed in double
quotes ('',,..'"),

LIB('dsname~list*)

specifies one or more names of
library data sets to be searched by

CLIST NAME OPERANDS
PASCMOD datafset-name or %

[OBJECT{ "dsname-1list')]

[DEBUG]

[LOAD(dsnama)l
PRINT (%) ‘

[PRINT {dsname)] [LET] [XCAL]
NOPRINT NOLET NOXCAL

[LIB('dsname-1list')] [FORTLIBI] [COBLIB]
MAP NCAL LIST

[NOMAP] [NONCAL] [NOLIST]
XREF REUS .REFR

[NOXREF] [NOREUS] [NOREFR]
SCTR OVLY RENT

[NOSCTR] [NOOVLY] [NORENT]
NE oL DC

[NONE] [NOOL] [NODC]
TEST NOTERM

[NOTEST] [TERM]

[SIZE('integerl integer2']]

[DCBS{blocksize)l

[AC(authorization-codell

Figure 6. The TS0 PASCMOD CLIST description,

the linkage editor to locate load
modules referred to by the module
being processed, that s, to
resolve external references. The
name of the PascalsVS runtime
library is implicitly appended to
the end of this list; vou need not
specify it.

Because of CLIST restrictions, the
list must be enclosed in single
quotes; fully qualified names
within the list must be enclosed in
double quotes (''...'").

DEBUG

All
are
the
1S0

specifies that the Pascal/Vvs
interactive debugger is to be uti-
lized on the resultant load module.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

other operands of the PASCMOD CLIST
identical to their counterparts in
LINK command as described in the
Command Language Reference Manual.

Running a Program under TS50 13

C

S

Example

14

Operation: Create a load module from
a compiled Pascal/VS pro-
gram consisting of three
object modules.

Known: User-identification is ABC.
Data sets containing the
three object modules:

ABC.SORT.0BJ
ABC.SEGl.0BJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the . system replies are
high-lighted.)
pascmod ¥ load(progs(sortl)) +
object('sort,segl,seg2')
ENTER CONTROL CARDS
entry ampxstrt

READY

Pascal/VS Programmer's Guide

ALLOC DDNAME(SYSPRINT) SYSOUT(A)

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAME(INPUT.DATA) SHR

ALLOC DDNAME(OUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(1003 BLOCK(3120)
ALLOC DDNAME(OUTPUT) DSNAME(%) USING(F80)
ALLOC DDNAMECINPUT) DSNAME(%) USING(F80)

Figure 7. Examples of TS0 data set allocation commands

3.3 HOUW TO DEFINE FILES

. Before you invoke the generated load

module, you must first define the files
that vour program requires. This is
done with the ALLOC command.

The ddname to be associated with a par-
ticular file variable in your program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respactively.

var

SYSIN,

SYSPRINT ¢ TEXT;

OUTPUTFILE : file of
INTEGER;

The text file named OUTPUT receives the
execution time error diagnostics. You
must always allocate the ddname OUTPUT
prior to executing any Pascals/VS pro-
gram. This ddname is often assigned to
the terminal.

Tha text fila named INPUT is required
by the interactive debugger (see "Debug
- Pascals/VS Interactive Debugger” on
page 53) to be assigned to the
terminal.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 39.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

Running a Program under TS0 15

CALL dsnamel (member)] [

'loptions/] Iparmsl' 1

Figure 8.
3.4 INVOKING THE LOAD MODULE

After the module has been created and
the files defined, you are ready to
exaecute the program. This is done by
the CALL command (see Figure 8). The
operands of the CALL command are as
follows.

dsnamz(mamber)
specifies the name of a partitioned
data set and the member where the

load module to be invoked is
stored. If the member name is
omitted, then the member
"TEMPNAME" will be the load module
invoked.

dsname may be either a simple name
(to which the user identification
is prefixed and the qualifier
"LOAD" is suffixed), or a fully
qualified name in quotes.

options
spacifies one or more run time
options separated by either a comma

or a blank. (See "Run Time
Options.").
parms

specifies a parameter string which
is to be passed to the program.
The parameter string is retrieved
from within the program by the
PARMS function.

5 The Debug library will be

The TS0 CALL command to invoke a load module

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

3.4.1 Run Time Options

The following options enable features
in the Pascal/VS run time environment

in which your program will be
exacuting.
COUNT
This option causes instruction
frequency information to be col-

laected during program execution.
This option will only have an
effect if the program was compiled
with the DEBUG option and linked
with the Debug librarys.

DEBUG
The DEBUG option causes the inter-
active debugger to gain initial
control when you invoke vour pro-
gram. For a description of the
debugger see "Debug - Pascal/VS$S
Interactive Debugger" on page 53.

Note: this option is valid only if
the load module was linked with the
Debug library5.

included if the PASCMOD CLIST is invoked with

DEBUG specified. See "How to Build a Load Module" on page 12.

16 Pascal/VS Programmer's Guide

3.5 SAMPLE TSO SESSION

READY
pascalvs lander sysprint(a) list
INVOKING PASCAL/VS R1.0
NO COMPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE:
READY

pascmod lander load(programs(lander))
READY

alloc ddname(input) dsname()
READY

alloc ddname(output) dsname(¥)
READY

call programs(lander) 'parms go here!

15032

Figure 9. Sample TS50 session of a compile, link-edit, and execution.

Figure 9 is an example of a TS0 session the terminal are in lower case; those
which compiles an already existing produced by the system are in upper
source module, link edits it, and exe- case and high-lighted.

cutes it. The commands entered from

Running a Program under TS0

17

C

This section describes how to compile
and execute Pascal/VS programs in an 0S
Batch environment. If you are not
using the compiler under 0S Batch then
you may skip this section.

.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operating system; it
allows you to describe the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

] JOB statement, which identifies
the start of the job. ,

. EXEC statement, which identifies a
job step and, in particular, speci-
fies the program to be executed,
either directly or by means of a
cataloged procedure (described
subsequently).

e DD (data definition) statement,

which defines the input/output

4.0 RUNNING A PROGRAM UNDER 0S BATCH

facilities required by the program
executed in the job step.

. /% (delimiter) statement, which
separates data in the input stream
from the 3job control statements
that follow this data.

A full description of job control lan-

guage is given in the publication
0S/vV52 JCL (GC28-0692).

HOW TO COMPILE AND EXECUTE A PRO-

4.2
GRAM
The job control statements shown in
Figure 10 on page 20 are sufficient to
compile and execute a Pascal/VS program
consisting of one module. This program
uses only the standard files INPUT and
OUTPUT. For a more generalized
description of input/output refer to
"How to Access Data Sets"™ on page 27
and "Using Input/Output Facilities™ on
page 39. Any options to be passed to
the compiler are placed within the
OPTIONS parameter of the EXEC
statement.

Running a Program under 0S5 Batch 19

//7EXAMPLE JOB
//75TEP1 EXEC PASCCG,OPTIONS="'"
//PASC.SYSIN DD %
program EXAMPLECINPUT,QUTPUT);
var
A, B: REAL;
beq)

egin
RESETC(INPUT)Y;
while not EOF do
begin
READLNCA,BJ;
WRITELN(C' SUM
WRITELN(' PRODUCT
end
end.
V4 ;
//7G0.INPUT DD %
3.0 4.0
3J.14159 1.414
1.0E-10 2.0E-10
-10.0 102.0
/%

Y,A+B)Y;
',A%B);

Figure 10,

Sample JCL to run a Pascal/VS program

In the sample JCL, "EXAMPLE" is the
name of the job. The job name identi-
fies the job within the operating sys-
tem; it is essential. The parameters
required in the JOB statement depend on
the conventions established for your
installation.

The EXEC statement invokes the IBM sup-
plied cataloged procedure named
PASCCG. When the operating system
encounters this name, it replaces the
EXEC statement with a set of JCL state-
ments that have been written previously
and cataloged in a system library. The

cataloged procedure contains three
steps:®
PASC The first pass of the compiler

processes the Pascal/VS pro-
gram and translates it into an
intermediate form that will
serve as input Tor the next
step.
PASCT The second pass of the compiler
reads in the intermediate code
produced from the first pass
and produces an object module.

GO The LOADER is invoked to proc-
ess the object module by load-
ing it into memory and
including the appropriate
runtime library routines. The
resulting executable program
is immediately executed.

The DD statement named "PASC.SYSIN"
indicates that the program to be proc-
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or device on
which it expects to find the program.

20 Pascal/VS Programmer's Guide

The delimiter statement /% indicates

the end of the data.

The DD statement named "GO.INPUT" indi-
cates that the data to be processed by
the program (in procedure step GO) fol-
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure comprises one or
more job steps (though it is not a job,
because it must not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state-
ment instead of the name of a program.

Several IBM-supplied cataloged proce-
dures are available for use with the
Pascal/VS compiler. It is primarily by
means of these procedures that a
Pascal/V$S job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre-
quently used sets of job control state-
ments., If the statements in a
cataloged procedure do not match vour
requirements exactly, you can easily
modify them or add new statements for
the duration of a job.

It is recommended that each installa-
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

.4 IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup-
plied for use with the Pascal/VS com-
piler are:?

PASCC Compile only
PASCCG Compile, load-and-execute
PASCCL Compile and link edit

PASCCLG Compile, link edit, and exe-
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set is
SYSIN; the procedure step name which
reads the input data set is PASC. For
example, the JCL statements that you
might use to compile, link edit, and
§xecute a Pascal/VS program is as fol-
ows

//JOBNAME JOB
//STEPL EXEC PASCCLG
//7PASC,.SYSIN DD ¥

.

(insert Pascai/VS program here
to be compiled)

/%

The listings and diagnostics produced
by the compiler are directed to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce-
dure routes DDname SYSPRINT to the out-
put class where the system messages are
produced (SYSOUT=%).

The object module produced from a com-
pilation is normally placed in a tempo-
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSPUNCH in procedure
step PASCT must be overridden. For
example, to compile a program stored in
data set

"T123.SORT.PASCAL"

and to store the resulting object mod-
ule in a data set named

"T123.S0RT.0BJ"™
the following JCL might be employed:
/7JOBNAME JOB

//5TEP1 EXEC PASCC

//PASC.SYSIN DD DSN=T123.SORT.PASCAL,
/7 DISP=SHR
//PASCT.SYSPUNCH DD DSN=T123.SORT.0BJ,
77 UNIT=TSOPACK,

/7 DISP=(NEW,CATLG)

Running a Program under 0S5 Batch 21

//PASCC PROC SYSQUT=%,0PTIONS=, INCLLIB='SYS51.PASCALVS.MACLIB',
(:; 77 LINKLIB="5Y51.PASCALVS.LINKLIB'

: /7%

/7% PASC

/7%

7/PASC EXEC PGM=PASCALL,PARM="&0PTIONS®

//STEPLIB DD DSN=&LINKLIB,DISP=SHR

//SYSPRIRT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA, LRECL=133,BLKSIZE=685)
//70UTPUT DD SYSOUT=&S5YSOUT

//7SYSTERM DD DUMMY

//5YSMSGS DD DSN=SYS51.PASCALVS.MESSAGES,DISP=SHR

//SYSLIB DD DSN=&INCLLIB,DISP=SHR

Va4 DD DSN=SYS1.PASCALVS.MACLIB,DISP=SHR
//5YSBU DD UNIT=5YSDA,DISP=(NEW,PASS),

Vs SPACE=(TRK,(2,5))

//5YSXREF DD UNIT=SYSDA,DISP=(NEW,DELETE),

7/ SPACE=(TRK,(2,5))

//5YSPUNCH DD SYSOUT=&SYSOUT
//5YSLIST DD UNIT=SYSDA,DISP=(NEW,PASS),

/7 SPACE=(TRK,(2,5))
/7%

/7% PASCT

/7%

//7PASCT EXEC PGM=PASCALT,COND=(8,LE,PASC),PARM="&0PTIONS'
//STEPLIB DD DSN=&LINKLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//0UTPUT DD SYSQUT=&SYSOUT

//SYSTERM DD DUMMY

/7 INPUT DD DUMMY

//S5YSIN DD DSN=%_,PASC.SYSBU,DISP=(O0LD,DELETE)

//S5YSPUNCH DD DSN=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),

7/ SPACE=(TRK, (2,5)),
7/ DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/710G DD SYSOUT=&SYSOUT

77SYSLIST DD DSN=%.PASC.SYSLIST,DISP=(MOD,DELETE)
~ | #78YSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),
(;) 77 SPACE=(TRK, (2,5)),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/75YSUT2 DD UNIT=SYSDA,DISP=(NEW,DELETE),
77 SPACE=(TRK, (2,5)),
/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)

Figure 11. Cataloged procedure PASCC

4.4.1 compile Only (PASCC) ' the PASCT step. The PASCT step
produces the object module and writes
it to the data set associated with
This cataloged procedure (Figure 11) DDname SYSPUNCH.

compiles one Pascal’/VS source module

and produces an object module. It con- The DD statement for the object module
sists of two steps, PASC and PASCT, defines a temporary data set named
which are common to all of the cata- &&LOADSET. The term MOD is specified
loged procedures described in this in the DISP parameter and as a result,
chapter. if the procedure PASCC is invoked
several times in succession for differ-
Step PASC reads in the source module, ent source modules, &&LOADSET will
diagnoses errors, produces a listing, contain a concatenation of object mod-
and translates the source into an ules. The linkage editor and loader
intermediate form which it passes to will accept such a data set as input.

@,
22 Pascal/VS Programmer's Guide

C

PARM='EP=AMPXSTRT"'

//5YSLOUT DD SYSOUT=&SYSOUT
//7SYSPRINT DD SYSOUT=&SYSOUT

//PASCCG PROC SYSOUT=%,0PTIONS=,INCLLIB='SY51.PASCALVS.MACLIB',

77 LKLBDSN='5YS1.PASCALVS.LOAD"',
/77 LINKLIB='SYS1.PASCALVS.LINKLIB®
//PASC EXEC PGM=PASCALL,PARM="&0PTIONS'

(this step is identical to the PASC step in procedure PASCC)
//7PASCT EXEC PGM=PASCALT,PARM='&OPTIONS®
+e. (this step is identical to the PASCT step in procedure PASCC)
/7G0 EXEC PGM=LOADER,COND=((8,LE,PASC),(8,LE,PASCT)},
ZZSYSLIB DD DSN=&LKLBDSN,DISP=SHR .

DD DSN=5YS1.PASCALVS.LOAD,DISP=SHR
//75YSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

//70UTPUT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//INPUT DD DUMMY,DCB=(RECFM=V,LRECL=256,BLKSIZE=260) ’

Figure 12. Cataloged procedure PASCCG

4.6.2 Ccompile, Load, and Execute

{(PASCCG)

In this cataloged procedure
(Figure 12), the first two steps com-
pile a Pascal/VS source module to
produce an object module. In the third
step (named GO)J, the loader is
executed; this program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
GO0 describes the libraries from which
external references are to be resolved.
If you have a library of your ouwn from
which you would like external refer-
ences to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compila-
tions may also be included in the load-

er's input stream by concatenating them
in the SYSLIN DD statement.

As an example, a program in a data set
named "DOE.SEARCH.PASCAL™ needs to be
compiled and then loaded with an object
module named "DOE.SORT.O0BJ". In addi-
tion, several external routines are
called from within the program which
reside in a library named
"DOE.MISC.0OBJLIB". The following JCL
statements would compile the program
and execute it.

//DOE JOB

//5TEP1 EXEC PASCCG,

77 LKLBDSN='DOE.MISC.0OBJLIB'
//PASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
/7 DISP=SHR

7/GO.SYSLIN DD

77 DD DSN=DOE.SORT.O0BJ,

Vs DISP=SHR

Running a Program under 0S Batch 23

O

(this step is identical to the PASC step in procedure PASCC)

«.. (this step is identical to the PASCT step in procedure PASCC)

//PASCCL PROC SYSOUT=%,0PTIONS=,INCLLIB="SYS1.PASCALVS.MACLIB"',
V4 LKLBDSN=*SYS1.PASCALVS.LOAD?',

77 LINKLIB='SYS1.PASCALVS.LINKLIB'

//7PASC EXEC PGM=PASCALL,PARM="'&O0PTIONS'

//7PASCT EXEC PGM=PASCALT,PARM='&0PTIONS"'

/7%

7% LKED

/7%

/7LKED EXEC PGM=IEWL,PARM='LIST,MAP’',

77 COND=((8,LE,PASC}),(8,LE,PASCT))

//7S5YSLIB DD DSN=&LKLBDSHN,DISP=SHR

77 DD DSN=SYS1.PASCALVS.LOAD,DISP=SHR
//7S5YSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
/7 SPACE=(TRK,(5,3,1))

//75YSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))}

//SYSPRINT DD SYSOUT=&SYSOUT

/7/SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

77 DD DDNAME=SYSIN

Figure 13. Cataloged procedure PASCCL

4.4.3 compile and Link Edit (PASCCL])

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
sat defined by the DD statement with
the name SYSLMOD. This statement in
the cataloged procedure specifies a new

temporary library &&GOSET, in which the -

load module will be placed and given
the member name GO.

In specifving a temporary library, it
is assumed that vou will execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking multiple modules
together, vyou must supply an entry
24 Pascal/VS Programmer's Guide

point. The name of the entry point may
be either the name of vyour main
program, . or the name AMPXSTRT. To

define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor.

This may be done

conveniently with a DD statement named

SYSIN for step LKED which references
instream data:

//LKED.SYSIN DD ¥
ENTRY AMPXSTRT
/%

Multiple invocations of the PASCC cata-

loged procedure
modules.

concatenates object
This permits several modules

to be compiled and link edited conven-

iently
Figure 14 on page 25 compiles three
source modules and thaen link edits them
to produce a single load module.
in the example, each source module is a

in one job. The JCL shown in

With-

member of a partitioned data set named

The member names are MAIN,
SEG2.
be placed
named

"DOE.PASCAL.SRCLIBL™.

SEGl, and
The resulting load module is to
in a preallocated library
"DOE.PROGRAMS.LOAD" as a member

named MAIN.

//JOBNAME JOB (DOE),'JOHN DOE'

/7/STEP1 EXEC
//PASC.SYSIN
/7/STEP2 EXEC
/7/PASC.SYSIN
//STEP3 EXEC
/7/PASC.SYSIN

PASCC
gD DSN=DOE.PASCAL.SRCLIBL(MAIN),DISP=SHR
ASCC
ggsgg?=DOE.PASCAL.SRCLIBI(SEGI).DISP=5HR
DD DSN=DOE.PASCAL.SRCLIB1(SEG2),DISP=SHR

//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=0LD

//LKED.SYSIN

DD ¥

ENTRY AMPXSTRT

/%

Figure 14.

Sample JCL to perform multiple compiles and a link edit.

Running a Program under 0S5 Batch

25

S

O

//SYSPRINT DD SYSOUT=&SYSQUT

//PASCCLG PROC SYSOUT=%,0PTIONS=, INCLLIB='SYS51.PASCALVS.MACLIB"',
77 LKLBDSN="SYS1.PASCALVS.LOAD?',
/77 LINKLIB='S5YS]1.PASCALVS.LINKLIB'

//PASC EXEC PGM=PASCALL,PARM='&0PTIONS'

... (this step is identical to the PASC step in procedure PASCC)
//PASCT EXEC PGM=PASCALT,PARM="'&0OPTIONS’

.. (this step is identical to the PASCT step in procedure PASCC)

//LKED EXEC PGM=IEWL,PARM='LIST,MAP',

«.. (this step is identical to the LKED step in procedure PASCCL)
//G0 EXEC PGM=%,LKED.SYSLMOD,
Va4 COND=((8,LE,PASC), (8,LE,PASCT), (8,LE,LKED))

DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)

//70UTPUT
/7/7INPUT DD DUMMY,DCB=(RECFM=V,LRECL=256,BLKSIZE=260)
Figure 15. Cataloged procedure PASCCLG

§.4.4 Compijle, Link Edit, and Execute

(PASCCLG) ,

This cataloged procedure (Figure 15)
performs a compilation, invokes the
linkage editor to form a load module

26 Pascal/VS Programmer's Guide

from the resulting object module, then

the load module is executed.

The first three steps of this procedure
are identical to those of the PASCCL
procedure. An additional fourth step
(named GO) executes your program.

O

4.5 HOW TO ACCESS AN %INCLUDE LIBRARY

The DD statement named SYSLIB in proce-
dure step PASC defines the libraries

from which included source is to be

retrieved.

When the compiler encounters an %IN-
CLUDE statement within the source mod-
ule, it will search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an ZINCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DD statement by specifying a
DD statement with the name PASC.SYSLIB.

Example

/7/JOBNAME JOB

/7 EXEC PASCCG

//PASC.SYSLIB DD DSN=...,DISP=SHR
//PASC.SYSIN DD ¥

LRI

/¥

4.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD
statement for the GO0 step which exe-

cutes your program. The DDname to be
associated with a particular file vari-
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
OUTPUTFILE: file of
INTEGER;

The files named OUTPUT and INPUT need
not be explicitly defined by vou if you
use the cataloged procedures. Both
cataloged procedures which execute a
Pascal/V5 program (PASCCG and PASCCLG)
contain DD statements for OUTPUT and
INPUT. OUTPUT is assigned to the out-
put class where the system messages and
compiler listings are produced
(SYS0UT=%). INPUT is defined as a dum-
my data set.

If the Pascals/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assign default values to the
DCB as described in "Data Set DCB
Attributes™ on page 39. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under 05 Batch 27

C

4.7 EXAMPLE OF A BATCH JOB

77
VY
77
pr
ty

va
pr
be

en
7%
77
77
se
ty

pr
be

en
/%
4

/%
/7

/%

/7/G0.OUTFILE DD DSN=P656706.TEMP.DATA,UNIT=TSOUSER,
/77

/77
/77

Fi

JOBNAME JOB
STEP1 EXEC PASCC,OPTIONS='NOXREF'
PASC.SYSIN DD ¥
ogram COPYFILE;
pe
F80 = file of
packed arrayll..80]1 of CHAR;
r

INFILE, OUTFILE: F80;

ocedure COPY(var FIN,FQUT: F80);
external;

gin

RESET(INFILE);

REWRITE(OUTFILE);
gOPY(INFILE.OUTFILE);

STEP2 EXEC PASCCLG,OPTIONS='NOXREF'
PASC.SYSIN DD ¥
ogment I0;
pe
F80 = file of
packed arrayll..80]1 of CHAR;
ocedure COPY(var FIN,FOUT: F80); .
entry;
gin
while not EOF(FIN) do
begin
FOUTa := FIN3;
PUTC(FOUT);
GET(FIN)
end
d;.

LKED.SYSIN DD ¥
ENTRY COPYFILE

GO.INFILE DD ¥

(data té.ée copied into data set goes here)

DY

DISP=(NEW,CATLG),

DCB= (RECFH FB,LRECL=80,BLKSIZE=3120],

5PACE=(3120.(1,1))
gure 16. Example of a batch job

28

Pascal/VS Programmer's Guide

c

Compile time options indicate what fea-

tures are

to be enabled or disabled

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their

when the compiler is invoked. The fol- default values.
Compiler Option Abbreviated Name Default
CHECK/NOCHECK —— CHECK
DEBUG/NODEBUG -—— NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LIST/NOLIST -—- NOLIST
MARGINS(m,n) MARC(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOCPT OPTIMIZE
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSQURCE S/NGS SOURCE
WARNING/NOWARNING W/7NOW WARNING
XREF/NOXREF X/7NOX XREF(SHORT)

5.1 CHECK/NOCHECK

If the CHECK option is enabled, the
Pascal/Vs compiler will generate
inline code to perform runtime error
checking. The %CHECK feature can be
used to enable or disable particular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
?hich may be checked are listed as fol-
OWS?

CASE statements
Any case statement that does not
contain an othernise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val-
ues.

Function routines
A call to a Tfunction routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the
pginter does not have the value
nii.

subrange scalars
Variables which are declared as
subrange scalars are tested uwhen
they are assigned a value to guar-
antee that the value lies within
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment
statement or immediately after a
routine call in which the variable
was passed as a var parameter.

(This latter case also includes a
call to the READ procedure).

For the sake of efficiency, the
compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.
For example, the compiler will not
generate code to check the first
three assignment statements below;
however, the last three will be

checked.
var
At -10..10;
B : 0..20;
A';= B - 10; (¥no checkX)
B = ABS(A); (¥no checkX)
A := B DIV 2; (¥no check¥)
ATz B; (¥chaeck %)
B := A¥10; (¥check %)
A := -B; (¥check *¥)

The compiler makes no explicit
attempt +to diagnose the use of
uninitialized variables.

Subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
Wwithin the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

When a runtime checking error occurs, a
diagnostic message wWill be sent to the
file OUTPUT followed by a traceback of
the routines which were active when the
error occurred. See "Reading a
Pascal/VS Trace Back™ on page 49 for an
example of a traceback due to a check-
ing error.

Compiler Options 29

5.2 DEBUG/NODEBUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Debug -
Pascal/Vs Interactive Debugger”" on
page b53. I¥f the option DEBUG 1is
enabled, the compiler will produce the
necessary information that Debug needs
in order to operate.

The DEBUG option also implies that the

GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GOSTHT/NOGOSTMT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entries within this table
allow the run—-time environment to iden-
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breakpoints based on source
statement numbers. For a description
of the debugger see "Debug - Pascal/Vs
Interactive Debugger™ on page 53.

The inclusion of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated.

5.4 LIST/NOLIST

The LIST/NOLIST option controls the
generation or suppression of the trans-
lator pseudo—-assembler listing (see
"Assembly Listing” on page 37).

Note: The NOLIST option will cause any

%LIST statement within the source pro-
gram to be ignored.

5.5 MARGINS(M,N)

The MARGINS(m,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro-
gram starting at column m and ending at
column n. Any data outside these mar-
gin limits is 1ignored. The maximum
right margin allowed is 80.

The specified margins must not overlap
the sequence field. A specification of

MARGINS(1,80) implies that the source
contains no sequence numbers.?®

The default is MARGINS(1,72).

Note: When the PASCALVS clist is being
invoked under 750, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINS('1,72')

5.6 OPTIMIZE/NOOPTIMIZE

The OPTIMIZE option indicates that the
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.7 SEQ(M,N)/NOSEQ

The SEQ(m,n) option specifies wuwhich
columns within the program being com-
piled are reserved for a sequence
field. The starting column of the
sequence field is m; the last column of
the field is n.

The compiler does not process sequence
fields; but serve only to identify
lines in the source listing., If the
sequence field is blank, the compiler
will insert a line number in the corre-
sponding area in the source listing.

NOSEQ indicates that there is to be no
sequence field.

The default is SEQ(73,80).
NOTES

. The sequence field must not overlap
the source margins.

. When the PASCALVS clist is being
invoked under 750, the subparame-
ters of the S5SEQ option must be
enclosed in quotes. For example,

SEQ('73,80")

5.8 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generation or suppression of the
compiler source listing.

Note: The NOSOURCE option will cause
any %PRINT statement within the source
program to be ignored.

6 The option NOSEQUENCE has the same effect.

30 Pascal/VS Programmer's Guide

5.9 WARNING/NOWARNING

This option controls the generation or
suppression of warning messages. The
NOWARNING specification will suppress
warning messages from the compiler.

5.10 XREF/NOXREF

The XREF/NOXREF option controls the
generation or suppression of the
cross—-reference portion of the source
listing. (See "Cross-reference List-
ing" on page 35).

Either a short or long cross-reference

listing can be generated. A long
cross—reference listing contains all

identifiers declared in the program. A
short listing consists of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF specification and

enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica-
tion

XREF(LONG)

would cause a long cross-reference
table to be generated.

Note: If the PASCALVS clist is being
invoked under 750, a subparameter
(SHORT or LONG) must be specified with
the XREF option; there are no defaults.

Compiler Options 31

C

O

6.1 SOURCE LISTINGS

6.0 HOW TO READ PASCAL/VS LISTINGS

The source listing contains informa-
tion about the source program including
nesting information of blocks and cross
reference information.

6.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set with the %TITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
will be blank.

PASCAL/VS RELEASE 1.0 UTILITY: 05713780 08:38:08 PAGE 2
SBPCIW STMT % SOURCE PROGRAM PAGE XREF
INCLUDE NUMBER: 1 SYSLIB(GLOBALS)
dmmmtmmmm et == P e} —===-3//~--7-< SEQ NO
00000200
1: TYPE 00000100 R
1: LINKPTR = =->LINK; 00000200 % X
1: LINK = 00000300 %
1: RECORD 00000400 R
1: NAME : ALPHA; 00000500 x P
1: NEXT ¢ LINKPTR 00000600 x 2
1: END; 00000700 R
1 PROCEDURE REVERSE(00000300 R ¥
1 VAR FHEAD: LINKPTR); 00000400 R % 2
1 ENTRY; 00000500 R
1 VAR 00000600 R
1 LPl, 00000700 *
1 LP2, 00000800 X
1 LP3: LINKPTR; 00000900 % 2
1 BEGIN 00001000 R
1 1 LP1l := FHEAD; 00001100 2 2
1 2 LP2 := NIL; 00001200 2 P
1 1 3 WHILE LP1 <> NIL 00001300 R 2 P R
1 11 4 WITH LP1-> DO 00001400 R 2 R
::::::::::::::ERROR:) $96
1 11 BEGIN - 00001500 R
11 11 5 LP3 := NEXT; 00001600 2 2
11 11 6 NEXT := LP2; 00001700 2 2
11 11 7 LP2 := LPL; 60001800 2 2
11 11 8 LP1 := LP3 00001900 2 2
1 END; 00002000 R
1 9 FHEAD := LP2 00002100 2 2
END; . 00002200 R
1 ERROR DETECTED.
ERROR 96: 'DO' EXPECTED
OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), GOSTMT, OPTIMIZE, SOURCE,
CHECK
SOURCE LINES: 30; COMPILE TIME: 0.17 SECONDS; RATE: 10608 LPM
Figure 17. Sample source listing

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa-
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name becomes
the name of the control section
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defin-
ition which was being compiled when
the page boundary occurred.

3. The time and date of the compile.

How to Read Pascal/VS Listings 33

4. The page number.
The third line contains column
headings. If the source being compiled
came from a library (i.e. %ZINCLUDE),
then the last line of the heading iden-
tifies the library and member.

6.1.2 Nesting Information

The left margin contains nesting infor-
mation about the program. The depth of
nesting is represented by a number.
The heading over this margin is?

SPBCIMW STMT

S - a '"l' in this column indicates that
the line contains a comment which
'S'pans across the line.

P - indicates the depth of "P'rocedure
nesting.

B - indicates the depth of
block nesting. ,

- indicates the
'*C'onditional statements.
statements are if and casa.

I - indicates the nesting of
tI'terative statements. Iterative
statements are for, repeat and while.

W - indicates the nesting of "W'ITH
statements.

"BTEGIN

nesting of
Conditional

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line

orginated from an INCLUDE file, the
include number and a colon (':') pre-
cede the statement number.

6.1.3 Statement Numbering

Pascal/V$s numbers each executable
st?tement according to the following
rules?

¢ Every assignment, if, for, while,
case, With, procedure call, and
assert statement is given a number.

. The until part of a repeat state-
ment is given a number.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.
The statement numbers are given for
runtime errors and to specify break-
points in the interactive debugger (see
"Debug - Pascal/Vs Interactive
Debugger®™ on page 53).

34 Pascal/VS Programmer's Guide

6.1.% PaggVCross Reference

The right margin contains an indicator
for each identifier that appears in the
associated line. The indicators have
the following meanings:?

. A number indicates a page number on
which the corresponding identifier
was declared.

indicates that the corre-

° A txr
sponding identifier is being
declared.

. A 'P' indicates that the corre-

sponding identifier is predefined.

. A "R'" indicates that the corre-
sponding identifier is a reserved
key word.

. A "' indicates that the corre-
sponding identifier is either
undeclared, or will be declared

further on in the program. This
latter occurrence arises often in
pointer type definitions.

6.1.5 Error summary

Toward the end of the listing is the
error summary. It contains the diag-
nostic messages corresponding to the
compilation errors detected in the pro-
gram.

6.1.6 Option List

The option list summarizes the options
that were enabled for the compilation.

6.1.7 Compilation Statistics

The compiler prints summary statistics
which tell the number of lines
compiled, the time required, and compi-
lation rate in lines per minute of
(virtual) CPU time.

These statistics are divided between
two phases of the compiler: the syn-
tax/semantic phase and the code gener-
ation phase. Also printed is the total
time and accumulative rate for the sum
of the phases.

6.2 CROSS-REFERENCE LISTING

Cx

CROSS REFERENTCE LISTIN G
INCLUDE 1 CAME FROM MEMBER GLOBALS
IDENTIFIER DEFINITION ATTRIBUTES <PAGE #>/<INCLUDE #>:<LINE #>
ALPHA PREDEFINED gLésg = TYPE, TYPE = ARRAY, LENGTH = 16
/1
FHEAD 27% IN REVERSE, CLASS = VAR PARAM,
TYPE = POINTER, OFFSET = 144, LENGTH = ¢
2711 2721
LINK 2/71:3 CLASS = TYPE, TYPE = RECORD, LENGTH = 20
2/71:2
LINKPTR 2/1:2 CLASS = TYPE, TYPE = POINTER, LENGTH = 4
271:6 274 279
LP1 277 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 148, LENGTH = 4
2711 2713 2714 2718
2719
LP2 278 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 152, LENGTH = 4
2712 2717 2718 2721
LP3 279 IN REVERSE, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET 156, LENGTH = 4
2716 2719
NEXT 271:6 IN LINK, CLASS = FIELD, TYPE = POINTER,
OFFSET = 16, LENGTH = ¢4
2716 2717
NIL PREDEFINED CLASS = CONSTANT, TYPE = POINTER, VALUE = 0
2712 2713
REVERSE 273 CLASS = PROCEDURE
Figure 18. Sample cross-reference listing

The cross reference listing lists
alphabetically eavery identifier used
in the program giving its attributes
and both the page number and the source
line number of each reference.

If the ZINCLUDE facility was used, the
cross reference listing will begin by
listing all of the include-members by
name with a reference number.

Each reference specification is of the
following form:

ps Lizl 1

where P is the page number on which the
reference occurred; i is the number of
the include-member {if the reference
took place within the member; 1 is the
line number within the program or
include-member at which the reference
occurred.

The reference immediately following
the identifier is the place in the
source program where the identifier was
declared.

The attribute specifications have the
following meaning.

IN name

If the identifier is a record
field, then this attribute speci-
fies the name of the record in
which the identifier was declared;
otheruwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:

CONSTANT

CONST PARAMETER

declared constant

How to Read Pascal/VS Listings 35

O

36

pass—by-const parame-

ter

DEF VAR external def variable

ENTRY FUNCTION

] function routine
declared as an ENTRY
point

ENTRY PROCEDURE
procedure routine
declared as an ENTRY
point

EXTERNAL FUNCTION
external function rou-

tine

EXTERNAL PROCEDURE
external procedure
routine

FIELD record field

FORMAL FUNCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parameter

FORTRAN FUNCTION
:gternal FORTRAN func-
ion

FORTRAN SUBROUTINE
external FORTRAN sub-
routine

FUNCTION a user-defined or
standard function
LABEL statement label

LOCAL VAR

PROCEDURE a user-defined or
standard procedure

automatic variable

REF VAR
STATIC VAR static variable

external ref variable

Pascal’/VS Programmer's Guide

TYPE type identifier

VAR PARAMETE% pass—-by-var parame-
er

UNDECLARED undeclared identifier

TYPE = type

This attributes gives the type of
the identifier:

ARRAY an array type

BOOLEAN boolean type

CHAR character

FILE a file type

INTEGER fixed point numeric

POINTER a pointer type

REAL floating point numeric

RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a string type

OFFSET = n

This attribute specifies the byte
offset (in decimal) within the
dynamic storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH = n

This attribute specifies the byte
length of a variable or the storage
required for an instance of a type.

VALUE = n

This attribute specifies the
ordinal value of an integer or enu-
merated scalar constant.

6.3 ASSEMBLY LISTING

PSEUDO ASSEMBLY LISTING

ST
LP2 := NIL;
. SR
WHILE LP1 <> NIL DO
AGLl

WITH LP1-> DO

FHEAD E= LP2Z;

PASCAL/VS RELEASE 1.0 UTILITY :
LOC OBJECT CODE STMT
¥
000090 5830 D090 8
000094 5840 3000 9
000098 5040 D094 10
*
00009C 1B33 11
00009E 5030 D098 12
*
0000A2 13
0000A2 5830 D094 14
0000A6 1233 15
0000A8 4780 *xxx 16
*
0000AC 45E0 C860 17
0000B6 5030 DOAGC 18
*
X
0000B4 5840 3010 19
0000B8 5040 DO9C 20
%
0000BC 5850 D098 21
0000C0 5050 3010 22
. *
0000C4 5030 D098 23
%
0000C8 5040 D094 24
6000CC 47FG 2016 25
6o00DO 26 a4L2
%
*
0000D0 5830 D090 27
0000D4 5840 D098 28
0000D8 5040 3000 29
Figure 19. Sample assembly listing

05/13,80 10:18:00 PAGE 2

:= FHEAD;
L 03,144(,13)

L 04,0(,03)

04,148(,13)

03,03
ST 03,152¢(,13)

DS OH

L 03,148¢(,13)
LTR 03,03

BE agL2

BAL 14,2144(,12)
ST 03,160(,13)

BEGIN
LP3 := NEXT;
L 04,16(,03)
ST 04,156(,13)
NEXT := LP2;
L 05,152(,13)
ST 05,16(,03)
LP2 := LP1;
ST 03,152(¢,13)
LP1 := LP3;
ST 04,148(,13)
B A4l
L] OH

END;

03,144¢(
L 04,152¢

»13)
»13)
ST 04,0¢,03

1
1
)

The compiler produces a pseudo assembly
listing of vour program if you specify
the LIST option. The information pro-
vided in this listing include:

LocC
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen-
erated text. If the line refers to
a symbol or literal not vet
encountered in the listing (for-

ward reference) the base displace-
ment format of the instruction is
shown as four asterisks ("XX%x'),

PSEUDO ASSEMBLY

basic assembly language
description of generated instruc-—
tion.

Annotation
intermixed with the assembly

instructions is the source line
from which the instructions were
generated. The source lines appear
as comments in the listing.

How to Read Pascal/VS Listings 37

PASCAL/VS RELEASE 1.0 AMPLXREF: 05713780 13:07:27 PAGE 1
EXTERWNAL SYMBGOL DICTIONARY

NAME TYPE 1ID ADDR LENGTH NAME TYPE ID ADDR LENGTH
AMPLXREF SD 1 000000 002EO0C XREFDUMP LD 0 000FC4 000001
XREFEQF LD 0 0008D8 000001 XREFINCL LD 0 000964% 000001
XREFREF LD 0 000A80 000001 XREFLIST LD 0 002C40 000001
ASTATIC PC 2 000000 000009 SYSXREF cM 3 000000 000040
AMPXPUT ER 4 000000 INTPTR cM 5 000000 000004
CHARPTR cM 6 000000 000004 REALPTR cM 7 000000 000004
BOOLPTR cM 8 000000 000004 PAGENO CM 9 000000 000002
INCLLEVE CM 10 0006000 000004 INCLNUMB cM 11 000000 000001
PROCP CM 12 000000 000004 AMPXRSET ER 13 000000

LINECOUN CM 14 0006000 000004 AMPXNEW ER 15 000000

AMPXGET ER 16 000000 PAGEHEAD ER 17 000000

SYSPRINT cM 18 000000 000040 AMPXWLIN ER 19 000000

AMPXWCHR ER 20 000000 AMPXWTXT ER 21 000000

OPTION cM 22 0600000 000014 AMPXWINT ER 23 000000

TRIM ER 24 000000 AMPXWSTR ER 25 000000

Figure 20. Sample ESD table

6.4 EXTERNAL SYMBOL DICTIONARY

The External Symbol Dictionary (ESD)
provides one entry for each name in the
generated program that is an external.
This information is required by the
linker/loader to resolve inter-module

linkages. The information in this ta-
ble is:
NAME the name of the symbol.
TYPE the classification of the
symbol:
SD - Symbol Definition
LD - Local Definition
ER - External Reference
CM - Common
PC - Private Code.
ID is the number provided to the
loader in order to relocate

address constants correctly.

38 Pascal/VS Programmer's Guide

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the 5D or
CM entry.

The SD classification corresponds to
the name of the module; the LD classi-
fications are entry routines; ER names
are external routines; CM names corre-
spond to def variables. The private
code section is where static variables
are located.

6.5 INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa-
rize the usage of 370 instructions gen-—
erated by the compiler. The table is
sorted by frequency of occurrence.

O

O

7.1 I,0 IMPLEMENTATION

~ Pascal/VS employs 05 access methods to

implement its input/output facilities.
Pascal/VS file variables are associ-
ated with a data set by means of a
ddname. The Queued Sequential Access
Method (QSAM) is used for sequential
data sets. The Basic Partitioned
Access Method (BPAM) is used for parti-
tioned data sets (MACLIBs in CMS
terminology).

7.2 DDNAME ASSOCIATION

For any identifier declared as a file
variable the first eight characters of
the identifier's name serves as the
DDNAME of the file. As a consequence,
the first eight characters of all file
variables declared within a module
should be unique. You must also be
careful not to allow one of the first
eight characters to be an underscore
('_') since this is not a valid charac-
ter to appear in a DDNAME.

If you prefer, you may associate an
arbitrary ddname with a file variable
by explicitly specifying a ddname with-
in the OPEN procedure (see "The OPEN
Procedure™ on page 46).

7.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every
Pascal/VS file variable is a Data Con-—
trol Block (DCB) which contains infor-
mation describing specific attributes
of the associated data set. Among
these attributes are

U the logical record length (LRECL);
. the physical block size (BLKSIZE);
. the record format (RECFM).

Pascal/V5 supports only the following
record formats:

F, FA, FB, FBA, V, VA, VB, VBA

Neuly allocated (empty) data sets, that
is, data sets intended for output might
not have these attributes assigned. As
far as Pascal/VS is concerned, there
are two ways to specify the DCB attri-
butes for such data sets:

. by being specified in the associ-
ated DDNAME definition (in CMS5: the
FILEDEF command; in T50: the

7.0 USING INPUT/OUTPUT FACILITIES

ALLOC/ATTR commands; in 0S batch:
the DD card);

U by being specified in the OPEN pro-
cedure (see "The OPEN Procedure" on
page 46).

If any of these attributes are unas-
signed for a particular data set to
which a Pascal/VS program will be writ-
ing, the Pascals/VS I/0 manager will
assign defaults according to whether
the data set is being managed as a file
of type "TEXT" or as a non—-TEXT file.

For the case of TEXT files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following defaults
Wwill apply:

. LRECL=256

. BLKSIZE=260

o RECFM=V

For the case of non-TEXT files, if nei-
ther LRECL, BLKSIZE, nor RECFM are

specified then the following defaults
will apply.

. LRECL="length of file component™
L BLKSIZE=LRECL
. RECFM=F

If some of the attributes are specified
and some are not then defaults will be
applied using the following criteria:

. RECFM of V is preferred over F for
TEXT files.

. RECFM of F is preferred over V for
non—-TEXT files.

U If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

. If RECFM is V then the BLKSIZE is

to be at least four bytes greater
than the LRECL.

7.% TEXT FILES

Text files contain character data
grouped into logical records. From a
Pascal/V$S language viewpoint, the log-
ical records are lines of characters.
Pascal/VS supports both fixed length
and variable length record formats for
text files. Characters are stored in
their EBCDIC representations.

The predefined type TEXT is used to
declare a text file variable in

Using Input/Output Facilities 39

o)

Pascal/VS. The pointer associated with
each file variable points to positions
Wwithin a physical I/70 buffer.

7.%.1 Opening a Text File

A closed file is opened automatically
by the procedures GET and READ for
input, and WRITE for output?. To open
a file explicitly, the procedures
RESET, REWRITE, INTERACTIVE, and OPEN
are provided.

The procedures RESET and INTERACTIVE
are used to open a file for input.
RESET allocates a buffer, reads the
first logical record of the file into
the buffer, and positions the file
pointer at the beginning of the buffer.
Therefore, given a text file F, the
execution of the statement 'RESET(F)'
would imply that 'F->' would reference
the first character of the file. If a
RESET operation is performed on an open
file, the file is closed and then reo-
pened. . .

program EXAMPLE;

var
SYSIN TEXT;
C, CHAR;
begin

(¥open SYSIN for input *)
RESET(SYSIN);

(¥use first char of fileX)

C := SYSIN->;

WRITELN(C);
end.
Figure 21. Using RESET on a TEXT

file

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
To alleviate this problem you should
use the INTERACTIVE procedure to open
the file. No initial read operation is
performed on files opened in this man-
ner. The file pointer has the value
NIL until the the first file operation
is performed (namely GET or READ).

PUT operation,
written.

program EXAMPLE:;

var
SYSIN : TEXT;
STRING(80);

DATA

begin
(¥open SYSIN for interactive ¥)
(%¥input %)
INTERACTIVE(SYSIN);
(¥prompt for response ¥)
(¥Xread in response ¥)
WRITELNC' ENTER DATA: ');
SEADLN(SYSIN,DATA);

end.

Using INTERACTIVE on a
TEXT file

Figure 22.

The procedure REWRITE is used to open a
file for output. The file pointer is
positioned at the beginning of an empty
buffer. If the file is already open it
is closed prior to being reopened.

program EXAMPLE;

var
SYSPRINT : TEXT;

begin
REWRITE(SYSPRINT);
gRITELN(SYSPRINT,'NESSAGE');

end.

Using REWRITE on a
TEXT file

Figure 23.

7.4.2 Text File PUT

The procedure PUT does not perform an implicit open on a file.
the associated output buffer must contain the data to be
If the file is not open when the PUT operation is attempted,

The PUT procedure, when applied to an
output text file, causes the file
pointer to be incremented by one char-
acter position. If, prior to the call,
the number of characters in the current
logical record is equal to the file's
logical record length (LRECL), the file
pointer will be positioned within the
associated buffer to begin a new log-
ical record.

When the file buffer is filled to
capacity, the buffer is written to the
assocjated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it

is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 44%).

Prior to a

then no output buffer exists. (The file pointer will have the value nil.)

40 Pascal/VS Programmer's Guide

program EXAMPLE;

var
OUTFILE : TEXT;
C ¢ CHAR;

beé%ﬁ
REWRITEC(OUTFILE);

OUTFILE-> := C;
(¥Write out value of Cx)

PUTC(OUTFILE);
end.
Figure 2%. U§ing PUT on a TEXT

file

7.4.3 Text File GET

The GET procedure, when applied to an
input text file, causes the file point-
er to be incremented by one character
position. If the file pointer is posi-
tioned at the last position of a log-
ical record, the GET operation will
cause the end-of-line condition +to
become true (see "End of Line
Condition") and the file pointer will
be positioned to a blank. If, prior to
the call, the end-of-line condition is
true, then the file pointer will be
positioned to the beginning of the next
logical record.

If GET is called when the file pointer
is positioned at the last character
position of the file, the end-of-file
condition becomes true. (See "End of
File Condition" on page 42).

program EXAMPLE;

var
INFILE ¢ TEXT;
Cl,Cc2 : CHAR;
begin
(¥get first char of filex)
RESETCINFILE);

Cl := INFILE->;

(¥get second char of file¥)
GETCINFILE);

C2 := INFILE->;

0.

end.

Using GET on a TEXT

file

Figure 25.

7.%.% The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer (or to
a disk file which will eventually be
printed).

program EXAMPLE;

var
PRINT: TEXT;
begin
f*étart new page)
PAGE(PRINT);
end.
Figure 26. Using the PAGE
procedure

7.4.5 End of Line condition

The end-of-line condition occurs on a
text file opened for input when the
file pointer is positioned after the
end of a logical record. To test for
thij condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi-
tioned at the last character of a log-
ical record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (in EBCDIC, hexadeci-
mal 40) when the end-of-line condition
occurs,

The EOLN function is only applicable to
text files.

program EXAMPLE;

var
SYSIN: TEXT;
CNT : 0..32767;
begin

(¥ compute length of first
logical record of SYSIN x)
RESET(SYSIN);
CNT := 0;
while not EOLN(SYSIN) do
‘bhegin
CNT := CNT + 1;
GET(SYSIN);
end;
WRITELNC(CNT)
end.
Using the EOLN func-
tion

Figure 27.

Using Input/Qutput Facilities 41

7.4.6 End of File Condition

The end-of-file condition becomes true
when GET is executed for a file posi-
tioned at the last character of the
last logical record, or if a call to
READ consumes all of the characters of
the last logical record.

The file pointer will always point to a
blank character (hexadecimal 40) when
the end-of-file condition occurs. To
test for this condition, the EOF func-
tion is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will be ignored.

program EXAMPLE;

var
SYSIN: TEXT;
CNT : 0..32767;
hegin

(¥ compute number of logical
records in file SYSIN *)

RESET(SYSIN);

CNT := 0;

Kwhile not EOF(SYSIN) do

begin

CNT := CNT + 1;
READLN(SYSIN)

end;
WRITELNCCNT)
end.

Using the EOF function
on a TEXT file

Figure 28.

7.4.7 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. If the
file pointer is not yvet set, an initial
GET operation is performed. This case
occurs when a file is opened INTERAC-
TIVEly.

If READ is called for a closed file,
the file is opened for input by an
implicit call to RESET.

When reading INTEGER or REAL data via
the READ procedure, and no length field

42 Pascal/VS Programmer's Guide

is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is dete-
cted, the integer value 0 or the real
value 0.0 will be returned.

Integer data begins with an optional
sign ('+' or '"-') followed by all dig-
its up to, but not including, the first
non—-digit or up to the end of the log-
ical record.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

951235AN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first 'S' character.

Real data begins with an optional sign
(' or '"-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

3.14159/72

a floating point read operation would
bring in the floating point value
3.14159. After the read, the file
pointer would be positioned to the '/!
character.

The length field is the expression
indicated in the following sample
statement:

READ(file, variable : length_field);

If a length field value is specified,
as many characters as are indicated by
the value will be consumed by the read
operation. The variable will be
assigned from the beginning of the
field., If the field is not exhausted
after the variable has been assigned
the data, the rest of the field will be
skipped.

program EXAMPLE;

var
Z1P,
MAN : INTEGER;
BALANCE: REAL;

begin
READ(ZIP:5,MAN:6,BALANCE:9);
WRITELNC'ZIP = ',2IP);
WRITELNC'™MAN = ',MAN);
WRITELNC'BALANCE = ',BALANCE:8:2)

end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP = 95123
MAN = 999999
BALANCE = 1000.00

Immediately after the READ state-
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 29. Using READ with length
qualifiers.

When reading data into variables
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

. the variable is filled to its
declared capacity;

. an end-of-line condition is
detected; '

. the length field (if specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary uwith
blanks up to its declared length.

program DOREAD;

var
INFILE : TEXT;
R : arrayll..10] of
record
NAME: STRING(25);
AGE ¢ 0..99;
WEIGHT: REAL
end;
I 1..10;
begin
RESET(INFILE);

for I := 1 to 10 do
with RI{I] do
begin
READCINFILE, NAME, AGE);
READCINFILE,WEIGHT);

READLNCINFILE)
end;
end.
Figure 30. Using READ on TEXT
files.

7.4.8 The READLN Procedure

The READLN procedure is applicable only
to text files. It causes the charac-
ters between the file pointer position
and the end of the logical record to be
skipped.

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to true. For non-
INTERACTIVE files, the file pointer is
positioned at the beginning of the next
logical record (unless, of course, the
end-of-file condition occurs).

If the end-of-line condition is true
for an INTERACTIVE file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in succession will cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,

the file is opened implicitly for input
without the INTERACTIVE attribute.

Using Input/0utput Facilities %3

O

program COPY;
var
INFILE,
QUTFILE : TEXT;
BUF : STRING(100);

gin
RESET(CINFILE);
REWRITE(QUTFILE);
While not EOF(INFILE) do
begin
READCINFILE,BUF);
WRITELNCOUTFILE,BUF);
(¥ignore characters after
column 100 in each line ¥)
READLNCINFILE)
end
end,

be

Using the procedure

READLN

Figure 31.

7-4.9 Text File WURITE

The WRITE procedure outputs data to a
text file beginning at the current
position of the file pointer. If WRITE
is called for a closed file, the file
is opened implicitly for output.

If during a call to WRITE, the length
of the logical record being produced
becomes equal to the logical record
length (LRECL) of the text file, the
record is completed and the remaining
data is placed on a new record.

7.%4.10 The URITELN Procedutre

The WRITELN procedure is applicable
only to text files intended for output.
It causes the current logical record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file is
fixed (RECFM=F), WRITELN will fill the
remainder of the current record with
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
th: file is opened implicitly for out-
put.

program DOUBLESPACE;
var
FILEIN,
FILEOUT : TEXT;
BUF :

. STRING;
begin

REWRITE(FILEOUT);
RESET(FILEIN);
while not EOF(FILEIN) do
bhegin
READLNCFILEIN,BUF);
WRITELNCFILEQUT,BUF);
(¥Xinsert blank line ¥)
WRITELNC(FILEOUT)
end;
end.
the

Using WRITELN

procedure

Figure 33.

program DOWRITE;
var
OUTFILE : TEXT;
R ¢ arrayll..101 of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I, ¢ 1..10;

gin
REWRITECOUTFILE);

for I := 1 to 10 do
With R[I1 do
begin
WRITE(OUTFILE,NAME," ')
WRITE(OUTFILE,AGE:3," '
WRITE(OUTFILE,WEIGHT:3:0

be

H
)3
)3

WRITELNCOUTFILE)
end;
end,
Figure 32. Using WRITE on TEXT

files

44 Pascal/VS Programmer's Guide

7.5 RECORD FILES

All non-TEXT files in Pascals/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base component; oth-
erwise, an execution time error will
occur uwhen the file is opened. For
example, a file variable declared as
'*file of INTEGER' will require the
associated physical file to have a log-
ical record length of at least 4 bytes.

If a file has fixed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
files component type, then the extra
space in each logical record is wasted.

7.5.1 Opening a Record File

A closed file is opened automatically
when the first operation is performed
on it. The procedures GET and READ will
open it for input; PUT and WRITE will
open it for output. To open a file
explicitly, the procedures RESET,
REWRITE, and OPEN are provided.

The procedure RESET is used to open a
file for input. This procedure allo-
cates a buffer, reads the first logical
record of the file into the buffer, and
positions the file pointer at the
beginning of the buffer. Therefore,
given a record file F, the execution of
the statement 'RESET(F)' would imply
that the term '"F->' would reference the
first component of the file. If a
RESET operation is performed on an open
file, the file is closed and then reo-
pened.

.The procedure REWRITE is used to open a

file for output. The file pointer is
positioned at the beginning of an empty
buffer. If the file is already open it
is closed prior to being reopened.

7.5.2 Record File PUT

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively uwritten to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var
F : file of
record
NAME : STRING(25);
AGE *: 0..99;
WEIGHT: REAL;
SEX ¢ (MALE,FEMALE)
. end;
begin
REWRITE(F);
F->.NAME = 'John F. Doe';
F->.AGE = 36;
F->.WEIGHT := 160.0;
F->.5EX = MALE;
PUTCF);
end.
Figure 34. Using PUT on record
files

7.5.3 Record File GET

The GET procedure causes the next
sequential file record to be placed in
the input buffer referenced by the file
pointer. Each call to GET for the case
of record files reads one logical
record.

program EXAMPLE;
var .
F : file of
record
NAME : STRING(25);
AGE : 0..99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)
. end;
begin
RESET(F);
while not EOF(F) do

WRITEC' Age : ',
F->.AGE:3);

WRITELN;

GET(F)

end
end.

Figure 35. Using GET on record
files

7.5.4 End of File Condition

The end-of-file condition occurs when a
call to GET or READ is attempted on a
recaord file (open for input) when no
more logical records remain in the
file. The function EOF is used to test
this condition.

7.5.5 Record File READ

As documented in the language manual,
the statement

READ(F, V)

is equivalent to

where F and V are declared as follous:

var F: file of t;
V: t;

Using Input/0utput Facilities 45

®

If file F is not open when READ is
called, it will be opened implicitly
for input.

7.5.6 Record File WURITE

As documented in the language manual,

the statement
WRITE(F,V)
is equivalent to

begin
F-> 1= V;
PUTC(F)
end

where F and V are declared as follouws:

var F: file of t;

t;

If file F is not open when WRITE is
called, it wWill be opened implicitly
for output.

program EXAMPLE;
type
REC = record
NAME : STRING(25);
AGE : 0..99;
SEX : (MALE,FEMALE)
end;

var
INFILE,
OUTFILE:
file of REC;
BUFFER : REC;
begin
RESETCINFILE);
REWRITE(QUTFILE);
while not EOF(INFILE) do
begin
READCINFILE,BUFFER);
WRITECOUTFILE,BUFFER)
end
end.

Using READ and WRITE
on record files.

Figure 36.

7.6 CLOSING A FILE

All files which are declared in the
body of a routine are closed implicitly
when +the routine returns to its
invoker. All files which are open when
the program terminates, whether nor-
mally or abnormally, will be closed
automatically by the Pascals/VS runtime
environment.

If the procedures RESET, REWRITE, or
OPEN are applied to an open file, the
file is closed prior to being reopened.

46 Pascal/VS Programmer's Guide

provided to
CLOSE is pre-

The procedure CLOSE is
close a file explicitly.
declared as follows:

procedure CLOSE(

var F ¢ filetype);
EXTERNAL;

7.7 THE OPEN PROCEDURE

The OPEN procedure is a generalized
form of +the procedures RESET and
REWRITE. OPEN is predeclared in the
following fashion:

procedure OPEN(

var F ¢ filetype;
const OPTIONS: STRING);
EXTERNAL;

The second parameter of the OPEN proce-

dure is a string expression. This
string contains a list of options which

are read at execution time. These
options determine how the file is to be
apened and what attributes it is to
ave.

The data in the string parameter has
the syntax shown in the following fig-
ure:

option-string:

———I:——>{optiog}———>T-——>

option:

> DDNAME = name —m >

-——> BLKSIZE = n >
-—> LRECL = n >
—> RECFM = ¢ >
——> INTERACTIVE —mMmm™ >
—> RESET >
——> REWRITE >
——> PDSIN,MEMBER=name >
——> PDSOUT,MEMBER=name >

Figure 37. Syntax of string

parameter of OPEN
The options RESET, REWRITE, INTERAC-

TIVE, PDSIN, and PDSOUT are mutually
exclusive. If none of these options
appear in the option string, REWRITE
will be assumed by default.

C

C

The following is a description of each
option.

DDNAME=name

This attribute signifies that the
physical file to be associated with
the file variable has the ddname
indicated by '"name". This new
ddname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to OPEN with the DDNAME attribute
specified.

If this option is not specified,
then the ddname to be associated
with the file is derived from the
first eight characters of the file
Eggaﬁble name (first parameter of

BLKSIZE=n
This attribute is used to specify a
physical block size to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a BLKSIZE specification on the
ddname definition.

LRECL=Nn ,
This attribute is used to specify a
logical record length to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a LRECL specification on the
ddname definition.

RECFM=c
This attribute is used to specify a
record format to be associated with
an output file. The only valid
record formats that may be speci-
fied are

Fl FB} FA) FBA’ V; VB) VA’ VBA

This specification (indicated by
"c") will override a RECFM specifi-
cation on the ddname definition.

INTERACTIVE
This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a Text File" on page 40 for a
description of interactive files.

RESET
This attribute indicates that the
file is to be opened for input. A
call to OPEN with this attribute
performs the same function as a
call to the procedure RESET.

REWRITE
This attribute indicates that the
file is to be opened for output. A
call to OPEN with this attribute
performs the same function as a
call to the procedure REWRITE.

PDSIN, MEMBER=Nname

PDSOUT, MEMBER=Nname

These attributes indicate that the
file to be opened is an 0S parti-
tioned data set (PDS). The member
to be accessed is indicated by
"name". PDSIN indicates that the
member is to be opened for input;
PDSQUT indicates that it is to be
opened for output. These two oper-
ations perform in the same manner
as the corresponding RESET and
REWRITE operations.

program EXAMPLE;

while not EOF(PDS) do
begin
READLNC(PDS,BUF);
WRITELN(BUF);
end;
READLN(MEMBER)
end
end.

Figure 38. Using the OPEN procedure

var

PDS ¢ TEXT;

MEMBER : STRING(8);

BUF ¢ packed arrayll..80] of CHAR;
begin

OPENCINPUT, "INTERACTIVE');

READLN(MEMBER);

while not EOF(INPUT) do

begin

OPEN(PDS, 'DDNAME=SYSLIB,PDSIN,MEMBER="' || MEMBER);

(¥open INPUT for interactive ¥)
(¥ input. *)
(¥read 1st member name ¥)
(¥loop until no more members X)
(¥open member for input X)

(¥copy each line of the %)
(¥ member to file OUTPUT %)

(¥read next member name ¥)

Using Input/Output Facilities 47

o

7.8 PDS ACCESS IN A CMS ENVIROMMENT

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the 0S5 simulation facili-
ties. A ddname is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB'" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname YLIB"™ <from a
Pascals/VS program, the following com-
mands would be executed prior to exe-
cuting the program.

48 Pascal/VS Programmer's Guide

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com-
mand. For example, in order to access
the MACLIBs '"M1'™, "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed prior to executing
the Pascal/VS program.

FILEDEF LIB DISK ML MACLIB A

FILEDEF LIB DISK M2 MACLIB A (CONCAT
FILEDEF LIB DISK M3 MACLIB A (CONCAT
GLOBAL MACLIB M1 M2 M3

8.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa-
tion is given.

. The name of the routine.

. The statement number of the last
statement to be executed in the
routine (i.e. the statement number
of the call to the next routine in
the chain).

. The address in storage where the
generated code for the statement
begins.

. The name of the module in which the
routine is declared. .

The trace routine may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 39 on page 50. In the example
starting at the bottom we see that
Pascal/VS called the user's main pro-
gram in the module named HASHASEG.
Statement 24 of the main program con-—
tains the call to READ_ID, statement 3
of READ_ID contains the call to
SEARCH_ID, and so on.

A trace will be produced when a program
error occurs. An example is given in

8.0 RUNTIME ERROR REPORTING

Figure 40 on page 50. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check-
ing error occurs. A checking error
occurs when code produced by the com-
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK"™ on page 29 for a
description of compiler generated
checks.) Figure 41 on page 50 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement ¢ in routine
TRANSLATE.

A trace will be produced when an 1/0
error occurs. Figure 42 on page 50 is
an example of this. In this case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a
runtime error occurs, the statement
number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen-
erated.

Runtime Error Reporting 49

TRACE BACK OF ROUTINE CALLS
ROUTINE STMT AT ADDRESS IN MODULE
TRACE 4 102028C'X AMPXSENYV
HASHKEY 9 102018C'X HASHCSEG
GET_HASH_PTR 2 1021208'X HASHBSEG
SEARCH_ID 9 '0213C8°X HASHBSEG
READ_ID 3 1021550'X HASHBSEG
<MAIN PROGRAM> 4 1020278'X HASHASEG
PASCAL/VS 0 1020438C'X
Figure 39. Trace called by a user program
PROGRAM ERROR: FIXED POINT OVERFLOW
TRACE BACK OF ROUTINE CALLS ‘
ROUTINE STMT AT ADDRESS IN MODULE
FACTORIAL 3 02014C*'X TEST
FACTORIAL 3 '02014C*X TEST
FACTORIAL 3 "02014C'X TEST
<MAIN PROGRAM> 17 1020298'X TEST
PASCAL/ZVS 0 102048C'X
Figure 40. Trace call due to program error
CHECKING ERROR: HIGH BOUND
TRACE BACK OF ROUTINE CALLS
ROUTINE STMT AT ADDRESS IN MODULE
] TRANSLATE 4 1020154'X CONVERT
(:) TO_ASCII 10 '02024C'X CONVERT
<MAIN PROGRAM> 17 020338'X CONVERT
PASCAL/VS 0 "02048C'X
Figure 41. Trace call due to checking error
AMPX001I File could not be opened: SYSIN
TRACE BACK OF ROUTINE CALLS
ROUTINE STMT AT ADDRESS IN MODULE
INITIALIZE 3 '020154'X coPY
<MAIN PROGRAM> 2 '020218'X COPY
PASCAL/VS (] 102048C'X
Figure 42. Trace call due to I/0 error

O

50 Pascal/VS Programmer's Guide

o

8.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
checking errors that may occur in a
Pascal/VS program at run time.

LOW BOUND
Either a subscript or a subrange
variable is being assigned a value
less than the lower bound of the
allowed range.

HIGH BOUND
Either a subscript or a subrange

variable is being assigned a value-

greater than the upper bound of the
allowed range.

NIL POINTER
an attempt was made to reference a
variable from a pointer using the
value NIL.

CASE ERROR
a case expression has a value other
than any of the declared case
labels and there is no otherwise
clause.

STRING CONCATENATION
the concatenation of two strings
results in a string greater than
255 characters in length.

STRING TRUNCATION
there was an attempt to assign to a
string a value which has more char-
acters than the maximum length of
the string.

ASSERTION FAILED
an assert statement was executed in

which its associated boolean
gxpggssion evaluated to the value
ALSE.

8.3 SYMBOLIC VARIABLE DUMP

When a program error or checking error
occurs, a symbolic dump of all vari-
ables which are local to the routine in
which the error . occurred may be
produced. This dump will be produced
if two conditions are met:

. The source module containing the
code from which the error occurred
was compiled with the DEBUG option.

. The Pascals/VS debug library uwas
included in the generation of the
associated load module.

The dump is written to file QUTPUT.

Runtime Error Reporting 51

9.0 DEBUG ~ PASCAL/VS INTERACTIVE DEBUGGER

Debug is a tool that allows programmers
to quickly debug Pascals/VS programs
without having to write debug state-
ments directly into their source code.
Basic functions include tracing pro-
gram execution, viewing the runtime
values of program variables, breaking
at intermediate points of execution,
and displaying statement frequency
counting information. The programmer
uses Pascal/V$S source names to refer-
enca statements and data.

In order to use Debug, you must follow
these four steps:

. Compile the module to be debugged
with the DEBUG option. Modules
that have been compiled with the
DEBUG option can be linked with
modules that have not been compiled
with the DEBUG option.

. When 1link editing your program,
include the debug library. (It
must be located ahead of the
runtime library in search order).®

. Ddname INPUT must be allocated to
vour terminal, or to the data set
from which Debug commands are to be
read. Likewise, the ddname OUTPUT
must be allocated to your terminal.

. When executing the load module,
specify 'DEBUG/' as a parameter.
This will cause the debug environ-
ment to become active, and, if
INPUT has been allocated to your
terminal, you will be immediately
prompted for a Debug command. In
the Debug environment the user may

issue Debug commands and examine
variables for those modules which
were compiled with the DEBUG
option.

9.1 QUALIFICAYION

A qualification consists of a module
name and a routine name. Debug uses
the current qualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger gained
control.

At the start of a Debug session, the
current qualification is the name of
the module containing the main program,
and the main program itself.

9.2 COMMANDS

This section describes the commands
that a user may issue with the Debug
facility. Every command may be abbre-
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets ('["
and ']'") are used in the command
description to indicate optional parts
of the command.

8 Under CMS, the debug library is included if the DEBUG option is specified
when invoking PASCMOD. (see "How to Build a Load Module™ on page 6.)

Under TS0, the debug library is included by specifying the DEBUG keyword
operand when invoking the PASCMOD clist. (see "How to Build a Load

Module" on page 12.)

Debug - Pascal/VS Interactive Debugger 53

O

9.2.1 BREAK Command

9.2.2 CLEAR Command

Command Format:

BREAK [Imodules/] routines] stmtno

Minimum_ Abbreviation:

B

Where:

module is the name of a PascalsVs
. module.
routine is the name of a procedure
or function in the module.
stmtno is a number of a statement
in the designated routine.

This command causes a breakpoint to be
set at the indicated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit-
ted in which case the defaults are tak-
en from +the current qualification.
stmtno is the number of the statement
on which to stop in the specified rou-
tine of the specified module. The
statement numbers are found on the
source listing.

A maximum of 8 breakpoints may be set
at any one time.

54 Pascal/VS Programmer's Guide

Command Format:

CLEAR

Minimum Abbreviation:

CLEAR

There are no operands.

The CLEAR command is used to remove all
breakpoints.,

9.2.3 CcHMS Command 9.2.% DISPLAY Command

Command Format: . Command Format:

CHMS DISPLAY

Minimum Abbreviation: Minimum Abbreviation:
c D

There are no operands.

This command activates the CMS subset The DISPLAY command is used to display

mode. If the program is not being run information about the current Debug

under CMS, the command is ignored. session at the user's terminal. The
information displaved is:

o the current qualification,

] where the user's program will
resume execution upon the GO com-
mand,

. the current status of Counts,

. the current status of Tracing.

O

Debug - Pascal/VS Interactive Debugger 55

9.2.5 DISPLAY BREAKS Command

9.2.6 DISPLAY EQUATES Command

Command Format:

DISPLAY BREAKS

Minimum Abbreviation:
DB

There are no operands.

Command Format:

DISPLAY EQUATES

Minimum Abbreviation:

D E

There are no operands.

The DISPLAY BREAKS command is used to
produce a list of all breakpoints which
are currently set.

c

56 Pascal/VS Programmer's Guide

The DISPLAY EQUATE command
produce a list of all equate symbols

is used to

and their current definitions.

c

9.2.7 EQUATE Command

Command Format:

EQUATE identifier [datal

Minimum Abbreviation:
E identifier [datal

Where:

identifier is a Pascal/Vvs
identifier.

data is a command which the
identifier is to represent.

This command causes the data to replace
the identifier whenever the identifier
is first token in a command.

Examples

equate x ,r->.b[2]->
eq y break procx/%
eq z

The first example demonstrates how a
user may examine a variable without
having to retype a long string every
time. The next example demonstrates a
way to develop a synonym for a command.
The third example shows how to remove
an equate.

9.2.8 GO command

Command Format:

GO

Minimum Abbreviation:

G

There are no operands,

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

U breakpoint

. program error

. normal program exit

A breakpoint or program error will

return the user to the Debug environ-
ment.

Debug - Pascals/VS Interactive Debugger 57

C

9.

2.9 Help command

9.2.10 LISTVARS Command

Command Format:
?

Minimum Abbreviation:

2

There are no operands.

Command Format:

LISTVARS

Minimum Abbreviation:

L

There are no operands.

The Help command lists all Debug com-
mands.

58

Pascal/VS Programmer's Guide

This command displays the values of all
variables which are local to the cur-
rently active routine.

9.2.11 qQualification Command

Command Format:

QUAL [module /] [routinel

Minimum Abbreviation:

Q [module /1 [routinel
Where:

module is the name of a Pascal/sVS
module.

routine is the name of a procedure
or function in the module.

.If the user does not specify a module

and/Zor a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

. the module name defaults to the
current qualification.

. the routine defaults to the main
program if the associated module is
a program module, or to the outer-
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The
current qualification provides the
basis on which program names are
resolved. If there is no activation of
the routine available (no invocations)
the user may not display local vari-
ables for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali-
fication is automatically set to the
module and the routine in which the
breakpoint was set.

9.2.12 QUIT Command

Command Format:
QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

Debug - Pascal/VS Interactive Debugger 59

9.2.13 RESET Command 9.2.14 SET ATTR Command

Command Format: Command Format:
RESET [[modules] routines] stmtno ON

SET ATTR []
Minimum Abbreviation: OFF
R [[modulers] routines] stmtno Minimum Abbreviation:
Where: ON

S A []
module is the name of a Pascal/V$s OFF

. module.
routine is the name of a procedure
or function in the module.
stmtno is a number of a statement
in the designated routine.

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF

The RESET command is used to remove a parameter specifies that variable

breakpoint. The defaults are the same attribute information will not be dis-

as the BREAK command. played by default. The default may be
ovegridden on the variable viewing com-
mand.

60 Pascal/VS Programmer's Guide

9.2.15 SEY COUNT Command

Command Format:

ON
SET COUNT []
OFF

Minimum Abbreviation:

ON
o [2]
OFF

The SET COUNT command is used to initi-
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is executed during program
execution. The summary is produced at
the end of program execution and is
written to the standard file OUTPUT.
Statement counting may also be initi-
ated with the runtime COUNT option.

9.2.16 SET TRACE Command

Command Format:
ON
SET TRACE []
OFF

Minimum Abbreviation:

ON
b [2]
OFF

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user with a list of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

Debug - Pascals/VS Interactive Debugger 61

C

O

9.2.17 TRACE Command

9.2.18 Vieuwing Variables

Command Format:
TRACE

Minimum Abbreviation:
T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca-
tion chain are listed along with the
mosﬁ recently executed statement in
each.

62 Pascal/VS Programmer's Guide

Command Format:

[(option [)11]

» variable
Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/V$s
Reference Manual for the
. syntax of a variable.
option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro-
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified variable. If the var-
jable is found to be a valid reference,
then its value is displaved. If the
name cannot be resolved within the cur-
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automatic
variable for which no activation cur-
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam-
ples, array elements, record fields,
and dynamic variables may all be
viewed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are dis—
plaved as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen-
sion of the array. The missing indiceaes
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an option, attributes of the
variable are displaved along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: a subscripting expression may
only be a variable or constant; that
is, it may contain no operators. Thus,

such a reference as
rB[b')[j]]

is valid (at least syntactically),
the reference

yali+3]

but

C

is not a valid reference because the
subscripting expression is not a vari-
able or constant.

Examples

IX:]

1P

)P">.b

ybll,xJ.int (ATTR
,p->[x,y].b->.a[1]

9.2.19 Viewing Memory

Command Format:

» hex-string [: length 1
Where:
hex-string is a number in

hexadecimal notation.
length is an integer.

This command is used to display the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex string is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
du?p is in both hex and character for-
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an "x' (eg. '35D05'X). The
length is specified in decimal.

Examples

, 120000 X
,146cf0'X * 100

Debug - Pascals/VS Interactive Debugger 63

C

@

9.

2.20 UWALK Command

Command Format:

WALK

Minimum Abbreviation:

W

There are no operands.

64

Pascal/VS Programmer's Guide

This command causes the program to
either start executing or resume exe-
cuting. The program execution will
continue for exactly one statement and
then the user will be returned +to
Debug. This command is useful for sin-
gle stepping through a section of code.

)

9.3 DEBUG TERMINAL SESSION

program MYPROG;
type
R1PTR = =->R1;
R1 = record
A e
B ¢
X :
S .
end;
REC2 = record
INT
end;
COLOR = (RED,
def
SPAC: arraylo.

static
ARR

var
I ¢+ 1..8;
J oo 1..4;
K: 1..2;

C : CHAR;

RP : R1PTR;

HUE : COLOR;

hegin

C 3= YA';

HUE := GREEN:;

for I := 1 to 8
for J := 1 to

for I := 0 to 9
SPACLI] := I;

NEW(RP);

With RP-> do

gegln

gt R OOONOUID LN =

WU+~ o
©

M ’
X t= 4.5;

end;
WRITELNC("END OF
end;

=
e

Figure 43, Sample program for

: arrayll..8,1..4,1..21 of REC2;

for K := 1 to 2 do
ARRLI,J,KJ.INT

= 'NEW REC?';
. 3

STRING(12);
INTEGER;
REAL;

set of 1..31;

: INTEGER;

ORANGE, YELLOW, GREEN, BLUE);

.91 of INTEGER;

do
4 do

= I+ J + K;
do

PROGRAM');

Debug session

The following series of figures

sample Debug terminal session that dem-
onstrates breakpoints and viewing var-

iables. User commands are in

case; system responses are high
lighted. The program being executed is
shown in Figure 4%3.

is a

lower

Debug - Pascals/VS Interactive Debugger 65

myprog debug/

Debug(MYPROG <MAIN-PROGRAM>):
break 14
Dabug(MYPROG <MAIN-PROGRAM>):

go

STOPPED AT MYPROG/<MAIN-PROGRAM>/14

Figure 44. Starting a program and setting a breakpoint

- Dabug(MYPROG <MAIN-PROGRAM>):
s C

c = 'A'

Debug(MYPROG <MAIN-PROGRAM>):
yhue
HUE = GREEN

) Debug(MYPROG <MAIN-PROGRAM>):
A ,sarrfarrf1,1,13.int,1,11.int
ARRLARRI[1,1,11.INT,1,1).INT = 5

Debug(MYPROG <MAIN-PROGRAM>}:
sarrll]

ARRI1]

(00020410)

Debug(MYPROG <MAIN-PROGRAM>]):
sspacl4]
SPACI4] = 4§

Debug(MYPROG <MAIN-PROGRAM>):
yrp=>.x%
RP->.X = 4.5

Debug(MYPROG <MAIN-PROGRAM>):
:rp->.b
RP->.B = 3

Figure 45. Viewing some program variables

000000 00000003 00000004 00000004 00000005 ".....cov0000vees’
000010 00000005 00000006 00000006 00000007 "..vuveuvuenvnnns’

66 Pascal/VS Programmer's Guide

Debug(MYPROG <MAIN-PROGRAM>):

sc (attr

VARIABLE TYPE: CHAR

MEMORY CLASS : LOCAL AUTO

DECtARE? ;N ¢ <MAIN-PROGRAM>
= YA

Debug(MYPROG <MAIN-PROGRAM>):
sarrll1,1,1).int C(attr
VARIABLE TYPE: INTEGER
MEMORY CLASS ¢ STATIC
DECLARED IN : <MAIN-PROGRAM>
ARRI1,1,11.INT = 3

Debug(MYPROG <MAIN-PROGRAM>):

yspac (attr

VARIABLE TYPE: ARRAY

LENGTH : 450

MEMORY CLASS : EXTERNAL
DECLARED IN : <MAIN-PROGRAM>
SPAC

(000382F0)

000000 60000000 00000004 00000008 0000000C *
000010 00000010 00000014 00000018 0000001C "'

000020 00000020 00000024

Debug(MYPROG <MAIN-PROGRAM>):

srp C(attr)

VARIABLE TYPE: POINTER

HEMORY CLASS : LOCAL AUTO
DECLARED IN : <MAIN-PROGRAM>
RP = 0004686F8

Debug(MYPROG <MAIN-PROGRAM>]):
srp-> (attr
VARIABLE TYPE: RECORD
LENGTH : 36
MEMORY CLASS : DYNAMIC
DECLARED IN : <MAIN-PROGRAM>
RP=->
(000486F8)
000000 07D5C5E6 40D9C5C3 00000000 00000000
000010 00000003 00000000 41480000 00000000
0060020 00000000

Debug(MYPROG <MAIN-PROGRAM>):

srp—>.a (attr

VARIABLE TYPE: STRING

LENGTH : 7

MEMORY CLASS : DYNAMIC

DECLARED IN : <MAIN-PROGRAM>
RP->.A = 'NEH REC'

RN AN R R RN R R
"9 00 vevseco sV

eveoes s

:.NEN REC..ceevve’

S0 ceecseevegesconn

Figure 6. Viewing variables using the ATTR option

Debug - Pascals/V$ Interactive Debugger

67

C

O

Debug(MYPROG <MAIN-PROGRAM>):
srp=>.3unk

,RP-).JUQK

JUNK IS NOT A RECORD FIELD
Debug(MYPROG <MAIN-PROGRAM>]):
c=->

" e

-> FOLLOWED NON POINTER
Debug (MYPROG <MAIN-PROGRAM>):
,arr[1,10000,1]
,ARRII,looog,ll

ARRAY INDEX OUT OF BOUNDS

Debug(MYPROG <MAIN-PROGRAM>):
go
END OF PROGRAM

Figure 47. Debug error messages

68

Pascal/VS Programmer's Guide

This section describes the rules that

the Pascal/VS compiler employs in map-.

ping variables to storage locations.

10.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off-
sets within the routine's dynamic stor-
age area (DSA). There is a DSA
associated with every routine of the
program plus one for the main program
itself. The DSA of a routine is allo-
cated when the routine is called and is
deallocated when the routine returns.

10.2 INTERNAL STATIC STORAGE

For source modules that contain va-
riables declared STATIC, a single
unnamed control section ("private
code') is associated with the source
module in the resulting text deck.
Each variable declared via the STATIC
construct, regardless of its scope, is
assigned a unique offset within this
control section.

10.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control section
(csect). Each def variable which is
not initialized will generate a named
common section. The name of the sec-
tion is derived from the first eight
characters of the variable's name.

10.0 STORAGE MAPPING

10.4_DYNAMIC STORAGE

Pointer qualified variables are allo-
cated dynamically from heap storage by
the procedure 'NEW'. Such variables
are always aligned on a doubleword
boundary.

10.5 RECORD FIELDS

Fields of records are assigned consec-
utive offsets within the record in a
sequential manner, padding where nec-
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

10.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/V$s
source module is assigned storage and
aligned according to its declared type.

10,6.1 The Predefined Types

The table in Figure 48 displays the
storage occupancy and boundary align-
ment of variables declared with a pre-
defined type.

STORAGE MAPPING OF DATA
DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

ALFA BYTE

ALPHA BYTE

BOOLEAN BYTE

CHAR BYTE

INTEGER FULL WORD

REAL . DOUBLE WORD
STRING(len) n+l - BYTE

Figure 48. Storage mapping for predefined types

Storage Mapping 69

O

10.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu-
py a half word and will be aligned on a
half word boundary.

10.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed will be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 49.
Given a type definition T as:

type
T = packed i..j;
and
const
I = ORDC(Ci);
J = ORD(3);
Range of SIZE in| ALIGNMENT
I .. J bytes
0..255 1 BYTE
-128.,.127 1 BYTE
-32768..32767 2 HALF WORD
0..65535 2 HALF WORD
otheruwise % FULL WORD
Figure 49. Storage mapping of

subrange scalars

Each entry in the first column in the
above table is meant to include all
possible sub-ranges within the spec-
ified range. For example, the range
100..250 would be mapped in the same
way as the range 0..255.

10.6.4 RECORDS

An unpacked record is aligned on a
boundary in such a way that every field
of the record is properly aligned on
its required boundary. That is,
records are aligned on the boundary
required by the field with the largest
boundary requirement.

70 Pascal/VS Programmer's Guide

record A below will be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of
tvype REAL; record C will be aligned on
a bvte.

For example,

type
A= record (¥full word alignedX)
Al : INTEGER;
A2 : CHAR

B= record (¥double word alignedX)
B2 : REAL;

B3 : BOOLEAN,
end;

C= record (xbyte alignedX)
Cl : packed 0..255;

C2 : ALPHA
end;
Alignment of records

Figure 50.

Packed records are always aligned on a
byte boundary;

10.6.5 ARRAYs

Consider the following type

definition:

typea
A=zarray [s J of t

where type s is 'a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary required for data type 't'.
With the exception noted below, the
amount of storage occupied by this var-
iable is computed by the following
expression:

(ORD(HIGHEST(s))-0ORD(LOWEST(s))+1)
¥ SIZEOF(t)

The above expression is not necessarily
applicable if LY represents an
unpacked record tvpe. In this case,
padding will be added, if necessary,
between each element so that each ele-
ment will be aligned on a boundary
which meets the requirements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev-
er inserted between elements.

A multi-dimensional array is mapped as
an array of arrav(s). For example the

C

following two array definitions would
be mapped identically in storage.

array [i..3, m..n] of t

array [

i..j 1 of
array [m..n

Jof t

10.6.6 FILES

File variables occupy 64 bytes and are

~aligned on a full word boundary.

10.6. SETSs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped, two terms will need to be

defined: The base_ type is the type to
which all members of the set must

belong. The fundamental base tvype
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0'..'9’

has the base type defined by '0',.'9';
and a fundamental base type of CHAR.

Any two unpacked sets which have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S = set of s;
T = set of t;

where s is a non-subrange scalar type
and t is a subrange of s: both S and T
will have the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though this value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contain
the largest value of the fundamental
base type. Packed sets occupy the min-
imum number of bytes to contain the
largest valid value of the base type.
Thus, variables A and B below will both
occupy 256 bits.

var
A : set of CHAR;
B : set of '0'..'9";

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
c : set of (C1,C2,C3,C4%,C5,C6,
c7,¢8,C9%,C10,C11,C12
C12,C13,C14,C15,C16);
D : set of C1..C8;
E : packed set of C1..C8;

A set type with a fundamental base type

of INTEGER 1is restricted so that the

largest member to be contained in the

set may not exceed the value 255;

;h:refore, such a set will occupy 256
its.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bits; variable X will occupy 32
bits.

var
U : set of 0..255;
V : set of 10..20;
W : packed set of 10..20;
X : packed set of 0..31;

Given that M is the number of bits
required for a particular set, the
table in Figure 51 indicates how the
sat will be mapped in storage.

Range of SIZE ALIGNMENT
M BYTES

1 <= M<K=38 1 BYTE

9 <= M <= 16 2 HALF WORD
17 <= M <= 24 3 FULL WORD
25 <= M <= 32 4 FULL WORD
33 <= M <= 256|(M+7) BYTE

DIV 8
Figure 51. Storage mapping of
SETS

10.6.8 SPACESs

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes indicated in the
length specifier of the type
definition. For example, the variable
S declared below occupies 1000 bytes of
storage.

var 5: space [1000] of INTEGER;

Storage Mapping 71

11.1 LYNKAGE CONVENTIONS

Pascals/VS uses standard 0S linkage
conventions with several additional
restrictions. The result is that
Pascals/VS may call any program that
requires standard conventions and may
be called by any program that adheres
tg the additional Pascals/VS restric-
jons.

On entry to a Pascal/VS routine the
contents of relevant registers are as
follows:

U Register 1 - points to the parame-

ter list
. Register 12 - points to the
. Pascal/VS Communication Work Area
(PCWA)
. Register 13 - points to the save

area provided by the caller
. Register 14 - return address

. Register 15 - entry point of called
routine

Pascal/VS requires that the parameter
register (R1) be pointing into the
Dynamic Storage Area (DSA) stack in
such a way that 144 bytes prior to the
Rl address is an available save area.

11.0 CODE GENERATION FOR THE IBM/370

11.2 REGISTER USAGE

The table in Figure 52 describes how
each general register is used within a
Pascals/VS program. The floating point
registers are used for computation on
data of type REAL.

register(s) purpose(s)
0,1
- temporary work registers
for the compiler
- standard linkage usage
on calls

3'4’5)6’7)8’9
- registers assigned by the
compiler for computation
and for data base
registers

2,10
- code base registers
of the currently
executing routine

11
- address of DSA of active
routine at outermost
lexical level

12
- always points to Pascal/V$s
Communication Work Area

13
- always points to the local
DSA

14,15
~ temporary work registers
for the compiler
- standard linkage usage
on calls

Figure 52. Register usage

Code Generation for the IBM/370 73

C

c

C

11.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area (DSA) is allocated. This area is
used to contain save areas, local vari-
ables and compiler generated tempo-
raries. Pascal/VS requires a minimum

DSA of 146 bytes;
parameters or local
space is needed.

variables,

The first 72 bytes are generally used
according to standard 0S5 linkage con-
is used to
copy the previous data base register at

ventions. The first word

the current procedure nesting level.

if the routine has
more

register 13—->

4:
8: 177777777222 7727777

12:

16:

20: general purpose
registers
0o - 12

72: V222200020220

—80:—
— —86G:—
—j—|—88 :—
92:
96 | {r777277777
100: reserved for
error handling
112: floating point
registers
FO - F6
144: parameter
list
local variables
and compiler
temporaries
>
translator
temporaries
144 byte save area
>
parameter list
to be built here
144 byte save area
16 byte rte parms
>

Figure 53. DSA format

save space for DISPLAY(level)
pointer to last save area
reserved for future use
return address

entry point address

reserved for future use
pointer to translator temporaries
pointer to parameter list build area

pointer to run time environment save
area
pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

for the next routine to be called

for runtime environment in case of
arror

room for parameters if required by
error recovery

/777 = indicates that the field is not presently used.

74 Pascal/VS Programmer's Guide

C

11.4 ROUTINE INVOCATION

Each invocation of a Pascals/VS routine
must acquire a dyvnamic storage area
(DSA) (see "Dynamic Storage Area" on
page 74). This storage is allocated
and deallocated in a LIFO (last
in/first out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which
storage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
Pascals/VS for a save area. The rou-
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon entering a routine, register 1
points 144 bytes into the routine's
DSA, which is where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. This
portion of storage is actually an
extension of the caller's DSA.

In general, the DSA of a routine con-
sists of five sections:

1. The local save area (144 bytes).
2. Parameters passed in by the caller.

3. Local variables required by the
routine.

4. A save area required by any routine
that will be called.

5. Storage for the largest parameter
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, 4, and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation, register 13 points to
the base of the DSA of the caller,
which is where the caller's save area
is located. The new value of register
13 may be computed by subtracting 14%
from the value in register 1.
Figure 54 illustrates the condition of
the stack and relevant registers imme-
diately at the start of a routine.

REG 13 >

caller's save area

start of DSA of caller

REG 13

(144 bytes)

local save area

start of DSA of called routine

REG 1 > 144 bytes into DSA
Parameters
top of stack >
----------------------- storage yet to be allocated
local variables
--------------------- start of DSA of routine yet
save area to be called
of any routines
---------- vet to be invoked
reg 1 it N R ittt 144 bytes into this DSA
set here parameter list to

be built for calls
to other routines

next stack top --> t-—-----ommem—o—oe—

Figure 54. Snapshot of stack and relevant registers at start of routine

Code Generation for the IBM/370 75

O

11.5 PARAMETER PASSING

Pascal/VS passes parameters in several
di fferent ways depending on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter list is aligned on a
doubleword boundary and each parameter
is aligned on its proper boundary.
Aqdresses are aligned on word bounda-
ries.

11.5.1 Passing by Read/urite Refer-
ence

indicated by use of
the reserved word var in the routine
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

This mechanism is

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:INTEGER);

Routine Invocation:

PROC(J);

Parameter list:

address of J

Passing by Read/Write
reference

Figure 55.

11.5.2 Passing by Read-oOnly Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

76 Pascal/VS Programmer's Guide

Routine Heading:

procedure PROC(const I: INTEGER);

Routine Invocation:

PROC(J+5);

Parameter list:

address of a memory location
?hich contains the value of
+5.

Passing by Read-only
reference

Figure 56.

11.5.3 Passing by Value

This mechanism is the default way in
which parameters are passed. Parame-
ters passed in this way are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or sat,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter is an array,
record, space, or &string., then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure will copy
the parameter into its local storage.

Routine Heading:
procedure PROC(
I : INTEGER;
A : ALPHA);

Routine Invocation:

PROCC(J,'alpha');

Parameter list:

value of J
address .of 'alpha '

Figure 57. Passing by value

11.5.4 Passing Procedure or Function
Parameters

For procedures or functions which are
being passed as parameters, the address
of the routine is placed in the parame-
ter list.

Routine Heading:
procedure PROC(
function X(Y: REAL): REAL);
Routine Invocation:

PROC(COS);

Parameter list:

address of CO0S routine

Passing routine

parameters

Figure 58.

11.5.5 Function Results

Pascal/VS functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the function result is to be
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

Routine Invocation:

I := FUNCC'L");

Parameter list:

- address of returned integer
result
- value of character 'L'

Figure 59. Function results

Code Generation for the IBM/370 77

C‘

11.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function

" is arranged in the order shouwn below.

Register 2 is the code base register
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routine exceeds 8K
bytes of storage, the compiler will
diagnose it as a terminal error.

DEBUG control
Reg 2 block

Entry pt >

entry prologue

body
of
routine

exit epilogue

literals:

ACONS, VCONS,

and small values
1 to 8 bytes long

STRING and SET
literals longer
than 8 bytes

statement table
(if present)

Figure 60. Routine format

78 Pascal/VS Programmer's Guide

11.7 PCUA

The Pascal Communications Work Area is
always addressable from register 12.
This area of memory is used to contain
global information about the execution
of the program.

The area is divided into two parts,
each is 2048 bytes in length. The
first part contains data that needs to
be addressable; the second is composed
of the small routines used to augment
the generated code. An example is the
routine that is used to concatenate two
strings.

ofgset width in bytes

4 end of stack 4
8 current stack 4
flags 1 %

12
flags 2 4

16
return code %

20
pointer to files 4

24
pointer to parms 4

28
module link 4

32
ext. save area 4

36
level display 32

68
debug temp %

72
floating pt temp 8

80
conversion constl 8

88
9 conversion const2 8
set mask 8

104
temp dsa save 8

112
error recovery 144

save area

256

error recovery 64
param list build

320
address of HALT %

324
addr of allocator %

328
addr of dealloc %

332
default alloc size %

336
addr of checker 4

340
reserved 1436

1776
SPIE save area 164

1920
SPIE work area 6%

1984
memory space desc 64

Figure 61. Pascal Communications
Work Area

end of stack
a pointer to the end of the current
DSA stack.

current stack
a pointer to the top of the current
DSA stack.

flags 1
reserved for future use.

flags 2
flags used to enable runtime fea-
tures.

return code
the value assigned by the last exe-
cution of RETCODE or =zero if
RETCODE has not been called.

pointer to files
a pointer to the first file that
has been opened but never closed.

pointer to parms
a pointer to the parameter list
passed to the program.

module link .
a pointer to the head of a chain

that 1links modules together as
directed by the interactive
debugger.

ext. save area
contains the pointer to the save
area for the caller of the Pascal
program,

level display
a stack of 8 base registers that
contain the addresses of the DSAs
that are available to the executing
routine.

debug temp
a temporary used by the symbolic
debugger.

floating pt temp
a temporary used in conversion
between floating point numbers and
integers.

conversion constl
a constant that contains the float-
ing point value zero.

conversion const2
a constant that contains the float-
ing point value of 2 raised to the
21 power minus 1 in an unnormalized
orm.

set mask
eight bytes that contain masks used
in set operations.

temp dsa save
a temporary used during execution
errors.

error recovery save area
used as a register save area when a
program error or checking error
occurs.

error recovery parm list build
used when a program error or check-
ing error occurs to build a parame-
ter list in order to invoke a
recovery procedure.

Code Generation for the IBM/370 79

O

C

O

address of HALT
address of a procedure which termi-
nates the program no matter what
state it is in. This procedure is
normally HALT.

addr of allocator
address of the routine which is
responsible for allocating blocks
of storage.

addr of deallocator
address of the routine
releases blocks of storage.

which

default alloc size
the number of bytes of storage that
the allocation routine will allo-
cate when called.

addr of checker
the address of the routine which is
invoked to diagnose a checking
error.

reserved

spie save area
a small save area used when a SPIE
exit is invoked.

spie work area
a place to save certain information
from the SPIE.

memory space desc
descriptors used to control the
allocation and deallocation poli-
cies of dynamic storage and 1I/0
buffers.

80 Pascal/VS Programmer's Guide

11.8 FCB - FILE CONTROL BLOCK

Every Pascal/VS file is represented by
a file control block. An FCB is com-
posed of 64 bytes of space.

offset width in bytes
]
“ file pointer %
flags 2
6
elem len 2
8
symbolic name 8
16
buf idx 2
18 |————
buf end 2
20 |————
rec len 2
22
rec end 2
24
pointer to buffer %
28
pointer to record 4
32
last fch %
36
next fcb %
40
pointer to DCB 4
44
pointer to DECB 4
48
aux buffer 4
52
56 pointer to exten. %
current status 4
60
not assigned 4
Figure 62. File Control Block
(FCB) format

The fields are defined as:

File pointer
points to the current element of

the file.
Flags

set of file flags (16 bits). The

flags are:

FOPEN indicates that file is
open;

FINPUT the file is open for input
(output otherwise)};

FTEXT the file is of type TEXT;

FEOLN end-of-line condition is

true;

FEOF end-of-file condition is
true;

FFIXED file is fixed block (vari-
able block otherwise);

FSEQ sequential file;

FINTER interactive file;

FFEOL end-of-line condition is
true, but not as a result
of READLN;

FSUMR file is prepared for read-
ing;

FSUMH file is prepared for writ-
ing;

FALTIO alternate I/0 system in
use.

Elem len

the length of one element of the

file

symbolic name
the DDNAME of the file.

Buf idx ‘
count of the number of bytes from
beginning of buffer used.

Buf end
total length of buffer in bytes.

Rec len
logical
record.

record length of current

Rec end
byte offset from beginning of buff-
er for the end of the current
record.

Pointer to bhuffer
address of the beginning -of the
buffer.

Pointer to record
address of the current record in

the buffer.
Last FCB
back chain of currently open FCBs.
Next FCB
forward chain of currently open
FCBs.
Pointer to DCB
address of the 0S5 Data Control
Block.

Pointer to DECB
address of the Data Event Control
Block.

Aux buffer
the address of a buffer that needs
to be freed when the file is
closed.

Pointer to exten.
the address of another 64 byte area
used to implement special I0 inter-
faces.

current status
status of the file.

Code Generation for the IBM/370 81

Writing an assembler language routine

for Pascals/VS is a simple operation

provided that a set of conventions are
carefully followed. There are two rea-
sons for the need for these
conventions:

1. Pascal/VS parameter passing con-

ventions: As described in "Parame-
ter Passing"™ on page 76, Pascal/V$s
parameters are passed in a variety
of ways, depending on their attri-
butes.

2. Jhe Pascal/VS environment: This is
an arrangement of registers and
control blocks used by Pascal/V$ to
handle storage management and
runtime error recovery. (see "Rag-
ister Usage" on page 73.)

12.1 UWRITING ASSEMBLER ROUTINE WITH
MINIMUM INTERFACE

Writing an assembler routine with the
minimum interface requires the least
knowledge of the runtime environment.
However, such a routine has the follow-
ing deficiencies:

. It may not call a PascalsVs

routine;
. It must be non-recursive;
. If a program error should occur

(such as divide by zero), the

12.0 LINKING TO ASSEMBLER ROUTINES

Pascal/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascals/VS program invokes an
assembler language routine, register
14 contains the return address and reg-
ister 15 contains the starting address
of the routine. The routine must fol-
low the System/370 linkage conventions
and save the registers that will be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
Wwill contain the address of the regis-
ter save area provided by the caller,
and register 1 will point to the first
of a list of parameters being passed
(if such a list exists). Once the reg-
ister values are stored in the caller's
save area, the save area address (reg-
ister 13) must be stored in the
backchain word in a save area defined
by the assembler routine itself.
Before returning to the Pascal/VS rou-
tine, the registers must be restored to
the values that they contained when the
assembler routine was invoked.

If you insert your assembler
instructions at the point indicated in
the skeletal code shown in Figure 63,
your assembler routine can be called
from a Pascal/VS routine and you need
have no knouwledge of the Pascals/V$s
environment.

anyname CSECT
ENTRY procname
procname DS OH
STM 14,12,12(13)
BALR basereg,0
USING ¥,basereg

LA 13, SAVEAREA

.

invoked from Pascals/V$s

declare routine name as an entry point
entry point to routine
save Pascal/VS registers in Pascal/VS save area
establish base register

ST 13,SAVEAREA+4 store Pascal/V5S save area address
load address of local save area

body of assembler routine

% restore the floating point registers if
* they were saved

L 13,6(13) restore Pascal/VS registers

LM 14,12,12(13)

BR 14 return to Pascals/V$s
SAVEAREA ESD 20F'0" local save area

Figure 63. Minimum interface to an assembler routine: skeletal code to be

Linking to Assembler Routines 83

12.2 UWRITING ASSEMBLER ROUTINE WITH GENERAL INTERFACE

EPILOG LASTREG=r

whare:

passed-in parameters.

to be built within the routine.

defaults:
LASTREG=12
VARS=3
PARNMS=0

Figure 64. PROLOG/EPILOG macros

procname PROLOG LASTREG=r,VARS=n,PARMS=p

prochame is the entry point name of the routine.

LASTREF is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.
This value must be the same for both the PROLOG and EPILOG macros.

VARS is the number of bytes required for any local data, including

PARMS is the number of bytes required for the largest parameter list

If an assembler routine has at least
one of the following characteristics,
the general interface must be used:

. It calls a Pascals/VS routine;
J It is recursive;

. Program errors must be intercepted
and diagnosed by the Pascal/V$s
runtime environment.

Two assembler macros are available
which are used to generate the prologue
and epilogue of an assembler routine
with a general Pascals/VS interface.
The macro names are PROLOG and EPILOG
and their forms are described in the
figure above.

The PROLOG macro preserves any regis-
ters that are to be modified and allo-
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4 kilobytes
of code,

Upon entering a routine prior to exe-
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

. Register 1 - address of the parame-
ter list built by the caller, which
is 144 bytes into the DSA to be
used by the called routine.

. Register 12 - address of the Pascal
Communication Work Area (PCWA).

8¢ Pascal/VS Programmer's Guide

. Register 13 - address of the DSA of
the calling routine.

. Register 14 - return address.

. Register 15 - address of the start
of the called routine.

Upon executing the code generated by
the PROLOG macro, the registers are as
follows:

. Register 0 - unchanged

. Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou-
tines.

. Register 2 - base register for the
first 4 kilobytes of code within
the invoked routine.

. Registers 3 through 11 - unchanged.
. Register 12 - unchanged

L Register 13 - address of the local
DSA of the routine just invoked.
The first 144 bytes is the register
save area for the invoked routine.
Following the save area is where
the parameters passed in by the
caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter list build area.

. Register 14 - unchanged.

. Register 15 - unpredictable.

C

C

The EPILOG macro restores the saved
registers, then branches back to the
calling routine. In order for the
epilogue to execute properly, register
13 must have the same contents as was
established by the prologue.

The contents of the floating point reg-
isters are not saved by the PROLOG mac-

ro. If the floating point registers
are modified, they must be restored to
their original contents prior to
returning from the routine.

A skeleton of a general-interface ass-
embler language routine which may be
called by a Pascals/VS program is given
belouw.

KK X X X X X XX

csectnam CSECT
*

{==

EPILOG LASTREG=lastreg
END

invoked from Pascal/V$

The following names have the indicated meaning

'csectnam' is the name of the csect in which the routine resides

'procname' is the name of the routine.

"parmsize' is the length of the passed-in parameters

'varsize' is the storage required for the local variables

Ylastreg' is the highest register (up to 12) which will be modified

'plist' is the length of the largest parameter list required for calls
to other routines from "procname"

procname PROLOG LASTREG=lastreg,VARS=varsizetparmsize,PARMS=plist

insert code here

Figure 65. General interface to an assembler routine: skeletal code to be

Linking to Assembler Routines 85

C

C

12.3 RECEIVING PARAMETERS FROM ROU
TINES :

Parameters received from a Pascal/V$

routine are mapped within a list in the

manner described in "Parameter

Passing” on page 76. At invocation

Eegister 1 contains the address of this
ist.

If the general interface (see "Writing
Assembler Routine with General Inter-

face" on page 8%4) is used in writing:

the assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

12.4 CALLING PASCAL/VS ROUTINE FROM
ASSEMBLER ROUTINE

An assembler language routine may call
a Pascal/VS routine provided that:

1. the Pascals/VS runtime environment
is active (this will be so if the
assembler routine was invoked by a
Pascal/VS procedure),

2. the general PascalsVs
was incorporated, and

interface

86 Pascal/VS Programmer's Guide

3. the Pascals/VS routine to be called
is an ENTRY routine.

Prior to making the call, register 1
must contain the value assigned to it
within the PROLOG code. Parameters to
be passed are stored into appropriate
displacements from register 1 as
described in "Parameter Passing"” on
page 76.

At the point of call, register 12 must
contain the address of the Pascal Com-
munications Work Area (PCWA). This
will be the case if the assembler rou-
tine was invoked from a Pascal/VS rou-
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into register 15 .and then the
instruction '"BALR 14,15' is executed.

12.5 _SAMPLE ASSEMBLER ROUTINE

In Figure 66 on page 87 and Figure 67
on page 87, a sample assembler routine
is listed which may be called from a
Pascal/VS program. This routine exe-
cutes an 0S TPUT macro to uwrite a line
of text to a user's terminal.

type
BUFINDEX = 0..80;
BUFFER = packed arrayl1..80] of CHAR;

(¥this routine is in assembly language)

procedure TPUT(
const BUF : BUFFER;
LEN : BUFINDEX);
EXTERNAL;

(¥this routine is called from the assembly language routineX)
procedure ERROR(
RETCODE: INTEGER;
const MESSAGE: STRING);
ENTRY;
begin
5RITELN(0UTPUT, MESSAGE, ', RETURN CODE = ', RETCODE)
ena;

Figure 66. Pascals/V$s description of assembler routine: the assembler

routine is shown in Figure 67.

TIOSEG
TPUT
*

*
TPUTRET
%

TPUTMSG
TPUTTEXT

CSECT
PROLOG LASTREG=% only registers 3 and ¢ are modified
L 3,1644(13) load address of 'BUF' parameter
L %4,1648(13) laod value of 'LEN' parameter
TPUT (3),(4) write content of 'BUF' to terminal
LTR 15,15 check return code
BZ TPUTRET if no error then return

build parm list for call to YERROR?'
ST 15,0(1) assign to 'RETCODE' parameter
LA 3, TPUTMSG load address of message
ST 3,4(1) assign to "MESSAGE' parameter
L 15,=V(ERROR) load address of "ERROR' procedure
BALR 14,15 call 'ERROR?!

EPILOG LASTREG=3

DC ALICL'TPUTTEXT) length byte of string
gﬁ C'TPUT ERROR? message text
D .

Figure 67. Sample assembler routine: this routine is invoked by
Pascal/VS routine and, within itself, invokes a Pascal/sV$s

routine.

a

Linking to Assembler Routines

87

O

O

12.6 CALLING A PASCAL/VS MAIN PROGRAM

FROM ASSEMBLER ROUTINE

A Pascal/VS program may be invoked from
an assembler language routine by load-
ing a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

The convention employed in passing
parameters to a program is dependent on
whether you are running under CMS or
under TS0 (or 0S Batch). Both con-
ventions require that register 1 be set
to the address of the parameter data.

Program to be called:
program test;
begin

DY

end.

LA" 1,PLIST
L 15,=V(TEST)
BALR 14,15

.

PLIST DS OF
DC CLB'TEST!
DC CL8"token 17
DC CL8"token 2°'

DC ..6L8'token n'
DC 8X'FF?'

LA" 1,PLIST
L 15,=V(TEST)
BALR 16,15
PLIST DS OF
DC XL1'80"
DC AL3CPARMS)
PARMS DC FL2'length’

Figure 68.

Assembler instructions to perform the call under CMS:

Assembler instructions to perform the call under V52 (and 750):

set first bit of address

length of parameter string
DC C'parm string goes here'!

Example of calling a Pascal/VS program from an assembler

routine

88 Pascal/VS Programmer's Guide

13.1 PROGRAM INITIALIZATION

Upon invoking a Pascals/VS program, the
routine which is responsible for estab-
lishing the Pascals/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated. -

2. The Pascal Communication Work Area
(PCWA) is created and initialized.

3. An environment is set up to inter-
cept program interrupts (fixed
point overflow, divide by =zero,
etc.)

4. The main program is called.

5. Upon return from the main program
any open files are closed. -

13.0 RUNTIME ENVIRONMENT OVERVIEW

6. Acquired memory is freed.

7. Control is returned to the system.

13.2 THE MAIN PROGRAM

The main program is called as an ordi-
nary procedure from the environment
setup routine (AMPXSTRT). The external
name AMPXBEGN is associated with the
adgress of the main program execution
code.

13.3 INPUT/0UTPUT ROUTINES

The I/0 operations (which appear as
calls to predefined procedures in
Pascals/VS) are implemented as calls to
internal procedures within the runtime
environment.

Internal Input/Output Routines

Procedure name

Action Performed

AMPXRSET
AMPXOPEN
AMPXCLOS

AMPXRCHR
AMPXRINT
AMPXRR

AMPXRSTR
AMPXRTXT

AMPXWB
AMPXWCHR
AMPXWINT
AMPXUWR
AMPXUWSTR
AMPXWTXT

AMPXGET
AMPXPUT

AMPXRREC
AMPXWREC

Opens a file

Closes a file

Performs

a
Performs a

Opens a file by means of OPEN

Reads a character from a text file

Reads an integer value from a text file

Reads a floating point value from a text file
Reads a string from a text file

Reads an array of characters from a text file

Writes a boolean value to a text file

Writes a character to a text file

Writes an integer to a text file

Writes a real value to a text file

Writes a string to a text file

Writes an array of characters to a text file

Performs a GET operation on a file
Performs a PUT operation on a file

READ operation on a non-text file
WRITE operation on a non-text file

13.4 HEAP MANAGEMENT ROUTINES

The NEW operation generates a call to
the internal procedure AMPXNEW. This
procedure allocates storage within a
heap. If a heap has not yvet been cre-
ated, NEW will obtain memory from the
operating system to create a heap.

The DISPOSE operation generates a call
to the procedure AMPXDISP. This proce-
dure deallocates the heap storage

acquired by a preceding call to
AMPXNEW.

The MARK operation generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from which subse-
quent calls to AMPXNEW will obtain
storage.

The RELEASE operation generates a call
to the procedure AMPXRLSE. This proce-
dure frees a heap that was previously
created via the AMPXMARK procedure.

Runtime Environment Overview 89

Subsequent calls to AMPXNEW will obtain
storage from the heap which was active

0

90 Pascal/VS Programmer's Guide

prior to the call of AMPXMARK.

Release 1.0 of Pascal/VS has several
differences from ‘'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have suitable
facilities.

16.1 PASCAL/VS RESTRICTIONS

Pascal/Vs contains the following
restrictions that are not in standard
Pascal.

Non-local labels
Branching to a non-local label (by
means of the 9oto statement) is not
supported.

Files
Fields within records and elements
of arrays may not be declared as
files. Files may not be pointer
qualified.

Routine parameters :
A routine uwhich is passed as a
parameter must not be nested within
another routine; that is, it must
be at the outermost nesting level.

14.2 MODIFIED FEATURES

Pascal/VS has modified the meaning of a
negative length field qualifier on an
operand within the WRITE statement.

14.3 NEW FEATURES

Pascal/VS provides a number of exten-
sions to Pascal.

. Separately compilable modules are
syzported Wwith the segment defi-
nition.

. 'internal static' data is sup-
ported by means of the static dec-
~larations.

. 'external static' data is sup-
ported by means of the def and ref
declarations.

. Static and external data may be
initialized at compile time by
means of the value declaration. ¢

[Constant expressions are permitted
wherever a constant is permitted
except as the lower bound of a sub-
range type definition.

16.0 COMPARISON TO PASCAL

The keyword "randge" may be prefixed
to a subrange type definition to
permit the lower value to be a con-
stant expression.

A varying length character string
is provided. It is called STRING.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, LTRIM, COM-
PRESS and INDEX.

The parameters of the text READ
procedure may be length-qualified.

Calls to FORTRAN subroutines and
functions are provided for.

Input files may be opened as
"INTERACTIVE" so0 that I/0 may be
done conveniently from a terminal.

I/0 is supported for partitioned
data sets.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the OPEN procedure.

The space structure is provided for
processing packed data.

Records may be packed to the byte.

The tagfield in the variant part of
a record may be anywhere within the
fixed part of the record.

Fields of a record may be unnamed.

Tag specifications on record vari-
ants may be ranges (x..y).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators '|', '&', '&&'" and
'-' may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basis. Shift operations on data
are also provided.

Integer constants may be expressed
in hexadecimal digits.

Comparison to Pascal 91

92

Real constants (floating point)
may be expressed in hexadecimal
digits. ’

string constants mav be expressed
in hexadecimal digits.

The X%INCLUDE facility provides a
means to include source code from a
library.

A parameter passing mechanism
(const) has been defined uwhich
guarantees that the actual parame-
ter is not modified yet does not
require the copy overhead of a pass
by value mechanisnm.

leave, continue and return are neuw
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val-
ue or an identifier.

Pascal/VS Programmer's Guide

case statements may have a range
notation on the component state-
ments.

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permits
runtime checks to be compiled into
the program.

The following system interface
procedures are supported: HALT,
CLOCK, and DATETIME.

Constants may be of a structured
type (namely arrays and records).

To control the compiler listing,
the following listing directives
are supported: %PAGE, X%SKIP, and
%ZTITLE.

15.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and %43xx
computers providing one of the follow-
ing operating environments:

. VM/CMS
. 0s/vs2 TS0
. 05/VS2 Batch

15.2 MEMORY REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro-
gram can be performed in a 256K CMS
machine.

The compiler requires a minimum region
size of 512K under V82 (MVS). A com-
piled and link-edited program can exe-
cute in a 128K region.

15.3 THMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions

Pascal/Vs “"short circuits"
boolean expressions involving
the and and or operators. For
example, given that A and B are
boolean expressions and X is a
boolean variable, the evaluation
of

X:=AorBorcC
would be performed as

if A then
X := TRUE
else
if B then
X = TRUE
else
X 1= C

The evaluation of
X := A and B and C

would be performed as

15.0 TMPLEMENTATION SPECIFICATIONS

if -A then
X := FALSE
else
if -B then
X := FALSE
else
X :=C

See the section entitled
"Boolean Expressions"™ in the
Pascal/VS Reference Manual for
more details.

Floating-point
Some commonly required charac-
teristics of System/370 float-
ing-point arithmetic are shoun
in Figure 69 on page 94.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a
longer name, it will ignore that
portion of the name longer than
16 characters.

Names of external variables and
external routines must be unique
within the first 8 characters.
Such names may not contain an
underscore '_' within the first 8
characters.

Integers
The largest integer that may be
represented is 2147483647.° This
is the value of the predefined
constant MAXINT.

The most negative integer th§t

may be represented is
-2147483648. This is the value
of the predefined constant
MININT.

Routine nesting
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The following standard routines
may not be passed as parameters
to another routine:

ABS, CHR, CLOSE, DISPOSE, EOF,
EOLN, FLOAT, GET, HBOUND, HIGH-
EST, INTERACTIVE, LBOUND,
LENGTH, LOWEST, MARK, MAX, NEW,
0DD, ORD, PACK, PAGE, PRED, PUT,
READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR,
STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN

A routine may not be passed as a
parameter if it is nested within
another routine; that is, a rou-

° This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 93

O

Floating-point Characteristics

Characteristic Decimal approximation Exact Representationl
Maxreal? 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR
Minreals 5.39760534693403E-79 0010000000000000°'XR
Epsilon® 1.38777878078145E-17 '3310000000000000"XR

The syntax
Pascal/VS Reference Manual.

Maxreal 1is the largest

represented.

Minreal is the
may be represented.

Epsilon
following condition holds:

1.0+epsilon > 1.0

This value 1is often
converging series.

needed

finite

'..."XR is the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the

floating-point
smallest positive finite floating—-point number that

is the smallest positive floating-point number such that the

numerical

number that may be

computations involving

sets

94

Figure 69.

tine being passed as a parameter
must be at the outermost nesting
level.

A FORTRAN function or subroutine

may not be passed as a parameter
to a Pascal/VS routine.

Given a set type of the form

Pascal/VS Programmer's Guide

Characteristics of System/370 floating point arithmetic

set of a..b
where "a" and "b" express the
lower and upper bounds of the
base scalar type, the following
conditions must hold:
. ORD(a) >= 0

. ORD(b) <= 255

16.0 PASCAL/VS MESSAGES

(::/ 16.1 PASCAL/VS COMPILER MESSAGES

No. Message and Explanation

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 source continues after end of program

The compiler detected text after the logical end of the progranm.
This error is often caused by mismatched beginsend brackets.

3 “"END" expected

% | Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displavable EBCDIC character. If the string is printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results,

If a control character 1is intended, then the string should be
represented in hexadecimal form.

5 symbol invalid or out of context

<;/ The indicated symbol is not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

6 EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error is often caused by
mismatched begin/end brackets.

7 "BEGIN" expected

8 semicolon ';' expected

9 VAR declarations not permitted here

The indicated var declaration appears in the outermost lexical level
of a segment module. Automatic variables (those declared via the
var construct) must be local to either the main program or to a rou-
tine; they may not be declared in the outermost level of a segment
module. The declaration may be changed to static.

11 | Ambiguous proceduresfunction specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

12 Multiply defined label

The indicated label has been previously defined within the surround-
ing routine.

Pascal/VS Messages 95

O

13 Label identifier expected
Within the indicated label definition, a label identifier is
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

14 File types restricted to simple variables
Only a variable may be declared as a file.
As a restriction imposed by Pascal/VS, neither a field of a record
nor the elements of an array may be declared as a file. 1In
addition, the object of a pointer may not be of a file type.

15 'S' expected

16 Identifier required to be a type in tag field specification
Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represent the tag field's
type was not declared as a type.

17 v:' expected

18 Parameters on foruwarded routjne not necessary
A routine declaration which has been previously declared as FORWARD
must not specify any formal parameters. Any formal parameters araea
assumed to have been specified previously on the associated declara-
tion that contained the FORWARD directive.

19 Files passed by valua not permitted

' The indicated formal value parameter is of a file type. A file var-

iable may be passed to a routine only by the var or const mechanism;
never by value.

21 ')' expaected

22 Fornarded routine class conflict
A procedure declaration was previously declared as a forwarded func-
tion; or a function declaration was previously declared as a for-
warded procedure.

23 | Routine nesting exceeds maximum
The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

24 Too many nested WITH statements or RECORD definitions
This error 1is caused by either too many nested With statements, or
too many nested record definitions.

25 Type not needed on foruarded function
A function declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORWARD directive.

26 Missing type specification for function

The indicated function header did not specify a return type.

96

Pascal/VS Programmer's Guide

27 ProceduresFunction previously FORWARDed
The indicated routine declaration that contains the FORWARD direc-
tive was already previously foruwarded.
28 | Additional errors not printed
The indicated construct contained more errors, but were not printed
due to space considerations.
29 Illegal hexadecimal or binary digit
An invalid hexadecimal digit was detected within a hexadecimal con-
stant specification of the form
Y.L, Y.L TXC, or '...'XR;
or, an invalid binary digit was detected within a binary constant
specification of the form
'..."B.
The following characters are valid hexadecimal digits:
ol 1, 2' 3’ q" 5’ 6, 7’ 8, 9' A’ B’ c’ DD E’ F’
Qs b’ C, d} e,
The following characters are valid binary digits:
0, 1
30 Unidentifiable character
The indicated character is not recognized as a valid token.
31 | pigit expected
A decimal digit was expected but missing at the indicated location.
32 | Real constant has too many digits
The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, please
notify the compiler maintenance group at IBM.
33 Integer constant too large
The indicated integer constant is not within the range -2147483648
to 2147483647.
3% End of string not seen
A string constant may not cross a line boundary. This error is
often the result of mismatched quotes.
If a string constant 1is too large to fit on one line, it must be
broken up into multiple strings and concatenated with the || opera-
tor. (Concatenation of string constants is performed at compile
time).
35 | Hexadecimal integer constant may not exceed 8 digits
The indicated hexadecimal constant exceeds the maximum allowed num-
ber of digits. :
36 char string is too lardge
The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-
stants are concatenated.

Pascal/VS Messages

97

37 standard routines not permitted as parameters
Standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou-
tines:
ABS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
0bD, ORD, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN
38 variable must he of type file
The indicated variable is required to be of a file type.
39 Must be of type TEXT
The indicated variable is required to haVe been declared with the
predefined type TEXT.
%0 Required parameters are missing
The indicated READ or WRITE statement contains no parameter from
which to reference data.
%1 Caomma ',' expected
62 User defined scalars not permitted
Expressions which are of a user defined enumerated tvpe may not be
directly read from or written to a text file.
%3 Operand of READ/WRITE not of a valid type
Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:
- INTEGER
- REAL
- CHAR
- BOOLEAN
- STRING
- packed arrayll..n] of CHAR
where n is a positive integer constant.
4% Length field must be integer
The indicated length qualifier expression in a READ or WRITE state-
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.
45 set contains constant member(s) which are out of range
The indicated set constant contains members which are not valid for
the set variable to which the constant is being assigned.
For example,
var 5 : set of 10..20;
begin
g := [1,2); (%<== this statement would produce error 45%)
end;
This error may also occur when a set constant is being passed as a
paramater.
%6 2nd length applicable only to REAL data

In the procedure WRITE (text file case), only expressions of type
REAL are permitted to have two length field qualifications.

O

98

Pascal/VS Programmer's Guide

%8 Associated variable of subscript must be of an array type

An attempt is being made to subscript a variable which was not
declared as an array.

49 Expression must be of a simple scalar type

The indicated expression should be of a simple scalar type within
the context in which it is being used.

51 Variable must be of a pointer type

The indicated variable is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

52 corresponding variant declaration missing

Within a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fails to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

53 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS5 compiler main;
tenance group at IBM. This is a compiler error.

54 Expression must be numeric

Expressions which are prefixed with a sign ('+' or "-') must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expraession must be of type real

The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

56 | Expression must be of type integer

The indicated . expression must be of a type that is compatible with
INTEGER.

57 Parameter type does not match formal parameter

Within a procedure or function call, an expression or variable is
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 This expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass—-by-var parameter.

59 Number of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.

60 *(' axpected -

61 constant expected

Pascal/VS Messages 99

62 | Typre specification expected

At the place indicated, a type definition is expected but is
missing.

63 '..'" expected

6% Expression's type is incorrect or incompatible within context
This error is caused by a number of reasons:

. A unary or binary operator is being avpplied to an expression
which is of a type that is not valid for the operator.

. Two expressions being joined by a binary operator are of incom-
patible types.

. The parameters of the MIN/MAX functions are not of consistent
types. .

. Members of a set constructor have inconsistent types.

65 subrange louer bound > upper bound

66 Assignment to ptr qualified variant record invalid

The indicated statement attempts to assign to the whole of a pointer
qualified record with variant fields. Such an assignment is nhot
valid under Pascal/Vs. This restriction is necessary because the
pointer qualified record may have been allocated with a size that is
specific to its active variant.

Example of violation:

type
R = record
case BOOLEAN of
TRUE: (C:CHAR);
FALSE: C(A: ALPHA)
end;
var P : =->R;
RR ¢ R;
begin
NEW(P, TRUE);
P-> := RR (%X<===invalid assignmentk)
end

67 Real type not valid here

The indicated expression 1is of type REAL. An expression of this
type is not valid within the associated context.

68 "OF" expected

69 Tag constant does not match tag field type

Within a record definition, a variant tag is being defined which is
of a type that is not compatible with the corresponding tag field
type.

Within a call to NEW or SIZEOF, a tag value is specified which is of
a type that is not compatible with the corresponding tag field type
of an associated record variable.

70 buplicate variant field

Within a record definition, a variant tag is being defined more than
once.

100 Pascal/VS Programmer's Guide

71 Not applicable to "“PACKED" qualifier
The indicated type definition was qualified with the word "packed".
Such a qualification within the associated context is not valid.

72 '[' expectaed

73 Array has too many elements
The length of the indicated array definition exceeds the address-
ability of the computer.

74 '1' expected

76 File of files not supported

77 Illegal reference to function name
The indicated identifier is the name of a function. It is being
used in a way that is incorrect.

78 subscript type not compatible with index type
The indicated subscript expression is not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record typa.
A variable associated with the indicated statement or expression is
required to be of a record type according to context; but such is
not the case.

80 Record field qualifier not defined
The indicated record field does not exist for the associated record.

81 | Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 | Associated variable must be of a pointer or file type
The indicated arrouw qualified variable is not of a pointer or file
type.

83 set element out of range
The indicated set member of a set constructor exceeds the allowed
range for the set.)

84 | Expression must be of a set type
The indicated expression is required toAbe of a set type in the con-
text in which it is being used.

85 | Must he positive integer constant
The indicated expression fails to evaluate to a positive integer
constant, which is reaquired in the context in which it is being
used.

86 LEAVE/CONTINUE not within loop

The indicated leave or continue statement fails to reside within a
loop construct.

Pascal/VS Messages

101

87 v:iz=' expected

89 Jump out of procedure not supported

The target label of a goto statement must be local to the routine in
which the statement resides. This is a Pascal/VS restriction.

90 | Label not declared

The indicated label did not appear in a label declaration.
92 "THEN" expected

93 Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

95 “UNTIL" expected

96 "DO" expected

97 FOR-loop index must be simple local variable

A for-loop variable must be declared as a simple automatic (var)
variable, local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "TO" expected

99 Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

103 Expraession must be of type BOOLEAN

The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAN. The indicated expres-
sion failed to meet this criteria.

104 constant out of range

The indicated constant expression evaluated to a value which is out-
side the required range of its context. .

105 Identifier was previously declared

The indicated identifier within a declaration was previously
declared within the same lexical scope.

102 Pascal/VS Programmer's Guide

106 Undeclared identifier
The indicated identifier being referenced was not declared.

107 Identifier is not in proper context
The indicated identifier is being used in a way that is not consist-
ent with how it was declared.

108 | Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

109 case label tag of wrong type
‘The value of the indicated case statement label is not of a type
that is conformable to the case statement indexing expression.

110 Loop Will never execute
The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi-
tionally true.

111 Loop range exceeds range of index
The indexing variable used for the indicated for loop was declared
with a subrange that does not include the range indicated by the
initial and final index values.

112 "PROGRAM' header missing

113 Pending comment not terminated
A comment starting symbol was detected within a pending comment.

114 Percent "%" statement not found
A '/' symbol was detected, but with no identifier following.

115 Parcent "%" identifier not recognized
A identifier following the '%' symbol is not recognized as a valid
compiler directive.

116 "ON'" or OFF" expected

117 | uUnrecognizable option in “%CHECK"

120 string constant requires truncation
The indicated string constant, which is being assighed to a variable
or being passed to a routine, requires truncation because of its
excessive length. 1Implicit truncation of strings is not permitted.

122 | "OTHERWISE"™ clause Without associated CASE statement
The indicated otherwise statement is not within the context of a
case statement. .

123 Maximum string length exceeded

The indicated expression produced a varying length string which
exceeds 255 characters in length. 255 is the maximum allowed length
for a varying length string.

Pascal/VS Messages

103

O

125 Real to inteder conversion not valid
The indvcated expression is of type real, but according to its con-
text, it is requrred to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 | Types not conformable in assignment
The indicated assignment statement attempts to assign an expression
of a particular type to a variable of an incompatible type.

127 File variable assignmant not permitted
The left side of the indicated assignment statement is a variable of
a file type. Assignment to file variables is not permitted.

128 | Not compile-time computable
The indicated expression fails to be a constant expression that can
be evaluated at compile time.

129 | Assignment to "™CONST" paramater invalid
The indicated variable declared as a formal const parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid
The indicated variable that is being used as a for loop index may
not be modified by an assignment wWithin the for loop statement.

131 Passing "CONST" parameter by VAR invalid
The indicated variable declared as a formal const parameter may not
be modified by being passed as an actual var parameter to a routine.

132 | Passing FOR-loop index by VAR invalid
The indicated variable that is being used as a for loop index may
ggt be modified by being passed as an actual var parameter to a rou-

ine.

133 | Refer-back tagfield must not be typed
The indicated tag field specification within a record definition was
found to reference a previous field within the record. Such
refer-back references may not contain a type reference.

137 Passing packed record field by VAR not valid
The indicated field of a packed record may not be passed as an actu-
al var parameter to a routine.

138 | Passing SPACE component by VAR not valid
The component of a space variable may not be passed as an actual var
parameter to a routine.

139 Passing packed array element by VAR not valid
An element of a packed array variable may not be passed as an actual
var parameter to a routine.

140 scalar PACKing does not match corresponding VAR parameter
The indicated variable that is being passed as a var parameter is of
a compatible type, but has a different length than the corresponding
formal parameter. This was caused by one being packed and the other
unpacked.

104 Pascal/VS Programmer's Guide

142 | Must be an array variable
The indicated variable is required to be of an array type, but such
is not the case.

143 offset qualified field not on proper boundary
The indicated field in a record definition is qualified with an off-
set which 1is not consistant with the boundary requirement of the
field's type.

164 Offset qualification value is too small
The indicated field in a record definition is qualified with an off-
set which causes an overlap with a previous field within the record.

145 Type must be CHAR or PACKED ARRAY OF CHAR
The indicated expression is required by its context to be of type
CHAR or packed arrayll..nl] of CHAR.

146 Variables of type POINTER are not permitted
The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function
The indicated identifier 1is used as though it is a function name,
but is not declared as such.

148 | Missing period '.' assumed

149 Not a valid comparison operation
The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings, variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
Y=Y, YL, V=Y and 'T>=t,

150 ENTRY routines must be at the outermost nesting level
A routine declared as an ENTRY may not be nested within another rou-
tine.

151 Fixed Point overflou or divide-by-zero
An integer expression consisting of constant operands causes a pro-
gram error to occur when it is evaluated.

152 Checking error Will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
error.

This error may occur at an assignment or at a routine call in which

parameters are passed. It indicates that the range of the source
expression (a scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this

error to occur:?

var I: 1..10;
J: 10..20;

I = J;i; (¥target's range: 1..10; source's range: 11..21 ¥%)

Pascal/VS Messages

105

153 LBOUND/HBOUND dimension number is invalid for variable

154 Lo bound of subscript range is too large in magnitude

The indicated array definition has an illegal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET members must lie within 0..255

The ordinal value of any valid set member may not be less than 0 nor
greater than 255.

156 Length fields not applicable to non-~TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non-text file 1/0.

157 STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Routines passed as parameter must be at outermost nesting level

An attempt is being made to pass a routine as a parameter, but the
routine being passed is nested within another. As a Pascal/V$s
restriction, routines being passed as parameters must not be nested
within another routine.

159 | Recursive type reference is semantically incorrect

The compiler detected a degenerate type declaration of one of the
following forms:

. type X = X;
II. type X = ->X;
III. type X = record
Ex
end

160 This SET operation wWill aluways produce the NULL set

Two disjoint sets are being intersected. The result will always be
the null set []J. For example,

var S1: saet of 0..10;
52: set of 11..20;
53: set of 0..20;
53.== S1 % $2; (¥ <== always produces the NULL set)

end

161 ELSE clause Without associated IF statement

162 Must be an UNPACKED array

The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.

163 Must be a PACKED array

The indicated array variable should have been declared as patked,
but was not.

106 Pascal/VS Programmer's Guide

164

Unrecognizable proceduresfunction directive

The indicated identifier was interpreted as a procedure or function

directive but was not recognizable. The following are the only

recognizable directives:
- FORWARD
- EXTERNAL
- FORTRAN
- ENTRY

165

FORTRAN subroutines may not be passed as parameters

Only Pascal/VS routines may be passed as parameters; FORTRAN subrou-
tines may not. :

Ohe way to get around this problem is to define a Pascal/VS proce-
dure which does nothing more than call the FORTRAN subroutine. The
Pascals/VS procedure would then be passed in place of the FORTRAN
subroutine.

166

FORTRAN subroutine parameters may not be passed by value

All formal parameters of a FORTRAN subroutine must be passed by ref-
erence: either by var or by const.

167

FORTRAN functions may return only scalar values

A FORTRAN function may only return values that are scalars (includ-
ing floating point).

led

%INCLUDE member not found in library

The library member which was to be included into the source program
could not be found.

169

Floating point computational error

The indicated floating point expression causes a program error when
evaluated.

170

Data storage exceeds addressability of machine

The memory required to contain all declared variables within a rou-
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.

171

only STATIC/DEF variables may be initialized

The only class of variables which may be initialized at compile time
are def and static variables.

172

Variable's address is not compile-time computable

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173

Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174

Repetition factor applicable to constants only

Within a array structure, only a constant may be qualified with a
repetition factor; a general expression may not.

175

No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

Pascal/VS Messages

107

O

176

This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.

177

Numeric labhels must lie within the range 0..9999.

178

Identifier uWas previously referenced illegally

The indicated identifier that was just declared was referenced pre-
viously within the associated routine. Pascal/VS requires an iden-
tifier to be declared prior to its use.

179

Recursive reference within constant declaration

A constant declaration of one of the following forms was detected:
const X = X;

or
const X = "some expression involving X"

Such recursion within a constant declaration is not permitted.

180

Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali-
fied with a repetition factor. Only array structures are permitted
to have repetition factors.

181

Label previously referenced from a GOTO invalidly
The indicated label was previously referenced in a goto statement
that is not a constituent of the statement sequence in which the
label is defined.
Example
begin
goto LABEL1;
for I := 1 to 10 do
begin
LABEL1: ALI] := 0; (%<==label was previously referenced invalidly¥)
end;
end

182

A GOTO may not reference -a label within a separate stmt sequence

The indicated goto statement references a label which was previously
defined within a statement sequence of which the 90t0 is not a con-
stituent. Such a reference is not permitted.

Example

begin
for I := 1 to 10 do
begin
LABEL1: A[LI] := 0;
end;
goto LABEL1; (¥<==invalid reference of label %)
en

108

Pascal/VS Programmer's Guide

O

183

CASE label outside range of indexing expression

The indicated case label within a case statement has a value which
is outside the range of the indexing expression. For example,

var I: 0..10;
begin
case I%2 of (¥range of index is 0..20)
0: ...
1..20: ...
3g= voo (¥<== this label is out of range of index¥)
en
end

184

Second operand of MOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.

600

Identifier used in type definition at line nnn is out of context: xxxx
The identifier '"xxxx' appeared in a pointer type definition of the
form T'T->xxxx' at line 'nnn', but the identifier was subsequently
declared as something other than a type.
Example:

type X = =->Y;

var Y=.iﬁTEGER; (¥ <=== would cause arror 600 to be generated %)

601

Type identifier referenced at line nnn is undeclared: XxXX

The 1identifier 'xxxx' appeared in a pointer tvpe definition of the
Zorm T->xxxx'" at line "nnn', but the identifier was not subsequently
eclared.

602

Label xxxx was declared ands/or referenced but was not defined

The 1label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603

proceduresfunction xxxx was foruarded hut not resolved

The procedure or function named '"xxxx' was declared with the direc-
zive "FORWARD', but the body of the routine was not subsequently
eclared.

Pascal/VS Messages 109

16.2 INPUT/0UTPUT MESSAGES

<:; No. Message and Explanation

AMPXO001I File could not bhe opened: ddname

An arror occurred when an attempt was made to open the file
whose DDNAME is 'ddname'. The most probable cause of this
error is a missing ddname definition.

AMPX0021 LRECL size too small for file ddname

The logical record length of the file with indicated ddname is
not large enough to contain the data in one file component.

AMPX003I File is not open for output: ddname

An output operation was attempted on a file open for input.

AMPX004I File is not open for input: ddname
An input operation was attempted on a file open for output.

AMPX005I | File has small format V record: ddname

The logical record length of a particular record within a vari-
able record length file was too small to contain the file's
camponent data. /

AMPX0061I Data larger than lrecl for file: ddname

AMPX0071 Invalid options in OPEN for file ddname

) The options string passed to the O0OPEN procedure contains
unrecognizable directives.

AMPX008I | Missing member in file: member library

The indicated member could not be found in the partitioned data
set.

AMPX00GE Floating point overflow/underflou

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

O

110 ‘PascaI/VS Programmer's Guide

16.3 MEMORY MANAGEMENT MESSAGES

No.

Message and Explanation

ANPX050I Operand of RELEASE does not caorrespond to last MARK

The parameter passed to RELEASE did not have the value returned
by the last call to MARK,

AMPXO051I Operand of DISPOSE not allocated with NEW

A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPXO053I Operand of DISPOSE already deallocated

An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

Pascal/VS Messages 111

C

16.4 MATH PACKAGE MESSAGES

No. Message and Explanation

AMPX100I LN: argument <= 0.0.
The natural logarithm function (LN) was called with a 0 or neg-
ative argument.

AMPX101I SQRT: argument < 0.0, zero returned as result
The square root function (SQRT) was called with a negative
argument.

AMPX1021 EXP: argument too large, exceeds 174.67309
The argument of the EXP function is too large; the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

AMPX103I1 RANDOM: seed is out of range.
The function RANDOM was called with an argument which is either
negative or greater than 1048575 (which 1is the allowed
maximum) . '

AMPX104I SIN/C0S: argument too larde exceeds (pis/2)%x50.
A call to SIN or C0S was made with an argument that is too
large for an accurate result to bhe computed.

112 Pascal/VS Programmer's Guide

16.5 MESSAGES FROM PASCALVS EXEC

™ The following messages are given by the ated return codes. (A non-zero return
: PASCALVS EXEC of CMS to indicate the code indicates a terminated compila-

status

of the compiler invocatiaon. tion.)

They are shouwn below with their associ-

RC

Message and Explanation

File name is missing

The exec was invoked without specifying a file name.

Unable to find "fn' PASCAL

The specified file name could not be found.

16

Unable to find the *name' MACLIB

The specified maclib file could not be found.

32

Hore than 8 maclibs specified

The maximum number of MACLIBS that may be specified when invoking
the PASCALVS EXEC is eight.

Pascal/VS Messages 113

. "Command Syntax Notation" on page 117

. "Installation Instructions" on page 119

APPENDIXES

APPENDIXES

115

The syntax notation used to illustrate
TS0 commands is explained in the manual
TS0 Command Lanquage Reference
(GC238-0646) . The notation used to
illustrate CMS commands is explained in
the manual VM/370: CMS Command and Mac—
ro Reference (GC20-1818).

Briefly, the conventions used by both
notations are as follows.

. Items in brackets [1 are optional.
If more than one item appears in
brackets, then no more than one of
them wmay be specified; they are
mutually exclusive.

A.0__ COMMAND SYNTAX NOTATION

Items in capital letters are
kevwords. The command name and
kevwords must be spelled as shoun.

Items in lowercase letters must be
replaced by appropriate names or
values.

Items which are underlined repre-
sent defaults.

The special characters ' () ¥ must
be included where shoun.

Command Syntax Notation 117

This section describes how to install
Pascal/VS under 0S/VS2 and CMS-VM/370
from the distribution tape.

All VS2 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili-
ty program. VS2 sequential data sets
were stored by using the IEBGENER util-
ity program.

The CMS version of the package is
located at file 14 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con-
tain the following data sets.

File 1: INSTALL.CNTL
A sample of the job control lan-

guage (JCL)Y required to instal{

Pascal/VS under 05/VS2 (MVS).

File 2: LOADSRC.CNTL
A sample of the job control lan-
guage (JCL) required to load the
Pascal/VS source from the dis-
tribution tape.

File 3: PASCALVS.CONTENTS
A sequential data set which lists
the contents of the PascalsVvs
package.

File 6 PASCALVS.LINKLIB
A partitioned data set which con-
tains the modules of the
compiler.

File 5: PASCALVS.LOAD
A partitioned data set which con-
tains the Pascal/VS run time
library.

File 6: PASDEBUG.LOAD
A partitioned data set which con-
tains the Pascal/VS debug
library.

File 7: PASCALVS.MACLIB
The standard include library.

File 8: PASCALVS.CLIST

. A partitioned data set contain-
ing two clists: PASCALVS and
PASCMQOD.

File 9: PASCALVS.PROCLIB
A partitioned data set which con-
tains the JCL cataloged proce-
dures for running the compiler as
a batch job under MVS.

File 10: MASTER.MENUS
A partitioned data set which con-
tains SPF menus which will permit
Pascal/VS to be invoked from the
program product SPF.

B.0 INSTALLATION INSTRUCTIONS

File 11: MASTER.PROCS
A partitioned data set which con-
tains the command procedures
necessary to invoke Pascal/V$s
under the program product SPF.

File 12: PASCALVS.MESSAGES
A sequaential data set which con-
tains the compiler messages.

File 13: SAMPLE.PASCAL
A sample Pascal/VS program.

File 14: CHMS dump of the entire
Pascals/vs package:

PASCALVS CONTENTS
A listing of the contents of
the Pascal/VS package.

- PASCALL MODULE
The first pass of the compil-
er.

- PASCALT MODULE
The second pass of the com-
piler.

- PASCALVS TXTLIB
The Pascal/V$S run time
library.

- PASDEBUG TXTLIB
The Pascal/VS debug library.

- PASCALVS MACLIB
The standard
library.

- PASCALVS EXEC
CMS EXEC uwhich invokes the
compiler

- PASCAL1 EXEC
an internal EXEC invoked
from PASCALVS EXEC.

- PASCALZ2 EXEC
an internal EXEC invoked
from PASCALVS EXEC.

- PASCMOD EXEC
CMS EXEC which creates a load
module from a compiled
Pascal/V$S program.

- PASCALVS MESSAGES
List of the compiler mes-
s5ages.

- LOADSRC EXEC
An EXEC which will load the
source of the compiler from
the tape.

SAMPLE PASCAL
A sample program.

File 15: PASCALL.PASCAL

%INCLUDE

Installation Instructions 119

<:: File

File

File

File

File

File

File

File

The source of the first pass of
the compiler.

16: PASCALT.PASCAL
The source of the second pass of
the compiler.

17: PASCALD.PASCAL
The source of the interactive
debugger.

18: PASCALX.PASCAL
The source of the runtime library
routines.

19: PASCALX.ASM
The source of the operating sys-
tem interface routines.

20: MACLIBL.PASCAL .
Include library for first pass of
the compiler.

21: MACLIBT.PASCAL
Include library for second pass
of the compiler.

22: MACLIBD.PASCAL
Include library for
debugger.

23: MACLIBX.PASCAL
Include library for runtime rou-
tines.

interactive

@,
10

800 byte blocks are assumed.

a 3330 disk.

120

Pascal/VS Programmer's Guide

B.l INSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under CMS perform
the following:

1.

2.

Have the distribution tape mounted
at address 181.

Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is done with the CP
LINK command. The mini-disk must
have at least 1210 blocks of free
storagel?.

Access this disk with the ACCESS
command.

Execute the following two
commands: .
TAPE FSF 13

TAPE LOAD % % m

where "m" is the single letter file
mode of the disk that was accessed
in the previous step.

This amount is equivalent to 5 cylinders on

//JOBNAME JOB ,REGION=50K
//STEPL EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=¥%

//SYSUT1 DD DSN=PASCALVS.INSTALL.CNTL,

//SYSIN DD DUMMY

Figure 70.

V4 VOL=SER=TAPEVOL,

/77 UNIT=TAPE, LABEL=(1,NL),

V4 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
4 DISP=0LD

//5YSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
/7 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),

7/ UNIT=3330,VOL=SER=DISKVOL,

7/ SPACE=(TRK,(1,1))

Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER V§2

This section explains how to install
Pascal/VS under an 05/VS2 system.

B.2.1
Tape

Loading Files from Distribution

A sample of the job control language
required to install Pascal/VS under V52
(MVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program
IEBGENER must be used. The JCL shown
in Figure 70 may serve as a wmodel job
to retrieve this file. DD operands
which are high~lighted will require
modification to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL" appears in the DD
card named SYSUTL.

The data set name (DSN=) in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num-
ber for disk storage must be specified
for DD SYSUT2.

Figure 71 on page 122, Figure 72 on
page 123, and Figure 73 on page 124
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

. The name "TAPEVOL" must be replaced
with the volume serial number of
the distribution tape in the DD
g;g;iment named SYSUT1 in job step

The UNIT specification for tapes
has been given the generic name of
"TAPE"; this should be changed to
the appropriate generic at vour
installation.

Tha UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascal/V$s
is to be installed must be speci-
fied where indicated ("DISKVOL'")
in the following DD statements:
in STEP1: SYSUT2
in STEP2: SYSUT2
in STEP3: DS4, DS5, DSs,
Ds7, Ds8, DS9,
DS10, DS11
in STEP4: SYSUT2
in STEP5: SYSUT2

The DD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener-
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at vour installation.

The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If vour dis-
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that ara to be cataloged
should be modified to follow
installation conventions. (The
examples in this manual assume a
high level qualifier of "SYS1".)

Installation Instructions 121

//INSTALL JOB ,REGION=128K

o /7%
(:/ /7% FILE 2 -~ SOURCE INSTALLATION JOB
/7%
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSQUT=%
//5YSUT1 DD DSN=LOADSRC.CNTL,

44 VOL=(,RETAIN,SER=TAPEVOL),

4 UNIT=TAPE, LABEL=(2,NL),

/7 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
7/ DISP=(OLD,PASS)

//5YSUT2 DD DSN=8YS1.LOADSRC.CNTL,DISP=(NEW,CATLG),
4 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
/77 UNIT=3330,VOL=SER=DISKVOL,

7/ SPACE=(3120,(1,1))

//SYSIN DD DUMMY

/7%

/7% FILE 3 -- PASCALVS CONTENTS

7/ %

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=x
//5YSUT1 DD DSN=PASCALVS.CONTENTS,

77 VOL=REF=%.STEP1.SYSUTI,
77 UNIT=TAPE, LABEL=(3,NL),
,7 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120,DEN=3),
77 DISP=(QLD,PASS)
/75YSUT2 DD DSN=8YS1.PASCALVS.CONTENTS,DISP=(NEW,CATLG),
’7 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),
’7 UNIT=3330,VOL=SER=DISKVOL,
’7 SPACE=(3120,(1,1))
//SYSIN DD DUMMY
/7%
/7% FILE ¢ -- PASCALVS.LINKLIB
s7% FILE 5 =-- PASCALVS.LOAD
s7% FILE 6 =-- PASDEBUG.LOAD
- /7% FILE 7 =-- PASCALVS.MACLIB
<~/ /7% FILE 8 =-- PASCALVS.CLIST
/7% FILE 9 =-- PASCALVS.PROCLIB
/7% FILE 10 -- SPF.MASTER.MENUS
/7% FILE 11 -- SPF.MASTER.PROCS
4.3

//5TEP3 EXEC PGM=IEBCOPY
/7/D54% DD DSN=SYS1.PASCALVS.LINKLIB,DISP=(NEW,CATLG),

Vs DCB=(BLKSIZE=13030,RECFM=U,DSORG=PO),
77 UNIT=3330,V0L=SER=DISKVOL,

Vo4 SPACE=(TRK,(70,10,3))

//FILE4 DD DSN=PASCALVS.LINKLIB,

77 VOL=REF=%.STEP1.5YSUTI1,

Vs UNIT=TAPE, LABEL=(4,NL),

77 DCB=BLKSIZE=13030,

7/ DISP=(OLD,PASS)

//DS5 DD DSN=SYS1.PASCALVS.LOAD,DISP=(NEW,CATLG),
77 DCB=(BLKSIZE=13030,RECFM=U,DSORG=P0O),
/7 UNIT=3330,V0L=SER=DISKVOL,

7/ SPACE=(TRK, (14,10,36))

//FILE5 DD DSN=PASCALVS.LOAD,

/7 VOL=REF=%.STEP1.SYSUT1L,

V4 . DCB=BLKSIZE=13030,

V4 UNIT=TAPE, LABEL=(5,NL),

V4 DISP=(0OLD,PASS)

//DS6 DD DSN=5YS1.PASDEBUG.LOAD,DISP=(NEW,CATLG),
77 DCB=(BLKSIZE=13030,RECFM=U,DSORG=PO),
7/ UNIT=3330,V0L=SER=DISKVOL,

7/ SPACE=(TRK, (8,1,7))

Figure 71. Sample installation job: (continued in Figure 72 on page 123)

122 Pascal/VS Programmer's Guide

//FILE6 DD DSN=PASDEBUG.LOAD,

v7 VOL=REF=%.STEP1.SYSUTL,

(:; v/ DCB=BLKSIZE=13030,
77 UNIT=TAPE, LABEL=(6,NL),
,7 DISP=(OLD,PASS)
7/D87 DD DSN=SYSL1.PASCALVS.MACLIB,DISP=(NEW,CATLG),
27 DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO),
v7 UNIT=3330,V0L=SER=DISKVOL,
’7 SPACE=(TRK, (7,2,3))
¢/FILE7 DD DSN=PASCALVS.MACLIB,
77 VOL=REF=%.STEP1.SYSUT1,
77 UNIT=TAPE,LABEL=(7,NL),
77 DCB=BLKSIZE=3120,
v/ DISP=(OLD,PASS)
7/DS8 DD DSN=SYS1.PASCALVS.CLIST,DISP=(NEW,CATLG),
’7 DCB=(BLKSIZE=3120,RECFM=VB, LRECL=255,DSORG=P0),
’7 UNIT=3330,V0L=SER=DISKVOL,
’7 SPACE=(TRK, (4,2,5))
//FILE8 DD DSN=PASCALVS.CLIST,
v/ VOL=REF=%.STEPL.SYSUT1,
Y DCB=BLKSIZE=3120,
,7 UNIT=TAPE,LABEL=(8,NL),
/7 DISP=(OLD,PASS)
/7D59 DD DSN=SYS1.PASCALYS.PROCLIB,DISP=(NEW,CATLG),
/7 DCB=(BLKSIZE=3120,RECFM=FB, LRECL=80,DSORG=P0),
77 -UNIT=3330,V0L=SER=DISKVOL,
/7 SPACE=(TRK, (4,2,2))
//FILE9 DD DSN=PASCALVS.PROCLIB,
’7 VOL=REF=%.STEPL.SYSUT1,
’7 UNIT=TAPE,LABEL=(9,NL),
77 DCB=BLKSIZE=3120,
v/ DISP=(OLD,PASS)
//DS10 DD DSN=SYSL.MASTER.MENUS,DISP=(NEW,CATLG),
/7 DCB=(BLKSIZE=3120,RECFM=VB, LRECL=84,DSORG=P0),
/7 UNIT=3330,VY0L=SER=DISKVOL,
v/ SPACE=(TRK, (13,2,6))
//FILE10 DD DSN=MASTER.MENUS,

, /7 VOL=REF=%.STEP1.SYSUTL,

v/ UNIT=TAPE,LABEL=(10,NL),
v/ DCB=BLKSIZE=3120,
77 DISP=(OLD,PASS)
//DS11 DD DSN=8YS1.MASTER.PROCS,DISP=(NEW,CATLG),
/7 DCB=(BLKSIZE=3120,RECFM=VB, LRECL=84,DSORG=P0),
vz UNIT=3330,V0L=SER=DISKVOL,
’7 SPACE=(TRK,(1,1,2))
//FILE1l DD DSN=MASTER.PROCS,
’7 VOL=REF=%.STEP1.5YSUT1,
77 UNIT=TAPE,LABEL=(11,NL),
77 DCB=BLKSIZE=3120,
’7 DISP=(OLD,PASS)

//SYSPRINT DD SYSOUT=%
/75YSUT3 DD UNIT=SYSDA,SPACE=(TRK, (
//75YSUT4 DD UNIT=SYSDA,SPACE=(TRK,(
//SYSIN DD *

COPY OUTDD=DS4, INDD=FILE4

COPY OUTDD=DS5, INDD=FILES

COPY QUTDD=DS6, INDD=FILE6

COPY 0OUTDD=DS7, INDD=FILE?

COPY 0UTDD=DS8, INDD=FILES8

COPY OUTDD=DS59, INDD=FILES

COPY QUTDD=DS10, INDD=FILELO

COPY QUTDD=DS11,INDD=FILEll
/%

1))
1)

Figure 72. Sample installation job: (continued in Figure 73 on page 124%4)

Installation Instructions 123

/7%

DISP=(0OLD,KEEP)

77/ SPACE=(TRK,(1,1))
//5YSIN DD DUMMY

Sample installation job:
and Figure 72)

Figure 73.

14 FILE 12-- PASCALVS MESSAGES

/7%

//STEP4 EXEC PGM=IEBGENER

//7SYSPRINT DD SYSQUT=x

//5YSUT1 DD DSN=PASCALVS.MESSAGES,

/7 VOL=REF=%,STEP1.SYSUT1,

/7 UNIT=TAPE,LABEL=(12,NL),

77 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120,DEN=3),
77 DISP=(OLD,PASS)

/75YSUT2 DD DSN=8YS1.PASCALVS.MESSAGES,DISP=(NEW,CATLG),
VY DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),

/7 UNIT=3330,V0L=SER=DISKVOL,

/7 SPACE=(TRK,(1,1))

//5YSIN DD DUMMY

/7% ,

/7% FILE 13-~ SAMPLE PASCAL

/7%

//STEP5 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=x

//5YSUTL DD DSN=SAMPLE.PASCAL,

v VOL=REF=%.STEP1.SYSUT1,

/7 UNIT=TAPE,LABEL=(13,NL),

/7 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),

/77

//5YSUT2 DD DSN=SYS1.SAMPLE.PASCAL,DISP=(NEW,CATLG),
/7 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),

/77 UNIT=3330,V0L=SER=DISKVOL,

(continued from Figure 71 on page 122

B.2.2 The TS0 Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.CLIST (file 8 of the dis-
tribution tape).

These CLISTs should be stored in a pub-
lic CLIST library that is accessable to
TS0 users through DDname SYSPROC.

Each CLIST must be modified so that the
correct high level qualifier name is
used to reference the Pascals/V$S data
sets. In PASCALVS, the symbol named
"FIRSTNAME" should be set to the appro-
priate name. In PASCMOD, the symbols
named "LIBRARY" and "DEBUGLIB" should
be set to the names of the Pascal/VSs
run time library and the debug library,
respectively.

B.2.3 Cataloged Procedures

Distributed with the compiler are four
cataloged procedures for invoking the
compiler from a batch 3job: PASCC,
PASCCG, PASCCL, and PASCCLG, These
procedures reside in the partitioned
data set PASCALVS.PROCLIB (file 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure library, so that
the names wWill be recognized when ref-
erenced from a batch job.

Each procedure must be customized to
reflect the data set naming convention
chosen at vyour installation. For a
listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 21.

B.2.%4 SPF Menus and Procedures

If your TS50 installation utilizes the
Structured Programming Facility (SPF)
(program number 5740-XT8), vou may
invoke the Pascal/VS compiler from SPF
by means of the foreground/background
menus.

File 11 on the distribution tape is a
partitioned data set which contains the
SPF menus required to add Pascals/VS to
the list of compilers which may be
invoked in the foreground/background
menu of SPF. Each member in this data
set should be copied into the parti-
tioned data set named!!?

"SPF22.MASTER.MENUS"

11 At some installations this data set may be named "SPF22.MOD1.MENUS™.

124 Pascal/VS Programmer's Guide

The following members of this data set
Wwill be replaced:!2

FORA
JOBA
JOBB

All other members will be new.!3

File 11 of the tape is a partitioned
data set which contains the foreground
and background procedures for invoking
the compiler. Each member of this data
set should be placed in the data set
named?!?

"SPF22.MASTER.PROCS"

The primary option menu of SPF is the
member named APRIOPT in SPF22.-
MASTER.MENUS. This menus should be
modified so that the selection "5,9%
Wwill activate the Pascal/VS foreground
menu, and the selection "4.7" will
activate the Pascals/Vs background
menu. For information on installing
and customizing SPF refer to the manual
TS0 3270 Display Support and Structured
Programming Facility Version 2.2
Installation and Customization
Guide(SH20-2402).

B.3 LOADING THE SOURCE UNDER _CMS

The compiler source is stored on the
distribution tape beginning at file 15;
that is, 14 tape marks from the begin-
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for-
mat. To read such a format under CMS,
the TAPPDS command must be utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per-
form the following:

1. Have the distribution tape mounted
at address 181.

2. Access the disk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 45 free cylinders of 3330 stor-
age,l5

3. Make sure that there is the equiv-
alent of at least 2 free cylinders
of 3330 storage on your "A" disk.

4. Invoke the LOADSRC EXEC as follows:
LOADSRC fm

where "fm" is the single letter
file mode of the disk to whaere the
source files are to be placed. The
EXEC will print out messages as it
processes the tape.

B.% LOADING THE SOURCE UNDER VS2

The compiler source is stored on the
distribution tape beginning at file 15.
It consists of nine tape files stored
in the IEBUPDTE format.

File 2 of the distribution tape con-
tains the JCL which copies the source
files to disk storage. This file is
unloaded when the compiler is installed
and has been given the name
"L OADSRC.CNTL"™.

Prior to submitting the job, it must be
customized as follows:

. In ddname SYSIN of jobstep STEP1,
the volume serial number of the
distribution tape should be placed
where the name TAPEVOL is shoun.

. The UNIT specification for tapes
has been given the generic name
"TAPE"; this should be changed to
the appropriate generic at your
installation.

. The UNIT specification for disk
storage has been specified as
"3330%"; this should be changed to
the appropriate specification at
vour installation.

. The disk volume on which the source
files are to be stored must replace
the name "DISKVOL™ in the DD state-
ment named SYSUT2 in each job step.

. The high level qualifier for the
data set names to be cataloged is
arbitrary. In the supplied JCL,
the name "SOURCE" is used.

. The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the JCL, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other density, then
the DEN operands should be changed
accordingly.

12 As a precautionary measure, we suggest that you rename the members FORA,
JOBA, and JOBB prior to replacing them with the new copy.

13 You should look at the names of each member that we are supplying to make
sure that they do not conflict with any previously existing member.

14 At some installations this data set may be named "SPF22.MOD1.PROCS™.

15 This is roughly 15000 800-byte blocks. Once the source files have been
installed, you may find it desirable to pack them in order to save disk

storage.

Installation Instructions 125

O

//LOADSRC JOB ,REGION=50K

V4

/% FILE 15 -- PASCALL PASCAL - COMPILER SOURCE

/7%

//STEPL EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.PASCALL.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80, BLKSIZE 3120,RECFM=FB),

/7 VOL=SER=D)ISKVOL SPACE= (TRK (132,43, 5))

//S5YSIN DD UNIT=TAPE,VOL=(,RETAIN,SER=TAPEVOL),LABEL=(15,NL),
Vs DISP=(OLD, PASS),

Va4 DCB=(LRECL=80,BLKSIZE=3120.RECFN=FB,DEN=3)
//SYSPRINT DD SYSOQUT=x

V4]

4] FILE 16 -- PASCALT PASCAL - TRANSLATOR SOURCE
124,

//STEP2 EXEC PGM=IEBUPDTE,PARM=NEW
//5YSUT2 DD DSN=SOURCE.PASCALT.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
V4 VOL=SER= JISKVOL SPACE= (TRK (117,39,5))

//SYSIN DD UNIT=TAPE,VOL= REF % ,STEP1.SYSIN,LABEL=(16,NL),
/77 DISP=(0LD,PASS),

7/ DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x

/7%

124, FILE 17 -- PASCALD PASCAL - DEBUG SOURCE

/¥

//STEP3 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.PASCALD.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/77 voL= SER‘)ISKVOL SPACE= (TRK (33,9,5))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN, LABEL—(17,NL),
Vs DISP=(OLD,PASS),

4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=%

V24, FILE 18 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE

//STEP4 EXEC PGM=IEBUPDTE,PARM=NEW
//75YSUT2 DD DSN=SOURCE.PASCALX.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
V4 VOL=SER=DISKVOL,SPACE=(TRK,(69,24,5))

//S5YSIN DD UNIT=TAPE,VOL=REF=%,STEP1.SYSIN,LABEL=(18,NL),
// DISP=(0LD,PASS),

' DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=%
/7%

/7% FILE 19 -- PASCALX ASM - RUN TIME ENVIRONMENT SOURCE
/%

//STEP5 EXEC PGM=IEBUPDTE,PARM=NEW

/75YSUT2 DD DSN=SOURCE.PASCALX.ASM,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL,SPACE=(TRK,(16,1,4))

//SYSIN DD UNIT=TAPE,VOL=REF=%,STEPL1.SYSIN,LABEL=(19,HNL),
24 DISP=(0LD,PASS),

Vs DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=¥%

Figure 74, Listing of the JCL to copy source files from tape: this job
stored as file 2 of the distribution tape. (continued
Figure 75 on page 127).

is
in

126 Pascal/VS Programmer's Guide

24

/7% FILE 20 -- MACLIBL PASCAL - Z%INCLUDE LIBRARY FOR COMPILER
/7%

//STEP6 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.MACLIBL.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

/7 VOL=SER=DISKVOL,SPACE=(TRK,(21,7,4))

/7/SYSIN DD UNIT-TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(20,NL),

77/ DISP=(0LD,PASS),

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=%

/7%

/7% FILE 21 -- MACLIBT PASCAL - Z%ZINCLUDE LIBRARY FOR TRANSLATOR

//STEP7 EXEC PGM=IEBUPDTE,PARM=NEW
//5YSUT2 DD DSN=SOURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),

24 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL,SPACE=(TRK,(19,7,4))

/775YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(21,NL),
/7 DISP=(OLD,PASS),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

/7%

4. FILE 22 -~ MACLIBD PASCAL - X%ZINCLUDE LIBRARY FOR DEBUG
7/ %

//STEP8 EXEC PGM=IEBUPDTE,PARM=NEW

/7/5YSUT2 DD DSN=SOURCE.MACLIBD.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/77 VOL=SER=DISKVOL,SPACE=(TRK,(2,1,1))

//75YSIN DD UNIT=TAPE,VOL=REF=%,STEP1.SYSIN,LABEL=(22,8L),
/7 DISP=(0LD,PASS),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//75YSPRINT DD SYSOUT=%

/% .
/% FILE 23 ~- MACLIBX PASCAL - Z%XINCLUDE/MACRO LIBRARY FOR RUN TIME
144, ENVIRONMENT

/%

//STEP9 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.MACLIBX.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL,SPACE=(TRK,(9,1,2))

//S5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(23,NL),
/7 DISP=0LD,

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=¥%

Figure 75. Listing of the JCL to copy source files from tape: (continued
from Figure 74)

Installation Instructions 127

A

access methods 39

BPAM 39
QSAM 39
arrays

storage mapping of 70 .
assembler routines, linking to 83-88
calling Pascal/VS main program

from 88
calling Pascal/VS routines from 86
general interface 84-85
minimum interface 83
receiving parameters 86
assembly listing 37
automatic variables
storage mapping of 69

batch
See 0S5 batch
BLKSIZE 39, 47
block size attribute
See BLKSIZE
BPAM 39

CALL
command of TS0 16
cataloged procedures
PASCC 22
PASCCG 23
PASCCL 24
PASCCLG 26
CHECK compiler option 29
as it applies to
CASE statements. 29
function routines 29
pointers 29
subranges 29
subscripts 29
checking errors at run time 51
CLOSE procedure 46
closing a file 46
CMS 3-7
building load module 6
compiling under 3-5
defining files under 7
invoking load module 7
73-81

20, 21

code generation
See also DSA,
FCB,
linkage conventions
parameter passing,
PCWA,
register usage,
routine format,
routine invocation

command syntax 117

- compilation

under CMS 3-5

under 05 batch
under TS0 9-11
compiler diagnostics
under CMS ¢
under TS0 11
compiler listings
assembly
See assembly listing
cross-reference
See cross—-referance listing
ESD
See ESD table
source
See source listing
compiler messages
See messages, compiler
compiler options 29-31
See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option
CONSOLE option
of PASCALVS CLIST 10
of PASCALVS EXEC 3
COUNT option
of executable program
cross—-referaence listing

19-28

33-38

7, 16
35-36

D

data set attributes 39
See also LRECL, RECFM, BLKSIZE
data set definitions
See file definitions
DCB attributes
See data set attributes
DDname
OPEN specification 47
DDname association 39
DEBUG compiler option 30
Debug facility 53-68
commands 53-64%
break 54
clear 54
CMS 55
display 55
display breaks 56
display equates 56
equate 57

go 57

help 538
listvars 58
qualify 59
quit 59

reset 60

set attr 60

set count 61

set trace 61

trace 62

view memory 63

view variable 62

walk 64
qualification 53

DEBUG option

of executable program 7, 16
of PASCMOD CLIST 13

of PASCMOD EXEC 6

debugging a program

interactive debugger
See Debug facility
traceback facility 49

DEF variables

storage mapping of 69

default

DIS

BLKSIZE 39

LRECL 39

RECFM 39

K option

of PASCALVS EXEC 3

DSA (dynamic storage area) 74
dump :

symbolic variable 51

dynamic storage area

See DSA

dynamic variables

storage mapping of 69

E

end-of-file condition

for record file 45
for TEXT file 42

end-of-line condition 41

enu

EOF function

EOL
EPI

merated scalar

storage mapping of 70
42, 45

N function 41

LOG assembler macro 84

ESD table 38
executing a program

under 0S batch 19-28

external symbol dictionary

FCB
fil

fil

fil

See ESD table

80
e control block
See FCB
e definitions_
under CMS 7
under 0S5 batch 27
under 750 15
es
storage mapping of 71

function invocation

130

See routine invocation

Pascal/VS Programmer's Guide

G

GET procedure
record files 45
TEXT files 41
GOSTMT compiler option 30
GS compiler option
See GOSTMT compiler option

I/0 facilities
See input/output facilities
%INCLUDE facility
under CMS 4
under 0S batch 27
under TS50 11
input/output facilities
implementation 39
record files
See record files
TEXT files
See TEXT files
input/output messages
See messages, input/output
installation instructions 119-127
compiler source
under CMS 125
under V52 125
for CMS 120
for 0S/VS2 121-125
cataloged procedures 124
CLIST customizing 124
loading compiler 121-124
SPF menus and procedures 124
INTERACTIVE
OPEN specification 47
INTERACTIVE procedure
TEXT files 40

39-48

JCL 19
job control language 19

LIB option
of PASCALVS CLIST 10
of PASCMOD CLIST 13
linkage conventions 73
LIST compiler option 30
listing
See compiler listings
load module
creating under CMS 6
creating under 750 12
invoking under CMS 7
invoking under TS0 16
logical record length
See LRECL
LRECL 39, 47

c

M

MARGINS compiler option 30
math package messages
See messages, math package
memory management messages
See messages, memory management
messages 95-113
compiler 95-109
input/output 110
math package 112
memory management 111
PASCALVS exec 113
MVS batch
See 0S5 batch

N

NAME option

of PASCMOD EXEC 6
NOCHECK compiler option 29
NODEBUG compiler option 30
NOGOSTMT compiler option 30
NOGS compiler option

See NOGOSTMT compiler option
NOLIB option

of PASCALVS CLIST 10
NOLIST compiler option 30
non-TEXT files

See record files

opening

See opening a record file

NOOBJ option

of PASCALVS EXEC ¢4
NOOBJECT option

of PASCALYS CLIST 10
NOOPT compiler option

See NOOPTIMIZE compiler option
NOOPTIMIZE compiler option 30
NOPRINT option

of PASCALVS CLIST 1¢

of PASCALVS EXEC 3
NOS compiler option _

See NOSOURCE compiler option
NOSEQ compiler option

See NOSEQUENCE compiler option
NOSEQUENCE compiler option 30
NOSOURCE compiler option 30
NOWARNING compiler option 31
NOX compiler option

See NOXREF compiler option
NOXREF compiler option 31

0

OBJECT option
of PASCALVS CLIST 9
of PASCMOD CLIST 13
OPEN procedure 46
opening a record file 45
RESET 45
REWRITE 45
opening a TEXT file 40
INTERACTIVE 40
RESET 40
REWRITE 40
OPT compiler option

See OPTIMIZE compiler option
OPTIMIZE compiler option 30
05 batch 19-28
cataloged procedures 19
compiling under 19
executing under 19

PAGE procedure 41
parameter passing 76-77
by value 76
function results 77
read-only reference (CONST) 76
read/urite reference (VAR) 76
routine parameters 77
Pascal communication work area
See PCUWA
Pascal, standard
extensions 91
modified features 91
restrictions over 91
PASCALVS
CLIST of TSO 9
exec messages
See messages, PASCALVS exec
exec of CMS 3-4
PASCC cataloged procedure 22, 24
PASCCG cataloged procedure 23
PASCCL cataloged procedure 2%
PASCCLG cataloged procedure 26
PASCMOD
CLIST of TSO 12, 13
EXEC of CMS 6
PCWA 78
PDS access
under CMS 48
PRINT option
of PASCALVS CLIST 10
of PASCALVS EXEC 3
procedure invocation
See routine invocation
PROLOG assembler macro 8
PUT procedure
record files 45
TEXT files 40

Q

QSAM 39

R

READ procedure
for record file 45
for TEXT file 42
integer data 42
length qualifier 42
real data 42
strings 43
READLN procedure 43
RECFM 39, 47
record fields
storage mapping of 69
record files 644-46
closing 46

Index 131

opening
See opening a record file

record format

~ See RECFM

. records

storage mapping of 70
register usage 73
RESET

OPEN specification 47
RESET procedure

record files 45

TEXT files 40
REWRITE

OPEN specification 47
REWRITE procedure

record files 45

TEXT files 40
routine format 78
routine invocation 75
run time libraries

under CMS 6
run time options 7
runtime environment 89-90

main program 89

memory management 89

program initialization 89

S compiler option

See SOURCE compiler option
SEQ compiler option

See SEQUENCE compiler option
SEQUENCE compiler option 30

- sets
‘ storage mapping of 71
SOURCE compiler option 30
source listing 33-34
compilation statistics 34
error summary 34
nesting information 34
option list 34
page header 33
statement numbering 34
spaces
storage mapping of 71
SPF
installing Pascal/VS procedures and
menus 124
standard Pascal
See Pascal
static variables
storage mapping of 69
storage mapping 69-71
arrays 70
automatic storage 69
boundary alignment 69-71
data size 69-71
DEF storage 69
dynamic storage 69
enumerated scalar 70
files 71

132 Pascal/VS Programmer's Guide

predefined types 69

record fields 69

records 70

sets 71

spaces 71

‘static storage 69

subrange scalar 70
subrange scalar

storage mapping of 70
symbolic variable dump 51
syntax notation 117
SYSLIB 24, 27
SYSLMOD 24
SYSPRINT DDname 21
SYSPRINT option

of PASCALVS CLIST 10
SYSPUNCH DDname 21

T

TEXT files 39-4%

closing 46

opening

See opening a TEXT file

traceback facility 49-51
750 9-17

building load module 12

compiling under 9-11

defining files under 15

invoking load module 16

v

variable dump 51
VS2 batch
See 0S5 batch

W

W compiler option

See WARNING compiler option
WARNING compiler option - 31
WRITE procedure

for record file 46

for TEXT file 44
WRITELN procedure 44

X

X compiler option
See XREF compiler option
XREF compilér option 31

