Program
Offering

SH20-6162-2

Pascal/VS
Programmer’s Guide

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in VS1, MVS
and VM/CMS. Originally designed as a high level
programming language to teach computer programming
by Professor Nicklaus Wirth (circa 1968), Pascal has

.emerged as an influential and well accepted user

language in today’s data processing environment. Pascal
provides the user with the ability to produce very
reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently ANSI and ISO
(Level 0) standard (with minor deviations) and includes
many important extensions. The language extensions
include: separate compilation, dynamic character strings
and extended [/O capabilities. The implementation
features include: fast compilation, optimization and a
symbolic terminal oriented debugger that allows the
user to debug a program quickly and efficiently.

This manual is a guide to the use of the computer in the
VS1, MVS and VM/CMS operating environments.

PROGRAM SERVICES

During a specified number of months immediately following initial availability of each licensed program, the
customer may submit documentation to the designated IBM location below when he/she encounters a problem
which his/her diagnosis indicates is caused by a defect in the licensed program. During this period only, IBM,
through the program sponsor(s), will, without additional charge, respond to an error in the current unaltered
release of the licensed program by issuing known error correction information to the customer reporting the
problem and/or issuing corrected or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected. Any onsite program services or
assistance may be provided at a charge.

WARRANTY

THE LICENSED PROGRAM DESCRIBED IN THIS MANUAL IS DISTRIBUTED ON AN “AS IS”
BASIS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Ave.
P.O. Box 50020
San Jose, CA 95150
Attn: Luis Tan
IBM Tieline: 8/543-4392
Telephone: (408) 463-4392

Note: Non-US customers should contact their designated support group in their country.

Information concerning Program Services for this Program Offering
can be found in Availability Notice G320-6387.

Third Edition (February 1985)

References in this publication to IBM products, programs, or services do not imply that
[BM intends to make these available outside the United States.

A form for readers’ comments has been provided at the back of this publication. 1f
this form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation, 1980, 1981, and 1985.

C

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat-
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

o Pascal/VS lLanguage Reference Manual, order number SH20-6168. This manual
describes the Pascal/VS language.

U IBM Virtual Machine Facilitys/370: CMS Command and Macro Reference, order num-
ber GC20-1818. This manual describes the commands of the Conversational Moni-
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage.

U IBM Virtual Machine Facilitys/370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facilitys370.

° IBM Virtual Machine/Personal Computer User's Guide, order number SC264-52564.
This manual describes describes the VM/PC operating system which runs on the
IBM Personal Computer XT/370.

U 05/VS2 TS50 Command lLanguage Reference Manhual, ordaer number GC28-0646. This
manual describes the commands of the Time Sharing Option of 05/VS2.

° 0s/VS2 JCL, order number GC28-0692. This is a referenca manual for tha job
control language of 0S/VS2.

° 0S/VS Linkage Editor and Lloader, order number GC26-3813. This manual
describes how to use the 05/VS2 linkage editor and loader.

U Time Sharing Option Display Support and Structured Programming Facility Ver-
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu-
al is required to install the Pascal/VS SPF menus and procedures.

U 05/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu-
al describes the various data set access methods utilized by 05/V52 and the 0§
simulation of CMS - VM/370.

Preface iii

iv Pascal/VS Programmer's Guide

SUMMARY OF AMENDMENTS

RELEASE 2.2

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.2.

. The interactive debugger now supports 32 breakpoints.
. Two new predefined constants have been added to the compiler: MINREAL and
MAXREAL.

U The LANGLVL(STDRES) compiler option has been added to allow the user to use
the non-standard Pascal/VS reserved words as identifiers.

. A new predefined function, ADDR, accepts a variable name and returns the
location of that variable in storage.

° Structured array constants may now be passed as the source arrays to PACK and
UNPACK.

RELEASE 2.1

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.1.

U A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

° Two new options may be appliaed to files when they are opened: UCASE and NOCC.

U Rules have been relaxed in passing fields of packed records by var to a rou-
tine.

. The "STACK"™ and "HEAP"™ run time options have been added to control the amount
by which the stack and heap are extended when an overflow occurs.

U The syntax of a "structured constant" which contains non-simple constituents
has been simplified.

RELEASE 2.0
The following is a list of the functional changes that were made to Pascals/VS for
Release 2.0.

° Pascal/VS now supports single precision floating point (32 bit) as well as
double precision floating point (64 bit).

U Files may be opened for updating with the UPDATE procedure.
. Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT)

so that I/0 may take place directly to the user's terminal without going
through the DDNAME interface.

. The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen-
trant.

. The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

. A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

Summary of Amendments v

U A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

o The maximum size of a string has been increased to 32767 characters. J
o The Pascal/VS compiler is now fully reentrant.
o Code produced from the compiler will be reentrant if static storage is not
modified.
° Pascal/V$S programs may contain source lines up to 100 characters in length.
o Files may be accessed based on relative record number (random access).
o Run time errors may be intercepted by the user's program.
o Run time diagnostics have been improved.

. Pascal/VS will flag extensions when the option "LANGLVL(STD)" is used.

. A mechanism has been provided so that Pascal/V5 routines may be called from
other languages.

U All record formats acceptable to Q5AM are now supported by the Pascals/VsS 1/0

facilities.

. A procedure or function may now be exited by means of the goto statement.

U You may now declare an array variable where each element of the array is a
file.

. You may define a file to be a field of a record structure.

. Files may now be allocated in the heap (as a dynamic variable) and accessed

via a pointer.

U You may now defina a subrange of INTEGER which is allocated to 3 bytes of stor-

age. ' Control over signed or unsigned values is determined by the subrange. >
. Variables may be declared in the outermost scope of a SEGMENT. These vari-

ables are defined to overlay the variables in the outermost scope of the main

program.

U The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

. The PDSOUT procedure opens a member of a library file (partitioned dataset)
for output.

. A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

° The CPAGE percent (%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

. The MAXLENGTH function returns the maximum length that a string variable can
assume.

U] The %“CHECK TRUNCATE option enables (or disables) the checking for truncation
of strings.

U The PASCALVS exec for invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

. New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and

LANGLVL.
. The catalogued procedures for invoking Pascal/VS in 0S5 Batch have been simpli-
fied.
o The format of the output listing has been modified so that longer sourca lines
may be accomodated. ’

vi Pascal/VS Programmer's Guide

Multiple debugger commands may be entered on a single line by using a semico-
lon (;) as a separator.

Tha format of the Pascal File Control Block has been modified.

Support is now provided for ANSI and machine control characters on output
files.

Execution of a Pascal/VS program will terminate aftar a user determined number
of non-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are
baing exited.

The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

The Equate command of the debugger has been enhanced.

The debugger wWill print "uninitialized" when displaying a variable that has
not been assigned.

New run time options are provided: SETMEM, ERRCOUNT, and ERRFILE.

Summary of Amendments vii

viili Pascal/V¥5 Programmer's Guide

NN =t h b b et et ot et et et et et
e o o o o s s e s @

N

(VR 7]
.

EaP S A (M (N (M N
s e« s @ « e e

Nd N LUV LULN SPD
. e o s e e « e e e e 2 8 e

TABLE OF CONTENTS

0 Introduction .« e e . e e s e s s s s s s e = & = s e s s = @ 1
1 Invoking the Compiler under CMS PASCALVS EXEC 1
2 Building a Load Module under CMS: PASCMOD EXEC 1
3 Invoking the Load Module under CMS . 2
%4 Invoking the Compiler under TS0: PASCALVS CLIST 2
5 Building a Load Module under TS0: PASCMOD CLIST . . 4
6 Invoking the Load Module under TS0: The CALL command 5
7 Interactive Debugger . e e e e e e e e e 5
8 Compiler Options 6
9 Run Time Options 6
.10 Cataloged Procedures 7
.11 Sample Batch Job 7
0 Running a Program under CMS e o o & e s o o o o o 8 e o o o o e o o s 9
1 How to Compile a Program e e e e e 9
2.1.1 1Invoking the Compiler 9
2.1.2 The PASCALVS Command 9
2.1.3 The %INCLUDE Maclibs 10
2.1.4 Passing Compiler Options 10
2.1.5 The Compiler Listing 10
2.1.6 Compiler Diagnostics 10
2.1.7 Sample Compilation 11
.2 How to Build a Load Module 12
2.2.1 Module Generation Options 12
2.2.2 Run time Libraries 12
.3 How to Define Files . 13
.4 How to Invoke the Load Module 13
0 Running a Program under TSO e o o s s o s o s e s e s s e s o &« e« « . 15
.1 How to compile a program . e . 15
3J.1.1 1Invoking the Compiler . 15
3J.1.2 Using the %INCLUDE Fac111ty 17
3.1.3 Compiler Diagnostics 17
2 How to Build a Load Module 18
3 How to Define Files . . 20
4 Invoking the Load Module 20
5 Sample TS0 Session . 21
0 Running a Program under 0S Batch e o o s e e o e o o e e e e e e« . . 23
1 Job Control Language . . 23
2 How to Compile and Execute a Program 23
3 Cataloged Procedures 26
%4 IBM Supplied Cataloged Procedures 24
4.4.1 Compile Only (PASCC) . 25
%.4.2 Compile, Load, and Execute (PASCCG) 26
%.4.3 Compile and Link Edit (PASCCL) . 27
%.4.4 Compile, Link Edit, and Execute (PASCCLG) 28
.5 How to Access an %INCLUDE L1brary . 29
6 How to Access Data Sets 29
7 Example of a Batch Job 30
0 Compiler Options = 4 |
1 CHECK/NOCHECK . 31
2 DEBUG/NODEBUG 32
3 GOSTMT/NOGOSTMT 32
4 LANGLVLCQ) . 32
5 LINECOUNT(n) 32
6 LIST/NOLIST 32
.7 MARGINS(m,n) 33
.8 OPTIMIZE/NOOPTIMIZE 33
.9 PAGEWIDTH(n) 33
.10 PXREF/NOPXREF 34
11 SEQU(m,n)/NOSEQ 34
12 SOURCE/NOSOURCE 34
13 WARNING/NOWARNING 34
14 XREF/NOXREF 34
0 Run Time Options e o o o s o s o e o e s s e s e s s s s s s e« e« . . 35
0 How to Read Pascals/vs Listings e v
1 Source Listings e e e . 37

Table of Contents ix

000000000000 00O NN~

0o 00 00

MU O -—u—-oooo-—-—-woooooo-—-oooooooooooooo-—-oooo-aoooo-u-ooo\lmu:aumo-o VTR GN NN SIS N NN

= OV VVO0 o

[-X-¥-1

Pagae Haeadars

Nesting Informatlon
Statement ‘Numbering . .
Page Cross Referance Fleld
Error Summary

Option List .
Compilation Stat1st1c5
Cross reference Listing
Assembly Listing

External Symbol chtlonary
Instruction Statistics

bt b b b b b b
\IO\UIJ-\UND—'

Using InputsQutput Fac111t1es . o .

I/0 Implementation . e e .

DDNAME Association

Data Set DCB Attr1butes

Text Files .

Record Files

Opening a Fila for Input - RESET

Opening a File for Interactive Input

Opening a file for output - REWRITE

Terminal Input/Qutput .

0 Opening a File for UPDATE

1 Procedure GET . . e .

.11.1 GET operation on text files

.11.2 GET operation on record files
PUT procedure

N

.12.1 PUT Operation on Text Files
.12.2 PUT Operation on Record Files
3 Text File Processing e e e e .
.13.1 Text File READ ..
13.2 The READLN Procedure
13.3 Text File WRITE .
.13.4 The WRITELN Procedure
.13.5 The PAGE Procedure
.13.6 End of Line Condition e e e e .
.13.7 End of File Condition - text filas
% Record File Processing e e e e e .
.14.1 Record File READ
.14.2 Record File WRITE e e e e e e
.14.3 End of File Condition - Record Filas
5 Closing a File .. e e e e e e e
6 Relative Record Access
7 Partitioned Data Sets
.17.1 Opening a Part1tloned Data Set
.17.2 PDS Accaess in a CMS Environment
8 The Open Options e e e . .
9 Appending to a Fila
Runtime Error Reporting e e s e e e e
Reading a Pascal/VS Traca Back .
Run Time Checking Errors
Execution Error Handling
User Handling of Execution Errors
Symbolic Variable Dump
.0 Pascalsvs Interactive Debugger .« e e e
.1 Qualification . e e e e
.2 Commands .
10.2.1 BREAK Command
10.2.2 CLEAR Command
10.2.3 CMS Command
10.2.4 DISPLAY Command
10.2.5 DISPLAY BREAKS Command
10.2.6 DISPLAY EQUATES Command
10.2.7 END Command . .
10.2.8 EQUATE Command
10.2.9 GO Command
10.2.10 Help Command
10.2.11 LISTVARS Command .
10.2.12 Qualification Command
10.2.13 QUIT Command
10.2.14 RESET Command .
10.2.15 SET ATTR Command
10.2.16 SET COUNT Command

Pascal/VS Programmer's Guide

sNNSNNNSNSNNNNN NN
AU UNHADUUWNNDFHFFFPOOOY

[e =
[] =)
[e S S S T T)

UMD HEHND-O R = NN O W

= s s b s
NN

13

13.5

14.0
14.1
14.2
14.3
14 .4
14.5
14.6
14.7
14.8
14.9

15.0
15.1
15.2
15.3

16.0
l16.1

oo OOV

2.17 SET TRACE Command

2.18 TRACE Command .

2.19 Viewing Variables

2.20 Viewing Memory
2.21 WALK Command

Debug Terminal Session

Storage Mapping e e e s e e e s e e e e e e e e e e e e e e e e
Automatic Storage e e e .

Internal Static Storage

DEF Storage . e

Dynamic Storage e
RECORD Fields e e e e e e e e e e e e e e e e e .
Data Size and Boundary Al1gnment .

The Predefined Types
Enumerated Scalar
Subrange Scalar
RECORDs

ARRAYs

FILEs

SETs

SPACEs

NN DUWN -

Code Generation for the IBM/370 e s & s s s s e s s s s 8 s 8 = .
Linkage Conventions e e e
Register Usage .

Dynamic Storage Area

Routine Invocation

Parameter Passing

Passing by Read/Nr1te Reference

Passing by Read-0Only Reference

Passing by Value

Passing Procedure or Funct1on Parameters
Function Results

Procedure/Funct1on Format

PCWA .

PCB - Pascal f1le Control Block

UIUIUIUIUI
UIJ-\UNH

Inter Language Communication e o e e e e e e e e e e e e e e e e
Linking to Assembler Routines e e e e e e e e e
Writing Assembler Routine with Minimum Interface
2 Writing Assembler Routine with General Interface
3 Receiving Parameters From Routines .
4 Calling Pascal/VS Routine from Assembler Rout1ne
5 Sample Assembler Routine .
.6 Calling a Pascals/VS Main Program from Assembler Rout1ne
ascal/VS and FORTRAN
1 Pascal/VS as the Caller to FORTRAN
2 FORTRAN as the Caller to Pascal/V$s
as .
1
2
Pas
1
2
a

P

Pascals/VS and COBOL .

. Pascal/VS as the Caller to COBOL

. COBOL as the Caller to Pascal/V$s
scal/VS and PL/I .

. Pascal/VS as the Caller to PL/I

PL/I as the Caller to Pascal/V$s

Data Types Comparison

Runtime Environment Overview e e e e e s e e e e e e e e e e e e .
Program Initialization ...

The Main Program .

Execution Support Rout1nes

Input/0utput Routines

Error Handling .

Conversion Rout1nes

Mathematical Routines

String Routines .

Memory Management Rout1nes

Comparison to Pascal c s s s s e s s e e s s e e e e e e e e e e
Pascal/VS Restrictions

Modified Features

New Features

Implementation SpeCIfications e s e e e e e s s e e e e e e e e
System Description e e e

Table of Contents

76
77
77
78
79
80

89
89
89
89
89
89
89
89
90
90
90
90
91
91
92

93
93
93
94
96
97
97
97
97
98
98
99
100
103

105
106
106
107
109
109
109
111
114
114
115
116
116
117
118
118
119
120

123
123
123
123
124
125
125
126
126
127

129
129
129
129

131
131

16.2
16.3

17.0
17.1
17.2
17.3
17.4

Memory Requirements
Implementation Restrlctlons and DependenCIes

Pascals/vs Messages e s s s s & o s s e o s & o o
Pascal/VS Compiler Messages

Execution Tima Messages

Messages from DEBUG

Messages from PASCALVS exec

APPENDIXES e s e s e s s s s e s s & s s s e s e s e e

Appendix A. Command Syntax Notation e e e e v e e e e s

Appendix B. Installation Instructions e e e e e s e e s
B. . .

.1.

.2
.2.
2.

J-\UCUCUCUNWD-

ppen

ppen

B
B
A
c
C
c
c
c
A
D.
D
D
D
D
D
D
D
D
I

CONTUV PN T VDWW —T

ndex

xii

Installing Pascal/VS under CMS

1 Regenerating Compiler Modules
Installing Pascals/VS under VS2 e e .
.1 Loading Files from Distribution Tape
2 The TS0 Clists c e e e e e e
3 Cataloged Procedures

Loading the Source under CMS

Loading the Source under VS2

dix ¢. Additional Library Procedures and Functions
CMS Procedure e e e e e e e
ITOHS Function

LPAD Procedure

RPAD Procedure

PICTURE Function

dix D. VM/PC Pascals/vs User's Guide e e e e e e e
Introducing VM/PC for Pascal/V$ e e e e e e
Licensing Considerations

Using VM/PC .

Methods of U51ng PascaI/VS Under VM/PC .
Downloading the Pascals/VS compiler into VM/PC
Accessing the Pascal/VS compiler on the host

Invoking Pascal/VS Under VM/PC

VM/PC Processing Restrictions on PascaI/VS

Pascal/VS Programming Tips e e e e

Pascal/VS Programmer's Guide

131
131

133
133
154
161
163

165
167

169
170
170
171
171
174
174
174
175

179
180
180
181
181
182

185
185
185
186
187
187
189
189
190
190

191

LIST OF ILLUSTRATIONS

Figure 1. The PASCALVS command of CMS 9
Figure 2. Sample compilation under CMS R B
Figure 3. The PASCMOD command . 2
Figure 4. Examples of CMS file def1n1t1on commands B .
Figure 5. PASCALVS CLIST syntax . T
Figure 6. The TS0 PASCMOD CLIST descr1pt1on . e e e e e e e ... 18
Figure 7. Examples of TS0 data set allocation commands e e e e e e« . . 20
Figure 8. The TS0 CALL command to invoke a load module 4
Figure 9. Sample TS0 session of a compile, link—-edit, and execution ... 21
Figure 10. Sample JCL to run a Pascal/VS program e e e e e e e e e e e e, 23
Figure 11. Cataloged procedure PASCC .o e e e e e e e e e e e e e e .. 25
Figure 12. Cataloged procedure PASCCG e
Figure 13. Cataloged procedure PASCCL . e e w27
Figure 14. Sample JCL to perform multiple comp11e5 and a llnk Edlt e« . . 28
Figure 15. Cataloged procedure PASCCLG . e e e e e e e e e e e e e .. 28
Figure 16. Example of a batch job . 1
Figurae 17. Differences between 0OPT and NOOPT . .
Figure 18. Sample source listing . .
Figure 19. Sample cross-reference llstlng e e e e e e e e e e e e e e ..o 80
Figure 20. Sample assembly listing T 4
Figure 21. Sample ESD table e e e e e e e e e e e e e e e e e e . 83
Figure 22. Using RESET on a text flle e e e e e e e e e e e e e e e . .. 86
Figura 23. Opening a file for interactive input Y
Figure 24. Opening a text file with REWRITE Y
Figure 25. Opening a record file with REWRITE e e e e e e e e e e e e . 87
Figure 26. Terminal input/output example ¥
Figure 27. Updating a record file e e e e e e e e e e e e e e e e e e . . 468
Figure 28. Using GET on a text file e e e e e e e e e e e e e e e e e . . 88
Figure 29. Using GET on record files e e e e e e e e e e e e e e e e e e . a8
Figure 30. Using PUT on a text file e e e e e e e e e e e e e e e e e . 89
Figure 31. Using PUT on record files . e e e e e e e e e e e e e e e . 89
Figure 32. Using READ with length quallflers - B |
Figure 33. Using READ on text files . - B
Figure 34. Using the procedure READLN O 4
Figure 35. Using WRITE on text files . 14
Figure 36. Using the WRITELN procedure D I
Figure 37. Using the PAGE procedure -
Figure 38. Using the EOLN function . B
Figure 39. Using the EOF function on a text f11e - 1
Figure 40. Using READ and WRITE on record files - 1
Figure 41. Example of using CLOSE . e e e « + +« « . 55
Figure 42. Example of using SEEK to access records randomly e« « o+« o« . . b6
Figure 43. Syntax of open options - Y
Figure 44. Using the open options . - 1 |
Figure 45. Trace called by a user program T Y4
Figure 46. Trace call due to program error T Y4
Figure 47. Trace call due to checking error - Y4
Figure 48. Trace call due to 170 error - Y4
Figure 49. Contents of 'XINCLUDE ONERROR®' D 1
Figure 50. Example of User Error Hand11ng e e e e e e e e e e e e e .. . 65
Figure 51. Sample program for Debug session . .+« . . . 80
Figure 52. Compiling, linking and executing a program w1th DEBUG e . . . 81
Figure 53. The HELP command of DEBUG . T b
Figure 54. Setting Breakpoints and Statement Nalklng B - ¥4
Figure 55. The LISTVARS command - List all variables D - 4
Figure 56. The Trace Mode of DEBUG . . e e e e e e e e e ... 83
Figure 57. Walking when the Trace Mode 15 On - 1
Figure 58. Miscellaneous DEBUG Commands -
Figure 59. Commands to Display a Variable .+« . . 85
Figure 60. Using Multiple commands on one Llne and other commands 86
Figure 61. The Reset Breakpoint Command - X4
Figure 62. Statement Count1ng Summary e . Y
Figure 63. Storage mapping for predef1ned types e e e e e e e e e e e .. 89
Figure 64. Storage mapping of subrange scalars e 1
Figure 65. Alignment of records e 1)
Figure 66. Storage mapping of SETS T
Figure 67. Register usage . e
Figura 68. DSA format e . 99
Figura 69. DSA DSECT . . . 95
Figure 70. Snapshot of stack and relevant reg15ters at start of rout1ne . 96
Figure 71. Passing by Read/Write reference e

List of Illustrations Xiii

Figurae
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figura
Figure
Figure
Figure

Xiv

72.
73.
74.
75.

77.
78.
79.
80.
81.
82.
83.
84,
85.
86.
87.
88.
39.
90.
91.
92.
93.
94,
95.
96 .
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.

Passing by Read-only reference

Passing by value

Passing -routine parameters

Function results

Routine format

Pascal Commun1cat10ns Hork Area .
Pascal file Control Block (PCB) format
Inter Language Communication

Minimum interface to an Assembler rout1ne
PROLOG/EPILOG macros

interface to an Assembler routlne
Pascal/VS description of Assembler routine
Sample Assembler routine

General

Exampla
Example
Example
Example
Example
Example
Example
Exampla
Example
Example

of
of
of
of
of
of
of
of
of
of

calling a Pascal/VS program from an Assembler rout1ne
Assembler as the caller to Pascal/VS$S

Pascals/VS as the caller to Assembler

Pascal/VS as the caller to FORTRAN

FORTRAN as the caller to Pascal/Vs

Pascals/VS as the caller to COBOL

COBOL as the caller to Pascal/V$s

Pascal/VS as the caller to PL/I

PL/I as the caller to Pascal/V$s

PL/I as the caller to Pascal/V$s

Data Type Comparisons
Characteristics of System/370 float1ng p01nt ar1thmet1c
Sample JCL to retrieve first file of distribution tape

Sample

installation job

Sample installation job

Sample installation job

Listing of the JCL to copy 5ource f1les from tape

Listing of the JCL to copy source files from tape

Examplaes of using the PICTURE function .

CMS Command Summary

Pascal’/VS Modules Needed for Download1ng

CMS Commands to Download Pascal/VS From a Local Se5510n
CMS Commands to Access Pascal/VS From a Local Sassion as a

Pascal/VS Programmer's Guide

97

97

98

98

99
100
103
105
106
107
108
110
110
111
112
113
114
115
116
117
118
119
120
121
132
171
172
173
174
176
177
183
186
188
188
189

1.0 INTRODUCTIO

The Pascal/VS compiler is a processing program which translates Pascal/VS source
programs, diagnosing errors as it does so, into IBM System/370 machine
instructions.

The compiler may be executed under the following operating system environments:

. 057370 Batch (VS1 and VS2 R3.7)

° Time Sharing Option (TS0) of 05/VS2

. Conversational Monitor System (CMS) of Virtual Machine Facilitys/370 (VM/370)
Release 5 PLC 2 and later.

1.1 INVOKING THE COMPILER UNDER CMS: PASCALVS EXEC

PRINT] [LIB(maclibs)l

PASCALVS fn [ft [fml1] |[([options]l |NOPRINT [CONSOLE] [)1
DISK [NOOBJ1

fn is the file nama of the source program.

ft é:Ltne file tvpe of the source program; the assumed file type is "PAS-

fm is the file mode of the source program.

maclibs are optional macro libraries required by the ¥INCLUDE facility. Up to
eight libraries may be specified.

options are compiler options.

PRINT specifies that the listing is to be spooled to the virtual printer.

NOPRINT specifies that the listing is to be suppressed.

DISK specifies that the listing is to be stored as a file named "fn
LISTING." This is the default.

CONSOLE specifies that the console messages produced by the compiler are ba

stored as a file named "fn CONSOLE." If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

NOOBJ suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCMOD EXEC

PASCMOD main [names... 1 [(options... [)11]
main is the name of the main program module.
names... are the names of segment modulaes and text libraries (TXTLIB's) which

are to be included.

options... is a list of options.

Introduction 1

The resulting load module will be given the name "main MODULE A." The load map of
tha module will be stored in "main MAP A."

The following are recognized as options to the PASCMOD command.

DEBUG links the debugging routines into the load module so that the interac-
tive debhugger can be used.

NAME name specifies an alternate name for the load modulae. The resulting load
module and map will have the name "name MODULE A" and "name MAP A."

1.3 INVOKING THE LOAD MODULE UNDER CMS

A Pascals/VS load module is invoked as follows:
modname [rtparms.../1 [parms...1

where "modname” is the name of the load module; "rtparms" are run time options
(separated by blanks); and "parms" are the paramaters (if any) being passed.

1.4 INVOKING THE COMPILER UNDER TSO: PASCALVS CLIST

CLIST NAME OPERANDS

PASCALVS data-sat-name
Icompiler-options-listl

[OBJECT (dsnhame)]
NOOBJECT

PRINT (%)
PRINT (dsname)
SYSPRINT(sysout-class)

NOPRINT

[CONSOLE(%) -]
CONSOLE(dsname)

[LIB(dsname-list)]
NOLIB

data-set-name is the name of the primary input data set.
compiler-options-list is one or more compilar options separated by blanks

OBJECT(dsname) specifies the data set to contain the object modula.

NOOBJECT specifies that no object module is to be produced.
PRINT (%) specifiaes that the compiler listing is to ba displayed on the ter-
minal.

PRINT(dsname) specifies the data set to contain the compiler listing.

SYSPRINT(sysout-class) specifiaes the sysout class to where the compiler listing is
to be produced.

NOPRINT suppraesses the compiler listing.
CONSOLE (%) specifies that compiler messages are to be displaved on the termi-
nal.

CONSOLE(dsname) specifies the data set to contain compilaer messages.

2 Pascal’/VS Programmer's Guide

LIB(*dsname-118t’) spacifiaes & list of XINCLUDE librarias.

‘ NCLIEBE spaci fies that no ¥INCLUDE libraries ara raquired.

= . - - Introduction

1.5 BUILDING A LOAD MODULE UNDER TSO: PASCMOD CLIST

CLIST NAME OPERANDS
PASCMOD data-set-name or x

[OBJECT('dsname~-list"')l

[DEBUG]

[LOAD(dsname)]
PRINT(3)
PRINT (dsname)] LET] [XCAL]
NOPRINT NOLET NOXCAL

[LIB('dsname-list")]l [FORTLIBI [COBLIBI
MAP NCAL LIST

[NOMAP] [NONCAL] [NOLIST]
XREF REUS REFR

[NOXREF] [NOREUS] [NOREFR]
SCTR OVLY RENT

[NOSCTR] [NOOVLY] [NORENT]
NE oL DC

[NONE] [NOOL] [NODC]
TEST NOTERM

[NOTEST] [TERM]

[SIZE('integerl integer2')l]

[DCBS(blocksize)l

[AClauthorization-code)]l

data-set-name is the data set containing a Pascal/VS object module and/or link-

age editor control cards.

OBJECT('dsname~list') specifies a list of data sets which contain additional
object modules to be included in the link-edit.

LIB('dsname-list') specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti-
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TS50 Command Language Reference Manual.

4 Pascal/VS Programmer's Guide

1.6 INVOKING THE LOAD MOQDULE UNDER TSO: THE CALL COMMAND

CALL dsnamel {(member)]l ['"loptions/] [parmsl® 1

dsname{member) specifies the name of a partitioned data set and the member where

the load module to be invoked is stored.

options is one or more run time options separated by either a comma or a
blank.
parms a parameter string which is to be passed to the program.

The total length of the quoted string (options plus parms) must not exceed 100

characters.

1.7 INTERACTIVE DEBUGGER

In ordar to use Debug, you must follow these four steps:

[Compile the module to be debugged with thae DEBUG option.

[When link-editing your program, include the debug library.

° When executing the load module, specify 'DEBUG' as a run time option.

command name

Description (Abbreviation in capital letters)

?

svariable

Break

CLEAR

Cms

Display

Display Breaks
Display Equates

END
Equate
Go
Listvars

Qual

QUIT
Reset

Set Attr
Set Count
Set Trace
Trace
Walk

List all debug commands

Display the value of a variable

Set a break point

Remove all break points

Enter CMS subset mode

Display status

Display the location of all break points

Display all equate symbols with their current
definitions

Terminatae the program (same as QUIT)

Define an equate symbol

Begin or resume execution of probram

List the values of all variables that are local
to the active routinae

Redefine the "current"™ qualification

Terminate the program (same as END)

Remove a break point

Display attributes when variables are viawed

Initiate/terminate statement counting

Activate/deactive program tracing

Display a trace back

Execute a single statement and then prompt for
anothar command

Introduction

1.8 COMPILER OPTIONS

compiler Option Abhreviated Name Default
CHECK/NOCHECK —-——- CHECK
DEBUG/NODEBUG -—- NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LANGLVL(STANDARD/ STD LANGLVL(EXTENDED)

STDRES/ -——-

EXTENDED) EXT
LINECOUNT(n) LC(n) LINECOUNT(60)
LIST/NOLIST -—- NOLIST
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTH(128)
PXREF/NOPXREF -——- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/NOW WARNING
XREF/NOXREF X/NOX XREF(SHORT)

1.9 RUN TIME OPTIONS

The following options enable features

which your program will be executing.

in the Pascal/VS run time environment

COUNT generates a statement count table and writes it to OUTPUT.
DEBUG activates the interactive debugger.

SETMEM initializes local storage of a routine to a specific value on each invoca-
tion of the routine.

NOSPIE suppresses the interception of program exceptions.
NOCHECK causes all checking errors to be ignored.
ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT = number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program. The default number is 20.

MAINT Includes system run time routines in any error trace backs.

STACK = numher specifies the number of kilobytes by which the run time stack is to
be extended when a stack overflow occurs.

HEAP = numbher specifies the number of kilobytes by which the heap is to be extended
when a heap overflow occurs.

6 Pascal/VS Programmer's Guide

1.10 CATALOGED PROCEDURES

PASCC Compila only —- stap nama:

PASC

PASCCG Compile, load and exacuta -- stap namas: PASC, GO

PASCCL Compila and link-adit -- step nama: PASC, LKED

PASCCLG Compila, link-edit, and exaecuta —-

stap names: PASC, LKED, GO

Data set description

stepname.ddname

source program input

ZINCLUDE library (PDS)

source listing,
cross-reference listing,
pseudo assembly listing and
external symbol table listing

object module

load module

linkage-editor control cards

linkage-editor load library

loader input

loadar library

file OQUTPUT

PASC.SYSIN?
PASC.SYSLIB

PASC.SYSPRINT

PASC.SYSLIN
LKED.SYSLMOD
LKED.SYSIN?
LKED.SYSLIB
GO.SYSLIN
GO.SYSLIB
GO.OUTPUT

explicitly defined.

This DDnama is not defaulted and must be

1.1 SAMP ATCH JOB

/7jobname JOB

/7/STEPL EXEC PASCCLG,OPTIONS="XREF(LONG),LIST'

/7/7PASC.SYSIN DD

{Program to ba compiled goas hare}

7%

7/LKED.SYSIN DD X
ENTRY PASCALVS

7%

7/G0.INPUT DD...

Introduction

7

8

Pascal/VS Programmer's Guide

This saction applies only to those who
are using Pascal/VS under tha Conversa-
tional Monitor System (CMS) of Virtual
Machine Facilitys370 (VM/370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota-
tion used to describe commands, see
"Appendix A. Command Syntax Notation"
on pagea 167.

There are four steps to running a Pas-
cals/VS program under CMS.

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object modulae;

3. All files used within the program
are defined using the FILEDEF com-
mand;

4. The load module is invoked.

DISK
PASCALVS fn [ft [fm]l 1 |([options...] |PRINT] [CONSOLE] [NOODOBJ1 I[]1
NOPRINT
[LIB(maclibs...)]
Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1.1 1Invoking the compiler

The standard method of invoking the
Pascal/VS compiler under CMS is by
means of an EXEC called PASCALVS.

To compile a PascalsVS program, the
EXEC may be invoked in its simplest
form by tha command

PASCALVS fn

where "fn" is the file name of the pro-
gram. If the file type is not explic-
itly specified, the type "PASCAL"™ will
be assumed.

The compiler translates a source pro-
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its file type is "TEXT."

For example, to compile a program which
resides in a file called "SORT PASCAL,"
the command would be:

PASCALVS SORT
If the compilation completes without

errors, then the file named "“SORT TEXT"
Will contain the resulting object code.

2.1.2 The PASCALVS Command

The generalized form of the PASCALVS
command is 1illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the file name, file type, and
fila mode of the source program.
The file type and file mode are
optional. The default file type is
"PASCAL" and the default file mode
is II*.“

maclibs...
are optional macro libraries
required by the %ZINCLUDE facility.
Up to eight may be specified.

options...
are compiler options, see "Compil-
er Options™ on page 31.

The command options DISP, PRINT, and
NOPRINT specify where the compiler
listing is to be placed.

DISK
specifies that the listing is to be
stored as a file on your A disk.

Running a Program under CMS 9

The file is named "fn LISTING,"
where "fn" is the file name of the
source program. This option is the
default.

PRINT
specifies that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing is to be
suppressed. This option automati-
cally forces the following three
compiler options to become active:

- ROSOURCE
- NOXREF
- NOLIST

CONSOLE

specifies that the console mes-
sages produced by the compiler are
be stored as a file on your A disk.
The name assigned to the file is
"fn CONSOLE." If CONSOLE is not
specified, then the messages will
be displayed on your terminal con-
sole.

NOOBJ
suppresses the production of an
object module by disabling the code
generation phase of the compiler.
This option is useful when you are
using the compiler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes pro-
duced from the EXEC, see "Messages from
PASCALVS exec” on page 163.

2.1.3 The %INCLUDE Maclibs

The macro libraries (maclibs) that may
be specified when invoking the PASCALVS
command are those required by the %IN-
CLUDE facility. When the compiler
encounters an %XINCLUDE statement with-
in your program it will search the
maclibs (in the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, i1t will
continue reading in the previous input
stream (immediately following the %IN-
CLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic-
itly provided as the last maclib in the
search order.

10 Pascals/VS Programmer's Guide

2.1.4 Passing Compiler Options

Compile time options (see "Compiler
Options" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular

feature is to be active. A list of
compiler options may be specified in
the PASCALVS parameter list. The

options list must be preceded by a left
parenthesis "(."

For 1instance, to compile the program
"TEST PASCAL" with the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST (DEBUG NOXREF

2.1.5 The compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings" on page 37.

2.1.6 compiler Diagnostics

Any compiler-detected errors in your
program will be displayed on your ter-
minal console {(or written to a disk
file if the CONSOLE options is speci-
fied). The errors will also be indi-
cated on your source listing at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com-
piler is displayed on your console.
Immediately underneath the printed
line a dollar symbol ('$') is placed at
each location where an error was detec-
ted. This symbol serves as a pointer
to the approximate location where the
error occurred within the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-—
tic message is produced for each error
number,

For a synopsis of the compiler-~gener-
ated messages see "Pascals/VS Compiler
Messages" on page 133.

2.1.7 Sample Compilatien

edit copy pascal
NEW FILE:
program copy;
var
infile,
outfile
buffar
begin
raset(infile);
rawritefloutfilael;
while not eof(infile) do
begin
readln{infile,bufferl;
writeln(outfile buffaer)
end;
end.

text;
string(l000);

EDIT:

file

FILE SAVED

R} T7=0.25s/0.62 06:56: %%

pascalvs copy

INVOKING PASCAL/VS R2.0

WRITELNI(OUTFILE BUFFER)

s oy o eeectad

SOURCE LINES: 163 COMPILE TIME:

RETURN CODE: 8
R(00008); T-0.34s/0.67 06:56:59

Figure 2. Sample compilation under CMS

0.16 SECONDS;

COMPILE RATE: 6109 LPM

Running a Program under CM5

11

2.2 HOW TO BUILD A _LOAD MODULE

PASCMOD

main [names ... 1 [(options... [)11

Figure 3. The PASCMOD command:

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consists of 3just one source
module (that is, you have no segment
modules), a load module can be genera-
ted by simply invoking PASCMOD with the
name of the program. For exampla, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCMOD SORT
The resulting module would be called
"SORT MODULE." A load map is stored in
"SORT MAP."

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the main program
module.

names...
are the names of segment modules
and text libraries (TXTLIB's)
which are to be included. If a
name "n" is specified and there are
two files named N TEXT and n

TXTLIB, then the TEXT file will be
included and the TXTLIB will be
searched.

options...
is a list of options. {see "Module
Generation Options.")

The resulting load module will be given
the name "main MODULE A." The load map
of the module will be stored in "main
MAP A."

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"™; PASCMOD implic-
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

generates a Pascal/V$S load module.

As an example, let us build a load mod-
ule for a prae-compiled program which
resides in three source modules: MAIN,
ASEG, and BSEG. This program calls
routines that reside in a txtlib called
UTILITY. The following command would
generate a load module called MAIN MOD-
ULE:

PASCHMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
spacifies that the debugging rou-
tines are to be linked into the
load module so that the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger”
on page 67.)

NAME name
specifies an alternate name for the
load module. The resulting load
module and map will have the name
"name MODULE A" and "name MAP A."

2.2.2 Run time Libraries

Routines which make up the Pascal/V$S
runtime environment reside in a text
library called "PASCALVS TXTLIB."™ It
must be present in order to resolve the
linkages from the program being pre-
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIB." (see "Pascals/VS Interactivae
Debugger” on page 67 for a description
of Debug).

2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA

FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA

FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4%

FILEDEF QUTPUT TERMINAL (RECFM F LRECL 8¢

FILEDEF INPUT TERMINAL (RECFM ¥V LRECL 80

Figure 4. Examples of CMS file definition commands
Before vou invoke the generated load exampla above and for INPUT and OUTPUT
module, yvou must first define the files could be as shown in Figure &,

that vour program requires. This is

done with the FILEDEF command,

The first parameter of the FILEDEF com-
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and QUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFILE :

TEXT;
file of
INTEGER;

If a particular file is to be opened
for input, attributes such as LRECL,
BLKSIZE, and RECFM are obtained from
the (presumably) already existing
file. Note: A file that is being
defined to the terminal requires yvou to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
Wwill be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes™
on page 45,

The FILEDEF commands required for each
of the three file variables in the

2.% HOW TO INVOXE THE LOAD MODULE

After the module has been created and
the files defined, vyou are ready to
execute the program. This is done hy
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms...]

where "modname" is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascals/V¥S environment from those that
vour program will read (via the PARMS
function), the runtime parameter list
must be terminated with a slash "/."
The program parameters, if any, must
follow the "/ .M

modname [rtparms...s]1 [parms...]
For a description of the run time

options see "Run Time Options" on page
35.

Running a Program under CMS 13

rogrammar's Guida

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option (T7S0) of
0s/7vse2. If wou are not using TS0 to
run the compiler, vou may skip this
section.

Refer to "Appendix A. Command Svntax
Notation" on page 167 for a description
of the syntax notation used to describe
commands.

There are four steps to running a Pas-
cal/VS program.

3.1 HOW TO COMPILE A PROGRAM

3.0 RUNNING A PROGRAM UNDER TSO

l. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro-
gram are allocated;

4. The load module is invoked.

CLIST NAME

OPERANDS

PASCALVS

!

data-set-name

[compiler-options-listl

OBJECT (dshame)

NOOBJECT

PRINT(X)

PRINT (dsname)
SYSPRINT(sysout-class)
NOPRINT j

CONSOLE(x%)
CONSOLE(dsnhama)

LIB(dsname-1list)
NOLIEB

Figure 5. PASCALVYS CLIST syntax

3.1.1 Invoking the Compiler

The Pascal/VS compiler is invoked under
TS0 by means of a CLIST. A sample
CLIST named PASCALVS is provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set which contains the
source program to be compiled.
This can be either a fully quali-
fied name (enclosed in single
quotation marks) or a simple name
(to wWhich the user identifica-

tion will be prefixed and the
qualifier "PASCAL™ will be suf-
fixed). This must be the first
operand specified.

compiler-options-list
specifies one or more compiler
options. See "Compiler Options™
on page 31.

OBJECT (dsname)
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parenthesas. This can be
either a fully qualified name

Egnning a Program under TS50 15

{enclosed within triple quota-
tion marks '''., . ')l or @A
simple name (to which the iden-
tification qualifier will be
prefixed and the qualifier "“0BJ"
suffixed).

NOOBJECT
specifies that no object module
is to be produced. The compilar
Will diagnose errors only.

If neither DBJ nor NODBJ is spec-
ified then object module pro-
duced by the compiler will be
Wwritten to a default data set.
If the data set specified in the
first operand contains a
descriptive qualifier of
"PASCAL," the CLIST will “orm a
data set name for the cbject mod-
ule by replacing the descriptor
qualifier of the input data set
with "0BJ." If the descriptive
qualifier is not "PASCAL," then
you WiIll be prompted for the
object module data set name.

If the first operand of PASCALVS
specifies the member of a parti-
tioned data set, then the name of

the associated object module
will be ganerated as just
described. If the object module
data set 1s a partitioned data

set, then the object module will
becoma a member within the PDS
and will have the same name as
the member name of the input data
set.

As an example, given that the
user identification is ABC, the
following commands will produce
object modules with the name
shown.

PASCALVS SORT
object module: 'ABC.SORT.OBJ

PASCALVS ‘DEF.PDS.PASCAL(MAIN)
object module:
'DEF.PDS.DBJ(MAINY?

PASCALVS "ABC.PRDG.PAS'
usaer prompted for object
module name

PRINT(%)
specifies that the compilar
listing is toc be displayed on the
terminal; no other copy will be
available.

PRINT [dsnama)
speci fias that tha compiler
listing is to be written on the

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
vrr 11132 ok 8 simple name (to
which the identification qual-
ifier wWwill be prefixad and the
qualifier "LIST" suffixed).

SYSPRINT(sysout-class]
specifies that the compiler
listing is to be written to the
sysout class named in parenthe-
ses.

NOPRINT
specifias that the compiler
listing i5 not to be produced.
This operand activates the fol-
lowing compiler options:
NOSOURCE, NOXREF, NOLIST

CONSOLE([%)
specifies that the compiler gen-
erated messages are to be dis-
plaved on the terminal console.
This is the default.

CONSOLE(dsnama)

specifies that the compiler gen-
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
Wwithin +triple dgquotation marks
1YL '""") or B simple name (to
which the identification qual-
ifier Will be prefixed and the
qualifier "CONSOLE" suffixed}.

LiB(dsnane-list]
specifies that the %INCLUDE
facility is being utilized,

Within tha parentheses is a list
of the namas of one or more par-
titioned data sets that ara to be
searched for members to be
included within the input
stream.

If the list contains mora than
one nama, the entire list must be
enclosed within quotes. Any ful-
ly qualified name within the
quoted list must be enclosed in

double quotes ''...'",
Sea "Using the %INCLUDE
Facility" on page 17.

NOLIB
specifies that no %XINCLUDE
libraries ure required. This is

the default.

Triple quotes are requirad because tha CLIST processor removas the ocuter

quotes within a keyword sub-operand list.

Triple quotes are required because the CLIST processor removes the outar

quotes within a kevword sub-operand list.

16 PascalsV¥sS Programmer's Guide

J

Example 1

Operation: Invoke the Pascal/VS com-
piler to process a
Pascal/VS program

Known: User-identification is ABC

Data set containing the pro-
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINT(A)

Example 2

Operation: Invoke the Pascal/V$% com-
piler to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro-
oram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST,

The long version of the cross
reference listing is pre-—
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS TABC.TEST . PASCAL' +
XREF(LONG),PRINT{TESTLIST?

3.1.2 Using the XINCLUDE Facility

If the %ZINCLUDE facility is used within
the source program,; then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standarg include library supplied
by IBM is called?

"SYS1.PASCALVS .MACLIB"

This library must be specified in the
LIB list if wvour program contains an
%INCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an %IN-
CLUDE statement within the source pro-
gram, it will search the partitioned

3 The high-level
installation,

qualifier name

(5Y51) may be

data set(s) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compileaer. After
the compiler has read the entire
member, it will continue reading from
the previous input stream immediately
following the “INCLUDE statement.

Example 1

Operation: Invoke the Pascals/VS com-

piler to process a
Pascal/VS program which
utilizes the ZINCLUDE
facility.

Known: User-identification is P123

Data set containing the pro-
gram is named

*P123.MAIN.PASCAL®

The source to be included is
stored in tWwe partitioned
data sets by the names of

"P123.PASLIB!
*SYS1.PASCALVS.MACLIB".

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIB('PASLIB,+
'*'SYS1.PASCALVS.MACLIB''')

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
displayed on vyour terminal. If the
CONSOLE(dsname) operand appears on the
PASCALVS commend, then the diagnostics
will be stored in a data set. The
errors Will also be indicated on your
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list-
ing.

When an error is detected, the source
line that was being scanned by the com-
piler is printed on your terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$") is placed at each location
whare an error was detected. This sym-
bol serves as a pointer to indicate the
approximate locatien where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number.

different at vour

Running a Program under TSO 17

[For a synopsis of the compiler genera-
ted messages see "Pascal/VS Compiler

Messages" on page 133.

3.2 HOM TO BUILD A LOAD MODULE
CLIST NAME OPERANDS
PASCMOD data-set-name or %

[OBJECT('dsname~1ist")]

IDEBUG]

[LOAD(dsname)]
PRINT(%)
PRINT(dsname) [LET] [XCA]

NOLET QchL

[LIEB("dsname-1list")] [FORTLIBI] [COBLIBI
HAP NCAL LIST

[XR] [REUS] [REFR]
NOXREF HOREUS NOREFR

[SCTR] [OovVLY] [RENT]
NOSCTR NOQVLY NORENT
NE oL pC

[NONE] [NooL 1 [RODC]
TEST NOTERM

tSIZE('integerl integer2*)l

[DCBS (hlocksize)]

[AC(authorization-code)l

Figure §. The TS0 PASCMOD CLIST description

To generate a load module from a
Pascal/VS object module, you may use
either the TS0 LINK command or a CLIST
named "PASCMOD"™ (Figure 6). The CLIST
performs the same function as tha LINK
command except that it will automati-
cally include the Pascal/VS runtime
library in generating the load module.
Also, if the debugger is to be
utilizad, the CLIST will includae the
Pascal/V¥S debug library. (A complete
description of the LINKK command is con-
tainad inM the ESU mman Lan
Reference Manual.

Every Pascal/V5S object module contains
raferancas to tha runtima support rou-
tines. These routines arae stored in a
library callaed*

"S5YS1.PASCALVS.LOAD"

4 The high-leval qualifiar namae
installation.

18 PascalsV$s Progra@mar':_gyide

This library must be linked into a Pas~
cals/V5 object module in order to
resolve all external references prop-
erly. If the PASCMOD CLIST is used,
this library is included
automatically.

If tha interactive debugger is to be
utilized, then tha library containing
the debug environment must be included
in the linking. The name of this
library is*

"5YS]1.PASDEBUG. LOAD"

This library must appaear ahead of tha
runtime library in search order. If
the PASCMOD CLIST is used, this library
Wwill ba included if tha option DEBUG is
specified.

(5YS1) may ba different at your

9

If more than one object module is being
linked together, then an entry point
should be apecified by means of a link-
age editor control card. The name of
the entry point for any Pascal/VS pro-
gram is PASCALVS.

data-set-name

specifies the name of a data seat
containing a Pascal/VS object mod-
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
namas should appear in the OBJECT
sub-parametaer list.

You may substitute an asterisk (%)
for the data set name to indicate
that you will enter control state-
ments from your terminal. The sys-
tem will prompt you to enter the

control statements. A null line
indicates the end of your control
statements.

OBJECT('dsname-list")
specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the 1list
must be enclosed in single quotas;
fully qualified names within the
list must be enclosed in double
quotes (''...'"),

LIB('dsname-list')

specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
being processed, that is, to
resolve external references. The
name of the Pascal/Vs runtime
library is implicitly appended to
the end of this list; you need not
specify it.

Because of CLIST restrictions, the
list must be enclosed in single

quotes; fully qualified names
within the list must be enclosed in
double quotes (''...'").

DEBUG

All
are
the
ISO

specifies that the Pascal/V$s
interactive debugger is to be uti-
lized on the resultant load modula.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

other operands of the PASCMOD CLIST
identical to their counterparts in
LINK command as described in the

Command Language Reference Manual.

Example

Operation: Create a load module from

a compiled Pascal/VS pro-
gram consisting of three
object modules.

Known: User-identification is ABC.

Data sets containing the
three object modules:

ABC.SORT.0BJ
ABC.SEG1.0BJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the system replies are
highlighted.)

pascmod ¥ load(progs(sort)) +

object('sort,segl,seg2')

ENTER CONTROL CARDS

entry pascalvs

READY

Running a Program under TS50 19

3.3 HOW TO DEFINE FILES

ALLOC DDNAME(SYSPRINT) SYSOUT(A)

Figure 7.

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAME(INPUT.DATA) SHR

ALLOC DDNAME(OUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(100) BLOCK(31290)
ALLOC DDNAME(OUTPUT) DSNAME(%) USING(F80)
ALLOC DDNAMECINPUT) DSNAME(*) USING(F80)

Examples of TSD data set allocation commands

Before vyou invoke the generated load
module, yvou must first define the files
that your program requires. This is
done with the ALLOC command.

The ddname to be associated with a par-—
ticular file variable in your program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT TEXT;
OUTPUTFILE file of
INTEGER;

3.4 INVOKING THE LOAD MODULE

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
Wwill be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 45.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

CALL dsnamel (member)] ['loptionss] Iparmsl' 1

Figure 8.

After the module has been created and
the files defined, you are ready to
execute the program. This is done by
the CALL command (see Figure 8). The
operands of the CALL command are as
follows.

dsname (member)
specifies the name of a partitioned
data set and the member where the

load module +to be invoked is
stored. If the member name 1is
omitted, then the member
"TEMPNAME" will be the load module
invoked.

dsname may be either a simple name
(to which the user identification
is prefixed and the qualifier

20 Pascal/VS Programmer's Guide

The TS0 CALL command to invoke a load module

" OAD" is suffixed), or a fully
qualified name in quotes.

options
specifies one or more run time
options separated by either a comma
or a blank. (See "Run Time Options"
on page 35.).

parms
specifies a parameter string which
is to be passed to the program.
The parameter string is retrieved
from wWithin the program by the
PARMS function.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

3.5 SAMPLE TS0 SESSION

READY

pascalvs lander sysprint(a) list
INVOKING PASCAL/VS RZ2.1
NO COMPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME:
READY

pascmod lander load(programs(lander))
READY

alloc ddnama(input) dsnama(X)
READY

alloc ddname(output) daname(X)
READY

call programs(lander) "parms go here?'

0.19 SECONDS;s

COMPILE RATE: 15032

Figure 9. Sample TS0 session of a compila, link-adit, and execution
Figure 9 is an example of a TS0 session the terminal are in lower case; those
which compiles an already existing produced by the system are in upper
source module, link edits it, and exe- case and high-1ighted.
cutes it., The commands entered from
| Running a Program under TS0 21

22 Pascal/VS Programmaer's Guide

This section describes how to compile
and execute Pascal/V$S programs in an 05
Batch environment. If you are not
using the compiler under 05 Batch then
you may skip this section.

4.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operating system; it
allows vyou to describe the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

U JOB statement, which
the start of the job.

identifies

%.2 HOW TO COMPILE AND EXECUTE A PROGRAM

4.0 RUNNING A PROGRAM UNDER 0S BATCH

° EXEC statement, which identifies a
job step and, in particular, speci-
fies the program to be executed,
either directly or by means of a

cataloged procedure (described
subsequently).

U DD (data definition) statement,
which defines the input/output

facilities required by the program
executed in the job step.

. /7% (delimiter) statement, which
separates data in the input stream
from the 3Jjob control statements
that follow this data.

A full description of job control lan-
guage 1is given in the publication

0S,V¥S2 JCL (GC28-0692).

/7/7EXAMPLE JOB
/7/STEP1 EXEC PASCCG, PARM='LIST'
/7/PASC.SYSIN DD X
program EXAMPLECINPUT,OQOUTPUT);
var
A, B: REAL;
begin
RESET(INPUT);
whila not EOF(INPUT) do
begin
READLNC(A,B);

WRITELN(' SUM = ',A+B);
WRITELN(C®' PRODUCT = ',A%B);
end
end.
/7%
/7/7G0.INPUT DD x
3.0 6.0

3.14159 1.414
1.0E-10 2.0E-10
-10.0 102.0
/%

Figure 10.

Sample JCL to run a Pascal/VS program

The job control statements shown in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
thae standard files INPUT and OUTPUT.
For a more generalized dascription of
input/output refer to "How to Access
Data Sets™ on page 29 and "Using
Input/0Output Facilities"™ on page 45.

Any options to be passed to the compil-
er are placed within the PARM string of
thae EXEC statement.

In the sample JCL, "EXAMPLE" is the
name of the job. The job name identi-
fies the job within the operating sys-
tem; it is essential. The parameters
required in the JOB statement depend on
the conventions established for vour
installation.

The EXEC statement invokes the IBM sup-
plied cataloged procedure named
PASCCG. When +the operating system
encounters this name, it replaces the

Running a Program under 0S5 Batch 23

EXEC statemant with a set of JCL state-
ments that have been written previously
and cataloged in a system library. The

cataloged procedure contains two
steps:
PASC invokes the Pascal/VS compiler

to produce an object module.

GO invockes the LOADER to process
the object module by loading it
into memory and including the
appropriate runtime library

routines. The resulting exe-
cutable program is immediately
executed.

The DD statement named "“PASC.SYSIN"
indicates that the program to be proc-
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or device on
which it expects to find the program.

The delimiter statement /% indicates
the end of the data.

The DD statement named "GO.INPUT"™ indi-
cates that the data to be processed by
the program (in procedure step G0) fol-
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of 3job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure comprises one or
more job steps (though it is not a job,
because it must not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state-
ment instead of the name of a program.

Several IBM-supplied cataloged proce-
dures are available for use with the
Pascals/VS compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre-
quently used sets of job control state-
ments. If the statements in a
cataloged procedure do not match your
requirements exactly, vyou can easily
modify them or add new statements for
the duration of a job.

It is recommended that each installa-
tion review these procedures and modify
them to ocbtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal’/VS Programmar's Guide

6. IBM SUPPL c OGE CEDUR

The standard cataloged procedures sup-
plied for use with the Pascal/VS com-
piler are:

PASCC Compile only
PASCCG Compile, load-and-exacute
PASCCL Compile and link edit

PASCCLG Compile, 1link edit, and exe-
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set is
SYSIN; the procedure step name which
reads the input data set is PASC. For
example, the JCL statements that you
might use to compile, link edit, and
fxecute a Pascal/VS program is as fol-
OWS ¢

//JOBNAME JOB
//STEP1 EXEC PASCCLG
/7/PASC.SYSIN DD x

(insert Pascai/VS program here
to be compiled)

/%

The listings and diagnostics produced
by the compiler are directed to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce-
dure routes DDname SYSPRINT to the out-
put class where the system messages are
produced (SYSOUT=x).

The object module produced from a com-
pilation is normally placed in a tempo-
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSLIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"T123.SORT.PASCAL"™

and to store the resulting object mod-
ule in a data set named

"T123.SO0RT.0BJ"™
the following JCL might be employed:

//JOBNAME JOB

//7STEP1 EXEC PASCC

//PASC.SYSIN DD DSN=T123.SORT.PASCAL,
7/ DISP=SHR
//PASC.SYSLIN DD DSN=T123.SORT.O0BJ,

7/ UNIT=TSOPACK,

77 DISP=(NEW,CATLG)

J

C

4.4.1 compi

le Only (PASCC)

/7/PASCC PROC SYSOUT='%',INCLLIB='SYS1.PASCALVS.MACLIB'

/7%

Vs, INVOKE PASCAL/VS COMPILER

/7%

7/7PASC EXEC PGM=PASCALI,PARM=,REGION=512K

/70UCODE DD SYSOUT=&SYSOUT

770UTPUT DD SYSQUT=&SYSOUT

/7/7STEPLIB DD DSN=SYS1.PASCALVS.LINKLIB,DISP=SHR

/77S5YSLIB DD DSN=&INCLLIB,DISP=SHR

Vo4 DD DSN=SYS1.PASCALVS.MACLIB,DISP=SHR

/7/5YSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
Vo4 SPACE=(TRK,(2,5)),

Vo4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB, DSORG=PS)
//7S5YSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),

Vo4 SPACE=(TRK,(2,5))

/7/75YSMSGS DD DSN=SYS1.PASCALVS.MESSAGES,DISP=SHR

/7/75YS0OIN DD UNIT=SYSDA,DISP=(NEW,DELETE),

/77 SPACE=(TRK, (2,5))

//7SYSPRINT DD SYSOQUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//SYSTERM DD DUMMY

77SYSTIN DD UNIT=SYSDA,DISP=(NEW,DELETE),

Vo4 SPACE=(TRK,(2,5))

77S5YSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),

Vo4 SPACE=(TRK, (2,5)),

Va4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/7/75YSUT2 DD UNIT=SYSDA,DISP=(NEW,DELETE),

Vo4 SPACE=(TRK,(2,5)),

Va4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
77SYSXREF DD UNIT=SYSDA,DISP=(NEW,DELETE),

Vo4 SPACE=(TRK,(2,5))

77UCODE DD SYSOUT=&SYSOUT

Figure 11. Cataloged procedure PASCC

This cataloged procedure (Figure 1l1)
compiles one Pascals/VS source module

and produces

sists of one step, PASC, which is com-

mon to all o

defines &a temporary data set
an object module. It con-

The DD statement for the object module
namad
&&LOADSET. The term MOD is specified
in the DISP parameter and as a result,

f the cataloged procedures if the procedure PASCC 1is invoked

described in this chapter.

Step PASC reads in the source module,
diagnoses errors, produces a listing,
and generates an object module to the
data set associated with DDname SYSLIN.

several times in succession for differ-
ent source modules, &&LOADSET will
contain a concatenation of object mod-
ules. The linkage editor and loader
will accept such a data set as input.

Running a Program under 0S Batch 25

4.4.2 cCompile, Load, and Execute
{PASCCG)

//PASC EXEC

//G0 EXEC
//0UTPUT DD
//SYSLIB DD
77 DD
//73YSLIN DD
//5YSLOUT DD
//5YSPRINT DD

DSN=&LKLBDSN,DISP=SHR

SYSOUT=&sSYs0uT

Figure 12.

//PASCCG PROC S5YS0UT=#,INCLLIB='S5YS1.PASCALVS.MACLIB',
7/ LKLBDSN="SYS1.PASCALVS.LOAD',
Y LINKLIB=*SYS1.PASCALVS.LINKLIB®

PGM=PASCALI,PARM=,REGION=512K
(this step is identical te the PASC step in procedure PASCC)

PGM=LOADER,COND=(8,LE,PASC),PARM="EP=PASCALVS'
SYSQUT=&SY30UT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)

DSN=SYS51.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)

SYS0UT=&SY50UT,DCB=(RECFM=VBA,LRECL=133)
Cataloged prorzedure PASCCG

In this cataloged procadure
(Figure 12), the first two steps com-
pile a Pascal/VS spurce module to pro-
duce an object module. In the third
atap (named G0y, tha loader is
axecuted; this program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

Yhe DD statement labeled SYSLIB in step
80 describes the libraries from which
external references are to be resolved.
If vou have a library of vour own from
which vou wWould like external refer-
@nces to be resolved, then pass its
name in the LXLBDSN operand.

Object modules from previous compila-
tions may alsoc be included in the load-
ar's input stream by concatenating them
in the SYSLIN DD statement.

26 Pascal’/VS Programmer's Guide

As an example, & program in a data set
named "DOE.SEARCH.PASCAL" needs to be
compiled and then loaded with an objact
module named "“DOE.SORT.0BJ." In addi-
tion, several external routines are
called from within the program which
reside in a library named
"NOE.MISC.O0BJLIB." The following JCL
statements would compile the program
and execute 1t.

//DOQE JOB

//STEP1 EXEC PASCCG,

Y4 LXLBDSN='DOE.MISC.OBJLIB®
//PASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
7/ DISP=5SHR

//G0.SYSLIN DD

s DD DSN=DOE.SORT.O0BJ,

Y4 DISP=SHR

%.4.3 Compile and Link Edit (PASCCL)

/7/LKED EXEC

//5YSLIB DD DSN=&LKLBDSN,DISP=SHR

//SYSPRINT DD
7/75YSUT1 DD

SYSOUT=&SYSOUT

Figure 13.

/7/PASCCL PROC SYSQUT=%,INCLLIB='SYS1.PASCALVS.MACLIB',
/7 LKLBDSN='SYS1.PASCALVS.LQOAD',
/7 LINKLIB="SYS1.PASCALVS.LINKLIB®
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K
(this step is identical to the PASC step in procedure PASCC)
/7 %
/7% L KED
/7%

PGM=IEWL,PARM='LIST,MAP',COND=(8,LE,PASC)

/7 DD DSN=SYS1.PASCALVS.LOAD,DISP=SHR

/7/SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

7/ DD DDNAME=SYSIN

//SYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
7/ SPACE=(TRK,(5,3,1))

UNIT=SYSDA,SPACE=(CYL,(1,1))
Cataloged procedure PASCCL

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defined by the DD statement with
the name SYSLMOD. This statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module wWill be placed and given
the member name GO.

In specifying a temporary library, it
is assumed that you will execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking multiple modules
together, you must supply an entry
point. The name of the entry point may

be either the name of your main
program, or the name PASCALVS. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor. This may be done
conveniently with a DD statement named
SYSIN for step LKED which references
instream data:

//LKED.SYSIN DD x
ENTRY PASCALVS
/ *

Multiple invocations of the PASCC cata-
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven-
iently in one job. The JCL shown in
Figure 14 on page 28 compiles three
source modules and then link edits them
to produce a single load module. With-
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAL .SRCLIB1™.

The member names are MAIN, SEGl, and
SEG2. The resulting load module is to
be placed in a preallocated library
named "DOE.PROGRAMS.LOAD"™ as a member
named MAIN.

//JOBNAME JOB (DOE),'JOHN DOE®
7/5TEP1 EXEC PASCC

//STEP2 EXEC PASCC

7/STEP3 EXEC PASCCL

/7/LKED.SYSIN DD ¥
ENTRY PASCALVS

/%

Figure 164,

7/PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(MAIN),DISP=SHR
7/7/PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG1),DISP=SHR

7/PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=0LD

Sample JCL to perform multiple compiles and a link edit

Running a Program under 0S5 Batch 27

$.%.% Compile, Link Edit, and Execute
{(PASCCLG) -

7/LKED EXEC

//6G0 EXEC
/7/0UTPUT DD
//SYSPRINT DD

Figure 15.

//PASCCLG PROC SYSOUT=x, INCLLIB='SYS1.PASCALVS.MACLIB',

V4 LKLBDSN='S5YS1.PASCALVS.LOAD',
/77 LINKLIB='SYS1.PASCALVS.LINKLIB®
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K

(this step is identical to the PASC step in procedure PASCC)

PGM=IEWL ,PARM="LIST,MAP',COND=(8,LE,PASC)

(this step is identical to the LKED step in procedure PASCCL)
PGM=x.LKED.SYSLMOD,COND=((8,LE,PASC),(8,LE,LKED))

SYSOUT=&SYSOUT,DCB=(RECFM=VBA, LRECL=133,BLKSIZE=685)

SYSOUT=&SYSOUT,DCB=(RECFM=VBA, LRECL=133)

Cataloged procedure PASCCLG

This cataloged procedure (Figure 15)
performs a compilation, invokes the
linkage editor to form a load module
from the resulting object module, then
the load module is executed.

28 Pascal/VS Programmar's Guida

The first two steps of this procedure
are identical to those of the PASCCL
procedure. An additional third step
(named G0) executes your program.

9.5 HOW TO ACCESS AN %INCLUDE LIBRARY

The DD statement named SYSLIB in proce-
dure step PASC defines the libraries
from which included source is to be
retrieved.

When the compiler encounters an %IN-
CLUDE statement within the source mod-
ule, it will search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an %INCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DD statement by specifving a
DD statement with the name PASC.SYSLIB.

Example

//7JOBNAME JOB

7/ EXEC PASCCG
//PASC.SYSLIB DD DSN=..
/7/PASC.SYSIN DD x

.»DISP=SHR

/ %

9.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD

statement for the GO step which exe-
cutes your program. The DDname to be
associated with a particular file vari-
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
OUTPUTFILE: file of
INTEGER;

The file named OUTPUT need not be
explicitly defined by you if you use
the cataloged procedures. Both cata-
loged procedures which execute a
Pascal/VS program (PASCCG and PASCCLG)
contain a DD statement for OUTPUT.
OUTPUT is assigned to the output class
where the system messages and compiler
listings are produced (SYSQUT=x),

If the Pascal/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assign default values to the
DCB as described in "Data Set DCB
Attributes" on page 45. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under 0S Batch 29

4'

7 EXAMPLE OF A BATCH JOB

7/7J0BNAME JOB

/7/STEP1 EXEC PASCC, PARM="NOXREF'
/7/PASC.SYSIN DD %

program COPYFILE;

type
F80 = file of
packed arrayl(1..80]1 of CHAR;
var

INFILE, OUTFILE: F80;
procedure COPY(var FIN,FOUT: F80);
external;
begin
RESET(INFILE);
REWRITE(CUTFILE);
COPY(INFILE,OUTFILE);
end.
/%
/7/STEP2 EXEC PASCCLG,PARM="NOXREF"'
/7/PASC.SYSIN DD %
segment I0;
type
F80 = file of
packed arrayll..80] of CHAR;
procedure COPY(var FIN,FOUT: F80);
external;

procedure COPY;
begin
while not EOF(FIN) do
begin
FOUT® := FINa;
PUTC(FOUT);
GET(FIN)
end
end; .
/%
7/LKED.SYSIN DD x
ENTRY PASCALVS
/%
77G0.INFILE DD

(data to be copied into data set goes hera)

/%

//G0.0UTFILE DD DSN=P123656.TEMP.DATA,UNIT=TSOUSER,
/77 DISP=(NEW, CATLG),

/77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),
7/ SPACE=(3120,(1,1))

Figure 16. Example of a batch job

30

Pascal/VS Programmer's Guide

Compile time options indicate what fea-
tures are to be enabled or disabled
when the compiler is invoked. The fol-
lowing table lists all compiler options

5.0 COMPILER OPTIONS

with their abbreviated forms and their
default values.

Compiler Option Abbreviated Name Default
CHECK/NOCHECK -——- CHECK
DEBUG/NODEBUG -—- NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LANGLVL(STANDARD)/ LANGLVL(STD)/ LANGLVLCESTENDED)

LANGLVL(STDRES)/ -—=v

LANGLVLC(EXTENDED) LANGLVLCEXT)

LINECOUNT(n) LC(n) LINECOUNT(60)
LIST/NOLIST -—= NOLIST
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTH(128)
PXREF/NOPXREF -—= PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/N0S SOURCE
WARNING/NOWARNING W/7NOW WARNING
XREF/NOXREF X/NOX XREF(SHORT)

5.1 CHECK/NOCHECK

If the CHECK option is enabled, the
Pascal/V$s compiler will generate
inline code to perform runtime error
checking. The %CHECK feature can be
used to enable or disable particular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
which may be checked are listed as fol-
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
saelector expression has a value
equal to one of the case label val-
ues,

Function routines
A call to a function routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the poin-
ter does not have the valua nil.

subrange scalars
Variables which are declared as
subrange scalars are tested when
they are assigned a value to guar-
antee that the value lies within
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

statement or immediately after a
routine call in which the variable
was passed as a var parameter.
(This latter case also includes a
call to the READ procedure).

For the sake of efficiency, the
compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.
For example, the compiler will not
generate code to check the first
three assignment statements below;
however, the last three will he

checked.
var

A : -10..10;

B : 0..20;
A'i= B - 10; (¥no checkX)
B := ABS(A); (¥no checkX)
A := B DIV 2; (¥no checkX)
A.:= B; (¥check ¥)
B := Ax10; (¥check ¥)
A := -B; (¥check %)

The compilar makes no explicit
attempt to diagnose the use of
uninitialized variables; however,
to help you detect such errors, the
SETMEM runtime option has been pro-
vided (see "Run Time Options"™ on
page 35).

subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress

Compiler Options 31

checks that are
unnecessary.

semantically

string truncation
Assignments to varying length
strings are checked to make sure
that the.destination string vari-
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnostic message Wwill be displaved on
your terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from 0S5 Batch, the diagnostic
message and traceback will be sent to
thae data set or device associated with
DDname SYSPRINT. You may direct the
error diagnostics to any file of your
choice with the "ERRFILE" option (see
"Run Time Options” on page 35).

See "Reading a Pascal/VS Trace Back" on
page 61 for an example of a traceback
dua to a checking error.

"User Handling of Execution Errors" on
page 64 describes how checking errors
may be intercepted by yvour program.

5.2 DEBUG/NODEBUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Pascals/V$
Interactive Debugger™ on page 67. If
the option DEBUG is enabled, the com-
piler will produce the necessary infor-
mation that Debug needs in order to
operate.

The DEBUG option also implias that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 OSTMT/NOGOSTMT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entries within this table
allow the run-time environment to iden-
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breakpoints based on source
statement numbers. For a description
of the debugger see "Pascal/V5 Intarac-
tive Debugger"” on page 67.

The 1inclusion of the statement tableae

does not affect the execution speed of
the compiled program.

32 Pascal/VS Programmer's Guida

NOGOSTMT will prevent the statement
table from being generated.

5.4 ANGLVL ()

If LANGLVL(STANDARD) is spacified, the
compiler will diagnose all constructs
and features which do not conform to
"standard" Pascal. Violations of the
standard will appear as warnings. In
addition, many of the predeclared iden-
tifiers which are unique to Pascal/V$s
will not be recognized when
LANGLVL(STANDARD) is spacified.

If LANGLVL(STDRES) 1is specified, the
compiler will turn LANGLVL(STANDARD)
on, and will also not recognize any of
the non—-ANSI-standard PascalsV$s
reserved words. This means that the
following Pascal/VS reserved words may
now be used as identifiers (of course,
the features they support are lost,
00):

assert
continue
def
leave
otherwise
range
ref
return
space
static
value
xor

LANGLVL CEXTENDED), which is the
default, specifies that the full
Pascal/V5 language is to be supported.

.5 LINECOUNT(N)

The LINECOUNT option specifies the num-
ber of lines to appear on each page of
the output listing. The maximum number
of lines to fit on a page depends on
the form to which the output is being
printed.

The default is 60 linaes to the page.

.6 IST/NOLIS

The LIST/NOLIST option controls the
genaration or suppression of the trans-
lator psaudo-assembler listing (see
"Assembly Listing" on page 42).

Note: Tha NOLIST option will cause any
%LIST statement within the source pro-
gram to be ignored.

5.7 MARGINS(M,N)

The MARGINS(m,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro-
gram starting at column m and ending at
column n. Any data outside these mar-

MARGINS('1,72")

5.8 OPTIMIZE/NOOPTIMIZE

The OPTIMIZE option indicates that the

gin limits is ignored. The maximum compiler is to generate optimized code.
right margin allowed is 100 The speci- NOOPTIMIZE indicates that the compiler
fied margins must not overlap the is not to optimize.
sequence field.
When code is being optimized, the code
The default is MARGINS(1,72). generation phase of the compiler will
try to eliminate common subexpres-
sions. Instead of evaluating an
Note: When the PASCALVS clist is being expression each time it occurs in the
invoked under TS0, the subparameters of program, the expression will be evalu-
the MARGINS option must be enclosed in ated once and saved, if possible, in a
quotes. For example, register. The example in Figure 17
illustrates this.
Sample program to demonstrate code optimization
program TEST;
var
I,J,K integer;
begin
I := 80;
J =1 % 3;
J 1= 2;
K := 1 % 3;
K = 2;
end.
Optimized code Unoptimized code
¥ I := 80; ¥ I := 80;
LA 03,80 LA 03,80
ST 03,144(,13) ST 03,144(,13)
X J =1 % 3; ¥ J =1 ¥ 3;
MH 03,=H'3" L 03,144(,13)
ST 03,148(,13) MH 03,=H'3"
¥ J = 2; ST 03,148(,13)
LA 04,2 ¥ J := 2;
ST 04,148(,13) LA 03,2
X K =1 % 3; ST 03,148(,13)
ST 03,152(,13) ¥ K :=1 % 3;
¥ K := 2; L 03,144(,13)
ST 04,152¢(,13) MH 03,=H'3"
ST 03,152¢(,13)
¥ K = 2;
LA 03,2
ST 03,152¢(,13)
Figure 17. Differences between O0PT and NOOPT

5.9 PAGEWIDTH(N)

The PAGEWIDTH option specifies the max-
imum number of characters that may
appear on a single line of the output
listing. This number depends on the
page form and the printer model.

5 The number specified

control characters.

in the PAGEWIDTH option does not

The default page width is 128 charac-
ters, with the minimum and maximum page
widths allowed being 120 and 210 char-
acters, respectively.

include carriage

Compiler Options 33

5.10 PXREF/NOPXREF

The PXREF option specifies that the
right margin of the output listing is
to contain cross reference entries (sea
"Page Cross Reference Field" on page
38). NOPXREF suppresses these entries.

5.11 SEQ(M,N)/NOSEQ

The SEQ(m,n) option specifies which
columns within the program being com-
piled are reserved for a sequence
field. The starting column of the
sequence field is m; the last column of
the field is n.

The compiler does not process sequence
fields; they serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler
Wwill insert a line number in the cor-
responding area in the sourcae listing.

NOSEQ indicates that there i= to ba no
sequence field.

The default is SEQ(73,80).
NOTES:

o The sequence field must not overlap
the source margins.

° When the PASCALVS clist is being
invoked under TS0, the subparame-
ters of the SEQ option must be
enclosed in quotes. For aexample,

SEQ('73,80")

5.12 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generation or suppression of the

34 Pascal/VS Programmar's Guide

compilar source listing.

Note: The NOSOURCE option will causa
any %PRINT statement within the source
program to be ignored.

.13 NG/ RN

This option controls the generation or
suppression of warning maessages. The
NOWARNING spacification will suppress
warning messagas from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF option controls the
generation or suppression of the
cross-reference portion of the source
listing. (See "Cross-reference List-
ing" on page 40).

Eithaer a short or long cross-referanca
listing can be generated. A long
cross~-reference listing contains all
identifiers declared in the program. A
short listing consists of only thosa
identifiers which were referaenced.

To spacify a particular listing moda,
eithar the word LONG or SHORT is placed
after the XREF specification and
enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica-
tion

XREF(LONG)

would cause &a long
table to be generated.

cross—-reference

Note: If the PASCALVS clist is being
invoked under TS50, &a subparameter
(SHORT or LONG) must be specified with
the XREF option; there are no defaults.

Features within the Pascal/V$S run time
environmant may be enable or disabled
by passing options to the Pascal/V$s
program. These options are passed to a
Pascal/VS program through the parame-
ter passing mechanism. To distinguish
run time options from the parameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi-
nated with a slash ("/").

The following is a list of supported
run time options.

COUNT
specifies that instruction fre-
quency information is to be col-
lected during program execution.
After the program is completed,
this information is written to file
OUTPUT.

Note: This option will only havae an
effect if the program was both com-
piled and link-edited with the
DEBUG option.

DEBUG
specifies that the interactive
debugger (see "Pascal/VS Interac-
tive Debugger™ on page 67) is to
gain initial control when vyou
invoka your program.

Note: This option is valid only if
the load module was genarated with
the DEBUG option (see "Module Gen-
eration Options" on page 12).

ERRCOUNT=n

ERRCOUNT (N)
specifies how many non-fatal
errors arae allowed to occur before
the program is abnormally termi-
nated. The default is 20.

Note to CMS users: due to the
8-character tokenization conven-
tion of CMS, a blank must precede
the '=' symbol in the ERRCOUNT spe-
cification.

Exampla:
modname ERRCOUNT =1/
ERRFILE=ddname

ERRFILE(ddname)

specifies the DDname of the file to
which all run time diagnostics are
to be written. Under CMS and TS50,
diaghostics are displayved on your
terminal by default. Under 0§
batch, the default error file is
SYSPRINT.

0 R ME OPTIODNS|

Note to CM8 users: due to tha
&-character tokenization conven-
tion of CMS, the "=' symbol must be
surrounded with blanks.

Example:
modname ERRFILE = QUTPUT/

HEAP = n

specifies the number of kilobytes®
that the heap is to be "extended"
each time the heap overflows. The
heap is where memory is allocated
when tha procedure NEW is called.
When the and of the heap is
reached, the GETMAIN supervisor
call is invoked to allocate more
memory for the heap. If the length
of the space being required by NEW
is greater than "n," then the
amount to be allocated will be the
length of the space rounded up to‘
the next kilobyte (1024 bytes).

There is & significant overhead)|
penalty for each invocation of GET—|
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affected. If "n™ is too large,
the heap will contain memory that
is never used.

The default HEAP attribute is 12
kilobytes.

MAINT

specifies that when a run time
error occurs, the trace back is to
list active run time support rou-
tines. These routines begin with
an AMP prefix and are normally sup-
pressad from the trace back
listing. This option is used to
locate bugs within the run time
environment.

NOCHECK
spaecifies that any checking errors
detected within the program are to
be ignored.

NOSPIE
specifies that the Pascal/V$ run
time enviroment is not to issue a
SPIE request and therefore will not
intercept program interrupts.

STACK = n
specifies the number of kilobytes*
that the run time stack is to be
"extended" <each time the stack
ovaerflows. The run time stack is
where the dynamic storage area
(DSA) of a routina is allocated
when the routine is invoked. When

& A "kilobyte" is defined as 1024 bytaes in the context of this manual.

Run Time Options 35

36

the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n," then the amount to be allo-
cated will be the length of the DSA
rounded up to the next kilobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET-
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affdcted. If "n" is too large,
the stack will occupy more memory
than is necessary.

Pascal/VS Programmer's Guide

The default STACK attribute is 12
kilobytes.

SETMEM

specifies that upon entry to each
Pascal/VS routine, each byte of
memory in which the routine's local
variables are allocated will be set
to a specific value, nameliy 'FE!
(hexadecimal). This option aids in
locating the source of intermit-
tent errors which occur because of
the use of uninitialized
variables.

7.0 HOW TO READ PASCAL/VS LISTINGS

L 7.1 SOURCE LISTINGS
PASCAL/VS RELEASE 2.0 UTILITY: 01727781 14:48:5% PAGE 5
BPCI STMT # SOURCE PROGRAM PAGE XREF
INCLUDE 1 FROM SYSLIB (GLOBALS)
V-==t-—--—-]-—--—%~-—--2--——4-—-—=-3---//--7-V SEQ NO
1: 00000100
1: type 00000200 R
1: NAMEPTR = JNAMEREC; 00000300 x* x
1: NAMEREC = 00000400 x
1: record 00000500 R
1: NAME t STRING(30); 00000600 % P
1: LEFT_LINK, 00000700 X
1: RIGHT_LINK: NAMEPTR; 0000080C % 5
1: end; 00000900 R
1: 00001000
1: def 00001100 R
1: TREETOP : NAMEPTR; 00001200 * 5
00000180
1 procadure SEARCH(00000190 R %
1 const ID: STRING; 000002C0 R % P
1 var PTR: NAMEPTR); 00000210 R % 5
1 EXTERNAL; 00000220 x
00000221
1 procedura SEARCH; 00000222 R %
1 var 00000230 R
1 LPTR = NAMEPTR; 00000240 % 5
==========ERRQOR=> $17
1 begin 00000250 R
1 1 PTR := nil; 00000260 5 P
\ 1 2 LPTR := TREETOP; 00000270 5 5
1 1 3 while LPTR <> nil do 00000280 R 5 P R
1 1 bagin 00000290 R
11 1 4 with LPTRa do 00000300 R 5 R
1111 5 if NAME = ID then 00000310 R 5 5 R
1111 begin 00000320 R
2111 6 PTR := LPTR 00000330 5 5
2111 7 return 00000340 R
==========ERRQOR=> $8
1111 end 00000350 R
1111 else 00000360 R
1121 8 if ID < NAME then 00000370 R 5 5 R
1121 9 LPTR := LEFT_LINK 00000380 5 5
1121 elsa 00000390 R
1121 10 LPTR := RIGHT_LINK 00000400 5 5
1 1 end (¥whilaX) 00000410 R
end; . 00000420 R
NUMBER OF ERRORS DETECTED: 2
DIAGNOSTIC MESSAGES ON PAGE(S): 5
ERROR 8: SEMICOLON ™";"™ EXPECTED
ERROR 17: w:n EXPECTED
PARAMETERS PASSED: DISK NOXREF LIB (MACLIB)
OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), LINECOUNT(60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING
SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 LPM

; Figure 18. Sample source listing

How to Read Pascal/VS Listings 37

The source listing contains informa-
tion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set with the XTITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
will be blank.

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa-
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name becomes
the name of the control section
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedures/function defi-
nition which was being compiled
when the page boundary occurred.

3. The time and date of the compile.

4. The page number.

The third line contains column
headings. If the source being compiled
came from a library (i.e. %INCLUDE),

then the last line of tha heading iden-
tifies the library and member.

7.1.2 Nesting Information

The left margin contains nesting infor-
mation about the program. The depth of
nesting is represented by a numbear.
The heading over this margin is:

BPCTI STMT
B - indicates the depth of 'B'EGIN
block nesting.
P - indicates the depth of 'P'rocedure
nesting.
C - indicates the nesting of

'C'onditional statements. Conditional

statements are if and casa.

I - indicates the nesting of
"I'terative statements. Iterativa
statements are for, repeat and while.

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line orgi-
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon (':') precede the
statement number.

7.1.3 Statement Numbering

Pascal/VS numbers the statements of a
routine. These numbers are referenced
when a run time error occurs (see
"Reading a Pascals/VS Trace Back" on
page 61) and when break points are spe-
cified in the interactive debugger (see
"Pascals/VS Interactive Debugger”" on
page 67).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
is numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.% Page Cross Reference Field

If the PXREF compiler option is active,
the right margin of the listing con-
tains a cross reference field. This
field contains an indicator for each
identifier that appears in the associ-
ated line. The indicators have the
following meanings:

J A number indicates a page number on
which the corresponding identifier
was declared.

. A '"¥%¥' indicates that the correspon-
ding identifier is being declared.

° A 'P' indicates that the correspon-
ding identifier is predefined.

. A 'R'" indicates that the correspon-
ding identifier is a reserved key
word.

U A '?'" indicates that the correspon-

ding identifier is either unde-
clared, or will be declared further
on in the program. This latter
occurrence arises often in pointer
typa definitions.

7.1.5 Error Summary

Toward the end of the listing is the
error summary. It contains the diag-
nostic messages corresponding to the
compilation errors detected in the pro-
gram.,

7.1.6 Option List

The option list summarizes the options
that were enabled for the compilation.

7.1.7 cCompilation Statistics

Tha compiler prints summary statistics
which tall the number of lines

compiled, the time required, and compi-
lation rate in lines per minute of
(virtual) CPU time.

These statistics are divided between
two phases of the compiler: the syn-
tax/semantic phase and the code gener-
ation phase. Also printed is the total
time and accumulative rate for the sum
of the phases.

How to Read Pascal/VS Listings 39

7.2 CROSS-REFERENCE LISTING

CROSS REFERENTCE LISTING
INCLUDE 1 CAME FROM MEMBER GLOBALS
IDENTIFIER DEFINITION ATTRIBUTES <PAGE #>/<INCLUDE #>:<LINE #>
ID 5720 IN SEARCH, CLASS = CONST PARAMETER,
TYPE = STRING, OFFSET = 144
5731 5737
LEFT_LINK 5s/1:7 IN NAMEREC, CLASS = FIELD, TYPE = POINTER,
OFFSET = 32, LENGTH = 4
5738
LPTR 5724 IN SEARCH, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 152, LENGTH = 4
5727 5728 5730 5733
5738 5740
NAME 5/1:6 IN NAMEREC, CLASS = FIELD, TYPE = STRING,
OFFSET = 0, LENGTH = 32
5731 5737
NAMEPTR 571:3 CLASS = TYPE, TYPE = POINTER, LENGTH = ¢
571:8 5/1:12 5721 5724
NAMEREC 571:4 CLASS = TYPE, TYPE = RECORD, LENGTH = 40
571:3
NIL PREDEFINED CLASS = CONSTANT, TYPE = POINTER
5726 5/28
PTR 5721 IN SEARCH, CLASS = VAR PARAM, TYPE = POINTER,
OFFSET = 148, LENGTH = ¢
5726 5733
RIGHT_LINK 5/71:8 IN NAMEREC, CLASS = FIELD, TYPE = POINTER,
OFFSET = 36, LENGTH = ¢
5760
SEARCH 5719 CLASS = ENTRY PROCEDURE
STRING PREDEFINED CLASS = TYPE, TYPE = STRING
571:6 5720
TREETOP 5/71:12 CLASS = DEF VAR, TYPE = POINTER, LENGTH = ¢4
5727
Figure 19. Sample cross-reference listing
The cross reference listing lists where p is the page number on which the
alphabetically every identifier used reference occurred; is the number of
in the program giving its attributes the include-member if the reference
and both the page number and the source took place within the member; 1 is the
line number of each reference. line number within the program or

If the %INCLUDE facility was used, the
cross reference listing will begin by
listing all of the include-members by
name with a reference number.
Each reference specification is of the
following form:

ps [i:l 1

40 Pascal/VS Programmer's Guide

include-member at which the reference

occurred.

The reference immediately following
the identifier is the place in the
source program where the identifier was
declared.

The attribute specifications have the
following meanings.

IN name

If the identifier is a raecord
field, then this attribute speci-
fies the name of the record in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:
CONSTANT declared constant

CONST PARAMETER
pass-by-const paramae-

ter
DEF VAR extarnal def variable
ENTRY FUNCTION
function routine
declared as an

external entry point.

ENTRY PROCEDURE
procedure routine
declared as an
external entry point.

EXTERNAL FUNCTION
external function rou-
tine

EXTERNAL PROCEDURE
external procedurae
routine

FIELD record fiald

FORMAL FUNCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parametar

FORTRAN FUNCTION
external FORTRAN func-
tion

FORTRAN SUBROUTINE
external FORTRAN sub-
routine

FUNCTION a user—defined or
standard function

LABEL statement label
LOCAL VAR automatic variable
MAIN ENTRY POINT

procedure declared as

MAIN whosae body is not
in this module

PROCEDURE a user-defined or
standard procedure

REENTRANT ENTRY POINT
procedure declared as
REENTRANT whose body
is not in this module
REF VAR external ref variabla
STATIC VAR static variable
TYPE type identifier

VAR PARAMETER pass—-by-var parame-
ter

UNDECLARED undeclared identifiaer

TYPE = type

This attributes gives the typa of
the identifier:

ARRAY an array type

BOOLEAN boolean type

CHAR character

FILE a fila typa

INTEGER fixed point numaric
POINTER a pointer type

REAL floating point numeric
RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a string type

OFFSET = n

This attribute specifies the byte
offset (in decimal) within the
dynamic storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH = n

This attribute specifies the byte
length of a variable or the storage
required for an instance of a typa.

VALUE = n

This attribute spaecifies the ordi-
nal value of an integer or enumer-
ated scalar constant.

How to Read Pascal/VS Listings 41

J.3 ASSEMBLY LISTING

PASCALsVS RELEASE 2.0 UTILITY 0Ls27781 10:18:00 PAGE 2
LOC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING
¥ LP1 := FHEAD;
000090 5830 D090 8 L 03,144(,13)
000094 5840 3000 9 L 04,0¢,03)
000098 5040 D094 10 ST 06,148(,13)
¥ LP2 := NIL;
00009C |1B33 11 SR 03,03
00009E 5030 D098 12 ST 03,152¢,13)
¥ LWHILE LP1 <> NIL DO
0000A2 13 a4ll DS 0H
0000A2 5830 D094 14 L 03,148¢(,13)
0000AE 1233 15 LTR 03,03
0000A8 4780 HMM¥xX 16 BE aglL2
X WITH LP1-> DO
0000AC 45E0 C860 17 BAL 14,2144(,12)
0000BO 5030 DOAOD 18 ST 03,160C,13)
% BEGIN
¥ LP3 := NEXT;
0000B% 5840 3010 19 L 04,16(,03)
0000B8 5040 DO9SC 20 ST 04,156C,13)
* NEXT := LP2;
0000BC 5850 D098 21 L 05,152(,13)
po000CO 5050 3010 22 ST 05,16(,03)
% LP2 := LP1l;
0000C4 5030 D098 23 ST 03,152(,13)»
% LP1 := LP3;
0000C8 5040 D094 24 ST 04,148¢,13)
0000CC 47F0 2016 25 B aglLl
0000D0 26 a4le DS 0OH
* END;
% FHEAD := LP2;
0000D0 5830 D090 27 L 03,144¢,13)
0000D4 5840 D098 28 L 04,152(,13)
goooD8 5040 3000 29 ST 04,0(,03)
Figure 20. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if vou specify
the LIST option. The information pro-
vided in this listing include:

LOC
location reletive to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen-
erated text. If the line refers to
a symbol or literal not vet
encountered in the listing (for-

42 Pascals/VS Programmer's Guide

ward reference) the base displace-
ment format of the instruction is
shown as four asterisks ('"XXxX®'),

PSEUDD ASSEMELY

basic assembly languaga
description of generated instruc-
tion.

Annotation
intermixed With the assembly
instructions is the source line
from which tha instructions werae
generated. The source lines appear
as comments in the listing.

7.4 EXTERNAL SYMBOL DICTIONARY

PASCAL/VS RELEASE 2.0 AMPLXREF : 01727780 13:07:27 PAGE 1
EXTERNAL SYMBOL DICTIONARY

NAME TYPE ID ADDR LENGTH NAME TYPE ID ADDR LENGTH
AMPLXREF 5D 1 000000 002E0C XREFDUMP LD 0 000FC4 000001
XREFEQF LD 0 0008D8 000001 XREFINCL LD 0 000964 000001
XREFREF LD 0 000A8D 000001 XREFLIST LD 0 002Cq0 000001
ASTATIC PC 2 000000 000009 SYSXREF cM 3 000000 QoD0040
AMPXPUT ER 4 000000 INTPTR CM 5 000000 000004
CHARPTR CM 6 000000 000004 REALPTR CM 7 000000 00000%
BOOLPTR CM 8 000000 000004 PAGEND cM 9 000000 goooo2
INCLLEVE cM 10 000000 000004 INCLNUMB cM 11 000000 000001
PROCP CM 12 000000 000004 AMPXRSET ER 13 000000

LINECOUN cM 14 000000 000004 AMPXNEW ER 15 oo0go00

AMPXGET ER 16 000000 PAGEHEAD ER 17 000000

SYSPRINT CM 18 000000 000040 AMPXWLIN ER 19 000000

AMPXWCHR ER 20 000000 AMPXWTXT ER 21 000000

OPTION oy 22 000000 000014 AMPXWINT ER 23 000000

TRIM ER 24 0000090 AMPXWSTR ER 25 000000

Figure 21. Sample ESD table

The External Symbol Dictionary (ESD)
provides one entry for each name in the
generated program that is an external.
This information is required by the
linker/loader to resolve inter-module
linkages. The information in this
table is:

HAME the name of the symbol.
TYPE the classification of the sym-

bol:
SD - Symbol Definition
LD - Local Definition
ER - External Reference
CM - Common
PC - Private Code.
ID ts the number provided to the

loader in order to relocate
address constants correctly.

ADDR is the offset in the CSECT for
an LD entry.

LENGTH the size in bytes of the SD or
CM entry.

The SD eclassification corresponds to
the name of the module; the LD classi-
fications are entry routines; ER names
are external routines; CM names corre-
spond to def variables. The private
code section is where static variables
are located.

7.5 INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa-
rize the usage of 370 instructions gen-
erated by the compiler. The table is
sorted by frequency of occurrance.

How to Read Pascals/VS Listings 43

4

4

__Pascal/V5 Programmer's Guida

8.1 I,0 IMPLEMENTATION

Pascal/VS emplovys 05 access methods to
implement its input/output facilities.
Pascals/Vs file variables are associ-
ated with a data set by means of a

DDname. The Queued Sequential Access
Method (Q5AM) is used for sequential
data sets. The Basic Partitioned

Access Method (BPAM) is used for parti-
tiorned data sets (MACLIBs in CMS
terminology). The Basic Direct Access
Method (BDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac-
ters of the identifier's name serves as
the DDname of the file. As a conse-
quence, the first eight characters of
all file variables declared within a
module should be unique. You must also
be careful not to allow one of the
first eight characters to be an under-
score ('_') since this is not a valid
character to appear in a DDNAME.

An explicit DDname may be associated
with a file variable by means of the
DDNAME option when the file is opened.
(see "The Open Options"™ on page 56).

DDnames should be explicitly specified
for files which are elements of arravs,
fields of records, or pointer
aqualified. If the DDname is not
explicitly specified for such files, a
DDname of the form "PASCALnn" will be
assigned to the file, where "nn"™ is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every Pas-
cals/V¥5 file variable i= a Data Control
Block (DCB) which contains information
describing specific attributes of the
associated data set. Among these
attributes are

. the logical record length (LRECL);
. the physical block size (BLKSIZE);
. the record format (RECFM).
Pascal/VS supports all of the record
formats that are supported by QSAM,

such as, F, V, U, FB, VB, FBA, VBM,
etc.

8.0 USING INPUT/OUTPUT FACILITIES

A Pascal/V5 program will process a file
that contains ANSI or machine control
characters at the beginning of each
logical record (in which case the
record format would be specified as
RECFM=...A or RECFM=..,.M). Each log-
ical record written to such files will
be prefixed with the appropriate con-
trol character. Thus, the first
character position of each record is
not directly accessible from the
Pascals/VS program, (If the NOCC option
is specified when the file 1s opened,
no control character will be prefixed
and the first character is accessible.
See "The Open Options™ on page 56.)

Newly allocated {empty) data sets, that
is, data sets intended for output might
not have these attributes assigned. As
far as Pascals/V5 is concerned, there
are two ways to specify the DCB attri-
butes for such data sets:

. by being specified in the associ-
ated DDname definition (in CMS: the
FILEDEF command; in T50: the

ALLOC/ATTR commands; in 0S5 batch:
the DD card);

. by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attributes are unas-
signed for a particular data set to
which a Pascal/VS program will be writ-
ing, the PascalsVS I/0 manager wWill
assign defaults according to whether
the data set is being managed as a file
of type "TEXT" or as a non—-text file.

For the case of text files, if neither

LRECL, BLKSIZE, nor RECFM are

specified, then the following defaults

Wwill apply:

. LRECL=256

. BLKSIZE=260

. RECFM=V

For the case of non-text files, if nei-

ther LRECL, BLKSIZE, nor RECFM are spe-

cifiaed then the following dafaults will

apply.

. LRECL="1length of file component"

» BLKSIZE=LRECL

. RECFM=F

If some of the attributes are specified

and some are not then defaults will be

applied using the following criteria:

* RECFM of V is preferred over F for
text files.

Using Input/Outpgt Facilities 45

. RECFM of F is preferred over V for
non—-text files.

. If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

. If RECFM is V then the BLKSIZE is

to be at least four bytes greater
than the LRECL.

'8.% TEXT FILES

Text files contain charactar data
grouped into logical records. From a
Pascal’/V5 language viewpoint, the log-
"jcal records are lines of characters.
Pascal/V5 supports both fixed length
and variable length record formats for
text files. Characters are stored in
EBCDIC.

The predefined type text 1s used to
,declare a text file variable in
Pascal/V5. The pointer asscciated with
each file variable points to positions
within a physical I/0 buffer.

8.5 RECORD FILES

All non-text files in Pascal/VS are
record files by definition., Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base compenaent; oth-
erwise, an execution time error will
occur when the file is opened. For
example, a file variable declared as
'filea of INTEGER' will require the
associated physical fila to have a log-
ical record length of at least & bytes,

If a file has fixed length records
(RECFM=F) and the locgical record length
is larger than nacessary to contain tha

filaes component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To explicitly open a file for input,
the procadure RESET i3 used. A call to
RESET has the forma:

RESET(F)

or
RESET(f,options)

46 Pascals/V5 Programmer's Guida

where "f" Jis &a file variabla and
"optionsY is & string which contains
the open options (sag "The Open
Options™ on page 56). Tha "“options"
parameter may be omitted.

Normally, RESET &allccates a buffer,
reads in the first logical record of
the file inte the buffer, and positiona
the file pointer at the beginning of
the buffer. Therefore, given a text
file F, the axecution of the statement
YRESET(F)"™ would imply that "Fa" would
referaeance the first character of the
file.

If a RESET operation is performed on an
open file, the file is clesed and then
reopened.

program EXAMPLE;

var
SYSIN : TEXT;
C, i CHAR:;
begin
(¥opan SYSIN for input ¥)

RESET{(SYSIN);
(¥get first character of fileX)
C = SYSIN3;

entd.

Figure 22. Using RESET on &a text
file

OPENING A FILE FDR INTERACTIVE

8.7
INPUT

Sinca RESET performs an implicit read
oparation to fill a file buffer, it is
net well suited for files intended to
be asscciated with interactive input.
For example, if tha file baing openad
is assigned to vour terminal, vou will
be prompted for data when the file is
opaned. This may not be preferable if
vour program i3 supposa to write out
prompting messages prior to reading.

To alleviata this problem, a file may
be opened for intaractive input by spe-
cifying "INTERACTIVE"™ in the options
string of RESET. HNo initial read oper-
ation is performad cn filas opened in
this manner. Tha fila pointar has the
valua nil until tha the first fila
operation is performed (namely GET or
READ). The end-of~line condition (=ea
"End of Line Condition" on page 53) is
initially sat to TRUE.

J

program EXAMPLE;

var
SYSIN : TEXT;
DATA © STRING(80);

begin
(¥Xopen SYSIN for interactive)
(¥input ®)
RESET(SYSIN, "INTERACTIVE');
(¥prompt for response n)
(¥read in response 1)

WRITELN¢" ENTER DATA: ");
READLN(SYSIN,DATA);
end.

Figure 23. 0Opening a file for
interactive input

8.8 OPENING A FILE FOR OUTPUT ~-

REWRITE

The procedure REWRITE is used to open a
file for output. A call to the proce-
dure has the forms:

REWRITE(F)

or
REWRITE(f,options)

where "f" 13185 a file varijable and
"options" is a string which contains
the open options (sea "The Open

Options" on page 56). The "options"
parameter may be omitted.

REWRITE positiona the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
var
SYSPRINT : TEXT;
begin
REWRITE(SYSPRINT);
gRITELN(SYSPRINT,'MESSAGE');
end.

Figure 24. Opening &a text file
with REWRITE

program EXAMPLE;

var
QUTFILE : file of INTEGER;
I ¢ INTEGER;

begin
REWRITE(QUTFILE,
'"BLKSIZE=1600,LRECL=4,RECFM=F"'};
QUTFILEQ := I;
PUT(OUTFILE};

end.

Figure 25. 0Opening a record file
Wwith REWRITE

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to your ter-
minal without going through the normal
DDname interface. Calls to these pro-
cedures have the forms:

TERMIN(f) or TERMIN(f,options)
TERMOUT(f) or TERMOUT(f,options)

where "f" is a text file variable and
"options" 1s a string which contains
the open options (sea "The Open
Options" on page 56), The "options"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi-—,
nal. Likewise, the TERMOUT procedura
opens a text file for terminal output.

There is no concept of an and-of-file|
condition for files opaened with TERMIN,
The EQOF function always returns FALSE
for auch files.

Note: The TERMIN procedure opens the
file With the INTERACTIVE attribute as
was described in "0Opening a File for
Interactive Input' on page 46,

perogram EXAMPLE;

var
TTYIN, TTYQUT: text;
I : INTEGER;
begin

TERMINCTTYIN); TERMOUT(TTYOUT);
WRITELNC(TTYOUT, "ENTER DATA:');
READLNCTTYIN,I);

end.

Figure 26. Terminal input/output
example

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. 1In
this mode, records may be read, modi-
fied, and then replaced. A call to the
procedure has the forms:

UPDATEC(F)
or

UPDATE(f,options)
where "f" is a record file variable and
"options™ is a string which contains
the open options (see "The Open
Options" on page 56). The '"options"
parameter may be omitted.

Upon calling UPDATE, & file buffer 1s
allocated and the first record of the

Using Input/prPg#Vquiljties 47

fila is read into it. If a subsaquant
PUT operation is performed on thae file,
the contents of the buffer will be
stored back into the file at the
location from which it was read.

Each GET operation reads in the next
subsequent record of the file, A PUT
operation wWill wWrite the record back
from where the last GET operation
obtained it.

program EXAMPLE:

var
F : f{le of
record
NAME: STRING(30);
AGE : 0..99;
end;
begin
UPDATE(F);
(¥ypdate each record ¥)

(¥ by incrementing agae ¥)
while not EOF(F) do
begin
Fa.AGE := Fa.AGE + 1;
PUTCF);
GET(F)
end;
end.

Figure 27. Updating a record fila

8.1 PROCEDURE GET

The GET procedure is the means by which
a basic read opaeration is performed on
a file. A call te tha procedure has
the form:

GET(F)

where "f" is a file variable.

8.11.1 GET operation on text files

When applied to an input text file, GET
causes the file pointer to be incra-
mented by one character position. If
the fila pointer is positioned at the
last position of a logical record, the
GET operation will cau=e the and-of-
line condition to bacome true (=ee "End
of Line Condition" on page 53) and the
file pointer Will be positioned to a
blank. If, prior to the call, tha
end-of-line condition is trua, then the
file pointer Will ba positionad to the
baginning of the naxt logical record.

If, prior to the cell toc GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
Wwhich case the and-of-line condition
Wwill be true) than the and-of-file con-
dition will become trua. (Sae "End of

458 PascalsV5 Programmer's Guide

Fila Condition - text filaes" on pagae
56),

If GET i=s attempted on a text file that
has not been opened, 1t will be implic-
itly openad for input (as if RESET had
been called).

program EXAMPLE:;

var
INFILE text;
cl1,c2 CHAR;
begin
(¥gat first char of filax)
RESET(INFILE);
Cl := INFILEa;

{¥get second char of fila)
GET(INFILE);

C2 := INFILE®;
end.
Figure 28, Using GET on a text
file

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer raferenced by
the file pointer. The end-of-file con-
dition will becomae true if there are no
more records Wwithin the file, in which
c?fa, tha file pointer wWill be set to
n .

A record file must be opened for input
or update prior to executing a GET
operation, otherwise, a runtime diag-
noatic will ba generated.

program EXAMPLE;
var
F : film of
record
NAME : STRING(25);
AGE P 0..99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)
and;
begin
RESET(F);
while not EOF(F) do
begin
WRITE(" Name @ ',
Fa.NAME);
WRITE(®* Age = ',
Fa.AGE:3);
WRITELN;
GET(F)
and
end.
record

Figure 29. Using GET on

files

8.1 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a file. A call to the procedure has
the form:

PUT(F)
where "f" is a file variable.
The file must be opened for output or
update prior to calling PUT?;

otherwise, a runtime diagnostic will
occur.

8§.12.1 PUT Operation on Text Files

The PUT procedure, when applied to a
text file opened for output, causes the
file pointer to be incremented by one
character position. If, prior teo the
call, the number of characters in the
current logical record is equal to the
file's logical record length (LRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the huffer is written to the
associated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 53).

program EXAMPLE;

var
OUTFILE : text;
c : CHAR;
bedin
REWRITE(OUTFILE);

OUTFILEa := C;
(¥Write out value of Cx)
PUTC(OUTFILE):;

end.

Figure 30. Using PUT on a text
file

data to be written. If the file

8.12.2 PUT oOperation on Record Files

The PUT precedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE:
var
F : file of
record
NAME : STRING(Z25);
AGE = 0..99;
WEIGHT: REAL;
SEX + (MALE.FEMALE)
] end; .
bagin
REWRITEC(F);
Fa.NAME := *John F. Doe';
Fa.AGE = 36;
Fa.WEIGHT := 160.0;
Fa.SEX $= MALE;
PUTC(F);
end.
Figure 31. Using PUT on record
files

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a
text file beginning at the current
positien of the file peointer. A call
to the procedure has the forms:
READ(F,v)
or
READ(f,v:in)
where "f" is a file variable and "v" is
a variable which must be of one of the
following tvpes:
CHAR (or a subrange thereof)
INTEGER (or a subrange theaereof)
packed arrayl] of CHAR
REAL (or SHORTREAL)
STRING

"n" i3 an optional field length (an
integer expression). The file variable

Prior to a PUT operation, the associated output buffer must contain the
is not open when the PUT operation is

attempted, then no output buffer exists. (The file pointer will have the

value nil.)

Qging Inputs/Qutput Facilities 49

Wf" may be omitted, in which case, tha
fila INPUT is assumed.

‘A call of the form
READ(f,vl,v2,...vn)
is executed as

hegin
READ(f,v1);
READ(f,v2);

READCF,vn);
end

If READ is called for & closad file,
the file is opened for input by an
implicit call to RESET.

Upon executing READ, 1f the file point-
er is hot vdt set, an initial GET oper-
ation is performed. This case occurs
when a file is opened INTERACTIVEly.
(see ™"0Opening a File for Interactiva
Input" on page %6.)

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified, all blanks preceding the
data are skipped. In addition, logical
raecord boundaries will be skipped. If
the end-of-file condition should occur
before & nonblank character is
detected, an error diagnostic will be
produced.

Integer data begins with an optional
sign ('+' ogr '-') followed by all dig-
its up to, but not including, the first
non-digit or up to the end of the log-
ical record.

50 Pascals/V5 Programmer's Guide

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

951235AN JOSE.CA

an integer read operation would bring
in the wvalue 95123, After the reaad,
the file pointer would be positioned to
the first 'S' character.

Real data begins with an optional sign
('+' or '"-') and includes all of the
following nonblank charactars until
one i3 detected that deces not conform
to the syntax of a real number.

For example, given an input file posi=-
tioned at +the beginning of a logical
record with tha following contents:

3.14159/2

a floating poin%t read operation would
bring in the fleoating point value
3.16159, After the read, the file
pointer would ba positicned to the '/!
character.

If a field length value is specified,
as many characters as are indicated by
the value will be consumed by the read

operation. The variablae will be
assigned from +the beginning of the
field. 1f the field is not exhausted

after the variable has been assigned
the data, the rest of the field will be
skipped.

program EXAMPLE;

var
ZIP : 0..99999;
MAN : 0..999999;
BALANCE: REAL;
begin

READ(ZIP:5,MAN:6,BALANCE:9);

WRITELN('ZIP = ',ZIP);

WRITELN('MAN = ',MAN);

gRITELN('BALANCE = ',BALANCE:8:2)
ena.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP = 95123
MAN = 999999
BALANCE = 1000.00

Immediately after the READ state-
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 32. Using READ with length

qualifiers

When raading data into variables
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

° the variable is filled to its
declared capacity;

° an end-of-line condition is detec-
ted;

o the field langth (if specified) is
exhausted.

The length of a STRING variable will be
sat to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

program DOREAD;
var
INFILE text;
R arrayl[l1..10] of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I : 1..10;
begin
RESET(INFILE);
for I := 1 to 10 do
with RLI] do
begin
READCINFILE,NAME,AGE);
READ(INFILE,WEIGHT);
READLNCINFILE)
end;
end.
Figure 33. Using READ on text
files

8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been read, all remaining characters
Wwithin the logical record are skipped.
The procedure is applicable to text
files only.

Normally, READLN causes the next log-
ical record to be read (unless the
end-of-file is reached) and the file
pointer is positioned to the beginning
of the buffer that contains the record.

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-line condition is true
for an interactive file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in succession will cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,

the file is opened implicitly for input
as though RESET had been called.

Using Input/0utput Facilities 51

program COPY;

var
INFILE,
OUTFILE text;
BUF : STRING(100);
bhegin

RESET(INFILE);
REWRITECOQUTFILE);
while not EOF(INFILE) do
begin
READCINFILE,BUF);
WRITELN(OUTFILE,BUF);
(¥ignore characters after
column 100 in each line X)
READLNCINFILE)
end
end.

Using the
READLN

Figure 34. procedure

8.13.3 Text File WRITE

The WRITE procedure writes data to a
text file beginning at the current

position of the file pointer. A call
to the procedure has the forms:
WRITE(f, @)
or
WRITE(f,e:n)
or
WRITE(f,e:nl:n2)
where "f" is a file variable and "e" is

an expression which must be of one of
the following types:

BOOLEAN
CHAR (or a subrange thereof)
INTEGER (or a subrange thereof)
packed arrayl]l of CHAR
REAL (or SHORTREAL)
STRING
"n,""M1," and "n2" are optional field
lengths (integer expressions). The
file variable "f" may be omitted, in
which case, the file OUTPUT is assumed.
A call of the form
WRITE(f,el,e2,...en)
is executed as
hegin
WRITE(f,el);
WRITE(f,e2);

WRITEC,en);
end

52 Pascal/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out-
put.

If during a call to WRITE, the length
of the logical record being produced
becomes equal to the logical record
length (LRECL) of the text file, a run
time error diagnostic will be
generated.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is negative, the data
Wwill appear left justified. (The field
width will be the absolute value of the
specified length.)

String data that is being written with
a specified field length will be trun-
cated on the right if the field length
is too small.

If no field length is specified, a
default will be used that depends on
the data's type:

data type default field length

BOOLEAN 10
CHAR 1
INTEGER 12
REAL 20
SHORTREAL 20

In addition, expressions of type STRING
have a default field length equal to
their current length. Fixed length
strings (packed array of CHAR) have a
default equal to their declared length.

program DOWRITE;

var
OUTFILE text;
R array{i..10] of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I : 1..10;
begin
REWRITE(CQOUTFILE);
for I =1 to 10 do
With RL[I] do
hegin
WRITE(OUTFILE,NAME:-30,
AGE:3,"' ")
WRITECQUTFILE,WEIGHT:3:0);
WRITELN(OUTFILE)
end;
end.
Figure 35. Using WRITE on text

files

8.13.4 The WRITELN Procedure

The WRITELN procedure is applicable
only to text files intended for output.
It causes the current logical record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file is
fixed (RECFM=F), WRITELN will fill the
remainder of the current record with
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out-
put.

program DOUBLESPACE;

var
FILEIN,
FILEOUT text;
BUF t STRING;
begin

REWRITE(FILEOUT);
RESET(FILEIN);
while not EOF(FILEIN) do
begin
READLNCFILEIN,BUF);
WRITELNCFILEOUT,BUF);
(¥insert blank line)

WRITELNC(FILEOUT)
end;
end.
Figure 36. Using the WRITELN pro-

cedure

8.13.5 The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer (or to
a disk file which will eventually be

printed). A call to the procedure has
the following form:
PAGE(T)

where Y“f" is a variable of type TEXT
which has been opened for output.

If a logical record is partially
filled, an implicit WRITELN will be
performed prior to the page eject.

For this procedure to produce any
effect, the first character of each
logical raecord of the file must be
reservad for carriage control. This is
done by specifying either A (ANSI con-
trol) or M (machine control) in the
RECFM attribute for the file.

If the record format specifies ANSI
control, then the character '1' will ba
inserted in the first character posi-
tion of the record. For machine con-
trol, a single record is written that
contains the hexadecimal value of '8B!'
in its first character position.

program EXAMPLE;

var
PRINT:

begin

text;
é;étart new pageX)
PAGE(PRINT);

end.

Using the
dure

Figure 37. PAGE proce-

8.13,6 End of Line Condition

The end-of-line condition occurs on a
text file opened for i1input whan the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi-
tioned at the last character of a log-
ical record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (in EBCDIC, hexadeci-
mal 40) when the end-of-line condition
occurs,

The EOLN function is only applicable to
text files.

program EXAMPLE;

var
SYSIN: text;
CNT : 0..32767;
begin

(% compute length of first
logical record of SYSIN X)
RESET(SYSIN);

CNT = 0;
while not EOLN(SYSIN) do
begin
CNT := CNT + 1;
GET(SYSIN);
end;
WRITELNCCNT)
end.
Figure 38. Using the EOLN func-
tion

Using Input/Output Facilities 53

8.13.7 End of File Condition - text
files

The end-of-file condition becomes true
for a text file when one of the follow-
ing occurs:

° RESET is called and the file is
empty.

U The file is open for output.

° GET is called when the file pointer
is positioned at the end of the
last logical record of the file (in
which case the end-of-line condi-
tion is true).

° READ is called and all characters
of the last logical record were
consumed.

When the end-of-file condition ocecurs,
the file pointer has the value nil.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will be ignored.

program EXAMPLE;
var
SYSIN: TEXT;
CNT : 0..32767;
begin
(¥ compute number of logical
records in file SYSIN x)
RESET(SYSIN);
CNT := 0;
While not EOF(SYSIN) do
begin
CNT := CNT + 1;
READLN(SYSIN)
end;
WRITELNC(CNT)
end.

Figure 39. Using the EOF function
on a text file

8.1 RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READ(F,V)

is equivalent to

baegin
V := Fa;
GET(F)
end

54 Pascal/VS Programmer's Guide

where F and V are declared as follows:

var F: file of t;
Ve 5

If file F is not open when READ is
called, an error diagnostic will be
generated at run time.

8.14.2 Record File WRITE

As documented in the language manual,
the statement

WRITE(F,V)
is equivalent to

begin

where F and V are declared as follows:

var F: file of t;
V: t;

If file F is not open when WRITE is
called, an error diagnostic will be
generated at run time.

program EXAMPLE;
type
REC = record
NAME : STRING(25);
AGE : 0..99;
SEX : (MALE,FEMALE)
end;
var
INFILE,
OUTFILE:
file of REC;
BUFFER : REC;
begin
RESET(INFILE);
REWRITE(OUTFILE);
while not EOF(INFILE) do
begin
READCINFILE,BUFFER);
WRITEC(OUTFILE,BUFFER)
end
end.

Figure 40. Using READ and WRITE
on record files

8,14.3 End of File Ccondition - Record
Files

The end-of-file condition becomes true
for a record file when:

° RESET is called for an empty fila.

<9

J

® The file is opaened for output.

U] GET is exacuted for a fila in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has tha value nil. To
test for this condition, the EOF func-
tion is used.

Any calls to GET or READ for a file for

which the end-of-file condition is true
Wwill produce an error diagnostic.

8.15 CLOSING A FILE

The procedure CLOSE is provided to
close a file explicitly. A call to
this procedure has the form

CLOSE(F)
where "f" is a file variable.

All open files which are declared in
the body of a routine as simple vari-
ables are closed implicitly when the
routine returns to its invoker. All
files which are open when the program
terminates, will be closed automati-
cally by the Pascal/V$s runtime
environment.

If the variable associated with an open
file is destroved prior to program ter-
mination, the results could be disas-
trous when Pascal/VS attempts to close

the file. This problem could occur in

the following cases:

° the file variable is an elemant of
an array.

° the file variable is a field of a
record.

° the file variable is pointer quali-
fied (exists on the heap).

° a routine which contains local file
variables is exited with a goto
statement.

In these cases, the file variable must
be closed explicitly with a call to
CLOSE.

program EXAMPLE;

type
var
FSTK : arrayll..8] of
TEXT;
DDNAME: STRING(8);
I P 1..8;
begin

RESETC(FSTKLIJ],'DDNAME="||DDNAME);

for I := 1 to 8 do
CLOSE(FSTKIII1);
end.
Figure 41. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascal/VS permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEK(f,n)

where "f" is a record file that was
previously openad with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number. The the number of the
first record is 1.

A subsequent call to GET or PUT will
operate on the "nth" record of the
file. Each call to GET or PUT there-
after will operate on subsequent
records. SEEK does not perform an I/0

operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran-
dom access using the Basic Direct
Access Method (BDAM). The file that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attribute for the file
must be "F."

Under TS0 and 0S Batch, the first SEEK
operation on a file opened with REWRITE
Wwill cause dummy records to be written
to the associated data set until the
file's primary space allocation is
filled. The record number specified
must not exceed the number of blocks in
the file's primary space allocation.

Under CMS, the corresponding FILEDEF of
a file being accessed with SEEK must
have the XTENT attribute specified®.
This attribute specifies the largest
record number that may be accessed;
howevar, it has nothing to do with the
space occupied by the file. Thus, a
FILEDEF specification of the form

s If the XTENT attribute is not specified, CMS Will default it to 50.

Using Input/0Qutput Facilities 55

FILEDEF F DISK FILE DATA(XTENT 65535

will permit any record in file F to be
referenced with SEEK, regardless if it
actually exists. If a record is being
read that does not exist, CMS will
return a buffer of zeroes.

program EXAMPLE;
type
REC = record
NAME : STRING(25);

AGE : 0..99;
SEX : (MALE,FEMALE)>
end;

IDX = record
RECNO: 0..MAXINT;
end
var
RECFILE: file of REC;
IDXFILE: file of IDX;
begin
RESETC(IDXFILE);
RESET(RECFILE);
(¥write out names in order of
index *)
while .not EOF(IDXFILE) do
begin
SEEK(RECFILE,IDXFILEQ.RECND);
GET(RECFILE);
WRITELNC(OUTPUT,RECFILEQ.NAME)
GET(IDXFILE);
end
end.

Figure ¢2. Example of wusing SEEK
to access records ran-
domly

8.17 PARTITIONED DATA_SETS

8.17.1 oOpening a Partitioned Data Set

To open a partitioned data set (PDS)?,
the procedures PDSIN and PDSOUT are
provided. Calls to these procedures
are of the form

PDSIN(f,options)
PDSOUT(f,options)

where "F" is a file variable and
"options" is a string expression which
contains open options (see "The Open
Options"). Unlike the other procedures
which open files, the options string is
required and must specify a member name
(MEMBER=name).

PDSIN opens the specified member in the
PDS for input. As in the case of
RESET, the file pointer is made to

9

point to a buffer containing the first
logical record of the file.

PDSQUT creates a member in the PDS and
opens it for output. If the member
already exists, it will be erased and
then recreated.

See Figure 44 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a CMS Environ-
ment

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data saets via the 0S5 simulation facili-
ties. A DDname is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a Pas-
cal/VS program, the following commands
would be executed prior to executing
the program.

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com-
mand. For example, in order to access
the MACLIBs "M1", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB," the following commands
would be executed prior to executing
the Pascal/VS program.

FILEDEF LIB DISK M1 MACLIB A

FILEDEF LIB DISK M2 MACLIB A (CONCAT
FILEDEF LIB DISK M3 MACLIB A (CONCAT
GLOBAL MACLIB M1 M2 M3

8.18 THE OPEN OPTIONS

All Pascals/VS procedures which open
files are defined with an optional

string parameter which contains
options pertaining to the file being
opened. These options determine how

the file is to be opened and what
attributes it is to have.

The data in the string parameter has
the syntax shown in the following fig-
ureae:

All operations that may be applied to "partition data sets" under 0S5 may

be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

J

option-string:
———T:——>(opt:o:)———>T———>

option:

——> DDNAME = name —>7
——> BLKSIZE = n ——>1
——> LRECL = n — >
—> NOCC >
——> RECFM = ¢ —— >4
——> INTERACTIVE —— >
——> MEMBER=name —— >+
——> NAME=fn.ft.fm ——>-
——> UCASE > >

Figure 43. Syntax of open options

Not all of these options apply to all

open procedures.

If the option is spa-

cified for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
option and the context in which it
applies.

DDNAME=name

This attribute signifies that the
physical file to be associated with
the file variable has the DDname
indicated by "name." This new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a file open routine with the
DDNAME attribute specified.

If this option is not specified,
then the DDname to be associated
with the file is derived according
to the following rules:

° If the file variable is a sim-
ple variable then the default
DDname will be the name of the
variable itself, truncated to
8 characters.

° If the file variable is an ele-
ment of an array, a field of a
record, or is pointer quali-
fied, then a DDname will be
generated of the following
form: PASCALnn, where "nn" is a
two digit integer.

10

The DDNAME option is applicable to
tha following procedures:

RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

BLKSIZE=n

This attribute is used to specify a
physical block size to be associ-
ated with an output filae. This
value (indicated by "n") will over-
ride a BLKSIZE specification on the
DDname definition.

This option is applicable to the
procedurae REWRITE only.

LRECL=n

This attribute is used to specify a
logical record length to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a LRECL specification on the
DDname definition.

For files with variable length
records (RECFM=V), the logical
record length must include a 4 byteae
length descriptor!®. Thus, if text
is being written to such a file,
the LRECL must be 4 bytes longer
than the longest line to be
written.

The LRECL attribute may also be
used in the TERMIN and TERMOUT pro-
cedures to specify the length of
the I/0 buffer. (This will deter-
mine the maximum length of the line
to be read from, or written to,
your terminal.)

This option is applicable to the
procedures REWRITE, TERMIN, and
TERMOUT.

Normally, the first character
position of an output file which
contains ANSI or machine control
characters (as determined by the
RECFM) is not directly accessible
to the user program. The data in
such filas is placed at the second
character position of each record.

The NOCC option causes such files
to be treated as though control
characters are not significant;
that 1s, data will be placed within
each record at the first character
position. This option allows con-
trol characters to be generated
explicitly.

This option is applicable to the
procedure REWRITE.

RECFM=c

This attribute is used to specify a
record format to be associated with

The 4 byte length descriptor for each record of a V-record fila is an 0S

convention.

Using Input/Output Facilities 57

an output file. This specification
(indicated by "¢") will override a
RECFM specification on the DDname
definition.

Pascal/VS supports all record for-
mats that QSAM supports:

u LTl |A
M
B
S
F T A
BS M
vV |BT
BST
D [B] [Al]

For an explanation of each of these
record formats, consult the publi-
cation 0S/VS2 MVS Data Management
Services Guide (order number
GC26-3875).

The RECFM specification applies to
procedure REWRITE.

INTERACTIVE

This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a File for Interactive Input" on
page 46 for a description of inter-
active files.

This option applies to the proce-
dures RESET and PDSIN. (This
attribute is implied for TERMIN.)

MEMBER=name

This attribute specifies a member
name of a partitioned data set
(PDS). The member to be accessed
is indicated by "name."

The MEMBER specification is
required for the procedures PDSIN
and PDSOUT (see "Partitioned Data
Sets" on page 56).

NAME=fn.ft.fm (CMS only)

This attribute specifies the name
of a CMS file which is to associ-
ated with the file variable. This
option has no affect if the program
is not running under CMS.

"fn," "ft," "fm" are the file name,
file type and file mode, respec-
tively, of the CMS file. Each must
be separated by a period ("."™). A
file mode of """ is permitted.

The NAME specification is applica-
ble to the following procedures:
RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

UCASE (CMS only)

This option causes text that is
being read from a file opened by
TERMIN to be translated to upper
case. This option applias only to
programs running under CMS; it is
ignored otherwise.

program EXAMPLE;

var

PDS ¢ TEXT;

MEMBER : STRING(8);

BUF : packed arrayl[1..80] of CHAR;
begin

RESETC(INPUT, "INTERACTIVE');

READLN(MEMBER) ;
While not EOFC(INPUT) do
begin
PDSIN(PDS, 'DDNAME=SYSLIB,MEMBER="
while not EOF(PDS) do
begin
READLN(PDS,BUF);
WRITELN(BUF);
end;
READLN(MEMBER)
end
end.

Figure 44. Using the open options

(¥open INPUT for interactive %)

(¥ input. ¥)
(Xread 1st member name ¥)
(Xloop until no more members ¥)
(Xopen member for input ¥)
|| MEMBER);
(¥Xcopy each line of the ¥*)
(¥ member to file OUTPUT ¥*)
(¥read next member name ¥)

58

Pascal/VS Programmer's Guide

8.19 APPENDING TO A FILE

Data may be appended to an existing
file by opening 1t for output with a
call to REWRITE and specifying a dispo-
sition of "MOD" on the corresponding
DDname definition.

The following examples illustrate how
such a disposition is specified under
the various operating system environ-

ments. The DDname of the file is
"LOG"; the file name is "LOG.DATA."Y

CMS:
FILEDEF LOG DISK LOG DATA (DISP MOD

TS0:
ALLOC DDN(LOG) DSN(LOG.DATA) MOD

0S Batch:
/77L0G DD DSN=ABC.LOG.DATA,DISP=MOD

Using Input/0utput Facilities 59

60 Pascal/VS Programmar's Guida

C

9.1 READING A PASCAL/VS TRACE BACK

The Pascals/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa-
tion is given.

L The name of the routine.

o The statement number of the last
statement to be executed in the
routine (i.e. the statement number
of the call to the next routine in

the chain).

L The address in storage where the
generated code for the statement
begins.

o The name of the module in which the

routine is declared.

The trace routine may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 45 on page 62. In the example
starting at the bottom we see that Pas-
cals/VS called the user's main program
in the module named HASHASEG. State-
ment 2% of the main program contains
the call to READ_ID, statement 3 of
READ_ID contains the call to SEARCH_ID,
and so on.

A trace will be produced when a program
aerror occurs. An example is given in

9.0 RUNTIME ERROR REPORTING

Figure 46 on page 62. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check-
ing error occurs. A checking error
occurs when code produced by the com-
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK"™ on page 31 for a
description of compiler generated
checks.) Figure 47 on page 62 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 1in routinea
TRANSLATE.

A trace will be produced when an I/0
error occurs. Figure 48 on page 62 is
an example of this. In this case,
statement 3 of vroutine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an
error condition may be moved back
saveral statements. Thus, when a run-
time error occurs, tha statement number
indicated in the traceback might be
slightly less than the number of the
statement from which the error was gen-
erated.

Runtime Error Reporting 61

‘Trace back of called routines
Routine stmt at address in module
TRACE 4 02028C AMPXSENV
HASHKEY 9 02018C HASHCSEG
GET_HASH_PTR 2 021208 HASHBSEG
SEARCH_ID 9 0213C8 HASHBSEG
READ_ID 3 021550 HASHBSEG
<MAIN-PROGRAM:> 24 020278 HASHASEG
PASCAL/VS 02048C
Figure 4¢5. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Routine stmt at address in module
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
<MAIN-PROGRAM> 17 020298 TEST
PASCAL/VS 02048C

Figure 46. Trace call due to program error

AMPX032E High Bound Checking Error
Trace back of called routines

Routine stmt at address in module
TRANSLATE 4 020154 CONVERT
TO_ASCII 10 02024C CONVERT
<MAIN-PROGRAM> 17 020338 CONVERT
PASCAL/VS 02048C

Figure 47. Trace call due to checking error

AMPX0401S File could not be opened: SYSIN
Trace back of called routines

Routine stmt at address in module
INITIALIZE 3 020154 CoPY
<MAIN-PROGRAM> 2 020218 COPY
PASCAL/VS 02048C

Figure 48. Trace call due to I/0 error

62 Pascal/VS Programmer's Guide

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
checking errors that may occur in a
Pascal/VS program at run time.

Low bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable is
greater than the maximum allowed
for the subscript or subrange.

Nil pointer
an attempt was made to reference a
variable from a pointer which has
the value nil.

Case label
the expression of a case-statement
has a value other than any of the
specified case labels and there is
no otherkise clause.

string truncation

the concatenation of two strings
results in a string greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char-
acters than the maximum length of
the string.

Assertion failure
an assaert statement was executed in

which its associated boolean
expression evaluated to the value
FALSE.

string subscript out of bounds
there was an indexing operation on
a string which was greater than the
current length of the string.

Function value
a function routine returned to its
invoker wWithout being assigned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon

detection of an error, tha Pascal/V$s
runtima library will provide error han-
dling.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro-
tection exception. When a fatal error
occurs the following happens:

1. Pascal/Vs produces a message
describing the error; the message
is displayed on your terminal if
you are executing in VM/CMS or TSO,
or written to DDname SYSPRINT oth-
erwise.

2. A trace back is displayed.

3. The program execution is termi-
nated.
Other errors such as checking errors

will not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
results. Pascal/VS performs the fol-
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut-
ing in VM/CMS or TS0, or written to
DDname SYSPRINT otheruwise.

2. A trace back is generated.

3. If the program was compiled and
linked with the 'DEBUG' option and
the program was hot executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experiencing the
error Will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TS0, or
written to DDname SYSPRINT other-
Wwise.

4. If the program was compiled and
linked with the "DEBUG' option and
the program was executed with the
'DEBUG'" run time option then the
interactivae symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific number
of non-fatal errors to occur before the
program is terminated. This number is
set by the ERRCOUNT run time option
(see "Run Time Options"™ on page 35).
The default is 20.

Runtima Error Reporting 63

9.4 USER HANDLING OF EXECUTION ERRORS

(%

(%

type
ERRORTYPE =1 .. 90;

ERRORACTIONS = ((xaction to be performed *)
XHALT, (xterminate program ¥*)
XPMSG, (xprint pascal diagnostic %)
XUMSG, (¥print usar's message ¥x)
XTRACE, (Xproduce a trace back *x)
XDEBUG, (xinvoke the debugger ¥*)
XDECERR, (¥decr error counter %)
XRESERVEDSG, (XRESERVED ¥x)
XRESERVED7, (XRESERVED ¥)
XRESERVEDS, (XRESERVED ¥)
XRESERVEDY9, (XRESERVED ¥)
XRESERVEDA, (XRESERVED %)
XRESERVEDB, (XRESERVED ¥)
XRESERVEDC, (XRESERVED ¥)
XRESERVEDD, (XRESERVED ¥)
XRESERVEDE, (XRESERVED ¥)
XRESERVEDF); (XRESERVED ¥x)

ERRORSET = set of ERRORACTIONS;

procedure ONERROR(
const FERROR ERRORTYPE; (¥ERROR NUMBER *)
const FMODNAME ALPHA; (¥MODULE NAME WHERE OCCURRED x)
const FPROCNAME ALPHA; (¥PROCEDURE WHERE OCCURRED ¥x)
const FSTMTNO INTEGER; (XSTATEMENT NO ¥)
var FRETMSG STRING; (XRETURNED USER'S MESSAGE ¥)
var FACTION ERRORSET?}; (XACTIONS TO BE PERFORMED X)

EXTERNAL;

Figure 49. Contents of 'XINCLUDE ONERROR'

(26 36 36 36 2 36 2 36 2 3 2 3 I 3 I 36 I 3 I 36 I 36 I 3 I 3 I 36 36 36 3 3 I 36 I 3 I 36 I 36 I I 36 I 36 I 3 I 3 I 3 I 32 I 2 I M MM MMM HHH NN X)

(¥ RUNTIME ERROR INTERCEPTION ROUTINE

€.3333333333233333333333333333333333333333 3323323333323 232333 331D

%)
*)
¥*)

(Xnumber of execution errors x)

Pascal/VS provides a mechanism for you
to gain control when an execution time
error occurs. When such an error
occurs, a procedure called 'ONERROR! is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascal/VS library which does noth-
ing.

You may write vour own version of ONER-
ROR and declare it as an EXTERNAL pro-
cedure. The procedure will be invoked
when an error occurs; thus you may
decide how the error should be handled.
Figure 49 shows the contents of the
IBM-supplied include file that con-
tains the information relevant to
producing your own ONERROR routine.

Upon entry to ONERROR the paramaeter
FERROR contains the number of the error

that has been encountered. See "Exe-
cution Time Messages" on page 154 to
determine the message numbaer corres-
ponding to a particular error.!!

FMODNAME, FPROCNAME, and FSTMTNO con-
tain the name of the module, tha name
of the routine, and the source state-
ment number, respectively, of the
location where the error occurred.

FACTION is a set variable which deter-
mines what action is to be taken. Upon
invocation of ONERROR, FACTION will
describe the default action that will
take place after ONERROR returns. You
should examine this information and
decide whether you would like to handle
the error or let the default action
take place.

11 Each error intercepted by the Pascal/VS run time environment consists cf a
unique 3 digit number. A diagnostic message corresponding to the error
will begin with the error number praefixed with the characters AMPX and
suffixed with the character 'I', 'E' or 'S'" (Informational, Error, Severe

error).

64 Pascal’/VS Programmer's Guida

You may modify the FACTION parameter as
vou desire. If you set the XUMSG mem-
ber of FACTION then you must also set
FRETMSG with the text of the message.

Figure 50 on page 65 is an example of a
user interception of execution time
errors.

% INCLUDE ONERROR;
procedure ONERROR;
begin

if FERROR in [19, 21, 25] then
FACTION := [1

(¥do nothing if fixed, decimal or floating divide by zero ¥)
(¥and diagnose fixed-point overflow

"HASHFNC') then

else
if (FERROR = 18) & (FPROCNAME =

begin
FACTION := [XUMSG];
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

end;

end;
Figure 50. Example of User Error Handling

in procedure HASHFNC %)

9.5 SYMBOLIC VARIABLE DUMP

When a program error or checking error
occurs, a symbolic dump of all vari-
ables which are local to the routine in
which the error occurred may be pro-
duced. This dump will be produced if
two conditions are met:

. The source module containing the
code from which the error occurred
was compiled with the DEBUG option.

° The Pascal/VS debug library was
included in the generation of the
associated load module.

The variable dump is placed on your
terminal if you are executing in VM/CMS
or TS0, or written to DDname SYSPRINT
otherwise.

Runtime Error Reporting 65

66 Pascals/VS Programmer's Guide

The Pascals/VS interactive debugger is a
tool that allows programmars to quickly
debug Pascal/VS programs without hav-
ing to write debug statements directly
into their source code. Basic func-
tions include tracing program
execution, viewing the runtime values
of program variables, breaking at
intermediate points of execution, and
displaying statement frequency count-
ing information. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TS0 and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct-
ly to vour terminal. If the debugger
is being run in 0S batch, then the
input is read from DDname SYSIN; the
output is sent to SYSPRINT.

In order to use the debugger, vou must
follow these three steps:

® Compile the module to be debugged
with the DEBUG option. Modules
that have been compiled with the
DEBUG option can be linked with
modules that have not been compiled
with the DEBUG option.

° When 1link editing vyour program,
include the debug library. (It
must be located ahead of the run-
time library in search order).12

° When executing the 1load module,
specify 'DEBUG' as a run time
option.!3 This will cause the debug
environment to become active and
you will be immediately prompted
for a debugger command.

In the debugger environment the user
may issue debug commands and examine

10,0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10,1 QUALIFICATION

A qualification consists of a module
name and a routine name. The debugger
uses the current qualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger gained
control.

At the start of a debug session, the
current qualification is the name of
the module containing the main program,
and the main program itself.

10.2 COMMANDS

This section describes the commands
that a user may issue with the debug
facility. Every command may be abbre-
viated to one letter if desired except
the QUIT, END and CLEAR commands which
have no abbreviations. Square brackets
('['" and ']') are used in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi-
ple commands on each line.

12 yUnder CMS, the debug library is included if the DEBUG option is specified

when invoking PASCMOD.

(see "How to Build a Load Module"™ on page 12.)

Under TS0, the debug library is included by specifying the DEBUG keyword

operand when

13 Module"™ on page 18.)

Options"™ on page 35.

invoking the PASCMOD clist. (see "How to Build a load

Run time options must be terminated with a slash ('/'). See "Run Time

Pascals/VS Interactive Debugger 67

10.,2.1 BREAK Command

10.2.2 CLEAR Command

Command Format:

stmt
BREAK [I[modules/] [routinel/l] []
END
stmt
B [Lmodules] (routinel/l []
END
B
Where:

module is the name of a Pascal/V$s
module.
routine is the name of a procedure
or function in the module.
stmt is a number of a statement
in the designated routine.
END is a keyword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the indicated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit-
ted in which case the defaults are tak-
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break-
point is to occur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 32 breakpoints may be set
at any one time. The following table
illustrates the meaning of the various
forms.

Input Module Procedure

B S current current

B /S current main program
B P/S current

B M//S main program
B M/P/S M P

Where:

current - means currently qualified
module or procedure,

M,P - are the names of a module
or procedure
S - is either a statement

number or END

68 Pascal/VS Programmer's Guide

Command Format:

CLEAR

Minimum Abbreviation:

CLEAR

There are no operands.

The CLEAR command is used to remove all
breakpoints.

10,2.3 CMS Command 10,2.4 DISPLAY Command

Command Format: Command Format:

CMS DISPLAY

Minimum Abbreviation: Minimum Abbreviation:
c D

There are no operands.

This command activates the CMS subset The DISPLAY command is used to display
mode. If the program is not being run information about the current debugger
under CMS, the command is ignored. session at the wuser's terminal. The

information displayed is:

o the current qualification,

o where the user's program will
resume execution upon the GO com-
mand,

o the current status of Counts,

o the current status of Tracing.

Pascal/V5S Interactive Debugger 69

10.2.5 DISPLAY BREAKS Command 10.2,6 DISPLAY EQUATES Command

Command Format: Command Format:

DISPLAY BREAKS DISPLAY EQUATES

Minimum Abbreviation: Minimum Abbreviation:

D B D E

There are no operands. There are no operands.
The DISPLAY BREAKS command is used to The DISPLAY EQUATE command is used to
produce a list of all breakpoints which produce a list of all equate symbols
are currently set. and their current definitions.

70 Pascal/VS Programmer's Guida

10.2.7 END Command

10.2.8 EQUATE Command

Command Format:

END
Minimum Abbreviation:

END

The END command causes the program to
immediately terminate. This command is
synonymous with QUIT.

14 There is one exception:
string.

Command Format:

EQUATE identifier [datal
Minimum Abbreviation:

E fdentifier [datal

Where:

identifier is a Pascal/Vs
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi-
er name to a data string. When the
identifier name appears in a command,
it will be expanded inline prior to
executing the command.

As an example, the command
EQUATE X ,BIIl

Wwill cause the variable "B[II" to be
viewed when "X is entered as a
command. The commands

EQUATE Y R3.FI61.4J
sBLY]

will cause the variable "BI[Ra.F[61.J1"
to be viewed.

A semicolon may not terminate the
EQUATE command; a semicolon will be
treated as part of the data string.
For example, the command

EQUATE Z GO3;LISTVARS

will cause the "GO" and "LISTVARS" com-
mands to be executed in succession when
"Z" is entered as a command.

An equate command may be used to rede-
fine the meaning of a debugger
command: 1%

EQUATE GO WALK

makes the command "G0O" function as the
command "WALK."

An equate command may be cancelled by
equating the previously defined iden-
tifier to an empty data string:

EQUATE Z

the name EQUATE may not be equated to a data

Pascal/VS Interactive Debugger 71

removes the symbol nzn from the
debugger's equate table.

Equates may be equated to strings which
contain other equates. All substi-
tution will take place after expansion.
The commands

EQUATE A P3.1
EQUATE B ,XYZIAIl

Wwill cause the symbol "B" to be
expanded to ",XYZI[P3.Il."

72 Pascal/VS Programmer's Guide

10.2.9 GO _cCommand

Command Format:

GO

Minimum Abbreviation:

G

There are no operands.

This command causes the program to
either start or resume executing. The
program wWwill continue to execute until
one of the following events occurs:

U breakpoint

° program error

o normal program exit

A breakpoint or program error will

return the user to the Debug environ-
ment.

10.2.10 Help Command 10.2.11 LISTVARS Command

Command Format: Command Format:

? LISTVARS

Minimum Abbreviation: Minimum Abbreviation:

? L

There are no oparands. There are no oparands.
Tha Help command lists all Debug com- This command displays tha values of all
mands. variables which are local to the cur-

rently active routine.

Pascal/VS Interactiva Debugger 73

10.2.12 Qualification Command

10.2.13 QUIT Command

Command Format:

QUAL [module /1 [routinel

Minimum Abbreviation:

Q@ ([module /1 [routinel
Where:

module i's the name of a Pascal/V$
module.

routine is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

. the module name defaults to the
current qualification.

. the routine defaults to the main
program if the associated module is
a program module, or to the outer-
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The
current qualification provides the
basis on which program names are
resolved. If there is no activation of
the routine available {(no invocations)
the user may not display local vari-
ables for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali-
fication is automatically set to the
module and the routine in which the
breakpoint was set.

74 Pascal/VS Programmer's Guide

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

10.2.1% RESET Command

10.2.15 SET ATTR Command

Command Format:

stmt
RESET [I[modules]l [routinel’/] []
END

Minimum Abbreviation:

stmt
R [[modules] [routinel’/] []
END

Where:

module is the name of a Pascal/V$s
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

Command Format:

e]

SET ATTR [
OFF

Minimum Abbreviation:

ON
sa []
OFF

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displaved by default. The OFF
parameter specifies that variable
attribute information will not be dis-
playved by default. The default may be
overridden on the variable viewing com—
mand.

Pascal’/VS Interactive Dabugger 75

D.2, T COUNT Command

10.2,17 SET TRACE Command

Command Format:

N
SET COUNT []
OFF

Minimum Abbreviation:

ON
sc []
OFF

The SET COUNT command is used to initi-—
ate and terminata statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is exacuted during program
exacution, The summary 15 produced at
the end of program execution and is
written to the standard fila 0OUTPUT.
Statement counting may also be initi-
ated with the runtime COUNT cption.

76 Pascals/VS Programmar's Guidae

Gommand Fermat:
ON
SET TRACE [OFF]
TO ddname
injim reviatio
ON
ST [OFF]
TO0 ddname
Where:
ddname is the name of a2 DDname
whe:e the trace output is to he
sent.

Thae SET TRACE command is used to eijthar
activate or deactivate program
tracing. Program tracing provides the
user With a list of every statament
executed in the the program. This i=a
useful for following tha execution flow
during axecution.

The output from the program trace nar-
mally will go to vour terminal, by
using the TO0 option vou may direct the
output to a specific file.

10,2.18 TRACE Command

10.2.19 Viewing Variables

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca-
tion chain are listed along with the
most recently executed statement 1in
each.

Command Format:

[(option [)]1]

» variable
Where:

variable is a Pascal variable.
See the chapter entitled
"Wariables" in the Pascal/VS
Reference Manual for the
syntax of a variable.

option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro-
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified variable. If the var-
iable is found to be a valid reference,
then its value is displavyed. If the
name cannot be resolved within the cur-
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automatic
variable for which no activation cur-
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam-
ples, array elements, record fields,

and dynamic variables may all be
vieaewed. Variables are formatted
according to their data type. Entire

records, arrays and spaces are dis-
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen-
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an option, attributes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: A subscripting expression may
only be a variable or constant; that
is, it may contain no operators. Thus,
such a refarence as

is valid (at least syntactically), but
the reference

)3[1"'3]

Pascal/VS Interactive Debugger 77

is not a valid refarence because the
subscripting expression is not a vari-
able or constant.

Examples
yd

,pa.b
ybl1,x].int (ATTR
repalx,yv]l.ba.all]

If the variable being viewed has not
been assigned a value then the results
depend on the variable's type:

. If the variable is of a simple tvpe
(integer, char, real, etc.), then
the word "uninitialized" will be
printed.

. If the variable is of a structured
type (array, record), then the con-
tents Will be printed in hexadeci-
mal; each byte of the the variable
Wwhich is uninitialized will have
the value 'FE' (hexadecimal).

78 Pascals/V5 Programmer's Guijde

10.2.20 Viaewing Memory

Command Format:

» hex-string [: length]
Where:
hex-string is a number in

hexadecimal notation.
length is an integer.

This command i1s used to display the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex string is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory 1s dumped for 16 bytes. The
dump is in both hex and character for-
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an "x' (eg. '35D05'X). The
length is specified in decimal.

Examples

»120000'X
»7G6¢cFO'X : 100

10.2.2]1 WALK Command

Command Format:

HALK
Minimum Abbreviation:

H

There are no oparands.

This command causaes the program to
either start executing or resume exe-
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin-
gle stepping through a section of code.

Pascal/VS Interactive Debugger 79

10.3 DEBUG TERMINAL SESSION

progrem Primgen;
type
PrimeRange = 1,.100; (¥Specify limits for the *)
(¥ number of prime numbers)
var
Prime arrayl PrimeRange 1 of Integer;
(%¥This array storesa the resultk)
NotUsed PrimeRange; (¥lUsed test preceeding primes)
Savelndax PrimeRange:; (¥Used to remember last used X)
(¥ spot in Prime)
TestNumber Integer; (¥Test value for primeness *)
function IsPrimel(Testval INTEGER) BOOLEAN;
var
Quotient, (%¥Testval div prime %)
Remainder Integer; (¥Taest value for primeness *)
Primelndex PrimeRange; (%Used test precaeding primes %)
begin (%IsPrime %)
1 PrimeIndex := Lowest(PrimeRange); (¥Tent each previous prime ¥)
repeat (%Starting With the first ona)
2 Primelndex := Succ(Primelndex); (%Get next prime %)
(%Compute relative primeness of Testval and a Known prime ¥)
3 Quotient := Testval div Prime(Primelndex];
4 Remainder :{= Testval - Quotient ¥ PrimalPrimelndex]
5 until (Remainder=0) | (Quotient <= PrimelPrimeIndexl);
6 if Remainder = 0 then (%If the number was divided by¥X)
7 IsPrime = FALSE (¥any known Prime, then this)
else (%15 not prime *)
8 IsPrime = TRUE:
end; (¥IsPrime ¥)
begin
1 Primell] = 23 (%First thrae primes %)
2 Prime(2] = 3; (x ditto %)
3 Prime{3] = 5; (% ditto ¥)
4 TestNumber = 5; (%5tart candidates at 5 *)
5 Savelndex = 3; (¥Last used prime entry %)
repeat
6 TestNumber := TestNumber *+ 2; (¥Test each odd number ¥)
(¥ starting with the first)
7 if IsPrime(TestNumber) then (X¥If canidate i3 a prime *)
begin (%¥Save it in the next entry %)
8 Savelndex:= Succ(Savelndex): (¥ of the prime table)
9 Prime{SaveIndex] := TestNumber
end
10 until Savelndex = Highest(PrimeRanga);
(%¥Print results at ten to a line x)
11 for Primelndex := Lowest(PrimeRange) to Highest{PrimeRange) do
begin
12 Write(PrimelPrimelndexl:?7 J); (¥Print one prime number X)
13 if (Primelndex mod 10) = 0 then (¥If ten have been printed)
Writeln (¥ then skip to next line)
15 end;
and. (%¥Primgen)
Figure 51. Sample program for Debug session

The following series of figures is a
sample Debug terminal sessjon that dem-
onstrates breakpoints, viewing vari-
ables and other DEBUG commands, User

an Pascal/V5 Programmar's Guida

commands a&ara
lined. The program being executed
shown in Figure 51.

highlighted and under

is

9

pascalvs primgen (dehuyg
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines: 62; Total time: 1.20 seconds; Total rate:

R; T=1.73/3.05 16:13:5%

pascmod primgen (debug
R; T=0.90r/2.19 16:14:51

filedef output terminal
R; T=0,0370.,05 16:14:52

primgen debuy count -/
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 52. Compiling, linking and executing a program with DEBUG

3092

LPM

q

LName (abbreviation is in capital letters)
? This command list

, Pisplay a variable

Break Set a breakpoint

CLEAR Remove all breakpoints

Cms Enter CMS subset mode
Display Display current resume point

Display Break Display currently set breakpoints
Display Equate Display currently set equates

END Halt vour program

Equate Set an identifier to a literal value
Go Continue executing your program
Listvars List all variables

Qual Set default module/routine

QUIT Halt wvour program

Reset Remove a specific breakpeint

Set Attr Set default viewing information CON/OFF
Set Count Turn statement counting ON/CFF

Set Trace Turn tracing ON/OFF/T0 fileid

Trace Display invocation chain of routines
Walk Execute one statement of current routine

Debug(PRIMGEN <MAIN-PROGRAM>}:

Figure 53. The HELP command of DEBUG

Pascal/V3 Interactive Debugger

8l

hreak 8
PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

a9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Walk

Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug{PRIMGEN <MAIN-PROGRAM>):

Walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 54. Setting Breakpoints and Statement Walking

listvars

Variables for procedure: <MAIN-PROGRAM>

PRIME

(0003CA28)

000000 0QO0QO0O0002 DO0O00003 00000005 FEFEFEFE ". . i v i vt i ievnnen.

000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '....... v uunn
(00000020 through O0DOQD)8BF is the same as abova)

NOTUSED = wuninitialized

SAVEINDEX = 3

TESTNUMBER = 7
Debug{PRIMGEN <MAIN-PROGRAM>):

Figure 55. The LISTVARS command - List all variables

82 Pascals/V5 Programmer's Guide

set trace on

Program trace is on -- output to
Debug(PRIMGEN <MAIN-PROGRAM>):

q0
Resuming PRIMGEN <MAIN-PROGRAM>
==z====)» 6-7
Executing PRIMGEN ISPRIME
=—=====> 1
T===z=Z=)> 2-5
—==z=z==>» 6
Z=z=z=z=:=)> 7

Returning f
Resuming P

===z===> 10
—====:=> 6
Executing P
zz===z==> 1
=—===z==> 2
==z=z=z=:=> 6
z—=====)> 8

Returning f
Resuming P
=T=ZZZ=Z=)> 8
Stopped at

Dabug(PRIMG

Figure 56.

rom ISPRIME
RIMGEN <MAIN-PROGRAM>

-7

RIMGEN ISPRIME

rom ISPRIME

RIMGEN <MAIN-PROGRAM>
-9
PRIMGEN/<MAIN-PROGRAM>/8
EN <MAIN-PROGRAM>):

The Trace Mode of DEBUG

'<TERMINAL>"'

Pascal/VS Interactive Debugger

83

z=====> 10

—z==z=z==> 6-7

Executing PRIMGEN ISPRIME
—=====> 1

=—==zz=z)> 2-5

—===z==> 2-5

—=—====> 6

=—===z==> 8

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>
Z===z==> 8-9

Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug{(PRIMGEN <MAIN-PROGRAM>):

Halk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN-PROGRAM>):

—=z=z===> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

=sz====> 6-7
Stopped at PRIMGEN/<MAIN--PROGRAM>/6
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN--PROGRAM>/7
Debug(PRIMGEN <MAIN-PROGRAM>):

Halk
Executing PRIMGEN ISPRIME
S=Z====> 1
======> 2-5
—===z==> 6
—=z=z=z==> 7

Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
10

Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

g0
Stopped at PRIMGEN/<MAIN--PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 57. Walking when the Trace Mode is On

84 Pascals/VS Programmer's Guide

display qualification

Currently qualified to PRIMGEN <MAIN-PROGRAM>

Will resume at PRIMGEN <MAIN-PROGRAM> 8
Counts are on

Trace is on

Trace output to <TERMINAL>
Debug(PRIMGEN <MAIN-PROGRAM>):

display breaks
Module Routine Stmt
PRIMGEN <MAIN-PROGRAM> 8
Debug(PRIMGEN <MAIN-PROGRAM>):

equate tn , testnumber
Debug(PRIMGEN <MAIN-PROGRAM>):

tn
, TESTNUMBER
TESTNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

display equate
TN ==>
Debug(PRIMGEN

» TESTNUMBER
<MAIN-PROGRAM>):

set trace off
Program trace

Debug(PRIMGEN

is off
<MAIN-PROGRAM>):

Figure 58. Miscellaneous DEBUG Commands

» testnumber
TESTNUMBER = 19

Debug(PRIMGEN <MAIN-PROGRAM>):

y testnumber (attr
DATA TYPE: INTEGER
MEMORY CLASS : LOCAL AUTOMATIC
DECLARED 1IN <MAIN-PROGRAM>
TESTNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

2primell10]
PRIMEL10] = wuninitialized
Debug(PRIMGEN <MAIN-PROGRAM>):

2Primel51
PRIME[5] = 11

Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 59. Commands to Display a Variable

Pascal/VS Interactive Debugger

85

break isprime/end
PRIMGEN/ISPRIME/ZEND
Debug(PRIMGEN <MAIN-PROGRAM>):

1]
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

trace
Trace back of called routines
Routine stmt at address in module
ISPRIME 8 020138 PRIMGEN
<MAIN-PROGRAM> 7 020260 PRIMGEN
PASCAL/VS 02055A

Debug(PRIMGEN ISPRIME):

set trace on
Program trace in on —- output to "<TERMINAL>'
Debug(PRIMGEN ISPRIME):

equate next qojlistvars
Debug(PRIMGEN ISPRIME):

next
GO;LISTVARS
Resuming PRIMGEN <MAIN-PROGRAM>
—=—====> 8~-9
—-—====> 10
—=====> 6-7
Executing PRIMGEN ISPRIME
—=====> 1
—=—==z==> 2-5
—=—====> 6
—=—=z===> 7

Returning from ISPRIME
Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME
PRIMEINDEX = 2

QUOTIENT = 13

REMAINDER = 0

TESTVAL = 39

Debug(PRIMGEN ISPRIME):

set trace off
Program trace is off
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 60. Using Multiple commands on one Line and other commands

86 Pascal’/VS Programmer's Guide

reset 8

Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed

Debug(PRIMGEN <MAIN-PROGRAM>):

90
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

listvars
Variables for procedure: ISPRIME
PRIMEINDEX = 2
QUOTIENT = 11
REMAINDER = 0
TESTVAL = 33
Debug(PRIMGEN ISPRIME):

reset end
Breakpoint at PRIMGEN/ISPRIME/END has been removed
Debug(PRIMGEN ISPRIME):

g0
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 5641
Figure 61. The Reset Breakpoint Command
PASCAL/VS STATEMENT COUNTING SUMMARY PAGE

<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIME(S)

FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT

1-5 :1 6-7 :268 8-9 :97
11 :1 12-13 :100 14 :10,

ISPRIME IN PRIMGEN CALLED 268 TIME(S)

FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT
7

1 :268 2-5 910 6 :268
8 :97

Figure 62. Statement Counting Summary

10 :268

:171

Pascal/VS Interactive Debugger

87

88 Pascal/VS Programmer's Guide

This section describes the rules that
the Pascal/VS compiler employs in map-
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off-
sets Wwithin the routine's dynamic stor-
age area (DSA). There is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo~
cated when the routine is called and is
deallocated when the routine returns.

11.2 INTERNAL STATIC STORAGE

For source modules that contain vari-
ables declared STATIC, a single unnamed
control section ('private code') is
associated with the source module in
the resulting text deck. Each variable
declared via the STATIC construct,
regardless of its scope, is assigned a
unique offset within this control sec-
tion.

11.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control section
(csect). Each def variable which is
not initialized will generate a named
COMMON section.!3 The name of the sec-
tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variables are allo-
cated dynamically from heap storage by
the procedure 'NEW'. Such variables
are always aligned on a doubleword
boundary.

11.5 RECORD FIELDS

Fields of records are assigned consec-
utive offsets within the record in a
sequential manner, padding where nec-
essary for boundary alignment. Fields
Wwithin unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in a Pascals/VS
source module is assighed storage and
aligned according to its declared type.

11.6.1 The Predefined Types

The table in Figure 63 displays the
storage occupancy and boundary align-
ment of variables declared with a pre-
defined type.

STORAGE MAPPING OF DATA
DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRING(len) len+2 HALF WORD
STRINGPTR 8 FULL WORD
Figure 63. Storage mapping for predefined types

15
nicate with FORTRAN subroutines.

Each def variable becomes a named COMMON block which may be used to commu-

Storage Mapping 89

11.6.2 Enumerated sScalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu-
py a half word and will be aligned on a
half word boundary.

11.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed wWill be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 6%.
Given a type definition T as:

type
T = packed i..j;
and
const
I = ORD(i);
J = ORD(j);
Range of SIZE in|[ALIGNMENT
I .. J bytes
0..255 1 BYTE
~-128..127 1 BYTE
-32768..32767 2 HALF WORD
0..65535 2 HALF WORD
0..16777215 3 BYTE
-8388608..8388607 3 BYTE
otherwise % FULL WORD

Figure 64. Storage mapping of

subrange scalars

Each entry in the first column in the
above table is meant to include all
possiblae sub-ranges within the speci-
fied range. For example, the range
100..250 would be mapped in the same
way as the range 0..255.

11.6.% RECORDS

An unpacked record is aligned on a
boundary in such a way that every field
of the record is properly aligned on
its required boundary. That is,

90 Pascal/VS Programmer's Guide

records are aligned on the boundary
required by the field with the largest
boundary requirement.

For example, record A below will be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of
type REAL; record C will be aligned on
a byte.

type
A= record (¥full word aligned¥)
Al : INTEGER;

A2 : CHAR
end;
B= record (*¥double word alignedx)
Bl : Aj;
B2 : REAL;
B3 : BOOLEAN
end;

C= record (xbyte alignedx)
Cl : packed 0..255;

C2 : ALPHA
end;
Figure 65. Alignment of records

Packed records are always aligned on a
byte boundary.

11.6.5 ARRAYS

Consider the
definition:

following type

type
A=array [s 1 of ¢t

where type s is a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary required for data type 't'.
With the exception noted below, the
amount of storage occupied by this var-
iable is computed by the following
expression:

(ORD(HIGHEST(s))-0RD(LOWEST(s))+1)
¥ SIZEOF(t)

The above expression is not necessarily
applicable if ¢! reprasents an
unpacked record type. In this case,
padding will be added, if necessary,
betwaen each element so that each ele-
ment will be aligned on a boundary
which meets the requirements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev-—
er insarted between elements.

A multi-dimensional array is mapped as
an array of array(s). For example the
following two array definitions would
be mapped identically in storage.

array [i..3, m..n 1 of t

array [i..3 1 of
array [m..n 1 of t

11.6.6 FILES

File variables occupy 6% bytes and are
aligned on a full word boundary.

11.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

explain how sets are
terms wWill need to be

To adequately
mapped, two

defined: The base type is the type to
which all members of the set must

belong. The fundamental base type
represents the non-subrange scalar
tvpe which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0'..'9"

has the base type defined by '0'..'9';
and a fundamental base type of CHAR.

Any two unpacked sets which have the
same fundamental base type wWill be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S
T

set of s;
set of t;

where s is a non—-subrange scalar type
and t is a subrange of s: both S and T
Wwill have the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though this value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contain

the largest value of the fundamental
base tvpe. Packed sets occupy the min-
imum number of bytes to contain the
largest valid value of the base type.
Thus, variables A and B below will both
occupy 256 bits.

var
A : set of CHAR;
B : set of '0'..'9';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
c : set of (C1,C2,C3,C4,C5,Cé,
cz?,c8,C9,C10,C11,C12
c12,C€13,C14,C15,Cl6);
D : set of C1..C8;
E : packed set of C1..C8;

A set type with a fundamental base type
of INTEGER is restricted so that the
largest member to be contained in the
set may not exceed the value 255;
therefore, such a set will occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bits; variable X will occupy 32
bits.

var
U : set of 0..255;
V : set of 10..20;
W : packed set of 10..20;
X : packed set of 0..31;

Given that M is the number of bits
required for a particular set, the
table in Figure 66 indicates how the
set will be mapped in storage.

Range of SIZE ALIGNMENT
M BYTES
1 <= M<K=8 1 BYTE
9 <= M <= 16 2 HALF WORD
17 <= M <= 24 3 BYTE
25 <= M <= 32 % FULL WORD
33 <= M <= 256 | (M+7) BYTE
div 8
Figure 66. Storagea mapping of
SETS

Storage Mapping 91

11.6.8 SPACESs

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes indicated in the
length specifier of the type

92 Pascal/VS Programmer's Guida

definition, For example, the variable
S declared below occupies 1000 bytes of
storage.

var S: space [1000] of INTEGER;

J

12.1 LINKAGE CONVENTIONS

Pascal/VS uses standard 0S5 linkage con-
ventions with several additional
restrictions. The result is that Pas-
cal’/VS may call any program that
requires standard conventions and may
be called by any program that adheres
Eg the additional Pascal/VS restric-
jons.

On entry to a Pascal/VS routine the
contents of relevant registers are as
follows:

° Register 1 - points to the parame-
ter list

° Register 12 - points to the
Pascals/VS Communication Work Area
(PCWA)

° Register 13 - points to the save

area provided by the caller
° Register 14 - return address

o Ragister 15 - entry point of called

routine
Pascal/VS requires that the parameter
register (R1) be pointing into the
Dynamic Storage Area (DSA) stack in

such a way that 144 bytes prior to the
Rl address is an available save area.

12.0

CODE GENERATION FOR THE IBM/370

12.

The table

REGISTER USAGE

in Figure 67 describes h

OW

each general register is used wWwithin a

Pascal/VS program.

The floating poi

rt

registers are used for computation on
data of type REAL.

6,1

11

12

13

14,15

register(s)

Figure 67.

purpose(s)

temporary work registers
for the compiler
standard linkage usage
on calls

6,7,8,9
registers assigned by the
compiler for computation
and for data base
registers

code base registers
of the currently
executing routine

address of the DSA of the
main program

always points to Pascal/V$S
Communication Work Area

always points to the local
DSA

temporary work registers
for the compiler
standard linkage usage
on calls

Register usage

Code

Generation for the IBM/370

93

12.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storadge
Area (DSA) is allocated. This area 1s
used to contain save areas, local vari-
ables and compiler generated tempo-
raries. A Pascal/VS routine requires a
DSA of at least 144 bytes; if the rou-
tine has parameters or local variables,
more space is needed.

The first 72 bytes are generally used
according to standard 05 linkage con-
ventions., The first word is used to
copy the previous data base register at

the current procedure nesting level.

Figure 68 illustrates the structure of
the DSA. Figure 69 on page 95 shows
the DSECT expansion of the DSA.

copy of this DSECT may be found in mem-
include

ber DSA of
libraryt®,)

the standard

register 13—->

Register
Save area
12: IV,
—80:— —
— | —84:— —
—|—|—88:—
92:
96: | |rrrrrrrrz
100: reserved for

error handling

112: floating point
registers
FO - F6
144: parameter

list

local variables
and compiler
temporaries

translator
temporaries

144 byte save area

parameter list
to be built here

144 byte save area

16 byte rte parms

>

/777 = indicates that the field

Figure 68, DSA format

reserved for future use

pointer to translator temporaries
pointer to parameter list build area
pointer to the end of the DSA
pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

ifT the routine requires no translator

temporaries, then this space is not
presant
The following areas only in last DSA

for the next routine to be called

for runtime environment in case of
error
room for parameters

error recovery

iT required by

is not presently used.

1¢ Under MVS,
it is PASCALVS MACLIB.

9% Pascal/VS Programmer's Guide

the name of this library

is sysl.PASCALVS.MACLIB. Under CMS,

DSA
DSASDIS
DSALSVA

DSARETA
DSAEPAD
DSARGO
DSAPREG
DSACODE
DSARG3
DSARGH
DSARGS
DSARGSH
DSARG?
DSARGS
DSARGY
D5ACOD2
DSAL1B
DSAPCWA
DSAAKEY
DSARES4
DSATPTR
DSAPPTR
DSARPTR
DSACNTS
DSARAID
DSAFUNX
DSARES]
DSACKS5AL
DSACKSA?
DSACKSAZ
DSAFLO
DSAFL2
DSAFL4
DSAFL6
DSALEN

D5APRMI
DSAPRM2
DSAPRM3
DSAPRMEG
DSAPRM5
DSADATA

Figure 69,

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
D5
DS
DS
DS
DS
D5
DS
DS
DS
DS
DS
D5
DS
DS
DS
D5
DS
DS
DS
EQU
SPACE
DS
D5
DS
DS
DS
DS

MO MMM TNMHRXODODDOD NI TMNXX TT NI AN MTITImTmTITmmmnmananammnam

DSA DSECT:

Save space for display level
Pointer to last save area
(reserved for future use)
Return address

Entry point address

Save
Save
Save
Save
Save
Save
Save
Save
Save
Save
Save
Save
Save
Used

Save
Save
Save
Save
Save
Save
Save

area
area
area
area
area
area
area
area
area
area
area
area
area

area
area
area
area
area
area
area

Length of

for register 0

for parameter list pointer (reg 1)
for base register for code (reg 2)

for register
for register
for register
for register
for register
for register
for register

O DR~NND P

for 2nd base register for code (reg 10)
for register 11 (main DSA address)

for register 12 (PCWA pointer)

by attention processor
Reserved
Address of temporary section of DSA

Address of parameter list build area

Address of runtime parameter list build area
Address of count table
Interactive debugger flags
Function assignment check flag
Reserved

utilized by error recovery
utilized by error recovery
utilized by error recovery

for floating point
for floating point
for floating point
for fleocating point
D5A header

register
register
register
register

T PrNOo

Start of parameters and/or local variables

anchored off of register 13,

Code Generation for the IBM/370

95

12.4 ROUTINE INVOCATION

Each invocation of a Pascals/V5 routine
must acquire a dynamjc storage area
(DSA)Y (seae "Dynamic Storage Area" on
page 94). This storage is allocated
and deallocated in a LIFO (last
infirst out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which sto-
rage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
PascalsV¥5 for a save area. Tha rou-
tine's local variables and parameters
are mapped wWithin the D5A starting at
offset 144,

Upon entering a routine, register 1
points 144 bytes into the routine's
DSA, which 15 wWhere the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 14% bytes plus enough
storage for the parameter list. This
portion of satorage 1is e&actually an
extension of the caller's DSA.

In general, the DSA of a routine con-
sists of five sections:

1. The local save area (144 bytes).
2. Parameters passed in by the caller.

3. Local variables required by the
routina.

4. A save area required by any routina
that will ba called.

5. Storage for the largest paramater
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, %, and 5
ara allocated by the prologue of the
routine to which the DSA belcongs.

Upon invocation, reaister 13 points to
the base of the DS5A of the caller,
wWwhich is where the caller's save area
is located. The new value of register
13 may be computad by subtracting 144
from the valua in registaer l.
Figure 70 illustrates the condition of
the stack and relevant registers immae-
diately at the start of a routine.

REG 13

start of D5A of caller

caller's save area

REG 13

local sava area
(144 bytes?

start of DSA of called routine

REG 1 > 144 bytes into DSA
Parametars
top of stack >
——————————————————————— storage vet to be allocated
local variables
————————————————————— start of DSA of routine yeat
save ares& to be called
of any routinas
—————————— vet to be invokaed
reg 1 - |mmmmmmm e 146 bytas into this DSA
set here parameter list to
for calls be built for calls

—————————— te other routines

next stack top --» H—------—-----""-"—-—-

Figure 70. Snapshot of stack and relevant registers at start of routine

96 Pascal/V5 Programmer's Guida

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
different ways depending on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter list is aligned on a dou-
bleword boundary and each parameter is
aligned on its proper boundary.
Addresses are aligned on word bounda-
ries.

12.5.1
ence

Passing by Read/Hrite Refer-

This mechanism is indicated by use of
the reserved word var in the routine
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:INTEGER);

Routine Invocation:

PROCC(J);

Parameter list:

address of J

Figure 71. Passing by Read/Write

reference

12.5.2 Passing by Read-Only Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(const I: INTEGER);

Routine Invocation:

PROC(J+5);

Parameter list:

address of a memory location
which contains the value of

J+5.
Figure 72. Passing by Read-only
reference
12.5.3 Passing by Value

This mechanism is the default way in
which parameters are passed. Parame-
ters passed in this way are treated as
if they are pre-initialized local vari-
ables in the invoked routine. Any mod-
ification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or set,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter 1is an array.
record, space, or string, then the
parameter list will contain the address
of the actual parameter, In the latter
case, the called procedure will copy
the parameter into its local storage.

Routine Heading:

procedure PROC(
I : INTEGER;
A @ ALPHA);

Routine Invocation:

PROCC(J, 'alpha');

Parameter list:

value of J
address of 'alpha

Figure 73. Passing by value

Code Generation for the IBM/370 97

12.5,4% Passing Procedure or Functiopn

12.5.5 Functign Results

Parameters

For procedures or functionsz which are
being passed as parameters, the address
of the routine is placed in the parame-
ter list.

Routine Heading:

procedure PROC(
function X(Y: REAL): REAL };

Routine Invocation:
PROC(COS);

Parameter list:

address of C0S routine

Figure 74. Passing routine param-
eters

98 Pascals/V¥S Programmer's Guide

Pascal/V¥S functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the function result is to bae
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

Routine Invocation:

I == FUNCC'L');

Parameter list:

- address of returned integer
rasult
-~ value of character 'L!

Figure 75. Function results

J

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascals/VS procedure or function
is arranged in the order shown below.
Register 2 is the code base register
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routine exceeds 8K
bytes of storage, the compiler will
diagnose it as a terminal error.

DEBUG control
Entry Pt -] block
Reg 2 >

entry prologue

body
of
routine

This must be
<= 8192

exit epilogue

literals:

ACONS, VCONS,

and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
(if present)

Figure 76. Routine format

Code Genaration for tha IBM/370

99

12.7 PCKA

PCWA =
record .

PCWAENDS
PCWACURS
PCWASELF
PCWAFL?2
PCWARC(16)
PCWAFILE
PCWAPARM
PCWAMODS
PCWAESAP
PCWADISP
PCWADTMP
PCWARTMP
PCWARO
PCWA2231
PCWAMASK
PCWAMFIX
PCWASAVE
PCWAPLST
PCWAFIN
PCWAALLC
PCWADLLC
PCWASDFT
PCWACHKR
PCWADSAS
PCWAMEMF
PCWAFLAG
PCWAPICA
PCWASEED
PCWAXEND
PCWAECNT
PCWACHK
PCWACMEM
PCWASTAX
PCWAEOPN
PCWADINT
PCWATSO

PCWAATTN
PCWAFCNT
PCWASIZE
PCWADINA
PCWABOPA
PCWABBA
PCWAERAD
PCWAFSTK
PCWAENDA
PCWAHDFT
PCWAPROC(12
PCWAUSER(12
13
9

PCWAEQUT(
PCWAOUT (13
PCWAIN(1456
PCWAPDAT(15
PCWAERSAC(17
PCWAPIE
PCWASPIE
PCWAMEMA (1984)

00)
64)
28)
2)
)
20)
76)

end;

Figure 77.

INTEGER;
INTEGER;
INTEGER;
PCWA_FLG_SET;
INTEGER;
PCBP;
SYSPARMP;
DBCBP;
INTEGER;

(¥Ptr to end of current stack
(¥Ptr to start of current stack
(%XSelf identifying flag 'PCWA'
(¥compiler runtime flags
(¥Return code

(¥pointer to open files

(¥Xparms string

*)
*)
%)
%)
%)
%)
%)

(¥module header chain (debugger)x)

(¥ptr to external save area

arrayl0..71 of DSAP; (XDISPLAY

INTEGER;
REEAL;
REAL;
REAL;
ALFA;
ALFA;

(¥Debugger temporary
(¥floating point temporary

(%'4E00000000000000°'X

(X'4E00000010000000"X
(%x'8040201008040201'X
(¥temp for first 8 bytes of DSA

arrayll..36]1 of INTEGER; (¥Extra save area
arrayl(l..16] of INTEGER; (¥parm list build

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
ALFA;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

spacel20]1 of CHAR;

BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

spacel64] of CHAR;
spacel64] of CHAR;

TEXT;

PCB;

PCB;
STRING(254);
SPIEDSA;
PSW;
INTEGER;

(¥Pointer to the HALT address
(¥address of memory allocator
(¥Xaddress of memory deallocator
(¥default stack size

(¥address of checker routine
(%Xsize of DSA in bytes (144)
(¥addr of memory fixup routine
(¥Inter-language communication
(XPICA save area

(¥seed of 'RANDOM' function
(¥end of stack for SETMEM
(¥error count until abend
(¥address of check routine
(¥current memory in use

(%XSTAX list form

(XTRUE if PCWAEQUT is open
(XTRUE if debugger initialized
(XTRUE if TSO environment
(¥reserved

(¥Xaddress of attn handling
(¥cnt of files without DDnames

%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)

(¥xsize of initial alloc for pcwa¥)

(¥Address of AMPDINIT or nil
(¥Address of AMPDIBOP or nil
(¥Address of AMPDIBB or nil
(¥Error address - CHKR or DIAG
(%¥Chain of free dsa stack elems
(¥Address of AMPDEPIL or nil
(¥default heap size

(¥Work area for PROCESS

(¥Area reserved for user
(XERROR OUTPUT PCB

(XQUTPUT PCB

(XINPUT PCB

(¥actual parm list after format
(¥savearea for error routines
(¥PSW from PIE

array[MEM_LEVELS] of SPACE_DESC;

(¥Xspace for memory allocator

Pascal Communications Work Area

%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
%)
X)
%)
*)

The Pascal Communications Work Area is

always addressable from

register 12.

This area of memory is used to contain

100 Pascal/VS Programmer's Guide

global

information about the execution
of the program.

J

The area is divided into two parts,
each 2048 bytes in length. The first
part contains data that needs to be
addressable; the second is composed of
the small routines used to augment the
generated code (such as string concat-
enation). Figure 77 on page 100 shows
the structure of the first half of the
PCWA. Each field is described below:

PCHAENDS
a pointer to the end of the current
DSA stack.

PCHACURS
a pointer to the top of the current
DSA stack.

PCHASELF
a self defining field that is set
to "PCWAT.

PCUAFL2
flags used to enable runtime fea-
tures.

PCUARC
the value assigned by the last exe-
cution of RETCODE or zero if RET-
CODE has not been called.

PCUAFILE
a pointer to the first file (PCB)
that has been opened but not
cleosed.

PCHAPARM
a pointer to the parameter string
passed to the program.

PCUHAMODS
a pointer to the head of a chain

that 1links modules together as
required by the interactive debug-
ger.

PCHAESAP

contains the pointer to the save
area for the caller of the Pascal
program.

PCUADISP
the runtime display - a stack of 8
base registers that contains the
address of the DSAs that are avail-
able to the executing routine.

PCUADTHMP
a temporary used by the interactive
debugger.

PCUARTHMP
a temporary wused in conversion
between flpoating point numbers and
integers.

PCUARD
a constant that contains the float-
ing point value zero.

PCHAZ231
a constant that contains the float-
ing point value of 2 raised to the

31 power minus 1 in an unnormalized

form.
PCHAMASK
eight bytes that contain masks
which are used in set operations.
PCUAMFIX

a temporary wused during runtime
error recovery.

PCUWASAVE
used as a register save area when a
program error or checking error
ocCcurs.

PCHAPLST
used when a program error or check-
ing error occurs to build a parame-
ter 1list in order to invoke a
recovery procedurae,

PCUAFIN
address of a procedure which termi-
nates the program no matter what
state 1t is in. This procedure is
normally HALT.

PCUAALLC
address of a system dependent rou-
tine which is responsible for allo-
cating blocks of storage.

PCUHADLLC
address of a system dependent rou-
tine which releases blocks of stor-
age.

PCUASDFT
the number of byvtes that the stack
will be extended if an overflow
should occur. (Set by the STACK
run time option.)

PCHACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCHADSAS

the size of the smallest DSA. Its
value is 144.

PCUAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflows.

PCHAFLAG
a fTlag wused when communicating
between different languages.

PCUAPICA
is used for a save area for the
PICA.

PCUASEED
contains the current seed for the
RANDOM function.

PCUAXEND
contains the true end of the cur-
rent stack. PCWAENDS mavy not be
correct, PCWAENDS is made incor-
rect in order to force a call to

Code Generation for the IBM/370 101

AMPXMEMF so that a DSA may be ini-
tialized (if SETMEM option is
enabled).

PCHAECNT
contains the number of non-fatal
errors which wWill be tolerated
before the program will be abended.

PCHACHK
contains the address of the routine
which gains control when a checking

error occurs. This routine is nor-
mally AMPXCHKR.

PCHACMEM
defines which heap is in use, nor-
mally the value is one, which indi-

cates that the users heap is
available.

PCHASTAX
contains the list form of the STAX
macro.

PCWHAEQGPN

a flag that indicates whether the
error file, PCWAEOUT has been
opened.

PCHADINT
is a flag indicating whether AMPD-
COM (debugger common area) has been
initialized yet.

PCHATSO
is a flag indicating whether we are
executing in a TSO environment.

PCHAATTN
contains the address of the termi-
nal attention routine.

PCHAFCNT
contains the number of the next
generated DDname.

PCHASIZE
contains the size of %the initial
allocation of the PCWA.

PCHADINA
contains the address of the AMPDI-
NIT routine, which initializes the
interactive debugger.

PCHABOPA
contains the address of the AMPDI-
BOP routine, which is invoked at
each procedure entry when the
debugger is active.

PCHABBA

contains the address of the AMPDIBB
routine, which is invoked at each

102 Pascal/VS Programmer's Guide

basic block of code when the debug-
ger is active.

PCWAERAD
contains the offending address
when a checking error or a program
error occurs.

PCHAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCHAENDA
address of the AMPDEPIL routine,
which is invoked from the epilogue
of each routine when the debugger
is active.

PCWHAHDFT
the number of bytes that the heap
Wwill be extended each time it over-
flows. (Set by the HEAP run time
option.)

PCWAPRQGC
reserved for future use.

PCHAUSER
reserved for Pascal/V$S users,

PCHAEQUT
the file (PCB) to where execute
time error diagnostics is sent.

PCHAQUT
the PCB for the standard file QUT-
PUT.

PCHAIN
the PCB for the
INPUT.

standard file

PCWAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

PCHAERSA
a small save area used when a SPIE
exit is invoked.

PCWAPIE
a place to save certain information
from the SPIE.

PCHASPIE
spie work area

PCWAMEMA
descriptors used to control the
allocation and deallocation poli-
cies of dynamic storage and 1I/0
buffers.

12.8 PCB - PASCAL FILE CONTROL

BLOCK

PCB

Figure

record

PCBFILEP
PCBFLAGS
PCBELEM
PCBNAME
PCBCODE

PCBBUFIDX:
PCBBUFLEN:

PCBBUFP
PCBOPTP
PCBLAST
PCBNEXT
PCBICBP
PCBSTART
PCBSTAT

end;

78.

BUFFERP;
FILEFLAGS;
HALFWORD;
ALFA;

Magi cNumber;

HAL FWORD;
HAL FWORD ;
BUFFERP ;
OPTP;
PCBP;
PCBP;
ICBP;

HAL FWORD;
I0STATUS;
CHAR;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

Pascal file Control Block (PCB) format

(¥Pascal Control Block ¥)
(Xfile pointer ¥)
(¥file flags ¥)
(¥length of file component ¥)
(¥file-variable name ¥)
(xinitialization test %)
(¥buffer index ¥)
(Xbuffer length ¥)

(¥pointer to start of buffer %)
(¥ptr to OPTIONs descriptor %)
(¥link to last PCB of chain ¥)
(¥link to next PCB of chain x)
(¥ptr to Implem. Ctrl Block ¥)
(Xinitial value of PCBBUFIDX x)

(¥status of last open ¥)
(¥<not-used> ¥)
(¥<not-used> %)
(¥<not-used> %)
(x<not-used> ¥)
(x<not-used> ¥)

Every Pascals/VsS file

is represented by
a Pascal control block (PCB) An PCB is
composed of 64 bytes of space.

The fields are defined as:

PCBFILEP
points to the current element of
the file.

PCBFLAGS

set of file flags (16 bits). The

flags are:

FINPUT indicates that file is
open for input.

FOUTPUT indicates that file is
open for output.

FTEXT the file is of type TEXT.

FEOLN end-of-line condition is
true.

FEOF end-of-file condition is
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an
interactive file.

FSTATUS the user will check
PCBSTAT and report the
errors.

FFEOL end-of-line condition is

true,

of READLN,

but not as a result

FOPTS an options string was spe-
cified in the last open.
FHRAP indicates that one or more
lines of the +text file
(opened for output} has
exceeded the logical
record length of the file.
FERR indicates that a read was
attempted after the
end-of-file condition
became true. This flag is
used to suppress multiple
error diagnostics from a
single READ statement.
PCBELEM
the length of one component of the
file.
PCBNAME
the DDNAME of the file.
PCBCODE

an encoded value that is used to
test whether the PCB has been ini-
tialized; this is not required for
files which are local variables but
is needed for files that are allo-
cated dynamically (NEW).

PCBBUFIDX
bvte index
(PCBBUFP).

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address
buffer.

into the I/0 buffer

of the beginning of the

Code Generation for the IBM/370 103

PCBOPTP

address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce-
dures which open a file and pass an
options string are: RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
PDSIN or PDSOUT.

PCBLAST
back chain of currently open PCBs.

PCBNEXT

forward chain of currently open
PCBs.

104 Pascal/VS Programmer's Guide

PCBICBP
points to a system dependent con-
trol block to be used by the louwest
level of interface to the 1/0
access methods.

PCBSTART
contains the initial value of
PCBBUFIDX, which is used to deter-
mine if the current buffer contains
any data that needs processing pri-
or to closing the file.

PCBSTAT
status of the file.

C

It is sometimes desirable to invoke
subprograms (procedures) written in
other programming languages: this is
useful to obtain services not available
directly 1in Pascals/Vs. It is also
desirable to have a Pascal/V$S procedure
called from a non-Pascal program: this
would allow vyou to take advantage of
Pascal in an existing application with-
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

13.0 INTER LANGUAGE COMMUNICATION

We can divide inter-language communi-
cation into two classes:

U The Pascal procedure is the calling
procedure and the non-Pascal pro-
cedure is being called.

U The Pascal procedure is called from
a non-Pascal calling procedure.
Your options are summari zed in

Figure 79.

Pascal as the calling language

Pascal as the called language

FORTRAN

call a subprogram written
FORTRAN.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you to

Use a call statement in FORTRAN
to call the Pascal procedure.
The Pascal procedure must be
defined with the MAIN directive.
After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).

Assembler

parameter list.

Define procedures and functions
in Pascal using the FORTRAN or

the EXTERNAL directive. If vou
use EXTERNAL you will be able to |define the Pascal procedure as
specify an arbitrary Pascal

Use a V-type constant in the
Assembler routine to define the
Pascal entry point. You must

EXTERNAL, MAIN, or REENTRANT.
After the last call to a Pascal
procedure you must call PSCLHX.

COBOL
Define procedures and functions Use a call statement in COBOL
in Pascal using the FORTRAN to call the Pascal procedure.
directive. This enables you COBOL should be compiled with
to call a subprogram written in the '"NODYNAM' option and the
COBOL. You may desire to call call must be a call of a
ILBOSTPO0 prior to calling a literal. The Pascal procedure
COBOL program. Consult the must be defined with the MAIN
COBOL Programmer's guide for directive. After the last call
details. to a Pascal procedure you must

call PSCLHX.

PL/I
Define procedures and functions Use a call statement in PL/I to
in Pascal using the FORTRAN call a Pascal procedure. The
directive. This enables vyou PL/1I procedure should specify the
to call a subprogram written in Pascal as an EXTERNAL. After the
PL/I. You should define the PL/I |last call to a Pascal procedure
procedure with the FORTRAN yvou must call PSCLHX.
option. Consult the PL/I 0S5
Programmer's guide for further
details,.

Figure 79. Inter Language Communication

The daetails of Pascals/VS linkage con-
ventions ara discussed in the chapter

"Code Generation for the IBM/370"™ on
page 93. You should familiarize vour-

Inter Language Communication 105

self with this section - especially if
you plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Writing an Assembler language routine
for Pascal/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea-
sons for the need for these
conventions:

1. Pascal/VS parameter passing con-
ventions: As described in "Parame-
ter Passing" on page 97, Pascal/Vs
parameters are passed in a variety
of ways, depending on their attri-
butes.

2. The Pascals/VS environment: This is
an arrangement of registers and
control blocks used by Pascal/VS to
handle storage management and run-
time error recovery. (see "Regis-
ter Usage" on page 93.)

13.1.1 uWriting Assembler Routine with
Minimum Interface

Writing an Assembler routine with the
minimum interface requires the least
knowledge of the runtime environment.
However, such a routine has the follow-
ing deficiencies:

L It must be non-recursive;

L If a program error should occur
(such as divide by zero), the Pas-
calsVS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascals/VS program invokes an
Assambler language routine, register
14 contains the return address and reg-
ister 15 contains the starting address
of the routine. The routine must fol-
low the System/370 linkage conventions
and save the registers that will be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
will contain the address of the regis-
ter save area provided by the caller,
and register 1 will point to thea first
of a list of parameters being passed
(if such a list exists). Once the reg-
ister values are stored in the caller's
save area, the save area address (reg-
ister 13) must be stored in the
backchain word in a save area defined
by the Assembler routine itself.
Before returning to the Pascal/VS rou-
tine, the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 80,
yvour Assembler routine can be called
from a Pascal/VS routine and you need

have no knowledge of the Pascal/VS$s
o It may not call a Pascals/Vs environment.
routine;
anyname CSECT
ENTRY procname declare routine name as an entry point
procname DS OH entry point to routine

STM 14,12,12(13)
BALR basereg,0
USING ¥,basereg

ST 13,SAVEAREA+4
LA 13,SAVEAREA

invoked from Pascal/VS

save Pascal/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of Assembler routine

¥ restore the floating point registers if
¥ they were saved
L 13,4(13) restore Pascal/VS registers
LM 14,12,12(13)
BR 14 return to Pascal/V$s
SAVEAREA DC 20F'0! local save area
END
Figure 80. Minimum interface to an Assembler routine: skeletal code to be

106 Pascals/VS Programmer's Guide

C

13.1.2 HWriting Assembler Routine with General Interface

YES
EPILOG DROP=]
NO

where:

passed-in parameters.

defaults:
LASTREG=12
VARS=0
PARMS=0

DROP=YES

Figure 81. PROLOG/EPILOG macros

procname PROLOG LASTREG=r,VARS=n,PARMS=p

prochame is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

VARS is the number of bytes required for any local data, including
PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2
ter after the epilogue is executed.

is to be dropped as a base regis-—

If an Assembler routine has at least
one of the following characteristics,
the general interface must be used:

. It calls a Pascal/VS routine;
. It is recursive;
o Program errors must be intercepted

and diagnosed by the Pascal/VS run-
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epilogue of an Assembler routine
with a general Pascals/VS interface.
The macro names are PROLOG and EPILOG
and their forms are described in the
figure above.

The PROLOG macro preserves any regis-
ters that are to be modified and allo-
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe-
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

. Register 1 - address of the parame-
ter list built by the caller, which

is 144 bytes into the DSA to be
used by the called routine.

. Register 12 - address of the Pascal
Communication Work Area (PCWA).

. Register 13 - address of the DSA of
the calling routine.

. Register 14 - return address.

° Register 15 - address of the start
of the called routine.

Upon executing the code generated by
the PROLOG macro, the registers are as
follows:

. Register 0 - unchanged

o Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou-
tines.

. Register 2 - base register for the
first 4096 bytes of code within the
invoked routine.

. Registers 3 through 11 - unchanged.

o Register 12 - unchanged

. Register 13 - address of the local
DSA of the routine just invoked.

The first 144 bytes is the register
save area for the invoked routine.

Inter Language Communication 107

is where
by the

Following the save area
the parameters passed in

caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter list build area.

U Register 14 - unchanged.

° Register 15 - unpredictable.

The EPILOG macro restores the saved

registers, then branches back to the
calling routine. In order for the epi-
logue to execute properly, register 13

established by the prologue. The macro
will cause register 2 to be dropped as
a base register unless DROP=NO is spec-
ified.

The contents of the floating point reg-
isters are not saved by the PROLOG mac-
ro. If the floating point registers
are modified, they must be restored to
their original contents prior to
returning from the routine.

A skeleton of a general-interface
Assembler language routine which may be
called by a Pascals/VS program is given

must have the same contents as was below.
¥ The following names have the indicated meaning
¥ 'csectnam' is the name of the csect in which the routine resides
¥ 'procname' is the name of the routine.
¥ 'parmsize' is the length of the passed-in parameters
¥ 'varsize' is the storage required for the local variables
¥ 'lastreg' is the highest register (up to 12) which will be modified
¥ '"plist' is the length of the largest parameter list required for calls
* to other routines from "procname"
*

csectnam CSECT
*

procname PROLOG LASTREG=lastreg,VARS=varsizetparmsize,PARMS=plist

<== jinsert code here
*
EPILOG
END
Figure 82. General interface to an Assembler routine: skeletal code to be
invoked from Pascal/V$s
108 Pascal’/V5 Programmer's Guide

13.1.3 Receiving Parameters From Rou-
tines

Parameters received from a Pascal/V$s
routine are mapped wWwithin a list in the
manner described in "Parameter
Passing™ on page 97. At invocation
register 1 contains the address of this
list.

If the general interface (see "Writing
Assembler Routine with General Inter-
face"” on page 107) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 calling PascalsVs Routine from
Assembler Routine

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

U the ogeneral Pascals/VS interface
was incorporated within the Assem-
bler routine, and

L the Pascals/VS routine to be called
is declared as external.

See Figure 8 on page 110
example.

If +the Assembler routine was not
invoked from a Pascal/VS routine, then
the Pascal/VS run time environment must
be set up prior to entering the
Pascals/VS routine. To do this, the

as an

Pascal procedure must be declared with
the MAIN or REENTRANT directive. (See
Figure 86 on page 112 for an example.)
When such a procedure is invoked for
the first time, a minimum environment
is created. On subsequent calls, this
environment is restored prior to exe-
cuting the procedure. To remove the
environment (free stack space, etc.),
the procedure PSCLHX is provided.

to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate displacements from regis-
ter 1 as described in "Parameter
Passing"™ on page 97.

Prior

At the point of call, register 12 must
contain the address of the Pascal Com-
munications Work Area (PCWA). This
will be the case if the Assembler rou-
tine was invoked from a Pascal/VS rou-
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into register 15 and then the
instruction "BALR 14,15' is executed.

13.1.5 Sample Assembler Routine

In Figure 83 on page 110 and Figure 84
on page 110, a sample Assembler routine
is listed which may be called from a
Pascal/VS program. This routine exe-
cutes an 0S5 TPUT macro to write a line
of text to a user's terminal.

Inter Language Communication 109

typa
BUFINDEX =
BUFFER =
(¥this routine is
procedure TPUT(
const BUF
LEN
EXTERNAL;

(¥this routine
procedure ERROR(

0..80;
packed arrayl1..80] of CHAR;

in assembly languageX)

BUFFER;
BUFINDEX);

is called from the assembly language routine¥)

RETCODE: INTEGER:;
const MESSAGE: STRING);
ENTRY;
begin
WRITELNC(OUTPUT, MESSAGE, ', RETURN CODE = ', RETCODE)
end;
Figure 83. PascalsVS description of Assembler routine: the Assembler rou-
tine is shown in Figure 84.
TIOSEG CSECT
TPUT PROLOG LASTREG=4.VARS=8 only registers 3 and 4 are modified
*
L 3,1464(13) load address of 'BUF' parameter
L 4,148(13) load value of 'LEN' parameter
TPUT (3),(4) write content of 'BUF' to terminal
LTR 15,15 check return code
BZ TPUTRET if no error then return
x build parm list for call to 'ERROR'
ST 15,0(1) assign to 'RETCODE' parameter
LA 3, TPUTMSG load address of message
ST 3,6(1) assign to 'MESSAGE' parameter
L 15, =V(ERROR) load address of 'ERROR' procedure
BALR 14,15 call 'ERROR'
*
TPUTRET EPILOG
*
TPUTMSG DC AL2CLYTPUTTEXT) halfword length of string
TPUTTEXT DC C'TPUT ERROR? message text
END
Figure 84. Sample Assembler routine: this routine 1is invoked by a
Pascals/VS routine and, wWithin itself, invokes a Pascals/VS rou-
tine.
110 Pascals/VsS Programmer's Guide

13.1.6 cCalling a PascalsVvs Main Pro-
qram from Assembler Routine

A Pascal/s/VS program may be invoked from
an Assembler language routine by load-
ing a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

The convention employed 1in passing
parameters to a program is dependent on
whethar you are running under CMS or
under TS0 (or 0S5 Batch). Both con-
ventions require that register 1 be seat
to the address of the parameter data.

Program to be called:
program test;
begin

end.

LA" 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF
DC CL8'TEST?"
DC CL8'token 1°
DC CL8'token 2!

DC CL&'token n'
DC 8X'FF'

LA° 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF

DC XL1'80"

DC AL3(PARMS)
PARMS DC FL2'length'

Figure 85.

Assembler instructions to perform the call under CMS:

Assembler instructions to perform the call under V52 (and TS0):

set first bit of address

length of parameter string
DC C'parm string goes here!'

Example of calling a Pascal/VS program from an Assembler routine

Inter Language Communication 111

Pascal/VS procedure to be called:

SEGMENT SQUARE;
procedure SQUARE(var X

MAIN;

hegin

X =

end;

procedure SQUARE;
X % X

REAL):;

T0SQ

PLISTI1

X

PLISTZ
ZERD
SAVEAREA

Figure 86.

CSECT
USING
STM
ST
BALR
USING
LA

LA

%,15
14,12,12(13)
13,SAVEAREA+4
2,0
d

AVEAREA

» 5

PL
»=V(SQUARE)
»15
PLISTZ2
P |

»S

1

-

V(PSCLHX)
5
AVEAREA+4
2,12(13)

. o

=-m
no

bt] I D) Tov bt bt Bt et Pt et et et e o K
=
b4

W s AP DD

Mmoo N

Assembler routine to call Pascal’/VS procedure:

establish addressability
save callers registers
save address of callers save area

establish addressability

set new save area

Reg 1 points to parameter list

load address of Pascal procedure
call SQUARE

reg 1l points to parameter list

load address of Pascal procedure
call PSCLHX to tarminate environment
return

PARAMETER LIST
PARAMETER LIST

Example of Assembler as the caller to PascalsVSs

112 Pascals/VS Programmer's Guida

Pascal/VS program which invokes an Assembler routine named SUM:
program FROMPSCL; (¥Pascal program heading
procedure SuUM(var I INTEGER;
const J INTEGER);
FORTRAN;
var
I,J *INTEGER; (¥Define two local variables X)
begin
I :=0; (%XSet running sum to zero ¥)
for J, 1 to 10 do (¥loop through ten values *)
begin
SUM(I,J); (¥compute the next sum %)
5RITELN('The current running sum is ',I1:0);
ena;
end . (XFROMPSCL X)
Assembler routine which is being invoked from Pascal program:
SUM CSECT
USING %,15 establish addressability
STM 14,12,12(13) save callers registers
ST 13,5AVEAREA+4 save address of callers save area
BALR 5,0
USING %,5 establish addressability
LA 13,S5SAVEAREA set new save area
L 2,0(1) get address of I
L 3,0(2) get I
L 4,6(1) get address of J
A 3,0(4) I =1+ J
ST 3,0(2) return the new value of I
L 13,SAVEAREA+4 return .
LM 14,12,12(13)
BR 14
SAVEAREA DS 18F
END
Figure 87. Example of Pascal/VS as the caller to Assembler
Inter Language Communication 113

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and Pas-
cals/VS is accomplished by use of the
MAIN directive (FORTRAN to Pascals/Vs)
and the FORTRAN directive (Pascal/VS to
FORTRAN) .

13.2.1 PpPascalsvs as the Caller to
FORTRAN

Data may be passed between FORTRAN and
Pascal/VS through the parameter list or
FORTRAN COMMON. If you choose to COM-
MON, specify the name of the COMMON
block as a Pascals/VS def variable.

program FROMPSCL;
procedure SUM(var I : INTEGER;
const J : INTEGER);

Pascal/VS program that calls a FORTRAN subroutine:

FORTRAN;
var
I,J :INTEGER; (¥Define two local variables X)
begin
I :=0; (%¥Set running sum to zero ¥)
for J =1 to 10 do (¥loop through ten values %)
begin
SUM(I,J); (¥compute the next sum ¥)
gRITELN('The current running sum is ',I1:0);
enda;
end . (¥FROMPSCL ¥)

(¥Pascal program heading ¥)

FORTRAN subroutine:

SUBROQUTINE SUM(I,J)
I =1+J

RETURN

END

Figure 88. Example of Pascal/VS as the caller to FORTRAN

The FORTRAN directive instructs
Pascals/VS to utilize exactly the same
calling conventions emploved by FOR-
TRAN. This restricts the form of the
parameter list, namely you may not pass
a parameter by value; you may pass a
parameter by var or by const. If you
choose the latter mechanism, the FOR-
TRAN subprogram must not modify the
parameter.

114 Pascal/VS Programmer's Guide

Execution errors that occur during the
execution of the FORTRAN program will
be handled by the Pascal runtime sup-
port routines. If you desire to enable
the error handling of FORTRAN vyou
should invoke "VSCOM#" at the appropri-
ate entry point. Consult the VS
FORTRAN Application Programming Guide
5C26-3985 for details

13.2.2

FORTRAN as the Caller to Pas-
calsvs

SEGMENT SQUARE;
procedure SQUARE(var X
MAIN;
procedure SQUARE;
begin
X 1= X % X
end;.

REAL);

Pascal/VS procedure to be called from FORTRAN program:

REAL %8 AREAL

AREAL = 4.0

CALL SQUAREC(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUAREC(AREAL)
PRINT 1, AREAL
CALL SQUARE(CAREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(0)
STOP
1 FORMAT (Fl2.0)
END
Figure 89.

FORTRAN program that invokes Pascal procedure:

Example of FORTRAN as the caller to Pascal’/V$s

Pascal/VS permits a FORTRAN program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for its execution. Subsequent

calls wWill use the same environmant
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then

Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

13,3 PASCAL/VS AND COBOL

Communication between COBOL and
Pascal/VS is accomplished by use of the

13.3.1
COBOL

Pascals/Vs as the Caller to

MAIN directive (COBOL to Pascal/VS) and
the FORTRAN directive (Pascals/VS to
COBOL).

program FROMPSCL;

Pascal program that calls a COBOL subprogram:

procedure SUMX(var I INTEGER;
const INTEGER);
FORTRAN;
var
I,J tINTEGER; (¥Define two local variables %)
begin
I :=0; (%¥Set running sum to zero ¥)
for = 1 to 10 do (¥loop through ten values %)
begin
SUMX(I,J); (¥compute the next sum ¥*)
gRITELN('The current running sum is ',I:1);
ena;
end . (¥FROMPSCL %)

(¥Pascal program heading ¥*)

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING I J.
ADD J TO I.
GOBACK.

Figure 90.

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.

Example of Pascal/VS as the caller to COBOL

The FORTRAN directive instructs
Pascals/VS to utilize exactly the same
calling conventions employved by FOR-
TRAN which is also equivalent to COBOL.
This restricts the form of the parame-
ter list, namely vou may not pass a
parameter by value; you may pass a
parametar by var or by const. If you
choose the latter mechanism, the COBOL
subprogram must not modify the parame-
ter.

Execution errors that occur during the

execution of the COBOL program will be
handled by the Pascal runtime support

116 Pascal’/VS Programmer's Guide

routines. Pascal will not issue a call
to ILBOSTPO (which sets up the COBOL
error recovary). You may call this
routine if you would like the "STOP
RUN" statement of COBOL to treat the
Pascal calling procedure as a main
entry point of a COBOL program. Con-
sult the 0Ss/VS COBOL Compiler and
Library Programmer's Guide, SC28-6483

for details.

A COBOL program which is communicating
with Pascals/VS must ngt use the dynamic
loading feature.

13.3.2 COBOL as the Caller to
Pascalsvs

SEGMENT SQUARE;
procedure SQUARE(var X
MAIN;
procedure SQUARE;
begin
X = X ¥ X
end;

REAL);

Pascal procedure that is to be called from COBOL:

IDENTIFICATION DIVISION.
PROGRAM-ID. TO0SQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION.
MOVE 2 TO AREAL.
CALL "SQUARE"™ USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 91.

COBOL program which calls a Pascal procedure:

77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.

Example of COBOL as the caller to PascalsVS

PascalsVS permits a COBOL program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-

tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for its execution. Subsequent

calls will use the same environment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
invoking the procedure "PSCLHX". If
Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 117

13.4 PASCAL/VS AND PL/I

Communication between PL/I and
Pascal/VS is accomplished by use of the
MAIN directive (PL/I to Pascal/VS) and
the FORTRAN .directive (Pascals/VS to

13.64.1 Pascals/vs as the Caller to
PL/1

PL/7I). In addition, you may use the
REENTRANT directive instead of tha MAIN
directivae in order to davelop a REEN-
TRANT call to Pascal.

program FROMPSCL;

Pascal program which calls a PL/I procedure:

procedure SUM({(var I : INTEGER;
const J : INTEGER);

FORTRAN;
var
I,J :INTEGER; (¥Define two local variables)
begin
I :=0; (%XSet running sum to =zero ¥)
for := 1 to 10 da (¥loop through ten values %)
begin
SUM(I,J); (¥compute the next sum *)
gRITELN('The current running sum is ',I1:0);
ena;
end . (¥FROMPSCL %)

(XPascal program heading)

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCL (I,J) FIXED BINARY(31,0);
I =1+ J;
RETURN;
END;

PL/I procedure that is invoked from Pascal:

Figure 92. Example of Pascal/VS as the caller to PL/I

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions emploved by FOR-
TRAN. PL/I will employ FORTRAN calling
conventions if "FORTRAN" is specified
in the OPTIONS clause. Consult the
PL/I Programmer's Guide, SC33-0037
(CMS) and SC33-0006 (0S) for details.

118 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list, namely vyou
may not pass a parameter by value; vou
may pass a parameter by either var or
const. If you choose to latter mech-
anism, the PL/1 procedure must not
modify the parameter.

9

13.4.2 PL/I as the Caller to
Pascalsvs

Pascal procedure which 15 called from PL/I:

SEGMENT SQUARE;
pracedure SQUAREC(var X : REALDY;
MAIN;
procedure SQUARE;
begin
X = X % X
end;

PL/I program which calls a Pascal procedure:

TOSQ: PROC OPTIONS(MAIN);
DCL SQUARE ENTRY EXTERMNAL;
DCL PSCLHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCL ZERQ FIXED BINARY(31,03;
AREAL = 4.0,
CALL SQUARECAREAL);
PUT LISTCAREALY;
CALL SQUARECAREAL);
PUT LISTCAREAL);
CALL SQUARE(AREAL);
PUT LISTC(AREAL);
CALL SQUARE(AREAL);
PUT LISTC(AREAL);

ZERO = 0;
CALL PSCLHX(ZERQ);
END;

Figure 93. Example of PL/I as the caller to PascalsV$s

Inter Language Communication 119

SEGMENT SQUARE;
procedure SQUARE(var E
REENTRANT;
procedure SQUARE;

begin
X = X % X
end; . o]

Pascal procedure which is called from a reentrant PL/I program:

INTEGER; var X

REAL);

TOSQ: PROC OPTIONS(MAIN REENTRANT);
DCL SQUARE ENTRY EXTERNAL;

DCL SAVE FIXED BINARY(31,0);
AREAL = 4.0;

SAVE = 0;

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL PSCLHX(SAVE);

END;

Example of
TRANT directive

Figure 94%.

Reentrant PL/I program which invokes a Pascal procedure:

DCL PSCLHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;

PL/I as the caller

to Pascal/VS: Use of the REEN-

Pascal/VS permits a PL/I program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
that has a MAIN directive associated
with it will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSCLHX will dispose of the
Pascal environment and release all mem-
ory that it utilizes.

The Pascal/VS run time support will
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro-
gram must be reentrant. In this case
you must assist Pascal/V5S in keeping
track of the location of the Pascal/VSs
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parameter, a FIXED BIN(31,0) var-
iable which has been set to the value
zero. Upon return from the first call,

120 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas-
calsVvs environment. This variable
should be passed unaltered to subse-
quent calls so that the Pascal/Vs
environment may be reentered.

To terminate the Pascal/VS environment
that was set up by the REENTRANT proce-
dure, the "PSCLHX" should be called
with the variable that contains the
address. See Figure 94 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for which the language was intended.
When passing data between programs
written in different languages you must
be aware which data types are the same
and where there is no equivalent repre-
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
however, you can often create new user
data types in Pascal that will simulate
some of the data types found in other
languages. For example, vyou could
define a record type that is identical
to FORTRAN's COMPLEX typea.

TRAN,

storage when an

Figure 95 on page 121 compares Pascal
data types with the equivalent
COBOL and PL/I.

Pascal/VS makes no attempt to remap any
inter-language call

in FOR-

stores its arrays in column-major order
and Pascal stores its arrays in
row-major order, a call between FORTRAN
and Pascal/VS procedures appears to
transpose the array.

made. This means that beause FORTRAN
Data Type Equivalences Between Different Langauges
Pascal/Vs FORTRAN COBOL PL/I
CHAR CHARACTER%] PIC X CHAR
BOOLEAN LOGICALX1 na FIXED BINARY(1,0)
INTEGER INTEGERX4 PIC 5999999999 FIXED BINARY(31,0)
USAGE IS COMP
packed INTEGERX2 PIC 59999 USAGE FIXED BINARY(15,0)
-32768..32767 IS COMPUTATIONAL
packed na na na
0..65536
packed -128..127 na na FIXED BINARY(7,0)
packed 0..255 na na na
REAL REAL %8 COMPUTATIONAL-2 REAL FLOAT DEC(16)
SHORTREAL REAL %4 COMPUTATIONAL-1 REAL FLOAT DEC(6)
packed CHARACTER¥%n PIC X(n) or CHAR(n)
arrayll..n] of PIC X OCCURS n
CHAR TIMES
STRING(m) na na CHAR(m) VARYING
set of 0..n na na BIT(n+l)
@ id na na POINTER
array dimensioned DCCURS dimensionad
variable variable
record na record structure
space na na AREA

Figure 95. Data Type Comparisons

Inter Languaga Communication 121

C

14.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab-
lishing the Pascals/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtainaed in which dynamic
storage areas (DSA) are allocated
and deallocated.

2. The Pascal Communication Work Area
(PCWA) is created and initialized.

3. An environment is set up to inter-
cept program interrupts (fixed
point overflow, divide by =zero,
etc.)

14.3 EXECUTION SUPPORT ROUTINES

14.0 RUNTIME ENVIRONMENT OVERVIEW

4. The main program is called.

5. Upon return from the main program
any open files are closed.

6. Acquired memory is freed.

7. Control is returned to the system.

14.2 THE MAIN PROGRAM

The main program is called as an ordi-
nary procedure from the environment
setup routine (PASCALVS). The entry
point name of the main program is AMPX-
BEGN.

Execution Support Routines
Procedure name Action Performed
AMPXBCLK Initializes the execution clock
AMPXCHKS Checks a set for membership
AMPXCLCK Interogate the execution clock
AMPXCRTE Initialize the PCWA
AMPXDATE DATETIME procedure
AMPXDATI System date and time
AMPXDBCB Obtains a procedures DBCB pointer
AMPXECLK Ends the the execution clock
AMPXGOTO Handles goto out of block
AMPXGTOK Obtains a token from user's execution parameters
AMPXG12 Returns the contents of register 12
AMPXG13 Returns the contents of register 13
AMPXHALT HALT procedure
AMPXINIT Initializes prior to execution of a Pascal program
AMPXMAIN Interface for calling Pascal for other languages
AMPXMOVE Memory to memory move
AMPXMUS Adds elements to a set
AMPXNAME Obtains a procedures name
AMPXPAD Memory fill memory with blanks
AMPXPARM PARMS function
AMPXRETC RETCODE procedure
AMPXSETV Memory fill of with a value
AMPXSPAR Intialize for PARMS function
AMPXTERM Termination after execution of a Pascal program
AMPXTOK TOKEN procedure
AMPXTRAC TRACE procedure
AMPZABND Abnormal termination routine
AMPZCVD Convert to decimal
CMS CMS procedure
PASCALVS Main entry point for a Pascal/VS main program
PSCLHX Terminates execution for interlanguage calls

These routines provide miscellanaous
functions such as program initializa-

tion and low level routines such as
fast memory move.

Runtime Environment Overview 123

14,

% INPUT/0UTPUT ROUTINES

Internal Input/0Output Routines

Procedure name

Action Performed

AMPXCLOS
AMPXCOLS
AMPXGET
AMPXGETR
AMPXOPEN
AMPXOPN1
AMPXOPN2
AMPXPARS
AMPXPCBC
AMPXPDS
AMPXPUT
AMPXRCHR
AMPXRINT
AMPXRLIN
AMPXRR
AMPXRRDY
AMPXRREC
AMPXRSTR
AMPXRTXT
AMPXSEEK
AMPXSTAT
AMPXTIO
AMPXWB
AMPXWCHR
AMPXWCHS
AMPXWINT
AMPXWLIN
AMPXWR
AMPXWRDY
AMPXWREC
AMPXWSTG
AMPXWTXT
AMPYCLOS
AMPYDFLT
AMPYGET
AMPYOPEN
AMPYPAGE
AMPYPDS
AMPYPUT
AMPYSEEK
AMPZDAMR
AMPZDAMW
AMPZDCBC
AMPZDCBO
AMPZFIND
AMPZGET
AMPZPUT
AMPZPUTX
AMPZSAMR
AMPZSAMW
AMPZSTOW
AMPZTGET
AMPZTPUT

CLOSE procedure

COLS function

GET procedure (TEXT files)

GET procedure

RESET, REWRITE or UPDATE procedures
Initializes a PCB prior to opening
Sets a PCB after opening

Analyze the optional string on RESET or REWRITE
Closes a file (PCB)

PDS support routines (PDSIN and PDSOUT)
PUT procedure

Reads into a CHAR

Reads into an INTEGER

Reads to end of line (TEXT file)
Reads a REAL value

Prepares a TEXT file for input
Reads one record (non TEXT files)
Reads into a STRING

Reads into an array of CHAR

SEEK procedure

Obtains the status of a file
Terminate I/0 processing

Writes a BOOLEAN value

Moves data to an I/0 output buffer
Writes a CHAR to a TEXT file

Writes an INTEGER to a TEXT file
Writes an end-of-line to a TEXT file
Writes a REAL value

Prepares a TEXT file for output
Writes one record (non TEXT files)
Writes a string to a TEXT file
Writes an array of CHAR to a TEXT file
System dependent QSAM close

Applies System dependent defaults to a file
System dependent get procedure
System dependent QSAM open

PAGE procedure

System dependent PDS interface
System dependent put procedure
System dependent seek procedure
Issues a READ for a BDAM data set
BDAM write procedure

Close on an 0S5 DCB

Open on an 0S DCB

Issues 0S FIND

Issues a QSAM GET

Issues a QS5AM PUT

Issues a QSAM PUTX

Issues a READ for a BSAM data set
BSAM write procedure

Issues 0S5 STOW

Issues a TGET (0S) or RDTERM (CMS)
Issuess a TPUT (0S) or WRTERM (CMS)

The I/0 operations (which appear as internal procedures Wwithin the runtime
calls to predefined procedures in Pas- environment.
cal/VS) are implemented as calls to

124

Pascal/VS Programmer's Guide

14.5 ERRCR DLING

Error Handling

Procedure name Action Performed

AMPXCHKR Intercepts exacution time checking errors

AMPXDIAG Intercepts program exceptions

AMPXERR General axecution time error handler

AMPXIOER I/0 error intercept routine

ONERROR Default ONERROR procedure
When the runtime environment detects an AMPXERR is the central routine, it is
error condition, it calls a routine to aluays called from the other routines:
handle the error. There are several it then calls ONERROR, the user pro-
di fferent routines, one routine for vided error handler, and then completes
each of class of error (e.g. I/0 error, the error handling.
program exception etc). The routine

16.6 CONVERSION ROUTINES

Conversion Routines

Procedure name Action Performed

AMPTTOR Converts a REAL (EBCDIC) to REAL

AMPXBTOS BOOLEAN to string conversion

AMPXCTOS Converts a CHAR to a string

AMPXSTOS Converts a string to a string

AMPXITOS Converts an INTEGER to a string

AMPXQTOS Converts an offset in a procedure to a statement number

AMPXPACK PACK procedure

AMPXRTOS Conversion for a REAL to a STRING

AMPXSTOC Conversion for a STRING to a CHAR

AMPXSTOG Conversion for a STRING to a STRING

AMPXSTOI Conversion for a STRING to an INTEGER

AMPXSTOR Converts a REAL (EBCDIC) to REAL

AMPXSTOT Conversion for a STRING to an array of CHAR

AMPXTTOS Appends an array of CHAR to a string

AMPXUCAS Lower case to upper case conversion

AMPXUNPK UNPACK procedure

ITOHS Integer to hexedecimal string conversion
There are sevearal places where doing I/0 on TEXT files and when vou
PascalsVS must perform data conver- use READSTR and WRITESTR.
sions, They take place when you are

Runtime Environment Overview 12

14.7 MATHEMATICAL ROUTINES

Mathematical Routinas

Procedure name Action Performed
AMPXATAN ARCTAN function
AMPXCOS C05 functiaon

AMP XEXP EXP functian
AMPXLN' LN function
AMPXRAND RANDOM procedure
AMPXSIN SIN function
AMPXSQRT SQRT

The predefined functions are provided
as Pascal/V5 functions. The Pascal/V$S
compiler changes the user provided name

16.8 STRING ROUTINES

(e.g. SIN) to an internal name (e.g.
AMPXSIN).

String Routines
Procedure name Action Performed
AMPXSCOM COMPRESS function (long strings)
AMPXS$DEL DELETE function (long strings)
AMPXSLTR LTRIM procedure (long strings)
AMPX$SUB SUBSTR function (long strings)
AMPXS$TRI TRIM function (long strings)
AMPXCAT Concatenates 2 to 9 strings
AMPXCOMP COMPRESS function (short strings)
AMPXDELE DELETE function (short strings)
AMPXTINDX INDEX procedure
AMPXLTRI LTRIM procedure (short strings)
AMPXSUBS SUBSTR function (short strings)
AMPXTRIM TRIM function (short strings)
LPAD LPAD procedure (see Appendix C)
PICTURE PICTURE function (see Appendix C)
RPAD RPAD procedure (see Appendix €2

The predefined functions and proce-
dures are provided as Pascal/V5 func-—
tiona and procedures. The PascalsV$s
compiler changes the user provided name
(e.g. SUBSTR) to an internal name (e.qg.
AMPXSUBS) . Several routines are pro-
vided in two forms: long and short.
The short form is always used if possi-

126 Pascals/V3s Programmer‘s Guide

ble. In order to use the short form
the Pascals/V5 compiler must determine
that the resulting string will be less
than 1000 bytes long. If the size
can't be limited by compiler analysis,
the compiler uses the long form which
passes the results through the heap.

C

14,9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines
Procedure name Action Performed
AMPXALOC Basic storage allocator
AMPXDISP DISPOSE procedure
AMPXFREE Basic storage de-allocator
AMPXIDSP Dispose for the I/0 routines
AMPXINEW New for the I/0 routines
AMPXMARK MARK procedure
AMPXNEW NEW procedure
AMPXVNEW NEW procedure (when record is allocated with tags)
AMPXRLSE RELEASE procedure
AMPXTMEM Termination processing for memory management

The NEW procedure generates a call to
the internal procedure AMPXNEW. This
procedure allocates storage within a
heap. If a heap has not yet been cre-
ated, NEW will obtain memory from the
operating system to create a heap.

The DISPOSE procedure generates a call
to the procedure AMPXDISP. This proce-
dure deallocates the heap storage
acauired by a preceding call to
AMPXNEW.

The MARK procedure generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from which subse-

quent calls to AMPXNEW will obtain sto-
rage.

The RELEASE procedure generates a call
to the procedure AMPXRLSE. This proce-
dure frees a heap that was previously
created via the AMPXMARK procedure.
Subsequent calls to AMPXNEW will obtain
storage from the heap which was active
prior to the call of AMPXMARK.

The 170 routines have access to a sepa-
rate heap is controlled with the rou-
tines AMPXINEW and AMPXIDSP. Thus, I/0
buffers and file control blocks are in
a distinct area from the users area.

Runtime Environment Overview 127

123 Pascal/V$ Programmer's Guida

Release 2.1 of Pascals/V5 has several
di fferences from "standard"” Pascal.
Most of the deviations are in the form
of extensions te Pascal in those areas
where Pascal does not have suitable
facilities.

15.1 PASCALsVS RESTRICTIONS

Pascals/Vs contains the following
rastrictions that are not in standard
Pascal.

Conformant array parameters
The conformant array mechanism for
passing array variables to rou-
tines is not supported.

Noete: Conformant arrays are only
required by the IS0 level 1 standard;
the IS0 level 0 standard and the ANSI
standard do not regquire them.

Note: In Release 2.0, procedures which

are passed as parameters were
restricted to the outer most nesting
level. In Release 2.1, this restric-

tion was ramoved.

15,2 MODIFIED FEATURES

Pascals/VS has modified the meaning of a
nagative length field qualifier on an
operand Wwithin the WRITE statement.

15.3 NEW FEATURES

Pascals/VS provides a number of exten-
sions to Pascal.

. Separately compilable modules are
supported with the SEGMENT defi-
nition.

. "Internal static™ data is sup-

ported by means of the static dec-
larations.

. "External static" data is sup-
ported by means of the def and ref
declarations.

® Static and external data may be
initialized at compile time by
means of the value declaration.

. Constant expressions are permitted
wherevar & constant is permitted
except as the lower bound of a sub-
range type definition,

15.0 COHPARISON TO PASCAL

The keyword "ranga™ may be prefixed
to a subrange type definition to
permit the lower value to be a con-
stant expression.

A wvarying length character string
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The 5TRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, LTRIM, COM-
PRESS, INDEX, TOKEN. READSTR and
WRITESTR.

A new predefined type, STRINGPTR,
has been added that permits you to

allocate strings with the NEW pro-
cedure whose maximum size is not
Sefined until the invocation of
EW.

A new parameter passing mechanism
is provided that allows strings to
be passed into a procedure or func-
tion without requiring you to spac-
1fy the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari-
able can assume.

Calls to FORTRAN subroutines and
functions are provided for.

The MAIN directive permits vou to
define a procedure that may be
invoked from a non Pascal enviran-
ment. A procedure that uses this
directive is not reentrant.

The REENTRANT directive permits
vou to define a procedure that may
be invoked from a non Pascal envi-
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

Tha DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures:
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PD50UT.

The parameters of the text file
READ procedure may he
length~qualified.

Files may be opened for updating
with the UPDATE procedure.

Input files may be opened as "IN-

TERACTIVE" so that I/0 may be done
conveniently from a terminal.

Comparison to Pascal 129

130

Files may be openad for tarminal
input (TERMIN) and terminal output
(TERMOUT) so that I/0 may take
place directly to the user's termi-
nal without going through the
DDname interface.

Files may be accessed based on rel-
ative record number (random
access).

The PDS5IN procedure opens a parti-
tioned dataset {(or MACLIB) for
input. The PDSOUT procedure opens
a partitioned dataset (or MACLIB?
for output. A string parameter is
required to set the member name,

The space structure is provided for
processing packed data.

Records may be packed to the byte.

The tagfield in the variant part of
a record may be anvwhere within the
fixed part of the record.

Fiaelds of a record may bn unnamed.

Tag specifications on record vari-
ants may be ranges {(x..vyJ).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complaement and sat exclusive
union.

A function may return any type of
data except a fila.

The operators '|', '&', '&&' and
'~' may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basis. Shift operations on data
are also provided.

Integer constants may be expressed
in binary and hexadecimal digits.

Real constants (floating point)
may be expressed in hexadecimal
digits.

String constants may be expressed
in hexadecimal digits.

The %INCLUDE facility provides a
means to include source code from a
library.

A parameter passing mechani sm
(const) has been defined which
guarantees that the actual parame-
ter is not modified vet does not

Pascal/V5 Programmer's Guide

require the copy overhead of a pass
by value mechaniam.

leave, continue and return are new
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val-
ue or an identifier.

case statements may have a range
notation on the component state-
ments.

An OtherWise clausae is provided for
the case statement.

The variant labels in records may
be written with a8 range notation.

The assert statement permits run-
time checks to be compiled into the
program.

The following systaem interface
procedures are supported: DATE-
TIME, CLOCK, PARMS and RETCODE.

Constants may be of a structured
type (namely arrays and records).

To control the compiler listing,
the Tfollowing listing directives
are supported: “ZPAGE, #2CPAGE,
%SKIP, and YTITLE.

The HALT procedure has been added
to exit the program from an arbi-
trary location.

The TRACE procedure prints the
trail of routine invocations.

The LOWEST, HIGHEST, LBOUND,
HBOUND and SIZEOF functions pro-
vide a means of acauiring informa-—
tion variables and types.

MARK and RELEASE provide a means of
controlling dynamic variable allo-
cation,

Both =ingle &nd double precision
floating point numbers are pro-
vided using the SHORTREAL and REAL
types.

Identifiers may contain & dollar
sign {$) anywhere a letter may go
and an underscore {_) anywhere a
digit may go.

The predefined constants MINREAL
and MAXREAL contain the values of
the smallest and largest real num-
bers, raspectively,

Tha ADDR function
address of a variable.

returns thae

l16.]1 SYSTEM DESCRIPTION

The Pascals/VS compiler runs on the IBM
Systems370 to produce object code for
the sgame system. Systems/370 includes
all models of the 370, 303x, and 43xx
computers providing one of the follow-
ing operating environments:

. VYMsCMS

. VYM/PC

. 0ss¥s2 TS0

. 05/V¥S2 Batch

16.2 MEMORY REQUIREMENTS

Under CMS5, PascalsV5 requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro-
gram can be performed in a 256K CMS
machine.

The compiler requires a minimum region
size of 512X under VS2 (MVS)., A com-
piled and link-edited program can exe-
cute in a 128K regicon.

The compiler is reentrant and may be
loaded in a shared area in MVS or
mapped to a shared segment 3in CMS.
However, the Pascals/V5S PID materials do
not contain procedures to do this.

16.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean exprassions
PascalsVvs "short circuits” boo-
lean expressions involving the
and and or operators. For exam—
ple, given that A and B are boo-

lean expressions and X 1is a
boolean variable, the evaluation
of

X t= Aor Bor ¢

would be performed as

it A then
X = TRUE
else
it B then
X 1= TRUE
glse
X = ¢

The evaluation of

17

16,0 IMPLEMENTATION SPECIFICATIONS

X = A and B and C
would be performed as

it -4 then
X = FALSE
else
if -B then
X += FALSE
else
X = C

See the section entitled "Boole-
an Expressions' in the PascalsVS
Lanquage Reference Manual for
more details.

Floating-point
Some commonly required charac-
teristics of Systems370 fleocat-
ing=point artthmetic are shown
in Figure 96 on page 132.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the coampiler encounters a lon-
ger name, it will ignore that
portian of the name loanger than
16 characters.

Hames of external variables and
external routines must be unique
Wwithin the first & characters.
Such names may not contain an

underscore '_' Within the first 8
characters,

Integers
The largest integer that may be
represented is 2167683647 .17

This is the value of the prede-
fined conatant MAXINT.

The most negative integer that
may be represented is
-21476483648, This is the value
oﬁ the predefined constant MIN-
INT.

Routine nesting
Routines may be nested up to
eight levels deep.

Routinas passed as parameters
The following standard routines
may not be passed as parameters
to another routine:

ABS, ADDR, CHR, CLOSE, DISPOSE,
EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, LBOUND, LENGTH, LOWEST,
MARK, MAX, MNEW, 0DD, O0ORD, PACK,

PAGE, PDSIN, PDS0UT, PRED, PUT,
READ, READLMN, READSTR, RELEASE,
RESET, REWRITE, ROUND, SIZEOF,

SR, STR, SUCC, TERMIN, TERMOUT,

This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 131

Floating-paint Characteristics

Ccharacteristic Decimal approximation Exact Representationil
Maxreal? 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR
Minreal? 5.39760534693403E-79 '0010000000000000'XR
Epsilon® 1.38777878078145E-17 *3310000000000G00*XR
1 The syntax "..."XR is tha way hexadecimal floating-point numbers are

represented in Pascals/VS. See the section entitled "Constants" in the

Pascals/VS lLapguage Reference Manual.

2 Maxreal is the largest finite floating—-point number that may be
represented. Its value is in the pradefinad constant MAXREAL.

Minreal is the smallest positive finite floating-point number that
may be represented. Its value is in the pradefined constant MINREAL.

4 Epsilon is the smallest positive floating-point number such that the
following condition holds:

1.0+epsilon > 1.0

This value is often needed in numerical computations involving con-
verging serias.

Figura 96. Characteristics of System/7370 floating point arithmatic

TRUNC, UNPACK, UPDATE, WRITE, ® ORD(a) >= 10
WRITELN, WRITESTR

U ORD(b) <= 255
A FORTRAN function or subroutine

may not be passed as a parameter size limitations

to a Pascals/VS$s routine.

The size of a single procedure or
function must not exceed 8192

Sets . bytes of generated code. 8192
Given a sat type of the form bytes represent approximately
400 Pascal statements, depending
set of a..b on the complexity of the state-
ments. The compiler will
whare "a" and "b" express the generate a diagnostic if this
lower and upper bounds of the limit is reached.
base scalar type, the following
conditions must hold:
132 Pascal/VS Programmer's Guide

17.0 PASCAL/VS MESSAGES:

L 17.1 PASCALsVS COMPILER MESSAGES

No. Message and Explanation

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 Source continues after end of program

The compiler detected text after the logical end of the program.
This error is often caused by mismatched beginsend brackets.

3 “"END" expected

) Character in quoted string is not displayable

The indicated character wWithin a quoted string does not correspond
to a valid displayable EBCDIC character. If the string i1s printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character 1is intended, then the string should be
represented in hexadecimal faorm,

5 Symbol invalid or out of context

The indicated symbol is not part of the syntax of +the construct
being scanned. The symbol should be deleted or changed.

6 EGF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error is often caused by
mismatched begin/end brackets.

7 YBEGIN" expected

8 semicolon ';' expected

9 Routine may not be passed to FORTRAN subroutine

The indicated declaration of a FORTRAN subroutine (a procedure head-
ing with the FORTRAN directive) contains an argument which is a pro-
cedure aor function parameter. Procedures or functions may not be
passed to FORTRAN subroutines.

10 No case labels specifiad

A case statement with no case labels was found. A case statemant
may not be empty or consist only of an otherwise clause.

11 Ambiguous proceduresfunction specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

Pascal/VS Messages 133

12 Multiply declared label

The indicated label has been previously declared within the sur-
rounding routine.

13 Label identifier expected

Within the indicated lakel definition, a label identifier is
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

14 The characters '$" and "_'" are not valid in standard Pascal

This is a warning message that can occur when the LANGLVL(STANDARD)
compile option is specified. An identifier is being declared which
has a name containing characters which are not recognizable in
"standard" Pascal.

15 '=' expected

16 Identifier required to be a type in tag field specification

Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represent the tag field's
tvpe was not declared as a tvpe.

17 *:' axpected

18 Parameters on foruwarded routine not necessary

A routine declaration which has been previously declared as FORWARD
or EXTERNAL must not specify any formal parameters. Any formal
parameters are assumed to have been specified previously on the
associated declaration that contained the FORWARD/EXTERNAL direc-
tive.

19 Files passed by value not permitted

The indicated formal value parameter is of a file type. A file var-
jable may be passed to a routine only by the var or const mechanism;
never by value.

20 string literal constant is too long: exceeds 3150

Because of an implementation restriction, a string constant mav not
excead 3190 characters in length.

21 ')' expected

22 Forwarded routine class conflict

A procedure declaration was previously declared as a forwarded func-—
tion; or a function declaration was previously declared as a for-
warded procedure.

23 Routine nesting exceeds maximum

The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of &.

24 Too many nested WITH statements or RECORD definitions

This error gccurs when teo many lexical scopes are active. This can
occur in multiply nested With statements and record definitions.

34 Pascals/V$5 Programmer's Guide

25

Type not needed on forwarded function

A function declaration which has been previously FORWARDed must not
specify & return type. The type specification 1is assumed to have
been specified previocusly on the associated declaration that con-
tained the FORWARD directive.

26 Missing type specification for function
The indicaeted function header did not specify a return type.
27 PROCEDURE/FUNCTION previously FORWARDed
The indicated routine declaration that contains the FORWARD or
EXTERNAL directive was already previously forwarded.
28 Additional errors in this line wWere not diagnosed
The indicated construct contained more errors, but were not diag-
nosed due to space considerations.
29 Illegal hexadecimal or binary digit
An invalid hexadecimal digit was detected within a hexadecimal con-
stant specification of the form
Foo "X, YL XG, or YL L TXRS
or, an invalid bipary digit was detected within a binary constant
specification of the form
... B,
The following characters are valid hexadecimal digits:
6, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
a, b, ¢, d, e, f
The following characters are valid binary digits:
0, 1
30 Unidentifiable character
The indicated character is not recognized as a valid token.
31 Digit expected
A decimal digit was expected but missing at the indicated location,
32 Real constant has too many digits
The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, plaase
notify the compiler maintenance group at IBM,
33 Integer constant too large
The indicated integer constant is not within the range -2147483647
to 2147483647,
34 End of string not seen

A string constant may not cross a line boundary. This earror is
often the result of mismatched quotes.

if a string constant is too large to fit on one line, 1t must be
broken up into multiple strings and concatenated with the || opera-
tor., (Concatenation of string constants 15 performed at compile
time).

Pascal/VS Messages 135

35

Hexadecimal integer constant may not exceed 8 digits

The indicated hexadecimal constant exceeds the maximum allowed num-
ber of digits.

36

char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-
stants are concatenated.

37

standard routines not permitted as parameters

Standard routines which generate in line code may not be passed as
parameters to other routines. The following 1is a list of such rou-
tines:

ABS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
oDD, ORD, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN,

PDSIN, PDSOUT, READSTR, TERMIN, TERMOUT, UPDATE, WRITESTR

38

Variable must bhe of type file

The indicated variable is required to be of a file type.

39

Must be of type TEXT

The indicated variable is required to have been declared with the
predefined type TEXT.

40

Required parameters are missing

The indicated READ or WRITE statement contains no parameter from
which to reference data.

41

Comma ',' expected

42

User defined scalars not permitted

Expressions which are of a user defined enumerated tvpe may not be
directly read from or written to a text file.

43

operand of READ/HRITE not of a valid type

Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:
- INTEGER
REAL
SHORTREAL
CHAR
BOOLEAN
STRING
packed arrayll..n] of CHAR
where n 1s a positive integer constant.

44

Field length must be integer

The indicated length qualifier expression in a READ or WRITE state-
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.

136

Pascals/VS Programmer's Guide

45

set contains constant member(s) wWhich are out of range

The indicated set constant contains members which are not valid for
the set variable to which the constant is being assigned.

For example,

var § : set of 10..20;
begin

S :=[1,2]; (%<== this statement would produce error 45x)
end;

This error may also occur when a set constant is being passed as a
parameter.

%6 2nd field length applicable only to REAL data
In the procedure WRITE (text file case), only expressions of type
REAL are permitted to have two length field qualifications.

47 Array reference contains too many subscripts
An array variable of dimension 'n' is being subscripted with more
than 'n' number of subscripts.

%8 Associated variable of sUbscript must be of an array type
An attempt i3 being made to subscript a variable which was not
declared as an array.

%9 Expression must he of a simple scalar type
The indicated expression should be of a simple scalar type within
the context in which it ias being used.

50 No max length specified on STRING type - 255 assumed
A type definition of the form "STRING" does not contain a length
specification to indicate the maximum length of the string variable.
255 is the default length.

51 Variable must be of a pointer type
The indicated variable is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

52 corresponding variant declaration missing
Within a call to the procedure NEW or to the function SIZEQF, the
indicated tag field specification fails to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

53 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

54 Expression must be numeric
Expressions which are prefixed with a sign ('+' or '"-') must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expression must he of type real

The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

Pascal/VS Messages

137

56 Expression must be of type integer
The indicated expression must be of a type that is compatible with
INTEGER.
57 Parameter type does not match formal parameter
Within & procedure or function call, an expression or variable is
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.
58 Expression must be a variable
An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-var parameter.
59 Number of parameters does not agree
Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.
60 '(' expected
61 constant expected
62 | Type specification expected
At the place indicated, a type definition is expected but is
missing.
63 '.." expected
64 Expression's type is incorrect or incompatible Within tontext
This error is caused by a number of reasons:
° A unary or binary operator is being applied to an expression
which is of a type that is not valid for the operator.
U Two expressions being joined by a binary operator are of incom-
patible types.
° The parameters of the MIN/MAX functions are not of consistent
types.
U Members of a set constructor have inconsistent types.
65 subrange lower bound > upper bound

138

Pascal’/VS Programmer's Guide

66

Assignment to pointer qualified variant record invalid

The indicated statement attempts to assign to the whole of a pointar
qualified record wWwith variant fields. Such an assignment is not
valid under Pascal/Vs. This restriction 1i1s necessary because the
pointer qualified record may have been allocated with 2 size that s
specific to its active variant.

Example of violation:

type
R = record
case BOOLEAN of
TRUE: (C:CHAR);
FALSE: (A: ALPHA)
end;
var P : aR;
RR : R;
begin
NEWC(P, TRUE);
Pa := RR (¥<===jpvalid assignment)
end

67

Real type not valid here

The indicated expression ias of type REAL. An expression of this
type s not valid within the associated context,.

68

"OF" axpected

69

Tag constant does not match tag field type

Within a record definition, a variant +tag is being defined which is
of a type that is not compatibla with the corresponding tag field
tvpe.

Within a call to NEW or SIZEOF, a tag value is specified which is of
a type that is not compatible with thae corresponding tag field type
of an @ssociated record variable.

70

Duplicate variant field

Within a record definition, a variant tag is being defined more than
once.

71

Not applicable to "PACKED™ qualifier

The indicated tvpe definition wa®s qualified with the word "“packed”.
Such a qualification within the agssociated context i=s not valid.

72

'[' expected

73

Array has too many elements

The length of the indicated array daefinition exceeds the address—
ability of the computer.

76

']1" expected

75

Length qualifier applicable only to STRING type

A length aqualifier was applied to a non—-STRING tvpe. STRINGs are
the only types that may have length qualifiers.

76

File of files not supported

Pascal/V5S Messages

139

77

Illegal reference of function name

The indicated identifier is the name of a function. It i1s being
used in a way that is incorrect.

78 Subscript type not compatible with index type
The indicated subscript expression is not of a tvpe that is compat-
ible with the declared subscript tvpe for the array.

79 Associated variable must he of a record type.
A variable associated with the indicated statement or expression is
required to be of a record tvpe according to context; but such is
not the case.

80 Record field qualifier not defined
The indicated record field‘does not exist for the associated record.

81 Notify compiler maintenance group
If this error should ogcur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 | Associated variable must be of a pointer or file type
The indicated arrow <qualified variable is not of a pointer or file
tvpe.

83 Set element out of range
The indicated set member of a set constructor exceeds the allowed
range for the set.

84 Expression must be of a set type
The indicated expression is required to be of a set tvpe in the con-
text in which it is being used.

85 Must be positive integer constant
The indicated expression fails to evaluate to a positive integer
constant, which is required in the context in which it is being
used.

86 LEAVE/CONTINUE not Within loop
The indicated leave or continue statement fails to reside within a
loop construct.

87 ':=' expected

.3+ TEXT files may not be updated
An attempt was made to open a text file for updating. Only record
files may be updated.

90 Label not declared

The indicated label did not appear in a label declaration.

140

Pascal/V5 Programmer's Guide

91

Max length of string variable does not match formal parameter

A string variable is being passed to a procedure "by var" and the
corresponding formal parameter is declared with an explicit length.
This error occurs when the declared length of the variable being
passed does not match that of the formal parameter.

Example:

procedure Xyz(var S: STRING(100)); EXTERNAL;
var T: STRING(50);

begin

XYZ(T); (XERROR: declared length of T doas X)
(% not match that of parameter S X)

en&' '

92 "THEN" expected

93 Redundant case alternative
The indicated case statement label is equal to a previous label
within the same case statement.

94 Required length expression missing for dynamic string allocation
A pointer variable declared with the type STRINGPTR is being allo-
cated with the NEW procedure, but the required length expression is
missing.

95 YUNTIL" expected

96 "po'" expected

97 FOR-1loop index must be simple local variable
A for-loop variable must be declared as a simple automatic (var)
variable, local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "To" expected

99 Label previously defined
The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

Pascal/VS Messages

141

103 Expression must be of type BOOLEAN
The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAN. The indicated expres-
sion failed to meet this criteria.

104 Constant out of range
The indicated constant expression evaluated to a value which is out-
side the required range of its context.

105 Identifier was previously declared
The indicated identifier within a declaration was previously
declared within the same lexical scope.

106 Undeclared identifier
The indicated identifier being referenced was not declared.

107 Identifier is not in proper context
The indicated identifier is being used in a way that is not consist-
ent with how it was declared.

108 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

109 Case label tag of wrong type
The value of the indicated case statement label 1is not of a type
that is conformable to the case statement indexing expression.

110 Loop Will never execute
The indicated folr loop will not execute at runtime. The compiler has
determined that the terminating condition for the 1loop is uncondi-
tionally true.

111 Loop range exceeds range of index
The indexing variable wused for the indicated for loop was declared
with a subrange that does not include the range indicated by the
initial and final index values.

112 'PROGRAM' header missing

113 Pending comment not terminated
A comment starting symbol was detected within a pending comment.

114 Percent "%" statement not found
A '%' symbol was detected, but with no identifier following.

115 Percent "%" identifier not recognized
A identifier following the '%' symbol is not recognized as a valid
compiler directive.

116 YON" or "OFF" expected

142 Pascal/VS Programmer's Guide

117

Unrecognizable option in "%CHECK"

118 Magnitude of floating point constant too large or too small
The indicated floating point constant has a magnitude that is out-
side the range of the IBM/370 double precision representation. The
largest floating point magnitude that can be represented is
7.23700557733226E75
The smallest is
5.39760534693403E-79
119 First parameter of READSTR/HRITESTR must be of type STRING
120 String constant requires truncation
The indicated string constant, which is being assignhed to a variable
or being passed to a routine, requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.
121 Declaration out of order: LABEL,CONST,TYPE,VAR,routine
This 1s a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. One or more declara-
tion constructs are not in the order required by standard Pascal.
Standard Pascal requires identifiers to be declared in the following
order:
Labels
Constants (const)
Types (type)
Variables (var) .
Routines (procedurasfunction)
122 "OTHERWISE" clause Without associated CASE statement
The indicated otherwise statement is not within the context of a
case statement.
123 Maximum string length exceeded
The indicated expression produced a varying length string which
exceeds 32767 characters in length. 32767 1is the maximum allowed
length for a varying length string.
124 construct or operation is not in standard Pascal
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. The indicated lan-
guage construct or arithmetic operation 1is not supported in "stand-
ard" Pascal, but is a Pascal/VS language extension.
125 Real to integer conversion not valid
The indicated expression is of type real, but according to its con-
text, it 15 required to be of type integer. Implicit real to inte-
ger conversion is not performed.
126 Types not conformahle in assignment
The indicated assignment statement attempts to assign an expression
of a particular type to a variable of an incompatible type.
127 File variahle assignment not permitted

The left side of the indicated assignment statement is a variable of
a file type. Assignment to file variables is not permitted.

Pascal/VS Messages

143

128 Not compile-time computable
The indicated expression fails to be a constant expression that can
be evaluated at compile time.

129 Assignment to "CONST" parameter invalid
The indicated variable declared as a formal const parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid
The indicated variable that is being used as a for loop index may
not be modified by an assignment within the for loop statement.

131 Passing "CONST" parameter by VAR invalid
The indicated variable declared as a formal const parameter may not
be modified by being passed as an actual var parameter to a routine.

132 Passing FOR-loop index by VAR invalid
The indicated variable that is being used as a for loop index may
not be modified by being passed as an actual var parameter to a rou-
tine.

133 Refer-back tagfield must not be typed
The indicated tag field specification within a record definition was
found to reference a previcus field within the record. Such
refer-back references may not contain a type reference.

134 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

135 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

136 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

137 Passing packed record field by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. The indicated field
of a packed record is being passed as an actual var parameter to a
routine. Passing fields of packed records as var parameters is not
valid in standard Pascal.

138 Passing SPACE component by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. Standard Pascal
requires that actual var parameters be properly aligned which is not
necessarily the case with a space component. The indicated parame-
ter is a component of a space variable which is being passed as a
var parameter.

139 Passing packed array element by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. The indicated sub-
scripted variable is being passed as an actual var parameter to a
routine. The variable being subscripted 1is a packed array. Passing
elements of packed arrays as var parameters is not valid in standard
Pascal.

144 Pascals/VS Programmer's Guide

140

Scalar PACKing does not match corresponding VAR parameter

The indicated variable that is being passed as a var parameter is of
a compatible type, but has a different length than the corresponding
formal parameter. This was caused by one being pactked and the other
unpacked.

141 sSymbol not recognizable in standard Pascal
This is a warning message that may result when the LANGLVL(STANDARD)
compiler option is specified. The indicated symbol (or operator) is
not supported in "standard" Pascal. The symbol is part of a con-
struct which is a Pascal/V5 language extension.

142 variable must be an array variable
The indicated variable is required to be of an array type, but such
is not the case.

143 Offset qualified field not on proper boundary
The indicated field in a record definition i1s qualified with an off-
set which 1is not consistent with the boundary requirement of the
field's type.

144 0ffset qualification value is too small
The indicated field in a record definition is qualified with an off-
set which either causes an overlap with a previous field within the
record or is an illegal (negative) offset.

145 Type must be CHAR or PACKED ARRAY OF CHAR
The indicated expression is required by its context to be of type
CHAR or packed arrayll..n] of CHAR.

146 vVariables of type POINTER are not permitted
The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function
The indicated identifier is used as though it is a function name,
but is not declared as such.

148 Missing period '.' assumed

149 Not a valid comparison operation
The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings, variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
v o1yt 1=t and '>=',

150 Entry routines must be at the outermost nesting level
A routine which is to be called from another module is nested within
another routine which 1is not permitted. Such routines must be
declared at the outermost nesting level.

151 Fixed Point overflow or divide-by-zero

An integer expression consisting of constant operands causes a pro-
gram error to occur when it is evaluated.

Pascal/VS Messages

145

152 Checking error Will jnevitably occur at execution time
This error indicates that the compiler has detected a condition
related to a particular construct which Will cause an execution time
error.
This error may occur at an assignment or at a routine call in which
parameters are passed. It indicates that the range of the source
expression {(a scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this
error to occcur:
var I: 1..10;
J: 106..20;
I := J;i; (¥target's range: 1..10; source's range: 11..21 %)
153 LEOUND/HBOUND dimension number is invalid for variable
154 Low bound of subscript range is too large in magnitude
The indicated array definition has an illegal aubscript range which
causas addressing code to be outside the range of the target
machine's capability.
155 The ORD of all SET membars must lie within 0..255
The ordinal value of any valid set member may not be less than 0 nor
greater than 255.
156 Length fields not applicable to non-TEXT files
A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non—-text file I/0,.
157 STRING variable is smaller than file component
The error occurs when an attempt is made to perform a READ operation
from a file of STRINGa into a string variable in which truncation is
possible. The string variable must be declared with at least the
sama length as the file component.
158 Notify compiler maintenance group
If this error should occur, then notify the PascalsV¥5S compiler main-
tenance group at IBM. This is a compiler error.
159 | Recursive type reference is not permitted
The compiler detected a degenerate type declaration of one of the
following forms:
I. type X = X;
II. type X = record
?E'X;
end
160 This SET operation will always produce the NULL set
Two disjoint sets are being intersected. The result will alwavas be
the null set [1. For example.,
var sl1: set of 0..10;
52: set of 11..20;
53: set of 0..20;
hegin
§3 := §1 % §2; (X <=5 always produces the NULL set %)
an&“
146 Pascals/V5 Programmer's Guide

l6l

ELSE clause without associated IF statement

A else symbol was detected that is not part of an if statement.
This error often occurs when the preceding then clause of an if
statement is terminated with a semicolon (;).

162 Must be an UnPACKED array
The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.
163 Must be a PACKED array
The indicated array variable should have been declared as packed,
but was not.
164 Unrecognizable proceduresfunction directive
The indicated identifier was interpreted as a procedure or function
directive but was not recognizable. The following are the only
recognizable directives:
- FORWARD
- EXTERNAL
- FORTRAN
- MAIN
- REENTRANT
165 FORTRAN subroutines may not be passed as parameters
Only Pascal/VS routines may be passed as parameters; FORTRAN subrou-
tines may not.
One way to get around this problem is to define & Pascal/VS proce-
dure which does nothing more than call the FORTRAN subroutine. The
Pascal/VS procedure would then be passed in place of the FORTRAN
subroutine.
166 FORTRAN subroutine parameters may not be passed by value
All formal parameters of a FORTRAN subroutine must be passed by ref-
erence: either by var or by const.
167 FORTRAN functions may return only scalar values
A FORTRAN function may only return values that are scalars (includ-
ing floating point).
l68 %INCLUDE member not found in library
The library member which was to be included into the source program
could not be found.
169 Floating point computational error
The indicated floating point expression causes a program error when
evaluated.
170 Data storage exceeds addressability of machine
The memory required to contain all declared variables within a rou-
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.
171 only STATIC/DEF variables may be initfalized

The only class of variablaes which may be initialized at compile time
are def and static variables.

Pascal/VS Maessages

147

172

Variahle's address is not compile-time computahle

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173

Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174

Repetition factor applicahle to constants only

Within a array structure, only a constant may be qualified with a
repetition factor; a general expression may not.

175

No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

176

This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.,

177

Numeric .lahels must lie within the range 0..9999.

178

Identifier was previously referenced illegally

The indicated identifier that was just declared was referenced pre-
viously within the associated routine. Pascals/VS requires an iden-
tifier to be declared prior to its use.

179

Recursive reference Wwithin constant declaration

A constant declaration of one of the following forms was detected:
const X = X;
or
const X = "some axpression involving X"

Such recursion within a constant declaration is not permitted.

180

Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali-
fied with a repetition factor. Only array structures are permitted
to have repetition factors.

181

Label previously referenced from a GOTO invalidly

The indicated label was previously referenced in a ¢goto statement
that is not a constituent of the statement sequence in which the
label is defined.

Example

bagin
goto LABEL1;
for I := 1 to 10 do
begin
LABEL1: A[I] := 0; (¥<==label was previously referenced invalidly¥)
end;
end

148

Pascals/VS Programmer's Guide

182 A GOTO may not reference a label within a separate stmt sequence
The indicated goto statement references a label which was previously
defined within a statement sequence of which +the goto is not a con-
stituent. Such a reference is not permitted.
Example
begin
for I := 1 to 10 do
begin
LABEL1: A[LI] := 0;
end;
goto LABEL1; (%<==jnvalid reference of label X)
end
183 CASE label outside range of indexing expression
The indicated tase label within a case statement has a value which
is outside the range of the indexing expression. For example,
var I: 0..10;
begin
case Ix2 of (¥Xrange of index is 0..20 %)
0: ...
1..20: ...
30: (%X<== this label is out of range of indexX)
end
end
186 second operand of MOD operation must be positive integer
The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.
185 Routine is not defined in standard Pascal
This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. The indicated call statement refers to a pre-
defined Pascal/VS routine which does not exist in standard Pascal.
186 Directive only applies to procedure, not to a function
The indicated procedure directive ("MAIN" or "REENTRANT") is being
applied to a function declaration. The directive 1is not supported
for functions.
187 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.
188 First parameter of REENTRANT procedure must be an integer by var
The indicated procedure declaration in which the directive "REEN-
TRANT" was specified, failed +to comply with the parameter list
requirement for such a procedure: the first parameter of a "REEN-
TRANT" procedure must be a pass-by-reference (specified with the var
reserved word) integer in which a pointer to the Pascals/VS environ-
ment is saved between calls.
189 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

Pascal/VS Messages

149

190

Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

191 Simple constant required
A constant expression which required compile-time computation was
found where a simple constant is required. This is often a warning
message that may be produced when the LANGLVL(STANDARD) compiler
option is specified.

192 %Parcent directives are not recognized in standard Pascal
This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. All compiler directives which appear in the
source program with the percent (%) prefix are Pascal/VS extensions
and are not supported in standard Pascal.

193 FOR- or WHILE-loop has no statements within its body
This is a warning message to indicate +that a for-statement or
While-statement loops on an empty statement. Such a case is often
not the programmer's intent.
Examples
While A > 0 do;
for I := 1 to J do ;

194 PACKED subranges not supported in standard Pascal
This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. Subrange type definitions may not be "packed"
in standard Pascal. This feature is a Pascal/VS language extension.

195 variable is not properly aligned
The indicated wvariable is being passed as a var parameter and the
compiler has detected that its address may not be properly aligned.
(For example, passing a full word integer which has an address that
is not on a word boundary.)
On most models of the 370 series, the manipulation of objects which
are not properly align will result in a penalty in execution speed.
This warning will be produced even 1if the variable is just poten-
tially misaligned (as in the case of a subscripted variable).

196 offset qualification value is too large
The indicated field in a record definition is qualified with an off-
set which would result in a record that was too large too address.

197 Object exceeds storage limits
The specified object would cause the program to require more storage
than is physically addressable.

150 Pascal/VS Programmer's Guide

500 Recursion detected in "%INCLUDE" processing lib(mem)

Source text which was included from member "mem" in library "lib" by
means of the a Z%INCLUDE directive contains in itself a X%INCLUDE
directive which directly or indirectly references the same member
recursively. This error causes immediate termination of the compi-
lation.
Example:
Source program: Member TYPES:
program EXAMPLE; REC = record
type NAME: STRING(10);

%include TYPES; AGE : 0..99;
begin end

e %include TYPES; (%<===ERROR 500x)

end.

501 Too many nesting levels in "%ZINCLUDE" processing lib(mem)

A XZINCLUDE directive was detected which is nested 8 levels deep
within a stack of "includes." "Included" source text may not be
nested beyond 8 levels. This error causes immediate termination of
the compilation.

502 Unable to open "%INCLUDE"™ library: libname
The include library named "libname" could not be opened. Possible
causes are that the DDname was not assigned or the DCB attributes of
the library are not correct. This error causes immediate termi-
nation of the compilation.

600 Identifier used in type definition at line nnn is out of context: xxxx
Thae identifier "xxxx' appeared in a pointer type definition of the
form "->xxxx' at line 'nnn', but the identifier was subsequently
declared as something other than a type.

Example:
type X = ->Y;
var Y=.iﬁTEGER; (% <=== would cause error 600 to be generated ¥)

601 Type identifier referenced at line nnn is undeclared: xxxx
The identifier "xxxx' appeared in a pointer type definition of the
form "->xxxx' at line 'nnn', but the identifier was not subsequently
declared.

602 Label xxxx wWwas declared andsor referenced but was not defined
The label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603 proceduresfunction xxxx wWas forwarded but not resolved

The procedure or function named 'xxxx' was declared with the direc-
tive 'FORWARD', but the body of the routine was not subsequently
declared.

Pascal/VS Messages 151

No. Message and Explanation
AMPDOOOD1S Routine "name"™ is too large to compile at stmt n
The indicated routine has too many statements to compile; a
fixed-length table of the compiler has overflowed, The last
statement that was successfully processed was statement "n."
The routine =hould be divided into two or more separate rou-
tinaes.
AMPTOO01E Inevitable NIL pointer error Will occur
The code optimizer of the compiler has determined that a nil
pointer checking error will inevitably occur at execution time
at the specified routine and statement. Example:
begin .
P := nil
WRITELN(PQ.I); (%¥<===AMPTOO0LE — inevitable errorx)
end;
AMPO0D2S Notify Pascalsvs Support - Optimizer error
An optimizer error occured at statement "nnn" of routine
OO in medule "mmmmmmmm"™. A message will be produced
describing the kind of error. HNotify Pascal/VS support.
AMPTO002E Inevitable high bound error Will occur
The code optimizer of the compiler has determined that a high
bound checking error will inevitakly occur at exscution time at
the specified routine and statement. Example:
var I : 1..10;
o INTEGER;
begin
J o= 11;
I 2= J; (X<===AMPTO02E - inevitable error)
end;
AMPTOO3E Inevitable low bound error will occur
The code optimizer of the compiler has determined that a low
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:
var I : 1..10;
o INTEGER;
begin
J 1= 0;
I == J; (%X<===AMPTO03E - inevitable arrorx)
end;
AMPTOOSE Function routine does not return a value
The code aoptimizer of the compiler has determined that the spe-
cified function routine does not return a result. Example:
function F(var I: INTEGER): INTEGER;
begin
READLNCI);
end; (%<===AMPT005 function did not return a resultx)

152 Pascal/VS Programmer's Guide

AMPTO06E

Expression is too complicated at stmt nnn of routine XXXXXXxX

The expression in statement "“"nnn™ of routine "xxxxxxxx"™ is too
complex to compile and should be broken up into multiple state-
ments, If the indicated statement contains a relatively simple
expression, then the Pascals/V¥5 support group should be
notified.

AMPT7008

Routine "name"™ contains too many statements. Maxc=n

The statement table being generated overflowed in the specified
routine. The routine should be divided into two or more rou-
tines.

AMPT7011

Recard type contains too many fields

The DEBUG compiler option was specifiad and a record type defi-
nition was compiled that contains too many fields tc¢ be accom-
modated in the debugger type table. If this error should
occur, the resulting code may not work properly when the inter-
active debugger is enabled.

AMPT702S

Routine "npame™ exceeds 8K limit at stmt n

The specified routine caused more than 8192 bytes of code to be
generated starting at statement number "n." Since PascalsVs
only reserves two base registers to address code, 8192 bytes is
the limit. The indicated routine should be divided into two or
more separate routines.

AMPT7031

Field name space pool overflowed

The DEBUG compiler option was specified and a large number of
record type definitions were compiled. The debugger table
which contains the record field names overflowed. If this
error should occur, the resulting code may not work properly
when the interactive debugger is enabled.

AMPT 7041

Type table overflow. Debug is disabled

The module being compiled with the DEBUG option contains more
than 256 unigque data tvpes. The type table being generated for
the interactive debugger may contain no more than 256 entries.
The interactive debugger may not be used on this module.

AMPT7051

Symhol name space pool overfloued

The DEBUG compiler option was specified and a large number of
symbols were compiled. The debugger table which contains sym-
bol names overflowed. If this error should occur, the result-
ing code may not work properly when the interactive debugger is
enabled.

AMPL9998

compiler error notify Pascal/vs Support

An error was detected in the first pass of the compiler. If
this error should occur, please notify Pascal/V¥S support at
IBM.

AMPD999S

Notify Pascals/vs Support - Optimizer Error

An error was detected in the second pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMPT9995S

Notify Pascalsvs support - Translation error

An error was detected in the third pass of the compiler. If
this error should occur, please notify Pascal/V¥S support at
IBM.

i
n

17.2 EXECUTION TIME MESSAGES

No. Message and Explanation

AMPXO11E Operation exception
An operation exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program or due to a 'wild' assignment through an uninitial-
ized pointer,

AMPX012E Privileged exception
A privileged exception occurred in the pregram. The error is
probably 10 an assembly language routine linked with your Pas-
cal program.

AMPX013E Execute exception
An execute exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPXO014E Protection exception
A protection exception occurred in the program. The error is
prokably due to a ‘'wild!' assignment through an uninitialized
pointer, or to an array assignment wWwith a bad subscript (with
checking off).

AMPX015E Addressing exception
An addressing exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AMPX016E specification exception
A specification exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX017E Data exception
A data exception occurred in the program. The error is probably
in a non-Pascal reoutine linked with a Pascal preogram.

AMPX01BE Fixed point overflow exception
A fixed-point overflow exception occurred in the program. The
arrcor is probably due to an addition, subtraction, or multipli-
cation that resulted in an integer with a magnitude which
excaeeds MAXINT.

AMPXO019E Fixed point divide by zero exception
A fixed point divide by zero exception occurred in the program.
The error is due teo a div operation in which the second operand
(the divisor) has the value zero.

AMPX020E Decimal overflow exception
A decimal overflow exception occurred in the program. The error
is probably occurred in a non-Pascal routine linked to the Pas-
cal program.

154 Pascal/V5S Programmer's Guide

AMPX0Z1E

Decimal divide by zero exception

A decimal divide by 2ero exception occurred in the program.
The error probably occurred in a non-Pascal routine linked to
the Pascal program.

AMPX022E Exponent overflow exception
An exponent overflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude greater than
7.23700557733226E75.

AMPX023E Exponent underflou EXCEPtiOh
An exponent underflow exception occcurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude less than
5.39760534693403E-79.

AMPX02%E significance exception
This exception 1is not intercepted by the PascalsVS run time
environment. If it should occur, then the Pascal/VS run time
environment may have been locally modified. Contact your local
system support.

AMPX025E Floating point divide hy zero exception
A floating point divide by 2zero exception occurred in the pro-
gram. The error is caused by an attempt to divide by =zero.

AMPXO026E seament translation exception
This is a system error, run the program again and if the error
persists contact Pascal/V5S Development for assistance.

AMPX027E Page translation exception
This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX023E Translation specification exception
This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX029E special operation exception
This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX030E Terminal attention exception
An attention was signaled from the users terminal.

AMPXO031E Low hound checking error
Either the value of an array subscript, or the value being
assigned to a subrange type variable is less than the minimum
allowed for the subscript or subrange. This error may also
result if the mod operation is attempted for which the second
operand (the divisor) is less than or equal to zero.

AMPX032E High bound checkinga error

Either the wvalue of an array subscript, or the value being
assigned to a subrange type variable 1is greater than the maxi-
mum allowed for the subscript or subrange.

155

AMPX033E

Nil pointer checking error

An attempt was made to reference a dynamic variable from a
pointer which has the value nil.

AMPXO034%E Case label checking error
The expression of a case-statement has a value other than any
of the specified case labels and there is no otherwise clause.
AMPX035E Function value checking error
A function routine returned to its invoker without being
assigned a result.
AMPX036E Assertion failure checking error
The expression of an assert statement computed to the value
FALSE.
AMPXO037E string subscript out of bounds checking error
The subscript on a STRING was not in the range 0..LENGTH(s),
where s is the STRING being subscripted.
AMPX038E Error 38 not assigned
This error number has not been assigned a meaning.
AMPX039E string truncation checking error
An assignment into a STRING variable could not be performed
because the length of the source string is longer than the max-
imum length of the destination string.
AMPX040S Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler
maintenance group at IBM. This 1s a run-time environment
error.
AMPX041S File could not be opened: DDNAME
An error occurred when an attempt was made to open the file
with the indicated DDname. The most probable cause of this
error is a missing DDname definition. Under CMS, this error
wWwill occur when attempting to open a file that does not have a
record format of 'F' or 'V'.
AMPX042E Lrecl size too small for file DDNAME
The logical record length of the file with the indicated DDNAME
is not large enough to contain a single file component.
AMPX043E File is not open for output: DDNAME
An output operation was attempted on a file open for input.
AMPXO044%E File is not open for input: DDNAME
An input operation was attempted on a file open for output.
AMPXO045E Logical record is too small in input file
A record file is being read which consists of varying length
records (RECFM=V); and a logical record was read which is too
short to represent a valid record in the file.
AMPXO046E Data larger than lrecl for file

The logical record length of a file is too small to contain the
file's component.

156 Pascal/VS Programmer's Guide

AMPX047E

Invalid Inputs/output option: xxxxx...

The options string passed to the procedure contains an incor-
rect or invalid option.

AMPX048E

Missing member in file: member library

The indicated member could not be found in the partitioned data
set.

AMPX049E

Floating point overflow/underflou

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

AMPXO050E

BLKSIZE exceeds 32760 in file DDNAME

A block size was specified that exceeds 32760 which is the max-
imum length of a block.

AMPXO051E

LRECL > BLKSIZE-4 in v format file: DDNAME

The logical record size was too large to permit at least one
record to be fit in a block.

AMPX052E

BLKSIZE not integer multiple of LRECL in DDNAME

The specified block size for a fixed-length record file is not
an integer multiple of logical records.

AMPX053E

component length of file exceeds 32760 in DDNAME

A single element must fit in one logical record, therefore its
length is restricted to 32760 bytes.

AMPXO054E

GET or READ called after end-of-file in DDNAME

An attempt was made to advance the file beyond the end-of-file.

AMPX055E

Integer READ operation failed for file DDNAME

An attempt was made to read an integer from a text file, but
either the end-of-file occurred, or an unrecognizable character
was detected where the integer should have been.

AMPX056E

overflow/underflon detected in integer READ: DDNAME

An attempt was made to read an integer which has a value that
does not lie within the range -2147483648..2147483647.

AMPXO057E

Invalid run time option:

An invalid option was specified when invoking a Pascal/VS pro-
gram. A runtime option is specified preceding a slash '/' when
invoking the program.

AMPX0581

OPEN and INTERACTIVE are no longer supported, use READ/WRITE

The procedures OPEN and INTERACTIVE are not supported in
Release 2.0 and up. The Pascal/Vs Programmer's Guide
SH20-6162-1 and the Pascal/VS Reference Manual SH20-6168-1
describes the equivalent operations.

Pascal/VS Messages

157

AMPXQ59E Text exceeds logical record length in file "name"

A line of data 15 being written to the text file whose DDname
is "name'" and the line exceeded the logical record length of
the file. As a recovery, the line 1is terminated at the end of
the logical record and the remaining text of the line is placed
in the next logical record.

For each file being written, this error will be diagnosed only
on the first occurrence; subseguent violations wWwill not be
diagnosed.

AMPXO060E Operand to RELEASE does not correspond to MARK
The parameter passed to RELEASE did not have the value returned
by a call to MARK,

AMPX061E Operand to DISPOSE not allocated With NEKW
A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPX062E Real READ operation failed for file DDNAME
An attempt was made to read an real from a text file, but
either the end-of-file occurred, or an unrecognizable character
was detected where the real should have been.

AMPX063E Operand to DISPOSE already deallocated
An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

AMPX064GE Insufficient space to do NEHW
There was not enough storage avatlable to perform the NEW pro-
cedure. You should execute the program in a larger region (05)
or in a larger virtual machine (CMS). Also, you may not be
calling DISPOSE for storage vou no longer need.

AMPX065E Storage has been incorrectly assigned priocr to DISPOSE
The pointer being disposed of was used incorrectly; namely, the
pointer caused the heap to be modified beyond the size of the
dynamic variable. This could happen if the dynamic variable
was a record that was allocated by specifying tag values, and
then was later used in an assignment with a different variant.

AMPX066E Qperand to DISPASE is NIL or undefined.

The operand is not valid for DISPOSE.

AMPX067E Heap incorrect due to previous invalid assignment using a pointer
The heap has been damaged. The cause of the damage was proba-
bly due to a pointer being used incorrectly.

AMPX0685 Notify compiler maintenance group
If this error should oceur, then notify the Pascals/V¥sS compiler
maintenance group at 1IBM. This is a run-time environment
error.

AHMPX0695 Notify compiler maintenance group
I¥ this error should occur, then notify the Pascals/VS5 compiler
maintenance group at IBM. This is a run—-time environment
error,

158 PascalsVS Programmer's Guide

J

J

AMPX070E

LN: argument <= 0.0

The natural logarithm function (LN) was called with a 0 or neg-
ative argument.

AMPX071E SQRT: argument < 0,0, zero returned as result
The square root Tunction (5QRT) was called with a negative
argument.

AMPX072E EXP: argument too large, exceeds 174.67309
The argument of the EXP function 1is too large; the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

AMPX073E RANDOM: seed is out of ranae
The function RANDOM was called with an argument which is either
negative or greater than 1048575 {which is the allowed
maximum) .

AMPX074E SIN/COS: araument too large,; exceeds (PI/2)x%x50
A call to SIN or C05 was made with an argument that is too
large for an accurate result to he computed.

AMPX075E SEEK called for a file not opened for DIRECT access

AMPX076E SEEK: bad relative record address
The record number in am invocation of SEEK has anm 1invalid
value.

AMPX077E Direct access file does not have fixed unblocked records: DDNAME
An attempt was made to perform direct access (relative record)
operations on a file that was either not fixed or not
unblocked. The required record format for a file to be manipu-
lated with SEEK is RECFM=F,

AMPX078E Target string filled to maximum length in WRITESTR call
The target STRING (first parameter) in a call to WRITESTR was
filled to capacity before the data being assigned into the
S5TRING was exhausted.

AMPX079E source string exhausted in READSTR call
Prior to reading all data from the the source string (first
parameter), the end of the string was encountered.

AMPX080S Notify compiler maintenance droup
If this error should occur, then notify the Pascal’/V5 compiler
maintenance group at IBM, This 12 a run-time environmment
error.

AMPXO081E LPAD: PADDING exceeds maximum length of string
The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameterl}.

AMPX082E DELETE: Length parameter less than zero

Pascal/V5 Messages 159

AMPX083E DELETE: starting index is less than 1

AMPX0B4&E DELETE: substring not contained within source string

AMPX085E set operation out of bounds
An attempt to perform a set operation in which the resulting
set contained members which are outside the renge of a target
set. This can occur in a set assignment in which the source
set contains members which are not wvalid for the declared type
of the target set.

AMPX0B6E SUBSTR: Length parameter less than zero

AMPXDB7E SUBSTR: starting index is lass than 1

AMPXO088E SUBSTR: substring not contained Wwithin source string

AMPX0Q89E RPAD: padding exceeds maximum length of string
The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AMPX200I The module must ke linked with DEBUG for dehugger features
An attempt was made to invoke the interactive debugger on a
module that was not linked with the debugger library.

AMPX201I The module must be linked with DEEUG for symbolic dump
An executiorr time error occurred and a symbolic dump of the
offending routine was attempted, but the module in which the
routine is located was not compiled with the DEBUG option.

AMPX203I Error occurred while executing ONERRCOR routine
An execution time error has occurred while ONERROR was execut-
ing. ONERR(R is a wuser provided procedure to diagnose exe-
cution errors and determine the correct course of action.

AMPX9995 NOTIFY PASCAL/VS SUPPDRT: RECURSIVE ERROR IN RUNTIME ENVIRONMENT
A second error was encountered while PascalsV5 was recovering
from the first error. The program is terminated because any
further processing would probably result in a €FU bound loop.
You should notify Pascal/s/V5 Development if this error persists.

160

Pascal/VS_Piggrammgr's Guige

17.3 MESSAGES FROM DEBUG

No. Message and Explanation |
AMPD500 current module not compiled with Debug option ‘
AMPD501 No statement %xx in
AMPD502 There is no routine named ¥ in module
AMPD503 Invalid qualification specification:

AMPD504% Missing qualification specification
AMPD505 Module name must be specified
AMPD506 Breakpoint is already set
AMPD507 Maximum number of breakpoints have been set
AMPD508 specified breakpoint does not exist
AMPD509 is an automatic variable local to a non-active routine
AMPD510 Field qualified variable is not a record
AMPD511 is not a valid record field
AMPD512 subscripted variabhle is not an array
AMPD513 Array subscript is not a scalar
AMPD514 Invalid symbol:
| AMPDS515 Array subscript is out of bounds:
AMPD516 Missing symbol:
AMPD517 Associated variable is not a pointer
AMPD518 Pointer variable does not contain valid address
AMPD519 not found in symbol table
AMPD520 Equate substitution is in infinite recursion
AMPD521 EQUATE expansion causes command truncation(exceeds 255 characters

Pascal/VS Messages 161

AMPD522 You ara not in CMS, command not valid
AMPD523 Debug command not recognfzed:
AMPD524 Invalid character in hexadecimal string:
AMPD525 Invalid hexadecimal string
AMPD526 Routine is not activa
AMPD527 Qualification set to module
AMPD5238 The word "EQUATE" may not be redefined
AMPD529 Maxfimum number of EQUATE''s have been set
AMPD530 There are no EQUATE''s currently set
AMPD531 Statement table missing

Trace requires GOSTMT option
AMPD533 There are no active variables
AMPD534 Routine is not active:

162 Pascal/VS Programmer's Guidea

17,% MESSAGES FROM PASCALVS EXEC

The following messages ara given by the They are shown below with their associ-
PASCALYS EXEC of CMS to indicate the ated return codes.
status of the compiler invocation.

RC Message and Explanation

1 File name is missinu

The exec was invoked without specifying a file name.

2 Unahle to find 'fn' PASCAL

The specified file name could not be faund.

16 Unabhle to find the "name' MACLIE

The specified maclib file could not be faund.

32 More than 8 maclibs specified

The maximum number of MACLIBS that may be specified when invoking
the PASCALVS EXEC is eight.

Pascal/VS Messages 163

164 Pascal/VS Programmer's Guide

"Appendix
TAppendix
"Appendix

"Appendix

o O oW >

APPENDIXES

Command Syntax Notation™ on page 167
Installation Instructions” on page 169
Additional Library Procedures and Functions™ on page 179

YM/PC Pascals/V¥S User's Guide™ on page 185

APPENDIXES 165

Tha syntax notation used teo illustrate
TS50 commands is explained in the manual
150 Command Lanquage Reference
(GC23-0646). The notation used to
illustrate CMS commands is explained in
the manual ¥M/370: CM5 Command and Mac~
ro Reference (GC20-1818).

Briefly, the conventions used by both
notations are as follows.

. Items in brackets [1 are optional.
If more than one item appears in
brackets, then no more than one of
them may be sapecified; thev are
mutually exclusive,

APPENDIX A. COMMAND SYNTAX NDTATION

Appendix A. Command Syntax Hotation

Items in capital letters are kay-
words. The command name and key-
words must be spelled as shown.

Items in lowercase letters must be
replaced by appropriate names or
values.

Items which are underlined repre-
sent defaults.

The special characters ' () ¥ must
be included where shown.

L
1o
e

168 Pascal/VS Programmer's Guida

This section describes how to install
Pascals/VS under 05/V¥52 and CMS-VMrs/370
from the distribution tape.

All V52 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili-
ty program. V52 sequential data sets
wera stored by using the IEBGENER util-
ity program.

The CMS wversion of +the package is
located at file 12 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distributicen tape con-—
tain the following data sets.

File 1: INSTALL.CNTL A
job control language (JCL)
required to install Pascal/V$s
under 05/VS2 (MVS).

sample of the

Fila 2: LDADSRC.CNTL A sample of the
job control language (JCL)
required to load the Pascals/Vs
source from the distribution
tapa.

Fila 3: PASCALVS.CONTENTS A segquential
data set which lists the contents
of the Pascal/VS package.

File %: PASCALVS.LINKLIB A partitiocned
data set which contains the mod-
ulas of the compilar.

File 5: PASCALVS.LOAD A partitioned
data set which contains the Pas-
calsV5 run time library.

File 6: PASDEBUG.LOAD A partitioned
data set which contains the Pas-
cals/Vs debug library.

File 7: PASCALVS.MACLIB The
include library.

standard

File 8: PASCALVS.CLIST A partitioned
data set containing two clists:
PASCALVS and PASCMOD.

File ©: PASCALVS.PROCLIB A partitioned
data set which contains the JCL
cataloged proceduraes for running

the compiler as a batch job under
MVS .

File 10: SAMPLE.PASCAL A partitioned
data set containing sample pro-
grams,

File 11: PASCALVS.MESSAGES A sequen—
tial data set which contains the
compiler messages.

Fille 12: CMS dump of the
Pascal/vs package:

entire

APPENDIX B. INSTALLATION INSTRUCTIONS

PASCALVS CONTENTS A listing of
the contents of the
Pascal/V5 package.

~ PASCALS MODULE A program that
issues all necessary FILEDEF
commands to CMS prior to
invoking the compiler.

- PASCALL MODULE The first pass
of the compiler.

- PASCALQ MODULE The second pass
of the compiler.

- PASCALT MODULE The third pass
of the compiler.

- PASCALL TXTLIB the txtlib from
which PASCALL MODULE as
generated.

- PASCALDO TXTLIB the txtlio from
which PASCALO MODULE was
generated.

= PASCALT TXTLIB the txtlib from

wWhich PASCALT MODULE was
genaerated.

- PASCALVS TXTLIB The Pascal/V$s
run time library.

- PASDEBUG TXTLIB The PascalsVs
debug library.

- PASCALVS MACLIB The standard

#INCLUDE library.

- PASCALVS EXEC CMS EXEC
invokes the compiler

which

- PASCALVS CMSHELP Help file that
is accessaed when "“PASCALVS
M is invoked.

- PASCMOD EXEC CMS EXEC which
creates a load module from a
compiled Pascal/VvsS program.

- PASCALVS MESSAGES List of the
compiler messages.

- LDADSRC EXEC An EXEC which will
load tha sourca of the com-
pilaer from the tape.

- SAMPLE PASCAL A sample program.

- PRIMGEN PASCAL A
program.

sampla

File 13: PASCALL.PASCAL The source of
the firast pass of the compiler.

File 14! PASCALD.PASCAL The source of
the second pass of the compiler.

Appendix B. Installation Instructions 169

File 15: PASCALT.PASCAL Thae source of
the third pass of the compiler.

File 16: PASCALD.PASCAL The source of
the interactive debugger.

File 17: PASCALX.PASCAL The source of
the runtime library routines.

File 18: PASCALX.ASM The source of the
operating system interface rou-
tines.

File 19: MACLIBL.PASCAL Include
library for first pass of the
compiler.

File 20: MACLIBO.PASCAL Include
library for second pass of the
compiler.

File 21: MACLIBT.PASCAL Include
library for third pass of the
compiler.

File 22: MACLIBD.PASCAL Include
library for interactive
debugger.

File 23: MACLIBX.PASCAL Include
library for runtime routines.

B.l INSTALLING PASCAL-/VS UNDER CMS

To install Pascal/VS undar CMS perform
the following:?

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is dona with the CP
LINK command. The mini-disk must
have at least 2300 blocks of free
storage!®.

3. Access this disk with the ACCESS
command.

18 800 byte blocks are assumed.
a 3330 disk.

%. Execute thea
commands:

TAPE FSF 11
TAPE LOAD * % m

following two

where "™m"™ is the single letter file
mode of the disk that was accessed in
the previous step.

B.1.1 Regenerating compiler Modules

To fix bugs that are discovered in the
compiler often requires modules of the
compiler to be recompiled.!? To replace
a compiled module (a text deck) of the
compiler, execute the following two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

whera "PASCALX" is either PASCALL, PAS-
CALO, or PASCALT, depending on which
phase of the compiler is being fixed;
"AMPxccece" is the module name being
replaced.

After the appropriate text modules have
been replaced, then the associated load
module wWill need to be regenerated. To
regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIN PASCALL (NAME PASCALL

To regenerate PASCALO MODULE, execute
the following:

PASCMOD AMPOMAIN PASCALO (NAME PASCALD

To regenerate PASCALT MODULE, executa
the following:

PASCMOD AMPTMAIN PASCALT (NAME PASCALT

This amount is equivalent to 9 cylindars on

19 The Pascals/V$ compiler is written entiraly in Pascal/VS and is self-compi-

ling.

170 Pascal’/VS Programmer's Guide

//JOBNAME JOB ,REGIDN=50K
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSDOUT=x

//5YSUT1 DD DSN=PASCALVS.INSTALL.CNTL,

//5YSIN DD DUMMY

/7 VOL=SER=TAPEVOL,

Vs UNIT=TAPE,LABEL=(1,NL),

/7 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
77 DISP=0LD

/75YSUT2 DD DSN=X XXX XXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
77 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),

77 UNIT=3330,VOL=-SER=DISKVOL,

77 SPACE=(TRK,(1,12?

Figure 97. Sample JCL to retrieve first file of distribution tape

B.2 INSTALLING PASCAL/VS UNDER V§2

This section explains how to install
Pascal/VS under an 05/V52 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/V5 under V52
(MVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program IEB-
GENER must be used. The JCL shown in
Figure 97 may serve as a model job to
retrieve this file. DD operands which
are highlighted will require modifica-
tion to suit yvour installation
requirements., The serial number of the
distribution tape must be placed where
the name Y“TAPEVOL™ appears in the DD
card named S5YSUTI.

The data set name (D5M=) in the DD card
namad SYSUTZ2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num-
her for disk storage must be specified
for DD SYSUT2.

Figure 98 on page 172, Figure 99 on
page 173, &and Figure 100 on page 174
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

. The name "TAPEVOL"™ must be replaced
with the volume serial number of
the distribution tape in the DD
g?ggfment named 5YSUT1 in job step

The UNIT specification for tapes,
has been given the generic name of
"TAPE"; this should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascal/Vs
is to be installed must be speci-
fied where indicated ("DISKVOL™)
in the following DD statements:
in STEP1: SYSUTZ2
in STEP2: SYSUT2
in STEP3: DS54, D55, D56,
D57, DS3, D59,
D516
in STEP4: SYSUTZ2

The DD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener-
ic nama "SYSDA"™ is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with-
in the DEN suboperand of the DLB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. 1If your dis-
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that are to be cataloged
should bhe modified to follow
installation conventions. (The
examples in this manual assume a
high level qualifier of "SYS1™.)

Appendix B. Installation Instructions 171

//INSTALL JOB ,REGION=128K

SR

4. FILE 2 ——- SOURCE INSTALLATION JOB
&

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSQUT=¥

//SYSUT1 DD DSN=LOADSRC.CNTL,

s VOL=(,RETAIN,SER=TAPEVOL?,

4 UNIT=TAPE,LABEL=(2,NL),

Y4 DCB=(LRECL=8(,RECFM=FB,BLKSIZE=3120,DEN=3),
77 DISP=(0LD,PASS)

/75YSUT2 DD DSN=SYS1.LOADSRC.CNTL,DISP=(NEW,CATLG),
’/ DCB=(LRECL=8G,RECFM=FB,BLKSIZE=3120),
4 UNIT=3330,V0L=SER=-DISKVOL,

Y4 SPACE=(3120,(1,1))

//SYSIN DD DUMMY

V8.

7R FILE 3 —— PASCALVS CONTENTS

SR

s7/3TEP2 EXEC PGM=IEBGENER
Z/SYSPRINT DD SYSQUT=x
//5YSUT1 DD DSN=PASCALYS.CONTENTS,

Yy VOL=REF=%.STEP1.5YSUT1,

Yy UNIT=TAPE,LABEL=(3,NL)>,

77 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120,DEN=3),
s/ DISP=(0OLD,PASS)

//5YSUT2 DD DSN=SYS].PASCALYS.CONTENTS,DISP=(NEW,CATLG),
77 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),

s’/ UNIT=-33390,Y0L=SER=DISKVOL.,

s SPACE=(3120,(1,1))

//SYSIN DD DUMMY

yys

/7% FILE & ~-- PASCALVYS.LINKLIB

/7% FILE 5 -- PASCALVYS.LOAD

/7% FILE 6 -- PASDEBUG.LOAD

/7% FILE 7 -—-- PASCALVYS.MACLIB

/7% FILE 8 -- PASCALVYS.CLIST

/7% FILE 9 -—-- PASCALVS.PROCLIB

/7% FILE 10 -- SAMPLE.PASCAL

g

//5TEP3 EXEC PGM=IEBCOPY

/7/7DsS4 DD DSN=SYS].PASCALVS,.LINKLIB,DISP=(NEW,CATLG),
Vs DCB=(BLKSIZE=13030,RECFM=U,DSORG=P0),

s/ UNIT=3330,VOL=-SER=DISKVOL.

7/ SPACE=(TRK,(50,10,3))

//FILE4 DD DSN=PASCALVS.LINKLIB,

44 YOL=REF=%.STEP1.S5YSUT1,

¥4 UNIT=TAPE,LABEL=(%,HNL),

77 DCB=BLXSIZE=13030,

s/ DISP=(QLD,PASS)

//DS5 DD DSN=SYS1.PASCALVS.LOAD,DISP=(NEW,CATLG),
/7 DCB=(BLKSIZE=13030,RECFM=U,DSORG=P0),

s UNIT=3330,Y0L=SER=DISKVOL,

Yy SPACE=(TRK,(14,10,36))

//FILE5 DD DSN=PASCALVS.LOAD,

/7 VOL=REF=%_,STEP1.S5YSUT1,

s DCB=BLKSIZE=13030,

s/ UNIT=TAPE,LABEL=(5,NL?>,

s DI5SP=(0LD,PASS)

7/7DS6 DD DSN=5YS).PASDEBUG.LOAD,DISP=(NEW,CATLG),
/7 DCB=(BLKSIZE=13030,RECFM=U,DSORG=P0O),

/7 UNIT=3330,VOL=SER=-DISKVOL,

/7 SPACE=(TRK,(9,1,7))

Figure 98. Sample installation job: (continued in Figure 99 on page 173)

172 Pascal/VS Programmer's Guide

//FILEé6

’/

//SYSPR
//75YSUT
s/75YSUT
//7SYSIN
COPY
COPY
COPY
COPY
COPY
COPY
COPY
/K

Figure

DD

DD

DD

DD

DD

DD

DD

DD

INT

3
4

DSN=PASDEBUG.LOAD,

VOL=REF=%_,STEP1.5YSUT1,

DCB=BLKSIZE=13030,

UNIT=TAPE,LABEL=(6,NL),

DISP={0LD,PAS5%S)
DSN=8YS1.PASCALYS.MACLIB,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DS0RG=P0),
UNIT=3330,V0OL=SER=DISKVOL,
SPACE=(TRK,(4,1,3))

DSN=PASCALVS.MACLIB,
VOL=REF=%_STEP1.5YSUT1,
UNIT=TAPE,LABEL=(7,NL),

DCB=BLKSIZE=3120,

DISP=(QLD,PASS)
DSN=5YS1.PASCALYS.CLIST,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=VB,LRECL=255,D50RG=P0),
UNIT=3330,VOL=SER=DISKVOL.
SPACE=(TRK,(3,1,5))

DSN=PASCALVS.CLIST,

VOL=REF=%_.STEP1.5YSUT1,

DCB=BLKSIZE=3120,

UNIT=TAPE,LABEL=(8,NL),

DISP=(0OLD,PASS)

DSN=8Y¥$1.PASCALVS .PROCLIB,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DS0ORG=P0),
UNIT=3330,Y0L=SER=DISKVOL,
SPACE=(TRK,(2,2,2))

DSN=PASCALVS.PROCLIB,
VOL=REF=%.STEP1.5YSUT1,
UNIT=TABE,LABEL=(9,NL),

DCB=BLKSIZE=3120,

DISP=(OLD,PASS)
DSN=5YS1.SAMPLE.PASCAL,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DS0RG=P0O),
UNIT=3330,Y0L=SER=DISKVOL,
SPACE=(TRK,(5,2,2))

DSN=SAMPLE.PASCAL,

VOL=REF=%.STEP1.5YSUT1,
UNIT=TAPE,LABEL=(10,NL).

DCB=BLKSIZE=3120,

DISP=(0OLD,PASS)

DD SYSOUT=¥

DD UNIT=SYSDA,SPACE=(TRK, (1))

DD UNIT=SYSDA,SPACE=(TRK, (1))

DD x

QUTDD=DS%, INDD=FILE4
OUTDD=DS5, INDD=FILES
QUTDD=DS56, INDD=FILEG
QUTDD=DS7, INDD=FILE?
QUTDD=DS8, INDD=FILES
QUTDD=D59, INDD=FILE®?
QUTDD=DS510,INDD=FILELD

99%.

Sample installation job: (continued in Figure 100

on page 174%)

Appendix B. Installation Instructions

173

Ia
Ios | FILE 11-- PASCALVYS MESSAGES

and Figure 99%9)

/7% (Must be stored unblocked because of BDAM access requirements)

YR,

//S5TEP4 EXEC PGM=IEBGENER

//75YSPRINT DD SYSOUT=x

//75YSUT]1 DD DSN=PASCALVS.MESSAGES,

/7 VOL=REF=%.5TEP1.SY5UT1,

/7 UNIT=TAPE,LABEL=(Cl1l,NL),

/7 DCB=(LRECL=64,RECFM=FB,BLKSIZE=3200,DEN=3),
/7 DISP=(QLD,PASS)

//5YSUT2 DD DSN=5Y5)1.PASCALYS.MESSAGES,DISP=(NEW,CATLG),
/7 DCB=(LRECL=64,RECFM=F,BLKSIZE=-64G),

/7 UNIT=3330,V0L=SER=DISKVOL,

/7 SPACE=(TRK, (1,13

//5YSIN DD DUMMY

Figure 100. Sample installation job: (continued from Figure %8 on page 172

B.2.2 The TS0 clists

Distributed with the compiler are twWo
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.CLIST (file 8 of the dis-
tribution tapel.

These CLISTs should be stored in a pub-
lic CLIST library that is accessable to
TS0 users through DDname SYSPROC.

Each CLIST must be modified so that the

correct high level qualifier name is
used to refarence the Pascal/V5 data
sets, In PASCALVYS, the symbol named

"FIRSTNAME"™ should be set to the appro-
priate name. In PASCMOD, the symbols
named "LIBRARY"™ and "DEBUGLIB"™ should
be set to the names of the Pascal/V$s
run time library and the debug library,
respectively.

B.2.3 cataloged Procedures

Distributed with the compiler are four
cataloged procedures for invoking the
compiler from a batch jcb: PASCC,
PASCCG, PASCCL, and PASCCLG. These
procedures reside in the partitioned
data set PASCALVS.PROCLIB (file 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure library. so that
the names will be recognized when ref-
erenced from a hatch job.

Each preocedure must be customized to
reflect the data set naming convention
chosen at your installation. For a

20 This is roughly 9400 800-byte blocks.

listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 24.

B,2 LOADING THE SOURCE UNDER CMS

The compiler source is stored on the
distribution tape beginning at file 13;
that is, 12 tape marks from the begin-
ning of the tape. It consists of nine
tape filaes stored in the IEBUPDTE for-
mat. To read such a format under CMS,
the TAPPDS command must he utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per-
form the following:

1. Have the digatribution tape mounted
at address 181.

2. Access the disk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 35 free cylinders of 3330 stor-
age.2°

3. Make sure that there is the equiv-
alant of at least 2 free cylinders
of 3330 storage on vour "A"™ disk.

4, Invoke the LOADSRC EXEC as focllows:
LOADSRC Tm

Wwhere "fm"™ is the single letter

file mode of the disk to where the

source files are to ke placed. Theae

EXEC will print out messages as it
procasses tha tape.

Once the scurce files have been

installed, vou may find it desirable to pack them in order to save disk

storage.

174 Pascal/V¥5 Programmer's Guide

B.% LOADING THE SOURCE UNBER VS2

The compiler source is stored on the
distribution tape beginning at file 13.
It consists of nine tape files stored
in the IEBUPDTE format.

File 2 of the distribution tape con-
tains the JCL which copies the source
files to disk storage. This file is
unloaded when the compilaer is installed
and has bean given the name
"LOADSRC.CNTL"™.

Prior to submitting the job, it must be
customized as follows:

U In ddname SYSIN of jobstep STEP1,
the volume serial number of the
distribution tape should be placed
where the name TAPEVOL is shown.

. The UNIT specification for tapes
has been given the generic name
"TAPE"; this should be changed to
the appropriate generic at vyour
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed *o

the appropriate specification at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DD state-
ment named SYSUT2 in each job step.

The high level qualifier for the
data set names to be cataloged is
arbitrary. In the supplied JCL,
the name "SOURCE" is used.

If you do not want a listing of the
source, then DDname SYSPRINT
should be assigned to DUMMY in each
of the job steps.

The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the JCL, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other density, then
the DEN operands should be changed
accordingly.

Appendix B. Installation Instructions 175

//LOADSRC JOB ,REGION=50K

Vs

Vs FILE 13 -- PASCALL PASCAL - PAS55 1 SOURCE (COMPILER?

I,

//5TEP1 EXEC PGM=IEBUPDTE,PARM=NENW

//5Y5UT2 DD DSN=SOURCE.PASCALL.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FBJ,

s VOL=SER=DISKVOL,SPACE=(TRK,(132,43,5))

//5YSIN DD UNIT=TAPE,VOL=(,RETAIN,SER=TAPEVOL>,LABEL=(13,NL),
/7 DISP=(0LD,PASS),

/7 DCB=(LRECL=80,BLK5I2E=3120,RECFM=FB, DEN=3)
//SYSPRINT DD SYSOUT=x

V&

4l FILE 14 -~ PASCALD PASCAL -~ PASS 2 SOURCE (OPTIMIZER)
Y sl

//STEP2 EXEC PGM=IEBUPDTE,PARM=NEW

//5YS5UT2 DD DSN=SOURCE.PASCALO.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL ,SPACE=(TRK,(40,10,5))

//5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(14,NL),
s DISP=COLD,PASS),

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x
I,

IIK FILE 15 -- PASCALT PASCAL - PASS 3 SOURCE (TRANSLATOR)
A

//5TEP3 EXEC PGM=IEBUPDTE,PARM=NEW
//5YS5UT2 DD DSN=SQURCE.PASCALT.PASCAL,DISP=(NEW,CATLG),

<4 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
Vs VOL=SER=DISKVOL,5PACE=(TRK,(117,39,5))

//75YSIN DD URIT=TAPE,VOL=REF=%,STEP1.SYSIN,LABEL=(15,NL),
77 DISP=(OLD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=J3)
//5YSPRINT DD SYSOUT=x

A

Vs FILE 16 -- PASCALD PASCAL - DEBUG SOURCE

A

//STEP4 EXEC PGM=IEBUPDTE,PARM=NEW
/75YSUT2 DD DSN=SOURCE.PASCALD.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL,SPACE=(TRK,(33,9,5))

//7SYSIN DD UNIT-TAPE,VOL=-REF=%.STEP1.SYSIN,LABEL=C16,NL),
77 DISP=(0LD,PASS),

Vs DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x
/%

/K FILE 17 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE
s

//STEP5 EXEC PGM=IEBUPDTE,PARM=NEW

/75Y5UT2 DD DSN=SOURCE.PASCALX.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSI2ZE=3120,RECFM=FB),
/7 VOL=SER=DISKVOL,SPACE=(TRK,(69,2%,5))

//5YSIN DD UNIT=TAPE,VYOL=REF=%.STEP1.SYSIN,LABEL=(17,NL),
/7 DISP=(OLD,PASS),

s DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DENZ3)
//SYSPRINT DD SYSQUT=x

Figure 101. Listing of the JCL to copyv source files from tape: this job is
stored as file 2 of the distribution tape. (continued in
Figure 102 on page 177).

176 Pascal/VS Programmar's Guide

/7%

/7% FILE 18 -- PASCALZ ASM - RUN TIME ENVIRONMENT SOURCE
/7%

//STEP6 EXEC PGM=IEBUPDTE,PARM=NEW

/75YSUT2 DD DSN=SOURCE.PASCALZ.ASM,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/77 VOL=SER=DISKVOL,SPACE=(TRK,(16,1,4%))

/7/7SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(18,NL),
/77 DISP=(0LD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=#%

/7%

77 % FILE 19 -- MACLIBL PASCAL - X%INCLUDE LIBRARY FOR COMPILER
/7%

//STEP7 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.MACLIBL.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK,(21,7,4))

/7/S5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(19,NL),
s DISP=(0LD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

//SYSPRINT DD SYSQUT=#%

/7%

/7% FILE 20 -- MACLIBO PASCAL - %XINCLUDE LIBRARY FOR OGPTIMIZER
4.

//STEP8 EXEC PGM=IEBUPDTE,PARM=NEW

/775YSUT2 DD DSN=SOURCE.MACLIBO.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK, (5,2,3))

/77S5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(20,NL),
/77 DISP=(0LD,PASS),

V4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

//SYSPRINT DD SYSOUT=¥%

/7%

7/ % FILE 21 -- MACLIBT PASCAL - XINCLUDE LIBRARY FOR TRANSLATOR
/7%

/7/7STEP9 EXEC PGM=IEBUPDTE,PARM=NEW

/7/75YSUT2 DD DSN=SOURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK,(19,7,4))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(21,NL),
V4 DISP=(0LD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

/7%

/7% FILE 22 -- MACLIBD PASCAL - XINCLUDE LIBRARY FOR DEBUG
/7%

//STEP10 EXEC PGM=IEBUPDTE,PARM=NEW

/7/5YSUT2 DD DSN=SQOURCE.MACLIBD.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
/77 VOL=SER=DISKVOL,SPACE=(TRK,(2,1,1))

//7S5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(22,NL),
V4 DISP=(0OLD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

//SYSPRINT DD SYSQUT=x%

/7%

/7% FILE 23 -- MACLIBX PASCAL - %INCLUDE/MACRO LIBRARY FOR RUN TIME
/7% ENVIRONMENT

/7%

//STEP11 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.MACLIBX.PASCAL,DISP=(NEW,CATLG),

77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK,(9,1,2))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(23,NL),
77 DISP=0LD,

V4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=%

Figure 102. Listing of the JCL to copy source files from tape: (continued

from Figure 101)

Appendix B. Installation Instructions

177

178 Pascal/VS Programmer's Guide

APPENDIX C. ADDITIONAL LIBRARY PROCEDURES AND

In addition to the routines described
in Pascals/VS Reference Manual, order
number SH20-6168-1, there are several
other routines which are not predefined
but are provided in the Pascal/VS exe-
cution library. These routines are :

° ITOHS Procedure

CMS Procedure
LPAD Procedure
RPAD Procedure
PICTURE Function

FUNCTIONS

Appandix C. Additional Library Proceduras and Functions 179

€C.1 CMS PROCEDURE

Invoke a CMS Command

€C.2 ITOHS FUNCTION

Convert an INTEGER to a hex string

Definition:.

procedure CMS(
const S
var RC
EXTERNAL;

STRING;
INTEGER);

Where:
S is a STRING that is to be

executed.
RC is the return code.

The STRING specified by & will be
passed to CMS (via SVC 202) to be exe-
cuted; the command must be executable
in the transient area or in a shared
sagment. You must code the declaration
as shown above, or use the INCLUDE mem-
ber named "CMS" which is provided in
the Pascal/VS library. This procedure
is applicable under CMS only.

%INCLUDE CMS
CMSC'CP Q T', RET);

180 Pascal/VS Programmar's Guide

Definition:
function ITOHS(
I INTEGER)
STRING(8);
EXTERNAL;
" Where:

I is the value to be converted.

This function converts the parameter 1
into a STRING that contains the hexade-
cimal representation of the integer.
You must code the declaration as shouwn
above, or use the INCLUDE member named
"CONVERT" which is providad in the Pas-
calsvs library.

%INCLUDE CONVERT
WRITELNC'The value ',I:0,

''is ', ITOHS(I),
' in hexadecimal."');

&

C.3 LPAD PROCEDLRE

Pads or truncates a string on the left

Definition:

procedure LPAD(

var § : STRING;
L : INTEGER;
(o CHAR);
EXTERNAL;
Where:

S is the STRING to be padded:;
L is the final length of S;
C is the pad character.

The procedure LPAD pads or truncates
string variable S on the left. 1If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
left. If LENGTH(S) is less than L,
then the effect is to extend S with the
character C on the left. You must code
the declaration as shown above, or use
the INCLUDE member named "STRING" which
is provided in the Pascal/VS library.

ZINCLUDE STRING;

S iz VABCDEF';
LPAD(S, 10, '$");
produces '$$$SABCDEF' in S

S := 'YABCDEF';
LPAD(S, 5, '$');
produces 'BCDEF' in S

C.% RPAD PROCEDURE

Pads or truncates a string on the

right
Definition:
procedure RPAD(
var § ¢ STRING;
L ¢ INTEGER;

c CHAR);
EXTERNAL ;

Where:
S is the STRING to be padded;

L is the final length of §;
C is the pad character.

The procedure RPAD pads or truncates
string variable S on the right. 1If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
right. If LENGTH(S) is less than L,
then the effect is to extend S with the
character C on the right. You must
code the declaration as shown above, or
use the INCLUDE member named "STRING"
whieh 1is provided in the Pascal/Vs
library.

ZINCLUDE STRING

S := VABCDEF';
RPAD(S, 10, '$");
produces 'ABCDEF$$$$' in S

S := 'ABCDEF';
RPAD(S, 5, '$");
produces 'ABCDE' in S

Appendix C. Additional Library Procedures and Functions 181

C.5 PICTURE FUNCTION

Formats a floating point value
according to a "picture" format

Definition:

function PICTURE(
const P : STRING;
R : REAL): STRING(100);
EXTERNAL;

Where:

P is a picture specification;
R is the number to be formatted.

The function PICTURE returns the string
representation of a real number format-
ted according to a "picture" specifica-
tion. The characters that make up the
picture specification are similar to
those found in PL/I and COBOL.

A declaration for PICTURE may be
obtained by including the member CON-
VERT from the Pascal/VS library.

A picture specification may consist of
two fields: a decimal field and an
exponent field. The latter is optional;
the first one is always required.

The decimal field may consist of two
subfields: the integer part and the
fractional part. The latter is
optional.

Example of picture specifications:

$9999.V99
9V.999ES99
$222,222,229V .99

A picture character may be grouped into
the following <categories. Picture
characters may be specified in lower
case.

. Digit and decimal-point specifier

9 specifies that the associated
position in the data item is to
contain a decimal digit.

V divides the decimal field into
two parts: the integer part and
the fractional part. This char-
acter specifies that a decimal
point 1s assumed at this posi-
tion in the associated data
item. However, it does not spec-
ify that an actual decimal point
is to be inserted. The integer
and fractional parts of the
assigned value ara alignhed on
the V character; therefore, an
assigned value may be truncated
or extended with zero digits at

182 Pascal/VS Programmer's Guide

either end. (User beware!) If
no V character appears, a V is
assumed at the right end of of
the decimal field.

Zero suppression characters

Z specifies a conditional digit
position in the character
string value and may cause a
leading zero to be replaced with
a blank.

¥ specifies a conditional digit
position in the character
string value and may cause a
leading zero to be replaced with
an asterisk ('%'),

leading zeros are those that occur
in the leftmost digit positions of
the integer part of floating point
numbers.

Insertion character

Insertion characters are inserted
into corresponding positions in
the output string provided that
zero suppression is not taking
place. If zeros are being sup-
pressed when an insertion
character is encountered, a blank
or an asterisk will be inserted in
the corresponding place in the out-
put string, depending on whether
the zero-suppression character is
a Z or an astaerisk (%),

» causes a comma to be inserted
into the associated position of
the output string.

. causes a point (.) to be

inserted into the associated
position of the output string.
The character never causes

point alignment in the number.
That function is served soley by
the character V.

B causes a blank to be inserted
into the associated position of
the output string.

Signhs and currency symbol

The sign and currency characters
('S, "+','=-','$") may be used in
either a static or a drifting man-
ner. The static use specifies that
a sign, a currency symbol, or a
blank always appears in the associ-
ated position. The drifting use
specifies that leading zeros ara to
be suppressed.

A drifting character is specified
by multiple use of that character
in a picture field.

+ specifies a plus sign character
(+) if the number is >=0, other-
wise it specifies a blank.

specifies a minus sign charac-
ter (=) if the number is <0,
otharwise it specifies a blank.

specifies a plus sign character
(+) if the number is >=0, other-
Wwise it specifies a minus sign
character (-).

specifies a dollar sign charac-
ter ($).

Exponent specifiers

The characters 'E' and "K' delimit
the exponent field of a picture

specification.

The exponent field

must always be the last field.

E

specifies that the associated
position contains the letter E,
which indicates the start of the
exponent field.

specifies that the exponent
field appears to the right »of
the associated position. It
does not specify a character
data item.

See Figurae 103 for examples.

P R PICTURE(P,R)
'99999" 123.0 '00123"
122229 123.0 ro123?
THNHNG ' 123.0 "%%123"
122229 0.0 ' o'
122222 0.0 ' '
TRNNNGT 0.0 TRHNNND !

MK KT 0.0 VKN
'59999° 123.0 '+0123"
'+9999" 123.0 t+0123°
'+9999" -123.0 ' 0123
'999.99°" -123.456 '001.23"
999V . 99" 123.456 '123.46"
'222,222,229' 123456.0 ' 123,456"
TR, NN, XK9 123456.0 THXX%123,6456"
'-22,222,229' -123456.0 '- 123,456"
———,——=,-=9" -123456.0 ' -123,456"
TSN, NN, XXV, 99" 123456.78 'o%%%123,6456.78"
1$66,6686,689v.99" 123456.78 ' $123,456.78"
'S9V.9999ES99" 1.23456 '+1.2346E+00°
'S9V.9999KS99" 1.23456 '+1.2346+00"
'-999.999,V99"' 1234.567 '-001.234,57"
'-9.999E9" -1234.567 '-1.235E3"
'9B9B9BIBIBY"' 123456.0 123456
'9.9.9.9.9.9" 12345.0 '0.1.2.3.4.5"
'999995" -12345.0 '12345-"
999+ -123.45 123 ¢

999+ +123.45 123+
'22Z2.V99" 0.12 v 12
'222V.99" 0.12 ' .12°
'-9V.999ES9’ 1.23E4 " 1.230E+4"
'S9999VESZ9" -123456.0 '-1235E+ 2!
'-V.999E-99" 123456.0 ' _123E 06"

Figure 103.

Examples of using the PICTURE function

Appendix C. Additional Library Proceduras and Functions 183

184 Pascals/VS Programmer's Guide

C

Virtual Machine/Personal Computer
(VM/PC) is an IBM licensed program that
runs on the IBM XT/370 Perscnal Comput-
ar. VM/PC gives vyou an interactive
system that has the characteristics of
a VM/SP Release 2 system.

This appendix gives only the basic
information needed to use the Pascal/VSs
programming language under VM/PC. You
Wwill also need one of the following
manuals: Pascals/¥5 Reference Manual
and the Pascal/VS Progqrammer's Guide;
order numbers are SH20-6168 and
SH20-6162 respectively.

It is assumed that the user has a gen-
eral knowledge of the VM/PC operating
envirenment, and that the VM/PC system
has been installed and configured.
Refer +to the VMs/PC User's Guide for
more information regarding the VM/PC
system.

D.1 INTRODUCING VM/PC FOR PASCAL-/VS

This appendix describes how to use the
IBM Pascal/Vs programming language
under VYM/PC.

VM/PC is an IBM licensed program that
runs on the IBM XT/370 Personal Comput-
ar, as an IBM Personal Computer Disk
Operating System application. VM/PC
gives vyou an interactive system that
has the characteristics of a VM/SP
Release 2 system: command entry, com-
mand formats, messages, screen
formats, file naming conventions, key
functions and application interfaces.

Te use the Pascal/VS pregramming lan-
guage under VM/PC, a host system must
be available; this is because vou must
copy (download) the Pascal/V5 compiler
and library from the host system into
vour local VM/PC storage. Once wvou
have done this, vou can use the product

ai ther independently of the host
aystem, or in connection with the host
system.

VM/PC lets yvou set up a local 370 envi-
ronment in which to do your wWork, Kknown
as & local session. Once vou have
downloaded the Pascals/VS compiler and
library inte your local storage, you
can use that product in local sessions.

VM/PC also lets vou set up a 3277 or
3101 connectien with a host syatem on a
remote computer, so that your personal
computer acts as a terminal on the host
system; such a connection is known as a

Appendix D.

remote session. You can use the prod-
uct in remote sessions as well as in
local sessions. (However, see "Licens-
ing Considerations.™)

To develop Pascals/V5 programs with
VMsPC, vyou'll use both types of ses-
sions. You can use a remote session to
create and process programs on a host
system, or to copy (download) the Pas-
cals/V5 compiler and library inte vour
local yMsPC storage. Once the
Pascals/V5 compiler 1is available in
local storage, vou create and compile
Pascal’/V5 programs in local sessions.

You can also mix lecal and remote ses—
sions in any combination that vou find
efficient. For example, you could cre-
ate and edit vyour pregrams in lecal
sessions, then copy {(upload) them into
the host system for compilation and
execUtion. Or vou could create and com-
pile vour programs on the host system
in remote sessions, and then download
the object program for execution in
local sessions.

The performance of Pascal/VS on VM/PC
is strongly dependent upon the nature
of the specific job stream, and yvou mav
very well find that VM/PC performance
with the Pascal/V3 compiler is affected
by the =torage and paging constraints
imposed by the VM/PC hardware. There-
fore, as compared to a typical
Pascals/V5 cempiler, you may experience
greatly extended processing times in
the VM/PC envirenment,

D.2 LICENSING CONSIDERATIONS

You can execute a host-~resident

PascalsVs compiler from a local

session. The following censiderations

apply:

1. When vou execute the Pascal/V5 com-
piler in a local session, the com-
piler must be licensed for your

XTs370 machine {whether or not vou
have downloaded the compiler into
XT7370 disk storagal.

2. To execute a compiled PascalsVs
object program in a local session,
that was compiled and link—-edited
on a host system, a license is not
required.

3. When vou usa a remote session to
executg Pascals/VS object programs
that were compiled on the host sys-
tem, a license is not required.

VM/PC Pascals/V5 User's Guidae 185

APPENDIX D. VM/PC PASCAL/VS USER'S GUIDE

D.3 USING VM/PC

Under VM/PC, you use VM/SP-CMS commands
to create, modify, compile, link-edit
or load, execute, debug, and test your
Pascal/VS programs.

The commands most useful to you in per-
forming these tasks are briefly
described in Figure 104.

You wWill also find the following CP
commands useful:

LINK : which makes a device associ-
ated with another virtual machine
available to your virtual machine
configuration, based upon informa-
tion in the user's VM/SP directory
entry.

SPOOL : which modifies the spooling
control options in effect for one
or more virtual spooling devices.

command HoWw Used
ACCESS Activates a virtual disk for use
EXEC Executes a file that consists of one or

more CMS commands

FILEDEF Defines a file and its input/output
devices
GLOBAL Specifies text libraries to be searched

to resolve external references in a
program being loaded

INCLUDE Specifies additional text files for use
during program execution

LISTFILE Displays a list of your files

LOAD Places a text fila in storage and
establishes the linkages for execution

PRINT Prints a file on the off-line printer

RENAME Changes the filename, filetype, and/or

Figure 104, CMS Command Summary

filemode of a file

SET Establishes, turns off, or resets a particular
function of the CMS virtual machine

START Begins execution of a previously loaded
and link-edited program file

TYPE Displays all or part of a file at the
terminal

XEDIT Puts you in edit mode to create and

edit source program and data files and
lets you use the XEDIT subcommands

86 Pascals/VS Programmer's Guide

D.4 METHODS OF USING PASCAL-/VS UNDER
VM/PC

There are two different wavs in which
you use Pascal/V$S under VYM/PC:

1. Copy (download) the Pascal/VS com-
piler modules onto local di sk
files, and then invoke Pascal/VS in
local sessions. (You need to down-
load only when vou first access
Pascals/V5, when a new maintenance
update is applied, or when a new
release has been installed on the
host system.)

2. Link to the host system minidisk
containing Pascal/VS compiler and
library, and then access it from
the local session as a remote mini-
disk. (You must do this after every
Initial Program Load (IPL) of CMS,
or whenever the link to the host
system is severed.)

Depending on wvour link with the
system, and on the system 1load,
this often 15 not an efficient way
to operate.

Note As noted under "Licensing Con-
siderations” above, your VM/PC
must be licensed for PascalsVs if
vou are to execute the compiler in
a local session. This is true even
if you do not download the compiler
onto vour local VM/P(storage.

D.5 DOWNLOADING THE PASCAL- VS COMPIL~
ER_INTO VM/PC

To use Pascal/VS under VM/PC, you can

copy (download) the Pascal/VS modules
into your local files. The modules you
must copy are listed in Figure 105 on
page 188

Downloading is necessary only when vou
first access Pascals/VS, or after a new
release or maintenance updates have
been installed on the host system.

Both the virtual storage and minidisk
storage must be allocated with approxi-
mately 1.0M bytes. Thesa storage
requirements are Tor Pascal/VS compil-
er and library only; additional storage
is needed for the source and/or object
program files.

Figure 106 on page 188 shows you the
commands you must issue. The procedure
is as follows:

1. Link (if necessary) and access the
local minidisk that is the target
minidisk for the copy operation. If
the target minidisk is your oun
minidisk, the link is not required.

2. Link and access the host minidisk
that contains the Pascal/VS mod-
ules.

3. Copv the Pascals/VsS modules from the
host minidisk to the local
minidisk., (This is known as down-
loading.)

4. Release the host Pascal/Vs mini-
disk; it is no longer required.

Appendix D. VM/PC Pascal/VS User's Guide 187

PASCALS MODULE
PASCALL MODULE
PASCALQO MODULE
PASCALT MODULE
PASCALVS TXTLIB
PASDEBUG TXTLIB
PASCALVS MACLIB
PASCALVS EXEC
PASCMOD EXEC
PASCALVS MESSAGES
PASCALVS CMSHELP

Figure 105. Pascals/VS Modules Needed for Downloading

1.3.2.3.3.2.3.3.3.3.2.3.3.3.3.3.3.3.3.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.2.3.3.3.1.3.3.3.3.3.3.3.3.3.2.3.3.3.3.3.3.3.3.2.3.3.3.3.3.3.3.]
*

¥ 1) Link and access the target VM/PC minidisk.

*

CP LINK vm/pc-id ttt aaa W write-password

ACCESS aaa filemodel

*

¥ 2) Link and access the host minidisk that contains the Pascal/V$s
* compiler and library.

*

CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemode?2
*

¥ 3) Copy the files you need.

*

COPYFILE filename filetype filemode2 = = filemodel

*

¥ 4) Release the Pascal/VS host minidisk.

*

RELEASE filemode2 (DET

*

*

¥ Where:

* ttt - is the virtual address of the local target minidisk that
* will store the Pascal/VS modules.

* aaa - is an unused virtual address on the local VM/PC machine.
¥ hhh - is the virtual address of the host minidisk that contains
* the Pascal/VS modules.

* bbb - is the virtual disk address you use to refer to the host
* disk.

* filemodel - is the filemode of the target minidisk on the local
* VM/PC machine.

* filemode2 - is the filemode of the host minidisk that contains
* the Pascal/VS modules.

*

36 36 3 36 36 3 36 36 36 3 3 3 36 36 26 2 I I 2 2 I I I 2 2 2 I3 3 I I I3 2 2 I I I I I 36 I I I I 6 6 6 6 H6 I I 26 3 36 36 36 36 36 3 3 3 3 3 3 X X X X X

Figure 106. CMS Commands to Download Pascal/VS From a Local Session

188 Pascal/VS Programmer's Guide

D.6 ACCESSING THE PASCAL-/VS COMPILER
ON THE HOST

The other way to use Pascal/VS under
VM/PC, is to link to the host system
minidisk containing Pascals/VS compiler
and library and then access it from the
local session as a remote minidisk.

Linking and accessing are necessary
whenever there is a an Initial Program
Load (IPL) of CMS, and whenever the
link to the host system severed.

Depending on vyour link with the host
system and on the system load, this
often is not an efficient way to oper-
ate compared to downloading.

The virtual storage requirement is
approximately 1.0M bytes, but there is
no additional VM/PC minidisk storage
requirement for the Pascal/VS compiler
and library since it resides in the
host system minidisk storage area.
Additional storage is needed though for
the source and/or object program files.

Figure 107 shows you the commands you
must issue to link and access thae host
minidisk that contains the Pascal/VS$s
modules.

*

¥ compiler and library.
¥

ACCESS bbb filemodel

X X

Where:
the Pascal/VS modules.

disk.

Figure 107. CMS Commands to Access

Remote Minidisk

1 3.33.333.23333.333333.3.3323.33.3.33333332233.2.22.28.2.3.333333.3.3.3,

¥ Link and access the host minidisk that contains the Pascal/V$s
CP LINK host-id hhh bbb RR read-password REMOTE
hhh - is the virtual address of the host minidisk that contains

¥
¥
¥
b bbb - is the virtual disk address you use to refer to the host
¥
¥ filemodel - is the filemode of the local VM machine

¥

¥

1 3.3.3.3.3.3.3.3.2.2.3.3.2.3.33.33.3.33.3.3.333.3.5.3.3.33.3.3.3.3.3.3.2.3.2.3.33.3.3.3.3.83.3.3.3.2.2.3.3.3.3.3.3.3.3.3.2.3.3.3,

Pascals/VS From

a Local Session as a

D.7 _INVOKING PASCAL-/VS UNDER VM/PC

You must first make Pascal/VS available
on a minidisk you can access. For
example:

CP LINK userid aaa aaa RR read-password
ACCESS aaa filemodel

If Pascal/VS is stored on your A-disk,
or another disk you can access, you can
omit the LINK and ACCESS commands. (If
you must issue these commands each time
you log on to VM/PC, you can put them
into your PROFILE EXEC, which issues
them for you.)

Next, you can invoke Pascal/VS through
the following command:

PASCALVS fn [ft [fm]] [(options...[]]]

where "fn" is the name of the Pascal/V$s
program, "ft" is PASCAL if omitted,and

"options" let you modify the default
compiler options in force for vyour
organization.

To build a load module, issue the fol-
lowing command:

PASCMOD main [fns...] [(options...[)]]

where "main" is the name of the main
program module, "fns" are the names of
segment modules and text libraries
(TXTLIB's) which are to be included,
and "options" allow you to override
default options.

To invoke the load module, issue the
following command:

modname [rtparms...7) [parms...]

where "modname" is the name of the load
module, "rtparms" are the run time
options, and "parms" are the parameters
(if any) being passed to the Pascal
program.

Appendix D. VM/PC Pascals/VS User's Guida 189

D.8 VM/PC PROCESSING RESTRICTIONS ON
PASCAL /VS

The following processing capabilities
ara not available when you are execut-
ing an object program in a local VM/PC
session:

1. Any Pascals/VS restrictions on CMS
processing apply for VM/PC as well.

2. Magnetic tape file processing is
not available: this means that you
can not define (FILEDEF) a
Pascal/VS sequential file to a mag-
netic tape medium.

190 Pascal’/VS Programmer's Guide

D.9 PASCAL/VS PROGRAMMING TIPS

You can improve processing time if you
specify the NOPRINT Pascal/VS compiler
option that suppresses the generation
of a program listing (if a listing is
not required). NOPRINT automatically
forces the following three compiler
options to become active:

NOSOURCE
NOXREF
NOLIST

A

access methods 45

BDAM 45

BPAM 45

QSAM 65
appending to a file 59
arrays

storage mapping of 90
Assembler routines, linking
to 106-121
calling Pascal/V5 main program

from 111
calling Pascal/VS routines
from 109

general interface 107-108

minimum interface 106

receiving parametera 109
assembly listing 42
automatic variables

storage mapping of 89

batch
See 0S5 batch
BDAM 45
BLKSIZE 45, 57
block size attribute
See BLKSIZE
BPAM 45

CALL
command of TS50 20
cataloged procedures 2%

PASCC 25

PASCCG 26
PASCCL 27
PASCCLG 28

CHECK compiler option 31
as it applies to
CASE stataments 31
function routines 31
pointers 31
string truncation 32
subranges 3l
subscripts 31
checking errors at run time 63
CLOSE procedure 55
closing a file 55
cMs 9-13
building load module 12
compiling under 9-11
defining files under 13
invoking load module 13
CMS procedure 180
COBOL 116
calling from Pascal/vs 116
calling Pascal/VY¥5 from 117
code generation 93-104
See also DSA,

linkage conventions
parameter passing,
PCB,
PCWA,
register usage,
routine format,
routine invocation
command syntax 167
compilation
under CMS 9-11
under 05 batch 23-3¢0
under T50 15-17
compiler diagnostics
under CMS 10
under TS0 17
compiler listings 37-43
assembly
See assembly listing
cross-referaence
See cross-raference listing
ESD
See ESD table
source
See source listing
compiler messaages
See messages, compilaer
compiler options 31-34
See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LANGLVL compiler option,
LINECOUNT compiler option.
LIST compiler option,
MARGINS compiler ocption,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option.
NOPXREF compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
PAGEWIDTH compiler option,
PXREF compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option
consocle input/output 47
CONSOLE coption
of PASCALVS CLIST 16
of PASCALVYS EXEC 10
COUNT run time option 35
cross—reference listing 40-41

D

data set attributes 45
See also LRECL:. RECFM, BLKSIZE
data set definitions
See file definitions
DCB attributes
See data set attributes
DDname
OPEN specification 57
DDname association 45

191

-
3
[o R
ul
[4

DEBUG compiler option 32
debug facility 67-87
commands 67-79

break 68
clear 68
CMS 69

display 69
display breaks 70
display equates 70
end 71
equate 71
go 72
help 73
listvars 73
qualify 74
quit 74
reset 75
set attr 75
set count 76
set trace 76
trace 77
view memory 78
view variable 77
walk 79
input to 67
output from 67
qualification 67
DEBUG option
of PASCMOD CLIST 19
of PASCMOD EXEC 12
of run time 35
debugging a program
interactive debugger
See debug facility
traceback facility 61
DEF variables
storage mapping of 89
default

BLKSIZE 45
LRECL 45
RECFM 45

DISK option

of PASCALVS EXEC 9
DSA (dynamic storage area?
dump

symbolic variable 65
dynamic storage area

See DSA
dynamic variables

storage mapping of 89

end-of-file condition

for record files 54

for text file 54
end-of-line condition 53
enumerated scalar

storage mapping of 90
EOF function 54
EOLN function 53
EPILOG Assembler macro 107
ERRCOUNT run time option 35
ERRFILE run time option 35
errors

execution time

intercepting 64

ESD tablae 43
executing a program

under 0S5 batch 23-30
execution error handling 63
execution errors

192 Pascal/VS Programmer's Guide

94

intercepting 64
external symbol dictionary
See ESD table

file control block
See PCB
file definitions
under CMS 13
under 0S batch 29
under TS0 20
files
See also input/output facilities
See also record files
See also text files
storage mapping of 91
FORTRAN 114
calling from Pascal/VS 114
calling Pascals/VS from 115
function invocation
See routine invocation

GET procedure 48
record files 48
text files 48
GOSTMT compiler option 32
GS compiler option
See GOSTMT compiler option

HEAP run time option 35

I/0 facilities
See input/output facilities
%ZINCLUDE facility
under CMS 10
under 0S batch 29
under TS0 17
input/output facilities 45-59
implementation 45
record files
See record files
text files
See text files
installation instructions 169-177
compiler source
under CMS 174
under VS2 175
for CMS 170
for 05/VS2 171-174
cataloged procedures 174
CLIST customizing 174
loading compiler 171-174
regenerating compiler under
CMS 170
interactive files 46, 51
INTERACTIVE open option 46, 58

intercepting execution errors 6% NOGOSTMT compiler option 32

interlanguage communication 105-121 NOGS compiler option
Assaembler 106 See NOGOSTMT compiler option
COBOL 116 NOLIB option
data type equivalencing 120 of PASCALVS CLIST 16
FORTRAN 114 NOLIST compiler option 32
PL/I 118 non-text files

ITOHS function 180 See record files

NOOBJ option

of PASCALVS EXEC 10
NOOBJECT option
J of PASCALVS CLIST 16
NOOPT compiler option

See NOOPTIMIZE compiler option
JCL 23 NOOPTIMIZE compiler option 33
job control language 23 NOPRINT option

of PASCALVS CLIST 16

of PASCALVYS EXEC 10
NOPXREF compiler option 34
L NOS compiler option

See NOSOURCE compiler option
NOSEQ compiler option

LANGLVL compiler option 32 See NOSEQUENCE compiler option
LC compiler option NOSEQUENCE compiler option 3%
See LINECOUNT compiler option NOSOURCE compiler option 3%

LIB option NOSPIE run time option 35
of PASCALVS CLIST 16 NOWARNING compiler option 34
of PASCMOD CLIST 19 NOX compiler option
LINECOUNT compiler option 32 See NOXREF compiler option
linkage conventions 93 NOXREF compiler option 34
LIST compiler option 32
listing
See compiler listings
load module 0

creating under CMS 12
creating under TS0 18

invoking under CMS 13 OBJECT option
invoking under TS0 20 of PASCALVS CLIST 15
logical record length of PASCMOD CLIST 19
See LRECL open options 56
LPAD procedure 181 INTERACTIVE 46
LRECL 45, 57 opening a file

for input 46
for interactive input 46
for output 47
M for terminal I/0 47
for update 47
OPT compiler option

MACLIB access See OPTIMIZE compiler option
See partitioned data set OPTIMIZE compiler option 33
MAIN directive 109, 114, 115, 116, 05 batch 23-30
117, 118, 120 cataloged procedures 23
MAINT run time option 35 compiling under 23
MARGINS compiler option 33 executing under 23

MEMBER open option 58
messages 133-163
compiler 133-153
DEBUG 161 P
execution time messages 154
PASCALVS exec 163
MVS batch Page cross reference 3%
See 0S batch PAGE procedure 53
PAGEWIDTH compiler option 33
parameter passing 97-98
by value 97
N function results 98
read-only reference (CONST) 97
read/write reference (VAR) 97

NAME open option 58 routine parameters 98

NAME option partitioned data set 56, 58
of PASCMOD EXEC 12 access under CMS 56

NOCC open option 57 opening 56

NOCHECK compiler option 31 Pascal communication work area

NOCHECK run time option 35 Sae PCWA

NODEBUG compiler option 32 Pascal, standard

Index 193

extensions 129 records

modi fied features 129 storage mapping of 90
restrictions over 129 reentrancy, compiler 131)
PASCALVS REENTRANT directive 109, 118, 120
CLIST of TSO 15 regenerating compiler under CMS 170
DEBUG messages register usage 93
See messages, PASCALVS exec RESET procedure 46
exec messages REWRITE procedure 47
See messages, PASCALVS exec routine format 99
exec of CMS 9-10 routine invocation 96
PASCC cataloged procedure 25, 27 RPAD procedure 181
PASCCG cataloged procedure 26 run time errors
PASCCL cataloged procedure 27 intercepting 64
PASCCLG cataloged procedure 28 run time libraries
PASCMOD under CMS 12
CLIST of TSO 18 run time options 35
EXEC of CMS 12 runtime environment 123-127
PCB 103 main program 123
PCWA 100 memory management 127
PDS program initialization 123

See partitioned data set
PDSIN procedure 56

PDSOUT procedure 56
PICTURE Function 182]
PL/I 118
calling from PascalsVs 118
calling Pascals/VS from 119 S compiler option
PRINT option See SQURCE compiler option
of PASCALVS CLIST 16 SEQ compiler option
of PASCALVS EXEC 10 See SEQUENCE compiler option
procedure invocation SEQUENCE compiler option 3%
See routine invocation SETMEM run time option 36
PROLOG Assembler macro 107 sets
PSCLHX directive 120 storage mapping of 91
PSCLHX procedure 109, 115, 117, 120 SOURCE compiler option 34
PUT procedure 49 source listing 37-39
record files 49 compilation statistics 39
text files 49 error summary 38
PW compiler option nesting information 38)
See PAGEWIDTH compiler option option list 39
PXREF compiler option 3% page cross reference field 38

page header 38
statement numbering 38
spaces
Q storage mapping of 92
STACK run time option 35
standard Pascal
QSAM 45 See Pascal
static variables
storage mapping of 89
storage mapping 89-92
R arrays 90
automatic storage 89
boundary alignment 89-92

READ procedure data size 89-92
for record file 54 DEF storage 89
text file 49 dynamic storage 89
integer data 50 enumerated scalar 90
length qualifier 50 files 91
real data 50 predefined types 89
strings 51 record fields 89
READLN procedure 51 records 90
RECFM 45, 57 sets 91
record fields spaces 92
storage mapping of 89 static storage 89
record files 46 subrange scalar 90
closing 55 subrange scalar
GET operation 48 storage mapping of 90
opening for input 46 symbolic variable dump 65
opening for output 47 syntax notation 167
processing of 54-55 SYSLIB 27, 29
PUT operation 49 SYSLIN DDname 2%
updating 47 SYSLMOD 27)
record format SYSPRINT DDname 24
See RECFM SYSPRINT option

194 . Pascals/VS Programmer's Guide

of PASCALVS CLIST 16

TERMIN procedure 47
terminal input/output 47
TERMOUT procedure &7
text files 4§
closing 55
GET operation 48
interactive input 46
opening for input 46
opening for output 47
processing of 69-54
PUT operation 69
traceback facility 61-63
T50 15-21
building lead meodule 18
compiling under 15-17
defining files under 20
inveking load module 20

UCASE open opticon 58
UPDATE procedure &7

variable dump 65

VM/PC User's Guide 185
Accessing Pascals/V¥5 on the
host 189
Downloading PascalsVs 187
Introducing VMsPC 185

Invoking Pascels/Vs 189
Licensing Considerations 185
Mathods of Using Pascals/VS 187
Pascals/V¥S Programming Tips 190
Using VM/PC 186 .
VM/PC Processing Restrictions 190
VY52 hatch -
See 05 hatch

W

W compiler option

See WARNING compiler option
WARNING compiler option 34
WRITE procedure 52

for record file 54
WRITELN procedure 53

X compiler copticon
See XREF compiler option
XREF compiler option 34

Index 195

SH20-6162-2

~

Pascal’'VS Programmer's Guide Printedin U.8.A. SH20-6162-2

-

____.___®

D

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

Pascal/VS 5796-PNQ
Programmer’s Guide
SH20-6162-2

You may use this form to communicate your conunents about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location t¢ which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retreval Legibility

If you wish a reply, give your name, company, mailing address, and date:

|
READER’S
COMMENT
FORM

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.) _

SH20-B162-2

Reader's Comment Form

Foid and teps

Fold anf 1Epe

Pinase o Mot Stanls

BUSINESS REPLY MAIL

FIRST CLASE PEAMIT MO, &0 ARMONE, N.¥

.|II
_Jin
L.

AOETAGE WILL 8E PAlID BY ADDAESSEE:

International Business Machines Corporation
Dopartmant 68Y

FO. Box 152750

Inving. Texas THOT5-2750

Flazre D Mot Slapie

SHEZO=BlE2-02

Faig and lase

MO POSTAGE
MECESSARY
IF MAILED
IN THE
LINITEDR 5TATES

Fobd a0 tape

MR

R S . e . L T N A N . M T (N e (T N N Y S N R N N M M R W e e e e e B Bl D 1A e e

SAMBIER

Z-2019-02MS WS Ul PRl BPINE) &SRBl

C

