
Program
Offering

SH20-6162-2

PascallVS

Programmer's Guide

Program Number: 5796-PNQ

PascallVS is a Pascal compiler operating in VSl, MVS
and VM/CMS. Originally designed as a high level
programming language to teach computer programming
by Professor Nicklaus Wirth (circa 1968), Pascal has

,emerged as an influential and well accepted user
language in today's data processing environment. Pascal
provides the user with the ability to produce very
reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently ANSI and ISO
(Level 0) standard (with minor deviations) and includes
many important extensions. The language extensions
include: separate compilation, dynamic character strings
and extended 110 capabilities. The implementation
features include: fast compilation, optimization and a
symbolic terminal oriented debugger that allows the
user to debug a program quickly and efficiently.

This manual is a guide to the use of the computer in the
VSI, MVS and VM/CMS operating environments.

--..- ------ - ------- - ---- - - ------------_. -

PROGRAM SERVICES

During a specified number of months immediately following initial availability of each licensed program, the
customer may submit documentation to the designated IBM location below when he/she encounters a problem
which his/her diagnosis indicates is caused by a defect in the licensed program. During this period only, IBM,
through the program sponsor(s), will, without additional charge, respond to an error in the current unaltered
release of the licensed program by issuing known error correction information to the customer reporting the
problem and/or issuing corrected or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected. Any onsite program services or
assistance may be provided at a charge.

WARRANTY

THE UCENSED PROGRAM DESCRIBED IN TIllS MANUAL IS DISTRIBUTED ON AN '~ IS"
BASIS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Ave.
p. O. Box 50020
San Jose, CA 95150
Attn: Luis Tan
IBM Tieline: 8/543-4392
Telephone: (408) 463-4392

Note: Non-US customers should contact their designated support group in their country.

Information concerning Program Services for this Program Offering
can be found in Availability Notice G320-6387.

Third Edition (February 1985)

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available outside the United States.

A form for readers' comments has been provided at the back of this publication. If
this form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation, 1980, 1981, and 1985.

L

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat­
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

• Pascal/VS language Reference Manual, order number SH20-6168. This manual
describes the Pascal/VS language.

•

•

IBM Virtual Machine Facility/370: CMS Command and Macro Reference, order num­
ber GC20-1818. This manual describes the commands of the Conversational Moni­
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage.

IBM Vi rtual Machi ne Fac; 1 i ty/370: CP Command Reference for General Users,
order number GC20-l820. This manual describes the control processor commands
of the IBM Virtual Machine Facility/370.

IBM Virtual Machine/Personal Computer User's Guide, order number SC24-5254.
This manual describes describes the VM/PC operating system which runs on the
IBM Personal Computer XT/370.

• OS/VS2 TSO Command language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of OS/VS2.

• OS/VS2 JCl, order number GC28-0692. This is a reference manual for the job
control language of OS/VS2.

• OS/VS linkage Editor and loader, order number GC26-3813.
describes how to use the OS/VS2 linkage editor and loader.

Thi s manual

• Time Sharing Option Display Support and Structured Programming Facility Ver­
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu­
al is required to install the Pascal/VS SPF menus and procedures.

• OS/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu­
al describes the various data set access methods utilized by OS/VS2 and the OS
simulation of CMS - VM/370.

Preface iii

.. ~

J

J
;v Pascal/VS Programmer's Guide

L

SUMMARY OF AMENDMENTS

RELEASE 2.2

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.2.

• The interactive debugger now supports 32 breakpoints.

• Two new predefined constants have been added to the compiler: MINREAL and
MAXREAL.

• The LANGLVL(STDRES) compiler option has been added to allow the user to use
the non-standard Pascal/VS reserved words as identifiers.

• A new predefi ned functi on, ADDR, accepts a vari able name and returns the
location of that variable in storage.

• Structured array constants may now be passed as the source arrays to PACK and
UNPACK.

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

• A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

• Two new opt ions may be appl i ed to fi les when they are opened: UCAS E and NOCC.

• Rules have been relaxed in passing fields of packed records by var to a rou­
tine.

• The "STACK" and "HEAP" run time options have been added to control the amount
by which the stack and heap are extended when an overflow occurs.

• The syntax of a "structured constant" which contains non-simple constituents
has been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

• Pascal/VS now supports single precision floating point (32 bit) as well as
double precision floating point (64 bit).

• Files may be opened for updating with the UPDATE procedure.

• Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT)
so that 1/0 may take place directly to the user's terminal without going
through the DDNAME interface.

• The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen­
trant.

• The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen­
trant.

• A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

Summary of Amendments v

• A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

• The maximum size of a string has been increased to 32767 characters.

• The Pascal/VS compiler is now fully reentrant.

• Code produced from the compiler will be reentrant if static storage is not
modified.

• Pascal/VS programs may contain source lines up to 100 characters in length.

• Files may be accessed based on relative record number (random access).

• Run time errors may be intercepted by the user's program.

• Run time diagnostics have been improved.

• Pascal/VS will flag extensions when the option "LANGLVL(STO)" is used.

• A mechanism has been provided so that Pascal/VS routines may be called from
other languages.

• All record formats acceptable to QSAM are now supported by the Pascal/VS I/O
facilities.

• A procedure or function may now be exited by means of the goto statement.

• You may now declare an array variable where each element of the array is a
file.

• You may define a file to be a field of a record structure.

• Files may now be allocated in the heap (as a dynamic variable) and accessed
via a pointer.

• You may now define a subrange of INTEGER which is allocated to 3 bytes of stor­
age.' Control over signed or unsigned values is determined by the subrange.

• Variables may be declared in the outermost scope of a SEGMENT. These vari­
ables are defined to overlay the variables in the outermost scope of the main
program.

• The POSIN procedure opens a member of a library file (partitioned dataset) for
input.

• The POSOUT procedure opens a member of a library file (partitioned dataset)
for output.

• A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

• The CPAGE percent (X) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

• The MAXLENGTH function returns the maximum length that a string variable can
assume.

• The XCHECK TRUNCATE option enables (or disables) the checking for truncation
of strings.

• The PASCALVS exec for Invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

• New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIOTH, and
LANGLVL.

• The catalogued procedures for invoking Pascal/VS in OS Batch have been simpli­
fied.

• The format of the output listing has been modified so that longer source lines
may be accomodated.

vi Pascal/VS Programmer's Guide

J

J

• Multiple debugger commands may be entered on a single line by using a semico­
lon (;) as a separator.

• The format of the Pascal File Control Block has been modified.

• Support is now provided for ANSI and machine control characters on output
files.

• Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

• The debugger now supports breakpoints at the end of a procedure or function.

• The Trace mode in the debugger provides information on when procedures are
being exited.

• The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

• The Equate command of the debugger has been enhanced.

• The debugger will print "uninitialized" when displaying a variable that has
not been assigned.

• New run time options are provided: SETMEM, ERRCOUNT, and ERRFILE.

Summary of Amendments vii

J
vii i Pasca!/VS Programmer's Gu ide

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Introduction ••••••••••••••••••
Invoking the Compiler under CMS: PASCALVS EXEC
Building a Load Module under CMS: PASCMOD EXEC
Invoking the Load Module under CMS
Invoking the Compiler under TSO: PASCALVS CLIST
Building a Load Module under TSO: PASCMOD CLIST .
Invoking the Load Module under TSO: The CALL command
Interactive Debugger
Compiler Options
Run Time Options .
Cataloged Procedures
Sample Batch Job

2.0 Running a Program under CMS
2.1 How to Compile a Program

2.1.1 Invoking the Compiler
2.1.2 The PASCALVS Command
2.1.3 The ~INCLUDE Maclibs
2.1.4 Passing Compiler Options
2.1.5 The Compiler Listing
2.1.6 Compiler Diagnostics
2.1.7 Sample Compilation

2.2 How to Build a Load Module
2.2.1 Module Generation Options
2.2.2 Run time Libraries

2.3 How to Define Files
2.4 How to Invoke the Load Module

3.0 Running a Program under TSO
3.1 How to compile a program

3.1.1 Invoking the Compiler ..
3.1.2 Using the ~INCLUDE Facility
3.1.3 Compiler Diagnostics

3.2 How to Build a Load Module
3.3 How to Define Files
3.4 Invoking the Load Module
3.5 Sample TSO Session

4.0 RUnning a Program under os Batch
4.1 Job Control Language
4.2 How to Compile and Execute a Program
4.3 Cataloged Procedures
4.4 IBM Supplied Cataloged Procedures

4.4.1 Compile Only CPASCC)
4.4.2 Compile, Load, and Execute (PASCCG)
4.4.3 Compile and Link Edit (PASCCL)
4.4.4 Compile, Link Edit, and Execute (PASCCLG)

4.5 How to Access an ~INCLUDE Library
4.6 How to Access Data Sets
4.7 Example of a Batch Job

5.0 Compiler options . . . · . 5.1 CHECK/NOCHECK
5.2 DEBUG/NODEBUG
5.3 GOSTMT/NOGOSTMT
5.4 LANGL Vl()
5.5 LINECOUNHn)
5.6 LIST/NOLIST
5.7 MARGINSCm,n)
5.8 OPTIMIZE/NOOPTIMIZE
5.9 PAGEWIDTH(n)
5.10 PXREF/NOPXREF
5.11 SEQ(m,n)/NOSEQ
5.12 SOURCE/NOSOURCE
5.13 WARNING/NOWARNING
5.14 XREF/NOXREF

6.0 Run Time options . . . · . .
7.0 How to Read Pascal/Vs Listings
7.1 Source Listings · .

TABLE OF CONTENTS

1
1
1
2
2
4
5
5
6
6
7
7

9
9
9
9

10
10
10
10
11
12
12
12
13
13

15
15
15
17
17
18
20
20
21

23
23
23
24
24
25
26
27
28
29
29
30

::a
31
32
32
32
32
32
33
33
33
34
34
34
34
34

35

37
37

Table of Contents ix

7.1.1 Page Headers
7.1.2 Nesting Information ...•
7.1.3 Statement -Numbering
7.1.4 Page Cross Reference Field
7.1.5 Error Summary
7.1.6 Option List
7.1.7 Comp4lation Statistics

7.2 Cross-reference Listing
7.3 Assembly Listing
7.4 External Symbol Dictionary
7.5 Instruction Statistics

8.0 Using Input/output Facilities
8.1 I/O Implementation
8.2 DDNAME Association .
8.3 Data Set DCB Attributes
8.4 Text Files
8.5 Record Files
8.6 Opening a File for Input - RESET
8.7 Opening a File for Interactive Input
8.8 Opening a file for output - REWRITE
8.9 Terminal Input/Output
8.10 Opening a File for UPDATE
8.11 Procedure GET

8.11.1 GET operation on text files
8.11.2 GET operation on record files

8.12 PUT procedure
8.12.1 PUT Operation on Text Files
8.12.2 PUT Operation on Record Files

8.13 Text File Processing
8.13.1 Text File READ
8.13.2 The READLN Procedure
8.13.3 Text File WRITE
8.13.4 The WRITELN Procedure
8.13.5 The PAGE Procedure
8.13.6 End of Line Condition
8.13.7 End of File Condition - text files

8.14 Record File Processing
8.14.1 Record File READ
8.14.2 Record File WRITE
8.14.3 End of File Condition - Record Files

8.15 Closing a File
8.16 Relative Record Access
8.17 Partitioned Data Sets

8.17.1 Opening a Partitioned Data Set
8.17.2 PDS Access in a CMS Environment

8.18 The Open Options
8.19 Appending to a File

9.0 Runtime Error Reporting
9.1 Reading a Pascal/VS Trace Back
9.2 Run Time Checking Errors
9.3 Execution Error Handling .
9.4 User Handling of Execution Errors
9.5 Symbolic Variable Dump

10.0 Pascal/VS Interactive Debugger
10.1 Qualification
10.2 Commands

10.2.1 BREAK Command
10.2.2 CLEAR Command
10.2.3 CMS Command
10.2.4 DISPLAY Command ..
10.2.5 DISPLAY BREAKS Command
10.2.6 DISPLAY EQUATES Command
10.2.7 END Command
10.2.8 EQUATE Command
10.2.9 GO Command
10.2.10 Help Command
10.2.11 LISTVARS Command .
10.2.12 Qualification Command
10.2.13 QUIT Command
10.2.14 RESET Command
10.2.15 SET ATTR Command
10.2.16 SET COUNT Command

x Pascal/VS Programmer's Guide

38
38
38
38
38
39
39
40
42
43
43

4S
45
45
45
46
46
46
46
47
47
47
48
48
48
49
49
49
49
49
51
52
53
53
53
54
54
54
54
54
55
55
56
56
56
56
59

61
61
63
63
64
65

67
67
67
68
68
69
69
70
70
71
71
72
73
73
74
74
75
75
76

J

10.2.17 SET TRACE Command
10.2.18 TRACE Command .
10.2.19 Viewing Variables
10.2.20 Viewing Memory
10.2.21 WALK Command .

10.3 Debug Terminal Session

11.0 storage Mapping
11.1 Automatic Storage .
11.2 Internal Static Storage
11.3 DEF Storage
11.4 Dynamic Storage
11.5 RECORD Fields
11.6 Data Size and Boundary Alignment

11.6.1 The Predefined Types
11.6.2 Enumerated Scalar
11.6.3 Subrange Scalar
11 .6.4 RECORDs
11.6.5 ARRAYs
11.6.6 FILEs
11.6.7 SETs
11.6.8 SPACEs

12.0 Code Generation for the IBM/370
12.1 Linkage Conventions
12.2 Register Usage
12.3 Dynamic Storage Area
12.4 Routine Invocation
12.5 Parameter Passing

12.5.1 Passing by Read/Write Reference
12.5.2 Passing by Read-Only Reference
12.5.3 Passing by Value
12.5.4 Passing Procedure or Function Parameters
12.5.5 Function Results

12.6 Procedure/Function Format
12. 7 P CWA
12.8 PCB - Pascal file Control Block

13.0 Inter Language Communication •••••
13.1 Linking to Assembler Routines

13.1.1 Writing Assembler Routine with Minimum Interface
13.1.2 Writing Assembler Routine with General Interface
13.1.3 Receiving Parameters From Routines ...•..
13.1.4 Calling Pascal/VS Routine from Assembler Routine
13.1.5 Sample Assembler Routine
13.1.6 Calling a Pascal/VS Main Program from Assembler Routine

13.2 Pascal/VS and FORTRAN
13.2.1 Pascal/VS as the Caller to FORTRAN
13.2.2 FORTRAN as the Caller to Pascal/VS

13.3 Pascal/VS and COBOL
13.3.1 Pascal/VS as the Caller to COBOL
13.3.2 COBOL as the Caller to Pascal/VS

13.4 Pascal/VS and PL/I
13.4.1 Pascal/VS as the Caller to PL/I
13.4.2 PL/! as the Caller to Pascal/VS

13.5 Data Types Comparison

14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15.0
15.1
15.2
15.3

Runtime Environment Overview
Program Initialization
The Main Program
Execution Support Routines
Input/Output Routines
Error Handling
Conversion Routines
Mathematical Routines
String Routines •.
Memory Management Routines

comparison to Pascal
Pascal/VS Restrictions
Modified Features
New Features

16.0 Implementation specifications
16.1 System Description

76
77
77
78
79
80

89
89
89
89
89
89
89
89
90
90
90
90
91
91
92

93
93
93
94
96
97
97
97
97
98
98
99

100
103

105
106
106
107
109
109
109
111
114
114
115
116
116
117
118
118
119
120

123
123
123
123
124
125
125
126
126
127

129
129
129
129

131
131

Table of Contents xi

16.2 Memory Requirements
16.3 Implementation Restrictions and Dependencies

17.0 Pascal/VS Messages •.••
17.1 Pasca1/VS Compiler Messages
17.2 Execution Time Messages
17.3 Messages from DEBUG
17.4 Messages from PASCAlVS exec

APPENDIXES

APpendix A. Command syntax Notation

APpendix B. Installation Instructions
B.1 Installing Pascal/VS under CMS

B.1.1 Regenerating Compiler Modules
B.2 Installing Pascal/VS under VS2 .

B.2.1 loading Files from Distribution
B.2.2 The TSO Clists
B.2.3 Cataloged Procedures

B.3 loading the Source under CMS
B.4 loading the Source under VS2

. .
Tape

APpendix C. Additional Library Procedures and Functions
C.1 CMS Procedure
C.2 ITOHS Function
C.3 lPAD Procedure
C.4 RPAD Procedure
C.5 PICTURE Function

APpendix D. VM/PC Pasca1/VS User's Guide
D.1 Introducing VM/PC for Pascal/VS
D.2 licensing Considerations
0.3 Using VM/PC
D.4 Methods of Using Pascal/VS Under VM/PC
0.5 Downloading the Pascal/VS compiler into VM/PC
0.6 Accessing the Pascal/VS compiler on the host
D.7 Invoking Pascal/VS Under VM/PC
D.8 VM/PC Processing Restrictions on Pasca1/VS
D.9 Pascal/VS Programming Tips

Index

xi i Pascal/VS Programmer's, Guide

131
131

133
133
154
161
163

165

167

169
170
170
171
171
174
174
174
175

179
180
180
181
181
182

185
185
185
186
187
187
189
189

J 190
190

191

J

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

LIST OF ILLUSTRATIONS

The PASCALVS command of CMS
Sample compilation under CMS
The PASCMOD command. . ..
Examples of CMS file definition commands
PASCALVS CLIST syntax
The TSO PASCMOD CLIST description .
Examples of TSO data set allocation commands
The TSO CALL command to invoke a load module .
Sample TSO session of a compile, link-edit, and execution
Sample JCL to run a Pascal/VS program
Cataloged procedure PASCC . ..
Cataloged procedure PASCCG
Cataloged procedure PASCCL
Sample JCL to perform multiple compiles and a link edit
Cataloged procedure PASCCLG
Example of a batch job .
Differences between OPT and NOOPT
Sample source listing. .
Sample cross-reference listing
Sample assembly listing
Sample ESD table .
Using RESET on a text file ..
Opening a file for interactive input
Opening a text file with REWRITE
Opening a record file with REWRITE
Terminal input/output example
Updating a record file
Using GET on a text file
Using GET on record files
Using PUT on a text file
Using PUT on record files ..
Using READ with length qualifiers
Using READ on text files
Using the procedure READLN
Using WRITE on text files
Using the WRITELN procedure
Using the PAGE procedure
Using the EOLN function
Using the EOF function on a text file
Using READ and WRITE on record files
Example of using CLOSE ...
Example of using SEEK to access records randomly
Syntax of open options
Using the open options
Trace called by a user program
Trace call due to program error
Trace call due to checking error
Trace call due to I/O error
Contents of 'YoINCLUDE ONERROR'
Example of User Error Handling
Sample program for Debug session . . .
Compiling, linking and executing a program with DEBUG
The HELP command of DEBUG .. .
Setting Breakpoints and Statement Walking
The LISTVARS command - List all variables
The Trace Mode of DEBUG . .
Walking when the Trace Mode is On
Miscellaneous DEBUG Commands
Commands to Display a Variable
Using Multiple commands on one Line and other commands
The Reset Breakpoint Command
Statement Counting Summary
Storage mapping for predefined types
Storage mapping of subrange scalars
Alignment of records
Storage mapping of SETS
Register usage
DSA format
DSA DSECT
Snapshot of stack and relevant registers at start of routine
Passing by Read/Write reference

9
11
12
13
15
18
20
20
21
23
25
26
27
28
28
30
33
37
40
42
43
46
47
47
47
47
48
48
48
49
49
51
51
52
52
53
53
53
54
54
55
56
57
58
62
62
62
62
64
65
80
81
81
82
82
83
84
85
85
86
87
87
89
90
90
91
93
94
95
96
97

List of Illustrations xiii

Figure 72. Passing by Read-only reference 97
Figure 73. Passing by value . 97
Figure 74. Passing-routine parameters 98
Figure 75. Function results . 98
Figure 76. Routine format • ... 99
Figure 77. Pascal Communications Work Area 100
Figure 78. Pascal file Control Block (PCB) format 103
Figure 79. Inter Language Communication 105
Figure 80. Minimum interface to an Assembler routine 106
Figure 81. PROLOG/EPILOG macros. 107
Figure 82. General interface to an Assembler routine 108
Figure 83. Pascal/VS description of Assembler routine 110
Figure 84. Sample Assembler routine• .. . 110
Figure 85. Exampla of calling a Pascal/VS program from an Assembler routine 111
Figure 86. Example of Assembler as the caller to Pascal/VS 112
Figure 87. Example of Pascal/VS as the caller to Assembler 113
Figure 88. Example of Pascal/VS as the caller to FORTRAN 114
Figure 89. Example of FORTRAN as the caller to Pascal/VS 115
Figur~ 90. Example of Pascal/VS as the caller to COBOL 116
Figure 91. Example of COBOL as the caller to Pascal/VS 117
Figure 92. Example of Pascal/VS as the caller to PL/! 118
Figure 93. Example of PL/! as the caller to Pascal/VS 119
Figure 94. Example of PL/! as the caller to Pascal/VS 120
Figure 95. Data Type Comparisons 121
Figure 96. Characteristics of System/370 floating point arithmetic 132
Figure 97. Sample JCL to retrieve first file of distribution tape 171
Figure 98. Sample installation job 172
Figure 99. Sample installation job 173
Figure 100. Sample installation job ., . 174
Figure 101. Listing of the JCL to copy source files from tape 176
Figure 102. Listing of the JCL to copy source files from tape 177
Figure 103. Examples of using the PICTURE function 183
Figure 104. eMS Command Summary . .• .•.. . 186
Figure 105. Pascal/VS Modules Needed for Downloading . 188
Figure 106. CMS Commands to Download Pascal/VS From a Local Session 188
Figure 107. CMS Commands to Access Pascal/VS From a Local Session as a 189

xiv Pasca1/VS Programmer's Guida

1.0 INTRODUCTION

The Pascal/VS compiler is a processing program which translates Pascal/VS source
programs, diagnosing errors as it does so, into IBM System/370 machine
instructions.

The compiler may be executed under the following operating system environments:

• OS/370 Batch (VSl and VS2 R3.7)

• Time Sharing Option (TSO) of OS/VS2

• Conversational Monitor System (CMS) of Virtual Machine Facility/370 (VM/370)
Release 5 PLC 2 and later.

1.1 INVOKING THE COMPILER UNDER CMS: PASCALVS EXEC

fn

ft

PASCALVS

fm

mac1ibs

options

PRINT

NOPRINT

DISK

CONSOLE

NOOBJ

fn [ft [fm]] [I [options] [PRINT]
NOPRINT
DISK

is the file name of the source program.

[LIB(mac1ibs)]
[CONSOLE] [l]
[NOOBJ] 1

is the file type of the source program; the assumed file type is "PAS­
CAL."

is the file mode of the source program.

are optional macro libraries required by the XINCLUDE facility. Up to
eight libraries may be specified.

are compiler options.

specifies that the listing is to be spooled to the virtual printer.

specifies that the listing is to be suppressed.

specifies that the listing is to be stored as a file named "fn
LISTING." This is the default.

specifies that the console messages produced by the compiler are be
stored as a file named "fn CONSOLE." If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCMOD EXEC

PASCMOD main [names •••] [(options ••• [l]]

ma i n is the name of the ma in program modu 1 e.

names... are the names of segment modules and text libraries CTXTLIB's) which
are to be included.

options... is a list of options.

Introduction 1

The resulting load module will be given the name "main MODULE A." The load map of
the module will be stored in "main MAP A."

The following are recognized as options to the PASCMOD command.

DEBUG links the debugging routines into the load module so that the interac­
tjve debugger can be used.

NAME name specifies an alternate name for the load module. The resulting load
module and map wi 11 have the name "name MODULE A" and "name MAP A."

1.3 INVOKING THE lOAD MODULE UNDER CMS

A Pascal/VS load module is invoked as follows:

modname [rtparms ••• /] [parms •••]

where "modname" is the name of the load module; "rtparms" are run time options
(separated by blanks); and "parms" are the parameters (if any) being passed.

1.4 INVOKING THE COMPILER UNDER TSO: PASCALVS ClIST

ClIST NAME OPERANDS

PASCALVS data-set-name
[compiler-options-list]

[OBJECTCdsnamel] NOOBJECT

[
PRINTOEl] PRINTCdsname)
SYSPRINTCsysout-class)
NOPRINT

[CONSOLEOE)] CONSOLE(dsname)

[lIBCdsname-list)] NOlIB

data-set-name is the name of the primary input data set.

comptler-options-list is one or more compiler options separated by blanks

OBJECTCdsnameJ specifies the data set to contain the object module.

NOOBJECT specifies that no object module is to be produced.

PRINT(.) specifies that the compiler listing is to be displayed on the ter­
minal.

PRINTCdsnameJ specifies the data set to contain the compiler listing.

SYSPRINTCsysout-classJ specifies the sysout class to where the compiler listing is
to be produced.

NOPRINT

CONSOLEC.)

suppresses the compiler listing.

specifies that compiler messages are to be displayed on the termi­
nal.

CONSOlECdsname) specifies the data set to contain compiler messages.

2 Pasca!/VS Programmer's Guide

lIB('dsname-ltst') specifies s list of %INClUDE lib~arie5.

NOlIB specifies thst no %INClUDE libraries are required.

Introduction 3

1.5 BUILDING A lOAD MODULE UNDER TSO: PASCMOD ClIST

ClIST NAME

PASCMOD

data-set-name

OPERANDS

data·-set-name or JE

[OBJECT('dsname-list')]
[DEBUG]
[lOAU(dsname)]

[PRINT(~)] PRINT(dsname) [lET] [XCAl] NOPRINT NOLET NOXCAl

[lIB('dsname-list")] [FORTLIB] [COBlIB]

[MAP] [NCAl] [lIST] NOMAP NONCAl NOlIST

[XRE~F] [REUS] [REFR] NOXREF NOREUS NOREFR .
[SCTR] [OVlY] [RENT] NOSCTR NOOVlY NORENT

[NE] [Ol] [DC] NOHE NOOl NODC

[TEST] [NOTERM]
NOT EST TERM

[SIZE('integerl integer2')]
[DCBS(blocksize)]
[AC(authorization-code)]

is the data set containing a Pascal/VS object module and/or link­
age editor control cards.

OBJECT('dsname-list') specifies a list of data sets which contain additional
object modules to be included in the link-edit.

lIB('dsname-list') specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti­
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TSO Command Language Reference Manual.

4 Pascal/VS Programmer's Guide

J

1.6 INVOKING THE LOAD MODULE UNDER TSO: THE CALL COMMAND

CALL dsname[(member)] ['[options/] [parms],]

dsname(member) specifies the name of a partitioned data set and the member where
the load module to be invoked is stored.

options

parms

is one or more run time options separated by either a comma or a
blank.

a parameter string which is to be passed to the program.

The total length of the quoted string (options plus parms) must not exceed 100
characters.

1.7 INTERACTIVE DEBUGGER

In order to use Debug, you must follow these four steps:

• Compile the module to be debugged with the DEBUG option.

• When link-editing your program, include the debug library.

• When executing the load module, specify 'DEBUG' as a run time option.

Command name

?
,variable
Break
CLEAR
Cms
Display
Display Breaks
Display Equates

END
Equate
Go
Listvars

Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
Trace
Walk

Description (Abbreviation in capital letters)

List all debug commands
Display the value of a variable
Set a break point
Remove all break points
Enter eMS subset mode
Display status
Display the location of all break points
Display all equate symbols with their current

definitions
Terminate the program (same as QUIT)
Define an equate symbol
Begin or resume execution of probram
List the values of all variables that are local

to the active routine
Redefine the "current" qualification
Terminate the program (same as END)
Remove a break point
Display attributes when variables are viewed
Initiate/terminate statement counting
Activate/deactive program tracing
Display a trace back
Execute a single statement and then prompt for

another command

Introduction 5

1.8 COMPILER OPTIONS

compiler Option Abbreviated Name Default

CHECK/NOCHECK --- CHECK
OEBUG/NODEBUG --- NOOEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
lANGlVl(STANDARD/ STD lANGLVl(EXTENDED)

STORES/ ---
EXTENDED) EXT

LINECOUNTCn) lC(n) LI N ECOUNTC 60)
LIST/NOLIST --- NOLIST
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMI2E/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWI DTH (128)
PXREF/NOPXREF --- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/NOW WARNING
XREF/NOXREF X/NOX XREF(SHORT)

1.9 RUN TIME OPTIONS

The following options enable features in the Pascal/VS run time environment in
which your program will be executing.

COUNT generates a statement count table and writes it to OUTPUT.

DEBUG activates the interactive debugger.

SETMEM initializes local storage of a routine to a specific value on each invoca­
tion of the routine.

NOSPIE suppresses the interception of program exceptions.

NO CHECK causes all checking errors to be ignored.

ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT = number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program. The default number is 20.

MAIHT Includes system run time routines in any error trace backs.

STACK = number specifies the number of kilobytes by which the run time stack is to
be extended when a stack overflow occurs.

HEAP = number specifies the number of kilobytes by which the heap is to be extended
when a heap overflow occurs.

6 Pascal/VS Programmer's Guide

L

1.10 CATALOGED PROCEDURES

PASCC Compi Ie only -- step name: PASC

PASCCG Compile, load and execute -- step names: PASC, GO

PASCCL Compile and link-edit -- step name: PASC, LKED

PASCCLG Compile, link-edit, and execute -- step names: PASC, LKED, GO

Data set description stepname.ddname

source program input PASC.SYSINl
"INCLUDE library (PDS) PASC.SYSLIB
source listing,

cross-reference listing, PASC.SYSPRINT
pseudo assembly listing and
external symbol tabla 1 1st i ng

object module PASC.SYSLIN
load module LKED.SYSLMOD
linkage-editor control cards LKED.SYSINl
linkage-editor load 11 brary LKED.SYSLIB
loader input GO. SYSLIN
loader library GO. SYSLIB
file OUTPUT GO.OUTPUT

1 This DDname is not defaulted and must be
explicitly defined.

1.11 SAMPLE BATCH JOB

//jobname JOB
//STEPl EXEC PASCCLG,OPTIONS='XREF(LONG),LIST'
//PASC.SYSIN DD •

{Program to be compiled goes here}

/.
//LKED.SYSIN DD •

ENTRY PASCALVS
/.
//GO.INPUT DD •••

Introduction 7

J
8 Pascal/VS Programmer's Guide

L

This section applies only to those who
are using Pascal/VS under the Conversa­
tional Monitor System (CMS) of Virtual
Machine Facility/370 (VM/370). If you
are not usi ng CMS then you may sk i p
this entire section.

For a description of the syntax nota­
tion used to describe commands, see
"Appendix A. Command Syntax Notation"
on page 167.

There are four steps to running a Pas­
cal/VS program under CMS.

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com­
mand;

4. The load module is invoked.

fn [ft [fm]] [I [opt; ons •••] [~~~~T]
NOPRINT

PASCALVS [CONSOLE] [NOOBol]

[LIB(maclibs •••)]

Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1.1 Invoking the compiler

The standard method of i nvok i ng
Pascal/VS compiler under CMS is
means of an EXEC called PASCALVS.

the
by

To compi Ie a Pascal/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro­
gram. If the file type is not explic­
itly specified, the type "PASCAL" will
be assumed.

The compiler translates a source pro­
gram into object code, which it stores
in a file. The name of this file is
i dent i cal to the name of the source
program. Its fi Ie type is "TEXT."

For example, to compile a program which
resides in a file called "SORT PASCAL,"
the command would be:

PASCALVS SORT

If the compi lati on completes wi thout
errors, then the file named "SORT TEXT"
will contain the resulting object coda.

2.1.2 The PASCALVS Command

The general i zed form of the PASCALVS
command is illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the fi Ie name, fi Ie type, and
fi Ie mode of the source program.
The fi Ie type and fi Ie mode are
optional. The default file type is
"PASCAL" and the default file mode
is" •. "

macH bs •••
are optional macro libraries
required by the XINCLUDE facility.
Up to eight may be specified.

options •••
are compiler options, see "Compil­
er Options" on page 31.

The command opti ons DISP, PRINT, and
NOPRINT specify where the compiler
listing is to be placed.

DISK
specifies that the listing is to be
stored as a fi Ie on your A di sk.

Running a Program under CMS 9

The file is named "fn LISTING,"
where "fn" is the file name of the
source program. Thi s opt ion is the
default .

PRINT
specifies that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing is to be
suppressed. This option automati­
cally forces the followi ng three
compiler options to become active:

- AOSOURCE
- NOXREF
- NOLIST

CONSOLE
speci fi es that the console mes­
sages produced by the compiler are
be stored as a file on your A disk.
The name assi gned to the fi Ie is
"fn CONSOLE." If CONSOLE is not
speci fi ed, then the messages wi 11
be displayed on your terminal con­
sole.

NOOBJ
suppresses the product i on of an
object module by disabling the code
generat i on phase of thl~ compi ler.
This option is useful when you are
usi ng the compi ler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes pro­
duced from the EXEC, see "Messages from
PASCAlVS exec" on page 163.

2.1.3 The %INClUDE Maclibs

The macro libraries (maclibs) that may
be specified when invoking the PASCAlVS
command are those required by the %IN­
ClUDE facility. When the compiler
encounters an %INClUDE statement with­
in your program it will search the
macl i bs (i n the order in whi ch they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compi ler. After the compi ler
has read the enti re member, it wi 11
continue reading in the previous input
stream (immediately following the %IN­
ClUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic­
itly provided as the last maclib in the
search order.

10 Pascal/VS Programmer's Gui de

2.1.4 Passing Compiler options

Compile time options (see "Compiler
Opt ions" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compiler options may be specified in
the PASCAL VS parameter 1 i st. The
options list must be preceded by a left
parenthesis "(."

For instance, to compi Ie the program
"TEST PASCAL" wi th the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCAlVS TEST (DEBUG NOXREF

2.1.5 The Compiler listing

The compiler generates a listing of the
source program with such information as
the lexi cal nesti ng structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings" on page 37.

2.1.6 compiler Diagnostics

Any compi ler-detected errors in your
program will be displayed on your ter­
minal console (or written to a disk
file if the CONSOLE options is speci­
fied>. The errors will also be indi­
cated on your source 1 i st i ng at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the CGm­
pi ler is di splayed on your console.
Immediately underneath the printed
line a dollar symbol ('$') is placed at
each location where an error was detec­
ted. This symbol serves as a pointer
to the approximate location where the
error occurred wi thi n the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

For a synopsis of the compiler-gener­
ated messages see "Pascal/VS Compi ler
Messages" on page 133.

J

2.1.7 Sample Compilation

edit copy pascal
NEW FILE:

program copy;
var

infile,
outfile : text;
buffer : stringCI000)j

begin
reset(i nfi Ie);
rewriteCoutfile);
while not eofCinfile) do

begin
readlnCinfile,buffer);
writelnCoutfile buffer)

end;
end.

EDIT:

file
FILE SAVED

RJ T=0.25/0.62 06:56:44

pascalvs copy

INVOKING PASCAL/VS R2.0

WRITELN(OUTFILE BUFFER)
$41

ERROR 41: Comma ',' expected
1 ERROR DETECTED.

SOURCE LINES: 16; COMPILE TIME: 0.16 SECONDS; COMPILE RATE: 6109 LPM

RETURN CODE: 8
R(OOOOSJ; T=0.34/0.67 06:56:59

Figure 2. Sample compilation under eMS

Running a Program under eMS 11

2.2 HOW TO BUILD A LOAD MODULE

PASCMOD matn [names •••] [(options ••• E)]]

Figure 3. The PASCMOD command: generates a Pascal/VS load module.

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consi sts of just one source
module (that is, you have no segment
modules), a load module can be genera­
ted by simply invoking PASCMOD with the
name of the program. For example, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists>, then a load module may
be generated with:

PASCMOD SORT

The result i ng module would be called
"SORT MODULE." A load map is stored in
"SORT MAP."

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the mai n program
module.

names •••
are the names of segment modules
and text libraries <TXTlIB's)
which are to be included. If a
name "n" is specified and there are
two files named n TEXT and n
TXTLIB, then the TEXT file will be
i neluded and the TXTl.IB wi 11 be
searched.

options ..•
is a list of options. (see "Module
Generation Options.")

The resulting load module will be given
the name "mai n MODULE A." The load map
of the module will be stored in "main
MAP A."

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD imp}; c­
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

As an example, let us build a load mod­
ule for a pre-compi led program whi ch
resides in three source modules: MAIN,
ASEG, and BSEG. Thi s program calls
routines that reside in a txtlib called
UTILITY. The followi ng command would
generate a load module called MAIN MOD­
ULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
specifies that the debuggingrou­
tines are to be linked into the
load module so that the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger"
on page 6 7 .)

NAME name
specifies an alternate name for the
load module. The result i ng load
module and map will have the name
"name MODULE A" and "name MAP A."

2.2.2 Run time Libraries

Rout i nes wh i ch make up the Pascal/VS
runt i me env; ronment res; de ; n a text
library called "PASCAlVS TXTLIB." It
must be present in order to resolve the
linkages from the program bei ng pre­
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTlIB." (see "Pascal/VS Interactive
Debugger" on page 67 for a description
of Debug).

J

J

2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA
FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF OUTPUT TERMINAL (RECFM F LRECL 80
FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Figure 4. Examples of CMS file definition commands

Before you invoke the generated load
module, you must first define the files
that your program requ ires. Thi sis
done with the FILEDEF command.

The first parameter of the FILEDEF com­
mand is the file's ddname. The ddname
to be associated wi th a parti cular fi Ie
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
f 11e of

INTEGER;

If a parti cular fi Ie is to be opened
for input, attributes such as LRECL.
BLKSIZE, and RECFM are obtai ned from
the (presumably) already existing
file. Note: A file that is being
defined to the terminal requires you to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes"
on page 45.

The FIlEDEF commands required for each
of the three fi Ie vari abIes in the

example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.4 HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the fi les defi ned, you are ready to
execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms ••. l

where "modname" is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program will read (via the PARMS
function), the runtime parameter list
must be termi nated wi th a slash "/."
The program parameters, if any, must
follow the "/."

modname [rtparms ••• /l [parms ••• l

For a description of the run time
options see "Run Time Options" on page
35.

Running a Program under eMS 13

J

14 Pasca1/VS Programmar's Guide

L

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option (ISO) of
OS/VS2. If you are not usi ng TSO to
run the compiler, you may skip this
section.

Refer to "Appendi x A. Command Syntax
Hotation" on page 167 for a description
of the syntax notation used to describe
commands.

There are four steps to running a Pas­
cal/VS program.

3.1 HOW TO COMPILE A PROGRAM

ClIST NAME

3.0 RUNNING A PROGRAM UNDER T50

1. The program ;s compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro­
gram are allocated;

4. The load module is invoked.

OPERANDS

PASCALVS data-set-name

[compiler-options-listl

[

[

[

[
Figure 5. PASCAlVS ClIST syntax

3.1.1 Invoking the Compiler

The Pascal/VS compiler is invoked under
T50 by means of a CllST. A sample
CLI5T named PA5CAlVS ; s provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set which contains the
source program to be compi led.
This can be either a fully quali­
fied name (enclosed in single
quotation marks) or a simple name
(to which the user identifica-

OBJ ECT(dsname)] NOOSJECT

PRINT(Jf)
PRINT(dsnamel

1 SYSPRINT(sysout-classl
NOPRINT

CONSOLEOn
CONSOLE(dsname)]
LIB(dsname-listl] NOLIS

tion will be prefixed and the
qual i fi er "PASCAL" wi 11 be suf­
fi xed). Thi s must be the fi rst
operand specified.

comptler-options-list
specifies one or more compiler
options. See "Compiler Options"
on page 31.

OBJECT(dsnamel
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. Thi s can be
either a fully qualified name

Running a Program under TSO 15

(enclosed within triple quota­
tion marks "' ... "')1 or a
simple name (to which the iden­
tification qualifier will be
prefixed and the qualifier "OBJ"
suffi xed).

NOOBJECT
speci fi es that no object module
is to be produced. The compiler
will diagnose errors only.

If neither OBJ nor NOOBJ is spec­
ified then object module pro­
duced by the compi ler wi 11 be
wri tten to a default data set.
If the data set specified in the
fi rst operand cClntai ns a
descriptive qualifier of
"PASCAL," the CLlST will "orm a
data set name for the object mod­
ule by replaci ng the descri ptor
qualifier of the input data set
wi th "OBJ." If the descri pt i ve
qualifier is not "PASCAL," then
you will be prompted for the
object module data set name.

If the first operand of PASCAlVS
specifies the member of a p~rti­
tioned data set, then the name of
the associated object module
wi 11 be generated as just
described. If the object module
data set is a partitioned data
set, then the object module will
become a member wi thi n the PDS
and wi 11 have the same name as
the member name of the input data
set.

As an example, gi ven that the
user identification is ABC, the
following commands wrill produce
object modules with the name
shown.

PRINT(~)

PASCALVS SORT
object module: 'ABC.SORT.OBJ'

PASCALVS 'DEF.PDS.PASCAL(MAIN)'
object module:

'DEF.PDS.OBJ(MAIN)'

PASCALVS 'ABC.PROG.PAS'
user prompted for object
module name

specifies that the compiler
listing is to be displayed on the
termi nal i no other c;opy wi 11 be
available.

PRINT(dsnama)
specifies that the compiler
listing is to be written on the

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
", •.• ",)2 or a simple name (to
which the identification qual­
ifier will be prefixed and the
qualifier "LIST" suffixed).

SYSPRINT(sysout-class)
speci fi es that the compi ler
listing is to be written to the
sysout class named in parenthe­
ses.

NOPRINT
specifies that the compiler
1 i st i ng is not to be produced.
Thi 5 operand acti vates the fol­
lowing compiler options:

NOSOURCE, NOXREF, NOLIST

CONSOLE(~)
specifies that the compiler gen­
erated messages are to be di s­
played on the termi nal c.Jnsole.
This is the default.

CONSOLE(dsnama)
specifies that the compiler gen­
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
''' .•. ''') or a simple name (to
which the identification qual­
i fi er wi 11 be prefi xed and the
qualifier "CONSOLE" suffixed).

LIB(dsnama-list)

NOLIB

specifies that the %INCLUDE
facility is being utilized.
Within the parentheses is a list
of the names of one or more par­
titioned data sets that are to be
searched for members to be
included within the input
stream.

If the list contains more than
one name, the entire list must be
enclosed within quotes. Any ful­
ly qualified name within the
quoted list must be enclosed in
double quotes " ... ".

See "Using the XINCLUDE
Facility" on page 17.

specifies that no %INCLUDE
libraries are required. This is
the default.

1 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

2 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

16 Pascal/VS Programmer's Guide

J

J

Example 1

Operation: Invoke the Pascal/VS com-
pi ler to process a
Pascal/VS program

Known: User-identification is ABC

Data set conta in; ng the pro­
gram is named ABC.SORT.PASCAl

The compiler listing ;s to be
directed to the printer.

Defaul t opti ons and data set
names are to be used.

PASCAlVS SORT SYSPRINT(A)

Example 2

Operation: Invoke the PascallVS com-
pi ler to process a
Pascal/VS program

Known: User-identification is XYZ

Data set conta in i ng the pro­
gram is named ABC.TEST.PASCAl

The compiler listing is to be
directed to a data set named
XYZ.TESTlIST.LIST.

The long version of the cross
reference 1 i st i ng is pre­
ferred.

Default options and data set
names are to be used for the
rest.

PASCAlVS 'ABC.TEST.PASCAl' +
XREF(lONG),PRINT(TESTlIST)

3.1.2 Using the %INCLUDE Facility

If the %INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the lIB parameter
of the PASCAlVS ClIST.

The standard include library supplied
by IBM is called J

"SYS1.PASCALVS.MACLIB"

This library must be specified in the
LIB list if your program contains an
%INCLUDE statement for one of the IBM
supplied members.

When the compi ler encounters an %IN­
ClUDE statement within the source pro­
gram, it will search the partitioned

data setes) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continlle reading from
the previous input stream immediately
following the %INCLUDE statement.

Example 1

Operation: Invoke the Pascal/VS com­
pi ler to process a
PascallVS program which
utilizes the XINCLUDE
facility.

Known: User-identification is P123

Data set containing the pro­
gram is named

'P123.MAIN.PASCAL'

The source to be included is
stored in two parti ti oned
data sets by the names of

'P123.PASLIB'
'SYSl.PASCALVS.MAClIB'.

Defaul t opt ions and data set
names are to be used for the
rest.

PASCAlVS MAIN lIB('PASlIB,+
"SYS1.PASCAlVS.MAClIB"')

3.1.3 Compiler Diagnostics

By default, compi ler di agnosti cs are
di splayed on your termi nal. If the
CONSOlECdsnameJ operand appears on the
PASCALVS command, then the diagnostics
wi 11 be stored ina data set. The
errors will also be indicated on your
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list­
ing.

When an error is detected, the source
line that was being scanned by the com­
piler is printed on your terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol (' $') is placed at each locat i on
where an error was detected. Thi s sym­
bol serves as a pointer to indicate the
approxi mate locat i on where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

J The high-level qualifier name (SYSl) may be different at your
installation.

Running a Program under TSO 17

For a synopsis of the compiler genera­
ted messages see "Pascal/VS Compi ler
Messages" on page 133.

3.2 HOW TO BUILD A LOAD MODULE

CLIST NAME OPERANDS

PASCMOD data-sat-nama a... M

[OBJECT('dsnama-list')]
[DEBUG]
[LOAD(dsnama)]

[PRINT (M)] PRINT(dsnama) [LET] [XCAL]
HO~BINl HQ..b.iI NgXCAb

[LIB('dsnama-list'l] [FORTLIB] [COBLIB]

[MAP] [NCAL] [LIST]
HQ&f HOHCAb HgbUl

[XREF] [REUS] [REFR J NOXREE NOREUI NOBEFB

[SCTR] [OYLY] [RENT]
NQi~TR HOQ~I.:t HOBENl

[NE J [OL] [DC J HQHi ~ NODC

[TEST J [NOTERM J NOTESl !.iB1!

[SIZE('intage ... l intager2'1]
[DCBS(blacksizal]
[AC(autha ... izatian-cada)]

Figure 6. The TSO PASCMOD CLIST description

To generate a load module from a
Pascal/VS object module, you may use
either the TSO LINK command or a CLIST
named "PASCMOD" (Figure 6). The CLIST
performs the same function as the LINK
command except that it will automati­
cally include the Pascal/VS runtime
library in generating the load module.
Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug librery. (A complete
description of the LINK command is con­
tained in the TSO Command Language
Reference Manuel.)

Every Pascel/VS object module conte;ns
references to the runtime support rou­
tines. These routines are stored in e
Ii brery celled lt

"SYS1.PASCALYS.LOAD"

This library must be linked into a Pas­
cal/VS object module in or~er to
resolve all external references prop­
erly. If the PASCMOD CLIST is USE'd,
this library is included
eutomatically.

If the interact i ve debugger is to be
utilized, then the library containing
the debug environment must be included
in the Ii nk i ng. The name of thi s
library i sit

"SYS1.PASDEBUG.LOAD"

This librery must appear ahead of the
runtime library in search order. If
the PASCMOD CLIST is used, this library
will be included if the option DEBUG is
speci fi ad.

The high-level qualifier name (SY51) may be different at your
installation.

18 Pascal/VS Programmer's Guide

If more than one object module is being
linked together, then an ent ry po i nt
should be specified by means of a link­
age editor control card. The name of
the entry point for any Pascal/VS pro­
gram is PASCALVS.

data-set-name
specifies the name of a data set
containing a Pascal/VS object mod­
ule and/or linkage edi tor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (*)
for the data set name to indicate
that you will enter control state­
ments from your terminal. The sys­
tem wi 11 prompt you to enter the
control statements. A null line
indicates the end of your control
statements.

OBJECT('dsname-list')
specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list
must be enclosed in single quotes;
fully qual i fi ed names wi thi n the
1 i st must be enclosed in double
quotes (" ... ").

LIB('dsname-list')
specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
being processed, that is, to
resolve external references. The
name of the Pascal/VS runtime
library is implicitly appended to
the end of this list; you need not
speci fy it.

Because of CLIST restrictions, the
list must be enclosed in single

quotes; fully qual i fi ed names
within the list must be enclosed in
double quotes (" ... ").

DEBUG
specifies that the Pascal/VS
interactive debugger is to be uti­
lized on the resultant load module.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD CLIST
are identical to their counterparts in
the LINK command as descri bed in the
TSO Command Languase Reference Manual.

Example

Operation: Create a load module from
a compiled Pascal/VS pro­
gram consisting of three
object modules.

Known: User-identification is ABC.
Data sets containing the
three object modules:

ABC.SORT.OBJ
ABC.SEGl.OBJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the system replies are
highlighted.)

pascmod * load(progs(sort» +
objectC'sort,seg1,seg2')

ENTER CONTROL CARDS
entry pascalvs

READY

Running a Program under TSO 19

3.3 HOW TO DEFINE FILES

ATTR F80 LRECL(80) BLKSIZE(80) RECFMCF)
ALLOC DDNAMECSYSIN) DSNAMECINPUT.DATA) SHR
ALLOC DDNAME(SYSPRINT) SYSOUTCA)
ALLOC DDNAME(OUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
ALLOC DDNAME(OUTPUT) DSNAME(*) USING(F80)
ALLOC DDNAME(INPUT) DSNAME(*) U5INGCF80)

Figure 7. Examples of TSO data set allocation commands

Before you invoke the genE!rated load
module, you must first define the files
that your program requi res. Thi sis
done with the ALLOC command.

The ddname to be associated with a par­
ticular file variable in your program
is normally the name of the vari able
itself, truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
file of

INTEGER;

3.4 INVOKING THE LOAD MODULE

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 45.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

CALL dsname[(memberl] ['[options/] [parms]']]
Figure 8. The TSO CALL command to invoke a load module

After the module has been created and
the fi les defi ned, you ar'e ready to
execute the program. This is done by
the CALL command (see Figure 8). The
operands of the CALL command are as
follows.

name of a partitioned
the member where the
to be invoked is

the member name is

dsname(memberl
specifies the
data set and
load module
stored. If
omitted,
"TEMPNAME"
invoked.

then the member
will be the load module

dsname may be either a simple name
(to which the user identification
is prefixed and the qualifier

20 Pascal/VS Programmer's Guide

"LOAD" is suffixed), or a fully
qualified name in quotes.

options
specifies one or more run time
options separated by either a comma
or a blank. (See "Run Time Options"
on page 35.).

parms
specifies a parameter string which
is to be passed to the program.
The parameter stri ng is retri eved
from within the program by the
PARMS function.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

J

3.5 SAMPLE TSO SESSION

READY

pascalvs lander sysprintCa) list

INVOKING PASCAL/VS R2.1
NO COMPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDSJ COMPILE RATE: 15032

READY

pascmod lander loadCprogramsClander»
READY

alloc ddnameCinput) dsnameC*)
READY

alloc ddname(output> dsname(*>
READY

call programsClander) 'parms go here'

Figure 9. Sample TSO session of a compile, link-edit, and execution

Figure 9 is an example of a TSO session
which compiles an already existing
source module, link edits it, and exe­
cutes it. The commands entered from

,
I

\
:\

the terminal are in lower case; those
produced by the system are in upper
case and high-lighted.

Running a Program under TSO 21

J

J
22 Pasca!/VS Programmer's Guide

This section describes how to compile
and execute Pascal/VS programs in an OS
Batch envi ronment. If you are not
using the compiler under OS Batch then
you may skip this section.

4.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operati ng system; it
allows you to descri be the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

• JOB statement, which identifies
the start of the job.

4.2 HOW TO COMPILE AND EXECUTE A PROGRAM

I/EXAMPLE JOB
//STEP1 EXEC PASCCG,PARM:'LIST'
//PASC.SYSIN DD _

program EXAMPLE(INPUT,OUTPUT);
var

A, B: REAL;
begin

RESET(INPUT);
while not EOF(INPUT) do

begin
READLNCA,B);
WRITELNC' SUM = ',A+B)j
WRITELHC' PRODUCT = ',A*B)j

end
end.

/-
I/GO.INPUT DD -

3.0 4.0
3.14159 1.414
1.0E-10 2.0E-10
-10.0 102.0 /-

•

•

4.0 RUNNING A PROGRAM UNDER as BATCH

EXEC statement, which identifies a
job step and, in particular, speci­
fi es the program to be executed,
ei ther di rectly or by means of a
cataloged procedure (described
subsequently) .

DD (data definition) statement,
whi ch defi nes the input/output
facilities required by the program
executed in the job step.

• 1* (delimiter) statement, which
separates data in the input stream
from the job control statements
that follow this data.

A full description of job control lan­
guage is given in the publication
OS/VS2 JCL CGC28-0692).

Figure 10. Sample JeL to run a Pascal/VS program

The job control statements shown in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
the standard fi les INPUT and OUTPUT.
For a more generalized description of
i nput/output refer to "How to Access
Data Sets" on page 29 and "Using
Input/Output Facilities" on page 45.

Any options to be passed to the compil­
er are placed within the PARM string of
the EXEC statement.

In the sample JCL, "EXAMPLE" is the
name of the job. The job name identi­
fies the job within the operating sys­
tem; it is essential. The parameters
required in the JOB statement depend on
the convent ions establ i shed for your
installation.

The EXEC statement invokes the IBM sup­
plied cataloged procedure named
PASCCG. When the operating system
encounters thi s name, it replaces the

Running a Program under as Batch 23

EXEC statement with a set of JCL state­
ments that have been written previously
and cataloged in a system library. The
cataloged procedure contains two
steps:

PASC

GO

invokes the Pascal/VS compiler
to produce an object module.

invokes the LOADER to process
the object module by loading it
into memory and i ncludi ng the
appropriate runtime library
routines. The resulting exe­
cutable program is immediately
executed.

The DD statement named "PASC.SYSIN"
indicates that the program to be proc­
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or' devi ce on
which it expects to find th~ program.

The del i mi ter statement 1* i ndi cates
the end of the data.

The DO statement named "GO. INPUT" indi­
cates that the data to be processed by
the program (in procedure step GO) fol­
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cata loged procedure. A
cataloged procedure compr i ses one or
more job steps (though it is not a job,
because it must not contain a JOB
statement) . It is included ina job by
specifying its name in an EXEC state­
ment instead of the name of a program.

Several IBM-supplied cataloged proce­
dures are avai lable for use wi th the
Pascal/VS compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre­
quently used sets of job control state­
ments. If the statements ina
cataloged procedure do not match your
requi rements eXactly, you can easi ly
modify them or add new statements for
the duration of a job.

It is recommended that each installa­
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal/VS Programmer's Guide

4.4 IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup­
plied for use with the Pascal/VS com­
piler are:

PASCC Compi Ie only

PASCCG Compile, load-and-execute

PASeCl Compile and link edit

PASCClG Compile, link edit, and exe­
cute

These cataloged procedures do not
include a DO statement for the source
program; you must always provide one.
The DDname of the input data set is
SYSIN; the procedure step name whi ch
reads the input data set is PASCo For
example, the JeL statements that you
mi ght use to compi Ie, 1 i nk edi t, and
execute a Pascal/VS program is as fol­
lows:

IIJOBNAME JOB
IISTEPI EXEC PASCCLG
IIPASC.SYSIN DO *

(insert Pascal/VS program here
to be compiled)

The listings and diagnostics produced
by the compi ler are di rected to the
device or data set associated with the
OOname SYSPRINT. Each cataloged proce­
dure routes DDname SYSPRINT to the out­
put class where the system messages are
produced (SYSOUT=*).

The object module produced from a com­
pilation is normally placed in a tempo­
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DOname SYSLIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"TI23.S0RT.PASCAL"

and to store the resulting object mod­
ule in a data set named

"T123.S0RT .OBJ"

the following JCL might be employed:

IIJOBNAME JOB
IISTEPI EXEC PASCC
IIPASC.SYSIN DO DSN=TI23.S0RT.PASCAL,
II OISP=SHR
IIPASC.SYSLIN DO OSN=TI23.S0RT.OBJ,
II UNIT=TSOPACK,
II OISP=(NEW,CATLG) J

4.4.1 camp;l. only (PASCC)

//PASCC PROC
//*
//* INVOKE
//*
//PASC EXEC
//OUCODE DD
//OUTPUT DD
//STEPLIB DD
//SYSLIB DD
// DD
//SYSLIN DD
//
//
//SYSLIST DD
//
//SYSMSGS DD
//SYSOIN DD
//
//SYSPRINT DD
//SYSTERM DD
//SYSTIN DO
//
//SYSUTl DO
//
//
//SYSUT2 DO
//
//
//SYSXREF DO
//
//UCODE DO

SYSOUT='*',INCllIB='SYS1.PASCAlVS.MAClIB'

PASCAl/VS COMPILER

PGM=PASCAlI,PARM=,REGION=S12K
SYSOUT=&SYSOUT
SYSOUT=&SYSOUT
DSN=SYS1.PASCAlVS.lINKlIB,DISP=SHR
DSN=&INCllIB,DISP=SHR
DSN=SYS1.PASCAlVS.MAClIB,DISP=SHR
DSNAME=&&lOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
SPACE=(TRK,(2,5»,
DCB=(lRECl=80,BlKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,5»
DSN=SYS1.PASCAlVS.MESSAGES,DISP=SHR
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,S»
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,lRECl=133,BlKSIZE=68S)
DUMMY
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,S»
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,5»,
DCB=(lRECl=80,BlKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,S»,
DCB=(lRECl=80,BlKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DElETE),
SPACE=(TRK,(2,S»
SYSOUT=&SYSOUT

Figure 11. Cataloged procedure PASCC

This cataloged procedure (Figure 11)
compi les one Pascal/VS source module
and produces an object module. It con­
sists of one step, PASC, which is com­
mon to all of the cataloged procedures
described in this chapter.

Step PASC reads in the source module,
diagnoses errors, produces a listing,
and generates an object module to the
data set associated with DDname SYSlIN.

The DO statement for the object module
defines a temporary data set nam9d
&&lOADSET. The term MOD is spe~ified
in the DISP parameter and.as a result,
if the procedure PASCC is invoked
several times in succession for differ­
ent source modules, &&LOADSET will
contain a concatenation of object mod­
ules. The 1 i nkage edi tor and loader
will accept such a data set as input.

Running a Program under OS Batch 25

4.4.2 Compile, Load, and Execute
(PASCCGJ

//PASCCG
//
//
//PASC

PROC SYSOUT=*,INCLLIB='SYS1.PASCALVS.MACLIB',
LKLBDSN='SYS1.PASCALVS.LOAD',
LINKLIB='SYS1.PASCALVS.LINKLIB'

EXEC PGM=PASCALI,PARM=,REGION=512K

(this step is identical to the PASC step in procedure PASCC)

//GO EXEC
IIOUTPUT DD
IISYSLIB DD
/1 DD
/ /SYSLIN DD
//SYSLOUT DD
//SYSPRINT DD

PGM=LOADER.COND=(8,LE,PASC),PARM='EP=PASCALVS'
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
DSN=&LKLBDSN,DISP=SHR
DSN=SYSl.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)
SYSOUT =&SY!JOUT
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)

Figure 12. Cataloged procedure PASCCG

In this cataloged procedure
(Figure 12), the first two steps com­
pile a Pascal/VS source module to pro­
duce an object module. In the thi rd
step (named GO), the loader is
6lxecuted; thi s pr'ogram processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
GO describes the libraries from which
external references are to be resolved.
If you have a library of your own from
whi ch you would 1 i ke external refer­
ances to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compi la­
tions may also be included in the load­
er's input stream by concatenating them
in the SYSLIN DD statement.

26 Pascal/VS Programmer's Guide

As an example, a program in a data set
named "DOE. SEARCH. PASCAL" needs to be
compiled and then loaded with an object
module named "DOE.SORT.OBJ." In addi­
tion, several external routines are
ca lled from wi thi n the program whi ch
reside in a library named
"DOE.MISC.OBJLIB." The following JCL
statements would compi Ie the program
and execute it.

//DOE JOB
/ISTEPl EXEC PASCCG,
// LKLBDSN='DOE.MISC.OBJLIB'
IIPASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
1/ DISP=SHR
//GO.SYSLIN DD
// DD DSN=DOE.SORT.OBJ,
/1 DISP=SHR

J

J

IIPASCCL
II
II
//PASC

PROC SYSOUT=*,INCLLIB='SYS1.PASCALVS.MACLIB',
LKLBDSN='SYS1.PASCALVS.LOAD',
LINKLIB='SYS1.PASCALVS.LINKLIB'

EXEC PGM=PASCALI,PARM=,REGION=S12K

(this step is identical to the PASC step in procedure PASCC)

11*
11* L KED
II""
III KED
IISYSLIB
II
IISYSLIN
II
IISYSLMOD
II

EXEC
DO
DD
DD
DO
DO

PGM=IEWL,PARM='lIST,MAP',COND=(8,LE,PASC)
DSN=&LKLBDSN,DISP=SHR
DSN=SYS1.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN
DSN=&&GOSETCGO),UNIT=SYSDA,DISP=(,PASS),
SPACE=(TRK,(S,3,1»

IISYSPRINT DD
IISYSUTl DD

SYSOUT=&SYSOUT
UNIT=SYSDA,SPACE=(CYL,(1,1»

Figure 13. Cataloged procedure PASCCL

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defi ned by the DD statement wi th
the name SYSLMOD. Thi s statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module wi 11 be placed and gi ven
the member name GO.

In specifying a temporary library, it
is assumed that you wi 11 execute the
load module in the same job; if you
want to retai n the module, you must
substitute your own statement for the
DO statement with the name SYSLMOD.

When linking multiple modules
together, you must supply an entry
point. The name of the entry point may

//JOBNAME JOB (DOE),'JOHN DOE'
IISTEP1 EXEC PASCC

be either the name of your main
program, or the name PASCALVS. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the 1 i nkage edi tor. Thi s may be done
conveniently with a DD statement named
SYSIN for step LKED whi ch references
instream data:

IILKED.SYSIN DD ""
ENTRY PASCALVS

/'J~

Multiple invocations of the PASCC cata­
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven­
iently in one job. The JCL shown in
Fi gure 14 on page 28 compi les three
source modules and then link edits them
to produce a single load module. With­
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAL.SRCLIB1".

The member names are MAIN, SEG1, and
SEG2. The resulting load module is to
be placed ina preallocated library
named "DOE. PROGRAMS. LOAD" as a member
named MAIN.

//PASC.SYSIN DO DSN=DOE.PASCAL.SRCLIBl(MAIN),DISP=SHR
//STEP2 EXEC PASCC
/IPASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1CSEG1),DISP=SHR
IISTEP3 EXEC PASCCL
/IPASC.SYSIN DO DSN=DOE.PASCAL.SRCLIB1CSEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=OLD
//LKED.SYSIN DO ""

ENTRY PASCALVS
/""

Figure 14. Sample JCl to perform multiple compiles and a link edit

Running a Program under OS Batch 27

4.4.4 compile, Link Edit, and Execute
(PASCCLGl

//PASCCLG PROC SYSOUT=*,INCLLIB='SYSl.PASCALVS.MACLIB',
// LKLBDSN='SYSl.PASCALVS.LOAD',
// LIHKLIB='SYSI.PASCALVS.LINKLIB'
//PASC EXEC PGM=PASCAlI,PARM=,REGION=512K

... (this step is identical to the PASC step in procedure PASCC)

//LKED EXEC PGM=IEWL,PARM='LIST,MAP',COND=(8,LE,PASC)

.•• (this step is identical to the LKED step in procedure PASCCl)

//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,lE,PASC),(8,LE,LKED»
//OUTPUT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BlKSIZE=685)
//SYSPRINT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)

Figure 15. Cataloged procedure PASCCLG

Thi s cataloged procedure (F'i gure 15)
performs a compilation, invokes the
linkage edi tor to form a load module
from the resulting object module, then
the load module is executed.

28 Pascal/VS Programmer's Guide

The first two steps of this procedure
are i dent i cal to those of the PASCCL
procedure. An additional third step
(named GO) executes your program.

J

J

4.5 HOW TO ACCESS AN %INCLUDE LIBRARY

The DO statement named SYSLIB
dure step PASC defi nes the
from whi ch included source
retrieved.

in proce­
libraries
is to be

When the compi ler encounters an 7.11'1-
CLUDE statement within the source mod­
ule, it will search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an 7.INCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DO statement by specifying a
DO statement with the name PASC.SYSLIB.

Example

IIJOBNAME JOB
II EXEC PASCCG
IIPASC.SYSLIB DO DSN= ... ,DISP=SHR
IIPASC.SYSIN DD *

1*

4.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD

statement for the GO step whi ch exe­
cutes your program. The DDname to be
associated with a particular file vari­
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari­
ables declared within the Pascal decla­
ration belo~ would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
OUTPUTFILE: file of

INTEGER;

The file named OUTPUT need not be
expl i ci tly defi ned by you if you use
the cataloged procedures. Both cata­
loged procedures whi ch execute a
Pascal/VS program (PASCCG and PASCCLG)
contain a DD statement for OUTPUT.
OUTPUT is assigned to the output class
where the system messages and compiler
listings are produced (SYSOUT=*).

If the Pascal/VS i nput/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it w; 11 ass; gn default values to the
DCB as described in "Data Set DCB
Attributes" on page 45. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associ ated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under OS Batch 29

4.7 EXAMPLE OF A BATCH JOB

//JOBNAME JOB
//STEPl EXEC PASCC,PARM='NOXREF'
//PASC.SYSIN DD ~
program COPYFILE;
type

F8D = fi Ie of
packed array[I .. 8D] of CHAR;

var
INFILE, OUTFILE: F8D;

procedure COPYCvar FIN,FOUT: F8D);
Qxternal;

begin
RESET(INFILE);
REWRITECOUTFILE);
COPYCINFILE,OUTFILE);

end.
/~

//STEP2 EXEC PASCCLG,PARM='NOXREF'
//PASC.SYSIN DD ~
segment 10;
type

F8D = file of
packed array[I .. 8D] of CHAR;

procedure COPYCvar FIN,FOUT: F8D);
external;

procedure COPY;
begin

while not EOFCFIN) do
begin

FOUTOl := FINOl;
PUT(FOUT) ;
GET(FIN)

end
end; .
/~

//LKED.SYSIN DD •
ENTRY PASCALVS

/~

//GO.INFILE DD ~

Cdata to be copied into data set goes here)

/~

//GO.OUTFILE
//
//
//

Figure 16.

DD DSN=P123456.TEMP.DATA,UNIT=TSOUSER,
DISP=(NEW,CATLG),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),
SPACE=(3120,(1,1))

Example of a batch job

3D Pascal/VS Programmer's Guida

J

J

Compile time options indicate what fea­
tures are to be enabled or di sabled
when the compiler is invoked. The fol­
lowing table lists all compiler options

5.0 COMPILER OPTIONS

with their abbreviated forms and their
default values.

Compiler Option Abbreviated Hame Default

CHECK/HOCHECK --- CHECK
DEBUG/HODEBUG --- HODEBUG
GOSTMT/HOGOSTMT GS/NOGS GOSTMT
LANGLVL(STAHDARD)/ LAHGLVLCSTD)/ LAHGLVLCEXTEHDED)

LAHGLVLC S TDRES)/ ---/
LAHGLVL(EXTEHDED) LANGLVLCEXT)

LINECOUHTC n > LCCn) LINECOUHTC60>
LIST/NOLIST --- HOLIST
MARGINSCm,n) MARCm,n) MARGINSCl,72)
OPTIMIZE/HOOPTIMIZE OPT/HOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTHCl28)
PXREF/HOPXREF --- PXREF
SEQUEHCECm,n)/HOSEQUEHCE SEQ(m,n)/HOSEQ SEQUEHCEC73,80)
SOURCE/HOSOURCE S/HOS
WARHIHG/HOWARNING W/NOW
XREF/NOXREF X/NOX

5.1 CHECK/NOCHECK

If the CHECK opti on is enabled, the
Pascal/VS compiler will generate
i nl i ne code to perform runt i me error
check i ng. The %CHECK feature can be
used to enable or di sable parti cular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
whi ch may be checked are 1 i sted as fol­
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val­
ues.

Function routines
A call to a function routine is
checked to verify that the called
function returns _ value.

Painters
A reference to an object which is
based upon a pointer variable is
checked to make sure that the poin­
ter does not have the value nil.

subrange scalars
Vari abIes whi ch are declared as
subrange scalars are tested when
they are assigned a value to guar­
antee that the value 1 i es wi thi n
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

SOURCE
WARNING
XREF(SHORT)

statement or i mmedi ately after a
routine call in which the variable
was passed as a var parameter.
(This latter case also includes a
call to the READ procedure).

For the sake of effi ci ency, the
compi ler may suppress checki ng
when it is able to determine that
it is semantically unnecessary.
For example, the compiler will not
generate code to check the fi rst
three assignment statements below;
however, the last three wi 11 I--e
checked.

var
A : -10 .. 10;
B : O •• 20;

A . - B-1 0; OEno checklE)
B := ABS(A); (lEno checklE>
A := B DIV 2; ClEno checklE>

A • - B;
B .- AlE10;
A := -B;

(lEcheck
(lEcheck
(lEcheck

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables; however,
to help you detect such errors, the
SETMEM runtime option has been pro­
vided (see "Run Time Options" on
page 35).

Subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress

Compiler Options 31

checks that are semanti cally
unnecessary.

string truncation
Assignments to varying length
stri ngs are checked to make sure
that the,destination s't:ring vari­
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnostic message will be displayed on
your terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from OS Batch, the diagnostic
message and traceback will be sent to
the data set or device associated with
DOname SYSPRINT. You may di red the
error diagnostics to any file of your
choice with the "ERRFILE" option (see
"Run Time Options" on page 35).

See "Reading a Pascal/VS Trace Back" on
page 61 for an example of a traceback
due to a checking error.

"User Handling of Execution Errors" on
page 64 describes how checking errors
may be intercept~d by your program.

5.2 DEBUG/NDDEBUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Pascal/VS
Interact i ve Debugger" on page 67. If
the option DEBUG is enabled, the com­
piler will produce the necessary infor­
mati on that Debug needs in order to
operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GDSTMT/NDGDSTMT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entri es wi thi n thi stable
allow the run-time environment to iden­
t i fy the source statement causi ng an
execution error. This statement table
also permi ts the i nteracti ve debugger
to place breakpoi nts based on source
statement numbers. For a descr; pt ion
of the debugger see "Pascal/VS Interac­
tive Debugger" on page 67.

The i nclusi on of the statement table
does not affect the execution speed of
the compiled program.

32 Pascal/VS Programmer's Guide

NOGOSTMT will prevent the statement
table from being generated.

5.4 lANGlVl()

If LANGLVL(STANDARD) is specified, the
compi ler wi 11 diagnose all constructs
and features whi ch do not conform to
"standard" Pascal. Vi olati ons of the
standard wi 11 appear as warni ngs. In
addition, many of the predeclared iden­
tifiers which are unique to Pascal/VS
will not be recognized when
LANGLVL(STANDARD) is specified.

If LANGLVL (STORES) is speci fi ed, the
compi ler wi 11 turn LANGLVLCSTANOARD)
on, and will also not recognize any of
the non-ANSI-standard PascallVS
reserved words. Thi s means that the
following Pascal/VS reserved words may
now be used as identifiers (of course,
the features they support are lost,
too) :

assert
continue
def
leave
otherwise
range
ref
return
space
static
value
xor

LANGLVLCEXTENDED), which is the
default, speci fi es that the full
Pascal/VS language is to be supported.

5.5 lINECOUNT(N)

The LINECOUHT option specifies the num­
ber of lines to appear on each page of
the output listing. The maximum number
of lines to· fi t on a page depends on
the form to which the output is being
printed.

The default is 60 lines to the page.

5.6 lIST/NDlIST

The LIST/NOLIST option controls the
generation or suppression of the trans­
lator pseudo-assembler listing (see
"Assembly Listing" on page 42).

Hote: The HOLIST option will cause any
YoLIST statement within the source pro­
gram to be ignored.

J

J

5.7 MARGINS(M,N)

The MARGINSCm,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro­
gram starting at column m and ending at
column n. Any data outside these mar­
gin limits is ignored. The maximum
right margin allowed is 100 The speci­
fied margins must not overlap the
sequence fi eld.

The default is MARGINS(I,72).

Note: When the PASCALVS clist is being
invoked under TSO, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

Sample program to demonstrate

MARGINS('1,72')

5.8 OPTIMIZE/NOOPTIMIZE

The OPTIMIZE option indicates that the
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

When code is being optimized, the code
generation phase of the compiler will
try to eliminate common subexpres­
si ons. Instead of evaluati ng an
expression each time it occurs in the
program, the expression will be evalu­
ated once and saved, if possible, in a
register. The example in Figure 17
illustrates this.

code optimization

program TEST;
var

1, J, K : integer;
begin

I · - 80;
J · - I IE 3;
J · - 2 ;
K · - I IE 3;
K · - 2;

end.

Optimized code Unoptimized code

IE I · - 80; IE I · - 80;
LA 03,80 LA 03,80
ST 03,144(,13) ST 03,144(,13)

IE J · - I IE 3; IE J · - I IE 3;
MH 03,=H'3' L 03,144(,13)
ST 03,148(,13) MH 03,=H'3'

IE J · - 2; ST 03 , 148 (, 13)
LA 04,2 IE J · - 2;
ST 04,148(,13) LA 03,2

IE K · - I IE 3; ST 03,148 (, 13)
ST 03,152(,13) IE K · - I IE 3;

IE K · - 2; L 03,144(,13)
ST 04,152(,13) MH 03,=H'3'

ST 03,152(,13)
IE K · - 2;

LA 03,2
ST 03,152(,13)

Figure 17. Differences between OPT and NOOPT

5.9 PAGEWIDTH(N)

The PAGEWIDTH option specifies the max­
i mum number of characters S that may
appear on a single line of the output
listing. This number depends on the
page form and the printer model.

The default page width is 128 charac­
ters, with the minimum and maximum page
widths allowed being 120 and 210 char­
acters, respectively.

5 The number specified in the PAGEWIDTH option does not include carriage
control characters.

Compiler Options 33

5.10 PXREF/NOPXREF

The PXREF opt i on spec if i es that the
right margin of the output listing is
to contain cross reference entries (see
"Page Cross R-eference Fi eld" on page
38). NOPXREF suppresses these entries.

5.11 SEQ(M,N)/NOSEQ

The SEQ(m,n) option specifies which
columns within the program being com­
piled are reserved for a sequence
field. The starting column of the
sequence field is mi the last column of
thefieldisn.

The compiler does not process sequence
fields; they serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler
will insert a line number in the cor­
responding area in the source listing.

NOSEQ indicates that there i~ to be no
sequence field.

The default is SEQ(73,80).

NOTES:

•

•

The sequence field must not overlap
the source margins.

When the PASCALVS clist is being
invoked under TSO, the !;ubparame­
ters of the SEQ opt i on must be
enclosed in quotes. For example,

SEQ('73,80')

5.12 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generat i on or suppress i on of the

34 Pascal/VS Programmer's Guide

compiler source listing.

Note: The NOSOURCE opt i on wi 11 cause
any r.PRINT statement within the source
program to be ignored.

5.13 HARNING/NOHARNING

This option controls the generation or
suppressi on of warn i ng messages. The
NOWARNING specification will suppress
warning messages from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF opt i on controls the
generati on or suppressi on of the
cross-reference port i on of the source
1 i st i ng. C See "Cross-reference L i st­
i ng" on page 40).

Either a short or long cross-reference
list i ng can be generated. A long
cross-reference 1 i sti ng contai ns all
identifiers declared in the program. A
short listing consists of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF speci fi cati on and
enclosed wi thi n parentheses. If no
such specification exists, SHORT is
assumed. For example, the speci fi ca­
tion

XREFCLONG)

would cause a long cross-reference
table to be generated.

Note: If the PASCALVS cl i st is bei ng
invoked under TSO, a subparameter
(SHORT or LONG) must be specified with
the XREF option; there are no defaults.

J

Features within the Pascal/VS run time
environment may be enable or disabled
by passing options to the Pascal/VS
program. These options are passed to a
Pascal/VS program through the parame­
ter passing mechanism. To distinguish
run time! options from the parameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi­
nated with asia sh ("P').

The following is a list of supported
run time options.

COUNT
specifies that instruction fre­
quency information is to be col­
lected during program execution.
After the program is completed,
this information is written to file
OUTPUT.

Note: This option will only have an
effect if the program was both com­
piled and link-edited with the
DEBUG option.

DEBUG
specifies that the interactive
debugger (see "Pascal/VS Interac­
t i ve Debugger" on page 67) is to
gain initial control when you
invoke your program.

Note: This option is valid only if
the load module was generated with
the DEBUG option (see "Module Gen­
eration Options" on page 12).

ERRCOUNT=n

ERRCOUNT(n)
specifies how many non-fatal
errors are allowed to occur before
the program is abnormally termi­
nated. The default is 20.

Note to CMS users: due to the
8-character tokenization conven­
tion of CMS, a blank must precede
the '=' symbol in the ERRCOUNT spe­
cification.

Example:

modname ERRCOUNT =1/

ERRFILE=ddname

ERRFILE (ddname)
specifies the DDname of the file to
which all run time diagnostics are
to be written. Under CMS and TSO,
diagnosti cs are di splayed on your
terminal by default. Under OS
batch, the default error fi Ie is
SYSPRINT.

6.0 RUN TIME OPTIONS

Note to CMS users: due to the
a-character tokenization conven­
tion of CMS, the '=' symbol must be
surrounded with blanks.

Example:

modname ERRFIlE = OUTPUT/

HEAP = n
specifies the number of kilobytes 6

that the heap is to be "extended"
each time the heap overflows. The
heap is where memory is allocated
when the procedure NEW is called.
When the end of the heap is
reached, the GETMAIN supervisor
call is invoked to allocate more
memory for the heap. If the length
of the space being required by HEW
is greater than "n," then the
amount to be allocated will be the
length of the space rounded up to
the next kilobyte (1024 bytes).

There is a significant overhead
penalty for each invocation of GET­
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affected. If "n" is too large,
the heap will contain memory that
is never used.

The defaul t HEAP attri bute is 12
kilobytes.

MAINT
specifies that when a run time
error occurs, the trace back is to
list active run time support rou­
tines. These routines begin with
an AMP prefix and are normally sup­
pressed from the trace back
listing. This option is used to
locate bugs within the run time
environment.

NOCHECK
specifies that any checking errors
detected within the program are to
be ignored.

NOSPIE
speci fi es that the Pascal/VS run
time enviroment is not to issue a
SPIE request and therefore will not
intercept program interrupts.

STACK = n
specifies the number of kilobytes 6

that the run time stack is to be
"extended" each time the stack
overflows. The run time stack is
where the dynamic storage area
(DSA) of a routine is allocated
when the routine is invoked. When

6 A "kilobyte" is defined as 1024 bytes in the context of this manual.

Run Time Options 35

the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n," then the amount to be allo­
cated will be the length of the DSA
rounded up to the next kilobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET­
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affdcted. If "n" is too large,
the stack will occupy more memory
than is necessary.

36 Pascal/VS Programmer's Gu ide

The default STACK attribute is 12
kilobytes.

SETMEM
specifies that upon entry to each
Pascal/VS routine, each byte of
memory in which the routine's local
variables are allocated will be set
to a speci fi c value, namely 'FE'
(hexadecimal>. This option aids in
locati ng the source of i ntermi t­
tent errors which occur because of
the use of uninitialized
variables.

7.0 HOW TO READ PASCAL/VS LISTINGS

7.1 SOURCE LISTINGS

PASCAL/VS RELEASE 2.0 UTILITY: 01/27/81 14:48:54 PAGE 5

B P C I STMT # SOURCE PROGRAM PAGE
INCLUDE 1 FROM SYSLIB (GLOBALS)

V---+----l----+----2----+----3---//--7-V SEQ NO
1 :
1 : type
1 : NAMEPTR = aNAMEREC;
1 : NAMEREC =
1 : record
1 : NAME STRING(30)j
1 : LEFT_LINK,
1 : RIGHT_LINK: NAMEPTR;
1 : I end;
1 :
1 : Idaf
1 : I TREETOP : NAMEPTR;

1 Iprocedure SEARCH(
1 I canst 10: STRING;
1 I var PTR: NAMEPTR) ;
1 EXTERNAL;

I
1 Iprocedure SEARCH;
1 Ivar
1 I LPTR = NAMEPTR;

==========ERROR=> $17
1 Ibegin
1 1

I
PTR := nil;

1 2 LPTR := TREETOP;
1 1 3 while LPTR <> nil do
1 1 I begin

1 1 1 4 I with LPTRa do
1 1 1 1 5 if NAME = ID than
1 1 1 1 begin
2 1 1 1 6 PTR := LPTR
2 1 1 1 7 return

==========ERROR=> $8
1 1 1 1 I end
1 1 1 1 else
1 121 8 if 10 < NAME then
1 121 9 LPTR :=
1 121 else
1 121 10 lPTR . -

1 1 I end (*whi 1a~O
end; .

NUMBER OF ERRORS DETECTED: 2

DIAGNOSTIC MESSAGES ON PAGE(S): 5

ERROR
ERROR

8: SEMICOLON ";" EXPECTED
17: ":" EXPECTED

LEFT_LINK

RIGHT_LINK

PARAMETERS PASSED: DISK NOXREF LIB (MACLIB)

00000100
00000200 R
00000300 * * 00000400 * 00000500 R
00000600 * P
00000700 * 00G0080e * 5
00000900 R
00001000
00001100 R
00001200 * 5
00000180
00000190 R * 00000200 R * 00000210 R lE
00000220 lE
00000221
00000222 R * 00000230 R
00000240 * 5

00000250 R
00000260 5 P
00000270 5 5
00000280 R 5
00000290 R
00000300 R 5
00000310 R 5
00000320 R
00000330 5 5
00000340 R

00000350 R
00000360 R
00000370 R 5
00000380 5 5
00000390 R
00000400 5 5
00000410 R
00000420 R

OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), lINECOUNT(60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING

XREF

P
5

P R

R
5 R

5 R

SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 LPM

Figure 18. Sample source listing

How to Read Pascal/VS Listings 37

The source listing contains informa­
tion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set with the ~TITLE statement and may
be reset whenever necessar'y. If no
title has been specified, then the line
will be bltank.

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa­
tion in the following order.

1. The PROGRAM/SEGMENT name is gi ven
before a colon. This name becomes
the name of the control sect ion
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defi­
nition which was being compiled
when the page boundary occurred.

3. The time and date of the compile.

4. The page number.

The third line contains column
headings. If the source being compiled
came from a library (i.e. ~INCLUDE),
then the last line of the heading iden­
tifies the library and member.

7.1.2 Nesting Information

The left margin contains nesting infor­
mation about the program. The depth of
nest i ng is represented by a number.
The heading over this margin is:

B P C I STMT

B i ndi cates the depth of 'B' EGIN
block nesting.

P - indicates the depth of 'P'rocedure
nesting.

C indicates the nesting of
'C'onditional statements. Conditional
statements are if and case.

I indicates the nesting of
'I'terative statements. Iterative
statements are for, repeat and while.

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line org;­
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon (':') precede the
statement number.

7.1.3 statement Numbering

Pascal/VS numbers the statements of a
rout; ne. These numbers are referenced
when a run time error occurs (see
"Readi ng a Pascal/VS Trace Back" on
page 61) and when break points are spe­
cified in the interactive debugger (see
"Pascal/VS Interactive Debugger" on
page 67).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
II numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.4 Page Cross Reference Field

If the PXREF compiler option is active,
the right margin of the listing con­
ta ins a cross reference fi ele!. Thi s
fi eld conta ins an i ndi cator for each
identifier that appears in the associ­
ated line. The i ndi cators have the
following meanings!

• A number indicates a page number on
which the corresponding identifier
was declared.

• A '*' indicates that the correspon­
ding identifier is being declared.

•

•

•

A 'P' indicates that the correspon­
ding identifier is predefined.

A 'R' indicates that the correspon­
ding identifier is a reserved key
word.

A '1' indicates that the correspon­
ding identifier is either unde­
clared, or will be declared further
on in the program. Thi slatter
occurrence arises often in pointer
type definitions.

7.l.S Error summary

Toward the end of the listing is the
error summary. It conta ins the di ag­
nost i c messages correspondi ng to the
compilation errors detected in the pro­
gram.

7.1.6 option List

The option list summarizes the options
that were enabled for the compilation.

7.1.7 Compilation statistics

The compiler prints summary statistics
whi ch tell the number of U nes

compiled, the time required, and compi­
lation rate in lines per minute of
(virtual) CPU time.

These statistics are divided between
two phases of the compiler: the syn­
tax/semantic phase and the code gener­
ation phase. Also printed is the total
time and accumulative rate for the sum
of the phases.

How to Read Pascal/VS Listings 39

7.2 CROSS-REFERENCE LISTING

C R 0 S S REF ERE N C E LIS TIN G

INCLUDE 1 CAME FROM MEMBER GLOBALS

IDENTIFIER

ID

LPTR

NAME

NAMEPTR

NAMEREC

NIL

PTR

SEARCH

STRING

TREETOP

DEFINITION

5/20

5/1: 7

5/24

5/1: 6

5/1:3

ATTRIBUTES <PAGE #>/<INCLUDE #>:<LINE I>

IN SEARCH, CLASS = CaNST PARAMETER,
TYPE = STRING, OFFSET = 144

5/31 5/37

IN NAMEREC, CLASS = FIELD, TYPE = POINTER,
OFFSET = 32, LENGTH = 4

5/38

IN SEAlcH, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 152, LENGTH = 4

5/27 5/28 5/30 5/33
5/38 5/40

IN NAMEREC, CLASS = FIELD, TYPE = STRING,
OFFSET = 0, LENGTH = 32

5/31 5/37

CLASS = TYPE, TYPE = POINTER, LENGTH = 4
5/1:8 5/1:12 5/21 5/24

5/1:4 CLASS = TYPE, TYPE = RECORD, LENGTH = 40
5/1: 3

PREDEFINED CLASS = CONSTANT, TYPE = POINTER

5/21

5/1 :8

5/26 5/28

IN SEARCH, CLASS = VAR PARAM, TYPE = POINTER,
OFFSET = 148, LENGTH = 4

5/26 5/33

IN NAMEREC, CLASS = FIELD, TYPE = POINTER,
OFFSET = 36, LENGTH = 4

5/40

5/19 CLASS = ENTRY PROCEDURE

PREDEFINED CLASS = TYPE, TYPE = STRING

5/1:12

5/1: 6 5/20

CLASS = DEF VAR, TYPE = POINTER, LENGTH = 4
5/27

Figure 19. Sample cross-reference listing

The cross reference listing lists
alphabetically every identifier used
in the program gi vi ng its attri butes
and both the page number and the source
line number of each reference.

If the Y.INCLUDE facility was used, the
cross reference listing will begin by
listing all of the include-members by
name with a reference number.

Each reference specification is of the
followi ng form:

p/ [f:] 1

40 Pascal/VS Programmer's Gu ide

where p is the page number on which the
reference occurred; t is the number of
the include-member if the rEference
took place within the member; 1 is the
line number within the program or
include-member at which the reference
occurred.

The reference immediately following
the i dent; fi er ; s the place in the
source program where the identifier was
declared.

The attri bute speci fi cat; on5 have the
following meanings.

IN name

J

If the identifier is a record
fi eld, then thi s attri bute speci­
fi es the name of the record in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:

CONSTANT declared constant

CONST PARAMETER

DEF VAR

pasS-bY-CDnst parame­
ter

external def variable

ENTRY FUNCTION
function routine
declared as an
external entry point.

ENTRY PROCEDURE
procedure routine
declared as an
external entry point.

EXTERNAL FUNCTION
external function rou­
tine

EXTERNAL PROCEDURE
external
routine

procedure

FIELD record field

FORMAL FUNCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parameter

FORTRAN FUNCTION
external FORTRAN func-
tion

FORTRAN SUBROUTINE
external FORTRAN sub-
routine

FUNCTION a user-defined
standard function

or

LABEL

LOCAL YAR

statement label

automatic variable

MAIN ENTRY POINT
procedure declared as
MAIN whose body is not
in thi s module

PROCEDURE a user-defi ned or
standard procedure

REENTRANT ENTRY POINT

REF VAR

procedure declared as
REENTRANT whose body
is not in thi s module

external ref variable

STATIC VAR static variable

TYPE type identifier

VAR PARAMETER pass-by-var parame­
ter

UNDECLARED undeclared identifier

TYPE = type
This attributes gives the type of
the identifier:

ARRAY lin array type

BOOLEAN boolean type

CHAR character

FILE a fi Ie type

INTEGER fixed point numeric

POINTER a poi nter type

REAL floating point numeric

RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a stri ng type

OFFSET = n
Thi s attri bute speci fi es the byte
offset (in decimal) within the
dynami c storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH = n
Thi s attri bute speci fi es the byte
length of a vari able or the storage
required for an instance of a type.

VALUE = n
This attribute specifies the ordi­
nal value of an integer or enumer­
ated scalar constant.

How to Read Pascal/VS Listings 41

7.3 ASSEMBLY LISTING

PASCAL/VS RELEASE 2.0 UTILITY 01/27/81 10:18:00 PAGE 2

LOC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING

* LP1 := FHEADj
000090 5830 0090 8 L 03,144(,13)
000094 5840 3000 9 L 04,0(,03)
000098 5040 0094 10 ST 04,148(,13)

* LP2 := NILj
00009C 1B33 11 SR 03,03
00009E '5030 D098 12 ST 03,152(,13)

* WHILE LP1 <> NIL DO
0000A2 13 Gl4L1 OS OH
0000A2 5830 D094 14 L 03,148(,13)
0000A6 1233 15 LTR 03,03
0000A8 4780 lElElElE 16 BE Gl4L2

lE WITH LP1-> DO
OOOOAC 45EO C860 17 BAL 14,2144(,12)
OOOOBO 5030 DOAO 18 ST 03,160(,13)

lE BEGIN
lE LP3 := NEXT;

000084 5840 3010 19 L 04,16(,03)
0000B8 5040 009C 20 ST 04,156(,13)

lE NEXT := LP2;
OOOOBC 5850 0098 21 L 05,152(,13)
OOOOCO 5050 3010 22 ST 05,16('03)

lE LP2 := LP1j
0000C4 5030 0098 23 ST 03,152(,13)

lE LP1 := LP3;
0000C8 5040 0094 24 ST 04,148(,13)
OOOOCC 47 FO 2016 25 B Gl4L1
000000 26 Gl4L2 DS OH

lE ENOj
lE FHEAD . - LP2j

000000 5830 D090 27
0000D4 5840 D098 28
000008 5040 3000 29

Figure 20. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if you specify
the LIST option. The information pro­
vided in this listing include:

LOC
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen­
erated text. If the line refers to
a symbol or literal not yet
encountered in the list i ng (fo r-

42 Pascal/VS Programmer'~ Guide

L 03,144(,13)
L 04,152('13)
ST 04,0(,03)

ward reference) the base displace­
ment format of the instruction is
shown as four asterisks ('lElElElE').

PSEUDO ASSEMBLY
basi c assembly language
description of generated instruc­
tion.

Annotation
intermixed with the assembly
instructions is the source line
from which the instructions were
generated. The source lines appear
as comments in the listing.

J

7.4 EXTERNAL SYMBOL DICTIONARY

PASCAl/VS RELEASE 2.0 AMPlXREF:

E X T E R N A l 5 Y M

NAME TYPE 10 AOOR LENGTH

AMPLXREF SO 1 000000 002EOC
XREFEOF lO 0 000808 000001
XREFREF LD 0 000A80 000001
o)STATIC PC 2 000000 000009
AMPXPUT ER 4 000000
CHARPTR CM 6 000000 000004
BOOLPTR CM 8 000000 000004
INCLLEVE CM 10 000000 000004
PRoep CM 12 000000 000004
LINECOUN CM 14 000000 000004
AMPXGET ER 16 000000
SYSPRINT CM 18 000000 000040
AMPXWCHR ER 20 000000
OPTION CM 22 000000 000014
TRIM ER 24 000000

Figure 21. Sample ESD table

The External Symbol Oi cti onary (ESD)
provides one entry for each name in the
generated program that is an external.
This information is required by the
linker/loader to resolve inter-module
linkages. The information in this
table is:

NAME

TYPE

ID

the name of the symbol.

the classi fi cati on of the sym­
bol:

SO - Symbol Definition

LD - Local Definition

ER - External Reference

CM - Common

PC - Pri vate Code.

is the number prov i ded to the
loader in order to relocate
address constants correctly.

B 0

01/27/80 13:07:27 PAGE 1

L 0 I C T I 0 N A R Y

NAME TYPE 10 AOOR LENGTH

XREFOUMP LO 0 000FC4 000001
XREFINCl LO 0 000964 000001
XREFLIST LO 0 002C40 000001
SYSXREF CM 3 000000 000040
IHTPTR eM 5 000000 000004
REAlPTR CM 7 000000 000004
PAGENO eM 9 000000 000002
INClHUMB eM 11 000000 000001
AMPXRSET ER 13 000000
AMPXNEW ER 15 000000
PAGEHEAD ER 17 000000
AMPXWLIN ER 19 000000
AMPXWTXT ER 21 000000
AMPXWINT ER 23 000000
AMPXWSTR ER 25 000000

ADDR is the offset in the CSECT for
an lD entry.

LENGTH the size in bytes of the SO or
CM entry.

The SO classi fi cati on corresponds to
the name of the module; the lD classi­
fications are entry routines; ER names
are external routines; CM names corre­
spond to de1 variables. The privata
code section is where static variables
are located.

7.S INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa­
rize the usage of 370 instructions gen­
erated by the compiler. The table is
sorted by frequency of occurrence.

How to Raad Pascal/VS listings 43

44 Pascal/VS Programmer's Guide

8.1 I/O IMPLEMENTATION

Pascal/VS employs OS access methods to
implement its input/output facilities.
Pascal/VS fi Ie vari abIes are associ­
ated ... ,d th a data set by means of a
DDname. The Queued Sequential Access
Method (QSAM) is used for sequenti al
data sets. The Basic Partitioned
Access Method (BPAM) is used for parti­
t i oned data sets (MACLIBs in CMS
terminology). The Basic Direct Access
Method (BDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac­
ters of the identifier's name serves as
the DDname of the fi Ie. As a conse­
quence, the first eight characters of
all fi Ie vari abIes declared wi thi n a
module should be unique. You must also
be careful not to allow one of the
first eight characters to be an under­
score ('_') since this is not a valid
character to appear in a DDHAME.

An expl i ci t DDname may be associ ated
wi th a fi Ie vari able by means of the
DDNAME option when the file is opened.
(see "The Open Options" on page 56).

DDnames should be explicitly specified
for fi les whi ch are elements of arrays,
fields of records, or pointer
qualified. If the DDname is not
explicitly specified for such files, a
DDname of the form "PASCALnn" will be
assigned to the file, where "nn" is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every Pas­
cal/VS file variable is a Data Control
Block (DCB) which contains information
describing specific attributes of the
associ ated data set. Among these
attri butes are

•
•
•

the logical record length (LRECL)j

the physical block size (BLKSIZE)j

the record format (RECFM).

Pascal/VS supports all of the record
formats that are supported by QSAM,
such as, F, V, U, FB, VB, FBA, VBM,
etc.

8.0 USING INPUT/OUTPUT FACILITIES

A Pascal/VS program will process a file
that contains ANSI or machine control
characters at the begi nni ng of each
logical record (in which case the
record format would be speci fi ed as
RECFM= ... A or RECFM= ... M) . Each log­
ical record written to such files will
be prefixed with the appropriate con­
trol character. Thus, the fi rst
character position of each record is
not di rectly accessi ble from the
Pascal/VS program. (If the HOCC opti on
is specified when the file is opened,
no control character will be prefixed
and the first character is accessible.
See "The Open opt ions" onpage 56.)

Hewly allocated (empty) data sets, that
is, data sets intended for output might
not have these attri butes assi gned. As
far as Pascal/VS is cor.cerned, there
are two ways to specify the DCB attri­
butes for such data sets:

• by being specified in the associ­
ated DDname definition (in CMS: the
FIL EDEF command; in TSO: the
ALLOC/ATTR commandsj in OS batch:
the DD card) i

• by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attri butes are unas­
si gned for a part i cular data set to
which a Pascal/VS program will be writ­
i ng, the Pascal/VS I/O manager wi 11
assi gn defaults accordi ng to whether
the data set is bei ng managed as a fi Ie
of type "TEXT" or as a non-text file.

For the case of text files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following defaults
will apply:

• LRECL=256

• BLKSIZE=260

• RECFM=V

For the case of non-text files, if
ther LRECL, BLKSIZE, nor RECFM are
cified then the following defaults
apply.

nei­
spe­
wi 11

• LRECL="length of file component"

•
•

BLKSIZE=LRECL

RECFM=F

If some of the attributes are specified
and some are not then defaults will be
applied using the following criteria:

• RECFM of V is preferred over F for
text files.

Using Input/Output Facilities 45

• RECFM of F is preferred over V for
non-text files.

• If RECFM is F then the BLKSIZE is
to be equal to the lRECl or to be a
multiple thereof.

• If RECFM is V then the BLKSIZE is
to be at least four bytes greater
than the lRECl.

8.4 TEXT FILES

Text files contain character data
grouped into logical records. From a
Pascal/VS language viewpoint, the log­
ical records are lines of characters.
Pascal/VS supports both fixed length
and variable length record formats for
text fi les. Characters are stored in
EBCDIC.

The predef i ned type text is used to
declare a text fi Ie vari able in
Pascal/VS. The pointer associated with
each file variable points to positions
within a physical I/O buffer.

8.5 RECORD FILES

All non-text fi les in Pascal/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (lRECl) of a
file must be at least large enough to
contain the file's base component; oth­
erwise, an execution time error will
occur when the fi Ie is opened. For
example, a fi Ie variable declared as
'file of INTEGER' will require the
associated physical file to have a log­
ical record length of at least 4 bytes.

If a fi Ie has fixed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
f i 1 es component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To explicitly open a file for input,
the procedure RESET is used. A call to
RESET has the forms:

RESET(f)
or

RESET(f,options)

46 Pascal/VS Programmer's Guide

where "f" is a file variable and
"options" is a string which contains
the open options (see "The Open
Opti ons" on page 56). The "opti ons"
parameter may be omitted.

Normally, RESET allocates a buffer,
reads in the fi rst logi cal record of
the file into the buffer, and positions
the file pointer at the beginning of
the buffer. Therefore, gi ven a text
file F, the execution of the statement
"RESET(F)" would imply that "F~" would
reference the fi rst character of the
file.

If a RESET operation ;s performed on an
open file, the file is closed and then
reopened.

program EXAMPLE;
val'

SYSIH : TEXT;
C : CHAR;

begin
(*open SYSIN for input *)
RESET(SYSIN);
(*get first character of file*)
C := SYSING'J;

end.

Figure 22. Using RESET on a text
file

8.7 OPENING A FILE FOR INTERACTIVE
INPUT

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
For example, if the fi Ie bei ng opened
is assigned to your terminal, you will
be prompted for data when the file is
opened. This may not be preferable if
your program I s suppose to wrl te out
prompting messages prior to reading.

To alleviate this problem, a file may
be opened for interactivQ input by spe­
ci fyi ng "INTERACTIVE" in the opti ons
string of RESET. No initial read oper­
ation is performad on files opened in
this manner. The file pointer has the
value ni 1 unti 1 the the fi rst fi Ie
operation is performed (namely GET or
READ). The end-of-line condition (see
"End of line Condition" on page 53) is
initially set to TRUE.

program EXAMPLE;
var

SYSIN : TEXT;
DATA : STRING(80);

begin
(*open SYSIN for interactive *)
(*input *>
RESET(SYSIN,'INTERACTIVE');
(*prompt for response *)
(*read in response *)
WRITELN(' ENTER DATA: ')j
READLN(SYSIN,DATA);

end.

Figure 23. Opening a file for
interactive input

8.8 OPENING A FILE FOR OUTPUT -
REWRITE

The procedure REWRITE is used to open a
file for output. A call to the proce­
dure has the forms:

REWRITECf)
or

REWRITE(f,options)

where "f" is a file variable and
"options" is a string which contains
the open opt ions C see "The Open
Options" on page 56), The "options"
parameter may be omitted.

REWRITE positions the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
val'

SYSPRINT : TEXTi
begin

REWRITE(SYSPRINT);
WRITELNCSYSPRINT,'MESSAGE');

end.

Figure 24. Opening a text file
wi th REWRITE

program EXAMPLE;
val'

OUTFILE : file of INTEGER;
I : INTEGER;

begin
REWRITEC OUTFIL E,
'BLKSIZE=1600,LRECL=4,RECFM=F');

OUTFILEO) := I;
PUHOUTFIlE) ;

end.

Figure 25. Opening a record file
wi th REWRITE

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to your ter­
minal without going through the normal
DDname interface. Calls to these pro­
cedures have the forms:

TERMINCf) or TERMIN(f,options)
TERMOUTCf) or TERMOUTCf,options)

where "fIt is a text fi Ie variable and
"opt; ons" ; 5 a stri ng whi ch contai ns
the open opt ions C see "The Open
Opt ions" on page 56). The "opt ions"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi­
nal. Likewise, the TERMOUT procedure
opens a text file for terminal output.

There is no concept of an end-of-file
condition for files opened with TERMIN.
The EOF function always returns FALSE
for such fi les.

Note: The TERMIN procedure opens the
file with the INTERACTIVE attribute as
was descri bed in "Open i ng a Fi Ie for
Interactive Input" on page 46.

program EXAMPLE;
val'

TTYIN, TTYOUT: text;
I : INTEGER;

begin
TERMINCTTYIN); TERMOUTCTTYOUT);
WRITELNCTTYOUT,'ENTER DATA:');
READLHCTTYIN,I)j

end.

Figure 26. Terminal input/output
example

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. In
thi s mode, records may be read, modi­
fied, and then replaced. A call to the
procedure has the forms:

UPDATECf)
or

UPDATECf,options)

where Iff" is a record file variable and
"options" is a string which contains
the open opt ion s (see "The Open
Opt ions" on page 56). The "opt ions"
parameter may be omitted.

Upon calling UPDATE, a file buffer is
allocated and the first record of the

Using Input/Output Facilities 47

fi Ie is read into it. If a subsequent
PUT operation is performed on the file,
the contents of the buffer wi 11 be
stored back into the file at the
location from which it was read.

Each GET operat i on reads in the next
subsequent record of the file. A PUT
operation will write the record back
from where the last GET operation
obta i ned it.

program EXAMPLE;
var

F fUe of
record

begin
UPDATECF)j

NAME: STRING(30)j
AGE O .. 99;

end;

(*update each record *)
(* by incrementing age *)
while not EOF(F) do

begin
F~.AGE := F~.AGE + l~
PUT<F);
GET< F)

end;
end.

Figure 27. Updating a record file

8.11 PROCEDURE GET

The GET procedure is the means by which
a basic read operation is performed on
a fi Ie. A call to the procedure has
the form:

GETCf)

where "f" is a file variable.

8.11.1 GET operation on text ffles

When applied to an input text file, GET
causes the fi Ie poi nter to be i ncre­
mented by one character position. If
the file pointer is positioned at the
last position of a logical record, the
GET operati on wi 11 cause the end-of­
line condition to become true (see "End
of Line Condition" on page 53) and the
file poi nter wi 11 be posi ti oned to a
blank. If, prior to the call, the
end-of-line condition is true, then the
file pointer will be positioned to the
beginning of the next logical record.

If, prior to the call to GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
which case the end-of-line condition
will be true) then the end-af-file con­
dition will become true. (See "End of

48 Pascal/VS Programmer's Guide

Fi Ie Condi ti on - text fi les" on page
54),

If GET is attempted on a text file that
has not been opened, it will be implic­
itly opened for input (as if RESET had
been called).

program EXAMPLE;
var

INFILE text;
Cl,C2 : CHAR;

begin
(*get first char of file*)
RESET(INFIl E);
Cl := IHFIlEG);
(*get second char of file*>
GETCINFIlE);
C2 : = INFIlEG);

end.

Figure 28. Using GET on a text
file

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer referenced by
the file pointer. The end-of-file con­
dition will become true if there are no
more records within the file, in which
case. the file pointer will be set to
nf 1.

A record file must be opened for input
or update pri or to executi ng a GET
operation, otherwise, a runtime diag­
nostic will be generated.

program EXAMPLE;
var

F : file of
record

NAME: STRING(25);
AGE : o •• 99;
WEIGHT: REAL;
SEX : (MALE, FEMALE)

end;
begin

RESETCF);
while not EOFCF) do

begin

and.

WRITEC' Name : "
FG). NAME);

WRITEC' Age : "
FG'l.AGE:3)j

WRITELHi
GET(F)

and

Figure 29. Using GET on record
files

J

8.12 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a fi Ie. A call to the procedure has
the form:

PUTCf)

where "f" is a fi Ie vari able.

The file must be opened for output or
update prior to calling PUT'i
otherwise, a runtime diagnostic will
occur.

8.12.1 PUT operation on Text Files

The PUT procedure, when appl i ed to a
text file opened for output, causes the
file pointer to be incremented by one
character posi ti on. If, pri or to the
call, the number of characters in the
current logical record is equal to the
fi Ie's logi cal record length (LRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 53).

program EXAMPLEi
var

OUT FIL E text i
C : CHARi

begin
REWRITE(OUTFILE);

OUT F IL Edl : = C;
(*Write out value of C*)
PUTC OUT FIL E) i

end.

Figure 30. Using PUT on a text
file

8.12.2 PUT operation on Record Files

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physi cal fi Ie. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var

F : file of
record

NAME: STRING(25)i
AGE : O • • 99i
WEIGHT: REALi
SEX (MALE, FEMALE)

endi
begin

REWRITECF)j
Fdl.NAME .- 'John F. Doe';
Fdl.AGE .- 36i
Fdl.WEIGHT := 160.0;
Fdl.SEX := MALEj
PUTCF)j

end.

Figure 31. Using PUT on record
files

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

READCf,v)
or

REAOCf,v:n)

where "f" is a fi Ie vari able and "v" is
a variable which must be of one of the
following types:

CHAR (or a subrange thereof)

INTEGER (or a subrange thereof)

packed array[] of CHAR

REAL (or SHORTREAL)

STRING

"n" is an opti onal fi eld length (an
integer expression). The file variable

7 Prior to a PUT operation, the associated output buffer must contain the
data to be written. If the file is not open when the PUT operation is
attempted, then no output buffer exists. (The file pointer will have the
value nil.>

Using Input/Output Facilities 49

"f" may be omitted, in which case, the
file INPUT is assumed.

A call of the form

READ(f,v1,v2, ... vn)

is executed as

begin
READ(f,vl);
READ(f,v2);

READ(f,vn)j
end

If READ is called for a clclsed fi Ie,
the fi Ie is opened for input by an
implicit call to RESET.

Upon executing READ, if the file point­
er is not y~t set, an initial GET oper­
ation is performed. This case occurs
when a file is opened INTERACTIVEly.
(see "Opening a FHa for Interactive
Input" on page 46.)

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified. all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is
detected. an error diagnostic will be
produced.

Integer data begi ns wi th an opti onal
sign ('+' or '-') followed by all dig­
its up to. but not including, the first
non-digit or up to the end of the log­
ical record.

50 Pascal/VS Programmer's Guide

For example, given an input file posi­
tioned at the beginning of a logical
record with the following contents:

95123SAN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first'S' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi­
tioned at the beginning of a logical
record with the following contents:

3.14159/2

a floating point read operation would
bring in the floating point value
3.14159. After the read, the fi Ie
pointer would be positioned to the '/'
character.

If a field length value is specified,
as many characters as are indicated by
the value will be consumed by the read
operation. The variable will be
assigned from the beginning of the
fi eld. If the fi aId is not exhausted
after the vari able has been assi gned
the data, the rest of the field will be
skipped.

program EXAMPLE;
var

ZIP 0 .. 99999;
MAN : 0 .. 999999;
BALANCE: REAL;

begin
READCZIP:5.MAN:6,BALANCE:9);
WRITELN('ZIP = '.ZIP);
WRITELN('MAN = '.MAN);
WRITELN('BALANCE = ',BALANCE:8:2)

end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on fila OUTPUT:

ZIP =
MAN =
BALANCE =

95123
999999

1000.00

Immediately after the READ state­
ment was executed. file INPUT was
positioned to the 'N' character.

Figura 32. Using READ with length
qualifiers

When readi ng data into vari abIes
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

• the variable is filled to its
declared capacity;

• an end-of-line condition is detec­
ted;

• the field length Cif specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

program DOREAD;

text;
var

INFILE
R array[l. .10] of

I
begin

record
NAME: STRING(25);
AGE: 0 .. 99;
WEIGHT: REAL

end;
1. .10;

RESET< INFILE);
for I := 1 to 10 do

with R[I] do

end.

begin
READCINFILE,NAME.AGE);
READCINFILE,WEIGHT);
READLNUNFILE)

end;

Figure 33. Using READ
files

on text

8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been read, all remaining characters
within the logical record are skipped.
The procedure is appl i cable to text
fi les only.

Normally, READLN causes the next log­
i cal record to be read (unless the
end-of-file is reached) and the file
pointer is positioned to the beginning
of the buffer that contains the record.

In the case of text files opened with
the INTERACTIVE attri bute, the fi Ie
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-line condition is true
for an interactive file prior to a call
to READLN and the condi ti on was not the
result of a previous call to READLN.
then the call is ignored. Twocallsto
READLN in successi on wi 11 cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,
the file is opened implicitly for input
as though RESET had been called.

Using Input/Output Facilities 51

program COpy;
var

INFILE,
OUTFILE : text;
BUF : STRING(IOO);

begin
RESETCINFILE)j
REWRITECOUTFILE);
while not EOFCINFILE) do

begin
READCINFILE,BUF);
WRITELN(OUTFILE,BUF);
C*ignore characters after

column 100 in each line *)
READLNC INFILE)

end
end.

Figure 34. Using the
READLN

8.13.3 Text File WRITE

procedure

The WRITE procedure wri tes data to a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

WRITECf,e)
or

WRITECf,e:n)
or

WRITE(f, e: n1: n2)

where "f" is a file variable and He" is
an expression which must be of one of
the following types:

BOOLEAN

CHAR (or a subrange thereof)

INTEGER (or a subrange thereof)

packed array[] of CHAR

REAL (or SHORTREAL)

STRING

"n,""n1," and "n2" are optional field
lengths (i nteger expressi ons). The
file variable "f" may be omitted, in
which case, the file OUTPUT 1S assumed.

A call of the form

WRITECf,e1,e2, ... en)

is executed as

begin
WRITE(f,el>;
WRITECf,e2)j

WRITE(f, en);
end

52 Pascal/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out­
put.

If during a call to WRITE, the length
of the logi cal record bei ng produced
becomes equal to the logi cal record
length (LRECL) of the text file, a run
time error diagnostic will be
generated.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is negative, the data
will appear left justified. CThe field
wi dth wi 11 be the absolute value of t:he
specified length.)

String data that is being written with
a specified field length will be trun­
cated on the right if the field length
is too small.

If no fi eld length is speci fi ed, a
default wi 11 be used that depends on
the data's type:

data type
BOOLEAN
CHAR
INTEGER
REAL
SHORTREAL

default field length
10

1
12
20
20

In addition, expressions of type STRING
have a default fi eld length equal to
their current length. Fixed length
stri ngs (packed array of CHAR) have a
default equal to their declared length.

program DOWRITEj
var

OUTFIL E text;
R

I

array[1. .10] of
record

NAME: STRING(25);
AGE: o .. 99;
WEIGHT: REAL

end;
1. .10 j

begin
REWRITECOUTFILE)j

for I := 1 to 10 do

end.

with R[IJ do
begin

WRITECOUTFILE,NAME:-30,
AGE:3,' ')j

WRITECOUTFILE,WEIGHT:3:0);
WRITELN C OUTFIL E)

end;

Figure 35. Using WRITE on text
files

J

8.13.4 The WRITELN Procedure

The WRITELN procedure is appl i cable
only to text files intended for output.
It causes the current logi cal record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file is
fixed (RECFM=F), WRITELN will fill the
remai nder of the current record wi th
blanks. For variable length records
CRECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out­
put.

program DOUBlESPACE;
var

FIlEIN,
FIlEOUT : text;
BUF : STRING;

begin
REWRITECFIlEOUT);
RESETCFIlEIN) ;
while not EOF(FIlEIN) do

begin
READlN(FIlEIN,BUF);
WRITELN(FIlEOUT,BUF);
(*insert blank line *)
WRITElN(FILEOUT)

end;
end.

Figure 36. Using the WRITELN pro­
cedure

8.13.S The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer (or to
a di sk fi Ie whi ch will eventually be
printed). A call to the procedure has
the following form:

PAGECf)

where "f" is a vari abla of type TEXT
which has been opened for output.

If a logical record is partially
fHled, an implicit WRITElN will be
performed prior to the page eject.

For this procedure to produce any
effect, the fi rst character of each
logi cal record of the fi Ie must be
reserved for carriage control. This is
done by specifying either A (ANSI con­
trol) or M (machi ne control) in the
RECFM attribute for the file.

If the record format speci fi es ANSI
control, then the character '1' will be
inserted in the first character posi­
tion of the record. For machine con­
trol, a single record is written that
contains the hexadecimal value of '8B'
in its first character position.

program EXAMPLE;
vear

PRINT: text;
begin

C*start new page*)
PAGE(PRINT> ;

end.

Figure 37. Using the PAGE proce­
dure

8.13.6 End of Line Condition

The end-of-line condition occurs on a
text file opened for i nput wh~n the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi­
tioned at the last character of a log­
i cal record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (i n EBCDIC, hexadeci­
mal 40) when the end-of-l·ine condition
occurs.

The EOlH function is only applicable to
text files.

program EXAMPLE;
vear

SYSIN: text;
CNT : 0 .. 32767;

begin
(* compute length of first

logical record of SYSIN *)
RESETCSYSIN) ;
CNT := 0;
while not EOlNCSYSIN) do

begin
CNT := CNT + 1;
GETCSYSIN) ;

end;
WRITElH(CNT)

end.

Figura 38. Using the EOlH func­
tion

Using Input/Output Facilities 53

8.1l.7 End of File Condition - text
files

The end-of-file condition becomes true
for a text file when one of the follow­
i ng occurs:

• RESET is called and the fi Ie is
empty.

•
•

The file is open for output.

GET is called when the file pointer
is posi t i oned at the end of the
last logical record of the file (in
whi ch case the end-of-l i ne condi­
tion is true>.

• READ is called and all characters
of the last logi cal r.ecord were
consumed.

When the end-of-file condition occurs,
the file pointer has the value nil.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
wi 11 be ignored.

program EXAMPLE;
var

SYSIN: TEXT;
CNT : 0 .• 32767;

begin
(* compute number of logical

records in file SYSIN *)
RESETC SYSIN);
CNT : = 0;
while not EOFCSYSIN) do

begin
CNT := CNT + 1;
READLNCSYSIN)

end;
WRITELNCCNT>

end.

Figure 39. Using the EOF function
on a text file

8.14 RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READCF,V)

is equivalent to

begin
V : = FO'l;
GETCF)

end

54 Pascal/VS Programmer's Guide

where F and V are declared as follows:

var F: file of ti
V: t;

If fi Ie F is not open when READ is
called, an error diagnostic will be
generated at run time.

8.14.2 Record File WRITE

As documented in the language manual,
the statement

WRITECF,V)

is equi valent to

begin
FiiI : = V;
PUTC F)

end

where F and V are declared as follows:

var F: file of ti
V: t;

If fi Ie F is not open when WRITE is
called, an error diagnostic will be
generated at run time.

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

endi
var

INFILE.
OUTFILE:

STRING(2S);
0 .. 99;
CMALE,FEMALE:)

file of REC;
BUFFER : REC;

begin
RESETCINFILE)i
REWRITECOUTFILE)i
while not EOFCINFILE) do

begin
REAOCINFILE,BUFFER);
WRITE(OUTFILE,BUFFER)

end
end.

Figure 40. Using READ and WRITE
on record files

End of File Condition - Record

The end-of-file condition becomes true
for a record file when:

• RESET is called for an empty file .

• Tha fila is opened fo~ output.

• GET is executed for a file in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has the value nil. To
test for this condition, the EOF func­
tion is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will produce an error diagnostic.

8.1S CLOSING A FILE

The procedure CLOSE is provided to
close a fi Ie expl i ci tly. A call to
this procedure has the form

CLOSECf)

where "f" is a fi Ie variable.

All open fi les whi ch are declared in
the body of a routine as simple vari­
ables are closed i mpl i ci tly when the
rout i ne returns to its invoker. All
files which are open when the program
terminates, will be closed automati­
cally by the Pascal/VS runtime
envi~onment.

If the variable associated with an open
file is destroyed prior to program ter­
mination, the results could be disas­
trous when Pascal/VS attempts to close
the file. This problem could occur in
the following cases:

• the file variable is an element of
an array.

• the file variable is a field of a
record.

• the file variable is pointer quali­
fied Cexists on the heap).

• a routine which contains local file
vari abIes is exi ted wi th a goto
statement.

In these cases, the file variable must
be closed explicitly with a call to
CLOSE.

program
type

EXAMPLE;

va ...
FSTK

DDI'IAME:
I

begin

a ... ray[l. .8] of
TEXT;

STRING(8);
1 .. 8;

RESETCFSTK[I],'DDNAME=' I IDDNAME);

for I := 1 to 8 do
C LOS E (FS T K [I]) ;

end.

Figure 41. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascal/VS permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEK(f,n)

where "f" is a record fi Ie that was
previously opened with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number. The the number of the
first record is 1.

A subsequent call to GET or PUT will
operate on the "nth" record of the
file. Each call to GET or PUT there­
after wi 11 operate on subsequent
records. SEEK does not perform an 1/0
operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran­
dom access using the Basic Direct
Access Method (BDAM). The fi Ie that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attri bute for the fi Ie
must be "F."

Under TSO and OS Batch, the first SEEK
operat i on on a fi Ie opened wi th REWRI TE
will cause dummy records to be written
to the associated data set unti 1 the
file's primary space allocation is
fi lIed. The record number speci fi ed
must not exceed the number of blocks in
the file's primary space allocation.

Under CMS, the corresponding FILEDEF of
a fi Ie bei ng accessed wi th SEEK must
have the XTENT attri bute speci fi ed 8 •

Thi s attri bute speci fi es the largest
record number that may be accessed;
however, it has nothing to do with the
space occupi ed by the fi Ie. Thus, a
FILEDEF specification of the form

If the XTENT attribute is not specified, CMS will default it to 50.

Using InputlOutput Facilities 55

FILEDEF F DISK FILE DATA(XTENT 65535

will permit any record in file F to be
referenced with SEEK, regardless if it
actually exists. If a record is being
read that does not ex i st, CMS wi 11
return a buffer of zeroes.

program EXAMPlEj
type

REC = record
NAME
AGE
SEX

end;
IDX = record

RECNO:
end

var

STRING(2!D;
o •• 99;
(MAL E, FH1Al E)

O .. MAXnlTj

RECFIlE: file of RECi
IDXFIlE: file of IDX;

begin
RESETCIOXFIlE);
RESETCRECFIlE) j

C*write out names in order of
index *)

while .not EOFCIDXFILE) do
begin

SEEKCRECFIlE,IOXFILE~.RECNO);
GETC RECFIl E);
WRITElN(OUTPUT,RECFIlE~.NAME)
GETCIDXFIlE)j

end
end.

Figure 42. Example of using SEEK
to access records ran­
domly

8.17 PARTITIONED DATA SETS

8.17.1 Opening a Partitioned Data Set

To open a partitioned data set CPDS)9,
the procedures PDSIN and PDSOUT are
provided. Calls to these procedures
are of the form

PDSINCf,options)
PDSOUTCf,options)

where "F" is a file variable and
"options" is a string expression which
contains open options (see "The Open
Options"). Unlike the other procedures
which open files, the options string is
required and must specify a member name
(MEMBER=name).

POSIN opens the specified member in the
PDS for input. As in the case of
RESET, the file pointer ;s made to

point to a buffer containing the first
logical record of the file.

PDSOUT creates a member in the PDS and
opens it for output. If the member
already exi sts, it wi 11 be erased and
then recreated.

See Figure 44 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a CMS Environ­
ment

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the OS simulation facili­
ties. A DDname is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a Pas­
cal/VS program, the following commands
would be executed prior to executing
the program.

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com­
mand. For example, in order to access
the MACLIBs "MI", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB," the following commands
would be executed pri or to executi ng
the Pascal/VS program.

FILEDEF LIB DISK Ml MACLIB A
FIlEDEF LIB DISK M2 MACLIB A CCONCAT
FIlEDEF LIB DISK M3 MACLIB A (CONCAT
GLOBAL MACLIB MI M2 M3

8.18 THE OPEN OPTIONS

All Pascal/VS procedures which open
files are defined with an optional
string parameter which contains
options pertaining to the file being
opened. These options determine how
the fi Ie is to be opened and what
attributes it is to have.

The data in the stri ng parameter has
the syntax shown in the following fig­
ure:

9 All operations that may be applied to "partition data sets" under OS may
be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

J

J

0~tion-strin5l:

L< >{option~> , <

oetion:

> DDNAME = name >

> BLKSIZE = n >

> LRECL = n >

> NOCC >

> RECFM = c >

> INTERACTIVE >

> MEMBER=name >

> NAME=fn.ft.fm >

> UCASE > >

Figure 43. Syntax of open options

Not all of these options apply to all
open procedures. If the option is spe­
ci fi ed for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
option and the context in which it
applies.

DDNAME=name
Thi s attri bute si gni fi es that the
physical file to be associated with
the fi Ie vari able has the DDname
indicated by "name." This new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a fi Ie open routi ne wi th the
DDNAME attribute specified.

If this option is not specified,
then the DDname to be associ ated
with the file is derived according
to the following rules:

•

•

If the file variable is a sim­
ple vari able then the default
DDname will be the name of the
vari able i tsel f, truncated to
8 characters.

If the file variable is an ele­
ment of an array, a field of a
record, or is pointer quali­
fi ed, then a DDname wi 11 be
generated of the followi ng
form: PASCALnn, where "nn" is a
two digit integer.

The DDNAME option is applicable to
the following procedures:

RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

BLKSIZE=n
Thi s attri bute is used to speci fy a
physical block size to be associ­
ated wi th an output fi Ie. Thi s
value (indicated by "n") will over­
ride a BLKSIZE specification on the
DDname definition.

Thi s opt ion is appl i cable to the
procedure REWRITE only.

LRECL=n
This attribute is used to specify a
logical record length to be associ­
ated wi th an output fi Ie. Thi s
value (indicated by "n") will over­
ride a LRECL specification on the
DDname definition.

For files with variable length
records (RECFM=V), the logi cal
record length must include a 4 byte
length descriptorlO. Thus, if text
is bei ng wri tten to such a fi Ie,
the LRECL must be 4 bytes longer
than the longest 1 i ne to be
written.

NOCC

The LRECL attri bute may also be
used in the TERMIN and TERMOUT pro­
cedures to speci fy the length of
the I/O buffer. CTh is wi 11 deter­
mi ne the maxi mum length of the 1 i ne
to be read from, or wri tten to,
your termi nal.)

Thi s opt ion is appl i cable to the
procedures REWRITE, TERMIN, and
TERMOUT.

Normally, the fi rst character
position of an output file which
contai ns ANSI or machi ne control
characters (as determi ned by the
RECFM) is not di rectly accessi ble
to the user program. The data in
such files is placed at the second
character position of each record.

The NOCC option causes such files
to be treated as though control
characters are not significant;
that is, data will be placed within
each record at the first character
position. This option allows con­
trol characters to be generated
explicitly.

This option is applicable to the
procedure REWRITE.

RECFM=c
This attribute is used to specify a
record format to be associated with

10 The 4 byte length descriptor for each record of a V-record file is an OS
convention.

Using Input/Output Facilities 57

an output file. This specification
Cindicated by "c") will override a
RECFM speci fi cat i on on the DDname
definition.

Pascal/VS supports all record for­
mats that QSAM supports:

U [Tl [A]

B
S

F T
BS

V BT
BST

D [B] [A]

For an explanation of each of these
record formats, consult the publi­
cati on OS/VS2 MVS Data Management
Services Guide Corder number
GC26-3875) .

The RECFM specification applies to
procedure REWRITE.

INTERACTIVE
Thi s attri bute i ndi cates that the
file is to be opened for input as
an interactive file. See "Opening
a Fi Ie for Interactive Input" on
page 46 for a description of inter­
active files.

program EXAMPLE;
var

PDS TEXT;
MEMBER: STRING(8);
BUF : packed array[1 .. 80]

begin
RESETCINPUT,'INTERACTIVE');

of CHAR;

This option applies to the proce­
dures RESET and PDSIN. CThis
attribute is implied for TERMIN.)

MEMBER=name
Thi s attri bute speci fi es a member
name of a partitioned data set
(PDS) . The member to be accessed
is indicated by "name."

The MEMBER speci fi cat ion is
requi red for the procedures PDSIN
and PDSOUT (see "Parti ti oned Data
Sets" on page 56).

NAME=fn.ft.fm (CMS only)
Thi s attri bute speci fi es the name
of a CMS file which is to associ­
ated with the file variable. This
option has no affect if the program
is not running under CMS.

"fn," "ft," "fm" are the file name,
fi Ie type and fi Ie mode, respec­
tively, of the CMS file. Each must
be separated by a period ("."). A
file mode of "*" is permitted.

The NAME specification is applica­
ble to the followi ng procedures:
RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

UCASE (CMS only)
Thi s opt i on causes text that is
bei n9 read from a fi Ie opened by
TERMIN to be translated to upper
case. This option applies only to
programs runn i ng under CMS; it is
ignored otherwise.

(*open INPUT for interactive *)
c* input. *>

READLN(MEMBER); C*read 1st member name *>
while not EOFCINPUT) do (*loop until no more members *>

begin C*open member for input *)
PDSINCPDS,'DDNAME=SYSLIB,MEMBER=' I I MEMBER);
while not EOFCPDS) do (*copy each line of the

end.

begin
READLNCPDS,BUF);
WRITElNCBUF) ;

end;
READLNCMEMBER)

end

Figure 44. Using the open options

58 Pasca!/VS Programmer's Guide

C* member to file OUTPUT

C*read next member name

*)

J

J

8.19 APPENDING TO A FILE

Data may be appended to an ex i st i ng
file by opening it for output with a
call to REWRITE and specifying a dispo­
si ti on of "MOD" on the correspondi ng
DDname definition.

The following examples illustrate how
such a disposition is specified under
the vari ous operat i ng system envi ron-

ments. The DDname of the fi Ie is
"lOG"; the file name is "lOG.DATA."

CMS:
FIlEDEF lOG DISK lOG DATA (DISP MOD

TSO:
Alloe DDN(lOG) DSN(lOG.DATA) MOD

as Batch:
//LOG DD DSH=ABC.lOG.DATA,DISP=MOD

Using Input/Output Facilities 59

J
60 Pascal/VS Programmer's Gu;de

9.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace faci 1 i ty provi des
u sefu I info rmat ion wh i Ie debugg i ng
programs. It gi ves you a list of all
of the routines in the procedure chain.

For each routine the following informa­
tion is given.

• The name of the routine.

• The statement number of the last
statement to be executed in the
routine (i .e. the statement number
of the call to the next routine in
the chai n) .

• The address in storage where the
generated code for the statement
begins.

• The name of the module in which the
routine is declared.

The trace rout i ne may be invoked in
four di fferent ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 45 on page 62. In the example
starting at the bottom we see that Pas­
cal/VS called the user's main program
in the module named HASHASEG. State­
ment 24 of the main program contains
the call to READ 10, statement 3 of
READ_ID contains the call to SEARCH_ID,
and so on.

A trace will be produced when a program
error occurs. An example is given in

9.0 RUNTIME ERROR REPORTING

Fi gure 46 on page 62. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check­
ing error occurs. A checking error
occurs when code produced by the com­
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK" on page 31 for a
description of compiler generated
checks.> Figure 47 on page 62 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace will be produced when an I/O
error occurs. Figure 48 on page 62 is
an example of thi S. Ii' thi sease,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a run­
time error occurs, the statement number
indicated in the traceback might be
sl i ghtly less than the number of the
statement from which the error was gen­
erated.

Runtime Error Reporting 61

-Trace back
Routine
TRACE
HASHKEY
GET HASH PTR
SEARCH 10
READ 10
<MAIN-PROGRAM>
PASCAL/VS

of called
stmt at

4
9
2
9
3

24

routines
address in
02028C
02018C
021208
02UCS
021550
020278
02048C

Figure 45. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Routine stmt at address in
FACTORIAL 3 02014C
FACTORIAL 3 02014C
FACTORIAL 3 02014C
<MAIN-PROGRAM> 17 020298
PASCAL/VS 02048C

Figure 46. Trace call due to program error

AMPX032E High Bound Checking Error
routines

module
AMPXSENV
HASHCSEG
HASHBSEG
HASHBSEG
HASHBSEG
HASHASEG

module
TEST
TEST
TEST
TEST

Trace back
Routine
TRANSLATE

of called
stmt at

4
address in module

TO ASCII
<MAIN-PROGRAM>
PASCAL/VS

10
17

020154 CONVERT
02024C CONVERT
020338 CONVERT
02048C

Figure 47. Trace call due to checking error

AMPX0401S File
Trace back

Routine
INITIALIZE
<MAIN-PROGRAM>
PASCAL/VS

could not
of called

stmt at
3
2

Figure 48. Trace call due to I/O error

62 Pasca1/VS Programmer's Guide

be opened:
routines

SYSIN

address in module
020154 COPY
020218 COPY
02048C

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
check i ng errors that may occur ina
Pascal/VS program at run time.

Low bound
Either the value of an array sub­
script, or the value being assigned
to a sub range type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub­
script, or the value being assigned
to a subrange type variable is
greater than the maximum allowed
for the subscript or subrange.

Ni 1 pointer
an attempt was made to reference a
variable from a pointer which has
the value ni 1.

Case label
the expression of a case-statement
has a value other than any of the
specified case labels and there is
no otherwise clause.

string truncation
the concatenat i on of two str i ngs
resul ts ina stri ng greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char­
acters than the maximum length of
the string.

Assertion failure
an assert statement was executed in
which its associated boolean
expressi on evaluated to the value
FALSE.

string subscript out of bounds
there was an indexing operation on
a string which was greater than the
current length of the string.

Function value
a function routine returned to its
invoker wi thout bei ng assi gned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon

detection of an error, the Pascal/VS
runtime library will provide error han­
dli ng.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro­
tection exception. When a fatal error
occurs the following happens:

1. Pascal/VS produces a message
descri bi ng the error; the message
is di splayed on your termi nal if
you are executing in VM/CMS or TSO,
or written to DDname SYSPRINT oth­
erwise.

2. A trace back is displayed.

3. The program execution is termi­
nated.

Other errors such as check i ng errors
will not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
resul ts. Pascal/VS performs the fol­
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut­
ing in VM/CMS or TSO, or written to
DDname SYSPRINT otherwise.

2. A trace back is generated.

3. If the program was campi led and
linked with the 'DEBUG' option and
the program was not executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experi enci ng the
error will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TSO, or
written to DDname SYSPRINT other­
wise.

4. If the program was compi led and
linked with the 'DEBUG' option and
the program ~ executed with the
'DEBUG' run time opt i on then the
interactive symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific numb~r
of non-fatal errors to occur bqfore the
program is terminated. This number is
set by the ERRCOUNT run time opt ion
(see "Run Time Options" on page 35),
The default is 20.

Runtime Error Reporting 63

9.4 USER HANDLING OF EXECUTION ERRORS

(***)
(* *)
(* RUNTIME ERROR INTERCEPTION ROUTINE *)
(* *)

(***)

type
ERRORTYPE = 1 .. 90; (*number of execution errors *)
ERRORACTIONS = ((*action to be performed *)

XHALT, (*terminate program *)
XPMSG, (*print pascal diagnostic . *)
XUMSG, (*print user's message *)
XTRACE, (*produce a trace back *)
XDEBUG, (*invoke the debugger *)
XDECERR, (*decr error counter *)
XRESERVED6, (*RESERVED *)
XRESERVED7, (*RESERVED *)
XRESERVED8, (*RESERVED *)
XRESERVED9, (*RESERVED *)
XRESERVEDA, (*RESERVED *)
XRESERVEDB, (*RESERVED *)
XRESERVEDC, (*RESERVED *)
XRESERVEDD, (*RESERVED lE)
XRESERVEDE, (*RESERVED *)
XRESERVEDF) ; (*RESERVED ~O

ERRORSET = set of ERRORACTI ONS;

procedure ONERROR(
const FERROR ERRORTYPE; (*ERROR NUMBER ~O
const FMODNAME ALPHA; (*MODULE NAME WHERE OCCURRED *)
const FPROCNAME ALPHA; (*PROCEDURE WHERE OCCURRED *)
const FSTMTNO INTEGER; (*STATEMENT NO lE)
val' FRETMSG STRING; (*RETURNED USER'S MESSAGE lE)
val' FACTION ERRORSET> ; (*ACTIONS TO BE PERFORMED ~O

EXTERNAL;

Figure 49. Contents of '%INCLUDE ONERROR'

Pascal/VS provides a mechanism for you
to gain control when an execution time
error occurs. When such an error
occurs, a procedure called 'ONERROR' is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascal/VS library which does noth­
ing.

You may write your own version of ONER­
ROR and declare it as an EXTERNAL pro­
cedure. The procedure will be invoked
when an error occurs; thus you may
decide how the error should be handled.
Fi gure 49 shows the contents of the
IBM-supplied include file that con­
tains the information relevant to
producing your own ON ERROR routine.

Upon entry· to ONERROR the parameter
FERROR contains the number of the error

that has been encountered. See "Exe­
cution Time Messages" on page 154 to
determi ne the message number corres­
ponding to a particular error. 11

FMODNAME, FPROCNAME, and FSTMTNO con­
tain the name of the module, the name
of the routine, and the source state­
ment number, respectively, of the
location where the error occurred.

FACTION is a set variable which deter­
mines what action is to be taken. Upon
invocation of ONERROR, FACTION will
describe the default action that will
take place after ON ERROR returns. You
should examine this information and
decide whether you would like to handle
the error or let the default act ion
take place.

11 Each error intercepted by the Pascal/VS run time environment consists cf a
unique 3 digit number. A diagnostic message corresponding to the error
will begin with the error number prefixed with the characters AMPX and
suffixed with the character 'I', 'E' or '5' (Informational, Error, Severe
error).

64 Pascal/VS Programmer's Guide

J

You may modify the FACTION parameter as
you desire. If you set the XUMSG mem­
ber of FACTION then you must also set
FRETMSG with the text of the message.

r. INCLUDE ONERROR;
procedure ONERROR;
begin

Fi gure 50 on page 65 is an example of a
user interception of execution time
errors.

(*do nothing if fixed, decimal or floating divide by zero *)
C*and diagnose fixed-point overflow in procedure HASHFNC *)
if FERROR in [19, 21, 25) then

FACTION : = [)
else

if (FERROR = 18) & (FPROCNAME : 'HASHFNC') then
begin

FACTION .- [XUMSG);
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

end;
end;

Figure 50. Example of User Error Handling

9.S SYMBOLIC VARIABLE DUMP

When a program error or checking error
occurs, a symbol i c dump of all vari­
abIes which are local to the routine in
whi ch the error occurred may be pro­
duced. This dump will be produced if
two conditions are met:

• The source module conta in i ng the
code from which the error occurred
was compiled with the DEBUG option.

• The Pascal/VS debug library was
included in the generation of the
associated load module.

The vari able dump is placed on your
terminal if you are executing in VM/CMS
or TSO, or written to DDname SYSPRINT
otherwise.

Runtime Error Reporting 65

J

66 Pasca!/VS Programmer's Guide

The Pascal/VS interactive debugger is a
tool that allows programmers to quickly
debug Pascal/VS programs wi thout hav­
ing to write debug statements directly
into their source code. Basic func­
tions include tracing program
execution, viewing the runtime values
of program vari ables, break i ng at
intermediate points of execution, and
displaying statement frequency count­
ing information. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TSO and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct­
ly to your termi nal. If the debugger
is bei ng run in OS batch, then the
input is read from DDname SYSINj the
output is sent to SYSPRINT.

In order to use the debugger, you must
follow these three steps:

•

•

•

In
may

Compile the module to be debugged
with the DEBUG option. Modules
that have been compi led wi th the
DEBUG opt i on can be 1 inked wi th
modules that have not been compiled
with the DEBUG option.

When link editing your program,
include the debug library. (It
must be located ahead of the run­
time library in search order).12

When executi ng the load module,
specify 'DEBUG' as a run time
option. 13 This will cause the debug
env ironment to become act i ve and
you wi 11 be i mmedi ately prompted
for a debugger command.

the debugger envi ronment the user
issue debug commands and exami ne

10.0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10.1 QUALIFICATION

A qual i fi cati on consi sts of a module
name and a routine name. The debugger
uses the current qualification as the
default to retrieve information for
commands. The current qual i fi cati on
consi sts of the name of the routi ne and
associated source module which was last
interrupted when the debugger ga i ned
control.

At the start of a debug sessi on, the
current qualification is the name of
the module containing the main program,
and the main program itself.

10.2 COMMANDS

This section describes the commands
that a user may issue wi th the debug
facility. Every command may be abbre­
viated to one letter if desired except
the QUIT, END and CLEAR commands which
have no abbreviations. Square brackets
('[' and 'J') are used in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi­
ple commands on each line.

12 Under CMS, the debug library is included if the DEBUG option is specified
when invoking PASCMOD. (see "How to Build a Load Module" on page 12.)

13

Under TSO, the debug library is included by specifying the DEBUG keyword
operand when i nvok i ng the PASCMOD cl i st. (see "How to Bu i Id a Load
Module" on page 18.)
Run time options must be terminated with a slash ('/'). See "Run Time
Options" on page 35.

Pascal/VS Interactive Debugger 67

10.2.1 BREAK Command 10.2.2 CLEAR Command

Command Format:
Command Format:

CLEAR
[stmt] BREAK [[modu1e/] [routine]/]

END
Minimum Abbreviation:

CLEAR
[stmt] B [[module/] [routine]/]

END
There are no operands.

B

Where: The CLEAR command is used to remove all
breakpoints.

module is the name of a Pascal/V5
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

END is a keyword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the i ndi cated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit­
ted in which case the defaults are tak­
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break­
point is to occur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 32 breakpoints may be set
at anyone time. The following table
illustrates the meaning of the various
forms.

Input
B S
B /5
B P/5
B M//5
B M/P/S

Where:

Module
current
current
current
M
M

Procedure
current
main program
P
main program
P

current - means currently qualified
module or procedure,

M,P - are the names of a module
or procedure

S - is either a statement
number or END

68 Pascal/VS Programmer's Guide

10.2.3 CMS Command

Command Format:

eMS

Minimum Abbreviation:

C

There are no operands.

This command activates the CMS subset
mode. If the program is not being run
under CMS, the command is ignored.

10.2.4 DISPLAY command

Command Format:

DISPLAY

Minimum Abbreviation:

D

The DISPLAY
information
sessi on at
information

command is used to display
about the current debugger
the user's termi nal. The
displayed is:

• the current qualification,

• where the user's program will
resume execution upon the GO com­
mand,

• the current status of Counts,

• the current status of Traci ng.

Pascal/VS Interactive Debugger 69

10.2.S DISPLAY BREAKS Command

Command Format:

DISPLAY BREAKS

Minimum Abbreviation:

D B

There are no operands.

The DISPLAY BREAKS command is used to
produce a list of all breakpoints which
are currently set.

70 Pascal/VS Programmer's Guide

10.2.6 DISPLAY EQUATES Command

Command Format:

DISPLAY EQUATES

Minimum Abbreviation:

D E

There are no operands.

The DISPLAY EQUATE command is used to
produce ali st of a 11 equate symbo 1 s
and their current definitions.

L

10.2.7 END Command

Command Format:

END

Minimum Abbreviation:

END

The END command causes the program to
immediately terminate. This command is
synonymous with QUIT.

10.2.8 EQUATE Command

Command Format:

EQUATE ;dent;fie~ [data]

Minimum Abbreviation:

E ;dentif;e~ [data]

Where:

;dent;f;e~ is a Pascal/VS
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi­
er name to a data stri ng. When the
identifier name appears in a command,
it will be expanded inline prior to
executing the command.

As an example, the command

EQUATE X ,Bn]

will cause the variable "BUJI' to be
viewed when "X" is entered as a
command. The commands

EQUATE V R~.F[6].J
,BtV]

will cause the variable "B[R~.F[6].J]"
to be viewed.

A semicolon may not terminate the
EQUATE command; a semi colon wi 11 be
treated as part of the data stri ng.
For example, the command

EQUATE Z GO;LISTVARS

will cause the "GO" and "LISTVARS" com­
mands to be executed in succession when
HZ" is entered as a command.

An equate command may be used to rede­
fine the mean i ng of a debugger
command: 14

EQUATE GO WALK

makes the command "GO" function as the
command "WALK."

An equate command may be cancelled by
equating the previously defined iden­
tifier to an empty data string:

EQUATE Z

14 There ; s one except; on: the name EQUATE may not be equated to a data
string.

Pascal/VS Interactive Debugger 71

removes the symbol HZ" from the
debugger's equate table.

Equates may be equated to strings which
contain other equates. All substi­
tution will take place after expansion.
The commands

EQUATE A P~.I
EQUATE B ,XYZ[A]

10.2.9 GO Command

Command Format:

GO

Minimum Abbreviation:

will cause the symbol "8" to be G
expanded to ",XYZ[P~.I]."

72 Pasca!/VS Programmer's Guide

There are no operands.

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

• breakpoint

• program error

• normal program exit

A breakpoint or program error will
return the user to the Debug environ­
ment.

J

J

10.2.10 Help Command

Command Format:

Minimum Abbreviation:

There are no operands.

The Help command lists all Debug com­
mands.

10.2.11 LISTVARS Command

Command Format:

LISTVARS

Minimum Abbreviation:

L

There are no operands.

This command displays the values of all
variables which are local to the cur­
rently active routine.

Pascal/VS Interactive Debugger 73

10.2.12 Qualification Command

Command Format:

QUAL [module /] [routine]

Minimum Abbreviation:

Q [module /] [routine]

Where:

module is the name of a Pascal/VS
module.

routfne is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qual i fi cati on.
The defaults are applied as follows:

• the module name defaUlI ts to the
current qualification.

• the routine defaults to the main
program if the associated module is
a program module, or to the outer­
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The
current qualification pr'ovides the
basis on which program names are
resolved. If there is no activation of
the routine available (no invocations)
the user may not di splay local vari­
abIes for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali­
fication is automatically set to the
module and the routine in which the
breakpoint was set.

74 Pascal/VS Programmer's Guide

10.2.13 QUIT Command

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

J

10.2.14 RESET Command

Command Format:

RESET [[module/] [routine]/] [stmt]
END

Minimum Abbreviation:

[stmt] R [[module/] [routtne]/]
END

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

10.2.15 SET ATTR Command

Command Format:

SET ATTR [ON

OFF
]

Minimum Abbreviation:

S A [ON

OFF
]

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter speci fi es that vari able
attribute information will not be dis­
played by default. The default may be
overridden on the variable viewing com­
mand.

Pascal/VS Interactive Debugger 75

10.2.16 SET COUNT Command

Command Format:

SET COUNT [ON

OFF
]

Minimum Abbreviation:

S C [ON

OFF
]

The SET COUNT command is used to initi­
ate and term i nate statement count i ng.
Statement counting is used to produce a
summary of the number of times every
statement is executed duri ng program
execution. The summary is produced at
the end of program executi on and is
wri tten to the standard fi Ie OUTPUT.
Statement counting may also be initi­
ated with the runtime COUNT option.

76 Pascal/VS Programmerts Guide

10.2.17 SET TRACE Command

Command Forma.1:

SET TRACE [ON] OFF
TO ddname

Minimum Abbreviation:

S T [
Where:

ON
OFF
TO ddname

]

ddname is the name of a DDname
where the trace output is to be
sent.

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user wi th ali st of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

The output from the program trace nor­
mally wi 11 go to your termi nal, by
using the TO option you may direct the
output to a specific file.

10.2.18 TRACE Command

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca­
tion chain are listed along with the
most recently executed statement in
each.

10.2.19 Viewing Variables

Command Format:

, variable [(opt t Dn [)]]

Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/VS
Reference Manual for the
syntax of a variable.

option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro­
gram execution.

The stat i c scope rules that apply to
the current qualification are applied
to the specified variable. If the var­
iable is found to be a valid reference,
then its value is di splayed. If the
name cannot be resolved within the cur­
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automatic
variable for which no activation cur­
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam­
ples, array elements, record fi elds,
and dynamic variables may all be
viewed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are di s­
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen­
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an opti on, attri butes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

NDte: A subscripting expression may
only be a variable or constant; that
is, it may contai n no operators. Thus,
such a reference as

,a[bd)[jll

is valid (at least syntactically), but
the reference

,a[i+3]

Pascal/VS Interactive Debugger 77

is not a val i d reference because the
subscripting expression is not a vari­
able or constant.

Examples

,a
, pOl
,p21.b
,b[l,xJ.int (ATTR
I pOl [x I y] . bOl • a [1J

If the variable being viewed has not
been assigned a value then the results
depend on the vari able's type:

•

•

If the variable is of a simple type
(integer, char, real, etc.), then
the word "uninitialized" will be
printed.

If the variable is of a structured
type (array, record), then the con­
tents will be printed in hexadeci­
mal; each byte of the the variable
which is uninitialized will have
the value 'FE' (hexadecimal).

78 Pascal/VS Programmer's Guide

10.2.20 Vfew;ng Memory

Command Format:

, hex-strfng [: length]

Where:

hex-string is a number in
hexadecimal notation.

length is an integer.

Thi s command is used to di splay the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex stri ng is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is in both hex and character for­
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '3SDOS'X)' The
length is specified in decimal.

Examples

,'20000'X
,'46cfO'X 100

J

10.2.21 WALK Command

Command Format:

WALK

Minimum Abbreviation:

W

There are no operands.

This command causes the program to
either start executing or resume exe­
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin­
gle stepping through a section of code.

Pascal/VS Interactive Debugger 79

10.3 DEBUG TERMINAL SESSION

Iprogram Primgen;
Itype

PrimeRange = 1 .. 100;

var
Prime array[PrimeRange 1 of

NotUsed
SaveIndex

PrimeRange;
Pri mE!Range;

TestNumber Integer;

Ifunction IsPrime(Testval

I vaQuotient,
Remainder

I PrimeIndex
begin

I

Integer;
PrimeRange;

INTEGER)

PrimeIndex := Lowest(PrimeRange);
repeat

PrimeIndex := SuccCPrimeIndex);

(*Specify limits for the
C* number of prime numbers

Integer;

~o

*)

e*This array stores the result*)
e*Used test preceeding primes *)
(*Used to remember last used *)
eM spot in Prime *)
(*Test value for primeness M)

BOOLEAN;

(*Testval div prime *)
(MTest value for primeness *)
(*Used test preceeding primes *)
(*IsPrime *)

(*Test each previous prime *)
(MStarting with the first one M)
(*Get next prime *)

: I (MCompute relative primeness of Testval and a known prime
Quotient := Testval div Prime[PrimeIndexl;

M)

4
5

Remainder := Testval - Quotient * Prime[PrimeIndexl
until (Remainder=O) I (Quotient <= Prime[PrimeIndexl);

6
7

8

if Remainder
IsPrime .­

else
I sPr i me .­

I end;

Ibegin

= 0 then
FALSE

TRUE;

1 I Prime[ll .- 2;
2 I Prime[2] . - 3;
3 I Prime[3l .- 5;
4 I TestNumber .- 5;
5 I SaveIndex . - 3;

6

7

8
9

repeat
TestNumber := TestNumber + 2;

if IsPrime(TestNumber) then
begin

Savelndex:= SuccCSaveIndex);
prime[SaveIndexl := TestNumber

end

(*If the number was divided by*)
CMany known Prime, then this *)
(*is not prime *)

C*IsPrime

(*First three primes
(* ditto
(* ditto
(*Start candidates at 5
(*Last used prime entry

C*Test each odd number
(* starting with the first
(*If canidate is a prime
(*Save it in the next entry
c* of the prime table

*)

*>
*)
*>
*)
*)

M)
~O

*>
*>
*)

10 until Savelndex = Highest(PrimeRange>;

11

12
13

I (*Print results at ten to a line
for Primelndex := Lowest(PrimeRange)

begin
WriteC Prime[PrimeIndexl:7);
if (Primelndex mod 10> = 0 then

Writeln
14 I end;

end.

Figure 51. Sample program for Debug session

to HighestCPrimeRange) do

(*Print one prime number
(*If ten have been printed
(M then skip to next line

(MPrimgen

*)

*)
*>
M>

M>

The followi ng seri es of fi gures is a
sample Debug terminal session that dem­
onstrates breakpoints, viewing vari­
ables and other DEBUG commands. User

commands are highlighted and under
lined. The program being executed is
shown in Figura 51.

80 Pascal/VS Programmer's Guide

J

pascalvs primgen (debug
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines: 62; Total time: 1.20 seconds; Total rate:
Ri T=1.73/3.05 16:13:54

pascmod primgen (debug
R; T=0.90/2.19 16:14:51

filedef output terminal
R; T=0.03/0.05 16:14:52

prfmgen debug count 1
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 52. Compiling, linking and executing a program with DEBUG

?
.A-

Name (abbreviation is in capital letters)
? ,
Break
CLEAR
Cms

This command list
Display a variable
Set a breakpoint
Remove all breakpoints
Enter CMS subset mode
Display current resume point Display

Display
Display
END
Equate

Break Display currently set breakpoints
Equate Display currently set equates

Halt your program

Go
Listvars
Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
Trace
Walk

Debug(PRIMGEN

Set an identifier to a literal value
Continue executing your program
List all variables
Set default module/routine
Halt your program
Remove a specific breakpoint
Set default viewing information ON/OFF
Turn statement counting ON/OFF
Turn tracing ON/OFF/TO fileid
Display invocation chain of routines
Execute one statement of current routine

<MAIN-PROGRAM»:

Figure 53. The HELP command of DEBUG

3092 LPM

Pascal/VS Interactive Debugger 81

break 8
PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

m!
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/lO
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 54. Setting Breakpoints and Statement Wa~king

Ii stvars
Variables for procedure: <MAIN-PROGRAM>

PRIME
(0003CA28)
000000 00000002 00000003 00000005 FEFEFEFE ,
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE ,•.....••..•
(00000020 through 0000018F is the same as above)

NOTUSED = uninitialized
SAVEINDEX = 3
TESTNUMBER = 7

DebugCPRIMGEN <MAIN-PROGRAM»:

Figure 55. The LISTVARS command - List all variables

82 Pascal/VS Programmer's Guide

J

J

set trace on
Program trace is on -- output to '<TERMINAL>'
Debug(PRIMGEN <MAIN-PROGRAM»:

g.Q
Resuming PRIMGEN <MAIN-PROGRAM>
======> 6-7
Executing PRIMGEN ISPRIME
======> 1 ======> 2-5
======> 6
======> 7
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 10
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6 ======> 8
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 56. The Trace Mode of DEBUG

Pascal/VS Interactive Debugger 83

9..Q
======> 10
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 2-5
======> 6
======> 8
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGEN/<MAIN-·PROGRAM>/9
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
--=-=====> 10

Stopped at PRIMGEN/<MAIN-PROGRAM>/lO
DebugCPRIMGEN <MAIN-PROGRAM»:

walk
--=-=====> 6-7

Stopped at PRIMGEN/<MAIN-PROGRAM>/6
DebugCPRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGEN/<MAIN--PROGRAM>/7
DebugCPRIMGEN <MAIN-PROGRAM»:

walk
Executing PRIMGEN ISPRIr1E
======> 1
======> 2-5
======> 6
======> 7
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
DebugCPRIMGEN <MAIN-PROGRAM»:

9..Q
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 57. Walking when the Trace Mode is On

84 Pascal/VS Programmer's Guide

J

display qual;f;cation
Currently qualified to PRIMGEN <MAIN-PROGRAM>
Will resume at PRIMGEN <MAIN-PROGRAM> 8
Counts are on
Trace is on
Trace output to <TERMINAL>
DebugCPRIMGEN <MAIN-PROGRAM»:

display breaks
Module Routine Stmt
PRIMGEN <MAIN-PROGRAM> 8
DebugCPRIMGEN <MAIN-PROGRAM»:

equate tn ,testnumber
DebugCPRIMGEN <MAIN-PROGRAM»:

tn
:TESTNUMBER

TESTNUMBER = 19
DebugCPRIMGEN <MAIN-PROGRAM»:

display equate
TN ==> ,TESTNUMBER
DebugCPRIMGEN <MAIN-PROGRAM»:

set trace off
Program trace is off
DebugCPRIMGEN <MAIN-PROGRAM»:

Figure 58. Miscellaneous DEBUG Commands

,testnumber
TESTNUMBER = 19

DebugCPRIMGEN <MAIN-PROGRAM»:

, testnumber (attr
DATA TYPE: INTEGER

MEMORY CLASS : LOCAL AUTOMATIC
DECLARED IN : <MAIN-PROGRAM>

TESTNUMBER = 19
DebugCPRIMGEN <MAIN-PROGRAM»:

,prime[10]
PRIME[10] = uninitialized

Debug(PRIMGEN <MAIN-PROGRAM»:

,prime[Sl
PRIME[5] = 11

DebugCPRIMGEN <MAIN-PROGRAM»:

Figure 59. Commands to Display a Variable

Pascal/VS Interactive Debugger 85

break isprime/end
PRIMGEN/ISPRIME/END
DebugCPRIMGEN <MAIN-PROGRAM»:

9.Q
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

Trace back
Routine
ISPRIME
<MAIN-PROGRAM>
PASCAL/VS

of called
stmt at

8
7

DebugCPRIMGEN ISPRIME):

set trace on

routines
address in module
020138 PRIMGEN
020260 PRIMGEN
02055A

Program trace in on -- output to '<TERMINAL>'
Debug(PRIMGEN ISPRIME):

equate next go;listvars
Debug(PRIMGEN ISPRIME):

next
GO; LISTVARS

Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
======> 10
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6
======> 7
Returning from ISPRIME
Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME

PRIMEINDEX = 2
QUOTIENT = 13
REMAINDER = 0
TESTVAL = 39

Debug(PRIMGEN ISPRIME):

set trace off
Program trace is off

Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 60. Using Multiple commands on one Line and other commands

86 Pascal/VS Programmer's Guide

J

J

reset 8
Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed
Debug(PRIMGEN <MAIN-PROGRAM»:

9.Q
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

listvars
Variables for procedure: ISPRIME

PRIMEINDEX = 2
QUOT! ENT = 11
REMAINDER = 0
TESTVAL = 33

Debug(PRIMGEN ISPRIME):

reset end
Breakpoint at PRIMGEN/ISPRIME/END has been removed
Debug(PRIMGEN ISPRIME):

9.Q
2 3 5 7 11 13 17

31 37 41 43 47 53 59
73 79 83 89 97 101 103

127 131 137 139 149 151 157
179 181 191 193 197 199 211
233 239 241 251 257 263 269
283 293 307 311 313 317 331
353 359 367 373 379 383 389
419 421 431 433 439 443 449
467 479 487 491 499 503 509

Figure 6l. The Reset Breakpoint Command

PASCAL/VS STATEMENT COUNTING SUMMARY

19
61

107
163
223
271
337
397
457
521

<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT

23
67

109
167
227
277
347
401
461
523

PAGE 1

1-5 :1 6-7 :268 8-9 :97 10 :268
11 :1 12-13 :100 14 :10.

ISPRIME IN PRIMGEN CALLED 268 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT

1 :268 2-5 :910 6 :268 7 :171
8 : 97

Figure 62. Statement Counting Summary

29
71

113
173
229
281
349
409
463
541

Pascal/VS Interactive Debugger 87

88 Pascal/VS Programmer's Guide

This section describes the rules that
the Pascal/VS compiler employs in map­
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off­
sets within the routine's dynamic stor­
age area (DSA) . There is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo­
cated when the routine is called and is
deallocated when the routine returns.

11.2 INTERNAL STATIC STORAGE

For source modules that contain vari­
ables declared STATIC, a single unnamed
control section ('private code') is
associ ated wi th the source module in
the resulting text deck. Each variable
declared via the STATIC construct,
regardless of its scope, is assigned a
unique offset within this control sec­
tion.

11.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control sect ion
(csect) . Each def vari able whi ch is
not initialized will generate a named
COMMON section. 15 The name of the sec­
tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variables are allo­
cated dynamically from heap storage by
the procedure 'NEW'. Such vari abIes
are always aligned on a doubleword
boundary.

11.5 RECORD FIELDS

Fields of records are assigned consec­
utive offsets within the record in a
sequential manner, padding where nec­
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in a Pascal/VS
source module is assigned storage and
aligned according to its declared type.

11.6.1 The Predefined Types

The table in Fi gure 63 di splays the
storage occupancy and boundary al i gn­
ment of variables declared with a pre­
defined type.

STORAGE MAPPING OF DATA

15

DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRINGClen) len+2 HALF WORD
STRINGPTR 8 FULL WORD

Figure 63. Storage mapping for predefined types

Each def variable becomes a named COMMON block which may be used to commu­
nicate with FORTRAN subroutines.

Storage Mapping 89

11.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte bound<;lry. If the scalar defi nes
more than 256 values then it will occu­
py a half word and will be aligned on a
half word boundary.

11.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed wi 11 be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
i ndi cated in the table of Fi gure 64.
Given a type definition T as:

type
T = packed i .. j ;

and

const
I = ORD C i) ;
J = ORD(j);

Range of SIZE in ALIGNMENT
I .. J bytes

O •• 255 1 BYTE

-128 .. 127 1 BYTE

-32768 .. 32767 2 HALF WORD

0 .. 65535 2 HALF WORD

O •• 16777215 3 BYTE

-8388608 .. 8388607 3 BYTE

otherwise 4 FULL

Figure 64. Storage mapping
subrange scalars

WORD

of

Each entry in the first column in the
above table is meant to include all
possi ble sub-ranges wi thi n the speci­
fi ed range. For example, the range
100 .. 250 would be mapped in the same
way a s the range 0,.255.

11. 6.4 RECORDs

An unpacked record is al i gned on a
boundary in such a way that every field
of the record is properly aligned on
its required boundary. That is,

90 Pascal/VS Programmer's Guide

records are al i gned on the boundary
required by the field with the largest
boundary requirement.

For example, record A below wi 11 be
al i gned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of
type REAL; record C will be aligned on
a byte.

type
A= record (*full word aligned*)

Al INTEGER;
A2 : CHAR

end;

B= record (*double word aligned*)
81 A;
B2 REAL;
B3 : BOOLEAN

end;

C= record (*byte alignedM)
C1 packed O •• 255;
C2 ALPHA

end;

Figure 65. Alignment of records

Packed records are always aligned on a
byte boundary,

11. 6.5 ARRAYs

Consider the followi ng
definition:

type
A = array [s] of t

where type s is a simple scalar
and t is any type.

type

A variable declared with this type
definition would be aligned on the
boundary requ i red for data type 't'.
Wi th the excepti on noted below, the
amount of storage occupied by this var­
iable is computed by the following
expression:

(ORDCHIGHESTCs»-ORDCLOWESTCs»+l)
* SIZEOFCt)

The above expression is not necessarily
applicable if 't' represents an
unpacked record type. In thi s case,
paddi ng wi 11 be added, if necessary,
between each element so that each ele­
ment wi 11 be al i gned on a boundary
whi ch meets the requi rements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev­
er inserted between elements.

J

J

A multi-dimensional array is mapped as
an array of array(s). For example the
following two array definitions would
be mapped identically in storage.

array i .. j, m •• n] of t

array [i .. j] of
array [m .. n J of t

11.6.6 FILEs

File variables occupy 64 bytes and are
aligned on a full word boundary.

11.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped, two terms will need to be
defined: The base type is the type to
which all members of the set must
belong. The fundamental base type
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0' .. ' 9'

has the base type defined by '0' .. '9';
and a fundamental base type of CHAR.

Any two unpacked sets whi ch have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S = set of s;
T = set of t;

where s is a non-subrange scalar type
and t is a subrange of s: both Sand T
will have the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though thi s value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contai n

the largest value of the fundamental
base type. Packed sets occupy the min­
i mum number of bytes to conta in the
largest valid value of the base type.
Thus, variables A and B below will both
occupy 256 bi ts.

var
A : set of CHAR;
B : set of '0' .. '9';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
C set of (C1,C2,C3,C4,C5,C6,

C7,C8,C9,C10,C11,C12
C12,C13,C14,C15,C16);

D : set of C1 .. C8;
E : packed set of C1 .. C8;

A set type with a fundamental base type
of INTEGER is restri cted so that the
largest member to be contained in the
set may not exceed the value 255;
therefore, such a set wi 11 occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bi ts; vari able X wi 11 occupy 32
bits.

var
U set of 0 .. 255;
V set of 10 .. 20;
W packed set of 10 •• 20;
X packed set of 0 •• 31;

Gi ven that M ; s the number of bi ts
required for a particular set, the
table in Figure 66 indicates how the
set will be mapped in storage.

Range of SIZE
M BYTES

1 <= M <= 8 1

9 <= M <= 16 2

17 <= M <= 24 3

25 <= M <= 32 4

33 <= M <= 256 (M+7)
div

Figure 66. Storage
SETS

ALIGNMENT

BYTE

HALF WORD

BYTE

FULL WORD

BYTE
8

mapping of

Storage Mapping 91

11.6.8 SPACEs

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes i ndi cated in the
length speci fi er of the type

92 Pascal/VS Programmer's Guide

definition. For example, the variable
S declared below occupies 1000 bytes of
storage.

var 5: space [1000] of INTEGER;

12.1 LINKAGE CONVENTIONS

Pascal/VS uses standard as linkage con­
ventions with several additional
restrictions. The result is that Pas­
cal/VS may call any program that
requires standard conventions and may
be called by any program that adheres
to the addi t i onal Pascal/VS restri c­
tions.

On entry to a Pascal/VS rout i ne the
contents of relevant registers are as
follows:

• Register 1 - points to the parame­
ter list

•

•

•
•

Regi ster 12 poi nbs to the
Pascal/VS Communi cati on Work Area
(PCWA)

Regi ster 13 - poi nts to the save
area provided by the caller

Register 14 - return address

Register 15 - entry point of called
routine

Pascal/VS requires that the parameter
register (R1) be pointing into the
Dynamic Storage Area (DSA) stack in
such a way that 144 bytes prior to the
Rl address is an avai lable save area.

12.0 CODE GENERATION FOR THE IBM/370

12.2 REGISTER USAGE

The table in Figure 67 describes how
each general register is used within a
Pascal/VS program. The floating poirt
registers are used for computation on
data of type REAL.

regi ster(s) purpose(s)

0,1
- temporary work registers

for the compiler
- standard linkage usage

on calls

3,4,5,6,7,8,9

2,10

11

12

13

14,15

- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

- address of the DSA of the
main program

- always points to Pascal/VS
Communication Work Area

- always points to the local
DSA

- temporary work registers
for the compiler

- standard linkage usage
on call s

Figure 67. Register usage

Code Generation for the IBM/370 93

12.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area (DSA) is allocated. This area is
used to contain save areas, local vari­
ables and compi ler generated tempo­
raries. A Pascal/VS routine requires a
DSA of at least 144 bytes; if the rou­
tine has parameters or local variables,
more space is needed.

register 13--->r---------------------~
0: Reg i stl~r

72:

-80:-­

r-- --84:--

- -- --88:--

92:

Save c3rea

//////////////////

--------.------------
96: 1/////////

100: reserved for
error handling

112: floating point

144:

'------->

>

>

registers
FO F6

parameter
list

local variables
and compiler
temporaries

144

translator
temporaries

byte save area

parameter list
to be built here

144 byte save area

16 byte rte parms

The first 72 bytes are generally used
according to standard as linkage con­
venti ons. The fi rst word is used to
copy the previous data base register at
the current procedure nesting level.

Figure 68 illustrates the structure of
the DSA. Figure 69 on page 95 shows
the DS EeT expan s i on of the DSA. (A
copy of this DSECT may be found in mem­
ber DSA of the standard ; nclude
library 16.)

reserved for future use

pointer to translator temporaries

pointer to parameter Ii st bu i ld area

pointer to the end of the DSA

pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

The following areas only in last DSA
for the next routine to be called

for runtime environment in case of
error

room for parameters if required by
error recovery

//// = indicates that the field is not presently used.

16

Figure 68. DSA format

Under MVS, the name of this library is sys1.PASCALVS.MACLIB. Under CMS,
it is PASCALVS MACLIB.

94 Pascal/VS Programmer's Guide

J

DSA
DSASDIS
DSALSVA

OSARETA
DSAEPAO
DSARGO
OSAPREG
OSACODE
DSARG3
OSARG4
DSARG5
DSARG6
DSARG7
DSARG8
DSARG9
DSACOD2
DSALlB
DSAPCWA
DSAAKEY
DSARES4
DSATPTR
DSAPPTR
DSARPTR
DSACNTS
DSARAID
DSAFUNX
DSARESl
DSACKSAl
DSACKSA2
DSACKSA3
DSAFLO
DSAFL2
DSAFL4
DSAFL6
DSALEN

DSAPRM1
DSAPRM2
DSAPRM3
DSAPRM4
OSAPRM5
DSADATA

DSECT
OS
DS
OS
OS
OS
DS
DS
DS
DS
OS
DS
OS
DS
DS
OS
OS
DS
OS
OS
DS
DS
OS
OS
DS
OS
OS
OS
DS
DS
DS
DS
OS
DS
DS
EQU
SPACE
DS
DS
DS
OS
DS
DS

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
X
2X
F
F
F
D
D
D
D
*-DSA
1
F
F
F
F
OF
F

Save space for display level
Pointer to last save area
(reserved for future use)
Return address
Entry point address
Save area for register 0
Save area for parameter list pointer (reg 1)
Save area for base register for code (reg 2)
Save area for register 3
Save area for register 4
Save area for register 5
Save area for register 6
Save area for register 7
Save area for register 8
Save area for register 9
Save area for 2nd base register for code (reg 10)
Save area for register 11 (main DSA address)
Save area for register 12 (PCWA pointer)
Used by attention processor
Reserved
Address of temporary section of OSA
Address of parameter list build area
Address of runtime parameter list build area
Address of count table
Interactive debugger flags
Function assignment check flag
Reserved
Save area utilized by error recovery
Save area utilized by error recovery
Save area utilized by error recovery
Save area for floating point register 0
Save area for floating point register 2
Save area for floating point register 4
Save area for floating point register 6
Length of DSA header

Start of parameters and/or local variables

Figure 69. OSA DSECT: anchored off of register 13.

Code Generation for the IBM/370 95

12.4 ROUTINE INVOCATION

Each invocation of a Pascal/VS routine
must acquire a dynamic storage area
(DSA) (see "Dynami c Storage Area" on
page 94). Thi s storage i 5, allocated
and deallocated ina LIFO (last
i n/fi rst out) stack. If the stack
should become filled to its capacity, a
storage overflow routi ne wi 11 attempt
to obtain another stack from which sto­
rage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
Pascal/VS for a save area, The rou­
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon enteri ng a routi ne, regi ster 1
points 144 bytes into the routine's
DSA, which is where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. Thi s
portion of storage is actually an
extension of the caller's DSA.

REG 13 1-->

L-R_E_G_l_~I-->

top of stack ---->

caller's save area

local save area
(144 bytes)

Parameters

In general, the DSA of a routi ne con­
sists of five sections:

1. The local save area (144 bytes).

2. Parameters passed in by the caller.

3. Local vari abIes requi red by the
routine.

4. A save area required by any routine
that will be called.

5. Storage for the largest parameter
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, 4, and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation, register 13 points to
the base of the DSA of the caller,
which is where the caller's save area
is located. The new value of register
13 may be computed by subtracting 144
from the value in register 1.
Figure 70 illustrates the condition of
the stack and relevant registers imme­
diately at the start of a routine.

start of DSA of caller

start of DSA of called routine

144 bytes into DSA

r

local variables

storage yet to be allocated

start of DSA of routine yet
to be called

[-;~~-1----1----> set here I
for calls __________ J

next stack top -->

I save area
I of any routines
I yet to be invoked

1_--------------------
parameter list to

I be built for calls j
to other routines l ____________________ _

144 bytes into this DSA

Figure 70. Snapshot of stack and relevant registers at start of routine

96 Pascal/VS Programmer's Guide

J

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
di fferent ways dependi ng on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter 1 i st is al i gned on a dou­
bleword boundary and each parameter is
aligned on its proper boundary.
Addresses are aligned on word bounda­
ries.

12.5.1 passing by Read/Write Refer­
ence

This mechanism is indicated by use of
the reserved word var in the routi ne
headi ng. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:IHTEGER);

Routine Invocation:

PROC(J);

Parameter list:

address of J

Figure 71. Passing by Read/Write
reference

12.5.2 passing by Read-Only Reference

This mechanism is indicated by use of
the reserved word canst in the routine
headi ng. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Rout i ne Headi.D..s.:..

procedure PROC(const I: INTEGER);

Routine Invocation:

PROCeJ+S);

Parameter list:

address of a memory location
which contains the value of
J+S.

Figure 72. Passing by Read-only
reference

12.5.3 Passing by Value

This mechanism is the default way in
whi ch parameters are passed. Parame­
ters passed in this way are treated as
if they are pre-initialized local vari­
ables in the invoked routine. Any mod­
i fi cat i on to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter isa scalar, pointer, or set,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter is an array,
record, space, or string, then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure wi 11 copy
the parameter into its local storage.

Routine Heading:

procedure PRoce
I : INTEGER;
A : ALPHA),

Routine Invocation:

PROCeJ,'alpha'),

Parameter list:

value of J
address of 'alpha

Figure 73. Passing by value

Code Generation for the IBM/370 97

12.5.4 Passing procedure or Function
Parameters

For procedures or functions which are
be; ng passed as parameters, the address
of the routine is placed in the parame­
ter 1 i st.

Routine Heading:

procedure PROC(
function X(Y: REAL): REAL);

Routine Invocation:

PROC(COS);

Parameter list:

address of COS routine

Figure 74. Passing routine param­
eters

98 Pascal/VS Programmer's Guide

12.5.5 Function Results

Pascal/VS functions have an implicit
parameter which precedes all specified
parameters. Thi s parameter conta ins
the address of the memory location
where the function result is to be
placed.

Routine Heading:

function FUHC(C: CHAR):IHTEGER;

Routine Invocation:

I := FUHCC'l');

Parameter list:

- address of returned integer
result

- value of character 'l'

Figure 75. Function results

J

L

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or functi on
is arranged in the order shown below.
Regi ster 2 is the code base regi ster
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, reg; ster 10 is used as
the code base register for the second
4K bytes. If a rout i ne exceeds 8K
bytes of storage, the compi ler wi 11
diagnose it as a terminal error.

Entry ~>
Reg 2

This must be
<= 8192

---->

DEBUG control
block

entry prologue

body
of

routine

exit epilogue

literals:
ACONS, VCONS,
and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
Cif present)

Figure 76. Routine format

Code Generation for the IBM/370 99

12.7 PCWA

PCWA =
record,

PCWAENDS
PCWACURS
PCWASELF
PCWAFL2
PCWARC(16)
PCWAFIL E
PCWAPARM
PCWAMODS
PCWAESAP
PCWADISP
PCWADTMP
PCWARTMP
PCWARO
PCWA2231
PCWAMASK
PCWAMFIX
PCWASAVE
PCWAPLST
PCWAFIN
PCWAALLC
PCWADLLC
PCWASDFT
PCWACHKR
PCWADSA5
PCWAMEMF
PCWAFLAG
PCWAPICA
PCWASEED
PCWAXEND
PCWAECNT
PCWACHK
PCWACMEM
PCWA5TAX
PCWAEOPN
PCWADINT
PCWATSO

PCWAA TTN
PCWAFCNT
PCWASIZE
PCWADINA
PCWABOPA
PCWABBA
PCWAERAD
PCWAFSTK
PCWAENDA
PCWAHDFT
PCWAPROC(1200)
PCWAUSER(1264)
PCL~AEOUT(1328)
PCWAOUT(1392)
PCWAIN(1456)
PCWAPDA T(1520)
PCWAERSA(I776)
PCWAPIE
PCWASPIE
PCWAMEMA(1984)

end;

INTEGER;
INTEGER;
INTEGER;
peWA FLG SET;
INTEGER; -
PCBP;
SYSPARMP;
DBCBP;
INTEGER;
al'ray[o .. 7J of
ItHEGER;
REAL;
REAL;
REAL;
ALFA;
AI. FA;

(*Ptr to end of current stack *)
(*Ptr to start of current stack *)
(*5elf identifying flag 'PCWA' *)
(*compiler runtime flags *)
(*Return code *)
C*pointer to open files *)
(*parms string *)
(*module header chain (debugger)*)
(*ptr to external save area *)

DSAP;(*DISPLAY *)
C*Debugger temporary *)
(*floating point temporary *)

-(* ' 4 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' X *)
(*'4EOOOOOOIOOOOOOO'X *)
<*'8040201008040201'X *)
(*temp for first 8 bytes of DSA *)

a,' ray [1 .. 36]
a,'ray[1 .. 16]
INTEGER;
INTEGER;
INTEGER;
IIHEGER;
IIHEGER;
INTEGER;
INTEGER;
INTEGER;

of INTEGER; C*Extra save area *)

A -FA;
HHEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[20] of
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[64] of
space[64] of
TEXT;
PCB;
PCB;
STRING(254);
SPIEDSA;
P5W;
INTEGER;

of INTEGER; (*parm list build *)
(*Pointer to the HALT address *)
<*address of memory allocator *)
(*address of memory deallocator *)
(*default stack size *)
C*address of checker routine *)
<*size of DSA in bytes (144) *)
(*addr of memory fixup routine *)
<*Inter-language communication *)
(*PICA save area *)
(*seed of 'RANDOM' function *)
(*end of stack for SETMEM *)
(*error count until abend *)
<*address of check routine *)
(*current memory in use *)

CHAR;(*STAX list form *)
(*TRUE if PCWAEOUT is open *)
(*TRUE if debugger initialized *)
(*TRUE if TSO environment *)
<*reserved *)
C*address of attn handling *)
(*cnt of files without DDnames *)
<*size of initial alloc for pcwa*)
(*Address of AMPDINIT or nil *)
(*Address of AMPDIBOP or nil *)
C*Address of AMPDIBB or nil *)
C*Error address - CHKR or DIAG *)
(*Chain of free dsa stack elems *)
(*Address of AMPDEPIL or nil *)
(*default heap size *)

CHARj(*Work area for PROCESS *)
CHAR;(*Area reserved for user *)

(*ERROR OUTPUT PCB *)
(*OUTPUT PCB *)
(*INPUT PCB *)
(*actual parm list after format *)
(*savearea for error routines *)
(*PSW from PIE *)

array[MEM_LEVELS] of SPACE_DESC;
(*space for memory allocator *)

Figure 77. Pascal Communications Work Area

The Pascal Communications Work Area is
always addressable from regi ster 12.
This area of memory is used to contain

100 Pascal/VS Programmer's Guide

global information about the execution
of the program.

J

L

The area is divided into two parts,
each 2048 bytes in length. The first
part contai ns data that needs to be
addressable; the second is composed of
the small routines used to augment the
generated code (such as string concat­
enation). Figure 77 on page 100 shows
the structure of the first half of the
PCWA. Each field is described below:

PCWAENDS
a pointer to the end of the current
DSA stack.

PCWACURS
a pointer to the top of the current
DSA stack.

PCWASELF
a self defining field that is set
to 'PCWA'.

PCWAFL2
flags used to enable runtime fea­
tures.

PCWARC
the value assigned by the last exe­
cution of RETCODE or zero if RET­
CODE has not been called.

PCWAFILE
a pointer
that has
closed.

PCWAPARM

to the first file (PCB)
been opened but not

a pointer to the parameter string
passed to the program.

PCWAMODS
a pointer to the head of a chain
that links modules together as
required by the interactive debug­
ger.

PCWAESAP
conta ins the po inter to the save
area for the caller of the Pascal
program.

PCWADISP
the runtime display - a stack of 8
base registers that contains the
address of the DSAs that are avai 1-
able to the executing routine.

PCWADTMP
a temporary used by the interactive
debugger.

PCWARTMP
a temporary used in conversion
between floating point numbers and
integers.

PCWARO
a constant that contains the float­
ing point value zero.

PCWA2231
a constant that contains the float­
ing point value of 2 raised to the

31 power minus 1 in an unnormalized
form.

PCWAMASK
eight bytes that contain masks
which are used in set operations.

PCWAMFIX
a temporary used during runtime
error recovery.

PCWASAVE
used as a register save area when a
program error or checki ng error
occurs.

PCWAPLST
used when a program error or check­
ing error occurs to bui Id a parame­
ter list in order to invoke a
recovery procedure.

PCWAFIN
address of a procedure which termi­
nates the program no matter what
state it is in. This procedure is
normally HAL T.

PCWAALLC
address of a system dependent rou­
tine which is responsible for allo­
cating blocks of storage.

PCWADLLC
address of a system dependent rou­
tine which releases blocks of stor­
age.

PCWASDFT
the number of bytes that the stack
wi 11 be extended if an overflow
should occur. (Set by the STACK
run time option.)

PCWACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCWADSAS
the size of the smallest DSA. Its
value is 144.

PCWAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflows.

PCWAFLAG
a flag used when communicating
between different languages.

PCWAPICA
is used for a save area for the
PICA.

PCWASEED
contains the current seed for the
RANDOM function.

PCWAXEND
contains the true end of the cur­
rent stack. PCWA ENDS may not be
correct, PCWAENDS is made i ncor­
rect in order to force a call to

Code Generation for the IBM/370 101

AMPXMEMF so that a DSA may be ini­
ti al i zed (i f SETMEM opti on is
enabled) .

PCWAECNT
conta ins the number of non-fata 1
errors which will be tolerated
before the program will be abended.

PCWACHK
conta ins the address of the rout i ne
which gains control when a checking
error occurs. This routine is nor­
mally AMPXCHKR.

PCWACMEM
defines which heap is in use, nor­
mally the value is one, which indi­
cates that the users heap is
available.

PCWASTAX
contains the list form of the STAX
macro.

PCWAEOPN
a flag that indicates whether the
error fi Ie, PCWAEOUT has been
opened.

PCWADINT
is a flag indicating whether AMPD­
COM (debugger common area) has been
in it i ali zed yet.

PCWATSO
is a flag i ndi cati ng whether we are
executing in a TSO environment.

PCWAATTN
contains the address of the termi­
nal attention routine.

PCWAFCNT
contai ns the number o·f the next
generated DDname.

PCWASIZE
contains the size of the initial
allocation of the PCWA.

PCWADINA
contains the address of the AMPDI­
NIT routine, which initializes the
interactive debugger.

PCWABOPA
contains the address of
BOP routine, which is
each procedure entry
debugger is active.

PCWABBA

the AMPDI­
invoked at
when the

conta ins the address of the AMPDIBB
routine, which is invoked at each

102 Pascal/VS Programmer's Guide

basic block of code when the debug­
gerisactive.

PCWAERAD
contains the offending address
when a checking error or a program
error occurs.

PCWAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCWAENDA
address of the AMPDEPIL routi ne,
which is invoked from the epilogue
of each routine when the debugger
is active.

PCWAHDFT
the number of bytes that the heap
will be extended each time it over­
flows. (Set by the HEAP run time
option.)

PCWAPROC
reserved for future use.

PCWAUSER
reserved for Pascal/VS users.

PCWAEOUT
the file (PCB) to where execute
time error diagnostics is sent.

PCWAOUT
the PCB for the standard file OUT­
PUT.

PCWAIN
the PCB for the standard file
INPUT.

PCWAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

PCWAERSA
a small save area used when a SPIE
exit is invoked.

PCWAPIE
a place to save certain information
from the SPIE.

PCWASPIE
spi e work area

PCWAMEMA
descriptors used to control the
allocati on and deallocati on pol i­
ci es of dynami c storage and I/O
buffers.

J

J

12,8 PCB - PASCAL FILE CONTROL BLOCK

PCB =
record

PCBFIL EP
PCBFLAGS
PCBELEM
PCBNAME
PCB CODE
PCBBUFIDX:
PCBBUFLEN:
PCBBUFP
PCBOPTP
PCBLAST
PCBNEXT
PCBICBP
PCBSTART
PCBSTAT

endi

BUFFERPj
FILEFLAGSj
HALFWORDj
ALFA;
MagicNumberi
HALFWORDi
HALFWORDj
BUFFERPj
OPTPi
PCBP;
PCBP;
ICBP;
HALFWORDi
IOSTATUS;
CHARi
INTEGER;
INTEGERi
INTEGER;
INTEGER;

(*Pascal Control Block *)

C*file pointer *)
(*file flags *)
(*length of file component *)
(*file-variable name *)
(*initialization test *)
(*buffer index *)
C*buffer length *)
(*pointer to start of buffer *)
(*ptr to OPTIONs descriptor *)
C*link to last PCB of chain *)
(*link to next PCB of chain *)
(*ptr to Implem. Ctrl Block *)
(*initial value of PCBBUFIDX *)
C*status of last open *)
(*<not-used> *)
C*<not-used> *)
(*<not-used> *)
C*<not-used> *)
(*<not-used> *)

Figure 78. Pascal file Control Block (PCB) format

Every Pascal/VS file is represented by
a Pascal control block (PCB) An PCB is
composed of 64 bytes of space.

The fi elds are defi ned as:

PCBFILEP
poi nts to the current element of
the fi Ie.

PCB FLAGS
set of fi Ie flags (16 bi ts). The
flags are:

FINPUT i ndi cates that fi Ie is
open for input.

FOUTPUT i ndi cates that fi Ie is
open for output.

FlEXT the fi Ie is of type TEXT.

FEOLN end-of-line condition i s
true.

FEOF end-of-file condition i s
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an
interactive file.

FSlATUS the user will check

FFEOL

PCBSTAT and report the
errors.

end-of-line condition is
true, but not as a result
of READLN.

FOPTS

FWRAP

FERR

PCBELEM

an options string was spe­
cified in the last open.

indicates that one or more
lines of the text file
(opened for output) has
exceeded the logical
record length of the file.

i ndi cates that a read was
attempted after the
end-of-file condition
became true. Thi s flag is
used to suppress multi pIe
error di agnost i cs from a
single READ statement.

the length of one component of the
file.

PCB NAME
the DDNAME of the file.

PCB CODE
an encoded value that is used to
test whether the PCB has been ini­
tialized; this is not required for
fi les whi ch are local vari abIes but
is needed for files that are allo­
cated dynamically (HEW).

PCBBUFIDX
byte index into the I/O buffer
(PCBBUFP).

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address of the beg; nn i ng of the
buffer.

Code Generation for the IBM/370 103

PCBOPTP
address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce­
dures whi ch open a fi Ie and pass an
opti ons stri ng are! RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
PDSIN or PDSOUT.

PCB LAST
back chain of currently open PCBs.

PCBNEXT
forward chain of currently open
PCBs.

104 Pascal/VS Programmer's Guide

PCBICBP
points to a system dependent con­
trol block to be used by the lowest
level of interface to the I/O
access methods.

PCBS TART
contains the initial value of
PCBBUFIDX, which is used to deter­
mine if the current buffer contains
any data that needs processing pri­
or to clost ng the fi Ie.

PCBSTAT
status of the fi Ie.

13.0 INTER LANGUAGE COMMUNICATION

It is sometimes desirable to invoke
subprograms (procedures) written in
other programmi ng languages: thi sis
useful to obtain services not available
di rectly in PascallVS. It is al so
desirable to have a Pascal/VS procedure
called from a non-Pascal program: this
would allow you to take advantage of
Pascal in an existing application with­
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

We can divide inter-language communi­
cation into two classes:

FORTRAN

Assembler

COBOL

PLII

• The Pascal procedure is the calling
procedure and the non-Pascal pro­
cedure is being called.

• The Pascal procedure is called from
a non-Pascal calling procedure.

Your options
Figure 79.

are summarized in

Pascal as the calling language

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you to
call a subprogram written in
FORTRAN.

Define procedures and functions
in Pascal using the FORTRAN or
the EXTERNAL directive. If you
use EXTERNAL you will be able to
specify an arbitrary Pascal
parameter list.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
COBOL. You may desire to call
ILBOSTPO prior to calling a
COBOL program. Consult the
COBOL Programmer's guide for
details.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
PL/I. You should define the PL/I
procedure with the FORTRAN
option. Consult the PL/! OS
Programmer's guide for further
details.

Pascal as the called language

Use a call statement in FORTRAN
to call the Pascal procedure.
The Pascal procedure must be
defined with the MAIN directive.
After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).

Use a v-type constant in the
Assembler routine to define the
Pascal entry point. You must
define the Pascal procedure as
EXTERNAL, MAIN. or REENTRANT.
After the last call to a Pascal
procedure you must call PSCLHX.

Use a call statement in COBOL
to call the Pascal procedure.
COBOL should be compiled with
the 'NODYNAM' option and the
call must be a call of a
literal. The Pascal procedure
must be defined with the MAIN
directive. After the last call
to a Pascal procedure you must
call PSCLHX.

Use a call statement in PL/I to
call a Pascal procedure. The
PL/! procedure should specify the
Pascal as an EXTERNAL. After the
last call to a Pascal procedure
you must call PSCLHX.

Figure 79. Inter Language Communication

The details of Pascal/VS linkage con­
ventions are discussed in the chapter

"Code Generation for the IBM/370" on
page 93. You should familiarize your-

Inter Language Communication 105

self with this section - especially if
you plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Wri ti ng an Assembler language routi ne
for Pascal/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea­
sons for the need for these
conventions:

1. Pascal/VS parameter pass; n9 con­
ventions: As described in "Parame­
ter Passing" on page 97, Pascal/VS
parameters are passed in a variety
of ways, depending on their attri­
butes.

2. The Pascal/VS environment: This is
an arrangement of regi sters and
control blocks used by Pascal/VS to
handle storage management and run­
time error recovery. (see "Regis­
ter Usage" on page 93.)

13.,.1 Writing Assembler Routjne with
Minlmum Interface

Writing an Assembler routine with the
minimum interface require~j the least
knowledge of the runtime envi ronment.
However, such a routine has the follow­
ing deficiencies:

• It may not
routine;

anyname

call a Pascal/VS

•
•

It must be non-recursive;

If a program error should occur
(such as divide by zero), the Pas­
cal/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
Assembler language routine, register
14 contains the return address and reg­
ister 15 contains the starting address
of the routine. The routine must fol­
low the System/370 linkage conventions
and save the regi sters that wi 11 be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
will contain the address of the regis­
ter save area provided by the caller,
and register 1 will point to the first
of a list of parameters bei ng passed
(if such a list exists). Once the reg­
ister values are stored in the caller's
save area, the save area address (reg­
ister 13) must be stored in the
backchain word in a save area defined
by the Assembler routine itself.
Before returning to the Pascal/VS rou­
tine, the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 80,
your Assembler routi ne can be called
from a Pascal/VS routine and you need
have no knowledge of the Pascal/VS
environment.

procname

CSECT
ENTRY
DS
STM
BALR
USING
ST

procname
OH
14,12,12(13)
basereg,O
*,basereg
13,SAVEAREA+4
13,SAVEAREA

declare routine name as an entry point
entry point to routine

LA

L
LM
BR

SAVEAREA DC
END

13,4(13)
14,12,12(13)
14
20F'0'

save Pascal/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of Assembler routine

restore the floating point registers if
they were saved
restore Pascal/VS registers

return to Pascal/VS
local save area

Figure 80. Minimum interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

106 Pascal/VS Programmer's Guide

J

13.1.2 W~iting Assemble~ Routine with Gene~al Inte~face

procname PROLOG LASTREG=r,VARS=n,PARMS=p

EPILOG DROP=[YES]
NO

where:

p~ocname is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

VARS is the number of bytes required for any local data, including
passed-in parameters.

PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2 is to be dropped as a base regis­
ter after the epilogue is executed.

defaults:
LASTREG=12
VARS=O
PARMS=O

DROP=YES

Figure 81. PROLOG/EPILOG macros

If an Assembler rout i ne has at least
one of the following characteristics,
the general interface must be used:

•
•
•

It calls a Pascal/VS routine;

It is recursi ve;

Program errors must be intercepted
and diagnosed by the Pascal/VS run­
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epi logue of an Assembler rout i ne
with a general Pascal/VS interface.
The macro names are PROLOG and EPILOG
and their forms are described in the
fi gure above.

The PROLOG macro preserves any regis­
ters that are to be modified and allo­
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe­
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

• Register 1 - address of the parame­
ter list built by the caller, which

•

•

•

is 144 bytes into the DSA to be
used by the called routine.

Regi ster 12 - address of the Pascal
Communication Work Area (PCWA).

Regi ster 13 - address of the DSA of
the calling routine.

Register 14 - return address.

• Register 15 - address of the start
of the called routine.

Upon executi ng the code generated by
the PROLOG macro, the registers are as
follows:

• Regi ster 0 - unchanged

•

•

•
•
•

Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou­
tines.

Register 2 - base register for the
first 4096 bytes of code within the
invoked routine.

Registers 3 through 11 - unchanged.

Register 12 - unchanged

Register 13 - address of the local
DSA of the routine just invoked.
The first 144 bytes is the register
save area for the invoked routine.

Inter language Communication 107

•
•

Followi ng the save area is where
the parameters passed in by the
caller are located. Immedi ately
after the parameters is storage for
local variables followed by a
parameter list build area.

Register 14 - unchanged.

Regi ster 15 unpredictable .

established by the prologue. The macro
will cause register 2 to be dropped as
a base register unless DROP=NO is spec­
ifi ed.

The contents of the floating point reg­
isters are not saved by the PROLOG mac­
ro. If the floating point registers
are modified, they must be restored to
thei r ori gi nal contents pri or to
returning from the routine.

The EPILOG macro restore!; the saved
regi sters, then branches back to the
calling routine. In order for the epi­
logue to execute properly, register 13
must have the same contnnts as was

A skeleton of a general-interface
Assembler language routine which may be
called by a Pascal/VS program is given
below.

IE

* * * IE

* IE
IE

The following names have the indicated meaning
'csectnam' is the name of the csect in which the routine resides
'procname' is the name of the routine.
'parmsize' is the length of the passed-in parameters
'varsize' is the storage required for the local variables
'lastreg' is the highest register (up to 12) which will be modified
'plist' is the length of the largest parameter list required for calls

to other routines from "procname"

* csectnam CSECT

* procname PROLOG LASTREG=lastreg,VARS=varsize+parmsize,PARMS=plist

EPILOG
END

<== insert code here

Figure 82. General interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

108 Pascal/VS Programmer's Guide

13.1.3 Receiving Parameters From Rou­
tines

Parameters recei ved from a Pascal/VS
routine are mapped within a list in the
manner described in "Parameter
Passi ng" on page 97. At i nvocati on
register 1 contains the address of this
list.

If the general interface (see "Writing
Assembler Rout i ne wi th General Inter­
face" on page 107) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 Ca1lin~ Pascal/VS Routine from
Assembler Routlne

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

• the general Pascal/VS interface
was incorporated within the Assem­
bler routine, and

• the Pascal/VS routine to be called
is declared as external.

See Figure 84 on page 110 as
example.

If the Assembler routine was
invoked from a Pascal/VS routine,
the Pascal/VS run time environment
be set up prior to entering
Pascal/VS routi ne. To do thi s,

an

not
then
must

the
the

Pascal procedure must be declared with
the MAIN or REENTRANT directive. (See
Figure 86 on page 112 for an example.)
When such a procedu re is invoked for
the first time, a minimum environment
is created. On subsequent calls, thi s
environment is restored prior to exe­
cuti ng the procedure. To remove the
envi ronment (free stack space, etc.),
the procedure PSCLHX is provided.

Pri or to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate displacements from regis­
ter 1 as described in "Parameter
Passing" on page 97.

At the point of call, register 12 must
contain the address of the Pascal Com­
munications Work Area (PCWA>. This
will be the case if the Assembler rou­
tine was invoked from a Pascal/VS rou­
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into regi ster 15 and then the
instruction 'BALR 14,15' is executed.

13.1.5 Sample Assembler Routine

In Figure 83 on page 110 and Figure 84
on page 110, a sample Assembler routine
is listed which may be called from a
Pascal/VS program. Th is rout i ne exe­
cutes an OS TPUT macro to write a line
of text to a user's terminal.

Inter Language Communication 109

type
BUFINDEX = 0 .. 80;
BUFFER = packed array[1 .. 80] of CHAR;

(*this routine is in assembly language*)

procedure TPUTC
canst BUF : BUFFER;

LEN : BUFINDEX);
EXTERNAL;

(*this routine is called from the assembly language routine*)
procedure ERROR(

RETCODE: INTEGER;
canst MESSAGE: STRING);

ENTRY;
begfn

WRITELtH OUTPUT, MESSAGE, , RETURN CODE =' RETCODE)
end;

Figure 83. Pascal/VS description of Assembler routine: the Assembler rou­
tine is shown in Figure 84.

CSECT TIGSEG
TPUT PROLOG LASTREG=4,VARS=8 only registers 3 and 4 are modified
*

* TPUTRET

* TPUTMSG
TPUTTEXT

L
L
TPUT
LTR
BZ

ST
LA
ST
L
BALR

EPILOG

3,144(13)
4,148(13)
(3),(4)
15,15
TPUTRET

15,0(1)
3,TPUTMSG
3,4(1)
15,=VCERROFD
14,15

DC AL2(L'TPUTTEXT)
DC C'TPUT ERROR'
END

load address of 'BUF' parameter
load value of 'LEN' parameter
write content of 'BUF' to terminal
check return code
if no error then return
build parm list for call to 'ERROR'
assign to 'RETCODE' parameter
load address of message
assign to 'MESSAGE' parameter
load address of 'ERROR' procedure
call 'ERROR'

halfword length of string
message text

Figure 84. Sample Assembler routine: this routine is invoked by a
Pascal/VS routine and, within itself. invokes a Pascal/VS rou­
tine.

110 Pascal/VS Programmer's Guide

J

J

13.1.6 calling a Pascal/VS Main Pro­
gram from Assembler Routine

A Pascal/VS program may be invoked from
an Assembler language routine by load­
i ng a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

Program to be called:

program test;

begin

end.

The convention employed in passing
parameters to a program is dependent on
whether you are runni n9 under CMS Or'
under TSO (or OS Batch). Both con­
ventions require that register 1 be set
to the address of the parameter data.

Assembler instructions to perform the call under CMS:

LA l,PLIST
L IS, =VCTEST)
BALR 14,15

PLIST DS OF
DC CL8'TEST'
DC CL8'token 1 '
DC CL8'token 2'

DC CL8'token n'
DC 8X'FF'

Assembler instructions to perform the call under VS2 (and TSO):

LA 1, PLIST
L 15,=VCTEST)
BAlR 14,15

PLIST DS
DC
DC

OF
XLl'80'
AL3(PARMS)

set first bit of address

PARMS DC
DC

Fl2'length' length of parameter string
C'parm string goes here'

Figure 85. Example of calling a Pascal/VS program from an Assembler routine

Inter language Communication 111

Pascal/VS procedure to be called:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);

MAIN;
procedure SQUARE;

begin
X := X * X

end; .

Assembler routine to call Pascal/VS procedure:

TOSQ CSECT
USING *,15 establish addressabilitv
STM 14,12,12(13) save callers registers
ST 13,SAVEAREA+4 save address of callers save area
BAlR 2,0
USING *,2 establish addressabilitv
LA 13,SAVEAREA set new save area
LA 1, PLISTl Reg 1 points to parameter list
L 15,=V(SQUARE) load address of Pascal procedure
BALR 14,15 call SQUARE
LA 1, PLIST2 reg 1 points to parameter list
L 15,=V(PSCLHX) load address of Pascal procedure
BALR 14,15 call PSCLHX to terminate environment
L 13,SAVEAREA+4 return
LM 14,12,12(13)
BR 14

PLISTl DC A(X) PARAMETER LIST
X DC D'4.0'
PLIST2 DC A(ZERO) PARAMETER LIST
ZERO DC F'O'
SAVEAREA OS 18F

END

Figure 86. Example of Assembler as the caller to Pascal/VS

112 Pascal/VS Programmer's Guide

J

Pascal/VS program which invokes an Assembler routine named SUM:

program FROMPSCLi
procedure SUM(var I

const J
FORTRANi

var
I,J :INTEGERi

begin
I : = 0 i

do

INTEGERi
INTEGER)i

(*Pascal program heading

(*Define two local variables

(*Set running sum to zero
(*loop through ten values for J := 1 to 10

begin
SUMCI,J)i
WRITELN(' The

endi

(*compute the next sum
current running sum is ',I:O)i

end (*FROMPSCL

Assembler routine which is being invoked from Pascal program:

SUM CSECT
USING *,15 establish addressability
STM 14,12,12(13) save callers registers
ST 13,SAVEAREA+4 save address of callers save area
BALR 5,0
USING *,5 establish addressability
LA 13, SAVEAREA set new save area
L 2,0(1) get address of I
L 3,0(2) get I
L 4,4(1) get address of J
A 3,0(4) I = I + J
ST 3,0(2) return the new value of I
L 13,SAVEAREA+4 return
LM 14,12,12(13)
BR 14

SAVEAREA DS 18F
END

Figure 87. Example of Pascal/VS as the caller to Assembler

Inter Language Communication 113

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and Pas­
ca!/VS is accompl i shed by use of the
MAIN directive (FORTRAN to Pascal/VS)
and the FORTRAN directive (Pasca!/VS to
FORTRAN) .

13.2.1 Pascal/VS as the Caller to
FORTRAN

Data may be passed between FORTRAN and
Pasca!/VS through the parameter list or
FORTRAN COMMON. If you choose to COM­
MON, spec i fy the name of the COMMON
b!ock as a Pasca!/VS def variable.

Pascal/VS program that calls a FORTRAN subroutine:

program FROMPSCL;
procedure SUMevar I

canst J
FORTRAN;

var

INTEGER;
INTEGER);

(*Pascal program heading

I,J :INTEGER; (*Define two local variables *)
begin

I := 0; (*Set running sum to zero *)
for J := 1 to 10 do (*loop through ten values *)

begin
SUMCI,J)j C*compute the next sum *)
WRITELN('The current running sum is ',1:0);

end;
end

FORTRAN subroutine:

SUBROUTINE SUMCI,J)
I = I + J
RETURN
END

C*FROMPSCL ~o

Figure 88. Example of Pascal/VS as the caller to FORTRAN

The FORTRAN di recti ve instructs
Pascal/VS to utilize exactly the same
call i ng convent ions emp!oyed by FOR­
TRAN. This restricts the form of the
parameter list, namely you may not pass
a parameter by value; you may pass a
parameter by var or by canst. If you
choose the latter mechanism, the FOR­
TRAN subprogram must not modi fy the
parameter.

114 Pascal/VS Programmer'~; Guide

Execution errors that occur during the
execution of the FORTRAN program wi!l
be handled by the Pasca! runtime sup­
port routines. If you desire to enable
the error handling of FORTRAN you
should invoke "VSCOM#" at the appropri­
ate entry poi nt. Consult the VS
FORTRAN Appl i cati on Programmi ng GUt de
SC26-3985 for details

J

13.2.2 FORTRAN as the Caller to Pas­
ca1/VS

Pasca1/VS procedure to be called from FORTRAN program:

SEGMENT SQUARE;
procedure SQUAREevar X : REAL);

MAIN;
procedure SQUARE;

beg;n
X := X * X

end; .

FORTRAN program that invokes Pascal procedure:

REAUE8 AREAL
AREAL = 4.0
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL

C TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(O)
STOP

1 FORMAT (F12.0)
END

Figure 89. Example of FORTRAN as the caller to Pascal/VS

Pascal/VS permits a FORTRAN program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establ ish the appropri ate anv i ron­
ment for its execution. Subsequent

calls will use the same environment
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

13.3 PASCAL/VS AND COBOL

Communi cat i on between COBOL and
Pascal/VS is accomplished by use of the

13.3.1 Pascal/VS as the Caller to
COBOL

MAIN directive (COBOL to Pascal/VS) and
the FORTRAN directive (Pascal/VS to
COBOL).

Pascal program that calls a COBOL subprogram:

program FROMPSCL;
procedure SUMX(var I : INTEGER;

const J : INTEGER);
FORTRAN;

var

(lEPascal program heading

I,J :INTEGER; <IEDefine two local variables IE)
beg;n

I := OJ <IESet running sum to zero IE)
fer J := 1 to 10 do <lEloop through ten values IE)

beg;n
SUMX(I,J); (lEcompute the next sum IE)
WRITELN('The current running sum is ',1:1);

end;
end

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
LINKAGE SECTION.

(IEFROMPSCL

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.
PROCEDURE DIVISION USING I J.

ADD J TO I.
GOBACK.

Figure 90. Example of Pascal/VS as the caller to COBOL

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by FOR­
TRAN which is also equivalent to COBOL.
This restricts the form of the parame­
ter 1 i st, namely you may not pass a
parameter by value; you may pass a
parameter by var or by const. If you
choose the latter mechanism, the COBOL
subprogram must not modify the parame­
ter.

Execution errors that occur during the
execution of the COBOL program will be
handled by the Pascal runtime support

116 Pascal/VS Programmer's Guide

routines. Pascal will not issue a call
to ILBOSTPO (whi ch sets up the COBOL
error recovery). You may call thi s
routine if you would like the "STOP
RUN" statement of COBOL to treat the
Pascal calling procedure as a main
entry point of a COBOL program. Con­
sult the OS/VS COBOL Compjler and
Library Programmer's Guide, SC28-6483
for detai Is.

A COBOL program which is communicating
with Pascal/VS must llQ1 use the dynamic
loading feature.

J

J

L

13.3.2 COBOL as the Caller to
pascal/Vs

Pascal procedure that is to be called from COBOL:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);

MAIN;
procedure SQUARE;

begin
X := X lE X

end; .

COBOL program which calls a Pascal procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
LINKAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
11 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE 2 TO AREAL.
CALL "SQUARE" USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 91. Example of COBOL as the caller to Pascal/VS

Pascal/VS permi ts a COBOL program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ­
ment for its execution. Subsequent

calls wi 11 use the same envi ronment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
i nvok i ng the procedure "PSCLHX". If
Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 117

13.4 PASCAL/VS AND PL/I

Communication between PL/I and
Pascal/VS is accomplished by use of the
MAIN directive (PL/I to Pascal/VS) and
the FORTRAN ,directive (Pascal/VS to

13.4.1 Pascal/VS as the Caller to
PL/I

PUI). In addition, you may USQ the
REENTRANT directive instead of the MAIN
directive in order to develop a REEN­
TRANT call to Pascal.

Pascal program which calls a PL/I procedure:

program FROMPSCL;
procedure SUM(var I

const J
FORTRAN;

var

INTEGER;
INTEGER);

(*Pascal program heading

I, J : INTEGER; (*Defi ne two local vari abIes *)
begin

I := 0; (*Set running sum to zero *)
for J := 1 to 10 de (*loop through ten values *)

begin
SUM(I,J); (*compute the next sum *)
WRITELN('The current running sum is ',1:0);

end;
end (*FROMPSCL

PL/I procedure that is invoked from Pascal:

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCL (I,J) FIXED BINARY(31,0);
I = I + J;
RETURN;
END;

Figure 92. Example of Pascal/VS as the caller to PL/I

The FORTRAN di recti ve instructs
Pascal/VS to utilize exactly the same
call i ng convent ions employed by FOR­
TRAN. PL/I will employ FORTRAN calling
conventi ons if "FORTRAN" is speci fi ed
in the OPTIONS clause. Cc)nsult the
PL/I Programmer's Guide, SC33-0037
(CMS) and SC33-0006 (OS) for details.

118 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list, namely you
may not pass a parameter by value; you
may pass a parameter by either var or
canst. If you choose to latter mech­
anism, the PL/1 procedure must not
modify the parameter.

J

J

13.4.2 PL/I as the Caller to
Pascal/VS

Pascal procedure which is called from Pl/I:

SEGMENT SQUARE;
procedure SQUAREevar X : REAL);

MAIN;
procedure SQUARE;

begin
X := X IE X

end; .

Pl/I program which calls a Pascal procedure:

TOSQ: PROC OPTIONS(MAIN);
DCl SQUARE ENTRY EXTERNAL;
DCl PSCLHX ENTRY(FIXED BINARY(31,O» EXTERNAL;
Del ZERO FIXED BINARY(31,O);
AREAL:: 4.0;
CALL SQUARECAREAL);
PUT LISHAREAl);
CALL SQUARECAREAl);
PUT LIST(AREAL);
CALL SQUARECAREAL);
PUT LISHAREAl);
CALL SQUARE(AREAL);
PUT LIST(AREAl);
ZERO = OJ
CALL PSCLHX(ZERO)j
END;

Figure 93. Example of PL/I as the caller to Pascal/VS

Inter Language Communication 119

Pascal procedure which is called from a reentrant PL/I program:

SEGMENT SQUARE;
procedure SQUARE(var E : INTEGER; var X : REAL);

REENTRANT;
procedure SQUAREj

begin
X := X * X

end;. . ~

Reentra~t Pl/I program which invokes a Pascal procedure:

TOSQ: PROC OPTIONStMAIN REENTRANT);
DCl SQUARE ENTRY EXTERNAL;
DCl PSClHX ENTRY(FIXED BINARY(31,0» EXTERNAL;
DCl SAVE FIXED BINARY(31,0)j
AREAL = 4.0;
SAVE = 0;
CAll SQUARECSAVE,AREAl);
PUT lISTCAREAl)j
CAll SQUARE(SAVE,AREAl)j
PUT LISTCAREAl);
CAll SQUARECSAVE,AREAl);
PUT lISTCAREAl);
CAll SQUARECSAVE,AREAl);
PUT LISTCAREAU;
CAll PSClHX(SAVE);
END;

Figure 94. Example of Pl/I as the caller to Pascal/VS: Use of the REEN­
TRANT directive

Pascal/VS permi ts a Pl/I program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
that has a MAIN di rective associated
with it will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSClHX will dispose of the
Pascal environment and release all mem­
ory that it utilizes.

The Pascal/VS run time support wi 11
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro­
gram must be reentrant. In thi s case
you must assi st Pascal/VS in keepi ng
track of the location of the Pascal/VS
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parameter, a FIXED BIN(31,0) var­
iable which has been set to the value
zero. Upon return from the first call,

120 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas­
cal/VS environment. This variable
should be passed unaltered to subse­
quent calls so that the Pascal/VS
environment may be reentered.

To terminate the Pascal/VS environment
that was set up by the REENTRANT proce­
dure, the "PSClHX" should be called
wi th the vari able that conta ins the
address. See Figure 94 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for which the language was intended.
When passing data between programs
written in different languages you must
be aware which data types are the same
and where there is no equivalent repre­
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
however, you can often create new user
data types in Pascal that will simulate
some of the data types found in other
languages. For example, you could
define a record type that is identical
to FORTRAN's COMPLEX type.

J

L

Figure 95 on page 121 compares Pascal
data types with the equivalent in FOR­
TRAN, COBOL and PL/I.

Pascal/VS makes no attempt to remap any
storage when an inter-language call is
made. This means that beause FORTRAN

stores its arrays in column-major order
and Pascal stores its arrays in
row-major order, a call between FORTRAN
and Pascal/VS procedures appears to
transpose the array.

Data Type Equivalences Between Different Langauges

Pascal/VS

CHAR

BOOLEAN

INTEGER

packed
-32768 .. 32767

packed
0 .• 65536

packed -128 .. 127

packed O •• 255

REAL

SHORTREAL

packed
array[1 .. n] of

CHAR

STRINGCm)

set of O •• n

Q) i d

array

record

space

FORTRAN

CHARACTER*1

LOGICAUEl

INTEGER*4

INTEGER*2

na

na

na

REAL*8

REAL*4

CHARACTER*n

na

na

na

dimensioned
variable

na

na

Figure 95. Data Type Comparisons

COBOL PL/I

PIC X CHAR

na FIXED BINARYCl, 0)

PIC S999999999 FIXED BINARYC31, 0)
USAGE IS COMP

PIC S9999 USAGE FIXED BINARY(15,O)
IS COMPUTATIONAL

na na

na FIXED BINARYC7, 0)

na na

COMPUTATIONAL-2 REAL FLOAT DEC(16)

COMPUTATIONAL-1 REAL FLOAT DEC(6)

PIC XCn) or CHARCn)
PIC X OCCURS n

TIMES

na CHARCm) VARYING

na BIHn+l)

na POINTER

OCCURS dimensioned
vari able

record structure

na AREA

Inter Language Communication 121

122 Pasca1/VS Programmer's Guida

14.0 RUNTIME ENVIRONMENT OVERVIEW

14.1 PROGRAM INITIALIZATION 4. The main program is called.

Upon invoking a Pascal/VS program, the
routine which is responsible for estab­
lishing the Pascal/VS execution time
environment gains control and performs
the following functions:

5. Upon return from the main program
any open fi les are closed.

6. Acquired memory is freed.

7. Control is returned to the system.

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated. 14.2 THE MAIN PROGRAM

2. The Pascal Communication Work Area
(PCWA) is created and initialized. The main program is called as an ordi­

nary procedure from the environment
setup routine (PASCALVS). The entry
point name of the main program is AMP X­
BEGN.

3. An environment is set up to inter­
cept program interrupts (fi xed
point overflow, divide by zero,
etc.)

14.3 EXECUTION SUPPORT ROUTINES

Procedure name

AMPXBCLK
AMPXCHKS
AMPXCLCK
AMPXCRTE
AMPXDATE
AMPXDATI
AMPXDBCB
AMPXECLK
AMPXGOTO
AMPXGTOK
AMPXG12
AMPXG13
AMPXHALT
AMPXINIT
AMPXMAIN
AMPXMOVE
AMPXMUS
AMPXNAME
AMPXPAD
AMPXPARM
AMPXRETC
AMPXSETV
AMPXSPAR
AMPXTERM
AMPXTOK
AMPXTRAC
AMPZABND
AMPZCVD
CMS
PASCALVS
PSCLHX

Execution Support Routines

Action Performed

Initializes the execution clock
Checks a set for membership
Interogate the execution clock
Initialize the PCWA
DATETIME procedure
System date and time
Obtains a procedures DBCB pointer
Ends the the execution clock
Handles goto out of block
Obtains a token from user's execution parameters
Returns the contents of register 12
Returns the contents of register 13
HALT procedure
Initializes prior to execution of a Pascal program
Interface for calling Pascal for other languages
Memory to memory move
Adds elements to a set
Obtains a procedures name
Memory fill memory with blanks
PARMS function
RETCODE procedure
Memory fill of with a value
Intialize for PARMS function
Termination after execution of a Pascal program
TOKEN procedure
TRACE procedure
Abnormal termination routine
Convert to decimal
eMS procedure
Main entry point for a Pascal/VS main program
Terminates execution for interlanguage calls

These rout i nes prov ide mi scellanaous
functions such as program initializa-

t i on and low level rout i nes such as
fast memory move.

Runtime Environment Overview 123

14.4 INPUT/OUTPUT ROUTINES

Procedure name

AMPXCLOS
AMPXCOLS
AMPXGET
AMPXGETR
AMPXOPEH
AMPXOPHI
AMPXOPt-!2
AMPXPARS
AMPXPCBC
AMPXPDS
AMPXPUT
AMPXRCHR
AMPXRIHT
AMPXRLIN
AMPXRR
AMPXRRDY
AMPXRREC
AMPXRSTR
AMPXRTXT
AMPXSEEK
AMPXSTAT
AMPXTIO
AMPXWB
AMPXWCHR
AMPXWCHS
AMPXWIHT
AMPXWLIN
AMPXWR
AMPXWRDY
AMPXWREC
AMPXWSTG
AMPXWTXT
AMPYCLOS
AMPYDFLT
AMPYGET
AMPYOPEN
AMPYPAGE
AMPYPDS
AMPYPUT
AMPYSEEK
AMPZDAMR
AMPZDAMW
AMPZDCBC
AMPZDCBO
AMPZFIND
AMPZGET
AMPZPUT
AMPZPUTX
AMPZSAMR
AMPZSAMW
AMPZSTOW
AMPZTGET
AMPZTPUT

Internal Input/Output Routines

Action Performed

CLOSE procedure
COLS function
GET procedure (TEXT files)
GET procedure
RESET, REWRITE or UPDATE procedures
Initializes a PCB prior to opening
Sets a PCB after opening
Analyze the optional string on RESET or REWRITE
Closes a file (PCB)
PDS support routines (PDSIN and PDSOUT)
PUT prc)cedure
Reads into a CHAR
Reads into an INTEGER
Reads to end of line (TEXT file)
Reads a REAL value
Prepares a TEXT file for input
Reads one record (non TEXT files)
Reads into a STRING
Reads into an array of CHAR
SEEK procedure
Obtains the status of a file
Terminate I/O processing
Writes a BOOLEAN value
Moves data to an I/O output buffer
Writes a CHAR to a TEXT file
Writes an INTEGER to a TEXT file
Writes an end-of-line to a TEXT file
Writes a REAL value
Prepares a TEXT file for output
Writes one record (non TEXT files)
Writes a string to a TEXT file
Writes an array of CHAR to a TEXT file
System dependent QSAM close
Applies System dependent defaults to a file
System dependent get procedure
System dependent QSAM open
PAGE procedure
System dependent PDS interface
System dependent put procedure
System dependent seek procedure
Issues a READ for a BDAM data set
BDAM write procedure
Close on an OS DCB
Open on an OS DCB
I ssue!:, OS FIND
Issues a QSAM GET
Issues a QSAM PUT
Issues a QSAM PUTX
Issues a READ for a BSAM data set
BSAM write procedure
Issue~; OS STOW
Issues a TGET (OS) or RDTERM (CMS)
Issues a TPUT (OS) or WRTERM (CMS)

The I/O operat ions (whi ch appear as
calls to predefined procedures in Pas­
cal/VS) are implemented as calls to

internal procedures within the runtime
environment.

124 Pascal/VS Programmer's Guide

J

14.5 ERROR HANDLING

Error Handling

Procedure name Action Performed

AMPXCHKR Intercepts execution time checking errors
AMPXDIAG Intercepts program exceptions
AMPXERR General execution time error handler
AMPXIOER I/O error intercept routine
ONERROR Default ONERROR procedure

When the runtime environment detects an
error condition, it calls a routine to
handle the error. There. are several
different routines, one routine for
each of class of error (e.g. I/O error,
program except i on etc). The rout i ne

AMPXERR is the central routine, it is
always called from the other routines!
it then calls ONERROR, the user pro­
vided error handler, and then completes
the error handling.

14.6 CONVERSION ROUTINES

Conversion Routines

Procedure name Action Performed

AMPTTOR Converts a REAL (EBCDIC) to REAL
AMPXBTOS BOOLEAN to string conversion
AMPXCTOS Converts a CHAR to a string
AMPXSTOS Converts a string to a string
AMPXITOS Converts an INTEGER to a string
AMPXOTOS Converts an offset in a procedure to a statement number
AMPXPACK PACK procedure
AMPXRTOS Conversion for a REAL to a STRING
AMPXSTOC Conversion for a STRING to a CHAR
AMPXSTOG Conversion for a STRING to a STRING
AMPXSTOI Conversion for a STRING to an INTEGER
AMPXSTOR Converts a REAL (EBCDIC) to REAL
AMPXSTOT Conversion for a STRING to an array of CHAR
AMPXTTOS Appends an array of CHAR to a string
AMPXUCAS Lower case to upper case conversion
AMPXUNPK UNPACK procedure
ITOHS Integer to hexadecimal string conversion

There are several places where
Pascal/VS must perform data conver­
si ons. They take place when you are

doi ng I/O on TEXT fi les and when you
use READSTR and WRITESTR.

Runtime Environment Overview 125

14.7 MATHEMATICAL ROUTINES

Mathematical Routines

Procedure name Action Performed

AMPXATAN ARCTAN function
AMPXCOS COS function
AMPXEXP EXP function
AMPXLN' LN function
AMPXRAND RANDOMI procedure
AMPXSIN SIN function
AMPXSQRT SQRT

The predefined functions are provided
as Pascal/VS functions. The Pascal/VS
compiler changes the user provided name

14.8 STRING ROUTINES

String

Procedure name Actio" Performed

Ar1PX$COM COMPRESS function

(e.g. SIN) to an internal name (e.g.
AMPXSIN) .

Routines

(long strings)
AMPX$DEL DELETE function (long strings)
AMPX$LTR LTRIM procedure (long strings)
AMPX$SUB SUBSTR function (long strings)
AMPX$TRI TRIM function (long strings)
AMPXCAT Concatenates 2 to 9 strings
AMPXCOMP COMPRESS function (short strings)
AMPXDELE DELETE functi on (short strings)
AMPXINDX INDEX procedure
AMPXLTRI LTRIM procedure (short strings)
AMPXSUBS SUBSTR function (short strings)
AMPXTRIM TRIM function (short strings)
LPAD LPAD procedure (see Appendix C)
PICTURE PICTURE function (see Appendix C)
RPAD RPAD procedure (see Appendix C)

The predefined functions and proce­
dures are provided as Pascal/VS func­
t ions and procedures. The Pascal/VS
compiler changes the user provided name
(e.g. SUBSTR) to an internal name (e.g.
AMPXSUBS). Several routines are pro­
vided in two forms: long and short.
The short form is always used if possi-

126 Pascal/VS Programmer's Guide

ble. In order to use the short form
the Pasca1/VS campi ler must determi ne
that the resulting string will be less
than 1000 bytes long. If the size
can't be limited by compiler analysis,
the compiler uses the long form which
passes the results through the heap.

J

14.9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines

Procedure name Action Performed

AMPXALOC Basic storage allocator
AMPXDISP DISPOSE procedure
AMPXFREE Basic storage de-allocator
AMPXIDSP Dispose for the I/O routines
AMPXINEW New for the I/O routines
AMPXMARK MARK procedure
AMPXNEW NEW procedure
AMPXVNEW HEW procedure (when record is allocated wi th tags)
AMPXRLSE RELEASE procedure
AMPXTMEM Termination processing for memory management

The HEW procedure generates a call to
the internal procedure AMPXNEW. Thi s
procedure allocates storage within a
heap. If a heap has not yet been cre­
ated, HEW will obtain memory from the
operating system to create a heap.

The DISPOSE procedure generates a call
to the procedure AMPXDISP. This proce­
dure deal locates the heap storage
acqu i red by a precedi ng call to
AMPXNEW.

The MARK procedure generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from whi ch 5ubse-

quent calls to AMPXNEW will obtain sto­
rage.

The RELEASE procedure generates a call
to the procedure AMPXRLSE. This proce­
dure frees a heap that was previously
created via the AMPXMARK procedure.
Subsequent calls to AMPXNEW will obtain
storage from the heap which was active
prior to the call of AMPXMARK.

The I/O routines have access to a sepa­
rate heap is controlled with the rou­
tines AMPXIHEW and AMPXIDSP. Thus, I/O
buffers and file control blocks are in
a di sti nct area from the users area.

Runtime Environment Overview 127

J

J
128 Pascal/VS Programmer's Guide

Release 2.1 of Pascal/VS has several
differences from "standard" Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have sui table
facilities.

15.1 PASCAL/VS RESTRICTIONS

Pascal/VS contains the
restrictions that are not
Pascal.

following
in standard

Conformant array parameters
The conformant array mechanism for
passing array variables to rou­
tines is not supported.

Note: Conformant arrays are only
required by the ISO level 1 standard;
the ISO level 0 standard and the ANSI
standard do not require them.

Note: In Release 2.0, procedures which
are passed as parameters were
restri cted to the outer most nest i ng
level. In Release 2.1, this restric­
tion was removed.

15.2 MODIFIED FEATURES

Pascal/VS has modified the meaning of a
negative length field qualifier on an
operand within the WRITE statement.

15.3 NEW FEATURES

Pascal/VS provides a number of exten­
si ons to Pascal.

•

•

•

•

•

Separately compi lable modules are
supported wi th the SEGMENT defi­
nition.

"Internal static" data is sup­
ported by means of the static dec­
larations.

"External static" data is sup­
ported by means of the def and ref
declarations.

Static and external data may be
initialized at compile time by
means of the value declaration.

Constant expressions are permitted
wherever a constant is permi tted
except as the lower bound of a sub­
range type definition.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

15.0 COMPARISON TO PASCAL

The keyword "range" may be prefixed
to a subrange type definition to
permi t the lower value to be a con­
stant expression.

A varyi ng length character stri;,g
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, L TRIM, COM­
PRESS, INDEX, TOKEN, READSTR and
WRITESTR.

A new predefi ned type, STRINGPTR,
has been added that permits you to
allocate strings with the NEW pro­
cedure whose maximum size is not
defined until the invocation of
NEW.

A new parameter passi ng mechan ism
is provided that allows strings to
be passed into a procedure or func­
tion without requiring you to spec­
ify the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari­
able can assume.

Calls to FORTRAN subrout i nes and
functions are provided for.

The MAIN directive permits you to
define a procedure that may be
invoked from a non Pascal environ­
ment. A procedure that uses thi s
directive is not reentrant.

The REENTRANT directive permits
you to define a procedure that may
be invoked from a non Pascal envi­
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures!
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PDSOUT.

The parameters of the text fi Ie
READ procedure may be
length-qualified.

Files may be opened for updat i ng
with the UPDATE procedure.

Input files may be opened as "IN­
TERACTIVE" so that I/O may be done
conveniently from a terminal.

Comparison to Pascal 129

•

•

•

•

•
•

Files may be opened for' terminal
input (TERMIN) and terminal output
CTERMOUT> so that 1/0 may take
place directly to the user's termi-
nal without going thr'ough the
DDname interface.

Files may be accessed based on rel-
ative record number (random
access) .

The PDSIN procedure opens a parti­
tioned dataset (or MACLIB) for
input. The PDSOUT procedure opens
a partitioned dataset (or MACLIB)
for output. A string parameter is
required to set the member name.

The space structure is provided for
processing packed data.

Records may be packed to the byte.

The tagfield in the variant part of
a record may be anywhere within the
fixed part of the record.

• Fields of a record may be unnamed.

•

•

•

•

•

•

•

•

•

•

Tag specifications on record vari­
ants may be ranges (x .. y).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators 'I', '&', 'ii' and
,~, may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basi s. Shi ft operat ions on data
are also provided.

Integer constants may be expressed
in binary and hexadecimal digits.

Real constants (floating point)
may be expressed in hexadecimal
digits.

Stri ng constants may be expressed
in hexadecimal digits.

The XINCLUDE facility provides a
means to include source code from a
library.

A parameter passing mechanism
(const) has been defined which
guarantees that the actual parame­
ter is not modi fi ed ~"et does not

130 Pascal/VS Programmer's Guide

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

require the copy overhead of a pass
by value mechanism.

leave, continue and return are new
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val­
ue or an identifier.

case statements
notation on the
ments.

may have a range
component state-

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permi ts run­
time checks to be compiled !nto the
program.

The followi ng system interface
procedures are supported: DATE­
TIME, CLOCK, PARMS and RETCODE.

Constants may be of a structured
type (namely arrays and records).

To control the compi ler Ii sti ng,
the following listing directives
are supported: XPAGE, XCPAGE,
%SKIP, and XTITLE.

The HALT procedure has been added
to exit the program from an arbi­
trary location.

The TRACE procedure prints the
trail of routine invocations.

The LOWEST, HIGHEST, lBOUND,
HBOUND and SIZEOF functi ons pro­
vide a means of acquiring informa­
tion variables and types.

MARK and RELEASE provide a means of
controlling dynamic variable allo­
cation.

Both si ngle and double preci si on
floating point numbers are pro­
vided using the SHORTREAL and REAL
types.

Identifiers may contain a dollar
sign ($) anywhere a letter may go
and an underscore (_) anywhere a
digit may go.

The predefi ned constants MINREAL
and MAXREAL contain the values of
the smallest and largest real num­
bers, respectively.

The ADDR function returns the
address of a variable.

J

J

16.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and 43xx
computers providing one of the follow­
ing operating environments:

• VM/CMS

I •
•

VM/PC

OS/VS2 TSO

• OS/VS2 Batch

16.2 MEMORY REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro­
gram can be performed ina 256K Ct-IS
machine.

The compiler requires a minimum region
si ze of 512K under VS2 (MVS). A com­
piled and link-edited program can exe­
cute in a 128K region.

The compi ler is reentrant and may be
loaded ina shared area in MVS or
mapped to a shared segment in CMS.
However, the Pascal/VS PIO materials do
not contain procedures to do this.

16.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions
Pascal/VS "short ci rcui ts" boo­
lean expressions involving the
and and or operators. For exam­
ple, given that A and B are boo­
lean expressions and X is a
boolean variable, the evaluation
of

X := A or B or C

would be performed as

if A then
X := TRUE

else
if B then

X := TRUE
else

X := C

The evaluation of

16.0 IMPLEMENTATION SPECIFICATIONS

X := A and Band C

would be performed as

if -A then
X := FALSE

else
if -B then

X := FALSE
else

X := C

See the section entitled "Boole­
an Expressions" in the Pascal/V5
language Reference Manual for
more detai Is.

Floating-point
Some commonly required charac­
teri stics of System/370 float­
ing-point arithmetic are shown
in Figure 96 on page 132.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a lon­
ger name, it will ignore that
portion of the name longer than
16 characters.

Names of external variables and
external routines must be unique
wi thi n the fi rst 8 characters.
Such names may not conta in an
underscore' , within the first 8
characters.

Integers
The largest integer that may be
represented is 2147483647. 17

This is the value of the prede­
fined constant MAXINT.

The most negati ve integer that
may be represented is
-2147483648. Thi sis the value
of the predefi ned constant MIN­
INT.

Routine nesting
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The followi ng standard rout i nes
may not be passed as parameters
to another routine:

ABS, ADDR, CHR, CLOSE, DISPOSE,
EOF, EOlN, FLOAT, GET, HBOUND,
HIGHEST, lBOUND, lENGTH, lOWEST,
MARK, MAX, NEW, 000, ORO, PACK,
PAGE, PDSIN, POSOUT, PRED, PUT,
READ, REAOlN, REAOSTR, RELEASE,
RESET, REWRITE, ROUND, SIZEOF,
SQR, STR, SUCC, TERMIN, TERMOUT,

17 This is the highest signed value that may be represented in a 32 bit word.

Implementatlon Specifications 131

Floating-point Characteri st i cs

Characteristic Decimal approximation Exact Representation1

Maxrea1 2 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR

Minrea1 3 5.39760534693403E-79 'OOlOOOOOOoooOaOO'XR

Epsilon 4 1.38777878078145E-17 '3310000000000000'XR

1 The syntax ' ••• 'XR ;, s the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the
Pascal/VS Language Reference Manual.

2 Maxreal is the lal~gest finite floating-point number that may be
represented. Its value is in the predefined constant MAXREAL.

3 Minreal is the smallest positive finite floating-point number that
may be represented. Its value is in the predefined constant MINREAl.

4 Epsilon is the smallest positive floating-point number such that the
followi ng condition holds:

1.0+epsilon > 1.0

This value is often needed in numerical computations involving con-
verging series.

Figure 96. Characteristics of System/370 floating point arithmetic

sets

TRUNC, UNPACK, UPDATE, WRITE,
WRITElN, WRITESTR

A FORTRAN function or subroutine
may not be passed as a parameter
to a Pascal/VS routine.

Given a set type of th~ form

set of a .. b

where "a" and "b" express the
lower and upper bounds of the
base scalar type, the followi ng
conditions must hold:

132 Pascal/VS Programmer's Guide

Size

• ORDCa) >= 0

• ORDCb) <= 255

1 i mitat ions
The si ze of a si ngle procedure or
function must not exceed 8192
bytes of generated code. 8192
bytes represent approximately
400 Pascal statements, depending
on the complexity of the state­
ments. The compi ler wi 11
generate a di agnost i c if thi s
limit is reached.

J

17.0 PASCAL/VS MESSAGES

17.1 PASCAL/VS COMPILER MESSAGES

No. Message and Explanation

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 Source continues after end of program

The compiler detected text after the logical end of the program.
This error is often caused by mismatched begin/end brackets.

3 "END" expected

4 Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displayable EBCDIC character. If the stri ng is printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character is intended, then the string should be
represented in hexadecimal form.

S symbol invalid or out of context

The indicated symbol is not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

& EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error i s often caused by
mismatched begin/end brackets.

7 "BEGIN" expected

8 semicolon ' . , expected ,

9 Routine may not be passed to FORTRAN subroutine

The indicated declaration of a FORTRAN subroutine (a procedure head-
ing with the FORTRAN directive) contains an argument which is a pro-
cedure or function parameter. Procedures or functions may not be
passed to FORTRAN subroutines.

10 No case labels specified

A case statement with no case labels was found. A case statemant
may not be empty or consist only of an otherwise clause.

11 Ambiguous procedure/function specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination i s contradictory.

Pascal/VS Messages 133

12 Multiply declared label

The indicated label has been previously declared within the sur-
rounding routine.

13 Label identifier expected

Within the i ndi c:ated label definition, a label identifier i 5
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

14 The characters 1$" and I - I are not valid in standard Pascal

This is a warning message that can occur when the LANGLVLCSTANDARD)
compile option is specified. An identifier is being declared which
has a name containing characters which are not recognizable in
"standard" Pascal.

15 '= ' expected

16 Identifier required to be a type in tag field specification

Within a record definition, a tag field is bei ng declared, but the
indicated identifier which is supposed to represent the tag field's
type was not declared as a type.

17 ' : ' expected

18 Parameters on forwarded routine not necessary

A routine declaration which has been previously declared as FORWARD
or EXTERNAL must not specify any formal parameters. Any formal
parameters are assumed to have been specified previously on the
associated declaration that contained the FORWARD/EXTERNAL direc-
tive.

19 Files passed by value not permi tted J
The indicated for'mal value parameter is of a file type. A file var-
iable may be pas~;ed to a routine only by the var or const mechanism;
never by value.

20 string literal constant is too long: exceeds 3190

Because of an implementation restriction, a string constant may not
exceed 3190 chari~cters in length.

21 ') , expected

22 Forwarded routine class confl fct

A procedure declaration was previously declared as a forwarded func-
tionj or a function declaration was previously declared as a for-
warded procedure.

23 Routine nesting exceeds maximum

The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

24 Too many nested WITH statements or RECORD definitions

This error occurs when too many lexical scopes are active. This can
occur in multiply nested with statements and record definitions.

J
134 Pascal/VS Programmlir's Guide

2S Type not needed on forwarded function

A function declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORWARD directive.

26 Hissing type specification for function

The indicated function header did not specify a return type.

27 PROCEDURE/FUNCTION previously FORWARDed

The indicated routine declaration that contains the FORWARD or
EXTERNAL directive was already previously forwarded.

28 Additional errors in this line were not diagnosed

The indicated construct contained more errors, but were not diag-
nosed due to space considerations.

29 Illegal hexadecimal or binary digit

An invalid hexadecimal digit was detected within a hexadecimal con-
stant specification of the form

, ... 'X, , ... 'XC, or ' ... 'XRj

or, an invalid binary digit was detected within a binary constant
specification of the form

, ... 'B.

The followi ng characters are valid hexadecimal digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 0, E, F,
a, b, c, d, e, f

The followi ng characters are valid binary digits:

0, 1

30 Unidentifiable character

The indicated character is not recognized as a valid token.

31 Digit expected

A decimal digit was expected but missing at the indicated location.

32 Real constant has too many digits

The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should o ccu r, please
notify the compiler maintenance group at IBM.

33 Integer constant too large

The indicated integer constant is not within the range -2147483647
to 2147483647.

34 End of string not seen

A string constant may not cross a line boundary. This error 1 s
often the result of mismatched quotes.

!fa string constant is too large to fit on one line, it must be
broken up into multiple strings and concatenated with the II opera-
tor. (Concatenation of string constants is performed at compile
time).

Pascal/VS Messages 135

3S Hexadecimal integer constant may not exceed 8 digits

The indicated hexadecimal constant exceeds the maximum allowed num-
ber of digits. J

36 Char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-
stants are concatenated.

37 Standard routines not permitted as parameters

Standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou-
tines:

ABS, CHR, CLOSE, DISPOSE, EOF, EOlN, FLOAT, GET, HBOUND,
HIGHEST, INTERACT IVE, lBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
ODD, ORO, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET ,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN,
PDSIN, PDSOUT, READSTR, TERMIN, TERMOUT, UPDATE, WRITESTR

38 Variable must be clf type file

The indicated variable is required to be of a file type.

39 Must be of type TEXT

The indicated vat· i abl e is required to have been declared with the
predefined type TEXT.

40 Required parameters are missing

The indicated READ or WRITE statement contains no parameter from
which to referenc,~ data.

41 Comma , , expected , J
42 User defined scalars not permitted

Expressions which are of a user defined enumerated type may not be
directly read from or written to a text file.

43 Operand of READ/WRITE not of a valid type

Any parameter pa:ssed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:
- INTEGER - REAL
- SHORTREAl
- CHAR
- BOOLEAN
- STRING
- packed array[1 .. n] of CHAR

where n is a p,ositive integer constant.

44 Field length must be integer

The indicated length qualifier expression in a READ or WRITE state-
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.

136 Pascal/VS Programmer's Guide

45 set contains constant member(s) which are out of range

The indicated set constant contains members which are not val i d for
the set variable to which the constant i s being assigned.

For example,

val" S : set of 10 .. 20;
begin

S . - £1,2]; OE<== this statement would produce error 45~O
end;

This error may also occur when a set constant is being passed as a
parameter.

46 2nd field length applicable only to REAL data

In the procedure WRITE (text file case) , only expressions of type
REAL are permitted to have two length field qualifications.

47 Array reference contains too many subscripts

An array variable of dimension 'n' is being subscripted with more
than ' n' number of subscripts.

48 Associated variable of subscript must be of an array type

An attempt is being made to subscript a variable which was not
declared as an array.

49 Expression must be of a simple scalar type

The indicated expression should be of a simple scalar type within
the context in which it i !5 being used.

50 No max length specified on STRING type - 255 assumed

A type definition of the form "STRING" does not contain a length
specification to indicate the maximum length of the string variable.
255 is the default length.

51 Variable must be of a pointer type

The indicated variable is being used as a pointer; however. the var-
iable was not declared as being of a pointer type.

52 corresponding variant declaration missing

Withi n a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fails to correspond to a variant
within the associated record vari able; or, the associated variable
was not of a record type.

53 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

54 Expression must be numeric

Expressions which are prefixed with a sign ('+' or ,-,) must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expression must be of type real

The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

L
Pascal/VS Messages 137

S6 Expression must be of type integer

The indicated expression must be of a type that is compatible with
INTEGER. J

57 Parameter type does not match formal parameter

Within a procedure or function call, an expression or variable i s
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 Expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-var parameter.

S9 Humber of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.

60 ' (, expected

61 constant expected

62 Type specification expected

At the place i nd:i cated, a type definition is expected but is
missing.

63 , , expected ..
64 Expression's type is incorrect or incompatible within context

This error is caused by a number of reasons:

• A unary or binary operator is being applied to an expression
which is of a ·type that is not valid for the operator.

• Two expressions being joined by a binary operator are of incom-
patible types.

• The parameters of the MINIMAX functions are not of consistent
types.

• Members of a set constructor have inconsistent types.

6S subrange lower bound > upper bound

J
138 Pasca!/VS Programmer's Guide

66 Assignment to pointer qualified variant record invalid

The indicated statement attempts to assign to the whole of a pointer
qualified record with variant fields. Such an assignment is not
valid under Pascal/VS. This restriction is necessary becau~e the
pointer qualified record may have been allocated with a size that is
specific to its active variant.

Example of violation:

type
R = record

case BOOLEAN of
TRUE: (C:CHAR);
FALSE: (A: ALPHA)

end;
var P : 4'lR;

RR : R; .
begin

NEW(P,TRUE);
P4'l . - RR Of<===i nval i d assignment*)

end

67 Real type not valid here

The indicated expression is of type REAL. An expression of this
type is not valid within the associated context.

68 "OF" expected

69 Tag constant does not match tag field type

Within a record definition, a variant tag i s being defined which is
of a type that is not compatible with the corresponding tag field
type.

Within a call to NEW or SIZEOF, a tag value is specified which is of
a type that is not compatible with the corresponding tag field type
of an associated record variable.

70 Duplicate variant field

Within a record definition, a variant tag is being defined.more than
once.

71 Not applicable to "PACKED" qualifier

The indicated type definition was qualified with the word "packed".
Such a qualification within the associated context is not valid.

72 ' [, expected

73 Array has too many elements

The length of the indicated array definition exceeds the address-
ability of the computer.

74 '] , expected

75 Length qualifier applicable only to STRING type

A length qualifier was applied to a non-STRING type. STRINGs are
the only types that may have length qualifiers.

76 File of files not supported

Pascal/VS Messages 139

77 Illegal reference of function name

The indicated identifier i s the name of a function. It is being
used in a way that is incorrect.

78 Subscript type not compatible with index type

The indicated sub!:cript expression is not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record type.

A variable associ CI ted with the indicated statement or expression is
required to be of a record type according to context; but such is
not the case.

80 Record field qualifier not defined

The indicated recc.rd field does not exist for the associated record.

81 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 Associated variable must be of a pointer or file type

The indicated arrow qualified variable is not of a pointer or file
type.

83 set element out of range

The indicated seic member of a set constructor exceeds the allowed
range for the set.

84 Expression must be of a set type

The indicated expression i s required to be of a set type in the con-
text in which it is being used.

85 Must be positive integer constant

The indicated expression fa i Is to evaluate to a positive integer
constant, which is required in the context in which it is being
used.

86 LEAVE/CONTINUE not within loop

The indicated leave or continue statement fails to reside within a
loop construct .

87 • : =' expected

89 TEXT files may not be updated

An attempt was made to open a text file for updating. Only record
fi les may be updated.

90 Label not declared

The indicated label did not appear in a label declaration.

J
140 Pascal/VS Programmer's Guide

91 Max length of string variable does not match formal parameter

A string variable is being passed to a procedure "by var" and the
corresponding formal parameter is declared with an explicit length.
This error occurs when the declared length of the variable being
passed does not match that of the formal parameter.

Example:

procedure XYZevar s: STRING(100»; EXTERNAL;
var T: STRING(SO);
begin ...

xYzeT) ; (*ERROR: declared length of T does *)
e* not match that of parameter S *) ...

end

92 "THEN" expected

93 Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

94 Required length expression missing for dynamic string allocation

A pointer variable declared with the type STRINGPTR is bei ng allo-
cated with the NEW procedure, but the required length expression is
missing.

9S "UNTIL" expected

96 "DO" expected

97 FOR-loop index must be simple local var;able

A for-loop variable must be declared as a simple automatic (var)
variable, local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "TO" expected

99 Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

Pascal/VS Messages 141

103 Expression must be of type BOOLEAN

The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expres!5i ons are of type BOOLEAN. The indicated expres- J
sion fa i led to meei: this criteria.

104 Constant out of range

The indicated consi:ant expression evaluated to a value which is out-
side the required /'ange of its context.

105 Identifier was previously declared

The indicated identifier within a declaration was previously
declared wi thi n th(~ same lexical scope.

106 Undeclared identifier

The indicated iden"tifier being referenced was not declared.

107 Identifier is not in proper context

The indicated iden"tifier is being used in a way that is not consist-
ent wi th how it was declared.

108 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

109 Case label tag of ,,,rang type

The value of the indicated case statement label is not of a type
that i s conformable to the case statement indexing expression.

110 Loop wUl never execute

The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi-

J
tionally true.

111 Loop range exceeds range of index

The indexing variable used for the indicated for loop was declared
wi th a subrange that does not include the range indicated by the
initial and final index values.

112 'PROGRAM' header missing

113 pending comment not terminated

A comment starting symbol was detected within a pending comment.

114 Percent "%" statement not found

A '% ' symbol was detected, but with no identifier followi ng.

115 Percent n%" identifier not recognized

A identifier following the '% ' symbol is not recognized as a valid
compiler directive.

116 "ON" or "OFF" expected

J
142 Pascal/VS Programmer's Guide

117 Unrecognizable option in "%CHECK"

118 Magnitude of floating point constant too large or too small

The indicated floating point constant has a magnitude that is out-
side the range of the IBM/370 double precision representation. The
largest floating point magnitude that can be represented is

7.23700557733226E75

The smallest is

5.39760534693403E-79

119 First parameter of READSTR/WRITESTR must be of type STRING

120 String constant requires truncation

The indicated string constant, which is being assigned to a variable
or being passed to a routine. requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.

121 Declaration out of order: LABEL,CONST,TYPE,VAR,routine

This is a warning message that may be produced when the
LAHGLVL(STAHDARD) compiler option is specified. One or more declara-
tion constructs are not in the order required by standard Pascal.
Standard Pascal requires identifiers to be declared in the followi ng
order:

Labels
Constants (const)
Types (type)
Variables (var)
Routines (procedure/function)

122 "OTHERWISE" clause without associated CASE statement

The indicated otherwise statement is not within the context of a
case statement.

123 Maximum string length exceeded

The indicated expression produced a varying length string which
exceeds 32767 characters in length. 32767 is the maximum allowed
length for a varying length string.

124 Construct or operation is not in standard Pascal

This is a warning message that may be produced when the
LAHGLVL(STAHDARD) compiler option is specified. The indicated lan-
guage construct or arithmetic operation is not supported in "stand-
ard" Pascal. but is a Pascal/VS language extension.

125 Real to integer conversion not val id

The indicated expression i s of type real, but according to its con-
text, it is required to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 Types not conformable in assignment

The indicated assignment statement attempts to assign an expression
of a particular type to a vari able of an incompatible type.

127 File variable assignment not permi tted

The left side of the indicated assignment statement ; 5 a variable of
a file type. Assignment to file variables is not permitted.

Pascal/VS Messages 143

128 Not compile-time computable

The indicated expression fai Is to be a constant expression that can
be evaluated at compile time.

129 Assignment to "CONST" parameter invaUd

The indicated variable declared as a formal const parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid

The indicated variable that is being used as a for loop index may
not be modified by an assignment within the for loop statement.

131 passing "CONST" parameter by VAR invalid

The indicated variable declared as a formal const parameter may not
be modified by being passed as an actual var parameter to a routine.

132 passing FOR-loop index by VAR invaUd

The indicated variable that is being used as a for loop index may
not be modified by being passed as an actual val' parameter to a rou-
tine.

133 Refer-back tagfie1d must not be typed

The indicated tag field specification withi n a record definition was
found to reference a previous field within the record. Such
refer-back references may not contain a type reference.

134 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

135 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

136 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

137 Passing packed record field by VAR not valid

This is a warning message that may be produced when the
LANGLVLCSTANDARD) compiler option is specified. The indicated field
of a packed record is being passed as an actual val' parameter to a
routine. Passing fields of packed records as val' parameters is not
valid in standard Pascal.

138 passing SPACE component by VAR not valid

This is a warning message that may be produced when the
LANGLVLCSTANDARD) compiler option is specified. Standard Pascal
requires that actual val' parameters be properly aligned which is not
necessarily the case with a space component. The indicated parame-
ter is a component of a space variable which is being passed as a
var parameter.

139 passing packed array element by VAR not val id

This is a warning message that may be produced when the
LANGLVLCSTANDARD) compiler option is speci fi ed. The indicated sub-
scripted variable is being passed as an actual val' parameter to a
routine. The variable baing subscripted is a packed array. Passing
elements of packed arrays as val' parameters is not valid in standard
Pascal.

144 Pascal/VS Programmer's Guide

140 Scalar PACKing does not match corresponding VAR parameter

The indicated variable that is being passed as a val' parameter is of
a compatible type, but has a different length than the corresponding
formal parameter. This was caused by one being packed and the other
unpacked.

141 Symbol not recognizable in standard Pascal

This is a warning message that may result when the LANGLVL{STANDARD)
compiler option is specified. The indicated symbol (or operator) is
not supported in "standard" Pascal. The symbol is part of a con-
struct which is a Pascal/VS language extension.

142 Variable must be an array variable

The indicated variable i s required to be of an array type, but such
is not the case.

143 Offset qualified field not on proper boundary

The indicated field in a record definition is qualified with an off-
set which i s not consistent wi th the boundary requirement of the
field's type.

144 Offset qualification value is too small

The indicated field in a record definition i s qualified with an off-
set which either causeS an overlap wi th a previous field within the
record or i s an illegal (negative) offset.

145 Type must be CHAR or PACKED ARRAY OF CHAR

The indicated expression is required by its context to be of type
CHAR or packed array[1 .. n] of CHAR.

146 variables of type POINTER al'e not pel'mi tted

The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declal'ed as function

The indicated identifier is used as though it is a function name,
but is not declared as such.

148 Missing period , I assumed .
149 Not a valid compal'ison operation

The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings, variables of structured types may not be directly compared
wi th each other. The only valid compari son operators for sets are , - , - , '<> ' , ' < = , , and ' > = , .

150 Entl'Y I'outines must be at the outel'most nesting level

A routine which i s to be called from another module is nested within
another routine which is not permitted. Such routines must be
declared at the outermost nesting level.

151 Fixed Point overflow or divide-by-zero

An integer expression consisting of constant operands causes a pro-
gram error to occur when it i s evaluated.

Pascal/VS Messages 145

152 Checking error will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
arror.

This error may occur at an assignment or at a routine call in which
parameters are passed. It indicates that the range of the source
expression (a scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this
error to occur:

var I: 1. .10;
J: 10 .. 20;

I .- J+l; (*target's range: 1 •• 10i source's range: 11 .. 21 *)

153 LBOUND/HBOUND dimension number is invalid for variable

154 Low bound of subscr'ipt range is too large in magnitude

The indicated array definition has an illegal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET members must lie within 0 •• 255

The ordinal value I)f any valid set member may not be less than 0 nor
greater than 255.

156 Length fields not applicable to non-TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
I length specifications have no meaning in non-text file I/O.

157 STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a compiler error.

159 Recursive type reference is not permitted

The compiler detected a degenerate type declaration of one of the
followi ng forms:

I. type X = Xi
II. type X = record

F: x;
end

160 This SET operation will always produce the NULL set

Two disjoint sets are being intersected.
the null set []. For example,

var 51: set of 0 .. 10i
52: set of 11 .. 20i
53: set of 0 .. 20;

begin

The result will always be

53 ,- 51 M 52; <M <== always produces the HUll set *)

end

146 Pascal/V5 Programmer's Gui de

J

J

161 ELSE clause without associated IF statement

A else symbol was detected that i ~ not part of an if statement.
This error often occurs when the preceding then clause of an if
statement is terminated with a semicolon (;).

162 Must be an unPACKED array

The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.

163 Must be a PACKED array

The indicated array variable should have been declared as packed,
but was not.

164 Unrecognizable procedure/function directive

The indicated identifier wa~ interpreted as a procedure or function
directive but was not recognizable. The followi ng are the only
recognizable directives:

- FORWARD
- EXTERNAL
- FORTRAN
- MAIN
- REENTRANT

165 FORTRAN subroutines may not be passed as parameters

Only Pascal/VS routines may be passed a~ parameters; FORTRAN subrou-
tines may not.

One way to get around this problem is to define a Pascal/VS proce-
dure which does nothing more than call the FORTRAN subroutine. The
Pascal/VS procedure would then be pa~sed in place of the FORTRAN
subroutine.

166 FORTRAN subroutine parameters may not be passed by value

All formal parameters of a FORTRAN subroutine must be passed by ref-
erence: either by var or by const.

167 FORTRAN functions may return only scalar values

A FORTRAN function may only return values that are scalars (includ-
ing floating point).

168 %INCLUDE member not found in library

The library member which was to be included into the source program
could not be found.

169 Floating point computational error

The indicated floating point expression causes a program error when
evaluated.

170 Data storage exceeds addressabtlity of machine

The memory required to contain all declared variable~ within a rou-
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.

171 only STATIC/DEF variables may be t n it f a 1 t zed

The only class of variables which may be initialized at compile time
are def and static variables.

Pascal/VS Messages 147

172 Variable's address is not compile-time computable

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173 Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174 Repetition factor applicable to constants only

Within a array str'ucture, only a constant may be qualified with a
repetition factor; a general expression may not.

175 No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

176 This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.

177 Numeric .labels must lie within the range 0 •• 9999.

178 Identifier was previously referenced illegally

The indicated identifier that was just declared was referenced pre-
viously within the associated routine. Pascal/VS requires an iden-
tifier to be declared prior to its use.

179 Recursive reference within constant declaration

A constant declarai: ion of one of the followi ng forms was detected:
const X = X; J

or
const X = "some I~xpressi on involving X"

Such recursion within a constant declaration is not permitted.

180 Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali-
fied with a repetition factor. Only array structures are permitted
to have repetition factors.

181 Label previously referenced from a GOTO invalidly

The indicated label was previously referenced in a goto statement
that is not a constituent of the statement sequence in which the
label is defined.

Example

begin
goto LABEll ;
for I . - 1 to 10 do

begin
LABEll : A[I] . - 0; (*<==label was previously referenced invalidly*> ...

end;
end

J
148 Pascal/VS Programmer's Guide

182 A GOTO may not reference a label within a separate stmt sequence

The indicated goto statement references a label which was previously
defined within a statement sequence of which the goto is not a con­
stituent. Such a reference is not permitted.

Example

begin
for I .- 1 to 10 do

begin
LABEll: A[I] .- 0;

end;
goto LABELl; C*<==invalid reference of label *)

end

183 CASE label outside range of indexing expression

The indicated case label within a case statement has a value which
is outside the range of the indexing expression. For example,

var I: O •• 10;
begin

case 1*2 of (*range of index is 0 .. 20 *)
0: ..•
1. .20: ...
30: ... (l~<== thi s label is out of range of i ndex*)

end
end

184 Second operand of MOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.

185 Routine is not defined in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. The indicated call statement refers to a pre­
defined Pascal/VS routine which does not exist in standard Pascal.

186 Directive only applies to procedure, not to a function

The indicated procedure directive ("MAIN" or "REENTRANT") is being
applied to a function declaration. The directive is not supported
for functions.

187 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a compiler error.

188 First parameter of REENTRANT procedure must be an integer by var

The indicated procedure declaration in which the directive "REEN­
TRANT" was specified, failed to comply with the parameter list
requirement for such a procedure: the first parameter of a "REEN­
TRANT" procedure must be a pass-by-reference (specified with the var
reserved word) integer in which a pointer to the Pascal/VS environ­
ment is saved between calls.

189 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a compiler error.

Pascal/VS Messages 149

190 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a compiler error.

191 Simple constant required

A constant expression which required compile-time computation was
found where a simple constant is required. This is often a warning
message that may be produced when the LANGLVLCSTANDARO) compiler
option is specified.

192 %Percent directives are not recognized in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. All compiler directives which appear in the
source program with the percent (%) prefix are Pascal/VS extensions
and are not supported in standard Pascal.

193 FOR- or WHILE-loop has no statements within its body

This is a warning message to indicate that a for-statement or
while-statement loops on an empty statement. Such a case is often
not the programmer's intent.

Examples

while A > 0 do;

for I .- 1 to J do ;

194 PACKED subranges not supported in standard Pascal

195

This warning may be
option is specified.
in standard Pascal.

produced when the LANGLVLCSTANDARO) compiler
Subrange type definitions may not be "packed"

This feature is a Pascal/VS language extension.

variable is not properly aligned

The indicated variable is being passed as a var parameter and the
compiler has detected that its address may not be properly aligned.
(For example, passing a full word integer which has an address that
is not on a word boundary.)

On most models of the 370 series, the manipUlation of objects which
are not properly align will result in a penalty in execution speed.

This warning will be produced even if the variable is just poten­
tially misaligned (as in the case of a subscripted variable).

196 Offset qualification value is too large

The indicated field in a record definition is qualified with an off­
set which would result in a record that was too large too address.

197 Object exceeds storage limits

The specified object would cause the program to require more storage
than is physically addressable.

150 Pascal/VS Programmer's Guide

J

J

J

500 Recursion detected in "%IHCLUDE" processing lib(meml

Source text which was included from member "mem" in library "lib" by
means of the a %INCLUDE directive contains in itself a %INCLUDE
directive which directly or indirectly references the same member
recursively. This error causes immediate termination of the compi­
lation.

Example:

Source program:

program EXAMPLE;
type

%include TYPES;
begin

end.

Member TYPES:

REC = record
NAME: STRING(lO);
AGE: 0 .. 99;

end
%include TYPES; (*<===ERROR 500*)

501 Too many nesting levels in "%IHCLUDE" processing lib{mem)

A %INCLUDE directive was detected which is nested 8 levels deep
within a stack of "includes." "Included" source text may not be
nested beyond 8 levels. This error causes immediate termination of
the compilation.

502 Unable to open "%IHCLUDE" library: libname

The include library named "libname" could not be opened. Possible
causes are that the DDname was not assigned or the DCB attributes of
the library are not correct. This error causes immediate termi­
nation of the compilation.

600 Identifier used in type definition at line nnn is out of context: xxxx

The identifier 'xxxx' appeared in a pointer type
form '->xxxx' at line 'nnn', but the identifier
declared as something other than a type.

Example:

type X = ->Yi

definition of the
was subsequently

var Y: INTEGER; (* <=== would cause error 600 to be generated *)

601 Type identifier referenced at line nnn is undeclared: XXX X

The identifier 'xxxx' appeared in a pointer type definition of the
form '->xxxx' at line 'nnn', but the identifier was not subsequently
declared.

602 Label xxxx was declared and/or referenced but was not defined

The label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603 procedure/function xxxx was forwarded but not resolved

The procedure or function named 'xxxx' was declared with the direc­
tive 'FORWARD', but the body of the routine was not subsequently
declared.

Pascal/VS Messages 151

No. Message and Explanation

AMPOOOlS

AMPTOOIE

AMP0002S

AMPT002E

AMPT003E

AMPTOOSE

Routine "name" is too large to compile at stmt n

The indicated routine has too many statements to compile; a
fixed-length table of the compiler has overflowed. The last
statement that was successfully processed was statement "n."
The routine should be divided into two or more separate rou­
tines.

Inevitable NIL pointer error will occur

The code optimizer of the compiler has determined that a nil
pointer checking error will inevitably occur at execution time
at the specified routine and statement. Example:

begin
P .- nil
WRITEUHP .. L 1);

end;
(*<===AMPT001E - inevitable error*)

Notify Pascal/VS Support - Optimizer error

An optimizer error occured at statement "nnn" of routine
"xxxxxxxx" in module "mmmmmmmm". A message will be produced
describing the kind of error. Notify Pascal/VS support.

Inevitable high bound error will occur

The code optimizer of the compiler has determined that a high
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

var I : 1 .. 10;
J : INTEGER;

begin
J .- 11;
I .- J; (*<===AMPT002E - inevitable error*)

end;

Inevitable low bound error will occur

The code optimizer of the compiler has determined that a low
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

var I: 1..10;
J : INTEGER;

begin
J • - 0;
I . - J;

end;
(*<===AMPT003E - inevitable error*)

Function routine does not return a value

The code optimizer of the compiler has determined that the spe­
cified function routine does not return a result. Example:

function F(var I: INTEGER): INTEGER;
begin

READLNCI);
end; <*<===AMPT005 function did not return a result*)

152 Pascal/VS Programmer's Guide

J

J

J

AMPT006E

AMPT700S

AMPT701I

AMPT702S

AMPT7031

AMPT7041

AMPT70S1

AMPL999S

AMP0999S

AMPT999S

L

Exp~ession is too complicated at stmt nnn of ~outine xxxxxxxx

The expression in statement "nnn" of routine "xxxxxxxx" is too
complex to compile and should be broken up into multiple state­
ments. If the indicated statement contains a relatively simple
expression, then the Pascal/VS support group should be
notified.

Routine "name" contains too many statements. Max=n

The statement table being generated overflowed in the specified
routine. The routine should be divided into two or more rou­
tines.

Reco~d type contains too many fields

The DEBUG compiler option was specified and a record type defi­
nition was compiled that contains too many fields tv be accom­
modated in the debugger type table. If this error should
occur, the resulting code may not work properly when the inter­
active debugger is enabled.

Routine "name" exceeds 8K limit at stmt n

The specified routine caused more than 8192 bytes of code to be
generated starting at statement number "n." Since Pascal/VS
only reserves two base registers to address code, 8192 bytes is
the limit. The indicated routine should be divided into two or
more separate routines.

Field name space pool ove~flowed

The DEBUG compiler option was specified and a large number of
record type definitions were compiled. The debugger table
which contains the record field names overflowed. If this
error should occur, the resulting code may not work properly
when the interactive debugger is enabled.

Type table overflow. Debug is disabled

The module being compiled with the DEBUG option contains more
than 256 unique data types. The type table being generated for
the interactive debugger may contain no more than 256 entries.
The interactive debugger may not be used on this module.

symbol name space pool ove~flowed

The DEBUG compiler option was specified and a large number of
symbols were compiled. The debugger table which contains sym­
bol names overflowed. If this error should occur, the result­
ing code may not work properly when the interactive debugger is
enabled.

compiler e~~o~ notify Pascal/VS suppo~t

An error was detected in
this error should occur,
IBM.

the first pass of the compiler. If
please notify Pascal/VS support at

Notify Pascal/VS suppo~t - Optimize~ E~ro~

An error was detected in the second pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

Notify Pascal/VS suppo~t - T~anslation e~~o~

An error was detected in
this error should occur,
IBM.

the third pass of the compiler. If
please notify Pascal/VS support at

Pascal/VS Messages 153

17.2 EXECUTION TIME MESSAGES

No. Message and Explanation

AMPXOllE operation exception

An operation exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program or due to a 'wild' assignment through an uninitial-
ized pointer.

AMPX012E privileged exception

A privileged exception occurred in the program. The error is
probably i i1 an assembly language routine linked with your Pas-
cal program.

AMPX013E Execute exception

An execute exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX014E Protection exception

A protection exception occurred in the program. The error is
probably due to a 'wi ld' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off) .

AMPXOlSE Addressing exception

An addressing exception occurred in the program. The error is
probably due to a 'wi ld' assignment through an uninitialized
pointer, or to an array assignment wi th a bad subscript (with
checking off) .

AMPX016E Specification exception
J

A specification exception occurred ; n the program. The error ; s
probably in an assembly language routine linked with your Pas-
cal program.

AMPXOl7E Data exception

A data exception occurred in the program. The error is probably
in a non-Pascal routine linked with a Pascal program.

AMPX018E Fixed point overflow exception

A fixed-point overflow exception occurred in the program. The
error is probably due to an addition, subtraction, or multipli-
cation that resulted in an integer with a magnitude which
exceeds MAXINT.

AMPX019E Fixed point divide by zero exception

A fixed point divide by zero exception occurred in the program.
The error is due to a div operation in which the second operand
(the divisor> has the value zero.

AMPX020E Decimal overflow exception

A decimal overflow exception occurred in the program. The error
is probably occurred in a non-Pascal routine linked to the Pas-
cal program.

J
154 Pascal/VS Programmer's Guide

AMPX02lE Decimal divide by zero exception

A decimal divide by zero exception occurred in the program.
The error probably occurred in a non-Pascal routine linked to
the Pascal program.

AMPX022E Exponent overflow exception

An exponent overflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude greater than
7.23700557733226E75.

AMPX023E Exponent underflow exception

An exponent underflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude less than
5.39760534693403E-79.

AMPX024E significance exception

This exception is not intercepted by the Pascal/VS run time
environment. If it should occur, then the Pascal/VS run time
environment may have been locally modified. Contact your local
system support.

AMPX025E Floating point divide by zero exception

A floating point divide by zero exception occurred in the pro-
gram. The error i s caused by an attempt to divide by zero.

AMPX026E Segment translat ion exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX027E Page translat i on exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX028E Translation specification exception

This is a system error, run the program aga in and if the error
persists contact Pascal/VS Development for assistance.

AMPX029E special operation exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX030E Terminal attention exception

An attention was signaled from the users terminal.

AMPX031E Low bound checking error

Either the value of an array subscript, or the value being
assigned to a subrange type variable is less than the minimum
allowed for the subscript or subrange. This error may also
result if the mod operation i s attempted for which the second
operand (the divisor> is less than or equal to zero.

AMPX032E High bound checking error

Either the value of an array subscript, or the value being
assigned to a sub range type variable i 5 greater than the maxi-
mum allowed for the subscript or subrange.

Pasca!/VS Messages 155

AMPX033E Ni I pointer checking error

An attempt was made to reference a dynamic variable from a
pointer which has the value ni l. J

AMPX034E Case label checking error

The expression of a case-statement has a value other than any
of the specified case labels and there is no otherwise clause.

AMPX035E Function value checking error

A function routine returned to its invoker without being
assigned a result.

AMPX036E Assertion failure checking error

The expression of an assert statement computed to the value
FALSE.

AMPX037E String subscript out of bounds checking error

The subscript on a STRING was not in the range D •• LENGTHCs),
where s is the STRING being subscripted.

AMPX038E Error 38 not assigned

This error nu~ber has not been assigned a meaning.

AMPX039E string truncation checking error

An assignment into a STRING variable could not be performed
because the length of the source stri ng i s longer than the max-
imum length of the destination string.

AMPX040S Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler
maintenance group at IBM. This is a run-time environment J
error.

AMPX04lS File could not be opened: DDNAME

An error occurred when an attempt was made to open the file
with the indicated DDname. The most probable cause of this
error i s a missing DDname definition. Under eMS, this error
wi 11 occur when attempting to open a file that does not have a
record format of ' F' or ' V' .

AMPX042E Lrecl size too small for file DDNAME

The logical record length of the file with the indicated DDNAME
is not large enough to contain a single file component.

AMPX043E File is not open for output: DDNAME

An output operation was attempted on a file open for input.

AMPX044E File is not open for input: DDNAME

An input operation was attempted on a file open for output.

AMPX045E Logical record is too small in input file

A record fi 1 e is being read which consists of varying length
records CRECFM=V) ; and a logical record was read which is too
short to represent a valid record in the file.

AMPX046E Data larger than lrecl for file

The logical r'ecord length of a file is too small to contain the
file's component.

156 Pascal/VS Programmer's Guide

AMPX047E Invalid Input/Output option: xxxxx •••

The options string passed to the procedure contains an incor-
rect or invalid option.

AMPX048E Mhsing member in file: member library

The indicated member could not be found in the partitioned data
set.

AMPX049E Floating point overflow/underflow

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

AMPXOSOE BLKSIZE exceeds 32760 in file DDNAME

A block size was speci fi ed that exceeds 32760 which is the max-
imum length of a block.

AMPXOSIE LRECL > BLKSIZE-4 in V format file: DDNAME

The logical record size was too large to permit at least one
record to be fit in a block.

AMPXOS2E BLKSIZE not ;ntege,.. multiple of LRECL in DDNAME

The specified block size for a fixed-length record file is not
an integer multiple of logical records.

AMPXOS3E component length of file exceeds 32760 in DDNAME

A single element must fit in one logical record, therefore its
length is restricted to 32760 bytes.

AMPXOS4E GET or READ called after end-of-file in DDNAME

An attempt was made to advance the file beyond the end-of-file.

AMPXOSSE Integer READ operation failed for file DDNAME

An attempt was made to read an integer from a text file, but
either the end-of-file occurred, or an unrecognizable character
was detected where the integer should have been.

AMPXOS6E Overflow/underflow detected in integer READ: DDNAME

An attempt was made to read an integer which has a value that
does not lie within the range -2147483648 .. 2147483647.

AMPXOS7E Invalid run time option:

An invalid option was specified when invoking a Pascal/VS pro-
gram. A runtime option is specified preceding a slash '/ ' when
invoking the program.

AMPXOS8I OPEN and INTERACTIVE are no longer supported, use READ/WRITE

The procedures OPEN and INTERACTIVE are not supported in
Release 2.0 and up. The Pascal/VS Programmer's Guide
SH20-6162-1 and the Pascal/VS Reference Manual SH20-6168-1
describes the equivalent operations.

Pascal/VS Messages 157

AMPX059E Text exceeds logical record length in file "name"

A line of data is being written to the text file whose DDname
i s "name" and the line exceeded the logical record length of
the file. As a recovery, the line is terminated at the end of

J
the logical record and the remaining text of the line is placed
in the next logical record.

For each file being written, this error will be diagnosed only
on the fi rst occurrence; subsequent violations wi 11 not be
diagnosed.

AMPX060E Operand to RELEASE does not correspond to MARK

The parameter passed to RELEASE did not have the value returned
by a call to MARK.

AMPX06lE Operand to DISPOSE not allocated with NEW

A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPX062E Real READ operation failed for file DDNAME

An attempt was made to read an real from a text file, but
either the end-of-file occurred, or an unrecognizable character
was detected where the real should have been.

AMPX063E Operand to DISPOSE already deallocated

An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

AMPX064E Insufficient space to do NEW

There was not enough storage available to perform the NEW pro-
cedure. You should execute the program in a larger region (OS)
or in a larger virtual machine (eMS) . Also, you may not be J
calling DISPOSE for storage you no longer need.

AMPX065E storage has been incorrectly assigned prior to DISPOSE

The pointer being disposed of was used incorrectly; namely, the
pointer caused the heap to be modified beyond the size of the
dynamic variable. This could happen if the dynamic variable
was a record that was allocated by specifying tag values, and
then was later used in an assignment with a different variant.

AMPX066E Operand to DISPOSE is NIL or undefined.

The operand i s not valid for DISPOSE.

AMPX067E Heap incorrect due to previous invalid assignment using a pointer

The heap has been damaged. The cause of the damage was proba-
bly due to a pointer being used incorrectly.

AMPX068S Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler
maintenance group at IBM. This is a run-time environment
error.

AMPX069S Notify compiler maintenance group

If this err()r should occur, then notify the Pascal/VS compiler
maintenance group at IBM. This is a run-time environment
error.

158 Pascal/VS Programmer's Guide

AMPX070E LN: argument <= 0.0

The natural logarithm function <LN) was called wi th a 0 or neg-
ative argument.

AMPX071E SQRT: argument < 0.0, zero returned as result

The square root function (SQRT> was called wi th a negative
argument.

AMPX072E EXP: argument too large, exceeds 174.67309

The argument of the EXP function is too largej the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

AMPX073E RANDOM: seed is out of range

The function RANDOM was called with an argument which is either
negative or greater than 1048575 (which is the allowed
maxi mum) .

AMPX074E SIN/COS: argument too large, exceeds (PI/2JuSO

A call to SIN or COS was made with an argument that is too
large for an accurate result to be computed.

AMPX07SE SEEK called for a file not opened for DIRECT access

AMPX076E SEEK: bad relative record address

The record number in an invocation of SEEK has an invalid
value.

AMPX077E Direct access file does not have fixed unblocked records: DDNAME

An attempt was made to perform direct access (relative record)
operations on a file that was either not fixed or not
unblocked. The required record format for a file to be manipu-
lated with SEEK is RECFM=F.

..
AMPX078E Target string filled to maximum length in WRITESTR call

The target STRING (first parameter) in a call to WRITESTR was
fi lled to capacity before the data being assigned into the
STRING was exhausted.

AMPX079E Source string exhausted in READSTR call

Prior to readi ng all data from the the source string (first
parameter) , the end of the string was encountered.

AMPX080S Notify compiler maintenance group

If this error should occur, then notify the Pascsl/VS compiler
maintenance group at IBM. This is a run-time environment
error.

AMPX08lE LPAD: PADDING exceeds maximum length of string

The speci fi ed pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AMPX082E DELETE: Length parameter less than zero

Pascal/VS Messages 159

AMPX083E DELETE: starting index is less than 1

AMPX084E DELETE: substring not contained within source string

AMPX085E set operation out of bounds

An attempt to perform a set operation in which the resulting
set contained members which are outside the range of a target
set. This can occur ina set assignment in which the source
set contains members which are not valid for the declared type
of the targe't:: set.

AMPX086E SUBSTR: Length parameter less than zero

AMPX087E SUBSTR: start i n9 index is less than 1

AMPX088E SUBSTR: substring not contained within source string

AMPX089E RPAD: padding exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter) .

AMPX200I The module must be linked with DEBUG for debugger features

An attempt was made to invoke the interactive debugger on a
module that was not linked with the debugger library.

AMPX201I The module lTIust be linked with DEBUG for symbolic dump

An execution time error occurred and a symbolic dump of the
offending rClut i ne was attempted, but the module in which the
routine is located was not compiled with the DEBUG option.

AMPX203I Error occurred while executing ONERROR routine

An execution time error has occurred while ONERROR was execut-
ing. ON ERROR is a user provided procedure to diagnose exe-
cution error's and determine the correct course of action.

AMPX999S NOTIFY PASCJ\L/VS SUPPORT: RECURSIVE ERROR IN RUNTIME ENVIRONMENT

A sl'!cond err"or was encountered while Pascal/VS was recovering
from the first error. The program is terminated because any
further pro(:essi ng would probably result in a CPU bound loop.
You should notify Pascal/VS Development if this error persists.

J
160 Pascal/VS Programmer's Guide

17.3 MESSAGES FROM DEBUG

No. Message and Explanation

AMPD500 Current module not compiled with Debug option

AMPD501 NO statement _~~ in

AMPD502 There is no routine named _ in module

AMPD503 Invalid qualification specification:

AMPD504 Missing qualification specification

AMPD505 Module name must be specified

AMPD50& Breakpoint is already set

AMPD507 Maximum number of breakpoints have been set

AMPD508 specified breakpoint does not exist

AMPD509 is an automatic variable local to a non-active routine

AMPD510 Field qualif i ed variable is not a record

AMPD5ll is not a valid record field

AMPD512 subscripted variable is not an array

AMPD513 Array subscript is not a scalar

AMPD5l4 Invalid symbol:

AMPD5l5 Array subscript is out of bounds:

AMPD5l6 Missing symbol:

AMPD517 Associated variable is not a pointer

AMPD518 pointer variable does not contain valid address

AMPD5l9 not found in symbol table

AMPD520 Equate SUbstitution is in infinite recursion

AMPD521 EQUATE expansion causes command truncation(exceeds 255 characters

Pascal/VS Messages 161

AMPD522 You are not in eMS, command not valid

AMPD523 Debug command not recognized:

AMPD524 Invalid character in hexadecimal string:

AMPD525 Invalid hexadecimal string

AMPD526 Routine is not active

AMPD527 Qualification set to module

AMPD528 The word "EQUATE" may not be redefined

AMPD529 Maximum number of EQUATE' 's have been set

AMPD530 There are no EQUATE"s currently set

AMPD53l statement table missing

Trace requires GOSTMT option

AMPD533 There are no active variables

AMPD534 Routine is not active:

J

J
162 Pasca!/VS Programmer's Gui de

17.4 MESSAGES FROM PASCALVS EXEC

The following messages are given by the
PASCALVS EXEC of CMS to i ndi cate the
status of the compiler invocation.

RC Message and Explanation

1 File name is missing

The exec was invoked without

2 Unable to find IfnI PASCAL

The specified file name could

They are shown below with their associ­
ated return codes.

specifying a file name.

not be found.

16 Unable to find the 'name' MACLIB

The specified maclib file could not be found.

32 More than 8 mac!ibs specified

The maximum number of MACLIBS that may be speci fi ed when invoking
the PASCALVS EXEC is eight.

Pascal/VS Messages 163

164 Pascal/VS Programmer's Guide

APPENDIXES

• "Appendix A. Command Syntax Notation" on page 167

• "Appendix B. Installation Instructions" on page 169

• "Appendix C. Additional library Procedures and Functions" on page 179

• "Appendix D. VM/PC Pascal/VS User's Guide" on page 185

APPENDIXES 165

166 Pasca!/VS Programmer's Guide

The syntax notation used to illustrate
TSO commands ;s explained in the manual
TSO Command Language Reference
(GC28-0646). The notation used to
illustrate CMS commands is explained in
the manual VM/370: eMS Command and Mac­
ro Reference (GC20-l818).

Briefly, the conventions used by both
notati ons are as follows.

• Items in brackets (J are optional.
If more than one item appears in
brackets, then no more than one of
them may be speci fi ed; they are
mutuallY exclusive.

•

•

•

•

APPENDIX A. COMMAND SYNTAX NOTATION

Items in capital letters are key­
words. The command name and key­
words must be spelled as shown.

Items in lowercase letters must be
replaced by appropriate names or
values.

Items which are underlined repre­
sent defaults.

The special characters' () * must
be included where shown.

Appendix A. Command Syntax Notation 167

J

168 Pascal/VS Programmer's Guide

This section describes how to install
Pascal/VS under OS/VS2 and CMS-VM/370
from the distribution tape.

All VS2 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili­
ty program. VS2 sequential data sets
were stored by using the IEBGENER util­
i ty program.

The CMS version of the package is
located at file 12 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con­
tain the following data sets.

File 1: INSTALL.CNTL A sample of the
job control language (JCL)
required to install Pascal/VS
under OS/VS2 (MVS).

File 2: LOADSRC.CNTL A sample of the
job control language (JCL)
requi red to load the Pascal/VS
source from the distribution
tape.

File 3: PASCALVS.CONTENTS A sequential
data set which lists the contents
of the Pascal/VS package.

File 4: PASCALVS.LINKLIB A partitioned
data set which contains the mod­
ules of the compiler.

File 5: PASCALVS.LOAD A partitioned
data set which contains the Pas­
cal/VS run time library.

File 6: PASDEBUG.LOAD A partitioned
data set which contains the Pas­
cal/VS debug library.

File 7: PASCALVS.MACLIB The
include library.

standard

File 8: PASCALVS.CLIST A partitioned
data set containing two clists:
PASCALVS and PASCMOD.

File 9: PASCALVS.PROCLIB A partitioned
data set which contains the JCL
cataloged procedures for running
the compi ler as a batch job under
MVS.

File 10: SAMPLE. PASCAL A partitioned
data set containing sample pro­
grams.

File 11: PASCALVS.MESSAGES A sequen-
tial data set which contains the
compiler messages.

File 12: CMS dump of the entire
Pascal/VS package:

APPENDIX B. INSTALLATION INSTRUCTIONS

- PASCALVS CONTENTS A listing of
the contents / of the
Pascal/VS package.

- PASCALS MODULE A program that
issues all necessary FILEDEF
commands to CMS prior to
invoking the compiler.

- PASCALL MODULE The first pass
of the compi ler.

- PASCALO MODULE The second pass
of the compi ler.

- PASCALT MODULE The third pass
of the compi ler.

- PASCALL TXT LIB the txt! i b from
which PASCALL MODULE was
generated.

- PASCALO TXTLIB the txtlio from
which PASCALO MODULE was
generated.

- PASCALT TXTLIB the txtlib from
which PASCALT MODULE was
generated.

- PASCALVS TXTLIB The Pascal/VS
run time library.

- PASDEBUG TXTLIB The Pascal/VS
debug library.

- PASCALVS MACLIB The
Y.INCLUDE library.

standard

- PASCALVS EXEC CMS EXEC whi ch
invokes the compiler

- PASCALVS CMSHELP Help file that
is accessed when "PASCALVS
?" is invoked.

- PASCMOD EXEC CMS EXEC which
creates a load module from a
compiled Pascal/VS program.

- PASCALVS MESSAGES List of the
compiler messages.

- LOADSRC EXEC An EXEC which will
load the source of the com­
piler from the tape.

- SAMPLE PASCAL A sample program.

- PRIMGEN PASCAL A
program.

sample

File 13: PASCALL.PASCAL The source of
the fi rst pass of the compi ler.

File 14: PASCALO.PASCAL The source of
the second pass of the compiler.

Appendix B. Installation Instructions 169

File 15: PASCALT.PASCAL The source of
the third pass of the compiler.

File 16: PASCALD.PASCAL The source of
the interactive debugger.

File 17: PASCALX.PASCAL The source of
the runtime library routines.

Fi Ie 18: PASCALX. ASM The source of the
operati ng system interface rou­
tines.

File 19: MACLIBL.PASCAL Include
1 i brary for fi rst pass of the
compiler.

File 20: MACLIBO.PASCAL Include
1 i brary for second pass of the
compiler.

File 21: MACLIBT.PASCAL Include
library for third pass of the
compiler.

File 22: MACLIBD.PASCAL Include
library for interactive
debugger.

File 23: MACLIBX.PASCAL Include
library for runtime routines.

B.1 INSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under eMS perform
the followi ng:

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is done with the CP
LINK command. The mini-disk must
have at least 2300 blocks of free
storage 18 •

3. Access thi s di sk wi th the ACCESS
command.

4. Execute the
commands:

TAPE FSF 11
TAPE LOAD * * m

followi ng two

where "m" is the si ngle letter fi Ie
mode of the disk that was accessed in
the previous step.

B.1.1 Regene~atfng Compile~ Modules

To fix bugs that are discovered in the
compiler often requires modules of the
compiler to be recompiled. 19 To replace
a compiled module (a text deck) of the
compiler, execute the following two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTlIB ADD PASCAlx AMPxcccc

where "PASCAlx" is either PASCAlL, PAS­
CAlO, or PASCAL T, dependi ng on whi ch
phase of the compiler is being fixed;
"AMPxcccc" is the module name bei ng
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To
regenerate PASCAll MODULE, execute the
follow; n9:

PASCMOD AMPLMAIN PASCALL (NAME PASCALL

To regenerate PASCALO MODULE, execute
the followi ng:

PASCMOD AMPOMAIN PASCAlO (NAME PASCAlO

To regenerate PASCALT MODULE, execute
the following:

PASCMOD AMPTMAIN PASCAlT (NAME PASCAlT

18 800 byte blocks are assumed. This amount is equivalent to 9 cylinders on
a 3330 disk.

19 The Pascal/VS compiler is written entirely in Pascal/VS and is self-compi­
ling.

170 Pascal/VS Programmer's Guide

//JOBHAME JOB ,REGIOH=50K
//STEP1 EXEC PGM=IEBGEHER
//SYSPRIHT 00 SYSOUT=*
//SYSUT1 DD DSH=PASCALVS.INSTALL.CNTL,
// VOL=SER=TAPEVOL,
// UNIT=TAPE,LABEL=(l,NL),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
// DISP=OLD --
//SYSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
// OCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
// UHIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(l,l»
//SYSIN DO DUMMY

Figure 97. Sample JCL to retrieve first file of distribution tape

B.2 INSTALLING PASCAL/VS UNDER VS2

Thi s secti on expla ins how to install
Pascal/VS under an OS/VS2 system.

B.2.1 LOading Files from Distribution
llE!.I

A sample of the job control language
required to install Pascal/VS under VS2
(MVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program IEB­
GENER must be used. The JCL shown in
Figure 97 may serve as a model job to
retrieve this file. DO operands which
are highlighted will require modifica­
tion to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL" appears in the DD
card named SYSUT1.

The data set name (OSH=) in the DO card
named SYSUT2 is arbi trary. It is the
name of the data set where the fi rst
file on the tape is to be stored. The
appropriate UNIT and volume serial num­
ber for disk storage must be specified
for DD SYSUT2.

Fi gure 98 on page 172, Fi gure 99 on
page 173, and Figure 100 on page 174
contain a listing of the first file of
the di stri buti on tape. The followi ng
modifications are required prior to
submitting this job.

• The name "TAPEVOL" must be replaced
wi th the volume seri al number of
the distribution tape in the DD
statement named SYSUTI in job step
STEP1.

•

•

•

•

•

•

The UNIT specification for tapes
has been given the generic name of
"TAPE"; th is shou 1 d be changed to
the appropri ate generi c at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; thi s should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascal/VS
is to be installed must be speci­
fied where indicated ("DISKVOL")
in the following DD statements:

in STEPl: SYSUT2
in STEP2: SYSUT2
in STEP3: OS4, OS5, DS6,

057, 058, DS9,
0510

in STEP4: SYSUT2

The OD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener­
i c name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with­
in the DEN suboperand of the DGB
attri butes. In the sample job, DEN
is set to 3 which indicates a tape
densi ty of 1600 BPI. If your di s­
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The hi gh level qual i fi er of data
set names that are to be cataloged
should be modi fi ed to follow
installation conventions. (The
examples in thi s manual assume a
high level qualifier of "SYS1".)

Appendix B. Installation Instructions 171

//INSTALL JOB ,REGION=l28K
//'If
//'If
//'If

FILE 2 -- SOURCE INSTALLATION JOB

//STEPl EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT='If
//SYSUTl DD OSN=LOADSRC.CNTL,
// VOL=(,RETAIN,SER=TAPEVOL),
// UNIT=TAPE,LABEL=(2,NL),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3l20,DEN=3),
// OISP=(OLO,PA5.S) --
//SYSUT2 DD DSN=SYS1.LOADSRC.CNTL,DISP=(NEW,CATLG),
// DCB=(LRECL=8(;,RECFM=FB,BLKSIZE=3l20),
// UNIT=3330,VOl=SER=DISKVOL,
// SPACE=CH20,(l,1»
//SYSIN DO DUMMY
//'If
//'If
//'If

FILE 3 -- PASCAlVS CONTENTS

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DO SYSOUT='If
//SYSUTl DO DSN=PASCALVS.CONTENTS,
// VOL=REF='If.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(3,NL),
// DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120,DEN=3),
// DISP=(OLD,PA5S) --
//SYSUT2 DO DSN=SYS1. PASI~ALVS. CONTENTS, OISP= (NEW, CA TLG),
// OCB=(LRECl=80,RECFM=VB,BLKSIZE=3120),
// UNIT=3330,VOl=SER=DISKVOL,
// SPACE=(3120,(1,1»
//SYSIN DD DUMMY
//'If
//'If
//'If
//'If
//'If
//'If
//'If
//'If

FILE 4
FILE S
FILE 6
FILE 7
FILE 8
FILE 9
FIl E 10

PASCALVS.LINKLIB
PASCALVS.LOAO
PASOEBUG.LOAO
PASCALVS .MACLIB
PASCALVS.CLIST
PASCALVS.PROCLIB
SAMPLE.PASCAL

//'If
//STEP3
//OS4
//
//
//
//FILE4
//
//
//
//
//OS5
//
//
//
//FILES
//
//
//
//
//OS6
//
//
//

EXEC PGM=IEBCOPY
DO OSN=SYSl.PASCAlVS.LINKLIB,OISP=(NEW,CATLG),

DCB=(BLKSIZE=l3030,RECFM=U,OSORG=PO),
UNIT=3330,VOL=SER=DISKVOL,
SPACE=(TRK,(SO,lO,3»

DO DSN=PASCALVS.LINKlIB,
VOL=REF=*.STEP1.SYSUT1,
UNIT=TAPE,LABEL=(4,NL),
DCB=BLKSIZE=13030,
DISP=(OLD,PASS)

DO OSN=SYS1.PASCAlVS.lOAO,OISP=(NEW,CATlG),
DCB=(BlKSIZE.=13030,RECFM=U,OSORG=PO),
UNIT=3330,VOL=SER=DISKVOL,
SPACE=(TRK,(14,lO,36»

DO DSN=PASCALVS.LOAO,
VOL=REF=*.STEP1.SYSUTl,
OCB=BLKSIZE=13030,
UNIT=TAPE,lABEl=(S,NL),
OISP=(OLO,PASS)

00 DSN=SYS1.PASDEBUG.LOAO,DISP=(NEW,CATLG),
OCB=(BLKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOL=SER=DISKVOL,
SPACE=(TRK,(9,1,7»

Figure 98. Sample installation job: (continued in Figure 99 on page 173)

172 Pascal/VS Programmer's Guide

J

IIFILE6 DD DSN=PASOEBUG.LOAO,
II VOL=REF=*.STEP1.SYSUT1,
II DCB=BLKSIZE=13030,
II UNIT=TAPE,LABEL=(6,NL),
II DISP=(OLD,PASS)
11057 DO DSN=SYS1.PASCALVS.MACLIB,DISP=(NEW,CATLG),
II DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,OSORG=PO),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(4,1,3»
IIFILE7 DO DSN=PASCALVS.MACLIB,
II VOL=REF=*.STEP1.SYSUT1,
II UNIT=TAPE,LABEL={7,NL),
II OCB=BLKSIZE=3120,
II DISP=(OLO,PASS)
IIOS8 DO DSN=SYS1.PASCALVS.CLIST,OISP=(NEW,CATLG),
II DCB=(BLKSIZE=3120,RECFM=VB,LRECL=255,OSORG=PO),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(3,1,5»
IIFIlE8 DO DSN=PASCAlVS.CLIST,
II VOL=REF=*.STEP1.SYSUT1,
II OCB=BLKSIZE=3120,
II UNIT=TAPE,LABEL=(8,NL),
II OISP=(OLD,PASS)
IIOS9 DO OSN=SYS1.PASCALVS.PROCLIB,DISP=(NEW,CATLG),
II DCB=(BLKSIZE=3120,RECFM=FB,lRECL=80,DSORG=PO),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(2,2,2»
IIFILE9 OD DSN=PASCALVS.PROCLIB,
II VOL=REF=*.STEP1.SYSUT1,
II UNIT=TAPE,LABEL=(9,NL),
II DCB=BLKSIZE=3120,
II DISP=(OlD,PASS)
IIOS10 DD DSN=SYS1.SAMPlE.PASCAl,DISP=(NEW,CATLG),
II DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(S,2,2»
IIFILE10 DO DSN=SAMPLE.PASCAL,
II VOL=REF=*.STEP1.SYSUT1,
II UNIT=TAPE,LABEL=(lO,Nl),
II DCB=BLKSIZE=3120,
II DISP=(OLD,PASS)
IISYSPRINT DD SYSOUT=*
IISYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(l»
IISYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(l»
IISYSIN DD * ----

1*

COPY OUTDD=DS4,INDD=FILE4
COpy OUTDD=DSS,INDD=FILES
COPY OUTDD=DS6,INDD=FILE6
COPY OUTDD=DS7,INDD=FILE7
COPY OUTDD=DS8,INDD=FILE8
COpy OUTDD=OS9,INOD=FIlE9
COPY OUTDD=DSIO,INDD=FILEIO

Figure 99. Sample installation job: (continued in Figure 100 on page 174)

Appendix B. Installation Instructions 17 3

11*
11*
11*
11*

FILE 11-- PASCALVS MESSAGES
(Must be stored unblocked because of BDAM access requirements)

IISTEP4 EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=*
IISYSUT1 DD DSN=PASCALVS.MESSAGES.
II VOL=REF=*.STEPl.SYSUT1,
II UNIT=TAPE,LABEL=(11.NL),
II DCB=(LRECL=64,RECFM=FB.BLKSIZE=3200.DEN=3),
II DISP=(OLD,PASS)
IISYSUT2 DO DSN=SYSl.PASCALVS.MESSAGES.DISP=(NEW.CATLG),
II DCB=(LRECL=64.RECFM=F,BLKSIZE=64).
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(TRK,(1,1»
IISYSIN DD DUMMY

Figure 100. Sample installation job: (continued from Figure 98 on page 172
and Figure 99)

B.2.2 The TSO Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.CLIST (file 3 of the dis­
tri buti on tape).

These CLISTs should be stored in a pub­
lic CLIST library that is accessable to
TSO users through DDname SYSPROC.

Each CLIST must be modified so that the
correct high level qualifier name is
used to reference the Pascal/VS data
sets. In PASCALVS, the s);'mbol named
"FIRSTNAME" should be set to the appro­
pri ate name. In PASCMOD, the symbols
named "LIBRARY" and "DEBUGLIB" should
be set to the names of the! Pascal/VS
run time library and the debug library,
respectively.

B.2.3 Cataloged Procedures

Distributed with the compiler are four
cataloged procedures for i nvoki ng the
compi ler from a batch job: PASCC,
PASCCG. PASCCL, and PASCCLG. These
procedures resi de in the parti ti oned
data set PASCALVS. PROCLIB efi Ie 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure library, so that
the names will be recognized when ref­
erenced from a batch job.

Each procedure must be customi zed to
reflect the data set naming convention
chosen at your installation. For a

listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 24.

8.3 LOADING THE SOURCE UNDER CMS

The compi ler source is stored on the
distribution tape beginning at file 13;
that is, 12 tape marks from the begin­
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for­
mat. To read such a format under CMS.
the TAPPDS command must be utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per­
form the following:

1. Have the distribution tape mounted
at address 181.

2. Access the di sk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 35 free cylinders of 3330 stor­
age. 20

3. Make sure that there is the equiv­
alent of at least 2 free cylinders
of 3330 storage on your "A" di sk.

4. Invoke the LOADSRC EXEC as follows:

LDADSRC 1m

where "fm" is the si ngle letter
file mode of the disk to where the
source files are to be placed. The
EXEC will print out messages as it
processes the tape.

20 This is roughly 9400 800-byte blocks. Once the source files have been
installed, you may find it desirable to pack them in order to save disk
storage.

174 Pascal/VS Programmer's Guide

J

J

B.4 LOADING THE SOURCE UNDER VS2

The compi ler source is stored on the
distribution tape beginning at file 13.
It consists of nine tape files stored
in the IEBUPDTE format.

File 2 of the distribution tape con­
tains the JCl which copies the source
fi les to di sk storage. Thi s fi Ie is
unloaded when the compiler is installed
and has been given the name
"lOADSRC.CNTl".

Prior to submitting the job. it must be
customized as follows:

• In ddname SYSIN of jobstep STEPl,
the volume seri al number of the
distribution tape should be placed
where the name TAPEVOL is shown.

• The UNIT speci fi cat i on for tapes
ha s been given the gener i c name
"TAPE"; thi s should be changed to
the appropriate generic at your
installation.

•

•

•

•

•

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DO state­
ment named SYSUT2 in each job step.

The hi gh level qual i fi er for the
data set names to be cataloged is
arbitrary. In the supplied JCl,
the name "SOURCE" is used.

If you do not want a listing of the
source, then DDname SYSPRINT
should be assigned to DUMMY in each
of the job steps.

The tape density is specified with­
in the DEN suboperand of the DCB
attri butes. In the JCl, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other dens; ty, then
the DEN operands should be changed
accordingly.

Appendix B. Installation Instructions 175

IILOADSRC JOB ,R€GION=SOK
11*
11* FILE 13 -- PASCALL PASCAL - PASS 1 SOURCE (COMPILER)
II*.
IISTEP1 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALL.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=(TRK,C132,43,S»
IISYSIN DD UNIT=TAPE,VOL=(,RETAIN,SER=TAPEVDL),LABEL=(13,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*
II*.
11* FILE 14 -- PASCALO PASCAL - PASS 2 SOURCE (OPTIMIZER)
11*
IISTEP2 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SQURCE.PASCALO.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=(TRK,(40,10,5»
IISYSIN DD UNIT=TAPE,VOL=REF=*..STEP1.SYSIN,LABEL=(14,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*'
11*
11* FILE IS -- PASCALT PASCAL - PASS 3 SOURCE (TRANSLATOR)
II*.
IISTEP3 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALT.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=(TRK,(117,39,5»
IISYSIN DD UNIT=TAPE,VOL=REF=*..STEPl.SYSIN,LABEL=(15,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*' ----
11*
II*. FILE 16 -- PASCALD PASCAL - DEBUG SOURCE
11*
IISTEP4 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALD.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(lRECl=80,BlKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=(TRK,(33,9,S»
IISYSIN DD UNIT=TAPE,VOl=REF=*.STEPl.SYSIN,LABEL=(16,NL),
II DISP=(OlD,PASS),
II DCB=(lRECl=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*'
II*.
11* FILE 17 -- PASCAlX PASCAl - RUN TIME ENVIRONMENT SOURCE
11*
IISTEPS EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SDURCE.PASCALX.PASCAl,DISP=(NEW,CATlG),
II UNIT=3330,DCB=(lRECl=80,BlKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVDL,SPACE=(TRK,(69,24,S»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEl=(17,Nl),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*

Figure 101. Listing of the JCl to copy source files from tape: this job is
stored as file 2 of the distribution tape. (continued in
Figure 102 on page 177).

176 Pascal/VS Programmer's Guide

J

J

11*
11* FILE 18 -- PASCAlZ ASM - RUN TIME ENVIRONMENT SOURCE
11*
IISTEP6 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.PASCAlZ.ASM,DISP=(NEW,CATlG),
II UNIT=3330,DCB=(LRECL=80,BlKSIZE=3l20,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(16,1,4»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEL=(18,Nl),
II DISP=(OLD,PASS),
II DCB=(lRECl=80,BLKSIZE=3l20,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=* ----
11*
11* FILE 19 -- MAClIBl PASCAL - roINClUDE lIBRARY FOR COMPILER
11*
IISTEP7 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.MAClIBL.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(lRECl=80,BLKSIZE=3l20,RECFM=FB),
II VOl=SER=DISKVOL,SPACE=(TRK,(2l,7,4»
IISYSIN DO UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEl=(19,NL),
II DISP=(OLD,PASS),
II DCB=(lRECL=80,BLKSIZE=3l20,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=* ----
11*
11*
11*

FILE 20 -- MACLIBO PASCAL - roINCLUDE LIBRARY FOR OPTIMIZER

IISTEPS EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.MACLIBO.PASCAl,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3l20,RECFM=FB),
II VOl=SER=DISKVOL,SPACE=(TRK,(5,2,3»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEl=(20,Nl),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3l20,RECFM=FB,DEN=3)
IISYSPRINT OD SYSOUT=* ----
11*
11* FILE 21 -- MACLIBT PASCAL - %INCLUDE LIBRARY FOR TRANSLATOR
11*
IISTEP9 EXEC
IISYSUT2 DO
II

PGM=IEBUPDTE,PARM=NEW
DSN=SOURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),
UNIT=3330,DCB=(LRECL=SO,BLKSIZE=3120,RECFM=FB),

II
IISYSIN
II
II
11*
11*
11*

VOl=SER=DISKVOL,SPACE=(TRK,(19,7,4»
DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,lABEl=(21,NL),

DISP=(OLD,PASS),
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

FILE 22 -- MACLIBD PASCAL - %INCLUDE LIBRARY FOR DEBUG

IISTEPI0 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DO DSN=SDURCE.MAClIBD.PASCAl,DISP=(NEW,CATlG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(2,1,1»
IISYSIN DD UNIT=TAPE,VOl=REF=*.STEPl.SYSIN,lABEl=(22,Nl),
II DISP=(OLD,PASS),
II DCB=(LRECl=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=*
11*
11*
11*
11*

FILE 23 -- MACLIBX PASCAL - %INClUDE/MACRO lIBRARY FOR RUN TIME
ENVIRONMENT

IISTEPII EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.MACLIBX.PASCAl,DISP=(NEW,CATLG),
II UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(9,1,2»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEL=(23,NL),
II DISP=OLD,
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
IISYSPRINT DD SYSOUT=* ----

Figure 102. listing of the JCL to copy source files from tape: (continued
from Figure 101)

Appendix B. Installation Instructions 177

J

178 Pasca!/VS Programmer's Guide

APPENDIX C. ADDITIONAL LIBRARY PROCEDURES AND FUNCTIONS

In addition to the routines described
in Pascal/VS Reference Manual, order
number SH20-6l68-l, there are several
other routines which are not predefined
but are provided in the Pascal/VS exe­
cution library. These routines are:

• ITOHS Procedure

•
•
•

eMS Procedure

LPAD Procedure

RPAD Procedure

• PICTURE Function

Appendix C. Additional Library Procedures and Functions 179

C.I CMS PROCEDURE

Invoke a CMS Command

Definition:,

procedure CMS(
canst S
var RC
EXTERNAL;

Where:

STRING;
INTEGER) ;

S is a STRING that is to be
executed.

RC is the return code.

The STRING specified by 5 will be
passed to CMS (via SVC 202) to be exe­
cuted; the command must be executable
in the transi ent area or ina shared
segment. You must code the declaration
as shown above, or use the INCLUDE mem­
ber named "CMS" which is provided in
the Pascal/VS library. This procedure
is applicable under CMS only.

roINCLUDE CMS

CMS ('CP Q T', RET>;

180 Pascel/VS Programmer's Guida

C.2 ITOHS FUNCTION

Convert an INTEGER to a hex string

Definition:

function ITOHS(
I INTEGER)

STRING(S);
EXTERNAL;

Where:

I is the value to be converted.

This function converts the parameter I
into a STRING that contains the hexade­
cimal representation of the integer.
You must code the declaration as shown
above, or use the INCLUDE member named
"CONVERT" which is provided in the Pas­
cal/VS library.

roINCLUDE CONVERT

WRITELN('The value ',1:0,
, is " ITOHS(I),
, in hexadecimal.');

C.3 LPAD PROCEDURE

Pads or truncates a string on the left

Definjtion:

procedure
var S

LPADC

L
C

EXTERNAL;

Where:

STRING;
INTEGER;

: CHAR);

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure LPAD pads or truncates
string variable S on the left. If
LENGTH (S) ; s greater than L, then the
effect is to truncate characters on the
left. If LENGTHCS) is less than L,
then the effect is to extend S with the
character C on the left. You must code
the declaration as shown above, or use
the INCLUDE member named "STRING" which
is provided in the Pascal/VS library.

"INCLUDE STRING;

S : = 'ABCDEF';
LPADCS, 10, '$');

produces '$$$$ABCDEF' in S

S : = 'ABCDEF';
LPADCS, 5, '$');

produces 'BCDEF' in S

C.4 RPAD PROCEDURE

Pads or truncates a string on the
right

Definition:

procedure
var S

L

RPADC

C
EXTERNAL;

Where:

STRING;
INTEGER;
CHAR);

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure RPAD pads or truncates
string variable S on the right. If
LENGTHCS) is greater than L, then the
effect is to truncate characters on the
right. If LENGTHCS) is less than L,
then the effect is to extend S with the
character C on the ri ght. You must
code the declaration as shown above, or
use the INCLUDE member named "STRING"
which is provided in the Pascal/VS
library.

"INCLUDE STRING

S := 'ABCDEF';
RPADCS, 10, '$');

produces 'ABCDEF$$$$' in S

S := 'ABCDEF';
RPADCS, 5, '$');

produces 'ABCDE' in S

Appendix C. Additional Library Procedures and Functions 181

C.S PICTURE FUNCTION

Formats a floating point value
according to a "picture" format

Definition:

function PICTURE(
canst P : STRING;

R : REAL): STRING(lOO)j
EXTERNAL;

Where:

P is a picture specification;
R is the number to be formatted.

The function PICTURE returns the string
representation of a real number format­
ted according to a "picture" specifica­
tion. The characters that make up the
pi cture speci fi cat i on are si mi lar to
those found in PL/I and COBOL.

A declaration for PICTURE may be
obtained by including the member CON­
VERT from the Pascal/VS library.

A picture specification may consist of
two fields: a decimal field and an
exponent field. The latter is optional;
the first one is always required.

The dec i mal
subfields:
fractional
optional.

field may consist of two
the integer part and the
part. The latter is

Example of picture specifications:

S9999.V99
9V.999ES99
$ZZZ,ZZZ,ZZ9V.99

A picture character may be grouped into
the following categories. Picture
characters may be specified in lower
case.

• Digit and decimal-point specifier

9 specifies that the associated
position in the data item is to
contain a decimal digit.

V divides the decimal field into
two parts: the integer part and
the fractional part. This char­
acter speci fi es that a deci mal
point is assumed at this posi­
tion in the associated data
item. However, it does not spec­
ify that an actual decimal point
is to be inserted. The integer
and fractional parts of the
assi gned value are al; gned on
the V character; thl~refore, an
assigned value may be truncated
or extended with zero digits at

182 Pascal/VS Programmer's Guide

either end. (User beware!> If
no V character appears, a V is
assumed at the right end of of
the decimal field.

• Zero suppression characters

•

Z specifies a conditional digit
position 1n the character
stri ng value and may cause a
leading zero to be replaced with
a blank.

• specifies a conditional digit
position 1n the character
stri ng value and may cause a
leading zero to be replaced with
an asterisk ('*').

leading zeros are those that occur
in the leftmost digit positions of
the integer part of floating point
numbers.

Insertion character

Insertion characters are inserted
into corresponding positions in
the output string provided that
zero suppression is not taking
place. If zeros are bei ng sup­
pressed when an insertion
character is encountered, a blank
or an asterisk will be inserted in
the corresponding place in the out­
put stri ng, dependi ng on whether
the zero-suppress; on character is
a Z or an asteri sk (*).

causes a comma to be inserted
into the associated position of
the output string.

causes a poi nt (.) to be
inserted into the associated
posi ti on of the output stri ng.
The character never causes
point alignment in the number.
That function is served soley by
the character V.

B causes a blank to be inserted
into the associated position of
the output string.

• Signs and currency symbol

The si gn and currency characters
(, 5 ' , ' + ' , ,- , , , $ ') may be used in
either a static or a drifting man­
ner. The static use specifies that
a si gn, a currency symbol, or a
blank always appears in the associ­
ated position. The drifting use
specifies that leading zeros are to
be suppressed.

A drifting character is specified
by multiple use of that character
in a picture field.

+ specifies a plus sign character
(+) if the number is >=0, other­
wise it specifies a blank.

speci fi es a mi nus si gn charac­
ter (-) if the number is <0,
otherwise it specifies a blank.

S specifies a plus sign character
(+) if the number is >=0, other­
wise it specifies a minus sign
character (-).

$ specifies a dollar sign charac­
ter ($).

Exponent specifiers

The characters 'E' and 'K' delimit
the exponent fi eld of a pi cture

P R

'99999' 123.0
'ZZZZ9' 123.0
'lOOOE9 ' 123.0
'ZZZZ9 ' 0.0
'ZZZZZ' 0.0
'lOElOE9' 0.0
'lE***lE' o . 0
'59999' 123.0
'+9999' 123.0
'+9999' -123.0
'999.99' -123.456
'999V.99' 123.456
'ZZZ,ZZZ,ZZ9' 123456.0
'***,*lE*,**9' 123456.0
'-ZZ,ZZZ,ZZ9' -123456.0
'---,---,--9' -123456.0
'$lElE,lElElE,lElE9V.99' 123456.78
'$$$,$$$,$$9V.99' 123456.78
'59V.9999E599' 1. 23456
'S9V.9999KS99' 1.23456
'-999.999,V99' 1234.567
'-9.999E9' -1234.567
'98989898989' 123456.0
'9.9.9.9.9.9' 12345.0
'999995' -12345.0
'999+' -123.45
'999+' +123.45
'ZZZ.V99' 0.12
'ZZZV.99' 0.12
'-9V.999E59' 1. 23E4
'S9999VESZ9' -123456.0
'-V.999E-99' 123456.0

specification. The exponent field
must always be the last field.

E speci fi es that the associ ated
position contains the letter E,
which indicates the start of the
exponent field.

K specifies that the exponent
fi eld appears to the ri ght '.)f
the associated position. It
does not specify a character
data item.

See Figure 103 for examples.

PICTURE(P,R)

'00123' , 123'
'l0E123, , 0' , ,
'***lEO'
'**lElElE'
'+0123'
'+0123' , 0123'
'001.23'
'123.46' , 123,456'
'****123,456' ,- 123,456' , -123,456'
'$lElElEI23,456.78' , $123,456.78'
'+1.2346E+00'
'+~.2346+00'
'-001.234,57'
'-1.235E3'
' 1 2 3 4 5 6'
'0.1.2.3.4.5'
'12345-'
'123 ,
'123+' , 12' , .12' , 1.230E+4'
'-1235E+ 2' , .123E 06'

Figure 103. Examples of using the PICTURE function

Appendix C. Additional Library Procedures and Functions 183

184 Pascal/VS Programmer's Guide

Virtual Machine/Personal Computer
(VM/PC) is an IBM licensed program that
runs on the IBM XT/370 Personal Comput­
er. VM/PC gi ves you an interact i ve
system that has the characteristics of
a VM/SP Release 2 system.

This appendix gives only the basic
information needed to use the Pascal/VS
programming language under VM/PC. You
101; 11 also need one of the follow; ng
manuals: Pascal/VS Reference Manual
and the Pascal/VS Programmer's Guide;
order numbers are SH20-6168 and
SH20-6162 respectively.

It is assumed that the user has a gen­
eral knowledge of the VM/PC operating
environment, and that the VM/PC system
has been installed and configured.
Refer to the VM/PC User's Gu; de for
more i nformati on regardi ng the VM/PC
system.

D.l INTRODUCING VM/PC FOR PASCAL/VS

This appendix describes how to use the
IBM Pascal/VS programmi ng language
under VM/PC.

VM/PC is an IBM licensed program that
runs on the IBM XT/370 Personal Comput­
er, as an IBM Personal Computer Oi sk
Operati ng System .:!Ippl i cati on. VM/PC
gi ves you an interact i ve system that
has the characteristics of a VM/SP
Release 2 system: command entry, com­
mand formats, messages, screen
formats, file naming conventions, key
functions and application interfaces.

To use the Pascal/VS programming lan­
guage under VM/PC, a host system must
be available; this is because you must
copy (download) the Pascal/VS compiler
and library from the host system into
your local VM/PC storage. Once you
have done this, you can use the product
ei ther independently of the host
system, or in connection with the host
system.

VM/PC lets you set up a local 370 envi­
ronment in which to do your work, known
as a local sessi on. Once you have
downloaded the Pascal/VS compi ler and
library into your local storage, you
can use that product in local sessions.

VM/PC also lets you set up a 3277 or
3101 connection with a host system on a
remote computer, so that your personal
computer acts as a terminal on the host
system; such a connection is known as a

APPENDIX D. VM/PC PASCAL/VS USER'S GUIDE

remote session. You can use the prod­
uct in remote sessi ons as well as in
local sessions. (However, see "Licens­
ing Considerations.")

To develop Pascal/VS programs with
VM/PC, you'll use both types of ses­
sions. You can use a remote session to
create and process programs on a host
system, or to copy (download) the Pas­
cal/VS compiler and library. into your
local VM/PC storage. Once the
Pascal/VS compiler is available in
local storage, you create and compile
Pascal/VS programs in local sessions.

You can also mix local and remote ses­
sions in any combination that you find
efficient. For example, you could cre­
ate and edi t your programs in local
sessions, then copy (upload) them into
the host system for compi lati on and
execution. Or you could create and com­
pile your programs on the host system
in remote sessions, and then download
the obj ect program for execut ion in
local sessions.

The performance of Pascal/VS on VM/PC
is strongly dependent upon the nature
of the specific job stream, and you may
very well find that VM/PC performance
with the Pascal/VS compiler is affected
by the storage and paging constraints
imposed by the VM/PC hardware. There­
fore, as compared to a typi cal
Pascal/VS compiler, you may experience
greatly extended processi ng times in
the VM/PC environment.

D.2 LICENSING CONSIDERATIONS

You can
Pascal/VS
session.
apply:

execute a host-resident
compiler from a local

The following considerations

1. When you execute the Pascal/VS com­
piler in a local session, the com­
pi ler must be licensed for your
XT/370 machine (whether or not you
have downloaded the compiler into
XT/370 disk storage).

2. To execute a compiled Pascal/VS
object program in a local session,
that was compi led and 1 i nk-edi ted
on a host system, a license is not
required.

3. When you usa a remote sessi on to
execute Pascal/VS object programs
that were compiled on the host sys­
tem, a license is not required.

Appendix D. VM/PC Pascal/VS User's Guida 185

0.3 USINGVM/PC •

Under VM/PC, you use VM/SP-CMS commands
to create, modify, compile, link-edit
or load, execute, debug, and test your
Pascal/VS programs.

LINK: which makes a device associ­
ated with another virtual machine
avai lable to your vi rtual machi ne
configuration, based upon informa­
tion in the user's VM/SP directory
entry.

•
The commands most useful to you in per­
formi ng these tasks are bri efly
described in Figure 104.

SPOOL : whi ch modi fi es the spool i ng
control options in effect for one
or more virtual spooling devices.

You will also find the following CP
commands useful:

Command

ACCESS

EXEC

FIlEDEF

GLOBAL

INCLUDE

LISTFIlE

LOAD

PRINT

RENAME

SET

START

TYPE

XEDIT

How Used

Activates a virtual disk for use

Executes a file that consists of one or
more CMS commands

Defines a file and its input/output
devices

Specifies text libraries to be searched
to resolve external references in a
program being loaded

Specifies additional text file5 for use
during program execution

Displays a list of your files

Places a text file in storage and
establishes the linkages for execution

Prints a file on the off-line printer

Changes the filename, filetype, and/or
filemode of a file

Establishes, turns off, or resets a particular
function of the CMS virtual machine

Begin5 execution of a previously loaded
and link-edited program file

Displays all or part of a file at the
terminal

Puts you in edit mode to create and
edit source program and data files and
lets you use the XEDIT subcommands

Figure 104. CMS Command Summary

186 Pascal/VS Programmer's Guide

J

D.4 METHODS OF USING PASCAL/VS UNDER
VM/PC

There are two different ways in which
you use Pascal/VS under VM/PC:

1. Copy (download) the Pascal/VS com­
piler modules onto local disk
files, and then invoke Pascal/VS in
local sessions. (You need to down­
load only when you fi rst access
Pascal/VS, when a new ma i ntenance
update is appl i ed, or when a new
release has been installed on the
host system.)

2. Link to the host system mi ni di sk
conta in i ng Pascal/VS compi ler and
library, and then access it from
the local session as a remote mini­
disk. (You must do this after every
Initial Program Load (IPL) of CMS,
or whenever the link to the host
system is severed.)

Dependi ng on your link wi th the
system, and on the system load,
this often is not an efficient way
to operate.

Note As noted under "L i censi ng Con­
siderations" above, your VM/PC
must be licensed for Pascal/VS if
you are to execute the compiler in
a local session. This is true even
if you do not download the compiler
onto your local VM/PC storage.

D.S DOWNLOADING THE PASCAL/VS COMPIL­
ER INTO VM/PC

To use Pascal/VS under VM/PC, you can

copy (download) the Pascal/VS modules
into your local files. The modules you
must copy are listed in Figure 105 on
page 188

Downloading is necessary only when you
first access Pascal/VS, or after a new
release or maintenance updates have
been installed on the host system.

Both the virtual storage and minidisk
storage must be allocated wi th approxi­
mately 1. OM bytes. These storage
requirements are for Pascal/VS compil­
er and library only; additional storage
is needed for the source and/or object
program files.

Figure 106 on page 188 shows you the
commands you must issue. The procedure
is as follows:

1. Link Cif necessary) and access the
local minidisk that is the target
minidisk for the copy operation. If
the target minidisk is your own
minidisk, the link is not required.

2. Link and access the host minidisk
that contai ns the Pascal/VS mod­
ules.

3. Copy the Pascal/VS modules from the
host minidisk to the local
minidisk. (This is known as down­
loading.)

4. Release the host PascaI/VS ml nl­
disk; it is no longer required.

Appendix D. VM/PC Pascal/VS User's Guide 187

PASCALS
PASCALL
PASCALO
PASCALT
PASCALVS
PAS DEBUG
PASCALVS
PASCALVS
PASCMOD
PASCALVS
PASCALVS

MODULE
MODULE
MODULE
MODULE
TXTLIB
TXTLIB
MACLIB
EXEC
EXEC
MESSAGES
CMSHELP

Figure 105. Pascal/VS Modules Needed for Downloading

**
* * 1) Link and access the target VM/PC minidisk.

* CP LINK vm/pc-id ttt aaa W write-password
ACCESS aaa filemode1

* * 2) Link and access the host minidisk that contains the Pascal/VS * compiler and library.
* CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemode2

* * 3) Copy the files you need.

* COPYFILE filename filetype filemode2 = = filemode1

* * 4) Release the Pascal/VS host minidisk.

* RELEASE filemode2 (DET

* * * Where: * ttt - is the virtual address of the local target minidisk that * will store the Pascal/VS modules. * aaa - is an unused virtual address on the local VM/PC machine. * hhh - is the virtual address of the host minidisk that contains * the Pascal/VS modules. * bbb - is the virtual disk address you use to refer to the host
* disk. * filemode1 - is the filemode of the target minidisk on the local
* VM/PC machine. * filemode2 - is the filemode of the host minidisk that contains * the Pascal/VS modules.

**

Figure 106. eMS Commands to Download Pascal/VS From a Local Session

188 Pascal/VS Programmerfs Guide

J

D.6 ACCESSING THE PASCAL/VS COMPILER
ON THE HOST

The other way to use Pascal/VS under
VM/PC, is to link to the host system
minidisk containing Pascal/VS compiler
and library and then access it from the
local session as a remote minidisk.

li nki ng and accessi ng are necessary
whenever there is a an Initial Program
Load (IPL) of CMS, and whenever the
link to the host system severed.

Depending on your link with the host
system and on the system load, thi s
often is not an efficient way to oper­
ate compared to downloading.

The virtual storage requirement is
approximately 1.0M bytes, but there is
no additional VM/PC minidisk storage
requirement for the Pascal/VS compiler
and library since it resides in the
host system mini disk storage area.
Additional storage is needed though for
the source and/or object program files.

Figure 107 shows you the commands you
must issue to link and access the host
mi nidi sk that conta i ns the Pascal/VS
modules.

**
* * Link and access the host minidisk that contains the Pascal/VS * compiler and library.

* CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemodel

* * * Where: * hhh - is the virtual address of the host minidisk that contains * the Pascal/VS modules. * bbb - is the virtual disk address you use to refer to the host
* disk. * filemodel - is the filemode of the local VM machine

**

Figure 107. CMS Commands to Access Pascal/VS From a Local Session as a
Remote Minidisk

D.7 INVOKING PASCAL/VS UNDER VM/PC

You must first make Pasca1/VS available
on a minidisk you can access. For
example:

CP LINK userid aaa aaa RR read-password
ACCESS aaa filemodel

If Psscal/VS is stored on your A-disk,
or another disk you can access, you can
omit the LINK and ACCESS commands. (If
you must issue these commands each time
you log on to VM/PC, you can put them
into your PROFILE EXEC, which issues
them for you.)

Next, you can invoke Pascal/VS through
the following command:

PASCALVS fn Eft [fm]] [(options .•• [)]]

where "fn" is the name of the Pascal/VS
program, "ft" is PASCAL if omitted,and

"options" let you modify the default
compiler options in force for your
organization.

To build a load module, issue the fol­
lowi ng command:

PASCHOD main [fns •••] [(options ••• [)]]

where "main" is the name of the main
program module, "fns" are the names of
segment modules and text libraries
CTXTLIB's) which are to be included,
and "options" allow you to override
default options.

To invoke the load module, issue the
following command:

modname [rtparms ••• /] [parms ••. l

where "modname" is the name of the load
module, "rtparms" are the run time
options, and "parms" are the parameters
(i f any) bei ng passed to the Pascal
program.

Appendix D. VM/PC Pascal/VS User's Guide 189

0.8 VM/PC PROCESSING RESTRICTIONS ON
PASCAL/VS

The followi ng processi ng capabi Ii ti es
are not available when you are execut­
ing an object program in a local VM/PC
session:

1. Any Pascal/VS restri ct ions on CMS
processi ng apply for VM/PC as well.

2. Magnetic tape file processing is
not available: this means that you
can not define (FILEDEF) a
Pascal/VS sequential file to a mag­
netic tape medium.

190 Pascal/VS Programmer's Guide

0.9 PASCAL/VS PROGRAMMING TIPS

You can improve processing time if you
specify the HOPRIHT Pascal/VS compiler
opti on that suppresses the generati on
of a program listing (if a listing is
not required). NOPRINT automatically
forces the follow; ng three compi ler
options to become active:

• NOSOURCE

•
•

HOXREF

NOLIST

L·

access methods 45
BDAM 45
BPAM 45
QSAM 45

appending to a file 59
arrays

storage mapping of 90
Assembler routines, linking
to 106-121

calling Pascal/VS main program
from 111

calling Pascal/VS routines
from 109

general interface 107-108
minimum interface 106
receiving parameters 109

assembly listing 42
automatic variables

storage mapping of 89

batch
See OS batch

BDAM 45
BLKSIZE 45, 57
block size attribute

See BLKSIZE
BPAM 45

CALL
command of TSO 20

cataloged procedures 24
PASCC 25
PASCCG 26
PASCCL 27
PASCClG 28

CHECK compiler option 31
as it applies to

CASE statements 31
function routines 31
pointers 31
string truncation 32
subranges 31
subscripts 31

checking errors at run time 63
CLOSE procedure 55
closing a file 55
CMS 9-13

building load module 12
compiling under 9-11
defining files under 13
invoking load module 13

CMS procedure 180
COBOL 116

calling from Pascal/VS 116
calling Pascal/VS from 117

code generation 93-104
See also DSA,

linkage conventions
parameter passing,
PCB,
PCWA,
register usage,
routine format,
routine invocation

command syntax 167
compilation

under eMS 9-11
under OS batch 23-30
under TSO 15-17

compiler diagnostics
under CMS 10
under TSO 17

compiler listings 37-43
assembly

See assembly listing
cross-reference

See cross-reference listing
ESD

See ESD table
source

See source listing
compiler messages

See messages, compiler
compiler options 31-34

See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LANGLVL compiler option,
LINECOUNT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOPXREF compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
PAGEWIDTH compiler option,
PXREF compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option

console input/output 47
CONSOLE option

of PASCALVS CLIST 16
of PASCALVS EXEC 10

COUNT run time option 35
cross-reference listing 40-41

data set attributes 45
See also LRECL, RECFM, BLKSIZE

data set definitions
See file definitions

DCB attributes
See data set attributes

DDname
OPEN specification 57

DDname association 45

Index 191

DEBUG compiler option 32
debug facility 67-87

commands 67-79
break 68
clear 68
CMS 69
display 69
display breaks 70
display equates 70
end 71
equate 71
go 72
help 73
listvars 73
qualify 74
quit 74
reset 75
set attr 75
set count 76
set trace 76
trace 77
view memory 78
view variable 77
walk 79

input to 67
output from 67
qualification 67

DEBUG option
of PASCMOD CLIST 19
of PASCMOD EXEC 12
of run time 35

debugging a program
interactive debugger

See debug facility
traceback facility 61

DEF variables
storage mapping of 89

default
BLKSIZE 45
LRECL 45
RECFM 45

DISK option
of PASCALVS EXEC 9

DSA (dynamic storage area) 94
dump

symbolic variable 65
dynamic storage area

See DSA
dynamic variables

storage mapping of 89

end-of-file condition
for record files 54
for text file 54

end-of-line condition 53
enumerated scalar

storage mapping of 90
EOF function 54
EOLN function 53
EPILOG Assembler macro 107
ERRCOUNT run time option 35
ERRFILE run time option 35
errors

execution time
intercepting 64

ESD table 43
executing a program

under OS batch 23-30
execution error handling 63
execution errors

192 Pascal/VS Programm~r's Guide

intercepting 64
external symbol dictionary

See ESD table

file control block
See PCB

file definitions
under CMS 13
under OS batch 29
under TSO 20

files
See also input/output facilities
See also record files
See also text files
storage mapping of 91

FORTRAN 114
calling from Pascal/VS 114
calling Pascal/VS from 115

function invocation
See routine invocation

GET procedure 48
record files 48
text files 48

GOSTMT compiler option 32
GS compiler option

See GOSTMT compiler option

HEAP run time option 35

I/O facilities
See input/output facilities

Y.INCLUDE facility
under eMS 10
under OS batch 29
under TSO 17

input/output facilities 45-59
implementation 45
record files

See record files
text files

See text files
installation instructions 169-177

compiler source
under CMS 174
under VS2 175

for CMS 170
for OS/VS2 171-174

cataloged procedures 174
CLIST customizing 174
loading compiler 171-174

regenerating compiler under
CMS 170

interactive files 46, 51
INTERACTIVE open option 46, 58

J

L

intercepting execution errors 64
interlanguage communication 105-121

Assembler 106
COBOL 116
data type equivalencing 120
FORTRAN 114
Pl/l 118

ITOHS function 180

0
JCl 23
job control language 23

~
lANGlVl compiler option 32
lC compiler option

See lINECOUNT compiler option
LIB option

of PASCAlVS ClIST 16
of PASCMOD ClIST 19

lINECOUNT compiler option 32
linkage conventions 93
lIST compiler option 32
listing

See compiler listings
load module

creating under CMS 12
creating under TSO 18
invoking under CMS 13
invoking under TSO 20

logical record length
See lRECl

LPAD procedure 181
lRECL 45, 57

MACLIB access
See partitioned data set

MAIN directive 109, 114, 115, 116,
117, 118, 120

MAINT run time option 35
MARGINS compiler option 33
MEMBER open option 58
messages 133-163

compiler 133-153
DEBUG 161
execution time messages 154
PASCAlVS exec 163

MVS batch
See OS batch

NAME open option 58
NAME option

of PASCMOD EXEC 12
NOCC open option 57
NOCHECK compiler option 31
NOCHECK run time option 35
NODEBUG compiler option 32

NOGOSTMT compiler option 32
NOGS compiler option

See NOGOSTMT compiler option
NOLIB option

of PASCAlVS CLIST 16
NOLIST compiler option 32
non-text files

See record files
NOOBJ option

of PASCAlVS EXEC 10
NOOBJECT option

of PASCALVS ClIST 16
NOOPT compiler option

See NOOPTIMIZE compiler option
NOOPTIMIZE compiler option 33
NOPRINT option

of PASCAlVS ClIST 16
of PASCAlVS EXEC 10

NOPXREF compiler option 34
NOS compiler option

See NOSOURCE compiler option
NOSEQ compiler option

See NOSEQUENCE compiler option
NOSEQUENCE compiler option 34
NOSOURCE compiler option 34
NOSPIE run time option 35
NOWARNING compiler option 34
NOX compiler option

See NOXREF compiler option
NOXREF compiler option 34

OBJECT option
of PASCALVS ClIST 15
of PASCMOD CLIST 19

open options 56
INTERACTIVE 46

opening a file
for input 46
for interactive input 46
for output 47
for terminal I/O 47
for update 47

OPT compiler option
See OPTIMIZE compiler option

OPTIMIZE compiler option 33
OS batch 23-30

cataloged procedures 23
compiling under 23
executing under 23

Page cross reference 34
PAGE procedure 53
PAGEWIDTH compiler option 33
parameter passing 97-98

by value 97
function results 98
read-only reference (CONST) 97
read/write reference (VAR) 97
routine parameters 98

partitioned data set 56, 58
access under CMS 56
opening 56

Pascal communication work area
See PCWA

Pascal, standard

Index 193

extensi ons 129
modified features 129
restrictions over 129

PASCAlVS
ClIST of TSO 15
DEBUG messages

See messages, PASCAlVS exec
exec messages

See messages, PASCAlVS exec
exec of CMS 9-10

PASCC cataloged procedure
PASCCG cataloged procedure
PASCCl cataloged procedure
PASCClG cataloged procedure
PASCMOD

ClIST of TSO 18
EXEC of CMS 12

PCB 103
PCWA 100
PDS

See partitioned data set
PDSIN procedure 56
PDSOUT procedure 56
PICTURE Function 182
PUI 118

25, 27
26
27

28

calling from Pascal/VS 118
calling Pascal/VS from 119

PRINT option
of PASCAlVS ClIST 16
of PASCAlVS EXEC 10

procedure invocation
See routine invocation

PROLOG Assembler macro 107
PSClHX directive 120
PSClHX procedure 109, 115, 117. 120
PUT procedure 49

record files 49
text files 49

PW compiler option
See PAGEWIDTH compiler option

PXREF compiler option 34

QSAM 45

READ procedure
for record file 54
text file 49

integer data 50
length qualifier 50
real data 50
strings 51

READlN procedure 51
RECFM 45, 57
record fields

storage mapping of 89
record files 46

closing 55
GET operation 48
opening for input 46
opening for output 47
processing of 54-55
PUT operation 49
updating 47

record format
See RECFM

194 Pascal/VS Programmer's Guide

records
storage mapping of 90

reentrancy. compiler 131
REENTRANT directive 109, 118, 120
regenerating compiler under CMS 170
register usage 93
RESET procedure 46
REWRITE procedure 47
routine format 99
routine invocation 96
RPAD procedure 181
run time errors

intercepting 64
run time librari~s

under CMS 12
run time options 35
runtime environment 123-127

main program 123
memory management 127
program initialization 123

S compiler option
See SOURCE compiler option

SEQ compiler option
See SEQUENCE compiler option

SEQUENCE compiler option 34
SETMEM run time option 36
sets

storage mapping of 91
SOURCE compiler option 34
source listing 37-39

compilation statistics 39
error summary 38
nesting information 38
option list 39
page cross reference field 38
page header 38
statement numbering 38

spaces
storage mapping of 92

STACK run time option 35
standard Pascal

See Pascal
static variables

storage mapping of 89
storage mapping 89-92

arrays 90
automatic storage 89
boundary alignment 89-92
data size 89-92
DEF storage 89
dynamic storage 89
enumerated scalar 90
files 91
predefined types 89
record fields 89
records 90
sets 91
spaces 92
static storage 89
subrange scalar 90

subrange scalar
storage mapping of 90

symbolic variable dump 65
syntax notation 167
SYSLIB 27, 29
SYSlIN DDname 24
SYSlMOD 27
SYSPRINT DDname 24
SYSPRINT option

of PASCALVS CLIST 16

TERMIN procedure 47
terminal input/output 47
TERMOUT procedure 47
text files 46

closing 55
GET operation 48
interactive input 46
opening for input 46
opening for output 47
processing of 49-54
PUT operation 49

traceback facility 61-63
TSO 15-21

building load module 18
compiling under 15-17
defining files under 20
invoking load module 20

UCASE open option
UPDATE procedure

variable dump 65

58
47

VM/PC User's Guide 185
Accessing Pascal/VS on the

host 189
Downloading Pascal/VS 187
Introducing VM/PC 185

Invoking Pasca!/VS 189
Licensing Considerations 185
Methods of Using Pascal/VS 187
Pascal/VS Programming Tips 190
Using VM/PC 186
VM/PC Processing Restrictions 190

VS2 batch
See OS batch

W compiler option
See WARNING compiler option

WARNING compiler option 34
WRITE procedure 52

for record file 54
WRITELN procedure 53

X compiler option
See XREF compiler option

XREF compiler option 34

Index 195

SH20-6162-2

"J
J fII

(')
III

~
C/)

"1J a
<0 ..,
III
3
3
CD
i}
G>
c:
c:
CD

41
:r
ai a.
:r
c
en »
C/) --..- ------------- ~ ---
J:
I\)
0
m - - - --- 0> ----- I\)

-~-,-® N

.,; E c: ...
Q) 0
E­o. en
':; :c
0'
Q)Cij
CI Q)
C en
.- 0 1::
o Q)
en a.
:= m
ev ...
E"O

Q)

] E
~ E
E ::J o CI
... ...
::J Q)
ev.J:

.J: 0

.~ ...
:: 0

~ E'~
Q) '­- en
.0 C o Q) ... en
0.

PascallVS 5796-PNQ

Programmer's Guide

SH20-6162-2

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

!fyou wish a reply, give your name, company, mailing address, and date:

What is your occupation? __________________________ _

Number of latest Newsletter associated with this publication:

READER'S
COMMENT
FORM

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-6162-2

Reader's Comment Form

Fold and tape

Fold and tape

--..- ------ - ------- -. ---- - - ------------_ ... -
®

Please 00 Not Staple

IIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 68Y
P. O. Box 152750
Irving, Texas 75015-2750

Please 00 Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SH20-6162-02

1111111111111

(')

s
g

" o
ii
l>
o
:J

'" c:
:J

';9
rn
0 J III

~

~
to ...
III
3
3
<n ... rn-
Cj')
c a:
(l)

"C ... s·
m
Q.

s·
c
en
~
(J)
::I:
I\)
0
cD
~

0>
I\)

I
I\)

