
Program Product

IBM System/360
Operating System
PL/I Checkout CO,mpiler
General Information

Program Number 5734-PL2

This publication is a planning aid only. It is intended for
use prior to the availability of the following IBM System/360
program products:

• OS PL/I Checkout Compiler,
Program Product 5734-PL2

• OS PL/I Transient Library,
Program Product 5734-LM5

Used in conjunction with the program product publication
IBM System/360 Operating System: PL/I Language Reference
Manual (Preliminary), Order No. SC33-0009, this publica­
tion enables installation managers, systems analysts, and
programmers to plan and write PL/I programs that are to be
compiled and executed upon availability of these program
products.

Preface

This ~ublication contains a description of
~he PLII Checkout Com~iler for the IBM
Systcm/360 Operating System.

The subjects cov~red include the
compil~r facilities, its conversational
features, a sUIDrrary of the PL/I language
implemen~ed, and the system environment.
The appendixes contain a list of keywords,
a comparison with the PLII (F) Compiler,
and a discussion of the PLII Checkout
Compiler and the PLII Optimizing Compiler
as a pair.

Recommended Publications

The Pill language implemented ty the FLII
Checkout Compiler is descrited in detail in
the fublication:

IBM Syst~m/360 Operating System: Pl/I
Languag2 Reference lvlanual (Preliminary'!.,
Order No. SC33-0009

The following pUblications contain
further inforroation on subjects referred to
in this publication:

First Edition (July, 1970)

IEM System/360 0Ferating System:
Planning for Tiroe Sharing 0Etion, Crder
No. GC28-6698

The following publications contain other
information of interest to the PLII
programrr'er or the programmer who is
learning Pl/I:

A PL/I_Primer, Order No. SC28-6808

A Guide to PLII for Commercial
Programmers, Order Nc. SC20-1651

A Guide to Pl/I for FCRTRAN Users, Order
No. 8C20-1637

Introduction to the list Processing
Facilities of Fl/I, Crder No. GF20-0015

Introduction to th~ Co~ile-1i~~
Facilities of PLII, Order No. SC20-1689

Changes are periodically made to the information herein;
before using this putlication in connection with the
operation of IBM systems, refer to the latest IB~ System/360
Bitliography SRL Newsletter, Order No. GN20-0360, for the
editions that are a~~licable and current.

Requests for copies of IBM publications should te made to
your IBM representative or the IB~ branch office serving your
locali ty.

A form for reader's comments is provided at the tack of this
putlication. If the form has been removed, comrrents may be
addressed to IBM United Kingdom Latoratories Ltd.,
Programming Putlications, Hursley Park, Winchester,
Hampshire, England.

OCoFyright International Business ~achines Cor~oration 1970

2

I

INTRODUCTION • • • • . . • • •• 5

Terminology 5

CHAPTER 1: THE PL/I CHECKOUT COMPILER 7

Compiler Performance • 7
Translation Speed 7
Interpretation Speed • 7
Batch Mode • . • . . 7

Main Storage Requirements • • •• 7
Program Size • • • • • • • 7
Compiler Options • • . • • • 7
Processing Mode • • . • • • • • • . 8

Batch Mode Processing 8
Conversational Mode Processing 9

Program Checkout • . • • • • . • • . 9
Syntax Checking • . • . • 9
Global Checking • • • • 9
Interpretation Checking . . • .• 10
uninitialized Variables •••..•• 10

Compatibility with the PL/I (F)
Compiler • • • • • • • . • • . . . • • 11

Interlanguage Communication • 11

CHAPTER 2: CONVERSATIONAL FEATURES OF
THE COMPILER •• 12

The TSO Commands •
Conversational Processing

Receiving Control at the Terminal
Messages • • • . • • . .
Input at the Terminal

TSO PL/I Sub commands • . . •
The AT and ABOVE Commands . . • .
The END Command . • • •
The GO Command • • . • • •
The HELP Command • • • . •
The MONITOR/NOMONITOR Commands .
The OFF Command
The QUALIFY Command
The STEP Command •

Immediate PL/I • • •
Processing Example .

CHAPTER 3: THE PL/I LANGUAGE
IMPLEMENTED BY THE CHECKOUT COMPILER

12
• 12

12
13

• • 13
• 13

13
14

• 14
• 14
• 14

• • 14
• • 14

15
• 15

15

• 17

Language Features . • • • . . 17
Data Types • . • • • 17
Operations . • • • . •••• 17
Data Aggregates • . • . . ••• 17
Program Management. • • • . . 17
Input/Output • • • • • . • 17
Conversational Features • . • . 18

Ldnguage Extensions .•.• 18
Conversational PL/I . • • . 18
Program Check •..•.•. 18

Contents

Immediate PL/I •.••••
Non-Conversational Extensions •

Program Checkout • • • • • .
DEFAULT Statement • • • •
Preprocessing Facilities . . • .
Storage Control • . • . • •
The ENVIRONMENT Attribute .
Recorded-Oriented Transmission
File Names
Data Aggregates . •
String Handling • •
Data Attributes • •

18
19

• • 19
19

• 20
21
21

• • 21
• • 22

• 22
• 22
• 22

• • 23
23

Extended Precision Floating Point •
Subroutines and Functions • • • . •
Arc Sine and Arc Cosine Computation •
Comparison of Labels . • • • . . • •

• 24
• 24

CHAPTER 4: SYSTEM REQUIREMENTS • • 25

• 25 Machine Requirements
Compiler Residence
Working Storage • • •
Input/Output Devices

• • • • 25

Operating System Requirements and
Facilities . . . • • • • • • • •
Control Programs • • • • • . • • •
Data Management Facilities • • • •

25
25

• • 25
• • 25
• • 26

APPENDIX A: SUMMARY OF KEYWORDS • • • . • 27

APPENDIX B: COMPATIBILITY WITH THE
PL/I (F) COMPILER

ALLOCATION Built-In
Array Dimensions
Arrays of Pictures
Built-In Functions
DISPLAY Statement .
ENTRY Attribute . .
ENTRY Declarations

Function

Entry Names as Arguments
Error Correction • • • •
Expressions in P~rameter Extents

33

33
• 33

• • 33
33

• • 33
• • 33

• 33
• • 33
• • 33

33
· 33 File Parameters • •

GENERIC Attribute
KEY Option • . . .
KEYFROM Option

• • • • • 34

Labels on DECLARE Statements
Link-Editing of Object Modules
ONKEY Built-In Functions • • • • •
Picture Characters
Preprocessor Variables
PROD Built-In Function . • . •
Statements
Sterling Pictures • • • • • • •
Structures .• . . • • •
SUM Built-In Function • .•• .
Operating System Facilities • •

34
• • 34
• • 34

34
• • 34
• • 34

34
• • 34
• • 34

• 34
34

• • 34
• • 35

3

APPENDIX C: COMPLEMENTARY USE OF THE
PL/I CHECKOUT AND OPTIMIZING COMPILERS . 37

Compatible Features . .
Complementary Features
Review of Compiler Use

Program Checkout

Tables

. . . . 37

. . . . 37
• . 37

. . . . • 37

Table 1. Compiler Input/Output Devices 26

4

Production Use • • • . . • . 38
~lixing Checkout-Compiled and I
Optimizing-Compiled Procedures . . 38

INDEX • • . . . • • 39

The PL/I Checkout Compiler is a n~w,

nigh-performance processor for use in
eith~r batch or conversational mode. For
Doth types of user i~ offers sucstantially
increased programmer productivity. It does
so by:

• checking PL/I programs very thoroughly.

• providing clear and detailed diagnostic
informa~ion, couched in PL/I
terminology for ease of understanding.

• providing fast translation.

AS a result, the task of debugging is made
considerably easier, and the turnaround
between debugging sessions is reduced.

Additionally, the conversational user
can communicate with the compiler or the
system during translation, and with his
program or the system during
interpretation. He can also send or
recdive data during interpretation.
Translation-time diagnostic messages can te
made available to the user a t the end of
the syntax check and at the end of the
'global' check (explained below). This
allows the user to interrupt processing,
correct the errors using a system update
facility, and then r~start translation.
Execution-time diagnostics can be made
available to the user during
interpretation, or the user can interrupt
interpretation. An interruption of either
sort returns control to the terminal. ~he
user then has the choice of:

• Supplying PL/I statements for immediate
interpretation. This permits, for
instance, checking the values of
program variables.

• Resuming interpretation either at the
pOint of interruption or at any other
Foint in the program.

• Making temporary corrections to the
program and resuming interpretation.

• Terminating inter~retation, making a
permanent correction to the program,
and restarting translation.

These conversational facilit.ies are
provided by new language features
<described later) and through the Time
Sharing Option (TSO), an operating system
feature that ~ermits several users to have
concurrent access to the computer.

Introduction

The checkout compiler translates PL/I
source statements into an internediate cede
that is not suitable for execution by the
machine. Execution of the code is
performed by interpretation. However, the
compiler does not supply all the cede
required to represent the source program;
instead, it inserts references to
sutroutines that are stored in a library.
These SUbroutines are lcaded, executed, and
discarded as required during program
interpretation.

The library is not an integral fart of
the checkout compiler. The IBM program
product is called the IBM Systen/360
o~erating System PIlI Transient Library.
In this manual, the tern 'transient
lil:rary' always refers to the IEM progran.
product •

Translation with the checkout compiler
is, on average, about fcur tirres faster
than corofilation with the PL/I (P)
Compiler. Interpretaticn is perfcrned, en
average, at one fifth the speed of
ex€cution of the (P) con~iler.

complete programs can be translated and
inter~reted without the overheads
associated with link-editing. A further
saving en overhead time can te achieved by
processing more than cne ~rcgrarr in a
single jot step.

The checkout compiler implements the
same level of language as the (F) ccrrfiler,
plus a nurocer of extensions and
improvements ~hich are described in this
putlication.

Terminology

The PL/I Checkout Compiler, and the
features of the IB~ Systero/360 Operating
System with which it is associated, may
introduce a number of terros with which the
reader is unfamiliar. Those occurring most
often are defined below: others are defined
as they occur within the text.

Background Refers to the environment
in which jobs submitted
via SYSIN or through the
TSO SUBMIT command are
executed. One job step at
a time occupies a region
of main storage, and
remains in storage until
completion.

Introduction 5

Background job

Batch

Command

Conversational
processing

A job entered via SYSIN or
the SUBMIT command.

Describes the processing
of one job step at a time
in a region of main
storage. So called
because jobs are submitted
in batches via a SYSIN
device.

(Under TSO.) A command is
a request from a remote
terminal for the execution
of a particular command
processing program.

Processing a program
within an environment in
which the user is able to
carryon a dialogue with
the system or his program.
(The system response time
is such that the user is
able to maintain his train
of thought.)

Foreground Describes the environment
in which programs invoked
by commands are processed.
Programs are swapped in
and out of -main storage as
necessary to utilize main
storage efficiently.

Global checking The second phase of
program translation in
this compiler. I~
includes checking
declarations for
consistency of attributes,
checking argument usage,
and constructing the
interpretable code. The
interpretable output may,
optionally, be put out
onto a direct-access
device.

Immediate PL/I PL/I statements entered
statements conversationally during

the execution of a
program. such statements
are executed immediately
within the environment of
the active block, and are
not stored.

Interpretation The processing of problem
data against the
interpretable code
produced by the

6

:;I:nterpretive
checking

Subcommand

Swapping

Syntax checking

Time sharing

Time Sharing
option (TSO)

Translation

translator. This term
corresponds to the term
'execution' used in other
compilers.

Checking for programmer
errors during
interpretation. (For
example, the use of
uninitialized variables.)

(Under TSO.) A terminal
input line recognized by a
command processing program
(e.g., a problem program)
and which requests a
particular action.

(Under TSO.) To write an
image of a user's main
storage region onto
auxiliary storage and to
read in another user's
main storage image.

The first phase of program
translation in this
compiler. It includes the
recognition and checking
of options, enforcing the
rules governing the
spelling of keywords,
positioning of delimiters
and similar rules not
concerned with program
logic.

A method of using a
computer system that
allows a number of users
to execute programs
concurrently and to
interact with them during
execution.

An optional configuration
of the operating system
supporting conversational
time sharing from remote
terminals.

The first part of the
processing cycle,
combining syntax and
global checking to produce
the interpretable code
used during
interpretation.
Translation corresponds to
the compilation phase in
other compilers.

I

Chapter 1: The PL/I Checkout Compiler

The checkout compiler is a high-performance
language processor for developing and
checking PL/I programs in both batch and
conversational mode. It provides syntax
checking, global checking, and checking at
execution. Checking is very thorough, and
the diagnostic messages are highly
informative. All communication with the
user which originates from the compiler is
in PL/I terminology.

Compiler Performance

Translation Speed

On a System/360 Model 65 with a 2314
direct-access device, the compiler will
translate about 2,500 PL/I statements per
minute, with a system overhead time of
about 3 seconds per program.

Interpretation Speed

On a System/360 Model 40, the compiler will
interpret about 500 PL/I statements per
second.

Batch Mode

In batch mode, about 6.00 small jobs can be
processed per hour on a System/360 Model 65
if programs are processed in groups. This
figure assumes a job size of about 25 PL/I
source statements representing about 3,000
executed statements.

Main Storage Requirements

The checkout compiler is designed to
function efficiently when lOOK bytes of
main storage are available to it. It will
function in an absolute minimum of 80K, but
at this level there may be some loss of
efficiency.

Program Size

A source program should not contain more
than about 10,000 PL/I statements.

When the compiler has lOOK of main
storage available to it, the total number
of symbols and constants permitted is about
2,000. This can increase up to a limit of
8,000, provided that sufficient main
storage is available.

Compiler Options

A number of compiler options are available
for use by the programmer to specify
information or to request optional compiler
facilities.

The options available may be used to:

• Specify whether the source program is
coded in the PL/I 48-character set or
60-character set.

• Specify the margins for source
statements.

• Control progress into load-and-go
depending on the severity of the
diagnostics.

• Produce object code specifically
designed for a particular computer
model.

• Specify whether full or short
diagnostic messages are to be printed.

• List statement numbers of declaration
(if applicable) and all attributes
assigned to all identifiers in the
program.

• List the External Symbol Dictionary.

• Specify the number of lines to be
printed on each page of output.

• Print block level and iterative DO
levels on the source program listing.

• List the options used by the compiler.

• List the source program.

• Specify the minimum severity level at
which source program diagnostic
messages will be printed.

Chapter 1: The PL/I Checkout Compiler 7

• List statement numbers of declarations
and of statements in which reference is
made to all identifiers in the program.

• Specify that an object module is to be
produced in a form suitable for input
to the linkage editor.

• Specify that a NAME statement is to be
produced for an object module.

• Indicate that the source program
requires preprocessing.

• List source input to the preprocessor.

• Specify that the source listing is to
be formatted.

• Place a limit on the number of
statements executed.

• In batch mode, suppress printing of
diagnostic messages until a specified
number of statements have been
executed.

• Obtain a formatted dump when an error
terminates processing.

• specify the stringency of execution
checking.

• Specify whether 4-byte or 16-byte
pointers and offset variables are to be
used.

• Specify the amount of main storage
available for compilation.

• Specify whether statement numbers are
to be obtained by counting semicolons,
or derived from line numbers.

• Allow the use of extended precision
machine instructions.

• Specify the number of branch statements
and their targets to be printed when
requested.

Processing "Mode

The checkout compiler can process source
programs either conversationally (in a
foreground region), or in batch mode (in a
ba~kground region). Alternatively, they
may be initiated in a foreground regi.on for
subsequent batch processing.

The choice of processing mode, batch or
conversational, has no effect on the action
of the translator or interpreter phases;
they perform their functions (provided that
these functions are available in both

8

modes> in the same way for either mode.
The feature most affected by the choice of
mode is the method of establishing the
program environment.

In batch mode, job control statements
provide information on the program
environment. For example, parameters
passed on the EXEC statement provide the
means of selecting compiler options; DD
statements associate PL/I files with data
sets. If the linkage editor is required,
it is invoked by the appropriate job
control statements.

In conversational mode, job control
statements for the program environment
consist of pre-established DD statements;
these are invok~d by TSO commands that pass
any parameter and ddnames required. If the
linkage editor is required, it is invoked
by a TSO command.

Batch Mode Processing

Input stream: This is submitted by means
of a sequential data set. The input is a
PL/I source program, and (optionally> a
data set containing data to be processed by
the source program.

Processing: The unit is the job; execution
of a job is a task. A job is processed
under the supervision of an operating
system control program. (See 'Control
Programs' in Chapter 4.)

output: System output, including
diagnostic messages, is collected on an
output data set and is printed on a listing
when the job has finished.

~: Jobs submitted on a sequential data
set are often grouped in batches for
processing; this gives quicker turnaround
and more efficient use of resources. This
mode of processing is thus known as batch
processing, even though a job submitted for
batch processing may consist of only a
single PL/I source program for compilation
and execution. If each PL/I program is
processed as a separate job, the compiler
has to be invoked, and resources (that is
System/360 devices) have to be allocated
separately for every program. The system
overhead in time that this method causes
can be greatly reduced if several programs
are compiled together in one job; there is
only one invocation of the compiler and one
allocation of resources. The technique of
submitting several programs together for
compilation is called batched compilation.
Each prograln can be interpreted immediately
following translation, or the output for
each program can be executed by itself or

I

combined with the OUtput from other
programs for execution.

Conv~rsational Mode processing

Input stream: This is submitted or
initiated at a terminal. The input is a
series of commands ijentifying a data set
(which may be the terminal itself) that
contains a PL/I source program, and,
oFtionally a data set that contains data to
be processed by the program.

Note: A terminal in this context is
frequently a keyboard device; in general
terms, however, a terminal can vary from
such a device to another cpu.

Processing: The unit is a session, which
is the period of time a terminal is
continuously under the control of one user
(that is, the period between LOGON and
LOGOFF). A session is frocessed under the
supervision of the MVT control program,
with the time sharing OFtion.

Once a session has started, the
conversational facility is available. By
using the affrofriate command the user can
send or receive information to or from the
PL/I frogram, which, similarly, can send or
receive data. The user is able to make
temporary alterations to the PL/I source
program during processing. The program is
allocated a partition or region, which
under TSO may be 'swapped' with other
users, or retained throughout the session.

Output: System output, including
diagnostic messages, is put out as it
occurs, and can be printed, if required, at
the terminal. Program output data can also
be sent to the terminal.

Program Checkout

Precessing of PIlI source frograms is
handled in two phases by the checkout
compiler. The Translatcr fhase frcvides
syntax and semantic (or 'global') checking

and produces text for interpretation. The
Interpreter phase interprets the ccde
produced by the translator and provides
checking during interfretation.

§yntax Checking

The syntax checking routines perform two
main functions: checking PL/I source
statements and froducing a source frcgrarr
listing.

The checking performed is:

1. Recognition and checking of compiler
options and file names.

2. Syntax checking within single
statements.

3. Syntax checking across several
statements, fpr examfle, that each DC
grouf has a matching ENr statement.

The source program listing can,
optionally, be formatted so that the
relationshifs of the various blocks, groups
and compound statements is displayed.
Attreviations in the source program are
printed in full.

Diagnostic messages froduced by the
syntax checking routines are oollected and
(in conversational mode) printed at the
terminal at the end of syntax checking.
Using the TSO EDI~ command, corrections can
be made to the source frcgrarr and
translation restarted. In batch mode, the
messages are collected for eventual cutfut
on the SYSPRINT file.

Global Checking

~he global checking routines ferforn three
main functions: checking PL/I source
statements for serrantic errors, prcducing
text for execution, and producing
information for the listing.

The checking performed includes:

1. Checking declaraticns for consistency
of attritutes.

Chapter 1: ~he PL/I Checkout Compiler 9

2. Checking arguments for correct usage;
missing labels are detected at this
stage.

The global checker produces, as primary
output, text intended for immediate
interpretation.

As an optional alternative, it can
produce:

1. An object module suitable for input to
the linkage editor.

2. Tables of information which will be
needed at execution time.

The information produced by the global
checker for the listing is optional and
includes an attribute and cross-reference
table.

Diagnostic messages produced by the
global checking routines are collected and
(in conversational mode) printed at the
terminal at the end of global checking.
Using the TSO EDIT command, corrections may
be made to the program. In batch mode, the
messages are collected for eventual output
on the SYSPRINT file.

Interpretation Checking

The interpretation routines perform two
main functions: checking variables and
storage allocation, and interpreting code
produced by the translator.

Checks are made to detect:

1. The use of uninitialized variables.

2. Misuse of DEFINED variables and label
variables.

3. Misuse of pointer references:

a. to I/O buffers no longer
available.

b. to data with attributes that
differ from those of the name
specified.

4. Misuse of storage allocations:

10

a. attempts to retrieve a value from
storage that has previously been
freed.

b. attempts to free (by means of a
pOinter reference) part of a
storage allocation (for example,
part of a structure).

c. attempts to free storage that has
already been freed.

5. Illegal branches into DO groups.

6. Branches into inactive blocks.

Under certain circumstances, some of
these checks may not be performed:

1. Uninitialized variables and misuse of
label variables cannot be detected if
these variables are part of a module
produced by another compiler that has
been link-edited with a module
produced by the checkout compiler.

2. In pointer references to data, if
separately compiled object modules
have been link-edited together, then
mismatch of attributes between the
data reference and the identifier in
the pointer reference cannot be
detected if the data and the
identifier are in separate
compilations.

3. If compatibility with code from other
compilers requires that the short form
of the internal representation of
pointers should be used, then checks
on pointer references cannot be made.

In conversational mode, diagnostic
messages produced by the interpreter are
printed at the terminal immediately they
occur. Temporary correction to the program
can be made at this point, but these
corrections are not permanently
incorporated into the source program.

uninitialized Variables

The following implementation restrictions
on the initialization of variables should
be noted.

Range of values: Checking for
uninitialized variables is done.by
assigning a special value to the variable
immediately after allocation. An attempt
to use a variable which still has this
special value raises the ERROR condition,
and an ON-code relating to the error is
set. (This code can be obtained by using
the ONCODE built-in function in an
appropriate ON-unit.) The special value is
one which the programmer would not normally
be expected to use. Should he do so
intentionally, he must be prepared for the
results described above. (Alternatively,
he can disable checking for uninitialized

I

variables, by specifying a compiler
option.) The special values which the
programmer could conceivably use are:

FIXED BIN(lS)
FIXED BIN(31)
CHAR non-varying
pictures

maximum negative number
maximum negative number
X'FE' in first byte
X'FE' in first byte

static variables: Initialization of static
variables in a module from another compiler
takes place when the program module is
loaded into main storage. If execution is
recommenced, by means of a GO TO 0
statement, static variables 'will not be
reinitialized if they are in a module from
another compiler that has been link-edited
with a module from the checkout compiler.

Compatibility with the,PL/I (F) Compiler

Source programs written for the PL/I (F)
compiler can be compiled by the PL/I
Checkout compiler and will execute
correctly without modification, except for
a few minor differences which exist between
these implementations of the language.
These incompatibilities are described in
Appendix B.

Object modules that have been compiled
by the PL/I (F) Compiler, and modules from
the PL/I (F) Compiler subroutine library,
cannot be incorporated into programs
compiled by the PL/I Checkout compiler.
This problem can be OVercome by
recompilation of all PL/I source programs
with the checkout compiler.

A PL/I source program coded for use with
the (F) compiler can be stored on a data

set and invoked from the terminal for
processing by the checkout compiler.

Interlanguage Communication

Facilities are available which allow
procedures compiled by the PL/I Checkout
Compiler to communicate at execution time
with programs compiled by any COBOL or
FORTRAN compiler produced by IBM for the
System/360 Operating System.

Thus it is possible for existing COBOL
and FORTRAN users to write new applications
in PL/I while still utilizing existing
COBOL and FORTRAN libraries; in addition,
existing applications can be modified by
the use of PL/I procedures.

communication between programs written
in different languages is specified in the
usual way, by a CALL statement or, for
FORTRAN and PL/I, by a function reference.

The interlanguage communication
facilities are requested in the PL/I
procedure by the COBOL or FORTRAN option of
the OPTIONS attribute or option. The
remapping of COBOL structures, and
transposing of FORTRAN arrays, which would
then normally take place, can be completely
or partially suppressed by the NOMAP,
NOMAPIN, and NOMAPOUT options. The INTER
option can be used to specify that the
COBOL and FORTRAN interrupts which would
otherwise be handled by the system, are to
be handled by the PL/I interrupt-handling
facilities.

Chapter 1: The PL/I Checkout Compiler 11

Chapter 2: Conversational Features of the Compiler

To use the checkout compiler in
conversational mode, the programmer must
first ,initiate the session at the terminal.
He does so with the LOGON command.
(Similarly, when the session is complete,
he terminates it with the LOGOFF command.)
After signing on, the next step is to
invoke the required programCs) and/or data
sets. To do this, the TSO commands
described below are used.

The TSO Commands

The following TSO commands may bt used by a
programmer at a terminal in order to
process his program.

EDIT creates or updates a sequential
data set, or a member of a
partitioned data set. This data
set or member may contain either a
source program for the checkout
compiler, or data to be processed
by a PL/I program.

PLI invokes the PL/I prompter and
checkou1t compiler.

LINK

CALL

RUN

The PL/I prompter ensures that the
parameters entered with a command
are complete and correct. If they
are not, it 'prompts' the user to
supply the correct information.

invokes the linkage editor.

invokes the loader.

similar to the PLI command, but can
be used either as a command or as a
subcommand.

LOADGO invokes a user-written program.

Conversational Processing

When using the checkout compiler in
conversational mode, a user can intervene
at the terminal during translation and
interpretation. He can insert immediate
PL/I statements during interpretation, and
he can provide values for variables
declared in his program. The program can
use the terminal as a data set. In this
case, output will be printed at the
terminal whenever the program logic

12

requires it, and input must be provided by
the user in response to a message from the
program.

To intervene in proceSSing, the user
must obtain control at the terminal, and
then provide some input. To do so, he must
be able to:

1. Recognize the circumstances under
which control is passed to the
terminal.

2. Understand any message which may be
produced when the terminal receives
control.

3. Provide suitable input, either
immediate PL/I statements, or TSO
commands or subcommands.

Receiving Control at the Terminal

The situations in which control is passed
to the terminal are described below.

Attention: When the user strikes the
attention key, the immediate response at
the terminal is that an exclamation point
is printed. If the terminal was printing
data, printing ceases. The terminal then
has control.

If he strikes the attention key again
before the terminal receives control,
operation of the checkout compiler is
terminated and control passes to the
control program.

Breakpoints: A user can cause control to
be passed to the terminal during the
execution of his program, either by
including the HALT statement in his
program, or by using the AT, ABOVE, or STEP
subcommands Cdiscussed later in this
chapter) •

Condition: If the ERROR condition is
raised and there is no ON-unit execution
stops and standard system action is
performed. This passes control to the
terminal.

Completion: At normal termination of
execution~ control passes to the terminal.

I

Messages

During the processing of a program in
conversational mode, compiler-generated
messages will be printed at the terminal.
These may be either progress messages,
indicating the current status of the
program, or an indication that control has
returned to the terminal. In the latter
case, the reason for passing control will
be given in the message.

Translator messages: One or more of the
following messages will be put out:

Message

SYNTAX CHECKING

SYNTAX CHECKING
COMPLETE

GLOBAL CHECKING

GLOBAL CHECKING
COMPLETE

Explanation

The user has struck the
attention key during
syntax checking. Control
is not passed to the
terminal.

Syntax checking is
complete and some
diagnostic messages may
have been produced.
control is passed to the
terminal only if errors
have been found.

The user has struck the
attention key during
global checking. Control
is not passed to the
terminal.

Global checking is
complete and some
diagnostic messages may
have been produced.
control is passed to the
terminal only if errors
have been found.

NO SYNTAX ERRORS This is a progress message
only; control is not
passed to the terminal.

NO GLOBAL ERRORS This is a progress message
only; control is not
passed to the terminal.

Interpreter messages: Messages issued
during interpretation will have the
following form:

message-number executed-count reason
statement-number [procedure-name]

where 'executed-count' is the number of
statements executed since execution
last began.

'reason' indicates the error or other
event which caused control to be
passed.

'statement-number' is the number of
the PL/I statement at which control
was passed. (In each invocation of
the checkout compiler, immediate-mode
statements are numbered serially.)

'procedure-name' provides information
identifying the procedure which was
being executed at the time control is
passed. This information is omitted
if it is the same as in the last
message of this type.

If interpretation has finished when
control is passed, the message is:

EXECUTION FINISHED

system message: If the system is awaiting
input and the user strikes the attention
key, the following message will be issued:

INPUT ~AY BE REQUIRED

Input at the Terminal

All input from the terminal must be in PL/I
mode if it is made in response to messages
generated during interpretation. This
specifies that the end of a line
constitutes the end of a statement unless a
continuation character is used. Both the
messages and the response are copied onto
SYSPRINT (unless the terminal is designated
as the SYSPRINT output device).

The input can be any of the following:

• A TSO PL/I subcommand, which allows
temporary changes to be made to the
program.

• One or more immediate PL/I statements.

• Data.

TSO PL/I Subcommands

These cOIT@ands can be entered at the
terminal during execution. They allow the
user to interrupt or resume execution, or
enter additional PL/I statements for
immediate execution. The command
statements are detailed below.

The AT and ABOVE Commands

These cause execution to be suspended
immediately before the execution of a

Chapter 2: Conversational Features of the Compiler 13

specified statement (which can be
identified by either a statement number or
a label). Either command allows the user
to insert statements for immediate
execution, modifying or adding to the
existing program; alternatively, the
commands may be used simply to return
control to the terminal.

The two commands differ only when the
statement specified is entered as the
result of a branch instruction. In that
case, the ABOVE command has no effect.

It will be common for the user to
require one or more additional PL/I
statements to be executed at some point in
his source program. This can be achieved
by providing an AT-unit.

An AT-unit consists of one or more PL/I
statements preceded by the keyword AT and a
statement number. This statement, or group
of statements, is then inseparably
associated with the AT statement for the
remainder of that session, unless canceled.

For example:

31
32 LAB:

The statement:

AT 32 DO;

X=SUBSTRCFILEA,1,2);
IF X ~= 'AB' THEN DO;

PUT DATA(X)i
GO;

END;

would result in the current value of X
being printed each time control passes
through the label LAB.

The statement:

ABOVE 32;

causes control to be returned to the
terminal immediately following the
execution of statement 31. This command
would not be effective following the
execution of a statement GO TO LAB; at any
other point in the program.

The END Command

This terminates execution and returns
control to the command level. To avoid
confusion with a PL/I immediate mode
statement, this command cannot be used in
the same piece of input as any other
statement.

14

The GO Command

This causes program execution to be resumed
at the point where it was suspended.

The HELP Command

This is used to return the full text of a
specified message.

The MONITOR/NOMONITOR Commands

The MONITOR command causes data being
written onto SYSPRINT to be copied at the
terminal.

In this implementation, if the user
strikes the attention key while such data
is being printed at the terminal, some of
the output may be omitted from the terminal
printout; the whole output will
nevertheless appear on SYSPRINT.

The NOMONITOR command suppresses the
action of the MONITOR command.

The OFF Command

This nullifies any AT or ABOVE breakpoints
specified for a given statement. The OFF
command without an argument nullifies all
existing AT or ABOVE breakpoints.

The QUALIFY Command

The QUALIFY command has the effect of
SUbstituting the environment named in the
command for the current environment, for
name resolution purposes only; the action
specified in the current environment would
still obtain if, for example, an interrupt
occurred as a result of the PL/I statements
entered after the QUALIFY command.

For example:

QUALIFY Ai

Any identifiers or immediate PL/I
statements entered after this command are
assumed to be within the scope of A, not
that of the current block. The effect is
canceled when control returns to the user's
program.

I

The. STEP Command

This causes program execution to be
suspended after the execution of a
specified number of statements.

For example:

STEP 50;

Program execution will be suspended, and
control passed to the terminal, after the
execution of the fifty PL/I statements
following the STEP command. When execution
is resumed this action will be repeated
every fifty statements until the program
terminates or another STEP command varies
the response.

Immediate PL/I

The immediate PL/I language is described in
Chapter 3. If one or more statements are
entered which do not result in output at
the terminal, the number of the last
statement entered is printed at the
terminal to indicate that the statement(s)
have been received for proce5sing.

If a sequence of immediate PL/I
statements is grouped on one line, or in a
DO group, performance will be improved, as
the compiler will then be loaded only once
instead of once for each statement.

Processing Example

The following example shows a typical
sequence of events during the execution of
a program initiated at a terminal.

The checkout compiler is invoked with
the command PLI. Assume that default
options are used and "terminal listings are
not required. The programmer types in:

PLI xyz

where 'xyz' represents the name of the data
set member containing the program he wishes
to execute.

The terminal returns a progress message:

Vi OS99 OS/360 CHECKOUT COMPILER
TIME •••.
OPTIONS SPECIFIED •••.

DATE ••••

which gives some accounting information and
informs the programmer that translation of
the program has started.

Assuming that no syntax or global errors
are found, the terminal will show the
progress messages:

IENxxxx NO SYNTAX ERRORS

IENxxxx NO GLOBAL ERRORS

Assume that the user is proceeding
straight from translation to
interpretation. Further assume that
statement number 120 of his program is:

X = A/Bi

and that on execution of the statement, B
has the value zero. If this value is not
allowed for in the program, interpretation
will be interrupted and a message printed
at the terminal:

IENxxxx ZERODIVIDE A = 27 B = 0 X433
120 IN P

IENxxxx ERROR nnn

where P is the name of the program
(obtained from the data set xyz). X433
indicates that 433 statements had been
executed before the error occurred.

The programmer may wish to know how
control reached statement 120. To obtain
this information he types:

PUT FLOW:

The statement numbers of the origin and
destination of the previous 'n' branches
are listed, with the latest branch listed
first. ('n' is specified by a compiler
option.) The number Ii will also be
printed, indicating that the first
immediate mode statement has been received
for processing.

The programmer could decide to make a
temporary amendment to the program by
inserting a new branch instruction
immediately before the statement:

x = WB;

He types:

AT 120 DO;
IF B=O THEN GO TO ABC:
GO;

END;

The number 13 is printed to acknowledge
these commands.

To restart the program at the beginning,
the programmer would then type:

GO TO 0;

Chapter 2: Conversational Features of the Compiler 15

The response 14 acknowledges this
statement.

Assuming that on this execution the
program completes normally, the message:

EXECUTION FINISHED

16

informs the programmer, who then types an
END command to complete the session. The
message READY is printed indicating that
the checkout compiler has completed
processing and that TSO commands are
available to the user.

I

Chapter 3: The PL/I Language Implemented by the Checkout Compiler

New language features, together with a
number of improvements on the language
implemented by Version 5 of the PL/I (F)
Compiler, have been included in the
language implemented by the checkout
compiler. These features, which are
described below, have been incorporated
both to allow the use of conversational
programming and to increase the function
and flexibility of PL/I. Appendix A
contains a complete list of the keywords
implemented by the checkout compiler.

In general, SOUrce programs written for
the (F) compiler can be translated and
interpreted by the checkout compiler
without amendment. However, there are some
minor incompatibilities, and these are
detailed in Appendix B.

Language Features

The language implemented by the PL/I
Checkout Compiler contains the following
programming features:

Data Types

• Character-string and bit-string data.

• Fixed-point binary and fixed-point
decimal data.

• Floating-point binary and
floating-point decimal data.

• character and numeric picture data.

• Real and complex arithmetic data.

• Label and entry data.

• File data.

• 'J~ask and event data.

• Pointer and offset data.

Operations

• Assignment, with automatic conversion
between data types if necessary.

• Element, array, and structure
expressions.

• Arithmetic comparison, logical
(boolean), and string manipulation
operators.

• Built-in functions for mathematical and
arithmetic computation, string
manipulation, manipulation of based and
controlled storage, multitasking, and
error handling.

• Pseudo-variables for computation and
error handling.

• Facilities for creating
programmer-defined functions.

• Dynamic storage allocation.

Data Aggregates

• Arrays of data elements.

• structures of data elements.

• Arrays of structures.

• Areas.

Program Management

• Separate compilation of external
procedures of the same program.

• ,Structuring of program into blocks -to
limit the scope of names and permit
flexible allocation of storage.

• Recursive invocations of a procedure
with stacking and unstacking of
generations of automatic data.

• Multitasking facilities.

Input/Output

• stream-oriented input/output with
automatic conversion to and from
internal and external forms of data
representation.

Chapter 3: The PL/I Language Implemented by the Checkout Compiler 17

• Record-oriented input/output, with both
move and locate modes of operation.

• sequential and direct-access processing
modes.

• Message processing (teleprocessing)
mode.

• Asynchronous input/output data
transmission.

Conversational Features

• Trace of identifiers.

• Passing control to the terminal.

• Program modification.

Language Extensions

Language features implemented by the PL/I
Checkout Compiler which are only partially
implemented, or not implemented at all, by
the PL/I (F) Compiler are described below.

CONVERSATIONAL PL/I

The ability of the checkout compiler to
process programs in conversational mode has
created a need for new PL/I language
features. These features can be divided
into two categories:

• Program check

• Immediate PL/I

New language in both these categories is
described below. Conversational processing
also requires the use of a series of
commands which may be entered at the
terminal during execution to act as
instructions to the operating system.
These are fully discussed under the heading
'TSO PL/I Subcommands' in Chapter 2.

Program Check

New language for program checking h~s two
main functions:

18

• Printing information at the terminal
concerning the status of program
interpr'etation.

• Passing control to the terminal.

Details of program interpretation may be
traced using the CHECK and FLOW statements.

The CHECK statement causes information
about specified or assumed identifiers to
be written on the SYSPRINT file whenever
these identifiers appear during program
interpretation. This information will
continue to be printed until the program
terminates or until a NOCHECK statement
nullifies the action of the CHECK
statement.

The FLOW statement causes information
about the transfer of control during
interpretation to be ,,.,ri tten onto the
SYSPRINT file. The FLOW statement remains
active until the termination of the task,
or until a NOFLOW statement is executed in
the same task.

control is passed to the terminal when a
HALT statement is encountered. Execution
is suspended immediately following the
execution of this statement, and resumed
only when the appropriate terminal command
is entered. The HALT statement has no
effect in background processing.

Immediate PL/I

Statements used to modify a PL/I program
during interpretation can be entered via a
terminal. Such statements are known as
'immediate PL/I'. They are executed
immediately on entry, but are effective
only within the block whose execution has
been suspended, and will be known only to
that block. They are therefore subject to
certain restrictions:

1. Some PL/I statements cannot be used in
immediate mode. These are statements
that change the block structure of the
program, or that introduce
declarations:

An END statement cannot be entered
on its own.

Immediate mode statements cannot
be labeled.

An unlabeled DO group may be
entered, but will not be executed
until the END statement has been
entered.

BEGIN, PROCEDURE, ENTRY, DECLARE,
DEFAULT, FORMAT, REVERT, and ON
statements cannot be used.

I

2. All identifiers used in immediate FL/I
statements must be known in the
current block. Ho~ever, the sco~e of
an iden~ifier in immediate PL/I can te
changed by the QUALIFY command (see
''ISO PL!I sutcomrnands' in Chapter 2).

Afart from these restrictions, all other
PL/I statements may be used.

GO TO statemen~: The GO TO statement, in
immediate mode, may specify its target
statement by statement number.

For example:

GO TO 37;

Within a source program, ho~ever, the
target statement roust still be identified
by a label constant or element-label­
variable. This form of target
identification may also be used in
immediate mode.

NON-CONVERSA'IIONAL EXTENSIONS

The CHECK/NOCHECK and FLOW/NOFLOW
statements described above are equally
applicable in either conversational or
batch mode. Other language extensions,
which are similarly applicable in either
mode of processing, are described below.

Program Checkout

Variables in program checkout: Variables
s~ecified in the name-list of the CHECK
condition may be of any problem data ty~e
and any storage class. They may also te
parameters.

For example:

(CHECK (A, B, C, D» :
F: PROC OP'IIONS (MAIN);

DCL A FIXEr STATIC,
B FLOAT AUTO,
C CHAR (10) CONTROLLED,
D FIXED DECIMAL BASED (P)i

CAll X (D);

(CHECK (E»:
X: PROC (E) RETURNS (FIXED DECIMAL) ;

DCL E FIXEr DECIMAL;

iSUB beyond range: The SUBSCRIPTRANGE
condition is raised when an iSUB variatle
is outside the range given in the
declaration of the iSUB-defined array.

For exan~le:

DCL A (24) CEAR (4),
B (5) DEF A (4*1SUB);

SUBSCRIPTRANGE ~ould be raised cn reference
to B (6).

PUT statement: Cftions of the PUT
statement are available that can cause a
list of active ~rocedures, or the current
values of specified variables, to te
~ritten on the specified file. The c~icns
available, and the effects of their use
are:

• The SNAP option: returns, to the
designated file, a calling trace
indicating the current status of the
program.

• The FLOW option: s~ecifies that a ncre
detailed calling trace is to be printed
on a designated file. 'Ihe output fron
this o~tion includes the statement
numbers for source and target
statements in the previous In'
transfers of control (where tn' is
defined ty compiler option).

• The ALL option: includes all the other
o~ions; in addition, returns the
values of all program variatles and of
the CNCHAR, CNCCDE, CNCCUNT, CNFILE,
ONKEY, ONLOC, and ONSOURCE tuilt-in
functions.

DEFAULT Statement

Identifiers which are declared with cnly a
~artial set of attritutes, or ~hich are not
explicitly declared, can derive any other
attritutes required fran two sources:

The standard default attributes
su~plied ty PL/I.

The default attritutes specified in a
DEFAULT statenent.

A DEFAULT staterrent can sU~Flerrent, tut
not override, the attritutes explicitly or
contextually declared for:

Explicitly, contextually, or irr~lici~ly
declared identifiers.

Parameter descriptors in EN'IRY
des cri~tor lists.

ValUes returned by functions.

If there is no DEFAUL'I statement, or if a
set of required attritutes is still
incom~lete after the DEFAUL'I statement has

Cha~er 3: The PI/I Language Implemented by the Checkout Compiler 19

been applied, any attributes required are
supplied by the standard defaults.

Certain attributes or types of
identifier require ~xplicit declaration and
cannot be specified in a DEF.AULT statement.
'I'hey are:

structuring

External entry names

A DEFAULT statement consists of a list
of default specifications separated by
commas. A default specification consists
of a range specification, which indicates
the range of applicability of the DEFAULT
statement, and a list of default attributes
for identifiers or descriptors in the
specified range. The forms of range
specification are as follows:

RA:,'JGE Designates a particular range
of identifiers (determined by
their initial letters) to be
influenced by the default
specification.

DESCRIPTORS Designates that non-null
descriptors in explicit ENTRY
attributes are to be
influenced by the default
specificat_ion.

Default values for preciBion, string
lengths, and area sizes may be established
by use of the VALUE clause in a default
specification.

A DEFAULT statement may be specified in
any block. It applies only to identifiers
declared within that block or any inner
block. A DEFAULT statement in an internal
block overrides the effect of DEFAULT
statements in outer blocks.

The semantics of the DEFAULT statement
are illustrated by the following examples.

1. DEFAULT RANGE (ALPHA) •••• ;

The default attributes apply only to
identifiers that begin with the
letters ALPHA.

2. DEFAULT RANGE (A:C) ••.• ;

Only identifiers beginning with the
letters A, B, or C are subject to the
DEFAULT statement.

3. DEFAULT RANGE (.f<) •••• i

20

All identifiers are subject to the
DEFAULT statement.

4. DEFAULT RANGE (L:O) VALUE (FIXED
DECIMAL (7), FIXED BINARY (10), FLOAT
DECIMAL (3), CHAR (16»;

DCL L FIXED DEC,
M CHAR;

The above identifiers, together with
the implicitly-declared identifiers N
and 0 have attributes and precisions
(or string lengths) as follows:

L FIXED DECIMAL (7)
M CHAR (16)
N FIXED BINARY (10)
o FLOAT DECIMAL (3)

5. DCL X ENTRY (FIXED,BINARY,DECIMAL);

The standard defaults would result in
the following descriptors:

FIXED DECIMAL REAL
FLOAT BINARY REAL
FLOAT DECIMAL REAL

The statement:

DEFAULT DESCRIPTORS BINARY FIXED
COMPLEX;

would cause the descriptors for the
parameters of X to be:

FIXED BINARY COMPLEX
FIXED BINARY COMPLEX
FIXED DECIMAL COMPLEX

Preprocessing Facilities

Assignment to values: The RESCAN and
NORESCAN options may be specified on
%ACTIVATE and %DEACTIVATE statements. The
NORESCAN option enables the programmer to
specify that an activated preprocessor
character-string variable or entry name
appearing in the source text is to be
replaced by its actual value; that is, the
usual rescanning process does not take
place. If the RESCAN option is specified,
the variable is activated as though no
option were specified; rescanning takes
place at each replacement level.

For example:

%DCL WRITE CHARACTER:
%WRITE = 'WRITE EVENT(E)';
%ACTIVATE WRITE NORESCAN;
WRITE FILE(F) FROM(X);

The WRITE statement will be modified to:

WRITE EVENT(E) FILE (F) FROM(X):

I

If the %ACTIVATE statement were omitted,
replacement of WRITE would continue
indefinitely, and the program would be
meaningless.

LENGTH and INDEX: The LENGTH and INDEX
built-in functions may be used within a
preprocessor statement.

storage control

Subscripted or based locators: The pointer
and offset variables associated with based
variables can be subscripted, or based, or
both.

self-defining structures: The REFER option
can be used more than once in a based
structure. If used only once in such a
structure, it need not be used with the
last element. The REFER object need not be
fixed binary.

For example:

DCL 1 X BASED,
2 M,
2 N,
2 Y(10 REFER (M): S REFER (N»,
2 (I,J),
2 K,

3 A AREACS REFER (I»,
3 STR CHARCL REFER CJ» VAR,

S FLOAT BINARY INIT(2000),
L FIXED DECIMAL INIT(50);

Note: The PL/I CF) implementation of REFER
options in based variable declarations is
subject to a great number of restrictions.
Many of these have been removed or modified
in the language implemented by the checkout
compiler.

The ENVIRONMENT Attribute

Changes and extensions to the options
specifying record format, block size, and
record size, give greater flexibility. The
new options are:

Record format: [FIFBIFBSIUIVIVBIVBSIVS]

Block size: [BLKSIZECblocksize)]

Record size: [RECSIZECrecordsize)]

Use of one of these options of the
ENVIRONMENT attribute no longer requires
that the other two be specified. Missing
information may be supplied in a data-set
label, a DD statement, or by default. This
means, for instance, that the programmer

can specify record size in his source
program while leaving specification of
block size until the program is actually
executed, when the I/O devices are known.

The checkout compiler will recognize and
convert the previously-implemented forms of
the above options as shown below, and will
issue a message stating that they are
obsolete.

Old form

FCb)
FCb,r)
UCb)
V (b)
V Cb, r)
VBSCb,r)
VS(b,r)

Converted to

F ELKSIZE(b)
F BLKSIZECb)
U BLKSIZECb)
V BLKSIZE (b)
V BLKSIZECb)
VBS BLKSIZECb)
vs BLKSIZE(b)

RECSIZE (b)
RECSIZECr)
RECSIZECb)
RECSIZE(b-4)
RECSIZE(r)
RECSIZECr)
RECSIZECr)

There are two new data-set
organizations, TP(M) and TPCR), associated
with teleprocessing. TPCM) implies the
transmission of whole messages; TPCR)
implies the transmission of records. Both
are valid only for TRANSIENT files. These
data-set organizations are equivalent to
the options GCm) and Rer) available in
version 5 of the PL/I (F) Compil~r. The
checkout compiler will recognize and
convert as follows:

Old form

G(m)
RCr)

converted to

V TP(M)
v TP(R)

RECSIZE(m)
RECSIZE (r)

variables in options: Whenever a numeric
value is required to complete the
specification of an ENVIRONMENT option, the
value may be expressed as a decimal integer
constant or a STATIC fixed binary variable
of precision (31,0). The variable, if
used, must be assigned a value before the
file is opened.

REREAD/REWIND option: The REREAD option is
the checkout compiler equivalent of REWIND
in the PL/I (F) implementation. The
checkout compiler recognizes either
keyword.

Record-Oriented Transmission

Record I/O statements: The record variable
specified in an INTO or FROM option can be
DEFINED, or a parameter, provided the
reference is to CONNECTED storage. The
reference may be a structure or array which
contains VARYING strings.

Chapter 3: The PL/I Language Implemented by the Checkout Compiler 21

For example:

DCL A (10) CHAR (6) VAR,
1 B,

2 C CHAR (3) VAR,
2 D CHAR (16) VAR,

E (10) CHAR (6) DEFINED Ai

READ FILE (X) INTO (A):
READ FILE (X) INTO (B)i

WRITE FILE (X) FROM (E)i

CALL Z (A);

Z: PROC (Y)i

DCL Y (10) CHAR (6) VAR:

READ FILE (X) INTO (Y)i

File Names

File-name expressions: File names can be
specified, in input/output statements, as
expressions.

For example:

DCL B(10) FILE STREAM,
X(Q) FILE RECORD:

GET FILE (FILEA) •••• i
PUT FILE (B(6» •••. :
READ FILE (X(N*3» •••• i

File-name constants and variables: File
names can be declared as file constants or
file variables. An identifier is assumed
to be a file constant if:

1. It is declared with any file
attribute.

2. It is not explicitly declared but
appears in the FILE option of an
input/output statement, or in an ON
statement for an input/output
condition.

It is assumed to be a file variable if:

1. It has the FILE attribute and is an
element of an array or a structure.

2. It has the FILE attribute and any of
the following additional at-tributes:

22

STATI C/AUTOMAT I C/BAS ED/CONTROLLED
Dimension
Parameter
ALIGNED/UNALIGNED
DEFINED
INITIAL
VARIABLE

Data Aggregates

Array and structure operations: A
reference can be made to both an array
a structure in the same expression or
assignment provided that the target is
array of structures.

string Handling

and

an

STRINGSIZE condition: If a string is
assigned to a string shorter than itself,
the source string is truncated on the right
to the length of the target string, and the
STRINGSIZE condition is raised.

For example:

DCL A CHAR (20),
B CHAR (14):

B A: /* STRINGSIZE IS RAISED,
A IS TRUNCATED ON
ASSIGNMENT TO B/*

Based or defined with a VARYING attribute:
A variable declared with the BASED or
DEFINED attribute may also be given the
VARYING attribute.

For example:

DCL C CHAR (10) BASED (P) VARYING,
B CHAR (12) VARYING,
D CHAR (12) VARYING DEFINED (E)i

Data Attributes

The CONNECTED attribute: This is a storage
attribute of non-controlled data aggregate
parameters. It specifies that the storage
associated with the aggregate is
contiguous, that is, not interleaved with
storage for other variables. This allows
the aggregate to be designated as a record
variable or a base in string overlay
defining.

For example:

Q: PROC (X,Y)i
DCL A FILE RECORD ENVIRONMENT

(F BLKSIZE (40) RECSIZE (40»,
X (10) CHAR (4) CONNECTED,
1 Y CONNECTED UNALIGNED,

2 R,
2 S,
3 T,
3 U,

G CHAR (40) DEF Xi

I

READ FILE (A) INTO (X);

SUBSTR (G,28,8}= •••. ;

WRITE FILE (A) FROM (X);

CALL B (Y);

B: PROC (Z) RETURNS (DECI~~);

DCL 1 Z CONNECTED UNALIGNED,
2 RR,
2 SS,
3 TT,
3 UU;

END Q;

Initialization by expression or function:
The initial value of a non-STATIC variable,
declared with the INITIAL attribute, can be
derived from sources other than a constant.
The source may be an expression or a
function reference; on evaluation, the
value derived is the initial value of the
variable.

For example:

DCL P POINTER STATIC INITIAL(NULL),
B AUTOMATIC INITIAL(F(X»,
C INITIAL(SQRT(3)};

Note: Variables and function references
used in these expressions must be known in
the block in which the initialized item is
declared.

Extended Precision Floating Point

Where the extended precision feature is
available, a compiler option for extended
floating-point precision may be selected.
This gives maximum precisions of:

Binary floating-point data 109
Decimal floating-point data 33

The default precision for floating-point
data remains as for the PL/I (F) compiler,
that is binary 21, decimal 6.

Subroutines and Functions

There is greater flexibility in the use of
entry names. An entry name can be either
an entry constant or an entry variable.

Entry constants: An identifier specified
as a label prefix to a PROCEDURE or ENTRY
statement is an entry constant.

For example:

X: PROC;
Y: E!~rfRY;

X and Yare entry constants. They need be
explicitly declared with the ENTRY
attribute only if external.

Entry variables: An identifier specified
with the ENTRY attribute and any of the
following attributes, which must be
explicitly declared, is an entry variable.

VARIABLE
STATIC/AUTOMATIC/BASED/CONTROLLED
Dimension
Parameter
ALIGNED/UNALIGNED
DEFINED
INITIAL

For exampl e:

DCL X ENTRY (BINARY,FIXED DECIMAL)
VA...-qIABLE,

Y ENTRY (CHAR) AUTO,
Z (10) ENTRY;

Entry variables may be assigned, passed
as arguments, returned from procedures, and
used in CALL statements and function
references.

Entry names and generic names: The GENERIC
attribute has been altered to permit the
entry names specified in a generic
declaration to be dissociated from the
generic name. The specification of an
identifier as an alternative in a generic
declaration does not constitute a
declaration of the identifier as an entry
name; it is merely an entry expression that
describes the entry name of the procedure
to be invoked in specified circumstances.
For each entry expression alternative, a
descriptor list is specified by means of a
WHEN clause. Defaults are not applied to
the descriptors in WHEN clauses. As a
result the generic specification is much
more flexible in that:

1. An identifier can be specified as more
than one alternative in a GENERIC
declaration, or in more than one
GENERIC declaration.

2. The descriptor list need only
partially describe the argument that
must be matched in the generic
reference. It can indicate that any
argument is acceptable.

Chapter 3: The PL/I Language Implemented by the Checkout Compiler 23

For example:

DCL X GENERIC (A WHEN (FIXED,FIXED)}i

If the arguments to the generic reference X
are both FIXED, then A is selected. If the
specification had been:

A WHEN (, FIXED)

then any type of argument would be
acceptable as the first argument, but the
second would have to be FIXED.

Generic selection is performed thus:

1. 'rhe alternatives are scanned from left
to right until a WHEN clause is found
which matches the arguments in the
generic reference. 'Matching' occurs
when there are the same number of
descriptors in the WHEN clause as
there are arguments, and when each
descriptor in the WHEN clause
specifies a subset of the attributes
of the corresponding argument.

2. The entry expression in the
alternative that contains the
appropriate WHEN clause is then
invoked with the arguments in the
generic reference. The invocation may
involve the conversion of arguments
and the creation of dummy arguments.

For example:

24

DCL X GENERIC (A WHEN (FIXED, FLOA'T) ,
A WHEN (FIXED,FIXED),
B HHEN (FLOAT,COMPLEX}),

Y GENERIC (A WHEN (FLOAT, FLOAT},
A WHEN (, FLOAT) ,
C WHEN (,»,

Z GENERIC (A WHEN (FIXED,FIXED),

CALL X (Ll,Ml);
CALL X (Ll,L2);
CALL X (M2,S) ;
CALL X (Ml,M2) ;

CALL Y (Ml,M2);
CALL Y (Ll,Ml);
CALL Y (S,Ll);
Ml = Z (Ll,L2);

B WHEN (FLOAT,COMPLEX»,
(L1,L2) FIXED,
(Ml,M2) FLOAT,
S COMPLEX;

/* A IS SELECTED */
/* A IS SELECTED */
/* B IS SELECTED */
/* NO MATCHING ARGUMENTS,

NO SELECTION.
PROGRAM IS ERRONEOUS */

/* A IS SELECTED */
/* A IS SELECTED */
/* C IS SELECTED */
/* A IS SELECTED */

M2 Z (Ll,M2); /* NO MATCHING ARGUMENT,
NO SELECTION.

M1 = Z (M2,S);
A: PROC •••• ;
B: PROC •••• ;
C: PROC •••. ;

PROGRAM IS ERRONEOUS */
/* B IS SELECTED */

Arc Sine and Arc Cosine Computation

New mathematical built-in functions are
available, for computing arc sines and arc
cosines. They are ASIN(x) and ACOS(x)
respectively.

1. ASIN(x)

Argument:

Result:

2. ACOS(x)

Argument:

Resul t:

Real or complex. If real,
the absolute valUE of x
must not be greater than
1.

Arc sine, expressed in
radians. If real, it lies
within the range:

-n/2 ~ ASIN(x) ~ ~/2

If the argument was
complex, the result iG
complex.

Real or complex. If real,
the absolute value of x
must not be greater than
1.

Arc cosine, in radians.
If real, it lies within
the range

o ~ ACOS(x) :$ '1r:

If the argument was
complex, the result is
complex.

Comparison of Labels

A comparison of label constants and label
variables can be made-. The comparison is
limited to the use of the = and ,=
operators.

I

Machine Requirements

The minimum machine requirements for the
PL/I Checkout Compiler are an IBM
System/360 Model 40, with a main storage
capacity of 128K bytes, of which at least
80K bytes must be available for the
compiler. For fully efficient use, the
compiler requires a minimum of lOOK bytes.
The central processing unit must have the
decimal and floating-point instruction sets
and, if timing information is required, it
must have the timer feature.

If the conversational features of the
compiler are to be used, the time sharing
option (TSO) of the operating system must
be available. This has a minimum
requirement of an IBM system/360 Model 50
with a main storage capacity of 5l2K bytes.

Compiler Residence

The compiler will occupy approximately 700K
bytes of direct-access storage space. In
addition, 75K bytes will be required for
the transient library used by the compiler.

Working storage

The compiler requires direct-access storage
space for overflow storage areas. The
amount of space required depends on the
size of the program and the amount of main
storage available to the compiler. The
data set identified by SYSUT2 is used for
this auxiliary storage. In addition, the
compiler may require direct-access storage
space for the work files SYSUT3, SYSUT4,
and SYSUT5, the functions of which are
described below.

Input/Output Devices

During translation and interpretation,
devices are required for the following
types of input/output:

Source program input-

Printed listings

Chapter 4: System Requirements

output of interpret able code .from
translator (inp~t to interpreter).

The ddnames associated with particular
functions, and the permitted device types
for each, are shown in Table 1.

Operating System Requirements and Facilities

The PL/I Checkout Compiler is a component
of the IBM System/360 Operating System.
The control programs that the compiler will
run under, and the data management
facilities which may be required, are
detailed below.

control Programs

The checkout compiler can be used under the
following control programs.

Multiprogramming with a Fixed number of
Tasks (MFT): The number of tasks that can
be processed at anyone time is determined
by the number of partitions (segments of
main storage) that exist at that time.
Each task is associated with one partition,
and receives a share of the available
resources.

Multiprogramming with a variable number of
Tasks (MVT): The number of tasks that can
be processed at anyone time is determined
by the number of regions (segments of main
storage) plus the number of tasks created
dynamically in all the regions. Each
region is associated with a task and with
all the subtasks it creates dynamically.
Each task receives a share of the
resources; subtasks use the resources
allocated to the task that created them.

Other operating system options under
which the compiler can run are:

Time Sharing option (TSO): this option
must be available if the conversational
features of the compiler are to be used.
It provides:

The system commands that allow
interaction with a PL/I program during
translation and interpretation.

Chapter 4: System Requirements 25

Table 1. Compiler Input/Output Devices
r---------------------------T-----------T-------------------T---------------------------,
I Function I ddname I Device Type I When ReguiIed I
~---------------------------+-----------+-------------------+---------------------------~
I Source program inpu~ and, ISYSCIN IDASD Isee note telow I
loptionally, data I IMagnetic tape I I
I I I card reader I I
I I IPaper tape reader I I
I I I Terminal I I
t---------------------------+-----------f-------------------f---------------------------~
I Printed outf:ut I SYSPRINT I DASD IAly;ays I
I I I Magnetic taf e I I
i I I Fr in t er I I
I I l'Ierminal I I
r---------------------------+-----------+-------------------+---------------------------~
IWork file ISYSUT2 IDASD IAllhays I
~---------------------------+-----------f-------------------+--~------------------------~
IOutput from translaLor; ISYSUT3 IDASD IIf production of an object I
linput to inter[.Ie-cer I I Irrodule is Sfecified I
~---------------------------f-----------f-------------------+---------------------------~
IWork file used to retain ISYSUT4 ItASD IIf a formatted source I
I formatted source f:Iog Iam I I Ilisting is sI=ecified I
lafter transla-cion I I I I
r---------------------------f-----------f-------------------+---------------------------~
IWork file fOI I SYSUT5 I DASD I If prefrccessing is I
I preprocessor I I I specified I
t---------------------------+-----------f-------------------+---------------------------~
ISouIce program inrut ISYSIN las SYSCIN Isee note below I
I and/or data I I I I
r---------------------------+-----------+-------------------+---------------------------~
lout~ut to linkage ISYSLIN IDASD IIf producticn of an ctject I
I editor I I~agnetic tare Imodule is specified I
t---------------------------~-----------~-------------______ i ___________________________ ~

I Note: Source rIogram input to the compiler may be on SYSCIN or SYSIN. If I
I translation and interpretation are included in the same jot step, hClheveI, the I
I following conventions must be otserved. I
I If SYSCIN is used for the source program, data for processing by the translated I
I SOUIce program may either follow the source prograrr. en SYSCIN or it may te on SYSIN. I
I If SYSIN is used for the source program, data for processing by the tIanslated I
I source program may also be on SYSIN (following the source program), tut SYSCIN must I
I not be used. I L ___ J

• Facilities for several users to share a
region of main storage for the
concurrent execution of their programs.
Each terminal in session is granted
exclusive use of the region for a

'series of short time slices.

Multiprocessing (M65MP): provides support
for multiprocessing with two System/360
Mudel 65s.

Data Management Facilities

Object programs compiled by the checkou~
compiler make use of the operating system
data management facilities. These
facilities include:

26

Basic Sequential Access Method (BSA~)

Queued sequential Access Method (QSAM)

Basic Partitioned Access Method (BPAM)

Basic Indexed Sequential Access Method
(BISAM)

Queued Indexed Sequential Access Method
(QISAM)

Basic Direct Access ~ethod (BrA~)

Telecommunication Access Methcd (teAM)

Appendix A: Summary of Keywords

The following is a complete list of the PL/I and implementation-defined keywords
implemented by the checkout compiler. Each of these keywords is described in detail in
the publication IBM system/360 Operating System: PL/I Language Reference Manual
(Preliminary), which also lists the keyword abbreviations.

Keyword

ABS(x)
ACOS(x)
%ACTIVATE
ADD (x, y , P [, q])
ADDBUFF(n)
ADDR(x)
ALIGNED
ALL
ALL (x)

ALLOCATE
ALLOCATION (x)
ANY (x)

AREA
AREA [(size)]
ASIN(x)
ATAN (x (r y])
ATAND(x[,y])
ATANH(x)
AUTOMATIC
BACKWARDS
BASED[(locator-expression)]
BEGIN
BINARY
BINARY (x [r p [, q]])
BIT[(length)]
BIT(expression[,size])
BLKSIZE(expression)
BOOL(X,y,w)
BUFFERED
BUFFERS(n)
BUILTIN
BY
BY NAME
CALL
CEIL(x)
CHAR(expression[,size])
CHARACTER[(length)]
CHECK [(name-list)]
CHECK
CLOSE
COBOL

COLUMN(w)
COMPLETION (event-name)
COMPLEX
COMPLEX (a,b)
CONDITION (name)
CONJG(x)
CONNECTED
CONSECUTIVE
CONTROLLED
CONVERSION
COpy
COS (x)
COSD(x)

Use of Keyword

Built-in function
Built-in function
Preprocessor statement
Built-in function
Option of ENVIRONMENT attribute
Built-in function
Attribute
Option of PUT statement
Built-in function
statement
Built-in function
Built-in function
Condition
Attribute
Built-in function
Built-in function
Built-in function
Built-in function
Attribute
Attribute, option of OPEN statement
Attribute
statement
Attribute
Built-in function
Attribute
Built-in function
Option of ENVIRONMENT attribute
Built-in function
Attribute
Option of ENVIRONMENT attribute
Attribute
Clause of DO statement
Option of the assignment statement
Statement, or option of INITIAL attribute
Built-in function
Built-in function
Attribute
condition
statement
statement
option of ENVIRONMENT attribute, or the OPTIONS

option/attribute
Format item
Built-in function, pseudo-variable
Attribute
Built-in function, pseudo-variable
Condition
Built-in function
Attribute
Option of ENVIRONMENT attribute
Attribute
Condition
Option of GET statement
Built-in function
Built-in function

Appendix A: Summary of Keywords 27

Keyword
COSH Cx)
COUNTCfile-expression)
CTLASA
CTL360
DATA
DATAFIELD
DATE
% DEACTIVATE
DECIMAL
DECIMALCx[,p[,q]])
DECLARE
%DECLARE
DEFAULT
DEFINED
DELAYCn)
DELETE
DESCRIPTORS
DIMCx,n)
DIRECT
DISPLAY
DIVIDECx,y,p[,q])
DO
%DO
EDIT
ELSE
%ELS}~
}-:;MPTY
END
%END
ENDFILECfile-expression)
ENDPAGECfile-expression)
ENTRY
ENVIRONMENT
ERFCx)
ERFCCx)
ERROR
EVENT
EVENTCevent-name)

EXCLUSIVE
EXIT
EXPCx)
EXTERNAL
F
FB
FBS
FILE
FILECfile-2xpression)
FINISH
FIXED
FIXED Cx [, p [, q]])
FIXEDOVERFLOW
FLOAT
FLOAT C x [, p])
FLOORCx)
FLOW
FORMATCformat-list)
FORTRAN
FREE
FROMCvariable)
GENERIC
GENKEY
GET
GO TO
%GO TO
HALT
HBOUNDCx,n)

28

Use of Keyword
Built-in function
Built-in function
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
STREAM I/O transmission mode
Built-in function
Built-in function
Preprocessor statement
Attribute
Built-in function
Statement
Preprocessor statement
statement
Attribute
Statement
statement
Option of DEFAULT statement
Built-in function
Attribute
statement
Built-in function
statement
Preprocessor statement
STREAM I/O transmission mode
Clause of IF statement
Clause of %IF statement
Built-in function
statement
Preprocessor statement
Condition
Condition
Attribute or statement
Attribute
Built-in function
Built-in function
Condition
Attribute
Option of CALL, DELETE, DISPLAY, READ, REWRITE,
and WRITE statements
Attribute
Statement
Built-in function
Attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Attribute
Option of I/O statements
Condition
Attribute
Built-in function
Condition
Attribute
Built-in function
Built-in function
statement, and option of PUT statement
Statement
Option of the OPTIONS option/attribute
Statement
Option of WRITE and REWRITE statements
Attribute
Option of ENVIRONMENT attribute
statement
statement
Preprocessor statement
Statement
Built-in function

Keyword
HIGH(i)
IF
%IF
IGNORECn)
I MAG (x)

INCarea)
%INCLUDE
INDEX (string, config)
INDEXAREA[(size)]
INDEXED
INITIAL (expression)
INPU'!'
INTER
INTERNAL
INTO (variable)
IRREDUCIBLE
KEY (file-expression)
KEY (x)

KEYED
KEYFROM(x)
KEYLENGTH(n)
KEYLOC(n)
KEYTO(variable)
LABEL
LENGTH (string)
LBOUND(x,n)
LEAVE
LIKE
LINECw)
LINENOCfile-expression)
LINESIZE
LIST
LOCATE
LOG (x)
LOG 2 (x)
LOG10 (x)

LOW(i)
MAIN
MAX(X1,Xa,···xn)
MIN(x1,x2,.··xn)
MOD(x1,x2)
MULTIPLY(x1,xa,P[,Q])
NAME (file-expression)
NCP(n)
NOCHECK[(name-list)]
NOCONVERSION
NO FIXEDOVER FLOW
NOFLOW
NOLoeK
NOMAP
NOMAPIN
NOMA POUT
NOOVERFLOW
NORESCAN
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOsUBsCRIPTRANGE
NOUNDERFLOW
NOWRITE
NOZERODIVIDE
NULL
OFFSET (area-name)
OFFSET (p,a)
ON
ONCHAR
ONCODE

Use of Keyword
Built-in function
Statement
Preprocessor statement
Option of READ statement
Built-in function, pseudo-variable
Option of ALLOCATE and FREE statements
Preprocessor statement
Built-in function
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Attribute
Attribute, option of OPEN statement
Option of the OPTIONS option/attribute
Attribute
Option of READ statement
Attribute
Condition
Option of READ, DELETE, and REWRITE statements
Attribute, option of OPEN statement
Option of WRITE statement
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Option of READ statement
Attribute
Built-in function
Built-in function
Option of ENVIRONMENT attribute
Attribute
Format item, option of PUT statement
Built-in function
Option of OPEN statement
STREAM I/O transmission mode
Statement
Built-in function
Built-in function
Built-in function
Built-in function
option of the OPTIONS option
Built-in function
Built-in function
Built-in function
Built-in function
Condition
Option of ENVIRONMENT attribute
condition prefix identifier, statement
Condition prefix identifier
Condition prefix identifier
Statement
Option of READ statement
Option of the OPTIONS option/attribute
Option of the OPTIONS option/attribute
Option of the OPTIONS option/attribute
Condition prefix identifier
Option of %ACTIVATE statement
Condition prefix identifier
Condition prefix identifier
Condition prefix identifier
condition prefix identifier
Condition prefix identifier
Option of ENVIRONMENT attribute
Condition prefix identifier
Built-in function
Attribute
Built-in function
Statement
Built-in function, pseudo-variable
Built-in function

Appendix A: Summary of Keywords 29

Keyword
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)
ORDER
OUTPUT
OVERFLOW
PAGE
PAGESIZE(w)
PENDING (file-expression)
PICTURE
POINTER
POINTER (n,a)
POLY(a,x)
POSITION (expression)
PRECISION(x,pL,q]}
PRIN'I'
PRIORITY (x)
PRIORITY (task-name)
PROCEDURE
% PROCEDURE
PROD (x)
PUT
RANGE
READ
REAL
REAL (x)
RECORD
RECORD (file-expression)
RECSIZE(expression)
RECURSIVE
REDUCIBLE
REENTRANT
REFER
REGIONAL (11213)
REORDER
REPEAT(string,i}
REPLY (c)
REREAD
RESCAN
RETURN
RETURNS
REVERT
REWRITE
ROUND (exp,n)
SCALAR VARYING
SEQUENTIAL
SET (pointer-variable)
SIGN (x)
SIGNAL
SIN(x}
SIND(x}
SINH (x)

SIZE
SKIP [(x)]
SNAP
SQRT (x)
STATIC
STATUS[(event-name}]
STOP
STREAM
STRING (x)
STRING (string-name)
STRINGRANGE

30

Use of Keyword
Built-in function
Built-in function
Built-in function
Bui~t-in function
Built-in function, pseudo-variable
statement
Option of PROCEDURE statement, attribute
option of PROCEDURE and BEGIN statements
Attribute, option of OPEN statement
Condition
Format item, option of PUT statement
Option of OPEN statement
Condition
Attribute
Attribute
Built-in function
Built-in function
Attribute
Built-in function
Attribute, option of OPEN statement
Option of CALL statement
Built-in function
Statement
Preprocessor statement
Built-in function
statement
Option of DEFAULT statement
Statement
Attribute
Built-in function, pseudo-variable
Attribute, option of OPEN statement
Condition
Option of ENVIRONMENT attribute
Option of PROCEDURE statement
Attribute
option of PROCEDURE statement
Option of BASED attribute
Option of ENVIRONMENT attribute
Option of PROCEDURE and BEGIN statements
Built-in function
Option of DISPLAY statement
Option of ENVIRONMENT attribute
Option of %ACTIVATE statement
statement
Attribute, option of PROCEDURE statement
Statement
Statement
Built-in function
Option of ENVIRONMENT attribute
Attribute
Option of ALLOCATE, LOCATE, and READ statements
Built-in function
Statement
Built-in function
Built-in function
Built-in function
Conditi.on
Format item, option of GET and PUT statements
Option of ON and PUT statements
Built-in function
Attribute
Built-in function, pseudo-variable
Statement
Attribute, option of OPLN statement
Built-in function, pseudo-variable
Option of GET and PUT statements
Condition

Keyword
STRINGSIZE
iSUB
SUBSCRIPTRANGE
SUBSTR(string,i[,j])
SUM(x)
SYSIN
SYSPRINT
SYSTEM
TANtx)
TAND(x)
TANH (x)
TASK
TASK (task-name)
THEN
%THEN
TIME
TITLE (x)
TO
TP(MIR)
TRANSIENT
TRANSLATE (string,
replacement, [position])

TRANSMIT (file-expression)
TRKOFL
TRUNC(x)
U
UNALIGNED
UNBUFFERED
UNDEFINEDFILE(file-expression)
UNDERFLOW
UNLOCK
UNSPEC(x)
UPDATE
V
VALUE
VARIABLE
VARYING
VB
VBS
VERIFY (string1, string2)
VS
WAIT
WHEN
WHILE
WRITE
ZERODIVIDE

Use of Keyword
Condition
Dummy variable of DEFINED attribute
Condition
Built-in function, pseudo-variable
Built-in function
Name of standard system input file
Name of standard system output file
Option of ON and DECLARE statements
Built-in function
Built-in function
Built-in function
Attribute
option of CALL statement and OPTIONS option
Clause of IF statement
Clause of %IF statement
Built-in function
Option of OPEN statement
Clause of DO statement
Option of ENVIRONMENT attribute
Attribute
Built-in function

condition
Option of ENVIRONMENT attribute
Built-in function
Option of ENVIRONMENT attribute
Attribute
Attribute, option of OPEN statement
Condition
condition
Statement
Built-in function, pseudo-variable
Attribute, option of OPEN statement
Option of ENVIRONMENT attribute
Clause of DEFAULT statement
Attribute
Attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Built-in function
Option of ENVIRONMENT attribute
statement
Used in GENERIC declaration
Clause of DO statement
Statement
Condition

Appendix A: Summary of Keywords 31

32

Appendix B: Compatibility with the PL/I (F) Compiler

Features of the PL/I Checkout Compiler
implementation which are incompatible with
the PL/I (F) compiler implementation are
listed alphabetically below. In every
case, the description given is of the
checkout compiler implementation. Programs
which were written for the (F) compiler and
which use any of ·these features should be
reviewed before compiling them with the
checkout compiler to ensure that they will
return the same results.

ALLOCATION Built-In Function

The ALLOCATION built-in function returns a
fixed-binary value giving the number of
generations of the argument that exist in
the current task.

Array Dimensions

The maximum number of dimensions in an
array is 15.

Arrays of Pictures

Defined items in arrays of pictures i:lUSt
match the base elements exactly. The PL/I
(F) Compiler requires only that the base
elements should be pictures of character
strings.

~uilt-In Functions

Built-in functions are recognized on the
basis of context only, so that all
programmer-defined external procedures must
be declared explicitlye Built-in functions
without arguments, such as TIME and DATE,
must be also declared explicitly with the
BUIL'IIN attribute, or contextually with a
null argument list, for example: TIME ().

DISPLAY statement

The maximum length of the string to be
displayed is 72 characters.

ENTRY Attribute

The maximum depth of nesting in a
descriptor list in the ENTRY attribute is
2.

ENTRY Declarations

EN'IRY declarations for internal procedures
are not allowed.

Entry Names as Arguments

An entry name argument in parentheses, or
an entry name without arguments, causes a
dummy variable to be created; for the
fUnction to be invoked, a null argument
list is required. (In the PL/I (F)
Compiler an entry name argument in
parentheses, or an entry name without
arguments, is taken to be a function
statement.)

Error Correction

The error correction logic differs from
that used by the PL/I (F) compiler.
Invalid programs that are compiled by and
corrected by the (F) compiler may not give
the same results on the checkout compiler.

Expressions in Parameter Extents

Expressions in parameter extents for
variables that do not have the CONTROLLED
attribute are not allowed.

File Parameters

A file parameter can be declared with the
FILE attribute only; all other attributes
are inherited from the argument. If
additional attributes are declared, they
are ignored and an informatory message is
issued.

Appendix B: compatibility with the PL/I (F) Compiler 33

GENERIC Attribute

When using the GENERIC attribute, the entry
must be declared explicitly and the keyword
WHEN must also be specified.

KEY Option

If READ ••• KEY is used with a sequential
data set and no record with the specified
key exists in the data set, the KEY
condition is raised and the file is
positioned at the next record in ascending
sequence.

KEYFROM Option

If an embedded key in a record is not
identical to that specified in a
WRITE ••• KEYFROM or LOCATE statement, the
latter is moved into the record.

Labels on DECLARE statements

A label on a DECLARE statement is treated
as if it were on a null statement.

Link-Editing of Object Modules

Object modules produced by the checkout
compiler cannot be link-edited with object
modules produced by the PL/I (F) Compiler.

ONKEY Built-In Function

When using REGIONAL(l) organization, the
value returned by the ONKEY built-in
function for a specification error consists
of the last eight bytes of the source key,
padded on the right with blanks if
necessary. This value is returned for all
I/O conditions ·other than ENDFILE, or other
than ERROR raised as standard system action
for an I/O condition.

In a RECORD I/O statement with the KEY
or KEYFROM option, the ONKEY built-in
function returns a null string when the
ERROR condition is raised.

In a RECORD I/O statement referring to a
KEYED file (b~t with no KEY, KEYFROM, or

34

KEYTO option specified) the ONKEY built-in
function returns the recorded key.

Picture Characters

The field of a drifting picture charac~er
will be blank when a zero is assigned to
it.

Preprocessor Variables

A parameter descriptor list is not allowed
in the declaration of a preprocessor
variable with the ENTRY attribute.

PROD Built-In Function

The PROD built-in function accepts
arguments that are arrays of either
fixed-point or floating-point elements.
The value returned has the same scale as
the argument given, except that for
fractional fixed-point arguments the result
is in floating point.

statements

The approximate maximum number of
statements in a program is 10,000.

sterling Pictures

sterling picture data is not implemented.
Therefore the following picture characters
are not allowed: G, H, M, F, 6, 7, 8.

structures

The maximum depth of a structure is 15.

SUM Built-In Function

The SUM built-in function accepts arguments
that are arrays of either fixed-point or
floating-point elements. The value
returned has the same scale as the argument
given.

operating system Facilities

The operating system facilities for
sorting, for checkpoint/restart, for
generating a return code, and for obtaining
a storage dump are all invoked by means of
a CALL statement with the appropriate
entr¥-point name; for example, CALL
PLISORT. The entry-point names, which are
listed below, have the BUILTIN attribute
,and need not be declared explicitly.

Facility

Sort
Checkpoint/Restart
Return Code
D~p

Entry-Point Name

PLISORT
PLICKPT
PLIRETC
PLIDUMP

The checkout compiler does not recognize
the entry names used by the PL/I (F)
Compiler, that is, IHESRTx, IHECKPT,
IHESARC, IHEDUMx.

Appendix B: Compatibility with the PL/I (F) Compiler 35

36

Appendix C: Complementary Use of the PL/I Checkout and Optimizing
Compilers

The PL/I Checkout Compiler and the OS PL/I
Optimizing Compiler (Program Product
5734-PL1) have been designed as a pair.
They are compatible, and, because of their
entirely different approaches, they offer
many complementary advantages.

The primary aim of the checkout compiler
is to reduce tile time and effort spent on
program checkout. The primary aim of the
optimizing compiler is to increase system
throughput when the program is in
production use. Thus, used together, the
two compilers can increase the efficiency
of both programmer effort and machine
usage.

Compatible Features

Source language: The same language is
implemented by the two compilers, except
that:

1. The conversational features of the
PL/I language will be diagnosed for
syntax errors, but otherwise ignored
by the optimizing compiler.

2. The optimization feature of the PL/I
language will be diagnosed for syntax
errors, but otherwise ignored by the
checkout compiler.

Object modules: The object modules
produced by the two compilers can be
link-edited and executed together as a
single program.

Compiler options: The same option list can
be specified for the two compilers. Any
options which are not relevant to a
particular compiler are recognized by it,
but ignored.

Program results: The same results will be
produced by a program irrespective of
whether it is processed on the checkout or
the optimizing compiler.

Execution trace: The same statement number
trace can be performed with both compilers.

CompJementary Features

Checkout compiler: The time and cost of
developing a program is divided between

programmer and roachine. The checkout
compiler aims to reduce substantially the
programmer time and cost by providing a
higher level of diagnostic information.
This might sometimes result in a moderate
increase in machine time and cost, caused
by the interpretive style of processing
necessary to achieve this higher level of
diagnostic information.

Optimizing compiler: When a program has
reached operational status, reduction of
machine time and cost is of primary
importance. The optimizing compiler
reduces machine time and cost by producing
a high performance object program. This
high performance is achieved by the use of
extensive optimization.

Review of Compiler Use

The following is a review of the advantages
of the two compilers for program checkout
and production use.

Program Checkout

The checkout compiler simplifies and speeds
up program checkout in the following ways:

It produces more diagnostic information
for syntax, global, and in particular,
execution-time errors. In most cases,
this will considerably reduce the time
required to remove errors. In fact, in
conversational mode, many programs will
be fully debugged in one session at the
terminal.

It can translate a source program
several times faster than the
optimizing compiler can compile it.

For some installations and programs, it
may be advantageous to transfer to the
optimizing compiler before checkout is
complete, as it takes several times longer
to interpret the text produced by the
translation process of the checkout
compiler than it does to execute the
optimized code produced by the optimizing
compiler. However, the following four
compensating factors should be taken into
consideration.

Appendix C: Complementary Use of the PL/I Checkout and Optimizing Compilers 37

1. The checkout compiler will usually
reduce the number of executions needed
to debug the program. Thus, the
difference in total machine time will
not be as great as a strict comparison
of performance would indicate.

2. The time required to perform an I/O
operation is approximately the same
irrespective of which compiler is
used. Thus, the greater the number of
I/O operations performed by the
program, so the smaller the
difference, proportionally, in elapsed
time.

3. Link-editing or loading is not
normally required before the
interpretation of a module produced by
the checkout compiler, but one of
these is required before the execution
of a module produced by the optimizing
compiler. Thus, the time for this
system overhead can be saved when
using the checkout compiler.

4. The checkout compiler's ability to
translate and execute several programs
in one job step can result in a
significant saving of system overhead
time.

Production Use

The optimizing compiler will normally be
used to generate the object program that
will be used in a production environment.
This is because the code produced by the
optimizing compiler can be executed several
times faster than the checkout compiler can
interpret the text produced by the
translation process.

However, in some cases, the number of
executions may be so small that it does not

38

justify recompiling a program after
checkout on the checkout compiler.

Mixing Checkout-Compiled and
Optimizing-Compiled Procedures

With programs constructed by the modular
principle, it is likely that during
development some external procedures will
become suitable for optimizing earlier than
others. These can be recompiled with the
optimizing compiler and then executed with
the procedures which are still in
checkout-compiled form. The different
procedures can be link-edited in the normal
way.

Program control: The checkout compiler
must be available to control the execution.
Only one program can be executed in a job
step. Either type of procedure can be the
main procedure.

PL/I Resident Library: The user can avoid
the inclusion of routines from the PL/I
Resident Library (Program Product 5734-LM4)
at execution time by specifying SYS1.PLIMIX
in the SYSLIB DD statement for the linkage
editor step. PLIMIX is a library of
'bootstrap' routines. They are included by
the linkage editor with the optimized
procedures instead of the full routines.
They invoke the checkout compiler with a
request to execute its corresponding
routine.

Execution trace: An execution trace will
be performed for procedures that have been
compiled with the FLOW option.

Job control statements: Apart from the
optional use of SYS1.PLIMIX, described
above, the same job control statements are
required as if the procedures were not of
mixed types.

Index

Where more than one page reference is given, the major reference is first.

ABOVE command 12-14
ACOS built-in fUncc ion 24
%ACTIVATE statement 20,21
ac~ive procedure listing 19
aggregates (see arrays; structures)
ALL opLion of PUT statement 19
ALLOCATION built-in function 33
arc cosine 24
arc sine 24
area size, default 20
arrays

assignm':;n"Cs 22
dim\::::nsions 33
expressions 22
FORTRAN 11
pictures 33
SUBSCRIPTRANGE condition 19

ASIN built-in func~ion 24
AT command 12-14
A'I unit 14
attention key 12-14
attributes 19,20,23

listing 7,10
auxiliary storage 25,26

background ~roc€Ssing 5,6
based variables 21,22
Basic Direct Access Method (BDA~) 26
Basic Indexed Sequential Access Method

(BISAM) 26
Basic Partitioned Access Method (BPAM) 26
Basic sequential Access Method (BSAM) 26
batch processing 7-9

definition 6
batched com~ilation 8
BDAr1 (Basic Direct Access f.iJethod) 26
BEGIN statem6nt 18
BISAM (Basic Indexed Sequential Access

Method) 26
BLKSIZE option 21
block, program

immediate PL/I 18,19
inactive, branches into 10
level, on listings 7,9
scope of identifiers 14,18,19

blocking records 21
BPAM (Basic Partitioned Access Method) 26
branching

ABOVE command 13,14
AT command 13,14
illegal 10
immedia1:e PLiI 19
listing branches and targets 8,15,18,19
target identification 19

breakpoints 12,14
BSAM (Basic sequential Access Method) 26

buil"C-in functions 23,24,33
BUILTIN attribute 33
CALL corr.mand 12
CALL statement 11,23
card reader 26
central processing unit (CPU) 25
character-set option 7
CHECK condition 19
CHECK statement 18
checking

checkout philosoPlY 37,38
ccm~iler facilities 7-11
PL/I facilities 18,19

checkpoint/restart 35
COBOL 11
corrmands 12,6
communication with cther languages 11
corrparison of labels 24
compatibility

with PL/I (F) Compiler 33-35,11
with PL/I Cptirrizing Compiler 37,38
of ~ointers 10

compile-time processing (se~ preprocessing)
compiler

(see also PL/I (F) Compiler; PL/I
Cptimizing Compiler)

~onversational features 12-16
general description 7-11
invoca tion 12,15
opticns 7,8
phases 6
residence 25
system requirements 25,26

complementary use of checkoul:. and
optimizing compilers 37,38

configuration, rrachine 25
CONNECTED attritute 22,23,21
constants, number of 7
contiguous storage 22
control programs 25
cont rol (at terminal) 12- 16, 18
conversational processing

definiti'on 6
main discussion 12-16,9
job control language 8
PL/I 18,19
system requirements 25

core storage (~ storage)
CPU (Central Processing Unit) 25
cross-reference listing 8,10

DASD (Direct-Access Storage Device) 26
data

aggregates (see arrays; structures)
attributes 19,20,23
management 26

Index 39

data (continued)
program input 26
types 17

data set
creation
ddnames
labels

12
26

21
member name 15
organizations 21
partitioned 12
updating 12

DATE built-in function 33
DD statements 8,21
ddnames 26
%DEACTIVATE statement 20
debugging (see checking)

(see also diagnostic messages; modifying
program)

decimal instruction sets 25
DECLARE statement 18,34
default attributes 18-20,23
DEFAULT statement 18-20
defined variables 10,22,33
defining, overlay 22
depth of structure, maximum 34
descriptor lists (see parameter descriptor
lists)

DESCRIPTORS option 20
device types 25,26
diagnostic messages

compiler options 7,8
conversational processing 13,14
full text 7,14
output arrangements 8-10
severity 7
short text 7

differences, implementation 33-35,11
direct-access storage 25,26
direct-access storage device (DASD) 26
DISPLAY statement 33
DO groups

checking 9
illegal branches 10
listing 7

dump 8,35

EDIT command 12,9,10
efficiency

batched compilation 8
machine usage 37,38
main storage requirements 25
progr~aer 37,38
statement grouping 15

END command 14,16
END statement checking 9
entry

(see also parameter descriptor lists>
arguments 33
constants 23
ENTRY attribute 23,33,34
ENTRY statement 18,23
generic names 23,24
immediate PL/I 18
internal procedures 33
labels 23
preprocessing 34
variables 23

ENVIRONMENT attribute 21
environment, current 14
ERROR condition 12
error correction logic 33

(see also checking; diagnostic messages;
modifying' program)

error messages (~ diagnostic messages)
example of conversational processing 15,16
exclamation point 12
EXEC statement 8
execution-time tables 10
expressions, parameter extents 33
extended precision floating point 23
external procedures 33

(see also entry)
external symbol dictionary listing 7

(F) compiler
compatibility 33-35,11
language level 33-35,17,18
performance comparison 5
subroutine library 11

F option of ENVIRONMENT attribute 21
FE option of ENVIRONMENT attribute 21
FES option of ENVIRONMENT attribute 21
FILE attribute 33
FILE option 22
files 22,33
floating-point instruction set 23,25
FLOW compiler option 38
FLOW option of PUT statement 19
FLOW statement 18
foreground 6,8
FORMAT statement 18
formatted source listing 9,26
FORTRAN 11
FROM option 21,22
functions 23,24,33

G option of ENVIRONMENT attribute 21
GENERIC attribute 23,24,34
global checking 6,9,10
GO TO statement 19
GO TO 0 statement 15,11

HALT statement 18
hardware (see machine)
HELP command 14

identifiers, number of 7
IHECKPT 35
IHEDUMx 35
IHESARC 35
IHESRTx 35
immediate PL/I

definition 6
language restrictions 18,19
processing example 15,16

implementation differences 33-35,11
incompatibilities 33-35,11
INDEX built-in function 21
initialization of variables 10,11,23

40 Main page references are those listed first

input/output
batch mode 8
conversational mode 9,12-16
ddnames 26
devices 25,26,9,21
record-oriented 21,22,34
summary of I/O types available 17,18
at terminal 9,12-16

instruction sets 25
extended precision floating point 23

INTER option 11
interlanguage communication 11
interpretation

checking 10
definition 6
messages 13
speed 7,5

interrupt handling, FORTRAN 11
INTO option 21,22
invoking

the compiler 12,15
the linkage editor 8,12

iSUB variables 19

job 8
job control language 8,21,38

KEY option 34
KEYED attribute 34
KEYFROM option 34
keys 34
KEYTO option 34
keywords, list of 27-31

labels
comparisons 24
data set 21
DECLARE statements 34
entry name 23
immediate PL/I 18,19
misuse 10

language
implemented 17-24
interlanguage communication 11
keyword list 27-31

LENGTH built-in function 21
length, string, default 20
library

concept 5
PL/I (r) 11
Resident 38
Transient 5,25

line numbers 8
linkage editor

invocation 8,12
LINK command 12
NAME statemen~ 8
object module mixing 37,38,11,10
object module production 8,10,26
processing without link-editing 5,38

listings 7-10,19
loader 12,38
LOADGO command 12

locator variables 21
LOGOFF command 12
LOGON command 12

machine
efficient usage 37,38
requirements 25

macro processing (see preprocessing)
magnetic tape 26
main storage (see storage)
margins, source statement 7
mathematical built-in functions 24
member name, data set 15
memory (~ storage)
messages

compiler options 7,8
conversational processing 13,14
full t.ext 7,14
output arrangements 8-10
severity 7
short text 7

MFT (Multiprogramming with a Fixed number
of Tasks) 25

mixing object modules 37,38,11,10
modifying program 12-16,18,19
modules, object (see object modules)
MONITOR command 1"4'
Multiprocessing (M65MP) 26
Multiprogramming with a Fixed number of

Tasks (MFT) 25
Multiprogramming with a Variable number of

Tasks (MVT) 25
MVT (Multiprogramming with a Variable

number of Tasks) 25
M65MP (Multiprocessing) 26

name resolution 14
NAME statement 8
nesting, parameter descriptor lists 33
NOCHECK statement 18
NOFLOW statement 18
NOMAP option 11
NOMAPIN option 11
NOMAPOUT option 11
NOMONITOR command 14
NORESCAN option 20

object modules
data sets 26
mixing 37,38,11,10
production of 8,10,26

OFr command 14
offset variables 8,21
ON-code 10
ON statement 18
ONCHAR built-in function 19
ONCODE built-in function 10,19
ONCOUNT built-in function 19
ONFILE built-in function 19
ONKEY built-in function 19,34
ONLOC built-in function 19
ONSOURCE built-in function 19
operating system 25,26,35
optimizing compiler 37,38
options, compiler 7,8

Main page references are those listed first Index 41

OPTIONS option 11
other languages 11
output (see input/output)
overflow storage 25
overhead time

saving 5,8,38
translation 7

overlay defining 22

pair of compilers 37,38
paper tape reader 26
parameter descriptor lists

defaults 19,20
GENERIC 23,24
nesting limitation 33
preprocessing 34

parameter extents, expressions in 33
partitioned data set 12

member name 15
partitions, storage 9,25
passing control to terminal 12-16,18
performance 7,5

(see also efficiency)
phases, compiler 6
pictures 33,34
PL/I (F) Compiler

compatibility 33-35,11
language level 33-35,17,18
performance comparison 5
subroutine library 11

PL/I Optimizing Compiler 37,38
PL/I prompter 12
PL/I Resident Library 38
PL/I Transient Library 5,25
PLI command 12,15
PLICKP'l' 35
PLIDUMP 35
PLIMIX 38
PLIRETC 35
PLISORT 35
pOinter variables 8,10,21
precision

default 20,23
extended 23

preprocessing
compiler options 8
device requirements 26
PL/I 20,21,34

printer 26
PROCEDURE statement 18,23
procedures

(see also entry)
active, listing 19
external 33
immediate PL/I 18
internal 23,33
main, in mixed object modules 38

processing mode 8,9
PROD built-in function 34
program

(see also input/output)
checkout (see checking)
data 26
listings 7-9,19
margins, source statement 7
modifying 12-16,18,19

program <continued)
name 15
size 7
status 13,18,19
structure (see block, program;
branching)-­

programmer efficiency 37,38
progress messages 13
prompter, PL/I 12
PUT statement 19

QISAM (Queued Indexed sequential Access
Method) 26

QSAM (Queued Sequential Access Method) 26
QUALIFY command 14,19
Queued Indexed Sequential Access Method

(QISAM) 26
Queued Sequential Access Method (QSAM) 26

R option of ENVIRONMENT attribute 21
RANGE option 20
range specification 20
reader, card 26
record

format 21
input/output 21,22,34

(see also input/output)
size 21
variables 21,22

RECSIZE option 21
REFER option 21
regions, storage 9,25
REREAD option 21
RESCru~ option 20
resident library 38
resolution of names 14
restart, checkpoint 35
restrictions

immediate PL/I 18
initialization of variables 10

return code 35
REVERT statement 18
REWIND option 21
RUN command 12

scope 14,18,19
semantic (global) checking 6,9,10
sequence of events 15,16
session 12-16
severity, diagnostic messages 7
signing on 12
SNJI.P option 19
sort 35
source program (~ program)
specification error 34
speed 7,5
statement numbers

in GO TO statements 19
in listings 8,15,19
numbering method 8,13,15

statements
maximum in program 7
number executed 8,13,15

42 Main page references are those listed first

STEP command 15
sterling pictures 34
storage

auxiliary 25,26
available to compiler 8
based 21
CONNECTED attribute 22,23,21
contiguous 22
direct-access 25,26
dump 8,35
overflow 25
partitions 9,25
regions 9,25
requirements 25
swapping 6,~

stringency of checking 8
strings

length, default 20
overlay defining 22
STRINGSIZE condition 22
VARYING attribute 22

STRINGSIZE condition 22
structures

COBOL 11
CONNECTED attribute 22
maximum depth 34
operations 22
REFER option 21

subcommands 13-15,6
SUBMIT command 5
subroutines 5,23,24

(see also library)
SUBSCRIPTRANGE condition 19
subtasks 25
SUM built-in function 34
swapping 6,9
symbols, number of 7
syntax checking 6,9
SYSCIN 26
SYSIN 26,5
SYSLIB DD statement 38
SYSLIN 26
SYSPRINT 26
system

facilities 35
message 13
overhead (see overhead time)
requirements 25,26

SYSUT2 25,26
SYSUT3 25,26
SYSUT4 25,26
SYSU'l'5 25,26
SYS1.PLIMIX 38

tables, execution-time 10
tape devices 26
targets (~ branching)
task 8,25

TCAM (Telecommunications Access Method) 26
Telecommunications Access Method (TeAM) 26
teleprocessing 21
terminal 12-16,26
termination

dump 8,35
execution 14
session 12

terminology 5,6
throughput, increasing 37,38
TIME built-in function 33
Time Sharing Option (TSO)

definitions 6
commands 12
features 25
requirements 25
subcommands 13-15

time slices 26
timer 25
TP(M) option of ENVIRONMENT attribute 21
TP(R) option of ENVIRONMENT attribute 21
trace 19,38
TRANSIENT attribute 21
transient library 5,25
translation

definition 6
messages 13
speed 7,5

TSO (~ Time Sharing Option)

U option of ENVIRONMENT attribute 21
uninitialized variables 10,11

V option of ENVIRONMENT attribute 21
VALUE clause 20
variables

based 21,22
defined 10,22
entry name 23
in ENVIRONMENT options 21
initialization 10,11,23
locator 21
offset 8,21
pointer 8,10,21
record 21,22

VARYING attribute 22
VB option of ENVIRONMENT attribute 21
VBS option of ENVIRONMENT attribute 21
VS option of ENVIRONMENT attribute 21

WHEN clause 23,24,34
work files 25,26

48-character set 7
60-character set 7

Main page references are those listed first Index 43

READER'S COMMENT FORM

IBM System/360 Operating System
PL/I Checkout Compiler
General Information

• How did you use this publication?

As a reference source
As a classroom text .
As a self-study text

o
o
o

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is -your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Order No. GC33-0003

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC33-0003-0

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your I BM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

fold fold

("')

S
»
0'
:l

c.c
r s·
CD

...

BUSINESS REPLY M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

fold

POSTAGE WILL BE PAID BY ..

IBM Corporation

112 East Post Road

White Plains, N.Y. 10601

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N.Y.

fold

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	replyA
	replyB

