
Interlanguage Communication

Facilities are available which allow
procedures compiled by the PL/I Optimizing
Compiler to communicate at execution time
with programs compiled by any IBM COBOL
compiler or by the IBM F-level FORTRAN IV
compiler for the System/360 Disk Operating
System.

Thus, it is possible for existing COBOL
and FORTRAN users to write new applications
in PL/I while still utilizing existing
libraries of COBOL and FORTRAN programs; in
addition, existing applications can be
modified by the use of PL/I procedures.

Communication between programs written
in different languages is specified in the

usual way -- by a CALL statement, or
alternatively, for FORTRAN and PL/I, a
function reference.

The interlanguage communication
facilities are requested in the PLII
procedure by the COBOL or FORTRAN option of
the OPTIONS attribute or option. The
remapping of COBOL structures and
transposing of FORTRAN arrays, which would
then normally take place, can be completely
or partially suppressed by the NOMAP,
NOMAPIN, and NOMAPOUT options. The INTER
option can be used to specify that the
COBOL and FORTRAN interrupts which would
otherwise be handled by the system are to
be handled by the PL/I interrupt handling
facilities.

Chapter 1: The DOS PL/I Optimizing Compiler 9

====::.= .= - - --- - ---- --- ------------
-=~- -- ---- _.- Program Product

IBM System/360 Disk Operating System

PL/I Optimizing Compiler

General Information

Program Number 5764-PL 1

File No. S360-29
Order No. GC33-0004-0

This publication is a planning aid only. It is
intended for use prior to the availability of the
following IBM System/360 program products:

• DOS PL/I Optimizing Compiler,
Program Product 5736-PLI

• DOS PL/I Resident Library,
Program Product 5736-LM4

• DOS PL/I Transient Library,
Program Product 5736-LM5

Used in conjunction with the program product
publication IBM System/360 Disk Operating System
PL/I Language Reference Manual, Order
No. SC33-0005, this publication enables
installation managers, systems analysts, and
programmers to plan and write PL/I programs that
are to be compiled and executed upon availability
of these program products.

Preface

This publication contains a description of
the PLiI Optimizing compiler for the IBM
System/360 Disk Operating System.

The subjects covered include the
compiler facilities, the optimization
features, the operating system environment,
and a summary of the PL/I language
implemented.

RECOMMENDED PUBLICATIONS

The PL/I language implemented by ~he DOS
PL/I Optimizing Compiler is described in
detail in the program product publication:

!BM_2~tem/360 Disk operating System:
PL/I Language Reference Manual, Order
No. sc33-0005

First Edition (March,l970)

The following publications contain other
information that might be valuable to the
PL/I programmer or to a programmer who is
learning PL/I:

A PL/I Primer, Order No. SC28-6808

A Guide to PL/I for Commercial
Programmers, Order No. SC20-1651

A Guide to PL/I for FORTRAN Users, Order
No. SC20-1637

Introduction to the List Processing
Facilities of PL/I, Order No. GF20-0015

Introduction to the Compile-Time
Facilities of PL/I, Order No. SF20-1689

Preface to PL/I Programming in
Scientific Computing, Order
No. SE20-0312

Changes are periodically made to the information herein~
before using this publication in connection with the
operation of IBM systems, refer to the latest IBM System/360
Bibliography SRL Newsletter, Order No. GN20-0360, for
editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England.

eCopyright International Business Machines Corporation 1970

I

INTRODUCTION • • • • . •

CHAPTER 1: THE DOS PL/I OPTIMIZING
COMPILER • • . •

Compilation Speed • • • • .
Execution Speed • • • • • • • • •
Object Program Space Requirements
Debugging Aids • • • • • • • • • • •
Compiler Options • • • • • • • •
Compatibility with the DOS PLII 0

Compiler • • • • • • • • • •
Interlanguage Communication • . ••

5

7

7
7
7
7
8

8
9

CHAPTER 2: OPTIMIZATION • 11

Common Expression Elimination • • • • • 11
Transfer of Expressions from Loops • • • 12
Redundant Expression Elimination • 12
Simplification of Expressions. . 12
Initialization of Arrays • • • •• • 13
In-Line Code for Conversions • • • • • • 14
Key Handling for REGIONAL Data Sets • • 14
Matching Format Lists with Data Lists • 14
In-Line Code for String Manipulation • • 14
In-Line Code for Built-In Functions • • 14
Special Case Code for DO Statements • • 14
Structure and Array Assignments • 15
Library Routines • • . • • . • • • • • • 15
Elimination of Common Constants and

Common Program Control Information 15

Use of Registers • • •• • •
Minimization of Code for Program

Branches • • • •• ••••

CHAPTER 3: THE PLII LANGUAGE
IMPLEMENTED •

Contents

• • 15

• 15

• 17

Introduction. • • ••••••••• 17
Language Features • • •• . • • • • 17
Comparision with the PL/I D-Level Subset

Language • • • • • • • • • • • • 18
Implementation Differences . • • 18
Language Extensions • • 18

CHAPTER 4: SYSTEM REQUIREMENTS •• • 25

Machine Requirements • • • • • • •• 25
Operating System Requirements and
Facilities • • • • • • • • • • • • • • 26

APPENDIX A: SUMMARY OF KEYWORDS • • • • 29

APPENDIX B: COMPATIBILITY WITH THE DOS
PLII 0 COMPILER • • • • • • • • 35

INDEX . • • • • • • • • • • . • • • • • 39

Tables

Table 1. Differences in Implementation
Restrictions. • • • • • • • • • 19,20

Table 2. Compiler Input/Output
Devices •• • • . • • • . . • • 26 I

The DOS PL/I Optimizing compiler is
designed for compilation of efficient
object programs. It requires a minimum of
44K bytes on a System/360 with the
universal instruction set and is intended
to meet the requirements of the PLiI user
of medium-sized or larger installations.
Good all-round performance is achieved by a
new compiler design which incorporates the
best design features of a number of
well-proven compilers, including the PL/I
0, PL/I (F), FORTRAN IV (G), FORTRAN IV
(H), and COBOL (F) compilers. Main
features include:

• Extensive Optimization.

• Advanced level of PL/I - a
comprehensive implementation of PL/I
with language extensions beyond both
the D-Ievel subset under DOS and the
F-Ievel subset under OS. New features
for DOS users include:

Compile-time preprocessing
Arrays of structures
DEFAULT statement
Entry variables
File variables
Data-directed transmission

• compilation Speed - compilation speeds
without optimization will be equal to
or better than those of existing IBM
PLlI, COBOL, and FORTRAN compilers in
the same environment.

• Extensive Debugging Aids - time and
effort required for program checkout
are minimized by:

Extensive implementation of
on-units

Support of the CHECK condition
Data-directed output
comprehensive range of compiler
options

Clear and precise comfile-time
and execution-time d1agnostic
messages

Optional statement number trace
facilities

Optimization is optional; three levels of
optimization are available to the
programmer:

Introduction

• Object code optimized to m1n1m1ze the
time required for execution of the
object program. A secondary effect may
be a reduction in object program size.

• Object code optimized to reduce the
storage space required for the object
program. A secondary effect may be a
reduction in program execution time.

• No optimization, permitting fastest
compilation. This is the standard
default.

The information in this manual is
intended for existing and prospective users
of PLiI.

For detailed planning of PLiI programs
for the DOS PL/I Optimizing Compiler, the
program product publication IBM System/360
Disk Operating System PL/I Language
Reference Manual, Order No. SC33-0005,
should be used.

The DOS PL/I Optimizing Compiler
translates PL/I source statements into
machine instructions. However, the
compiler does not generate all the machine
instructions required to represent the
source program; in some cases it inserts
references to subroutines that are stored
in a resident library or in a transient
library.

Subroutines from the resident library
are incorporated into the PLiI object
program by the DOS linkage editor program.

Subroutines from the transient library
are loaded, executed, and discarded during
program execution.

The libraries are not an integral part
of the DOS PL/I Optimizing Compiler. These
libraries consist of the following separate
IBM System/360 program products:

• DOS PL/I Resident Library,
Program Product 5736-LM4

• DOS PL/I Transient Library,
Program Product 5736-LM5

Throughout this publication the terms
'resident library' and 'transient library'
refer to these IBM program products.

Introduction 5

I

6

Chapter 1: The DOS PL/I Optimizing Compiler

The DOS PL/I Optimizing Compiler implements
an advanced subset of PL/I which
incorporates most of the features
implemented by the IBM System/360 Operating
System PLiI (F) Compiler (the principal
exceptions are multitasking,
teleprocessing, REGIONAL(2) data set
organization, and sterling pictures). The
Optimizing Compiler also incorporates
recent extensions to the PL/I language,
such as entry variables, file variables,
and the DEFAULT statement. The compiler
permits efficient use of the advanced
language in respect of both compilation and
execution-time performance. The optional
optimization levels permit the choice of
fast compilation, object-program space
minimization, or fast execution. Object
programs produced with use of the fast
compilation option are nevertheless at
least as efficient as they would be if
compiled by the D Compiler.

Compilation Speed

Performance estimates indicate that
compilation speeds without optimization
will be equal to or better than those of
the IBM FORTRAN E, COBOL D and E, and PLiI
D (Version 4) compilers in a 44K partition.
If optimization is specified, these
compilation times will increase by up to
25% for typical PL/I programs and by up to
100% for some types of program, such as
certain types of ,scientific programs,
particularly those with deeply nested
DO-loops or array operations. Multiple
external procedures can be compiled in the
same step to save time used for overheads.

Execution Speed

The Optimizing compiler produces extremely
efficient object code. Estimates indicate
that the code produced when optimization
for speed is requested will be equal to or
better than that produced by the existing
COBOL, FORTRAN, or PL/I compilers under
DOS. The execution speed of a sample set
of PL/I programs compiled by the Optimizing
Compiler when optimization for speed is
requested is estimated to be 3.3 times that
of the same PLiI programs when compiled by
the D Compiler. However, the amount of
improvement for any particular program will
depend on factors such as the overheads for

input/output and the nature of the internal
processing of the program. Whereas the
execution speed of some programs could
improve substantially others may show only
slight improvements. Programs most likely
to show appreciable improvements in
execution speed are those that perform
extensive loop and array operations and
those that make extensive use of
edit-directed input/output.

Object Program Space Requirements

Because of increased housekeeping
requirements, small object programs
compiled by the Optimizing Compiler may
require up to 2K bytes more storage than
would be required by the D Compiler. The
reduced amount of object code generated by
the Optimizing Compiler, and the increased
modularity of the library subroutines,
however, diminishes the overall storage
requirement for larger programs; programs
larger than approximately 400 statements
will require less storage than they would
if compiled by the D Compiler.

Debugging Aids

The PLiI Optimizing Compiler provides the
following debugging aids to minimize the
time and effort needed for program
checkout.

Diagnostics: Comprehensive diagnostic
messages are provided at both compile time
and execution time. In processing an
erroneous statement, the compiler may
attempt to correct the error by making an
assumption about the intention of the
statement,. Messages produced at
compile-time will be for errors in the
categories of unrecoverable, severe, error,
warning, and informatory. The messages
will be listed in category groups in
statement number orderc Each message will
indicate the number of the erroneous
statement and, when applicable, the part of
the statement involved, the exact nature of
the error, and any assumptions made and
action taken by the compiler.

On-Units: Program condition-handling is
facilitated by the provision of on-units
for all PLiI conditions. On-units permit
either programmer-defined or system-defined

Chapter 1: The DOS PL/I Optimizing Compiler 7

action to take place when a particular
interrupt occurs during execution of a PLiI
program. The range of conditions covers
all arithmetic interrupts, input/output
errors, and special program-checkout
conditions such as CHECK, SUBSCRIPTRANGE,
STRINGRANGE, SIZE, and STRINGSIZE.

St~tement Number Trace: The statement
number trace facility is used optionally to
produce a record of the PL/I source
statements executed prior to the occurrence
of an interrupt. The trace is produced as
part of the standard system action for any
condition, and as part of the diagnostic
output produced by use of the SNAP option.
It contains a list of the statement numbers
of PL/I source statements executed up to
the point of interrupt. The number of
statements included in the trace is given
by the user in requesting the option. This
feature is in addition to the optional
inclusion of the statement number in
diagnostic messages produced at execution
time.

Compiler Options

A number of compiler options are available
for use by the programmer to specify
information or to request optional compiler
facilities.

The options perform the following
functions:

8

• Specify the amount of main storage for
use by the compiler during compilation.

• Specify whether the source program is
coded in the PL/I 48-character set or
60-character set.

• Specify whether the source program is
presented to the compiler in BCD or
EBCDIC format.

• Request the compile-time preprocessor
facilities of the compiler.

• Define the portion of a source program
input record that contains PL/I
statements.

• Request conditional compilation to
follow the use of the preprocessor
depending on the severity of errors
found during preprocessing.

• Specify the type of optimization to be
performed by the compiler.
Optimization can be requested either to
obtain fast execution of object
programs, or to minimize the size of
object programs. The time taken for

compilation is increased by the use of
either type of optimization.

• Request the compiler to produce
additional code to insert the relevant
source statement number in each
execution-time message.

• Request printed listings of the
following:

Attribute Table
Cross-Reference Table
External Symbol Dictionary
Object Module
Source Program
Block and DO-group nesting levels
Preprocessor Input
warning and Error Messages
Compiler options used in the
compilation

• Specify the number of lines on each
page of listing.

• Request the compiler to place the
object module on the symbolic device
SYSPCH or SYSLNK.

• Request the preprocessor to place its
output on the symbolic device SYSPCH.

• Specify the phase-name of the object
module.

Compatihility with the DOS PL/I D Compiler

Source programs written for the PL/I D
Compiler can be compiled by the DOS PLiI
Optimizing Compiler and will execute
correctly without modification, except for
a few minor differences which exist between
these implementations of the language.
These incompatibilities are described in
Appendix B.

Object modules that have been compiled
by the DOS PL/I D Compiler, and library
subroutine modules from the DOS PL/I D
Compiler library, cannot be incorporated
into programs compiled by the PLiI
Optimizing Compiler. This problem can be
overcome by recompilation of all PL/I
source modules with the Optimizing compiler
(and by ansuring that all library
subroutines used are called from the
resident or transient libraries as
appropriate) •

I

I

10

The main aim of the Optimizing Compiler is
to generate object programs which execute
as fast as possible and which occupy as
little space as possible during execution.
In many cases this will involve generating
efficient code for statements in the
sequence written by the programmer; in
other cases, however, the compiler may
alter the sequence of statements or
operations to improve the performance while
producing the same result.

The following types of optimization are
carried out by the compiler:

• Common expression elimination.

• Transfer of invariant statements and
expressions out of loops.

• 'Redundant expression elimination,
including minimizing the number of load
and store operations, and non-execution
of redundant logical statements.

• Simplification of expressions into
forms that can be more readily
optimized.

• Initialization of arrays and
structures.

• In-line code for most conversions.

• Reduction of key conversions for
REGIONAL data sets.

• Matching format lists with data lists
at compile-time.

• In-line code for string manipulation.

• In-line code for many built-in
functions.

• Special-case code for DO statements.

• Structure assignments.

• Register and address optimization,
including maintenance of values in
registers for as long as possible, and
producing efficient address arithmetic
based on optimal flow-paths.

• Keeping program branches as much as
possible within the scope of the same
base address.

• Packaging library routines into logical
units to minimize space requirements.

Chapter 2: Optimization

• Elimination of common constants and
program control data to minimize space
usage.

Common Expression Elimination

An expression can occur twice or more in
such a way that the flow of control alway's
passes through the first occurrence of the
expression to reach a subsequent
occurrence. If the second and any
subsequent evaluation produces a result
identical to the result produced by the
first evaluation, the subsequent
expressions are termed common expressions.
The compiler eliminates common expressions
by saving the value of the first occurrence
of the expression either in a temporary
(compiler-generated) variable, or in the
program variable to which the result of the
expression is assigned. For example:

Xl = Al ... Bli

Yl = Al ... Bl;

Provided that the values of Al and Bl do
not change between the execution of these
statements, the statements can be optimized
to the equivalent of the following PLiI
statements:

Xl = Al ... Bl;

Y1 = Xl;

If the first occurrence of the cornmon
expression involves the assignment of the
value to a variable that is modified prior
to the occurrence of the later expression,
the value is assigned to a temporary
variable. The example given above would
become:

TEMP = A 1 ... B 1 ;
Xl = TEMP;

Yl = TEMP;

Also, if the cornmon expression occurs as a
subexpression within a larger expression, a
temporary variable is created to hold the
value of the common subexpression. For

Chapter 2: Optimization 11

example, in the expression C1 + A1 * B1 a
temporary variable would be created to hold
the value of Al * Bl if this were a common
subexpression.

An important application of this t·echnique
occurs in statements containing subscripted
variables where the same subscript value is
used for each variable. For example:

PAYROLL TAX(MANNO) = PAY CODE{MANNO> *
WEE KPMNT (MANNO) ;

The value of the subscript expression MANNO
is computed only once when the statement is
executed (the computation would involve the
conversion of a value from decimal to
binary if MANNO were declared a decimal
variable> •

Transfer of Expressions from Loops

Where it is possible to produce error-free
execution without affecting the results of
a program, the optimization process moves
expressions from inside a loop to a point
outside which immediately precedes it. A
loop can be either a DO loop or a loop in a
program which can be detected by the
analysis of the flow of control within the
program. Expressions that can be
transferred are normally expressions which
return the same value for every iteration
of a particular loop. For example:

DO I = 1 TO N:
B(I) = C(I> * SQRT(N);
P = N * J:
END;

This loop can be optimized to produce
object code corresponding to the following
statements:

TEMP = SQRT (N) ;

P = N * J;
DO I 1 TO N;
B(I) = C(I) * TEMP;
END;

Note that the assignment statement
P = N * J; can also be moved out of the
loop to a point preceding it.

If the programmer wishes this type of
optimization to be carried out, he must
specify the optimization option REORDER on
a BEGIN or PROCEDURE block which contains
the loop. If the option is not specified,
the default option, ORDER, is assumed and
the optimization is inhibited.

12

Programming Considerations:

1. The transfer of expressions from
inside a loop is performed on the
assumption that every expression in
the loop is executed more frequently
than expressions immediately outside
the loop. Occasionally this
assumption fails, and expressions can
be moved out of loops to positions
where they are executed more
frequently than they would have been
if they had remained inside the loop.
For example:

DO I
XCI)
END;

= J TO K WHILE (X(I) = 0);
Y(I) * SQRT(N);

The expression SQRT(N) can be moved
out of the loop to a position where it
is possible for it to be executed more
frequently than it would be in its
original position inside the loop.
This undesired effect of optimization
can be prevented by the use of the
ORDER option for the block in which
the loop occurs.

2. Loops are detected by a flow-analysis
process. This process can fail to
recognize a loop, owing to the
existence of flowpaths which the
programmer knows will never be used.
For example, the use of label
variables can inadvertently cause
optimization to be inhibited by making
the recognition of a desired loop
impossible.

Redundant Expression Elimination

A redundant expression is an expression
that need not be evaluated in order that a
program be executed correctly. For
example, the logical expression (A=D) I (C=D)
contains the subexpressions (A=D) and
(C=D), the second of which ne~d not be
evaluated if the first is true. The effect
of this optimization is to make the use of
logical expressions in IF statementS more
efficient than a series of nested IF
statements.

Simplification of Expressions

Simplification of an expression involves
its conversion into a form which can be
translated into more efficient object code.
Where possible, mUltiplication and division
operations are converted into addition and
subtraction operations that can be
performed by faster machine instructions.

I

For example:

DO I = 1 TO N BY 2;

x = I * 4;

END;

When optimized, the statements in this loop
are converted into object code which is
equivalent to the following PL/I
statements:

I = 1; /* LOOP INITIALIZATION */
IF I > N THEN GO TO F;
TEMP 4 '" Ii
G: /* LOOP ENTRY POINT */

x = TEMP;

I = I + 2;
TEMP=TEMP + 8;

/* EXPRESSION AFTER */
/* SIMPLIFICATION */

IF I < N THEN GO TO G;
/* END-OF-LOOP TEST */

F: /'" LOOP EXIT POINT "'/

Modification of Loop Control Variables

Where possible, the expression­
simplification process will modify both the
control variable and the iteration
specification of a DO-loop to achieve more
efficient processing when the control
variable is uSed as a subscript. The
calculation of addresses of array elements
can be made faster by replacing
multiplication operations by addition
operations. For example, the loop:

DO I = 1 TO N BY 1;
A(I) B(I);
END;

causes N element values from array B to be
assigned to corresponding elements in array
A. On the assumption that each element is
4 bytes in length, the address calculations
which are used for each iteration of the
loop are:

Base(A) + (4*1)
Base(B) + (4*1)

for array A, and
for array B,

where 'Base' represents the base address of
the array in storage. The repeated
multiplication of the control variable by a
constant representing the length of an
element can be converted to faster addition
operations. The optimized DO statement
above is converted into object code
equivalent to this PL/I statement:

DO TEMP = 4 BY 4 TO 4*N;

The element address calculations are
converted to the equivalent of:

Base (A) + TEMP
Base(B) + TEMP

for array A, and
for array B.

Note that a loop control variable and its
iteration specification can be optimized
only when the control variable used as a
subscript is incremented by a constant, or
by a variable the value of which is not
reset during the execution of the loop, and
if the value of the control variable is not
required outside the loop in which it is
specified.

Defactorization

Whenever possible, a constant in an array
subscript expression is used in an offset
in the address calculation. For example,
the address of a four-byte element A(I+lO)
would be calculated as (BASE(A)+4*lO)+I*4.

Replacement of Constant Expressions

The expression-simplification process
replaces constant expressions with the
equivalent constant. For example the
expression 2+5 is replaced by 7.

Replacement of Constant Multipliers and
Exponents

The expression-simplification process
replaces certain constant multipliers and
exponents. For example, A*2 becomes A+A,
and A**2 becomes A*A.

Initialization of Arrays

When arrays which have the BASED,
AUTOMATIC, or CONTROLLED storage class are
to be initialized by a constant specified

Chapter 2: Optimization 13

in the INITIAL attribute, the first element
of the variable is initialized by the
constant, and the remainder of the
initialization consists of a single move
which propagates the value through all the
elements of the variable. For example an
array declared as:

DECLARE A(20,20) FIXED BINARY
INITIAL((400) 0) ;

would be initialized in this way.

In-Line Code for Conversions

Most conversions are performed by in-line
code, rather than by calls to the PLiI
resident library. The exceptions are:

conversions between character and
arithmetic data

conversions from numeric character
(PICTURE) data where the picture
includes characters other than 9, V, or
a single sign or currency character.

conversions to numeric character
(PICTURE) data where the picture
includes scale factors or floating point
picture characters.

Note that conversions to 'ZZ9V99'
will be done in-line.

Key Handling for REGIONAL Data Sets

In certain circumstances, key handling for
REGIONAL data sets is simplified by
avoiding unnecessary conversions between
fixed binary and character-string data
types, as follows:

REGIONAL(1): If the key is supplied as a
fixed binary integer, there is no
conversion from fixed binary to
character-string and back again.

REGIONAL(3): If the key is supplied in the
form KI II, where K is a character string
and I is fixed binary with precision
(13,0), the rightmost eight characters of
the resultant string are not reconverted to
fixed binary. (This conversion would
otherwise be necessary in order to obtain
the region number.)

14

Matching Format Lists with Data Lists

Whenever possible, i.e. where neither the
format list nor the data list contains
expressions the values of which are unknown
at compile time, items specified in format
lists and data lists in edit-directed
input/output statements are matched at
compile time. This permits conversion to
or from the data list item to be performed
by in-line code where possible. Also, on
input the item can be taken directly from
the buffer or on output placed directly in
the buffer, thus eliminating library calls
except when it is necessary to transmit a
block of data between the input/output
device and the buffer.

DCL (A,B,X,Y,Z) CHAR(25);
GET FILE(SYSIN) EDIT (X,Y,Z) (A(25»;
PUT FlLECSYSPRINT) EDIT (A,B) (A);

In the above example, format list matching
is performed at compile time; hence at
execution time library calls will be
required only when the buffer contents are
to be transmitted to or from the
input/output device.

In-Line Code for String Manipulation

Operations on character strings such as
concatenation and assignment of adjustable,
varying-length, and fixed-length strings
are performed in-line. In-line code is
also generated for many cases of aligned
bit strings.

In-Line Code for Built-in Functions

Many built-in functions are executed by
in-line code. INDEX and SUBSTR are
examples of functions for which in-line
code is usually generated. TRANSLATE,
VERIFY, and REPEAT are examples where
in-line code is generated for Simple cases.

Special Case Code for DO Statements

Wherever possible, the Optimizing Compiler
will generate code for DO-loops in which
the value of the control variable and the
values used in the iteration specification
are held in registers throughout execution

I

of the loop. For example, the compiler
will attempt to maintain in registers the
values of the variables I, K, and L in the
following statement:

DO I = A TO K BY L;

This form of optimization permits the most
efficient loop control instructions to be
used.

Structure and Array Assignments

Structure and array assignment statements
are implemented by single move instructions
whenever possible. Otherwise the
assignment is performed by the simplest
loop possible for the operands specified in
the assignment. For example:

DC L A (10), B (1 0), 1 S (10), 2 T, 2 U i

1. A=B;

2. A=Ti

The first assignment will be implemented by
a single move instruction, while the second
will be implemented by a loop since array T
is interleaved with array U, thereby making
a single move impossible.

Library Routines

The PLiI resident and transient library
routines used by the Optimizing Compiler
have been designed as a set of modules
containing logically-related functions such
that each function in a particular module
is likely to be required in the same object
program. Thus the link-edited object
program will contain only code necessary
for the functions used in that program.

The groups of functions particularly
concerned with this efficient structuring
include record-oriented input/output,
stream-oriented input/output, conversions,
and error handling.

Elimination of Common Constants and
Common Program Control Information

If a constant is used more than once in a
program, a single copy of that constant is
kept. For example:

WEEK NO = WEEK NO + 1 i
RECORD_COUNT = -RECORD_COUNT + 1;

Then the 1 is stored only once.

The compiler generates control
information to describe certain program
elements such as arrays. If there are two
or more similar arrays, then this
descriptive information is generated once
only.

Use of Registers

More efficient execution of loops can be
achieved by maintaining in registers the
values of variables which are subject to
frequent modification during the execution
of the loops. When error-free execution
permi ts, values can be kept in registers:,
and considerable efficiency can be achieved
by dispensing with time-consuming
load-and-store operations to reset the
values of variables in their storage
locations. If the latest value of a
variable is required after a loop has been
executed, the value is assigned to the
storage location of the variable when
control passes out of the loop.

Register allocation can be more
significantly optimized if REORDER is
specified for the block. However, the
values of variables that are reset in the
block are not guaranteed to be the latest
assigned values when a computational
interrupt occurs, since the latest value of
a variable may be present in a register but
not in the storage location of the
variable. If ORDER is specified,
optimization of register allocation is
impeded by the requirement that all values
of variables reset in the block are
guaranteed, and must therefore be assigned
immediately to the storage locations of
their respective variables.

Minimization of Code for Program Branches

The base registers for branch instructions
in the object program are allocated in
accordance with the logical structure of
the program. This ensures that the load
instructions required for program
addressing do not occur in the middle of
deeply nested loops.

Also, the branch instructions generated
for IF statements are arranged by the
compiler to be as efficient as possible.
For example, a statement such as:

IF condition THEN GOTO label;

Chapter 2: Optimization 15

is defined by the PL/I language as being a
test of the condition followed by a branch
on fals~ to the statement following the
THEN clause. However, when the THEN clause
consists only of a GOTO statement, the
statement is compiled as a branch on true
to the label specified in the THEN clause.

16

I

Chapter 3: The PL/I Language Implemented

Introduction

The language implemented by the DOS PLiI
Optimizing Compiler is an advanced subset
of PL/I.

With one minor exception (sterling
pictures), this subset includes all the
language implemented by the DOS PLII D
Compiler. Appendix A is a complete list of
the keywords implemented.

In general, source programs written for
the D compiler can be compiled and executed
succesfully by the Optimizing Compiler
without amendment. However, there are some
minor incompatibilities; these are listed
in Appendix B.

Language Features

The language implemented by the DOS PL/I
Optimizing compiler contains the following
features:

1. Data Types:

• Character and bit string.

• Fixed-point binary and decimal.

• Floating-point binary and decimal.

• Character and numeric picture.

• Real and complex arithmetic.

• Label and entry.

• File.

• Event.

• Pointer and offset.

• Automatic, static, controlled, and
based storage classes for data.

• External and internal scope for data.

2. Data Manipulation:

• Assignment, with automatic conversion
if necessary, between data variables.

• Element, array, and structure
expressions.

• Comparison, logical (boolean), and
string-manipulation operators.

• Built-in functions for mathematical and
arithmetic computation, string
manipulation, based and controlled
storage manipulation, and error
handling.

• Pseudo-variables for computation and
error handling.

• Programmer-defined functions.

3. Data Aggregates:

• Arrays of data elements.

• Structures of data elements.

• Arrays of structures.

• Areas.

4. Program Block Structure:

• Separate compilation of external
procedures of the same pro9ram.

• Block structuring to establish scope of
identifiers and permit dynamic storage
allocation of automatic data.

• Recursive invocations of a procedure
with stacking and unstacking of
generations of automatic data to
preserve and reestablish the
environment of each invocation.

5. Input and output:

• Stream-oriented input/output with
automatic conversion to and from
internal and external forms of data
representation.

• Record-oriented input/output with both
move and locate modes of operation.

• Sequential and direct-access processing
modes.

• Data transmission overlap with internal
processing.

Chapter 3: The PLII Language Implemented 17

Comparison with the PL/I D-Level Subset
Language

In general, a PLiI program written for the
DOS PLiI D Compiler will produce identical
results when compiled by the DOS PL/I
Optimizing Compiler. However, the DOS PLiI
Optimizing Compiler contains many
additional language facilities as well as
some differences in the way common language
is implemented by the DOS PLiI D Compiler;
these are described below.

IMPLEMENTATION DIFFERENCES

The DOS PL/I Optimizing Compiler imposes
fewer constraints on the programmer than
the 0 Compiler. The restrictions that do
apply to the Optimizing Compiler are listed
in Table 1, together with the corresponding
limits for the D Compiler.

LANGUAGE EXTENSIONS

Language features implemented by the DOS
PLiI Optimizing Compiler which are only
partially implemented or not implemented at
all by the DOS PL/I D compiler are
described in outline below.

Optimization

The DOS PL/I Optimizing Compiler carries
out extensive optimization of PLiI
programs. The degree of optimization is
controlled by selection of the appropriate
compiler option and the use within the PL/I
program of the ORDER and REORDER options
for program blocks.

Optimization is discussed in Chapter 2.

DEFAULT Statement

The DEFAULT statement enables the
programmer to define default attributes for
identifiers. The DEFAULT statement can
override PL/I language or implementation
default attributes and precisions.

18

Compile-Time Processing

The compile-time preprocessor has two
functions:

1. Modification of source programs prior
to compilation (e.g., translation of
non-English or other local keywords
into the equivalent PL/I keywords).

2. Inclusion of source statements
previously stored in the source
statement library or a private library
(%INCLUDE statement).

Storage Control

Based Storage: Based variables are used
for locate-mode input/output and for
list-processing applications. They can be
allocated separately or within a predefined
area of storage identified as an area
variable. An area variable, declared with
the AREA attribute, can itself be a based
variable, and can be assigned to another
area variable or transmitted as a record in
record-oriented input/output statements.
Several allocations of the same based
variable can exist at the same time, each
allocation being identified by a locator
variable. There are two types of locator
variables: pointer variables (declared
with the POINTER attribute) and offset
variables (declared with the OFFSET
attribute). The value of a pointer
variable identifies a main storage
location, and the value of an offset
variable identifies a storage location
within an area variable relative to the
start of the area. The values of offset
variables remain valid when transmitted
with the associated area to or from
external storage, but the values of pointer
variables do not, since they refer to
absolute storage locations.

A particular allocation of a based
variable is identified by the use of the
locator qualifier (-» to associate the
relevant pointer or offset with the name of
the based variable. For example,
PTR1->XRAY refers to that allocation of
XRAY identified by the value of the pointer
variable PTR1.

Self-Defining BASED structures: Based
structures with adjustable string lengths,
area sizes, or array dimensions can be
declared as self-defining structures by
means of the REFER option. Self-defining
structures transmitted as variable-length
records can be read into storage from an
external storage device by execution of a
READ statement with the SET option. The

I

Table 1. Differences in Implementation Restrictions (Part 1 of 2)
r----------------------------T----------------------T-----------------------------------, I Feature I PL/I D Compiler I PL/I Optimizing Compiler I
~----------------------------t----------------------+-----------------------------------~
I I
I Arrays, max. number per 32 I no limit
I compilation I
t I

Arrays, max. number of
dimensions

Arrays, lower bound

3

always 1

structures 8 levels

Aggregates (arrays and max.size:32767 bytes
structures)

Floating-point data short or long
precision decimal and
binary

Character strings max. length: 255 bytes
I

Character-string constants max. length: 255 bytes

Bit strings max. length: 64 bits

Bit-string constants max. length: 64 bits

Arguments and parameters max.number: 12

PAGESIZE maximum: 255 lines

INITIAL attribute:
nested iterations max. number: B

Attribute factorization:
nesting levels max. number: 8

Block nesting max. depth: 3

Blocks:
number in compilation max. number: 63

Source statement margins

storage limitations:
STATIC INTERNAL
and AUTOMATIC

DISPLAY string length

positions 2 to 72

maximum: 64K bytes

maximum: 80 bytes

I 15
I
I

I

range: -32768 to 32767

15 levels

no limit

short or long prec1s1on decimal,
binary, and numeric character

max. length: 32,767 bytes.

max. length: 1000 bytes before
application of repetition
factors

max. length: 32,767 bits

max. length: 8000 bits (1000 bytes)
before application of repetition
factors

max. number: 64

maximum: 32767 lines

max.number: 50
(including factored attributes)

max. number: 16

max. depth: 501

max. number: 255

I positions 1 to 100
I
I
I no fixed limit
I
I
I 72 bytes
I

REPLY string length maximum: 256 bytes I 72 bytes I
~----------------------------~----------------------~-----------------------------------i I 1 There is a limit on the depth of block nesting imposed by the length of the block I
I labels given by the user. If the average length of the labels exceeds eight I
I characters, the maximum number of available nesting levels is reduced. I L ___ -----------------___ J

Chapter 3: The PL/I Language Implemented 19

Table 1. Differences in Implementation Restrictions (Part 2 of 2)
r----------------------------T----------------------T-----------------------------------, I Feature I PL/I D Compiler I PL/I Optimizing Compiler I
~----------------------------+----------------------+-----------------------------------~

I I
String repetition factor I

maximum number I
of characters: 3 15 I
maximum value of I I
factor: 255 32,767 :

Maximum statement length at least: 230 at least: 1012 significant I
(not including DECLARE identifiers, constants characters I
statement) and delimiters
(maximum statement
length is function of
internal storage
available for a
compilation)

Iteration factors:
maximum level of
nesting

in a format list: 2
in INITIAL
attribute: 8

20

----------------------------~----------------------~-----------------------------------

use of the REFER option enables the
compiler to map the structures in the
buffer storage identified by the pointer
variable named in the SET option.

Processing Based and Locator Variables:
Pointer and offset variables can be set to
null values by the NULL built-in function.
Allocations of based variables can be freed
by the FREE statement; all allocations of
based variables within a single area can be
freed by the EMPTY built-in function. List
processing is the technique by which a
number of allocations of a based variable
can be manipulated in internal storage by
means of pointer and offset qualification
and assignment, the NULL and EMPTY built-in
functions, and the FREE statement.

Controlled storage: Data variables can be
declared with the CONTROLLED attribute.
such declarations do not cause storage to
be reserved for the variable when the block
is entered, but are used to map the
elements of the variable when storage is
obtained for it by execution of an ALLOCATE
statement. Attributes given in an ALLOCATE
statement override any conflicting
attributes given in the declaration of the
variable to be allocated. Storage
allocated for a controlled variable is
released either by execution of a FREE
statement, or by termination of the
program. successive allocations of storage
are permitted for the same controlled
variable. Each current allocation is
stacked when a new allocation is created,
so that a reference to a controlled
variable is a reference to its value in the
latest allocation. When the current
allocation is freed, the previously stacked

20

allocation, if any, becomes the current
allocation. Thus, unlike based storage,
only one generation of controlled storage
is available at anyone time. The
ALLOCATION built-in function is used to
determine whether any allocations exist for
a controlled variable, and if so, how many
there are.

Stream Input/Output

Data-Directed Input/Output: An additional
mode of stream-oriented input/output is
available. This is the data-directed mode.
The option DATA is used in a GET or PUT
statement when this mode is used.
Data-directed input/output causes values to
be transmitted in a form similar to PL/I
assignment statements. The name of the
variable, the assignment symbol (=), and
the value are transmitted. On input the
value is assigned to the storage location
of the given target identifier; on output
the identifier and its current value are
transmitted.

Edit-Directed Input/Output: The full
edit-directed input/output facilities of
the PL/I language are implemented.

COpy option: Stream-oriented input
statements can include the COpy option in
order to transmit data from the input file
automatically to SYSPRINT.

LINESIZE Option: Stream-oriented output
files can be opened with a linesize which,
in general, represents the size of a
logical record on the stream data set.

Expressions in Format Lists: Field widths
and repetition factors in repetitive
specifications in format lists for
edit-directed input/output can be specified
as expressions to be evaluated when the
input/output statement is executed.

Record Input/Output

IGNORE option: The IGNORE option can be
specified in an input statement when one or
more records in the data set are to be
skipped.

EVENT option: The transmission of a record
to or from an unbuffered file can be
overlapped with the execution of following
statements. Such transmission statements
must specify the EVEi~T option to designate
a transmission of a record as an event to
be associated with the event variable named
in the option. The event variable is set
active when the transmission operation
starts, and inactive after a WAIT statement
(and anyon-units) have been executed. The
WAIT statement synchronizes execution of
logically-following statements with the
completion of the event, by delaying any
further execution until the event
associated with the event variable named in
the WAIT statement is completed. The
COMPLETION built-in function can be used to
test the completion value of an event
variable. The STATUS built-in function can
be used to test the status vaiue of an
event variable. Both COMPLETION and STATUS
can be used as pseudo-variables.

REGIONAL Data Sets: REGIONAL data sets can
be processed sequentially.

Expressions in Options of the ENVIRONMENT
Attribute: Any of the environment options
which require a numeric value to complete
the specification, such as the
maximum-record-Iength (but not the number
of buffers or EXTENTNUMBER) can have this
value specified as a decimal integer
constant or a STATIC FIXED BINARY variable
of precision (31,0). The variable, if
used, must be assigned a value before the
file is opened.

File Variables

A file variable is an identifier that
either is declared FILE in an array or
structure or is declared FILE VARIABLE. A
file variable can represent file name
values (file constants). Only a file
constant can, however, be declared with any
of the additive or alternative file
attributes.

Data Aggregates

LIKE Attribute: The LIKE attribute is used
to simplify the declaration of similar
structures. The declaration of an
identifier with the LIKE attribute is
co~ied from that of the identifier named in
the attribute; the declarations are thus
identical in all respects apart from
dimensions and storage class attributes,
and the structure names. Note that the use
of a DEFAULT statement might cause
different default attributes to be applied
to the elements of the two structures.

Arrays of structures: The PL/I D Compiler
does not permit the use of arrays of
structures, although they can be simulated
by the use of based variables. The PL/I
Optimizing Compiler has no such
restriction. For example:

DECLARE 1 INREC,
2 CUSTOMER CHAR(20),
2 ADDRESS CHAR(SO),
2 ITEM (20),

3 STOCK # CHAR(5),
3 PRICE-FIXED DECIMAL (6,2),
3 QUANTITY FIXED DECIMAL

(3) ;

ITEM is an array of structures contained in
the structure INREC.

Adjustable Extents for Arrays: Arrays, and
arrays of structures, can have their
extents specified as expressions to be
evaluated when storage is allocated for
them. If the adjustable array or array of
structures is a parameter, the extents
should be specified as asterisks if they
are to match the extents of any
corresponding argument.

Array Built-In Functions: Additional
built-in functions for array manipulation
are provided. The POLY built-in function
forms a polynomial from two one-dimensional
arrays. The DIM built-in function finds
the current extent for a specified
dimension of an array. The HBOUND and
LBOUND built-in functions find the current
upper and lower bounds of a specified
dimension of an array.

Array subscript checking

One condition is provided to detect an
array-handling error. SUBSCRIPTRANGE is
raised, if enabled, whenever an array
reference uses a subscript that is outside
the current range of subscript values for
the array. This condition checks an
attempt to assign a value to storage not
allocated for the array.

Chapter 3: The PL/I Language Implemented 21

Conversions

Character-to-arithmetic (when valid) and
arithmetic-to-character conversions are
permitted. Most conversions are performed
in-line.

string Handling

Varying-Length Strings: Character and bit
strings can be declared with the VARYING
attribute as varying-length strings. A
varying-length string has two length
values: the declared maximum length and
the current length. The current length can
vary from zero to the maximum length during
execution of the program. The LENGTH
built-in function can be used to obtain the
current length of a varying-length string.
The data which forms the current length of
a varying-length string can be transmitted
as a V-format record by a record-oriented
input/output statement.

Adjustable Strings: Automatic, based, and
controlled strings can be declared with
adjustable lengths. The string length is
declared as an expression that is evaluated
when storage is allocated at execution
time. The length of a string parameter
should be declared as an asterisk if the
length is to match that of any argument to
be passed to it.

String-Handling Built-In Functions: In
addition to the LENGTH built-in function,
two other string-handling functions are
available: TRANSLATE and VERIFY.
TRANSLATE permits translation of a string
according to a translation table; VERIFY
compares two strings to verify that each
character or bit in the first is
represented in the second string. The
SUBSTR built-in function and
pseudo-variable are implemented in full.
All three arguments of SUBSTR can be
expressions.

STRING Pseudo-Variable: The STRING
pseudo-variable permits assignment of a
string, portion by portion, into successive
elements of an aggregate until either the
entire string has been assigned, or until a
value has been assigned to all the elements
of the aggregate.

String-Handling Conditions: Two conditions
are provided to detect string-handling
errors: STRINGSIZE and STRINGRANGE.
STRINGSIZE is raised when a string is
assigned to a string with a shorter maximum
length thereby causing truncation of the
bits or characters which cannot be
accommodated; STRINGRANGE is raised when

22

the string built-in function SUBSTR is used
with arguments which do not comply with the
rules applying to range for this built-in
function.

Program Checkout and Error Control

On-Units: An on-unit may be either a
single statement or a begin block. Any
statement can be used in a single statement
on-unit. After execution of an on-unit,
control is returned to a point defined for
each condition unless transferred elsewhere
by a GO TO statement.

FINISH Condition: The FINISH condition is
always raised during the execution of a
STOP statement or an END or RETURN
statement that causes termination of the
program. An abnormal return from a FINISH
condition will permit the program to
continue.

Condition Built-In Functions and
Pseudo-Variables: Certain built-in
functions and pseudo-variables are
available only for use within an on-unit,
for error detection and correction. These
are: ONCHAR and ONSOURCE for CONVERSION
conditions: DATAFIELD, used to examine data
involved with the NAME condition: ONCODE,
for use in anyon-unit to determine the
actual cause of the interrupt; ONCOUNT,
used in anyon-unit associated with
abnormal completion of an input/output
operation to determine the number of
interrupts that remain to be handled;
ONKEY, used to extract the key of a keyed
record which caused a condition to be
raised: ONLOC, used to give the entry pOint
of the procedure in which the condition was
raised. The CONDITION condition can be
used to establish programmer-defined
condition names; such conditions are raised
only on execution of a SIGNAL statement.

Program Checkout: The CHECK condition is
used to cause an interrupt either when
control passes through a statement label,
or for each assignment to a variable, where
the labels and variables are identified in
the CHECK name list. The standard system
action for such an interrupt is to transmit
to SYSPRINT both the name of the identifier
which caused the CHECK condition to be
raised, and, if it is not a program control
or locator variable, its new value in
data-directed format, and then to continue
execution. Programmer-defined action may
be specified as an alternative in an
on-unit.

The PUT DATA statement (without a data
list) causes the names and current values
of all variables known in the block to be

I

transmitted in data-directed format on the
specified file.

The SNAP option of the ON statement is used
to list a trace of all procedures that are
active when the interrupt occurs. It will
also provide a list of the numbers of the
statements that have been executed if the
appropriate compiler option was specified.

Data Attributes

Defined storage: A variable can be defined
on the storage occupied by another variable
by use of the DEFINED attribute in the
declaration of the defined variable.
Simple defining is in effect when the base
variable has attributes that match those of
the defined variable. String overlay
defining is in effect when a defined
character-string or bit-string variable is
declared with the POSITION attribute. (The
defined item and the base must be of the
same class, either character or bit. The
POSITION attribute specifies the character
or bit of the base variable that
corresponds to the first character or bit
of the defined variable.> iSUB defining is
in effect when the bounds of a defined
array are specitied by expressions that
include iSUB variables; the iSUB
expressions establish a relationship
between the elements of the defined array
and those of the base array, such that a
reference to an element of the defined
array is, in effect, a reference to the
corresponding element of the base array.

CONNECTED Attribute: Parameters which
represent data held in a contiguous area of
storage can have the CONNECTED attribute.
Such parameters can be transmitted by
record-oriented transmission statements, or
be used as the base in string overlay
defining.

INITIAL Attribute: The initial value
specified with an INITIAL attribute can be
represented by an expression to be
evaluated when storage is allocated for the
variable. The INITIAL attribute cannot be
used with an expression for STATIC
variables.

Arithmetic Data Attributes

complex and Real Arithmetic Data: Two
modes of arithmetic data are implemented:

REAL and COMPLEX. The REAL attribute
specifies that the arithmetic variable is
to represent real numbers. The COMPLEX
attribute specifies that the arithmetic
variable consists of two parts, one
representing a real number and the other an
imaginary number. Associated with the use
of complex arithmetic data are the C format
item for edit-directed input/output, and
the COMPLEX, REAL, IMAG, and CONJ built-in
functions and pseudo-variables.

Scale Factor for Fixed-Point Binary
Numbers: Arithmetic variables declared
with the attributes FIXED BINARY can also
be declared with scale factors that permit
binary fractions and an implied binary
point.

Subroutines and Functions

EN~RY Attribute: Calls to internal
procedures have been simplified by
automatic conversion of arguments to the
parameter type if necessary. Calls to
external procedures have been simplified by
full implementation of the explicit ENTRY
declaration, which permits the same
parameter-argument matching process to be
carried out as for internal procedures.

Entry Variables: This compiler supports
the use of entry variables. An entry
variable represents entry-name values. It
is declared with the ENTRY and VARIABLE
attributes. By assigning different
entry-name values to an entry variable, the
programmer can use the same procedure
reference to invoke different entry points.

GENERIC Attribute: The GENERIC attribute
defines an identifier as representing a
family of entry points to one or more
procedures. Each entry point in a family
is given in the declaration of the generic
name, and is qualified by a generic
descriptor in a WHEN clause. The choice of
a particular entry point is made according
to the number of arguments, and their
attributes, that appear in a reference to
the generic name. The argument list is
compared with each generic descriptor in
turn until a matching generic descriptor is
found; the associated entry point is then
invoked.

Recursive Invocation of PL/I Procedures: A
PL/I procedure with the RECURSIVE option
can be reinvoked while it is still active.
Reinvocation can be from within the
procedure or from an external procedure

Chapter 3: The PL/I Language Implemented 23

that was invoked by the recursive
procedure. when a procedure is invoked
recursively, the environment of the
invoking procedure, including the values of
automatic variables, is preserved. The
preserved environment of a particular
activation of a recursive procedure is
restored when control is returned to that
activation of the procedure.

24

Mathematical Built-In Functions

Two additional mathematical built-in
functions are im~lemented. The ASIN
built-in function returns the arc sine as a
value expressed in radians. The ACOS
built-in function returns the arc cosine as
a value expressed in radians.

Machine Requirements

Compilation

The minimum machine requirement for the
PLiI Optimizing Compiler under the control
of the DOS Supervisor program is a 64K byte
IBM System/360 of which at least 44K bytes
of main storage must be available to the
compiler. If more than 44K is available,
the compiler will make use of the
additional space to improve compilation
speed. The central processing unit of the
machine must have the decimal and
floating-point instruction sets. If the
time taken for compilations is to be
printed out, the central processing unit
must have the timer feature, and use of
this feature must be specified at system
generation.

Execution

The machine requirement for the execution
of a PL/I object program compiled by the
DOS PL/I Optimizing compiler depend,s on the
size of the object program, although the
minimum machine size for the Disk Operating
System is 16K. The Disk Operating System
has overlay facilities for handling
segmented Object programs, enabling them to
be executed on relatively small machines or
in relatively small partitions. Each DOS
installation will give guidance for the
optimum phase size according to local
considerations for machine or partition
size and operational efficiency.

The machine must have the decimal and
floating-point instruction sets. If timing
information is required, the machine must
have the timer feature, and use of this
feature must be specified at system
generation. (If the DELAY statement is
used, the ability to handle the interval
timer from the application program must
also be specified at system generation.)
If the DATE built-in function is used, the
DOS supervisor should have date facilities
incorporat~d at system generation.

Chapter 4: System Requirements

Compiler Residence

The PL/I Optimizing Compiler will occupy
approximately 900,000 bytes of
direct-access storage space in the core
image library. The PL/I resident library
subroutines which support this compiler
will occupy approximately 100,000 bytes of
direct-access storage space in the
relocatable library. The PL/I transient
library subroutines will occupy
approximately 40,000 bytes of direct-access
storage space in the core image library.

Working Storage

The PLiI Optimizing Compiler always
requires direct-access storage space for
working storage areas. The amount of space
required depends upon the size of the
source program and the amount of main
storage available to the compiler. The
system symbolic device SYSOOl is used for
this auxiliary storage. This device is
also used when the PL/I 48-character set is
used in the source program, and when the
PL/I compile-time preprocessor is used in a
job step in which its output is immediately
compiled.

Input/Output Devices

At compile time and during subsequent
link-editing, devices are required for the
following types of input/output:

Source program input
Printed listings
Object module in relocatable format
Object module in relocatable card-image

format

The symbolic name of the device
associated with a particular class of
compiler input/output~ and the permitted
device types for each, are shown in
Table 2.

Chapter 4: System Requirements 25

Table 2. Compiler Input/Output Devices
r-------------------T-----------------T----------------------T--------------------------,
I Function I Symbolic Name I Device Type I When Required I
~-------------------+-----------------+----------------------+--------------------------~

Input I SYSIPT DASD Always
I Magnetic tape
I Card reader

Print SYSLST DASD Always
I
I
I
I

Magnetic tape
Printer

SYSLNK DASD Output to
Linkage Editor

I
I
I
I

Magnetic tape
When linkage editing
follows compilation in
the same job

SYSPCH DASD Output to
Linkage Editor
(card deck)

Magnetic tape
Card Punch

When linkage editing
takes place in a
subsequent job

Compiler Spill
File

Source
statement
library

Relocatable
library

sys001

SYSSLB
(if the source
statement
module is held
in a private
source
statement
library)

I
I
I
I
I
I

DASD

DASD

SYSRLB I DASD
(if the object I
module is held I
in a private
relocatabl e

I
I

library) I

Always

When preprocessor
%INCLUDE is used

When the Linkage
Editor is used to
incorporate an object
module from the
relocatable library

-------------------~-----------------~----------------------~--------------------------

Operating System Requirements and
Facilities

The PL/I Optimizing Compiler can only be
used in the batched-job processing mode,
and cannot be used in a foreground
partition of a multiprogramming version of
the Disk Operating System.

When a PL/I program is compiled and
executed, the operating system supervisor
program initiates such operations as
compilation, link-editing, and object
program execution as individual job steps
according to instructions received in job
control language statements.

Before a compiled object program can be
executed, it must be link-edited to form an
executable program phase. The operating
system linkage editor program must be
employed to process the object module into
an executable program phase to be stored in
a program library from which it can
subsequently be invoked.

26

The job control and linkage editor
programs are described in the publication
IBM System/360 Disk operating system:
system Control and System Service Programs,
Order No. GC24-5036.

Object programs compiled by the DOS PL/I
Optimizing Compiler make use of the Disk
Operating System data management
facilities. These facilities include:

Sequential Access Method (SAM)

Indexed Sequential Access Method (ISAM)

Direct Access Method (DAM)

The PL/I Optimizing Compiler has
interface facilities with several
components of the operating system. These
can be used directly from within a PL/I
program. They include:

1. SORT

The PL/I program may contain
statements to invoke the operating

system SORT program, and pass records
to be sorted, or receive sorted
records, or both pass and receive
records.

2. Checkpoint/Restart

The PLiI program may contain a
statement to invoke the checkpoint

facility to record the current status
of a program and its data on an
external storage medium. The
checkpoint data can be used by the
restart facility to restart the
program at the point in execution
reached when the checkpoint was taken.

Chapter 4: System Requirements 27

28

Appendix A: Summary of Keywords

The following is a complete list of the PL/I and implementation-defined keywords
implemented by the DOS PL/I Optimizing Compiler. Each of these keywords is described in
depth in the publication IBM System/360 Disk Operating System: PL/I Language Reference
Manual, Order No. SC33-0005.

Keyword
ABS(x)
ACOS(x)
%ACTIVATE
ADD (x , y , p [, q])
ADDBUFF(n)
ADDR{x)
ALIGNED
ALL (x)
ALLOCATE
ALLOCATION (x)
ANY (x)
AREA
AREA[(size)]
ARGn

ASIN(x)
ATAN (x [, y])
ATAND (x[, y])
ATANH(x)
AUTOMATIC
BACKWARDS
BASED[{locator-expression)]
BEGIN
BINARY
BINARY(x[,p[,q]])
BIT (length)
BIT(expression[,size])
BLKSIZE{max-blocksize)
BOOL(x,y,w)
BUFFERED
BUFFERS({112})
BUILTIN
BY
BY NAME
CALL
CEIL(x)
CHAR(expression[,size])
CHARACTER(length)
CHECK [(name-list)]
CLOSE
COBOL

COLUMN{w)
COMPLETION (event-name)
COMPLEX
COMPLEX (a, b)
CONDITION (name)
CONJG(x)
CONNECTED
CONSECUTIVE
CONTROLLED
CONVERSION
COPY
COS (x)
COSD(x)
COSH(x)

Abbreviation

%ACT

AUTO

BIN
BIN (x [, p [, ql 1)

BUF

CHAR (1 ength)

COL(w)

CPLX
CPLX{a,b)

CONN

CTL
CONV

Use of Keyword
built-in function
built-in function
preprocessor statement
built-in function
option of ENVIRONMENT attribute
built-in function
attribute
built-in function
statement
built-in function
built-in function
condition
attribute
option of the NOMAP, NOMAPIN, and

NOMAPOUT options
built-in function
built-in function
built-in function
built-in function
attribute
file description attribute
attribute
statement
attribute
built-in function
attribute
built-in function
option of ENVIRONMENT attribute
built-in function
file description attribute
option of ENVIRONMENT attribute
attribute
clause of DO statement
option of the assignment statement
statement or option of INITIAL attribute
built-in function
built-in function
attribute
condition
statement
option of ENVIRONMENT attribute or

of the OPTIONS attribute/option
format item
built-in function, pseudo-variable
data attribute
built-in function, pseudo-variable
condition
built-in function
attribute
option of ENVIRONMENT attribute
attribute
condition
option of GET statement
built-in function
built-in function
built-in function

Appendix A: Summary of Keywords 29

Keyword
COUNT (file-expr)
CTLASA
CTL360
DATA
DATAFIELD
DATE
%DEACTIVATE
DECIMAL
DECIMAL(x[,p[,q]])
DECLARE
%DECLARE
DEFAULT
DEFINED
DELAY(n)
DESCRIPTORS
DIM(x,n)
DIRECT
DISPLAY
DIVIDE(x,y,p[,q])
DO
%00
EDIT
ELSE
%ELSE
EMPTY
END
%END
ENDFILE(file-expr)
ENDPAGE(file-expr)
ENTRY
ENVIRONMENT
ERF(x)
ERFC (x)
ERROR
EVENT

EXP(x)
EXTENTNUMBER (n)
EXTERNAL
F
FB
FILE
FILE (file-expr)
FINISH
FIXED
FIXED(x(,p[,q]])
FIXEDOVERFLOW
FLOAT
FLOAT (x [, p])
FLOOR (x)
FORMAT (format-list)
FORTRAN

FREE
FROM (variable)
GENERIC
GET
GO TO
%GO TO
HBOUND(x,h)
HIGH(i)
HIGHINDEX
IF
%IF
IGNORE(n)
IMAG (x)

30

Abbreviation

%DEACT
DEC
DEC (x [, p [, q]])
DCL
%DCL

DEF

ENV

EXT

FOFL

GOTO
%GOTO

Us e of Keyword
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
STREAM I/O transmission mode
built-in function
built-in function
preprocessor statement
attribute
built-in function
statement
preprocessor statement
statement
attribute
statement
option of the DEFAULT statement
built-in function
file description attribute
statement
built-in function
statement
preprocessor statement
STREAM I/O transmission mode
clause of IF statement
clause of %IF statement
built-in function
statement
preprocessor statement
condition
condition
attribute or statement
file description attribute
built-in function
built-in function
condition
option of READ, WRITE, REWRITE,

DISPLAY, and DELETE statements,
attribute

built-in function
option of ENVIRONMENT attribute
attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
attribute
option of input/output statements
condition
attribute
built-in function
condition
attribute
built-in function
built-in function
statement
option of the OPTIONS

attribute/option
statement
option of WRITE or REWRITE statement
attribute
statement
statement
preprocessor statement
built-in function
built-in function
option of ENVIRONMENT attribute
statement
preprocessor statement
option of READ statement
built-in function, pseudo-variable

Keyword Abbreviation
IN (area-variabl~)
% INCLUDE
INDEX(string,config)
INDEXAREA [(index-area-size)]
INDEXED
INDEXMULTIPLE
INITIAL (expression) INIT(expression)
INPUT

INTER
INTERNAL
INTO (variable)
IRREDUCIBLE
KEY (file-expr)
KEY(x)

KEYED
KEYFROM(x)
KEYLENGTH
KEYLOC
KEYTO(variable)
LABEL
LENGTH (string)
LBOUND(x,n)
LEAVE
LIKE
LINE (w)
LINENO(file-expr)
LINESIZE
LIST
LOCATE
LOG (x)
LOG 2 (x)
LOG10 (x)
LOW(i)
MAIN
MAX (Xll , X2 •• - xn)
MIN (X1, xa- •• xn)
MOD(xll,x2)
MULTIPLY(xll,x2,p[,q])
NAME (file-expr)
NOCHECK[(name-list)]

NOCONVERSION

NOFIXEDOVERFLOW

NOLABEL
NOMAP[(arg-list)]
NOMAPIN[(arg-list)]
NOMAPOUT[(arg-list)]
NOOVERFLOW

NORESCAN
NOSIZE

NOSTRINGRANGE

NOSUBSCRIPTRANGE

NOTAPEMK
NOUNDERFLOW

NOWRITE
NOZERODIVIDE

NULL

INT

IRRED

NOCONV

NOFOFL

NOOFL

NOSTRG

NOSUBRG

NOUFL

NOZDIV

Use of Keyword
option of ALLOCATE and FREE statements
preprocessor statement
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
attribute
file description attribute, option of the

OPEN statement
option of the OPTIONS attribute/option
attribute
option of READ statement
attribute
condition
option of READ, DELETE, and REWRITE

statements
file description attribute
option of WRITE statement
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of READ statement
attribute
built-in function
built-in function
option of ENVIRONMENT attribute
attribute
format item, option of PUT statement
built-in function
option of OPEN statement
STREAM I/O transmission mode
statement
built-in function
built-in function
built-in function
built-in function
option of PROCEDURE statement
built-in function
built-in function
built-in fUnction
built-in function
condition
condition prefix

(disables CHECK)
condition prefix

(disables CONVERSION)
condition prefix

(disables FIXEDOVERFLOW)
option of ENVIRONMENT attribute
option of the OPTIONS attribute/option
option of the OPTIONS attribute/option
option of the OPTIONS attribute/option
condition prefix

(disables OVERFLOW)
option of %ACTIVATE statement
condition prefix

(disables SIZE)
condition prefix

(disables STRINGRANGE)
condition prefix

(disables SUBSCRIPTRANGE)
option of ENVIRONMENT attribute
condition prefix

(disables UNDERFLOW)
option of ENVIRONMENT attribute
condition prefix

(disables ZERODIVIDE)
built-in function

Appendix A: Summary of Keywords 31

Keyword
OFFSET[(area-name)]
OFLTRACKS(n)
ON
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)
ORDER
OUTPUT

OVERFLOW
PAGE
PAGESI ZE (w)
PICTURE
POINTER
POLY{a,x)
POSITION (expression)
PRECISION{x,p[,q])
PRINT
PROCEDURE
%PROCEDURE
PROD (x)
PUT
RANGE
READ
REAL
REAL(x)
RECORD
RECORD (file-expression)
RECSIZE (max-record-size)
RECURSIVE
REDUCIBLE
REFER
REGIONAL(lI3)
REORDER
REPEAT(string,i)
REPLY(c)
REREAD
RESCAN
RETURN
RETURNS (attribute-list)
REVERT
REWRITE
ROUND (x, n)
SCALARVARYING
SEQUENTIAL
SET (locator-variable)

SIGN(x)
SIGNAL
SIN (x)
SIND (x)
SINH{x)
SIZE
SKIP [(x)]

SNAP
SQRT{x)
STATIC
STATUS[(event-name)]
STOP
STREAM

32

Abbreviation

OFL

PIC
PTR

POS(expression)
PREC (x, p [, q])

PROC
%PROC

RED

SEQL

Use of Keyword
attribute
option of ENVIRONMENT attribute
statement
built-in function, pseudo-variable
built-in function
built-in function
built-in function
built-in function
built-in function
built-in function, pseudo-variable
statement
option of PROCEDURE statement
option of PROCEDURE and BEGIN statements
file description attribute, option of the

OPEN statement
condition
format item, option of PUT statement
option of the OPEN statement
attribute
attribute
built-in function
attribute
built-in function
file description attribute
statement
preprocessor statement
built-in function
statement
option of the DEFAULT statement
statement
attribute
built-in function, pseudo-variable
file description attribute
condition
option of ENVIRONMENT attribute
option of PROCEDURE statement
attribute
option of BASED attribute
option of ENVIRONMENT attribute
option of PROCEDURE and BEGIN statements
built-in function
option of DISPLAY statement
option of ENVIRONMENT attribute
option of %ACTIVATE statement
statement
attribute, option of PROCEDURE statement
statement
statement
built-in function
option of ENVIRONMENT attribute
file description attribute
option of ALLOCATE, LOCATE, and

READ statements
built-in function
statement
built-in function
built-in function
built-in function
condition
format item, option of GET and

PUT statements
option of ON statement
built-in function
attribute
built-in function, pseudo-variable
statement
file description attribute

Keyword
STRING (x)
STRINGRANGE
STRINGSIZE
STRING (string-name)
iSUB
SUBSCRIPTRANGE
SUBSTR(string,i[,j)
SUM(x)
SYSIN
SYSPRINT
SYSTEM
TAN (x)
TAND (x)
TANH (x)
THEN
%THEN
TIME
TO
TRANSLATE (string,

replacement, position)
TRANSMIT
TRUNC(x)
U
UNALIGNED
UNBUFFERED
UNDEFINEDFILE(file-expr)
UNDERFLOW
UNSPEC (x)
UPDATE
V
VALUE
VARIABLE

Abbreviation

STRG
STRZ

SUBRG

UNAL
UNBUF
UNDF (f il e-expr)
UFL

VARYING VAR
VB
VERIFY
VERIFY(stringl, string2)
WAIT
WHEN (generic-descriptor-list)
WHILE
WRITE
ZERODIVIDE ZDIV

Use of Keyword
built-in function, pseudo-variable
condition
condition
option of GET and PUT statements
dummy variable of DEFINED attribute
condition
built-in function, pseudo-variable
built-in function
name of standard system input file
name of standard system output file
option of the ON statement
built-in function
built-in function
built-in function
clause of IF statement
clause of %IF statement
built-in fUnction
clause of DO statement

built-in function
condition
built-in function
option of ENVIRONMENT attribute
attribute
file description attribute
condition
condition
built-in function, pseudo-variable
file description attribute
option of ENVIRONMENT attribute
option of the DEFAULT statem~nt
attribute of file or entry variable
identifier
string attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
built-in function
statement
GENERIC declaration
clause of DO statement
statement
condition

Appendix A: Summary of Keywords 33

34

Appendix B: Compatibility with the DOS PL/I D Compiler

The following notes describe those
differences between the language
implemented by the PL/I D compiler (version
4) and the DOS PL/I Optimizing Compiler
that may cause minor incompatibilities.

Programs which use any of these features
should be reviewed before recompilation to
ensure that they will return the same
results.

Expressions in DO Statements

Expressions in DO statements are evaluated
by the D Compiler in the order
nexpression2n followed by
"expression3", irrespective of the order of
appearance in the DO statement. For
example:

DO I = J TO K BY L:

DO I J BY L TO K:

In both statements nexpression2n is
represented by K and "expression3" by L.
The D Compiler always evaluates expression2
first, whereas the order in which the DOS
PLiI Optimizing Compiler evaluates each
expression is undefined.

SYSIN and SYSPRINT

Although the names SYSIN and SYSPRINT have
no special meaning for the D Compiler, they
do for the DOS Optimizing Compiler. PLiI
programs can contain stream-oriented (GET
or PUT) data transmission statements which
do not specify a file name. The D Compiler
treats such statements as referring to the
symbolic devices SYSIPT and SYSLSTi the DOS
Optimizing Compiler makes the assumption
that such input statements refer to SYSIN,
and output statements to SYSPRINT.

E and F Format Items

1. SIZE error: For the D Compiler, if a
SIZE error occurs during output of
data under control of an E or F format
item, the value in error is
transmitted as a field of asterisks.

For the DOS Optimizing Compiler, if
SIZE is enabled, the value is
transmitted as a field of a'sterisks:
if SIZE is not enabled, the value is
truncated to the size of the field.

2. Zero before decimal point: When F
format fractional values or E format
zero mantissa values are transmitted,
the DOS PL/I Optimizing Compiler
inserts a leading zero before the
decimal point. The D Compiler does
not put the zero before the point.
For example:

D Compiler -.500
DOS PL/I Optimizing Compiler

- 0.500

REGIONAL Data Sets

REGIONAL data sets for programs written for
the PL/I D Compiler, are, when created,
preformatted by a utility program. This
program is executed as a separate job step
prior to execution of the PL/I program in
which the output file is opened to create
the data set. Subsequent use can be made
of this data set through an OUTPUT file
without formatting it again.

REGIONAL data sets created for programs
compiled by the DOS PLiI Optimizing
Compiler are preformatted by a PL/I library
routine when the output file is opened.
Thus an output file cannot be opened to
process a REGIONAL data set without
destroying all the records contained in it.
If records are to be added to the REGIONAL
data set, an UPDATE file must be used.

Preformatting, including the
pre formatting of secondary extents, is
performed as follows:

1. A REGIONAL(1) data set is preformatted
with dummy records in which the first
byte is set to X'FF' and the remaining
bytes are left undefined. For
SEQUENTIAL OUTPUT files, the dummy
records are written into those regions
which do not receive a data record
during processing. For DIRECT OUTPUT
files, the entire data set is
formatted before any records are
written onto it.

2. A REGIONAL(3) data set opened for
SEQUENTIAL OUTPUT will have each track

Appendix B: Compatibility with the DOS PLiI D compiler 35

formatted before new records are
written onto it during processing; for
a data set opened for DIRECT OUTPUT,
the entire data set will be formatted
when the file is opened.

Note that since dummy records can be
retrieved by a READ statement, the
programmer must ensure that such records
are recognized by the program.

Halfword Binary Numbers

Fixed-point binary numbers with a precision
of (15) or less are held in main storage as
half word binary numbers by programs
compiled by the DOS PL/I Optimizing
Compiler. Fixed binary numbers with a
precision greater than (15) are held as
fullword binary numbers. All fixed-point
binary numbers in programs compiled by the
DOS PLiI D Compiler are held as full word
binary numbers.

D Compiler programs to be recompiled
should be checked for occurrences of FIXED
BINARY variables which have precisions of
(15) or less (thus including those with
default precision), since they might occur
in record-oriented transmission and cause
differences in record lengths and in the
alignment of records in locate-mode
buffers. A similar problem could occur for
programs that process data sets created by
o Compiler object programs. Bit-string
values returned by the UNSPEC built-in
function when used with halfword binary
numbers as arguments are 16 bits in length.
The DEFAULT statement may be used to ensure
that all undeclared fixed binary variables
have the maximum precision (31,0).

Labels oq DECLARE Statements

The PL/I D Compiler ignores any labels
prefixed to DECLARE statements. The PLiI
Optimizing Compiler recognizes such labels
and treats branches to such labels as
oranches to null statements. An
incompatibility can occur if in a
recompiled D Compiler program such a label
has the same identifier as a variable or is
used as a label prefix to another
statement.

Unaligned Bit Strings

The DOS PL/I Optimizing Compiler implements
the UNALIGNED attribute for bit strings.

36

UNALIGNED is the standard language default
for bit strings. The DOS PL/I D Compiler
allows only character class data to be
unaligned. Programs for the Optimizing
Compiler that are to process records
containing bit strings from a data set
created by a PL/I D Compiler object program
should specify ALIGNED bit strings in the
appropriate record variables. The DEFAULT
statement may be used to achieve this
effect where bit strings are not explicitly
declared with the ALIGNED attribute.

ONSYSLOG option

The DOS PL/I Optimizing compiler does not
support the use of the ONSYSLOG option,
whereby all output resulting from actions
derived from on-conditions is printed on
the system log.

The DOS PL/I Optimizing Compiler does not
permit use of the DYNDUMP, IJKTRON,
IJKTROF, and IJKEXHC routines.

DISPLAY Statement and REPLY Option

The PL/I Optimizing Compiler permits
strings up to 72 bytes in length for both
the DISPLAY statement and the REPLY option.
The PLiI D Compiler permits strings up to
80 bytes for the DISPLAY statement, and up
to 256 bytes for the REPLY option.

INDEX Built-In Function

The INDEX built-in function can be used
with a binary arithmetic argument that
requires conversion to character string
form before the function can be executed.
This occurs wherever the other argument of
this function is either a decimal
arithmetic value or a character string.
For exampl e:

1. INDEX (A, I)

2. INDEX (I, • B')

In both cases I is a binary arithmetic
variable. A is a decimal arithmetic
variable. In the first case, both A and I
are converted to character form, in the
second case only I is converted.

An incompatibility exists between the
methods and the results of conversion from
binary arithmetic to character form for
this function. The D Compiler converts a
binary arithmetic argument to an
intermediate bit string form which is then
converted to character form. The
Optimizing Compiler converts the argument
to an intermediate decimal arithmetic form
which is then converted to character form.

PRECISION Built-In Function

The PRECISION built-in function is
implemented differently by the PL/I D and
Optimizing Compilers. For the D Compiler,
if the first argument is FIXED, and the
third argument is omitted, the third
argument is assumed to be zero. For the
Optimizing Compiler, if the first argument
is FIXED, and the third argument is
omitted, the third argument is assumed to
be zero, and an informatory diagnostic
message is given.

SUM and PROD Built-In Functions

For the DOS PL/I Optimizing Compiler, the
SUM and PROD built-in functions accept
arguments that can be arrays of either
fixed-point or floating-point elements.
The value returned is in the same scale as
the argument given, except for the PROD
built-in function used with fractional
fixed-point arguments, where the value
returned is in floating-point scale. Note
that string arguments are converted to
fixed-point arithmetic form, and that the
result is returned in this form.

For the DOS PL/I D Compiler, the
arguments of these functions are, if
necessary, converted to floating-point
scale. The returned value always has
floating-point scale.

Attributes of File Parameters

For the D Compiler, a file parameter can be
declared with other attributes in addition
to the FILE attribute. For the Optimizing
Compiler, a file parameter can only be
declared with the FILE attribute; all other
attributes are inherited from the argument.
If additional attributes are given, the
compiler will issue an informatory message,
and ignore them.

Defining of Arrays of Pictures

Simple defining of arrays of pictures will
be diagnosed as an error if the defined
elements do not exactly match the base
elements. The PL/I D Compiler requires
only that the base elements should be
pictures or character strings.

sterling Pictures

Sterling data is not supported by the DOS
PL/I Optimizing compiler. A picture
including any of the following characters
is invalid:

G , M" H , P, 6 , 7, 8

Source Program Errors

The D compiler does not detect all the
errors in a source program that can be
detected by the Optimizing Compiler.
Errors that are not detected include the
transfer of control into an iterative DO
group, comparison of structures, and
incorrect overlay defining.

Programs which contain these errors and
compile successfully with the D Compiler
will not compile successfully with the
Optimizing Compiler.

RETURNS Keyword in PROCEDURE and ENTRY
Statements

PROCEDURE and ENTRY statements for function
procedures that specify the attributes of
the value returned by the procedure must,
for the Optimizing Compiler, have such
attributes contained in a parenthesized
list preceded by the keyword RETURNS. For
example, the following statement is valid
for the D Compiler, but not for the
Optimizing Compiler:

X: PROCEDURE (Y,Z> FLOAT BINARY;

For the Optimizing Compiler, this statement
should be written as follows:

X: PROCEDURE (Y,Z> RETURNS (FLOAT
BINARY> ;

Appendix B: Compatibility with the DOS PL/I D Compiler 37

Entry Names as Arguments

The D compiler assumes an entry name
argument in parentheses and without
arguments of its own to be a function
reference. For example, in the expression
X«Y» the function Y is invoked and the
value it returns is used as the argument to
procedure X. The Optimizing Compiler
assumes that the entry name itself is to be

38

passed as an argument. It creates an entry
variable with the value of the entry
constant argument, and passes this as a
dummy argument to the invoked procedure.
Function references such as this in
programs written for the D Compiler should
be modified to contain a null argument list
in order to invoke the function. For
example, the expression given above should
be written as X{Y{».

Index

Where more than one page reference is given, the major reference is first.

ACOS built-in function 24
ALLOCATE statement 20
ALLOCATION built-in function 20
AREA attribute 18
arguments, entry names used as 38
arithmetic data attributes 23
array assignment optimization 15
array built-in functions 21
arrays

adjustable extents for 21
defining arrays of pictures 37
of structures 21

~SIN built-in function 24
attribute table option 8
auxiliary working storage 26

based storage 18
oased structures 18

self-defining 18
based variables 18
batch compilation

See: multiple external procedures
BCD option 8
bit strings, unaligned 36
block and DO-group nesting level option 8
built-in functions, executed in-line 14

C format item 23
CHECK condition 22
checkpoint/restart 27
COBOL and PL/I Linkage 9
common constant elimination 15
common expression elimination 11
compatibility with the D Compiler 8,35-38
compilation speed 5,7
compile-time preprocessor 8,18
compiler options 8
compiler options used option 8
compiler requirements 25-26
COMPLETION built-in function 21
COMPLEX attribute 23
COMPLEX built-in function and
pseudo-variable 23

condition built-in functions 22
CONDITION condition 22
condition pseudo-variables 22
conditional compilation 8
CONJ built-in function and

pseudo-variable 23
CONNECTED attribute 23
CONTROLLED attribute 20
controlled storage 20
convt::.:rsions 22
COpy option 20
cross-reference table option 8

D Compiler, comparison of language
implemented 18

DAM (Direct Access Method) 26
data aggregates 21
data attributes 23
data management 26
data-directed input/output 20
DA~AFIELD built-in function 22
DATAFIELD pseudo-variable 22
DA~E built-in function 25
debugging aids 7
DECLARE statements, labels on 36
defactorization 13
DEFAULT statement 18
DEFINED attribute 23
defining, types of 23
DELAY statement 25
device requirements 25
diagnostic message level option 7
diagnostics 7
DIM built-in function 21
Direct Access Method (DAM) 26
DISPLAY statement 36
DO statement optimization 14
DO statement, evaluation of expressions 35
DOS facilities and requirements 26-27
DYNDUMP routine 36

E format item 35
EBCDIC option 8
edit-directed input/output 20
EMPTY built-in function 20
ENTRY attribute 23
entry names used as arguments 38
ENTRY statement, RETURNS keyword 37
entry variables 23
ENVIRONMENT options, expressions in 21
error control 22
EVENT option 21
execution speed 7
external symbol dictionary option 8

F format item 35
file parameter attributes 37
file variables 21
FINISH condition 22
format list matching 14
format lists 21
FORTRAN and PL/I linkage 9
FREE statement 20

GEN£:RIC attribute 23

Index 39

halfword binary numbers 36
HBOUND built-in function 21

IGNORE option 21
IJKEXHC routine 36
IJKTROF routine 36
IJKTRON routine 36
IMAG built-in function and
pseudo-variable 23

implementation restrictions 19-20,18
in-line code for conversions 14
INDEX built-in function 36
Indexed sequential Access Method (ISAM) 26
INITIAL attribute 23
initialization of arrays 13-14
input/output device requirements 26
instruction set requirements 25
interlanguage communication 9
ISAM (Indexed sequential Access Method) 26
iSUB defining 23
iSUB variables 23

key handling for REGIONAL data sets 14

labels on DECLARE statements 36
language implemented 17-24
language keywords, summary of 29-33
language level 5
LBOUND built-in function 21
LENGTH built-in function 22
library routines 15
LIKE attribute 21
lines per page of listing option 8
LINESIZE option 20
list-processing 18,20
locate mode input/output 18
locator variables 18,20

machine requirements 25
main storage for compilation option 8
mathematical built-in functions 24
messages 7
modification of loop control variables 13
multiple external procedures, compilation

of 7
multiprogramming 26
multitasking 7

NAME condition 22
NULL built-in function 20

object module listing option 8
object module output options 8
OFFSET attribute 18
offset variables 18,20
on-units 7,22
ONCHAR built-in function 22
ONCHAR pseudo-variable 22
ONCODE built-in function 22
ONCOUNT built-in fUnction 22
ONKEY built-in function 22
ONLOC built-in function 22

ONSOURCE built-in function 22
ONSOURCE pseudo-variable 22
ONSYSLOG option 36
operating system facilities 26
optimization 5,7,11-16,18

common constant elimination 15
common expression elimination 11
common program control information 15
in-line code for built-in functions 14
in-line code for conversions 14
in-line code for string manipulation 14
initialization of arrays 13-14
library routines 15
matching format lists with data
lists 14

program branches 15
redundant expression elimination 12
register usage 15
simplification of expressions 12-13
special case code for DO

statements 14-15
structure and array assignments 15
transfer of expressions from loops 12

optimization levels 5
optimization option 8

optional compiler facilities 8

parameter-argument matching 23
parameters 23

attributes of file parameters 37
PL/I and COBOL/FORTRAN linkage 9
PL/I (F) Compiler 7
PL/I-SORT interface 26-27
POINTER attribute 18
pOinter qualifier 18
pointer variables 18,20
POLY built-in function 21
POSITION attribute 23
PRECISION built-in function 37
preprocessor input listing option 8
printed listings options 8
PROCEDURE statement, RETURNS keyword 37
PROD built-in function 37
program branch code minimization 15
program checkout 5,22

debugging aids 7
program control information 15
PU~ DATA statement 22

REAL attribute 23
record-oriented input/output 21
RECURSIVE option 23
redundant expression elimination 12
REFER option 18-20
REGIONAL data sets 21,35

key handling for 14
REGIONAL(2) 7
register usage 15
replacement of constant expressions 13
replacement of constant multipliers and

exponents 13
REPLY option 36
RETURNS in PROCEDURE or ENTRY
statements 37

40 Main page references are those listed first.

SAM (Sequential Access Method) 26
scale factor for fixed-point binary
fractions 23

sequential Access Method (SAM) 26
SIGNAL statement 22
simple defining 23
simplification of expressions 12-13

defactorization 13
modification of loop control
variables 13

replacement of constant expressions 13
replacement of constant multipliers and

exponents 13
SNAP option 8,23
SORT 26
source program error detection 37
source program listing option 8
source program margins 8
source statement numbering option 8
space requirements 7,25
statement number trace 8
sterling pictures 37
storage control 18
stream input/output 20-21
string manipulation 14
string overlay defining 23
STRING pseudo-variable 22
string-handling 22
STRINGRANGE condition 22
strings, adjustable 22
STRINGSIZE condition 22

structure assignment optimization 15
subroutines and functions 23-24
subscript checking 21
SUBSCRIPTRANGE condition 21
SUBSTR built-in function and
pseudo-variable 22

SUM built-in function 37
SYSIN 35
SYSPRINT 35
system requirements 25-27

transfer of expressions from loops 12
TRANSLATE built-in function 22

unaligned bit strings 36

VARYING attribute 22
VERIFY built-in function 22

WAIT statement 21
WHEN clause 23
working storage 25

48-character set option 8
60-character set option 8

Main page references are those listed first. Index 41

READER'S COMMENT FORM

IBM System/360 Disk Operating System
PL/l Optimizing Compiler
General Information Manual

• How did you use this publication?

As a reference source
As a classroom text
As a self-study text

D
D
D

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is -your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Order No. GC33-0004-0

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC33-Q004-O

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help--us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your I BM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

fold fold ...

BUSINESS REPLY M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

fold

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N.Y. 10601

.....

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only)

IBM World Trade. Corporation
821 United Nations Plaza, New York, New York 10017
[International)

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N.Y.

fold

..

.,

2
c
c.
?
G
C
.(.

i

GC33-0004-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

C>
(')
w
w
6 g
T-o

	009
	01
	02
	03
	04
	05
	06
	07
	08
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	replyA
	replyB
	xBack

