
--------- - - ------ - ---- - - ----------_ .- as PLII Version 2

Problem Determination

Release 1

.. Restr icted Materials of IBM "
Licensed Materials - Property of IBM
LY27-9528-0 <0 Copyr ight IBM Corp. 1985. 1987

L Y27 -9528-0

--------- -------- -. ---- - - _ ... --------_.-
as PL/I Version 2

Problem Determination'

Release 1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
LY27-9528-0 © Copyright IBM Corp_ 1985, 1987

L Y27 -9528-0

First Edition (December 1987)

"Restricted Materrals of IBM"
Licensed Materials - Property of IBM

This edition applies to Version 2 Release 1 of the following licensed programs:

· as PLII Optimizing Compiler, Library, and Interactive Test Facility, Licensed Program 5668-909
· as PLII Optimizing Compiler and Library, Licensed Program 5668-910
• as PLII Library Only, Licensed Program 5668-911

and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, cons~lt the latest IBM Systeml370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 49023, Programming Publishing,
San Jose, California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials of International Business Machines Cor­
poration. © Copyright International Business Machines Corporation 1985, 1987. All rights reserved.

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

About This Book

Use as PLII Version 2 Problem Determination with the OS PUI Optimizing Com­
piler Version 2. It will help you to determine problems, to formulate software
search facility (SSF) search arguments and to document and submit APARs.

You can also use PLiTEST, and PLiTEST's interactive facilities, during run-time
to diagnose problems. However, this book does not discuss using PUTEST for
problem determination. In a few instances, where using PLiTEST would help
you significantly, PUTEST is discussed briefly. If you have PLiTEST installed on
your system and want more information about using PLiTEST, see as PLII
Version 2 Programming: Using PUTEST.

Who Might Use This Book
The primary audience for this book is all application programmers and systems
programmers who write and run PUI programs.

CMS and TSO Considerations
This book often refers to ddnames. In eMS, ddnames are associated to files by
means of the FILEDEF command. In TSO, ddnames are associated to files by
means of the ALLOC command.

How This book Is Organized
• Chapter 1, Compiler Overview, briefly describes how a PUI program is

compiled, link edited and run.

• Chapter 2, Compile-Time Problem Determination, contains the compile-time
problem determination flowchart which describes various problems and
recommends solutions for problems that can occur at this time.

• Chapter 3, Compiler Output, describes the object module generated by the
compiler. It tells how PUI organizes the object module and the form the
information within it takes.

• Chapter 4, Run-Time Organization, describes the facilities PUI uses during
run-times such as r~gisters, storage, load modules and the multitasking
library.

• Chapter 5, Run-Time Problem Determination, contains the run-time problem
determination flowchart which describes various problems and recom­
mends solutions for problems that can occur at this time.

• Chapter 6, Debugging Using Dumps, deSCribes how to get a PUI dump and
how to interpret its contents.

• Chapter 7, Using SSF and CSSF Search Arguments, describes how to for­
mulate arguments for and how to use the Software Search Facility (SSF) or
the Customer Software Search Facility (CSSF).

• Chapter 8, Submitting an APAR, describes how to document and report
suspected product problems to IBM using an APAR (Authorized Program
Analysis Report).

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 About This Book iii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Appendix A, Control Blocks, gives information about control blocks that
may be useful in problem determination.

• Appendix B, Record-Oriented Input/Output, describes record I/O.

• Appendix C, Stream-Oriented Input/Output, describes stream 1/0.

Other OS PL/I Version 2 Books Available
The complete list of books in the as PUI Version 2 library is given in Figure 1.
The figure shows what tasks each book is designed to help you with.

Task

Evaluation

Installation and
Customization

Application
and System
Programming

Diagnosis

OS PL/I Version 2 Publications

General Information
Licensed Program Specifications

Installation and Customization under MVS
Installation and Customization under CMS

Programming Guide
Language Reference
Reference Summary
Using PUTEST
Messages and Codes

Problem Determination

Figure 1. The as PUI Version 2 Library

Order Number

GC26-4313
GC26-4314

SC26-4311
SC26-4312

SC26-4307
SC26-430B
SX26-3759
SC26-4310
SC26-4309

L Y27-952B

The following books are the ones that will be most helpful while you are using
this book:

OS PLII Version 2 Programming Guide, SC26-4307, describes how to code,
compile, test, and run as PUI programs. Information appearing in OS PLII
Optimizing Compiler: CMS User's Guide, SC33-0037, and OS PLII Optimizing
Compiler: TSO User's Guide, SC33-0029 is now contained in this book.

OS PLII Version 2 Programming: Language Reference, SC26-430B, presents
rules for writing as PLII source programs to be compiled by the as PUI
Version 2 compiler.

OS PLII Version 2 Programming: Messages and Codes, SC26-4309, lists error
messages and codes that may be issued when you compile, link edit, and
run as PLII programs. It also includes messages and codes issued by
PUTEST. This book lists messages, and where needed, explanations,
examples, and suggested programmer response.

iv as PUI Version 2 Problem Determination LY27-952B-O © Copyright IBM Corp. 1985, 1987

/

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Other Books You Might Need
You may want to refer to the following publications during your problem deter­
mination process:

OSIVS2 System Programming Library: Debugging Handbook, GC28-0708,
GC28-0709, GC28-0710

OSIVS2 System Programming Library: Service Aids, GC28-0647

OSIVS2 System Programming Library: MVS Diagnostic Techniques,
GC28-0725

OSIVS2 TSO Command Language Reference, GC28-0646

MVSI370 Message Library: System Messages, GC38-1008

MVSIExtended Architecture Command Language Reference, GC28-0646

MVSIExtended Architecture Message Library: System Messages, GC28-1156

MVSIExtended Architecture Message Library: System Codes, GC28-1157

MVSIExtended Architecture Message Library: TSO Terminal Messages,
GC38-1046

MVSIExtended Architecture Diagnostic Techniques, LY28-1199

MVSIExtended Architecture System Programming Library: Service Aids,
GC28-1159

MVS/Extended Architecture TSO Terminal User's Guide, GC28-1274

TSO EXTENSION Command Language Reference, SC28-1307

Virtual Machine/System Product CMS Command Reference, SC19-6209

Virtual Machine/System Product CP Command Reference, SC19-6211.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 About Thi s Book V

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Contents

Chapter 1. Compiler Overview
Function
Processing a PLII Program
Compilation
Link Editing
Running

Chapter 2. Compile-Time Problem Determination

Chapter 3. Compiler Output ...
The Organization of This Chapter
Listing Conventions

Static-Storage Map
Object-Program Listing

Static Internal Control Section
Program Control Section

Register Usage
Library Register Usage

Handling and Addressing Variables and Temporaries
Automatic Variables
Compiler-Generated Temporaries
Controlled Variables
Based Variables
Static Variables
Addressing Beyond the 4K Limit
The Pseudo-register Vector (PRV)

Program Control Data
Handling Data Aggregates
Arrays of Structures and Structures of Arrays
Array and Structure Assignments

Handling Flow of Control
Activating and Terminating Blocks
Prolog and Epilog Code
GOTO Statements

Argument and Parameter Lists
Library Calls
DO-Loops

Compiler-Generated Subroutines
Optimization and Its Effects

Examples of Optimized Code .

Chapter 4. Run-Time Organization
Communications Area
Dynamic Storage Allocation

Contents of a Typical Load Module
The Overall Use of Storage
The Multitasking Library

Chapter 5. Run-Time Problem Determination

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

1
1
2
2
4
4

5

11
14
14
15
'18
22
23
24
26
27
27
27
27
28
28
28
29
31
31
32
32
32
33
33
39
43
43
45

, 46

47
47

57
57
57
59
59
62

63

Contents vii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 6. Debugging Using Dumps .
Considerations

Section 1: How to Obtain a PLII Dump
CALL PLiDUMP
Suggested Coding
Avoiding Recompilation
Contents of a PLII Dump

Section 2: Suggested Debugging Procedures
Debugging Overlaid Storage
Debugging Procedures

Section 3: locating Specific Information
Contents
Key Areas of a PLII Dump
Key Areas of an ABEND Dump
Stand-alone Dumps
Housekeeping Information in All Dumps
Finding Variables
Control Blocks and Fields

Section 4: Special Considerations for Multitasking
Section 5: Special Considerations for CICS
Section 6: User Exit Considerations
Section 7: SYSTEM Option Considerations

Chapter 7. Using SSF and CSSF Search Arguments
Formulating the Search Argument

Using Standardized Keywords

Chapter 8. Submitting an APAR
Materials to Submit

Original Source Information
load Libraries Information
Input Data Sets Information
PL/I Compiler and PLII Library
Compiler Listing
JCl Listing
CMS Terminal Session log
Linkage Editor Listing
Run-Time Dump
Applied Fixes

Appendix A. Control Blocks
Area locator/Descriptor

Area Descriptor
Area Variable Control Block
Aggregate Descriptor Descriptor
Aggregate locator
Array Descriptor
CICS Appendage
Controlled Variable Block
Data Element Descriptor (OED)
FORMAT DEDs (FEDs)
Declare Control Block (DClCB)
Dynamic Storage Area (DSA)
Entry Data Control Block

75
75
78
78
79
81
82
87
88
89
92
92
93
98
99
99

107
108
111
111
111
112

113
113
114

115
115
116
116
116
116
117
117
117
118
118
118

119
120
120
121
122
124
125
128
130
132
138
140
142
146

viii os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Environment Block (ENVB) .
Event Variable Control Block
File Control Block (FCB)
Fetch Control Block (FECB)
Input/Output Control Block (IOCB)
Label Data Control Block
Library Workspace (LWS)
ON Communications Area (ONCA)
ON Control Block (ONCB)
PLiMAIN
PLiST ART Parameter List
Record Descriptor (RD) .
String Locator/Descriptor
Structure Descriptor ...
Symbol Table (SYMTAB)
Task Communication Area (TCA)
TCA Implementation Appendage (TIA)
TCA Tasking Appendage (TTA)
Task Variable (TV)

Appendix B. Record-Oriented Input/Output
Introduction
Summary of Record I/O Implementation

Access Method
File Declaration Statements
OPEN Statement
Transmission Statements (Library-Call I/O)
EVENT Option
CLOSE Statements and Implicit Close
Implicit Open for Library-Call I/O
Error Conditions in Transmission Statements
In-Line I/O Statements

Appendix C. Stream-Oriented Input/Output
Introduction
File Handling
Handling the Conversions
Handling GET and PUT Statements
List-Directed GET and PUT Statements
Data-Directed GET and PUT Statements
Edit-Directed GET and PUT Statements
Formatting for Print Files
Handling Format Options
Input and Output of Complete Arrays
PUI Conditions in Stream I/O
Built-In Functions in Stream I/O
The COPY Option
The STRING Option
The Conversational System and Conversation Files

Conversational Transmitter Modules
Formatting

Summary of Subroutines Used
Initializing Modules
Director Modules

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

147
151
152
163
164
170
171
172
175
177
178
180
181
182
183
190
196
200
202

203
203
203
209
212
213
219
224
227
229
229
233

241
241
246
249
249
249
254
257
266
266
266
266
268
268
269
270
271
271
272
272
273

Contents ix

Transmitter Modules
Formatting Modules
External Conversation Director Modules
Conversational Modules
Miscellaneous Modules

Index

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

274
274
275
275
275

277

x OS PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

/
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 1. Compiler Overview

Function

r Source
Program

User Object
and Load
Libraries
and Data
Sets

r------, ___ ----------, ___ .--__________ •

1-~ Compiler

+
!~-------I

I
I
I
I
I
I
I L--t Preprocessor !
i
I
I
I

r- 1 "' !
I
I
I

Included i
Source ___ J

4 Program

Ito..
Object ~

Module

lsJ Listing

Transient
~ _____ --I PLII

Library
Modules

optIonal

required

Ito..
~

Figure 2. Compiling, Link Editing and Running

Linkage .. Load
Editor

,.
Module

~
Resident
PUI
Library
Modules

"",..

The OS PLII Optimizing Compiler Version 2 analyzes source programs written
in the PLII language and translates these source statements into a series of
machine instructions that form an object module. The compiler operates as a
problem state under the operating system.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 1. Compiler Overview 1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Processing a PL/I Program

Compilation

Figure 2 on page 1 shows the process through which a PUI progrClm passes
from its inception to its use. There are four stages:

1. Writing the program and preparing it for the computer.

2. Compilation: Translating the program into machine instructions (that is,
creating an object module).

3. Link editing: Producing a load module from the object module. This
includes linking the compiled code with PUI library modules, and possibly
with other compiled programs. It also includes resolving the addresses
within the code.

4. Running the load module.

The process is not necessarily a continuous one. The program may, for
example, be kept in a compiled or link edited form before it is run, and also be
run a number of times once compiled.

Compilation is the process of translating a PUI program into machine
instructions. This is done by associating PUI statements with addresses in
storage and translating executable PUI statements into a series of machine
instructions. For example, the PUI statements:

DCl I,J,K;
I=J+K;

result in the generation of machine instructions corresponding to the assembler
language instructions shown below:

lH 7,88(8,13) load J into register 7
AH 7,98(8,13) Add K to J
STH 7,96(8,13) Place result in I

(The variables I, J, and K from the address in register 13 are held at offsets 96,
88, and 90, respectively.)

The OS PUI Optimizing Compiler Version 2 does not translate all PUI state­
ments directly into the necessary machine instructions. Instead, certain state­
ments are translated into calls to standard subroutines held in the resident
library routines. These routines may call further library routines from the PUI
library. The following PUI statements for example, result in a call to a resident
library routine.

DCl X,Y;
X=SIN(Y);

2 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The list below shows the code that would result from such statements:

LA 14, 92 (8, 13)

LA 15,96(8,13)

Place address of Y in register 14

Place address of X in register 15

STM 14,15,88(8,3) Place addresses in argument list

LA 1,88,(8,3)

L 15,88(0,3)

BALR 14,15

• Preprocessor

Point register 1 at argument list

Load register 15 with the address of a
library routine.
(This is held in the form of an address
constant generated by the compiler and
resolved by the linkage editor.)

Branch to the library routine, which
carries out the required function.

The source program passes to the compiler either directly or through a pre­
processor stage (see Figure 2 on page 1). The preprocessor can modify
source statements in the program or insert additional source statements in
the program before compilation begins. You invoke the preprocessor by
specifying the compile-time option MACRO. If the compiler detects an error
or the possibility of an error during the preprocessor stage, it prints a
message on the pages following the input listing. Thus, there are two sets
of messages: one for the preprocessor and one for the compiler. Details of
preprocessor and compile-time messages are given in the as PLJI Version
2 Programming: Messages and Codes.

• Compiler

Under the control of a compile-time option, the compiler optimizes code.
Some helpful compile-time options are shown in Figure 3. For more infor­
mation about these options, see the as PLJI Version 2 Programming Guide.

Needed Documentation Compile-Time Option

Source Listing SOURCE

Cross-reference Listing XREF

Attribute Table ATTRIBUTES

Aggregate Table AGGREGATE

Storage Table STORAGE

Compiler Options OPTIONS

Figure 3 (Part 1 of 2). Compile-Time Options Helpful in Problem Determination

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 1. Compiler Overview 3

Link Editing

Running

Needed Documentation

Offset Address

Object Listing

Static Storage Map

Statement in Error

Diagnostic Message List

Margins of Source List

Long Form Messages

If preprocessor used

Block and do-group statement listing

Sequential statement listing

PlITEST information about compiled
code

Flow of control

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Compile-Time Option

OFFSET

LIST

MAP

GOSTMT or GONUMBER

FLAG(I)

MARGINI

LMESSAGE

INSOURCE
MDECK
MACRO

NEST

STMT

TEST
GOSTMT
GONUMBER

FLOW
COUNT

Figure 3 (Part 2 of 2). Compile-Time Options Helpful in Problem Determination

Link editing links the compiler output with external modules requested by the
compiled program. These are PL/I library routines, and possibly, modules
produced by further compilations. As well as linking the external modules, the
linkage editor also resolves addresses within the object module.

The OS PL/I Optimizing Compiler Version 2 produces code that requires a
special arrangement of control blocks and registers for the correct run. This
arrangement of control blocks and registers is known as the PLI/ environment.
Execution consequently becomes a three-stage process:

1. Setting up the environment. The PL/I initialization routines handle this.

2. Running the program.

3. Completing the job after the run. This consists of closing any files left open
and returning control either to the supervisor or to a calling module. A ter­
mination routine handles this.

4 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 2. Compile-Time Problem Determination

This chapter contains the compile-time problem determination chart. If you are
just beginning your problem diagnosis, start by using the chart in Figure 5.
Begin with Block 1 and answer the question or perform the action specified,
then go to the block indicated by the answer. Some blocks describe an action
to be performed and also direct you to the next block.

If you have already made a preliminary diagnosis of your problem and you are
familiar with PUI, you can use the chart index below in Figure 4 to find the
information you need.

Compile-Time
Subject Covered

Abend or Program Check
Search Argument Generation

Message
Search Argument Generation

Loop
Search Argument Generation

Wait
Unusual or Unexpected Output

Search Argument Generation
Performance

Search Argument Generation

Block Number

26
27
28
31
32
33
34
35
36
37
38

Figure 4. Compile-Time Problem Determination Index

Block Question
No.

1 Is this a compile-time or a run-time failure?

2 Is this a U level message?

3 Is this a problem relating to a message?

4 Is this a loop?

5 Is this a wait?

6 Does the compilation result in some type of unusual or
unexpected output?

Figure 5 (Part 1 of 6). Compile-Time Problem Determination Chart

Action

Compile-time
failure
Go to 2

Run-time
failure
Go to 100 on
page 63

Yes 8
No 3

Yes 8
No 4

Yes 8
No 5

Yes 8
No 6

Yes 8
No 7

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 2. Compile-Time Problem Determination 5

Block
No.

7

8

9

10

11

12

13

14

15

16

17

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question Action

Is this a performance problem? Yes 8
No 24

Has the program ever compiled before? Yes 9
No 11

Has anything in the environment been changed? Yes 12
(Source changes, release level, maintenance fixes, No 10
compile time options, etc.)

Is the entry from:

U level message Yes 26
Message other than U level Yes 28
Loop Yes 32
Wait Yes 34
Unusual or unexpected output Yes 35
Performance Yes 37

Note: If you are here via the "environment changed"
route, follow the major symptom code being experi-
enced.

Make sure PUI coding rules have been followed. Yes 41
Check and correct any statements causing "E" or "s" No 10
level messages. If you are using the
"OPTIMIZE(TIME)" or "OPTIMIZE(2)" compile option,
recompile using "NOOPTIMIZE." Is the problem cir-
cumvented?

Has the source code of the program been changed? Yes 15
(This includes compile time options.) No 13

Has any maintenance been applied? (PTFs, fixes) Yes 17
No 14

Has the release level changed? Yes 18
No 25

Check and correct any source statements causing "E" Yes END
or "s" level messages. Be critical of source changes. No 16
Is the problem solved?

Note: If the problem is solved, but you feel the
message was generated in error, follow the "NO" path.

If you are using the "OPTIMIZE(TIME)" or Yes 41
"OPTIMIZE(2)" compile option, recompile using No 10
"NOOPTIMIZE." Is the problem circumvented?

Is(Are) the fix(es) or PTF(s) installed correctly? In Yes 19
other words, were there any system me~sages while No 20
installing and link editing? Search early war ning
microfiche or INFO/ACCESS, or ask the IBM Support
Center Level 1 to search RETAIN for possible PTF
errors in the form "PExxxxx".

Figure 5 (Part 2 of 6). Compile-Time Problem Determination Chart

6 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block
No.

18

19

20

21

22

23

24

25

26

Question

Is the release installed correctly? (Search early
warning microfiche or INFO/ACCESS, or ask the IBM
Support Center Level 1 to search RETAIN for any PTFs
and errors applicable to this release. Search for PTF
errors in the form: "PExxxxx".) Were there any SMP
error messages or system messages while installing
the release?

Search early warning microfiche, INFO/ACCESS, or
have the IBM Support Center search RETAIN. Infor­
mation about conducting a search is in
Chapter 7, "Using SSF and CSSF Search Arguments"
on page 113.

Any hits?

Reinstall the PTF or fix and test. Is the problem
solved?

Reinstall the release level correctly, plus any PTFs or
fixes that are applicable, and test. Is the problem
solved?

Apply applicable fix(es) from RETAIN and test. Is the
problem solved?

Have the symptoms changed?

Something has apparently been overlooked. A failure
must have occurred, and it must have been one of the
previously mentioned items.

Review the compiler output again. If the problem
does not fit any of the stated symptoms, go to Block
41.

Obviously something has been changed. Investigate
the system control program for possible changes such
as fixes, PTFs, library updates or reorganization, etc.

Compiler program checks will produce one of the fol­
lowing messages:

IEL00011 U PREPROCESSOR ERROR n DURING
PHASE P

IEL02301 U COMPILER ERROR NUMBER n DURING
PHASE P

IEL09701 U COMPILER CANNOT PROCEED.
ERROR n DURING PHASE p. CORRECT SOURCE
AND RECOMPILE

Note: Details of compiler error numbers and some­
times recommended programmer actions are in your
OS PLiI Version 2 Programming: Messages and Codes
manual. Go to Block 27.

Figure 5 (Part 3 of 6). Compile-Time Problem Determination Chart

Action

Yes 19
No 21

Yes 22
No 10

Yes END
No 23

Yes END
No 23

Yes END
No 23

Yes 2
No 10

41

27

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 2. Compile-Time Problem Determination 7

Block
No.

27

28

29

30

31

---------_ .. __ ._-
"Restricted Materials-ofTBM"--

Licensed Materials - Property of IBM

Question

Search early warning microfiche, INFO/ACCESS, or
have the IBM Support Center search RETAIN using the
component-id 5668909, the error number from the
message and phase-id from message. Information
about conducting a search is in Chapter 7, "Using
SSF and CSSF Search Arguments" on page 113. Any
hits?

Is this an "E" or "s" level diagnostic message?

Look up the message in OS PLiI Version 2 Program­
ming: Messages and Codes These messages indicate
the compiler has detected error condition(s) in the
source statements. Compilation may be complete, but
the object program may not run correctly.

Check and correct any statements in error. Rerun the
program.

Does the message still occur?

If you are using the "OPTIMIZE(TIME)" or
"OPTIMIZE(2)" compile option, recompile with
"NOOPTIMIZE" .

Is the problem circumvented?

Search early warning microfiche, INFO/ACCESS or
have the IBM Support Center search RETAIN using
component-id 5668909 and MSGIELxxxxl. Information
about doing your search is in Chapter 7, "Using SSF
and CSSF Search Arguments" on page 113. Any hits?

Action

Yes 39
No 41

Yes 29
No 30

Yes 30
No END

Yes 41
No 31

Yes 39
No 41

Figure 5 (Part 4 of 6). Compile-Time Problem Determination Chart

8 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restrtct~J;f M~J~rt~!l).of IBM"
Licensed Materials - PropertyoffBM

Block
No.

32

33

34

Question

If a loop appears to be occurring, use a system trace
facility or instruction step mode to capture all, or at
least part, of the loop addresses. Then cancel the job
with a dump.

Find the current phase in the dump as follows:

• Register 13 points to the communications area
(XCOMM).

• To check, look at the field at offset X'90' from reg­
ister 13. This field should contain the first source
input record. If register 13 has been corrupted,
search for this field to locate XCOMM.

• The current phase name is at offset X '4AB 1 from
the beginning of XCOMM. This field contains two
letters. Adding "IELO" before these two letters
and will give you the name of the current phase.

• The phase start address is at offset X 1434 1 from
XCOMM.

If you are using the "OPTIMIZE" compile option,
recompile using "NOOPTIMIZE." Phase "IELOIE" may
appear to be in a loop if a large number of "BYNAME"
assignments are used or if the source does an assign
to a large "PICTURE" statement. Phase "IELOIK" may
appear to be in a loop sorting data names for the
XREF table. Give the compiler a little more time.
Other loops may be caused by:

• Using a colon instead of a semicolon
• Not enough storage
• Not enough time.

Is the problem circumvented?

Search early warning microfiche, INFO/ACCESS, or
have the IBM Support Center search RETAIN using:

• component-id 5668909

• LOOP and module name(s) in which loop occurs.

Information about doing your search is in
Chapter 7, "Using SSF and CSSF Search Arguments"
on page 113.
Any hits?

The only waits the compiler issues are for I/O. Wait
states should be investigated from the system control
viewpoint:

• Check to see that the region running PUI is not
waiting for a resource owned by another region.

• See if there are any system messages.

If you still suspect the PUI compiler is causing the
wait, go to Block 41.

Figure 5 (Part 5 of 6). Compile-Time Problem Determination Chart

Action

Yes 41
No 33

Yes 39
No 41

41

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 2. Compile-Time Problem Determination 9

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block
No.

35

36

37

Question

Be sure all appropriate compile options are specified.
If you are using the "OPTIMIZE(TIME)" or
"OPTIMIZE(2)" compile option, recompile with
"NOOPTIMIZE".

Is the problem circumvented?

Search early warning microfiche, INFO/ACCESS, or
have the IBM Support Center search RETAIN using
component-id 5668909 and INCORROUT, a word
describing what output is incorrect. Information about
doing your search is in Chapter 7, "Using SSF and
CSSF Search Arguments" on page 113.
Any hits?

Performance problems usually show up after some
environment change; if not a maintenance change,
then perhaps a source code or compile option change.
Review these items.

If you are using the "OPTIMIZE(TIME)" or
"OPTIMIZE(2)" compile option, recompile with
"NOOPTIMIZE" .

Is the problem circumvented?

38 Search early warning microfiche, INFO/ACCESS, or
have the IBM Support Center search RETAIN using
component-id 5668909. Information about doing your
search is in Chapter 7, "Using SSF and CSSF Search
Arguments" on page 113.
Any hits?

39 Apply the fix(es), circumvention from RETAIN, and test.

Is the problem solved?

40 Did the symptoms change?

41 Contact the IBM Support Center for assistance. Have
available the following documentation:

• Compilation listing with LIST, SOURCE, XREF,
STMT, ESD, and MAP options specified

• The TSO or CMS command sequence or the JCL
used to run the job

• Dump (if applicable)

• Preprocessor input (if applicable)

• List of applied fixes.

Figure 5 (Part 6 of 6). Compile-Time Problem Determination Chart

Action

Yes 41
No 36

Yes 39
No 41

Yes 41
No 38

Yes 39
No 41

Yes END
No 40

Yes 2
No 41

10 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

r

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 3. Compiler Output

This chapter describes the part of the load module generated by the compiler.
The compiler output is a relocatable object module consisting of a series of
80-column records. These records contain either machine instructions, con­
stants, or external or internal addresses that the linkage editor resolves. The
records are:

TXT records
Contain machine instructions or constants.

RLD records
Contain internal addresses that require updating for a load module.

ESD records
Contain external names to be resolved (bound) with other programs
and data areas.

The compiler produces two main control sections:

• The program control section, holding the executable instructions translated
from the PLII program.

• The static internal control section holding constants, addresses, and static
variables.

The compiler also generates a number of other control sections. These handle
certain housekeeping functions or they are used for external data. This external
data may have identical control sections generated for it by other compilations.

Storage for workspace and automatic variables is acquired during execution,
normally by the prolog code that is executed at the start of every block.

The output from the compiler is shown in Figure 6 on page 13, and listed
below:

1. Control sections that are a/ways generated

Program control section
Containing executable instructions.

Static internal control section

PLiSTART

Containing addresses, control blocks, constants, and
STATIC INTERNAL variables.

The entry point for the executable program phase.
Passes control to initialization routine.

2. Control sections that are generated only when required

PLiMAIN Containing the address of the entry point of the main procedure.
(Generated only for procedures with OPTIONS (MAIN).)

PLiFLOW A control section generated when the compiler FLOW option is
specified.

LY27·9528·0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 11

PLiCOUNT

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

A control section generated when the COUNT compiler option is
specified.

Static external control sections
A static external control section is generated for every external
variable, file, and procedure.

Plus control sections for
Each user-defined condition, and each compiler-generated sub­
routine used.

3. Dummy sections

Pseudo-register vector
A dummy section used to address files, controlled variables and
FETCHable entry constants.

Program initialization uses the two control sections, PLiSTART and PLiMAIN.
PLiSTART holds the address of the library initialization routine IBMBPIR, which
is entered at the start of the program. PLiMAIN holds the address of the start
of the code for the main procedure. This is the address to which the library
initialization routine branches when initialization ends. It is marked "*REAL
ENTRY" in the object-program listing.

A PLiMAIN control section is generated for every procedure for which OPTIONS
(MAIN) is specified in the procedure statement. When two such procedures run
together, control passes to the first procedure processed by the linkage editor.

Appendix A, "Control Blocks" on page 119 gives the format of PLiMAIN and
PLiSTART.

If you use the compile-time FLOW option, a control section called PLiFLOW is
also generated. This contains code that results in the link-editing of the trace
module IBMBEFL, and also contains the values of "n" and "m" specified in the
option.

12 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Program control section

Contains:
---. Executable instructions
---. translated from source

program

Static internal
COMPILER control section

Housekeeping 1
control sections

PLISTART
Contains:

Instructions
passing control
to initialization
routine

PLIMAIN
Contains:

Address of main
procedure

Ip~I~L~W- - - - - -1
Contains:

External reference I
to library module
used in FLOW
option

PLICOUNT
Contains:
External reference
to library module
used in COUNT
option

"

~ ~o~t~o~ ~e~t~o~ ~o~ - 1
compiler-generated

l=u~r~u~i~e _______ J

l

Contains:
---. Addresses
---. Constants

Control information
Static internal
variables

Control sections for
data declared
EXTERNAL

A separate control section
for each external:

Variable
Fi 1 e
Procedure
Us'er condition
Symbol table for external data

Durmy Sec t ion

r-A-d:~y-S~c~i:n- - ~
containing address
information for
file and controlled
variables.

Becomes the
pseudo-register

~v~c~o~ ~P~V~ ___ ~

Figure 6. The Output from the Compiler

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 13

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Note: Control sections surrounded with broken lines are generated only when
required.

The Organization of This Chapter
The remainder of this chapter describes the contents of the static internal
control section and the program control section. First the conventions used in
the object program listing and the static storage map are described.
Descriptions of the two control sections follow. The description of the program
control section covers the conventions used in the object program code, such
as register usage, method of handling flow of control, and addressing informa­
tion. A short discussion of the effects of optimization completes the chapter.

Listing Conventions
Figure 7 shows all the program listing information that the compiler can
produce. It also shows the relevant compile-time options and summarizes the
information produced if these options are specified.

This chapter describes the contents of the static-storage map and the object­
program listing. as PLII Version 2 Programming Guide gives information on the
other items generated.

Name Contents

Source program Source program statements

Aggregate table Names and storage requirements of struc­
tures and arrays

Storage requirements Names and storage requirements of all proce­
dures

ESD references Name, type, and identifier of all external ref­
erences generated by the compilerl

Static storage Contents of static internal and static external

Table of offset and
statement number

Object program

Variables offset MAP

control sections in hexadecimal notation with
comments

Offsets, within code, of the start of each state­
ment

The contents of the program control section
in hexadecimal and translated into a pseudo­
assembler-language format

The offsets of automatic and static internal
variables from their defining base

Figure 7. Contents of Listing and Associated Compile-Time Options

Note to Figure 7:

External references within library modules are not included.

Compiler
Option

SOURCE

AGGREGATE

STORAGE

ESD

MAP and LIST

OFFSET

LIST

MAP

14 OS PUI Version 2 Problem Determination LY27-9528-0, © Copyright IBM Corp. 1985, 1987

/

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Static-Storage Map
The static-storage map is a formatted listing of the contents of the static internal
and static external control sections. You obtain this listing by specifying the
MAP option in the PROCESS statement. The static control sections contain
items grouped in the following order:

1. Address constants for entry points to procedures, and for branch
instructions

2. Address constants for resident library subroutines

3. Address constants for addressing static storage beyond 4K

4. The constants pool, which contains source program constants, data element
descriptors, locator/descriptors, symbol tables, declare control blocks
(DCLCBs), and other control blocks

5. Static variables.

The constants pool and the static-variable sections of static storage begin on
doubleword boundaries.

The static control section is listed, each line comprising the following elements:

1. Six-digit hexadecimal offset.

2. Hexadecimal text, in 8-byte sections where possible.

3. Comment, indicating the type of item to which the text refers; a comment
appears against only the first line of the text for an item.

A typical static listing is shown in Figure 8 on page 17.

The following comments are used (xxx indicates the presence of an identifier):

A ..
COMPILER LABEL CL.nn

CONDITION CSECT

CONSTANT

Address constant
Compiler-generated label followed by CL
plus number
Control section for programmer-named
condition

CSECT FOR EXTERNAL VARIABLE Control section for external variable
D ..
DED ..
ENVB
DCLCB
FED ..
KD ..
ONCB
PICTURED DED ..
RD ..
SYMBOL TABLE ELEMENT
SYMBOL TABLE ... xxx
SYMTAB DED ... xxx

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

Descriptor
Data element descriptor
Environment control block
Declare control block
Format element descriptor
Key descriptor
On control block
Pictured DED
Record descriptor
Address of symbol table
Symbol table for xxx
Symbol table DED for xxx

Chapter 3. Compiler Output 15

USER LABEL xxx
xxx

16 as PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Source program label for xxx
Name of variable. If the variable is not ini­
tialized, no text appears against the
comment; there is also no static offset if the
variable is an array. (The static offset can
be calculated from the array descriptor if
required.)

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

I~

)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SOURCE

2
3
4
5
6
7
8

EXAMPLE: PROC OPTIONS(MAIN) REORDER;
DCL X(10),Y,Z INITIAL (0);
GET EDIT(X,Y)(F(3),X(11));

DO I = 1 TO, Y;
Z=Z*X(I);

1 END;
PUT EDIT (Z) (A);

END;

STATIC INTERNAL STORAGE MAP

000000 E0000100
000004 00000008
000008 0000009A
OOOOOC 000000A4
000010 000000A4
088814 88808000
000818 00880000
00801C 80808800
000028 88800000
888824 08880000
008028 88880000
00802C 80080000
000038 88808000
888034 08008800
080038 88880080
80803C 00000880
080048 88800000
808044 88080000
888048 08088000
80884C 88800880
008050 80000000
088054 88000000
008058 88800000
00085C 08080000
880860 88048680
080064 500008838880
00006A 6000008B
00006E 58010080
008072 0804
800074 8001
880076
800078 91E091EO
00007C 88808000
008088 88008809
800884 00000801
880088 80000800
80008C 46008880
008090 80808000
008094 00808000
800098 00088080
00089C 80080800
OOOOAO 00008800
8800A4 80008080

PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCON
A .. IELCGIX
A •. IELCGIB
A .. IBMBCACA
A .. IBMBCEDB
A .. IBMBCHFD
A .. IBMBCTHD
A .. IBMBCVDY
A .. IBMBOCLA
A .. IBMBOCLC
A .. IBMBSAOA
A .. IBMBSEOB
A .. IBMBSEIA
A .• IBMBSEIT
A .. IBMBSFIA
A .. IBMBSIIA
A .. IBMBSIOA
A .. IBMBSIOT
A .. IBMBSXCA
A .. STATIC
OED .. X
FED
FED
FED
CONSTANT
CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
A •. DCLCB
A .. OCLCB
A .. OCLCB
A •• TEMP
A .. OCLCB
A •. TE~~P

8800A8 80000152008080A4 COMPILER LABEL CL.11

Figure 8, Example of Static Storage Listing

STATIC EXTERNAL CSECTS

000880 0880000000000000
0000800000000000
080000140005E2E8
E2C90508

000000 FFFFFFFC41201000
02070F8000000000
000088148008E2E8
E20709C905E30000

OCLCB

OCLCB

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 17

Object-Program Listing

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

By including the option LIST in the PROCESS statement, the programmer can
obtain a listing of the compiled code, known as the object-program listing. This
listing consists of the machine instructions, a translation of these instructions
into a form that resembles assembler language, and number of comments,
such as the statement number. The format of this listing is shown in Figure 9
on page 20.

The format has blocks of code headed by the number of the statement in the
PLII program to which they are equivalent. When optimization results in code
being moved out of a statement, this is indicated. Only executable statements
appear in the listing. DECLARE statements are not included, because they
have no direct machine-code equivalent. To simplify understanding of the
listing, the names of PL/I variables are inserted, rather than the addresses that
appear in the machine code. Special mnemonics are used when referring to
control blocks and other items.

Statements in the object program listing are ordered by block. Statements in
the outermost block are given first, followed by statements in the inner blocks.
As a result, the order of statements frequently differs from that of the source
program.

Every object-program listing begins with the name of the procedure. The name
is defined as a constant in a DC instruction. Another constant follows this
which contains the length of the procedure name. Next, the name of the proce­
dure appears as a comment, followed by code under the heading "REAL
ENTRY." At this point, the code is entered. The second section of code is the
prolog, which carries out various housekeeping tasks and is described more
fully later in this chapter. The message" PROCEDURE BASE." marks the end of
the prolog. Following this is a translation of the first executable statement in
the PL/I source program.

The comments used in the listing are as follows:

• PROCEDURE xxx-identifies the start of the procedure labeled xxx.

• REAL ENTRY -heads the initialization code for an entry point to a proce­
dure.

• PROLOG BASE-identifies the start of the prolog code common to all entry
points into that procedure.

• PROCEDURE BASE-identifies the address loaded into the base register for
the procedure.

• STATEMENT LABEL xxx-identifies the position of source program state­
ment label xxx.

• PROGRAM ADDRESSABILITY. REGION BASE-identifies the address which
the program base is updated if the program size exceeds 4096 bytes and
consequently cannot be addressed from one base.

• CONTINUATION OF PREVIOUS REGION-identifies the point at which
addressing from the previous program base recommences.

• END OF COMMON CODE-identifies the end of code used in the execution
of more than one statement.

18 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• END PROCEDURE -identifies the end of a procedure.

• BEGIN BLOCK xxx-indicates the start of the begin block with label xxx.

• BEGIN BLOCK NUMBER xx-indicates the start of the begin block with
number xx.

• END BLOCK -indicates the end of the begin block.

• STATEMENT NUMBER n-identifies the start of code generated for state­
ment number n in the source listing.

• INTERLANGUAGE PROCEDURE xxx-identifies the start of encompassing
procedure xxx

• END INTERLANGUAGE PROCEDURE xxx-identifies the end of encom­
passing procedure xxx.

• COMPILER GENERATED SUBROUTINE xxx-indicates the start of compiler­
generated subroutine xxx.

• END OF COMPILER GENERATED SUBROUTINE-indicates the end of the
compiler-generated subroutine.

• ON-UNIT BLOCK NUMBER xx-indicates the start of an ON-unit block.

• ON-UNIT BLOCK END-indicates the end of the ON-unit block.

• END PROGRAM-indicates the end of the external procedure.

• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS-indicates that
some of the code that follows was moved from within a loop by the opti­
mization process.

• CODE MOVED FROM STATEMENT NUMBER n-indicates object code moved
by the optimization process to a different part of the program and gives the
number of the statement from which it originated.

• CALCULATION OF COMMONED EXPRESSION FOLLOWS-indicates that an
expression used more than once in the program is calculated at this point.

• METHOD OR ORDER OF CALCULATING EXPRESSIONS CHANGED- indi­
cates that the order of the code following was changed to optimize the
object code.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 19

000056 48 50 F 050 LH 5.80(0.15)
00005A 4B 50 E 882 SH 5.2(0.14)
00005E 91 C0 E 881 TM 1(14).X'C0'
000062 47 E6 7 076 BUD *+20
000066 4B 56 E 002 SH 5.2(6.14)
00006A 91 40 F 026 TM 38(15).X'48'
80006E 47 80 7 076 BZ *+8
000072 06 50 BCTR 5.0
660074 06 50 BCTR 5.8
000076 40 50 F 050 STH 5.80(0.15)
00007A 58 50 F 04C L 5.76(0.15)
00007E 50 50 1 000 ST 5.0(0.1)
000082 4A 50 E 002 AH 5.2(0.14)
600086 91 C0 E 001 TM 1(14).X'C8'
60008A 47 E0 7 09E BIIO *+20
06608E 4A 50 E 002 AH 5.2(0.14)
600092 91 40 F 026 TM 38(15) .X'40'
000096 47 80 7 09E BZ *+8
00009A 41 55 0 002 LA 5.2(5.0)
00009E 50 50 F 04C ST 5.76(0.15)
0000A2 58 50 1 01C L 5.28(0.1)
0000A6 02 03 1 01C 0 04C "lYC 28(4.1).76(13)
0000AC 07 F6 BR 6
0000AE 58 F0 7 0CC L 15.204(0.7)
0000B2 95 60 E 000 CLl 0(14).X'60'
0000B6 47 70 7 0BE BilE *+8
0000BA 58 F0 7 000 L 15.208 (0.7)

800038
00883C

"Restricted Materials of IBM"
[icen sed -Materiats----Property .oUBM_

DC AL4(8)
DC AL4(8)

* EtlO OF Cor'lPILER GEIIERATEO SUBROUTIIiE

* STATENENT !lUl·tBER
000009 DC C' EXA~IPLE '
006067 DC ALl(?)

* PROCEDURE EXA~lPLE

* REAL ENTRY
000008 90 EC 0 08C sn~ 14.12.12(13)
00000C 47 F8 F 84C B *+72
000010 80008006 DC A(STMT. 110. TABLE)
000014 00000130 DC F'304'
000018 00000808 DC A(STATIC CSECT)
00001C 00000000 DC A(SYMTAB VECTOR)
000029 00000000 DC A(COMPILATION IIIFO)
000024 E8080888 DC X'E8000000'
000028 00010180 DC X'00010100'
00082C 00000009 DC X'00000000'
000038 00000089 DC X'00000000'
000034 00000080 DC A(EIITRY LIST VECTOR)
000038 00000089 DC X'00000000'
00003C 01082000 DC X'01002000'

PL/I OPTIMIZIIiG COMPILER EXAf.1PLE: PROC OPTIotIS(t·1Altl) REORDER; PAGE 8

000040 00000000 DC A(REGIOII TABLE) 000006 50 88 0 0F4 ST 8.244(0.13)
000044 00000003 DC X'00000003' 00000A CL.5 EQU
000048 00000000 DC A(PRItoIARY ENTRY) 00000A 58 E8 3 084 L 14.132(0.3)
00004C 00000080 DC X' 00000000' 00000E 5E E8 0 0F4 AL 14,244(0,13)
000050 00000000 DC X' 00000000' 0000E2 89 E9 8 002 SLL 14,2
000054 58 30 F 018 L 3.16(0.15) 0000E6 18 4E LR 4.14
000058 58 10 0 04C L 1.76(0.13) 0000E8 41 E4 0 0C4 LA 14, VO .. X(4)
00005C 58 00 F 00C L 0.12(0.15) 0000EC 41 F0 3 060 LA 15,OED •• VO .• X
000060 IE 01 ALR 0,1 0000F8 58 10 0 0F0 L 1.240(0,13)
000062 55 00 C 00C CL 0.12(0.12) 0000F4 90 EF 1 008 STN 14.15.8(1)
000066 47 00 F 068 BIIH *+10 0000F8 05 AA BALR 10,10
00006A 58 F0 C 074 L 15.116(0,12) 0000FA 58 80 0 0F4 L 8,244(0.13)
00006E 05 EF BALR 14.15 0000FE SA 80 3 084 A 8,132(0.3)
000070 58 E0 0 048 L 14.72(0.13) 000182 50 80 0 0F4 ST 8,244(0,13)
000074 18 F0 LR 15,0 000186 59 80 3 088 C 8,128(0.3)
000076 90 E0 1 048 SHl 14.0.72(1) 00810A 47 C0 2 036 BIIH CL.5
00007A 50 00 1 004 ST 13,4(0,1) 00010E 41 E0 0 0B8 LA 14. Y
00007E 41 01 0 000 LA 13.0(1.0) 000112 41 F0 3 060 LA 15. OED .• Y
000082 50 50 0 058 ST 5.88(0.13) 000116 58 10 0 8F8 L 1,240(0.13)
000086 92 80 0 000 tWI 0(13),X'80' 00011A 90 EF 1 008 STl1 14.15.8(1)
00008A 92 25 0 001 NVI 1(13).X'25' 00011E as AA BALR 10.10
00008E 92 02 0 076 MVI 118(13) ,X'02' 008128 47 F0 2 0AE B CL.11
000092 02 83 0 054 3 078 ~IVC 84(4.13) .120(3) 008124 CL.10 EQU *
000098 05 20 BALR 2.0 000124 41 E0 3 064 LA 14.100(0.3)

008128 58 10 0 0F0 L 1.240(0.13)
* PROLOGUE BASE 00012C 58 70 3 814 L 7 ,A .. I ELCGIX

000139 05 67 BALR 6.7
* INITIALIZATION CODE FOR Z 000132 58 F0 3 848 L 15.A •• IBHBSFIA
00009A 78 40 3 07C LE 4.124(0.3) 000136 05 EF BALR 14.15
00009E 70 40 0 0BC STE 4.Z 000138 58 70 3 018 L 7 .A •. IELCGIB
* EIIO OF INITIALIZATION CODE FOR Z 00013C 05 67 BALR 6.7

00013E a5 AA BALR 10.10
0000A2 05 20 BALR 2.0 000148 41 E9 3 86A LA 14.106(0.3)

000144 58 18 0 0F0 L 1.240(0.13)
* PROCEDURE BASE 000148 58 70 3 014 L 7,A •. IELCGIX

00814C 05 67 BALR 6,7
00814E 47 F8 2 880 B CL.10
000152 CL.11 EQU

* STATHIENT NUt,tBER 3
0080A4 41 70 0 100 LA 7.256(0.13)
0000A8 50 70 3 09C ST 7.156(0.3) * STATH1Eln NUMBER 4
0000AC 96 80 3 09C 01 156(3) ,X'80' 000152 78 80 0 0B8 LE 0, Y
0000B0 41 10 0 100 LA 1.256(0.13) 000156 70 00 0 0F8 STE 0,248(0.13)
0000B4 50 10 0 0F0 ST 1,240(0,13) 00015A 48 70 3 074 LH 7,116(0.3)
9000B8 92 24 0 111 t·IVI 273(13) .X'24' 00015E 48 70 0 0C0 STH 7. I
0000BC 41 E0 3 0A8 LA 14.168(0.3) 000162 48 40 0 0ca LH 4. I
0000ca 50 E0 0 118 ST 14.280(0.13) 000166 50 40 0 128 ST 4.296(0.13)
0000C4 41 10 3 098 LA 1.152(0.3) 00016A 48 40 3 08C LH 4.140(0.3)
0000C8 58 Fa 3 04C L 15.A •• IBMBSI IA 00016E 40 40 0 128 STH 4,296(0.13)
0000CC 05 EF BALR 14.15 000172 97 80 0 12A Xl 298(13) .X'80'
0000CE 41 A0 2 080 LA 10.CL.10 000176 78 20 0 128 LE 2,296(0.13)
000002 58 80 3 088 L 8.136(0.3) 00017A 7B 20 3 a8C SE 2.140(0.3)

Figure 9 (Part 1 of 2). Part of an Object Program Listing

20 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PL/I OPTItHZItIG COtolPILER EXA~lPLE: PROC OPTIOUS(MAItl) REORDER; PAGE 9

(HHH7E 39 20 CER 2,0 000208 58 10 0 0FS L 1,240(0,13)
60018E1 47 2E1 2 124 BH CL.3 ElEI020C 50 E0 1 ElSC ST 14,12(0,1)
60E1184 CL.2 EQU * ElEI021E1 58 FEI 3 03C L 15, A •• I BNBSEDB

Ele0214 05 EF BALR 14,15
ElEI0216 65 AA BALR 10,10

* STATENENT HUMBER 5 El00218 47 F0 2 160 B CL.7
6E1E1184 48 9E1 0 ElC0 LH 9, I El0021C CL.8 EQU *
0E10188 89 90 0 El02 SLL 9,2 00021C 58 10 0 0F0 L 1,240(0,13)
El6618C 78 40 0 ElBC LE 4,Z Elfl022E1 58 FEI 3 054 L 15,A •• IBr·1BSIOT
600190 7C 49 0 0C4 ~IE 4, VO •• X(9) 000224 05 EF BALR 14,15
El0E1194 76 40 0 ElBC STE 4,Z

* STATEMENT tfUf.lBER 8
* STATEr'IEtlT Nur·1BER 6 606226 18 00 LR 0,13
0E10198 48 7E1 0 0C0 LH 7, I 000228 58 00 0 004 L 13,4(0,13)
66019C 4A 76 3 674 AH 7,116(0,3) 00022C 58 E0 0 ElEiC L 14,12(0,13)
ElEIEIIAEI 40 70 0 ElC0 STH 7, I 0E1023E1 98 2C 0 El1C LM 2,12,28(13)

00E1234 El5 IE BALR 1,14
* CODE MOVED FRON STATEMENT rlU~1BER 4
6E101A4 48 7E1 0 ElC0
0001A8 5E1 7E1 0 128
0001AC 48 7E1 3 El8C
0001BEI 40 70 0 128
6001B4 97 80 0 12A

Figure 9 (Part 2 of 2).

LH 7, I * END PROCEDURE
ST 7,296(0,13) 000236 07 07 NOPR 7
LH 7,140(EI,3)
STH 7,296(0,13) * END PROGRAf.1
XI 298(13).X'8fl'

Part of an Object Program Listing

In certain cases, the compiler uses mnemonics to identify the type of operand
in an instruction, and, where applicable, follows the mnemonic by the name of a
PUI variable. The following prefixes are used:

A ..
ADD ..
BASE ..
BLOCK.nn
CL.nn
0 ..
OED ..
HOOK ... ENTRY
HOOK ... BLOCK-EXIT
HOOK ... PGM-EXIT
HOOK ... PRE-CALL
HOOK ... INFO
HOOK ... POST-CALL
HOOK ... STMT
HOOK ... IF-TRUE
HOOK ... IF-FALSE
HOOK ... WHEN
HOOK ... OTHERWISE
HOOK ... LABEL
HOOK ... DO
HOOK ... ALLOC
WSP.n

L..
LOCATOR ..
RKD ..
VO ..

Address constant
Aggregate descriptor descriptor
Base address of a variable
Identifier created for an otherwise unlabeled block
Compiler-generated label
Descriptor
Data element descriptor
PUTEST block entry hook
PUTEST block exit hook
PUTEST program exit hook
PUTEST pre-call or function reference hook
PUTEST Additional pre-call hook information
PUTEST post call or function reference hook

PUTEST statement hook
PUTEST IF true hook
PUTEST ELSE hook
PUTEST WHEN true hook
PUTEST OTHERWISE true hook
PUTEST label hook
PUTEST iterative DO hook
PUTEST ALLOCATE controlled hook
Workspace, followed by decimal number of the block of
allocated workspace
Length of variable
Locator
Record or key descriptor
Virtual origin (the address where element 0 would be
held for a one-dimensional array, element 0, 0 for a two­
dimensional array, etc.).

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 21

Static Internal Control Section

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The static internal control section contains the majority of items that are not
executable instructions. The contents of a typical static control section are
shown in Figure 8 on page 17.

The first part of the static internal control section contains addresses. These
are held in the order:

1. Addresses in static CSECT and code CSECT
2. Addresses of library modules
3. Addresses of entry points
4. Addresses of label constants that may be assigned to label variables
5. Addresses of external procedures (other than library modules)

The address section is followed by a section known as the constants pool. This
contains the following items (if required by the program):

Constants

ONCBs

Descriptors,
locators and
DEDs (data
element
descriptors)

Symbol table
address vector

Constant Values Used by Compiled Code

Control blocks used in error handling.

Control information used by compiled code
and library.

Control information used in data-directed 1/0.

Figure 10. Constants Pool Contents

Items are arranged according to their alignment requirements, those requiring
doubleword alignment first, followed by fuHword, halfword, byte, and bit.

The next section of the static internal control section holds the static variables.
These are held in size order, with the smallest being first.

The final section of the static internal control section contains branch tables for
those select-groups for which optimized code has been produced, the symbol
table vectors and symbol table for PLiTEST, the truncated statement number
tables containing GOSTMT and GONUMBER data, and the TIMESTAMP data (if
this option has been specified at installation time).

22 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Program Control Section
The program control section contains the executable instructions that are a
translation of the PLII source program. The format of each program control
section depends on the contents of the source program. The discussion that
follows covers items that are common to all source programs.

This chapter also includes descriptions of certain library functions when they
are closely allied with the subject under discussion.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 23

Register Usage

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Details of register usage during the execution of compiled code are given in
Figure 11.

Register Dedicated Work Registers
Number Registers (plus special use) Preferred Registers Notes

0 General Cannot be used
as base

1 General + address
of parameter list

2 Address of Saved during
program in-I i ne record 1/0
base and TRT

instructions

3 Address of
static base

4 Address of tem-
porary base if
DSA size greater
than 3896 bytes

5 General + static Preferred register
back-chain on for DO-loop control
entry to procedure variable

6 General

7 General

8 General

9 General

10 General Preferred register
for DO-loop control
when BXLE instruc-
tion is used

11 General Preferred register
for DO-loop control
when BXLE instruc-
tion is used

12 Address of
TCA

13 Address of
current
DSA

14 General + branch-
and-link to library
and other routi nes

15 General + branch-
and-link to library
and other routi nes

Figure 11. Register Usage in Compiled Code

24 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

I

\

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The compilers use four general registers as bases for addressing various types
of data; these registers are dedicated registers. The rest of the registers are
used as required. These are work registers.

The dedicated registers are:

R2 Program base
R3 Static base
R12 TCA pOinter
R13 DSA pointer

By arranging the dedicated registers this way, the compiled code uses five
even/odd work register pairs. These registers are (0,1), (6,7), (8,9), (10,11), and
(14,15).

The compiler always uses certain registers for special tasks. The compiler
preferentially uses other registers for other tasks when they are available.
These tasks are shown in Figure 11 on page 24.

Dedicated Registers

Work Registers

Register 2-Program Base Register: Register 2 is the program base register
and is used for branching within the code. When the code exceeds 4K, register
2 is updated so that all branching is done on this register. Register 2 is not
used during in-line I/O (when data management calls are handled by compiled
code rather than by library subroutines) and during the execution of TRT
instructions. During these times, the program base register contents are saved
and the register used for other purposes.

Register 3-Static Base Register: Register 3 points to the start of the static
internal control section. The compiler lists the items found in this control
section in any particular program in the static-storage map. (See "Static
Internal Control Section" on page 22). When the static control section is larger
than 4K bytes, an additional base register is used.

Register 12-TCA: Offsets from register 12 are used to address the various
fields in the TCA. Its format is shown in Appendix A, "Control Blocks" on
page 119.

Register 13-Current DSA: Register 13 points to the current DSA. Register 13
addresses the automatic variables declared in the current procedure or block.
References to offsets from register 13 which do not appear as names in the
assembler language listing refer to the housekeeping fields held in every DSA.
Appendix A, "Control Blocks" on page 119 shows the format of the house­
keeping information in a DSA.

Register 4: When the DSA is larger than 3896 bytes register 4 is a base for
compiler-generated temporaries.

Figure 11 on page 24 shows special or preferred uses for work registers. Reg­
isters with special uses are free and always used for the special uses. Regis­
ters with preferred uses are used when possible.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 25

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Floating-Point Registers: Floating-point registers are all used as general work
registers for floating-point data.

Library Register Usage
Register usage in library modules is different from register usage in compiled
code. Figure 12 shows library register usage.

In both library and compiled code usage, register 12 points at the TCA, and reg­
ister 13 at the current DSA. Both library subroutines and compiled code use
registers 14 and 15 to branch and link between routines.

Note: Registers 14 through 4 are normally saved by the library because most
library subroutines use only these registers. You can save time by reducing
save-restore requirements. However, some library routines also save one or
more of registers 5 through 11.

Register Usage

Work register

2 Work register

3 Program base register (dedicated)

4 Work register

5 Work register

6 Work register

7 Work register

8 Work register

9 Work register

10 Work register

11 Work register

12 TCA pointer (dedicated in both library and compiled code)

13 DSA pointer

14 Work register (always used for branch-and-link to other routines)

15 Work register (used with register 14 for branch-and-link)

Figure 12. Library Register Usage

26 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of -IBM"
Licensed Materials - Property of IBM

Handling and Addressing Variables and Temporaries

Automatic Variables
The compiler allocates storage for automatic variables on a procedure or
begin-block basis. If the length of the variable is known during compilation then
the compiler allocates storage within the DSA of the block in which they are
declared. However, if the length of the variable is not known until execution,
then the compiler allocates storage in variable data areas (VDAs). VDAs are
held in the last-in/first-out storage stack and are acquired in the prolog code
alter the DSA has been acquired. The DSA is acquired in the same way and is
described in "Prolog" on page 33.

If automatic variables are used in the block in which they are declared and are
held in the DSA, the compiler addresses them from register 13. If they are held
in a VDA, the compiler addresses them from a separate base set up for the
VDA.

Automatic variables known in any block are those that are declared in that
block, or in any encompassing blocks. The method used to address automatic
variables in outer blocks is a static back-chain.

The compiler-generated prolog for a procedure saves the address of the static
back-chain DSA. This address can then be accessed from register 13. Fre­
quently, the value is retained in the register and not reloaded when the variable
is accessed. Typical code is:

L 7,96(0,13) Pick up address of correct DSA

L 8,108(7) Place value in register 8

Compiler-Generated Temporaries
Because PUI statements can contain an unlimited number of operands, it is fre­
quently necessary to set up fields containing intermediate results. These fields
are known as temporary variables (temporaries) and are allocated within the
DSA of the associated block, provided that the size of storage required is
known at compile time. Temporaries are addressed from register 13, unless
the DSA is longer than 4096 bytes. Because temporary storage is continually
being reused, the same offset will not always refer to the same temporary.

Temporaries for Adjustable Variables
Where a temporary is needed to hold a value for an adjustable variable, its size
is not predictable until execution. In such cases, a VDA is acquired for the tem­
porary value.

Controlled Variables
Controlled variables are addressed through the pseudo-register vector, as
described below under "The Pseudo-register Vector (PRV)" on page 29. When
no allocations of the controlled variable are made, the PRV offset points to the
dummy File Control Block (FCB). Otherwise, it points to the most recent allo­
cation of the controlled variable.

LY27-9528-0 co Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 27

Based Variables

Static Variables

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Each controlled variable is headed by a four-word control block that holds the
address of the previous allocation (if any), the length of the variable (including
the control block), the pseudo-register vector offset, and the task invocation
count. The format of this control block is shown in Appendix A, "Control
Blocks" on page 119. Storage for controlled variables is allocated in separate
heap storage.

Based variables are addressed by using the contents of the pointer on which
they are based. The pointer is addressed in the usual manner, depending on
its storage class. Storage for based variables which appear in an ALLOCATE
statement is allocated in HEAP or in a specified AREA.

Pointers: Pointers and offsets are held as fullwords. The null pointer value is
X I FFOOOOOO I.

Static internal variables are held in the static internal control section and are
addressed from reg ister 3.

Static external variables are held in separate control sections and are
addressed from an address constant in the static internal control section.

Addressing Beyond the 4K Limit
As described above, variables can, in the simplest case, be addressed by using
an offset from one of the base registers. However, as the space required for
any particular type of storage can exceed the maximum offset allowed in
addressing (4096 bytes), it is necessary to have a scheme to allow addressing
of variables beyond this limit.

The method used is to divide storage for automatic variables, temporaries, and
static variables into sections of 4096 bytes. The addresses of the second and
subsequent sections are then placed in the first section. Addressing of an auto­
matic variable beyond the 4096-byte limit is typically done by code resembling
the following:

L 6,92(8,13) Place address of 4K boundary in register 6.

AH 7,96(8,6) Address variable by using offset from 4K boundary
placed in register set up in last instruction.

A similar system is used for addressing any static variables which are at an
offset greater than 4096 bytes. The addresses an~ held in the following areas:

Automatic

Static

Immediately following the housekeeping information of the DSA.

At the head of the first section of static storage.

Temporaries At the head of temporary storage, following bases of parameters,
register save area, and addresses of any outer DSAs.

Constants and variables are held in order of size, with the smallest first. This
minimizes the number of items that overflow the 4K boundary.

28 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
\

(

\,

~
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Pseudo-register Vector (PRV)

Addressing Controlled Variables and Files
In order to address controlled variables, fetched procedures, and files, PUI
uses a control block called the pseudo-register vector (PRV). This control block
is mapped by the linkage editor as a dummy section with a fullword field for
each uniquely named controlled variable or file. During execution, the
addresses of the storage allocated to the variables, fetched procedures, or files
are placed in the PRV.

For an introduction to pseudo-registers, see OSIVS Linkage Editor and Loader,
or MVSIExtended Architecture Linkage Editor and Loader.

The use of the linkage editor is necessary because controlled variables and
files may be external and, consequently, it may be necessary to access them in
separately compiled procedures. Other external items are compiled as
CSECTs, but this is not possible for files or controlled variables because their
associated storage is not allocated until execution. Controlled variables have'
storage allocated during the execution of an ALLOCATE statement; files are
addressed from file control blocks (FCBs), which are created when the file is
opened during execution. The use of the linkage editor means that FETCHed
procedures cannot use controlled variables or files, except SYSPRINT.

References to controlled variables and files are compiled as assembler Q-type
address constants. During link-editing, the assembler DXD facility of the
linkage editor is used, and the PRV is set up as an external dummy section.
The address of the PRV is placed in the TCA. Each uniquely named file or con­
trolled variable is allocated an offset within the PRV by the linkage editor. The
offset then replaces the Q-type address constants.

Controlled variables and files are addressed via the PRV regardless of whether
they are external or internal. The compiler prefixes internal items with the
name of their procedures so that their names are unique. Figure 13 on
page 30 summarizes the use of the PRV.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 29

During compilation

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1. Each controlled variable or file reference is compiled as a Q-type address
constant that will be used as an offset within the PRV.

2. The compiler generates a DXD instruction for every item requiring pseudo­
register addressing.

During link editing

1. The number of unique names requiring pseudo-register addressing is calcu­
lated and placed in a field that can be accessed by a CXD instruction.

2. Each reference to a name generated as a Q-type address constant is
replaced by the appropriate offset from the start of the PRV.

During program initialization

1. The length required for the PRV is obtained by use of a CXD instruction.
Storage for the PRV is then obtained in the program management area.
The address of the PRV is placed in the TCA.

2. The address of the dummy FCB is placed in every field of the PRV.

During execution

1. When storage is allocated to the FCB or controlled variable, the address of
the storage is placed in the associated field in the PRV. Comparison with
the dummy FCB address can then be made, to determine whether storage
has been allocated for the item.

Figure 13. Use of the Pseudo-register Vector (PRV)

The Location of the PRY
The pseudo-register vector is held in the program management area, and is
addressed from the TCA.

Under Multitasking: Whenever a new task is attached, the PRV of the attaching
task is copied into the program management area of the attached task. This
means that, at the point when the task is attached, the files and controlled vari­
ables addressed from the subtask will be the same as those in the parent task.
However, because each task has its own PRV, either task may change the
addresses without affecting the other.

Initialization of the PRY
To simplify implicit opening, the PRV is initialized with every field set to point to
a control block known as the dummy FeB. Use of this control block as if it were
a genuine FCB results in control being passed to the open routines: the file is
opened, and a real FCB is created. The address of the real FCB is then placed
in the PRV.

(

\

Pseudo-register fields for controlled variables are also initialized to point to the ~
dummy FCB, so that the controlled variable allocation mechanism can deter-
mine whether an allocation was made, by comparing the PRV value with the

30 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

address of the dummy FeB. (The address of the dummy FCB j·s held
throughout the program in the TCA, so that the comparison can be made.)

Program Control Data
Program control data comprises pointer, offset, file, area, entry, event, task, and
label data.

Pointer and offset data items are each held in fullword. The data item in both
cases consists of an address that is held right-adjusted in the field, padded on
the left with zeros. For both data types, the null value is represented by
hexadecimal XI FFOOOOOO I.

A file variable is held as a fullword containing the address of the declare
control block (DClCS); the DClCS corresponds to a file constant.

The formats of area, entry, event, task, and label data are given in
Appendix A, "Control Slacks" on page 119.

Handling Data Aggregates
PUI data aggregates are structures and arrays, and include both arrays of
structures and structures of arrays.

Array elements are addressed from the virtual origin of an array. This is the
point at which the element whose subscripts are all zeros is held, or would be
held if there had been such an element included in the array. Each element
can be accessed by using a multiplier for each dimension. The multiplier is the
distance between elements in a cross-section of an array.

For example, in an array S(9,9) the multiplier for the first dimension is the dis­
tance between elements S(1, 1) and S(2,1); the multiplier for the second dimen­
sion is the distance between elements S(1, 1) and 8(1,2).

If the bounds of the array and the length of the elements of the array are known
during compilation, the values of multipliers can be calculated and placed as
constants in the static internal control section. For accessing an element with a
constant subscript, the offset from the virtual origin can be calculated during
compilation. If the subscript value is a variable, the multiplier must be picked
up from static storage during execution and the value calculated.

If the bounds or extents of an array are not known during compilation, a control
block known as an array descriptor is set up. This control.block is used to hold
necessary information about bounds, multipliers, etc. The information is placed
in the array descriptor during execution.

Structures are treated in a similar manner. Where all information about a
structure is known, it is mapped during compilation and offsets to each item
from the start of the structure are known to compiled code. If a structure
cannot be mapped during compilation, it is mapped during execution, and the
offsets within the structure are placed in a control block known as a structure
descriptor. To access an item in the structure, compiled code finds the offsets
and calculates the address of each element from them.

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Chapter 3. Compiler Output 31

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Arrays of Structures and Structures of Arrays
Arrays of structures and structures of arrays are held as they are declared.

The array of structures

1 S(2),
2 B,
2 C;

are held in the order

S(l) .B S(l) .C S (2) • B S(2).C

Band C are known as interleaved arrays, because the elements within each
array are not contiguous.

The structure of arrays

1 S,
2 B(2),
2 C (2) ;

are held in the order

S.B(l) S. B (2) S.C(l) S.C(2)

Elements are accessed as array elements in both cases. In the array of struc­
tures shown above, both Band C are treated as separate arrays with their own
virtual origins and multipliers. The difference would be in the value of the
multipliers. When possible, the values of multipliers are calculated during com­
pilation. When adjustable bounds or extents are involved, the necessary data
for both arrays of structures and structures of arrays is placed in a structure
descriptor.

Array and Structure Assignments
Assignments between structures and arrays of the same format are done by
MVC instructions. Provided an array is not interleaved, an assignment is made
to it as a whole, and the elements are not moved one at a time. Similarly,
structures that are contiguous and have the same format are moved as a
whole.

Handling Flow of Control
In PU/, five types of statement can result in nonconsecutive flow of control.
These statements are:

CALL statements
END statements
RETURN statements
Function references
GOTO statements

32 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/
I

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The first four of these are concerned with the block structure of the PL/I
program and involve passing control from one block to another. GOTO state­
ments can result in branches to code that is either in the current block, or in
any other active block.

Consecutive flow of control also ceases when an error or program interrupt
occurs.

Activating and Terminating Blocks
BEGIN, CALL, END, and RETURN statements, and function references all result
in the activation or termination of blocks. The block structure of PL/I is imple­
mented by means of a hierarchy of DSAs.

Each block (begin block, procedure block, or ON-unit block) executes on its own
program base that is set up at the end of the prolog code for each block. This
base is marked in the object code listing with:

* PROCEDURE BASE

In the PUI optimizing compiler, blocks are always called by means of a BALR
instruction on registers 14 and 15. Within the prolog code, the registers are
stored in the DSA of the calling block, and a new DSA is set up to hold the
automatic variables of the new block plus a certain amount of environmental
information such as the enablement or disablement of certain conditions.

When a block is terminated, the registers of the calling block are restored, and
a branch is made on register 14. This immediately returns control to the
instruction after the BALR issued in the preceding block. The DSA of the called
block is automatically discarded because all fields in the DSA, including the
pointer to the next available byte of free storage, were addressed from register
13. Because register 13 has been altered, the values that apply to the calling
block automatically become current when the calling block's registers are
restored.

Prolog and Epilog Code

Prolog

Except for certain single statement ON-units, every PUI begin block or proce­
dure block has a prolog and an epilog. The prolog prepares the environment
for the associated block and acquires storage for automatic variables, compiler­
generated temporaries, and workspace. The epilog frees the storage acquired
for the block, restores the registers of the caller, and returns control to the
caller.

The prolog appears on the object-program listing between REAL ENTRY and
PROCEDURE BASE or BLOCK BASE. Every prolog has to acquire a dynamic
save area (DSA) for the new block. (The DSA is a register save area concat­
enated with housekeeping information, plus storage for automatic variables and
temporaries.) Other jobs that may be done in the prolog code are:

• Initialization of automatic variables that have the INITIAL attribute.

• Initialization of pointers and locators that have the INITIAL attribute.

• Movement of parameter addresses passed to the procedure to the correct
location.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 33

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Acquisition of storage for adjustable variables.

• Initialization of certain items for argument lists.

• Setting-up certain interrupt-handling information such as ONCBs and enable
cells.

An example of prolog code is shown in Figure 14 on page 35. More informa­
tion about constants is in the "Communicating with Assembler Language Pro­
grams" chapter in the as PLII Version 2 Programming Guide.

34 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

STM 14,12,12(13)
B *+72
DC A(STMT. NO. TABLE)
DC F' 360 1
DC A(STATIC CSECT)

DC A(SYMTAB VECTOR)
DC A(COMPILATION INFO)
DC X'A9000000 1
DC X 100010101 1
DC X' 00000000 1
DC X' 00000000 1
DC A(ENTRY LIST VECTOR)
DC X' 00000000 1
DC X' 02008000 1
DC A(REGION TABLE)
DC X' 00000004 1
DC A(PRIMARY ENTRY)
DC X' 00000000 1
DC X'00000000 1
L 3,16(0,15)
L 1,76(0,13)
L 0,12(0,15)
ALR 0,1

CL 0,12(0,12)
BNH *+10

L 15,116(0,12)

BALR 14,15
L 14,72(0,13)
LR 15,0
STM 14,0,72(1)

ST 13,4(0,1)
LA 13,0(1,0)
ST 5,88(0,13)
MVI 0(13),X ' 80 1
MVI 1(13),X'241
MVC 84(4,13),120(3)

Other code as required

BALR 2,0

Figure 14. Typical Prolog Code

Store registers of calling program.
Branch around constants.
Constant
Constant - length required for new DSA.
Constant - address of static internal

CSECT
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
More of the same

Set up R3 as static base.
Rl to hold old NAD
Compare with tos in TCA
Add old NAB (in Rl) and length required

for DSA (in R0).
Compare with EOS in TCA.
Branch around library call if new DSA

fits in segment.
Load address of stack overflow routine

(IBMBPGR) from TCA.
Branch to overflow routine.
Load address of LWS from old DSA.
Set up new NAB address.
Set LWS, NAB, and end-of-prolog NAB in

DSA.
Place back-chain in new DSA.
Point register 13 to new DSA.
Set up static back-chain.
Set up housekeeping flags - see

Appendix A, "Control Blocks" on page 119.
Set up enable cells.

Other tasks may be carried out at this point,
such as initialization of variables with
the initial attribute, acquiring a VDA for
adjustable variables, and setting up
certain error-handling fields.

Set R2 as program base.

. After saving the registers, the prolog tests to see if there is enough room for
the DSA in the current segment of storage. This is done by adding the length of
the new DSA, calculated at compile time, to the address of the next available
byte.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 35

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If the result is greater than the end-of-segment pointer (EOS) placed in the TCA
during initialization, the library overflow routine (IBMBPGR) is called to try to
acquire a further segment from the free-area chain.

If space for the DSA is available, the next-available-byte pointer (NAB) is
updated to point at the first 8-byte boundary beyond the end of the new DSA.
The remaining instructions set up housekeeping fields and point registers at
various standard fields, including register 13 to the start of the new DSA, and
register 4 to the start of storage for temporaries. The final BALR instruction
establishes register 2 as the program base register.

Two back-chains are set up. The dynamic back-chain, which points to the DSA
of the calling or preceding block, and the static back-chain, which points to the
DSA of the statically encompassing block. For the main procedure, the dynamic
back-chain points to the dummy DSA, and the static back-chain is set to zero.
The address of the statically encompassing block is passed in register 5.

Static back-chains are used in tracing the scope of names and the enablement
of PLII conditions.

For PLII procedures with COBOL or FORTRAN in the OPTIONS option, the
prolog is considerably different from the one described above.

The format of the DSA is shown in Figure 15 on page 37; full details are shown
in Appendix A, "Control Blocks" on page 119.

36 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/
\

"

"Restricted Materlafs oflSMn­
Licensed Materials - Property of IBM

R13---..---------------,

Housekeeping information
See Appendix A, "Control Blocks"

Items<9 bytes in length

Held in alignment order:
doubleword
fullword
halfword
byte
bit

Items 9-2048 bytes in length

Held in alignment order as above

Items>2048 bytes

Held in alignment order as above

Parameter storage area
Addresses of any parameters
passed to the associated
procedure are stored here

Register bind storage area

Used by compiled code when
registers must be saved

Local temporary storage

Used for temporaries required
for duration of statement

Global temporary storage

Used by temporaries required
for duration of block

Storage for automatic
variables declared in
the block, dynamic
ONCBs etc.

Temporary storage

Figure 15. Contents of Typical Compiled Code DSA

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 37

Epilog

CALL Statements

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Epilog code consists of the instructions generated for END or RETURN state­
ments. These instructions restore the registers to the values that were held
when the current block was called. The register values are those stored in the
previous DSA. Typical epilog code is shown in Figure 16.

Epilog code for main procedure

LR 0,13
L 13,4(0,13)
L 14,12(0,13)
LM 2,12,28(13)
BALR 1,14

Save current DSA address
Back-chain
Pick up value of R14
Restore registers 2 through 12
Branch to initialization routine retaining
current address in Rl

Epilog code for subroutine or begin block

L 13,4(0,13)
LM 14,12,12(13)
BR 14

Back-chain
Restore registers of preceding block
Return

Figure 16. Epilog Code

The completion of a main procedure results in the raising of the FINISH condi­
tion, and this may result in the execution of an ON-unit.

Consequently, the address of the current DSA and the address of the current
statement must be retained (the DSA is needed to search for the ON-unit; the
address of the current statement is needed if a SNAP trace is requested in the
FINISH ON-unit). Epilog code for a main procedure therefore takes a different
form to that generated for a subroutine.

CALL statements are executed by picking up the address of the block to be
called from static storage. A BALR instruction is then carried out on registers
14 and 15. If arguments are being passed to the called procedure, an argument
list is set up in temporary storage, the first bit of the last argument is set to '1',
and register 1 is pointed at the argument list.

This example is for a call to an external procedure without parameters.

0000SE IB 11
000060 IB 55
000062 58 F0 3 024
000066 05 EF

SR 1,1
SR 5,5
L 15,36(0,3)
BALR 14,15

No parameters, so clear Regl
External proc, so no static back-chain
Pick up address of procedure
Branch to procedure

38 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Function References

Return Statement

GOTO Statements

Function references are compiled in exactly the same way as CALL statements.
If the function returns a value, an extra field is placed as the last argument in
the list. The returned value is placed in this field when the function is com­
pleted. In those cases where the compiler builds the parameter list in internal
static, the typical code might be:

0001FE 41 90 6 0B4 LA 9,B
000202 50 90 3 0BC 5T 9,188(0,3)
000206 41 90 6 0B0 LA 9,A
00020A 50 90 30C0 5T 9,192(0,3) 5et up parameter list
00020E 18 56 LR 5,13 Load static back-chain address
000210 41 10 3 0BC LA 1,188(0,3) Point register 1 at parameter

list
000214 58 F0 3 008

000218 05 EF

L 15,A ... DOUBLE Place address of function
(DOUBLE) in R15

BALR 14,15 Branch to function

RETURN statements are executed in a similar way to END statements, but
result in the termination of a procedure rather than a block. Consequently,
before the restoration of the registers, a back-chain must be made to correct
DSA. A back-chain is made through any BEGIN blocks. The depth of nesting
can be determined during compilation, so the back-chain can be loaded the
required number of times before the branch is made.

Typical code would be:

0003F0 58 D0 D 004
0003F4 98 EC D 00C
0003F8 07 FE

L 13,4(0,13) Pick up D5A back-chain
LM 14,12,12(13) Restore registers
BR 14 Branch to procedure

Note: If the procedure in which the RETURN statement occurs is a main proce­
dure, the code will take the form compiled for an END statement for an external
procedure.

Depending on whether the GOTO statement branches to a label within the block
or external to the block, then the branching has different implications. If the
label is outside the block, the branch implies that one or more blocks must be
terminated. If the label in the GOTO statement is a label variable, it is not
always possible to determine during compilation whether the label will be in the
same block as the GOTO statement. Consequently, interpretive code is used
for label variables.

For GOTO statements to a label constant withill the block, the compiler
produces a straightforward branch instruction. For GOTO statements that may
pass control to another block, compiled code calls the interpretive code.

This interpretive code is held in the TCA. The compiled code branches to the
interpretive code to implement a GOTO that may transfer control out of the
block. This TCA code determines whether it is one of a small number of
special cases, and, if it is, calls a library routine-IBMBPGO. In other circum­
stances, the GOTO code in the TCA handles the branch and any block termi­
nation involved.

L Y27 -9528-0 to Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 39

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GOTO within a Block

GOTO Out of Block

The optimizing compiler produces code that assumes that the registers retained
across the execution of a labeled statement will be 2, 3, 12, and 13. These are
the program base, the static base, the address of the TCA, and the address of
the current DSA. All other register values may be different when control
passes through the labeled statement on different occasions.

The enablement of conditions may differ in the GOTO statement and in the
labeled statement. Within a block, the enablement status may be varied only
for the duration of a single statement. The GOTO therefore resets the block
enablement status before the branch is taken. If the labeled statement has a
different enablement status from the block, it will be automatically reset in the
labeled statement.

The enablement of conditions is recorded by enable cells. Two sets are used:
the block enable cells retain the enablement situation at the start of the block,
which can consequently be restored at any time; the current enable cells hold
the enablement situation that is current, which, as explained earlier, may differ
from that at the start of the block.

A GOTO within block normally takes the form of a simple branch instruction
plus any alteration of the enablement bits that may be necessary to reset the
enablement situation to that at the start of the block. Typical code is:

000FIA 47 F0 2 0C8 B INPUT Branch to correct address in
compiled code (label name is
"INPUT")

The optimizing compiler attempts to retain the same block base for all branches
within a block. However, this is not always possible and, if the code for the
block is longer than 4096 bytes, it may be necessary to set up a new base when
a GOTO statement is executed. As all labels are stored with both their address
and their base this presents no problem. The address of the label and the
value of its base form the value of the label constant. The value of the base is
placed in register 2, and a branch is made to the label address.

When a GOTO to a label within the block is made, there is no need to reset
registers 3, 4, 12, or 13 as these are not altered within a block. When OPTIMIZE
(TIME) is specified an attempt is made to retain other register values across
labels.

Labeled statements within a block have an effect on optimization in that, apart
from the bases and block addresses mentioned above, values cannot normally
be retained in registers beyond a labeled statement.

GOTO statements that transfer control from a block have to overcome the prob­
lems described above, plus problems of block termination.

For a GOTO out of block or to a label variable, compiled code makes a call to
the GOTO code in the TCA, which is held at offset 128 (decimal). Through reg­
isters 14 and 15 the GOTO code receives either the contents of the label vari­
able or the equivalent information for a label constant. This equivalent
information is the address where the label constant is held and the address of
the DSA of the block in which the label appears.

40 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The GOTO code restores registers 3 and 4 from the DSA passed to it, loads
register 2 from the second word of the label constant, and loads register 13
from register 15. It then branches to the appropriate point in code which is
picked up from the address of the label constant, passed in register 14.

The enablement situation at the start of the block has to be restored, and this is
done by setting the current enable cells in the DSA to the value of the block
enable cells. If the current enable cells indicate that CHECK is enabled, a
search is made for qualified CHECK ONCB, so that the enable cells may be set
to the start-of-block situation in this ONCB.

In a similar manner, it may be necessary to restore the NAB value to that at the
start of the block. This will be necessary if the statement that left the block
acquired a VDA. The start-of-block NAB value is retained in the DSA and is
known as the end-of-prolog NAB. If a VDA has been acquired, the fact is
flagged in the flag byte of the DSA, and the GOTO places the end-of-prolog NAB
value in the current NAB field.

Such action is never required within a block, as VDAs are only acquired for the
duration of one statement and are never used for GOTO statements. Typical
code would be:

GaTa label-constant (out of block)

000226 18 E6 LR 15,6 Place address of OSA in R15
000228 41 EO 3 088 LA 14,136(0,3) Place address of label

constant in R14
00022C 47 FO C 080 B 128(0,12) Branch to GaTO code in TCA

GOTO Label Variable
GOTO label variable statements are treated in different ways depending on
whether optimization has been specified.

For NOOPTIMIZE, they are all treated as GOTO out of block; for OPTIMIZE
(TIME), a check is made to determine whether they could be out-of-block
branches. The check is made by testing a label list, which is a list of the label
constants to which the label variable may be assigned. If the programmer has
supplied a label list, it is used. Otherwise, a list is generated containing all the
label constants that are assigned to label variables. If a branch to any of the
labels in the list could result in a GOTO out-of-block, all GOTO statements refer­
ring to the label variable are treated as GOTO out-of-block situations. Typical
code would be:

GOTO label-variable

000000 98 EF 0 OA8 LM 14,15,168(13) Load R14 and R15 with label
variable

000004 47 FO 0 080 B 128(0,12) Branch to GOTO code in TCA

Errors When Using Label Variables
Although it is invalid PLlI, it is possible for a GOTO statement using a label var­
iable to result in transfer of control to an inactive block. The optimizing com­
piler has no method of checking such errors, and the consequences are
unpredictable. Such errors can occur because a label variable is not reset
when the block containing the label constant to which it refers is terminated.
When an attempt is made to GOTO a label variable, the address of the DSA is

LY27-9528-0 CO Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 41

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

passed in register 14. The GOTO code verifies this address to be the address
of an active DSA, and acts accordingly. Three possibilities arise:

1. The original DSA has not been overwritten, and the program will execute.

2. The DSA of another active block has overwritten the original DSA. The
results are then unpredictable, as the code branched to will be accessing
an incorrectly mapped DSA.

3. The original DSA has been overwritten with other information. Again, the
results are not predictable. When PLII determines that the data in the DSA
is not another DSA, ERROR condition code 9002 is raised.

It should be noted that, because of the method used to allocate DSAs, the
chances of one DSA starting at the same address as a previous DSA are high.

GOTO-Only ON-Units
Certain ON-units are not lexecuted as separate program blocks. Instead, the
required action is taken under the control of the error handler. ON-units con­
taining only a GOTO statement (GOTO-only ON-units) are handled in this way.

The error handler accesses ON-units through control blocks known as ON
control blocks (ONCBs). The ONCB for a GOTO-only ON-unit is specially
flagged, and the last word of the ONCB is initialized to hold an offset. At this
offset in the DSA of the block containing the ON-unit, the address of the label
information is held. For a label variable, the offset contains the address of the
label variable; for a label constant, the offset contains the address of a label
temporary that is initialized to the value of the label constant. The initialization
is done during the execution of the prolog of the block that contains the
ON-unit.

The error handler loads the information in the label variable or the label tempo­
rary into registers 14 and 15, and calls the GOTO code in the TCA.

Interpretive GOTO Routines
If the test in the GOTO code in the TCA reveals that an abnormal situation
exists, the interpretive GOTO routine is called. This routine is a subroutine of
the program initialization routine.

Two abnormal cases can arise:

GOTO out of SORT exit routine
GOTO from an event 110 ON-unit (certain cases only)

When either of these situations could occur a flag is set in the TCA. Sort exits
are also flagged in the DSA of the procedure involved.

The SORT exit DSA requires special action because the GOTO will involve the
termination of SORT if it transfers control to another block.

The GOTO during an event I/O ON-unit can cause the termination of a number
of WAIT statements. This involves removing information about these state­
ments from the various chains that are set up during event I/O.

If CHECK enablement has to be changed because of a GOTO, the interpretive
GOTO routine calls the library routine IBMBPGO to reset check enablement.

42 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Argument and Parameter Lists

Library Calls

In PLlI, a parameter list is a list of the items a program expects to receive; an
argument list is a list of the items that are passed by the calling routine.

Between PLII routines, addresses are always passed rather than the arguments
themselves. For strings, structures, arrays, and areas, the addresses of loca­
tors are passed rather than the addresses of the arguments themselves.

When arguments are passed to routines whose entry points are declared with
the ASSEMBLER, COBOL, or FORTRAN attributes, the address of the data itself
must be passed.

Arguments are passed in an argument list addressed by register 1. For
nonreentrant, nonrecursive code, the list is set up in static storage and com­
pleted by the compiler if the values are are known at compile time. If the pro­
cedure is reentrant, recursive, or fetched, the list is moved into the temporary
storage area in the DSA before the call is made; otherwise the parameter list is
moved into automatic storage.

The addresses passed in the argument list are moved into the parameter
storage area, which is held at the head of temporary storage and is addressed
by register 4. (See Figure 14 on page 35) Parameters are then accessed by
picking up the addresses from this area.

Dummy arguments, when they are required, are set up by the calling program.
Consequently, the called program can treat all arguments in the same manner.

Library calls occur in object program. All library cal!s that appear in the object
listing are to resident PLII library modules. Transient PLII library routines are
called by routines in the resident library routines.

The number of library calls used depends on the source program and the level
of optimization specified. For OPTIMIZE (TIME), the minimum number of library
calls will be made. If NOOPTIMIZE is specified, library calls will be made
where this will speed compilation.

Figure 17 on page 44 shows examples of sequences used for calling library
modules. The majority of library calls can easily be recognized by the appear­
ance in the listing of the letters "IBM," followed by five letters specifying the
module name and entry point. To call a module, its address is loaded into reg­
ister 15, and a BALR instruction is carried out un registers 14 and 15.

LY27-9528-0 Itl Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 43

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Example 1. Call to library routine that has been link-edited and whose address
is held in the static internal control section.

The arguments passed are addressed by register 1.

LA 1,48(8,4)
LA 14,VO .. U(11)
LA 15,DED .. VO ..

U(ll)
S TM 14 , 15 , 8 (1)
L 15,A .. IBMBSLO

BALR 14,15

Point R1 at argument list
Load address of argument in register
Load address of argument in register

Store into argument list
Pick up address of routine from static
internal control section and place in R15
Branch and link to routine

Example 2. Call to library routine whose address is held in TCA

L 15,116(8,12) Load address of routine held in TeA
BALR 14,15 Branch and link to routine

Figure 17. Examples of Library Calling Sequences

Setting-Up Argument Lists
Before a call is made to a library module, an argument list must normally be
set up. This is done in one of several ways, depending on the library module.
The majority of library calls require the method shown in Figure 17, example 1.
This consists of loading the list into sequential registers starting at register 14,
and then using a store-multiple instruction to place the arguments into an area
of static storage, whose address is then loaded into register 1. Argument lists
are set up as far as possible during compilation and, where necessary, com­
pleted during execution.

Addressing the Subroutines
As can be seen in example 1 of Figure 17, library addresses are generally held
in static storage and addressed as an offset from register 3. However, the
addresses of certain library routines are held in the TCA or the TCA appendage
and addressed from register 12. They are addressed either directly or indi­
rectly as shown in example Figure 17. The names of these routines do not
appear on the listing; however, they can be identified by their offset from the
start of the TCA (see Figure 18 on page 45).

44 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
\

!

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DO-Loops

Offset from Offset from
Start of TCA Start of TCA
(Register 12) (Register 12) Name of Module
Decimal Hex Entry Point Use

72 48 IBMBPGRD Stack overflow
routine to get VDA

84 54 IBMBEFL FLOW module

108 6C IBMBPGRA Get non-LIFO
dynamic storage

112 70 IBMBPGRB Free non-LIFO
dynamic storage

116 74 IBMBPGRC Stack overflow
routine for prolog

120 78 IBMBERRB Error handler soft-
ware interrupt

264 108 IBMBJWTA WAIT module

268 10C IBMBTOCA Completion pseudo-
variable routine

272 110 IBMBTOCB Event variable
assignment routine

Figure 18. Offsets Where Addresses of Library Modules Are Held in the TCA

Where possible, DO-loops are carried out by means of a BXLE instruction,
because this is more efficient than using a simple BCT instruction. BXLE
DO-loops can be used where the control variable cannot be altered except at
the head of the loop, and where it is not subsequently accessed after the com­
pletion of the loop. BXLE DO-loops cannot be used for the outer of a number of
nested DO-loops. For outer loops, other branch instructions are used. Code for
a number of typical DO-loops is shown below. Note that the code will differ
according to the content of the loop.

Source program

DO I = 1 to 18;
DO J 1 to 18;

END;
END;

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 45

Object program

1. Code for outer do-loop

LH 5,596(O,3)
5TH 5, I

CL.1 EQU *

LH 5, I
AH 5,596(O,3)
5TH 5, I
C 5,598(O,3)

BNH CL.1

2. Code for inner do-loop

LH 5,596(O,3)
LH 1O,596(O,3)
LH 11,598(O,3)

CL.2 EQU *

BXLE 5,10,CL.2

Compiler-Generated Subroutines

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Pick up 1 from constants pool
Pl ace 1 in I

Increment and
store in I
Compare I and constant 1O
in static storage

Place 1 in first operand
Place 1 in second operand
Place 10 in comparand

Increment, test, and branch if necessary.

The compiler uses internal subroutines to carry out certain functions. These
have the advantage over library modules, because they can be tailored for the
most common case. When special cases arise, the library routines are called.
Compiler-generated subroutines have the further advantage that they are
internal to compiled code and consequently need not follow the standard oper­
ating system calling sequence.

Compiler-generated subroutines are used for the following purposes:

IELCGIA Stream I/O input-provides address of source of next edit-directed
data or format item

IELCGIB Stream I/O input-housekeeping after transmission of data item

IELCGOG Stream I/O output-provides address of target of next edit-directed
data or format item

IELCGOH Stream I/O output-updates FCB, counts data item, and frees VDA
if one was used

IELCGOC Stream I/O-processes X format items

IELCGMV Move long (registers 6,7,8,9)

IELCGCL Compare long (registers 1,6,7,8,9)

IELCGCB Compare long bits

46 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

/
\,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IELCGON Dynamic ONCS chaining

IELCGRV Revert VDA chaining

IELCGBB Test for 10 1 bits

IELCGBO Test for 111 bits

Compiler-generated subroutines are held in separate control sections and are
printed at the head of the object-program listing when they are used in a
program.

Optimization and Its Effects
Optimization produces the most efficient possible object program. The OS PLII
Optimizing Compiler adopts a threefold approach:

1. It attempts to compile each statement in the most efficient manner.

2. It modifies the resulting code for each block, in an attempt to make it more
efficient (for example, by maintaining values in registers and by using
common control blocks for similar items).

3. It examines the source program to discover whether statement flow can be
reorganized to produce a more efficient program (for example, by moving
code out of loops).

The effect of specifying the compiler option OPTIMIZE (TIME) is that the com­
piler loads and calls the optimization phases, and executes optimization code in
other phases.

When NOOPTIMIZE is specified, the optimization phases are not called; no
attempt is made to study the flow of the program, and the examination of com­
piled code for possible improvements is not undertaken on a global basis.
More library calls will generally be made if NOOPTIMIZE is specified.

Examples of Optimized Code
A number of the more noticeable effects of optimization are shown below.
These show code sequences which may prove difficult to understand without
knowledge of the objectives of optimization. Where possible, the examples of
code are expansions of the examples shown in the OS PLII Version 2 Program­
ming Guide. The examples do not cover all optimization carried out by the
compiler.

Elimination of Common Expressions
Elimination of common expressions is handled by avoiding multiple calculations
of the same expression, the value being retained either in temporary storage or
in a register. In the examples shown below, the common expression is "S+C."
In the first example, the value is held in a register. In the second. it is held in
temporary storage, because the value to which it is first assigned is altered. In
certain circumstances, the code could be compiled to move the value from the
variable to which it was originally assigned to the second variable.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 47

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Example 1: Value held in register: Source program

2
3
4

A=B+C;
If X<Y THEN X=Y;
O=B+C;

* STATEMENT NUMBER 2
00005E 78 00 0 0BC
000062 7A 00 0 0C0
000066 70 00 0 0B8

* STATEMENT NUMBER 3
00006A 78 60 0 0C4
00006E 79 60 0 0C8
000072 47 B0 2 020
000076 78 60 0 0C8
00007A 70 60 0 0C4

* STATEMENT NUMBER 4
00007E

LE 0,B
AE 0,C
STE 0,A

LE 6,X
CE 6,Y
BNL CL.2
LE 6,Y
STE 6,X

CL.2 EQU *

* CALCULATION OF COMMONEO EXPRESSION FOLLOWS
00007E 70 80 0 0CC STE 8,0

Example 2: Value held in temporary storage: Source program

2
3
4

A=B+C;
IF X<Y THEN A=6;
O=B+C;

Note: "A" may be altered before subsequent use of expression.

Object program

* STATEMENT NUMBER 2
00805E 78 88 0 8BC
808862 7A 08 0 8C8
808066 38 28
808868 78 28 0 8B8

* STATEMENT NUMBER 3
80886C 78 68 0 8C4
888870 79 68 0 8C8
888874 47 B8 2 822
888878 78 20 3 8lC
08887C 78 28 0 0B8

* STATEMENT NUMBER 4
000080

LE 8,B
AE 8,C
LER 2,8
STE 2,A

LE 6,X
CE 6,Y
BNL CL.2
LE 2,28(0,3)
STE 2,A

CL.2 EQU *

* CALCULATION OF COMMONEO EXPRESSION FOLLOWS
000080 70 00 0 0CC STE 0,0

48 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

!

\

!
I
\

"Restricted Materials of IBM"
licensed Materials - Property of IBM

Movement of Expressions Out of Loops
When expressions cannot be altered inside a section of code that may be exe­
cuted a number of times, the expression is moved out of the loop to a position
where it will be executed only once, regardless of the number of times that the
loop is executed. The process is known as movement of invariant expressions.
The most obvious example is in DO-loops. However, the compiler analyzes the
source program for other types of loop and also moves code from these.

Example 1 shows code moved from a DO-loop. Example 2 shows code moved
from a loop that has been detected by the compiler. It should be noted that
code moved out of loops frequently involves conversion and is not obvious in
the source program.

Example 1: DO-loop

Source program

2 Do 1=1 TO N;
3 J=3;
4 END;

Object program

* STATEMENT NUMBER 2
80805E 48 E0 0 8BA
808862 18 BE
808864 48 A8 3 018
888868 18 5A
00006A 40 50 0 8B8
80806E 19 5B
808870 47 28 2 826
000074

* STATEMENT NUMBER 3
000074 48 60 3 01A
000078 40 60 0 0BC

CL.2

Example 2: Compiler-detected loop

Source program

2 L: IF X>Y THEN GOTO BED;
3 J=I-N;
4 X=X+J;
5 GO TO L;
6 BED: A=X;

Object program

* STATEMENT NUMBER 2

* STATEMENT LABEL
00005E 78 00 0 OB8
000062 79 00 0 OBC
000066 47 20 2 038

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

L

LH 14,N
LR 11,14
LH 10,24(0,3)
LR 5,10
STH 5, I
CR 5,11
BH CL.3
EQU *

LH 6,26(0,3)
STH 6,J

LE
CE
BH

j*LOOP BEGINS*j

j*LOOP ENOS*j

O,X
O,Y
BED

Chapter 3. Compiler Output 49

* STATEMENT NUMBER 3
00e06A 48 60 D 0C6
00e06E 4B 60 D 0C8
00e072 40 60 D 0C4

* STATEMENT NUMBER 4
00e076 50 60 D 0E0
00e07A 48 60 3 01C
00e07E 40 60 D 0E0
00e082 97 80 D 0E2
000086 78 60 D 0E0
00008A 7B 60 3 01C
0000SE 3A 60
00e090 70 60 D 0B8

* STATEMENT NUMBER 5
000094 07 F2

* STATEMENT NUMBER 6

* STATEMENT LABEL
000096 70 00 D 0C0

Elimination of Unreachable Statements

BED

LH 6, I
SH 6,N
STH 6,J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ST 6,224(0,13)
LH 6,28(0,3)
STH 6,224(0,13)
XI 226(13),X '80 1

LE 6,224(0,13)
SE 6,28(0,3)
AER 6,0
STE 6,X

BR 2

STE 0,A

If the source program contains statements that can never be executed because
they are unconditionally branched around, these statements will be ignored by
the compiler.

In the example below, the statements between 5 and 8 can never be reached.
Consequently, no code is compiled for these statements, and a compiler diag­
nostic message is issued to indicate that this is the case.

Example

Source program

5 GOTO LABEL;
6 IF A<B THEN

IF B<C THEN
IF A<X THEN
B=B*C;

7 ELSE C=B*C;
8 LABEL: X=X+1;

50 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Object program

* STATEMENT NUMBER 5
GGGG8A 47 FG 2 G28 B LABEL

* STATEMENT NUMBER 8

* STATEMENT LABEL LABEL
GGGG8E 78 6G D GAC LE 6,X
GGGG92 7A 6G 3 G18 AE 6,24

(G,3)
GGGG96 7G 6G D GAC STE 6,X

Compiler message reads:

"6,6,6,7 STATEMENT MAY NEVER BE
EXECUTED. STATEMENTS IGNORED."

Simplification of Expressions
Certain expressions are simplified for speedier execution. For example, multi~
plication is simplified to addition, as in the following example.

Example: Multiplication into addition

Source statement

2 X=3*B

Object program

* STATEMENT NUMBER 2
GGGG62 78 2G D GA4
GGGG66 3A 22
GGGG6A 7A 2G D GA4
88886E 78 28 0 GAG

or

6 X=3*B**2

Object program

* STATEMENT NUMBER 6
GGGGE2 78 4G D GBC
GGGGE6 3C 44
GGG8E8 38 64
GGGGEA 3A 66
8GG8EC 3A 64
GGGGEE 7G 6G D GB8

LE 2,B
AER 2,2
AE 2,B
STE 2,X

LE 4,B
MER 4,4
LER 6,4
AER 6,6
AER 6,4
STE 6,X

Modification of DO-Loop Control Variables

Load B
8**2

2*B**2
3*B**2

When the DO-loop control variable is used for accessing array elements, it is
frequently modified to simplify addressing of the array elements.

If, as in the example in Figure 19 on page 53, the elements of the array are
four bytes long, it simplifies addressing to increment the loop control variable
by 4 rather than by 1. When this is done, the increment becomes the distance
between the start of successive array elements. Provided that the original
value of the loop control variable is the same as that of the first bound of the

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 51

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

array, the loop control variable in turn becomes the offset of the element from
the virtual origin of the array.

If the loop control variable is altered, this means that the increment and final
value must also be altered. Thus the loop in the example instead of being
incremented from 1 to 10 by 1, is incremented from 4 to 40 by 4. Note that the
value of the loop control variable is set at the start of the loop but is not incre­
mented. If the value of the loop variable is required after the loop has been
executed, this type of optimization cannot take place.

In the example, the control variable is held in register 5 using a BXlE instruc­
tion. The array elements are addressed by using register 5 as the offset from
the virtual origins of arrays C and B. As register 5 starts the loop with the
value of 4 and is incremented by 4 for each iteration of the loop, this gives the
correct address. Both arrays begin 4 bytes from their virtual origins, and each
array element is 4 bytes long.

52 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Source program

2 DCL C(10) FLOAT DECIMAL (6);
3 DCL B(10) FLOAT DECIMAL (6);
4 DO 1=1 TO 10;
5 C (I)=B(I);
6 END;

Object Program

* STATEMENT NUMBER 4
00005E 48 60 3 018
000062 40 60 0 0B8

LH 6,24(0,3)
STH 6,1

Pick up 1 from static
Place in I

* INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 5
000066 48 E0 3 01A LH 14,26(0,3) Load 4 into R14 from static
00006A 48 80 3 01C LH 8,28(0,3) Load 40 into R8 from static
00006E 18 B8 LR 11,8 Load 40 into Rll for BXLE
000070 18 AE LR 10,14 Load 4 into R10
000072 18 5E LR 5,14 Lo~d 4 into R5

* CONTINUATION OF STATEMENT NUMBER 4
000074 CL.2 EQU *

* STATEMENT NUMBER 5
000074 78 05 0 0BC
000078 70 05 0 0E4

* STATEMENT NUMBER 6
00007C 87 5A 2 016

LE 0,VO .. B(5)
STE 0,VO .. C(5)

BXLE 5,10,CL.2

Figure 19. Modification of DO-Loop Control Variable

Branching around Redundant Expressions

Pick up VO .. B+R5
Place in VO .. C+R5

Increment R5 by 4; test
for end of loop, and
branch or continue

If a series of tests are to be made and action taken if any of the tests proves
positive, the compiler takes the requisite action as soon as the first positive test
is found.

In the example in Figure 20 on page 54, a test is first made to see if A = D. If
so, the value of Y + Z is assigned to X without a further test being made to see
if C = D. Note that the last test is for inequality, so that if the variables are
equal, control will continue with the code that assigns the value to X.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 53

Source program

2 IF (A=D) I (C=D) THEN
X=Y+Z;

Object program

* STATEMENT NUMBER 2
888862 78 88 D 8A8 LE 0,A
888866 79 88 D 0A4 CE 0,D
88086A 47 88 2 818 BE CL.3
88806E 78 48 D 8A8 LE 4,C
888872 79 48 D 8A4 CE 4,D
888876 47 78 2 824 BNE CL.2
08887A CL.3 EQU *
88887A 78 60 D 0B0 LE 6,Y
00007E 7A 60 D 084 AE 6,Z
000082 70 68 D 0AC STE 6,X
000086 CL.2 EQU *

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Pick up A
Compare A and D
Branch if equal
Pick up C
Compare C and D
Branch if not equal

X=Y+Z

Figure 20. Branching Around Redundant Expressions

Rationalization of Program Branches
When the length of a program is greater than 4096 bytes and, consequently, it
cannot be addressed from one base register, an attempt is made to update the <
base at the most efficient point, so that there will be as few changes of program
base as possible during execution. The aim is to avoid any program branches
which move from the scope of one base register to the scope of another.

The program base register is register 2, and this is updated when necessary.
As register 2 is required for in-line record liD and TRT instructions, the
program base is saved and restored after such use.

Use of Common Constants and Control Blocks
Constants and control information used more than once are generated only
once in static storage. Thus for the statements X = 768, Y = 768, the constant
value of 768 will be picked up from the same address in both cases. Similarly,
compiler-generated control descriptors are generated only once if a number of
variables require identical control information.

The process of avoiding duplication is known as commoning. It should be noted
that constants may not be commoned if they are I;ot used in the same way. In
the example in Figure 21 on page 55, constant '123' is stored in a different form
for assignment, multiplication, and exponentiation.

54 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Source program

2
3
4
S

X=123;
Y=123*Z;
V=V**123;
A=123;

Object program

OOOOSE 78 00 3 01C
000062 70 00 D OB8

* STATEMENT NUMBER 3
000066 78 20 D OCO
00006A 7C 20 3 01C
00006E 70 20 D OBC

* STATEMENT NUMBER 4
000072 41 70 D OC4
000076 50 70 3 024
00007A 50 70 3 02C
00007E 96 80 3 02C
000082 41 10 3 024
000086 58 FO 3 014
00008A 05 EF

* STATEMENT NUMBER 5
00008C 78 00 3 01C
000090 70 ee D eCB

/*COMMONED 1TEM*/

/*COMMONED 1TEM*/

LE 0,28(0,3) /*COMMONED 1TEM*/
STE O,X

LE 2,Z
ME 2,28(0,3)
STE 2,Y

LA 7,V
ST 7,36(0,3)
ST 7,44(0,3)
01 44(3),X ' 80 '
LA 1 , 36 (0 , 3)
L 15,A .. 1BMBMXSA
BALR 14,15

LE O,28(O,3)
STE O,A /*COMMONED ITEM*/

Figure 21. Use of Common Constants

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 3. Compiler Output 55

I
(

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 4. Run-Time Organization

This chapter tells you about the facilities of PL/I that are used at run-time and
how they are organized. Topics covered are the task communications area,
various registers, dynamic storage allocation, use of storage, load modules and
their naming conventions and the multitasking library.

Communications Area
The facilities offered by PL/I language, particularly the error-handling facilities,
imply that certain items must be accessible at all times during the run. To sim­
plify accessing such items, a standard communications area is set up for the
duration of the run. This area is known as the task communications area (TCA),
and register 12 is usually addresses it throughout the run.

Dynamic Storage Allocation
The prinCiples of the dynamic storage scheme are illustrated in Figure 22 on
page 58.

The allocation and freeing of AUTOMATIC storage on a block-by-block basis
implies a facility for the reuse of such storage. This technique of inter-block
communications uses for each block a save area that contains register save
information, AUTOMATIC variables, and housekeeping information.

This area is known as dynamic storage area (DSA). It consists of the standard
operating system save area concatenated with certain housekeeping informa­
tion and with storage for AUTOMATIC variables. DSAs are held contiguously in
a last-in/first-out (LIFO) storage stack and are freed and allocated by the alter­
ation of pointer values.

When a block is entered, the registers of the preceding block are stored in the
previous DSA and a new DSA is acquired. A back-chain pointer to the previous
DSA is placed in the new DSA. This arrangement allows access to information
in previous blocks. Register 13 points to the head of the DSA for the current
block. The code that carries out this and any other block initialization is known
as the prolog code. To obviate the need for special coding in the main proce­
dure, a dummy DSA is set up by an initialization routine. Register 13 points at
this dummy DSA on entry to the main procedure.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 4. Run-Time Organization 57

Initial
storage
area
(ISA)

~~------------~

1 The in it i a 1
storage area
(ISA) is acquired

r--

Program
mgmt area

LIFO storage

SA

~1aj or free
area

'---

4 When LIFO storage
is freed, the most
recently allocated
element is the first
to be freed. It is
freed by being
reabsorbed into the
major free area.

ISA

Program
mgmt area

2 The program
management area
(a PL/I communications
area) is placed at the
head of the ISA.

r--

Program
mgmt area

LIFO storage

~'laj or free
SA area

Non-LI FO
storage

"---

5 Elements not
freed on a last in/
first out basis
(non-LIFO storage)
are allocated at
the high address end
of the free storage,
or in a separate area
known as HEAP.

Figure 22. Use of PUt Dynamic Storage without Heap Storage

58 OS PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

-
Program
mgmt area

LI FO storage
SA

Major free
area

-
3 All storage freed on

a last in/first out
basis (LIFO storage)
is allocated at the
low address end of
the remaining unused
storage.

r--

Program
mgmt area

LIFO storage

~1aj or free
SA area

Non-LIFO storage

Freed
non-LI FO storage

-
6 When non-LIFO storage

is freed, it is, where
possible, absorbed into
the major free area.
Where this is not possible
it is placed on a chain of
free storage. The head of
this chain is held at a
fixed offset in the program
management area. Areas on
this chain are reused where
possible.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

In addition to AUTOMATIC variables, certain other types of storage are allo­
cated and freed dynamically. Items not freed on a last-in/first-out basis are
kept in a second storage area called non-LIFO storage. If items within this area
are freed, they are placed on a free-area chain. The storage scheme is
handled partly by a compiled code and partly by a library routine.

In the LIFO storage stack, compiled code acquires and frees space.

HEAP storage is an area that is used for dynamically allocated storage, or con­
trolled and dynamically based variables, in the program. This storage is sepa­
rate from the ISA. It is controlled by the HEAP run-time option.

Contents of a Typical Load Module
The contents of a typical load module are shown in Figure 23 on page 60. The
contents are:

• Object module (the executable machine instructions previously generated).

• Link edited routines. These routines include library routines, many of which
are included in every executable program phase. These are the initializa­
tion routines. Other resident routines are included as required.

As well as the executable machine instructions, the program requires certain
control information and addresses.

The Overall Use of Storage
Figure 24 on page 61 illustrates the overall use of storage. The program
acquires an area known as the initial storage area (ISA) for program manage­
ment and PLII dynamic storage. The initialization routines set up the program
management area which includes the TCA and the dummy DSA discussed
above. PLII dynamic storage allocations use the remainder of the ISA. The
LIFO stack starts beyond the end of the program management area and
expands, as necessary, toward the end of the ISA. Storage for I/O buffers and
library routines is acquired by issuing GETMAIN macro instructions.

Non-LIFO dynamic storage starts at the end of the ISA and expands toward the
LIFO stack. If you use HEAP storage, then separate storage areas are
acquired.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 4. Run-Time Organization 59

PLI START jPLI ~1A IN

ADDRESSES
Addresses of:

Library t~odules
PLjI Subroutines and Entry Points
External Procedures, etc.

PLjI CONTROL BLOCKS

CONSTANTS
Storage for constants used in the program

INTERNAL VARIABLES
Storage for variables declared as Static

Internal

EXTERNAL VARIABLES
Storage for variables declared as Static

External

Control blocks and data for external files

PROGRAM CONTROL SECTION
Compiled Code

LIBRARY MODULES
link edited Library Modules

Figure 23. Diagram of an Executable Program

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

STATIC
INTERNAL
CONTROL
SECTION

60 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Other storage
obtained by issuing
GEH1AI N macros

Storage for:
Transient library
routines I/O
buffers

Plus:
Further allocation
of dynamic storage
if required

Storage for
CONTROLLED and
dynamically
allocated BASED
variables

Figure 24. Use of Storage

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

LOAD MODULE

Compiled code
Library modules
Addresses
Control blocks
Constants
Static variables

PROGRAM
~1ANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-OUT
(LIFO) STORAGE

DSAs and VDAs (variable data areas).
Storage for AUTOMATIC variables and
compiler-generated temporaries, and
other items allocated and freed on
a block and procedure basis

MAJOR FREE AREA

NON-LIFO STORAGE

Storage for PL/I Library routines

Load M odule

J

I
Init
Star

Are
(IS

i al
age
a
A)

Chapter 4. Run-Time Organization 61

Library Module Naming Conventions

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PL/I library modules are named according to the conventions in this section.
Usually the EBCDIC name is coded into the module close to its start. This
allows the name of the routine to be easily seen in a dump.

The first three or four letters of the PLII Library module name indicate where
the module belongs. These initial letters and their locations follow.

PLII Library IBMB
IBMO
AQA
IBMF
IBMT

Usually PUTEST but sometimes the PLII Library
PUTEST
PLII Library, CICS support
PLII Library, Multitasking support

Note: Some CICS modules are link edited into the load module DFHSAP.

DUMP Eye Catchers and PLITEST
You will see module eye catchers in your dump. PL/I provides these to aid your
problem diagnosis. Each eye catcher is a four-letter character string followed
by the last date the module was compiled. The fourth letter of the module
name and the mnemonic make up this character string.

For example, the eye catcher

BOPB 06/15/85

is for the module IBMBOPBA, which was last compiled on 06/15/85.

These same conventions are true in PUTEST.

The Multitasking Library
Two data sets hold the resident library modules, SYS1. PUBASE and
SYS1.PUTASK. SYS1.PUBASE holds all modules needed to run non­
multitasking programs. SYS1.PUTASK holds the multitasking versions of all
modules that differ for multitasking and non-multitasking environments.

Both the multitasking and non-multitasking modules have the same link-edit
names for their entry points. Multitasking modules have a fourth letter T; non­
multitasking modules have a fourth letter B in their control names.

The use of the same link-edit name permits the compiler to generate the same
code for library calls, regardless of whether the program is a multitasking or
non-multitasking one. In order for multitasking programs to be link edited and
run in a multitasking environment, the data set SYS1.PUTASK must precede
SYS1.PUBASE in input to the linkage editor.

62 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 5. Run-Time Problem Determination

This chapter contains the run-time problem determination chart. If you are just
beginning your problem diagnosis, use the chart in Figure 26. Begin with the
first block, Block 100, answer the question or perform the action specified, then
go to the block indicated by the answer. Some blocks describe an action to be
performed and also direct you to the next block.

If you have already made a preliminary diagnosis of your problem and you are
familar with PUI, you can use the chart index below in Figure 25 to find the
information you need.

Run-Time
Subject Covered

Abend or Program Check
System Dump
Formatted PLII Dump

Interrupt Type and Location
Source Statement Processed
Finding Registers

Search Argument Generation
Loop

Search Argument Generation
Wait
Unusual or Unexpected Output

Bad Output Data
Bad File Record
Search Argument Generation

Performance

Block Number

125
126
129
132
139
142
143
144
148
149
150
154
156
160
161

Figure 25. Run-Time Problem Determination Index

Block Question
No.

100 Is this an abend?

101 Is this a problem relating to a message?

102 Is this a loop?

103 Is this a wait?

104 Is this unusual or unexpected output?

105 Is this a performance problem?

Figure 26 (Part 1 of 11). Run-Time Problem Determination Chart

Action

Yes 106
No 101

Yes 106
No 102

Yes 106
No 103

Yes 106
No 104

Yes 106
No 105

Yes 106
No 124

LY27-9528-0 ~ Copyright IBM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 63

Block
No.

106

107

108

109

110

111

112

113

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question Action

Add to the program the following block: Yes 107

ON ERROR BEGIN; No 109

ON ERROR SNAP SYSTEM;
PUT DATA;

END;

Recompile and rerun the program. If the problem is
solved, END. If the problem still exists: has the
program ever worked before?

Has anything in the environment changed? Yes 111

Look for source code changes, system control
No 108

program (SCP) changes, PTFs, release fixes, etc.

Is the entry from:

MESSAGE Yes 125
LOOP Yes 144
WAIT Yes 149
UNUSUAL or UNEXPECTED OUTPUT Yes 150
PERFORMANCE Yes 161

Note: If you are here via the "environment changed"
route, follow the major symptom code being experi-
enced.

Has the source code been checked for accuracy and Yes 108
all "E" or "S" level compiler messages corrected? No 110

Correct the conditions causing the "E" or "S" level Yes END
messages. Recompile and test the program. Is the No 120
problem solved? Note: If the problem is solved, but
you feel the message was generated in error, follow
the "NO" path.

Has the source code of the program been changed? Yes 115
No 112

Has any maintenance been applied to the PUI com- Yes 116
piler and/or libraries? No 113

Has the PUI compiler release level changed? Yes 118
No 114

Figure 26 (Part 2 of 11). Run-Time Problem Determination Chart

64 OS PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

!

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block
No.

114

115

116

117

118

119

120

121

122

123

124

Question

You probably do not have a PUI problem. In getting
to this block, you have indicated that the program
has compiled and run successfully before.

Now you should investigate the system control
program for changes that could have affected this
program.

Note: System control program refers to the oper­
ating system. If you still believe this to be a PUI
problem, go to Block 108 and follow the major
symptom code.

Were there any messages at compile time that could
have caused this problem?

If so, correct those conditions. Recompile and test
the program. Is the problem solved?

Is(Are) the fix(es) or PTF(s) installed correctly?

Note: Check early warning microfiche or have the
IBM Support Center check SSF for errors on all PTFs
and fixes applied. Use the keyword PExxxxx for PTF
errors.

Reinstall the PTF or fix correctly and test. Is the
problem solved?

Is the release level installed correctly?

Note: Search early warning microfiche or have the
IBM Support Center search SSF for any PTFs and
errors applicable to this release. Are there any mes­
sages from the link edit steps?

Reinstall the release level correctly, plus any PTFs or
fixes that are applicable, and test.

Is the problem solved?

Have the symptoms changed?

Search early warning microfiche or have the IBM
Support Center do an SSF search. For more infor­
mation about doing an SSF search, see
Chapter 7, "Using SSF and CSSF Search
Arguments" on page 113.

Any hits?

Apply applicable fix(es) from hit(s) and test. Is the
problem solved?

Have the symptoms changed?

Something has apparently been overlooked. A
failure must have occurred and it must have been
one of the previously mentioned types. Review the
symptoms again. If the problem does not fit any of
the stated symptoms, go to Block 164.

Figure 26 (Part 3 of 11). Run-Time Problem Determination Chart

Action

See Note

Yes END
No 120

Yes 121
No 117

Yes END
No 120

Yes 121
No 119

Yes END
No 120

Yes 100
No 121

Yes 122
No 108

Yes END
No 123

Yes 100
No 108

164

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 65

Block
No.

125

126

127

128

129

130

131

132

133

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question Action

Do you have a system dump rather than a PUI for- Yes 126
matted dump? No 129

Review the section on run-time dump analysis that
precedes these charts.

To reduce the possibility of a user error, rerun the Yes 127
program with the SIZE, SUBSCRIPTRANGE, No 129
STRINGSIZE, and STRINGRANGE conditions enabled.
Were any of these conditions raised?

Note: For instructions, see as PLiI Version 2 Pro-
gramming: Language Reference.

This probably means you have a programming Yes END
problem. No 128

Correct the code that caused the condition, and
rerun the program. Is the problem solved?

Have the symptoms changed? Yes 100
No 129

Do you have an IBMxxxx message? Yes 130
No 131

The IBMxxxx message will give you the following 131
information:

Message number

ON-code number

Condition raised (if applicable)

Statement number being processed (if
"GOSTMT" was specified)

Offset of statement being processed (You can
use the table of offsets to find the statement
number from this.)

Procedure name being run

Go to Block 131.

Do you already know the type and location of the Yes 142
interrupt? No 132

Do you have a system dump rather than a PUI for- Yes 136
matted dump? No 133

Does the PUI dump have trace information? Yes 134

Note: Find the words ""**CALLING TRACE**"".
No 135

Figure 26 (Part 4 of 11). Run-Time Problem Determination Chart

66 OS PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(

(
\
"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block Question
No.

134 To find the type of -interrupt:

1. For an example of trace information in a dump.
see "Housekeeping Information in All Dumps" on
page 92.

2. The ON-code (1) type of ON-unit, (2) and reason
for entry, (3) as well as who called the error
handler (4) are given in the trace information.

3. The ON-code is your type of interrupt.

To find the interrupt locations:

1. Find IBMBERR's DSA (see "Housekeeping Infor-
mation in All Dumps" on page 92).

2. Chain back one DSA (X' 04 1 in each DSA holds
the address of the previous DSA).

3. The address of the interrupt is at X 'OC 1 in this
DSA.

To find the register contents on interrupt:

1. If the interrupt was an abend, there will be no
register information available unless SPIE and
STAE were in effect.

2. If the interrupt was a software detected inter-
rupt, the contents of registers 14 through 11 at
the time of interrupt are at offset X' 08 ' in the
previous DSA.

3. If the interrupt was a program check, registers 0

through 11 are at offset X '14' in the previous
DSA, and registers 14 and 15 are at X '5C 1 in the
DSA for IBMBERR.

Go to Block 137.

Note: IBMBERR could be IBMFERR.

Figure 26 (Part 5 of 11). Run-Time Problem Determination Chart

Action

137

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 67

Block
No.

135

135
(cont'd)

136

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question

To find the type of interrupt: find and interpret the on
communication area (ONCA) which will give you the
ON-code.

1. Find IBMBERR's DSA. (Register 13 has the

current DSA address. Offset XI 04 1 in each DSA
holds the address of the previous DSA.

IBMBERR's DSA has XI EEEE 1 in the second
halfword of the first word.)

2. Locate the halfword at offset X 1541 of this DSA,
which contains the error code. If this error code
is XI OC 1 or XI OD 1 then locate the address of the

LWS at offset X 148 1 from IBMBERR's DSA and
locate the pointer to the current ONCA. (Offset

XI 02 1 in the LWS.)

3. From the current ONCA, chain back to the pre­
vious ONCA (the chain back field is the first
fullword of each ONCA).

4. Locate the 2-byte error code at XI 04 1
•

5. Using Figure 32 on page 86, find the base
number associated with the first byte of the
error code.

6. Translate the right-hand five bits (of the second
byte of the error code) to decimal.

7. Add this value to the base number to get the
ON-code.

8. Look up the ON-code in the as PUI Version 2
Programming: Language Reference. If you have
a system dump, go to Block 136.

Note: IBMBERR could be IBMFERR.

To find the interrupt location:

1. Register 13 holds current DSA address.

2. Offset XI 04 1 in each DSA holds address of pre­
vious DSA.

3. Chain back to the DSA before the error handler's
DSA.

4. The interrupt address is at offset XI OC 1 in this
DSA.

Go to Block 137.

If possible, obtain a PLII dump, then go to block 133.

If you cannot obtain a PLII dump but you do have a
system dump, you will find the interrupt address in
the second word of the PSW in the system dump. Go
to Block 137.

Action

136

137

133

137

Figure 26 (Part 6 of 11). Run-Time Problem Determination Chart

68 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block Question
No.

137 Compare the interrupt address to the link map.

Is the address within a library module or outside the
link map? If the address is outside the link map, the
interrupt probably occurred in a transient library
module.

If the address is within the link map, the interrupt
occurred in a resident library module. Remember
the module name for your early warning microfiche
or SSF search.

Go to Block 138.

138 Now you know the type of the interrupt -and, if you
have a message or a PUI dump with trace informa-
tion, you should also know what source statement
was being run. Go to Block 142.

If you have a system dump, or no trace information,
or for some other reason you do not know the source
statement being run, go to Block 139.

139 LIST option in effect:
OFFSET option in effect.

Figure 26 (Part 7 of 11). Run-Time Problem Determination Chart

Action

138

142

139

Yes 140
Yes 141

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 69

Block
No.

140

141

142

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question

1. Locate the error handler DSA. (Register 13 has

the current DSA address. X I 04 I in each DSA
holds the address of the previous DSA.
IBMBERR's DSA has X I EEEE I in the first word.)

2. Chain back until a procedure DSA is found. (Pro­
cedure DSAs have bits 4 and 5 set to 100 I B.)

3. Chain back one more DSA.

Note: IBMBERR could be IBMFERR.

4. Note the address held at offset X 110 I (register
15 for the procedure in which the interrupt
occurred).

5. Subtract this entry point address from the inter­
rupt address to obtain an offset. If the interrupt
occurred in a library module, subtract the entry
point address from the entry point address of the
procedure (Register 14).

6. This offset should then be added to the offset of
the REAL ENTRY of the procedure in which the
interrupt occurred as given in the object listing.
(For main procedures, this will be the length of
the procedure name plus one, rounded up to the
next multiple of four.)

7. In the object listing, this offset points to the
assembler instruction after the instruction that
caused the interrupt. The PLII statement
number is given in the listing preceding the code
with which it is associated.

Sometimes the statement statement nl,lmber
may not be exact, if the OPT (TIME) option is
specified. Go to Block 142.

1. Obtain the offset address of the interrupt as
described in steps 1 through 5 in Block 140.

2. Use this offset with the offset and Statement
Table in the listing to find the statement number.
Go to Block 142.

If your ON-code was 8094, 8095, or 8096, you may
want to know the contents of the registers at the
time of the program check. Refer to
Chapter 6, "Debugging Using Dumps" on page 75
for more information.

Go to Block 148 if your major symptom code is loop.
Otherwise, go to Block 143.

Action

142

142

148
143

Figure 26 (Part 8 of 11). Run-Time Problem Determination Chart

70 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 19851 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block
No.

143

144

145

146

147

148

149

Question

Search early warning microfiche or have the IBM
Support Center do an SSF search. More information
doing an SSF searches is in Chapter 7, "Using SSF
and CSSF Search Arguments" on page 113. Any
hits?

If a loop appears to be occurring, use the instruction
step mode, if possible, to capture all, or at least part,
of the loop addresses. Then cancel the job with a
dump. Is the loop in the user program area? Note:
Use the link map to determine this.

If the loop is within the user program, it is probably a
program logic error. Correct the situation and rerun
the program. If you still believe the problem to be in
PUI, go to Block 148.

Find the module name(s) in which the loop occurs.
Use the link map to determine this. If the loop
addresses are outside the link map, the loop is prob­
ably occurring in a transient library module. If it is in
the link map, remember the name.

Note: The control blocks portion of an ABDUMP
(SNAP) contains information on the entry point
address and length of transients loaded.

Go to Block 147.

You may want to know which source statement is
being processed. Go to Block 138.

Search early warning microfiche or have the IBM
Support Center do an SSF search using:

• component-id 5668909
• EXEC
• LOOP
• module name(s) (if applicable)
• type of statement being processed (if

applicable-search without it first).

Any hits?

Usually wait states are caused by the system control
program, not by PUI. Get a dump and determine
what is being waited for .. To do this, locate the
ECB/CCB pointed to by register 1.

If you still believe the problem is in PUI, search early
warning microfiche or have the IBM Support Center
do an SSF search, using:

• component-id 5668909
• EXEC
• WAIT.

Any hits?

Figure 26 (Part 9 of 11). Run-Time Problem Determination Chart

Action

Yes 162
No 164

Yes 145
No 146

148

147

138

Yes 162
No 164

Yes 162
No 164

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 71

Block
No.

150

151

152

153

154

155

156

157

158

159

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Question

Rerun the program with the following conditions
enabled: SIZE, SUBSCRIPTRANGE, STRINGSIZE,
STRINGRANGE. Were any of these conditions
raised?

Correct the code that raised these conditions and
rerun the program. Is the problem solved?

Have the symptoms changed?

If you do not have a dump, you may want to get one
by calling PUDUMP at appropriate places in the
program. See Chapter 6, "Debugging Using Dumps"
on page 75 for more information. Is your problem
due to bad output data, such as on an output report?

You need to look at your variable fields in the dump.

First, determine the types of variables you are
working with. They will be one of the following types:
static, automatic, controlled, based, area.

"Finding Variables" on page 107 explains how to find
these variables in a dump.

Go to Block 155.

Is your problem related to a bad file record?

You need to look at the file information in the dump.
Do you have a PUI dump with file information for­
matted?

The FCB, ENVB, DCB, and for VSAM the 10CB and
ACB will be formatted for each open file.

Go to Block 159.

An offset from register 3 points to the DCLCB. The
first word in the DCLCB points to the FCB. The offset
from register 3 can be found in the static storage
map in the compile listing.

The maps of the file control blocks are in
Appendix A, "Control Blocks" on page 119.

Go to Block 159.

Check the file attributes in the dump with those in
the source program to be sure they are the same.

One common error in overlay programs is not speci­
fying the exact attributes in an overlay for a file as
were specified in the root.

Go to Block 160.

Action

Yes 151
No 153

Yes END
No 152

Yes 100
No 153

Yes 154
No 155

155

Yes 156
No 160

Yes 157
No 158

159

159

160

Figure 26 (Part lOaf 11). Run-Time Problem Determination Chart

72 as PUI Version 2 Problem Determination L Y27 -9528-0 (Q Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block Question
No.

160 Search early warning microfiche or have the IBM
Support Center do an SSF search. Information about
doing an SSF searches is in Chapter 7, "Using SSF
and CSSF Search Arguments" on page 113.

Any hits?

161 Performance problems usually show up after some
environment change or when using some function
you have not used before. Try to identify this.

Search early warning microfiche or have the IBM
Support Center do an SFF search using:

· component-id 5668909

· EXEC

· PERFM.

If you can, also include a description of the action
bei ng performed.

Any hits?

162 Apply the fix(es) from SSF and test. Is the problem
solved?

163 Have the symptoms changed?

164 Contact the IBM Support Center for assistance.

Have available the following documentation:

· Compilation listing with LIST and MAP options
specified

· Job control statements

· Linkage Editor map

· Run-time dump (if applicable)

Figure 26 (Part 11 of 11). Run-Time Problem Determination Chart

Action

Yes 162
No 164

Yes 162
No 164

Yes END
No 163

Yes 100
No 164

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 5. Run-Time Problem Determination 73

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 6. Debugging Using Dumps

Considerations

The OS PUI Optimizing Compiler allows you to obtain a run-time dump by
calling PLiDUMP. Using SYSABEND or SYSUDUMP in the JCl does not
normally result in a dump after a program interrupt or, except in certain excep­
tional cases, after an ABEND. This is because SPIE/ESPIE and STAE/ESTAE
routines result in all interrupts, and the majority of ABENDs, being passed to
the PUI error handler.

Certain types of program error can, however, result in overwriting of the control
information used by the error handling routines. When this occurs, an ABEND
will be issued that results in system action. This ABEND has a user code of
4000. Provided that a SYSABEND or SYSUDUMP DD statement was included in
the JCl, an ABEND dump will then be generated.

ABEND dumps are possible under these circumstances.

1. When an interrupt occurs during the execution of one of the error handling
routines.

2. When housekeeping control blocks have been overwritten after an ABEND
in the program.

3. If the NOSPIE or NOSTAE option has been used.

4. An error occurred in the program and the user has coded the User Exit
module.

The first two of these situations are most probably caused by overwriting of
control information by the PUI program. The first can be identified because a
message is sent to the console that reads 'INTERRUPT IN ERROR HANDLING
ROUTINES PROGRAM TERMINATED', and the ABEND code will be 4000.

It is always possible for the programmer to ask an operator to request a stand­
alone dump at any point in the program. The need to do this should, however,
occur only infrequently.

For information about compiled code register usage and library register usage
see Figure 11 on page 24 and Figure 12 on page 26.

A DD statement with the ddname PLiDUMP or Pl1DUMP, a FllEDEF command
in CMS, or an ALLOCATE command in TSO must be supplied to define the data
set for the dump.

The data set defined by the PLiDUMP DD statement must have DSORG = PS
specified or assumed by default, and must have one of the following attributes:

• Correct DCB parameters for a system SNAP dump
• Allocated to disk
• Allocated to SYSOUT
• Allocated to the terminal or unit-record device.

To get a formatted dump, ON ERROR must CAll PLiDUMP.

L Y27 -9528-0 «, Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 75

How to Use This Chapter

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This chapter contains information on how to obtain and interpret dumps, and on
how to identify compiled code, data, and control blocks within a dump. Some
knowledge of the compiler's housekeeping scheme, described in
Chapter 3, "Compiler Output" is assumed. A summary of how to use this
chapter when debugging is given in Figure 27 on page 77.

This chapter is divided into seven sections:

• "Section 1: How to Obtain a PLII Dump" .

This section explains how to obtain a hexadecimal dump of a PLII program.
It also gives some suggestions on the use of various compiler and PLII
options that may prove useful when debugging.

• "Section 2: Suggested Debugging Procedures" .

This section describes two ways of debugging a PLII program using a
dump. The first shows a PUI dump that was called from an ERROR
ON-unit; the second shows debugging with a system dump that was prob­
ably generated because the housekeeping control blocks were overwritten.

• "Section 3: Locating Specific Information" .

This section describes how to find various data areas and other information.
It is indexed and numbered for quick reference.

• "Section 4: Special Considerations for Multitasking" .

This section describes the special considerations that must be taken into
account when debugging a program that uses multitasking.

• "Section 5: Special Considerations for CICS" .

This small section tells you about the differences between the PL/I-CICS
run-time environment and the PUI batch and multitasking environments.

• "Section 6: User Exit Considerations" .

This section describes the user exit and how to use it.

• "Section 7: SYSTEM Option Considerations" .

This section gives you some information about the SYSTEM option and
refers you to the as PLI/ Version 2 Programming Guide for more details.

76 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Follow the most suitable check list In
section 2 of thla chapter. Refer to
keyed Items In section 3 of this chapter
for details.

Figure 27. How to Use this Chapter When Debugging

Read section 1 of this chapter to discover correct
method. (Use of SYSABEND or SYSUDUMP will
not necessarily produce a dump.)

Do not attempt to debug without this knowledge.
Read chaptera 3 and 4 of this book..

Examine contents II at at start of section 3 of this
chapter to find quickest method of finding Item.

Use contents list at start of section 3 of this
chapter to simplify finding various Items.

If you are familiar with system dump methods, read "Section 1: How to Obtain a
PLII Dump" on page 78 before requesting a dump. PLII uses methods that do
not follow as. Use the next two sections when debugging. If you know what

LY27-9528-0 CO Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 77

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

not follow as. Use the next two sections when debugging. If you know what
you are looking for, go directly to "Contents" on page 92. This section directs
you to numbered sections that give details of how to find particular items. If
you have no preferred scheme of your own, you can follow the recommended
procedures in "Section 2: Suggested Debugging Procedures" on page 87. It
cross-refers to the items in "Section 3: Locating Specific Information," so that
the details of the steps involved can be quickly found.

Section 1: How to Obtain a PL/I Dump

CALL PLIDUMP

In order to get a formatted PLII dump, you must include a call to PLiDUMP in
your program.

The statement CALL PLiDUMP may appear wherever a CALL statement is used.
It has the following form:

CALL PLIDU~lP

(character-string-expression 1, character-string-expression 2);

Character-string-expression 1 is a "dump options" character string consisting of
one or more of the following dump option characters:

T Trace. A calling trace through all active DSAs is generated. When an
ON-unit DSA is encountered, the values of the relevant condition built-in
functions are given. The reason for the entry to the ON-unit is also given
if the ERROR or FINISH conditions are raised as standard system action
for another condition.

NT No trace. A calling trace is not given.

F File information. A complete set of attributes for all open files is given,
plus the contents of all accessible buffers.

NF No file information required.

S Stop. The program will be terminated after the dump.

C Continue. Execution of the program continues after the dump.

H Hexadecimal. A SNAP hexadecimal dump of the region will be given. If
trace information is requested, the TCA and DSA addresses will be given.

If file information is requested, the addresses of the FCBs will be given
and the contents of all accessible' buffers will be printed in hexadecimal
notation as well as in character.

NH No hexadecimal dump required.

B Blocks. The contents of the TCA, TIA, DSAs, FCBs, and file buffers are
printed in hexadecimal notation.

NB No block information required.

K Produce a hexadecimal dump of the TIOAS and TWA (CICS control blocks)
if they exist

NK No dump of CICS blocks.

78 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/
I
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Tasking Options
A All, which results in a dump of all active tasks including the control task.

o Only, which results in a dump of the current task and a dump of the control
task.

E Exit, which results in the termination of the task after the dump.

The default options are TFCANHNB. That is, trace information, file information,
no block information, no hexadecimal dump, all tasks, and continuation after the
information is output.

Options are read from left to right. Invalid options are ignored, and, if contra­
dictory options are coded, the rightmost options are taken.

Character-string-expression 2 is a user identifier character string of up to 90
characters chosen by the PLII programmer. It is printed at the head of the
dump. If the character string is omitted, nothing is printed.

If PLiOUMP is called a number of times in a program, a different user identifier
should be used on each occasion. This simplifies identification of the point at
which the dump was called.

Suggested Coding
For PLiOUMP to produce a dump, a DO card for PLiOUMP must be included in
the JCL. PLiOUMP can be called from anywhere in a program, but the normal
method used when debugging will be to call PLiOUMP from an ON-unit. As
continuation after the dump is one of the options available, PLiOUMP can be
used as a SNAP dump to get a series of dumps of main storage throughout the
running of the program.

By including the statement CALL PLiDUMP (I HB I,' dump identifier I); in an
ERROR ON-unit, it is possible to obtain a hexadecimal dump, with control
blocks identified and formatted, should an error occur. If an ERROR ON-unit is
being included in a program, care should be taken that there are no further ON
ERROR statements which might override the ON-unit requesting a dump.

Suggested code for use when debugging with a dump is given in Figure 28 on
page 80.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 79

~I (SIZE, SUBSCRIPTRANGE, STRINGRANGE):

DUMPER: PROC;

®

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ON ERROR CALL PLiDUMP ('HB', 'ERROR ON-UNIT DUMP');

END;

These options give compiled code listing and
static storage map, essential for interpreting
any dump. MAP results in the generation
of a table showing offsets of static and automatic
variables from their defining bases.

Provides trace of last n branch-out/branch-in
points in up to m blocks if SNAP or P LI DUMP
with trace is used.

Two arguments can be passed to PLiDUMP.
They are the dump options character string and
the dump identifier. The format ot the call
statement is:

-L

® Permits trace of statement numbers in original
source program, and simplifies program checking.

Prefix options. The use of these PL/I checkout
options is strongly urged. Since, however, they
cause an increase both in the size of object code
and in execution time, it may be necessary to
restrict their use to suspected blocks or statements.

CA L L P LI DUM P (c/cte, .,,, ;og·,xO'",;oo 1, ch,,,cte'·"'; og·ex P"" ;o~

Dump options character string Dump identifier character string
(Default, is 'TFCANHNB') I

T Trace information required

NT No trace information required

F File information required

NF No file information required

S Stop after du mp

C Continue after dump

H Hexadecimal information required

NH No hexadecimal information required

B Control block information required

NB No control block information required

A Du mp all tasks

o Dump current task only

E Exit from task after dump

K Produce a hexidecimal dump of TIOAS and TWA

NK No dump of CICS blocks

Figure 28. Code for Debugging

80 os PUI Version 2 Problem Determination

Printed at head of dump. May be up to 90
characters long.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

('
l
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Avoiding Recompilation
If an ERROR ON-unit containing a call to PLiDUMP is to be included in an
existing program, it is necessary to recompile the program. This course is
advisable as it allows other diagnostic aids, such as SUBSCRIPTRANGE, to be
included. However, if recompilation is not desirable, a PLII dump can be
obtained by using a small bootstrap routine that contains an ERROR ON-unit
calling PLiDUMP. This routine can be compiled and then link-edited with the
object module of the program that needs to be dumped. The ON-unit will then
be inherited by the program that requires a dump, and a dump will be gener­
ated when an error occurs. A suitable bootstrap program is shown in
Figure 29. When using this method, the bootstrap must be link-edited as the
MAIN procedure; it should therefore be passed to the linkage editor before the
program that requires dumping, since that program will also have the MAIN
option. If the program that requires dumping expects to be passed parameters,
the bootstrap procedure should use an identical parameter list in its PROCE­
DURE statement, and should include an identical argument list in the CALL
statement used to invoke the inner procedure.

Note: You can call PLiDUMP without recompiling your program by using
PLiTEST. You can use the run-time TEST option to have PLiTEST easily gain
control of your program. Once PLiTEST has control, it can do a number of
things, including issuing a CALL PLiDUMP. For more information about this
method of calling PLiDUMP, see as PLiI Version 2 Programming: Using
PUTEST.

BOOTSTRAP: PROC OPTIONS (MAIN);

DCl program* ENTRY EXTERNAL;

ON ERROR CAll PlIDUMP ('HB',
'BOOTSTRAP'),

CAll program*;

END;

See text before using this method.

Figure 29. Suggested Method of Obtaining a Dump when Recompilation is Particularly
Undesirable

Note to Figure 29:

Insert the name of the program to be dumped at the points marked
"program*" in this example.

If the program that requires dumping already has an ERROR ON-unit, this will
override the ERROR ON-unit in the bootstrap program. However, if you are
using PLiTEST, PLiTEST gains control prior to the ON-units in the program.

In certain circumstances, a dump can still be obtained.

1. If the reason for the entry to the ON-unit is the occurrence of a PLII condi­
tion, an ON-unit for this condition in the bootstrap program will result in a
dump before the ERROR ON-unit is run.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 81

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(For example, if the CONVERSION condition was occurring in the program
to be dumped, a CONVERSION ON-unit could be included in the bootstrap
program. Such an ON-unit would be entered before the ERROR condition
was raised.)

2. Provided that the ERROR ON-unit does not include a GOTO out of the
ON-unit, a FINISH ON-unit can be used. Since the standard system action
for the ERROR condition is to raise the FINISH condition, the dump will be
generated after the ERROR ON-unit has been executed.

There is no point in including SUBSCRIPTRANGE or other prefixes in the boot­
strap routine, because these are not inherited by called programs.

IBM does not recommend the bootstrap method unless you have particularly
strong reasons for avoiding recompilation.

Contents of a PL/I Dump

Headings

Trace Information

The appearance of a typical dump produced by the PLiDUMP modules with the
options TFHBA is shown in Figure 30 on page 84. The contents of particular
sections follow.

The dump is headed by the line

PL/I DUt,1P

This is followed by the user identifier, if any, given as the second character
string in the argument list of PLiDUMP.

A request for trace information results in the following output:

1. A trace of every procedure, begin block, and ON-unit that is active at the
time of the call to PLiDUMP. For procedures, the procedure name and
statement number from which the procedure was called are given. The
offset of the statement is given as well as the entry point address and DSA
address. Also, if the entry point used is not the main entry point and the
statement number option was specified, the main entry name is given.

For multitasking programs, the name of the task variable, its status, and the
absolute priority of the task are printed. If no task variable is supplied,
I NONE I is printed as the name of the task variable. A dummy task variable
will have been supplied.

2. For ON-units, the values of any relevant condition built-in functions are
given. The type of ON-unit is given and, where the cause of entry into the
ON-unit is not self-explanatory, the cause of entry is also given (for
example, if an ERROR ON-unit was entered because of a conversion error,
this fact is given in the trace information). The ON-unit type is specified,
using a 3- or 4-letter abbreviation. A list of these abbreviations is given in
Figure 31 on page 84.

3. When a hexadecimal dump is requested, the entry point address of each
active block is also given, together with the address of its associated DSA.

4. When the compiler FLOW option is in effect, the flow statement table is
given.

82 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/
(
\~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5. If a hexadecimal dump is requested, the address of the TCA is printed at
the head of the trace.

6. If either a hexadecimal dump or control block information has been
requested, and any ERROR ON-units are traced, the following information is
also included:

a. The address of IBMBERRs DSA

b. The contents of the general and floating point registers at the time
IBMBERR was called

c. If there was an interrupt, the address of the interrupt

d. A trace of library DSAs back to the last compiled code DSA.

L Y27 -9528-0 f) Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 83

USER IDENTIFIER: EXAMPLE OF PLIDUNP

(TCA ADDRESS 0000C010)

* * * PL/I DUNP * * *

* * * CALLING TRACE * * *

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PLIDUt'lP WAS CALLED FRON STATENErlT rJUt·1BER 2 AT OFFSET +0000BA FROM A ERR TYPE OU-UNIT WITH ENTRY ADDRESS 02200E98
(AND DSA ADDRESS 0000CB28)

ERROR DIAGNOSTICS

PL/I CONDITION DETECTED: COUV
ONCODE 612 SEE LArJGUAGE REFERErJCE MANUAL
OUCHAR =T CHARACTER CAUSING CONVERSION ERROR

=E3 AS ABOVE IN HEXADECH4AL
DtlSOURCE =THIS WILL RAISE CONVERSION STRHIG CAUSIUG CDtIVERSIOtl ERROR

=E3C8C9E24 0E 6C9D3D34 0D9C 1 C9E2C54 0C3D6D5E5C5D9E2C9D6D5

ADDRESS OF ERROR HANDLER'S SAVE AREA 0000C888
REGISTERS ON ENTRY TO ERROR HANDLER

AS ABOVE III HEXADECINAL

REGS 0-7 0000C888
REGS 8-15 00000001

0000C880
0000C7A3

0000C808
00000000

82202B7E
0220264A

0000C550
0000C010

0000C78A
0000C830

0000C818
82202D7C

82200CBA
00009AC4

EtlD OF ERROR DIAGIIOSTICS

WH I CH WAS CALLED FRO~1 A LI BRARY 1·10DUlE WITH ENTRY ADDRESS 02202B78 (ArID DSA ADDRESS 0000C830)
WHICH WAS CALLED FROM A LIBRARY MODULE WITH EUTRY ADDRESS 022023E9 (ArID DSA ADDRESS 0000C440)
WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 02200F68 (AND DSA ADDRESS 0000C7B8)
WHICH WAS CALLED FRON STATE~IEln IIUI·IBER 6 AT OFFSET +0000F0 FROio! PROCEDURE EXANPLE WiTH ENTRY ADDRESS 02200098

(AND DSA ADDRESS 0000C6B8)

TRACE OF Pl/I CONTROL BLOCKS
TASK COI·1NUIH CATI ONS AREA

* * * END OF CALLI NG TRACE * * *

ADDR. OFFSET 0 4 8 C 10 14 18 1C
0000C010 00000 00000021 0000C5B0 0000C010 00000000 00000000 0000C020 00005FB0 0000C308
0000C030 00020 00000000 0000C390 0000C1F8 00000000 0000C398 00000000 0000C360 00000000
0000C050 00040 0000C328 00000000 8000B7A8 00000000 00006060 00000000 FFFF0038 00000000
0000C070 00060 00000000 02202238 00007C70 8000B75C 8000B75E 8000B7AC 00009AC4 F0000C0C
0000C090 00080 582E0004 58EE0000 19DF478C 00BA1851 181F180E 58FC00F0 05EF18E5 58FC00M
0000C0B0 000A0 07FF07FE 00008098 000058FC 0078051F DB0118E0 18019834 00209160 D001078E
0000C0D0 000C0 91400001 478C00D4 D203D04C 00509120 D001078E 02010056 00549180 D054071E
0000C0F0 000E0 181F58FC 00F407FF 00000000 00000000 0000C0B2 00000699 0000C0B2 0000C0B2
0000C110 00100 0000C0B2 0000C0B2 00000000 02202E08 02202E0A 02202EC8 00000000 00000000
0000C130 00120 0000C0B2 00000000 00000000 00000000 00000000 00000660 0000C000 0003C800
0000C150 00140 0000A8B0 0000A8B0 00000000 8004AAA8 00000000 00000600 00000000 00000000
0000C170 00160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 40404040

* * * Pl/I DUNP * * *

•••••• E ••••••••••••••••••••••• C •
•• ••• • C ••• A8 •••••• C ••••••• C- ••• ~
•• C ••••••••••••••• -- ••••••••••••
............... * ... ; 00 •••
••••••••••••••••••••••• 0 ••• V ••••
...•................. J ... , . - .•.•
•••••• IoIK ••••••••••• K •••••••••••
••.•• 4 ••..•••.•..••.•.••......••
••••••••••••••••••••••• H ••••••••
•••••••.•••••••••••••••••••••. H.

0000C190 00180 40404040 00000000 00000000 00000000 00000000 80000000 50C0D064 05C058C0 ••••••••••••••••••••• , •••• "
0000CIB0 001M C00605CC 00000000 0700C198 0700C198 0700C198 0700C198 0700C198 0700C198 •••••••••• A ••• A ••• A ••• A ••• A ••• A.
0000C1D0 001C0 0700C198 0700C198 0700C198 0700C198 0700C198 0700C198 0700C198 0700C198 •• A ••• A ••• A ••• A ••• A ••• A ••• A ••• A.

TCA mPlEt(lENTA TI ON APPENDAGE

ADDR. OFFSET
0000C1F8 00000
0000C218 00020
0000C238 00040
0000C258 00060
0000C278 00080
0000C298 000A0

o 4 8 C 10 14 18 1C
00048800 00000000 00009960 00001070 00000000 00000000 00000000 00000000
0000C340 0000C3E8 00008C38 00000000 00000000 00000000 00005C88 00000000
00008C96 0000A5C6 00000000 00000000 0000C010 00000000 82200AEC 00000030
00048220 00000000 00001000 00001000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00008CF6 00008DA4 022022B8 00000000

LIBRARY WORK SPACE

CDtITEtITS OF REG I STER SAVE AREA
REGS 0-7 8004A254 02200CE0
REGS 8-15 0000CBEA 0000CC08

0000CB28
0000C6B8

82201F0E
0000C1F8

0000C550
0000C010

00000000
0000C9C0

ADDR. OFFSET o 4 8 C 10 14 18 1C

•• C •• CY •••••••••••••••••• *
••••••• F ••••••••••.•••••••••••••

••••••••••• 6 •••.••••••••

€L200CE0
82201F5A

02200020
8004A254

0000C9C13 00000
0000C9E0 000213
0000CM0 00040
0000CA213 00060
0000CM0 00080

08000110 0000CB28 00000000 82201F5A 8004A254 8004A254 02200CE0 0000CB28 ••••••••••••••••••••••••••••••••
82201F0E 0000C550 00000000 02200CE0 022000213 0000CBEA 0000CC08 0000C6B8 •••••• E •••••••••.••••••••••••• F.
0000C1F8 0000C010 0000CM8 0600CCl0 00020000 00000050 00000000 0000CA20 •• A8 ••••••••••••••••••••••••••••
0000CA24 130000000 00000050 0000CA68 0000CBA3 80040008 00480043 00000003 ••••••••••••••••••••••••••••••••
00000F0E 000000013

DYUAIo1IC SAVE AREA (Oll-UlIIT)

COUTEN~S OF REGISTER SAVE AREA

Figure 30. An Example of PLiDUMP

84 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

File Information

Abbreviation

AREA
CHCK
COND
CONV
ENDF
ENDP
ERR
FIN
FOFL
KEY
NAME
OFL
REC
SIZE
STRG
STRZ
SUBG
TMIT
UFL
UNDF
ZDIV

Condition Name

AREA
CHECK
CONDITION (programmer-named condition)
CONVERSION
ENDFILE
ENDPAGE
ERROR
FINISH
FIXEDOVERFLOW
KEY
NAME
OVERFLOW
RECORD
SIZE
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
TRANSMIT
UNDERFLOW
UNDEFINEDFILE
ZERODIVIDE

Figure 31. Abbreviations for Condition Names Used in PUDUMP Trace Information

A request for file information results in the following output:

1. The default and declared attributes of all open files are given.

2. Buffer contents of all buffers are given. If a hexadecimal dump has been
requested, the contents of the buffers are given in both hexadecimal and
character notation. If no hexadecimal dump is requested, the contents are
given in character notation only.

3. The contents of the FCBs, DCBs, DCLCBs, IOCBs, and exclusive file blocks
are given in formatted hexadecimal notation, if either the I H I or I B I option
is also included.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 85

Byte 1

X'02'
X'03'

X'04'
X'05'
X'06'
X'07'
X'08'
X'09'
X'OA'

X'OS'

X'OC'

X'OD'
X'OE'

X'OF'
X'10'
X'11'
X'12'
X'13'
X'14'
X'15'
X'16'
X'17'
X'18'
X'19'
X'1A'
X'CD'

X'CF'

X'D3'
X'D5'
X'D7'
X'D9'
X'DF'

X'E1'

X'E3'
X'ES'

X'E7'
X'E9'
X'ES'
X'ED'
X'EF'

X'F1'
X'F3'
X'F5'
X'F7'

X'F9'
X'FS'

X'FD'

X'FF'

PUI Condition, If Any

ZERODIVIDE

FIXEDOVERFLOW

SIZE

CONVERSION

OVERFLOW

UNDERFLOW

STRINGSIZE
STRINGRANGE

SUBSCRIPTRANGE

AREA

ERROR

FINISH
CHECK

CONDITION

KEY
RECORD

UNDEFINEDFILE

ENDFILE
TRANSMIT

NAME

ENDPAGE

PENDING
ATTENTION

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

Base No.

320
310

340
600

300
330
150
350

520
360
009
004
510
500
050
020
080
070
040

010
090

100
400
9250
1000
9200
3500
4050
5050
5000
9050
1000
4000
xxxx
4050
0003
1000
1550
1500
2000
3768

3000
3800
3900
9000
8090

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 32. Error Code Field Lookup Table

Hexadecimal Dump
The hexadecimal dump is produced by the execution of a SNAP macro instruc­
tion. Thus the normal SNAP dump is produced.

It should be noted that the PSW will contain the address of an instruction in
IBMBKMR, one of the modules used to implement PLiDUMP. This will bear no
relation to the error in the dumped program.

86 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Block Option

If the program is not multitasking, the SNAP macro specifies all register save
areas, subpools, task control blocks, and, provided the 0 (Only) option is not
included in the PLiDUMP options, the trace table.

For a dump of a multitasking program the contents are:

In the control task

Register save areas
Subpools,

Trace table
Control blocks

In the other tasks

Register contents
Register save areas

Subpools
Jobpack Area
Linkpack Area

When the block option is used, the contents of the TCA, the TIA (TCA
appendage), and the DSAs in the LIFO stack (that is, all active DSAs) are
printed in hexadecimal and character format. The absolute address is printed
in the left hand column; the offsets within the block are then printed. This is
followed by the contents of the block, first in hexadecimal and then in character
notation. For DSAs, the type of DSA is shown; that is, library DSA, procedure
DSA, ON-unit DSA, or dummy DSA. The contents of the FCBs, DCLCBs, and
IOCBs for any open files are printed in a similar format.

In a dump of a multitasking program, the contents of the tasking appendage are
also printed.

If the option A(all) is used in a multitasking program, the TCA, TIA, DSAs and
tasking appendage of all directly ascending tasks will be printed. FCBs, IOCBs,
DCLCBs will be printed after files open in any task if the option A is used.

Section 2: Suggested Debugging Procedures
The main difficulty in reading a dump of a PLII program is knowing where to
start. The signposts known to assembler language programmers are of little
help. There are, however, five main sources of information to be considered
when using a dump to debug a PLII program. They are:

1. The statement number and the address where the error occurred (if a dump
was requested after an error).

2. The type of error (if a dump was requested after an error).

3. The values in the general registers when the dump was requested or when
the error occurred.

4. The chain of DSAs.

5. The TCA.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 87

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The first two of these items hold equivalent information to that held in the PSW
in a system dump. The last three items enable the housekeeping to be
checked and the location of the control blocks and the program variables to be
discovered. The methods of locating other information, given in "Section 3:
Locating Specific Information" on page 92, refer to the key areas shown above.
The object program listing allows you to study the instructions that are being
carried out and to find various control blocks in static storage. The linkage
editor map allows you to identify particular parts of the executable program
phase and to identify the routine associated with each DSA. The object
program listing is produced by the LIST compiler option; the linkage editor map,
by MAP.

Note: The PSW in the SNAP dump should not be consulted. This will give the
address at which the SNAP macro instruction was issued. This is an address in
one of the PLiDUMP modules and is not relevant to the error in the problem
program. Instead, look at the trace information.

Debugging Overlaid Storage
Storage overlay is one of the most common errors you usually debug with a
dump. In PLII applications, overlay problems can be divided into these catego­
ries:

• Are you using a subscript outside the declared bounds
(SUSSCRI PTRANGE)?

• Did you attempt to assign a string to a target with a shorter maximum
length (STRINGSIZE)?

• Does one of the arguments to a SUBSTR reference fail to comply with the
rules described for the SUBSTR built-in function (STRINGRANGE)?

• Were Significant high-order (left-most) binary or decimal digits lost during
an assignment to a variable, an intermediate result, or on an input/output
operation (SIZE)?

• Are you reading a variable-length file into a variable?

• Are you using a pointer variable?

Sy understanding these problem areas before you proceed through the dump,
you can isolate the problem much faster.

The first four categories are associated with the indicated PLII conditions, all of
which are disabled by default. If you suspect one of these problems is in your
program, use a condition prefix on the suspected statement or use the condi­
tion prefix on the BEGIN or PROCEDURE statement that defines the block con­
taining the suspected statement.

The fifth category occurs when you read a data record into a variable that is too
small. This type of problem only happens with variable-length files, and can
often be isolated by examining the data in the file information, and the data in
the buffer.

The last category occurs when you misuse a pointer variable. This type of
storage overlay is particularly difficult to isolate.

There are a number of ways pointer variables can be misused:

88 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1. When a READ statement with the SET option is executed, a value is placed
in a pointer. If you then execute a WRITE statement or another READ SET
option with another pointer, you will overlay your storage if you try to use
the original pointer.

2. When you attempt to use a pointer to allocated storage that has already
been freed, you can also cause a storage overlay.

3. When you attempt to use a pointer, set with the ADDR built-in function, as a
base for data with different attributes, you can cause a storage overlay.

Debugging Procedures
The best approach to a dump depends on the problem to be solved and must
therefore be left largely in the hands of the programmer. However, two sug­
gested courses of action are given in this section:

1. When PLIOUMP has been called from an ERROR or other ON-unit

2. When only a system ABEND dump has been generated.

Other possible situations are when you request a dump a specified point in the
program, or when you request a stand-alone dump. No attempt is made to
suggest a course of action in these circumstances. However, in such cases, the
main storage situation can be investigated by following the methods itemized in
"Section 3: Locating Specific Information" on page 92.

Throughout each of the two recommended procedures given in the following
paragraphs, there are cross-references to the methods given in "Section 3:
Locating Specific Information." The cross-references consist of the keys by
which the methods are identified; for example, H6, 05. These keys are listed in
"Housekeeping Information in All Dumps" on page 92.

PL/I Dump Called from ON-Unit
If a PL/I dump is called from an ERROR ON-unit, it can be assumed that the
housekeeping system of the program is working. If it were not working, the
dump would probably not have been generated.

A large amount of diagnostic information is available at the head of the dump.
An error message is generated, which provides a useful starting point. First,
examine the type of the error and the point where it occurs. Next, examine the
ONCODE and other condition built-in function values, along with the trace infor­
mation. We suggest the following procedure:

1. Examine the error by means of the ONCODE and any other relevant built-in
function values. These values are given in the trace information. (The
meanings of codes are given in the as PLil Version 2 Programming: Lan­
guage Reference.)

2. Find the location of the error (P1 on page 92) and the block in which the
error occurred (H12 on page 93). If the error occurred in a library module,
see H14 on page 93. This information is normally available from the head
of the PLIOUMP in the trace information.

3. Examine the trace to- see if it appears as expected.

4. Examine the information in the file buffers, and check that file attributes are
as expected. This information will be printed in the dump heading.

LY27-9528-0 © Copyright IBM Corp. 1985,1987 Chapter 6. Debugging Using Dumps 89

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5. Check the values of any variables involved in the interrupt (V1-V6).

6. Check values of registers to see if dedicated registers are pointing to (
correct areas (HS and H9). Distinguish between compiled code and library
register usage.

7. If SUBSCRIPTRANGE or STRINGRANGE is not enabled, check that the error
was not caused by one of these conditions.

S. Check housekeeping (H1-H16) starting with the area most directly con­
cerned with type of statement in which the error occurred.

9. Check values of all variables in the program (V1-V6).

10. Check the logic of code being executed from object listing.

System ABEND Dump
Provided a SYSABEND or a SYSUDUMP card is included in the JCl, a system
ABEND dump will be generated when there is a failure of the error-handling
modules, or of the module that prints the PLII hexadecimal dump. It should be
noted that the failure of these modules is more likely to be caused by the over­
writing of essential information than by an error in the modules themselves.

Because ABENDs caused by overrunning the specified time (SYSTEM 322) do
not enter the STAE/ESTAE exit, these will cause dumps to be generated in
normal circumstances.

An ABEND dump will not normally be produced for program checks, because a
program check exit is set by the PLII housekeeping routines, so that the system I

returns all program checks to the error handler. In the error handler itself, the ~
program check exit is reset so that a program check interrupt results in a
dump.

Thus, an ABEND is produced if:

• The program interrupt exit was reset during the program.

This exit is normally set by the program initialization routines to prevent a
dump.

• The program interrupt exit was never set at all. This possibility is
extremely unlikely.

• The program check exit itself is not working, and the SPIE/ESPIE macro in
the initialization routines did not successfully set the program check exit.

The most probable of these suggested causes is that the program check exit
was reset by the program. The program interrupt exit is always reset for the
duration of error handling or PLiDUMP, to prevent looping should an interrupt
occur.

If an interrupt occurs during error handling, an ABEND with a code of 4000 is
produced. This results in a dump if SYSABEND or SYSUDUMP cards were pro­
vided. An interrupt in the error-handling routines indicates either that the error­
handling routines are at fault, or, more probably, that some of the control
information of the error-handling routines was overwritten during the execution ~

of the program. ~

90 os PUI Version 2 Problem Determination lY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The most practical solution may be to recompile the program with
SUBSCRIPTRANGE, STRINGSIZE, and STRINGRANGE enabled. Then rerun the
program with the NOSPIE and NOSTAE run-time options. These PUI conditions
check for possible overwriting by subscripts or substrings that are beyond the
bounds of the referred variable.

If a 4000 ABEND must be run, execute with NOSPIE and NOST AE.

However, having obtained an ABEND dump, the following debugging procedure
may be adopted.

1. Determine whether the dump was caused by an interrupt in the error­
handling routines or a housekeeping error discovered during the analysis of
an ABEND. If the cause was an interrupt in the error handler, a message
will have been sent to the console before the ABEND was issued, and the
ABEND will have a code of 4000, if the interrupt occurred in one of the
error-handling routines. Note that codes 322 and 122 may also give system
dumps, and that the use of NOSPIE or NOST AE can result in the generation
of a dump.

2. Locate the instruction causing the interrupt. This is done by looking for the
PSW (01).

3. Inspect this instruction to see if it appears to have been overwritten,
bearing in mind the cause of the interrupt; for example,

a. Do the registers used in the instruction contain incorrect information,
picked up because of overwriting?

b. Is it a branch to a protected add ress?

4. Inspect the TCA(OS) to ensure that all error-handling addresses are correct.

5. Investigate the housekeeping fields, starting with the DSA chain (H1-H3),
then the chain of ONCAs (HS,H6).

6. Investigate the error that caused entry into the error handler. This can be
done by examining the contents of IBMBERR's DSA (H7) and the associated
ONCA (H6). See whether incorrect information passed to the error handler
could be causing a failure.

7. Check for uninitialized variables (particularly pointers), and incorrect
passing of parameters.

8. If none of the above produces a solution, an error in the error-handling
modules is a possibility. If you decide to call IBM for assistance at this
point, see Chapter 8, "Submitting an APAR" on page 115. The cause of
the original entry to the error handler may already be known, and can
perhaps be avoided by altering the source program so that the error does
not occur. It must be emphasized that the cause of entry into the PUI error
handler was not the cause of the system dump.

9. If the interrupt is not in the error handler, or one of the routines it calls, the
highest probability is still that the program check exit was altered in the
error handler and that an invalid branch was then made from one of the
addresses in the TCA because of overwriting. Therefore, you should care­
fully check the TCA. (See Appendix A, "Control Blocks" on page 119 for
more information about the TCA.) If this fails to produce results, return to
stage 2 of the above procedure.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 91

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 3: Locating Specific Information

Contents

This section tells you how to find information in a dump. The section is organ­
ized in modular form for easy reference. You should look through the list below
to discover the items in which you are interested. Suggested methods of
debugging a PLII program from a dump are given in "Section 2: Suggested
Debugging Procedures" on page 87. Unless you are experienced in using
dumps, or are looking for some particular item, use the procedures in "Section
2: Suggested Debugging Procedures," rather than attempting to find various
items through the information in this section.

Note: In CMS, storage is not divided into subpools. However, the information is
still in the dump.

Key Areas of a PLII Dump
P1 Statement number and address where error occurred (dump called from

ON-unit only)

P2 Type of error (dump called from ON-unit only)

P3 Register contents at time of error or dump invocation

P4 The DSA chain

PS The TCA

P6 Timestamp

Key Areas of an ABEND Dump
01 Finding address of interrupt

02 Type of interrupt

03 Register contents at point of interrupt

04 The DSA chain

05 The TCA

06 Find the J3rogram interrupt element (PIE) or extended program interrupt
element (EPIE)

Stand-Alone Dumps
51 Finding key areas in stand-alone dumps

Housekeeping Information in All Dumps
H1 Following the DSA back-chain
H2 Associating instruction with correct module
H3 Following calling trace
H4 Associating DSA with block
HS Finding relevant ONCA
H6 Following the chain of ONCAs
H7 Finding information from IBMBERR's DSA
H8 Finding and interpreting register save areas
H9 Register usage
H10 Following ISA free-area chain

92 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

!

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Finding Variables

H11 Finding the task variable
H12 Block structure of program (static back-chain)
H13 Forward chain in DSAs
H14 Action if error is in a library module
H15 Discovering contents of parameter lists
H16 Finding main procedure DSA
H17 Finding the relationships between tasks
H18 Finding the tasking appendage
H19 Finding the TCA from the tasking appendage
H20 Following the heap free-area chain
H21 Following the heap storage chain

V1 Automatic variables
V2 Static variables
V3 Controlled variables
V4 Based variables
V5 Area variables
V6 Variables in areas

Control Blocks and Fields
C1 Quick guide to identifying control fields

Key Areas of a PL/I Dump

P1: Statement Number and Address Where Error Occurred (Dump Called from
ON-Unit Only)

Information required is the point at which the condition that caused entry to the
ON-unit occurred. This is identified in the trace information. If no trace infor­
mation is generated, the method suggested for ABEND dumps can be
employed. If the condition occurred in compiled code, the machine instruction
being executed can be identified on the object program listing. This is done by
subtracting the address of the program control section from the address of the
interrupt and looking at this offset in the object program listing. The instruction
thus found will be the one after the instruction that was last executed.

Note: If PLiDUMP is called a number of times in a program, a different user
identifier should be used with each CALL statement so that the point at which
the dump was requested is obvious.

P2: Type of Error (Applies to Dump Called from ON-Unit Only)
The type of error is identified in the trace information, in terms of the type of
ON-unit entered and the reason for entry. The ONCODE is also given, thus pro­
viding further indication of the cause of the condition. If the dump was called
from an ERROR ON-unit, an error message should have been generated before
the dump. This again will give the cause of the error.

If no trace information has been generated, the type of error can be discovered
from the error code appearing in the ONCA associated with the interrupt. The
method for finding the ONCA is described in H5.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 93

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

P3: Register Contents at Time of Error or Dump Invocation
If trace information has not been generated, the contents of the registers can be (
found from the save area in the DSA. The register contents required will
depend on the situation. If PLiDUMP was called from an ON-unit, the register
contents at the time the condition was raised will be most useful, unless the
condition was raised in a library module. If the condition was raised in a library
module, the contents of the registers at the point where the library call was
made will probably prove more useful.

For a dump called from an ON-unit, the method of finding the register contents
is as follows:

1. Find the DSA of IBMBERR. The value of register 13 will be found in the
chainback field at offset 4 of this DSA.

2. If the interrupt was a program check interrupt (see Figure 34 on page 95),
the contents of registers 14 and 15 will also be stored in the DSA, register
14 at offset 1 5C 1 (92) and register 15 at offset 160 1 (96) from the head of the
DSA.

3. Registers 0 through 11 will be stored in the save a1"ea of the previous DSA,
starting at offset 1141 (20).

4. If the interrupt was a software interrupt, the registers will be stored at offset
1 C 1 (12) of the DSA before IBMBERR's DSA in the order 14 through 11. See
Figure 34 on page 95.

Discovering If Interrupt Was Program Check Interrupt: If trace information is (
available, a check can be made on whether IBM BERRA or IBMBERRB was \
called. IBMBERRA is entered after program check interrupts, IBMBERRB after
software interrupts. If no trace information is available, the simplest method of
discovering if the interrupt was a program check interrupt is to inspect bit 7 in
byte X 156 1 (86) in IBMBERR's DSA. This is set to 0 for program check inter-
rupts, and to 1 for other interrupts.

Finding Register Values If Interrupt Occurred in Library Routine: If the ON-unit
was entered from a library module, a search back through the DSA chain to the
first compiled code DSA should be made. This can be discovered from the
trace information or by following the back-chain from IBMBERR's DSA (offset 4
in each DSA) until a procedure block, begin block, or ON-unit DSA is found.
This may be determined from flag bits 4 and 5 of DSA, as follows:

Bit 4 Bit 5 eSA

o o Procedure block

o Begin block

1 ON-unit

Figure 33. DSA Flag Bits 4 and 5

94 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Software detected interrupt

o

DSA of block in which
interrupt occurred

4 Back-chain

C

44

o

4

50

54

5C

84

Registers 14 through 11
at the time of interrupt

Other DSA information

DSA for IBMBERR

88XX EEEE

Back-chain, register save
area, address of LWS,NAB,
etc.

Qualifier for I/O, CHECK
condition

1st 2 bytes of
error code
passed to
Im~BERR

Not used

Program check interrupt

~
0

4

8

C

14

44

DSA of block in which
interrupt occurred

Back-chain

Interrupt address from
word 2 of PSW

Registers 8 through 11
at time of interrupt

Other DSA information

DSA for IBtvlBERR

8 88XX EEEE
4

- Address of lnterrupt DSA

8 Register save area,
address of LWS, NAB, etc.

54 Error code
created by
IBtvlBERR

58 interrupt code

5C Register 14 at time of
interrupt

68 Register 15 at time of
interrupt

68 Floating point registers
8, 2, 4, 6

Floating point registers are
saved only if interrupt relates
directly to a PL/I condition,
and return may be made to the
point of interrupt

Figure 34. The Contents of IBMBERR's DSA After a System Detected and a PUI Inter­
rupt

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 95

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The value of register 12 can only be discovered in .a DSA prior to a compiled
code DSA, as it is not stored by library routines when they are entered. This ~

P4: The DSA Chain

means that the dummy DSA always contains the value of register 12. Register
12 should point to the TeA, whose address is also given in the head of trace
information.

No Trace Information Generated: If no trace information has been generated,
the register values on taking the dump will be printed at its head. The address
of the DSA for PLIDUMP will be in register 13. The back-chain can then be fol­
lowed to find the DSA for IBMBERR. The DSA for IBMBERR can be recognized
if an ON-unit is involved, because it will be the DSA before the ON-unit DSA.
IBMBERR's DSA is always headed by a flag word of hexadecimal X I 8800EEEE I,
meaning that it is a library DSA in LIFO storage. To identify IBMBERR's DSA
for certain, register 15 of the previous block's DSA must be inspected to see if it
points to the module IBMBERR.

The addresses of the DSAs are given in a PLlI dump if trace information and a
hexadecimal dump are requested. If trace information is not requested, the
address of the DSA for the dump routine can be obtained from register 13 at the
head of the dump. The chain back field is held in the second word of the DSA.
When the dummy DSA is reached, this chainback field will be set to zero. The
DSA chain passes through DSAs in LIFO storage and DSAs in LWS (library
workspace).

See H1 and Figure 35 on page 97 for details of how to follow the DSA chain.

96 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

i
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

P5: The TCA

P6: Timestamp

,---.
Flags Reserved

Back-chain

Not used

Register save area (60 bytes)

Address of library workspace

Segment No. NAB

Segment No. End of prologue NAB

Space for automatic variables and temporaries
Length depends on number and type of
variables declared in the associated block

R13----"
Flags Reserved

Back-chain

Figure 35. The Chaining of DSAs

I

To previous DSA

"""-

Current

NAB points to the
next DSA only if it
is in LIFO storage
and has the same
segment number

DSA

The address of the TCA is given in a PLII dump. If I B I (block option) is speci­
fied in the dump-options character string, the complete TCA (including the
appendage) is printed separately from the body of the dump.

The TCA is addressed by register 12. If NOTRACE is specified, the TCA is in
subpool 1, preceded by the characters ZTCA.

If the TSTAMP installation option is specified in your installation, the date and
time of compilation are in the last 16 bytes of the static control section. The
first word gives the offset to the information. The static control section is
addressed by register 3. If the BLOCK option is specified, the timestamp is
printed at the head of the static blocks.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 97

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Key Areas of an ABEND Dump

01: Address of Interrupt
If the ABEND code is 4000, the address of the interrupt can be found from the
second word of the PSW, which gives the address of the instruction following
the point of interrupt. The PSW is held in subpool 5.

The associated statement number in the source program can normally be found
by finding the last compiled code DSA, and finding the point at which the exit
was made (register 14 in the save area). The address of the program control
section in the link-edit map can then be subtracted from this address; the offset
compared to the listing gives the appropriate statement number.

Finding the statement number is not likely to prove useful because of the cir­
cumstances in which a system dump is generated. The address found will
usually be the address at which the error handler was entered before the
program check exit was altered. The reason for entry into the error handler is
not the cause of the dump. If the ABEND code is not 4000, see "06: Finding the
Program Interrupt Element (PIE/EPIE)."

02: Type of Interrupt
The type of interrupt can be found from the first word of the PSW.

03: Register Contents at the Point of Interrupt

04: The DSA Chain

05: The TCA

Registers 14 through 2 appear in the PIE (program interrupt element). Regis­
ters 3 through 13 are those printed in the save area trace. See 06 for finding
the PIE.

Register 13 should point at the most recent DSA. The back-chain can be fol­
lowed from offset '4' of each DSA. See Figure 36 on page 103.

Register 12 should point at the TeA.

06: Finding the Program Interrupt Element (PIE/EPIE)
The program interrupt element (PIE) or extended program interrupt element
(EPIE) is found in subpool 5. The PIE/EPIE is followed by registers 3 through 13
and then the STAE/EST AE work area. The STAE/EST AE work area holds the
last problem program PSW.

This is the value required for finding the original cause of the ABEND if the
ABEND code is other than 4000.

98 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/
I
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Stand-alone Dumps

S1: Finding Key Areas in Stand-Alone Dumps
The programmer should attempt to find the various PUI key areas (TCA, DSA
chain, etc.) discussed above.

Housekeeping Information in All Dumps

H1: Following the DSA Back-chain
Each DSA holds a back-chain address in the second word. This word holds the
address of the previous DSA. The end of the chain is marked by the dummy
DSA whose first word contains the flag hexadecimal 1821. The back-chain in
the dummy DSA points to the external save area or is zero if the program was
called from the system. (See P4 or D4 for finding the DSA chain.)

For programs using multitasking, the DSA back-chain leads to the dummy DSA
of the major task. The DSA of the block in which the task was attached is not
included in the chain. To find this DSA, the I static I back-chain held at offset
X 158 I (88) can be used provided the procedure attached as a task is internal to
the attaching block. If the procedure is not internal, the NAB value XI4CI(76) in
the DSA before it will normally point to the required DSA.

(For the relationship of NAB and DSA chaining, see H13.)

H2: Associating Instruction with Correct Statement and Program Block
Statement Number and Program Block: The statement number and entry point
associated with the interrupt will normally be given in a PLiDUMP. However, if
they have to be found, the programmer should follow the method used by the
error message modules.

Statement Number: It must first be established whether the GOSTMT option is
in effect. This will be indicated in the listing for the compilation. If the listing is
not available it will be flagged in the compiled code DSA. (Flag bit 13 of the
DSA flags is set to 111 B.) If this bit is not set, the table of offsets and statement
numbers may be available; if this is not available, statement numbers and
offsets must be deduced from the object program listing. The method of using
the table of offsets is described under "Using the Table of Offsets" on page 101.
If both statement numbers and the table of offsets are available, it will probably
be faster to use the table of offsets rather than the statement number table.

The statement number is found by use of the DSA chain as described below:

1. Find the chain of DSAs. The most recent DSA should be addressed by reg­
ister 13.

2. If the DSA found is not a compiled code DSA (in a compiled code DSA, flag
bits 4 and 5 are set to 100 I B, 101 1 B, or 1111 B), the interrupt was not in com­
piled code. (See Figure 33 on page 94.) If the interrupt was in compiled
code, the interrupt address can be directly associated with a statement
number.

If the interrupt was not in compiled code, the address at which compiled
code was left must be discovered and this address associated with a state­
ment number. To find the address at which compiled code was left:

L Y27 -9528-0 1~ Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 99

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

a. Chain back along the DSA chain until a compiled code DSA is reached
(flag bits 4 and 5 set to 100 I, 101 1, or 11118). For more information, see ~
Figure 33 on page 94.

b. The register 14 address saved in the DSA (offset 12 XICI) will be the
point to which the library module or other module would have returned
if the call had been successfully completed.

The address thus found is the address to be associated with a statement
number.

3. Chain back one DSA to the DSA before the compiled code DSA that has
been discovered in step 1 on page 99 or step 2 on page 99. The register
15 value in this DSA (offset 16 X 110 I) is the entry point of the block. If this
appears to give an invalid result, check to see whether the DSA is one of
those used in interlanguage communication (flag bit 7 set to 1118 and bit 0
of flags 2 (offset X 176 1) set to 1118). If this is the case, chain back one
more DSA and try again.

4. At offset 8 from the entry point of the block, the address of the statement
number table will be held.

5. Calculate the offset between the value in the first word of the statement
number table and the address for which a statement number is required. If
the address for which a statement number is required is less than the
address in the first word of the statement number table, then either an
invalid branch has been made, or a compiler-generated subroutine is being
executed. If it is possible that a compiler-generated subroutine is being
executed, return to the compiled code DSA and attempt to find a statement
number associated with the values held first in register 6; if this gives an
invalid or improbable result, then in register 14. If the second word in the
statement number table is less than the offset between the address for
which a statement number is required and the first word of the statement
number table, it is not within the program control section and an erroneous
branch has been made out of the program.

6. If the offset is more than X 17FFF I, the statement number will be held in the
second or subsequent sections of the table. Obtain the number given by
translating the offset into binary and ignoring the last 15 bits and step down
this number of sections of the table. (For example, if the offset was
X I8FFFI, translate to binary = 11000 1111 1111 1111 18, ignore last 15
binary digits = 1; therefore, step down one section of the table. If the offset
was X I18FFFI, the binary would be 10001 1000 1111 111118. Ignoring the
15 right-hand bits leaves 11118; therefore, step down three sections of the
table.)

The address of the second section of the table is held at offset X 18 I in the
table, the address of the third section is held at the head of the second
section, the address of the fourth section at the head of the third section,
and so forth.

7. When the correct section of the table has been identified, search for the first
offset in the table that is greater than or equal to the offset for which you
are searching. Following this offset, the statement number is given in

(

\,

2-byte hexadecimal format. ~

100 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Procedure Name: To find the entry point name, a back-chain is made beyond
the first procedure DSA found on the chain. Register 15 in the save area before
this procedure DSA will point to the entry point of the procedure. (Procedure
DSAs have flag bits 4 and 5 set to 100 1 B. The register 15 value is held at offset
16 XI101.)

The entry is preceded by a one-byte field that holds the number of characters in
the name. This one byte field is in turn preceded by the entry point name.

Using the Table of Offsets: Statement numbers can also be found by comparing
them with the offsets in the offset and statement number table generated by the
compiler when the OFFSET option is specified.

Offsets are held from each primary entry point of a procedure or ON-unit. To
use the table of offsets, find the entry point used by the program in the manner
described above. Find the primary entry point for the procedure. (If the
primary entry point was not used, look at the object program listing to see the
relationship between the entry point used and the primary entry point.) Note
that, the offsets given are from the point marked *REAL ENTRY in the object
program listing. This point is one byte after the end of the primary entry point
name.

If the interrupt occurred in an ON-unit, it may be necessary to discover the type
of ON-unit entered before it can be identified. This is done by inspecting the
DSA before the DSA of the ON-unit. This DSA is for IBMBERR. The first byte of
the error code is held in this DSA at offset 84 (X I541). Compare this byte with
the values in Figure 32 on page 86. This error code is given an associated PLII
condition. It is the ON-unit for this condition that is entered. If there is more
than one ON-unit for the condition, the ON-unit entered must be deduced by
studying the dump, and source and object listings. If the register 15 value
appears to be invalid, this may be caused by rechaining in interlanguage proc­
essing. If this is possible, chain back one more DSA and try again. (To check if
this has occurred, see step 3 on page 100.)

H3: Following Calling Trace
The calling trace can be followed because branches within the program are
always made on registers 14 and 15. Hence register 15 in each DSA points to
the address that was branched to from that block. Register 14 points to the
address to which control passed when the block was completed. By finding the
entry point name (see" H2: Associating Instruction with Correct Statement and
Program Block" on page 99), it is possible to follow the calling trace.

H4: Associating DSA with Block
DSAs are associated with code by finding the register values in the preceding
DSA register save area (H8) and using the fact that all branches are made via
registers 14 and 15. Register 14 in any DSA points to the instruction after the
point at which control left that block. Register 15 points to the address at which
the next block was entered. The block in the source program can be identified
by statement numbers or entry point, described in "H2: Associating Instruction
with Correct Statement and Program Block" on page 99.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 101

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

H5: Finding Relevant ONCA
When an interrupt has occurred in the error handler and a system dump has
been produced, it is possible to discover the information that the error handler
would have used to generate appropriate error messages. The ONCA holds
values for the condition built-in functions. The appropriate ONCA can be found
in the following manner.

1. Find the DSA before that of IBMBERR (fo"ow back the DSA chain until reg­
ister 15 in the save area points to IBMBERR). See H1, H3, H7. If this is a
library DSA (flag bits 4 and 5 set to 110 1) go to 3, below.

2. Find the LWS addressed from this DSA. The address is held at offset
X'48 I (72).

3. Find the offset from the LWS to the ONCA. This is held at offset 2 in the
LWS.

4. Add the offset to the address of the library DSA in LWS.

H6: Following the Chain of ONCAs
ONCAs are used to hold condition built-in function values. They are chained
together, one being provided for every level of interrupt. The chain back field is
in the first word of the ONCA. The dummy ONCA is marked by a chain back
field of zero.

H7: Finding Information from IBMBERR's DSA
The information held in IBMBERR's DSA is used by the error message modules
for information about the error. If the messages have not been generated, the (
information can be deduced from the DSA. The contents of IBMBERR's DSA \,
are shown in Figure 34 on page 95. See H4 for associating DSAs with correct
code. IBMBERR's DSA can be identified by XI EEEE 1 in bytes 2 and 3.

H8: Finding and Interpreting Register Save Areas

H9:Register Usage

Register save areas are held at offset XI C 1 (12) in all DSAs, including DSAs in
LWS. Offsets and registers are shown in Figure 36 on page 103. Each DSA
holds the register values as they were on exit from its block.

A summary of register usage, showing which registers are always used for a
particular purpose, is given in Figure 11 on page 24.

H10: Following the ISA Free-Area Chain
The ISA free-area chain connects the areas of non-LIFO dynamic storage that
have been used and freed, but have not been absorbed into the major free
area. The chain starts at offset X 11C 1 (28) in the ;mplementation-defined
appendage, which is addressed from offset X 128 1 (40) in the TCA. The end of
the chain is marked with a zero entry.

102 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DSA

o Flags

4 Back-chain

8 Not used

C R14 (*) -
-

10 R15 (*)
r---

14 R0
r---

18 Rl

r---

lC R2
r---

20 R3
f---

24 R4 -

28 R5 -
-

2C R6
-

30 R7
-

34 R8

f---

38 R9
f---

3C R10
-

40 Rll -

44 R12 Stored

-

~Always stored by
+--library

-
~Stored by library
+--if required

-

by compiled code only

(*) Not stored if hardware interrupt occurs

Figure 36. The Register Save Area in the DSA

H11: Finding the Task Variable
The task variable is held in the TeA at offset X 1241 (36).

L Y27 -9528-0 <0 Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 103

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

H12: Block Structure of Program (Static Back-chain)
The block structure of the program can be followed from the address held at
offset X 158 1 (88) in each compiled code DSA. This address holds the address of
the compiled code DSA of the statically encompassing block. The chain thus
formed is known as the static back-chain.

H13: Forward Chain in DSAs
The forward chain in DSAs is not supported by the compiler. However, a
forward chain through the LIFO stack can normally be followed by use of the
NAB pointer. The NAB pointer is held at offset X 14C I (76) from the head of each
DSA. The last pointer in the chain points to the major free area. If the NAB
pointer contains anything except 100 1 in its first byte, the chain cannot be fol­
lowed, because it is not contained in a single LIFO segment. The address
required is held in the last three bytes of NAB; the first byte contains the
segment number (see C1). The forward chain includes only those DSAs in the
LIFO stack and does not include any DSAs in LWS.

H14: Action If Error Is in a Library Module
The fact that the interrupt or the error was discovered during the execution of a
library module suggests that a check must be made on the data that is being
passed to the module.

To discover the contents of a parameter list, see H15.

H15: Discovering Contents of Parameter Lists
Parameters are passed in a list of words pointed to by register 1, except during
stream 1/0. To find the position of a parameter passed to a program, find the
value of register 1 in the save area of the DSA (see "H4: Associating DSA with
Block" on page 101) of the calling block. Register 1 will then locate the param­
eter list. If the list is in static storage, this can be compared with the static
storage listing. The name of the called routine can be discovered (H3). The
correct parameters for PLiI library routines are given in the appropriate library
Program Logic Manual.

H16: Finding Main Procedure DSA
The main procedure DSA can be found by following the back-chain of DSAs to
the dummy DSA. The address of the main procedure DSA will be given by the
last 3 bytes of NAB in the dummy DSA. NAB is held at offset XI4CI(76) in the
dummy DSA. The address of the dummy DSA is held at offset X 1241 (36) in the
TCA appendage, which is addressed from offset X 128 1 (40) in the TCA. The
dummy DSA can be recognized by the presence of X 1821 in the flag byte and
the character value ZDSA before it.

Library routines store at least registers 14 through 4, and up to registers 14
through 11; compiled code routines store registers 14 through 12. Thus the
address of register 12 can always be found in the dummy DSA, although it may
not be in other DSAs. The contents of the register save area in the DSA of the
block that called IBMBERR are slightly different from normal if the interrupt was
a hardware interrupt. See Figure 34 on page 95 for a diagram of IBMBERR's
DSA.

104 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

I

\.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

H17: Finding the Relationship between Tasks
The relationship between tasks can be discovered from the chains in the
tasking appendage. The chain held at offset X' 28' (40) points to the tasking
appendage of the most recently attached subtask.

The chain at offset X' 24' (36) points to the task with the same attaching task that
was attached before the task being inspected (elder sibling). If there is no such
task, the field is set to zero.

The chain at offset X' 20' (32) points to the subsequently attached task with the
same attaching task (younger sibling). If there is no younger sibling, this chain
points to an offset within the tasking appendage of the parent task. An attempt
to continue along the chain results in a zero field being met. (See Figure 37.)

To Find the Parent Task: Search along the chain held at offset X' 20' (32) in
each tasking appendage. When this field is zero, the tasking appendage of the
parent task has been reached. The start of this tasking appendage is at an
offset of X' -8' (-8) from the address held in the pointer of the previous tasking
appendage. (See Figure 37.)

To Find All Subtasks of a Task: The address of the most recently attached
subtask is held at offset X' 28' (40) in the tasking appendage. Other subtasks
can be found by following the chain held at offset X' 24' (36) in the tasking
appendage until a zero field is reached. This will be the end of the chain and is
the first of the active subtasks to be attached by the task. (See Figure 37.)

To Find Sibling Tasks: Previously attached sibling tasks (elder sibling) can be
found by following the chain held at offset X' 24' (36) in the tasking appendage.

Subsequently, attached sibling tasks (younger siblings) can be found by fol­
lowing the chain held at offset X 120 I (32) in the tasking appendage. When a
zero field in this chain is reached, the parent task has been found. The most
recently attached sibling task is the last one whose chain field does not hold a
zero value. The word after the zero value will point to the tasking appendage
of this task. (See also Figure 37 on page 106).

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 105

Tasking appendage
major task

younger sibling (0)
elder sibling (0)

•

stopper (0)

subtask chain

•••••••
• •

• Tasking appendage
I. task 1

younger sibling -

• • •

.,/

"

--

• •
•
• /'
./

/ ..
/ • • • •

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• •
:Tasking appendage ••

~ task 2 • •
~

younger sibling -

•

/
/'

• .,/ . /
/ ..

•
•
•

Major task

[
Task 1

[
Task 2

Task 3

~ Task 3a

-----
Tasking appendage
task 3

"'-
\
I
/

~
r-------------~ / ,

younger sibling
elder sibling • • elder sibling •

stopper (0) stopper (0)

• • elder sibling

stopper (0)

subtask chain

\
\

----.

......

subtask chain (0)

Subtask chain points to most
recently attached subtask.

Younger sibling cha~n
(i.e. tasks with the same
attaching tasks that were
attached later)

Elder sibling chain
(i.e. tasks with the same
attaching task that were
attached earlier)

subtask chain (0)

Note: Because tasks are chained in both directions, all relationships be quickly found.

Tasking appendage
task 3a

/
I-------~/

younger sibling
elder sibling (0)

stopper (0)

subtask chain (0)

/
/

Following the 'younger sibling chain' leads to the attaching task. When the attaching task is reached, the offset that should be the
offset to the younger sibling is to the stopper. Thus it is known that the attaching task has been reached.

Figure 37. The Chaining of Tasks Through Their Tasking Appendages

106 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

/

I
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

H18: Finding the Tasking Appendage
The address of the tasking appendage is held at offset X '2C' (44) in the TCA
and at offset X '50' (80) in the dummy DSA of the attaching task.

H19: Finding the TCA from the Tasking Appendage
The TCA is addressed from X '2C' (44) in the TCA tasking appendage.

H20: Following the heap free-area chain
The heap free-area chain connects the areas of heap storage that are available
to satisfy ALLOCATE requests.

The chain starts at offset X '78' (120) in the implementation-defined appendage,
which is addressed from offset X '28' (40) in the TCA. The end of the chain is
marked with a zero.

H21: Following the heap storage chain

Finding Variables

The heap storage chain connects all areas obtained by GETMAIN macro
instructions for use as heap storage. The chain starts at offset X '74' (116) in the
implementation-defined appendage, which is addressed from offset X '28' (40) in
the TCA. The end of the chain is marked with a zero.

The value of the variables in the program at the point of interrupt can be dis­
covered by using the compiled code listing as a guide to their addresses, and
then finding these addresses in the dump. The method used depends on the
type of variable.

V1: Automatic Variables

V2: Static Variables

Automatic variables can be found by using an offset from the DSA of the block
in which they were declared. This information appears in the variables offset
map generated when the compiler MAP option is used. If the compiler MAP
option has not been used, the information can be deduced from compiled code.
(For finding the DSA associated with a block, see "H4: Associating DSA with
Block" on page 101.)

Static variables are normally addressed by an offset from register 3. This offset
is given in the variables offset map generated when the compiler MAP option is
used. If the compiler MAP option has not been used, the offset can be deduced
by studying the listing of compiled code. The value of register 3 can be found
in the save area of the DSA. (For finding the DSA associated with a block, see
"H4: Associating DSA with Block" on page 101.)

V3: Controlled Variables
Controlled variables are addressed by an anchor word that is held in the
pseudo-register vector. This anchor word can be identified from compiled code,
while the PRV offset can be found in the dump. The address of the controlled
variable must be obtained from the PRV in the dump because it is not filled-in
until the ALLOCATE statement is executed.

The address in the pseudo-register vector is the address of the data or, in
certain circumstances, of a descriptor or a locator/descriptor. These fields are

L Y27 -9528-0 (0 Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 107

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

described in Appendix A, "Control Blocks" on page 119. The data is preceded
by a control block-the controlled variable control block. The address of the
previous allocation is held at an offset of -8 from the address in the PRV. If
there is no previous allocation, the address is set to zero.

V4: Based Variables

V5: Area Variables

Based variables are located by finding the value of the defining pointer. This
value is found by using one of the methods described above to find static, auto­
rnatic, or controlled variables. If the pointer is itself based, its defining pointer
must be found and the chain followed until the correct value is found.

Typical code would be the following:

For X BASED (P), with P AUTOMATIC

58 50 0 088 L 5,P

58 EO 5 000 L 14,X

P is held at offset X 188 1 from register 13, and this address points at X.

Care must be taken when examining a based variable to ensure that the
pointers are still valid.

Area variables are located in one of the ways described above, according to
their storage class.

Typical code would be:

For area variable A declared AUTOMATIC

41 50 0 088 LA 5,A

The area would start at offset X 188 1 from register 13.

V6: Variables in Areas
Variables in areas are found by locating the area and then using the offset to
find the variable.

Control Blocks and Fields
For simplicity, the methods of finding various control blocks are placed in an
alphabetic table. Details of the control blocks are available in
Appendix A, "Control Blocks" on page 119.

As we" as control blocks, various other items are included in the list. Where
necessary, cross-reference is made to other sections in this chapter.

108 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

C1: Quick Guide to Identifying Control Fields

Control Field

Automatic Variables

Back-chain
DSA back-chain
ONCA back-chain

BOS
Beginning of segment

Controlled variables

DCLCB
Declare control block

DCB

ENVB
Environment block

DED
Data element descriptor

Di agnostic statement table

DFB
Diagnostic file block

DSA
Dynamic storage area

EOS
End of segment

Event variable

FCB
File control block

Flow statement table

Filename

ISA Free-area chain

Heap free-area chain

Heap storage chain

Locator /descri ptor

LWS
Li brary workspace

NAB
Next available byte

Identification

See "Variables"

offset X '4' in DSA

offset X' 0' in ONCA

Offset X ' 8' from TCA

see "Variables"

Deduced from object program listing

addressed from offset X' 14' (20) in FCB

offset X' C' (12) in DCLCB

deduced from object program listing

addressed from offset X' 8' from entry point of
main procedure

addressed from offset X '40' (64) in TCA

addressed by register 13 (see P3 and D3)

offset X'C'(12) in TCA

deduced from object program listing and know­
ledge of parameter lists of 1/0 and wait modules

identified in PLII dumps. Addressed via PRY and
DCLeB

addressed from offset X '4C' (76) in TCA

addressed from offset X '1 0' (16) in FCB

offset X' 1 C' (28) in implementation-defined

appendage, which is addressed from offset
X'28'(40) in TCA

offset X' 78' (120) in the implementation-defined
appendage

offset X '74' (116) in the implementation-defined
appendage

deduced front object program listing

addressed from offset X '48' (72) in every DSA

offset X '4C' (76) in DSA

Figure 38 (Part 1 of 2). Quick Guide to Identifying Control Fields

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 109

Control Field

ONCA
ON-communications area

ONCB
ON-control block start of dynamic
ONCB chain

first static ONCB

ON-cells

Parameter lists

Register values

Symbol table

Symbol table vector

Statement number table

Static storage

Segment number

Tasking appendage

Task variable

TCA
Task communications area

Variables
automatic

based

controlled

static

area

Variables in areas

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Identification

the offset of the associated ONCA is held in a

halfword at offset X '2' in each section of LWS

offset X '60' (96) in DSA

offset X '5C' (92) in DSA

addressed from offset XI 70 ' (112) in DSA

object program listing and static storage map

See P3 and 03

Static listing

Static listing

see diagnostic statement table

addressed by register 3 in compiled code. See
P3 and 03.

first two bytes of BOS, or NAB. '00 1
= 1,

'FF' = 2, etc. l

add ressed from X' 2C ' (44) in the TCA.

addressed from X 1241 (36) in the TCA.

addressed by register 12. See P3 and D3.

offset from DSA of block in which they are
declared. As shown in variables offset map. See
V1.

address of the pointer must be deduced from the
object program listing. This gives the address of
the variable. See V2.

PRV offset referenced in compiled code holds
latest allocation of the variable. A back-chain
through the previous allocation can be made
using the header chain. See V3.

offset from register 3 is shown in variable offset
map. See V4.

as for other variables depending on storage
class. See V5.

find address of area. Find variable from offset
within areas shown in compiled code. See V6.

Figure 38 (Part 2 of 2). Quick Guide to Identifying Control Fields

Note: 1 Except when the first two bytes of NAB are filled with zeros, the first
two bytes of BOS are always less than the first two bytes of NAB when a
segment needs to be freed.

110 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

I

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 4: Special Considerations for Multitasking
The major difference between a dump of a multitasking program and the dump
of any other PUI program is that certain relevant items are held within the
control task. For this reason, the control task is always dumped as well as the
current task.

The contents of the dump of a tasking program depend on the dump options
specified. If A (all) is used, all the tasks will be dumped. If 0 (only current
task) is specified, the control task and the current task will be dumped.

The dump is carried out within the control task and this prevents access to the
tasking housekeeping during the execution of the dump. However, this does
not prevent access by other tasks to PUI variables which may be dumped.
Subtasks of the current task can access and alter values within the ISA of the
current task. Consequently, the values of the variables printed cannot be guar­
anteed to be those that were current at the invocation of the dump.

The DSA chaining differs slightly when a program is multitasking. The back­
chain passes through the dummy DSA of the task and ends at the dummy DSA
of the major task. The DSA of the block in which the task was attached is not
included in the back-chain.

Compiled code and the static control sections generated by the compiler are
always held in storage associated with the control task.

Section 5: Special Considerations for CICS
The PUI-CICS run-time environment is different from either the PUI batch envi­
ronment or the PUI multitasking environment. This is because system services
such as program management, storage management, and error handling are
requested through the EXEC CICS interface.

As a result of these differences, when you prepare a PUI program for execution
under CICS, you must take special action during the compile and the link edit
steps. You can find information about these actions in the OS PLII Version 2
Programming Guide.

The CICS environment user exit is IBMFXIT A. This user exit, if it determines
that an ABEND is required, supplies a four-character EBCDIC ABEND code. The
User exit is discussed detail in as PLII Version 2 Installation and Customization
under MVS.

CICS ABEND codes are different from PUI ABEND codes. CICS ABEND codes
are listed in the as PLII Version 2 Programming Guide.

Section 6: User Exit Considerations
IBM supplies a user exit you can modify. You can invoke it during initialization
and termination. The IBM-supplied name of the user exit is IBMBXITA. (The
CICS User exit name is IBMFXIT A.)

The user exit can request the program to ABEND, if it is invoked with the initial­
ization or the termination function code.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 6. Debugging Using Dumps 111

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If you invoke the user exit during initialization, neither the PLII environment nor
PLII error handling facilities are established yet. But if you invoke the user exit
with the termination function code, the PLII environment is established. Then if
the user exit experiences a program check, and you have enabled error han­
dling facilities, the program will give an ABEND 4044.

Section 7: SYSTEM Option Considerations
The SYSTEM compile-time option determines the format of the parameter list to
the MAIN procedure. The SYSTEM option does not necessarily determine the
system or SUb-system on which you are running. If you try to pass a type of the
parameter list that is different from the type specified by the SYSTEM option,
you will get unpredictable results. For more information see the as PLII Version
2 Programming Guide.

You can find the SYSTEM specification in a main PLII procedure in a constants
section toward the beginning of the compiled code. For more information about
the location and representation of the the SYSTEM option in the constants
section see the section, "Retaining the PLII Environment - PLIMAIN" in the as
PLII Version 2 Programming Guide.

112 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 7. Using SSF and CSSF Search Arguments

Use SSF and CSSF search arguments to look for IBM-supported fixes that apply
to your problem. By formulating your own search arguments, you can find
information about a reported problem and use that information to correct your
own problem. If no other problems have been reported, you can discover you
have a new problem that you should bring to the attention of IBM software
support.

When you search, you use the the Software Support Facility (SSF) or Customer
Software Support Facility (CSSF, a subset of the SSF data base that is searched
if MVS INFO/ACCESS is installed). Your search checks the SSF or CSSF data
base to determine if your problem has been reported. These data bases
contain data associated with APARs (Authorized Program Analysis Reports),
PTFs (Program Temporary Fixes), and PSP (Preventive Service Planning)
buckets.

If you find a fix in your search, you can order it through the Support Center,
retrieve the fix from Info/Access, or pull the fix from Data Link.

Formulating the Search Argument
You formulate a search argument using keywords, which are a set of numbers,
a set of characters, or a combination of both.

If you have access to RETAIN, you can formulate a search argument like this:

p; 5668918 ABEND8C1 IBMBERRA

If you have access to INFO/ACCESS, your search argument is constructed
through using panels. In either case, your search compares all words in the
search argument to all records in the area selected. (For more information on
using INFO/ACCESS see the Information Access User's Guide.)

Your search arguments should contain standard forms of keywords (explained
below) and specific keywords related to the problem. Common words such as
"and," "the," "register," etc., do not comprise an effective search argument.
Your search argument compares all the records in "file" of the "library" within
the "facility" that has been selected. Each equal comparison is called a "hit."

You must have a meaningful search argument. If you have an overly general
search, an excessive number of hits result, most of which have no bearing on
the problem. In a similar way, if you have an overly descriptive search argu­
ment no hits may be found.

You must include specific facts about a problem to form an effective search
argument.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 7. Using SSF and CSSF Search Arguments 113

Using Standardized Keywords

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

To help you in your search, certain keywords in SSF have been standardized by
IBM to reduce the number of ways a word can be spelled. For example, in
"ONCODExxxx," "xxxx" represents the ON-code number, as in "ONCODE8095".
Another example is "MSGIELxxxxl" where "xxxx" represents the message
number, as in "MSGIEL02301". Note that each example is a single word.

Your search argument should consider all possibilities. (For example,
MSGIEL02301 could be IEL02301 or IEL0230.)

114 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 8. Submitting an APAR

Proper documentation is essential when submitting an APAR. The documenta­
tion you provide to IBM must be in the proper form and detail so that IBM pro­
gramming service personnel can reproduce the problem at the IBM
programming service location. You must supply the source program with the
APAR to enable the problem to be reproduced and analyzed. The service per­
sonnel will be able to resolve the problem faster if you reduce the source
program to the smallest, least complex form that still contains the problem.

If you are submitting the APAR because a previous APAR was returned, supply
the additional requested documentation and be sure to indicate the number of
the previous APAR.

Materials to Submit
If you are submitting an APAR for the first time, supply the materials, listed
below, that apply to your problem. Submitting all the required materials avoids
having the APAR returned to you for additional information, leading to a faster
resolution of your problem.

The following checklist summarizes the materials that you must submit with an
APAR. A complete description of each of the types of material follows the
checklist.

Materials When Required

Original Source or Failing Test Case Always

JCL MVS only

Load Libraries Run-time problems only

Input Data Sets Run-time problems only

PUI Compiler Only when requested

PUI Library Only when requested

Compiler Listing Always

JCL Listing MVS only

CMS Terminal Session Log CMS only

Linkage Editor Listing Run-time problems only

Run-Time Dump Run-time problems only

Applied PTFs and Fixes Always, or specify no fixes applied

Figure 39. Summary of Requirements for APAR Submission

Note: If you supply machine-readable material on a tape reel, describe how the
tape was created.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 8. Submitting an APAR 115

Original Source Information

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

You must supply source information in one of three forms:

• Your original source
• The machine-readable source
• A small, but re-creatable, failing test case.

Note: If you do not supply one of these three, IBM Programming Service will
probably return your APAR.

If you send machine-readable source, submit the information on a non labelled
tape. Along with the tape, send a hard copy listing of how the tape was
created. Carefully pack and clearly identify machine-readable information.
Make sure the APAR number is on the tape, so that it can be identified if it is
separated from the rest of the material submitted with the APAR.

Depending on the options and conditions you have, the machine-readable
source is different. These are listed in the following table. Also, the machine­
readable source should not have any %NOPRINT statements, unless they are
relevant to the problem.

Options and
Conditions

NOINCLUDE
NOMACRO

INCLUDE
MACRO
Pre p roces sor
failure

INCLUDE
MACRO

Machine-Readable Source

The source is the data set assigned to SYSIN for the compile
step.

The source is the data set assigned to SYSIN for the compile
step and the source statement library or libraries referenced
in %INCLUDE statements in the program.

The source is the SYSPUNCH data set produced by the com­
piler when the MDECK compiler option is specified.

Figure 40. Machine-Readable Sources

Load Libraries Information
If the failure occurs at run-time and the source called one or more previously
compiled modules, then in addition to your original source, you must supply the
load libraries containing these modules in machine-readable form.

Input Data Sets Information
If the failure occurs at run-time, you must provide enough input data with your
APAR to allow the re-creation of the failure.

PL/I Compiler and PL/I Library
You do not need to send these unless you are specifically asked for them. IBM
programming service personnel need them only if they cannot recreate your
problem using programming service's own library and compiler.

116 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Compiler Listing

JCL Listing

If you think you have a compiler failure, then all listings that you supply must
relate to a specific run of the compiler. Do not send information that is derived
from separate compilations or runs. These may mislead the programming
support personnel.

With your APAR, always send the listing which results from the compilation of
the original source. Perform the compilation with the following compiler
options in effect unless the opposite option is required to show the failure or
unless the option masks the failure.

ATTRIBUTES
ESD
FLAG (I)
LIST

LMESSAGE
MAP
~IARGINI (I II)
NEST

OPTIONS
SOURCE
STMT
XREF

In addition to the above options, you may also need to do the following:

• If your compilation is performed with either the INCLUDE or MACRO
compile-time options and you have a preprocessor failure, specify the
INSOURCE compile-time option as we".

• If your problem is a run-time problem, you must specify the GOSTMT
compile-time option.

In MVS, you must provide listings of job control statements used to run the
program. If you are having problems with a batch job, show any cataloged pro­
cedures you are using in expanded form by specifying MSGLEVEL = (1,1) in the
JOB statement.

eMS Terminal Session log
If your failure occurs while compiling or running a program under CMS, supply
the full details of the virtual machine environment. The best way to do this is:

1. Immediately before you invoke the compiler to reproduce the problem,
issue the following commands:

QUERY SET
QUERY TERMINAL
QUERY VIRTUAL
QUERY SEARCH
QUERY DISK *
QUERY FILEDEF
QUERY LIBRARY
QUERY INPUT
QUERY OUTPUT

2. Invoke the compiler using the PLiOPT command, specifying the compiler
options required to produce the relevant output, preferably on a line printer,
or, alternatively, at a typewriter terminal.

Submit the entire terminal listing, from LOGON to LOGOFF. If a display ter­
minal is used, spool console input/output using the

CP SPOOL CONSOLE START

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Chapter 8. Submitting an APAR 117

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

command to provide the full details of all input entered and of all responses
received.

Linkage Editor Listing

Run-Time Dump

Applied Fixes

If your problem is a run-time failure, specify the XREF linkage editor option.
Submit the linkage editor map. This map, produced when the failing program is
link edited, is essential for the analysis of the storage dump.

If your problem occurs during the run of a PLII program, supply a storage dump
with your APAR. If at all possible, provide a formatted PLII dump produced by
the PLII error-handling facilities by including the following statement in an
ERROR ON-unit that is entered when the program fails:

CALL PLIDUMP ('TFHB');

If for some reason a formatted PLII dump cannot be obtained, supply a storage
dump obtained by using the system SYSUDUMP or SYSABEND facilities or by
using a stand-alone dump program. If you think you have a run-time failure, the
listings must relate to the relevant link editing and execution steps.

Note: Do not send information that is derived from separate compilations or
runs. These may mislead the programming support personnel.

Also supply with your APAR a list of any program temporary fixes (PTFs) and
local fixes applied to either the compiler or to the library. If no fixes have been
applied, indicate this specifically with your APAR.

118 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix A. Control Blocks

This appendix provides information on the format of the control blocks that may
be used during the execution of a program compiled by the OS PUI Optimizing
Compiler. Brief details of the function of each control block, together with when
it is generated and where it can be located, are also given.

Except where explicitly stated all offsets from the start of a block are byte
offsets and are given in hexadecimal notation.

The controls blocks and the pages they can be found on are listed below.

• "Area Locator/Descriptor" on page 120.
• "Area Variable Control Block" on page 121.
• "Aggregate Descriptor Descriptor" on page 122.
• "Aggregate Locator" on page 124.
• "Array Descriptor" on page 125.
• "CICS Appendage" on page 128.
• "Controlled Variable Block" on page 130.
• "Data Element Descriptor (OED)" on page 132.
• "FORMAT DEDs (FEDs)" on page 138.
• "Declare Control Block (DCLCB)" on page 140.
• "Dynamic Storage Area (DSA)" on page 142.
• "Entry Data Control Block" on page 146.
• "Environment Block (ENVB)" on page 147.
• "Event Variable Control Block" on page 151.
• "File Control Block (FCB)" on page 152.
• "Fetch Control Block (FECB)" on page 163.
• "Input/Output Control Block (IOCB)" on page 164.
• "Label Data Control Block" on page 170.
• "Library Workspace (LWS)" on page 171.
• "ON Communications Area (ONCA)" on page 172.
• "ON Control Block (ONCB)" on page 175.
• "PLIMAIN" on page 177.
• "PLIST ART Parameter List" on page 178.
• "Record Descriptor (RD)" on page 180.
• "String Locator/Descriptor" on page 181.
• "Structure Descriptor" on page 182.
• "Task Communication Area (TCA)" on page 190.
• "Symbol Table (SYMTAB)" on page 183.
• "TCA Implementation Appendage (TIA)" on page 196.
• "TCA Tasking Appendage (TT A)" on page 200.
• "Task Variable (TV)" on page 202.

LY27-9528-0 © Copyright IBM Corp. 1985,1987 Appendix A. Control Blocks 119

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Area Locator/Descriptor

Function

When Generated

Where Held

How Addressed

Area Descriptor

Holds the address and length of the area variable for passing to other routines
or for execution time reference if the area has an adjustable length.

As far as possible during compilation. If necessary, completed during exe­
cution.

Static internal control section or AUTOMATIC storage.

From an offset from registers 3 or 13 known to compiled code

o 1 2 3 4

o A(Area Variable)

4 Length

A(Area Variable): Is the address of the area variable control block.

Length: Is the total length including both the control block and the area vari­
able.

The area descriptor is the second word of the area locator/descriptor. It is
used in structure descriptors~ when areas appear in structures, and in the con­
trolled variable "description" field when an area is controlled.

120 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Area Variable Control Block

Function

When Generated

Where Held

Used to control storage allocation within the area variable.

When the area variable is initialized. This depends on the storage class of the
area.

At the head of the area variable.

8 2 3 4

8 Flag I Not Used

4 Offset of End Of Extent (8EE)

8 Offset of Largest Free Element (LFE)

C End of Chain of Free Elements

18

Area Variable

Free Elements: If there are free elements in the area variable, they are headed
by two words. The first word gives the length of the element, the second word
gives the offset to the next smaller free element. If there is no smaller free
element, the second word is set to zero.

Flag X'1' Area variable does contain free elements.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 121

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Aggregate Descriptor Descriptor

Function

When Generated

Where Held

How Addressed

General Format

Structure Element

Contains information needed to map a structure or an array of structures during
execution. Used for structures that contain adjustable extents or the REFER
option.

As far as possible during compilation. Adjustable values are filled in during
execution.

Static internal control section or AUTOMATIC storage.

From an offset from registers 3 or 13 known to compiled code.

An aggregate descriptor descriptor consists of a series of fullword fields one for
each structure element and one for each base element in the structure.

o 2 3

Offset Level

Byte 0, Bit 0: 0 indicates a Structure Element

Flag Bits

1 (located in Byte 0, Bit 1): Not applicable to structure elements
2-4 (located in Byte 3, Bits 0-2): Not applicable to structure elements

Offset: (14 bits): The offset within the aggregate descriptor descriptor to the
entry for the containing structure. The offset is held in multiples of four bytes.
The first element of the structure (the major structure element) has its offset
field set to all '1'B.

Level: Logical level of identifier in structure

Dimension: (5 bits): Real dimensionality of identifier

122 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

I

\~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Base Element

8 1 2 3

1 F Alignment Length Level F F F Dimension
1 234

Byte 0, Bit 0: 1 indicates a Base Element

Flag Bits

1 (located in Byte 0, Bit 1): Last element in structure indicator

o = Not last element
1 = Last element

2-4 (located in Byte 3, Bits 0-2)

If Flag 2 = 1, element is an AREA
If Flag 3 = 1, element is a BIT string
If Flag 4 = 1, element is a GRAPHIC string

Alignment: (6 bits): Alignment stringency

Bit value Decimal value Alignment

000000
000111
001111
011111
111111

o
7

15
31
63

bit
byte
halfword
fullword
doubleword

Length: Length (in bytes) of data. Length is zero for strings and AREAs, whose
length is held in descriptors.

Level: Logical level of identifier in structure

Dimension: (5 bits): Real dimensionality of identifier

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 123

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Aggregate Locator

Function

When Generated

Where Held

How Addressed

Used to pass the address of an array or structure and its associated descriptor
to a called routine. Also to associate the aggregate with its descriptor during
execution.

During compilation.

Static internal control section or AUTOMATIC storage.

From an offset from registers 3 or 13 known to compiled code.

(1 1 2 3 4

o Address of data aggregate t'Jord 1

4 Address of descriptor t'Jord 2

124 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Array Descriptor

Function

When Generated

Where Held

How Addressed

Contains information about the extent of an array. For arrays of area variables
or strings, an area or string descriptor is attached to the array descriptor.

The array descriptor is used to pass information about an array to called rou­
tines., or to hold information about an array with adjustable extents.

As far as possible during compilation. If the array has adjustable extents, it is
completed during execution when the values are known.

Arrays of structures make use of structure descriptors to hold similar informa­
tion.

Static internal control section or AUTOMATIC storage.

From an offset from registers 3 or 13 known to compiler code, or from an aggre­
gate locator.

Arrays of Strings or Areas

General Format

For arrays of strings or areas, the descriptors are completed by string or area
descriptors concatenated to the array descriptor. String and area descriptors
are the second word of string and area descriptor/locator pairs.

For bit string arrays, the bit offset from the byte address is held in the string
descriptor.

Ill/l Version 1: The first word in the array descriptor is the RVO (relative virtual
origin). This is followed by two words for each dimension of the array, con­
taining the multiplier and high and low bound for each dimension.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 125

e

o

4

8

c

10

1 2 3

RVO (AO-VO)

t;1u 1 tip 1 i er

High bound I Low bound

~lu lt i P 1 i er 2

High bound 2 t Low bound 2

etc.

Note: Two full words containing
multiplier and high and low bound are
included for each array dimension.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

PLII Version 2: The first word in the array descriptor is the RVO (relative virtual
origin). This is followed by three words for each dimension of the array, con­
taining the multiplier and high and low bound for each dimension.

o 1 2 3 4

o RVO (AO-VO)

4 ~lultiplier

8 High bound

c Low bound

10 Multiplier 2

14 High bound 2

18 Low bound 2

etc.

Note: Three full words containing
multiplier and high and low bound are
included for each array dimension.

RVO: Relative virtual origin, the distance between the virtual origin (VO) and
the actual origin (AO). Virtual origin is the point at which the element in the
array whose subscripts are all zeros is, or would be, held. Actual origin is the
start of the first element in the array.

RVO is held as a bit value for arrays of unaligned bit strings, but otherwise as a
byte value. Bit offsets are given in the string descriptor. Actual origin and
virtual origin are also held as byte values.

126 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

High bound: The highest subscript in any dimension.

Low bound: The lowest subscript in any dimension.

Multiplier: The multiplier is the offset between any two elements marked by the
change of subscript number in any dimension.

For example for the array DATA(10,10), the multiplier for the first dimension is
the offset between DATA(1,1) and DATA(2,1) etc. The multiplier for the second
dimension is the offset between DATA(1, 1) and DATA(1,2). The offset is meas­
ured from the start of the one element to the start of the next.

Multipliers are byte values except for bit string arrays, in which case they are
bit values.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 127

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

CICS Appendage

Function
Holds information needed during operation under CICS/OS/VS.

When Generated
During program initialization under CICS/OS/VS.

Where Held
In the program management area at the head of the ISA.

How Addressed
From TCIC offset X'124' in TCA.

128 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I 2 3

o A(CICS TCA)

4 A(CICS CSA)

8 A(IBMFSTVA) or 0

C A(Msg Output Bootstrap)

A(Report/Count Bootstrap)

14 Term; na 1 10

18 Transact ion ID

lC PL/I MasklCICS Maskl Command Workspace

20 TempI

24 Temp2

28 Temp3

2C A(OFHSAP, PL/I-CICS Nucleus Interface)

30 A(PL/I to CICS Macro Interface)

34 A(PL/I Program Exec. Interface Block)

38 ABEND Code

3C Interrupt Code

40 Return Address

44 (PL/I Acquired Storage Chain)

48 A(Buffer) , Message/Count/Rep Records

4C Used as Exec. Interface
DSA

(184 bytes)

104 User's Exec. Interface Block
Copy

(76 bytes)

4

TCTCA

TCCSA

TCSTV

TCTMS

TCTCR

TCTRM

TCTRN

TCTPI

TCTP2 .. TCTMP

TCTP3

TCSAP

TCMAC

TCEIB

TCABO

TCINT
~ TCPS~.J

TCRTN

TCSCH

TCBUF

TCEIS

TCEIC

TCTMP: This area is used as a temporary workspace by PLII. It is comprised
of the TCTP1, TCTP2, and TCTP3 fields.

TCPSW: This area holds the Program Status Word (PSW) at the time of an
interrupt. The field, TCINT, holds the interrupt code; TCRTN holds the return
address.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 129

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Controlled Variable Block

Function

When Generated

Where Held

How Addressed

To hold information about the controlled variable.

When the variable is allocated.

At the head of the controlled variable.

From an offset in the PRV. (The PRV address is held at offset X 141 in the TeA.)

(:) 2 3 4

(:) PRVOFF vJord

4 Length vJord 2
Address

8 Chain back to previous allocation t'Jord 3 Held in
Pseud"o-

C Task Invocation Count t'Jord 4 register
..

10 Description t'Jord 5
Field used for descriptor or
locator/descriptor in certain
circumstances, (see below)

Data

PRVOFF: Offset within pseudo-register vector associated with the controlled
variable.

Length: Length of the total allocation including the four words of the heading.

Chain back: Address of word 5 of previous allocation, set to address of dummy
FeB if first allocation

Task invocation count: A method of identifying which task the controlled vari­
able is attached to. A controlled variable cannot be freed within a task unless
the task invocation count of the variable is the same as that in the TeA.

Description: If the item is one that requires a descriptor/locator or a locator,
this is placed at the head of the data. If the item is a structure or array and the
extents are unknown at compile time, the descriptor will also be placed before
the data.

130 OS PUI Version 2 Problem Determination LY27·9528·0 © Copyright IBM Corp. 1985, 1987

(

\,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Thus for:

Strings and areas
The controlled variable is headed by a locator/descriptor.

Structures and arrays
The controlled variable is headed by a locator.

Structures and arrays with adjustable extents
The controlled variable is headed by a locator followed by a
descriptor.

All other data
The description field is not used and the data itself starts at offset
X'10'(16).

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 131

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Data Element Descriptor (OED)

Function

When Generated

Where Held

How Addressed

Format of DEDs

Used to convey description of data elements to library conversion, stream 1/0
routines, check condition routines, and PLiTEST.

During compilation.

Static internal control section or external symbol table csect.

From an offset from register 3 known to compiled code or from a pointer in the
symbol table.

All DEDs are headed by two bytes that indicate the data type. These two bytes
are followed by as many bytes as are required to complete the description of
the data.

For arithmetic items, DEDs are completed by such items as scale and precision.
For pictured items, a representation of the picture is included in internal form.

Flag 1: Also known as Code Byte and Look up Byte, define the data type.

Hex
Value Data Type
X100I FIXED BINARY
X ' 04 1 FIXED DECIMAL
X ' 08 1 FLOAT
X1OC' FREE DECIMAL (an internal form)
X 110' FIXED PICTURE BINARY
X ' 14 1 FIXED PICTURE DECIMAL
X ' 18 1 FLOAT PICTURE BINARY
X I1CI FLOAT PICTURE DECIMAL
X ' 20 ' non-VARYING CHARACTER
X ' 24 1 non-VARYING BIT

X'28 1 VARYING CHARACTER

X'2C' VARYING BIT
X ' 30' CHARACTER PICTURE

X'40' BINARY constant

X'44' DECIMAL constant

X ' 48' BIT constant
X'50 ' FIE Format
X ' 54 1 P Format (arithmetic)

X'58 1 AIBIP Format (character)

X ' 5C' C Format
X ' 60 ' X-Format

132 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

Ii
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Hex
Value
X ' 64 1

X ' 68 1

X ' 6C'
X ' 70 '
X ' 80 '
X ' 84 1

X ' 88 1

X ' 8C'
X ' 90 '
X ' 94 1

X ' 98 1

X ' 9C'
X'AO'
X'A8 1

Data Type
COL Format
SKIP Format
LINE Format
PAGE Format
LABEL
ENTRY
AREA
TASK
OFFSET
POINTER
FILE
EVENT
GRAPHIC Fixed
GRAPHIC Varying

Flag 2: completes the definition, if necessary.

Bits 0&1 =

Bit 2 =

Bit 3 =

Bit 4 =

Bit 5 =

Bits 4&5 =
Bit 6 =

Bit 7 =

00
01
10
11

o

o
1

o
.04
I

o
1

11

o
1

o

1

A-format item
B-format item
Character picture format item
GRAPHIC

Fixed constant
Float constant

Not extended float
Extended float

F-format/fixed picture
E-formatlfloat picture

Declared binary
Declared decimal

Then DED is for character

Short precision
Long precision

Real or length specified (A or B format)
aligned bit string.
Complex (also set if E, F, or P in C-format) or .
no length specified (A or B format) or unaligned
bit string.

All bits for which neither value is defined are set to 10 I B. :cc 20

DED for STRING Data

812

8 Flag 1 Flag 2

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 133

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

OED for FLOAT Data

o 1 2 3

o Fl ag 1 Flag 2 IpreCiSionl

OED for FIXED Data

1 2 3 4

o Flag 1 Flag 2 IpreCiSionlscale±1281

OED for PICTURE STRING Data

o 2 3 4

o Flag 1 I Flag 2 L1

4 L2 Picture in
Internal Form

Flag 1: (X ' 30 ')

L 1: Length of field with i'nsertion characters

L2: Length of field without insertion characters

Internal Code: The internal code for string pictures is as follows:

Code Picture(hex)
A X100I

9 X ' 04 1

X X I1CI

OED for PICTURE DECIMAL Arithmetic Data

(:) 1 2 3 4

o Flag 1 Flag 2 Precision Scale
Factor+128

4 Length of Length of Flag 3 Flag 4
Picture Data

Picture in internal code

Flag 1: (X'14' or X'1C')

134 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Flag 3: Describes the mantissa subfield.

Bit 0 =
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 =

Always set to zero
Drifting S in subfield
Drifting + in subfield
Drifting - in subfield
Drifting $ in subfield
Total suppression in subfield
* in subfield
Always set to zero

Flag 4: Describes the exponent subfield. It has the same format as Flag Byte 3.

Internal codes for pictures

Code Picture
00 9
04 Y
08 Z
OC
10 E
14 K
18 T
1C I
20 R
24 CR
28 DB
2C B
30 S(t)
34 S (d)
38 S (s)
3C +
40 + (d)
44 + (s)
48 - (t)
4C - (d)
50 - (s)
54 $ (t)
58 $ (d)
5C $ (s)
60 / (t)
64 / (d)
68 / (s)
6C · (t)
70 · (d)
74 · (s)
78 , (t)
7C , (d)
80 , (s)
84 V

Note: Abbreviations for internal codes:

(t) = terminal
(d) = drifting

LY27·9528·Q ~ Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 135

(s) = static

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

After E or K, the next byte contains the number of digits in the exponent.

Scale Factor: The scale factor of a picture OED is the number of digit positions
after the "V" (0 if there is no "V") added to the number in the F specification, if
any.

Rule for Setting Bit 5 in Flag Bytes 3 and 4: Bit 5 is set if no 9, Y, T, I, or R is
present. This applies before any Z, S, etc. has been translated to a 9.

Rules for Translating Pictures into Encoded Pictures

1. Characters 9, Y, E, K, T, I, R, CR, DB, B, and V are translated directly.

2. Characters Z and * are translated directly if they do not follow a V. If either
follows a V, it is translated into the code for character 9.

3. An S, +, -, or $ is translated to a static S, +, -, or $ if it is the only one
of its kind in the subfield.

4. If more than one S appears in a subfield, the S's are translated into drifting
S's.

Except when:

a. It appears immediately before a Y, 9, V, T, I or R. In this case it is
translated into the code for a terminal S.

b. It appears anywhere after a V. In this case it is translated into the code
for a 9.

The same rule applies for the +, -, or $.

5. A "/", a ",", or a ". II is treated as drifting, if:

a. It is in a subfield containing either one or more Z or asterisk, or more
than one +, s, -, or $.

and if:

b. It is not immediately preceding a Y, 9, V, T, I, or R. In this case it is
translated into terminal form.

DED for Program Control Data
Program control DE Os are used to describe program control constants and
program control variables. Program control DEDs may be 2 or 4 bytes in
length.

o 1 2

o Flag 1 Flag 2 Further Bytes as
Required

Flag 1 Also known as the look up byte. Defines the data type.

X'80' Label variable, 2-byte OED.

136 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

X' 84 1

X ' 88 1

X ' 8C'

X ' 90 '

X ' 94 1

X ' 98 1

X ' 9C'

XIBOI

XIB4 1

XIB8 1

XIBCI

Entry variable, 4-byte OED. The byte at offset 2 contains a code indi­
cating the entry type.

Offset 2 Entry Type

X I10 1 PUI
X ' 7

1 FORTRAN
XIS I COBOL

X I16 1 OPTIONS(ASM).

Area variable, 2-byte OED.

Task variable, 2-byte OED.

Offset variable, 2-byte OED.

Pointer variable, 2-byte OED.

File variable, 2-byte OED.

Event variable, 2-byte OED.

Label constant, 2-byte OED.

Entry constant, 4-byte OED. The byte at offset 2 contains a code indi­
cating the entry type.

Offset 2 Entry Type
X I10 1 PUI
XI?I
XISI

X 116 1

FORTRAN
COBOL
OPTIONS(ASM).

File constant, 2-byte OED.

CONDITION condition name, 2-byte OED.

Flag 2: Flag 2 is used only by Flag 1 look up bytes XIBO I and X'B41.

Bit 0 With Flag 1 look up byte X I BOI indicates a label on a FORMAT state­
ment.

With Flag 1 look up byte X I B41 indicates whether this entry is
fetchable.

Bits 1-7 Unused.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 137

FORMAT DEDs (FEDs)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For the meaning of the flag bytes, see "Data Element Descriptor (OED)" on
page 132.

DED for F and E FORMAT Items (FED)

(:) 1 2 3 4

(:) Flag 1 Flag 2

4 D x

Flag byte 1 = X'SO'

W Total length of the format field
o Number of decimal places
X Precision + 128 for F-format number of significant figures for E-format

DED for G FORMAT Items (FED)

(:) 2

(:) Flag Flag 2

Flags

Flag 1 = X'AO' For G-format
Flag 2 = X'CO'

Length is optional.

3

Length

OED for PICTURE FORMAT Arithmetic Items (FED)

(:) 1 2 3

(:) Fl ag 1 I Fl ag 2 I tv

4 Copy of DED as for arithmetic picture

Flag 1: (X'S4')

W: Total length of the format field

4

4

138 OS PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

;f
I

I~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DED for PICTURE FORMAT Character Items (FED)

1 2 3

e Flag 1 I Flag 2 I w

4 Copy of OED as for arithmetic picture

Flag 1: (X 158 I)

W: Total length of the format field

DED for C FORMAT Items (FED)

1 2 3

Flag 1 I Flag 2 \~

4 FED for real part FED for i mag. part

Flag 1: (X 15C I)

4

4

Note: The complex bit (bit 7) in Flag 2 is set in both the real part and the imagi­
nary part FED.

W: Total length of the format field

OED for CONTROL FORMAT Items (FED)

e 1 2 3 4

e Flag 1 Flag 2 Parameter

Flag 1: (X 160, 64, 68, 6C or 70 1)

Parameter Length of item (X format), column number (COL format), number of
lines to skip (SKIP format), line number (LINE format), is omitted
for PAGE format.

OED for STRING FORMAT Items (FED)

1 2 3 4

Flag 1 Flag 2 Length

Flag 1: (X I 58 1
)

The difference between A, 8, and P (character) formats is given by bits 0 and 1
of Flag 2. The length field may be omitted for A and 8 format items.

LY27·9528·Q © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 139

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Declare Control Block (DClCB)

Function

When Generated

Where Held

How Addressed

Addresses file via PRV, holds declared file attributes, filename, and address of
ENVB.

During compilation.

In a separate static control section for external files, or in a static internal
control section for internal files.

The address is generated by the linkage editor for external files; It is addressed
by an offset from register 3 for internal files.

2 3 4

Pseudo-Register Offset DFCB

4 Declared Attributes DCLA

8 Invalid OPEN Attributes DOPA

C A(Environment Block) DENV

Offset of Graphics Offset of Filename
Extension Length

14 Filename Length Filename
(to 31 characters)

Declared and Invalid OPEN Attributes

Byte Hex. Attributes
Number Value

01 STREAM
02 RECORD
04 DISPLAY
10 reserved for (STRING)

140 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

!

\.:

I
(
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Byte
Number

2

3

4

Hex.
Value

01
02
04
10
20
40
80

01
02
04
08
10

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

Attributes

SEQUENTIAL
DIRECT
TRANSIENT
INPUT
OUTPUT
UPDATE
BACKWARDS

BUFFERED
UNBUFFERED
KEYED
EXCLUSIVE
PRINT

Not used

Appendix A. Control Blocks 141

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Dynamic Storage Area (DSA)

Function

When Generated

Where Held

How Addressed

Holds housekeeping information, automatic variables, and temporaries for each
block.

During execution. Allocated by prolog code every time a new block is entered.

In the LIFO storage stack. Certain library routines have their DSAs in library
workspace (LWS). See Figure 41 on page 143.

From register 13.

142 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

8 1 2 3

8 Flag 8 Fl ag 1 Not Used

4 A(Chain Back)

8

C Save Area R14

18 Save Area R15

14 Save Area R8

18 Save Area Rl

IC Save Area R2

28 Save Area R3

24 Save Area R4

28 Save Area R5

2C Save Area R6

38 Save Area R7

34 Save Area R8

38 Save Area R9

3C Save Area R18

48 Save Area Rll

44 Save Area R12

48 A (UIJS)

4C Segment # A(NAB)

58 Segment # End of Prolog NAB

or
A(TIA) or A(TTA) in Dummy DSA

or

To Save Number of Not Used
TFBI DSAs

54 Block-Enable Bits Current-Enable Bits
CENA CCNA

58 A(Attaching DSA) in Dummy

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

4

CCHB

1-

~ CRSA

-
CUJS

CNAB

CEPN 0 r CAPP

CAAD

Appendix A. Control Blocks 143

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

5C A(First Static ONCB) CSON

60 A(Nost Recent Dynamic ONCB in Block) COON

64 Not Used

68 Not Used

6C Reserved for the Checkout Compiler

70 A(ONCELLS) CAOC

74 Reserved Imple- Flags 2 Control
Checkout mentation Task
Compiler Defined Flag

Flags

Flag 0 (CFFO)

CDSA Bit 0 = LWS DSA
CONC Bit 1 = 1 ON-cells exist
COCH Bit 2 = 1 Dynamic ONCBs allocated
CIMP Bit 3 Reserved for the Checkout Compiler
CBEG Bits 4 & 5 00 Procedure DSA

01 Begin DSA
10 Library DSA
11 ON-unit DSA

CDUM Bit 6 = Dummy DSA
CSUB Bit 7 = Subtask dummy DSA

Flag 1 (CFF1)

CFCM Bit 0 = Byte CFFC is meaningful
CRNB Bit 1 = 1 Restore NAB on GOTO
CRCE Bit 2 = 1 Restore current-enable on GOTO
COVR Bit 3 = 1 Callee can use this DSA
CGTO Bit 4 = 1 EXIT DSA
CSNT Bit 5 = 1 Statement number table exists
CSYE Bit 6 = 1 SYSPRINT is enqueued by this block.
CFFB Bit 7 = 1 Flags in Flags 2 are valid

144 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Flags 2 (CFF2)

C2LD Bit 0 = 1
C21D Bit 1 = 1
C21N Bit 2 = 1
C21C Bit 3 = 1
C2SY Bit 4 = 1
C2FL Bit 5 = 1

Bit 6 = 1
Bit 7

Control Task Flag

CCFC Bit 0 = 1
Bits 1-7

Last PLII DSA
Ignore DSA for SNAP
ILC DSA after interrupt
Invocation Count in this DSA
Symbolic dump for this DSA
There are TSO line numbers
CMPAT(V2)--Fullword subscripts
Reserved

Block has active subtasks
Not used

This flag byte is the only one in the DSA used by the control task without syn­
chronizing with the subtask. The subtask must never change it. This prevents
interference between CPU's on a multiprocessing machine.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 145

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Entry Data Control Block

Function

When Generated

Where Held

How Addressed

Holds information that will enable an entry to be branched to and the correct
static back-chain to be set up. Is used as an entry variable or when an entry is
passed as a parameter.

When the variable is allocated.

Depends on the storage class of the data item.

Depends on the storage class of the data

(:)

(:)

4

Word 1

1 2 3

Address of entry point

Address of Statically Containing
DSA at Time of Assignment

Address of entry

4

Bit 0 = 0
Bit 0 = 1 Address of location containing 8-char. EBCDIC name of entry

point

Word 2: Bit 0 is always set to zero.

Address of Statically Containing DSA: This address is set in register 5 when
the assignment is made to the variable. It enables variables in other blocks to
be accessed. When assignment is made the address of the current statically
containing DSA is set. This will be the correct address for the entry. If it were
not, the entry itself would not be known.

146 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

(
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Environment Block (ENVB)

Function

When Generated

Where Held

How Addressed

Holds environment options for a file so that the file may be correctly opened
during execution.

During compilation

In a static control section with the DCLCB for external files. In static internal
storage for internal files.

From offset X I C I in the DCLCB

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 147

o 1 2 3

o NFLA NFLB NFLC

4 NFLE NFLF NFLG

8 Not Used

C A(Blocksize)
or

A(Pagesize 2260)

A(Record Length)
or

A(Linesize 2260)

14 A(Number of Buffers)

18 A(KEYLOC Value)
or

A(Attention Variable)

lC A(KEYLENGTH)

20 A(BUFFOFF Value)
or

A(INDEXAREA Size)

24 A(NCP Value)
or

A(Size of ADDBUF)

NFLD

NFLH

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

NBLK or NPAG

NREC or NLI N

NBUF

NLOC or NATN

NKYL

NOFF or NNDX

NNCP or NADD

28 A(Password String Locator) NPAS

2C A(BUFND Value) NBND

30 A(BUFNI Value) NBNI

34 A(BUFSP Value) NBSP

148 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Flags

NFLA

NCON
NINO
NRG1
NRG2
NRG3
NTPM
NTPR
NOTH

NFLB

NFIX
NVAR
NUND
NDEC
NTRO
NBLO
NSPA
NASA
N360
NEGS

NFLC

NLVE
NRRD
NGKY
NCBL
NOWR
NXAR
NTOT
NXAS

NFLD

NBUU
NCPF
NFPS
NKEL
NKLC
NVFY
NNOL
NABF

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bits 0 & 1

Bit 2 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

Consecutive
Indexed
Regional (1)
Regional (2)
Regional (3)
TP(M)
TP(R)
Other organization

Fixed
10 Variable
11 Undefined
Decimal
TRKOFL>
Blocked
Spanned
CTLASA
CTL360
GRAPHIC

LEAVE
REREAD
GENKEY
COBOL
NOWRITE
INDEXAREA
TOTAL
INDEXAREA with no argument

BUFFERS
NCP
PASSWORD
KEYLENGTH
KEYLOC
VERIFY
NOLABEL
ADDBUF

Appendix A. Control Blocks 149

NFLE

N226 Bit 0 = 1
NLOK Bit 1 = 1

Bits 2-3
NSTL Bit 4 = 1
NUSA Bit 5 = 1
NBOF Bit 6 = 1
NBFL Bit 7 = 1

NFLF

NXML Bit 0 = 1
NX11 Bit 1 = 1
NX14 Bit 2 = 1
NOTM Bit 3 = 1
NALT Bit 4 = 1
NOFT Bit 5 = 1
NXTN Bit 6 = 1

Bit 7

NFLG

NFFM Bit 0 = 1
NVFM Bit 1 = 1
NUFM Bit 2 = 1
NSP2 Bit 3 = 1
NBL2 Bit 4 = 1

Bits 5-7

NFLH

NVSM Bit 0 = 1
NFBD Bit 1 = 1
NFBI Bit 2 = 1
NFBS Bit 3 = 1
NFSI Bit 4 = 1
NFSK Bit 5 = 1
NFBW Bit 6 = 1
NFRS Bit 7 = 1

150 os PUI Version 2 Problem Determination

2260
Lock (2260)
Not used
SCALARVARYING
ANSCII
BUFOFF
BUFOFF(L)

Index multiple
High index 2311
High index 2314
No tape mark
Alternate tape
OFL tracks
Extent number
Not used

F-format
V-format
U-format
Spanned
Blocked
Not used

VSAM
BUFND
BUFNI
BUFSP
SIS
SKIP
BKWD
REUSE

"Restricted Materials of IBM"
licensed Materials - Property of IBM

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Event Variable Control Block

Function

When Generated

Where Held

How Addressed

Flags

To hold information about the operation with which the EVENT has been associ­
ated.

Depends on the storage class of the event variable.

Depends on the storage class of the event variable.

As other variables depending on storage class.

1 2 3 4

Flags 1 I Flags 2 I Status

4 Anchor for ECB chain EECH

8 A(DECB) or A(CCB) for I/O EAEC

C A(TCA appendage of task for I/O) ETCA

A(DCLCB) or A(FCB) for I/O
or EUSI

A(Called Procedure) for Tasking

14 Statement Number ESND

Flags 1 (EFLO)

ECOM Bit 0 =
EACT Bit 1 =
EIOF Bit 2 =
EDSP Bit 3 = 1
EWIP Bit 4 = 1
ESNF Bit 7 =

Flags 2 (EFL 1)

ECHE
EDUM

Bit 0 = 1
Bit 1 = 1

Complete
Active
1/0 EVENT
DISPLAY EVENT
EV has caused entry to an ON-unit
ESNO field contains the statement number

Chain of ECBs exists
Dummy EVENT

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 151

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

File Control Block (FCB)

Function

When Generated

Where Held

How Addressed

Common Section

Used to access all file information. Contains addresses of the ENVB, DTF,
filename, etc.

By the open routines during execution.

In subpool 1.

From two byte PRV offset which is held at offset X '2' in DCLCB. The PRV
address is held at offset X'4' in the TCA.

The common section is followed by either the RECORD or STREAM sections.

152 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1 2 3

-8 Eyecatcher

Statement Mask

8 A(Invalid Statement Module)

C A(Library Transmitter)

A (DCLCB)

14 A(DCB) or A(ACB)

18 A(Open File Chain)

lC A(data management for in-line I/O)

20 Error Bytes Not Used

24 FATA FATB FATC Not used

28 FFLA FFLB FFLC FFLD

2C FFLE FFLF FFLG FFLH

30 Blocksize Keylength

34 Record length

38 A(First Free IOCB)
or

A(Hidden Buffer for QISAM LOCATE)

3C FTYP FLEN

40 Reserved for the Checkout Compiler

44 FBIF Not Used

48 Not Used

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

4

FFST

FAI·S

FATM

FADL

FADB or FACB

FAFO

FAIL

FRCL

FAFR or FREC

FGAS

Appendix A. Control Blocks 153

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Statement Mask (FFST)

Bit number Statement + options
0 READ SET
1 READ SET KEYTO
2 READ SET KEY
3 READ INTO
4 READ INTO KEYTO
5 READ INTO KEY
6 READ INTO KEY NOLOCK
7 READ IGNORE
8 READ INTO EVENT
9 READ INTO KEYTO EVENT

10 READ INTO KEY EVENT
11 READ INTO KEY NOLOCK EVENT
12 READ IGNORE EVENT
13 WRITE FROM
14 WRITE FROM KEYFROM
15 WRITE FROM EVENT
16 WRITE FROM KEYFROM EVENT
17 REWRITE
18 REWRITE FROM
19 REWRITE FROM KEY
20 REWRITE FROM EVENT
21 REWRITE FROM KEY EVENT
22 LOCATE SET
23 LOCATE SET KEYFROM
24 DELETE
25 DELETE DEY
26 DELETE EVENT
27 DELETE KEY EVENT
28 UNLOCK KEY
29 WRITE FROM KEYTO
30 WRITE FROM KEYTO EVENT
31-63 Reserved

154 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Error Bytes

FER1

FTIP
FTOP
FTOM
FTIX
FTOX
FTIS
FTOS

FER2

FFEF
FRVZ
FRVS
FRVG
FKCN
FKDP
FKSQ
FKSP
FKNF
FKNS
FNIO
FEAC
FEUP
FENC
FETO
FRR2
FEOl
FEXX
FEIR
FKTP
FEXS
FKCB
FKSF
FASQ
FESY
FRVX
FERH
FEVN
FESP
FEVS
FKNR
FENP

X'02'
X'03'
X'1A'
X'1C'
X'1D'
X'1E'
X'1F'

X'01'
X'04'
X'05'
X'06'
X'07'
X'08'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X'10'
X'11'
X'12'
X'13'
X'14'
X'15'
X'16'
X'17'
X'18'
X'19'
X'1B'
X'20'
X'21'
X'22'
X'23'
X'24'
X'25'
X'26'
X'27'

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

Input transmit (data set)
Output transmit (data set)
OMR read error
Input transmit (index set)
Output transmit (index set)
Input transmit (sequence set)
Output transmit (sequence set)

End of file
Zero length record variable
Short record variable
long record variable
Key conversion in character string
Key duplication
Key sequence
Key specification (null key)
Key not found
No space for keyed record
No 10CB available
Active event
No prior read before rewrite
No completed read before rewrite
Permanent output error
Zero length record read
Record referenced outside data set
Unidentified I/O error
Incomplete read for update
TP term address specification
Different FeB same record request
Key conversion (negative BINARY number)

Key specification (X' FF' etc)
110 sequence error
Synad error encountered
Record length < KEYlEN + RKP
Record already held
Record on non-mounted volume
Data set cannot be extended
No virtual storage for VSAM
No keyrange for insertion
No positioning for sequential read

Appendix A. Control Blocks 155

FER2

FEUN
FEST
FIEU
FEMP
FEIP
FESW

FTYP:

FLEN:

FATA

FDBG
FSYS
FCTR
FSTR

FDSP
FRIO
FSIO

FATS

FBAK
FUPD
FOUT
FIPT

FTRA
FDIR
FSEQ

FATe

FEGS
FAXS
FPRT
FXCL
FKYD
FUNB
FBUF

X'28'
X'29'
X'2A'
X'2B'
X'2C'
X'2D'

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Attempt to reposition failed
Statement number for data set exceeded
Index upgrade error
Maximum number of index PTRs
Invalid index PTRs
Invalid sequential write

6th and 7th characters of library transmitter name

Length of FCB (including DCB)

Bit 0 = 1 Open SYSPRINT for error message
Bit 1 = 1 SYSPRINT
Bit 2 = 1 Reserved for Checkout Compiler
Bit 3 = 1 String operation
Bit 4 = 1 Not used
Bit 5 = 1 DISPLAY
Bit 6 = 1 RECORD
Bit 7 = 1 STREAM

Bit 0 = 1 BACKWARDS
Bit 1 = 1 UPDATE
Bit 2 = 1 OUTPUT
Bit 3 = 1 INPUT
Bit 4 = 1 Not used
Bit 5 =1 TRANSIENT
Bit 6 = 1 DIRECT
Bit 7 = 1 SEQUENTIAL

Bit 0 = 1 Not used
Bit 1 = 1 GRAPHIC option of the ENVIRONMENT attribute
Bit 2 = 1 Axes
Bit 3 = 1 PRINT
Bit 4 = 1 EXCLUSIVE
Bit 5 = 1 KEYED
Bit 6 = 1 UNBUFFERED
Bit 7 = 1 BUFFERED

156 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

~

\

I

C'
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

FFLA

FFIX
FVAR
FUND
FBLO
FSPA

FKLC

FFLB

FCON
FIND
FRG1
FRG2
FRG3
FTMP
FTPR
FOTH

FFLC

FQSM
FBSM
FBSL
FQTM
FQIS
FBIS
FBDM
FVSM

FFLD

FPPT
FPRI
FURD
FTRM
FEFL
FPHB
FEML
FGKY

FFLE

FFER
FERI
FERO
FEOF

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bits 5 & 6
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

XIOOI

X ' 04 1

X ' 08 1

XIOCI

X I10 1

X ' 14 1

X ' 18 1

X I1C I

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

F-format
V-format
U-format
Blocked
Spanned
Not used
Key in record variable KEYLOC

CONSECUTIVE
INDEXED
REGIONAL(1)
REGIONAL(2)
REGIONAL(3)
TP(M)
TP(R)
Other organization

QSAM
BSAM
BSAM (Load)
QTAM
QISAM
BISAM
BDAM
VSAM

Paper tape
Printer
Unit record device
The foreground terminal
ENDFILE module loaded
Possible hidden buffer
Error module loaded
Genkey

1/0 error
Permanent input error
Permanent output error
End of file

Appendix A. Control Blocks 157

FHID
FEOD
FFNV
FSTK

Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

158 as PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Hidden buffer in use
Move required
Non-SCALARVARYING
Not used

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

FFLF

FPRD
FPRS
FPLC
FPRW
FPOP
FCLS
FICL
FRSL

FFLG

FEPG
FEEX
FCOP

FVPF
FNOC

FFLH

FILF
FILL
FHYP
FRGT
FCLU
FSPL

FBER
FNBW
FGPI

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3
Bits 4 & 5
Bit 6 = 1
Bit 7 = 1

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1

Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

Previous READ
Previous READ SET
Previous LOCATE
Previous REWRITE
Previous OPEN or READ IGNORE
Close in p rog ress
Implicit close
Previous OPEN (resume load) or READ IGNORE(O)

ENDPAGE
End of extent
COpy option active
Not used
Reserved for the Checkout Compiler
Newly opened print file
File not to be closed

In-line 1/0
In-line LOCATE
Hyphen at the end of the line
Retry get after concatenation
Current line unfinished
Initial call from IBMBSPL or blanks at the end of
record
Blanks at the end of record
New buffer wanted
GET prompt issued - input

Built in Function Byte (FBIF)

FSKY Bit 0 = 1
Bits 1-7

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

Samekey flag
Not used

Appendix A. Control Blocks 159

Record 110 Section
Offsets are from start of the FeB.

o 1 2 3

4C A(Last IOCB Used) or
A(Dummy Buffer for LOCATE)

50 A(first IOCB to be Checked) (BSAM)

54 Static Chain of 10CBs
(BDAM/DISAM/DSAM/VSAM)

58 A (I OCB for Last Completed Read)

5C FEMT FEFT FRET J FAFB

60 A(error module) L'Jhen Loaded

64 FG,AM FFLV KEYLOC-l VSAM or
or or Decrementing Line

FFNC FFNF Count

68 Record Count

6C A(Dummy Key Area)

70 Size of IOCB (BDAM/BISAM)
or

Current Relative Block (BSAM)

74 A(Exclusive Block FILE)

78 Offset Table Used in Record Checking

7C Base OPTCD for RPL (VSAM)

80 A(FCB) or A(FAFB)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

FALU or FCDA

FACK

FIOC

FALR

FERM

FCCT

FAKY

FIOS or FREL

FXBA

FRTB

FOPT

FAL'JB

FEMT: 7th character of the error module name

FEFT: 7th character of the endfile module name

FRET: Data management return code (regional output)

FAFB: Work byte for associated files

FFNC: Function byte

160 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

I

(
'.,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

FARF Bit 0 = 1
FAPF Bit 1 = 1
FAWF Bit 2 = 1
FOMR Bit 3 = 1
FRFI Bit 4 = 1
FPFI Bit 5 = 1
FPWI Bit 6 = 1
FASC Bit 7 = 1

FFLV: VSAM flags

FKSD Bit 0 = 1
FESD Bit 1 = 1
FRDS Bit 2 = 1
FPTH Bit 3 = 1
FNUM Bit 4 = 1
FSKP Bit 5 = 1

Bit 6 = 1
FPLO Bit 7 = 1

FCNF: Conflict byte

FPII Bit 0 = 1
FPPI Bit 1 = 1
FPWI Bit 2 = 1
FPLI Bit 3 = 1

Bit 4-7

Stream 1/0 Section

READ file
PUNCH file
PRINT file
OMR (no other lists on)
R in FUNC option
P in FUNC option
W in FUNC option
Associated file

KSDS
ESDS
RRDS
ALTERNATE INDEX PATH
AL TERNATE INDEX PATH (non-unique)
SKIP
Not used
Position lost

Prior READ invalid
Prior PUNCH invalid
Prior PRINT invalid
Prior PRINT last line invalid
Not used

Offsets are from the start of the FeB.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 161

o

4C

50

54

58

5C

60

64

68

6C

1 2 3

A(Next Available Byte in a Buffer)

Bytes Remaining in Value of Count
Buffer Built-in Function

Page Size Line Size

Current Line No. Buffer Si ze

A(Copy Position in Buffer)
or

A(Next TPUT Position) for OUTPUT

A(DCLCB for COPY file)

A(Copy Module Input
or

A(Tab Module Output)

Record Count

F(SIOCB)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

FCBA

FMAX

FCPM or FNTP

FCPF

FCPA or FTAB

FRCT

FSCB
--

162 OS PUt Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Fetch Control Block (FECB)

Function

How Addressed

Where Held

When Generated

The FECB is used to contain information about modules specified in FETCH
statements.

FECBs are chained together. The chain starts in field TFEP, which is held in the
TIA at offset X '3C I

FECBs are set up by IBMBPFR in non-LIFO storage.

When a module is fetched.

o 1 2 3 4

o Chain Field ZFCH

4 PRV Offset ZFPO

8 Name of Module (8 bytes) ZFNM

10 AMODE Switching Code ZTRFCDE

20 A(Fetched module entry point) ZTARGET

24 A(Call R14 Save Area) ZSAVR14

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 163

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Input/Output Control Block (IOCB)

Function

When Generated

Where Held

How Addressed

Common Section

Used as a data management parameter list during certain record I/O state­
ments and to hold information about statement type during the time between a
record I/O statement and the associated WAIT statement.

Either by the PUI transmitter module (BISAM or BDAM) or by OPEN.

In-non-UFO storage for VSAM, in subpool 0 for BSAM (obtained by GETPOOL),
BISAM or BDAM (obtained in subpool 1 for non-multitasking, in subpool 0 for
tasking).

By fields in the FCB. 10CBs are chained together and the actual field used to
address them depends on the type of statement being executed.

o 1 2 3 4

o Static Forward Chain ICHN

4 Chain of Free or Unchecked IOCBs INXT or IRGN
or

Region Number, Left Adjusted (BDAt:1)

8 IFLA I IFLB I Error Codes (I ERR)

C Request Control Block IRCB

10 1st Word of Record Descriptor; A(RCD) lORD

14 2nd Word of Record Descriptor; IORL
Flags and Record Length

18 Is t tvord of Key Descriptor IOKD or IFNA
~IREF

lC 2nd t'Jord of Key Descriptor IOKL or IFBK

20 A(EVENT Variable) IEVT

164 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

(
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Flag Byte (IFLA)

IFXV Bit 0 = 1
IFMU Bit 1 = 1
IFSU Bit 2 = 1
IFUS Bit 3 = 1
IFER Bit 4 = 1
IFDR Bit 5 = 1
IFDB Bit 6 = 1
IFCH Bit? = 1

Record locked
Record to move flag
Varying string with non-scalar variable
10CB in use
General error flag
Dummy records are being printed or displayed
Dummy buffer acquired
10CB checked

Flag Byte (IFLB): Code byte containing offset within 1 look-up 1 table used for
record checking

Error Codes (IERR)

lEaF X 101 1 End of file
ITID X '02 1 Input transmit
ITOP X '03 1 Output transmit
IRVZ X ' 04 1 Zero length record variable
IRVS X ' 05 1 Short record variable
IRVG X ' 06 1 long record variable
IKCN X1O?1 Key conversion
IKDP X'OB' Key duplication
IKSQ X ' 09 1 Key sequence
IKSP X'OA' Key specification
IKNF X'OB' Key not found
IKNS X10CI No space for keyed record
INIO X'OD' No 10CB available
IEAC X'OE' Active event
IEUP X'OF' No prior READ before REWRITE
IENC X I10 1 No completed READ before REWRITE
lETa x 1111 Permanent output error
IRRZ X 1121 Zero length record read
lEal X ' 13 1 Record reference outside data set
IEXX X ' 14 1 Unidentified 10 error

IOKL: Flags and key length

IREF: Relative block or record number (2 words) (BDAM)

IFNA: Next address feedback (BDAM spanned)

IFBK: BDAM feedback (BDAM spanned)

lY27-952B-O © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 165

Non-VSAM Section
This section starts at offset X 1241.

o

24

28

1 2 3

A(ECB) for Regional Sequential Only
or

A(Exclusive Block) for Direct Only
or

A(Binary Region No.- Regional (1) Update

A(lmplementation Appendage)

Data Management Event Control Block

o 1 2 3

2C BDAM Exception Codes in 2nd & 3rd Bytes

30 I/O Operation Type Record Length
Set by Data Mgmt. (ILEN)

34 A(Data Control Block)

38 A(Buffer) or A(Record Variable)

3C A (Status I ndi cators) (BSAM & BDA~l) or
A(Logical Record)

40 A(Dummy Buffer) (BSAr'l)
or

A(Next Record Feedback)~IREF (BSAM)
or

A(KEY) (BDAM and BISA~l)

44 A(Relative Block or Record) that is,
A (I REF) (BDAM) or

BISAM Exception Codes

48 A(Next Record Feedback)~IREF (BDAM)
or

Start of Any Appended Buffer (BSAM)

4C Start of Any Appended Buffer
(BDM1-or-B I SAM)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

lADE or IXLV or IRLB

ITIA

4

IECB

IDeB

IREC

ISTS or
ILOG

IADB
or

INLF
or

IKEY

IBLK
or

IEXI

INDF
or

ISBF

IDBF

166 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

I
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

VSAM Section
This section also starts at offset X 1241 .

0 1 2 3

24 A(Oummy Buffer)

28 A(First Key Area)

2C A(Second Key Area)

38 Pointer for LOCATE Requests

34 A(ONKEY)

Data Management Event Control Block

LY27·9528·Q © Copyright IBM Corp. 1985, 1987

4

IOUB

IKSV

IKST

IPTR

lONK

Appendix A. Control Blocks 167

o 1 2 3

38 A(Data Management Event Control Blocks)

3C A(Request Parameter List)
SHOWCB Parameter List

40 A(Header)

44 A(Element)

48 Type Codes

4C A(Block)

50 A(User Area)

54 Length of User Area

58 Element Codes

5C User Area MODCB Parameter List

60 A(Header)

64 A(Element) Maximum of 3

68 A(Element)

6C A(Element)

70 MODDCB Type Codes

74 A(Block)

78 Not Used

7C Area

80 Not Used

84 Area Length

88 Not Used

8C Key Length

90 Not Used

94 OPT Code

98 Not Used

9C Record Length

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

IEVC

IRPL

ISHD

ISEL

ISTC

ISBL

ISAR

ISLN

ISEC

ISUA

H;lHD

l~lEL

!tHC

H;lBL

lM2C

lARA

1~12D

lARL

1~130

IKYL

1~134

IOPT

1~135

lRCL

168 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(

/

~

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Element control entries start at offset X 178 1 and continue to end of IOCB. Each
entry occupies 2 words, with keyword type code set in 1st half-word as follows:

IMab=X ' 00ab '

For VSAM files, the IOCB has an associated appendage, comprising the RPL, a
dummy buffer if the file has the BUFFERED attribute, and a key save area if the
data set is a VSAM KSDS.

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Appendix A. Control Blocks 169

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Label Data Control Block

Function

When Generated

Where Held

How Addressed

Holds the address of the data item and, if a label variable, the address of the
associated DSA.

Label constants

Label variables

During compilation

When the variable is allocated depending on storage
class

Label temporaries When required for GOTO to label constant

Depends on the storage class of the data item.

As a variable.

Label Variable and Label Temporary

Label Constant

o 1 2 3

o A(Label Constant) Assigned to the
Label Variable

4 A(DSA) at the Time of Assignment of
Owning Block

Word 1: bit 0 = 0 Address of label
= 1 Text reference

Word 2: bit 0 always = 0

o 1 2

o A(Label)

3

4 Value to be loaded into Reg. 2 on GOTO
It becomes the new base register.

4

4

170 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Library Workspace (LWS)

Function

When Generated

Where Held

How Addressed

Space reserved for two preformatted DSAs used by certain library modules.

The first LWS is generated during program initialization. Subsequent LWSs are
allocated before entry to any ON-unit. This is because the ON-unit may require
the use of library modules using LWS but must not alter the environment of the
interrupt.

First allocation in the program management area. Subsequent allocations in
the LIFO storage stack. ONCAs are generated with LWS.

From offset X 148 1 in each DSA.

o 2 3 4

o DSA Flags I Offset to the ONCA

4 The same back-chain and
register save areas that are shown

in the DSA LUJO
(See the DSA Control Block)

50 56 Byte Workspace

88 DSA Flags I Offset to the ONCA

8C The same back-chain and LU.Jl
register save areas that are shown

in the DSA
(See the DSA Control Block)

08 56 Byte Workspace

110 Current ONCA
(see the ONCA Control Block)

DSA Flags: These flags are the same as Flag Byte 0 and Flag Byte 1 in the
DSA. For further information on these flag bytes and their contents, see
"Flags" on page 144.

LY27-9528-0 <0 Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 171

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ON Communications Area (ONCA)

Function

When Generated

Where Held

How Addressed

Dummy ONCA

An area in which built-in function values or their addresses are placed, after the
occurrence of a PLII interrupt.

The first ONCA is generated during program initialization. Subsequent ONCAs
are generated with each allocation of LWS.

Contiguous with LWS in the program management area and in the LIFO stack.

By an offset from the current generation of library workspace. The offset is
held as a halfword at offset X 121 in LWS.

The dummy ONCA holds default values for the condition built-in functions.
These will be supplied if they are requested either when no interrupt has
occurred, or when no no interrupt with the requested condition built-in function
value has occurred. There is a chain back through all ONCAs to the dummy
ONCA.

172 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

o 1 2 3

o Chain Back to Previous ONCA

4 ONCODE IFlag LFG1 Not

8 String Locator for ONFILE
(8 bytes)

10 String Locator for ONCHAR
(8 bytes)

18 String Locator for ONSOURCE
(8 bytes)

20 String Locator for ONKEY
(8 bytes)

28 String Locator for DATAFIELD
(8 bytes)

30 String Locator for ONIDENT
(8 bytes)

38 A(Record I/O EVENT Variable)

3C Pointer for ONATTN

40 ONCOUNT

44 Retry Environment

48 Retry Address for Conversion

4C X' 40 ' X' 00000000 1 Flag

Used

LFG3

50 LCn Retry Codes Not Used

Flag (LFG1)

LFOF Bit 0 = 1 ONFILE valid

4

LOCB

LOFL

LOCH

LOSC

LOKY

LODF

LOID

LEVT

LPAT

LCNT

LREN

LRAD

LFOC Bit 1 = 1 ONCHAR/ONSOURCE valid
LFID Bit 2 = 1 ONIDENT valid
LFKY Bit 3 = 1 ONKEY valid
LFDF Bit 4 = 1 DA T AFIELD valid
LFEV Bit 5 = 1 Associate EVENT variable
LFAT Bit 6 = 1 ONATTN valid
LFCT Bit 7 = 1 1 ONCOUNT valid

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 173

Flag (lFG3)

LFSC
LFSS

Bit 0 = 1
Bit 1 = 1
Bits 2-7

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ONSOURCE or ONCHAR is used in an ON-unit
ONSOURCE set in ONCA
Not used

LCT1: Copy ofTCA flag byte 1 (TFB1).

Retry Address (LRAO): The offset from the base of the library module involved
to the address where a conversion is attempted again if ONSOURCE or
ONCHAR is used.

174 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

t

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ON Control Siock (ONCS)

Function

How Addressed

When Generated

Where Held

Contains pointer to associated ON-unit, or indicates action to be taken when
interrupt occurs.

From offset X '60' in the DSA.

Static ONCBs are generated during compilation, one for each ON statement.
Dynamic ONCBs are generated by the prolog code of the procedure or block in
which the ON statement occurs, or are allocated in a VDA when the ON state­
ment is executed.

Static ONCBs are generated in the Static internal control section. Dynamic
ONCBs are stored in the DSA of the block in which the associated ON-unit
occurs.

Static and Dynamic ONCBs

Dynamic ONCB

Static ONCB

Static ONCBs are generated for unqualified conditions. Dynamic ONCBs are
generated for qualified conditions (ENDPAGE, ENDFILE, etc.)

2 3 4

o A(previous dynamic ONCB in block) LOBC
or zero, if first

4 Qualifier LOQU

Condition Flag
8 Code (LOFG) Not Used

C Target LOTR

1 2 3 4

Condit ion Flag
Code (LSFG) Not Used

4 Target LSTR

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 175

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Qualifier: A(DCLCB) for 1/0 conditions A(SYMT AB) for CHECK A(CSECT) for
CONDITION condition

Flag (LDFG and LSFG)

LSFO
LSF1
LSF2
LSF3
LSF4
LSF5
LSF6
LSF7

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

SYSTEM specified
Null ON-unit
GOTO only ON-unit
Condition established
Not Used
Enabled at block entry
Condition enabled
SNAP specified

Target: Address of ON-unit, or offset in DSA of word containing A(label vari­
able).

176 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PLIMAIN

Function

When Generated

Where Held

How Addressed

Holds address of entry point of main procedure.

During compilation of procedures with the MAIN option.

A separate control section in the load module.

Address resolved by linkage editor.

o 1 2 3 4

o VCON(Primary Entry Point to Program)

4 Zero

Dummy PLiMAIN: A control section in IBMBPIRA and IBMTPIRA holding
addresses of error message module. This control section is link-edited if no
compiler generated PLiMAIN exists.

LY27-9528-0 CD Copyright IBM Corp. 1985, 1987 Appendix A. Control Btocks 177

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PLISTART Parameter List

Function

When Generated

Used to pass housekeeping information extracted by compiler to PLII initializa­
tion routines.

PLiSTART is a CSECT generated by the compiler for every external compilation.
The parameter list is part of the PLiSTART CSECT.

General Format of PLISTART
PLiSTART contains the three standard entry points PLiST ART, PLiCALLA, and
PLiCALLB. When entry is made, addressability is established register 0 pointed
at the parameter list and a branch made to entry point A,B, or C of the initial­
ization routine from PLiST ART, PLiCALLA, and PLiCALLB respectively.

The format of the parameter list for PLiSTART is given below.

Addressed by register 0

178 as PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

(
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1 2 3

A (PUMAI N)

4 A (SYSPRI NT DCLCB) I zero

8 A(PU FLmv) I zero

C A(PLITABS) I zero

10 Total length of PRV

Z'FFFF' len(PLISTART plist)
14 (ZYV2) (ZYBYTES)

Zero in compile object code.
18 A(remote shared library module 1 is t)

at run time.

lC A(PLICOUNT) I zero

20 A(PLIXOPT) I zero

24 A (I Bt·1BPOPT) I zero
(X'80000000' = end of release 2 marker)

28 A(PLIXHD) I zero

2C A(IBMBEATA) if INTERRUPT compile-
time option usedl zero

30 X'80000000' (end of release 3 marker)

34 A(Version 2 signature)

LY27-9528-0 © Copyright IBM Corp. 1985,1987

4

ZYMA

ZYSP

ZYFL

ZYTB

ZYPR

ZYAL

ZYCT

ZYXO

ZYPO

ZYHD

ZYEA

ZYLTR3

ZYSIG

Appendix A. Control Blocks 179

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Record Descriptor (RD)

Function

When Generated

Where Held

How Addressed

To hold data about the record variable.

During Compilation.

Static control section.

From an offset from register 3 known to compiled code.

1 2 3 4

A(Record Variable) VRDA

4 Flag I Length of Data to Transmit VRDL

Flag (VRDV): These bits indicate the type of INTO or FROM argument as
follows:

VRFF
VRFA
VRFV
VRFB

XIOO'

X'01 1

XI 02'
X I 03'

For fixed length strings
For area variables
For varying length character strings
For varying length bit strings

Length (VRDL): This field is the length of data to be transmitted (length of vari­
able or buffer for locate mode). The value is in bytes for all strings including bit
strings.

For VARYING strings, the value includes the two length bytes, and is the current
length for output operations and the maximum length for input operations.

180 os PLII Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

I

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

String Locator/Descriptor

Function

When Generated

Where Held

How Addressed

Allocated Length

String Descriptor

Used to pass the address and the length of strings to other routines. Also for
handling strings with adjustable lengths for example, DCl STRING CHAR (N)).

Storage reserved during compilation. Fields completed during execution if
string has adjustable length.

Static internal control section.

From an offset from register 3 known to compiled code.

o 1 2 3 4

o Byte Address of String

4 . Allocated Length I F I Not Used I F2

F = 10 1 B Fixed string (First bit of second byte)

111 B Varying string

F2: Used for bit strings to hold offset from byte address of first bit in string (3
bits)

For varying strings this is the declared length. Length is held in bits for bit
strings and in bytes for character strings. length is held in a number of
graphics for graphic strings.

The string descriptor is the second word of the string locator/descriptor. It
appears in structure descriptors and in the description field of controlled vari­
ables.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 181

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Structure Descriptor

Function

When Generated

Where Held

How Addressed

General Format

Contains information about the offset of each element within a structure, and
the nature of each element. Used when passing a structure to another routine,
or for accessing structure elements during execution, if the structure is
declared with adjustable extents or with the REFER option.

If the structure has no adjustable elements, during compilation. If the structure
has adjustable elements, during execution from information held in the aggre­
gate descriptor descriptor.

Static internal control section.

From an offset from register 3 known to compiled code.

For each base element in the structure, a fullword field containing the offset of
the start of the element from the start of the structure is given. If the base
element is a string, area, or array, this fullword is followed by a descriptor,
which is followed by the offset field for the next base element. If the base
element is not a string, array, or area the descriptor field is omitted.

o 2 3 4

o Element Offset from the Start
of the Structure

4 Element Descriptor (if Required)

8 Element Offset from the Start
of the Structure

c Element Descriptor (if Required)

For every base element in the
structure, an entry is made
consisting of an offset field
and, if the element requires
a descriptor, a descriptor.

Offset: The offset field is held in bytes. Any adjustments needed for bit-aligned
addresses are held in the respective descriptors.

182 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Symbol Table (SYMT AB)

Function

When Generated

Where Held

How Addressed

The symbol table holds the name of an identifier during execution and associ­
ates it with the address of that identifier. The identifier may be a variable or a
program control constant. The symbol table is used only when you have data
directed 110 or the CHECK condition, or specify the TEST(,SYM) compile-time
option.

Only base elements have symbol tables. Major and minor structure identifiers
do not have symbol tables. Base element symbol table names are usually fully
qualified.

During compilation, if data-directed 110, the CHECK condition or the TEST(,SYM)
compile-time option is used in the program.

Static internal control section for internal names. Separate control section for
external names.

By an address constant or by an offset from register 3 for internal data, or by
an address generated by the linkage editor for external data.

Long Symbol Table Format
Long symbol tables always start on a word boundary. Blanks pad the end of
the table to round the symbol table length to a multiple of 4.

Long symbol tables either have the name length field and name appended to
the end of the symbol table or have a fullword address which points to the
name length field and name.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 183

o

4

8

c

10

10

1 2 3

Flags Dimension Level
(VSF1) (VSF2) ality Number

(VSDM) (VSLV)

A(DED)

Address Field A

Address Field B

Length of Name
if bit 15 = '0'

(VSLC)

Name (Fully Qualified) if bit 15 = '0'
(VSNM)

Address of
2-byte name length field and name

if bit 15 = '1'

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

VSDD

VSFA

VSFB

VSNA

Short Symbol Table Format (
A short symbol table has only the 2-byte flags, 2-byte name length field and the
name field. Short symbol tables always start on a word boundary. Blanks pad
the end of the table to round the symbol table length to a multiple of 4.

o 1 2 3 4

o Flags Length of Name
(VSF1) (VSF2) (VSSL)

Name (Fully Qualified) VSSN

Flags: The flags in the program control constant symbol table have changed in
as PLII Version 2. In as PLII Version 1, the flags in a program control constant
symbol table are always set to 'OBOO'X. The program control constant is a label
or entry point and the symbol table format is short.

Below are the Version 2 flags for program control constants.

184 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Bit
Bits 0, 1 and 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Hex Type and Explanation
X 1000 I B Static variable or program control constant

X ' 001 1B Based variable. Also see bits 12-13.

X 1010 I B Controlled (not parameter) variable

X ' 011 1B Defined variable. Also see bits 12-13.

X 1100 I B Automatic variable

X 1101' B Parameter (not controlled) variable

X 1110' B Not set by compiler. Used by PUTEST at run-time
to flag PUTEST declared variables which are not
based.

X 1111' B Controlled parameter variable

X'1'B

X'O'B

X'1'B

X'O'B

X'1'B

X'D'B

X'1'B

X'D'B

X'1'B

X'D'B

X'1'B

X'O'B

X'1'B

X'O'B

External
Internal

Item may appear in some CHECK list or CHECK
all. Always set to '1'B, if item is EXTERNAL.
Always set to '1'B, if item is label or entry con­
stant (maintains compatibility with version 1 short
symbol table).

Item appears in no CHECK list.

Address field A refers directly to data.
Address field A refers to a locator.

A member of a structure.
Not a member of a structure.

Long symbol table.
Short symbol table.

Address field A addresses code.
Address field A does not addresses code.

Dynamic check enabled.
Dynamic check not enabled.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 185

Bit 10

Bit 11

Bit 12 and 13

Bit 14

Bit 15

X'1'B

X'O'B

X'1'B
X'O'B

X'11'B

X'10'B

X'OO'B

X'1'B

X'O'B

X'1'B

X'O'B

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Dictionary reference precedes symbol table. Used
by Checkout Compiler.

Always zero for Optimizing Compiler.

Isub defined.
Is.ub not defined.

Optimizing BASED implementation. The symbol
table describes both the BASED variable and the
based pointer qualification. The address field A,
the storage flag bits 0-2, the data/locator flag bit 5
and the level number describe the BASED pointer
qualification.

Optimizing DEFINED implementation. The symbol
table describes the DEFINED variable and the
base variable on which it is defined.

Not optimizing implementation.

Note: Either storage bits 0-2 or these bits 12-13
indicate a BASED or DEFINED variable. If bits 0-2
are used, the symbol table describes only the
BASED or DEFINED variable.

Formerly short symbol table, now long symbol
table.

Now short symbol table.

Symbol table points to identifier 2-byte name
length field followed by identifier name.

Symbol table has identifier name length and
name appended to end of symbol table.

Note: The Optimizing Compiler never sets Bits 8-11.

Dimensionality: Dimensionality is the number of dimensions declared for an
array item. Dimensionality is zero for other items.

level Number: The level number is the level of the block in which the variable
is declared. The level of a block is one greater than the level of the imme­
diately containing block. The level of the external procedure block is 1. The
level number is only set for AUTOMATIC, DEFINED, BASED, CONTROLLED
parameter, non-CONTROLLED parameter and program control constant. For all
others, the number is zero.

When the address field A refers to a DSA offset, the level number accesses the ~
correct DSA. This DSA is either the current DSA or an enclosing block DSA. If
you have a GET/PUT DATA or CHECK you may need to use the level number,

186 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

since the GET/PUT DATA statement or CHECK condition may occur in a dif­
ferent block than that block in which the variables are declared.

For DEFINED and BASED variables, the level number may be the block of the
defined base variable or the based pointer qualification rather than the
DEFINED or BASED variable.

The level of the "hypothetical" outer outer block surrounding the external proce­
dure is zero.

Address Fields: Addresses for different data types are held in different formats.
As far as possible, addresses are held in address field A. However, sometimes
more information is required than can be held in a fullword field. When this
happens, address field B is used. See the logic description above for how
address fields A and B are used by program control constants and variables.

For data types not listed below the address fields are set to zeros.

Address Field A

If STATIC
the address is the address of data or locator for items that have locators.

If AUTOMATIC
the address is the offset within the DSA of the data or offset of the locator
for those items that have locators. The correct DSA is indicated by the
block level number.

If CONTROLLED
Bytes 0-1 are zeros. Bytes 2-3 have the offset of the PRV. Flag bit 5 is
initialized if the controlled variable has a locator or not.

If BASED
the address describes the declared pointer qualifier, not the based variable.
The declared pointer qualifier may be automatic, static or non-parameter
controlled. If the declared pointer qualifier information is not present, then:

• Field A is set to zeros
• Storage flag bits 0-2 are set to '001'B
• Data/locator flag bit 5 is set to '1'8
• Bits 12-13 are set to 'OO'B
• The level number refers to the BASED variable.

If PARAMETER
the address is the offset of the one-word field in the DSA containing the
address of corresponding argument within the argument list.

The correct DSA is indicated by the block level number. Flag bit 5 indicates
whether the argument has a locator or refers directly to the data.

If CONTROLLED parameter
the address is the offset of the one-word field in the DSA containing the
PRV offset for the CONTROLLED variable. The correct DSA is indicated by
the block level number. Flag bit 5 indicates whether the variable has a
locator or refers directly to the data.

If DEFINED
the address is only supported when base variable is static, automatic or
parameter.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 187

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For DEFINED variables with locators or descriptors (except when the base
variable is STATIC EXTERNAL), the address is the offset within the DSA of
the locator or locator/descriptor. Flags are marked AUTO with Bit 5 = 'O'B.

For DEFINED variables without locators or descriptors, If the base variable
is automatic or static, then this address field A describes the base variable,
not the DEFINED variable.

If the base variable is a parameter, the address field A has the offset within
the DSA to a one-word field with the address of the data. Flags are marked
AUTO with Bit 5 = 'O'B.

For DEFINED variables with locators or descriptors and defined upon a base
STATIC EXTERNAL variable, this address field A describes the STATIC
EXTERNAL base variable.

The correct DSA is indicated by the block level number. When locators or
descriptors are built for the DEFINED variable, these items are built within
the DSA of the same block in which the DEFINED variable is declared.

If CONDITION condition constant
the address of the 1-byte length field is followed by the condition name trun­
cated to 7 characters. This is the same address which passes to the error
handler if a SIGNAL CONDITION(...) statement executes within the program.

If file constant
the address is the DCLCB for the file.

If entry constant
the address is the address of the entry point, if resolved. For FETCHable
entries, the address is the PRV offset for this fetchable entry point.

If label constant
the address is address of the associated label constant.

Address Field B

If STRUCTURE (not BASED structure)
the address is the offset from the start of the structure descriptor to the
fullword field. This fullword field holds the offset of the base element from
the start of the struCture. Also see "Structure Descriptor."

If BASED STRING, BASED AREA or BASED ARRAY
the address is the address of the descriptor within internal static.

If BASED STRUCTURE
the address is the address of the fullword field within the structure
descriptor situated in internal static. This holds the offset of the base
element from the start of the structure.

Length: The length field contains the number of bytes in the following name
field.

Name: The name field contains the fully or partially qualified name.

In PUI Version 1 symbol tables, the fully qualified names must be < = 256. If
the fully qualified name exceeds 256, message IEL0921 is issued and the name
is truncated by eliminating names at the highest structure levels, until a par­
tially qualified name is formed with length < = 256.

188 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

In as PUI Version 2 GET/PUT DATA or CHECK symbol tables, the symbol table
name length must be < = 256 bytes. In as PLII Version 2 PUTEST symbol
tables, the symbol table name may exceed 256 bytes and is always fully quali­
fied.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 189

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Task Communication Area (TCA)

Function

When Generated

Where Held

How Addressed

The TCA is the central communication area for the program. It is used to
address the error-handling and ~torage-management routines, and to point to
the current segment of dynamic storage.

During program initialization by IBMBPIR.

In the program management area at the head of the initial segment area (ISA).

From Register 12

190 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM<Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1 2 3

-8 "Eye Catcher"

TFB0 I TFBI TFB2 I TFB3

4 A(PRV or Zero)

8 Beginning of Segment Pointer (BOS)

C End of Segment Pointer (EOS)

10 OSA next invocation count

14 A(current event variable)

18 A(External Save Area)

lC A(TRT Table for errors)

20 Task Level

24 A(Current Task Variable)

28 A(TCA appendage)

2C A(Tasking Appendage)

30 A(Save Area for Program Management)

34 Open File Chain Anchor

38 A(Loaded ~lodul e List)

3C Unused

40 A(Oiagnostic File Block)

44 PL/I Return Code User Return Code
(TORC) (TURC)

48 A (Overfl ow Routine for Get VOA)

4C A(Flow Statement Number Table)

50 A(Tab Table)

54 A(Flow module)

58 A(LPA Module - Region)

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

4

TFLG

TPRV

TBOS

TEOS

TINC

TEVT

TESA

TTRT

TTIe

TTSK

TTIA

TTTA

TPSA

TFOP

TOOL

TBUG

TOFB

TOVV

TSFT

TTAB

TEFL

TPSR

Appendix A. Control Blocks 191

o

5C

60

64

68

6C

70

74

78

7C

80

F0

F4

F8

FC

100

104

108

10C

110

114

118

llC

120

124

1 2 3

A(LPA Module - LPA)

A(LPA Module - LPA)

PRV Initialization Word or Zero

A(t'1odule List)

A(Get Dynamic Storage Routine)

A(Free Dynamic Storage Routine)

A(Overflow Routine for Get DSA)

A(ON Condition Handler)

TXAF INot Used I TRLR I TTLR

Normal GO TO Code

Used t'Jhen GOTO Out of a Block May Occur

A(EFCL) j Dummy if No FLOW or COUNT

A(Interpretive GO TO Routine)

A(Get Control Routine)

A(Free Control Routine)

A(Enqueue SYSPRINT Routine)

A(Dequeue SYSPRINT Routine)

A(t1AIT Routine)

A(COMPLETION Pseudo-variable Routine)

A(EVENT Assign Routine)

A(Priority Routine)

A(EnqueuejDequeue Routines)

Reserved for Users

A(Attention Checking Routine)

A(System Dependant Appendage)
Appendage under CICS
(Otherwise not Used)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

TPSL

TPSM

TPRI

TAML

TGET

TFRE

TOVF

TERR

TENV

TGTC

TEFC

TGH,!

TGCL

TRCL

TEQR

TDQR

TAtoJT

TACP

TAEA

TAPR

TEDR

TUSR

TATP

TCIC

192 as PLII Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp_ 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Flags (TFLG)
Indicate that an abnormal GOTO out of block may take place. Also indicate that
certain special error conditions may arise.

Flag Byte 0 (TFBO)

TTIS Bit 0 = 1 Subtask TCA
TTTT Bit 1 = 1 Program may multitask
TTCK Bit 2 = 1 Reserved for the Checkout Compiler
TTFT Bit 3 = 1 Eldest task from attaching DSA
ITFD Bit 4 = 1 Daughter tasks exist
TTKK Bit 5 = 1 Operating under CICS
TTDB Bit 6 = Using a data base system

Bit 7 Not used

Note: This flag byte is the only one in the TCA used by the central task without
synchronizing with the subtask. The subtask must never change it. This pre­
vents interference between CPUs on a multiprocessing machine.

Flag Byte 1(TFB1)

TGFD Bit 0 = At least one daughter task may exist
TGFE Bit 1 At least one active EVENT I/O ON-unit

Bit 2 Not used
TGFS Bit 3 Exit routine active SORT
TGNQ Bit 4 = SYSPRINT enqueue by this task
TGTE Bit 5 = Task ending

Bits 6 & 7 Not used

Flag Byte 2 (TFB2)

THQS Bit 0 = Raise SIZE for fixed-point divide, fixed-point over-
flow, exponent overflow, or decimal overflow
exceptions

THQI Bit 1 Ignore fixed-point divide, fixed-point overflow or
exponent overflow exceptions

Bit 2 Not used
THCC Bit 3 Fast/Initialization in use
THFN Bit 4 Initialized; set to '0' B when an ON FINISH state-

ment is executed.
THQF Bit 5 File associated with SIZE
THQR Bit 6 Return to caller after normal return from ON-unit
THQC Bit 7 I/O conversion

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 193

Flag Byte 3 (TFB3)

TMDF Bit 0 = 1
TPNR Bit 1 1

Bit 2
TNFP Bit 3
TNOF Bit 4 = 1
TISN Bit 5 = 1
TFCT Bit 6 = 1

Bit 7

Flag Byte 4 (TXAF)

TX31 Bit 0 = 1
TXESPIE Bit 1 1
TXESTAE Bit 2 = 1
TXASYS Bit 3 = 1

Bits 4-7

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Dynamic FLOW set on
Prompt not required
Not used
No floating point instructions
No FLOW for this GOTO
Implied SKIP next
COUNT required
Not used

Entry AMODE(31)
ESPIE in use
ESTAE in use
Extended arch itecture
Not used.

Taos: The pointer that points the the beginning of the current segment.

TEOS: The pointer that points to the end of the current segment.

TESA: The address of the save area for the calling routine, if IBMBPIR was not
called from the control program.

TTRT: The translate-and-test table contains code used in error handling to
identify relevant ON-cells.

TPSA: This points to a preformatted DSA reserved for storage management.

TFOP: Used when closing files at the end of a job.

TORC & TURC: A Standard area to keep these codes.

TOVV: Stack overflow routine for FDAs.

TSFT: This is used to address the flow statement table which holds statement
numbers for use during execution.

TTAB: The address of.3- table of tabulator positions used in list-directed output.

TEFL.: The address of the module used to implement the compiler FLOW
option.

Shared Library (TPSR, TPSL, & TPSM): Used when accessing PLII library
modules in the link-pack-area.

TPRI: Used to access word set in PRV when files are closed.

Storage Pointers (TGET, TFRE, & TOVF): Entry points to IBMBPGRA that get
non-LIFO storage, free non-LIFO storage, and acquire a new segment for LIFO
STORAGE

194 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

/

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TERR: Address branched to after a software-detected interrupt occurs.

TENV: Identifies release of libraries being used. See also, "Flag Byte 4
(TXAF)" on page 1 94.

TRLR: The resident library release number.

TTLR: The transient library release number.

TGTC: Whenever a GOTO out of block occurs or could potentially occur
because of the value of a label variable, compiled code branches to this code in
the TCA.

The function of this code is described under "Handling Flow of Control" on
page 32.

TGCL: Routine used in multitasking.

TEQR & TDQR: Library routines used in stream 1/0 (see Appendix C, "Stream­
Oriented Input/Output" on page 241).

TAWT: Address of IBMBJWT, the module used to execute the WAIT statement.

TACP: Address of COMPLETION pseudo-variable module.

TAEA: Address of event assign module.

TAPR: Address of the priority routine.

TEDR: Used for enqueuing and dequeuing files other than SYSPRINT.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 195

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TeA Implementation Appendage (TIA)

Function
To hold control and communication information.

When Generated
During program initialization.

Where Held
Program management area. Addressed from offset X 128 1 in the TCA.

How Addressed
From X 128 1 in the TCA.

196 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

o I 2 3

-8 "Eye Catcher"

o A(Byte Beyond ISA)

4 A(Old PICA)/Fake PICA

8 A(Interrupt Handler)

C Interrupt Mask I Flagsl I Flags2

10 toJIT chai n anchor

14 Anchor for Chain of Exclusive Blocks

IC A(Last Free Element)

20 A(Dump Block)

24 A(Dummy DSA)

28 A(Get LWS Routine)

2C A(Extended Float Simulator)

30 Two Words for the Name of the
Extended Float Simulator

38 A(Storage Report Information)

3C Chain of Fetched Entry Points

40 A(STAE Exit Routine)

44 A(Housekeeping Interrupt Routine)

48 A(First Count Table)

4C A(Last Count Table Used)

50 Saved A(TCA) for the Error Handler

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

4

TISA

TAPC

TERA

TINM

nJnJ

TEXF

TLFE

TDUB

TDDS

TASM

TSNM

TASR

TFEP

TAST

TERC

TCTF

TCTL

TATC

Appendix A. Control Blocks 197

o 1 2

54 A(STAE Block)

3

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4

TABD

58 A(PLISTART Parameter List) TRPS

5C Flags3 Not Used Caller's
Program
Mask

60 Real EOS (LIFO Stack) TXRES

64 ISA Increment Amount TXIIC

68 Heap Initial Allocation TXHIN

6C Heap Increment Amount TXHIC

70 Heap Initial Address TXHAD

74 Heap Storage Chain TXBOC

78 Heap Free Chain TXLFE

7C Error Counter TERN

Flags 1 (TFL 1)

TFLA Bit 0 = Task terminated normally
TFLS Bit 1 = 1 SYSPRINT open STREAM print
TFLJ Bit 2 = 1 STAE exit in progress
TFLK Bit 3 = 1 Dump I/O in progress

Bits 4-7 Not used.

Flags2 (TFL2)

TFLD Bit 0 = 1 Caller provided ISA
TFLR Bit 1 = 1 Storage report required
TFLT Bit 2 = 1 STAE required
TFLP Bit 3 = 1 SPIE required
TFLX. Bit 4 = 1 Syntax error in program management options
TFLM Bit 5 = 1 Multiple STAE required

Bits 6 & 7 Not used

Flags3 (TFL3)

TXHFR Bit 0 = 1 Free heap segments
TXHBL Bit 1 1 Heap below the 16M line
TXIFR Bit 2 = 1 Free ISA segments

198 as PLII Version 2 Problem Determination LY27-9528-0 CO Copyright IBM Corp. 1985, 1987

I
\

"

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TXHIT
TXHPA

TXNHP

Bit 3 = 1
Bit 4 = 1
Bit 5 & 6
Bit 7

Heap initialized
Heap preallocated
Not used
No heap processing

TISA: This holds the address beyond the end of the partition and is necessary
because EOS gets altered when non-LIFO dynamic storage is allocated.

TAPe: Used to restore SPIE to that which existed when the PUI program was
called.

TERA: This is the address to which the branch is made after a program check
interrupt (see above) has occurred.

Interrupt mask and flags (TINM): Wait information table (WIT) chain header
(TWTW):

Start of the chain indication which events are being waited-on in the task.

TEXF: Used when handling exclusive files.

TlFE: Address of last free area of non-UFO storage on the free area chain. It
is used as a starting point when searching the chain.

TOUB: Used when a PUOUMP is being executed.

TSAM: Used on machines that do not have the extended floating-point
instructions to handle extended floating-point data.

TSNM: Used to hold the name of the extended float simulator, so that it can be
invoked if required.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 199

TeA Tasking Appendage (TTA)

Function

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

To hold control and communication information used in multitasking programs.

When Generated
During program initialization.

Where Held
Program Management area.

How Addressed
From X '2C I in the TCA.

o 2 3

o POST Event Control Block

4 Parameter list for Control Task
(2 words)

8 t'JAIT Event Control Block

10 A(TCB)

14 A(ECBLIST Element)

18 A(TCA)

lC Not Used

20 Chain of Sister Tasking Appendages

24 Anchor for Subtask Sister Chain

28 Anchor for I/O EVENT Chain

2C A(Attaching DSA)

30 A(Task Invocation Point)

Post Codes to Control Task
X 10 1 Completion pseudo-variable
X 141 EVENT assignment
X 18 I PRIORITY pseudo-variable
XICI I/O EVENT completion
X 110 I WAIT termination
X ' 14 1 Detach this block
X ' 18 1 Dedicate control task
X 11 C I Liberate control task
X 120 I Attach a task

4

TPEC

TCTP

HJEC

nCB

TAEE

nCA

TSIS

TSUB

TIDE

TDSA

TALR

200 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

X ' 24 1 End of task
X 128 1 Terminate a subtask

X '2C 1 Terminate a subtask

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix A. Control Blocks 201

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Task Variable (TV)

Function
To hold information about task

When Generated
Depends on storage class

Where Held
Depends on storage class

How Addressed
From offset X 1241 in the TCA.

(:) 1 2 3 4

o KFLO I KFLl I Pri ority

4 A(SYMTAB)

8 A(TCA Tasking Appendages)

C A(Calling PROCEDURE)

Flags

KFLO
KACT Bit 0 = 1 Active

Bits 1-7 Not used

KFL1
KDUM Bit 0 = 1 Dummy
KSTE Bit 1 = 1 Symbol table exists

Bits 2-7 Not used

202 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985,1987

(

\.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix B. Record-Oriented Input/Output

Introduction
This appendix considers the implementation of the following statements:

• File declarations

• Open and close statements

• READ, WRITE, DELETE, LOCATE, UNLOCK, and REWRITE statements
referred to generically as transmission statements.

Together, these statements make up record I/O.

The OS PUI Optimizing Compiler uses the data management routines of MVS
to implement record I/O. These routines offer facilities similar but not identical
to those of the PUI language. The data management routines require that:

1. A data control block (DCB) is set up to describe and identify the data set.

2. OPEN and CLOSE macro instructions are issued to open and close the data
set.

3. GET, PUT, READ, or WRITE macro instructions are normally issued to store
or obtain a new record.

The data management routines transmit the data one block at a time between
the data management buffer and the external medium, but each separate
macro instruction issued by the program results in only a single record being
passed. When a transmission error occurs, or when the end-of-file is reached,
the data management routines either set flags indicating the error or branch to
error-handling or end-of-file routines that can be specified by the programmer.

The basic method used by the optimizing compiler to implement record I/O is to
retain the source program information in a number of control blocks, and to
pass these control blocks to PUI library routines, which interpret the informa­
tion and carry out the necessary action by calling data management routines in
the appropriate manner. The method is summarized below, and shown
diagrammatically in Figure 41 on page 204. Figure 55 on page 238 shows the
overall scheme in greater detail.

Summary of Record 1/0 Implementation

File Declarations
For a file declaration, the compiler generates two control blocks: the declare
control block (DCLC8) and the environment control block (ENV8). Together,
these two control blocks contain a complete record of the file declaration.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 203

COMPILER

COMPILER GENERATED CODE

Set up control blocks
from file declaration
and I/O statements

Ca 11 PL/I 1 i bra ry or data
management routines
passing control blocks

I I I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

OPEN & CLOSE STATEMENTS TRANSMISSION STATEMENT

In-l i ne I/O Library Call I/O

OPEN/CLOSE BOOTSTRAP
ROUTI NE

(Resident library)

1
OPEN ROUTI NES

(Transient library)

"

OPEN
ROUTINE

1
CLOSE ROUTINE

(Transient library)

CLOSE
ROUTINE

PL/I LIBRARIES

T RANS~l I TT ER INTERFACE
ROUTI NE

(Resident 1 i brary)

1
PL/I TRANSMITTER

(Transient library)

DATA ~lANAGE~1ENT

ROUTI NES
OPERATING SYSTEMS

DATA fvlANAGH1ENT
TRANSMITTER ROUTINE

Figure 41. The Principles Used in Record 1/0 Implementation

204 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(
\

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

OPEN Statements
OPEN statements are compiled as a call to a resident-library bootstrap routine,
IBMBOCL, which has passed to it an open control block (OCB) containing the
attributes and environment options that have been used in the OPEN statement.

The bootstrap routine loads and calls a number of transient routines that build
a definitive control block, known as the file control block (FeB), from informa­
tion in the DCLCB, ENVB, and OCB. The file is associated with the data set,
and the appropriate PUI transmitter module is loaded.

The FCB is used during the execution of transmission statements to access all
file information. It is addressed via the DCLCB and the pseudo-register vector.

Transmission Statements

CLOSE Statements

Implicit Open

For the majority of file and statement types, details of statement type, of record,
key, and event variables are set up in control blocks during compilation; during
execution, these control blocks are passed to a resident-library interface
routine, IBM BRIO. IBMBRIO then calls a PUI transient-library transmitter
module, which issues the appropriate data management macro instruction, and
checks for errors, before returning control to compiled code. This method is
known as library-call I/O.

If the TOTAL option is used, the majority of transmission statements on buffered
consecutive files are compiled as short calls to the data management routines.
This method is known as in-line I/O. When using in-line I/O, subroutines of the
PUI transmitters are use to branch directly to the data management routines.
When running in an MVS/XA environment, the subroutines set the correct
addressing mode (AMODE) for data management. These transmitters are also
used for error situations and end-of-file conditions.

The TOTAL option is a method used to inform the compiler that no additional
information will be supplied about the file via the DO statement. (That is, that
the TOTAL information about the file has been declared.) This allows the com­
piler to determine whether or not inline I/O statements can be used. The condi­
tions when they are used are described in Figure 56 on page 239 and
Figure 57 on page 240.

CLOSE statements are implemented by a call to the open/close bootstrap
routine IBMBOCL, which loads and calls the transient close routine IBMBOCA.
This routine disassociates the file from the data set, and handles the necessary
housekeeping.

Implicit opening is handled by manipulation of addresses in the file control
block (FCB). Any attempt to access the file when it is not open results in
control being passed to the open routines in the PUI libraries. The FCB is
mapped in "File Control Block (FCB)" on page 152.

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 205

Implicit Close

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Implicit closing is handled by the program termination routine checking for
open files, and if it finds any, calling the PLII library routine to close them.

As can be seen from the summary above, a large number of library subroutines
and control blocks are used in the implementation of record 1/0. These are
summarized in two figures: Figure 42 on page 207 for library subroutines and
Figure 44 on page 210 for control blocks. More detailed descriptions for each
statement type are given below.

206 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RESIDENT LIBRARY MODULES

IBMBOCL
IBMBRIO

Open/Close bootstrap routine
Record I/O interface routine

TRANSIENT LIBRARY MODULES

Open Modules

IBMBOPA
IBMBOPB
IBMBOPC
IBMBOPD
IBMBOPE
IBMBOPZ

Open error handler
Open routine Phase I
Open routine Phase II
Open routine Phase III
Open routine Phase II (VSAM)
Direct output file formatter

Close Module

IBM BOCA Close module

Transmitter Modules

IBMBRAA
IBMBRAB
IBMBRAC
IBMBRAD
IBMBRAE
IBMBRAF
IBMBRAG
IBMBRAH
IBMBRAI
IBMBRBA
IBMBRBB
IBMBRBC
IBMBRBD
IBMBRBE
IBMBRBF
IBMBRBG
IBMBRCA
IBMBRCB
IBMBRCC
IBMBRCD
IBMBRCE
IBMBRDA
IBMBRDB
IBMBRDC
IBMBRDD
IBMBRJA
IBMBRJB
IBMBRKA
IBMBRKB
IBMBRKC

Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential output
Regional sequential input/update
Regional sequential input/update
Regional sequential input/update
Regional sequential input/update
Regional sequential input/update
Regional sequential input/update
Regional sequential input/update
Unbuffered consecutive
Unbuffered consecutive
Unbuffered consecutive
Unbuffered consecutive OMR
Unbuffered consecutive associated file
Regional direct non-exclusive
Regional direct non-exclusive
Regional direct non-excl'usive
Regional direct non-exclusive
Indexed sequential input/update
Indexed sequential input/update
Indexed direct non-exclusive
Indexed direct non-exclusive
Indexed direct non-exclusive

Figure 42 (Part 1 of 2). Library Subroutines Used in Record I/O

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 207

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Transmitter Modules (Continued)

IBMBRLA
IBMBRLB
IBMBROA
IBMBROB
IBMBROC
IBMBRQD
IBMBRQE
IBMBROF
IBMBROG
IBMBROH
IBMBROI
IBMBRTP
IBMBRVA
IBMBRVG
IBMBRVM
IBMBRVI
IBMBRXA
IBMBRXB
IBMBRXC
IBMBRXD
IBMBRYA
IBMBRYB
IBMBRYC
IBMBRYD
IBMBSOF
IBMBSOU
IBMBSOV
IBMBSTF
IBMBSTI
IBMBSTU
IBMBSTV
IBMCSTI
IBMCSTP

Indexed sequential output
Indexed sequential output
Buffered consecutive (non-spanned)
Buffered consecutive (non-spanned)
Buffered consecutive (non-spanned)
Buffered consecutive (non-spanned)
Buffered consecutive input (spanned)
Buffered consecutive output (spanned)
Buffered consecutive update (spanned)
Buffered consecutive OMR
Buffered consecutive associated file
Teleprocessing file input
VSAM ESDS transmitter
VSAM KSDS sequential output
VSAM KSDS other operations and path
RRDS
Exclusive regional direct update update/input
Exclusive regional direct update update/input
Exclusive regional direct update update/input
Exclusive regional direct update update/input
Exclusive indexed direct update update/input
Exclusive indexed direct update'update/input
Exclusive indexed direct update update/input
Exclusive indexed direct update update/input
Stream output file
Stream output file
Stream output file
Stream output print file
Stream input file
Stream output print file
Stream output print file
Stream input file
Stream output file

Record 110 Error Modules

IBMBREA
IBMBREB
IBMBREC
IBMBREE
IBMBREF

Record I/O error module
Record I/O error module
Record I/O error module
Record I/O error module
Record endfile module

Figure 42 (Part 2 of 2). Library Subroutines Used in Record I/O

208 OS PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

/

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Access Method
The access method used for different PLII file types is shown in Figure 43.

File Type
Buffered consecutive
Unbuffered consecutive
Regional sequential (not spanned records)
Regional sequential (spanned records only)
Regional direct
Indexed sequential
Indexed direct
TP buffered input/update
VSAM

Figure 43. Access Methods and File Types

Access Method
QSAM/VSAM
BSAM/VSAM
BSAM
BDAM
BDAM
QISAM/VSAM
BISAM/VSAM
TCAM
VSAM

Consecutive or indexed files can be used to access VSAM data sets; the PLII
open routines will determine the data type. For details see section on OPEN
statement.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 209

CONTROL BLOCKS GENERATED FROM
FILE DECLARATION

DCLCB

Function: Holds all file attributes
used in file declaration

Location: Separate control section
for external files, static internal
for internal files

When generated: During compilation

Contents:
Record of file attributes
at declaration
File name
Address of ENVB
Offset of FCB pointer in PRY

Environment control block (ENVB)

Function: Holds information on
environment options

Location: In static storage

When generated: During compilation

Contents: Addresses of
blocksize
record length
nwnber of buffers
KEYLOC value
key length
indexarea size
addbuf

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

CONTROL BLOCK GENERATED DURING
EXECUTION OF OPEN STATEMENT

Open control block (OCB)

Function: To contain file attributes
given in OPEN statement

Location: In static storage

When generated: During compilation

Contents: The attributes when
specified on the OPEN statement

Figure 44 (Part 1 of 2). The Fields Used in Implementing Record 1/0

210 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

CONTROL BLOCKS GENERATED FROM
INPUT/OUTPUT STATEMENTS

Key descriptor (KD)

Function: To describe the key
variable

Location: Depends on storage class
of key variable

When generated: Depends on
storage class of key variable
Contents: Length and address of
key variable

Record descriptor (RD)

Function: To describe the record
variable
Location: Depends on storage
class of record variable
When generated: Depends on
storage class of record variable
Contents: Length and address of
record variable

Request control block (RCB)

Function: Holds a definition of the
statement for execution-time checking
Location: In static storage
When generated: During compilation,
for library data management calls only
Contents: Flags defining statement

Code for TM instruction,
or a branch instruction
(if checking was done
during execution)

CONTROL BLOCK GENERATED DURING
EXECUTION OF OPEN STATEMENT

File control block (FCB)

Function: Acts as a central source
of information about the file

Location: In static storage

When Generated: During open

Contents include:
Flags indicating valid statements
Transmitter name
Transmitter address
Error module address

rDCB/ACB address
Filename address
Buffer address flags and
workspace for the transmitters

DCB
Data Management control block/
Access-Method Control Block

Figure 44 (Part 2 of 2). The Fields Used in Implementing Record I/O

LY27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 211

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

File Declaration Statements

Execution

For each file declaration, a declare control block (DCLCB) and, optionally, an
environment control block (ENVB) are set up. Both are held in static internal
storage for internal files, or in a separate control section for external files.

The DCLCB is a control block that contains the filename together with a record
of the attributes obtainable from the file declaration, both those given explicitly
and those deducible by default. This information is retained until the file is
opened, when, unless the TOTAL option has been used in the file declaration,
the information is merged with any attributes in the OPEN statement.

The ENVB contains the addresses of all environment options. The format of the
ENVB is shown in "Environment Block (ENVB)" on page 147.

From information in the DCLCB and the ENVB, (and sometimes from the open
control block (OCB) produced from the OPEN statement) a further control block,
the file control block (FCB) is generated. During execution of an 1/0 statement,
all information about the file is derived from the FCB.

No executable code is produced from the file declaration. Figure 45 shows the
code resulting from a file declaration.

DCl FI FILE UNBUFFERED RECORD INPUT

I
DClCB

n
0000000002010200
0106190000000018
000000140002C6F1
0000000000000000

ENVIRONMENT (RECSIZE (80»);

0000004400000040 ENVB-4----------.J
0000000200000040]-

0000004000000040
0000004000000040

Figure 45. Information in the File Declaration Is Held in the ENVB and the DCLCB Until
the File Is Opened

212 OS PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

OPEN Statement

Compiler Output

Execution

For an OPEN statement, the compiler generates a call to the open/close boot­
strap routine, IBMBOCL, and an open control block (OCB). The OCB holds any
attributes that are declared in the OPEN statement.

More than one file may be passed to the open routines. The last file has its
last parameter flagged with its first bit set to 111.

For an explicit open, a call is made to the open/close bootstrap routine,
IBMBOCL. For each file to be opened, the following information is passed to
IBMBOCL:

The address of the DCLCB
The address of the OCB (or zero, if no OCB exists)
The address of the TITLE (or zero, if none is specified)

IBMBOCL has four entry points:

IBMBOCLA explicit open
IBMBOCLB explicit open for library call I/O
IBMBOCLC explicit close
IBMBOCLD implicit close

When called by entry point A, IBMBOCL invokes the transient library open rou­
tines to open the file. If the environment option TOTAL has not been used in
the file declaration, it will be necessary to determine the attributes of the file by
merging the attributes in the file declaration with those used in the OPEN state­
ment. Attributes in the file declaration are held in the ENVB and DCLCB. Attri­
butes used in the OPEN statement are held in the OCB. If the TOTAL option
has been used, attributes are taken from the declaration, and any contradictory
attributes in the OPEN statement result in the raising of the ERROR condition.

The open modules build an FCB and DCB from the information in the control
blocks, initialize the pseudo-register vector to point to the FCB, load the PLII
and data management transmitters, and return to compiled code. File transient
open modules are used. Their functions are summarized below.

Actions Carried Out by Transient Open Routines
The transient open routines perform the following major functions when
opening a file:

1. Build the file control block (FCB) and data control block (DCB), or, for VSAM
the access method control block (ACB) for the file. The FeB is a PLII
control block used to access all file information. The DCB is a data man­
agement control block used to describe the data set. The ACB is the equiv­
alent of the DCB for VSAM files.

2. Issue the data management OPEN macro instruction to associate the file
with the data set.

3. Obtain and initialize buffers and any other blocks required for the file.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 213

VSAM Data Sets

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4. Determine which statement types are valid for the file, and store this infor­
mation as a set of flags held in the FCB.

5. Select the appropriate PL/I transmitter, and load it for use during trans­
mission statements.

6. Check for errors, and raise the UNDEFINEDFILE condition if any are found.

7. Place the address of the FCB in the correct pseudo-register vector offset.

The execution of an OPEN statement is summarized in Figure 46 on page 215.

VSAM data sets, both KSDS and ESOS, are normally accessed by PLII using
VSAM macro instructions, however, in certain circumstances the data sets are
accessed through the compatibility interface. If the file is declared with ENV
(VSAM) the VSAM macro instructions will automatically be used. Even if it is
not so declared, the PLII open modules will normally detect that a VSAM data
set is being accessed. To do this they issue an ROJFCB macro instruction.
However, this action is not effective if the ALLOCATE command is being used
under TSO to provide DO information, because, in this case, the RDJFCB macro
instruction cannot determine that a VSAM data set is being accessed. In this
situation the compatibility interface will be used. It is possible for the user to
force the use of the compatibility interface by specifying either "RECFM" or
"OPTCD = L" in the AMP parameter of the DO statement.

214 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(
II...:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

G) DCLCB identifies file @ Open control block ® Title held in static
(OCB) holds options in OPEN

L
OPEN FilE (F2) OUTPUT TITLE ('OUTFILE');

-------=-Executable instructions call to Open close bootstrap module passing parameter list ® containing addresses etc

for @ @and®

CD
®

DCLCB set up during file declaration see figure 8.5

Open control block in static. See Appendix A for Format:

000048 0020000000000800 CONSTANT
00000000

® Title (held in static internal) is addressed via locator (also in static internal)

Title

OOOOAO D6E4E3C6C9D3C5

Locator

000020 000000A000070000

@) Machine Instructions

000088 41 10 3 064 LA 1,100(0,3) Point R 1 at P-lists
00008C 58 FO 3 OOC L 15,A .. IBMBOCLA}
000090 05 EF BALR 14,15 Branch to open/close bootstrap

® Parameter list

000064 00000044
000068 00000000
00006C 00000048
000070 00000020
000074 00000000
000078 80000000

From To
compiled compiled
code code

~ t
IBMBOCL

Loads transient
open modules.
Calls IBMBOPA

A .. CONSTANT
A .. DCLCB
A .. CONSTANT
A .. CONSTANT
A .. NULL ARGUMENT
A .. NU LL ARGUMENT

No. of files to be opened

A ... OCB
A ... LOCATOR for TITLE

} Used for print files only

EXECUTION

~
IBMBOPA IBMBOPB

Open Phase I r+- Open Phase II ~

t ~ 1 t
IBMBOPE IBMBOPZ

Open Phase II Formatting

VSAM files (direct output
only)

IBMBOPC

Open Phase III
~

\~------~v~------~/ \~--------------------~v~-----------------------
RESIDENT LIBRARY TRANSIENT LIBRARY

Figure 46. OPEN Statement

~
IBMBOPD

Open Phase I V

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 215

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The flow through the PUI open modules is as follows. IBMBOPA scans the list
of files to be opened and sets a flag to indicate that IBMBOPE is required for
any files declared with ENV (VSAM). If one or more files are found without ENV
(VSAM), IBMBOPB is called to open them. Then on return from IBMBOPB,
IBMBOPE is called to open any VSAM files. If IBMBOPB detects that any con­
secutive or indexed files are being used to access VSAM data sets, it will set
the flag indicating that IBMBOPE is required and ignore that file. When all the
non-VSAM files have been opened, IBMBOPD returns to IBMBOPA. IBMBOPA
tests to see whether there are any VSAM files to be opened, and, if there are,
calls IBMBOPE.

IBMBOPE opens the files starting with the first. Each file is completely opened
before starting to process the next. The open process involves nine main
steps, as follows:

1. Merge attributes from OPEN statement with file declaration and check for
validity.

2. Get non-LIFO storage space for the FCB and ACB, and create the ACB
using the GENCB macro instruction. The DDNAME is obtained from the
filename or the TITLE option. The password is obtained from the PASS­
WORD environment option if specified.

3. Issue an OPEN macro instruction and test the return codes in the ACB.

4. Check the actual values of the RECSIZE, KEYLENGTH, and KEYLOC options
against any values specified in the ENVIRONMENT option. Check that
NCP/STRNO is not greater than one. If any errors or discrepancies are
found, the ACB must be closed.

5. Set up the mask of invalid statements for use by IBMBRIO.

6. Get non-LIFO storage space for the 10CB and RPL, plus key space for a
KSDS, and a dummy buffer for a buffered file. Create the RPL using a
GENCB macro instruction.

The OPTCD values are partially set as shown below. The transmitter
merges the other options according to statement type. The OPTCD options
set are:

KEY/ADR
SEQ/DIR
KSDS or PATH
UPD/NUP
GEN/FKS

KSDS/RRDS/ESDS
SEQUENTIAL/DIRECT
INPUT/UPDATE/DIRECT
UPDATE/INPUT or OUTPUT
GENKEY/not GENKEY

KEQ, MVE, and SYN are always specified.

216 OS PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

7. Load the appropriate library transmitter as follows:

ESDS IBt~BRVAA

KSDS SEQUENTIAL OUTPUT
IBr~BRVGA

KSDS SEQUENTIAL INPUT/UPDATE
DIRECT/PATH

IBMBRVHA
KSDS DIRECT

IBt~BRVIA

8. Insert "E" as the seventh character of the error module name, so that
IBMBREEA will be loaded if an error occurs.

9. Add the FeB address to the chain of open files and set the address of the
FeB in the pseudo-register.

The FeB and File Addressing
During execution of record I/O statements, all information about the file is
obtained from the FeB. However, as the FeB is not created until execution, the
FCB cannot be addressed directly by compiled code. Instead, compiled code
obtains from the DCLCB the offset within the PRV at which the FeB address is
held. This offset is placed in the DCLCB by the linkage editor. The mechanism
is illustrated in Figure 47 on page 218.

The use of the pseudo-register vector allows separately compiled programs to
refer to the same FCB for an external file, even though the address of the FeB
cannot be known until execution. An explanation of the use of the pseudo­
register vector is given in Chapter 3, "Compiler Output" on page 11, under the
heading "The Pseudo-Register Vector."

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 217

TCA
R12~

Address of PRV
· · · ·
· ·
·
· ·
·
·

DClC B for file C ·
I ·

f---PRV_o_ffs_et -= 8---1·· •••• ~~1l

·

PljI statement: DCl (A,B,C) FILE;

The address of the FCB for the file is
obtained by adding the offset in the
DCLCB to the PRV address which is held
in the TCA

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PRV

Address of FCB for file A

Address of FCB for fi 1 e B

Address of FCB for fi 1 e C -

FCB for file C ..

Figure 47. Addressing Files Via DCLCB and PRV

218 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

!

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Transmission Statements (Library-Call 1/0)

Compiler Output
For transmission statements the compiler generates a call to the PL/I trans­
mitter interface module, IBMBRIO. IBMBRIO has the following parameter list
passed to it:

Address of DCLCB

Address of request control block (RCB)

Address of record descriptor (RD); or,
address ignore factor; or,
address at which to set pointer

Address of key descriptor (KD); or,
zero if no key descriptor

Address of event variable (EV), or,
zero if no event variable

Abnormal locate return address (LOCATE statements only)

The DCLCB is generated from the file declaration, as described earlier in the
appendix. The remainder of the control blocks in the parameter list are gener­
ated for the transmission statement.

The request control block (RCB) defines the statement type. It consists of two
words. The first is a fullword of flags that define the statement type and option,
indicating whether the statement is READ SET, READ INTO, WRITE FROM, etc.
The second word is a test-under-mask (TM) instruction that is executed by
IBMBRIO to check whether the statement is valid. The flags in the RCB are
tested against flags in the FeB or dummy FeB. If the statement is invalid, a
branch is made to an address held in either the FCB or the dummy FCB. If the
file is not open, the dummy FeB will be accessed, and the branch will be made
to the open/close bootstrap to open the file. If the file is open, a real FeB will
be accessed, and the branch will be via a bootstrap to the error handler. The
RCB is set up in static internal storage.

The record descriptor (RD) contains the address, length and type of the record
variable. (The record variable is the variable to or from which the record will
be transmitted.) A record descriptor is generated only if a record variable is
used. The format is shown in "Record Descriptor (RD)" on page 180.

The key descriptor (KD) contains the address and length of the key variable.
(The key variable is the variable to or from which the key will be transmitted.)
It is generated only if a key variable is used.

If the record variable or the key variable is STATIC INTERNAL, a complete RD
or KD is set up and placed in static internal storage during compilation. In
most other circumstances, a skeleton RD or KD will be set up, and will be com­
pleted by the inclusion of the address during execution. The completed
descriptor may be moved into temporary storage. In certain conditions, no
skeleton is produced; instead, the complete descriptor is built in temporary
storage by compiled code.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 219

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The event variable (EV) (if used) contains information about the event that has
been associated with the event I/O statement. The implementation of event 1/0
is covered briefly at the end of this appendix.

The abnormal locate return block is used only for LOCATE statements. It is the
address of a block containing the address to which control will be passed if an
error is detected in a LOCATE statement and a normal return is made after
execution of the ON-unit. The abnormal-locate return address is usually the
start of the next statement.

The code and control blocks generated for a transmission statement using a
library call to the data management routines are shown in Figure 48 on
page 221.

220 os PLII Version 2 Problem Determination L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

(
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

COMPILATION ~ Record descriptor
holds address and length

f1'I DCLCB of record variable !escriPlor
~identifies file holds address and length of key variable

®
®

®

®

REQUEST CONTROL BLOCK -. -~-
WRITE FILE (mwoM(FS) KEYFROMJK);

..... • ··.x;;··•...• ~i····'i.f •...• ••••··• •. · •••• !~:/ ...• i .••• •··• •• · •• i;.i·· .. ri@1H~······················

E~ECUTA~~~i~s~RUCTIONS ® are a call to the PL/I library module IBMDRIO

completing and passing PARAMETER LIST ® which holds addresses of 1, 2, 3 and 4.

DCLCB, set up from file declaration holds address of FCB via pseudo register vector.
(See file declaration).

REQUEST CONTROL BLOCK holds record of statement type
000028 0880200091022001 CONSTANT

RECORD DESCRIPTOR holds address and length of record, set up as far as possible during
compilation, completed during execution. For statement above set up in temporary storage
during prologue code

KEY DESCRIPTOR holds address and length of key, set up as far as possible during
compilation, but, for this statement, completely built by compiled code in temporary
storage (see 5).

Executable instruction

* STATEMENT NUMBER 4
000092 41 90 D OB8
000096 50 90 3 084
00009A 41 90 D OBO
00009E 50 90 3 088
0000A2 41 10 3 07C
0000A6 58 FO 3 014
OOOOAA 05 EF

LA 9,184(0,13)
ST 9,132(0,3)
LA 9,176(0,13)
ST 9,136(0,3)
LA 1,124(0,3)
L 15,A .. IBMBRIOA
BALR 14,15

Pick up address record descriptor
Place in parameter list
Pick up address key descriptor
Place in parameter list
Point R 1 at parameter list

Call IBMBRIO

Note: For this statement the record and key descriptors were set up in temporary storage
during prologue code.

PARAMETER LIST passed to IBMBRIO

00007C 00000000
000080 00000028
000084 00000000
000088 00000000
00008C 00000000
000090 80000000

A .. DCLCB
A .. CONSTANT
A .. RD
A .. KD
A .. NULL ARGUMENT
A .. NULL ARGUMENT

Filled in by linkage editor
Request control block
(Record descriptor)
(Key descriptor (built during execution))

Figure 48 (Part 1 of 2). Handling a Transmission Statement

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 221

EXECUTION OF TRANSMISSION STATEMENT

Call from compiled code

Im~BRIO

(Resident library interface module)
Loads parameters into registers.
Calls PLjI transient library
transmitter whose address is placed
in the FCB during the execution
of the OPEN statement.

PLjI TRANSMITTER

(Transient library module
Calls data management.
Checks for errors and moves
record and key if necessary

"

DATA ~1ANAGEt'IENT

Handle the transfer of data

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Return to compiled code

-

Figure 48 (Part 2 of 2). Handling a Transmission Statement

222 as PUI Version 2 Problem Determination L Y27 -9528-0 <e:l Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Execution

Transmitter Action

Compiled code calls the transmitter interface module, IBMBRIO, passing to it
the parameter list shown above under "Compiler Output."

The interface module, IBMBRIO, first acquires a DSA, which is used by
IBM BRIO and by the transmitter. It then initializes the registers for the trans­
mitter, and executes the TM instruction in the request control block (RCB). This
instruction tests a set of flags that are addressed by a pseudo-register offset
contained in the DCLCB. The contents of the pseudo-register offset depends on
whether the file is open. If the file is not open, it is opened, and return is made
to this point to continue the statement. (See "Implicit Open for Library-Call I/O"
on page 229, for further discussion of this topic.)

When the file is open, the TM instruction tests the validity flags in the FCB. This
establishes the validity of the statement. If the statement is not valid, a branch
is made to the address held in the word in the FCB following the statement
validity flags. This address is an entry point in IBM BRIO that calls the error
handling module, IBMBERR, with an error code indicating an invalid statement.

If the statement is valid, a branch is made to the transmitter whose address is
held in the FCB.

After the file is open and the statement validated, control is passed to the trans­
mitter, which checks the record and key variables for errors, and issues the
appropriate data management macro instruction. After the data management
macro instruction has been executed, control returns to the transmitter. The
transmitter moves the data between the data management buffer and the
record variable, or sets the pointer to the record, and checks to see whether
any errors have occurred.

Transmitter modules do not acquire separate DSAs, but use the DSA acquired
by IBM BRIO.

If the statement is valid, control is returned to compiled code. The situation
when an error has been detected is described later in this appendix under the
heading "Error Conditions in Transmission Statements."

In certain conditions, data management will require a parameter list known as
the data event control block (DECB). The PLII library routines include this block
in a PLII control block known as the input/output control block (IOCB). A
number of IOCBs may be used. The number depends on the file type, and on
the NCP subparameter in the DO statement or NCP option in the ENVIRONMENT
attribute. Depending on the file type, IOCBs may be generated during the exe­
cution of the open statement, or by the transmitters when they are required.

The format of the IOCB is shown in "Input/Output Control Block (IOCB)" on
page 164. The format of the DECB and a further description of its use is given
in the publications OS/VS2 MVS Data Management Macro Instructions, or in
MVS/Extended Architecture Data Management Macro Instructions. IOCBs are
further described in the section "EVENT Option," below.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 223

EVENT Option

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When the EVENT option is used, transmission statements are always handled
by library call. The compiler generates a call to IBMBRIO in the usual manner,
except that the address of an event variable is passed in the parameter list.

The associated WAIT statement is compiled as a call to one of the library wait
modules. The module called depends on whether or not the program is multi­
tasking. The execution of an 110 statement with the EVENT option and its asso­
ciated WAIT statement is shown in Figure 49 on page 225.

224 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

P PR OC;

READ E VENT
.....

jp.

(E);-

r----+----,
I

IBMBRIO

t ,

PL/I TRANSMITTER --.- - 1

ISSUE DATA MANAGEMENT-
tvlACRO
RETURN IF EVENT I/O

ISSUE CHECK MACRO- - ~ _ J

I

I
TEST FOR ERRORS
IF NONE RETURN TO WAIT
MODULE

I

t
\-JAIT (E);- - - - --.- - - - - - -,

END P;

I
~~AIT ~10DULE I I
IF EVENT I/O CALL IBMBRIO -=t~ r-----
RETURN IF NO MORE
EVENTS TO WAIT ON

I
I
r

L _________ ~

Key

~ READ EVENT statement
- - --.- - - WAIT statement
............. Further PL/I statements

Figure 49. Handling the EVENT Option

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 225

Running

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The principle used in event I/O is that the PLII transmitter returns to compiled
code as soon as the data management macro instruction has initiated the I/O.

When I/O with the EVENT option is being executed, the event variable associ­
ated with the event is set active and flagged to indicate that the event is an I/O
event. When the WAIT statement is reached, the library wait module is entered.
When the event is an I/O event, the PLII library wait routine passes control to
IBMBRIO. From information in the event variable, IBMBRIO locates the I/O
operation associated with the event, and calls the transmitter. The transmitter
then issues a CHECK. macro in-struction, and waits until the operation is com­
plete. When control returns after the CHECK macro instruction, the transmitter
assigns the transmitted data, and either returns to the wait module, or, if any
errors are detected, enters one of the error routines. (For further details, see
"Error Conditions in Transmission Statements" on page 229.)

10CBs and Dummy Records
In event 110, the existence of a dummy record may not be discovered until after
a r~ad has commenced on the record following the dummy. When this
happens, the DECB and 10CB pointers are reset appropriately.

Raising Conditions in Event 1/0

Exclusive 1/0

Because the CHECK macro instruction is not issued until the WAIT statement is
executed, PLII conditions raised in event 110 are handled during execution of
the WAIT statement.

In exclusive 110, records are protected from simUltaneous updates from dif­
ferent tasks by use of the ENQ and DEQ macro instructions.

When a READ statement for an exclusive file is being executed, an ENQ macro
instruction is issued. Unless NO LOCK is specified, the DEQ macro instruction
is not issued until a REWRITE, DELETE, or UNLOCK statement is executed. For
unblocked records, the ENQ and DEQ instructions are issued on one record
only. For blocked records, they are issued on the data set.

Eight PLII transmitter modules are used to handle exclusive files. They are
shown in Figure 42 on page 207. The ENQ and DEQ macro instructions are
issued by calling the resident library routine IBMBPDQ, which is addressed
from the TCA.

The protection of the data set depends on all files thcH access the data set
having the EXCLUSIVE attribute. If the data set is accessed by a file that does
not have the EXCLUSIVE attribute, the data set will not be protected.

For VSAM files the EXCLUSIVE attribute is ignored and the NOLOCK option and
UNLOCK statement will have no effect (except that for UNLOCK, the key specifi­
cation is checked.) Data set protection is provided by VSAM itself.

226 as PLII Version 2 Problem Determination LY27-9S28-0 © Copyright IBM Corp. 1985, 1987

!
\

/
\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

CLOSE Statements and Implicit Close

Compiler Output

Execution

For CLOSE statements, the compiler generates a call to the appropriate entry
point of the open/close bootstrap module, passing it the addresses of the
DCLCB and ENVB for the file.

No compiler action is taken for implicit close.

Files and data sets can be closed either by the PLII CLOSE statement or by the
termination of the program. In both cases, the close is carried out by library
routines. The bootstrap module IBMBOCL is called either by compiled code, or,
during program termination, by the termination routine, IBMBPIT or IBMTPJR
for multitasking. It loads and calls the transient close routine, IBM BOCA.

The bootstrap routine IBMBOCL is passed a parameter list containing the
addresses of the DCLCBs and ENVBs for the files that require closing.
IBM BOCA then closes these files. This may involve completing I/O operations,
and hence calling the transmitter. After handling any necessary transmission,
IBMBOCA disassociates the file from the data set.

The ENVB is required if the LEAVE or REREAD option is in effect.

For implicit closing, the chain of open files starting in the TCA is scanned to
determine which files must be closed. The addresses of the FCBs of these files
are then passed to the close routine.

For an explicit close, it is necessary to set the address in the pseudo-register
vector to point, once more, to the dummy FCB. This allows implicit opening to
be handled should the file be opened again. (See "Implicit Open for Library­
Call I/O" on page 229 for further details.)

When IBMBOCA has finished, it returns control (via IBMBOCL) either to com­
piled code (for an explicit close statement) or to the termination routine (for the
end of the program). The code and control blocks generated for a CLOSE state­
ment are summarized in Figure 50 on page 228.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 227

G) OCLCB identifies file to be closed

1
CLOSE FILE (F2)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~
® Executable instructions consist of a call to the open/close bootstrap module passing parameter list ®

G)

®
OCLCB set up for file declaration see figure 8.5

Executable instructions

* STATEMENT NUMBER 5
OOOOAC 41 10 3 094
OOOOBO 58 FO 3 010
0000B4 05 EF

LA 1,148(0,3) Place address OC LCB in p-list

Parameter list

000094 00000044
000098 00000000
00009C 80000000

L 15,A .. 1 BMBOCLC } Call open/close toolstrap
BALR 14,15

A. .CONSTANT
A .. OCLCB
A .. NULL ARGUMENT

Address of constant showing number of files to be closed
Address OCLCB
Used for disposition options, flagged in first bit to indicate last argument

CLOSE FILE (F1);

COMPILATION
L
ST
LA
L
BALR

EXECUTION

7,FO
7,2528(0,3)
1,2524(0,3)
15,A. .IBMBOCLC
14,15

Pass address of constant with number of files to be closed
Pass address of OCLCB of file
Point R 1 at parameter list
Branch to open/close bootstrap

Call from compiled code Return to compiled code

IBMBOCL
Entry point C

IBMBOCA

Transient library close routine. Calls
transmitter to complete 110 if necessary.
Calls data management to close the data
set. Removes FCB from Open File
Chain. Restores PRV offset to point to
dummy FCB.

OATA MANAGEMENT

Disassociates file from data set. Transient library routine. Calls
data management to complete I/O

Figure 50. The Execution of an Explicit CLOSE Statement

228 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Implicit Open for Library-Call 1/0

Compiler Output

Execution

There is no compiler output for an implicit open, because it is not always pos­
sible to predict which transmission statements will cause implicit opening of a
file.

Implicit opening is handled by manipulation of addresses (see Figure 51 on
page 230).

When IBMBRIO is called for a transmission statement, it executes a test-under­
mask (TM) instruction against a set of flags held at an offset from the address
held in the pseudo-register vector. The address held in the pseudo-register
vector depends on whether the file is open. If the file is open, the pseudo­
register offset contains the address of the FCB for the file. If the file is not
open, the pseudo-register offset contains the address of a dummy FCB in the
program management area.

The address is set during program initialization to point to the dummy FCB, and
is reset to the dummy FCB whenever a file is closed.

The first word in the dummy FCB is a set of statement validity flags. These are
all set to zero. Consequently any TM instruction executed by IBM BRIO will give
a negative result. The second word of the dummy FCB is the address of an
entry point in the open/close bootstrap module. If the TM instruction yields a
negative result, IBMBRIO branches to the address held immediately after the
statement validity flags. Consequently when an attempt is made to execute a
transmission statement on a file that is not open, control passes automatically
to the open routines.

The open routines open the file, and set up an FCB and DCB for the file. The
address of the FCB is placed in the pseudo-register offset, and execution of the
statement is attempted again by branching once more to IBM BRIO.

Error Conditions in Transmission Statements
To provide PLII error handling facilities with the minimum possible overhead to
error-free programs, transient-library modules are used. These are not loaded
unless an error occurs. Two modules are available for every file type except
VSAM:

1. The ENDFILE routine, IBMBREF, which can deal only with the ENDFILE con­
dition.

2. A general error module capable of handling all conditions that may arise,
including ENDFILE, but loaded only if the TRANSMIT, RECORD, KEY, or
ERROR condition occurs. (See Figure 52 on page 231.)

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 229

PRV

OCLCB

1-__ O_f_fs_e_t_w_i_th_i_n_P_R_V ___ -I •••• ••

..
Initialized to dummy FCB
Changed to real FCB when
file is opened

KEY

.--~

........•

I
I

,,-
,- ---- ---------

+OUMMY FCB

Address of open/close
bootstrap routine

Address of open/close
bootstrap routine

Address contained in PRV when file open

Address contained in PRV when file closed

Connection between OCLCB and PRV field.
The OCLeB contains the offset filled in by
the lin kage ed itor. The P R V itself is
addressed from the TCA.

Figure 51. The Addressing Mechanism Used during Implicit Open

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

FCB

Address of error
handling module

Address of data
management routine

230 os PUt Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

!

'\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Record 1/0
Error Module

IBMBREA

IBMBREB

IBMBREC

IBMBREE

ENDFILE
Module

IBMBREF

File Types

Consecutive buffered

Indexed

Regional, consecutive
unbuffered, and tran­
sient

VSAM

All
SEQUENTIALIINPUTI
UPDATE file types
(excluding VSAM)

Figure 52. Record I/O Error Modules

This method is used because the short ENDFILE module gives faster execution
to those programs that use the ENDFILE condition to handle program flow. The
transient error modules for all file types are identified by the six letters IBMBRE
followed by a further single character (see Figure 52).

If a transmission error occurs, the transmission error routine within the trans­
mitter will be entered, whether an in-line or library-call statement is being exe­
cuted. The transmission error routine has been nominated in the SYNAD exit
address placed in the DeB by the OPEN routines. Similarly, if end-of-file
occurs, the end-of-file routine within the transmitter will be executed. Record
and key errors are detected either by the transmitter or by compiled code.

When any of the errors or PLII conditions mentioned above occurs during the
execution of a record lID statement, control is passed to the address held in the
word "FERM" in the FCB. The address may be anyone of the following:

• The address of IBMBREF, the ENDFILE module.

• The address of the general error module for the file type.

• The address of a bootstrap routine, IBMBRIOB. This routine constructs the
name of an error module by taking the skeleton IBMBRE*A and replacing
the" *" by the letter in the single character field" FEFT" in the FCB.
IBMBRIO then loads this error module, places the address of the module in
FERM, and branches to the module.

So, by changing the contents of the field FEFT, the transmitter can select a par­
ticular error module. The contents of FEFT is one of the following:

• A character indicating the name of the general error module for the file
type. This character is placed in FEFT during the execution of the OPEN
statement.

• The character "F," indicating the name of the ENDFILE module. The con­
tents of FEFT is changed to "F" by the end-of-file routine in the transmitter,
which is entered when data management detects end-of-file.

L Y27 M9528MO © Copyright IBM Corp. 1985, 1987 Appendix B. Record .. Oriented Input/Output 231

Contents FE FT

Initialized by open routine
with character "A", "B", "e", "E"
indicating general error support
module.
Altered by end of file routines
in transmitter to character "F"
indicating ENDF I LE module FCB

FEMT

FERM ,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IBMBRIO
(entry point B)

Loads and calls module
indicated in "FEFT" and
places its address in FERM.

IBMBREF
Endfile module
If ENDFILE :
Calls error handler
If other error:
Loads and calls
error module indicated
in "FEMT". Placing
address in FERM

~------------------------~ ,
Contents FEMT
Always contains character
indicating general error
su pport modu Ie

Key

••••••

Figure 53. The Fields Used in Record 110 Error Handling

232 as PLII Version 2 Problem Determination

If no errors have occurred.

, , ,

If 1st. error was ENDFI LE and
no other errors occurred.

If non-ENDFI LE errors have
occurred.

IBMBRE/A/B/C/E
General error support modules.

Handle all errors including
'\ ENDFILE

LY27-9528-0 © Copyright IBM Corp. 1985,1987

"Restri-cted Materials of IBM"
Licensed Materials - Property of IBM

Thus the module loaded by the bootstrap routine IBMBRIOB, and the address
placed in FERM, depend on whether end-of-file or another error is the first to
occur on the file.

The result of this arrangement is that the general error module can be called in
an end-of-file situation. Similarly, the ENDFILE module can be called when
another type of error occurs, if ENDFILE was the first condition to occur. To
overcome this problem, the general error module contains code to handle
ENDFI LE, and the ENDFI LE module contains code to test for other conditions,
and load and call the general error module if appropriate.

The ENDFILE module constructs the name of the general error module in a
similar manner to that used by IBMBRIOS, described above. However, the
sixth letter of the name is taken from a field in the FCB called" FEMT". FEMT
always holds the character that identifies the general error module for the file.
When the name has been constructed, the general module is loaded, its
address is placed in FERM, and a branch is made to the module by way of the
bootstrap routine in IBMBRIO.

General Error Routines (Transient)

ENDFILE Routine

The general 'error routines set up a parameter list and the relevant built-in func­
tion values in the ONCA. They then call the resident error handler IBMBERR to
handle the condition. If a normal return is made from an ON-unit, the general
error module will raise any further conditions that have occurred by calling
IBMBERR with the appropriate error code. After all conditions have been
raised, a return is made to compiled code, or, in event 110, to the wait module.

The ENDFILE routine checks to ensure that the situation which has resulted in
the call is really end-of-file, and, if so, passes control to the error handler.

TRANSMIT Condition
For certain file types, when a permanent transmission error occurs, action must
be taken to prevent subsequent issuing of data management macro
instructions. To achieve this, addresses are manipulated so that, instead of
IBM BRIO calling the transmitter by its primary entry point, it calls an error
routine within the transmitter, which in turn calls the error handler to raise the
TRANSMIT condition.

In-Line 1/0 Statements
Most transmission statements on buffered consecutive files are implemented by
short in-line calls to the data management routines (see Figure 56 on page 239
and Figure 57 on page 240 for details). Such statements are referred to as
"in-line 110 statements." Only READ, WRITE, and LOCATE statements are
handled in this way. OPEN and CLOSE statements are always executed by
library calls.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 233

Control Blocks

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For in-line I/O statements, the only control blocks that are set up are the FCB
and DCB. The request control block, record descriptor, and key descriptor are
not required as they are merely parameters for full library subroutines.

Executable Instructions

Error Conditions

For in-line I/O, a call is made to a special entry in a transmitter. In an MVS/XA
environment, this transmitter provides the correct addressing mode and directly
calls the data management routine via the address held in the FCB for output
files, and in the DCB for input files. In addition to calling the data management
routine, compiled code moves the data as necessary to or from the record vari­
able, or sets appropriate pointers. Compiled code may also check for the
RECORD condition.

For U-format and V-format records on output files, compiled code does not call
data management direct. Instead a call is made to another short call within the
PLII transmitters. These routines are addressed through the field in the FeB
that normally addresses the data management routines. This field is initialized
by the open routines when U-format or V-format records are used on the file.
The compiler can thus produce the same code for all record types.

For certain types of blocked file, unblocking is handled by compiled code.
Fields in the DCB hold the address of the current record, the address of the end
of the block, and the record length. Before a call is made to data management,
a check is made to see whether the end of the block has been reached. This is
done by adding the record length to the current record address. If the resultant /
address is the end of the block, a call is made to data management for a new ~
block; otherwise, the new address can be taken as the start of the required
record.

If an error occurs during transmission, or if end-of-file is reached, the data man­
agement routines will branch to the ENDFILE or SYNAD routines that are held in
the PLII transmitter. (The PLII transmitter is a/ways loaded by the open rou­
tines.) The ENDFILE and SYNAD routines set an error flag in the FCB, and
return to compiled code, normally via the data management routine. If the
error flag is on, or if the RECORD condition has occurred, compiled code
branches to IBMBRIOD. This results in a call being made to the transient error
module.

Typical code produced for an in-line I/O statement is shown in Figure 54 on
page 236.

Implicit Open for In-Line Calls
Implicit opening for in-line calls is handled in a similar way to that used for
library calls.

The field that, in a normal FeB, points to the data management transmitter, in
the dummy FeB points to the open/close bootstrap routine, IBMBOCL (see
Figure 51 on page 230). This results in a branch being made to the OPEN rou­
tines when an attempt is made to access a file that is not open. When the open
routines have been executed, the address in the pseudo-register vector is
altered to point to the FCB that has been created for the file.

234 OS PLII Version 2 Problem Determination LY27-9528-0 ~ Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If the file is successfully opened, a test is made to see whether the entry to
IBMBOCL was for an in-line call and, if it was, control is passed to the data
management address held in the DCB. This causes the data management
module to be entered and a return made to compiled code.

LY27-9528-0 c.o Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 235

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SOURCE STATEMENTS

1 TOTAL: PROC OPTIONS(MAIN);
2 1 DCL LINE FILE RECORD INPUT

ENV(FB,RECSIZE(80),BLKSIZE(400),TOTAL);
3 DCL CARD CHAR(80);
4 1 READ FILE(UNE) INTO(CARD);
5 1 END TOTAL;

* STATEMENT NUMBER 4
00005E 18 72
000060 58 F0 3 024
000064 18 BF
000066 58 10 C 004
00006A 5A 10 B 000

00006E 58 20 1 000
000072 58 10 2 014
000076 18 81
000078 BF 17 8 040
00007C 4A 10 8 052

000080 59 10 8 048
000084 47 40 7 03A
000088 18 18

00008A 41 80 3 028

00008E 58 F0 2 01C
000092 05 EF

000094 47 F0 7 03E
000098

LR 7,2
L 15,36(0,3)
LR 11,15
L 1,4(0,12)
A 1,0(0,11)

L 2,0(0,1)
L 1,20(0,2)
LR 8,1
I CM 1,7,77 (8)
AH 1,82(0,8)

C 1,72(0,8)
BL CL.2
LR 1,8

LA 8,40(0,3)

L 15,28(0,2)
BALR 14,15

B
CL.2 EQU

CL.4
*

000098 BE 17 8 040 STCM 1,7,77(8)
00009C CL.4 EQU *
00009C 02 4F D 0B8 1 000 MVC CARD(80) ,0(1)

0000A2 *

Save program base
Load R15 address of OCLCB
Load R11 DCLCB
Load Rl PRV
Add PRV offset in OCLCB to

address in Rl
Point R2 at FCB
Point Rl at DCB
Load address of DCB
Get last record address
Add log i ca 1 record 1 ength

to access required record
Compare with end of buffer
Branch around Library call
Restore DCB address if a new

buffer is required
Pass abnormal return address

(CL.3) in R8 for error
handling

Get short transmitter
Branch and link to data

management routine
Don't need next instruction
Labe 1 branched to, if no data

management call
Save record address

Move record into record
variable

0000A2 91 C0 2 02C
0000A6 47 80 7 052
0000AA 58 F0 3 01C

CL.3 EQU
Hl
BZ
L

44(2),X'C0' Test for errors

0000AE 05 EF
0000BO
0000BO 18 27

CL.5 Branch if no errors
15,A .. IBMBRIOD If errors, call error

BALR 14,15
CL.5 EQU *

LR 2,7

bootstrap routine

Restore Program Base

Figure 54. In-Line I/O Transmission Statement

236 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

!'

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

A further problem arises over deblocking. For certain blocked files, before data
management is called, a test is made to see whether the end of the block has
been reached. For such files, values are placed in the dummy FCB that ensure
that if the test for end-of-block is made before the file has been opened, the test
will reveal an apparent end-of-block. A branch will therefore be made to the
transmitter field in the dummy FCB, and control will pass to the open/close
bootstrap routine.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 237

I\)
w
00

o
en
-0

~
~ ...,
en
c5"
::J
I\.)

-0 ...,
o
0'"
(b
3
o
CD
(b ...,
3
5'
~ o·
::J

~
I\.)
""..J
m
(J1
I\.)
ex>
6
(0
(')
o
"0
'< ..,
cO'
2:
OJ
~
(')
o ..,
~
~

CD
ex>
~(J1

~

CD
ex>
""..J

"T1
cO'

SOURCE C PROGRAM ..,
CD
(J1

~

0
<
CD ..,
<
(ii'
~

!2.
::0
CD
(1
0 ...,
c..
:::::::
0

Key

..........

COMPI LA TlON

- --,

NO

Path using library calls

Path lor in line 110
Common path. in-line/library

Path for implicit open

COMPILED CODE

EXECUTION

LIBRARY AND DATA MANAGEMENT MODULES

EXPLICIT OPEN IMPLICIT OPEN

--- --- ~ - -- - - ------1
I 1
1 I

IBMBOCL r.-, 1
Passconlrol
block addresses
10lBMBOPA

COMPILED CODE

1
1

................................... ~ .. ~.~.~.~.~.~.~.~.:~.~~.~.~·~·~·~~·~········ .. ··· .. ·:· .. j····· .. ··; .. ··i··· .. ··· .. • · :

LIBRARY

1 I Associate file
with data set I !
Load trans-

1 IBMBRIO i I " ... ". •

1 Library calls I j In· line calls : Branch 10
ERROR
handler
(IBMBERRA) --·-t -T ~ ~=== ~'~'~M~:~~ ~ .-~~ :'~:M=1:1

. ! I"
I ~LO

! !~II
--~Ji1 h=~' t . I I '" '~~~: IT·· ... ···!

~.I ~ :
'-----r----' I 1 __ ",

<:
Any.

cunditions
to raise ,

~ __________ ~ ______________ -JTNO

YES Record I/O
Error module

Call
IBMBERR

r
£'
::J
en
CD c..
~;O
Q) CD .-en
CD .-.., ...,
n:;' O'
(ij(b

c..
I~

-oQ) .., ...
o CD
"0 ~.
CD Q) .., -... en
'< 0
o -.
-. -
-OJ
OJ~
~ :

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Statement for
Record Types
F and FB

READ SET

READ INTO

WRITE FROM
(fixed string)

WRITE FROM
(varying
string)

WRITE FROM
Areal

LOCATE A

Record Variable ENVIRONMENT Option
Requirements Requirements

None None

Length known at compile time RECSIZE known at compile time
(max. length if a varying string or SCALARVARYING option if
areal) varying string

Length known at compile time RECSIZE known at compile time

RECSIZE known at compile time
SCALARVARYING option used

RECSIZE known at compile time

Length known at compile time RECSIZE known at compile time
(max. length if varying string or SCALARVARYING if varying
areal) string

Figure 56. Conditions Under Which 1/0 Statements Are Handled In-Line for Record
Types F and FB

Including structures whose last element is an unsubscripted area.

Notes to Figure 56 :

• File type is consecutive buffered with the TOTAL option used.

• All statements must be found to be valid during compilation. File parame­
ters or file variables are never handled by in-line code.

• BLKSIZE may be specified instead of RECSIZE for F, V, and U formats (but
not FB, VB).

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix B. Record-Oriented Input/Output 239

Statement for Record Variable
Record Types Requirements
U, V and VB

READ SET None

READ INTO Length known at compile time

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ENVIRONMENT Option
Requirements

Not BACKWARDS

RECSIZE known at compile time
(max. length if a varying string or SCALARVARYING option if
areal) varying string

WRITE FROM Length known at compile time RECSIZE known at compile time
(fixed string)

WRITE FROM RECSIZE known at compile time
(varying SCALARVARYING option used
string)

WRITE FROM RECSIZE known at compile time
Areal

LOCATE Length known at compile time RECSIZE known at compile time
(max. length if varying string or SCALARVARYING if varying
areal) string

Figure 57. Conditions Under Which 1/0 Statements Are Handled In-Line for Record
Types U, V, and VB

Including structures whose last element is an unsubscripted area.

Notes to Figure 57 :

• File type is consecutive buffered with the TOTAL option used.

• All statements must be found to be valid during compilation. File parame­
ters or file variables are never handled by in-line code.

• BLKSIZE may be specified instead of RECSIZE for F, V, and U formats (but
not FB, VB).

240 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix C. Stream-Oriented Input/Output

Note on Terminology

Introduction

In this appendix, the terms source and target are used when referring to
transfer of data. The source is the point from which the data is taken; the target
is the point to which it is moved, possibly in a converted format.

PLII stream-oriented input/output allows the programmer to move data between
a PLII variable and an external medium without any concern about internal and
external data types or any attention to record boundaries (with the exception of
GRAPHIC files). Both conversion and record boundary problems are handled
automatically.

Note: For stream file use in graphic files, see DBCS continuation rules.

Although it appears to the programmer that the data is moved directly between
the external medium and the PLII variable, the move is, in fact, a two stage
process, as shown in Figure 58 on page 242. In the first stage, the data is
moved to a data management buffer. In the second stage, it is moved from the
buffer to the target. When the data is moved to or from an external medium, a
complete record is always moved. When the data is moved to or from a PLII
variable, only as much data as is contained in the variable is moved. The
amount of data moved in the one stage need bear no relation to the amount
moved in the other. Thus synchronization of the two stages is the principal job
in implementing stream I/O.

Transmission between the buffer and the external medium is handled by the
routines of OS data management. These routines are called by the PLII tran­
sient library transmitters in the same way as that used in library-called record
I/O. The movement between the buffer and the PLII variables is generally
handled by the PLII conversion routines. The transmitters and the conversion
routines are called by director routines. These routines determine which
modules are required, and when they are needed.

Data items transmitted by stream I/O are not affected by record boundaries
(see Figure 59 on page 243). There may be any number of data items in a
record, and an item may span any number of records. Because the data man­
agement routines make only one record available to the program at anyone
time, a method is needed to build up complete items if they span the record
boundary. Similarly, because GET and PUT statements may read or write less
than a complete record, a method is needed of keeping track of the position
reached in the record, so that the next GET or PUT can start from the correct
position.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 241

PL/I Statement: GET LlST(!);

External medium File SYSIN

8 ,
\
\

,
\
\
\
\

~
\
\
\
\
\
\
\
\
\

9 10

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

r----------------,
I PL/I transmitter modules I
I call LlOCS routines to move I
I the data between the external ~ - - - - - - - - - - - - - - - - 1

medium and the data manage· I
ment buffer. I

I I
L------r--------~

I Data Management buffer
I • 8 9 10

Stage 1

I
I
I
I
I

•

I
r---~~9!..~-- r-------------L--
I Conversion routines or I Director routines control the
I compiled code convert I I process, calling necessary
I data and move to variable. I I conversion and transmitter

H
: I I modules when required.

I 14- J
I I

'--_______ L ______________ ..J 1----------,.------
0000000000001000

Variable I (Fixed Binary 15,0)
(in main storage)

Stream input/output is a two stage process. The data is moved between the external medium and the data management buffer, and
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission
is carried out in a similar way to that used for RECORD I/O.

Note that a further input statement will require the value 9 which is already in the data management buffer. Consequently the trans·
mitter nHd not be ~"ed and a pointer must be kept to the position reached in the buffer.

Figure 58. The Principles Used in Stream I/O

242 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

-f'p'j,:J CiEt,· onr·
! r L L r

0100000 00000000 000 000 0 000
1 2 3 4 5 6 1 B 9 10 11 12 13 11 '~) it; 11 i8 19 1,) 71 " 13 24 2\ :5 17 28 29 30 31 32 33 j4 35 1€ 37 3B 39 40 41 4: 414' ,546 41 48 4q 5051 52535,1 ,556 57 5B 596061 61 63 64 c, 66 67 5a Cq 70 '1 ,I 7' 11 I'; I. n 7e 19 ao

111111111111111 \.1. 11

2'l2222222222222222222222 222

3 33333333333333'333 33333331333

4 'I 4 l. 4 4 4 4 4 4 4 4 4 4 i 4 4 4 4 4 4 4 i~ 4 ~4 4 4 4 4 4 4 4 4 4 4 4 4 11 4 ~

55H5555tlnl5555555

Figure 59. Record Boundaries Do Not Affect Stream 1/0

Operations in a Stream 110 Statement
A stream I/O operation can involve any or all of the following operations:

1. Opening the file, and raising the ERROR condition if the statement is
invalid.

2. Keeping track of the position in the buffer.

3. Calling the transmitter for a new record.

4. Building in intermediate workspace an item too large to be held in the
current record.

5. Determining which conversion is required, and calling the routine to carry
out the conversion.

6. Enqueuing and dequeuing on SYSPRINT.

Control of operations (2) through (5) is handled by director routines. For Iist­
directed and data-directed 110, PLII library director routines are used. For edit­
directed 110, the job is shared between library routines, compiler-generated
subroutines, and compiled code.

LY27-9528-0 CO Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 243

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Before the director module or director code receives control, an
initialization/termination module is called. This module handles item 1 in the
list above: checking statement validity, and opening the file if it is not already
open. The initialization/termination routine is also called when every PUT
statement is completed, to dequeue on SYSPRINT and, for conversational files,
to complete the output. The routine is also called on the completion of GET
statements with the COpy option, to transmit the data to the copy file.

Because there are three modes of stream I/O, the exact situation cannot be
defined in a generalized discussion or diagram. However, the basic principles
are shown in Figure 60 on page 245. The sequence is:

1. A call to the initialization module, to check statement validity, and to open
the file if necessary.

2. A return to compiled code, to set up parameters for the director module.

3. A call to the director module to handle any conversion, transmission, and
housekeeping problems that may be involved.

4. For PUT statements, a terminating call to the initialization/ termination
routine to dequeue on SYSPRINT.

244 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Pass A (SIOCBI
to Inltlalillng mOdule
Indicate stmt type In

SIOCB

'----,.-----'

} "'.,,'" 000'

NO

New
record
needed'

NO

CONTINUE

NO

YES

COMPILED CODE

CONVERSION
Movement
between
buffer and
variable

TRANSMISSION
Movement
between
buffer and
external medium

INITIALIZATION

MODULE

Checks statement validity,
opens file if necessary

DIRECTOR

MODULE

Handles complete operation
calling transmitter and con
version modules as required

Figure 60. Simplified Flow Diagram of a Stream 1/0 Statement

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 245

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Stream 1/0 Control Block (SIOCB)

File Handling

Transmission

Opening the File

To simplify communication between the large number of routines that may be ~
used in a stream I/O operation, a control block is set up for the duration of the ~
execution of the stream liD statement. This control block is known as the
stream I/O control block (SIOeB). The SIOCB contains the addresses of the
source and target (or their locators), and of the DEDs of the source and the
target. The SIOCB is passed directly to the conversion routines. The contents
of the SIOCB is as follows:

• Address of source or source locator
• Address of source OED
• Address of target or target locator
• Address of target OED
• Flag bytes
• Address of FCB for file
• Abnormal return address (next statement)
• Save word used by compiler
• Count of items transmitted (Halfwotd)
• Address of ONCA
• Area present only for GET or PUT STRING, to hold a dummy file control

block (27 fullwords).

In stream liD, file organization is always sequential and the access method
used is the queued sequential access method (QSAM).

Transmitters are called by the director modules or, in certain cases, by the
initialization module, or by the close module to complete transmission when the
program is terminated.

As with record liD, transmitters call data management modules. The PLII
transmitters contain the EODAD and SYNAD routines, which are entered when
end-of-file or other errors are detected in the routines. Nine different trans­
mitter modules are used in stream 1/0; these include two for conversational
files. The stream liD transmitters are listed in "Transmitter Modules" on
page 274.

The same basic method is used for opening the file as is used for record I/O.
During compilation, a declare control block (DClCB) and an environment
control block (ENVB) are set up. An open control block (OCB) is also set up if
any environment options are declared in the OPEN statement. At open time,
the information addressed from the DClCB, ENVB, and the OCB (if any) is
merged with any information in the DO statement, and an FCB is set up. The
PLII transmitter is loaded, and its address placed in the FCB. A DCB,
addressed from the FCB, is set up. The DCB contains the address of the data
management transmitter. Finally, the address of the FCB is placed in the
pseudo-register vector.

(

\

246 os PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Implicit Open
Implicit opening is handled by the initialization routines, which check to see
whether the file is open and, if not, call the open/close bootstrap routine
IBMBOCL.

The FCB for stream I/O is similar to that used for record I/O. However, it con­
tains certain additional fields which are needed only for stream I/O. The most
important of these fields are the buffer control fields.

Keeping Track of Buffer Position
Two fields in the FeB are used to keep track of the position which has been
reached in the data management buffer, and to indicate when a new record will
be required. These fields are the buffer control fields:

FCBA Points at the position reached in current record.

FREM Number of unused bytes remaining in the record.

FCBA points to the position reached in the record and enables the director rou­
tines to identify from where the next input item must be read, or where the next
output item must be written. FREM contains the number of bytes left in a
record. It enables the director modules to determine when a new record will be
required, and whether an item is too large to be held in the remainder of the
record and will consequently require intermediate workspace. Figure 61 on
page 248 illustrates the use of FCBA and FREM.

Enqueuing and Dequeuing on SYSPRINT
Because SYSPRINT i~ used as the standard file for error messages, it is neces­
sary for output to SYSPRINT to be enqueued. This prevents error messages
from one task in a PUI program interrupting other output to SYSPRINT from
another task.

When SYSPRINT is used it is enqueued by the initialization routine. When any
PUT statement is completed, regardless of the output file, a call is made to the
initialization/termination routine. This routine then checks to see if SYSPRINT
has been enqueued and, if it has, dequeues it by calling the DEQ routine.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 247

PL!I STATEMENT:

GET FILE (SYSIN) LIST (A, B);

80 Byte record
In data management buffer

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

0000030000 O~ oeoo c~o G GOLOOGOOO~OGGOGCQOCOGno 00 ~OOOOOu00003"JD~CO~ ~ D 0 0 Q
1 ;: j .; ~. 6 i 8 'J '~ 1 ~ .' n . 1 . 'J '~ 1) • t j J ;~ ;: ~:", ~ i :: ~'~ ; . ; ~ : " ~~ : j:? 3 J ~ 15 !.; J~ 3e. J 3 ! J 4; "'1 .: ~ 44 "5 ~ ~ 47 48 4l. ~. 0 ~ I : ~ ',~ ~4 ~~ 7 ~ j 7 58 ~9 to 61 1;, 6 ~ ~.! : ~ 1",. 'a r j ~J J; ~! 73 14 '5 7E ?~ 76 ,:1 8:J

l' 1" 111111111 ill "

FCBA FCBA

-.....; ... -
FCBA

+--- :---: -. - - - ... ---+--:--+-
Holds address reached

At start offirst item

FREM
VALUE 80

after processing first item start of second item

FREM
VALUE 50

FREM
VALUE 41

F REM holds number of remaining bytes

Figure 61. The Use of FREM and FCBA in Recording Buffer Position

after processing second item

FREM
VALUE 3

248 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

I
I
\",

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Handling the Conversions
Conversions in stream liD are normally handled by the library conversion
package. The conversion package consists of conversion routines and conver­
sion director routines. Conversion director routines examine the DEDs of the
source and the target passed in the argument list, and determine which entry
point of which conversion module is required. Each possible conversion has a
unique entry point in one of the conversion routines. For stream liD, the argu­
ment list passed is contained in the first four words of the SIOCB.

A number of conversion director modules are used exclusively by edit-directed
stream liD. These are called external conversion directors, and are listed in
"External Conversation Director Modules" on page 275. Each module corre­
sponds to a particular format of input or output. When the type of input or
output has been determined by the director modules, the appropriate conver­
sion director routine can be called to handle the conversion.

In edit-directed liD, the conversion required is normally predictable during com­
pilation, because it is implied in the format list. Consequently, the conversion
modules can be called from compiled code rather than from the stream liD
director routines. A third possibility is that compiled code will handle the con­
version in-line.

When a library conversion module is required by compiled code, the conversion
director module may be called, or the conversion module itself may be called
directly. When the conversion module is called, compiled code must carry out
the jobs normally handled by conversion director modules, that is, setting up a
number of fields that are used in handling the CONVERSION condition and other
PUI exceptional conditions.

Handling GET and PUT Statements
There are considerable differences in detail between the handling of GET and
PUT statements for the three different modes of stream liD. A generalized
impression is given in Figure 60 on page 245 and summarized above.

This appendix first covers the implementation of list-directed GET and PUT
statements in some detail, and then highlights the differences for data-directed
and edit-directed liD.

List-Directed GET and PUT Statements

PUT LIST Statement
Implementation of a list-directed output statement is shown in Figure 62 on
page 251. The process consists of five steps:

1. Compiled code calls the initialization routine, passing the address of the
DClCB and of the SIOCB. Flags indicating the statement type have been
set in the SIOCB by compiled code.

2. The initialization routine, IBMBSIO, calls the open routine if the file is not
open, and checks the validity of the statement. If the statement is invalid, a

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented InputlOutput 249

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

branch is made to the error handler, passing an error code indicating
"invalid statement." This results in a message being generated, and the
ERROR condition being raised. If the statement is valid, control is returned
to compiled code.

IBMBSIO also handles any format options, by calling the formatting module
IBMBSPL. Control then returns to compiled code.

3. Compiled code places the address of the source (or its locator, if the item is
a string) and the address of the source OED in the SIOCB. Compiled code
then calls the director module.

4. The director module completes the SIOCB with the address of the target
locator and the address of the OED of the target. The target locator gives
the length required for the item. As the target is a character string, a
locator will always be used for it. The address of the target is a position in
the buffer. For PRINT files, the position is indicated in the tab table, which
will either have been set up by the programmer by use of PLiT ABS, or may
be the default tab table in the library module IBMBSTAA. For non-print
files, each item is followed by a single blank. PLiTABS is addressed from
the TCA.

When the starting position for the item has been found, the director module
determines whether there is enough space in the output buffer for the con­
verted item. There may not be, for one of two reasons:

a. The end of the buffer has been reached.

b. The converted item will be too large to hold in the buffer.

If the end of the buffer has been reached, the transmitter is called to
acquire a new record. If the converted item will be too long to fit in the
buffer, intermediate workspace will be needed.

If it is simply a case of acquiring a new record, the director calls the trans­
mitter to acquire it. The director then calls the appropriate conversion
routine, passing it the SIOCB as a parameter list. The conversion routine
will then move the data from the PLiI variable to the new record in the data
management buffer.

If, however, the converted item will span the boundary between the current
and subsequent records, intermediate workspace is acquired in the form of
a VDA. The converted item is then placed in the VDA. As much of the data
as will fit is moved from the VDA into the data management buffer, and a
new record is acquired by a call to the output transmitter. The new record
is then filled from the VDA. This process is continued until the complete
item has been moved into buffers. The buffer pointers FREM and FCBA are
updated.

If there are further data items to be handled, a return is made to step (2),
and the address of a new source field and its OED are placed in the SIOeB.
This process is continued until all items in the data list have been proc­
essed.

5. The statement is completed by a call to the initialization/ termination
routine. This checks to see whether SYSPRINT has been used and, if so,
dequeues on SYSPRINT. For conversational files, it also calls the trans­
mitter to transmit any information that is still held in the buffer.

250 as PLII Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The object code produced for a PUT LIST statement is shown in Figure 63 on
page 253.

PUT LIST A)

FLOW DIAGRAM

Place address
SIOCB in
parameter list

Call
initializing
module

Is
File

open
?

YES

Is
statement

valid
?

~, YES

Set FCB &
ONCA address
in SIOCB

NO

NO --..

Step 1
Compiled code

Step 2
Initializing routine
IBMBSIO

Call IBMBOCL
to open fi Ie &
load transmitter

Call error
handler

COMPILED CODE & NOTES

LA
ST
01

Load address SIOCB
Place in parameter list

LA
ST
MVI
LA

7,200(0,13)
7,76(0,3)
76(3),X'80'
1,200(0,13)
1,192(0,13)
217(13),X'40'
1,72(0,3)

Mark end of parameter list
Saves SIOCB in a temporary

pointer
Set LIST OUTPUT flag
Point R 1 at parameter list
Call stream output L

BALR
15,A .. IBMBSIOA
14,15 initializer

The initialization routine is passed the address of the
FCB and the address of the SIOCB.

It opens the file if necessary and acquires the first
record for print files. If the statement is invalid it
calls the error handler. If the statement is valid it
places the addresses of the ONCA and the FCB in
the SIOCB and returns to compiled code.

Figure 62 (Part 1 of 2). Flow of Control through a PUT LIST Statement

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 251

Point Rl
at
SIOCB

Put address
of OED &
source variable
in SIOCB

Set target
address in
SIOCB
Call conversion
module

Update FCBA
& FREM

Continue as
from Step 3
until state­
ment complete
When complete
call termination
routine

Step 3
Compiled code

Step 4
Director module
IBMBSLO

Call transistor
for new record

Get VDA & set
as target for
conversion

Fill record
from VDA .

Compiled code

LA 14,A
LA 15,DED .. A
L 1,192(0,13)
STM 14,15,0(1)

L 1,192(0,13)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Get the address of A
Get the address of OED .. A
Reloads Rl
Put addresses of A and OED .. A

in SIOCB
Restore SIOCB

L 15,A .. IBMBSIOT Call termination
BALR 14,15 routine

The director module calls the transmitter and
conversion modules when required and handles
any housekeeping problems.

Before calling the conversion module it completes
the SIOCB with the address of the target locator
and the address of the target OED.
The target for the conversion is either the data
management buffer or a VDA acquired for
intermediate workspace.

If the statement is complete compiled code continues
with the next statement. If the statement is not complete
compiled code places new data in the SIOCB and once
more calls the director module.
When statement complete make terminating
call to dequeue on SYSPR I NT

Figure 62 (Part 2 of 2). Flow of Control through a PUT LIST Statement

252 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PLjI Source Statements:
OCL A,B STATIC;
PUT LIST (A,B);

* STATEMENT NUMBER 3
00005E 41 70 0 0C8
000062 50 70 3 04C
000066 96 80 3 04C
00006A 41 10 0 0C8
00006E 50 10 0 0C0
000072 92 40 0 009
000076 41 10 3 048
00007A 58 F0 3 02C
00007E 05 EF
000080 41 E0 0 0B8
000084 41 F0 3 038
000088 58 10 0 0C0
00008C 90 EF 1 000
000090 58 F0 3 034
000094 05 EF
000096 41 E0 3 050
00009A 58 10 0 0C0
00009E 50 E0 1 000
0000A2 58 F0 3 034
0000A6 05 EF
0000A8 58 10 0 0C0
0000AC 58 F0 3 030
0000B0 05 EF

LA
ST
01
LA
ST
t~V I
LA
L
BALR
LA
LA
L
STM
L
BALR
LA
L
ST
L
BALR
L
L
BALR

7,200(0,13)
7,76(0,3)
76(3),X ' 80 1

1,200(0,13)
1,192(0,13)
217 (13) , X 140 I

1,72(0,3)
15,A .. IB~1BSIOA
14,15
14,A
15,OED .. A
1,192(0,13)
14,15,0(1)
15,A .. IB~1BSLOA
14,15
14,B
1,192(0,13)
14,0(0,1)
15,A .. IBt'IBSLOA
14,15
1,192(0,13)
15,A .. IBt·1BSIOT
14,15

Pick up address of SIOCB
Store in parameter list
Mark end of parameter list
SIOeB pointer

to temporary pointer
Set LIST OUTPUT flag in SIOCB
Point Rl at SIOCB
Branch to initializing module

Pick up address of A
Pick up address of OEO .. A
Restore SIOCB address
Store addresses in SIOCB
Call list-directed director

routine
Pick up address of B
Point Rl at SIoeB
Place address B in SIOCB
Call list-directed director

routine
Point Rl at SIOCB
t'lake termi na t i ng ca 11 to

dequeue on SYSPRINT

Note: The OEDs for A and B have been
commoned. Consequently the same
address is kept in the SIOCB for
both calls to the director modules.

Figure 63. Code Generated for Typical List-Directed 1/0 Statement

GET LIST Statement
GET LIST statements follow the same sequence, but the transmission is in th~
opposite direction. The main differences are:

• If record spanning is involved, the item is assembled in intermediate work­
space before it is converted.

• A locator is built for the source string from the input, and the addresses of
the locator and of a character OED for the source are placed in the SIOCS
by the director module. The address of the target or its locator and the
address of the target OED are placed in the SIOCS by compiled code.

• Unless the COpy option is being used, no final call is made to the
in iti a lization/term i nation routi n e.

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented InputlOutput 253

Data-Directed GET and PUT Statements

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Data-directed GET and PUT statements follow a similar sequence to list­
directed statements, in that there is first a call to the initialization module, fol­
lowed by a call to a director routine. However, the data-directed director
module is passed all the variables involved in the statement rather than one
variable at a time, and handles the complete statement without returning to
compiled code.

The data-directed director module handles the reading or writing of the names,
the equals signs, and the punctuation, and then calls the list-directed director
module to handle the value for each variable.

When the data-directed module has identified the location of the variable to or
from which the data is to be moved, it calls the list-directed director module
which then handles the movement of the value of the variable. When the value
of the variable has been transmitted, control returns to the data-directed
module, which handles the next name, determines the address of the variable
associated with the name, and calls the list-directed director module to handle
the transmission of the value. This process continues until the statement is
complete. For output, the director module completes the statement with a final
semicolon. Figure 64 on page 255 shows the complete process.

The list-directed director module is called separately for each item. It is passed
the sloes with the addresses of the source or target (or its locator) and the
address of its OED correctly set up by the data-directed director module. The
item is then handled as if it were a list-directed item.

254 os PUI Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GET DATA (A,B);

FLOW DIAGRAM

Set up parameter
list, call
initializer

Set fields
in SIOCB

File
open?

YES

Return to
compiled code

Set up p. list
for data
director
consisting of
A(SIOCB)
A(SYMTAB,I)
A(SYMT AB,J)

Step 1
Compiled code

Step 2
Input initializing module
IBMBSII

NO Call1BMBOCL
to open file

Step 3
Compiled code

COMPI LED CODE & NOTES

LA
ST
01
LR
MVI
MVI
LA
ST
LA
ST
BALR

7,216(0,13)
7,84(0,3)
84(3),X '80'
1,7
233(13) ,x'84'
234(13),X'01'
14,104(0,3)
14,240(0,13)
1,80(0,3)
15,A .. IBMBSIJA
14,15

Pick up address of SIOCB
Place in parameter list
Flag last argument in parameter list
Get address of parameter list
Set flag DATA INPUT in SIOCB
Reset flag value
Set abnormal return
Store address in SIOCB
Point R 1 at parameter list
Branch to stream

initializing module

The input initializing module is passed the
address of the SIOCB and the FCB for the file.

It checks the validity of the statement, opens
the file and places the address of the FCB in the
SIOCB and returns to compiled code

LA
ST

15,216(0,13)
15,88(0,3)

Pick up address of SIOCB
Place address in parameter
list

The parameter list contains
addresses of symbol tables
and variables already set up
in static.

LA 1,88(0,3) Point R 1 at parameter list
L 15,A .. IBMBSDIA Call data-directed director
BALR 14,15 module

CL.2 EQU * Abnormal locate return
address

Figure 64 (Part 1 of 2). Handling a GET DATA Statement

LY27·9528·Q © Copyright IBM Corp. 1985, 1987 Appendix C. Stream·Oriented Input/Output 255

From Step 6
Step 4

0 Data - directed director
module IBMBSDI

New
YES record Call transmitter

or spanning? setting up VDA
if necessary

NO
~ r

Name
in data NO Call1BMBERR

stream match
SYMTAB?

:VES

Place address
OED and variable
in SIOCB

+
Update FREM &
FCBA to beyond
equal symbol

t
Call list-directed
director module

Step 5
List directed director
module IBMBSLI

Decide on
conversion
required and call
correct module

Update FREM &
FCBA
Return to
IBMBSDI

, Step 6
Return to IBMBSDI

~
Repeat from
step 4 until
final semicolon
found

Return to cO!Piled code

Figure 64 (Part 2 of 2). Handling a GET DATA Statement

256 as PLII Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The data directed director module is passed the
address of the SIOCB and either a list of symbol
table addresses or an address in the symbol table
vector.

The module reads in the name, checks that the
name read is in the symbol tables passed and if
not raises the NAME condition .

When the variable is identified the module places
the address of the target and its OED in the SIOCB
and calls the list-directed director module passing
it the SIOCB.

The list directed module completes the operation as
for list directed I/O

On return to the data directed module a search is
made for the next name and the action continued
as from step 4 until a semicolon is reached in the
input stream

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Identifying the Name
If a data list is included in the statement, for example:

PUT DATA (A,B,C);

the source or target variables are identified from a list of symbol tables. If a
data list is not included in the statement, for example:

PUT DATA;

the source or target variables are identified from the symbol table vector.

A symbol table associates a name with the address of a variable. The symbol
table vector is a list of the symbol tables known in the external procedure. The
items in a symbol table vector are arranged in program block order. When a
symbol table vector is used, the address passed is the start of entries for items
known in the current block. Symbol table format is shown in
Appendix A, "Control Blocks" on page 119.

The object code produced for a PUT DATA statement is shown in Figure 65 on
page 258.

Edit-Directed GET and PUT Statements
Edit-directed I/O differs from the other modes of stream I/O in that the conver­
sions required and the positions in the record where an item is to be placed or
will be found are indicated in the format list of the I/O statement.

The format list contains two related types of information:

1. The type and length of the item (for example, F(3), A(25), etc.), known as
data format information.

2. Spacing information (for example, X(3), COL(70), etc.), known as control
format information.

Both types of information are compiled as format DEDs (or FEDs) and are
passed by compiled code to the routines that require the information.

Because the information is available during compilation, it is possible for the
compiler to determine the conversions that will be required. It is consequently
possible for compiled code to call the required conversion or conversion
director routine, or to generate in-line conversion code without the assistance
of a library director module.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 257

PL/I source statements:
DCL A,B,C;
PUT DATA (A,B,C);

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RELEVANT SECTION OF THE STATIC INTERNAL STORAGE MAP

000048 00000000 A •. DCLCB
~

Parameter list
00004C 80000000 A .. TEMP for IBMBSIOA

000050 00000000 A .. TEt,1P

] 000054 00000060 A .. SY~1TAB Parameter list
000058 00000074 A .. SYMTAB for IBMBSDOA
00005C 80000088 A .. Sn1TAB
000860 8588080180088838 SY~1BOL TABLE..A

000000B800000000
8081C100

000874 8580008100000038 SYt-1BOL TABLE..B
080080BC08800888
0001C200

000888 8580008108880038 SYt:1BOL TABLE .. C
000000C000000000
0001C300

00009C

RELEVANT SECTION OF THE OBJECT PROGRAt;l LISTING

* STATEMENT NUMBER 3
08005E 41 70 D 0E8 LA 7,232(0,13) Pick up address of SIO CB
000062 50 78 3 04C ST 7,76(8,3) Store in parameter list
000866 96 88 3 04C 01 76(3),X'88' Mark end of parameter list
00006A 18 17 LR 1,7 Place SIOCB in Rl
00086C 50 10 D 0E0 ST 1,224(8,13) Save SIOCB
000070 92 80 D 0F9 r,1VI 249(13) ,X'80' Set data output
880074 92 01 D 0FA t,1VI 258(13),X'81' fl ags
000078 41 10 3 048 LA 1,72(0,3) Point Rl at parameter list
00007C 58 F0 3 02C L 15,A .. IB~·1BSIOA Call initializing
000080 05 EF BALR 14,15 routine
000082 41 F0 D 0E8 LA 15,232(0,13) Pick up address of SIO CB
000886 50 FO 3 050 ST 15,80(0,3) Place in parameter list
00008A 96 80 D 0FB 01 251(13),X'80' Mark end of parameter list
00008E 41 10 3 050 LA 1,80(0,3) Point Rl at parameter 1 is t
000092 58 F0 3 028 L 15,A .. IB~'lBSDOA Call director routine
000096 05 EF BALR 14,15
000098 58 10 D 0E0 L 1,224(0,13) Get SIOeB
00009C 58 F0 3 030 L 15, A .. I Bt'lBS I OT Make terminating call to
0000A0 05 EF BALR 14,15 dequeue on SYSPRINT

Figure 65. Typical Data-Directed Code

258 as PLiI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Compiler-Generated Subroutines
To further optimize edit-directed 110, a number of compiler-generated subrou­
tines have been provided. They carry out the following functions:

• Keeping track of the buffer position, freeing and acquiring intermediate
workspace where necessary, and calling the library when a new record is
required.

• Handling X format control items, except where a new record is required.

These compiler-generated subroutines have the advantage over library
modules that they are not external, and consequently do not have to follow the
external calling conventions.

The compiler-generated subroutines are supported by two types of library
director module:

• Two short modules, IBMBSEO and IBMBSEI, that interface with the trans­
mitter and are called by the compiler-generated subroutines when a new
record is required.

• A routine, IBMBSEDA, that handles the complete processing of an item (as
the director does for list-directed I/O). This routine is called when the item
cannot be handled by the compiler-generated subroutines.

The decision on whether to use compiler-generated subroutines or the overall
library director module is made at compile time. Figure 66 on page 260 shows
the conditions under which each method is used.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 259

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Handle entirely by 1 i brary
routine (IBMBSED), or use
compiler-generated sub-
routines?

Cot:JPI LER "

Compiler-generated subroutines
are used except in the cases
shown opposite. Even so, a
library routine will be called
if a new record is required,
and, generally, to handle a
conversion.

LIBRARY

IBMBSED handles processing completely for:
A-format item with implied length*
B-format item with implied length
(-format item

*An exception is that A-format items with
implied length are handled in-line if:
OPT(TIME) is in effect, and the complier
can match the data list with the format
list, and the data item is a character
string.

Figure 66. The Use of the Library in Edit-Directed I/O

A typical edit-directed statement takes the form:

1. A call to the initialization module to open the file (if necessary), and check
statement validity.

2. A call to B: compiler-generated subroutine to check whether a new record is
required, and, if so, to call the module IBMBSEI or IBMBSEO to acquire a
new record by making a call to the transmitter. The SIOeB is completed
with source or target DEDs and the addresses of the source and the target
or their locators.

3. A call to a conversion module or conversion director, or a compiled-code
conversion.

4. A further call to a compiler-generated subroutine, to update the buffer
control fields, and free any intermediate workspace if spanning was
involved.

5. A terminating call to the initialization/termination routine.

This sequence is illustrated in the annotated flowchart in Figure 67 on
page 261. Figure 68 on page 263 shows the code generated for a GET EDIT
statement.

260 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PUT EDIT (B)(A);

FLOW DIAGRAM

Set up part of
SIOCB.
Call initialization
routine IBMBSIO

File
closed

NO
~r

Check
statement
validity

Place address of
variable, its OED,
& 0 E 0 generated
from format item,
in SIOCB

t
CalilELCGOA

Will
item span or
require new

record?

YES

....

YES ..

Step 1
Compiled code

Step 2
Initialization routine

Call I BMBOCL to
open file & call
transmitter to
get 1 st record

I

Step 3

~mpiled co%-

, L

Step 4
IELCGOA

Set 'VDA' flag in
SIOCB. Get VDA
and set as
address of target.

I

NOTES

LA
ST
01
LR
ST
MVI
LA
L
BALR

7,216(0,13)
7,84(0,3)
84(3) ,x'80'
1,7
1,208(0,13)
233(13),X'20'
1,80(0,3)
15,A .. IBMBSIOA
14,15

Pick up address of SIOCB
Place in parameter list
Mark end of parameter list
Point R 1 at SIOCB
Save in temp
Set EDIT OUTPUT flag
Point R 1 at parameter list
Branch to initialization

routine

Test if file is open, and open if necessary, calling
transmitter to locate record.
Place address of ONCA and FCB in the SIOCB.
Check statement validity .

LA 14,B
LA 15,DED .. B
L 1,208(0,13)
STM 14,15,0(1)
LA 14,68(0,3)
L 7,A .. IELCGOG
BALR 6,7

Get address of data
Get address of OED .. B
Get SIOCD address
Place addresses of B and OED .. B in SIOCB
Get address of FED
Branch to compiler-generated

subroutine

Acquire VDA for item if necessary.
Either if there is no room in current record, or,
if the converted item will span the record boundary.

Figure 67 (Part 1 of 2). Edit-Directed Statement with Matching Data and Format Lists

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 261

Carry out
conversion either
in - line or by

FLOW DIAGRAM

Step 5
Compiled code
or conversion
routine

calling library module

Call
IELCGOB

~,

Item
handled by
IBMBSEDB

?

NO

Was a
VDA used?

NO

Update FREM,
FCBA, and FCNT

t
Return to
compiled code

Continue from
STEP 3 with next
item, if any
When complete
make terminating
call to IBMBSIOT

Step 6
IELCGOB

YES
~

YES .. Call I BMBSEOA
Call transmitter
and free VDA

Clear 'VDA' flag
and IBMBSED
flag

~,

Step 7
Compiled code

-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

NOTES

L 15,A .. IBMBSAOA
BALR 14,15

L 7,A .. IELCGO H
BALR 6,7

L 1,208(0,13)

Update buffer control fields
Handle housekeeping

Continue as necessary

Call output conversion
director (A-format)

Call compiler-generated
director routine

Get SIOCB address

When complete call termination
routine to dequeue on SYSPRINT

L 15,A .. IBMBSIOT
BALR 14,15

Figure 67 (Part 2 of 2). Edit-Directed Statement with Matching Data and Format Lists

262 os PLII Version 2 Problem Determination L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PL/I source statements:
OCL A,B;
GET EDIT (A,B) (F(3), X(8));

* STATEMENT NUMBER 3
00005E 41 70 0 008 LA 7,216(0,13)
000062 50 70 3 05C ST 7,92(0,3)
000066 96 80 3 05C 01 92(3),X ' 80 '
00006A 18 17 LR 1,7
00006C 50 10 0 000 ST 1,208(0,13)
000070 92 24 0 OE9 ~~V I 233(13),X'241
000074 41 EO 3 060 LA 14,96(0,3)
000078 50 EO 0 OFO ST 14,240(0,13)
00007C 41 10 3 058 LA 1,88(0,3)
000080 58 FO 3 038 L 15,A .. IB~;lBSI IA
000084 05 EF BALR 14,15
000086 41 EO 0 OB8 LA 14,A
00008A 41 FO 3 040 LA 15,DED .. A
00008E 58 10 0 000 L 1,208 (0,13)
000092 90 EF 1 008 STt"l 14,15,8(1)

000096 41 EO 3 044 LA 14,68(0,3)
00009A 58 70 3 014 L 7,A .. IELCGIX
00009E 05 67 BALR 6,7
OOOOAO 58 FO 3 034 L 15,A .. IB~ilBSFIA
0000A4 05 EF BALR 14,15
0000A6 58 70 3 018 L 7 ,A .. IELCGIB
OOOOAA 05 67 BALR 6,7
OOOOAC 41 EO 3 04A LA 14,74(0,3)
OOOOBO 58 10 DODO L 1,208(0,13)
0000B4 58 70 3 014 L 7,A .. IELCGIX
0000B8 05 67 BALR 6,7
OOOOBA 41 EO D OBC LA 14,B
OOOOBE 50 EO 1 008 ST 14,8(0,1)
0000C2 41 EO 3 044 LA 14,68(0,3)
0000C6 58 70 3 014 L 7,A .. IELCGIX
OOOOCA 05 67 BALR 6,7
OOOOCC 58 FO 3 034 L 15,A .. IBt·'lBSFIA
OOOODO 05 EF BALR 14,15
000002 58 70 3 018 L 7,A .. IELCGIB
0000D6 05 67 BALR 6,7
000008 CL.2 EQU *

Pick up address of SIOCB
Store in parameter list
Mark end of parameter list
Place SIOCB in Rl
Save SIOCB
Set EDIT INPUT fl ags in SIOCB
Pick up return address (CL.2)
Store in SIOCB
Point Rl at parameter list
Call stream I/O

initialization routine
Pick up address of data
Pick up address of OEO .. A
Get SIOCB address
Puts addresses of A and OED .. A

in SIOCB
Point R14 at FED
Call compiler-generated

subroutine
Call conversion director routine

Call compiler-generated
subroutine

Pick up FED of X format item
Pick up address of SIOCB
Call compiler-generated

subroutine
Pick up address of B
Store in SIOCB
Point R14 at FED
Call compiler-generated

subroutine
Call conversion director r'out i ne

Call compiler-generated
subroutine

Abnormal return address

Figure 68. Code Generated for an Edit-Directed Statement with Matching Data and Format Lists

L Y27 -9528-0 © Copyright I BM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 263

Handling Control Format Items

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Control format items are implemented by calling a formatting module, and
passing it the SIOCB containing the address of an FED for a control format item.
There are four formatting modules:

IBMBSPL Library routine for SKIP, PAGE, and LINE formats and options.

IBMBSXC Library routine for X and COLUMN formats.

IELCGOC Compiler-generated subroutine for X output items that do not span a
record boundary.

IELCGIX Compiler-generated subroutine for X input items that do not span a
record boundary. (This module also has other functions; see the
section "Compiler-generated Director Routines" near the end of this
appendix.)

Matching and Nonmatching Data and Format Lists
In the majority of edit-directed statements, the data and format lists can be
matched during compilation, since the programmer requires specific conver­
sions for specific variables. However, it is possible to write statements which,
because, of iteration factors, cannot be matched at compile time.

For example, in the statement

PUT EDIT (A,B,C) (N(F(3)), X(lO));

It is not possible to know at which point the ten-character space indicated by
"X(10)" will be required, without knowing the value of N. If the statement had
been

PUT EDIT (A,B,C) (F(3), X(lO));

the code would be compiled in the order: handle the conversion of a variable,
handle an X item, handle the conversion of a variable, etc., until the data list
was exhausted. However, as it is not known at which point the X items will be
required in the unmatched statement, it is impossible to compile sequential
code to handle the statement. Consequently, the code for each item is com­
piled separately, and branches are made between the code for data items and
the code for format items as the value of the repetition factor indicates. In the
example above, the branches would be made when the F item had been exe­
cuted N times, and when the X item had been executed once.

The code sequence used for matching and non-matching data and format lists
are shown in Figure 69 on page 265.

264 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

MATCHING LISTS

PUT EDIT (I, NAME, ACT. NO)

(F (3),X (3), A (15), X (3), P'ZZZ9');

HANDLE
CONVERSION
OFI

"

HANDLE
XITEM

~,

HANDLE
CONVERSION
OF NAME

~,

HANDLE
XITEM

~,

HANDLE
CONVERSION
OF
ACT-NO

t

UNMATCHING LISTS

PUT EDIT (AB, C, D) ((N) F (3), SKIP, A (4));

NO

HANDLE
CONVERSION
F(3)

HANDLE
CONVERSION
A(4)

YES

Figure 69_ Code Sequences Used for Matching and Nonmatching Data and Format Lists

LY27-9528-0 © Copyright IBM Corp_ 1985, 1987 Appendix C. Stream-Oriented Input/Output 265

Formatting for Print Files

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Formatting information such as page size, line size, page length and tab posi­
tions for print files are accessed by list and data-directed director modules from
a field TTAS held at offset X 150 I in the TCA. The field holds the address of the
tab table to be used. That is, either the PUTASS control section, if provided by
the user, or the ISMSST AS control section, if the default is to be used.

The control section PUT ASS can be provided by the user either as a control
section which is link-edited with the object module or as a PUI structure
declared in his program as PUTASS. This structure is then compiled as a suit­
able control section by the optimizing c;ompiler.

The programmer may also use the default which is provided as a·transient
library module loaded by the open routines. The format of PUTASS and its
default values are given in the programmer's guide for this compiler.

When the open routines are called, they inspect the TCA to determine whether
PUT ASS has been provided by the user. If it has not, they load the transient
library routine IBMBSTAB, which holds the default tab setting. When the
routine is loaded, the address of entry point IBMBSTAB is placed in the TTAB
field in the TCA. If PLiTABS has been provided by the user, its address will
have been placed in TT AB by the linkage editor.

Handling Format Options
Format options (for example, GET SKIP(4), PUT PAGE, GET SKIP LIST) are
handled by a call to the appropriate entry point of the initialization routine.

The initializing module calls the formatting module IBMBSPL to carry out the
formatting.

Input and Output of Complete Arrays
When transmitting complete arrays, it is not economical for a return to be made
to compiled code after each item has been handled. Accordingly, the list- and
data-directed director modules have a facility that enables them to handle com­
plete arrays. The modules access the array multipliers, and handle the
indexing from information held in the array descriptors. For edit-directed 1/0,
each element is handled separately, the necessary indexing being carried out
by compiled code.

PL/I Conditions in Stream 110
The following errors and PUI conditions are particularly relevant to the imple­
mentation of stream 1/0: TRANSMIT, CONVERSION, NAME(data-directed input
only), ENDFILE, and unexpected end of file. Unexpected end of file occurs when
the end of file is reached in the middle of an input item.

266 as PUI Version 2 Problem Determination LY27 -9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TRANSMIT Condition
The rules for raising the TRANSMIT condition in stream 1/0 are that the condi­
tion shall be raised after the assignment or output of the potentially incorrect
data item. Thus TRANSMIT can be raised on input for a data item even though
the transmitter has not been called during the processing of the statement
involved.

When the TRANSMIT condition is detected by the data management routines,
control is passed to the error routine in the transmitter, which sets a flag in the
FCB indicating a transmission error. For input, the director module inspects
this flag, and, if it is set, sets a flag in the SIOCB. TRANSMIT is raised for every
item that is ~~I<'en from a record in the block with which the transmission error
was associated. It is raised after each potentially incorrect value has been
assigned. For output, TRANSMIT is raised by the transmitter as soon as it
occurs.

A special entry point, IBMBSEIT, is used by the compiler-generated subroutines
to raise the TRANSMIT condition. When called by this entry point, IBMBSEIT
calls the error handler with the appropriate error code for the TRANSMIT condi­
tion.

CONVERSION Condition

NAME Condition

The CONVERSION condition is detected by the conversion modules in the PUI
library. (Conversions that could cause the CONVERSION condition are not
handled in-line except where "NOCONVERSION" is specified.) CONVERSION is
raised by calling a special library module, IBMBSCVA. This module analyzes
the type of conversion error, and calls the error handler with an appropriate
error code. For input, the module also saves the field that caused the conver­
sion; it is necessary to do so, because the field could be lost if an ON-unit was
entered and a further GET statement was executed on the same file which
resulted in a new record being acquired.

The NAME condition can occur only in data-directed input. It is raised by the
data-directed director module when it cannot find a symbol table to match the
name read in, or when the name is unobtainable (it might, for example, be out
of subscript range.) DATAFIELD is set up, and the file positioned for the next
read, before calling the error handler, with the appropriate error code.

ENDFILE Condition and Unexpected End of File
End of file is detected by the transmitter routines, which then enter the SYNAD
routine in the transmitter. This routine sets a flag in the FCB. On return to the
director modules, the flag is tested and, depending on the situation in which the
transmitter was called, ENDFILE or unexpected end of file is raised by calling
the error handler.

For unexpected end of file, the ERROR condition is always raised as soon as
the end of file is detected. ENDFILE, in the case of list- and data-directed 1/0, is
not raised until a further attempt is made to read the input file.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 267

Built-In Functions in Stream 1/0

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The built-in functions that are relevant to stream I/O are COUNT, DATAFIELD,
ON CHAR, and ONSOURCE.

The COUNT built-in function is handled by the director routines. A count of
transmitted items for the statement is kept in the SIOCB, and then copied into
the FCB after every transmission to or from a PUI variable.

The DATAFIELD built-in function is handled by the data-directed director
routine, which places the address of the string locator/descriptor for the
offending field in the ONCA. The field is first moved to a workspace area, as
the buffer may get lost if further stream I/O operations take place in an ON-unit.

The COpy Option
The COPY option allows input data to be copied onto a specified output file. At
the start of a GET statement with the COpy option, a flag is set in the FCB, and
the current buffer position is saved in the field FCPM in the FCB.

A resident library routine, IBMBSCP, is used to handle the data, and to transmit
it to the copy file by calling the appropriate transmitter. IBMBSCP is called at
the end of the GET statement, and during the statement if a new buffer is
acquired. As shown in Figure 70 on page 269, the data transmitted to the copy
file is that which is held between the pointers FCPM and FCBA. FCBA points to
the next byte to be read; FCPM points to the start of the data to be copied.
FCPM is updated to point to the start of the new buffer when a transmitter call
is made during the execution of the statement. The copy flag is turned off
during the terminating call to IBMBSII.

If an interrupt occurs during the execution of a GET statement with the COPY
option, it is possible that the terminating call to IBMBSII will be bypassed
because of a GOTO from an ON-unit, or because the job is terminated. For this
reason, a test is made on the copy flag at the start of every GET statement, and
when the file is closed. If the copy flag is on, IBMBSCP is called to handle the
data. When the data has been transmitted, the flag is turned off.

Handling the Copy File
During the initializing call, IBMBSII determines whether the copy file is open
and, if it is not, calls IBMBOCL to open the file. The address of the DCLCB for
the copy file is then stored in the FCB of the input file. The data is transmitted
to the file by calling the transmitter for the file type.

268 as PLII Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(

GET LIST FILE (SYSIN) (STRING1)
COpy FI LE(A):

(

GET LIST FILE (SYSIN) (STRING2)
COpy FI LE (A);

(

GET LIST FILE (SYSIN) (STRING3)
COPY FILE (B);

FCPM[________ -l-- --1---
,'DATA FOR COPYING ONTO' 'FILE, "-N-A-ME-D-A-'----'O-A-TA-FO-R-C-O-P-Y-,N-G-O-N-TO-F-'L-E-B-' -----,

FCBAJ ______ ---_J ___ L ___ L_ 1 po;",,, fo, ,nd of COPY dot'! ________ J
Data is transmitted to the copy file at the end of each statement and at those
times when it can no longer be held between the pointers FCBA and FCPM.
In the example above this will be at the end of each GET statement and at
thp pnd of the first record.

Figure 70. The Current Buffer Pointer FCBA and FCPM, the Copy Pointer, Keep Track of the Data to be Copied

The STRING Option
The STRING option allows data to be transmitted between a string and one or
more PLII variables by means of a stream I/O statement.

The STRING option is implemented by treating the string specified in the state­
ment as if it were the buffer, and the other PLII variables as if they were the
sources or targets. The difference in housekeeping between string and file
operations is resolved by the use of a string housekeeping routine, IBMBSIS.
IBMBSIS is called in the place of the stream I/O initialization/termination
routine. IBMBSIS sets up a dummy FCB that is initialized so that the correct
action is taken should the director modules attempt to read or write beyond the
end of the string. After the dummy FCB has been initialized, the director
modules are called to convert and move the data as in normal stream I/O.

To implement the string option, compiled code passes the string housekeeping
module an extended SIOCB in which the dummy FCB is created. The buffer
control fields FCBA and FREM in the dummy FCB are set up as if the string
were a record. The field that, in a normal FCB, would hold the address of the
transmitter, holds addresses of other sections of code.

For a PUT STRING statement, the transmitter address field is initialized to point
to the error handler. Register 1 will have been pointed to the head of the FCB
by the caller. The error code for exceeding string size is, therefore, placed at
the head of the FCB, and the correct error condition is automatically raised
when the branch to the error handler is made.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 269

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For a GET STRING statement, the address in the transmitter field is the address
of code that sets the end-of-file flag and returns to the caller. This code is held ~

within the dummy FCB. ~

As far as the caller is concerned, attempting to read beyond the end of the
string is equivalent to finding an end-of-file mark in a stream I/O statement.
Where the ENDFILE condition or unexpected end of file would be raised for a
stream file, a I GET STRING SIZE EXCEEDED I message is generated, and the
ERROR condition is raised.

Completing String-Handling Operations
One or more further calls may be made to the string housekeeping routine
IBMBSIS at entry point T, to update the string characteristics after a data item
has been transmitted.

PUT Statements with Fixed-length Strings: IBMBSIS is called after the first item
has been assigned to the string, to pad the remainder of the string with blanks.

PUT Statements with Varying Strings: IBMBSIS is called to update the length of
the string after each item is transmitted.

GET Statements with Varying String: IBMBSIS is always called.

The need to make a further call to IBMBSIS is flagged in the SIOCB when
IBMBSISA is called to initialized a statement. The library director routines and
the compiler-generated subroutines test this flag, and call IBMBSIS if neces­
sary.

The Conversational System and Conversation Files
When using a conversational system, the PUI programmer can attach his ter­
minal as the input or output device used by one or more stream files.

Three transient library routines are used to implement this facility. Two are
transmitters that are used to interface with the conversational system using the
appropriate macro instructions, or simulations of them for CMS, to effect the
input and output. They also poll for attention interrupts. The third module is a
formatting module that overcomes the special formatting difficulties that arise
when working at a terminal.

When the file is opened, the OPEN routine tests every stream I/O file to see
whether it is to be associated with a terminal. If the file is to be associated with
a terminal, the appropriate conversational transmitter loaded:

IBMBSIC for input
IBMBSOC for output

A flag is set in the FCB of the file to indicate that the file is a conversational file

The two transmitter modules handle the input, output, and prompting. Format­
ting differences between conversational and normal I/O are handled by a tran­
sient library routine, IBMBSPC. This routine is called by the formatting routine,
IBMBSPL, when a conversational file is being handled.

270 os PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If a conversational module is used, its address is placed in the TCA loaded­
module list.

Conversational Transmitter Modules

Output Transmitter IBMBSOC
The output module IBMBSOC is similar to other output transmitters except that
it interfaces with TSO, and uses the TPUT macro instruction. For CMS it uses a
simulation of TPUT. The macro instruction is used with the WAIT option to
ensure proper queueing of output to the terminal.

Input Transmitter IBMBSIC

Formatting

The input transmitter carries out a similar function to other PLII input transmit­
ters. However, it also has to handle certain prompting functions, and imple­
ments certain facilities required only for conversational output.

Input: Input is achieved by issuing a TGET macro instruction to the TSO control
program. For CMS it uses a TGET simulation.

Prompting: Prompting is carried ,out before every input statement, unless the
last character transmitted to the foreground terminal was a colon. At the start
of a statement, the prompting sequence is: skip to a new line, print a colon,
and skip to the start of the next line. If the GET statement is not completed by
the data transmitted from the terminal, a further call to the transmitter will be
made by the director module handling the stream liD. A further prompt is then
issued to the programmer. Second and subsequent prompts take the form of a
plus character followed by a colon.

Prompts are issued by placing the required prompt-code in a suitable field, and
using a TPUT macro instruction with a HOLD option. This ensures that any ter­
minal output from previously executed PUT statements will appear at the ter­
minal before the user is prompted to enter his input.

The prompt is issued to the foreground terminal irrespective of whether a PLII
output file is associated with the terminal.

To simplify terminal usage various methods of data input are allowed that do
not conform strictly to PLII language specifications. For example list-directed
input need not have a delimiting comma or blank and the trailing blanks need
not be entered if a character item in edit-directed liD does not fill the specified
field width.

Formatting Module IBMBSPC
To simplify the use of a terminal, default formatting conventions are assumed.
These apply to PAGE, SKIP, and LINE instructions and can be summarized as
follows:

• SKIP instructions of 3 lines or less are followed.

• PAGE and LINE and SKIP instructions of more than 3 lines are interpreted
as SKIP(3) instructions.

LY27-9528-0 (D Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 271

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This default formatting can be overridden by the use of a PLiT ABS structure
that specifies a value of 1 or greater for the page length. (PLITABS is
described above under the heading "Formatting for Print Files. ")

IBMBSPC checks the page-length value in the PLiTABS control section. This
control section will be either the default taken from the PLII transient library
module IBMBSTAB, or, if the values have been specified by the programmer,
will be the values in the structure declared with the name PLiT ABS, or, pos­
sibly, a link-edited control section called PLiTABS. In the library module
IBMBSTAB, the page-length value is zero.

If the page-length value in the PLiTABS control section is zero, the formatting
conventions described above are used. These are referred to as squashed
mode. If the value is greater than zero, normal formatting is undertaken.

The method of formatting used is for IBMBSPC to insert the required number of
I new line I characters in the output buffer, and to call the transmitter to transmit
the buffer contents. (In the special case of SKIP (0), backspace characters are
used.

The normal PLII rules for ENDPAGE apply to formatted terminal output.
ENDPAGE is not raised for squashed mode output.

Summary of Subroutines Used
This section gives a summary of the subroutines used in the implementation of
stream-oriented input/output. Detailed descriptions of the library modules are
given in the relevant program logic manuals.

Ten different types of subroutine are used in stream I/O. They are:

1. Initializing Modules
2. Director modules
3. Transmitter modules
4. Formatting modules
5. Conversion modules
6. External conversion director modules
7. Conversational modules
8. The conversion fix-up module (IBMBSCV)
9. The copy module (IBMBSCP)

10. The string housekeeping module (IBMBSIS)

The types of modules are dealt with below.

Initializing Modules
Initializing modules initialize the stream I/O statement. There are two of these
modules:

IBMBSII Input initializer
IBMBSIO Output initializer

A further module is used for string handling, which is listed under "Miscella­
neous Modules" on page 275.

272 OS PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Director Modules

IBMBSII is discussed in "The COPY Option" on page 268, while IBMBSIO is
described under" PUT LIST Statement" on page 249.

Library Director Routines
IBMBSLI List-directed input

Entry point A: element item
Entry point B: complete array

IBMBSLO List-directed output

Entry point A: element item
Entry point B: complete array

IBMBSDI Data-directed input

Entry point A: with data list
Entry point B: all known variables

IBMBSDO Data-directed output

Entry point A: element variables and whole arrays
Entry point B: single array elements
Entry point C: all known variables and SIGNAL CHECK output
Entry point D: CHECK output for a single item
Entry point T: output a final semicolon only.

Modules Used with Compiler-Generated Subroutines
IBMBSEI Edit-directed input

Entry point A: housekeeping for input item spanning a record
boundary.

Entry point T: raise TRANSMIT for spanning input item

IBMBSEO Edit-directed output housekeeping for output item spanning a record
boundary.

Module for Complete Library Control of Edit-Directed 1/0 of a Single Item
IBMBSED

Entry point A: edit-directed input
Entry point B: edit-directed output

Compiler-Generated Director Routines
For input:

IELCGIX Provides the address of the source of an edit-directed data or
X-format item.

IELCGIB Completes the transmission of an edit-directed data item, by freeing
the VDA if one was used, updating the COUNT built-in function value,
and calling IBMBSEIT if TRANSMIT has been raised.

LY27-9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 273

For output:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IELCGOG Provides the address of the target of an edit-directed data item.

IELCGOH Completes the transmission of an edit-directed data item, updating

Transmitter Modules

the buffer items in the DCLCB, counting the data item, and freeing a
VDA if one was used.

The actual movement of the data between the extern~1 medium and the buffer
area is carried out by a series of seven transmitter modules, which interface
with the routines of as data management. These modules essentially complete
the setting up of the DeB, and issue the data management GET and PUT macro
instructions, thus reading or writing one record.

One module is used for input, six for output. The output modules are divided
into two groups: one group for PUI print files, the other for all other output
files. Both output module groups contain three modules: one for F-format
records, one for V-format records, and one for U-format records. All modules
interface with the queued sequential access method.

The following transmitters are used:

IBMBSTI Input transmitter
IBMBSOF Output transmitter for F-format records
IBMBSOV Output transmitter for V-format records
IBMBSOU Output transmitter for U-format records
IBMBSTF Print transmitter for F-format records
IBMBSTV Print transmitter for V-format records
IBMBSTU Print transmitter for U-format records

Formatting Modules
Formatting modules control the position of the data on the external medium.
There are three formatting modules: two library subroutines, and one compiler­
generated subroutine.

Library Subroutines
IBMSBPL PAGE, LINE, and SKIP format items and options

Entry point A: PAGE option or format item
Entry point B: LINE option or format item
Entry point C: SKIP option or format item

IBMBSXC X and COLUMN format items

Entry point A: X format input
Entry point B: X format output
Entry point C: COLUMN format input
Entry point 0: COLUMN format output

274 as PUI Version 2 Problem Determination LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Compiler-Generated Subroutine
IELCGOCA X items, in edit-directed output, that do not span a record boundary.

External Conversation Director Modules
The following external conversion director routines are used exclusively in edit­
directed 1/0:

IBMBSAI
IBMBSAO
IBMBSCI
IBMBSCO
IBMBSFI
IBMBSFO
IBMBSPI
IBMBSPO

input A, B, and P character formats
output A, B, and P character formats
input C format
output C format
input F and E formats
output F and E formats
input P format arithmetic
output P format arithmetic

Conversational Modules
Transmitters:

IBMBSIC input transmitter
IBMBSOC output transmitter

Formatting module:

IBMBSPC formatting module

Miscellaneous Modules
The other subroutines used in stream 1/0 are:

IBMBSCV the conversion fix-up module
IBMBSCP the copy module
IBMBSIS the string housekeeping module

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987 Appendix C. Stream-Oriented Input/Output 275

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Index

A
ABEND dump 90

debugging with 91
EPIE 98
extended program interrupt element 98
interrupt 90
interrupt caused 75
interrupts 98
NOSPI E used 75
NOSTAE used 75
PIE 98
program check exit 90
program interrupt element 98
User Exit 75

abnormal GOTO statement
changing CHECK enablement during 42
from an event I/O ON-unit 42
library subroutine IBMBPGO 39
out of SORT exit routine 42

abnormal locate return block 220
access method

record I/O 209
stream I/O 241

activating blocks 33
address constants

O-type 29
addressing

automatic variables 27
allocated storage in DSA 27
allocated storage in VDA 27
beyond the 4K limit 28

based variables 28
beyond the 4K limit 28
controlled variables

pseudo-regi ster vector 27
files via DCLCB and PRV 218
static variables 28

beyond the 4K limit 28
temporary variables 27

allocated storage in DSA 27
allocated storage in VDA 27
beyond the 4K limit 28

addressing beyond 4K limit 28
aggregates (see also arrays and structures)

arrays of structures 32
descriptor descriptor 122
locator 124

aggregates (see also arrays
structures) 31

ALLOCATE command
using for dumps 75

APAR (Authorized Program Analysis Report) 113,
115-118

L Y27 -9528-0 CO Copyright IBM Corp. 1985, 1987

APAR (Authorized Program Analysis Report) (con-
tinued)

CMS terminal session log 117
compiler listing 117
JCL listing 117
linkage editor 118
machine-readable information to submit 116
materials accompanying 115
run-ti me dump 118
source information 116

area
control block 121
descri ptor 120
locator/descriptor 120

argument lists 43
DO-LOOPS, use of 45
in static storage 43
passed by calling routine 43
setti ng up 44

arrays
assignments 32
boundaries 31

array descriptor 31
descriptor 125
implementation of 31
interleaved 32
multipliers 31
of structures 32
program control data 31
virtual origin 31

automatic variables

B

addressing beyond the 4K limit 28
definition 27
initialization of 33
storage in DSA 27
storage in VDA 27

backchains
dynamic 36
static 36

base regi sters
DSA poi n ter 25
program base 25
static base 25
TCA pointer 25

based variables 28
blocks

activating 33
terminating 33

books, OS PUI Version 2 iv
branches, rationalization of 54

Index 277

buffer control fields (stream 1/0) 247
buffer pointers (stream 1/0) 247

c
C format item DED 139
CALL statements 38
CICS

ABEND 111
appendage 128
modules 62
run-time environment 111
user exit 111

CLOSE statement
compiler output 227
general 205

closing files
explicit closing 227
implicit closing 206, 227
library subroutines 227

COLUMN format item 274
common expression, elimination of 47
commoning

for optimization 54
compilation, definition 2
compile-time options

AGGREGATE 14
documentation provided by 3
ESD 14
LIST 14
MAP 14
OFFSET 14
problem determination, helpful in 3
SOURCE 14
STORAGE 14
SYSTEM 112
TEST 3

compile-time problem determination 5
chart 5
chart index 5

compiler function 3
compiler output 11-55

control sections 11
dummy sections 12

pseudo-regi ster vector 12
ESD records 11
relocatable object module 11
RLD records 11
TXT records 11

constants 11
machine instructions 11

compiler-generated subroutines 259
IELCGIX 264
IELCGOC 264
purpose of 46

conditions
name abbreviations in a dump

error code field table 86

278 os PLII Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

conditions (continued)
name abbreviations in dump 84

consecutive buffered files 208
constants 22
constants pool 22
contents of listing information 14
control block

locating in dump
quick guide 108

control blocks
array descriptor 31
for optimization

commoning 54
formats 119
in a PLII environment 4
non-VSAM section 166
structure descri ptor 31
VSAM section 167

control format information 257
DED 139

control sections 11-55
PLiCOUNT 12
PLiFLOW 11

IBMEFL, trace module 12
PLiMAIN 11
PLiSTART 11
program 11, 23
static external 12

static storage map 15
static internal 11, 22

static storage map 15
controlled variable block 130
controlled variables

control block 130
header information 28
pseudo-register vector 27, 29

controlling the flow of execution
non-consecutive 32

epilog code 38
prolog code 33

conversational files 270
conversational transmitter modules

IBMBSIC 271
IBMBSOC 271
IBMBSPC 271

conversion
stream I/O 249

CONVERSION condition
in stream I/O 267

COPY option
in stream I/O 268

COU NT function 268
CSSF (Customer Software Support Facility) 113
Customer Software Support Facility

See CSSF (Customer Software Support Facility)

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

D
data element descriptors (DEDs)

formats 132
data format item 257
data list matching 260
data management event control block

non-VSAM 166
VSAM 167

data-directed I/O 254
DATAFIELD built-in function 267
DCLCB (declare control block)

format 140
general 210

DO statement
using for dumps 75

debugging a dump
suggested code 80

declare control block (DCLCB)
format 140
general 210

dedicated registers 25
DSA pointer 25
program base 25
static base 25
TCA pointer 25

DELETE statement 203
director routines

definition 241
in stream I/O 249

DO-loops
accessing array elements

example of 53
loop control variables 52

example of 45
nested 45

documentation, OS PL/I Version 2 iv
dummy FCB 30
dummy ONCA

format 172
dummy sections

constants 11
machine instructions 11
pseudo-register vector 12

dump
ABEND dump 98
avoiding recompilation 81
calling trace 101
chains 105

tasking appendage, in 105
debugging

where to start 87
debugging procedures 87-91
debugging with 75-111

ABEND dump 91
ON-unit call procedure 89
storage overlay 88
system ABEND dump 90

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

dump (continued)
DSA

associating with block 101
DSA addresses 96
DSA Chain 98
dynamic storage area (DSA)

finding 104
following back-chain in dump 99
regi ster save area in 103

finding variables in 107
area variables 108
automatic variables 107
based variables 108
controlled variables 107
static variables 107

forward chain in DSAs 104
GOSTMT option 99
heap

free-area chain 107
storage chain 107

hexadecimal 86
housekeeping information 99
IBMBEER

DSA contents after interrupt 95
initial storage area (ISA)

free-area chain 102
interrupts

regi ster contents at point 98
library module error in 104
locating information in 92

control blocks and fields 108
list of contents 92
PLiI dump 93

multitasking in 111
OFFSET option 101
ON-unit

statement number and address 93
type of error 93

parameter list
contents 104

register contents 94
interrupt 94
interrupt in library routine 94
program check interrupt 94

register save areas
finding and interpreting 102

register usage 102
registers

point of interrupt, at 98
SNAP dump

PSW 88
stand-alone 75

locating information in 99
statement number 99

offset table, in 101
static back chain in 104
system ABEND 90
task appendage 107

TCA in 107

Index 279

dump (continued)
task relationships 105

parent 105
sibling 105
subtasks 105

task variable in 103
TCA 98
TCA addresses 97
timestamp (TSTAMP) 97
trace information

not generated 96
use of block option 87

dynamic backchain 36
dynamic ONCB 175
dynamic storage area (DSA) 57

addresses in dump 96
allocation 57

E

associating DSA with block in dump 101
chaining of 97
chaining when multitasking 111
contents for compiled code DSA 37
current 25
finding main procedure DSA in dump 104
following back-chain in dump 99
format and function 142
forward chain in dump 104
IBMBERR's DSA in dump 102
register save area in 103

E format item DED 138
edit-directed 1/0 257-265

code generated 263
compiler-generated subroutines 259
data format items 257
FED 257
format DED 257
format list 264
format option handling 264
GET statement 257
handling control format items 264
library director modules 273
matching data and format lists 261, 264
nonmatching data and format lists 264
PUT statement 257
typical statement 260
use of library in 260

elimination of unreachable statements 50
enablement status 40
end of file 233
END statement 32
ENDFILE condition

in record 1/0 233
in stream 1/0 267

entry data control block 146
entry points

load module 11

280 os PLiI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

entry points (continued)
main procedure 11
PLiSTART 11

IBMBPIR, address of 12
entry variables

entry data control block 146
ENVB (see environment control block)
environment

definition 4
environment control block (ENVB) 212

format 147
record 1/0 210
stream 1/0 246

epilog code
example of 38
FINISH condition 38

error code
field lookup table 86
list of 86

error handling
during execution 86

error identification
using the dump 75-111

ERROR ON-unit and dumps 79
error-handling 90
ESD records

external addresses 11
EV (event variable) 220
event 1/0 224
EVENT option 224
event variable (EV) 220
event variables

control block format and function 151
exclusive 1/0 226
external conversion director modules 275

F
F format item DED 138
FCB (see file control block)
FCBA field in FCB 247
FCPM field in FCB 268
FECB (fetch control block) 163
FEDs (format DEDs) 257
FEFT field in FCB 231
FEMT field in FCB 233
FERM field in FCB 231
fetch control block (FECB) 163
FETCH statements

control block
FECB 163

fields
locating in dump 108

file control block (FCB) 205
FCBA field 247
FCPM field 268
FEFT field 231
FEMT field 233

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

file control block (FCB) (continued)
FERM field 231
fields for buffer operation 247
format and function 152
FREM field 247
general description 211
record I/O 160
stream I/O 161

file declaration statement 212
file information in a dump

block option 87
buffer contents 85
hexadecimal dump

in multitasking 86
file organization

stream I/O 246
FILEDEF command

using for dumps 75
files

addressing 29
closing 227
conversational 270
declaration 203, 210
explicit opening 213
implicit opening 229
opening 213,246
record variable 219

fixed-point data
DED 134

floating-point data
DED 134

floating-point register
usage 26

flow of control 32-42
form~t DEDs (FEDs) 257
format element descriptor (FED)

format and function 138
format items 264
format list matching 264
formatting modules 264
FREM field in FCB 247
function references

example of 39

G
G format item DED 138
GET DATA statement

handling 256
GET LIST statement 253
GOTO statement

-only ON-units 42
abnormal 42
interpretive code for 39
interpretive routines 42
label variable 41
out of block

example of 41

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

H
heap

free-area chain 107
storage chain 107

hexadecimal dump
in multitasking 86

I/O
conditions for handling statements in-line 239
event 224
exclusive 226
in-line

control blocks 234
error conditions 234
executable instructions 234
implicit open 234
transmission statement 236

library-call 219, 229
record 203-240
stream 241-275

IBM programming support 115
IBM BEER

DSA contents after interrupt 95
IBMBERR

DSA in dump 95
dump address 83

IBMBOCA 207
IBMBOCL 205, 207, 213
IBMBOPA 207
IBMBOPB 207
IBMBOPC 207
IBMBOPD 207
IBMBOPE 207
IBMBOPZ 207
IBMBPGO (interpretive GOTO) 39
IBMBRAA (regional seq output trans) 207
IBMBRAB (regional seq output trans) 207
IBMBRAC (regional seq output trans) 207
IBMBRAD (regional seq output trans) 207
IBMBRAE (regional seq output trans) 207
IBMBRAF (regional seq output trans) 207
IBMBRAG (regional seq output trans) 207
IBMBRAH (regional seq output trans) 207
IBMBRAI (regional seq output trans) 207
IBMBRBA (regional seq in/upd trans) 207
IBMBRBB (regional seq in/upd trans) 207
IBMBRBC (regional seq in/upd trans) 207
IBMBRBD (regional seq in/upd trans) 207
IBMBRBE (regional seq in/upd trans) 207
IBMBRBF (regional seq in/upd trans) 207
IBMBRBG (regional seq in/upd trans) 207
IBMBRCA (unbuffered con sec trans) 207
IBMBRCB (unbuffered con sec trans) 207
IBMBRCC (unbuffered con sec trans) 207

Index 281

IBMBRCD (unbuffered con sec OMR) 207
IBMBRCE (unbuffered con sec associated file) 207
IBMBRDA (regional direct non-exclusive trans) 207
IBMBRDB (regional direct non-exclusive trans) 207
IBMBRDC (regional direct non-exclusive trans) 207
IBMBRDD (regional direct non-exclusive trans) 207
IBMBREA (record I/O error module) 208
IBMBREB (record I/O error module) 208
IBMBREC (record I/O error module) 208
IBMBREE (record I/O error module) 208
IBMBREF (record endfile module) 208
IBMBRIO (record I/O interface) 205,219
IBMBRJA (indexed seq in/upd trans) 207
IBMBRJB (indexed seq in/upd trans) 207
IBMBRKA (indexed direct non-exclusive trans) 207
IBMBRKB (indexed direct non-exclusive trans) 207
IBMBRKC (indexed direct non-exclusive trans) 207
IBMBRLA (indexed sequential output) 208
IBMBRLB (indexed sequential output) 208
IBMBRQA (buffered consec non-spanned trans) 208
IBMBRQB (buffered con sec non-spanned trans) 208
IBMBRQC (buffered consec non-spanned trans) 208
IBMBRQD (buffered consec non-spanned trans) 208
IBMBRQE (buffered consec input spanned trans) 208
IBMBRQF (buffered consec output spanned

trans) 208
IBMBRQG (buffered consec update spanned

trans) 208
IBMBRQH (buffered consecutive OMR) 208
IBM BRQI (buffered con sec associated file) 208
IBMBRTP (teleprocessing input trans) 208
IBMBRVA (VSAM ESDS transmitter) 208
IBMBRVG (VSAM KSDS sequential output) 208
IBMBRVI (RRDS) 208
IBMBRVM (VSAM KSDS other operations) 208
IBMBRXA (exclusive regional direct upd/input

trans) 208
IBMBRXB (exclusive regional direct upd/input

trans) 208
IBMBRXC (exclusive regional direct upd/input

trans) 208
IBMBRXD (exclusive regional direct upd/input

trans) 208
IBMBRYA (exclusive indexed direct upd/input

trans) 208
IBMBRYB (exclusive indexed direct upd/input

trans) 208
IBMBRYC (exclusive indexed direct upd/input

trans) 208
IBMBRYD (exclusive indexed direct upd/input

trans) 208
IBMBSAI 275
IBMBSAO 275
IBMBSCI 275
IBMBSCO 275
IBMBSCP (copy module) 272, 275
IBMBSCV 275

282 os PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IBMBSDI 273
IBMBSDO 273
IBMBSED 273
IBMBSEI 273
IBMBSEO 273
IBMBSFI 275
IBMBSFO 275
IBMBSIC 271, 275
IBMBSII 272
IBMBSIO 272
IBMBSIS 269, 275
IBMBSLI 273
IBMBSLO 273
IBMBSOC 271, 275
IBMBSOF (stream output file trans) 208, 274
IBMBSOU (stream output file trans) 208, 274
IBMBSOV (stream output file trans) 208, 274
IBMBSPC 271, 275
IBMBSPI 275
IBMBSPL (formatting module) 264
IBMBSPO 275
IBMBSTF (stream output print file trans) 208, 274
IBMBSTI (stream input file trans) 208, 274
IBMBSTU (stream output print file trans) 208, 274
IBMBSTV (stream output print file trans) 208, 274
IBMBSXC 264, 274
IBMCSTI (stream input file) 208
IBMCSTP (stream output file) 208
IBMSBPL 274

IELCGBB (test for '0' bits) 47

IELCGBO (test for '1' bits) 47
IELCGCB (compare long bit) 46
IELCGCL (compare long) 46
IELCGIA (stream I/O input) 46
IELCGIB (stream I/O input) 46, 273
IELCGIX (stream I/O input) 264, 273
IELCGMV (move long) 46
IELCGOC (stream I/O output) 46, 264
IELCGOG (stream I/O output) 46, 274
IELCGOH (stream I/O output) 46, 274
IELCGON (dynamic ONCB chaining) 47
IELCGRV (revert VDA chaining) 47
implicit close in record I/O 206
implicit open

record I/O 205
stream I/O 247

in-line calls
implicit open 234

in-line I/O 205
initial storage area (ISA)

following free-area chain in dump 102
ini ti al ization

of the PRV 30
stream 110 subroutines 272

input/output control block (IOCB) 164
interpretive GOTO routine IBMBPGO 39

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

interrupt
ABEND, causing 90
error-handling 90
library routine, in 94
program check 94

invariant expressions
elimination of 49

10CB (input/output control block) 164

J
job control language (JCL)

APAR listing 117

K
KD (key descriptor) 219
key descriptor (KD) 219
key variable 219

L
label data control block 170
I abel data format 170
label variables

errors when using 41
format 170
general description 41
in GOTO statements 41

with NOOPTIMIZE 41
with OPTIMIZE (TIME) 41

library calls
addressing a subroutine 44
example of 44
general 43
level of optimizing used 43
naming conventions 43
resident library

bootstrap routines 43
setting up argument lists 44
within TCA 45

library module 104
library register usage 26
library routine

IBMBSPL 264
IBMBSXC 264

library subroutines
in record I/O 206
in stream I/O 274
naming conventions 62

library workspace (LWS)
format and function 171

library-call I/O 205,219
implicit open 229

LINE format option 264
link editing, definition 4
linkage editor

APAR listing 118

LY27-9528-0 ~'Copyright IBM Corp. 1985, 1987

list-directed 110 249
listing conventions 14, 18
load module

contents
compiler output 11

entry point 11
LOCATE statement 203, 220
locators

aggregate locator format and function 124
area locator/descriptor format and function
string locator/descriptor format and function

loops
rationalization of program branches 54

LWS (library workspace)
format and function 171

M
manuals, OS PLII Version 2 iv
modification of DO-loop control 51
module, object 11
movement of expressions out of loop 49
multitasking

in dumps 111

N
NAME condition

in stream I/O 267
naming conventions

of library modules 62
non-VSAM section of control blocks

data management event control block 166
null value 31

o
object module 11
object program listing

contents 18
DECLARE statements 18
entry poi nt 18
executable statements 18
LIST option 18

offset table
dump, in 101

offsets
null value 31

ON communications area (ONCA)
dummy 172
finding relevant ONCA in dump 102
following chain of ONCAs in dump 102
format and function 172

ON control block (ONCB)
dynamic 175
format and function 175
static 175

120
181

Index 283

ON-units 42
event 1/0 42
GOTO-only 42

open control block (OCB)
function 210

OPEN statement
corr.iJi ler output 213
execution 213

opening files
record 1/0 213
stream 1/0 246

optimization
branching around redundant expressions 53
compiler approach to 47
compiler options

NOOPTIMIZE 47
OPTIMIZE (TIME) 47

examples of
branching around redundant expressions 53
elimination of common expressions 47
elimination of unreachable statements 50
modification of DO-loop control variables 51
movement of invariant expressions 49
simplification of expressions 51

movement of expressions out of loops 49
using common constants and control blocks 54

commoning, example of 54
options

FLOW 12
LIST 18
MAIN 12

OS PUI Version 2
publications iv

output from compiler 13

P
PAGE format option 264
parameter list

contents in dump 104
parameter lists 43
picture data

OED 134
FEDs 138

PUI conditions in stream 1/0 266
PUI dump

key areas of 93
PUI environment

control blocks 4
registers 4

PUI program processing 2
PLiCOUNT 13
PLiDUMP

contents of 82-87
file information 85

dump option characters 78
ERROR ON-unit calls 81
hexadecimal dump 83

284 os PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PLiDUMP (continued)
how to call 78-79
obtaining 78, 79
tasking option 79

PLiFLOW 13
PLiMAIN

format 177
PLiSTART

parameter list 178
PLiTABS 266
PLiTEST 3

calling PLiDUMP 81
pointer variables

misuse of 88
pointers

COPY option 268
how held 27
null value 31

preprocessi ng
suspected failure in

listing, for APAR 116
preprocessor function 3
print files, formatting for 266
procedure block

epilog code 33
prolog code 33

PROCESS statement
LIST option 18

program base register 25
program check exit 90
program control data

data aggregates 31
arrays 31
structures 31

program control section
general registers 25

dedicated 25
work 25

program listing information 14
program management area

PRV, location of 30
prolog code

acquiring a dynamic storage area (DSA)
example of 34

prompting 271
pseudo-register vector (PRV)

addressing controlled variables 29
addressing files 29

file control blocks (FCBs) 29
ALLOCATE statement 29
initialization of 30
location of 30
Q-type address constants 29
use of 30

PSP (Preventive Service Planning) 113
PTF (Program Temporary Fix) 113
publications, OS PUI Version 2 iv

33

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

I
I
\

\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PUT statement 249

R
RCB (request control block) 219
RD (record descriptor) 180,219
READ statement 203
recompiling

avoiding 81
record descriptor (RD) 180, 219
record 1/0

control blocks generated 210
definition 203
error handling

fields used in 232
error modules 231
FCB 217
implementation 204

access method 209
CLOSE statement 205
fields used for 210
file declaration 203, 212
implicit close 206
implicit open 205
OPEN statement 205, 213
transmission statement 205

in-line 233
interface routine (IBMBRIO) 219
library subroutines used 207
overview 238
VSAM data sets 214

redundant expressions
branching around 53
example of 54

registers 24-26
request control block (RCB) 219

description 211
RETURN statement

chainback to DSA 39
example of 39

REWRITE statement 203
RLD records

internal addresses 11
run-time

APAR dump 118
run-time organization
run-time problem determination 63

chart 63
chart index 63

running
definition 4

L Y27 -9528-0 © Copyright IBM Corp. 1985, 1987

5
SIOCB (stream 1/0 control block) 246
SIZE 88
SKIP format option 264
SNAP dump

PSW 88
Software Search Facility

See SSF (Software Support Facility)
squashed mode 272

_ SSF (Software Support Facility) 113
MVS INFOIACCESS 113
search arguments

formulating 113
keywords 113
standardized keywords 114
using INFO/ACCESS with 113
using RETAIN with 113

STAE work area
finding 98

stand-alone dump 75
locating information in 99

statement number
in dump 99
of error 99

statement number table
locating in dump 110

static back-chain 104
static base register 25
static control sections

contents 15
static internal control section

addresses 22
entry points 22
external procedures 22
label contents 22
library modules 22

branch tables 22
constants pool 22

contant values 22
data element descriptors (OED) 22
ONCBs 22
symbol table address vector 22

static variables 22
static ONCB 175
static storage map

example of listing 17
static external control sections 15
static internal control sections 15

static variables 28
addressing 28

beyond the 4K limit 28
storage

overall use 61
storage overlay 88

pointer variables, misuse of 88
variable-length files 88

Index 285

stream 1/0
buffer control fields 247
built-in functions 268
control block (SIOCB) 246
conversation files 270
conversational system 270

formatting module IBMBSPC 271
input transmitter IBMBSIC 271
output transmitter IBMBSOC 271

COPY option 268
COU NT function 268
DATAFIELD function 268
di rector routi nes 241
end of file 267
file handling 246

conversions 249
data-directed GET and PUT statements 254
edit-directed GET and PUT statements 257
list-directed GET and PUT statements 249

file opening 246
format items 264
format lists 264
formatting for print files 266
handling format options 266
input and output of complete arrays 266
ONCHAR function 268
ONSOU RCE function 268
operations 243
PUI conditions in 266
principles used in 242
simplified flow diagram 245
STRING option 269
summary of subroutines used 272

conversational modules 275
director modules 273
external conversation director modules 275
formatting modules 274
initializing modules 272
transmitter modules 274

STRING option
completing string-handling operations 270
housekeeping routine (IBMBSIS) 269
implementation 269

STRINGRANGE 88
strings

OED 133
descri ptor 181
FED 139
locatorldescriptor 181

STRINGSIZE 88
structures

assignments 32
descriptor 182
implementation of 31
of arrays 32

subpool 98
subroutines

com pi ler-generated
IELCGOCA 259

286 os PUI Version 2 Problem Determination

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

subroutines (continued)
compiler-generated (continued)

purpose of 46
SUBSCRIPTRANGE 88
symbol table (SYMTAB) 183
SYMTAB (symbol table) 183
SYSTEM 112

T
tab table 266
task

finding the relationship between in a dump 105
task communications area (TCA) 25

flags 193
format and function 190
implementation appendage 196

task variable (TV)
format and function 202

tasking appendage (TTA) 105
TCA

addresses in dump 97
TCA (see task communications area)
temporaries (see temporary variables) 27
temporary variables

addressing beyond the 4K limit 28
storage in DSA 27
storage in VDA 27

terminating blocks 33
TIA (TCA implementation appendage) 196
timestamp (TSTAMP)

in dump 97
TOTAL option 205
trace

following calling in dump 101
trace information

not generated in dump 96
trace information in a dump

condition names 84
hexadecimal 83
IBMBERR 83
multitasking programs 82
ON-units 82

trace information in dumps 82
transient open routines 213
transmission statements

compiler output 219
definition 203
ENDFILE routine 233
error conditions in 229
execution of 222
general error routines 233
in record I/O 205
TRANSMIT condition 233
use of EVENT option 224

TRANSMIT condition 233
in stream 1/0 267

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

transmitter interface module (IBMBRIO) 219
transmitter modules

record I/O 207
stream I/O 271

ITA (TCA tasking appendage)
function and format 200

TV (task variable)
format and function 202

TXT records 11

U
unexpected end of file

in stream I/O 267
UNLOCK statement 203
unreachable statements

elimination of 50
use of storage 61
User Exit

V

ABEND dump 75
Invoking 111
Name 111

variable data area (VDA)
description 27

variable-length files 88
variables

area
in a dump 108

automatic 27, 107
in a dump 107

based 28
in a dump 108

controlled 27
in a dump 107

label 170
locating in dump 110
pointer 28
static 28, 107

in a dump 107
task 103
temporaries 27

variables, handling and addressing 27
VDA (see variable data area)
VSAM data sets

opening 214
VSAM section of control blocks

data management event control block 167

LY27-9528-0 © Copyright IBM Corp. 1985, 1987

W
WAIT statement

label variable
example of 41
with NOOPTIMIZE 41
with OPTIMIZE (TIME) 41

termination of 42
work registers 25

floating point registers 26
library registers 26

WRITE statement 203

x
X format item 274

Index 287

(

C1l

(5
Z

"Restricted Materials of IBM"
Licensed Materials- Property of IBM
(Except for Customer-Originated Materials)
© Copyright IBM Corp. 1985, 1987
L Y27 -9528-0

OS PUI Version 2 Problem Determination

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systern analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or disrribute whatever information you supply in any way it believes appropriate
withoul incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN Ls) to this book, please list them here: _____________ _

Chapter/Section ___ __

Page No. ____________________ _

Comments:

If you want a reply, please complete the following information.

Name ___________________________________ ___ Phone No. (__)

Company __ _

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

L Y27 ~9528~O

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I •••

Fold and tape Please do not staple Fold and tape

--...- ------- - ------- -.. ---- - - --------------, -
®

QJ

o
z

IIRestricted Materials of IBM"
Licensed Materials- Property of IBM
(Except for Customer-Originated Materials)
© Copyright IBM Corp. 1985,1987
L Y27 -9528-0

OS PL/I Version 2 Problem Determination

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subj.ect matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here: ____________________ _

Chapter/Section __ _

Page No. ______________ _

Comments:

If you want a reply, please complete the following information.

Name ____________ . __________________ ___ Phone No. (__) _________ _

Company __ ___

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

L Y27 ~9528~0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...

Fold and tape Please do not staple Fold and tape

--...- -
----~ - - - ------- -.. ---- - - -------------, -

®

Q)

(5
Z

IIRestricted Materials of IBM"
Licensed Materials-Property of IBM
(Except for Customer-Originated Materials)
© Copyright IBM Corp. 1985,1987
L Y27 -9528-0

as PL/I Version 2 Problem Determination

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here: _____________ _

Chapter/Section ___ _

Page No. ______________ _

Comments:

If you want a reply, please complete the following information.

Name ___________________________ ___ Phone No. (__) _________ _

Company __ __

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

L Y27 ~9528~O

Reader's Comment Form

Fold and tape

Fold and tape

--...- -------- -------- -. ---- - - - ... ------------, -
®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

II
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

--------- - ---- --- - - --- - - ----------_ . -
I!>

Pr inted in U.S.A.

Program Number
5668-909
5668-910
5668-911

. Rest ricted Materials of IBM"
Licensed Materials - Property of IBM
L Y27-9528-0 © Copyright IBM Corp. 1985. 1987

LY27-9S28-0

Fi le Number
S370-37

